Sample records for aspect ratio micro

  1. Experimental analysis for fabrication of high-aspect-ratio piezoelectric ceramic structure by micro-powder injection molding process

    NASA Astrophysics Data System (ADS)

    Han, Jun Sae; Gal, Chang Woo; Park, Jae Man; Kim, Jong Hyun; Park, Seong Jin

    2018-04-01

    Aspect ratio effects in the micro-powder injection molding process were experimentally analyzed for fabrication of high-aspect-ratio piezoelectric ceramic structure. The mechanisms of critical defects have been studied according to individual manufacturing steps. In the molding process, incomplete filling phenomenon determines the critical aspect ratios of a micro pattern. According to mold temperature, an incomplete filling phenomenon has been analyzed with respect to different pattern sizes and aspect ratio. In demolding and drying process, the capillary behavior of sacrificial polymeric mold insert determines the critical aspect ratio of a micro pattern. With respect to pattern dimensions, slumping behavior has been analyzed. Based on our current systems, micro PZT feature has stability when it has lower aspect ratio than 5. Under optimized processing conditions, 20 μm and 40 μm ceramic rod array feature which has 5 of aspect ratio were successfully fabricated by the developed process. Further modification points to fabricate the smaller and higher feature were specifically addressed.

  2. Manufacture of high aspect ratio micro-pillar wall shear stress sensor arrays

    NASA Astrophysics Data System (ADS)

    Gnanamanickam, Ebenezer P.; Sullivan, John P.

    2012-12-01

    In the field of experimental fluid mechanics the measurement of unsteady, distributed wall shear stress has proved historically challenging. Recently, sensors based on an array of flexible micro-pillars have shown promise in carrying out such measurements. Similar sensors find use in other applications such as cellular mechanics. This work presents a manufacturing technique that can manufacture micro-pillar arrays of high aspect ratio. An electric discharge machine (EDM) is used to manufacture a micro-drilling tool. This micro-drilling tool is used to form holes in a wax sheet which acts as the mold for the micro-pillar array. Silicone rubber is cast in these molds to yield a micro-pillar array. Using this technique, micro-pillar arrays with a maximum aspect ratio of about 10 have been manufactured. Manufacturing issues encountered, steps to alleviate them and the potential of the process to manufacture similar micro-pillar arrays in a time-efficient manner are also discussed.

  3. Deep Reactive Ion Etching (DRIE) of High Aspect Ratio SiC Microstructures using a Time-Multiplexed Etch-Passivate Process

    NASA Technical Reports Server (NTRS)

    Evans, Laura J.; Beheim, Glenn M.

    2006-01-01

    High aspect ratio silicon carbide (SiC) microstructures are needed for microengines and other harsh environment micro-electro-mechanical systems (MEMS). Previously, deep reactive ion etching (DRIE) of low aspect ratio (AR less than or = 1) deep (greater than 100 micron) trenches in SiC has been reported. However, existing DRIE processes for SiC are not well-suited for definition of high aspect ratio features because such simple etch-only processes provide insufficient control over sidewall roughness and slope. Therefore, we have investigated the use of a time-multiplexed etch-passivate (TMEP) process, which alternates etching with polymer passivation of the etch sidewalls. An optimized TMEP process was used to etch high aspect ratio (AR greater than 5) deep (less than 100 micron) trenches in 6H-SiC. Power MEMS structures (micro turbine blades) in 6H-SiC were also fabricated.

  4. Study of condensation of refrigerants in a micro-channel for development of future compact micro-channel condensers

    NASA Astrophysics Data System (ADS)

    Chowdhury, Sourav

    2009-12-01

    Mini- and micro-channel technology has gained considerable ground in the recent years in industry and is favored due to its several advantages stemming from its high surface to volume ratio and high values of proof pressure it can withstand. Micro-channel technology has paved the way to development of highly compact heat exchangers with low cost and mass penalties. In the present work, the issues related to the sizing of compact micro-channel condensers have been explored. The considered designs encompass both the conventional and MEMS fabrication techniques. In case of MEMS-fabricated micro-channel condenser, wet etching of the micro-channel structures, followed by bonding of two such wafers with silicon nitride layers at the interface was attempted. It was concluded that the silicon nitride bonding requires great care in terms of high degree of surface flatness and absence of roughness and also high degree of surface purity and thus cannot be recommended for mass fabrication. Following this investigation, a carefully prepared experimental setup and test micro-channel with hydraulic diameter 700 mum and aspect ratio 7:1 was fabricated and overall heat transfer and pressure drop aspects of two condensing refrigerants, R134a and R245fa were studied at a variety of test conditions. To the best of author's knowledge, so far no data has been reported in the literature on condensation in such high aspect ratio micro-channels. Most of the published experimental works on condensation of refrigerants are concerning conventional hydraulic diameter channels (> 3mm) and only recently some experimental data has been reported in the sub-millimeter scale channels for which the surface tension and viscosity effects play a dominant role and the effect of gravity is diminished. It is found that both experimental data and empirically-derived correlations tend to under-predict the present data by an average of 25%. The reason for this deviation could be because a high aspect ratio channel tends to collect the condensate in the corners of its cross-section leaving only a thin liquid film on the flat side surfaces for better heat transfer than in circular or low aspect ratio channels.

  5. Fabrication of high aspect ratio nanopillars and micro/nano combined structures with hydrophobic surface characteristics by injection molding

    NASA Astrophysics Data System (ADS)

    Zhou, Mingyong; Xiong, Xiang; Jiang, Bingyan; Weng, Can

    2018-01-01

    Polymer products with micro/nano-structures have excellent mechanical and optical properties, chemical resistance, and other advantages. Injection molding is one of the most potential techniques to fabricate polymer products with micro/nano-structures artificially in large numbers. In this study, a surface approach to fabricate high aspect ratio nanopillars and micro/nano combined structures was presented. Mold insert with micropillar arrays and nanopillars on its surface was prepared by combing anodic aluminum oxide (AAO) template and etched plate. Anti-sticking modification was done on the template to realize a better demolding quality. The influences of mold temperature and polymer material on the final replication quality were investigated. The results showed that the final replication quality of high aspect ratio nanopillars was greatly improved as compared with the unprocessed template. Polymer with low elongation at break was not suitable to fabricate structures with high aspect ratio via injection molding. For polypropylene surface, the experimental results of static contact angles were almost consistent with Cassie-Baxter equation. When the mold temperature reached 178 °C, hair-like polycarbonate nanopillars were observed, resulting in an excellent hydrophobic characteristic.

  6. Filling of high aspect ratio micro features of a microfluidic flow cytometer chip using micro injection moulding

    NASA Astrophysics Data System (ADS)

    Zhang, Haoyang; Fang, Fengzhou; Gilchrist, Michael D.; Zhang, Nan

    2018-07-01

    Micro injection moulding has been demonstrated as one of the most efficient mass production technologies for manufacturing polymeric microfluidic devices, which have been widely used in life sciences, environmental and analytical fields and agro-food industries. However, the filling of micro features for typical microfluidic devices is complicated and not yet fully understood, which consequently restricts the chip development. In the present work, a microfluidic flow cytometer chip with essential high aspect ratio micro features was used as a typical model to study their filling process. Short-shot experiments and single factor experiments were performed to examine the filling progress of such features during the injection and packing stages of the micro injection moulding process. The influence of process parameters such as shot size, packing pressure, packing time and mould temperature were systematically monitored, characterised and correlated with 3D measurements and real response of the machine such as screw velocity and screw position. A combined melt flow and creep deformation model was proposed to explain the complex influence of process on replication. An approach of over-shot micro injection moulding was proposed and was shown to be effective at improving the replication quality of high aspect ratio micro features.

  7. Micro-structure and motion of two-dimensional dense short spherocylinder liquids

    NASA Astrophysics Data System (ADS)

    Wang, Wen; Lin, Jyun-Ting; Su, Yen-Shuo; I, Lin

    2018-03-01

    We numerically investigate the micro-structure and motion of 2D liquids composed of dense short spherocylinders, by reducing the shape aspect ratio from 3. It is found that reducing shape aspect ratio from 3 causes a smooth transition from heterogeneous structures composed of crystalline ordered domains with good tetratic alignment order to those with good hexagonal bond-orientational order at an aspect ratio equaling 1.35. In the intermediate regime, both structural orders are strongly deteriorated, and the translational hopping rate reaches a maximum due to the poor particle interlocking of the disordered structure. Shortening rod length allows easier rotation, induces monotonic increase of rotational hopping rates, and resumes the separation of rotational and translational hopping time scales at the small aspect ratio end, after the crossover of their rates in the intermediate regime. At the large shape aspect ratio end, the poor local tetratic order has the same positive effects on facilitating local rotational and translational hopping. In contrast, at the small shape aspect ratio end, the poor local bond orientational order has the opposite effects on facilitating local rotational and translational hopping.

  8. Simultaneous fabrication of very high aspect ratio positive nano- to milliscale structures.

    PubMed

    Chen, Long Qing; Chan-Park, Mary B; Zhang, Qing; Chen, Peng; Li, Chang Ming; Li, Sai

    2009-05-01

    A simple and inexpensive technique for the simultaneous fabrication of positive (i.e., protruding), very high aspect (>10) ratio nanostructures together with micro- or millistructures is developed. The method involves using residual patterns of thin-film over-etching (RPTO) to produce sub-micro-/nanoscale features. The residual thin-film nanopattern is used as an etching mask for Si deep reactive ion etching. The etched Si structures are further reduced in size by Si thermal oxidation to produce amorphous SiO(2), which is subsequently etched away by HF. Two arrays of positive Si nanowalls are demonstrated with this combined RPTO-SiO(2)-HF technique. One array has a feature size of 150 nm and an aspect ratio of 26.7 and another has a feature size of 50 nm and an aspect ratio of 15. No other parallel reduction technique can achieve such a very high aspect ratio for 50-nm-wide nanowalls. As a demonstration of the technique to simultaneously achieve nano- and milliscale features, a simple Si nanofluidic master mold with positive features with dimensions varying continuously from 1 mm to 200 nm and a highest aspect ratio of 6.75 is fabricated; the narrow 200-nm section is 4.5 mm long. This Si master mold is then used as a mold for UV embossing. The embossed open channels are then closed by a cover with glue bonding. A high aspect ratio is necessary to produce unblocked closed channels after the cover bonding process of the nanofluidic chip. The combined method of RPTO, Si thermal oxidation, and HF etching can be used to make complex nanofluidic systems and nano-/micro-/millistructures for diverse applications.

  9. A systematic approach to fabricate high aspect ratio silicon micro-needles for transdermal drug delivery

    NASA Astrophysics Data System (ADS)

    Ng, H. B.; Shearwood, C.

    2007-12-01

    The successful development of micro-needles can help transport drugs and vaccines both effectively and painlessly across the skin. However, not all micro-needles are strong enough to withstand the insertion forces and viscoelasticity of the skin. The work here focuses on the micro-fabrication of high aspect ratio needles with careful control of needle-profile using dry etching technologies. Silicon micro-needles, 150μm in length with base-diameters ranging from 90 to 240μm have been investigated in this study. A novel, multiple-sacrificial approach has been demonstrated as suited to the fabrication of long micro-needle bodies with positive profiles. The parameters that control the isotropic etching are adjusted to control the ratio of the needle-base diameter to needle length. By careful control of geometry, the needle profile can be engineered to give a suitable tip size for penetration, as well as a broad needle base to facilitate the creation of either single or multiple-through holes. This approach allows the mechanical properties of the otherwise brittle needles to be optimized. Finite element analysis indicates that the micro-needles will fracture prematurely due to buckling, with forces ranging from 10 to 30mN.

  10. Single-photon-multi-layer-interference lithography for high-aspect-ratio and three-dimensional SU-8 micro-/nanostructures.

    PubMed

    Ghosh, Siddharth; Ananthasuresh, G K

    2016-01-04

    We report microstructures of SU-8 photo-sensitive polymer with high-aspect-ratio, which is defined as the ratio of height to in-plane feature size. The highest aspect ratio achieved in this work exceeds 250. A multi-layer and single-photon lithography approach is used in this work to expose SU-8 photoresist of thickness up to 100 μm. Here, multi-layer and time-lapsed writing is the key concept that enables nanometer localised controlled photo-induced polymerisation. We use a converging monochromatic laser beam of 405 nm wavelength with a controllable aperture. The reflection of the converging optics from the silicon substrate underneath is responsible for a trapezoidal edge profile of SU-8 microstructure. The reflection induced interfered point-spread-function and multi-layer-single-photon exposure helps to achieve sub-wavelength feature sizes. We obtained a 75 nm tip diameter on a pyramid shaped microstructure. The converging beam profile determines the number of multiple optical focal planes along the depth of field. These focal planes are scanned and exposed non-concurrently with varying energy dosage. It is notable that an un-automated height axis control is sufficient for this method. All of these contribute to realising super-high-aspect-ratio and 3D micro-/nanostructures using SU-8. Finally, we also address the critical problems of photoresist-based micro-/nanofabrication and their solutions.

  11. A study of the rheology and micro-structure of dumbbells in shear geometries

    NASA Astrophysics Data System (ADS)

    Mandal, Sandip; Khakhar, D. V.

    2018-01-01

    We study the flow of frictional, inelastic dumbbells made of two fused spheres of different aspect ratios down a rough inclined plane and in a simple shear cell, using discrete element simulations. At a fixed inclination angle, the mean velocity decreases, and the volume fraction increases significantly with increasing aspect ratio in the chute flow. At a fixed solid fraction, the shear stress and pressure decrease significantly with increasing aspect ratio in the shear cell flow. The micro-structure of the flow is characterized. The translational diffusion coefficient in the normal direction to the flow is found to scale as Dy y=b γ ˙ d2, independent of aspect ratio, where b is a constant, γ ˙ is the shear rate, and d is the diameter of the constituent spheres of the dumbbells. The effective friction coefficient (μ, the ratio of shear stress to pressure) increases by 30%-35% on increasing the aspect ratio λ, from 1.0 to 1.7, for a fixed inertial number I. The volume fraction (ϕ) also increases significantly with increasing aspect ratio, especially at high inertial numbers. The effective friction coefficient and volume fraction are found to follow simple scalings of the form μ = μ(I, λ) and ϕ = ϕ(I, λ) for all the data from both systems, and the results are in reasonable agreement with kinetic theory predictions at low I. The computational results are in reasonable agreement with the experimental data for flow in a rotating cylinder.

  12. Silicon Nanotips Antireflection Surface for Micro Sun Sensor

    NASA Technical Reports Server (NTRS)

    Bae, Sam Y.; Lee, Choonsup; Mobasser, Sohrab; Manohara, Harish

    2006-01-01

    We have developed a new technique to fabricate antireflection surface using silicon nano-tips for use on a micro sun sensor for Mars rovers. We have achieved randomly distributed nano-tips of radius spanning from 20 nm to 100 nm and aspect ratio of 200 using a two-step dry etching process. The 30(deg) specular reflectance at the target wavelength of 1 (mu)m is only about 0.09 %, nearly three orders of magnitude lower than that of bare silicon, and the hemispherical reflectance is 8%. By changing the density and aspect ratio of these nanotips, the change in reflectance is demonstrated. Using surfaces covered with these nano-tips, the critical problem of ghost images that are caused by multiple internal reflections in a micro sun sensor was solved.

  13. High strength fused silica flexures manufactured by femtosecond laser

    NASA Astrophysics Data System (ADS)

    Bellouard, Yves; Said, Ali A.; Dugan, Mark; Bado, Philippe

    2009-02-01

    Flexures are mechanical elements used in micro- and precision-engineering to precisely guide the motion of micro-parts. They consist of slender bodies that deform elastically upon the application of a force. Although counter-intuitive at first, fused silica is an attractive material for flexure. Pending that the machining process does not introduce surface flaws that would lead to catastrophic failure, the material has a theoretically high ultimate tensile strength of several GPa. We report on high-aspect ratio fused silica flexures manufactured by femtosecond laser combined with chemical etching. Notch-hinges with thickness as small as twenty microns and aspect ratios comparable to aspect ratios obtained by Deep- Reactive-Ion-Etching (DRIE) were fabricated and tested under different loading conditions. Multiple fracture tests were performed for various loading conditions and the cracks morphologies were analyzed using Scanning Electron Microscopy. The manufactured elements show outstanding mechanical properties with flexural strengths largely exceeding those obtained with other technologies and materials. Fused silica flexures offer a mean to combine integrated optics with micro-mechanics in a single monolithic substrate. Waveguides and mechanical elements can be combined in a monolithic devices opening new opportunities for integrated opto-mechatronics devices.

  14. A novel fabrication method for suspended high-aspect-ratio microstructures

    NASA Astrophysics Data System (ADS)

    Yang, Yao-Joe; Kuo, Wen-Cheng

    2005-11-01

    Suspended high-aspect-ratio structures (suspended HARS) are widely used for MEMS devices such as micro-gyroscopes, micro-accelerometers, optical switches and so on. Various fabrication methods, such as SOI, SCREAM, AIM, SBM and BELST processes, were proposed to fabricate HARS. However, these methods focus on the fabrication of suspended microstructures with relatively small widths of trench opening (e.g. less than 10 µm). In this paper, we propose a novel process for fabricating very high-aspect-ratio suspended structures with large widths of trench opening using photoresist as an etching mask. By enhancing the microtrenching effect, we can easily release the suspended structure without thoroughly removing the floor polymer inside the trenches for the cases with a relatively small trench aspect ratio. All the process steps can be integrated into a single-run single-mask ICP-RIE process, which effectively reduces the process complexity and fabrication cost. We also discuss the phenomenon of corner erosion, which results in the undesired etching of silicon structures during the structure-releasing step. By using the proposed process, 100 µm thick suspended structures with the trench aspect ratio of about 20 are demonstrated. Also, the proposed process can be used to fabricate devices for applications which require large in-plane displacement. This paper was orally presented in the Transducers'05, Seoul, Korea (paper ID: 3B1.3).

  15. On hydrophilicity improvement of the porous anodic alumina film by hybrid nano/micro structuring

    NASA Astrophysics Data System (ADS)

    Wang, Weichao; Zhao, Wei; Wang, Kaige; Wang, Lei; Wang, Xuewen; Wang, Shuang; Zhang, Chen; Bai, Jintao

    2017-09-01

    In both, laboratory and industry, tremendous attention is paid to discover an effective technique to produce uniform, controllable and (super) hydrophilic surfaces over large areas that are useful in a wide range of applications. In this investigation, by combing porous anodic alumina (PAA) film with nano-structures and microarray of aluminum, the hydrophilicity of hybrid nano-micro structure has been significantly improved. It is found some factors can affect the hydrophilicity of film, such as the size and aspect ratio of microarray, the thickness of nano-PAA film etc. Comparing with pure nano-PAA films and microarray, the hybrid nano-micro structure can provide uniform surface with significantly better hydrophilicity. The improvement can be up to 84%. Also, this technique exhibits good stability and repeatability for industrial production. By optimizing the thickness of nano-PAA film and aspect ratio of micro-structures, super-hydrophilicity can be reached. This study has obvious prospect in the fields of chemical industry, biomedical engineering and lab-on-a-chip applications.

  16. Electrodeposition of Gold to Conformally Fill High Aspect Ratio Nanometric Silicon Grating Trenches: A Comparison of Pulsed and Direct Current Protocols

    PubMed Central

    Znati, Sami A.; Chedid, Nicholas; Miao, Houxun; Chen, Lei; Bennett, Eric E.; Wen, Han

    2016-01-01

    Filling high-aspect-ratio trenches with gold is a frequent requirement in the fabrication of x-ray optics as well as micro-electronic components and other fabrication processes. Conformal electrodeposition of gold in sub-micron-width silicon trenches with an aspect ratio greater than 35 over a grating area of several square centimeters is challenging and has not been described in the literature previously. A comparison of pulsed plating and constant current plating led to a gold electroplating protocol that reliably filled trenches for such structures. PMID:27042384

  17. A multiscale method for modeling high-aspect-ratio micro/nano flows

    NASA Astrophysics Data System (ADS)

    Lockerby, Duncan; Borg, Matthew; Reese, Jason

    2012-11-01

    In this paper we present a new multiscale scheme for simulating micro/nano flows of high aspect ratio in the flow direction, e.g. within long ducts, tubes, or channels, of varying section. The scheme consists of applying a simple hydrodynamic description over the entire domain, and allocating micro sub-domains in very small ``slices'' of the channel. Every micro element is a molecular dynamics simulation (or other appropriate model, e.g., a direct simulation Monte Carlo method for micro-channel gas flows) over the local height of the channel/tube. The number of micro elements as well as their streamwise position is chosen to resolve the geometrical features of the macro channel. While there is no direct communication between individual micro elements, coupling occurs via an iterative imposition of mass and momentum-flux conservation on the macro scale. The greater the streamwise scale of the geometry, the more significant is the computational speed-up when compared to a full MD simulation. We test our new multiscale method on the case of a converging/diverging nanochannel conveying a simple Lennard-Jones liquid. We validate the results from our simulations by comparing them to a full MD simulation of the same test case. Supported by EPSRC Programme Grant, EP/I011927/1.

  18. Micro- and Nano-Scale Fabrication of Fluorinated Polymers by Direct Etching Using Focused Ion Beam

    NASA Astrophysics Data System (ADS)

    Fukutake, Naoyuki; Miyoshi, Nozomi; Takasawa, Yuya; Urakawa, Tatsuya; Gowa, Tomoko; Okamoto, Kazumasa; Oshima, Akihiro; Tagawa, Seiichi; Washio, Masakazu

    2010-06-01

    Micro- and nano-scale fabrications of various fluorinated polymers were demonstrated by direct maskless etching using a focused ion beam (FIB). The etching rates of perfluorinated polymers, such as poly(tetrafluoroethylene) (PTFE), poly(tetrafluoroethylene-co-hexafluoropropylene) (FEP), poly(tetrafluoroethylene-co-perfluoroalkoxyvinylether) (PFA), were about 500-1000 times higher than those of partially fluorinated polymers, such as poly(tetrafluoroethylene-co-ethylene) (ETFE) and poly(vinilydene-fluoride) (PVdF). Controlled high quality and high aspect-ratio nanostructures of spin-coated cross-linked PTFE were obtained without solid debris. The height and diameter of the fibers were about 1.5 µm and 90 nm, respectively. Their aspect ratio was about 17.

  19. Micro- and Nano-Scale Fabrication of Fluorinated Polymers by Direct Etching Using Focused Ion Beam

    NASA Astrophysics Data System (ADS)

    Naoyuki Fukutake,; Nozomi Miyoshi,; Yuya Takasawa,; Tatsuya Urakawa,; Tomoko Gowa,; Kazumasa Okamoto,; Akihiro Oshima,; Seiichi Tagawa,; Masakazu Washio,

    2010-06-01

    Micro- and nano-scale fabrications of various fluorinated polymers were demonstrated by direct maskless etching using a focused ion beam (FIB). The etching rates of perfluorinated polymers, such as poly(tetrafluoroethylene) (PTFE), poly(tetrafluoroethylene-co-hexafluoropropylene) (FEP), poly(tetrafluoroethylene-co-perfluoroalkoxyvinylether) (PFA), were about 500-1000 times higher than those of partially fluorinated polymers, such as poly(tetrafluoroethylene-co-ethylene) (ETFE) and poly(vinilydene-fluoride) (PVdF). Controlled high quality and high aspect-ratio nanostructures of spin-coated cross-linked PTFE were obtained without solid debris. The height and diameter of the fibers were about 1.5 μm and 90 nm, respectively. Their aspect ratio was about 17.

  20. Front-surface fabrication of moderate aspect ratio micro-channels in fused silica by single picosecond Gaussian-Bessel laser pulse

    NASA Astrophysics Data System (ADS)

    Liu, Xin; Sanner, Nicolas; Sentis, Marc; Stoian, Razvan; Zhao, Wei; Cheng, Guanghua; Utéza, Olivier

    2018-02-01

    Single-shot Gaussian-Bessel laser beams of 1 ps pulse duration and of 0.9 μm core size and 60 μm depth of focus are used for drilling micro-channels on front side of fused silica in ambient condition. Channels ablated at different pulse energies are fully characterized by AFM and post-processing polishing procedures. We identify experimental energy conditions (typically 1.5 µJ) suitable to fabricate non-tapered channels with mean diameter of 1.2 µm and length of 40 μm while maintaining an utmost quality of the front opening of the channels. In addition, by further applying accurate post-polishing procedure, channels with high surface quality and moderate aspect ratio down to a few units are accessible, which would find interest in the surface micro-structuring of materials, with perspective of further scalability to meta-material specifications.

  1. Localized mold heating with the aid of selective induction for injection molding of high aspect ratio micro-features

    NASA Astrophysics Data System (ADS)

    Park, Keun; Lee, Sang-Ik

    2010-03-01

    High-frequency induction is an efficient, non-contact means of heating the surface of an injection mold through electromagnetic induction. Because the procedure allows for the rapid heating and cooling of mold surfaces, it has been recently applied to the injection molding of thin-walled parts or micro/nano-structures. The present study proposes a localized heating method involving the selective use of mold materials to enhance the heating efficiency of high-frequency induction heating. For localized induction heating, a composite injection mold of ferromagnetic material and paramagnetic material is used. The feasibility of the proposed heating method is investigated through numerical analyses in terms of its heating efficiency for localized mold surfaces and in terms of the structural safety of the composite mold. The moldability of high aspect ratio micro-features is then experimentally compared under a variety of induction heating conditions.

  2. Entrepreneur Grows Microswitch Company

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Czaja, Danny; Christenson, Todd

    2014-10-24

    Todd Christenson took advantage of Sandia National Laboratories’ Entrepreneurial Separation to Transfer Technology (ESTT) program to start HT MicroAnalytical (HT Micro) in 2003 in order to apply his specialized expertise in high aspect ratio microfabrication (HARM) technology gained while at Sandia to the creation of the world’s smallest electromechanical switches.

  3. High-aspect ratio magnetic nanocomposite polymer cilium

    NASA Astrophysics Data System (ADS)

    Rahbar, M.; Tseng, H. Y.; Gray, B. L.

    2014-03-01

    This paper presents a new fabrication technique to achieve ultra high-aspect ratio artificial cilia micro-patterned from flexible highly magnetic rare earth nanoparticle-doped polymers. We have developed a simple, inexpensive and scalable fabrication method to create cilia structures that can be actuated by miniature electromagnets, that are suitable to be used for lab-on-a chip (LOC) and micro-total-analysis-system (μ-TAS) applications such as mixers and flow-control elements. The magnetic cilia are fabricated and magnetically polarized directly in microfluidic channels or reaction chambers, allowing for easy integration with complex microfluidic systems. These cilia structures can be combined on a single chip with other microfluidic components employing the same permanently magnetic nano-composite polymer (MNCP), such as valves or pumps. Rare earth permanent magnetic powder, (Nd0.7Ce0.3)10.5Fe83.9B5.6, is used to dope polydimethylsiloxane (PDMS), resulting in a highly flexible M-NCP of much higher magnetization and remanence [1] than ferromagnetic polymers typically employed in magnetic microfluidics. Sacrificial poly(ethylene-glycol) (PEG) is used to mold the highly magnetic polymer into ultra high-aspect ratio artificial cilia. Cilia structures with aspect ratio exceeding 8:0.13 can be easily fabricated using this technique and are actuated using miniature electromagnets to achieve a high range of motion/vibration.

  4. Entrepreneur Grows Microswitch Company

    ScienceCinema

    Czaja, Danny; Christenson, Todd

    2018-05-30

    Todd Christenson took advantage of Sandia National Laboratories’ Entrepreneurial Separation to Transfer Technology (ESTT) program to start HT MicroAnalytical (HT Micro) in 2003 in order to apply his specialized expertise in high aspect ratio microfabrication (HARM) technology gained while at Sandia to the creation of the world’s smallest electromechanical switches.

  5. Experimental study of micro dimple fabrication based on laser shock processing

    NASA Astrophysics Data System (ADS)

    Li, Kangmei; Hu, Yongxiang; Yao, Zhenqiang

    2013-06-01

    Micro-dimple array has been generally considered as a valuable texture for sliding surfaces. It can improve lubrication and reduce wear by acting as reservoirs of lubricants and grinding debris. Laser shock processing (LSP) is an innovative process which can not only improve fatigue, corrosion and wearing resistance but also shape metallic parts accurately. In this study, a new process for the fabrication of micro dimples based on LSP was proposed, which was named as laser peen texturing (LPT). Experiments were performed on 2024 aluminum alloy, Oxygen-Free High Conductivity (OFHC) copper and SUS304 stainless steel to study the effects of processing parameters of LPT on surface integrity of the specimen. Surface morphology, micro hardness and microstructure of the micro dimples were investigated under various laser power densities, laser spot diameters and repeated shock numbers. It was found that the depth of the micro dimples induced by LPT is strongly dependent on material properties. The diameter, depth as well as aspect ratio of micro dimples were increased with the laser power density and the repeated shock number under the conditions in this study. But when the laser spot diameter changed, the variation laws of the diameter, depth and aspect ratio of the dimple were different from each other. The results of micro hardness measurements suggested that LPT is beneficial for the improvement of the micro hardness beneath the dimple. Grain refinement was found significantly on 2024 aluminum alloy and OFHC copper but not clearly on SUS304 stainless steel. Both the hardening effect and the grain refinement have close relationship with the depth of the micro dimple.

  6. Solving the critical thermal bowing in 3C-SiC/Si(111) by a tilting Si pillar architecture

    NASA Astrophysics Data System (ADS)

    Albani, Marco; Marzegalli, Anna; Bergamaschini, Roberto; Mauceri, Marco; Crippa, Danilo; La Via, Francesco; von Känel, Hans; Miglio, Leo

    2018-05-01

    The exceptionally large thermal strain in few-micrometers-thick 3C-SiC films on Si(111), causing severe wafer bending and cracking, is demonstrated to be elastically quenched by substrate patterning in finite arrays of Si micro-pillars, sufficiently large in aspect ratio to allow for lateral pillar tilting, both by simulations and by preliminary experiments. In suspended SiC patches, the mechanical problem is addressed by finite element method: both the strain relaxation and the wafer curvature are calculated at different pillar height, array size, and film thickness. Patches as large as required by power electronic devices (500-1000 μm in size) show a remarkable residual strain in the central area, unless the pillar aspect ratio is made sufficiently large to allow peripheral pillars to accommodate the full film retraction. A sublinear relationship between the pillar aspect ratio and the patch size, guaranteeing a minimal curvature radius, as required for wafer processing and micro-crack prevention, is shown to be valid for any heteroepitaxial system.

  7. Microfabrication: LIGA-X and applications

    NASA Astrophysics Data System (ADS)

    Kupka, R. K.; Bouamrane, F.; Cremers, C.; Megtert, S.

    2000-09-01

    X-ray LIGA (Lithography, Electrogrowth, Moulding) is one of today's key technologies in microfabrication and upcoming modern (meso)-(nano) fabrication, already used and anticipated for micromechanics (micromotors, microsensors, spinnerets, etc.), micro-optics, micro-hydrodynamics (fluidic devices), microbiology, in medicine, in biology, and in chemistry for microchemical reactors. It compares to micro-electromechanical systems (MEMS) technology, offering a larger, non-silicon choice of materials and better inherent precision. X-ray LIGA relies on synchrotron radiation to obtain necessary X-ray fluxes and uses X-ray proximity printing. Inherent advantages are its extreme precision, depth of field and very low intrinsic surface roughness. However, the quality of fabricated structures often depends on secondary effects during exposure and effects like resist adhesion. UV-LIGA, relying on thick UV resists is an alternative for projects requiring less precision. Modulating the spectral properties of synchrotron radiation, different regimes of X-ray lithography lead to (a) the mass-fabrication of classical nanostructures, (b) the fabrication of high aspect ratio nanostructures (HARNST), (c) the fabrication of high aspect ratio microstructures (HARMST), and (d) the fabrication of high aspect ratio centimeter structures (HARCST). Reviewing very recent activities around X-ray LIGA, we show the versatility of the method, obviously finding its region of application there, where it is best and other competing microtechnologies are less advantageous. An example of surface-based X-ray and particle lenses (orthogonal reflection optics (ORO)) made by X-ray LIGA is given.

  8. Finite micro-tab system for load control on a wind turbine

    NASA Astrophysics Data System (ADS)

    Bach, A. B.; Lennie, M.; Pechlivanoglou, G.; Nayeri, C. N.; Paschereit, C. O.

    2014-06-01

    Finite micro-tabs have been investigated experimentally to evaluate the potential for load control on wind turbines. Two dimensional full span, as well as multiple finite tabs of various aspect ratios have been studied on an AH93W174 airfoil at different chord wise positions. A force balance was used to measure the aerodynamic loads. Furthermore, the wake vortex system consisting of the Karman vortex street as well as the tab tip vortices was analyzed with a 12-hole probe and hot wire anemometry. Finally, conventional oil paint as well as a quantitative digital flow analysis technique called SMARTviz were used to visualize the flow around the finite tab configurations. Results have shown that the devices are an effective solution to alleviate the airfoils overall load. The influence of the tab height, tab position as well as the finite tab aspect ratio on the lift and lift to drag ratio have been evaluated. It could be shown, that the lift difference can either be varied by changing the tab height as well as by altering the aspect ratio of the finite tabs. The drag of a two-dimensional flap is directly associated with the vortex street, while in the case of the finite tab, the solidity ratio of the tabs has the strongest effect on the drag. Therefore, the application of a finite tab system showed to improve the lift to drag ratio.

  9. Depth of array micro-holes with large aspect ratio in Al based cast alloy

    NASA Astrophysics Data System (ADS)

    Jin, Meiling; Qu, Yingdong; Li, Rongde

    2018-03-01

    In order to study on the depth of array micro-holes on Al base cast alloy, micro-hole with depth of 50 mm and diameter of 0.55 mm are successfully prepared by using poor wetting between carbon and Al. Accordingly, the mold of depth is established, the results show that calculated depth of micro-hole is 53.22 mm, relative error is 6% compare with the actual measured depth, and the depth of hole exponentially increases with the increasing of distance between two micro-holes. Surface tension and metallostatic pressure of metal molten are mainly affecting factors for depth of micro-holes.

  10. A minimally invasive micro sampler for quantitative sampling with an ultrahigh-aspect-ratio microneedle and a PDMS actuator.

    PubMed

    Liu, Long; Wang, Yan; Yao, Jinyuan; Yang, Cuijun; Ding, Guifu

    2016-08-01

    This study describes a novel micro sampler consisting of an ultrahigh-aspect-ratio microneedle and a PDMS actuator. The microneedle was fabricated by a new method which introduced reshaped photoresist technology to form a flow channel inside. The microneedle includes two parts: shaft and pedestal. In this study, the shaft length is 1500 μm with a 45° taper angle on the tip and pedestal is 1000 μm. Besides, the shaft and pedestal are connected by an arc connection structure with a length of 600 μm. The microneedles have sufficient mechanical strength to insert into skin with a wide safety margin which was proved by mechanics tests. Moreover, a PDMS actuator with a chamber inside was designed and fabricated in this study. The chamber, acting as a reservoir in sampling process as well as providing power, was optimized by finite element analysis (FEA) to decrease dead volume and improve sampling precision. The micro sampler just needs finger press to activate the sampling process as well as used for quantitative micro injection to some extent. And a volume of 31.5 ± 0.8 μl blood was successfully sampled from the ear artery of a rabbit. This micro sampler is suitable for micro sampling for diagnose or therapy in biomedical field.

  11. Investigation into Generation of Micro Features by Localised Electrochemical Deposition

    NASA Astrophysics Data System (ADS)

    Debnath, Subhrajit; Laskar, Hanimur Rahaman; Bhattacharyya, B.

    2017-11-01

    With the fast advancement of technology, localised electrochemical deposition (LECD) is becoming very advantageous in generating high aspect ratio micro features to meet the steep demand in modern precision industries of the present world. Except many other advantages, this technology is highly uncomplicated and economical for fabricating metal micro-parts with in micron ranges. In the present study, copper micro-columns have been fabricated utilizing LECD process. Different process parameters such as voltage, frequency, duty ratio and electrolyte concentration, which affect the deposition performance have been identified and their effects on deposition performances such as deposition rate, height and diameter of the micro-columns have been experimentally investigated. Taguchi's methodology has been used to study the effects as well as to obtain the optimum values of process parameters so that localised deposition with best performance can be achieved. Moreover, the generated micro-columns were carefully observed under optical and scanning electron microscope from where the surface quality of the deposited micro-columns has been studied qualitatively. Also, an array of copper micro-columns has been fabricated on stainless steel (SS-304) substrate for further exploration of LECD process capability.

  12. Auxiliary drying to prevent pattern collapse in high aspect ratio nanostructures

    NASA Astrophysics Data System (ADS)

    Liu, Gang; Zhou, Jie; Xiong, Ying; Zhang, Xiaobo; Tian, Yangchao

    2011-07-01

    Many defects are generated in densely packed high aspect ratio structures during nanofabrication. Pattern collapse is one of the serious problems that may arise, mainly due to the capillary force during drying after the rinsing process. In this paper, a method of auxiliary drying is presented to prevent pattern collapse in high aspect ratio nanostructures by adding an auxiliary substrate as a reinforcing rib to restrict deformation and to balance the capillary force. The principle of the method is presented based on the analysis of pattern collapse. A finite element method is then applied to analyze the deformation of the resist beams caused by the surface tension using the ANSYS software, and the effect of the nanostructure's length to width ratio simulated and analyzed. Finally, the possible range of applications based on the proposed method is discussed. Our results show that the aspect ratio may be increased 2.6 times without pattern collapse; furthermore, this method can be widely used in the removal of solvents in micro- and nanofabrication.

  13. Auxiliary drying to prevent pattern collapse in high aspect ratio nanostructures.

    PubMed

    Liu, Gang; Zhou, Jie; Xiong, Ying; Zhang, Xiaobo; Tian, Yangchao

    2011-07-29

    Many defects are generated in densely packed high aspect ratio structures during nanofabrication. Pattern collapse is one of the serious problems that may arise, mainly due to the capillary force during drying after the rinsing process. In this paper, a method of auxiliary drying is presented to prevent pattern collapse in high aspect ratio nanostructures by adding an auxiliary substrate as a reinforcing rib to restrict deformation and to balance the capillary force. The principle of the method is presented based on the analysis of pattern collapse. A finite element method is then applied to analyze the deformation of the resist beams caused by the surface tension using the ANSYS software, and the effect of the nanostructure's length to width ratio simulated and analyzed. Finally, the possible range of applications based on the proposed method is discussed. Our results show that the aspect ratio may be increased 2.6 times without pattern collapse; furthermore, this method can be widely used in the removal of solvents in micro- and nanofabrication.

  14. Electrolytic Manganese Dioxide Coatings on High Aspect Ratio Micro-Pillar Arrays for 3D Thin Film Lithium Ion Batteries.

    PubMed

    Zargouni, Yafa; Deheryan, Stella; Radisic, Alex; Alouani, Khaled; Vereecken, Philippe M

    2017-05-27

    In this work, we present the electrochemical deposition of manganese dioxide (MnO₂) thin films on carbon-coated TiN/Si micro-pillars. The carbon buffer layer, grown by plasma enhanced chemical vapor deposition (PECVD), is used as a protective coating for the underlying TiN current collector from oxidation, during the film deposition, while improving the electrical conductivity of the stack. A conformal electrolytic MnO₂ (EMD) coating is successfully achieved on high aspect ratio C/TiN/Si pillar arrays by tailoring the deposition process. Lithiation/Delithiation cycling tests have been performed. Reversible insertion and extraction of Li⁺ through EMD structure are observed. The fabricated stack is thus considered as a good candidate not only for 3D micorbatteries but also for other energy storage applications.

  15. Electrolytic Manganese Dioxide Coatings on High Aspect Ratio Micro-Pillar Arrays for 3D Thin Film Lithium Ion Batteries

    PubMed Central

    Zargouni, Yafa; Deheryan, Stella; Radisic, Alex; Alouani, Khaled; Vereecken, Philippe M.

    2017-01-01

    In this work, we present the electrochemical deposition of manganese dioxide (MnO2) thin films on carbon-coated TiN/Si micro-pillars. The carbon buffer layer, grown by plasma enhanced chemical vapor deposition (PECVD), is used as a protective coating for the underlying TiN current collector from oxidation, during the film deposition, while improving the electrical conductivity of the stack. A conformal electrolytic MnO2 (EMD) coating is successfully achieved on high aspect ratio C/TiN/Si pillar arrays by tailoring the deposition process. Lithiation/Delithiation cycling tests have been performed. Reversible insertion and extraction of Li+ through EMD structure are observed. The fabricated stack is thus considered as a good candidate not only for 3D micorbatteries but also for other energy storage applications. PMID:28555017

  16. Experimental Study of Characteristics of Micro-Hole Porous Skins for Turbulent Skin Friction Reduction

    NASA Technical Reports Server (NTRS)

    Hwang, Danny P.

    2002-01-01

    Characteristics of micro-hole porous skins for the turbulent skin friction reduction technology called the micro-blowing technique (MBT) were assessed experimentally at Mach 0.4 and blowing fractions from zero to 0.005. The objective of this study was to provide guidelines for the selection of porous plates for MBT. The hole angle, pattern, diameter, aspect ratio, and porosity were the parameters considered for this study. The additional effort to angle and stagger the holes was experimentally determined to be unwarranted in terms of skin friction benefit; therefore, these parameters were systematically eliminated from the parametric study. The impact of the remaining three parameters was evaluated by fixing two parameters at the reference values while varying the third parameter. The best hole-diameter Reynolds number was found to be around 400, with an optimum aspect ratio of about 6. The optimum porosity was not conclusively discerned because the range of porosities in the test plates considered was not great enough. However, the porosity was estimated to be about 15 percent or less.

  17. A minimally invasive blood-extraction system: elastic self-recovery actuator integrated with an ultrahigh- aspect-ratio microneedle.

    PubMed

    Li, Cheng Guo; Lee, Kwang; Lee, Chang Yeol; Dangol, Manita; Jung, Hyungil

    2012-08-28

    A minimally invasive blood-extraction system is fabricated by the integration of an elastic self-recovery actuator and an ultrahigh-aspect-ratio microneedle. The simple elastic self-recovery actuator converts finger force to elastic energy to provide power for blood extraction and transport without requiring an external source of power. This device has potential utility in the biomedical field within the framework of complete micro-electromechanical systems. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. High peak power solid-state laser for micromachining of hard materials

    NASA Astrophysics Data System (ADS)

    Herbst, Ludolf; Quitter, John P.; Ray, Gregory M.; Kuntze, Thomas; Wiessner, Alexander O.; Govorkov, Sergei V.; Heglin, Mike

    2003-06-01

    Laser micromachining has become a key enabling technology in the ever-continuing trend of miniaturization in microelectronics, micro-optics, and micromechanics. New applications have become commercially viable due to the emergence of innovative laser sources, such as diode pumped solid-state lasers (DPSSL), and the progress in processing technology. Examples of industrial applications are laser-drilled micro-injection nozzles for highly efficient automobile engines, or manufacturing of complex spinnerets for production of synthetic fibers. The unique advantages of laser-based techniques stem from their ability to produce high aspect ratio holes, while yielding low heat affected zones with exceptional surface quality, roundness and taper tolerances. Additionally, the ability to drill blind holes and slots in very hard materials such as diamond, silicon, sapphire, ceramics and steel is of great interest for many applications in microelectronics, semiconductor and automotive industry. This kind of high quality, high aspect ratio micromachining requires high peak power and short pulse durations.

  19. Freestanding membrane composed of micro-ring array with ultrahigh sidewall aspect ratio for application in lightweight cathode arrays

    NASA Astrophysics Data System (ADS)

    Wang, Lanlan; Liu, Hongzhong; Jiang, Weitao; Gao, Wei; Chen, Bangdao; Li, Xin; Ding, Yucheng; An, Ningli

    2014-12-01

    A freestanding multilayer ultrathin nano-membrane (FUN-membrane) with a micro-ring array (MRA) is successfully fabricated through the controllable film deposition. Each micro-ring of FUN-membrane is 3 μm in diameter, 2 μm in height and sub-100 nm in sidewall thickness, demonstrating an ultrahigh sidewall aspect ratio of 20:1. In our strategy, a silica layer (200 nm in thickness), a chromium transition layer (5 nm-thick) and a gold layer (40 nm-thick), were in sequence deposited on patterned photoresist. After removal of the photoresist by lift-off process, a FUN-membrane with MRA was peeled off from the substrate, where the gold layer acted as a protecting layer to prevent the MRA from fracture. The FUN-membrane was then transferred to a flexible polycarbonate (PC) sheet coated with indium tin oxide (ITO) layer, which was then used as a flexible and lightweight cathode. Remarkably, the field emission effect of the fabricated FUN-membrane cathode performs a high field-enhancement factor of 1.2 × 104 and a low turn-on voltage of 2 V/μm, indicating the advantages of the sharp metal edge of MRA. Due to the rational design and material versatility, the FUN-membrane thus could be transferred to either rigid or flexible substrate, even curved surface, such as the skin of bio-robot's arm or leg. Additionally, the FUN-membrane composed of MRA with extremely high aspect ratio of insulator-metal sidewall, also provides potential applications in optical devices, lightweight and flexible display devices, and electronic eye imagers.

  20. Nacre-mimetic bulk lamellar composites reinforced with high aspect ratio glass flakes.

    PubMed

    Guner, Selen N Gurbuz; Dericioglu, Arcan F

    2016-12-05

    Nacre-mimetic epoxy matrix composites reinforced with readily available micron-sized high aspect ratio C-glass flakes were fabricated by a relatively simple, single-step, scalable, time, cost and man-power effective processing strategy: hot-press assisted slip casting (HASC). HASC enables the fabrication of preferentially oriented two-dimensional inorganic reinforcement-polymer matrix bulk lamellar composites with a micro-scale structure resembling the brick-and-mortar architecture of nacre. By applying the micro-scale design guideline found in nacre and optimizing the relative volume fractions of the reinforcement and the matrix as well as by anchoring the brick-and-mortar architecture, and tailoring the interface between reinforcements and the matrix via silane coupling agents, strong, stiff and tough bio-inspired nacre-mimetic bulk composites were fabricated. As a result of high shear stress transfer lengths and effective stress transfer at the interface achieved through surface functionalization of the reinforcements, fabricated bulk composites exhibited enhanced mechanical performance as compared to neat epoxy. Furthermore, governed flake pull-out mode along with a highly torturous crack path, which resulted from extensive deflection and meandering of the advancing crack around well-aligned high aspect ratio C-glass flakes, have led to high work-of-fracture values similar to nacre.

  1. Experimental optimization of wing shape for a hummingbird-like flapping wing micro air vehicle.

    PubMed

    Nan, Yanghai; Karásek, Matěj; Lalami, Mohamed Esseghir; Preumont, André

    2017-03-06

    Flapping wing micro air vehicles (MAVs) take inspiration from natural fliers, such as insects and hummingbirds. Existing designs manage to mimic the wing motion of natural fliers to a certain extent; nevertheless, differences will always exist due to completely different building blocks of biological and man-made systems. The same holds true for the design of the wings themselves, as biological and engineering materials differ significantly. This paper presents results of experimental optimization of wing shape of a flexible wing for a hummingbird-sized flapping wing MAV. During the experiments we varied the wing 'slackness' (defined by a camber angle), the wing shape (determined by the aspect and taper ratios) and the surface area. Apart from the generated lift, we also evaluated the overall power efficiency of the flapping wing MAV achieved with the various wing design. The results indicate that especially the camber angle and aspect ratio have a critical impact on the force production and efficiency. The best performance was obtained with a wing of trapezoidal shape with a straight leading edge and an aspect ratio of 9.3, both parameters being very similar to a typical hummingbird wing. Finally, the wing performance was demonstrated by a lift-off of a 17.2 g flapping wing robot.

  2. Effects of process parameters on the molding quality of the micro-needle array

    NASA Astrophysics Data System (ADS)

    Qiu, Z. J.; Ma, Z.; Gao, S.

    2016-07-01

    Micro-needle array, which is used in medical applications, is a kind of typical injection molded products with microstructures. Due to its tiny micro-features size and high aspect ratios, it is more likely to produce short shots defects, leading to poor molding quality. The injection molding process of the micro-needle array was studied in this paper to find the effects of the process parameters on the molding quality of the micro-needle array and to provide theoretical guidance for practical production of high-quality products. With the shrinkage ratio and warpage of micro needles as the evaluation indices of the molding quality, the orthogonal experiment was conducted and the analysis of variance was carried out. According to the results, the contribution rates were calculated to determine the influence of various process parameters on molding quality. The single parameter method was used to analyse the main process parameter. It was found that the contribution rate of the holding pressure on shrinkage ratio and warpage reached 83.55% and 94.71% respectively, far higher than that of the other parameters. The study revealed that the holding pressure is the main factor which affects the molding quality of micro-needle array so that it should be focused on in order to obtain plastic parts with high quality in the practical production.

  3. Dimensional measurement of micro parts with high aspect ratio in HIT-UOI

    NASA Astrophysics Data System (ADS)

    Dang, Hong; Cui, Jiwen; Feng, Kunpeng; Li, Junying; Zhao, Shiyuan; Zhang, Haoran; Tan, Jiubin

    2016-11-01

    Micro parts with high aspect ratios have been widely used in different fields including aerospace and defense industries, while the dimensional measurement of these micro parts becomes a challenge in the field of precision measurement and instrument. To deal with this contradiction, several probes for the micro parts precision measurement have been proposed by researchers in Center of Ultra-precision Optoelectronic Instrument (UOI), Harbin Institute of Technology (HIT). In this paper, optical fiber probes with structures of spherical coupling(SC) with double optical fibers, micro focal-length collimation (MFL-collimation) and fiber Bragg grating (FBG) are described in detail. After introducing the sensing principles, both advantages and disadvantages of these probes are analyzed respectively. In order to improve the performances of these probes, several approaches are proposed. A two-dimensional orthogonal path arrangement is propounded to enhance the dimensional measurement ability of MFL-collimation probes, while a high resolution and response speed interrogation method based on differential method is used to improve the accuracy and dynamic characteristics of the FBG probes. The experiments for these special structural fiber probes are given with a focus on the characteristics of these probes, and engineering applications will also be presented to prove the availability of them. In order to improve the accuracy and the instantaneity of the engineering applications, several techniques are used in probe integration. The effectiveness of these fiber probes were therefore verified through both the analysis and experiments.

  4. Fabrication method to create high-aspect ratio pillars for photonic coupling of board level interconnects

    NASA Astrophysics Data System (ADS)

    Debaes, C.; Van Erps, J.; Karppinen, M.; Hiltunen, J.; Suyal, H.; Last, A.; Lee, M. G.; Karioja, P.; Taghizadeh, M.; Mohr, J.; Thienpont, H.; Glebov, A. L.

    2008-04-01

    An important challenge that remains to date in board level optical interconnects is the coupling between the optical waveguides on printed wiring boards and the packaged optoelectronics chips, which are preferably surface mountable on the boards. One possible solution is the use of Ball Grid Array (BGA) packages. This approach offers a reliable attachment despite the large CTE mismatch between the organic FR4 board and the semiconductor materials. Collimation via micro-lenses is here typically deployed to couple the light vertically from the waveguide substrate to the optoelectronics while allowing for a small misalignment between board and package. In this work, we explore the fabrication issues of an alternative approach in which the vertical photonic connection between board and package is governed by a micro-optical pillar which is attached both to the board substrate and to the optoelectronic chips. Such an approach allows for high density connections and small, high-speed detector footprints while maintaining an acceptable tolerance between board and package. The pillar should exhibit some flexibility and thus a high-aspect ratio is preferred. This work presents and compares different fabrication methods and applies different materials for such high-aspect ratio pillars. The different fabrication methods are: photolithography, direct laser writing and deep proton writing. The selection of optical materials that was investigated is: SU8, Ormocers, PU and a multifunctional acrylate polymer. The resulting optical pillars have diameters ranging from 20um up to 80um, with total heights ranging between 30um and 100um (symbol for micron). The aspect-ratio of the fabricated structures ranges from 1.5 to 5.

  5. Numerical investigation of hyperelastic wall deformation characteristics in a micro-scale stenotic blood vessel

    NASA Astrophysics Data System (ADS)

    Cheema, Taqi Ahmad; Park, Cheol Woo

    2013-08-01

    Stenosis is the drastic reduction of blood vessel diameter because of cholesterol accumulation in the vessel wall. In addition to the changes in blood flow characteristics, significant changes occur in the mechanical behavior of a stenotic blood vessel. We conducted a 3-D study of such behavior in micro-scale blood vessels by considering the fluid structure interaction between blood flow and vessel wall structure. The simulation consisted of one-way coupled analysis of blood flow and the resulting structural deformation without a moving mesh. A commercial code based on a finite element method with a hyperelastic material model (Neo-Hookean) of the wall was used to calculate wall deformation. Three different cases of stenosis severity and aspect ratios with and without muscles around the blood vessel were considered. The results showed that the wall deformation in a stenotic channel is directly related to stenosis severity and aspect ratio. The presence of muscles reduces the degree of deformation even in very severe stenosis.

  6. Fabrication of a high aspect ratio thick silicon wafer mold and electroplating using flipchip bonding for MEMS applications

    NASA Astrophysics Data System (ADS)

    Kim, Bong-Hwan; Kim, Jong-Bok

    2009-06-01

    We have developed a microfabrication process for high aspect ratio thick silicon wafer molds and electroplating using flipchip bonding with THB 151N negative photoresist (JSR micro). This fabrication technique includes large area and high thickness silicon wafer mold electroplating. The process consists of silicon deep reactive ion etching (RIE) of the silicon wafer mold, photoresist bonding between the silicon mold and the substrate, nickel electroplating and a silicon removal process. High thickness silicon wafer molds were made by deep RIE and flipchip bonding. In addition, nickel electroplating was developed. Dry film resist (ORDYL MP112, TOK) and thick negative-tone photoresist (THB 151N, JSR micro) were used as bonding materials. In order to measure the bonding strength, the surface energy was calculated using a blade test. The surface energy of the bonding wafers was found to be 0.36-25.49 J m-2 at 60-180 °C for the dry film resist and 0.4-1.9 J m-2 for THB 151N in the same temperature range. Even though ORDYL MP112 has a better value of surface energy than THB 151N, it has a critical disadvantage when it comes to removing residue after electroplating. The proposed process can be applied to high aspect ratio MEMS structures, such as air gap inductors or vertical MEMS probe tips.

  7. Electrochemical Deposition of Conformal and Functional Layers on High Aspect Ratio Silicon Micro/Nanowires.

    PubMed

    Ozel, Tuncay; Zhang, Benjamin A; Gao, Ruixuan; Day, Robert W; Lieber, Charles M; Nocera, Daniel G

    2017-07-12

    Development of new synthetic methods for the modification of nanostructures has accelerated materials design advances to furnish complex architectures. Structures based on one-dimensional (1D) silicon (Si) structures synthesized using top-down and bottom-up methods are especially prominent for diverse applications in chemistry, physics, and medicine. Yet further elaboration of these structures with distinct metal-based and polymeric materials, which could open up new opportunities, has been difficult. We present a general electrochemical method for the deposition of conformal layers of various materials onto high aspect ratio Si micro- and nanowire arrays. The electrochemical deposition of a library of coaxial layers comprising metals, metal oxides, and organic/inorganic semiconductors demonstrate the materials generality of the synthesis technique. Depositions may be performed on wire arrays with varying diameter (70 nm to 4 μm), pitch (5 μ to 15 μ), aspect ratio (4:1 to 75:1), shape (cylindrical, conical, hourglass), resistivity (0.001-0.01 to 1-10 ohm/cm 2 ), and substrate orientation. Anisotropic physical etching of wires with one or more coaxial shells yields 1D structures with exposed tips that can be further site-specifically modified by an electrochemical deposition approach. The electrochemical deposition methodology described herein features a wafer-scale synthesis platform for the preparation of multifunctional nanoscale devices based on a 1D Si substrate.

  8. Residual strain effects on large aspect ratio micro-diaphragms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hijab, R.S.; Muller, R.S.

    1988-09-30

    Highly compliant, large aspect ratio diaphragms for use in low-pressure, capacitive-readout sensors, have been investigated. In such structures, unrelaxed strain in the diaphragms can radically alter mechanical behavior. Although strain can be reduced by thermal annealing, it usually reaches a remnant irreducible minimum. The purpose of this paper is to describe techniques that result in low-strain materials and that reduce the effects of residual strain in micro-diaphragms. Square polysilicon grilles and perforated diaphragms made from both single and double polysilicon layers and from single-crystal silicon, with aspect ratios (side/thickness) of up to 1000 and very low compressive strain ({approx}6 {times}more » 10{sup {minus}5}), have been fabricated. Strain reduction is achieved by combining thermal annealing with one of two mechanical design techniques. The first technique makes use of a series of cantilever beams to support the diaphragms. In a second procedure, corrugated surfaces in thinned membranes of single-crystal silicon are formed. The corrugations result from the use of boron doping and anisotropic silicon etching. In both of these techniques to produce low-strain diaphragms, an etched cavity is purposely formed in the substrate crystal below them. Only one-sided processing of wafers is employed, thus aiding reproducibility and providing ease of compatibility with an MOS process. A fast-etching sacrificial-support layer (phosphorus-doped CVD oxide) is used. 4 refs., 10 figs.« less

  9. Micro thrust and heat generator

    DOEpatents

    Garcia, Ernest J.

    1998-01-01

    A micro thrust and heat generator has a means for providing a combustion fuel source to an ignition chamber of the micro thrust and heat generator. The fuel is ignited by a ignition means within the micro thrust and heat generator's ignition chamber where it burns and creates a pressure. A nozzle formed from the combustion chamber extends outward from the combustion chamber and tappers down to a narrow diameter and then opens into a wider diameter where the nozzle then terminates outside of said combustion chamber. The pressure created within the combustion chamber accelerates as it leaves the chamber through the nozzle resulting in pressure and heat escaping from the nozzle to the atmosphere outside the micro thrust and heat generator. The micro thrust and heat generator can be microfabricated from a variety of materials, e.g., of polysilicon, on one wafer using surface micromachining batch fabrication techniques or high aspect ratio micromachining techniques (LIGA).

  10. Micro thrust and heat generator

    DOEpatents

    Garcia, E.J.

    1998-11-17

    A micro thrust and heat generator have a means for providing a combustion fuel source to an ignition chamber of the micro thrust and heat generator. The fuel is ignited by a ignition means within the micro thrust and heat generator`s ignition chamber where it burns and creates a pressure. A nozzle formed from the combustion chamber extends outward from the combustion chamber and tappers down to a narrow diameter and then opens into a wider diameter where the nozzle then terminates outside of said combustion chamber. The pressure created within the combustion chamber accelerates as it leaves the chamber through the nozzle resulting in pressure and heat escaping from the nozzle to the atmosphere outside the micro thrust and heat generator. The micro thrust and heat generator can be microfabricated from a variety of materials, e.g., of polysilicon, on one wafer using surface micromachining batch fabrication techniques or high aspect ratio micromachining techniques (LIGA). 30 figs.

  11. Morphologies and optical and electrical properties of InGaN/GaN micro-square array light-emitting diode chips.

    PubMed

    Han, Dan; Ma, Shufang; Jia, Zhigang; Liu, Peizhi; Jia, Wei; Shang, Lin; Zhai, Guangmei; Xu, Bingshe

    2018-04-10

    InGaN/GaN micro-square array light-emitting diode (LED) chips (micro-chips) have been prepared via the focused ion beam (FIB) etching technique, which can not only reduce ohmic contact degradation but also control the aspect ratio precisely in three-dimensional (3D) structure LED (3D-LED) device fabrication. The effects of FIB beam current and micro-square array depth on morphologies and optical and electrical properties of the micro-chips have been studied. Our results show that sidewall surface morphology and optical and electrical properties of the micro-chips degrade with increased beam current. After potassium hydroxide etching with different times, an optimal current-voltage and luminescence performance can be obtained. Combining the results of cathodoluminescence mappings and light output-current characteristics, the light extraction efficiency of the micro-chips is reduced as FIB etch depth increases. The mechanisms of micro-square depth on light extraction have been revealed by 3D finite difference time domain.

  12. Modeling of MOEMS electromagnetic scanning grating mirror for NIR micro-spectrometer

    NASA Astrophysics Data System (ADS)

    Zhou, Ying; Wen, Quan; Wen, Zhiyu; Yang, Tingyan

    2016-02-01

    In this paper, the mathematical model is developed for researching the detailed electromagnetic mechanism of MOEMS scanning mirror. We present the relationship between spectral range and optical scanning angle. Furthermore, the variation tendencies of resonant frequency and maximal torsional angle are studied in detail under different aspect ratios of MOEMS scanning mirror and varied dimensions of torsional bar. The numerical results and Finite Element Analysis simulations both indicate that the thickness of torsional bar is the most important factor. The maximal torsional angle appears when the aspect ratio equals to 1. This mathematical model is an effective way for designing the MOEMS electromagnetic scanning grating mirror in actual fabrication.

  13. Initial performance results for high-aspect ratio gold MEMS deformable mirrors

    NASA Astrophysics Data System (ADS)

    Fernández, Bautista; Kubby, Joel

    2009-02-01

    The fabrication and initial performance results of high-aspect ratio 3-dimensional Micro-Electro-Mechanical System (MEMS) Deformable Mirrors (DM) for Adaptive Optics (AO) will be discussed. The DM systems were fabricated out of gold, and consist of actuators bonded to a continuous face sheet, with different boundary conditions. DM mirror displacements vs. voltage have been measured with a white light interferometer and the corresponding results compared to Finite Element Analysis (FEA) simulations. Interferometer scans of a DM have shown that ~9.4um of stroke can be achieved with low voltage, thus showing that this fabrication process holds promise in the manufacturing of future MEMS DM's for the next generation of extremely large telescopes.

  14. Printing of metallic 3D micro-objects by laser induced forward transfer.

    PubMed

    Zenou, Michael; Kotler, Zvi

    2016-01-25

    Digital printing of 3D metal micro-structures by laser induced forward transfer under ambient conditions is reviewed. Recent progress has allowed drop on demand transfer of molten, femto-liter, metal droplets with a high jetting directionality. Such small volume droplets solidify instantly, on a nanosecond time scale, as they touch the substrate. This fast solidification limits their lateral spreading and allows the fabrication of high aspect ratio and complex 3D metal structures. Several examples of micron-scale resolution metal objects printed using this method are presented and discussed.

  15. Numerical characterization of micro-cell UO2sbnd Mo pellet for enhanced thermal performance

    NASA Astrophysics Data System (ADS)

    Lee, Heung Soo; Kim, Dong-Joo; Kim, Sun Woo; Yang, Jae Ho; Koo, Yang-Hyun; Kim, Dong Rip

    2016-08-01

    Metallic micro-cell UO2 pellet with high thermal conductivity has received attention as a promising accident-tolerant fuel. Although experimental demonstrations have been successful, studies on the potency of current metallic micro-cell UO2 fuels for further enhancement of thermal performance are lacking. Here, we numerically investigated the thermal conductivities of micro-cell UO2sbnd Mo pellets in terms of the amount of Mo content, the unit cell size, and the aspect ratio of the micro-cells. The results showed good agreement with experimental measurements, and more importantly, indicated the importance of optimizing the unit cell geometries of the micro-cell pellets for greater increases in thermal conductivity. Consequently, the micro-cell UO2sbnd Mo pellets (5 vol% Mo) with modified geometries increased the thermal conductivity of the current UO2 pellets by about 2.5 times, and lowered the temperature gradient within the pellets by 62.9% under a linear heat generation rate of 200 W/cm.

  16. Design and Optimization of a Light-Emitting Diode Projection Micro-Stereolithography Three-Dimensional Manufacturing System

    DTIC Science & Technology

    2012-12-11

    ment, and difficulties creating high aspect ratio features. In addition, conventional mask-based lithography cannot create curved surfaces in the...There are three types of digital mask technologies: (1) liquid crystal display (LCD); (2) digital micromirror device (DMD); and (3) LCoS. LCD is the

  17. Advancing three-dimensional MEMS by complimentary laser micro manufacturing

    NASA Astrophysics Data System (ADS)

    Palmer, Jeremy A.; Williams, John D.; Lemp, Tom; Lehecka, Tom M.; Medina, Francisco; Wicker, Ryan B.

    2006-01-01

    This paper describes improvements that enable engineers to create three-dimensional MEMS in a variety of materials. It also provides a means for selectively adding three-dimensional, high aspect ratio features to pre-existing PMMA micro molds for subsequent LIGA processing. This complimentary method involves in situ construction of three-dimensional micro molds in a stand-alone configuration or directly adjacent to features formed by x-ray lithography. Three-dimensional micro molds are created by micro stereolithography (MSL), an additive rapid prototyping technology. Alternatively, three-dimensional features may be added by direct femtosecond laser micro machining. Parameters for optimal femtosecond laser micro machining of PMMA at 800 nanometers are presented. The technical discussion also includes strategies for enhancements in the context of material selection and post-process surface finish. This approach may lead to practical, cost-effective 3-D MEMS with the surface finish and throughput advantages of x-ray lithography. Accurate three-dimensional metal microstructures are demonstrated. Challenges remain in process planning for micro stereolithography and development of buried features following femtosecond laser micro machining.

  18. Mechanism of total electron emission yield reduction using a micro-porous surface

    NASA Astrophysics Data System (ADS)

    Ye, Ming; Wang, Dan; He, Yongning

    2017-03-01

    Suppression of the total secondary electron yield (TEY) of metal surfaces is important in many areas such as accelerator, satellite, and Hall thruster. Among TEY suppression techniques, micro-porous surfaces have been demonstrated as an effective method. In this work, we developed an analytical model that is able to obtain the contributions of TEY from both the 1st and 2nd generation secondary electrons (SEs). Calculation results show that the TEY contributed by the bottom of the hole dominates the TEY of the micro-porous surface with the aspect ratio we have chosen. Thus, we developed the following design guidance for the improvement of the TEY suppression efficiency of the micro-porous surface: either lower the TEY of the bottom or guide its SEs to the lateral side of the hole. To verify this idea, we performed the following numerical simulations: a micro-hole with its inner surfaces coated with a low TEY material and a micro-hole with nano-triangular grooves or nano-truncated cone pillars embedded at its bottom. Compared with a usual micro-hole, the proposed hybrid micro/nano structures show improved TEY suppression efficiency as expected from the analytical model. The percentage ratios of the 1st and 2nd generation SEs obtained from the simulation agree well with the predictions of the analytical model. What is more, we also present the results of the emitting angle distribution of SEs which represent remarkable deviation from the usual cosine distribution.

  19. Micro hot embossing for high-aspect-ratio structure with materials flow enhancement by polymer sheet

    NASA Astrophysics Data System (ADS)

    Murakoshi, Yoichi; Shan, Xue-Chuan; Sano, Toshio; Takahashi, Masaharu; Maeda, Ryutaro

    2004-04-01

    Nano imprinting or Nano embossing process have been introduced to fabricate semiconductor, optical device and Micro Electro Mechanical Systems (MEMS) and the Nano Electro Mechanical Systems (NEMS) to reduce the fabrication cost. In our previous paper, micro hot embossing of Polycarbonate (PC) and Polyetheretherketone (PEEK) for optical switch with 8x8 mirrors was reported. The PC and PEEK sheets were embossed at elevated temperature with an embossing machine designed for the MEMS. In the application, the mirrors on the optical switch had some defects, such as slump, sticking and step at side of the mirror, due to embossing process and process conditions. These defects are attributed to the poor materials flow of plastics into the e Ni mold cavity of complicate shape with different aspect ratio. Therefore, the micro hot embossing is optimized in this paper with PTFE sheet to enhance the materials flow. In this paper, the PC and the PEEK sheets, thickness of 300um, are embossed at elevated temperature with the hot embossing machine with a Nickel mold. To control material flow of the PC or the PEEK sheets, Polytetrafluoroethylene (PTFE) sheet, the thickness of 100um, is placed on the PC or the PEEK sheets at elevated temperature. Mirror shape was transferred with better fidelity on the PC and PEEK sheet, and the thickness of cantilever became thinner than previous embossed structure without the PTFE. Especially, the mirror height and the thickness of cantilever on the PC have been improved at lower embossing temperature.

  20. Hierarchical micro- and nanofabrication by pattern-directed contact instabilities of thin viscoelastic films

    NASA Astrophysics Data System (ADS)

    Ghosh, Abir; Bandyopadhyay, Dipankar; Sarkar, Jayati; Sharma, Ashutosh

    2017-12-01

    A surface of a thin viscoelastic film forms spinodal patterns when brought in contact proximity of another surface due to the dominance of destabilizing intermolecular interaction over the stabilizing elastic and surface tension forces. In this study, we theoretically explore such contact instabilities of a thin viscoelastic film, wherein the patterns generated on the surface of the film is developed with the help of a contactor decorated with periodic physical, chemical, and physicochemical features on the surface. The nonlinear analysis shown here considers the movement of the patterned contactor during the adhesion and debonding processes, which is unlike most of the previous works where the contactor is considered to be stationary. The simulations reveal that the amplitude and periodicity of the patterns decorated on the contactor together with the contactor speed can be the key parameters to stimulate pattern formation on the film surface alongside causing changeover of the various modes of debonding of the surfaces. In particular, the ratio of the elastic to viscous compliances of the film is found to play a critical role to stimulate the changeover of the modes from catastrophic to peeling or coalescence. The study uncovers that a higher wettability contrast across the patterned contactor leads to the catastrophic collapse of the patterns decorated on the film surface when the contactor debonds at a moderate speed. In comparison, a moderately high wettability contrast alongside a faster withdrawal speed of the contactor results in the gradual peeling of columns during the debonding cycle. Remarkably, a higher withdrawal speed of the contactor from the film-proximity can increase the aspect ratio of the patterns fabricated on the film surface to about fourfold during the peeling mode of debonding. The results show the importance of the usage of patterned contactors, their controlled movement, and extent of elastic to viscous compliance ratio of the film for the improvement of the aspect ratio of the patterns developed using the elastic contact lithography of the thin viscoelastic films. The simulations also reveal the possibilities of the fabrication of biomimetic micro- or nanostructures such as columns, holes, cavities, or a combination of these patterns with large-area ordering employing the patterned contactors. A few example cases are shown to highlight the capacity of the proposed methodology for the fabrication of higher aspect ratio hierarchical micro- or nanostructures.

  1. Using a micro-molding process to fabricate polymeric wavelength filters

    NASA Astrophysics Data System (ADS)

    Chuang, Wei-Ching; Lee, An-Chen; Ho, Chi-Ting

    2008-08-01

    A procedure for fabricating a high aspect ratio periodic structure on a UV polymer at submicron order using holographic interferometry and molding processes is described. First, holographic interferometry using a He-Cd (325 nm) laser was used to create the master of the periodic line structure on an i-line sub-micron positive photoresist film. A 20 nm nickel thin film was then sputtered on the photoresist. The final line pattern on a UV polymer was obtained from casting against the master mold. Finally, a SU8 polymer was spun on the polymer grating to form a planar waveguide or a channel waveguide. The measurement results show that the waveguide length could be reduced for the waveguide having gratings with a high aspect ratio.

  2. Micro-computed Tomographic Analysis of Mandibular Second Molars with C-shaped Root Canals.

    PubMed

    Amoroso-Silva, Pablo Andrés; Ordinola-Zapata, Ronald; Duarte, Marco Antonio Hungaro; Gutmann, James L; del Carpio-Perochena, Aldo; Bramante, Clovis Monteiro; de Moraes, Ivaldo Gomes

    2015-06-01

    The goal of the present study was to evaluate the morphometric aspects of the internal anatomy of the root canal system of mandibular second molars with C-shaped canals. Fifty-two extracted second mandibular molars with C-shaped canals, fused roots, and radicular grooves were selected from a Brazilian population. The samples were scanned with a micro-computed tomographic scanner at a voxel size of 19.6 μm. The root canal cross sections were recorded as C1, C2, C3, and C4 root canal configurations according to the modified Melton classification. Morphometric parameters, including the major and minor diameters of the root canals, the aspect ratio, the roundness, and the tridimensional configuration (merging, symmetric, and asymmetric), were evaluated. The 3-dimensional reconstruction images of the teeth indicated an even distribution within the sample. The analysis of the prevalence of the different cross-sectional configurations of the C-shaped molars revealed that these were predominantly of the C4 and C3 configurations (1 mm from the apex) and the C1 and C2 configurations in the cervical third. According to the morphometric parameters, the C1 and the distal aspect of the C2 configurations exhibited the lowest roundness values and higher values for the area, major diameter, and aspect ratio in the apical third. Mandibular molars with C-shaped root canals exhibited similar distributions of symmetric, asymmetric, and merging type canals. The C1 configuration and the distal aspect of the C2 configuration exhibited the highest area values, low roundness values, and large apical diameters. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  3. Characterization of Particle Size Standard NIST 1019b with SynchrotronX-ray Microtomography and Digital Data Extraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friedrich, Jon M.; Rivers, Mark L.; Perlowitz, Michael A.

    We show that synchrotron x-ray microtomography ({mu}CT) followed by digital data extraction can be used to examine the size distribution and particle morphologies of the polydisperse (750 to 2450 {micro}m diameter) particle size standard NIST 1019b. Our size distribution results are within errors of certified values with data collected at 19.5 {micro}m/voxel. One of the advantages of using {mu}CT to investigate the particles examined here is that the morphology of the glass beads can be directly examined. We use the shape metrics aspect ratio and sphericity to examine of individual standard beads morphologies as a function of spherical equivalent diameters.more » We find that the majority of standard beads possess near-spherical aspect ratios and sphericities, but deviations are present at the lower end of the size range. The majority (> 98%) of particles also possess an equant form when examined using a common measure of equidimensionality. Although the NIST 1019b standard consists of loose particles, we point out that an advantage of {mu}CT is that coherent materials comprised of particles can be examined without disaggregation.« less

  4. Design and characterization of a microelectromechanical system electro-thermal linear motor with interlock mechanism for micro manipulators.

    PubMed

    Hu, Tengjiang; Zhao, Yulong; Li, Xiuyuan; Zhao, You; Bai, Yingwei

    2016-03-01

    The design, fabrication, and testing of a novel electro-thermal linear motor for micro manipulators is presented in this paper. The V-shape electro-thermal actuator arrays, micro lever, micro spring, and slider are introduced. In moving operation, the linear motor can move nearly 1 mm displacement with 100 μm each step while keeping the applied voltage as low as 17 V. In holding operation, the motor can stay in one particular position without consuming energy and no creep deformation is found. Actuation force of 12.7 mN indicates the high force generation capability of the device. Experiments of lifetime show that the device can wear over two million cycles of operation. A silicon-on-insulator wafer is introduced to fabricate a high aspect ratio structure and the chip size is 8.5 mm × 8.5 mm × 0.5 mm.

  5. A study of self-propelled elastic cylindrical micro-swimmers using modeling and computation

    NASA Astrophysics Data System (ADS)

    Shi, Lingling; Čanić, Sunčica; Quaini, Annalisa; Pan, Tsorng-Whay

    2016-06-01

    We study propulsion of micro-swimmers in 3D creeping flow. The swimmers are assumed to be made of elastic cylindrical hollow tubes. The swimming is generated by the contractions of the tube's elastic membrane walls producing a traveling wave in the form of a ;step-function; traversing the swimmer from right to left, propelling the swimmer from left to right. The problem is motivated by medical applications such as drug delivery. The influence of several non-dimensional design parameters on the velocity of the swimmer is investigated, including the swimmer aspect ratio, and the amplitude of the traveling wave relative to the swimmer radius. An immersed boundary method based on a finite element method approach is successfully combined with an elastic spring network model to simulate the two-way fluid-structure interaction coupling between the elastic cylindrical tube and the flow of a 3D viscous, incompressible fluid. To gain a deeper insight into the influence of various parameters on the swimmer speed, a reduced 1D fluid-structure interaction model was derived and validated. It was found that fast swimmers are those with large tube aspect ratios, and with the amplitude of the traveling wave which is roughly 50% of the reference swimmer radius. It was shown that the speed of our ;optimal swimmer; is around 1.5 swimmer lengths per second, which is at the top of the class of all currently manufactured micro-swimmers swimming in low Reynolds number flows (Re =10-6), reported in [11].

  6. Fabrication of 3D electro-thermal micro actuators in silica glass by femtosecond laser wet etch and microsolidics

    NASA Astrophysics Data System (ADS)

    Li, Qichao; Shan, Chao; Yang, Qing; Chen, Feng; Bian, Hao; Hou, Xun

    2017-02-01

    This paper demonstrates a novel electro-thermal micro actuator's design, fabrication and device tests which combine microfluidic technology and microsolidics process. A three-dimensional solenoid microchannel with high aspect ratio is fabricated inside the silica glass by an improved femtosecond laser wet etch (FLWE) technology, and the diameter of the spiral coil is only 200 μm. Molten alloy (Bi/In/Sn/Pb) with high melting point is injected into the three-dimensional solenoid microchannel inside the silica glass , then it solidifys and forms an electro-thermal micro actuator. The device is capable of achieving precise temperature control and quick response, and can also be easily integrated into MEMS, sensors and `lab on a chip' (LOC) platform inside the fused silica substrate.

  7. Review of Polyimides Used in the Manufacturing of Micro Systems

    NASA Technical Reports Server (NTRS)

    Wilson, William C.; Atkinson, Gary M.

    2007-01-01

    Since their invention, polyimides have found numerous uses in MicroElectroMechanical Systems (MEMS) technology. Polyimides can act as photoresist, sacrificial layers, structural layers, and even as a replacement for silicon as the substrate during MEMS fabrication. They enable fabrication of both low and high aspect ratio devices. Polyimides have been used to fabricate expendable molds and reusable flexible molds. Development of a variety of devices that employ polyimides for sensor applications has occurred. Micro-robotic actuator applications include hinges, thermal actuators and residual stress actuators. Currently, polyimides are being used to create new sensors and devices for aerospace applications. This paper presents a review of some of the many uses of polyimides in the development of MEMS devices, including a new polyimide based MEMS fabrication process.

  8. Experimental investigation of the microscale rotor-stator cavity flow with rotating superhydrophobic surface

    NASA Astrophysics Data System (ADS)

    Wang, Chunze; Tang, Fei; Li, Qi; Wang, Xiaohao

    2018-03-01

    The flow characteristics of microscale rotor-stator cavity flow and the drag reduction mechanism of the superhydrophobic surface with high shearing stress were investigated. A microscale rotating flow testing system was established based on micro particle image velocimetry (micro-PIV), and the flow distribution under different Reynolds numbers (7.02 × 103 ≤ Re ≤ 3.51 × 104) and cavity aspect ratios (0.013 ≤ G ≤ 0.04) was measured. Experiments show that, for circumferential velocity, the flow field distributes linearly in rotating Couette flow in the case of low Reynolds number along the z-axis, while the boundary layer separates and forms Batchelor flow as the Reynolds number increases. The separation of the boundary layer is accelerated with the increase of cavity aspect ratio. The radial velocities distribute in an S-shape along the z-axis. As the Reynolds number and cavity aspect ratio increase, the maximum value of radial velocity increases, but the extremum position at rotating boundary remains at Z* = 0.85 with no obvious change, while the extremum position at the stationary boundary changes along the z-axis. The model for the generation of flow disturbance and the transmission process from the stationary to the rotating boundary was given by perturbation analysis. Under the action of superhydrophobic surface, velocity slip occurs near the rotating boundary and the shearing stress reduces, which leads to a maximum drag reduction over 51.4%. The contours of vortex swirling strength suggest that the superhydrophobic surface can suppress the vortex swirling strength and repel the vortex structures, resulting in the decrease of shearing Reynolds stress and then drag reduction.

  9. Simulation of enhanced deposition due to magnetic field alignment of ellipsoidal particles in a lung bifurcation.

    PubMed

    Martinez, R C; Roshchenko, A; Minev, P; Finlay, W H

    2013-02-01

    Aerosolized chemotherapy has been recognized as a potential treatment for lung cancer. The challenge of providing sufficient therapeutic effects without reaching dose-limiting toxicity levels hinders the development of aerosolized chemotherapy. This could be mitigated by increasing drug-delivery efficiency with a noninvasive drug-targeting delivery method. The purpose of this study is to use direct numerical simulations to study the resulting local enhancement of deposition due to magnetic field alignment of high aspect ratio particles. High aspect ratio particles were approximated by a rigid ellipsoid with a minor diameter of 0.5 μm and fluid particle density ratio of 1,000. Particle trajectories were calculated by solving the coupled fluid particle equations using an in-house micro-macro grid finite element algorithm based on a previously developed fictitious domain approach. Particle trajectories were simulated in a morphologically realistic geometry modeling a symmetrical terminal bronchiole bifurcation. Flow conditions were steady inspiratory air flow due to typical breathing at 18 L/min. Deposition efficiency was estimated for two different cases: [1] particles aligned with the streamlines and [2] particles with fixed angular orientation simulating the magnetic field alignment of our previous in vitro study. The local enhancement factor defined as the ratio between deposition efficiency of Case [1] and Case [2] was found to be 1.43 and 3.46 for particles with an aspect ratio of 6 and 20, respectively. Results indicate that externally forcing local alignment of high aspect ratio particles can increase local deposition considerably.

  10. Three dimensional amorphous silicon/microcrystalline silicon solar cells

    DOEpatents

    Kaschmitter, J.L.

    1996-07-23

    Three dimensional deep contact amorphous silicon/microcrystalline silicon (a-Si/{micro}c-Si) solar cells are disclosed which use deep (high aspect ratio) p and n contacts to create high electric fields within the carrier collection volume material of the cell. The deep contacts are fabricated using repetitive pulsed laser doping so as to create the high aspect p and n contacts. By the provision of the deep contacts which penetrate the electric field deep into the material where the high strength of the field can collect many of the carriers, thereby resulting in a high efficiency solar cell. 4 figs.

  11. A Study on Micro-Machining Technology for the Machining of NiTi: Five-Axis Micro-Milling and Micro Deep-Hole Drilling

    NASA Astrophysics Data System (ADS)

    Biermann, D.; Kahleyss, F.; Krebs, E.; Upmeier, T.

    2011-07-01

    Micro-sized applications are gaining more and more relevance for NiTi-based shape memory alloys (SMA). Different types of micro-machining offer unique possibilities for the manufacturing of NiTi components. The advantage of machining is the low thermal influence on the workpiece. This is important, because the phase transformation temperatures of NiTi SMAs can be changed and the components may need extensive post manufacturing. The article offers a simulation-based approach to optimize five-axis micro-milling processes with respect to the special material properties of NiTi SMA. Especially, the influence of the various tool inclination angles is considered for introducing an intelligent tool inclination optimization algorithm. Furthermore, aspects of micro deep-hole drilling of SMAs are discussed. Tools with diameters as small as 0.5 mm are used. The possible length-to-diameter ratio reaches up to 50. This process offers new possibilities in the manufacturing of microstents. The study concentrates on the influence of the cutting speed, the feed and the tool design on the tool wear and the quality of the drilled holes.

  12. Electrowetting Lens Employing Hemispherical Cavity Formed by Hydrofluoric Acid, Nitric Acid, and Acetic Acid Etching of Silicon

    NASA Astrophysics Data System (ADS)

    Lee, June Kyoo; Choi, Ju Chan; Jang, Won Ick; Kim, Hak-Rin; Kong, Seong Ho

    2012-06-01

    We demonstrate the design of an electrowetting lens employing a high-aspect-ratio hemispherical lens cavity and its micro-electro-mechanical-system (MEMS) fabrication process in this study. Our preliminary simulation results showed that the physical and electrical durability of the lens can be improved by the mitigation of stresses on the insulator at the hemispherical cavity. High-aspect-ratio hemispherical cavities with various diameters and very smooth sidewall surfaces were uniformly fabricated on a silicon wafer by a sophisticated isotropic wet etching technique. Moreover, we experimentally investigated the optical properties of the MEMS-based electrowetting lens with the proposed cavity. Two immiscible liquids in the proposed lens cavity were electrostatically controlled with negligible optical distortion and low focal-length hysteresis due to the fully axis-symmetrical geometry and smooth sidewall of the cavity.

  13. Visualization and minimization of clustering of micro-pillars and walls due to liquid film evaporation

    NASA Astrophysics Data System (ADS)

    Kim, Tae-Hong; Kim, Jungchul; Kim, Ho-Young

    2013-11-01

    The spin drying, in which a rinsing liquid deposited on a wafer is rapidly dried by wafer spinning, is an essential step in the semiconductor manufacturing process. While the liquid evaporates, its meniscus straddles neighboring submicron-size patterns such as pillars and walls. Then the capillary effects that pull the patterns together may lead to direct contact of the patterns, which is often referred to as pattern leaning. This poses a problem becoming more and more serious as the pattern size shrinks and the aspect ratio of the patterns increases. While the clustering behavior of high-aspect-ratio micro- and nanopillars was investigated before, a technical strategy to prevent such clustering has been pursed in industrial practices without being supported by the recently established theory of elastocapillarity. Here we visualize the clustering behavior of polymer micropatterns with the evaporation of liquid film while varying the sizes and temperature of the micropatterns. We find a critical role of substrate temperature in preventing the leaning of the patterns via changing the evaporation rate and behavior of the liquid film. Also, we construct a regime map that guides us to find a process condition to avoid pattern leaning in semiconductor manufacturing. This work was supported by the National Research Foundation of Korea (grant no. 2012-008023).

  14. High-aspect ratio micro- and nanostructures enabled by photo-electrochemical etching for sensing and energy harvesting applications

    NASA Astrophysics Data System (ADS)

    Alhalaili, Badriyah; Dryden, Daniel M.; Vidu, Ruxandra; Ghandiparsi, Soroush; Cansizoglu, Hilal; Gao, Yang; Saif Islam, M.

    2018-03-01

    Photo-electrochemical (PEC) etching can produce high-aspect ratio features, such as pillars and holes, with high anisotropy and selectivity, while avoiding the surface and sidewall damage caused by traditional deep reactive ion etching (DRIE) or inductively coupled plasma (ICP) RIE. Plasma-based techniques lead to the formation of dangling bonds, surface traps, carrier leakage paths, and recombination centers. In pursuit of effective PEC etching, we demonstrate an optical system using long wavelength (λ = 975 nm) infra-red (IR) illumination from a high-power laser (1-10 W) to control the PEC etching process in n-type silicon. The silicon wafer surface was patterned with notches through a lithography process and KOH etching. Then, PEC etching was introduced by illuminating the backside of the silicon wafer to enhance depth, resulting in high-aspect ratio structures. The effect of the PEC etching process was optimized by varying light intensities and electrolyte concentrations. This work was focused on determining and optimizing this PEC etching technique on silicon, with the goal of expanding the method to a variety of materials including GaN and SiC that are used in designing optoelectronic and electronic devices, sensors and energy harvesting devices.

  15. An Integrated Thermal Compensation System for MEMS Inertial Sensors

    PubMed Central

    Chiu, Sheng-Ren; Teng, Li-Tao; Chao, Jen-Wei; Sue, Chung-Yang; Lin, Chih-Hsiou; Chen, Hong-Ren; Su, Yan-Kuin

    2014-01-01

    An active thermal compensation system for a low temperature-bias-drift (TBD) MEMS-based gyroscope is proposed in this study. First, a micro-gyroscope is fabricated by a high-aspect-ratio silicon-on-glass (SOG) process and vacuum packaged by glass frit bonding. Moreover, a drive/readout ASIC, implemented by the 0.25 μm 1P5M standard CMOS process, is designed and integrated with the gyroscope by directly wire bonding. Then, since the temperature effect is one of the critical issues in the high performance gyroscope applications, the temperature-dependent characteristics of the micro-gyroscope are discussed. Furthermore, to compensate the TBD of the micro-gyroscope, a thermal compensation system is proposed and integrated in the aforementioned ASIC to actively tune the parameters in the digital trimming mechanism, which is designed in the readout ASIC. Finally, some experimental results demonstrate that the TBD of the micro-gyroscope can be compensated effectively by the proposed compensation system. PMID:24599191

  16. Cultivation of the photosynthesis microorganism in a Taylor-Couette Vortex Flow with a small aspect ratio

    NASA Astrophysics Data System (ADS)

    Kawai, H.; Yasui, S.; Takahashi, H.; Kikura, H.; Aritomi, M.

    2009-02-01

    This study focuses on the dynamics of the Taylor-Couette Vortex Flow (TVF) in a photo-bioreactor in which CO2 is changed to O2 with high efficiency by the photosynthesis ability of micro algae. Stirring by means of a screw propeller is generally used for a simple agitation. However, the problem is that there exists a very high shearing flow region just near the propeller, which causes the destruction of the alga cell by the shearing force. In contrast, the TVF mixing is expected to reduce such a local and random shearing force because of their column of steady and orderly vortices. In this study, the relationship between the microorganism growth rate and the flow structures in dilute suspensions of a TVF is investigated and the flow characteristics are measured by using an ultrasonic velocity profiler with a small aspect ratio of 3.

  17. Micro-fabricated packed gas chromatography column based on laser etching technology.

    PubMed

    Sun, J H; Guan, F Y; Zhu, X F; Ning, Z W; Ma, T J; Liu, J H; Deng, T

    2016-01-15

    In this work, a micro packed gas chromatograph column integrated with a micro heater was fabricated by using laser etching technology (LET) for analyzing environmental gases. LET is a powerful tool to etch deep well-shaped channels on the glass wafer, and it is the most effective way to increase depth of channels. The fabricated packed GC column with a length of over 1.6m, to our best knowledge, which is the longest so far. In addition, the fabricated column with a rectangular cross section of 1.2mm (depth) × 0.6mm (width) has a large aspect ratio of 2:1. The results show that the fabricated packed column had a large sample capacity, achieved a separation efficiency of about 5800 plates/m and eluted highly symmetrical Gaussian peaks. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Electrolyte matrix for molten carbonate fuel cells

    DOEpatents

    Huang, C.M.; Yuh, C.Y.

    1999-02-09

    A matrix is described for a carbonate electrolyte including a support material and an additive constituent having a relatively low melting temperature and a relatively high coefficient of thermal expansion. The additive constituent is from 3 to 45 weight percent of the matrix and is formed from raw particles whose diameter is in a range of 0.1 {micro}m to 20 {micro}m and whose aspect ratio is in a range of 1 to 50. High energy intensive milling is used to mix the support material and additive constituent during matrix formation. Also disclosed is the use of a further additive constituent comprising an alkaline earth containing material. The further additive is mixed with the support material using high energy intensive milling. 5 figs.

  19. Generalized viscothermoelasticity theory of dual-phase-lagging model for damping analysis in circular micro-plate resonators

    NASA Astrophysics Data System (ADS)

    Grover, D.; Seth, R. K.

    2018-05-01

    Analysis and numerical results are presented for the thermoelastic dissipation of a homogeneous isotropic, thermally conducting, Kelvin-Voigt type circular micro-plate based on Kirchhoff's Love plate theory utilizing generalized viscothermoelasticity theory of dual-phase-lagging model. The analytical expressions for thermoelastic damping of vibration and frequency shift are obtained for generalized dual-phase-lagging model and coupled viscothermoelastic plates. The scaled thermoelastic damping has been illustrated in case of circular plate and axisymmetric circular plate for fixed aspect ratio for clamped and simply supported boundary conditions. It is observed that the damping of vibrations significantly depend on time delay and mechanical relaxation times in addition to thermo-mechanical coupling in circular plate under resonance conditions and plate dimensions.

  20. Single-anchor support and supercritical CO2 drying enable high-precision microfabrication of three-dimensional structures.

    PubMed

    Maruo, Shoji; Hasegawa, Takuya; Yoshimura, Naoki

    2009-11-09

    In high-precision two-photon microfabrication of three-dimensional (3-D) polymeric microstructures, supercritical CO(2) drying was employed to reduce surface tension, which tends to cause the collapse of micro/nano structures. Use of supercritical drying allowed high-aspect ratio microstructures, such as micropillars and cantilevers, to be fabricated. We also propose a single-anchor supporting method to eliminate non-uniform shrinkage of polymeric structures otherwise caused by attachment to the substrate. Use of this method permitted frame models such as lattices to be produced without harmful distortion. The combination of supercritical CO(2) drying and the single-anchor supporting method offers reliable high-precision microfabrication of sophisticated, fragile 3-D micro/nano structures.

  1. Free jet micromixer to study fast chemical reactions by small angle X-ray scattering.

    PubMed

    Marmiroli, Benedetta; Grenci, Gianluca; Cacho-Nerin, Fernando; Sartori, Barbara; Ferrari, Enrico; Laggner, Peter; Businaro, Luca; Amenitsch, Heinz

    2009-07-21

    We present the design, fabrication process, and the first test results of a high aspect ratio micromixer combined with a free jet for under 100 micros time resolved studies of chemical reactions. The whole system has been optimized for synchrotron small angle X-ray scattering (SAXS) experiments. These studies are of particular interest to understand the early stages of chemical reactions, such as the kinetics of nanoparticle formation. The mixer is based on hydrodynamic focusing and works in the laminar regime. The use of a free jet overcomes the fouling of the channels and simultaneously circumvents background scattering from the walls. The geometrical parameters of the device have been optimized using finite element simulations, resulting in smallest features with radius <1 microm, and a channel depth of 60 microm, thus leading to an aspect ratio >60. To achieve the desired dimensions deep X-ray lithography (DXRL) has been employed. The device has been tested. First the focusing effect has been visualized using fluorescein. Then the evolution and stability of the jet, which exits the mixer nozzle at 13 m s(-1), have been characterized. Finally SAXS measurements have been conducted of the formation of calcium carbonate from calcium chloride and sodium carbonate. The fastest measurement is 75 micros after the beginning of the mixing of the reagents. The nanostructural evolution of chemical reactions is clearly discernible.

  2. Shape Comparison Between 0.4–2.0 and 20–60 lm Cement Particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holzer, L.; Flatt, R; Erdogan, S

    Portland cement powder, ground from much larger clinker particles, has a particle size distribution from about 0.1 to 100 {micro}m. An important question is then: does particle shape depend on particle size? For the same cement, X-ray computed tomography has been used to examine the 3-D shape of particles in the 20-60 {micro}m sieve range, and focused ion beam nanotomography has been used to examine the 3-D shape of cement particles found in the 0.4-2.0 {micro}m sieve range. By comparing various kinds of computed particle shape data for each size class, the conclusion is made that, within experimental uncertainty, bothmore » size classes are prolate, but the smaller size class particles, 0.4-2.0 {micro}m, tend to be somewhat more prolate than the 20-60 {micro}m size class. The practical effect of this shape difference on the set-point was assessed using the Virtual Cement and Concrete Testing Laboratory to simulate the hydration of five cement powders. Results indicate that nonspherical aspect ratio is more important in determining the set-point than are the actual shape details.« less

  3. Development of a micro hole measuring system based on the capacitance principle

    NASA Astrophysics Data System (ADS)

    Chang, Ting-Yen; Liao, Yunn-Shiuan; Liu, Wei-Cheng

    2009-10-01

    A new 3D micro hole measuring system has been developed in this paper. The system is mainly composed of a probe, a rotary stage and a program which can convert data points to a 3D profile. The principle of capacitance is adopted and a device to sense the variation of capacitance when the probe touches the workpiece is designed and implemented. With the aid of rotation stage, positions around the contour are measured. The measured coordinates are calculated by an algorithm proposed in this paper. The developed system is capable of measuring the interior profile of a high aspect ratio micro hole and calculating its roundness. A grade A gauge block is used to verify the developed system. It is found that the repeatability error of the system is within ±0.78 µm. The linearity error can approach 1 µm and the maximum measuring depth is 15 mm. Finally, a micro hole of 1.0 mm in diameter and 10 mm in depth is successfully measured and the 3D profile is constructed accordingly. The roundness of each layer spacing 1 mm apart and the inclination of the axis of the micro hole are calculated as well.

  4. Electro-thermo-mechanical nonlinear nonlocal vibration and instability of embedded micro-tube reinforced by BNNT, conveying fluid

    NASA Astrophysics Data System (ADS)

    Ghorbanpour Arani, A.; Shajari, A. R.; Amir, S.; Loghman, A.

    2012-08-01

    Nonlinear vibration and stability of a smart composite micro-tube made of Poly-vinylidene fluoride (PVDF) reinforced by Boron-Nitride nanotubes (BNNTs) embedded in an elastic medium under electro-thermal loadings is investigated. The BNNTs are considered to be long straight fibers and the composite used in this study is in the category of piezoelectric fiber reinforced composites (PEFRC). The micro-tube is conveying a fully developed isentropic, incompressible and irrotational fluid flow. The smart micro-tube is modeled as a thin shell based on the nonlinear Donnell's shell theory. Effects of mean flow velocity, fluid viscosity, elastic medium modulus, temperature change, imposed electric potential, small scale, aspect ratio, volume percent and orientation angle of the BNNTs on the vibration behavior of the micro-tube are taken into account. The results indicate that increasing mean flow velocity considerably increases the nonlinearity effects so that small scale and temperature change effects become negligible. It has also been found that stability of the system is strongly dependent on the imposed electric potential and the volume percent of BNNTs reinforcement. The system studied in this article can be used as sensor and actuator in the sensitive applications.

  5. Rectenna session: Micro aspects. [energy conversion

    NASA Technical Reports Server (NTRS)

    Gutmann, R. J.

    1980-01-01

    Two micro aspects of the rectenna design are addressed: evaluation of the degradation in net rectenna RF to DC conversion efficiency due to power density variations across the rectenna (power combining analysis) and design of Yagi-Uda receiving elements to reduce rectenna cost by decreasing the number of conversion circuits (directional receiving elements). The first of these micro aspects involves resolving a fundamental question of efficiency potential with a rectenna, while the second involves a design modification with a large potential cost saving.

  6. Microchannel Heat Sink with Micro Encapsulated Phase Change Material (MEPCM) Slurry

    DTIC Science & Technology

    2009-05-31

    inlet temperature of the fluid, melting range of PCM and base heat flux. 15. SUBJECT TERMS Phase Change Materials; microchannel cooling; slurry...such as particle concentration, inlet temperature of the fluid, melting range of PCM , base heat flux and base fluid. Nomenclature A Aspect ratio Ab...of fluid, J/kg.K cp,p Specific heat of MEPCM particle, J/kg.K Cp, pcm Specific heat of PCM , J/kg.K D Hydraulic diameter, m d, dp Particle diameter

  7. Method for producing components with internal architectures, such as micro-channel reactors, via diffusion bonding sheets

    DOEpatents

    Alman, David E [Corvallis, OR; Wilson, Rick D [Corvallis, OR; Davis, Daniel L [Albany, OR

    2011-03-08

    This invention relates to a method for producing components with internal architectures, and more particularly, this invention relates to a method for producing structures with microchannels via the use of diffusion bonding of stacked laminates. Specifically, the method involves weakly bonding a stack of laminates forming internal voids and channels with a first generally low uniaxial pressure and first temperature such that bonding at least between the asperites of opposing laminates occurs and pores are isolated in interfacial contact areas, followed by a second generally higher isostatic pressure and second temperature for final bonding. The method thereby allows fabrication of micro-channel devices such as heat exchangers, recuperators, heat-pumps, chemical separators, chemical reactors, fuel processing units, and combustors without limitation on the fin aspect ratio.

  8. Magnetically Actuated Cilia for Microfluidic Manipulation

    NASA Astrophysics Data System (ADS)

    Hanasoge, Srinivas; Owen, Drew; Ballard, Matt; Hesketh, Peter J.; Alexeev, Alexander; Woodruff School of Mechanical Engineering Collaboration; Petit InstituteBioengineering; Biosciences Collaboration

    2015-11-01

    We demonstrate magnetic micro-cilia based microfluidic mixing and capture techniques. For this, we use a simple and easy to fabricate high aspect ratio cilia, which are actuated magnetically. These micro-features are fabricated by evaporating NiFe alloy at room temperature, on to patterned photoresist. The evaporated alloy curls upwards when the seed layer is removed to release the cilia, thus making a free standing `C' shaped magnetic microstructure. This is actuated using an external electromagnet or a rotating magnet. The artificial cilia can be actuated upto 20Hz. We demonstrate the active mixing these cilia can produce in the microchannel. Also, we demonstrate the capture of target species in a sample using these fast oscillating cilia. The surface of the cilia is functionalized by streptavidin which binds to biotin labelled fluorescent microspheres and mimic the capture of bacteria. We show very high capture efficiencies by using these methods. These simple to fabricate micro cilia can easily be incorporated into many microfluidic systems which require high mixing and capture efficiencies.

  9. Liga developer apparatus system

    DOEpatents

    Boehme, Dale R.; Bankert, Michelle A.; Christenson, Todd R.

    2003-01-01

    A system to fabricate precise, high aspect ratio polymeric molds by photolithograpic process is described. The molds for producing micro-scale parts from engineering materials by the LIGA process. The invention is a developer system for developing a PMMA photoresist having exposed patterns comprising features having both very small sizes, and very high aspect ratios. The developer system of the present invention comprises a developer tank, an intermediate rinse tank and a final rinse tank, each tank having a source of high frequency sonic agitation, temperature control, and continuous filtration. It has been found that by moving a patterned wafer, through a specific sequence of developer/rinse solutions, where an intermediate rinse solution completes development of those portions of the exposed resist left undeveloped after the development solution, by agitating the solutions with a source of high frequency sonic vibration, and by adjusting and closely controlling the temperatures and continuously filtering and recirculating these solutions, it is possible to maintain the kinetic dissolution of the exposed PMMA polymer as the rate limiting step.

  10. Rapid prototyping of interfacing microcomponents for printed circuit board-level optical interconnects

    NASA Astrophysics Data System (ADS)

    Van Erps, Jürgen; Vervaeke, Michael; Thienpont, Hugo

    2012-01-01

    One of the important challenges for the deployment of the emerging breed of nanotechnology components is interfacing them with the external world, preferably accomplished with low-cost micro-optical devices. For the fabrication of this kind of micro-optical components, we make use of deep proton writing (DPW) as a generic rapid prototyping technology. DPW consists of bombarding polymer samples with swift protons, which results after chemical processing steps in high quality micro-optical components. The strength of the DPW micro-machining technology is the ability to fabricate monolithic building blocks that include micro-optical and mechanical functionalities which can be precisely integrated into more complex photonic systems. In this paper we give an overview of the process steps of the technology and we present several examples of micro-optical and micro-mechanical components, fabricated through DPW, targeting applications in printed circuit baordlevel optical interconnections. These include: high-precision 2-D fiber connectors, discrete out-of-plane coupling structures featuring high-quality 45° and curved micro-mirrors, arrays of high aspect ratio micro-pillars and backplane connectors. While DPW is clearly not a mass fabrication technique as such, one of its assets is that once the master component has been prototyped, a metal mould can be generated from the DPW master by applying electroplating. After removal of the plastic master, this metal mould can be used as a shim in a final microinjection moulding or hot embossing step. This way, the master component can be mass-produced at low cost in a wide variety of high-tech plastics.

  11. A Review of Similar and Dissimilar Micro-joining of Nitinol

    NASA Astrophysics Data System (ADS)

    Deepan Bharathi Kannan, T.; Ramesh, T.; Sathiya, P.

    2016-04-01

    NiTinol belongs to a class of smart materials which has a wide range of applications in the field of automotive, aerospace, biomedical, robotics, etc., owing to the growing trend in miniaturization of components. Micro-joining is becoming one of the important and familiar processes in the fabrication of miniaturized components. Recently, effective micro-joining of thin sheets has been gaining a lot of interest among researchers. In this article, the research and progress in micro-joining of NiTinol to itself and other metals are reviewed at different aspects. To date, laser welding, tungsten inert gas welding, and resistance welding have been used to a large extent in investigating the weldability of NiTinol alloys. Some important welding parameters used in micro joining by various researchers and their effects on weld qualities are detailed in this review. Metallurgical aspects, mechanical properties and corrosion aspects of micro-joined NiTinol sheets/wires are discussed. The aim of this report is to review the recent progress in micro-joining of NiTinol and to provide a basis for follow-on research.

  12. Principle of topography-directed inkjet printing for functional micro-tracks in flexible substrates

    NASA Astrophysics Data System (ADS)

    Keum, Chang-Min; Lee, In-Ho; Park, Hea-Lim; Kim, Chiwoo; Lüssem, Björn; Choi, Jong Sun; Lee, Sin-Doo

    2017-06-01

    We present a general principle of topography-directed (TD) inkjet printing for functional micro-tracks embedded in a flexible elastomer substrate. The essential features of the TD inkjet printing in a micro-structured substrate with periodic grooves and ridges are described in terms of the topographic parameters for the transformation from a single droplet to a filament or an edge-disjoint pattern of ink in the groove. Silver ink, being widely used for producing conductive wires by conventional inkjet printing, is utilized as a testbed in our study. The underlying mechanisms for the spreading and drying processes of ink drops under the topographic compartment can be understood in a two-dimensional parameter space of the aspect ratio of the groove and the contact angle of ink on the substrate. The wetting morphologies of ink droplets are described in an analytical model where the Laplace pressure and the mean curvature at the vapor/ink interface are taken into account. The first principle of the TD inkjet printing would be applicable for constructing a variety of functional micro-tracks with high pattern fidelity from different classes of solutions such as conducting polymers, organic semiconductors, and colloidal nanoparticles.

  13. Laser microprocessing and nanoengineering of large-area functional micro/nanostructures

    NASA Astrophysics Data System (ADS)

    Tang, M.; Xie, X. Z.; Yang, J.; Chen, Z. C.; Xu, L.; Choo, Y. S.; Hong, M. H.

    2011-12-01

    Laser microprocessing and nanoengineering are of great interest to both scientists and engineers, since the inspired properties of functional micro/nanostructures over large areas can lead to numerous unique applications. Currently laser processing systems combined with high speed automation ensure the focused laser beam to process various materials at a high throughput and a high accuracy over large working areas. UV lasers are widely used in both laser microprocessing and nanoengineering. However by improving the processing methods, green pulsed laser is capable of replacing UV lasers to make high aspect ratio micro-grooves on fragile and transparent sapphire substrates. Laser micro-texturing can also tune the wetting property of metal surfaces from hydrophilic to super-hydrophobic at a contact angle of 161° without chemical coating. Laser microlens array (MLA) can split a laser beam into multiple laser beams and reduce the laser spot size down to sub-microns. It can be applied to fabricate split ring resonator (SRR) meta-materials for THz sensing, surface plasmonic resonance (SPR) structures for NIR and molding tools for soft lithography. Furthermore, laser interference lithography combined with thermal annealing can obtain a large area of sub-50nm nano-dot clusters used for SPR applications.

  14. Micro-array versus nano-array platforms: a comparative study for ODN detection based on SPR enhanced ellipsometry

    NASA Astrophysics Data System (ADS)

    Celen, Burcu; Demirel, Gökhan; Piskin, Erhan

    2011-04-01

    The rapid and sensitive detection of DNA has recently attracted worldwide attention for a variety of disease diagnoses and detection of harmful bacteria in food and drink. In this paper, we carried out a comparative study based on surface plasmon resonance enhanced ellipsometry (SPREE) for the detection of oligodeoxynucleotides (ODNs) using micro- and nano-array platforms. The micro-arrayed surfaces were fabricated by a photolithography approach using different types of mask having varying size and shape. Well-ordered arrays of high aspect ratio polymeric nanotubes were also obtained using high molecular weight polystyrene (PS) and anodic aluminum oxide (AAO) membranes having 200 nm pore diameters. The SPREE sensors were then prepared by direct coupling of thiolated probe-ODNs, which contain suitable spacer arms, on gold-coated micro- and nano-arrayed surfaces. We experimentally demonstrated that, for the first time, gold-coated free standing polymeric nano-arrayed platforms can easily be produced and lead to a significant sensor sensitivity gain compared to that of the conventional SPREE surfaces of about four times. We believe that such an enhancement in sensor response could be useful for next generation sensor systems.

  15. Skin Friction Reduction by Micro-Blowing Technique

    NASA Technical Reports Server (NTRS)

    Hwang, Danny P. (Inventor)

    1998-01-01

    A system and method for reducing skin friction of an object in relative motion to a fluid. A skin forming a boundary between the object and the fluid, the skin having holes through which micro-blowing of air is blown and a transmitting mechanism for transmitting air through the skin. The skin has an inner layer and an outer layer. the inner layer being a low permeable porous sheet, the outer layer being a plate having high aspect ratio high porosity. and small holes. The system may further include a suction apparatus for suctioning air from the outer layer. The method includes the steps of transmitting air through the inner layer and passing the air transmitted through the inner layer to the outer layer. The method may further include the step of bleeding air off the outer layer using the suction apparatus.

  16. Primary response of high-aspect-ratio thermoresistive sensors

    NASA Astrophysics Data System (ADS)

    Majlesein, H. R.; Mitchell, D. L.; Bhattacharya, Pradeep K.; Singh, A.; Anderson, James A.

    1997-07-01

    There is a growing need for sensors in monitoring performance in modern quality products such as in electronics to monitor heat build up, substrate delaminations, and thermal runaway. In processing instruments, intelligent sensors are needed to measure deposited layer thickness and resistivities for process control, and in environmental electrical enclosures, they are used for climate monitoring and control. A yaw sensor for skid prevention utilizes very fine moveable components, and an automobile engine controller blends a microprocessor and sensor on the same chip. An Active-Pixel Image Sensor is integrated with a digital readout circuit to perform most of the functions in a video camera. Magnetostrictive transducers sense and damp vibrations. Improved acoustic sensors will be used in flow detection of air and other fluids, even at subsonic speeds. Optoelectronic sensor systems are being developed for installation on rocket engines to monitor exhaust gases for signs of wear in the engines. With new freon-free coolants being available the problems of A/C system corrosion have gone up in automobiles and need to be monitored more frequently. Defense cutbacks compel the storage of hardware in safe-custody for an indeterminate period of time, and this makes monitoring more essential. Just-in-time customized manufacturing in modern industries also needs dramatic adjustment in productivity of various selected items, leaving some manufacturing equipment idle for a long time, and therefore, it will be prone to more corrosion, and corrosion sensors are needed. In the medical device industry, development of implantable medical devices using both potentiometric and amperometric determination of parameters has, until now, been used with insufficient micro miniaturization, and thus, requires surgical implantation. In many applications, high-aspect- ratio devices, made possible by the use of synchrotron radiation lithography, allow more useful devices to be produced. High-aspect-ratio sensors will permit industries and various other users to attain more accurate measurements of physical properties and chemical compositions in many systems. Considerable engineering research has recently been focused on this type of fabrication effect. This paper looks at a high-aspect-ratio sensor bus thermorestrictive device with increased aspect-ratio of the interconnects to the device, using unique simulation software resources.

  17. Apparatus and method for electroforming high aspect ratio micro-parts

    DOEpatents

    Hachman, John T [Stockton, CA; Losey, Matthew W [Rancho Cucamonga, CA; McLean, Dorrance E [Manteca, CA

    2009-11-27

    A fixture is disclosed to more easily affix a workpiece in the proper orientation and spacing with sealed electrical interconnection within an electrochemical plating bath. The workpiece can be any planar metallic or non-metallic substrate such as a silicon wafer commonly used in LIGA or microsystem fabrication. The fixture described allows the workpiece to be submerged deep within an electrolytic cell, facing upwards, and allows easy transfer from one cell to another. The edges, backside, and electrical connections are sealed and protected from the electrolyte.

  18. Low defect InGaAs quantum well selectively grown by metal organic chemical vapor deposition on Si(100) 300 mm wafers for next generation non planar devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cipro, R.; Gorbenko, V.; Univ. Grenoble Alpes, F-38000, France CEA-LETI, MINATEC Campus, F-38054 Grenoble

    2014-06-30

    Metal organic chemical vapor deposition of GaAs, InGaAs, and AlGaAs on nominal 300 mm Si(100) at temperatures below 550 °C was studied using the selective aspect ratio trapping method. We clearly show that growing directly GaAs on a flat Si surface in a SiO{sub 2} cavity with an aspect ratio as low as 1.3 is efficient to completely annihilate the anti-phase boundary domains. InGaAs quantum wells were grown on a GaAs buffer and exhibit room temperature micro-photoluminescence. Cathodoluminescence reveals the presence of dark spots which could be associated with the presence of emerging dislocation in a direction parallel to the cavity. Themore » InGaAs layers obtained with no antiphase boundaries are perfect candidates for being integrated as channels in n-type metal oxide semiconductor field effect transistor (MOSFET), while the low temperatures used allow the co-integration of p-type MOSFET.« less

  19. Ultrafast Bessel beams: advanced tools for laser materials processing

    NASA Astrophysics Data System (ADS)

    Stoian, Razvan; Bhuyan, Manoj K.; Zhang, Guodong; Cheng, Guanghua; Meyer, Remy; Courvoisier, Francois

    2018-05-01

    Ultrafast Bessel beams demonstrate a significant capacity of structuring transparent materials with a high degree of accuracy and exceptional aspect ratio. The ability to localize energy on the nanometer scale (bypassing the 100-nm milestone) makes them ideal tools for advanced laser nanoscale processing on surfaces and in the bulk. This allows to generate and combine micron and nano-sized features into hybrid structures that show novel functionalities. Their high aspect ratio and the accurate location can equally drive an efficient material modification and processing strategy on large dimensions. We review, here, the main concepts of generating and using Bessel non-diffractive beams and their remarkable features, discuss general characteristics of their interaction with matter in ablation and material modification regimes, and advocate their use for obtaining hybrid micro and nanoscale structures in two and three dimensions (2D and 3D) performing complex functions. High-throughput applications are indicated. The example list ranges from surface nanostructuring and laser cutting to ultrafast laser welding and the fabrication of 3D photonic systems embedded in the volume.

  20. A Combined Experimental and Numerical Approach to the Laser Joining of Hybrid Polymer - Metal Parts

    NASA Astrophysics Data System (ADS)

    Rodríguez-Vidal, E.; Lambarri, J.; Soriano, C.; Sanz, C.; Verhaeghe, G.

    A two-step method for the joining of opaque polymer to metal is presented. Firstly, the metal is structured locally on a micro-scale level, to ensure adhesion with the polymeric counterpart. In a second step, the opposite side of the micro-structured metal is irradiated by means of a laser source. The heat thereby created is conducted by the metal and results in the melting of the polymer at the interface. The polymer thereby adheres to the metal and flows into the previously engraved structures, creating an additional mechanical interlock between the two materials. The welding parameters are fine-tuned with the assistance of a finite element model, to ensure the required interface temperature. The method is illustrated using a dual phase steel joined to a fiber-reinforced polyamide. The effect of different microstructures, in particular geometry and cavity aspect ratio, on the joint's tensile-shear mechanical performance is discussed.

  1. Selective nucleation of iron phthalocyanine crystals on micro-structured copper iodide.

    PubMed

    Rochford, Luke A; Ramadan, Alexandra J; Heutz, Sandrine; Jones, Tim S

    2014-12-14

    Morphological and structural control of organic semiconductors through structural templating is an efficient route by which to tune their physical properties. The preparation and characterisation of iron phthalocyanine (FePc)-copper iodide (CuI) bilayers at elevated substrate temperatures is presented. Thin CuI(111) layers are prepared which are composed of isolated islands rather than continuous films previously employed in device structures. Nucleation in the early stages of FePc growth is observed at the edges of islands rather than on the top (111) faces with the use of field emission scanning electron microscopy (FE-SEM). Structural measurements show two distinct polymorphs of FePc, with CuI islands edges nucleating high aspect ratio FePc crystallites with modified intermolecular spacing. By combining high substrate temperature growth and micro-structuring of the templating CuI(111) layer structural and morphological control of the organic film is demonstrated.

  2. Dependence of CO2 Reactivity of Carbon Anodes on Pore Structure

    NASA Astrophysics Data System (ADS)

    Chen, Tong; Xue, Jilai; Lang, Guanghui; Liu, Rui; Gao, Shoulei; Wang, Zengjie

    2017-09-01

    The correlation between the CO2 reactivity and pore structure of carbon anodes was experimentally investigated. The pore structures of the anodes before and after CO2 oxidation were characterized using image analysis. The porosity, mean pore diameter, and the number of micro-cracks decreased with increasing anode forming pressure, while they increased with over-compaction. With prolonged CO2 oxidation time, the porosity, pore density, mean pore diameter, pore aspect ratio, and the number of micro-cracks increased due to the merging of small pores, increased pore connectivity, and generation of new pores. The activation energy decreased with increasing porosity of the anodes' pitch phase due to easier CO2 penetration and reaction within the anodes. The results confirm that the fine pitch-coke phase of anodes is preferentially consumed, a cause of carbon dusting. Optimization of the pore structures to balance the pitch, coke, and butt phases may potentially further reduce carbon dusting.

  3. Depth estimation of laser glass drilling based on optical differential measurements of acoustic response

    NASA Astrophysics Data System (ADS)

    Gorodesky, Niv; Ozana, Nisan; Berg, Yuval; Dolev, Omer; Danan, Yossef; Kotler, Zvi; Zalevsky, Zeev

    2016-09-01

    We present the first steps of a device suitable for characterization of complex 3D micro-structures. This method is based on an optical approach allowing extraction and separation of high frequency ultrasonic sound waves induced to the analyzed samples. Rapid, non-destructive characterization of 3D micro-structures are limited in terms of geometrical features and optical properties of the sample. We suggest a method which is based on temporal tracking of secondary speckle patterns generated when illuminating a sample with a laser probe while applying known periodic vibration using an ultrasound transmitter. In this paper we investigated lasers drilled through glass vias. The large aspect ratios of the vias possess a challenge for traditional microscopy techniques in analyzing depth and taper profiles of the vias. The correlation of the amplitude vibrations to the vias depths is experimentally demonstrated.

  4. The effects of polymers' visco-elastoplastic properties on the micro cavities filling step of hot embossing process

    NASA Astrophysics Data System (ADS)

    Cheng, Gang; Barrière, Thierry

    2018-05-01

    The hot embossing process has been widely used in the manufacturing of polymer components, especially for the fabrication of micro or nano components. The significant advantage of the hot embossing process compared to the traditional injection moulding process is the excellent effective filling ratio for the high aspect ratio components and large surface structural components. The lack of material behavior modeling and numerical simulation limits the further development the hot embossing process, especially at the micro and nano scales. In this paper, a visco-elastoplastic behavior law has been proposed to describe the amorphous thermoplastic polymer mechanical properties in the hot embossing processing temperature range, which is lightly above their glass transition temperature. Uniaxial compression tests have been carried out in order to investigate the amorphous thermoplastic polymers properties. The material parameters in the visco-elastoplastic model have been identified according to the experimental results. A 3D numerical model has been created in the simulation software, which is based on the finite element method. The numerical simulation of the filling step of the hot embossing process has been effectuated by taking into account the viscous, elastic and plastic behaviors of thermoplastic polymers. The micro hot embossing process has been carried out using horizontal injection compression moulding equipment. A complete compression mould tool, equipped with the heating system, the cooling system, the ejection system and the vacuum system, has been designed and elaborated for this research work. The microfluidic devices based on the amorphous thermoplastic polymers have been successfully elaborated by hot embossing process. Proper agreement between the numerical simulation and the experimental elaboration has been obtained.

  5. The Effects of Sweeping Jet Actuator Parameters on Flow Separation Control

    NASA Technical Reports Server (NTRS)

    Koklu, Mehti

    2015-01-01

    A parametric experimental study was performed with sweeping jet actuators (fluidic oscillators) to determine their effectiveness in controlling flow separation on an adverse pressure gradient ramp. Actuator parameters that were investigated include blowing coefficients, operation mode, pitch and spreading angles, streamwise location, aspect ratio, and scale. Surface pressure measurements and surface oil flow visualization were used to characterize the effects of these parameters on the actuator performance. 2D Particle Image Velocimetry measurements of the flow field over the ramp and hot-wire measurements of the actuator's jet flow were also obtained for selective cases. In addition, the sweeping jet actuators were compared to other well-known flow control techniques such as micro-vortex generators, steady blowing, and steady vortex-generating jets. The results confirm that the sweeping jet actuators are more effective than steady blowing and steady vortex-generating jets. The results also suggest that an actuator with a larger spreading angle placed closer to the location where the flow separates provides better performance. For the cases tested, an actuator with an aspect ratio, which is the width/depth of the actuator throat, of 2 was found to be optimal. For a fixed momentum coefficient, decreasing the aspect ratio to 1 produced weaker vortices while increasing the aspect ratio to 4 reduced coverage area. Although scaling down the actuator (based on the throat dimensions) from 0.25 inch x 0.125 inch to 0.15 inch x 0.075 inch resulted in similar flow control performance, scaling down the actuator further to 0.075 inch x 0.0375 inch reduced the actuator efficiency by reducing the coverage area and the amount of mixing in the near-wall region. The results of this study provide insight that can be used to design and select the optimal sweeping jet actuator configuration for flow control applications.

  6. The impact of different multi-walled carbon nanotubes on the X-band microwave absorption of their epoxy nanocomposites.

    PubMed

    Che, Bien Dong; Nguyen, Bao Quoc; Nguyen, Le-Thu T; Nguyen, Ha Tran; Nguyen, Viet Quoc; Van Le, Thang; Nguyen, Nieu Huu

    2015-01-01

    Carbon nanotube (CNT) characteristics, besides the processing conditions, can change significantly the microwave absorption behavior of CNT/polymer composites. In this study, we investigated the influence of three commercial multi-walled CNT materials with various diameters and length-to-diameter aspect ratios on the X-band microwave absorption of epoxy nanocomposites with CNT contents from 0.125 to 2 wt%, prepared by two dispersion methods, i.e. in solution with surfactant-aiding and via ball-milling. The laser diffraction particle size and TEM analysis showed that both methods produced good dispersions at the microscopic level of CNTs. Both a high aspect ratio resulting in nanotube alignment trend and good infiltration of the matrix in the individual nanotubes, which was indicated by high Brookfield viscosities at low CNT contents of CNT/epoxy dispersions, are important factors to achieve composites with high microwave absorption characteristics. The multi-walled carbon nanotube (MWCNT) with the largest aspect ratio resulted in composites with the best X-band microwave absorption performance, which is considerably better than that of reported pristine CNT/polymer composites with similar or lower thicknesses and CNT loadings below 4 wt%. A high aspect ratio of CNTs resulting in microscopic alignment trend of nanotubes as well as a good level of micro-scale CNT dispersion resulting from good CNT-matrix interactions are crucial to obtain effective microwave absorption performance. This study demonstrated that effective radar absorbing MWCNT/epoxy nanocomposites having small matching thicknesses of 2-3 mm and very low filler contents of 0.25-0.5 wt%, with microwave energy absorption in the X-band region above 90% and maximum absorption peak values above 97%, could be obtained via simple processing methods, which is promising for mass production in industrial applications. Graphical AbstractComparison of the X-band microwave reflection loss of epoxy composites of various commercial multi-walled carbon nanotube materials.

  7. Optimization of the Critical Parameters of the Spherical Agglomeration Crystallization Method by the Application of the Quality by Design Approach.

    PubMed

    Gyulai, Orsolya; Kovács, Anita; Sovány, Tamás; Csóka, Ildikó; Aigner, Zoltán

    2018-04-20

    This research work presents the use of the Quality by Design (QbD) concept for optimization of the spherical agglomeration crystallization method in the case of the active agent, ambroxol hydrochloride (AMB HCl). AMB HCl spherical crystals were formulated by the spherical agglomeration method, which was applied as an antisolvent technique. Spherical crystals have good flowing properties, which makes the direct compression tableting method applicable. This means that the amount of additives used can be reduced and smaller tablets can be formed. For the risk assessment, LeanQbD Software was used. According to its results, four independent variables (mixing type and time, dT (temperature difference between solvent and antisolvent), and composition (solvent/antisolvent volume ratio)) and three dependent variables (mean particle size, aspect ratio, and roundness) were selected. Based on these, a 2⁻3 mixed-level factorial design was constructed, crystallization was accomplished, and the results were evaluated using Statistica for Windows 13 program. Product assay was performed and it was revealed that improvements in the mean particle size (from ~13 to ~200 µm), roundness (from ~2.4 to ~1.5), aspect ratio (from ~1.7 to ~1.4), and flow properties were observed while polymorphic transitions were avoided.

  8. Evaluation of friction enhancement through soft polymer micro-patterns in active capsule endoscopy

    NASA Astrophysics Data System (ADS)

    Buselli, Elisa; Pensabene, Virginia; Castrataro, Piero; Valdastri, Pietro; Menciassi, Arianna; Dario, Paolo

    2010-10-01

    Capsule endoscopy is an emerging field in medical technology. Despite very promising innovations, some critical issues are yet to be addressed, such as the management and possible exploitation of the friction in the gastrointestinal environment in order to control capsule locomotion more actively. This paper presents the fabrication and testing of bio-inspired polymeric micro-patterns, which are arrays of cylindrical pillars fabricated via soft lithography. The aim of the work is to develop structures that enhance the grip between an artificial device and the intestinal tissue, without injuring the mucosa. In fact, the patterns are intended to be mounted on microfabricated legs of a capsule robot that is able to move actively in the gastrointestinal tract, thus improving the robot's traction ability. The effect of micro-patterned surfaces on the leg-slipping behaviour on colon walls was investigated by considering both different pillar dimensions and the influence of tissue morphology. Several in vitro tests on biological samples demonstrated that micro-patterns of pillars made from a soft polymer with an aspect ratio close to 1 enhanced friction by 41.7% with regard to flat surfaces. This work presents preliminary modelling of the friction and adhesion forces in the gastrointestinal environment and some design guidelines for endoscopic devices.

  9. Raman spectroscopy on ice cores from Greenland and Antarctica

    NASA Astrophysics Data System (ADS)

    Weikusat, C.; Kipfstuhl, S.

    2012-04-01

    Ice cores are invaluable archives for the reconstruction of the climatic history of the earth. Besides the analysis of various climatic processes from isotopes and chemical signatures they offer the unique possibility of directly extracting the past atmosphere from gaseous inclusions in the ice. Many aspects of the formation and alterations of these inclusions, e.g. the entrapment of air at the firn-ice-transition, the formation of crystalline gas hydrates (clathrates) from the bubbles or the structural relaxation during storage of the cores, need to be better understood to enable reliable interpretations of the obtained data. Modern micro Raman spectroscopy is an excellent tool to obtain high-quality data for all of these aspects. It has been productively used for phase identification of solid inclusions [1], investigation of air clathrates [2] and high-resolution measurements of N2/O2 mixing ratios inside individual air bubbles [3,4]. Detailed examples of the various uses of Raman spectroscopy will be presented along with practical information about the techniques required to obtain high-quality spectra. Retrieval and interpretation of quantitative data from the spectra will be explained. Future possibilities for advanced uses of Raman spectroscopy for ice core research will be discussed. [1] T. Sakurai et al., 2009, Direct observation of salts as micro-inclusions in the Greenland GRIP ice core. Journal of Glaciology, 55, 777-783. [2] F. Pauer et al., 1995, Raman spectroscopic study of nitrogen/oxygen ratio in natural ice clathrates in the GRIP ice core. Geophysical Research Letters, 22, 969-971. [3] T. Ikeda-Fukazawa et al., 2001, Variation in N2/O2 ratio of occluded air in Dome Fuji antarctic ice. Journal of Geophysical Research, 106, 17799-17810. [4] C. Weikusat et al., Raman spectroscopy of gaseous inclusions in EDML ice core: First results - microbubbles. Journal of Glaciology, accepted.

  10. Macro, mini, micro and nano (M(sup 3)N) technologies for the future

    NASA Technical Reports Server (NTRS)

    Friedrich, Craig R.; Warrington, Robert O.; Gao, Robert X.; Lin, Gang

    1993-01-01

    Microelectromechanical systems (MEMS), micro systems technologies (MST), and micromanufacturing are relatively recent phrases or acronyms that have become synonymous with the design, development, and manufacture of 'micro' devices and systems. Micromanufacturing encompasses MEMS or MST and, in addition, includes all of the processes involved in the production of micro things. Integration of mechanical and electrical components, including built-in computers, can be formed into systems which must be connected to the macroworld. Macro, mini, micro, and nano technologies are all a part of MEMS or micromanufacturing. At this point in the development of the technology, it is becoming apparent that mini systems, with micro components, could very well be the economic drivers of the technology for the foreseeable future. Initial research in the fabrication of microdevices using IC processing technology took place over thirty years ago. Anisotropic etching of silicon was used to produce piezoresistive diaphragms. Since the early 60's, there has been gradual progress in MEMS until the early 1980's when worldwide interest in the technology really started to develop. During this time high aspect ratio micromachining using x rays was started in Germany. In 1987 the concept of a 'silicon micromechanics foundry' was proposed. Since then the interest in the U.S., Germany, and Japan has increased to the point where hundreds of millions of dollars of research monies are being funneled into the technology (at least in Germany and Japan) and the technology has been classified as critical or as a technology or national importance by the U.S. government.

  11. Deep proton writing of high aspect ratio SU-8 micro-pillars on glass

    NASA Astrophysics Data System (ADS)

    Ebraert, Evert; Rwamucyo, Ben; Thienpont, Hugo; Van Erps, Jürgen

    2016-12-01

    Deep proton writing (DPW) is a fabrication technology developed for the rapid prototyping of polymer micro-structures. We use SU-8, a negative resist, spincoated in a layer up to 720 μm-thick in a single step on borosilicate glass, for irradiation with a collimated 12 MeV energy proton beam. Micro-pillars with a slightly conical profile are irradiated in the SU-8 layer. We determine the optimal proton fluence to be 1.02 × 104 μm-2, with which we are able to repeatably achieve micro-pillars with a top-diameter of 138 ± 1 μm and a bottom-diameter of 151 ± 3 μm. The smallest fabricated pillars have a top-diameter of 57 ± 5 μm. We achieved a root-mean-square sidewall surface roughness between 19 nm and 35 nm for the fabricated micro-pillars, measured over an area of 5 × 63.7 μm. We briefly discuss initial testing of two potential applications of the fabricated micro-pillars. Using ∼100 μm-diameter pillars as waveguides for gigascale integration optical interconnect applications, has shown a 4.7 dB improvement in optical multimode fiber-to-fiber coupling as compared to the case where an air-gap is present between the fibers at the telecom wavelength of 1550 nm. The ∼140 μm-diameter pillars were used for mold fabrication with silicone casting. The resulting mold can be used for hydrogel casting, to obtain hydrogel replicas mimicking human tissue for in vitro bio-chemical applications.

  12. Development of ultra-precision micro-cavity measurement technique in HIT-UOI

    NASA Astrophysics Data System (ADS)

    Cui, Jiwen; Li, Lei; Tan, Jiubin

    2010-08-01

    Micro cavities with high aspect ratio are widely used in different fields including aerospace and defense industries with the development of manufacturing technology. So how to measure the dimension of these cavities has become one of the major research subjects in the field of measurement and instrument. This paper describes some activities of the precision micro cavity measurement technique in Center of Ultra-precision Optoelectronic Instrument (UOI), Harbin Institute of Technology (HIT). The key issue of micro cavity measurement in UOI is called touch-trigger measurement method. The first scheme is double optical fiber coupling, in which light coming from the incident optical fiber is transmitted in the reversal direction via the optical fiber coupling into the effluent optical fiber, the lateral displacement of the touch-trigger sensor is transformed into the deflexion of light coming out from the effluent optical fiber, and the deflexion is transformed into an image signal by the object lens and CCD capturing system. And the second scheme is micro focal-length collimation, in which a fiber stem with a ball mounted on its end is used as a probe and a small segment of it is used as a cylindrical lens to collimate a point light source and image it to a camera, the deflection of the fiber stem can be inferred from the change in image acquired by the camera with ultrahigh displacement sensitivity. Experiments for these activities will be given with a focus on the measurement results and repeatability uncertainty.

  13. Scalable fabrication of carbon-based MEMS/NEMS and their applications: a review

    NASA Astrophysics Data System (ADS)

    Jiang, Shulan; Shi, Tielin; Zhan, Xiaobin; Xi, Shuang; Long, Hu; Gong, Bo; Li, Junjie; Cheng, Siyi; Huang, Yuanyuan; Tang, Zirong

    2015-11-01

    The carbon-based micro/nano electromechanical system (MEMS/NEMS) technique provides a powerful approach to large-scale manufacture of high-aspect-ratio carbon structures for wafer-level processing. The fabricated three-dimensional (3D) carbon structures have the advantages of excellent electrical and electrochemical properties, and superior biocompatibility. In order to improve their performance for applications in micro energy storage devices and microsensors, an increase in the footprint surface area is of great importance. Various approaches have been proposed for fabricating large surface area carbon-based structures, including the integration of nanostructures such as carbon nanotubes (CNTs), graphene, nanowires, nanofilms and nanowrinkles onto 3D structures, which has been proved to be effective and productive. Moreover, by etching the 3D photoresist microstructures through oxygen plasma or modifying the photoresist with specific materials which can be etched in the following pyrolysis process, micro/nano hierarchical carbon structures have been fabricated. These improved structures show excellent performance in various applications, especially in the fields of biological sensors, surface-enhanced Raman scattering, and energy storage devices such as micro-supercapacitors and fuel cells. With the rapid development of microelectronic devices, the carbon-based MEMS/NEMS technique could make more aggressive moves into microelectronics, sensors, miniaturized power systems, etc. In this review, the recent advances in the fabrication of micro/nano hierarchical carbon-based structures are introduced and the technical challenges and future outlook of the carbon-based MEMS/NEMS techniques are also analyzed.

  14. Rapid large area fabrication of multiscale through-hole membranes.

    PubMed

    Tahk, Dongha; Paik, Sang-Min; Lim, Jungeun; Bang, Seokyoung; Oh, Soojung; Ryu, Hyunryul; Jeon, Noo Li

    2017-05-16

    There are many proposed mechanisms by which single cells can be trapped; among them is the through-hole membrane for the characterization of individual microorganisms. Due to the small scale of the fabricated pores, the construction of through-hole membranes on a large scale and with relatively large areas faces many difficulties. This paper describes novel fabrication methods for a large-area, freestanding micro/nano through-hole membrane constructed from versatile membrane materials using through-hole membranes on a microfluidic chip (THMMC). This process can rapidly (<20 min) fabricate membranes with high fidelity multiscale hole size without residual layers. The through-hole site was easily customizable from the micro to the nanoscale, with a low or high aspect ratio giving rise to reliable membranes. Also, the rigidity and biocompatibility of the through-hole membrane are easily tunable by simple injection of versatile membrane materials to obtain a large area (up to 3600 mm 2 ). Membranes produced in this manner were then applied as a proof of concept for the isolation, cultivation, and quantification of individual micro-algal cells for selection with respect to the growth rate, while controlling the quorum sensing mediated metabolic and proliferative changes.

  15. A novel method to fabricate silicon tubular gratings with broadband antireflection and super-hydrophobicity.

    PubMed

    Gao, Yang; Shi, Tielin; Tan, Xianhua; Liao, Guanglan

    2014-06-01

    We have developed a novel method to fabricate micro/nano structure based on the coherent diffraction lithography, and acquired periodic silicon tubular gratings with deep nano-scale tapered profiles at the top part. The optical properties of these tubular gratings were similar to an effective gradient-index antireflective surface, resulting in a broadband antireflective combining super-hydrophobic behavior. The mechanism of the method was simulated by rigorous coupled wave analysis algorithms. Then coherent diffraction lithography by use of suitable mask, in which periodic micro-scale circular opaque patters were distributed, was realized on the traditional aligner. Due to coherent diffraction, we obtained enough light intensity for photoresist exposure under the center of the opaque area in the mask together with transparent areas. The tapered line profiles and hollow photoresist gratings over large areas could be fabricated on the silicon wafer after development. The dry etching process was carried out, and high aspect ratio silicon tubular gratings with deep tapered profiles at the top were fabricated. The optical property and wettability of the structure were verified, proving that the proposed method and obtained micro/nano structure provide application potential in the future.

  16. A General and Mild Approach to Controllable Preparation of Manganese-Based Micro- and Nanostructured Bars for High Performance Lithium-Ion Batteries.

    PubMed

    Ma, Guo; Li, Sheng; Zhang, Weixin; Yang, Zeheng; Liu, Shulin; Fan, Xiaoming; Chen, Fei; Tian, Yuan; Zhang, Weibo; Yang, Shihe; Li, Mei

    2016-03-07

    One-dimensional (1D) micro- and nanostructured electrode materials with controllable phase and composition are appealing materials for use in lithium-ion batteries with high energy and power densities, but they are challenging to prepare. Herein, a novel ethanol-water mediated co-precipitation method by a chimie douce route (synthesis conducted under mild conditions) has been exploited to selectively prepare an extensive series of manganese-based electrode materials, manifesting the considerable generalizability and efficacy of the method. Moreover, by simply tuning the mixed solvent and reagents, transition metal oxide bars with differing aspect ratios and compositions were prepared with an unprecedented uniformity. Application prospects are demonstrated by Li-rich 0.5 Li2 MnO3 ⋅0.5 LiNi1/3 Co1/3 Mn1/3 O2 bars, which demonstrate excellent reversible capacity and rate capability thanks to the steerable nature of the synthesis and material quality. This work opens a new route to 1D micro- and nanostructured materials by customizing the precipitating solvent to orchestrate the crystallization process. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Continuous Diffusion Flames and Flame Streets in Micro-Channels

    NASA Astrophysics Data System (ADS)

    Mohan, Shikhar; Matalon, Moshe

    2015-11-01

    Experiments of non-premixed combustion in micro-channels have shown different modes of burning. Normally, a flame is established along, or near the axis of a channel that spreads the entire mixing layer and separates a region of fuel but no oxidizer from a region with only oxidizer. Often, however, a periodic sequence of extinction and reignition events, termed collectively as ``flame streets'', are observed. They constitute a series of diffusion flames, each with a tribrachial leading edge stabilized along the channel. This work focuses on understanding the underlying mechanism responsible for these distinct observations. Numerical simulations were conducted in the thermo-diffusive limit in order to study the effects of confinement and heat loss on non-premixed flames in three-dimensional micro-channels with low aspect ratios. The three dimensionality of the channel was captured qualitatively through a systematic asymptotic analysis that led to a two dimensional problem with an effective parameter representing heat losses in the vertical direction. There exist three key flame regimes: (1) a stable continuous diffusion flame, (2) an unsteady flame, and (3) a stable ``flame street'' the transition between regimes demarcated primarily by Reynolds and Nusselt numbers.

  18. Subcommunal bastardy and regional religion: Micro and macro aspects of the debate on the sexual revolution.

    PubMed

    Phayer, J Michael

    1981-08-01

    Birth reports throughout Europe and North America register low ratios of bastardy (5 percent or less) in premodern times and much higher ratios after 1750. Historians have difficulty explaining such a sudden turn about in an area of basic human behavior. By studying bastardy ratios at the settlement rather than communal (parish) level, I show that some premodern people did support a high incidence of illegitimacy. The turn-about-face in sexual matters was not as abrupt or as total as we have imagined. This discovery does not impugn the accuracy of the baptismal register as an index to sexual conduct of the populace at large. The problem of explaining sexual restraint in premodern times remains. Historians have frequently posited religion as the controlling factor that moderated the sexual behavior of the masses. There are problems with this explanation and I suggest that it is only efficacious when it can be demonstrated at the subcommunal or settlement level.

  19. Laser-induced Forward Transfer of Ag Nanopaste.

    PubMed

    Breckenfeld, Eric; Kim, Heungsoo; Auyeung, Raymond C Y; Piqué, Alberto

    2016-03-31

    Over the past decade, there has been much development of non-lithographic methods(1-3) for printing metallic inks or other functional materials. Many of these processes such as inkjet(3) and laser-induced forward transfer (LIFT)(4) have become increasingly popular as interest in printable electronics and maskless patterning has grown. These additive manufacturing processes are inexpensive, environmentally friendly, and well suited for rapid prototyping, when compared to more traditional semiconductor processing techniques. While most direct-write processes are confined to two-dimensional structures and cannot handle materials with high viscosity (particularly inkjet), LIFT can transcend both constraints if performed properly. Congruent transfer of three dimensional pixels (called voxels), also referred to as laser decal transfer (LDT)(5-9), has recently been demonstrated with the LIFT technique using highly viscous Ag nanopastes to fabricate freestanding interconnects, complex voxel shapes, and high-aspect-ratio structures. In this paper, we demonstrate a simple yet versatile process for fabricating a variety of micro- and macroscale Ag structures. Structures include simple shapes for patterning electrical contacts, bridging and cantilever structures, high-aspect-ratio structures, and single-shot, large area transfers using a commercial digital micromirror device (DMD) chip.

  20. Laser-induced Forward Transfer of Ag Nanopaste

    PubMed Central

    Breckenfeld, Eric; Kim, Heungsoo; Auyeung, Raymond C. Y.; Piqué, Alberto

    2016-01-01

    Over the past decade, there has been much development of non-lithographic methods1-3 for printing metallic inks or other functional materials. Many of these processes such as inkjet3 and laser-induced forward transfer (LIFT)4 have become increasingly popular as interest in printable electronics and maskless patterning has grown. These additive manufacturing processes are inexpensive, environmentally friendly, and well suited for rapid prototyping, when compared to more traditional semiconductor processing techniques. While most direct-write processes are confined to two-dimensional structures and cannot handle materials with high viscosity (particularly inkjet), LIFT can transcend both constraints if performed properly. Congruent transfer of three dimensional pixels (called voxels), also referred to as laser decal transfer (LDT)5-9, has recently been demonstrated with the LIFT technique using highly viscous Ag nanopastes to fabricate freestanding interconnects, complex voxel shapes, and high-aspect-ratio structures. In this paper, we demonstrate a simple yet versatile process for fabricating a variety of micro- and macroscale Ag structures. Structures include simple shapes for patterning electrical contacts, bridging and cantilever structures, high-aspect-ratio structures, and single-shot, large area transfers using a commercial digital micromirror device (DMD) chip. PMID:27077645

  1. 3-Dimensional numerical study of cooling performance of a heat sink with air-water flow through mini-channel

    NASA Astrophysics Data System (ADS)

    Majumder, Sambit; Majumder, Abhik; Bhaumik, Swapan

    2016-07-01

    The present microelectronics market demands devices with high power dissipation capabilities having enhanced cooling per unit area. The drive for miniaturizing the devices to even micro level dimensions is shooting up the applied heat flux on such devices, resulting in complexity in heat transfer and cooling management. In this paper, a method of CPU processor cooling is introduced where active and passive cooling techniques are incorporated simultaneously. A heat sink consisting of fins is designed, where water flows internally through the mini-channel fins and air flows externally. Three dimensional numerical simulations are performed for large set of Reynolds number in laminar region using finite volume method for both developing flows. The dimensions of mini-channel fins are varied for several aspect ratios such as 1, 1.33, 2 and 4. Constant temperature (T) boundary condition is applied at heat sink base. Channel fluid temperature, pressure drop are analyzed to obtain best cooling option in the present study. It has been observed that as the aspect ratio of the channel decreases Nusselt number decreases while pressure drop increases. However, Nusselt number increases with increase in Reynolds number.

  2. Estimate of within population incremental selection through branch imbalance in lineage trees

    PubMed Central

    Liberman, Gilad; Benichou, Jennifer I.C.; Maman, Yaakov; Glanville, Jacob; Alter, Idan; Louzoun, Yoram

    2016-01-01

    Incremental selection within a population, defined as limited fitness changes following mutation, is an important aspect of many evolutionary processes. Strongly advantageous or deleterious mutations are detected using the synonymous to non-synonymous mutations ratio. However, there are currently no precise methods to estimate incremental selection. We here provide for the first time such a detailed method and show its precision in multiple cases of micro-evolution. The proposed method is a novel mixed lineage tree/sequence based method to detect within population selection as defined by the effect of mutations on the average number of offspring. Specifically, we propose to measure the log of the ratio between the number of leaves in lineage trees branches following synonymous and non-synonymous mutations. The method requires a high enough number of sequences, and a large enough number of independent mutations. It assumes that all mutations are independent events. It does not require of a baseline model and is practically not affected by sampling biases. We show the method's wide applicability by testing it on multiple cases of micro-evolution. We show that it can detect genes and inter-genic regions using the selection rate and detect selection pressures in viral proteins and in the immune response to pathogens. PMID:26586802

  3. A three-dimensional electrostatic particle-in-cell methodology on unstructured Delaunay-Voronoi grids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gatsonis, Nikolaos A.; Spirkin, Anton

    2009-06-01

    The mathematical formulation and computational implementation of a three-dimensional particle-in-cell methodology on unstructured Delaunay-Voronoi tetrahedral grids is presented. The method allows simulation of plasmas in complex domains and incorporates the duality of the Delaunay-Voronoi in all aspects of the particle-in-cell cycle. Charge assignment and field interpolation weighting schemes of zero- and first-order are formulated based on the theory of long-range constraints. Electric potential and fields are derived from a finite-volume formulation of Gauss' law using the Voronoi-Delaunay dual. Boundary conditions and the algorithms for injection, particle loading, particle motion, and particle tracking are implemented for unstructured Delaunay grids. Error andmore » sensitivity analysis examines the effects of particles/cell, grid scaling, and timestep on the numerical heating, the slowing-down time, and the deflection times. The problem of current collection by cylindrical Langmuir probes in collisionless plasmas is used for validation. Numerical results compare favorably with previous numerical and analytical solutions for a wide range of probe radius to Debye length ratios, probe potentials, and electron to ion temperature ratios. The versatility of the methodology is demonstrated with the simulation of a complex plasma microsensor, a directional micro-retarding potential analyzer that includes a low transparency micro-grid.« less

  4. Ridge InGaAs/InP multi-quantum-well selective growth in nanoscale trenches on Si (001) substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, S.; Zhou, X.; Li, M.

    Metal organic chemical vapor deposition of InGaAs/InP multi-quantum-well in nanoscale V-grooved trenches on Si (001) substrate was studied using the aspect ratio trapping method. A high quality GaAs/InP buffer layer with two convex (111) B facets was selectively grown to promote the highly uniform, single-crystal ridge InP/InGaAs multi-quantum-well structure growth. Material quality was confirmed by transmission electron microscopy and room temperature micro-photoluminescence measurements. This approach shows great promise for the fabrication of photonics devices and nanolasers on Si substrate.

  5. Fabrication of micro-patterned aluminum surfaces for low ice adhesion strength

    NASA Astrophysics Data System (ADS)

    Jeon, Jaehyeon; Jang, Hanmin; Chang, Jinho; Lee, Kwan-Soo; Kim, Dong Rip

    2018-05-01

    We report a fabrication method to obtain a low-ice-adhesion aluminum surface by surface texturing using solution etching and subsequent thin-film coating. Specifically, the textured surface has microstructures of a low aspect ratio, that is, with a much smaller height than width. Such microstructures can effectively reduce ice-adhesion strengths by sliding the ice during detachment. Because our method is based on solution etching, it can be applied to curved surfaces with complex shapes for uniformly constructing the morphology of a low-ice-adhesion aluminum surface. Finally, the low-ice-adhesion aluminum surface reduces the ice-adhesion strengths by up to 95%.

  6. New Crystalline Materials for Nonlinear Frequency Conversion, Electro-Optic Modulation, and Mid-Infrared Gain Media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, J

    New crystalline materials were investigated for applications in frequency conversion of near-infrared wavelengths and as gain media for tunable mid-infrared solid-state lasers. GaCa{sub 4}O(BO{sub 3}){sub 3} (GdCOB), YCa{sub 4}O(BO{sub 3}){sub 3} (YCOB), LaCa{sub 4}O(BO{sub 3}){sub 3} (LaCOB), and Gd{sub 0.275}Y{sub 0.725}Ca{sub 4}O(BO{sub 3}){sub 3} were characterized for frequency conversion of 1 {micro}m lasers. For type I doubling at 1064 nm, LaCOB, GdCOB, and YCOB were found to have effective coupling coefficients (d{sub eff}) of 0.52 {+-} 0.05, 0.78 {+-} 0.06, and 1.12 {+-} 0.07 pm/V, respectively. LaCOB was measured to have angular and thermal sensitivities of 1224 {+-} 184 (cm-rad){supmore » -1} and < 0.10 (cm-{sup o}C){sup -1}, respectively. The effective coupling coefficient for type II noncritically phasematched (NCPM) doubling at 1064 nm in Gd{sub 0.275}Y{sub 0.725}Ca{sub 4}O(BO{sub 3}){sub 3} was measured to be 0.37 {+-} 0.04 pm/V. We predict LaCOB to have a type I NCPM fundamental wavelength of 1042 {+-} 1.5 nm. Due to its low angular and thermal sensitivities for doubling near 1047 nm, LaCOB has potential for frequency doubling of high-average power Nd:LiYF{sub 4} and Yb:Sr{sub 5}(P0{sub 4}){sub 3}F lasers. LaCOB, GdCOB, and YCOB were also investigated for optical parametric oscillator applications and we determined that they may have potential in a Ti:sapphire pumped oscillator. The effective linear electro-optic coefficients (r{sub eff}) were measured along dielectric directions in YCOB and a maximum r{sub eff} of 10.8 pm/V was found. For a crystal with a 5:1 aspect ratio, the corresponding half-wave voltage at 1064 nm would be 19.6 kV. Therefore a Pockels cell composed of two YCOB crystals with 5:1 aspect ratios would have a required half-wave voltage <10 kV. Moderate coupling coefficients (3 x KH{sub 2}PO{sub 4}), low thermal sensitivities, ease of growth to large sizes, non-hygroscopicity, and favorable polishing and coating characteristics make LaCOB, GdCOB, and YCOB attractive for frequency conversion of high-average power near-infrared lasers. Absorption and emission cross-sections of {approx}10{sup -18} cm{sup 2} were measured for Fe{sup 2+}:ZnSe in the 4 {micro}m region at temperatures below 220 K. Luminescence lifetimes were found that ranged from 5-110 {micro}s below 220 K. Tunable lasing action was demonstrated for the first time in Fe{sup 2+}:ZnSe with a tuning range from 3.98 {micro}m (20 K) to 4.54 {micro}m (180 K). The Fe{sup 2+}:ZnSe laser had thresholds {le}50 {micro}J and slope efficiencies {le}10% with 0.6% output coupling.« less

  7. Continuous-flow separation of nanoparticles by electrostatic sieving at a micro-nanofluidic interface.

    PubMed

    Regtmeier, Jan; Käsewieter, Jörg; Everwand, Martina; Anselmetti, Dario

    2011-05-01

    Continuous-flow separation of nanoparticles (NPs) (15 and 39 nm) is demonstrated based on electrostatic sieving at a micro-nanofluidic interface. The interface is realized in a poly(dimethylsiloxane) device with a nanoslit of 525 nm laterally spanning the microfluidic channel (aspect ratio of 540:1). Within this nanoslit, the Debye layers overlap and generate an electrostatic sieve. This was exploited to selectively deflect and sort NPs with a sorting purity of up to 97%. Because of the continuous-flow operation, the sample is continuously fed into the device, immediately separated, and the parameters can be adapted in real time. For bioanalytical purposes, we also demonstrate the deflection of proteins (longest axis 6.8 nm). The continuous operation mode and the general applicability of this separation concept make this method a valuable addition to the current Lab-on-a-Chip devices for continuous sorting of NPs and macromolecules. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Design Concepts, Fabrication and Advanced Characterization Methods of Innovative Piezoelectric Sensors Based on ZnO Nanowires.

    PubMed

    Araneo, Rodolfo; Rinaldi, Antonio; Notargiacomo, Andrea; Bini, Fabiano; Pea, Marialilia; Celozzi, Salvatore; Marinozzi, Franco; Lovat, Giampiero

    2014-12-08

    Micro- and nano-scale materials and systems based on zinc oxide are expected to explode in their applications in the electronics and photonics, including nano-arrays of addressable optoelectronic devices and sensors, due to their outstanding properties, including semiconductivity and the presence of a direct bandgap, piezoelectricity, pyroelectricity and biocompatibility. Most applications are based on the cooperative and average response of a large number of ZnO micro/nanostructures. However, in order to assess the quality of the materials and their performance, it is fundamental to characterize and then accurately model the specific electrical and piezoelectric properties of single ZnO structures. In this paper, we report on focused ion beam machined high aspect ratio nanowires and their mechanical and electrical (by means of conductive atomic force microscopy) characterization. Then, we investigate the suitability of new power-law design concepts to accurately model the relevant electrical and mechanical size-effects, whose existence has been emphasized in recent reviews.

  9. A junction-level optoelectronic characterization of etching-induced damage for third-generation HgCdTe infrared focal-plane array photodetectors

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Wang, Yueming; Wu, Mingzai; Ye, Zhenhua

    2018-06-01

    Third-generation HgCdTe-based infrared focal plane arrays require high aspect ratio trenches with admissible etch induced damage at the surface and sidewalls for effectively isolating the pixels. In this paper, the high-density inductively coupled plasma enhanced reaction ion etching technique has been used for micro-mesa delineation of HgCdTe for third-generation infrared focal-plane array detectors. A nondestructive junction-level optoelectronic characterization method called laser beam induced current (LBIC) is used to evaluate the lateral junction extent of HgCdTe etch-induced damage scanning electron microscopy. It is found that the LBIC profiles exhibit evident double peaks and valleys phenomena. The lateral extent of etch induced mesa damage of ∼2.4 μm is obtained by comparing the LBIC profile and the scanning electron microscopy image of etched sample. This finding will guide us to nondestructively identify the distributions of the etching damages in large scale HgCdTe micro-mesa.

  10. Tunable d-Limonene Permeability in Starch-Based Nanocomposite Films Reinforced by Cellulose Nanocrystals.

    PubMed

    Liu, Siyuan; Li, Xiaoxi; Chen, Ling; Li, Lin; Li, Bing; Zhu, Jie

    2018-01-31

    In order to control d-limonene permeability, cellulose nanocrystals (CNC) were used to regulate starch-based film multiscale structures. The effect of sphere-like cellulose nanocrystal (CS) and rod-like cellulose nanocrystal (CR) on starch molecular interaction, short-range molecular conformation, crystalline structure, and micro-ordered aggregated region structure were systematically discussed. CNC aspect ratio and content were proved to be independent variables to control d-limonene permeability via film-structure regulation. New hydrogen bonding formation and increased hydroxypropyl starch (HPS) relative crystallinity could be the reason for the lower d-limonene permeability compared with tortuous path model approximation. More hydrogen bonding formation, higher HPS relative crystallinity and larger size of micro-ordered aggregated region in CS0.5 and CR2 could explain the lower d-limonene permeability than CS2 and CR0.5, respectively. This study provided new insight for the control of the flavor release from starch-based films, which favored its application in biodegradable food packaging and flavor encapsulation.

  11. Design Concepts, Fabrication and Advanced Characterization Methods of Innovative Piezoelectric Sensors Based on ZnO Nanowires

    PubMed Central

    Araneo, Rodolfo; Rinaldi, Antonio; Notargiacomo, Andrea; Bini, Fabiano; Pea, Marialilia; Celozzi, Salvatore; Marinozzi, Franco; Lovat, Giampiero

    2014-01-01

    Micro- and nano-scale materials and systems based on zinc oxide are expected to explode in their applications in the electronics and photonics, including nano-arrays of addressable optoelectronic devices and sensors, due to their outstanding properties, including semiconductivity and the presence of a direct bandgap, piezoelectricity, pyroelectricity and biocompatibility. Most applications are based on the cooperative and average response of a large number of ZnO micro/nanostructures. However, in order to assess the quality of the materials and their performance, it is fundamental to characterize and then accurately model the specific electrical and piezoelectric properties of single ZnO structures. In this paper, we report on focused ion beam machined high aspect ratio nanowires and their mechanical and electrical (by means of conductive atomic force microscopy) characterization. Then, we investigate the suitability of new power-law design concepts to accurately model the relevant electrical and mechanical size-effects, whose existence has been emphasized in recent reviews. PMID:25494351

  12. Nanobits, Nembranes and Micro Four-Point Probes: Customizable Tools for insitu Manipulation and Characterisation of Nanostructures

    NASA Astrophysics Data System (ADS)

    Boggild, Peter; Hjorth Petersen, Dirch; Sardan Sukas, Ozlem; Dam, Henrik Friis; Lei, Anders; Booth, Timothy; Molhave, Kristian; Eicchorn, Volkmar

    2010-03-01

    We present a range of highly adaptable microtools for direct interaction with nanoscale structures; (i) semiautomatic pick-and-place assembly of multiwalled carbon nanotubes onto cantilevers for high-aspect ratio scanning probe microscopy, using electrothermal microgrippers inside a SEM. Topology optimisation was used to calculate the optimal gripper shape defined by the boundary conditions, resulting in 10-100 times better performance. By instead pre-defining detachable tips using electron beam lithography, free-form scanning probe tips (Nanobits) can be mounted in virtually any position on a cantilever; (ii) scanning micro four point probes allow fast, non- destructive mapping of local electrical properties (sheet resistance and Hall mobility) and hysteresis effects of graphene sheets; (iii) sub 100 nm freestanding devices with wires, heaters, actuators, sensors, resonators and probes were defined in a 100 nm thin membrane with focused ion beam milling. By patterning generic membrane templates (Nembranes) the fabrication time of a TEM compatible NEMS device is effectively reduced to less around 20 minutes.

  13. Micro-computed tomographic analysis of the root canal morphology of the distal root of mandibular first molar.

    PubMed

    Filpo-Perez, Carolina; Bramante, Clovis Monteiro; Villas-Boas, Marcelo Haas; Húngaro Duarte, Marco Antonio; Versiani, Marco Aurélio; Ordinola-Zapata, Ronald

    2015-02-01

    The aim of this study was to evaluate the morphologic aspects of the root canal anatomy of the distal root of a mandibular first molar using micro-computed tomographic analysis. One-hundred distal roots of mandibular first molars were scanned using a micro-computed tomographic device at an isotropic resolution of 19.6 μm. The percentage frequency distribution of the morphologic configuration of the root canal was performed according to the Vertucci classification system. Two-dimensional parameters (area, perimeter, roundness, aspect ratio, and major and minor diameters) and the cross-sectional shape of the root canal were analyzed in the apical third at every 1-mm interval from the main apical foramen in roots presenting Vertucci types I and II configurations (n = 79). Data were statistically compared using the Kruskal-Wallis and Dunn tests with a significance level set at 5%. Seventy-six percent of the distal roots had a single root canal. Two, three, and four canals were found in 13%, 8%, and 3% of the sample, respectively. In 13 specimens, the configuration of the root canal did not fit into Vertucci's classification. Overall, 2-dimensional parameter values significantly increased at the 3-mm level (P < .05). The prevalence of oval canals was higher at the 1-mm level and decreased at the 5-mm level in which long oval and flattened canals were more prevalent. The distal roots of the mandibular first molars showed a high prevalence of single root canals. The prevalence of long oval and flattened canals increased in the coronal direction. In 13% of the samples, canal configurations that were not included in Vertucci's configuration system were found. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  14. Micro-scale and meso-scale architectural cues cooperate and compete to direct aligned tissue formation

    PubMed Central

    Gilchrist, Christopher L.; Ruch, David S.; Little, Dianne; Guilak, Farshid

    2014-01-01

    Tissue and biomaterial microenvironments provide architectural cues that direct important cell behaviors including cell shape, alignment, migration, and resulting tissue formation. These architectural features may be presented to cells across multiple length scales, from nanometers to millimeters in size. In this study, we examined how architectural cues at two distinctly different length scales, “micro-scale” cues on the order of ~1–2 μm, and “meso-scale” cues several orders of magnitude larger (>100 μm), interact to direct aligned neo-tissue formation. Utilizing a micro-photopatterning (μPP) model system to precisely arrange cell-adhesive patterns, we examined the effects of substrate architecture at these length scales on human mesenchymal stem cell (hMSC) organization, gene expression, and fibrillar collagen deposition. Both micro- and meso-scale architectures directed cell alignment and resulting tissue organization, and when combined, meso cues could enhance or compete against micro-scale cues. As meso boundary aspect ratios were increased, meso-scale cues overrode micro-scale cues and controlled tissue alignment, with a characteristic critical width (~500 μm) similar to boundary dimensions that exist in vivo in highly aligned tissues. Meso-scale cues acted via both lateral confinement (in a cell-density-dependent manner) and by permitting end-to-end cell arrangements that yielded greater fibrillar collagen deposition. Despite large differences in fibrillar collagen content and organization between μPP architectural conditions, these changes did not correspond with changes in gene expression of key matrix or tendon-related genes. These findings highlight the complex interplay between geometric cues at multiple length scales and may have implications for tissue engineering strategies, where scaffold designs that incorporate cues at multiple length scales could improve neo-tissue organization and resulting functional outcomes. PMID:25263687

  15. Advanced Fuels Reactor using Aneutronic Rodless Ultra Low Aspect Ratio Tokamak Hydrogenic Plasmas

    NASA Astrophysics Data System (ADS)

    Ribeiro, Celso

    2015-11-01

    The use of advanced fuels for fusion reactor is conventionally envisaged for field reversed configuration (FRC) devices. It is proposed here a preliminary study about the use of these fuels but on an aneutronic Rodless Ultra Low Aspect Ratio (RULART) hydrogenic plasmas. The idea is to inject micro-size boron pellets vertically at the inboard side (HFS, where TF is very high and the tokamak electron temperature is relatively low because of profile), synchronised with a proton NBI pointed to this region. Therefore, p-B reactions should occur and alpha particles produced. These pellets will act as an edge-like disturbance only (cp. killer pellet, although the vertical HFS should make this less critical, since the unablated part should appear in the bottom of the device). The boron cloud will appear at midplance, possibly as a MARFE-look like. Scaling of the p-B reactions by varying the NBI energy should be compared with the predictions of nuclear physics. This could be an alternative to the FRC approach, without the difficulties of the optimization of the FRC low confinement time. Instead, a robust good tokamak confinement with high local HFS TF (enhanced due to the ultra low aspect ratio and low pitch angle) is used. The plasma central post makes the RULART concept attractive because of the proximity of NBI path and also because a fraction of born alphas will cross the plasma post and dragged into it in the direction of the central plasma post current, escaping vertically into a hole in the bias plate and reaching the direct electricity converter, such as in the FRC concept.

  16. Gas Forming a V-Shape Aluminum Sheet into a Trough of Saddle-Contour

    NASA Astrophysics Data System (ADS)

    Lee, Shyong; Lan, Hsien-Chin; Lee, Jye; Wang, Jian-Yih; Huang, J. C.; Chu, Chun Lin

    2012-11-01

    A sheet metal trough of aluminum alloys is manufactured by gas-forming process at 500 °C. The product with slope walls is of ~1.2 m long and ~260 mm opening width, comprising two conical sinks at two ends. The depth of one sink apex is ~350 mm, which results in the depth/width ratio reaching 1.4. To form such a complex shape with high aspect ratio, a pre-form of V-shape groove is prepared prior to the gas-forming work. When this double concave trough is turned upside down, the convex contour resembles the back of a twin hump camel. The formability of this configuration depends on the gas pressurization rate profile, the working temperature, material's micro-structure, as well as pre-form design. The latter point is demonstrated by comparing two aluminum alloys, AA5182 and SP5083, with nearly same compositions but very different grain sizes.

  17. Mineral density volume gradients in normal and diseased human tissues

    DOE PAGES

    Djomehri, Sabra I.; Candell, Susan; Case, Thomas; ...

    2015-04-09

    Clinical computed tomography provides a single mineral density (MD) value for heterogeneous calcified tissues containing early and late stage pathologic formations. The novel aspect of this study is that, it extends current quantitative methods of mapping mineral density gradients to three dimensions, discretizes early and late mineralized stages, identifies elemental distribution in discretized volumes, and correlates measured MD with respective calcium (Ca) to phosphorus (P) and Ca to zinc (Zn) elemental ratios. To accomplish this, MD variations identified using polychromatic radiation from a high resolution micro-computed tomography (micro-CT) benchtop unit were correlated with elemental mapping obtained from a microprobe X-raymore » fluorescence (XRF) using synchrotron monochromatic radiation. Digital segmentation of tomograms from normal and diseased tissues (N=5 per group; 40-60 year old males) contained significant mineral density variations (enamel: 2820-3095mg/cc, bone: 570-1415mg/cc, cementum: 1240-1340mg/cc, dentin: 1480-1590mg/cc, cementum affected by periodontitis: 1100-1220mg/cc, hypomineralized carious dentin: 345-1450mg/cc, hypermineralized carious dentin: 1815-2740mg/cc, and dental calculus: 1290-1770mg/cc). A plausible linear correlation between segmented MD volumes and elemental ratios within these volumes was established, and Ca/P ratios for dentin (1.49), hypomineralized dentin (0.32-0.46), cementum (1.51), and bone (1.68) were observed. Furthermore, varying Ca/Zn ratios were distinguished in adapted compared to normal tissues, such as in bone (855-2765) and in cementum (595-990), highlighting Zn as an influential element in prompting observed adaptive properties. Hence, results provide insights on mineral density gradients with elemental concentrations and elemental footprints that in turn could aid in elucidating mechanistic processes for pathologic formations.« less

  18. Mineral density volume gradients in normal and diseased human tissues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Djomehri, Sabra I.; Candell, Susan; Case, Thomas

    Clinical computed tomography provides a single mineral density (MD) value for heterogeneous calcified tissues containing early and late stage pathologic formations. The novel aspect of this study is that, it extends current quantitative methods of mapping mineral density gradients to three dimensions, discretizes early and late mineralized stages, identifies elemental distribution in discretized volumes, and correlates measured MD with respective calcium (Ca) to phosphorus (P) and Ca to zinc (Zn) elemental ratios. To accomplish this, MD variations identified using polychromatic radiation from a high resolution micro-computed tomography (micro-CT) benchtop unit were correlated with elemental mapping obtained from a microprobe X-raymore » fluorescence (XRF) using synchrotron monochromatic radiation. Digital segmentation of tomograms from normal and diseased tissues (N=5 per group; 40-60 year old males) contained significant mineral density variations (enamel: 2820-3095mg/cc, bone: 570-1415mg/cc, cementum: 1240-1340mg/cc, dentin: 1480-1590mg/cc, cementum affected by periodontitis: 1100-1220mg/cc, hypomineralized carious dentin: 345-1450mg/cc, hypermineralized carious dentin: 1815-2740mg/cc, and dental calculus: 1290-1770mg/cc). A plausible linear correlation between segmented MD volumes and elemental ratios within these volumes was established, and Ca/P ratios for dentin (1.49), hypomineralized dentin (0.32-0.46), cementum (1.51), and bone (1.68) were observed. Furthermore, varying Ca/Zn ratios were distinguished in adapted compared to normal tissues, such as in bone (855-2765) and in cementum (595-990), highlighting Zn as an influential element in prompting observed adaptive properties. Hence, results provide insights on mineral density gradients with elemental concentrations and elemental footprints that in turn could aid in elucidating mechanistic processes for pathologic formations.« less

  19. Mineral density volume gradients in normal and diseased human tissues.

    PubMed

    Djomehri, Sabra I; Candell, Susan; Case, Thomas; Browning, Alyssa; Marshall, Grayson W; Yun, Wenbing; Lau, S H; Webb, Samuel; Ho, Sunita P

    2015-01-01

    Clinical computed tomography provides a single mineral density (MD) value for heterogeneous calcified tissues containing early and late stage pathologic formations. The novel aspect of this study is that, it extends current quantitative methods of mapping mineral density gradients to three dimensions, discretizes early and late mineralized stages, identifies elemental distribution in discretized volumes, and correlates measured MD with respective calcium (Ca) to phosphorus (P) and Ca to zinc (Zn) elemental ratios. To accomplish this, MD variations identified using polychromatic radiation from a high resolution micro-computed tomography (micro-CT) benchtop unit were correlated with elemental mapping obtained from a microprobe X-ray fluorescence (XRF) using synchrotron monochromatic radiation. Digital segmentation of tomograms from normal and diseased tissues (N=5 per group; 40-60 year old males) contained significant mineral density variations (enamel: 2820-3095 mg/cc, bone: 570-1415 mg/cc, cementum: 1240-1340 mg/cc, dentin: 1480-1590 mg/cc, cementum affected by periodontitis: 1100-1220 mg/cc, hypomineralized carious dentin: 345-1450 mg/cc, hypermineralized carious dentin: 1815-2740 mg/cc, and dental calculus: 1290-1770 mg/cc). A plausible linear correlation between segmented MD volumes and elemental ratios within these volumes was established, and Ca/P ratios for dentin (1.49), hypomineralized dentin (0.32-0.46), cementum (1.51), and bone (1.68) were observed. Furthermore, varying Ca/Zn ratios were distinguished in adapted compared to normal tissues, such as in bone (855-2765) and in cementum (595-990), highlighting Zn as an influential element in prompting observed adaptive properties. Hence, results provide insights on mineral density gradients with elemental concentrations and elemental footprints that in turn could aid in elucidating mechanistic processes for pathologic formations.

  20. Mineral Density Volume Gradients in Normal and Diseased Human Tissues

    PubMed Central

    Djomehri, Sabra I.; Candell, Susan; Case, Thomas; Browning, Alyssa; Marshall, Grayson W.; Yun, Wenbing; Lau, S. H.; Webb, Samuel; Ho, Sunita P.

    2015-01-01

    Clinical computed tomography provides a single mineral density (MD) value for heterogeneous calcified tissues containing early and late stage pathologic formations. The novel aspect of this study is that, it extends current quantitative methods of mapping mineral density gradients to three dimensions, discretizes early and late mineralized stages, identifies elemental distribution in discretized volumes, and correlates measured MD with respective calcium (Ca) to phosphorus (P) and Ca to zinc (Zn) elemental ratios. To accomplish this, MD variations identified using polychromatic radiation from a high resolution micro-computed tomography (micro-CT) benchtop unit were correlated with elemental mapping obtained from a microprobe X-ray fluorescence (XRF) using synchrotron monochromatic radiation. Digital segmentation of tomograms from normal and diseased tissues (N=5 per group; 40-60 year old males) contained significant mineral density variations (enamel: 2820-3095mg/cc, bone: 570-1415mg/cc, cementum: 1240-1340mg/cc, dentin: 1480-1590mg/cc, cementum affected by periodontitis: 1100-1220mg/cc, hypomineralized carious dentin: 345-1450mg/cc, hypermineralized carious dentin: 1815-2740mg/cc, and dental calculus: 1290-1770mg/cc). A plausible linear correlation between segmented MD volumes and elemental ratios within these volumes was established, and Ca/P ratios for dentin (1.49), hypomineralized dentin (0.32-0.46), cementum (1.51), and bone (1.68) were observed. Furthermore, varying Ca/Zn ratios were distinguished in adapted compared to normal tissues, such as in bone (855-2765) and in cementum (595-990), highlighting Zn as an influential element in prompting observed adaptive properties. Hence, results provide insights on mineral density gradients with elemental concentrations and elemental footprints that in turn could aid in elucidating mechanistic processes for pathologic formations. PMID:25856386

  1. The generation of concentration gradients using electroosmotic flow in micro reactors allowing stereoselective chemical synthesis.

    PubMed

    Skelton, V; Greenway, G M; Haswell, S J; Styring, P; Morgan, D O; Warrington, B H; Wong, S Y

    2001-01-01

    The stereoselective control of chemical reactions has been achieved by applying electrical fields in a micro reactor generating controlled concentration gradients of the reagent streams. The chemistry based upon well-established Wittig synthesis was carried out in a micro reactor device fabricated in borosilicate glass using photolithographic and wet etching techniques. The selectivity of the cis (Z) to trans (E) isomeric ratio in the product synthesised was controlled by varying the applied voltages to the reagent reservoirs within the micro reactor. This subsequently altered the relative reagent concentrations within the device resulting in Z/E ratios in the range 0.57-5.21. By comparison, a traditional batch method based on the same reaction length, concentration, solvent and stoichiometry (i.e., 1.0:1.5:1.0 reagent ratios) gave a Z/E in the range 2.8-3.0. However, when the stoichiometric ratios were varied up to ten times as much, the Z/E ratios varied in accordance to the micro reactor i.e., when the aldehyde is in excess, the Z isomer predominates whereas when the aldehyde is in low concentrations, the E isomer is the more favourable form. Thus indicating that localised concentration gradients generated by careful flow control due to the diffusion limited non-turbulent mixing regime within a micro reactor, leads to the observed stereo selectivity for the cis and trans isomers.

  2. Effect of torsional stiffness and inertia on the dynamics of low aspect ratio flapping wings.

    PubMed

    Xiao, Qing; Hu, Jianxin; Liu, Hao

    2014-03-01

    Micro air vehicle-motivated aerodynamics in biological flight has been an important subject in the past decade. Inspired by the novel flapping wing mechanisms in insects, birds and bats, we have carried out a numerical study systematically investigating a three-dimensional flapping rigid wing with passively actuated lateral and rotational motion. Distinguishing it from the limited existing studies, this work performs a systematic examination on the effects of wing aspect ratio (AR = 1.0 to infinity), inertia (density ratio σ = 4-32), torsional stiffness (frequency ratio F = 1.5-10 and infinity) and pivot point (from chord-center to leading edge) on the dynamics response of a low AR rectangular wing under an initial zero speed flow field condition. The simulation results show that the symmetry breakdown of the flapping wing results in a forward/backward motion with a rotational pitching. When the wing reaches its stable periodic state, the induced pitching frequency is identical to its forced flapping frequency. However, depending on various kinematic and dynamic system parameters, (i.e. flapping frequency, density ratio and pitching axis), the lateral induced velocity shows a number of different oscillating frequencies. Furthermore, compared with a one degree of freedom (DoF) wing in the lateral direction only, the propulsion performance of such a two DoF wing relies very much on the magnitude of torsional stiffness adding on the pivot point, as well as its pitching axis. In all cases examined here, thrust force and moment generated by a long span wing is larger than that of a short wing, which is remarkably linked to the strong reverse von Kármán vortex street formed in the wake of a wing.

  3. Investigation on the Acoustic Absorption of Flexible Micro-Perforated Panel with Ultra-Micro Perforations

    NASA Astrophysics Data System (ADS)

    Li, Guoxin; Tang, Xiaoning; Zhang, Xiaoxiao; Qian, Y. J.; Kong, Deyi

    2017-11-01

    Flexible micro-perforated panel has unique advantages in noise reduction due to its good flexibility compared with traditional rigid micro-perforated panel. In this paper, flexible micro-perforated panel was prepared by computer numerical control (CNC) milling machine. Three kinds of plastics including polyvinylchloride (PVC), polyethylene terephthalate (PET), and polyimide (PI) were taken as the matrix materials to prepare flexible micro-perforated panel. It has been found that flexible micro-perforated panel made of PET possessing good porosity and proper density, elastic modulus and poisson ratio exhibited the best acoustic absorption properties. The effects of various structural parameters including perforation diameter, perforation ratio, thickness and air gap have also been investigated, which would be helpful to the optimization of acoustic absorption properties.

  4. A three-level support method for smooth switching of the micro-grid operation model

    NASA Astrophysics Data System (ADS)

    Zong, Yuanyang; Gong, Dongliang; Zhang, Jianzhou; Liu, Bin; Wang, Yun

    2018-01-01

    Smooth switching of micro-grid between the grid-connected operation mode and off-grid operation mode is one of the key technologies to ensure it runs flexible and efficiently. The basic control strategy and the switching principle of micro-grid are analyzed in this paper. The reasons for the fluctuations of the voltage and the frequency in the switching process are analyzed from views of power balance and control strategy, and the operation mode switching strategy has been improved targeted. From the three aspects of controller’s current inner loop reference signal, voltage outer loop control strategy optimization and micro-grid energy balance management, a three-level security strategy for smooth switching of micro-grid operation mode is proposed. From the three aspects of controller’s current inner loop reference signal tracking, voltage outer loop control strategy optimization and micro-grid energy balance management, a three-level strategy for smooth switching of micro-grid operation mode is proposed. At last, it is proved by simulation that the proposed control strategy can make the switching process smooth and stable, the fluctuation problem of the voltage and frequency has been effectively improved.

  5. The Effect of Cooling Passage Aspect Ratio on Curvature Heat Transfer Enhancement

    NASA Technical Reports Server (NTRS)

    Meyer, Michael L.

    1997-01-01

    A series of electrically heated tube experiments was performed to investigate the effect of high aspect ratio on curvature heat transfer enhancement in uniformly heated rectangular cooling passages. Three hardware geometries were tested: a baseline straight aspect ratio 10 tube, an aspect ratio 1 (square) tube with a 45 deg. curve, and an aspect ratio 10 tube with a 45 deg. curve. Gaseous nitrogen with the following properties was used as the coolant: ambient inlet temperature, pressures to 8.3 MPa, wall-to-bulk temperature ratios less than two, and Reynolds numbers based on hydraulic diameter ranging from 250,000 to 1,600,000. The measured curvature enhancement factors were compared to values predicted by three previously published models which had been developed for low aspect ratio tubes. The models were shown to be valid for the high aspect ratio tube as well the low aspect ratio tube, indicating that aspect ratio had little impact on the curvature heat transfer enhancement in these tests.

  6. Sustaining anti-littering behavior within coastal and marine environments: Through the macro-micro level lenses.

    PubMed

    Beeharry, Yashna Devi; Bekaroo, Girish; Bokhoree, Chandradeo; Phillips, Michael Robert; Jory, Neelakshi

    2017-06-30

    Being regarded as a problem of global dimensions, marine litter has been a growing concern that affects human beings, wildlife and the economic health of coastal communities to varying degrees. Due to its involvement with human behavior, marine littering has been regarded as a cultural matter encompassing macro and micro level aspects. At the micro or individual level, behavior and behavioral motivation of an individual are driven by perception of that person while at the macro or societal level, aspects including policies and legislations influence behavior. This paper investigates marine littering through the macro-micro level lenses in order to analyze and recommend how anti-littering behavior can be improved and sustained. Using Coleman's model of micro-macro relations, research questions are formulated and investigated through a social survey. Results showed important differences in perceptions among participating groups and to address key issues, potential actions are proposed along with a framework to sustain anti-littering behavior. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Rectenna session: Micro aspects

    NASA Technical Reports Server (NTRS)

    Gutmann, R. J.

    1980-01-01

    Two micro aspects of rectenna design are discussed: evaluation of the degradation in net rectenna RF to DC conversion efficiency due to power density variations across the rectenna (power combining analysis) and design of Yagi-Uda receiving elements to reduce rectenna cost by decreasing the number of conversion circuits (directional receiving elements). The first of these involves resolving a fundamental question of efficiency potential with a rectenna, while the second involves a design modification with a large potential cost saving.

  8. Micromachined silicon cantilevers with integrated high-frequency magnetoimpedance sensors for simultaneous strain and magnetic field detection

    NASA Astrophysics Data System (ADS)

    Buettel, G.; Joppich, J.; Hartmann, U.

    2017-12-01

    Giant magnetoimpedance (GMI) measurements in the high-frequency regime utilizing a coplanar waveguide with an integrated Permalloy multilayer and micromachined on a silicon cantilever are reported. The fabrication process is described in detail. The aspect ratio of the magnetic multilayer in the magnetoresistive and magnetostrictive device was varied. Tensile strain and compressive strain were applied. Vector network analyzer measurements in the range from the skin effect to ferromagnetic resonance confirm the technological potential of GMI-based micro-electro-mechanical devices for strain and magnetic field sensing applications. The strain-impedance gauge factor was quantified by finite element strain calculations and reaches a maximum value of almost 200.

  9. Micro- and nanotechnology in cardiovascular tissue engineering.

    PubMed

    Zhang, Boyang; Xiao, Yun; Hsieh, Anne; Thavandiran, Nimalan; Radisic, Milica

    2011-12-09

    While in nature the formation of complex tissues is gradually shaped by the long journey of development, in tissue engineering constructing complex tissues relies heavily on our ability to directly manipulate and control the micro-cellular environment in vitro. Not surprisingly, advancements in both microfabrication and nanofabrication have powered the field of tissue engineering in many aspects. Focusing on cardiac tissue engineering, this paper highlights the applications of fabrication techniques in various aspects of tissue engineering research: (1) cell responses to micro- and nanopatterned topographical cues, (2) cell responses to patterned biochemical cues, (3) controlled 3D scaffolds, (4) patterned tissue vascularization and (5) electromechanical regulation of tissue assembly and function.

  10. Relationship between BaTiO₃ nanowire aspect ratio and the dielectric permittivity of nanocomposites.

    PubMed

    Tang, Haixiong; Zhou, Zhi; Sodano, Henry A

    2014-04-23

    The aspect ratio of barium titanate (BaTiO3) nanowires is demonstrated to be successfully controlled by adjusting the temperature of the hydrothermal growth from 150 to 240 °C, corresponding to aspect ratios from 9.3 to 45.8, respectively. Polyvinylidene fluoride (PVDF) nanocomposites are formed from the various aspect ratio nanowires and the relationship between the dielectric constant of the nanocomposite and the aspect ratio of the fillers is quantified. It was found that the dielectric constant of the nanocomposite increases with the aspect ratio of the nanowires. Nanocomposites with 30 vol % BaTiO3 nanowires and an aspect ratio of 45.8 can reach a dielectric constant of 44.3, which is 30.7% higher than samples with an aspect ratio of 9.3 and 352% larger than the polymer matrix. These results demonstrate that using high-aspect-ratio nanowires is an effective way to control and improve the dielectric performance of nanocomposites for future capacitor applications.

  11. Contact problem for a composite material with nacre inspired microstructure

    NASA Astrophysics Data System (ADS)

    Berinskii, Igor; Ryvkin, Michael; Aboudi, Jacob

    2017-12-01

    Bi-material composites with nacre inspired brick and mortar microstructures, characterized by stiff elements of one phase with high aspect ratio separated by thin layers of the second one, are considered. Such microstructure is proved to provide an efficient solution for the problem of a crack arrest. However, contrary to the case of a homogeneous material, an external pressure, applied to a part of the composite boundary, can cause significant tensile stresses which increase the danger of crack nucleation. Investigation of the influence of microstructure parameters on the magnitude of tensile stresses is performed by means of the classical Flamant-like problem of an orthotropic half-plane subjected to a normal external distributed loading. Adequate analysis of this problem represents a serious computational task due to the geometry of the considered layout and the high contrast between the composite constituents. This difficulty is presently circumvented by deriving a micro-to-macro analysis in the framework of which an analytical solution of the auxiliary elasticity problem, followed by the discrete Fourier transform and the higher-order theory are employed. As a result, full scale continuum modeling of both composite constituents without employing any simplifying assumptions is presented. In the framework of the present proposed modeling, the influence of stiff elements aspect ratio on the overall stress distribution is demonstrated.

  12. Dynamic self-organization of side-propelling colloidal rods: experiments and simulations.

    PubMed

    Vutukuri, Hanumantha Rao; Preisler, Zdeněk; Besseling, Thijs H; van Blaaderen, Alfons; Dijkstra, Marjolein; Huck, Wilhelm T S

    2016-12-06

    In recent years, there is a growing interest in designing artificial analogues of living systems, fueled not only by potential applications as 'smart micro-machines', but also by the demand for simple models that can be used to study the behavior of their more complex natural counterparts. Here, we present a facile, internally driven, experimental system comprised of fluorescently labeled colloidal silica rods of which the self-propulsion is powered by the decomposition of H 2 O 2 catalyzed by a length-wise half Pt coating of the particles in order to study how shape anisotropy and swimming direction affect the collective behavior. We investigated the emerging structures and their time evolution for various particle concentrations in (quasi-)two dimensional systems for three aspect ratios of the rods on a single particle level using a combination of experiments and simulations. We found that the dynamic self-organization relied on a competition between self-propulsion and phoretic attractions induced by phoresis of the rods. We observed that the particle clustering behavior depends on the concentration as well as the aspect ratio of the rods. Our findings provide a more detailed understanding of dynamic self-organization of anisotropic particles and the role the propulsion direction plays in internally driven systems.

  13. Design of planar microcoil-based NMR probe ensuring high SNR

    NASA Astrophysics Data System (ADS)

    Ali, Zishan; Poenar, D. P.; Aditya, Sheel

    2017-09-01

    A microNMR probe for ex vivo applications may consist of at least one microcoil, which can be used as the oscillating magnetic field (MF) generator as well as receiver coil, and a sample holder, with a volume in the range of nanoliters to micro-liters, placed near the microcoil. The Signal-to-Noise ratio (SNR) of such a probe is, however, dependent not only on its design but also on the measurement setup, and the measured sample. This paper introduces a performance factor P independent of both the proton spin density in the sample and the external DC magnetic field, and which can thus assess the performance of the probe alone. First, two of the components of the P factor (inhomogeneity factor K and filling factor η ) are defined and an approach to calculate their values for different probe variants from electromagnetic simulations is devised. A criterion based on dominant component of the magnetic field is then formulated to help designers optimize the sample volume which also affects the performance of the probe, in order to obtain the best SNR for a given planar microcoil. Finally, the P factor values are compared between different planar microcoils with different number of turns and conductor aspect ratios, and planar microcoils are also compared with conventional solenoids. These comparisons highlight which microcoil geometry-sample volume combination will ensure a high SNR under any external setup.

  14. Fabrication of 200 nanometer period centimeter area hard x-ray absorption gratings by multilayer deposition

    PubMed Central

    Lynch, S K; Liu, C; Morgan, N Y; Xiao, X; Gomella, A A; Mazilu, D; Bennett, E E; Assoufid, L; de Carlo, F; Wen, H

    2012-01-01

    We describe the design and fabrication trials of x-ray absorption gratings of 200 nm period and up to 100:1 depth-to-period ratios for full-field hard x-ray imaging applications. Hard x-ray phase-contrast imaging relies on gratings of ultra-small periods and sufficient depth to achieve high sensitivity. Current grating designs utilize lithographic processes to produce periodic vertical structures, where grating periods below 2.0 μm are difficult due to the extreme aspect ratios of the structures. In our design, multiple bilayers of x-ray transparent and opaque materials are deposited on a staircase substrate, and mostly on the floor surfaces of the steps only. When illuminated by an x-ray beam horizontally, the multilayer stack on each step functions as a micro-grating whose grating period is the thickness of a bilayer. The array of micro-gratings over the length of the staircase works as a single grating over a large area when continuity conditions are met. Since the layers can be nanometers thick and many microns wide, this design allows sub-micron grating periods and sufficient grating depth to modulate hard x-rays. We present the details of the fabrication process and diffraction profiles and contact radiography images showing successful intensity modulation of a 25 keV x-ray beam. PMID:23066175

  15. Numerical studies of temperature effect on the extrusion fracture and swell of plastic micro-pipe

    NASA Astrophysics Data System (ADS)

    Ren, Zhong; Huang, Xingyuan; Xiong, Zhihua

    2018-03-01

    Temperature is a key factor that impacts extrusion forming quality of plastic micro-pipe. In this study, the effect of temperature on extrusion fracture and swell of plastic micro-pipe was investigated by numerical method. Under a certain of the melt’s flow volume, the extrusion pattern, extrusion swelling ratio of melt are obtained under different temperatures. Results show that the extrusion swelling ratio of plastic micro-pipe decreases with increasing of temperature. In order to study the reason of temperature effect, the physical distributions of plastic micro-pipe are gotten. Numerical results show that the viscosity, pressure, stress value of melt are all decreased with the increasing of temperature, which leads to decrease the extrusion swell and fracture phenomenon for the plastic micro-pipe.

  16. Functionalized carbon micro/nanostructures for biomolecular detection

    NASA Astrophysics Data System (ADS)

    Penmatsa, Varun

    Advancements in the micro-and nano-scale fabrication techniques have opened up new avenues for the development of portable, scalable and easier-to-use biosensors. Over the last few years, electrodes made of carbon have been widely used as sensing units in biosensors due to their attractive physiochemical properties. The aim of this research is to investigate different strategies to develop functionalized high surface carbon micro/nano-structures for electrochemical and biosensing devices. High aspect ratio three-dimensional carbon microarrays were fabricated via carbon microelectromechanical systems (C-MEMS) technique, which is based on pyrolyzing pre-patterned organic photoresist polymers. To further increase the surface area of the carbon microstructures, surface porosity was introduced by two strategies, i.e. (i) using F127 as porogen and (ii) oxygen reactive ion etch (RIE) treatment. Electrochemical characterization showed that porous carbon thin film electrodes prepared by using F127 as porogen had an effective surface area (Aeff 185%) compared to the conventional carbon electrode. To achieve enhanced electrochemical sensitivity for C-MEMS based functional devices, graphene was conformally coated onto high aspect ratio three-dimensional (3D) carbon micropillar arrays using electrostatic spray deposition (ESD) technique. The amperometric response of graphene/carbon micropillar electrode arrays exhibited higher electrochemical activity, improved charge transfer and a linear response towards H2O2 detection between 250μM to 5.5mM. Furthermore, carbon structures with dimensions from 50 nano-to micrometer level have been fabricated by pyrolyzing photo-nanoimprint lithography patterned organic resist polymer. Microstructure, elemental composition and resistivity characterization of the carbon nanostructures produced by this process were very similar to conventional photoresist derived carbon. Surface functionalization of the carbon nanostructures was performed using direct amination technique. Considering the need for requisite functional groups to covalently attach bioreceptors on the carbon surface for biomolecule detection, different oxidation techniques were compared to study the types of carbon-oxygen groups formed on the surface and their percentages with respect to different oxidation pretreatment times. Finally, a label-free detection strategy using signaling aptamer/protein binding complex for platelet-derived growth factor oncoprotein detection on functionalized three-dimensional carbon microarrays platform was demonstrated. The sensor showed near linear relationship between the relative fluorescence difference and protein concentration even in the sub-nanomolar range with an excellent detection limit of 5 pmol.

  17. Core compressor exit stage study, 2

    NASA Technical Reports Server (NTRS)

    Behlke, R. F.; Burdsall, E. A.; Canal, E., Jr.; Korn, N. D.

    1979-01-01

    A total of two three-stage compressors were designed and tested to determine the effects of aspect ratio on compressor performance. The first compressor was designed with an aspect ratio of 0.81; the other, with an aspect ratio of 1.22. Both compressors had a hub-tip ratio of 0.915, representative of the rear stages of a core compressor, and both were designed to achieve a 15.0% surge margin at design pressure ratios of 1.357 and 1.324, respectively, at a mean wheel speed of 167 m/sec. At design speed the 0.81 aspect ratio compressor achieved a pressure ratio of 1.346 at a corrected flow of 4.28 kg/sec and an adiabatic efficiency of 86.1%. The 1.22 aspect ratio design achieved a pressure ratio of 1.314 at 4.35 kg/sec flow and 87.0% adiabatic efficiency. Surge margin to peak efficiency was 24.0% with the lower aspect ratio blading, compared with 12.4% with the higher aspect ratio blading.

  18. Experimental Study of Static Contact-angle on Peak-like Microstructural Surfaces Produced by PIII Technology

    NASA Astrophysics Data System (ADS)

    Yang, Runhua; Yang, Lixin

    2018-06-01

    Plasma immersion ion implantation (PIII) was used to fabricate micro/nano structures on monocrystalline Si surfaces with different ratios of mixed gases (SF6/O2). The micro/nano structures on the surfaces of the sample were characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The results showed that with increasing ratio of mixed gases (SF6/O2), the height of the micro/nano structures first increased and then decreased. Contact-angle measurements indicated that the surfaces' micro/nano structures have an obvious effect on the contact-angle, and could cause a change in surface wettability. The theoretical analysis of contact-angle showed that the Wenzel and Cassie theories cannot predict the contact-angle of a roughened surface accurately, and should be corrected for practical applications using an actual model. Moreover, the contact-angle first increased and then decreased with increasing ratio of mixed gases (SF6/O2), which is in accordance with the change of the height of micro/nano structures.

  19. Micro-terminator: 'Hasta la vista, lncRNA!'.

    PubMed

    Diederichs, Sven

    2015-04-01

    Transcriptional termination is an important yet incompletely understood aspect of gene expression. Proudfoot, Jopling and colleagues now identify a new Microprocessor-mediated mechanism of transcriptional termination, which acts specifically on long noncoding transcripts that serve as microRNA precursors.

  20. Generalized green synthesis and formation mechanism of sponge-like ferrite micro-polyhedra with tunable structure and composition

    NASA Astrophysics Data System (ADS)

    Tong, Guoxiu; Du, Fangfang; Xiang, Lingjing; Liu, Fangting; Mao, Lulu; Guan, Jianguo

    2013-12-01

    This paper describes a green versatile glucose-engineered precipitation-sintering process that allows for the selective and mass preparation of spongy porous ferrite (M = Fe, Zn, Co, Ni, Mn, etc.) micro-polyhedra with tunable morphology, texture, and composition. Some kinetic factors, such as the molar ratio of glucose to metal nitrates, reaction temperature, sintering temperature and time, and type of metal nitrates, can be expediently employed to modulate their aspect ratio, shape, size, composition, and textural properties. In this protocol, glucose functions as a reductant, protecting agent, structure-directing agent, and a sacrificial template to guide the assembly of sheet-like nuclei into polyhedral precursors and the formation of spongy porous structures. Owing to larger EM parameters, multiresonant behavior, and dissipative current, spongy porous Fe3O4 polyhedra exhibited enhanced microwave-absorbing properties. This endows them with important potential applications in magnetic devices, catalysis, sorption, photoluminescence, electromagnetic wave absorbing materials, anode materials, and so on. Meanwhile, this general approach can be extended to synthesize other porous sponges with regular geometric configuration because it is simple, inexpensive, environmentally benign, and suitable for extensive production.This paper describes a green versatile glucose-engineered precipitation-sintering process that allows for the selective and mass preparation of spongy porous ferrite (M = Fe, Zn, Co, Ni, Mn, etc.) micro-polyhedra with tunable morphology, texture, and composition. Some kinetic factors, such as the molar ratio of glucose to metal nitrates, reaction temperature, sintering temperature and time, and type of metal nitrates, can be expediently employed to modulate their aspect ratio, shape, size, composition, and textural properties. In this protocol, glucose functions as a reductant, protecting agent, structure-directing agent, and a sacrificial template to guide the assembly of sheet-like nuclei into polyhedral precursors and the formation of spongy porous structures. Owing to larger EM parameters, multiresonant behavior, and dissipative current, spongy porous Fe3O4 polyhedra exhibited enhanced microwave-absorbing properties. This endows them with important potential applications in magnetic devices, catalysis, sorption, photoluminescence, electromagnetic wave absorbing materials, anode materials, and so on. Meanwhile, this general approach can be extended to synthesize other porous sponges with regular geometric configuration because it is simple, inexpensive, environmentally benign, and suitable for extensive production. Electronic supplementary information (ESI) available: Nitrogen adsorption-desorption isotherms, the corresponding pore size distribution curves, TG-DSC curves, XRD pattern, and IR spectra for the precursors; XRD patterns of the samples obtained at various temperatures under N2; XRD pattern, reduction rate, and reactive oxygen species production of ZnO-ZnFe2O4 XRD patterns, SEM images, EDX patterns, nitrogen adsorption-desorption isotherms, and the corresponding pore size distribution curves of CoFe2O4-NiFe2O4-Co1.29Ni1.71O4 polyhedra and NiO-ZnFe2O4. See DOI: 10.1039/c3nr03745b

  1. Setup and evaluation of a sensor tilting system for dimensional micro- and nanometrology

    NASA Astrophysics Data System (ADS)

    Schuler, Alexander; Weckenmann, Albert; Hausotte, Tino

    2014-06-01

    Sensors in micro- and nanometrology show their limits if the measurement objects and surfaces feature high aspect ratios, high curvature and steep surface angles. Their measurable surface angle is limited and an excess leads to measurement deviation and not detectable surface points. We demonstrate a principle to adapt the sensor's working angle during the measurement keeping the sensor in its optimal working angle. After the simulation of the principle, a hardware prototype was realized. It is based on a rotary kinematic chain with two rotary degrees of freedom, which extends the measurable surface angle to ±90° and is combined with a nanopositioning and nanomeasuring machine. By applying a calibration procedure with a quasi-tactile 3D sensor based on electrical near-field interaction the systematic position deviation of the kinematic chain is reduced. The paper shows for the first time the completed setup and integration of the prototype, the performance results of the calibration, the measurements with the prototype and the tilting principle, and finishes with the interpretation and feedback of the practical results.

  2. Confined high-pressure chemical deposition of hydrogenated amorphous silicon.

    PubMed

    Baril, Neil F; He, Rongrui; Day, Todd D; Sparks, Justin R; Keshavarzi, Banafsheh; Krishnamurthi, Mahesh; Borhan, Ali; Gopalan, Venkatraman; Peacock, Anna C; Healy, Noel; Sazio, Pier J A; Badding, John V

    2012-01-11

    Hydrogenated amorphous silicon (a-Si:H) is one of the most technologically important semiconductors. The challenge in producing it from SiH(4) precursor is to overcome a significant kinetic barrier to decomposition at a low enough temperature to allow for hydrogen incorporation into a deposited film. The use of high precursor concentrations is one possible means to increase reaction rates at low enough temperatures, but in conventional reactors such an approach produces large numbers of homogeneously nucleated particles in the gas phase, rather than the desired heterogeneous deposition on a surface. We report that deposition in confined micro-/nanoreactors overcomes this difficulty, allowing for the use of silane concentrations many orders of magnitude higher than conventionally employed while still realizing well-developed films. a-Si:H micro-/nanowires can be deposited in this way in extreme aspect ratio, small-diameter optical fiber capillary templates. The semiconductor materials deposited have ~0.5 atom% hydrogen with passivated dangling bonds and good electronic properties. They should be suitable for a wide range of photonic and electronic applications such as nonlinear optical fibers and solar cells. © 2011 American Chemical Society

  3. Bit Error Ratio Test Equipment for High Speed Vertical Cavity Transistor Laser and MicroCavity VCSEL and Photo Receiver

    DTIC Science & Technology

    2015-08-31

    Ratio Test Equipment for High Speed Vertical Cavity Transistor Laser & MicroCavity VCSEL and Photo Receiver The views, opinions and/or findings...suggesstions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis...for High Speed Vertical Cavity Transistor Laser & MicroCavity VCSEL and Photo Receiver Report Title In the previous DURIP award (W911NF-13-1-0287

  4. Microfabrication of through holes in polydimethylsiloxane (PDMS) sheets using a laser plasma EUV source (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Makimura, Tetsuya; Urai, Hikari; Niino, Hiroyuki

    2017-03-01

    Polydimethylsiloxane (PDMS) is a material used for cell culture substrates / bio-chips and micro total analysis systems / lab-on-chips due to its flexibility, chemical / thermo-dynamic stability, bio-compatibility, transparency and moldability. For further development, it is inevitable to develop a technique to fabricate precise three dimensional structures on micrometer-scale at high aspect ratio. In the previous works, we reported a technique for high-quality micromachining of PDMS without chemical modification, by means of photo direct machining using laser plasma EUV sources. In the present work, we have investigated fabrication of through holes. The EUV radiations around 10 nm were generated by irradiation of Ta targets with Nd:YAG laser light (10 ns, 500 mJ/pulse). The generated EUV radiations were focused using an ellipsoidal mirror. It has a narrower incident angle than those in the previous works in order to form a EUV beam with higher directivity, so that higher aspect structures can be fabricated. The focused EUV beam was incident on PDMS sheets with a thickness of 15 micrometers, through holes in a contact mask placed on top of them. Using a contact mask with holes with a diameter of three micrometers, complete through holes with a diameter of two micrometers are fabricated in the PDMS sheet. Using a contact mask with two micrometer holes, however, ablation holes almost reaches to the back side of the PDMS sheet. The fabricated structures can be explained in terms of geometrical optics. Thus, we have developed a technique for micromachining of PDMS sheets at high aspect ratios.

  5. On averaging aspect ratios and distortion parameters over ice crystal population ensembles for estimating effective scattering asymmetry parameters

    PubMed Central

    van Diedenhoven, Bastiaan; Ackerman, Andrew S.; Fridlind, Ann M.; Cairns, Brian

    2017-01-01

    The use of ensemble-average values of aspect ratio and distortion parameter of hexagonal ice prisms for the estimation of ensemble-average scattering asymmetry parameters is evaluated. Using crystal aspect ratios greater than unity generally leads to ensemble-average values of aspect ratio that are inconsistent with the ensemble-average asymmetry parameters. When a definition of aspect ratio is used that limits the aspect ratio to below unity (α≤1) for both hexagonal plates and columns, the effective asymmetry parameters calculated using ensemble-average aspect ratios are generally consistent with ensemble-average asymmetry parameters, especially if aspect ratios are geometrically averaged. Ensemble-average distortion parameters generally also yield effective asymmetry parameters that are largely consistent with ensemble-average asymmetry parameters. In the case of mixtures of plates and columns, it is recommended to geometrically average the α≤1 aspect ratios and to subsequently calculate the effective asymmetry parameter using a column or plate geometry when the contribution by columns to a given mixture’s total projected area is greater or lower than 50%, respectively. In addition, we show that ensemble-average aspect ratios, distortion parameters and asymmetry parameters can generally be retrieved accurately from simulated multi-directional polarization measurements based on mixtures of varying columns and plates. However, such retrievals tend to be somewhat biased toward yielding column-like aspect ratios. Furthermore, generally large retrieval errors can occur for mixtures with approximately equal contributions of columns and plates and for ensembles with strong contributions of thin plates. PMID:28983127

  6. Purely-elastic flow instabilities and elastic turbulence in microfluidic cross-slot devices

    PubMed Central

    Sousa, P. C.; Pinho, F. T.

    2018-01-01

    We experimentally investigate the dynamics of viscoelastic fluid flows in cross-slot microgeometries under creeping flow conditions. We focus on the unsteady flow regime observed at high Weissenberg numbers (Wi) with the purpose of understanding the underlying flow signature of elastic turbulence. The effects of the device aspect ratio and fluid rheology on the unsteady flow state are investigated. Visualization of the flow patterns and time-resolved micro-particle image velocimetry were carried out to study the fluid flow behavior for a wide range of Weissenberg numbers. A periodic flow behavior is observed at low Weissenberg numbers followed by a more complex dynamics as Wi increases, eventually leading to the onset of elastic turbulence for very high Weissenberg numbers. PMID:29376533

  7. Design and overall performance of four highly loaded, high speed inlet stages for an advanced high-pressure-ratio core compressor

    NASA Technical Reports Server (NTRS)

    Reid, L.; Moore, R. D.

    1978-01-01

    The detailed design and overall performances of four inlet stages for an advanced core compressor are presented. These four stages represent two levels of design total pressure ratio (1.82 and 2.05), two levels of rotor aspect ratio (1.19 and 1.63), and two levels of stator aspect ratio (1.26 and 1.78). The individual stages were tested over the stable operating flow range at 70, 90, and 100 percent of design speeds. The performances of the low aspect ratio configurations were substantially better than those of the high aspect ratio configurations. The two low aspect ratio configurations achieved peak efficiencies of 0.876 and 0.872 and corresponding stage efficiencies of 0.845 and 0.840. The high aspect ratio configurations achieved peak ratio efficiencies of 0.851 and 0.849 and corresponding stage efficiencies of 0.821 and 0.831.

  8. Gas flows in radial micro-nozzles with pseudo-shocks

    NASA Astrophysics Data System (ADS)

    Kiselev, S. P.; Kiselev, V. P.; Zaikovskii, V. N.

    2018-07-01

    In the present paper, results of an experimental and numerical study of supersonic gas flows in radial micro-nozzles are reported. A distinguishing feature of such flows is the fact that two factors, the nozzle divergence and the wall friction force, exert a substantial influence on the flow structure. Under the action of the wall friction force, in the micro-nozzle there forms a pseudo-shock that separates the supersonic from subsonic flow region. The position of the pseudo-shock can be evaluated from the condition of flow blockage in the nozzle exit section. A detailed qualitative and quantitative analysis of gas flows in radial micro-nozzles is given. It is shown that the gas flow in a micro-nozzle is defined by the complicated structure of the boundary layer in the micro-nozzle, this structure being dependent on the width-to-radius ratio of the nozzle and its inlet-to-outlet pressure ratio.

  9. Manganese oxide micro-supercapacitors with ultra-high areal capacitance

    NASA Astrophysics Data System (ADS)

    Wang, Xu; Myers, Benjamin D.; Yan, Jian; Shekhawat, Gajendra; Dravid, Vinayak; Lee, Pooi See

    2013-05-01

    A symmetric micro-supercapacitor is constructed by electrochemically depositing manganese oxide onto micro-patterned current collectors. High surface-to-volume ratio of manganese oxide and short diffusion distance between electrodes give an ultra-high areal capacitance of 56.3 mF cm-2 at a current density of 27.2 μA cm-2.A symmetric micro-supercapacitor is constructed by electrochemically depositing manganese oxide onto micro-patterned current collectors. High surface-to-volume ratio of manganese oxide and short diffusion distance between electrodes give an ultra-high areal capacitance of 56.3 mF cm-2 at a current density of 27.2 μA cm-2. Electronic supplementary information (ESI) available: Experimental procedures; optical images of micro-supercapacitors; areal capacitances of samples M-0.3C, M-0.6C and M-0.9C; illustration of interdigital finger electrodes; Nyquist plot of Co(OH)2 deposited on micro-electrodes. See DOI: 10.1039/c3nr00210a

  10. High-definition micropatterning method for hard, stiff and brittle polymers.

    PubMed

    Zhao, Yiping; Truckenmuller, Roman; Levers, Marloes; Hua, Wei-Shu; de Boer, Jan; Papenburg, Bernke

    2017-02-01

    Polystyrene (PS) is the most commonly used material in cell culture devices, such as Petri dishes, culture flasks and well plates. Micropatterning of cell culture substrates can significantly affect cell-material interactions leading to an increasing interest in the fabrication of topographically micro-structured PS surfaces. However, the high stiffness combined with brittleness of PS (elastic modulus 3-3.5GPa) makes high-quality patterning into PS difficult when standard hard molds, e.g. silicon and nickel, are used as templates. A new and robust scheme for easy processing of large-area high-density micro-patterning into PS film is established using nanoimprinting lithography and standard hot embossing techniques. Including an extra step through an intermediate PDMS mold alone does not result in faithful replication of the large area, high-density micropattern into PS. Here, we developed an approach using an additional intermediate mold out of OrmoStamp, which allows for high-quality and large-area micro-patterning into PS. OrmoStamp was originally developed for UV nanoimprint applications; this work demonstrates for the first time that OrmoStamp is a highly adequate material for micro-patterning of PS through hot embossing. Our proposed processing method achieves high-quality replication of micropatterns in PS, incorporating features with high aspect ratio (4:1, height:width), high density, and over a large pattern area. The proposed scheme can easily be adapted for other large-area and high-density micropatterns of PS, as well as other stiff and brittle polymers. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Analysis of a physics teacher's pedagogical `micro-actions' that support 17-year-olds' learning of free body diagrams via a modelling approach

    NASA Astrophysics Data System (ADS)

    Tay, Su Lynn; Yeo, Jennifer

    2018-01-01

    Great teaching is characterised by the specific actions a teacher takes in the classroom to bring about learning. In the context of model-based teaching (MBT), teachers' difficulty in working with students' models that are not scientifically consistent is troubling. To address this problem, the aim of this study is to identify the pedagogical micro-actions to support the development of scientific models and modelling skills during the evaluation and modification stages of MBT. Taking the perspective of pedagogical content knowing (PCKg), it identifies these micro-actions as an in-situ, dynamic transformation of knowledges of content, pedagogy, student and environment context. Through a case study approach, a lesson conducted by an experienced high-school physics teacher was examined. Audio and video recordings of the lesson contributed to the data sources. Taking a grounded approach in the analysis, eight pedagogical micro-actions enacted by the teacher were identified, namely 'clarification', 'evaluation', 'explanation', 'modification', 'exploration', 'referencing conventions', 'focusing' and 'meta-representing'. These micro-actions support students' learning related to the conceptual, cognitive, discursive and epistemological aspects of modelling. From the micro-actions, we identify the aspects of knowledges of PCKg that teachers need in order to competently select and enact these micro-actions. The in-situ and dynamic transformation of these knowledges implies that professional development should also be situated in the context in which these micro-actions are meaningful.

  12. 3-dimensional free standing micro-structures by proton beam writing of Su 8-silver nanoParticle polymeric composite

    NASA Astrophysics Data System (ADS)

    Igbenehi, H.; Jiguet, S.

    2012-09-01

    Proton beam lithography a maskless direct-write lithographic technique (well suited for producing 3-Dimensional microstructures in a range of resist and semiconductor materials) is demonstrated as an effective tool in the creation of electrically conductive freestanding micro-structures in an Su 8 + Nano Silver polymer composite. The structures produced show non-ohmic conductivity and fit the percolation theory conduction model of tunneling of separated nanoparticles. Measurements show threshold switching and a change in conductivity of at least 4 orders of magnitude. The predictable range of protons in materials at a given energy is exploited in the creation of high aspect ratio, free standing micro-structures, made from a commercially available SU8 Silver nano-composite (GMC3060 form Gersteltec Inc. a negative tone photo-epoxy with added metallic nano-particles(Silver)) to create films with enhanced electrical properties when exposed and cured. Nano-composite films are directly written on with a finely focused MeV accelerated Proton particle beam. The energy loss of the incident proton beams in the target polymer nano- composite film is concentrated at the end of its range, where damage occurs; changing the chemistry of the nano-composite film via an acid initiated polymerization - creating conduction paths. Changing the energy of the incident beams provide exposed regions with different penetration and damage depth - exploited in the demonstrated cantilever microstructure.

  13. Effects of Blowing Spanwise from the Tips of Low-Aspect Ratio Wings of Varying Taper Ratio, with Application to Improving STOL Capability of Fighter Aircraft.

    DTIC Science & Technology

    1983-02-01

    aspect ratio is relatively small. Brooks (ref. 1) worked with rectangular fins of 0.62 and 1.24 aspect ratio in a water medium and showed very large ...airflow rates. Lloyd (ref. 3) worked with an aspect ratio 2.0 rectangular wing using a very wide range of jet momentum coefficient; his results were in...D-A1i35 688 EFFECTS OF BLOWING SPANWISE FROM THE TIPS OF LOW ASPECT in, RATIO WINGS OF VA .(U) NIELSEN ENGINEERING AND RESEARCH INC MOUNTAIN VIEW CA

  14. Numerical studies of the reversed-field pinch at high aspect ratio

    NASA Astrophysics Data System (ADS)

    Sätherblom, H.-E.; Drake, J. R.

    1998-10-01

    The reversed field pinch (RFP) configuration at an aspect ratio of 8.8 is studied numerically by means of the three-dimensional magnetohydrodynamic code DEBS [D. D. Schnack et al., J. Comput. Phys. 70, 330 (1987)]. This aspect ratio is equal to that of the Extrap T1 experiment [S. Mazur et al., Nucl. Fusion 34, 427 (1994)]. A numerical study of a RFP with this level of aspect ratio requires extensive computer achievements and has hitherto not been performed. The results are compared with previous studies [Y. L. Ho et al., Phys. Plasmas 2, 3407 (1995)] of lower aspect ratio RFP configurations. In particular, an evaluation of the extrapolation to the aspect ratio of 8.8 made in this previous study shows that the extrapolation of the spectral spread, as well as most of the other findings, are confirmed. An important exception, however, is the magnetic diffusion coefficient, which is found to decrease with aspect ratio. Furthermore, an aspect ratio dependence of the magnetic energy and of the helicity of the RFP is found.

  15. Active Fail-Safe Micro-Array Flow Control for Advanced Embedded Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Anderson, Bernhard H.; Mace, James L.; Mani, Mori

    2009-01-01

    The primary objective of this research effort was to develop and analytically demonstrate enhanced first generation active "fail-safe" hybrid flow-control techniques to simultaneously manage the boundary layer on the vehicle fore-body and to control the secondary flow generated within modern serpentine or embedded inlet S-duct configurations. The enhanced first-generation technique focused on both micro-vanes and micro-ramps highly-integrated with micro -jets to provide nonlinear augmentation for the "strength' or effectiveness of highly-integrated flow control systems. The study focused on the micro -jet mass flow ratio (Wjet/Waip) range from 0.10 to 0.30 percent and jet total pressure ratios (Pjet/Po) from 1.0 to 3.0. The engine bleed airflow range under study represents about a 10 fold decrease in micro -jet airflow than previously required. Therefore, by pre-conditioning, or injecting a very small amount of high-pressure jet flow into the vortex generated by the micro-vane and/or micro-ramp, active flow control is achieved and substantial augmentation of the controlling flow is realized.

  16. Study on Manipulations of Fluids in Micro-scale and Their Applications in Physical, Bio/chemistry

    NASA Astrophysics Data System (ADS)

    Zhou, Bingpu

    Microfluidics is a highly interdisciplinary research field which manipulates, controls and analyzes fluids in micro-scale for physical and bio/chemical applications. In this thesis, several aspects of fluid manipulations in micro-scale were studied, discussed and employed for demonstrations of practical utilizations. To begin with, mixing in continuous flow microfluidic was raised and investigated. A simple method for mixing actuation based on magnetism was proposed and realized via integration of magnetically functionalized micropillar arrays inside the microfluidic channel.With such technique, microfluidic mixing could be swiftly switched on and off via simple application or retraction of the magnetic field. Thereafter, in Chapter 3 we mainly focused on how to establish stable while tunable concentration gradients inside microfluidic network using a simple design. The proposed scheme could also be modified with on-chip pneumatic actuated valve to realize pulsatile/temporal concentration gradients simultaneously in ten microfluidic branches. We further applied such methodology to obtain roughness gradients onPolydimethylsiloxane (PDMS) surface via combinations of the microfluidic network andphoto-polymerizations. The obtained materials were utilized in parallel cell culture to figure out the relationship between substrate morphologies and the cell behaviors. In the second part of this work, we emphasized on manipulations on microdroplets insidethe microfluidic channel and explored related applications in bio/chemical aspects. Firstly, microdroplet-based microfluidic universal logic gates were successfully demonstrated vialiquid-electronic hybrid divider. For application based on such novel scheme of control lable droplet generation, on-demand chemical reaction within paired microdroplets was presented using IF logic gate. Followed by this, another important operation of microdroplet - splitting -was investigated. Addition lateral continuous flow was applied at the bifurcation as a mediumto controllably divide microdroplets with highly tunable splitting ratios. Related physical mechanism was proposed and such approach was adopted further for rapid synthesis of multi-scale microspheres.

  17. An investigation of the effect of aspect and compression ratios on sediment dispersion using discrete element modelling

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Tan, Danielle S.

    2017-12-01

    We use discrete element modelling to simulate a system of sand being released underwater, similar to the process of releasing sediment tailings back into the sea in nodule harvesting, in 2D. The force model includes concentration-dependent drag, buoyancy, `added mass' and Stokeslet disturbance. For a fixed number of uniform-sized particles, we vary the aspect ratio and the compression ratio of the rectangular mass of granular media pre-release. We observed that the spreading leads to a nonlinear increase with aspect ratio. On the other hand, when the compression ratio is increased, the total spreading increases; however the spread of the bulk of the sand decreases at small aspect ratios and increases at large aspect ratios. We proposed a simple theoretical model for the horizontal spreading which depends on both the aspect and compression ratios.

  18. Perturbative momentum transport in MAST L-mode plasmas

    DOE PAGES

    Guttenfelder, W.; Field, A. R.; Lupelli, I.; ...

    2017-03-28

    Non-axisymmetric magnetic fields are used to perturbatively probe momentum transport physics in MAST L-mode plasmas. The low beta L-mode target was chosen to complement previous experiments conducted in high beta NSTX H-mode plasmas (beta N = 3.5-4.6) where an inward momentum pinch was measured. In those cases quasi-linear gyrokinetic simulations of unstable ballooning micro-instabilities predict weak or outward momentum convection, in contrast to the measurements. The weak pinch was predicted to be due to both electromagnetic effects at high beta and low aspect ratio minimizing the symmetry-breaking of the instabilities responsible for momentum transport. In an attempt to lessen thesemore » electromagnetic effects at low aspect ratio, perturbative experiments were run in MAST L-mode discharges at lower beta (beta N = 2). The perturbative transport analysis used the time-dependent response following the termination of applied 3D fields that briefly brake the plasma rotation ( similar to the NSTX H-mode experiments). Assuming time-invariant diffusive (chi(phi))and convective (V-phi) transport coefficients, an inward pinch is inferred with magnitudes, (RV phi/chi(phi)) = (-1)-(-9), similar to those found in NSTX H-modes and in conventional tokamaks. However, if experimental uncertainties due to non-stationary conditions during and after the applied 3D field are considered, a weak pinch or even outward convection is inferred, ( RV phi/chi(phi)) = (-1)-(+5). Linear gyrokinetic simulations indicate that for these lower beta L-modes, the predicted momentum pinch is predicted to be relatively small, ( RV phi/chi(phi))(sim) approximate to -1. While this falls within the experimentally inferred range, the uncertainties are practically too large to quantitatively validate the predictions. Challenges and implications for this particular experimental technique are discussed, as well as additional possible physical mechanisms that may be important in understanding momentum transport in these low aspect ratio plasmas.« less

  19. Perturbative momentum transport in MAST L-mode plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guttenfelder, W.; Field, A. R.; Lupelli, I.

    Non-axisymmetric magnetic fields are used to perturbatively probe momentum transport physics in MAST L-mode plasmas. The low beta L-mode target was chosen to complement previous experiments conducted in high beta NSTX H-mode plasmas (beta N = 3.5-4.6) where an inward momentum pinch was measured. In those cases quasi-linear gyrokinetic simulations of unstable ballooning micro-instabilities predict weak or outward momentum convection, in contrast to the measurements. The weak pinch was predicted to be due to both electromagnetic effects at high beta and low aspect ratio minimizing the symmetry-breaking of the instabilities responsible for momentum transport. In an attempt to lessen thesemore » electromagnetic effects at low aspect ratio, perturbative experiments were run in MAST L-mode discharges at lower beta (beta N = 2). The perturbative transport analysis used the time-dependent response following the termination of applied 3D fields that briefly brake the plasma rotation ( similar to the NSTX H-mode experiments). Assuming time-invariant diffusive (chi(phi))and convective (V-phi) transport coefficients, an inward pinch is inferred with magnitudes, (RV phi/chi(phi)) = (-1)-(-9), similar to those found in NSTX H-modes and in conventional tokamaks. However, if experimental uncertainties due to non-stationary conditions during and after the applied 3D field are considered, a weak pinch or even outward convection is inferred, ( RV phi/chi(phi)) = (-1)-(+5). Linear gyrokinetic simulations indicate that for these lower beta L-modes, the predicted momentum pinch is predicted to be relatively small, ( RV phi/chi(phi))(sim) approximate to -1. While this falls within the experimentally inferred range, the uncertainties are practically too large to quantitatively validate the predictions. Challenges and implications for this particular experimental technique are discussed, as well as additional possible physical mechanisms that may be important in understanding momentum transport in these low aspect ratio plasmas.« less

  20. Hummingbird wing efficacy depends on aspect ratio and compares with helicopter rotors

    PubMed Central

    Kruyt, Jan W.; Quicazán-Rubio, Elsa M.; van Heijst, GertJan F.; Altshuler, Douglas L.; Lentink, David

    2014-01-01

    Hummingbirds are the only birds that can sustain hovering. This unique flight behaviour comes, however, at high energetic cost. Based on helicopter and aeroplane design theory, we expect that hummingbird wing aspect ratio (AR), which ranges from about 3.0 to 4.5, determines aerodynamic efficacy. Previous quasi-steady experiments with a wing spinner set-up provide no support for this prediction. To test this more carefully, we compare the quasi-steady hover performance of 26 wings, from 12 hummingbird taxa. We spun the wings at angular velocities and angles of attack that are representative for every species and measured lift and torque more precisely. The power (aerodynamic torque × angular velocity) required to lift weight depends on aerodynamic efficacy, which is measured by the power factor. Our comparative analysis shows that AR has a modest influence on lift and drag forces, as reported earlier, but interspecific differences in power factor are large. During the downstroke, the power required to hover decreases for larger AR wings at the angles of attack at which hummingbirds flap their wings (p < 0.05). Quantitative flow visualization demonstrates that variation in hover power among hummingbird wings is driven by similar stable leading edge vortices that delay stall during the down- and upstroke. A side-by-side aerodynamic performance comparison of hummingbird wings and an advanced micro helicopter rotor shows that they are remarkably similar. PMID:25079868

  1. Numerical approach of the injection molding process of fiber-reinforced composite with considering fiber orientation

    NASA Astrophysics Data System (ADS)

    Nguyen Thi, T. B.; Yokoyama, A.; Ota, K.; Kodama, K.; Yamashita, K.; Isogai, Y.; Furuichi, K.; Nonomura, C.

    2014-05-01

    One of the most important challenges in the injection molding process of the short-glass fiber/thermoplastic composite parts is being able to predict the fiber orientation, since it controls the mechanical and the physical properties of the final parts. Folgar and Tucker included into the Jeffery equation a diffusive type of term, which introduces a phenomenological coefficient for modeling the randomizing effect of the mechanical interactions between the fibers, to predict the fiber orientation in concentrated suspensions. Their experiments indicated that this coefficient depends on the fiber volume fraction and aspect ratio. However, a definition of the fiber interaction coefficient, which is very necessary in the fiber orientation simulations, hasn't still been proven yet. Consequently, this study proposed a developed fiber interaction model that has been introduced a fiber dynamics simulation in order to obtain a global fiber interaction coefficient. This supposed that the coefficient is a sum function of the fiber concentration, aspect ratio, and angular velocity. The proposed model was incorporated into a computer aided engineering simulation package C-Mold. Short-glass fiber/polyamide-6 composites were produced in the injection molding with the fiber weight concentration of 30 wt.%, 50 wt.%, and 70 wt.%. The physical properties of these composites were examined, and their fiber orientation distributions were measured by micro-computed-tomography equipment μ-CT. The simulation results showed a good agreement with experiment results.

  2. Use of the Micro-Deval test for assessing the durability of Virginia aggregates.

    DOT National Transportation Integrated Search

    2007-01-01

    Aggregate is one of the most widely used construction material, and the key aspect of aggregate quality is durability. In this study, the Micro-Deval test, a new test developed in France and modified by Canadians, was studied to evaluate its suitabil...

  3. Designed Synthesis of CeO2 Nanorods and Nanowires for Studying Toxicological Effects of High Aspect Ratio Nanomaterials

    PubMed Central

    Ji, Zhaoxia; Wang, Xiang; Zhang, Haiyuan; Lin, Sijie; Meng, Huan; Sun, Bingbing; George, Saji; Xia, Tian; Nel, André E.; Zink, Jeffrey I.

    2012-01-01

    While it has been shown that high aspect ratio nanomaterials like carbon nanotubes and TiO2 nanowires can induce toxicity by acting as fiber-like substances that damage the lysosome, it is not clear what the critical lengths and aspect ratios are that induce this type of toxicity. To answer this question, we synthesized a series of cerium oxide (CeO2) nanorods and nanowires with precisely controlled lengths and aspect ratios. Both phosphate and chloride ions were shown to play critical roles in obtaining these high aspect ratio nanostructures. High resolution TEM analysis shows that single crystalline CeO2 nanorods/nanowires were formed along the [211] direction by an “oriented attachment” mechanism, followed by Ostwald ripening. The successful creation of a comprehensive CeO2 nanorod/nanowire combinatorial library allows, for the first time, the systematic study of the effect of aspect ratio on lysosomal damage, cytoxicity and IL-1β production by the human myeloid cell line (THP-1). This in vitro toxicity study demonstrated that at lengths ≥200 nm and aspect ratios ≥ 22, CeO2 nanorods induced progressive cytotoxicity and pro-inflammatory effects. The relatively low “critical” length and aspect ratio were associated with small nanorod/nanowire diameters (6–10 nm), which facilitates the formation of stacking bundles due to strong van der Waals and dipole-dipole attractions. Our results suggest that both length and diameter components of aspect ratio should be considered when addressing the cytotoxic effects of long aspect ratio materials. PMID:22564147

  4. Enhancement of bismuth antibacterial activity with lipophilic thiol chelators.

    PubMed Central

    Domenico, P; Salo, R J; Novick, S G; Schoch, P E; Van Horn, K; Cunha, B A

    1997-01-01

    The antibacterial properties of bismuth are greatly enhanced when bismuth is combined with certain lipophilic thiol compounds. Antibacterial activity was enhanced from 25- to 300-fold by the following seven different thiols, in order of decreasing synergy: 1,3-propanedithiol, dimercaprol (BAL), dithiothreitol, 3-mercapto-2-butanol, beta-mercaptoethanol, 1-monothioglycerol, and mercaptoethylamine. The dithiols produced the greatest synergy with bismuth at optimum bismuth-thiol molar ratios of from 3:1 to 1:1. The monothiols were generally not as synergistic and required molar ratios of from 1:1 to 1:4 for optimum antibacterial activity. The most-active mono- or dithiols were also the most soluble in butanol. The intensity of the yellow formed by bismuth-thiol complexes reflected the degree of chelation and correlated with antibacterial potency at high molar ratios. The bismuth-BAL compound (BisBAL) was active against most bacteria, as assessed by broth dilution, agar diffusion, and agar dilution analyses. Staphylococci (MIC, 5 to 7 microM Bi3+) and Helicobacter pylori (MIC, 2.2 microM) were among the most sensitive bacteria. Gram-negative bacteria were sensitive (MIC, < 17 microM). Enterococci were relatively resistant (MIC, 63 microM Bi3+). The MIC range for anaerobes was 15 to 100 microM Bi3+, except for Clostridium difficile (MIC, 7.5 microM). Bactericidal activity averaged 29% above the MIC. Bactericidal activity increased with increasing pH and/or increasing temperature. Bismuth-thiol solubility, stability, and antibacterial activity depended on pH and the bismuth-thiol molar ratio. BisBAL was stable but ineffective against Escherichia coli at pH 4. Activity and instability (reactivity) increased with increasing alkalinity. BisBAL was acid soluble at a molar ratio of greater than 3:2 and alkaline soluble at a molar ratio of less than 2:3. In conclusion, certain lipophilic thiol compounds enhanced bismuth antibacterial activity against a broad spectrum of bacteria. The activity, solubility, and stability of BisBAL were strongly dependent on the pH, temperature, and molar ratio. Chelation of bismuth with certain thiol agents enhanced the solubility and lipophilicity of this cationic heavy metal, thereby significantly enhancing its potency and versatility as an antibacterial agent. PMID:9257744

  5. Effect of multi-walled carbon nanotubes aspect ratio and temperature on the dielectric behavior of alternating alkene-carbon monoxide polyketone nanocomposites

    NASA Astrophysics Data System (ADS)

    Abu-Surrah, Adnan S.; Abdul Jawad, Saadi; Al-Ramahi, Esraa; Hallak, Awni B.; Khattari, Z.

    2015-04-01

    New alternating poly(propylene-alt-carbon monoxide/ethylene-alt-carbon monoxide) (PECO)/multiwalled carbon nanotubes (MWCNTs) composites have been prepared. Dielectric permittivity, electric modulus and ac conductivity of the isolated materials were investigated as a function of fiber aspect ratio, frequency and temperature. For aspect ratio of 30 and 200, a transition from insulator to semiconductor was observed at frequency 1×104. However, for high aspect ratio sample (660), no transition was observed and the conductivity is frequency independent in the measured frequency range of 10-106 Hz. The conductivity increases from about 1×10-4 for the sample that contain fibers of aspect ratio 30 and reaches 5×10-2 (Ω m)-1 for aspect ratio was 660. This behavior can be modeled by a circuit that consists of a contact resistance in series with a parallel combination of resistance (R) and capacitance (C). The calculated activation energy for sample filled with fibers having aspect ratio 30 is about 0.26 eV and decreases to about 0.16 eV when the aspect ratio is 660.

  6. The aspect ratio effects on the performances of GaN-based light-emitting diodes with nanopatterned sapphire substrates

    NASA Astrophysics Data System (ADS)

    Kao, Chien-Chih; Su, Yan-Kuin; Lin, Chuing-Liang; Chen, Jian-Jhong

    2010-07-01

    The nanopatterned sapphire substrates (NPSSs) with aspect ratio that varied from 2.00 to 2.50 were fabricated by nanoimprint lithography. We could improve the epitaxial film quality and enhance the light extraction efficiency by NPSS technique. In this work, the aspect ratio effects on the performances of GaN-based light-emitting diodes (LEDs) with NPSS were investigated. The light output enhancement of GaN-based LEDs with NPSS was increased from 11% to 27% as the aspect ratio of the NPSS increases from 2.00 to 2.50. Owing to the same improvement of crystalline quality by using various aspect ratios of NPSS, these results indicated that the aspect ratio of the NPSS is strongly related to the light extraction efficiency.

  7. Managing the Manpower Aspects of Applying Micro-Electronics Technology.

    ERIC Educational Resources Information Center

    Thornton, P.; Routledge, C.

    1980-01-01

    Outlines major effects that the application of micro-electronics devices in products/processes and in office systems will have on future manpower and skill requirements in manufacturing organizations. Identifies the type of problems these changes will pose for manpower managers. Provides general guidelines for the successful management of these…

  8. Numerical simulations of vortex-induced vibrations of a flexible riser with different aspect ratiosin uniform and shear currents

    NASA Astrophysics Data System (ADS)

    Duanmu, Yu; Zou, Lu; Wan, De-cheng

    2017-12-01

    This paper aimed at describing numerical simulations of vortex-induced vibrations (VIVs) of a long flexible riser with different length-to-diameter ratio (aspect ratio) in uniform and shear currents. Three aspect ratios were simulated: L/D = 500, 750 and 1 000. The simulation was carried out by the in-house computational fluid dynamics (CFD) solver viv-FOAM-SJTU developed by the authors, which was coupled with the strip method and developed on the OpenFOAM platform. Moreover, the radial basis function (RBF) dynamic grid technique is applied to the viv-FOAM-SJTU solver to simulate the VIV in both in-line (IL) and cross-flow (CF) directions of flexible riser with high aspect ratio. The validation of the benchmark case has been completed. With the same parameters, the aspect ratio shows a significant influence on VIV of a long flexible riser. The increase of aspect ratio exerted a strong effect on the IL equilibrium position of the riser while producing little effect on the curvature of riser. With the aspect ratio rose from 500 to 1 000, the maximum IL mean displacement increased from 3 times the diameter to 8 times the diameter. On the other hand, the vibration mode of the riser would increase with the increase of aspect ratio. When the aspect ratio was 500, the CF vibration was shown as a standing wave with a 3rd order single mode. When the aspect ratio was 1 000, the modal weights of the 5th and 6th modes are high, serving as the dominant modes. The effect of the flow profile on the oscillating mode becomes more and more apparent when the aspect ratio is high, and the dominant mode of riser in shear flow is usually higher than that in uniform flow. When the aspect ratio was 750, the CF oscillations in both uniform flow and shear flow showed multi-mode vibration of the 4th and 5th mode. While, the dominant mode in uniform flow is the 4th order, and the dominant mode in shear flow is the 5th order.

  9. Effect of nonionic compound emulsifiers Tween80 and Span80 on the properties of microencapsulated phase change materials.

    PubMed

    Zhan, Shiping; Zhou, Zhiyi; Wang, Weijing; Zhao, Qicheng; Hou, Weimin

    2014-01-01

    In this article, the nonionic compound emulsifiers Tween80 and Span80 were used to prepare microcapsules containing phase change materials (microPCMs) with melamine-formaldehyde (MF) shells by in situ polymerization method. The effects of compound emulsifiers Tween80 and Span80 on the structure, morphologies and properties of microPCMs containing paraffin were studied. SEM morphological investigation suggests that a complex of Tween80 and Span80 as emulsifiers are optimal for the fabrication of microPCMs in this study compared to Tween60 or OP-10. The diameter distributions of microPCMs synthesized with different amounts of compound emulsifiers are uniform, whereas compound emulsifiers' amount affect the mean diameter of microPCMs decreasing from 5.34 to 3.05 µm. These microPCMs with the core/shell weight ratio 3/1 have smoother surface and a higher core content of 68.7% than other core/shell ratio. Anti-osmosis measurements indicate that microPCMs have good compactness and stable performance compared to those synthesized by one type of emulsifier.

  10. Study of modification methods of probes for critical-dimension atomic-force microscopy by the deposition of carbon nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ageev, O. A., E-mail: ageev@sfedu.ru; Bykov, Al. V.; Kolomiitsev, A. S.

    2015-12-15

    The results of an experimental study of the modification of probes for critical-dimension atomicforce microscopy (CD-AFM) by the deposition of carbon nanotubes (CNTs) to improve the accuracy with which the surface roughness of vertical walls is determined in submicrometer structures are presented. Methods of the deposition of an individual CNT onto the tip of an AFM probe via mechanical and electrostatic interaction between the probe and an array of vertically aligned carbon nanotubes (VACNTs) are studied. It is shown that, when the distance between the AFM tip and a VACNT array is 1 nm and the applied voltage is withinmore » the range 20–30 V, an individual carbon nanotube is deposited onto the tip. On the basis of the results obtained in the study, a probe with a carbon nanotube on its tip (CNT probe) with a radius of 7 nm and an aspect ratio of 1:15 is formed. Analysis of the CNT probe demonstrates that its use improves the resolution and accuracy of AFM measurements, compared with the commercial probe, and also makes it possible to determine the roughness of the vertical walls of high-aspect structures by CD-AFM. The results obtained can be used to develop technological processes for the fabrication and reconditioning of special AFM probes, including those for CD-AFM, and procedures for the interoperational express monitoring of technological process parameters in the manufacturing of elements for micro- and nanoelectronics and micro- and nanosystem engineering.« less

  11. Enhanced performance of denitrifying sulfide removal process at high carbon to nitrogen ratios under micro-aerobic condition.

    PubMed

    Chen, Chuan; Zhang, Ruo-Chen; Xu, Xi-Jun; Fang, Ning; Wang, Ai-Jie; Ren, Nan-Qi; Lee, Duu-Jong

    2017-05-01

    The success of denitrifying sulfide removal (DSR) processes, which simultaneously degrade sulfide, nitrate and organic carbon in the same reactor, counts on synergetic growths of autotrophic and heterotrophic denitrifiers. Feeding wastewaters at high C/N ratio would stimulate overgrowth of heterotrophic bacteria in the DSR reactor so deteriorating the growth of autotrophic denitrifiers. The DSR tests at C/N=1.26:1, 2:1 or 3:1 and S/N =5:6 or 5:8 under anaerobic (control) or micro-aerobic conditions were conducted. Anaerobic DSR process has <50% sulfide removal with no elemental sulfur transformation. Under micro-aerobic condition to remove <5% sulfide by chemical oxidation pathway, 100% sulfide removal is achieved by the DSR consortia. Continuous-flow tests under micro-aerobic condition have 70% sulfide removal and 55% elemental sulfur recovery. Trace oxygen enhances activity of sulfide-oxidizing, nitrate-reducing bacteria to accommodate properly the wastewater with high C/N ratios. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Integrated Micro/nanoengineered Functional Biomaterials for Cell Mechanics and Mechanobiology: A Materials Perspective

    PubMed Central

    Shao, Yue

    2014-01-01

    The rapid development of micro/nanoengineered functional biomaterials in the last two decades has empowered materials scientists and bioengineers to precisely control different aspects of the in vitro cell microenvironment. Following a philosophy of reductionism, many studies using synthetic functional biomaterials have revealed instructive roles of individual extracellular biophysical and biochemical cues in regulating cellular behaviors. Development of integrated micro/nanoengineered functional biomaterials to study complex and emergent biological phenomena has also thrived rapidly in recent years, revealing adaptive and integrated cellular behaviors closely relevant to human physiological and pathological conditions. Working at the interface between materials science and engineering, biology, and medicine, we are now at the beginning of a great exploration using micro/nanoengineered functional biomaterials for both fundamental biology study and clinical and biomedical applications such as regenerative medicine and drug screening. In this review, we present an overview of state of the art micro/nanoengineered functional biomaterials that can control precisely individual aspects of cell-microenvironment interactions and highlight them as well-controlled platforms for mechanistic studies of mechano-sensitive and -responsive cellular behaviors and integrative biology research. We also discuss the recent exciting trend where micro/nanoengineered biomaterials are integrated into miniaturized biological and biomimetic systems for dynamic multiparametric microenvironmental control of emergent and integrated cellular behaviors. The impact of integrated micro/nanoengineered functional biomaterials for future in vitro studies of regenerative medicine, cell biology, as well as human development and disease models are discussed. PMID:24339188

  13. Aerodynamic Characteristics of Low-Aspect-Ratio Wings in Close Proximity to the Ground

    NASA Technical Reports Server (NTRS)

    Fink, Marvin P.; Lastinger, James L.

    1961-01-01

    A wind-tunnel investigation has been conducted to determine the effect of ground proximity on the aerodynamic characteristics of thick highly cambered rectangular wings with aspect ratios of 1. 2, 4, and 6. The results showed that, for these aspect ratios, as the ground war, approached all wings experienced increases in lift-curve slope and reductions in induced drag which resulted in increases in lift-drag ratio. Although an increase in lift-curve slope was obtained for all aspect ratios as the ground was approached, the lift coefficient at an angle of attack of 0 deg for any given aspect ratio remained nearly constant. The experimental results were in general agreement with Wieselsberger's ground-effect theory (NACA Technical Memorandum 77). As the wings approached the ground, there was an increase in static longitudinal stability at positive angles of attack. When operating in ground effect, all the wings had stability of height at positive angles of attack and instability of height at negative angles of attack. Wing-tip fairings on the wings with aspect ratios of 1 and 2 produced small increases in lift-drag ratio in ground effect. End plates extending only below the chord plane on the wing with an aspect ratio of 1 provided increases in lift coefficient and in lift-drag ratio in ground effect.

  14. Large eddy simulation on Rayleigh–Bénard convection of cold water in the neighborhood of the maximum density

    NASA Astrophysics Data System (ADS)

    Huang, Xiao-Jie; Zhang, Li; Hu, Yu-Peng; Li, You-Rong

    2018-06-01

    In order to understand the effect of the Rayleigh number, the density inversion phenomenon and the aspect ratio on the flow patterns and the heat transfer characteristics of Rayleigh–Bénard convection of cold water in the neighborhood of the maximum density, a series of large eddy simulations are conducted by using the finite volume method. The Rayleigh number ranges between 106 and 109, the density inversion parameter and the aspect ratio are varied from 0 to 0.9 and from 0.4 to 2.5, respectively. The results indicate that the reversal of the large scale circulation (LSC) occurs with the increase of the Rayleigh number. When there exists a density inversion phenomenon, the key driver for the LSC is hot plumes. When the density inversion parameter is large enough, a stagnant region is found near the top of the container as the hot plumes cannot move to the top wall. The flow pattern structures depend mainly on the aspect ratio. When the aspect ratio is small, the rolls are vertically stacked and the flow keeps on switching among different flow states. For a moderate aspect ratio, different long-lived roll states coexist at a fixed aspect ratio. For a larger aspect ratio, the flow state is everlasting. The number of rolls increases with the increase of the aspect ratio. Furthermore, the aspect ratio has only slight influence on the time averaged Nusselt number for all density inversion parameters.

  15. Magnetic Force Switches for Magnetic Fluid Micromixing

    NASA Astrophysics Data System (ADS)

    Wei, Zung-Hang; Lee, Chiun-Peng; Lai, Mei-Feng

    2010-01-01

    A magnetic fluid micromixer with energy-saving magnetic force switches that can manipulate the magnetic fluid flow is proposed. The micromixer of high mixing efficiency uses single-domain micro magnets that have strong magnetic anisotropy to produce the magnetic force for the mixing. By altering the magnetization directions of the magnets that have different aspect ratios and coercivities, open and closed magnetic fluxes can be produced around each magnet cluster. For open magnetic flux, the mixing efficiency is numerically found to increase with the saturation magnetization of the magnets. On the contrary, the magnet clusters barely affects the mixing efficiency in the case of closed magnetic flux. Due to the different magnetic forces produced in open and closed magnetic fluxes, the magnetic fluid mixing can be switched on and off.

  16. Indus-2 X-ray lithography beamline for X-ray optics and material science applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dhamgaye, V. P., E-mail: vishal@rrcat.gov.in; Lodha, G. S., E-mail: vishal@rrcat.gov.in

    2014-04-24

    X-ray lithography is an ideal technique by which high aspect ratio and high spatial resolution micro/nano structures are fabricated using X-rays from synchrotron radiation source. The technique has been used for fabricating optics (X-ray, visible and infrared), sensors and actuators, fluidics and photonics. A beamline for X-ray lithography is operational on Indus-2. The beamline offers wide lithographic window from 1-40keV photon energy and wide beam for producing microstructures in polymers upto size ∼100mm × 100mm. X-ray exposures are possible in air, vacuum and He gas environment. The air based exposures enables the X-ray irradiation of resist for lithography and alsomore » irradiation of biological and liquid samples.« less

  17. 3D capacitive tactile sensor using DRIE micromachining

    NASA Astrophysics Data System (ADS)

    Chuang, Chiehtang; Chen, Rongshun

    2005-07-01

    This paper presents a three dimensional micro capacitive tactile sensor that can detect normal and shear forces which is fabricated using deep reactive ion etching (DRIE) bulk silicon micromachining. The tactile sensor consists of a force transmission plate, a symmetric suspension system, and comb electrodes. The sensing character is based on the changes of capacitance between coplanar sense electrodes. High sensitivity is achieved by using the high aspect ratio interdigital electrodes with narrow comb gaps and large overlap areas. The symmetric suspension mechanism of this sensor can easily solve the coupling problem of measurement and increase the stability of the structure. In this paper, the sensor structure is designed, the capacitance variation of the proposed device is theoretically analyzed, and the finite element analysis of mechanical behavior of the structures is performed.

  18. The effect of aspect ratio on adhesion and stiffness for soft elastic fibres

    PubMed Central

    Aksak, Burak; Hui, Chung-Yuen; Sitti, Metin

    2011-01-01

    The effect of aspect ratio on the pull-off stress and stiffness of soft elastic fibres is studied using elasticity and numerical analysis. The adhesive interface between a soft fibre and a smooth rigid surface is modelled using the Dugdale–Barenblatt model. Numerical simulations show that, while pull-off stress increases with decreasing aspect ratio, fibres get stiffer. Also, for sufficiently low aspect ratio fibres, failure occurs via the growth of internal cracks and pull-off stress approaches the intrinsic adhesive strength. Experiments carried out with various aspect ratio polyurethane elastomer fibres are consistent with the numerical simulations. PMID:21227962

  19. Study by the Prandtl-Glauert method of compressibility effects and critical Mach number for ellipsoids of various aspect ratios and thickness ratios

    NASA Technical Reports Server (NTRS)

    Hess, Robert V; Gardner, Clifford S

    1947-01-01

    By using the Prandtl-Glauert method that is valid for three-dimensional flow problems, the value of the maximum incremental velocity for compressible flow about thin ellipsoids at zero angle of attack is calculated as a function of the Mach number for various aspect ratios and thickness ratios. The critical Mach numbers of the various ellipsoids are also determined. The results indicate an increase in critical Mach number with decrease in aspect ratio which is large enough to explain experimental results on low-aspect-ratio wings at zero lift.

  20. Effective electromagnetic properties of microheterogeneous materials with surface phenomena

    NASA Astrophysics Data System (ADS)

    Levin, Valery; Markov, Mikhail; Mousatov, Aleksandr; Kazatchenko, Elena; Pervago, Evgeny

    2017-10-01

    In this paper, we present an approach to calculate the complex dielectric permittivity of a micro-heterogeneous medium composed of non-conductive solid inclusions embedded into the conductive liquid continuous host. To take into account the surface effects, we approximate the inclusion by a layered ellipsoid consisting of a dielectric core and an infinitesimally thin outer shell corresponding to an electrical double layer (EDL). To predict the effective complex dielectric permittivity of materials with a high concentration of inclusions, we have modified the Effective Field Method (EFM) for the layered ellipsoidal particles with complex electrical properties. We present the results of complex permittivity calculations for the composites with randomly and parallel oriented ellipsoidal inclusions. To analyze the influence of surface polarization, we have accomplished modeling in a wide frequency range for different existing physic-chemical models of double electrical layer. The results obtained show that the tensor of effective complex permittivity of a micro-heterogeneous medium with surface effects has complicate dependences on the component electrical properties, spatial material texture, and the inclusion shape (ellipsoid aspect ratio) and size. The dispersion of dielectric permittivity corresponds to the frequency dependence for individual inclusion of given size, and does not depend on the inclusion concentration.

  1. Electrospun mulberry-like hierarchical carbon fiber web for high-performance supercapacitors.

    PubMed

    Liu, Chao; Liu, Jizi; Wang, Jing; Li, Jiansheng; Luo, Rui; Shen, Jinyou; Sun, Xiuyun; Han, Weiqing; Wang, Lianjun

    2018-02-15

    In this work, we have fabricated a kind of N-doped hierarchal carbon fiber web by electrospinning hollow mesoporous carbon spheres (HMCSs) into fibrous structure. The as-synthesized carbon fiber web with novel mulberry-like morphology, thus denoted as MC-FW, possesses micro/meso/macroporous porosity, large surface area, high conductivity and multi-level structure, which are highly desired for supercapacitor electrode materials. The electrochemical measurements demonstrate that the designed MC-FW shows high capacitance (298.6 F g -1 ), favorable capacitance retention (71.0%) and long cycle life (97.3% capacitance retention after 5000 cycles). Notably, the capacitance of 298.6 F g -1 for MC-FW is higher than the capacitance reported so far for many hollow carbon spheres and carbon fibers, which may contribute to the synergistic effect between the merits of HMCSs (e.g. micro/meso/macroporous hierarchal structure, large surface area, high pore volume) and advantages of 1D carbon fiber (e.g. large aspect ratio and high conductivity). It is believed that this distinctive carbon fiber web may show promising prospects as advanced energy storage materials and catalyst. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Introduction to Micro/Nanofabrication

    NASA Astrophysics Data System (ADS)

    Ziaie, Babak; Baldi, Antonio; Atashbar, Massood

    This chapter outlines and discusses important micro- and nanofabrication techniques. We start with the most basic methods borrowed from the integrated circuit (IC) industry, such as thin film deposition, lithography and etching, and then move on to look at MEMS and nanofabrication technologies. We cover a broad range of dimensions, from the micron to the nanometer scale. Although most of the current research is geared towards the nanodomain, a good understanding of top-down methods for fabricating micron-sized objects can aid our understanding of this research. Due to space constraints, we have focused here on the most important technologies; in the microdomain these include surface, bulk and high aspect ratio micromachining; in the nanodomain we concentrate on e-beam lithography, epitaxial growth, template manufacturing and self-assembly. MEMS technology is maturing rapidly, with some new technologies displacing older ones that have proven to be unsuited to manufacture on a commercial scale. However, the jury is still out on methods used in the nanodomain, although it appears that bottom-up methods are the most feasible, and these will have a major impact in a variety of application areas such as biology, medicine, environmental monitoring and nanoelectronics.

  3. Low-Cost Photolithographic Fabrication of Nanowires and Microfilters for Advanced Bioassay Devices

    PubMed Central

    Doan, Nhi M.; Qiang, Liangliang; Li, Zhe; Vaddiraju, Santhisagar; Bishop, Gregory W.; Rusling, James F.; Papadimitrakopoulos, Fotios

    2015-01-01

    Integrated microfluidic devices with nanosized array electrodes and microfiltration capabilities can greatly increase sensitivity and enhance automation in immunoassay devices. In this contribution, we utilize the edge-patterning method of thin aluminum (Al) films in order to form nano- to micron-sized gaps. Evaporation of high work-function metals (i.e., Au, Ag, etc.) on these gaps, followed by Al lift-off, enables the formation of electrical uniform nanowires from low-cost, plastic-based, photomasks. By replacing Al with chromium (Cr), the formation of high resolution, custom-made photomasks that are ideal for low-cost fabrication of a plurality of array devices were realized. To demonstrate the feasibility of such Cr photomasks, SU-8 micro-pillar masters were formed and replicated into PDMS to produce micron-sized filters with 3–4 µm gaps and an aspect ratio of 3. These microfilters were capable of retaining 6 µm beads within a localized site, while allowing solvent flow. The combination of nanowire arrays and micro-pillar filtration opens new perspectives for rapid R&D screening of various microfluidic-based immunoassay geometries, where analyte pre-concentration and highly sensitive, electrochemical detection can be readily co-localized. PMID:25774709

  4. Flow and Pollutant Transport in Urban Street Canyons of Different Aspect Ratios with Ground Heating: Large-Eddy Simulation

    NASA Astrophysics Data System (ADS)

    Li, Xian-Xiang; Britter, Rex E.; Norford, Leslie K.; Koh, Tieh-Yong; Entekhabi, Dara

    2012-02-01

    A validated large-eddy simulation model was employed to study the effect of the aspect ratio and ground heating on the flow and pollutant dispersion in urban street canyons. Three ground-heating intensities (neutral, weak and strong) were imposed in street canyons of aspect ratio 1, 2, and 0.5. The detailed patterns of flow, turbulence, temperature and pollutant transport were analyzed and compared. Significant changes of flow and scalar patterns were caused by ground heating in the street canyon of aspect ratio 2 and 0.5, while only the street canyon of aspect ratio 0.5 showed a change in flow regime (from wake interference flow to skimming flow). The street canyon of aspect ratio 1 does not show any significant change in the flow field. Ground heating generated strong mixing of heat and pollutant; the normalized temperature inside street canyons was approximately spatially uniform and somewhat insensitive to the aspect ratio and heating intensity. This study helps elucidate the combined effects of urban geometry and thermal stratification on the urban canyon flow and pollutant dispersion.

  5. A MICRO DISSECTION OF THE PACHYTENE THREADS OF TRADESCANTIA VIRGINICA L. WITH OBSERVATIONS ON SOME ASPECTS OF MITOSIS.

    PubMed

    Sands, H C

    1925-11-20

    A micro dissection of the pachytene threads of Tradescantia virginica L. shows that the relation of the chromosomes is a matter of continuous linkage in a chain and that, undoubtedly, division and segregation are everywhere processes of abstriction with subsequent mechanical distribution of the elements.

  6. Effect of Aspect Ratio on the Low-Speed Lateral Control Characteristics of Untapered Low-Aspect-Ratio Wings Equipped with Flap and with Retractable Ailerons

    NASA Technical Reports Server (NTRS)

    Fischel, Jack; Naeseth, Rodger L; Hagerman, John R; O'Hare, William M

    1952-01-01

    A low-speed wind-tunnel investigation was made to determine the lateral control characteristics of a series of untapered low-aspect-ratio wings. Sealed flap ailerons of various spans and spanwise locations were investigated on unswept wings of aspect ratios 1.13, 1.13, 4.13, and 6.13; and various projections of 0.60-semispan retractable ailerons were investigated on the unsweptback wings of aspect ratios 1.13, 2.13, and 4.13 and on a 45 degree sweptback wing. The retractable ailerons investigated on the unswept wings spanned the outboard stations of each wing; whereas the plain and stepped retractable ailerons investigated on the sweptback wing were located at various spanwise stations. Design charts based on experimental results are presented for estimating the flap aileron effectiveness for low-aspect-ratio, untapered, unswept.

  7. Achieving high aspect ratio wrinkles by modifying material network stress.

    PubMed

    Chen, Yu-Cheng; Wang, Yan; McCarthy, Thomas J; Crosby, Alfred J

    2017-06-07

    Wrinkle aspect ratio, or the amplitude divided by the wavelength, is hindered by strain localization transitions when an increasing global compressive stress is applied to synthetic material systems. However, many examples from living organisms show extremely high aspect ratios, such as gut villi and flower petals. We use three experimental approaches to demonstrate that these high aspect ratio structures can be achieved by modifying the network stress in the wrinkle substrate. We modify the wrinkle stress and effectively delay the strain localization transition, such as folding, to larger aspect ratios by using a zero-stress initial wavy substrate, creating a secondary network with post-curing, or using chemical stress relaxation materials. A wrinkle aspect ratio as high as 0.85, almost three times higher than common values of synthetic wrinkles, is achieved, and a quantitative framework is presented to provide understanding the different strategies and predictions for future investigations.

  8. High dynamic grayscale lithography with an LED-based micro-image stepper

    NASA Astrophysics Data System (ADS)

    Eckstein, Hans-Christoph; Zeitner, Uwe D.; Leitel, Robert; Stumpf, Marko; Schleicher, Philipp; Bräuer, Andreas; Tünnermann, Andreas

    2016-03-01

    We developed a novel LED projection based direct write grayscale lithography system for the generation of optical surface profiles such as micro-lenses, diffractive elements, diffusors, and micro freeforms. The image formation is realized by a LCoS micro-display which is illuminated by a 405 nm UV High Power LED. The image on the display can be demagnified from factors 5x to 100x with an exchangeable lens. By controlling exposure time and LED power, the presented technique enables a highly dynamic dosage control for the exposure of h-line sensitive photo resist. In addition, the LCoS micro-display allows for an intensity control within the micro-image which is particularly advantageous to eliminate surface profile errors from stitching and limited homogeneity from LED illumination. Together with an accurate calibration of the resist response this leads to a superior low surface error of realized profiles below <0.2% RMS. The micro-display is mounted on a 3-axis (XYθ) stage for precise alignment. The substrate is brought into position with an air bearing stage which addresses an area of 500 × 500 mm2 with a positioning accuracy of <100 nm. As the exposure setup performs controlled motion in the z-direction the system to maintain the focal distance and lithographic patterning on non-planar surfaces to some extent. The exposure concept allows a high structure depth of more than 100 μm and a spatial resolution below 1 μm as well as the possibility of very steep sidewalls with angles larger than >80°. Another benefit of the approach is a patterning speed up to 100 cm2/h, which allows fabricating large-scale optics and microstructures in an acceptable time. We present the setup and show examples of micro-structures to demonstrate the performance of the system, namely a refractive freeform array, where the RMS surface deviation does not exceed 0.2% of the total structure depth of 75 μm. Furthermore, we show that this exposure tool is suitable to generate diffractive optical elements as well as freeform optics and arrays with a high aspect ratio and structure depth showing a superior optical performance. Lastly we demonstrate a multi-level diffraction grating on a curved substrate.

  9. Impact micro-positioning actuator

    NASA Technical Reports Server (NTRS)

    Cuerden, Brian (Inventor); Angel, J. Roger P. (Inventor); Burge, James H. (Inventor); DeRigne, Scott T. (Inventor)

    2006-01-01

    An impact micro-positioning actuator. In one aspect of the invention, a threaded shaft is threadably received in a nut and the nut is impacted by an impacting device, causing the nut first to rotate relative to the shaft by slipping as a result of shaft inertia and subsequently to stick to the shaft as a result of the frictional force therebetween. The nut is returned to its initial position by a return force provided by a return mechanism after impact. The micro-positioning actuator is further improved by controlling at least one and preferably all of the following: the friction, the impact provided by the impacting device, the return force provided by the return mechanism, and the inertia of the shaft. In another aspect of the invention, a threaded shaft is threadably received in a nut and the shaft is impacted by an impacting device, causing the shaft to rotate relative to the nut.

  10. Optimization of microfabricated nanoliter-scale solid-phase extraction device for detection of gel-separated proteins in low abundance by matrix-assisted laser desorption/ionization mass spectrometry.

    PubMed

    Chen, Wenzhang; Shen, Jing; Yin, Xuefeng; Yu, Yingnian

    2007-01-01

    A nano-scale solid-phase extraction (SPE) device was developed for the detection of gel-separated proteins in low abundance by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) with a simplified microfabrication technology. By using SU-8 photoresist instead of epoxy glue to connect the microchannel and transfer capillary, polymeric contaminant signals in MS analysis were significantly reduced. Micro SPE columns with different capacities and geometric characteristics were investigated in order to increase the detection sensitivity and decrease spot size for MALDI-TOF-MS analysis. It is shown that enhancements in sensitivities for the detection of proteins in low abundance were correlated with the reduction in column capacity and increase in column aspect ratio. Fifty nanoliters of matrix solution were sufficient to elute the sample completely from the optimized micro SPE column with 3.5 nL capacity. The mass spectrum of a 5 fmol in-gel tryptic digest of bovine serum albumin (BSA), processed by the micro SPE column, demonstrated that 29 peptides matched the protein giving a sequence coverage of 51%, which was better than that obtained from analysis of 25 fmol of the same sample prepared by the dried-droplet method. With the micro SPE column treatment of 2 microL of digestion supernatant of a gel spot of the IQGAP1 protein, 15 peptides were detected from the mass spectrum with the highest individual score of 111, while, with a ZipTip procedure, only nine peaks were detected with the highest individual score of 71. Analytical results demonstrated that this approach greatly improved the sequence coverage and identification specificity for the tested protein. It can serve as a very useful tool in proteomics studies, especially for low abundance proteins. Copyright (c) 2006 John Wiley & Sons, Ltd.

  11. Determination of Young's modulus of epoxy coated polyethylene micro-cantilever using phase-shift shadow moiré method

    NASA Astrophysics Data System (ADS)

    Lim, J. H.; Ratnam, M. M.; Azid, I. A.; Mutharasu, D.

    2011-11-01

    Young's moduli of various epoxy coated polyethylene terephthalate (PET) micro-cantilevers were determined from the deflection results obtained using the phase-shift shadow moiré (PSSM) method. The filler materials for epoxy coatings were aluminum and graphite powders that were mixed with epoxy at various percentages. Young's moduli were calculated from theory based on the deflection results. The PET micro-cantilever coated with aluminum-epoxy coating showed increasing value of Young's modulus when the ratios of the aluminum-epoxy were increased. The graphite-epoxy coating on the PET micro-cantilever also showed the same trend. The experimental results also show that Young's modulus of the graphite-epoxy coating is higher than aluminum-epoxy coating in comparison at the same mixing ratio.

  12. An Earth-Based Model of Microgravity Pulmonary Physiology

    NASA Technical Reports Server (NTRS)

    Hirschl, Ronald B.; Bull, Joseph L.; Grothberg, James B.

    2004-01-01

    There are currently only two practical methods of achieving micro G for experimentation: parabolic flight in an aircraft or space flight, both of which have limitations. As a result, there are many important aspects of pulmonary physiology that have not been investigated in micro G. We propose to develop an earth-based animal model of micro G by using liquid ventilation, which will allow us to fill the lungs with perfluorocarbon, and submersing the animal in water such that the density of the lungs is the same as the surrounding environment. By so doing, we will eliminate the effects of gravity on respiration. We will first validate the model by comparing measures of pulmonary physiology, including cardiac output, central venous pressures, lung volumes, and pulmonary mechanics, to previous space flight and parabolic flight measurements. After validating the model, we will investigate the impact of micro G on aspects of lung physiology that have not been previously measured. These will include pulmonary blood flow distribution, ventilation distribution, pulmonary capillary wedge pressure, ventilation-perfusion matching, and pleural pressures and flows. We expect that this earth-based model of micro G will enhance our knowledge and understanding of lung physiology in space which will increase in importance as space flights increase in time and distance.

  13. The embryonic mir-35 family of microRNAs promotes multiple aspects of fecundity in Caenorhabditis elegans.

    PubMed

    McJunkin, Katherine; Ambros, Victor

    2014-07-21

    MicroRNAs guide many aspects of development in all metazoan species. Frequently, microRNAs are expressed during a specific developmental stage to perform a temporally defined function. The C. elegans mir-35-42 microRNAs are expressed abundantly in oocytes and early embryos and are essential for embryonic development. Here, we show that these embryonic microRNAs surprisingly also function to control the number of progeny produced by adult hermaphrodites. Using a temperature-sensitive mir-35-42 family mutant (a deletion of the mir-35-41 cluster), we demonstrate three distinct defects in hermaphrodite fecundity. At permissive temperatures, a mild sperm defect partially reduces hermaphrodite fecundity. At restrictive temperatures, somatic gonad dysfunction combined with a severe sperm defect sharply reduces fecundity. Multiple lines of evidence, including a late embryonic temperature-sensitive period, support a role for mir-35-41 early during development to promote subsequent sperm production in later larval stages. We further show that the predicted mir-35 family target sup-26 (suppressor-26) acts downstream of mir-35-41 in this process, suggesting that sup-26 de-repression in mir-35-41 deletion mutants may contribute to temperature-sensitive loss of fecundity. In addition, these microRNAs play a role in male fertility, promoting proper morphogenesis of male-specific mating structures. Overall, our results demonstrate that robust activity of the mir-35-42 family microRNAs not only is essential for embryonic development across a range of temperatures but also enables the worm to subsequently develop full reproductive capacity. Copyright © 2014 McJunkin and Ambros.

  14. Integrated micro/nanoengineered functional biomaterials for cell mechanics and mechanobiology: a materials perspective.

    PubMed

    Shao, Yue; Fu, Jianping

    2014-03-12

    The rapid development of micro/nanoengineered functional biomaterials in the last two decades has empowered materials scientists and bioengineers to precisely control different aspects of the in vitro cell microenvironment. Following a philosophy of reductionism, many studies using synthetic functional biomaterials have revealed instructive roles of individual extracellular biophysical and biochemical cues in regulating cellular behaviors. Development of integrated micro/nanoengineered functional biomaterials to study complex and emergent biological phenomena has also thrived rapidly in recent years, revealing adaptive and integrated cellular behaviors closely relevant to human physiological and pathological conditions. Working at the interface between materials science and engineering, biology, and medicine, we are now at the beginning of a great exploration using micro/nanoengineered functional biomaterials for both fundamental biology study and clinical and biomedical applications such as regenerative medicine and drug screening. In this review, an overview of state of the art micro/nanoengineered functional biomaterials that can control precisely individual aspects of cell-microenvironment interactions is presented and they are highlighted them as well-controlled platforms for mechanistic studies of mechano-sensitive and -responsive cellular behaviors and integrative biology research. The recent exciting trend where micro/nanoengineered biomaterials are integrated into miniaturized biological and biomimetic systems for dynamic multiparametric microenvironmental control of emergent and integrated cellular behaviors is also discussed. The impact of integrated micro/nanoengineered functional biomaterials for future in vitro studies of regenerative medicine, cell biology, as well as human development and disease models are discussed. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Observations of broad-band micro-seisms during reservoir stimulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sleefe, G.E.; Warpinski, N.R.; Engler, B.P.

    During hydrocarbon reservoir stimulation such as hydraulic fracturing, the cracking and slippage of the formation results in the emission of seismic energy. The objective of this study was to determine the properties of these induced micro-seisms. A hydraulic fracture experiment was performed in the Piceance Basin of Western Colorado to induce and record micro-seismic events. The formation was subjected to four processes; breakdown/ballout, step-rate test, KCL mini-fracture, and linear-gel mini-fracture. Micro-seisms were acquired with an advanced three-component wall-locked seismic accelerometer package, placed in an observation well 211 ft offset from the well. During the two hours of formation treatment, moremore » than 1200 micro-seisms with signal-to-noise ratios in excess of 20 dB were observed. The observed micro-seisms had a nominally flat frequency from 100 Hz to 1500 Hz and lack the spurious tool-resonance effects evident in previous attempts to measure micro-seisms. Both p-wave and s-wave arrivals are clearly evident in the data set, and hodogram analysis yielded coherent estimates of the event locations. This paper describes the characteristics of the observed micro-seismic events (event occurrence, signal-to-noise ratios, and bandwidth) and illustrates that the new acquisition approach results in enhanced detectability and event location resolution.« less

  16. Numerical simulation of turbulent flow and heat transfer though sinusoidal ducts

    NASA Astrophysics Data System (ADS)

    Abroshan, Hamid

    2018-02-01

    Turbulent forced convection heat transfer in corrugated plate surfaces was studied by means of CFD. Flow through corrugated plates, which are sets of sinusoidal ducts, was analyzed for different inlet flow angles (0° to 50°), aspect ratios (0.1 to 10), Reynolds numbers (2000 to 40,000) and Prantdel numbers (0.7 to 5). Heat transfer is affected significantly by variation of aspect ratio. A maximum heat transfer coefficient is observed at a particular aspect ratio although the aspect ratio has a minor effect on friction factor. Enlarging inlet flow angle also leads to a higher heat transfer coefficient and pressure loss in aspect ratios close to unity. Dependency of Nusselt and friction factor on the angle and aspect ratio was interpreted by means of appearance of secondary motions and coexistence of laminar and turbulent flow in a cross section. Comparing the results with experimental data shows a maximum 12.8% difference. By evaluating the results, some correlations were proposed to calculate Nusselt number and friction factor for entrance and fully developed regions. A corrugated plate with an aspect ratio equal to 1.125 and an inlet flow angle equal to 50° gives the best heat transfer and pressure drop characteristics.

  17. The oxidation state of Fe in MORB glasses and the oxygen fugacity of the upper mantle

    NASA Astrophysics Data System (ADS)

    Cottrell, Elizabeth; Kelley, Katherine A.

    2011-05-01

    Micro-analytical determination of Fe3+/∑Fe ratios in mid-ocean ridge basalt (MORB) glasses using micro X-ray absorption near edge structure (μ-XANES) spectroscopy reveals a substantially more oxidized upper mantle than determined by previous studies. Here, we show that global MORBs yield average Fe3+/∑Fe ratios of 0.16 ± 0.01 (n = 103), which trace back to primary MORB melts equilibrated at the conditions of the quartz-fayalite-magnetite (QFM) buffer. Our results necessitate an upward revision of the Fe3+/∑Fe ratios of MORBs, mantle oxygen fugacity, and the ferric iron content of the mantle relative to previous wet chemical determinations. We show that only 0.01 (absolute, or < 10%) of the difference between Fe3+/∑Fe ratios determined by micro-colorimety and XANES can be attributed to the Mössbauer-based XANES calibration. The difference must instead derive from a bias between micro-colorimetry performed on experimental vs. natural basalts. Co-variations of Fe3+/∑Fe ratios in global MORB with indices of low-pressure fractional crystallization are consistent with Fe3+ behaving incompatibly in shallow MORB magma chambers. MORB Fe3+/∑Fe ratios do not, however, vary with indices of the extent of mantle melting (e.g., Na2O(8)) or water concentration. We offer two hypotheses to explain these observations: The bulk partition coefficient of Fe3+ may be higher during peridotite melting than previously thought, and may vary with temperature, or redox exchange between sulfide and sulfate species could buffer mantle melting at ~ QFM. Both explanations, in combination with the measured MORB Fe3+/∑Fe ratios, point to a fertile MORB source with greater than 0.3 wt.% Fe2O3.

  18. Comparative study on different types of segmented micro deformable mirrors

    NASA Astrophysics Data System (ADS)

    Qiao, Dayong; Yuan, Weizheng; Li, Kaicheng; Li, Xiaoying; Rao, Fubo

    2006-02-01

    In an adaptive-optical (AO) system, the wavefront of optical beam can be corrected with deformable mirror (DM). Based on MicroElectroMechanical System (MEMS) technology, segmented micro deformable mirrors can be built with denser actuator spacing than continuous face-sheet designs and have been widely researched. But the influence of the segment structure has not been thoroughly discussed until now. In this paper, the design, performance and fabrication of several micromachined, segmented deformable mirror for AO were investigated. The wavefront distorted by atmospheric turbulence was simulated in the frame of Kolmogorov turbulence model. Position function was used to describe the surfaces of the micro deformable mirrors in working state. The performances of deformable mirrors featuring square, brick, hexagonal and ring segment structures were evaluated in criteria of phase fitting error, the Strehl ratio after wavefront correction and the design considerations. Then the micro fabrication process and mask layout were designed and the fabrication of micro deformable mirrors was implemented. The results show that the micro deformable mirror with ring segments performs the best, but it is very difficult in terms of layout design. The micro deformable mirrors with square and brick segments are easy to design, but their performances are not good. The micro deformable mirror with hexagonal segments has not only good performance in terms of phase fitting error, the Strehl ratio and actuation voltage, but also no overwhelming difficulty in layout design.

  19. MicroRNA expression profiles from eggs of different qualities associated with post-ovulatory ageing in rainbow trout (Oncorhynchus mykiss)

    USDA-ARS?s Scientific Manuscript database

    Background: Egg quality is an important aspect in rainbow trout farming. Post-ovulatory aging is one of the most important factors affecting egg quality. MicroRNAs (miRNAs) are the major regulators in various biological processes and their expression profiles could serve as reliable biomarkers for v...

  20. Behaviors of ellipsoidal micro-particles within a two-beam optical levitator

    NASA Astrophysics Data System (ADS)

    Petkov, T.; Yang, M.; Ren, K. F.; Pouligny, B.; Loudet, J.-C.

    2017-07-01

    The two-beam levitator (TBL) is a standard optical setup made of a couple of counter-propagating beams. Note worthily, TBLs allow the manipulation and trapping of particles at long working distances. While much experience has been accumulated in the trapping of single spherical particles in TBLs, the behaviors of asymmetrical particles turn out to be more complex, and even surprising. Here, we report observations with prolate ellipsoidal polystyrene particles, with varying aspect ratio and ratio of the two beam powers. Generalizing the earlier work by Mihiretie et al. in single beam geometries [JQSRT 126, 61 (2013)], we observe that particles may be either static, or permanently oscillating, and that the two-beam geometry produces new particle responses: some of them are static, but non-symmetrical, while others correspond to new types of oscillations. A two-dimensional model based on ray-optics qualitatively accounts for these configurations and for the "primary" oscillations of the particles. Furthermore, levitation powers measured in the experiments are in fair agreement with those computed from GLMT (Generalized Lorentz Mie Theory), MLFMA (Multilevel Fast Multipole Algorithm) and approximate ray-optics methods.

  1. Aspect ratio has no effect on genotoxicity of multi-wall carbon nanotubes.

    PubMed

    Kim, Jin Sik; Lee, Kyu; Lee, Young Hee; Cho, Hyun Sun; Kim, Ki Heon; Choi, Kyung Hee; Lee, Sang Hee; Song, Kyung Seuk; Kang, Chang Soo; Yu, Il Je

    2011-07-01

    Carbon nanotubes (CNTs) have specific physico-chemical and electrical properties that are useful for telecommunications, medicine, materials, manufacturing processes and the environmental and energy sectors. Yet, despite their many advantages, it is also important to determine whether CNTs may represent a hazard to the environment and human health. Like asbestos, the aspect ratio (length:diameter) and metal components of CNTs are known to have an effect on the toxicity of carbon nanotubes. Thus, to evaluate the toxic potential of CNTs in relation to their aspect ratio and metal contamination, in vivo and in vitro genotoxicity tests were conducted using high-aspect-ratio (diameter: 10-15 nm, length: ~10 μm) and low-aspect-ratio multi-wall carbon nanotubes (MWCNTs, diameter: 10-15 nm, length: ~150 nm) according to OECD test guidelines 471 (bacterial reverse mutation test), 473 (in vitro chromosome aberration test), and 474 (in vivo micronuclei test) with a good laboratory practice system. To determine the treatment concentration for all the tests, a solubility and dispersive test was performed, and a 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) solution found to be more suitable than distilled water. Neither the high- nor the low-aspect-ratio MWCNTs induced any genotoxicity in a bacterial reverse mutation test (~1,000 μg/plate), in vitro chromosome aberration test (without S9: ~6.25 μg/ml, with S9: ~50 μg/ml), or in vivo micronuclei test (~50 mg/kg). However, the high-aspect-ratio MWCNTs were found to be more toxic than the low-aspect-ratio MWCNTs. Thus, while high-aspect-ratio MWCNTs do not induce direct genotoxicity or metabolic activation-mediated genotoxicity, genotoxicity could still be induced indirectly through oxidative stress or inflammation.

  2. Synthesis of high aspect ratio ZnO nanowires with an inexpensive handcrafted electrochemical setup

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taheri, Ali, E-mail: at1361@aut.ac.ir, E-mail: atahery@aeoi.org.ir; Saramad, Shahyar; Setayeshi, Saeed

    In this work, high aspect ratio zinc oxide nanowires are synthesized using templated one-step electrodeposition technique. Electrodeposition of the nanowires is done using a handcrafted electronic system. Nuclear track-etched polycarbonate membrane is used as a template to form the high aspect ratio nanowires. The result of X-ray diffraction and scanning electron microscopy shows that nanowires with a good crystallinity and an aspect ratio of more than 30 can be achieved in a suitable condition. The height of electrodeposited nanowires reaches to about 11 μm. Based on the obtained results, high aspect ratio ZnO nanowires can be formed using inexpensive electrodepositionmore » setup with an acceptable quality.« less

  3. Numerical approach of the injection molding process of fiber-reinforced composite with considering fiber orientation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen Thi, T. B., E-mail: thanhbinh.skku@gmail.com, E-mail: yokoyama@kit.ac.jp; Yokoyama, A., E-mail: thanhbinh.skku@gmail.com, E-mail: yokoyama@kit.ac.jp; Ota, K., E-mail: kei-ota@toyobo.jp, E-mail: katsuhiro-kodama@toyobo.jp, E-mail: katsuhisa-yamashita@toyobo.jp, E-mail: yumiko-isogai@toyobo.jp, E-mail: kenji-furuichi@toyobo.jp, E-mail: chisato-nonomura@toyobo.jp

    2014-05-15

    One of the most important challenges in the injection molding process of the short-glass fiber/thermoplastic composite parts is being able to predict the fiber orientation, since it controls the mechanical and the physical properties of the final parts. Folgar and Tucker included into the Jeffery equation a diffusive type of term, which introduces a phenomenological coefficient for modeling the randomizing effect of the mechanical interactions between the fibers, to predict the fiber orientation in concentrated suspensions. Their experiments indicated that this coefficient depends on the fiber volume fraction and aspect ratio. However, a definition of the fiber interaction coefficient, whichmore » is very necessary in the fiber orientation simulations, hasn't still been proven yet. Consequently, this study proposed a developed fiber interaction model that has been introduced a fiber dynamics simulation in order to obtain a global fiber interaction coefficient. This supposed that the coefficient is a sum function of the fiber concentration, aspect ratio, and angular velocity. The proposed model was incorporated into a computer aided engineering simulation package C-Mold. Short-glass fiber/polyamide-6 composites were produced in the injection molding with the fiber weight concentration of 30 wt.%, 50 wt.%, and 70 wt.%. The physical properties of these composites were examined, and their fiber orientation distributions were measured by micro-computed-tomography equipment μ-CT. The simulation results showed a good agreement with experiment results.« less

  4. Cambering effects on Rapidly-Prototyped, Highly-Flexible Membrane Wings

    NASA Astrophysics Data System (ADS)

    Pepley, David; Wrist, Andrew; Hubner, Paul

    2014-11-01

    Much of the inspiration for micro air vehicle (MAV) design comes from animals, likes bats, which use membrane wings for flying and gliding at low Reynolds numbers. Previous research has shown that membrane wings are more aerodynamically efficient than rigid wings. This is a result of both time-average cambering of the membrane and dynamic interaction with the shear layer. In most of the previous research, the membrane was attached to a flat (uncambered) frame. Traditional airfoil theory suggests that the cambering of wings improves aerodynamic efficiency and endurance. This research analyzed the effects of cambering the frames on wing efficiency and endurance. Six different cambered membrane wings with an aspect ratio of two, each with two cells with an aspect ratio of one, were 3-D printed using an Objet30 Pro and tested in a low-speed wind tunnel at 10 m/s (Re = 50,000). A NACA 4504 profile was used as a baseline with the frame thickness, percent camber, and maximum camber location being altered for comparison. The lift, drag, and pitching moment of the cambered and flat wings were recorded using a load cell. Results showed that cambering the frame of membrane wings increases aerodynamic and endurance efficiency at low Re. The effects of altering the camber, increasing the batten thickness, and changing the max camber location on aerodynamic and endurance efficiency were also examined. Special thanks to the National Science Foundation for research funding.

  5. MicroRadarNet: A network of weather micro radars for the identification of local high resolution precipitation patterns

    NASA Astrophysics Data System (ADS)

    Turso, S.; Paolella, S.; Gabella, M.; Perona, G.

    2013-01-01

    In this paper, MicroRadarNet, a novel micro radar network for continuous, unattended meteorological monitoring is presented. Key aspects and constraints are introduced. Specific design strategies are highlighted, leading to the technological implementations of this wireless, low-cost, low power consumption sensor network. Raw spatial and temporal datasets are processed on-board in real-time, featuring a consistent evaluation of the signals from the sensors and optimizing the data loads to be transmitted. Network servers perform the final post-elaboration steps on the data streams coming from each unit. Final network products are meteorological mappings of weather events, monitored with high spatial and temporal resolution, and lastly served to the end user through any Web browser. This networked approach is shown to imply a sensible reduction of the overall operational costs, including management and maintenance aspects, if compared to the traditional long range monitoring strategy. Adoption of the TITAN storm identification and nowcasting engine is also here evaluated for in-loop integration within the MicroRadarNet data processing chain. A brief description of the engine workflow is provided, to present preliminary feasibility results and performance estimates. The outcomes were not so predictable, taking into account relevant operational differences between a Western Alps micro radar scenario and the long range radar context in the Denver region of Colorado. Finally, positive results from a set of case studies are discussed, motivating further refinements and integration activities.

  6. Bottleneck limitations for microRNA-based therapeutics from bench to the bedside.

    PubMed

    Chen, Yan; Zhao, Hongliang; Tan, Zhijun; Zhang, Cuiping; Fu, Xiaobing

    2015-03-01

    MicroRNAs are endogenous non-coding small RNAs that repress expression of a broad array of target genes. Research into the role and underlying molecular events of microRNAs in disease processes and the potential of microRNAs as drug targets has expanded rapidly. Significant advances have been made in identifying the associations of microRNAs with cancers, viral infections, immune diseases, cardiovascular diseases, wound healing, biological development and other areas of medicine. However, because of intense competition and financial risks, there is a series of stringent criteria and conditions that must be met before microRNA-based therapeutics could be pursued as new drug candidates. In this review, we specifically emphasized the obstacles for bench-based microRNA to the bedside, including common barriers in basic research, application limitations while moving to the clinic at the aspects of vector delivery, off-target effects, toxicity mediation, immunological activation and dosage determination, which should be overcome before microRNA-based therapeutics take their place in the clinic.

  7. An electrostatic 3-phase linear stepper motor fabricated by vertical trench isolation technology

    NASA Astrophysics Data System (ADS)

    Sarajlic, Edin; Yamahata, Christophe; Cordero, Mauricio; Fujita, Hiroyuki

    2009-07-01

    We present the design, microfabrication and characterization of an electrostatic 3-phase linear stepper micromotor constructed with vertical trench isolation technology. This suitable technology was used to create a monolithic stepper motor with high-aspect-ratio poles and an integrated 3-phase electrical network in the bulk of a standard single-crystal silicon wafer. The shuttle of the stepper motor is suspended by a flexure to avoid any mechanical contact during operation, enhancing the precision, repeatability and reliability of the stepping motion. The prototype is capable of a maximum travel of +/-26 µm (52 µm) at an actuation voltage of 30 V and a step size of 1.4 µm during a half-stepping sequence. This work was presented in part at the 19th MicroMechanics Europe Workshop (MME), 28-30 September 2008, Aachen, Germany.

  8. Isolation and surface modification of cellulose nanocrystals from sugarcane bagasse waste: From a micro- to a nano-scale view

    NASA Astrophysics Data System (ADS)

    Ferreira, F. V.; Mariano, M.; Rabelo, S. C.; Gouveia, R. F.; Lona, L. M. F.

    2018-04-01

    This work presents the isolation and functionalization of cellulose nanocrystals (CNCs) extracted from sugarcane bagasse (SCB). CNCs were obtained by acid hydrolysis of bleached bagasse pulp and functionalized with adipic acid. The results showed that unmodified CNCs exhibit both a high crystallinity index and a significant aspect ratio. Surface modification with adipic acid decreases the nanocrystal dimensions due to removal of the amorphous region between the crystalline domains and also changes the electrostatic repulsion and hydrophilic affinity of CNCs. Unmodified CNCs offer potential applications as reinforcing phase in hydrophilic polymeric matrices, while modified CNCs interact better with hydrophobic matrices. The use of CNCs as reinforcement in polymer nanocomposites expands the application of this renewable material and increases its added value, providing nonenergy-based markets for the main biomass of the sugarcane industry.

  9. Effect of SiO2/Al2O3 Ratio on Micro-Mesopore Formation for Pt/Beta-MCM-41 via NaOH Treatment and the Catalytic Performance in N-heptane Hydro isomerization

    NASA Astrophysics Data System (ADS)

    Gao, Li; Shi, Zhiyuan; Liu, Yingming; Zhao, Yuanshou; Liu, Qinghua; Xu, Chengguo; Bai, Peng; Yan, Zifeng

    2018-01-01

    Micro-mesoporous composite material Beta-MCM-41(BM) were hydrothermally synthesized by treating parent beta with molar SiO2/Al2O3 ratios of 12.5, 20 and 30 as precursors. The influence of SiO2/Al2O3 ratio of zeolite beta on effective micro-mesoporous composite formation was studied by investigating the crystallinity, morphology, chemical composition, acidity and textural property of Beta-MCM-41 through XRD, nitrogen adsorption, SEM, TEM, NH3-TPD, FTIR and Pyridine-FTIR. The catalytic performance was evaluated in terms of n-heptane hydro isomerization. The results demonstrated that Beta-MCM-41 supported Pt catalysts showed higher selectivity to isoheptanes than Pt/Beta. It was attributed to the superiorities of the pore structure and mesoporous accelerated the diffusion of larger molecules of isoheptanes.

  10. Method for obtaining a collimated near-unity aspect ratio output beam from a DFB-GSE laser with good beam quality.

    PubMed

    Liew, S K; Carlson, N W

    1992-05-20

    A simple method for obtaining a collimated near-unity aspect ratio output beam from laser sources with extremely large (> 100:1) aspect ratios is demonstrated by using a distributed-feedback grating-surfaceemitting laser. Far-field power-in-the-bucket measurements of the laser indicate good beam quality with a high Strehl ratio.

  11. Studying aerosol light scattering based on aspect ratio distribution observed by fluorescence microscope.

    PubMed

    Li, Li; Zheng, Xu; Li, Zhengqiang; Li, Zhanhua; Dubovik, Oleg; Chen, Xingfeng; Wendisch, Manfred

    2017-08-07

    Particle shape is crucial to the properties of light scattered by atmospheric aerosol particles. A method of fluorescence microscopy direct observation was introduced to determine the aspect ratio distribution of aerosol particles. The result is comparable with that of the electron microscopic analysis. The measured aspect ratio distribution has been successfully applied in modeling light scattering and further in simulation of polarization measurements of the sun/sky radiometer. These efforts are expected to improve shape retrieval from skylight polarization by using directly measured aspect ratio distribution.

  12. Effects of Variable Aspect-Ratio Inclusions on the Electrical Impedance of an Alumina Zirconia Composite at Intermediate Temperatures

    NASA Technical Reports Server (NTRS)

    Goldsby, Jon C.

    2010-01-01

    A series of alumina-yttria-stabilized zirconia composites containing either a high aspect ratio (5 and 30 mol%) hexagonal platelet alumina or an alumina low aspect ratio (5 and 30 mol%) spherical particulate was used to determine the effect of the aspect ratio on the temperature-dependent impedance of the composite material. The highest impedance across the temperature range of 373 to 1073 K is attributed to the grain boundary of the hexagonal platelet second phase in this alumina zirconia composite.

  13. Simulation and experimental study of aspect ratio limitation in Fresnel zone plates for hard-x-ray optics.

    PubMed

    Liu, Jianpeng; Shao, Jinhai; Zhang, Sichao; Ma, Yaqi; Taksatorn, Nit; Mao, Chengwen; Chen, Yifang; Deng, Biao; Xiao, Tiqiao

    2015-11-10

    For acquiring high-contrast and high-brightness images in hard-x-ray optics, Fresnel zone plates with high aspect ratios (zone height/zone width) have been constantly pursued. However, knowledge of aspect ratio limits remains limited. This work explores the achievable aspect ratio limit in polymethyl methacrylate (PMMA) by electron-beam lithography (EBL) under 100 keV, and investigates the lithographic factors for this limitation. Both Monte Carlo simulation and EBL on thick PMMA are applied to investigate the profile evolution with exposure doses over 100 nm wide dense zones. A high-resolution scanning electron microscope at low acceleration mode for charging free is applied to characterize the resultant zone profiles. It was discovered for what we believe is the first time that the primary electron-beam spreading in PMMA and the proximity effect due to extra exposure from neighboring areas could be the major causes of limiting the aspect ratio. Using the optimized lithography condition, a 100 nm zone plate with aspect ratio of 15/1 was fabricated and its focusing property was characterized at the Shanghai Synchrotron Radiation Facility. The aspect ratio limit found in this work should be extremely useful for guiding further technical development in nanofabrication of high-quality Fresnel zone plates.

  14. Impact of Aspect Ratio, Incident Angle, and Surface Roughness on Windbreak Wakes

    NASA Astrophysics Data System (ADS)

    Tobin, Nicolas; Chamorro, Leonardo P.

    2017-11-01

    Wind-tunnel results are presented on the wakes behind three-dimensional windbreaks in a simulated atmospheric boundary layer. Sheltering by upwind windbreaks, and surface-mounted obstacles (SMOs) in general, is parameterized by the wake-moment coefficient C h , which is a complex function of obstacle geometry and flow conditions. Values of C h are presented for several windbreak aspect ratios, incident angles, and windbreak-height-to-surface-roughness ratios. Lateral wake deflection is further presented for several incident angles and aspect ratios, and compared to a simple analytical formulation including a near- and far-wake solution. It is found that C h does not change with aspect ratios of 10 or greater, though C h may be lower for an aspect ratio of 5. C h is found to change roughly with the cosine of the incident angle, and to depend strongly on windbreak-height-to-surface-roughness ratio. The data broadly support the proposed wake-deflection model.

  15. System identification of the JPL micro-precision interferometer truss - Test-analysis reconciliation

    NASA Technical Reports Server (NTRS)

    Red-Horse, J. R.; Marek, E. L.; Levine-West, M.

    1993-01-01

    The JPL Micro-Precision Interferometer (MPI) is a testbed for studying the use of control-structure interaction technology in the design of space-based interferometers. A layered control architecture will be employed to regulate the interferometer optical system to tolerances in the nanometer range. An important aspect of designing and implementing the control schemes for such a system is the need for high fidelity, test-verified analytical structural models. This paper focuses on one aspect of the effort to produce such a model for the MPI structure, test-analysis model reconciliation. Pretest analysis, modal testing, and model refinement results are summarized for a series of tests at both the component and full system levels.

  16. Scientific-Theoretical Background the Organization of Geobotany Employees of the Micro Enterprises Sport and Recreation Sector

    ERIC Educational Resources Information Center

    Andruhina, Tatyana V.; Dorozhkin, Evgenij M.; Zaitseva, Ekaterina V.; Komleva, Svetlana V.; Sosnin, Alexander S.; Savinova, Valentina A.

    2016-01-01

    The relevance of the research problem due to the needs of the labor market, terms of developing economy of micro-entrepreneurship in sport and recreation sector and the demands of the subject of labour activity to professional training without discontinuing work. The purpose of the article is to understand the current issues aspects of pedagogical…

  17. Thermo-mechanical properties of high aspect ratio silica nanofiber filled epoxy composites

    NASA Astrophysics Data System (ADS)

    Ren, Liyun

    The optimization of thermo-mechanical properties of polymer composites at low filler loadings is of great interest in both engineering and scientific fields. There have been several studies on high aspect ratio fillers as novel reinforcement phase for polymeric materials. However, facile synthesis method of high aspect ratio nanofillers is limited. In this study, a scalable synthesis method of high aspect ratio silica nanofibers is going to be presented. I will also demonstrate that the inclusion of high aspect ratio silica nanofibers in epoxy results in a significant improvement of epoxy thermo-mechanical properties at low filler loadings. With silica nanofiber concentration of 2.8% by volume, the Young's modulus, ultimate tensile strength and fracture toughness of epoxy increased ~23, ~28 and ~50%, respectively, compared to unfilled epoxy. At silica nanofiber volume concentration of 8.77%, the thermal expansion coefficient decreased by ˜40% and the thermal conductivity was improved by ˜95% at room temperature. In the current study, the influence of nano-sized silica filler aspect ratio on mechanical and thermal behavior of epoxy nanocomposites were studied by comparing silica nanofibers to spherical silica nanoparticles (with aspect ratio of one) at various filler loadings. The significant reinforcement of composite stiffness is attributed to the variation of the local stress state in epoxy due to the high aspect ratio of the silica nanofiber and the introduction of a tremendous amount of interfacial area between the nanofillers and the epoxy matrix. The fracture mechanisms of silica nanofiber filled epoxy were also investigated. The existence of high aspect ratio silica nanofiber promotes fracture energy dissipation by crack deflection, crack pinning as well as debonding with fiber pull-out leading to enhanced fracture toughness. High aspect ratio fillers also provide significant reduction of photon scattering due to formation of a continuous fiber network within the composite. The resulting silica nanofiber filled epoxy would be widely applicable as underfill and encapsulant in advanced electronic packaging industry because of its electrically insulating, low cost and ease of processability.

  18. Application of Flexible Micro Temperature Sensor in Oxidative Steam Reforming by a Methanol Micro Reformer

    PubMed Central

    Lee, Chi-Yuan; Lee, Shuo-Jen; Shen, Chia-Chieh; Yeh, Chuin-Tih; Chang, Chi-Chung; Lo, Yi-Man

    2011-01-01

    Advances in fuel cell applications reflect the ability of reformers to produce hydrogen. This work presents a flexible micro temperature sensor that is fabricated based on micro-electro-mechanical systems (MEMS) technology and integrated into a flat micro methanol reformer to observe the conditions inside that reformer. The micro temperature sensor has higher accuracy and sensitivity than a conventionally adopted thermocouple. Despite various micro temperature sensor applications, integrated micro reformers are still relatively new. This work proposes a novel method for integrating micro methanol reformers and micro temperature sensors, subsequently increasing the methanol conversion rate and the hydrogen production rate by varying the fuel supply rate and the water/methanol ratio. Importantly, the proposed micro temperature sensor adequately controls the interior temperature during oxidative steam reforming of methanol (OSRM), with the relevant parameters optimized as well. PMID:22319407

  19. Serious and Playful Inquiry: Epistemological Aspects of Collaborative Creativity

    ERIC Educational Resources Information Center

    Sullivan, Florence R.

    2011-01-01

    This paper presents the results of a micro-genetic analysis of the development of a creative solution arrived at by students working collaboratively to solve a robotics problem in a sixth grade science classroom. Results indicate that four aspects of the enacted curriculum proved important to developing the creative solution, including the…

  20. MicroRNAfold: pre-microRNA secondary structure prediction based on modified NCM model with thermodynamics-based scoring strategy.

    PubMed

    Han, Dianwei; Zhang, Jun; Tang, Guiliang

    2012-01-01

    An accurate prediction of the pre-microRNA secondary structure is important in miRNA informatics. Based on a recently proposed model, nucleotide cyclic motifs (NCM), to predict RNA secondary structure, we propose and implement a Modified NCM (MNCM) model with a physics-based scoring strategy to tackle the problem of pre-microRNA folding. Our microRNAfold is implemented using a global optimal algorithm based on the bottom-up local optimal solutions. Our experimental results show that microRNAfold outperforms the current leading prediction tools in terms of True Negative rate, False Negative rate, Specificity, and Matthews coefficient ratio.

  1. Multi-material Additive Manufacturing of Metamaterials with Giant, Tailorable Negative Poisson's Ratios.

    PubMed

    Chen, Da; Zheng, Xiaoyu

    2018-06-14

    Nature has evolved with a recurring strategy to achieve unusual mechanical properties through coupling variable elastic moduli from a few GPa to below KPa within a single tissue. The ability to produce multi-material, three-dimensional (3D) micro-architectures with high fidelity incorporating dissimilar components has been a major challenge in man-made materials. Here we show multi-modulus metamaterials whose architectural element is comprised of encoded elasticity ranging from rigid to soft. We found that, in contrast to ordinary architected materials whose negative Poisson's ratio is dictated by their geometry, these type of metamaterials are capable of displaying Poisson's ratios from extreme negative to zero, independent of their 3D micro-architecture. The resulting low density metamaterials is capable of achieving functionally graded, distributed strain amplification capabilities within the metamaterial with uniform micro-architectures. Simultaneous tuning of Poisson's ratio and moduli within the 3D multi-materials could open up a broad array of material by design applications ranging from flexible armor, artificial muscles, to actuators and bio-mimetic materials.

  2. Exploiting microRNA Specificity and Selectivity: Paving a Sustainable Path Towards Precision Medicine.

    PubMed

    Santulli, Gaetano

    2015-01-01

    In his State of the Union address before both chambers of the US Congress, President Barack Obama called for increased investment in US infrastructure and research and announced the launch of a new Precision Medicine Initiative, aiming to accelerate biomedical discovery. Due to their well-established selectivity and specificity, microRNAs can represent a useful tool, both in diagnosis and therapy, in forging the path towards the achievement of precision medicine. This introductory chapter represents a guide for the Reader in examining the functional roles of microRNAs in the most diverse aspects of clinical practice, which will be explored in this third volume of the microRNA trilogy.

  3. Exploiting microRNA Specificity and Selectivity: Paving a Sustainable Path Towards Precision Medicine

    PubMed Central

    2016-01-01

    In his State of the Union address before both chambers of the US Congress, President Barack Obama called for increased investment in US infrastructure and research and announced the launch of a new Precision Medicine Initiative, aiming to accelerate biomedical discovery. Due to their well-established selectivity and specificity, microRNAs can represent a useful tool, both in diagnosis and therapy, in forging the path towards the achievement of precision medicine. This introductory chapter represents a guide for the Reader in examining the functional roles of microRNAs in the most diverse aspects of clinical practice, which will be explored in this third volume of the microRNA trilogy. PMID:26663175

  4. Inactivation of bacteria by a mixed argon and oxygen micro-plasma as a function of exposure time.

    PubMed

    Weng, Chih-Chiang; Wu, Yi-Te; Liao, Juinn-Der; Kao, Chi-Yuan; Chao, Chih-Cheng; Chang, Juu-En; Hsu, Bo-Wen

    2009-04-01

    A radio-frequency dielectric barrier discharge (DBD) was applied as a micro-plasma device for the inactivation of bacteria, e.g., Escherichia coli. The cultured bacteria were placed on a polydimethyl siloxane (PDMS) film and placed inside the DBD cavity. The bacteria were exposed to micro-plasmas of varying oxygen/argon ratios for different exposure times. The survival of the bacteria was measured by determining bacterial growth using optical methods. The excited oxygen species increased with the increase in the oxygen to argon ratio as measured by optical emission spectroscopy (OES), but the increase of excited oxygen species in argon micro-plasma did not enhance the inactivation of bacteria. In contrast, increases in the time the bacteria were exposed to the micro-plasma were of importance. The results show that a continuous plasma flow containing energetic and reactive species may result in electro-physical interactions with bacteria exposed to the plasma leading to their inactivation. For currently-employed DBD device, addition of 0.5% oxygen to the argon micro-plasma for an exposure time of 30 sec was optimum for the inactivation of E. coli.

  5. Enhanced in-vivo optical coherence tomography of live mouse brain by the use of implanted micro-lens (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Hassani Nia, Iman; Dombeck, Daniel; Mohseni, Hooman

    2015-08-01

    Near-infrared optical coherence tomography (OCT) has gained a lot of attention due to the fact that it is relatively cheap, non-invasive and provides high resolution and fast method of imaging. However the main challenge of this technique is the poor signal to noise ratio of the images of the tissue at large depths due to optical scattering. The signal to noise ratio can be improved by increasing the source power, however the laser safety standards (ANSI Z136.1) restricts the maximum amount of power that can be used safely to characterize the biological tissue. In this talk, we discuss the advantage of implanting a micro-lens inside the tissue to have a higher signal to noise ratio for confocal and OCT measurements. We explain the theoretical background, experimental setup and the method of implanting the micro lens at arbitrary depths within a live mouse brain. The in-vivo 3D OCT and two-photon microscopy images of live mouse with implanted micro-lens are presented and significant enhancement of signal to noise ratio is observed. The confocal and OCT measurements have been performed with super-luminescent LEDs emitting at 1300 nm. We believe that the high resolution and high sensitivity of this technique is of fundamental importance for characterization of neural activity, monitoring the hemodynamic responses, tumors and for performing image guided surgeries.

  6. Effects of flexibility and aspect ratio on the aerodynamic performance of flapping wings.

    PubMed

    Fu, Junjiang; Liu, Xiaohui; Shyy, Wei; Qiu, Huihe

    2018-03-14

    In the current study, we experimentally investigated the flexibility effects on the aerodynamic performance of flapping wings and the correlation with aspect ratio at angle of attack α  =  45°. The Reynolds number based on the chord length and the wing tip velocity is maintained at Re  =  5.3  ×  10 3 . Our result for compliant wings with an aspect ratio of 4 shows that wing flexibility can offer improved aerodynamic performance compared to that of a rigid wing. Flexible wings are found to offer higher lift-to-drag ratios; in particular, there is significant reduction in drag with little compromise in lift. The mechanism of the flexibility effects on the aerodynamic performance is addressed by quantifying the aerodynamic lift and drag forces, the transverse displacement on the wings and the flow field around the wings. The regime of the effective stiffness that offers improved aerodynamic performance is quantified in a range of about 0.5-10 and it matches the stiffness of insect wings with similar aspect ratios. Furthermore, we find that the aspect ratio of the wing is the predominant parameter determining the flexibility effects of compliant wings. Compliant wings with an aspect ratio of two do not demonstrate improved performance compared to their rigid counterparts throughout the entire stiffness regime investigated. The correlation between wing flexibility effects and the aspect ratio is supported by the stiffness of real insect wings.

  7. 100 GeV SLAC Linac

    NASA Astrophysics Data System (ADS)

    Farkas, Z. D.

    2002-03-01

    The SLAC beam energy can be increased from the current 50 GeV to 100 GeV, if we change the operating frequency from the present 2856 MHz to 11424 MHz, using technology developed for the NLC. We replace the power distribution system with a proposed NLC distribution system as shown in Fig. 1. The four 3 meter s-band 820 nS .ll time accelerator sections are replaced by six 2 meter x-band 120 nS .ll time sections. Thus the accelerator length per klystron retains the same length, 12 meters. The 4050 65MW- 3.5microS klystrons are replaced by 75MW-1.5microS permanent magnet klystrons developed here and in Japan. The present input to the klystrons would be multiplied by a factor of 4 and possibly ampli.ed. The SLED cavities have to be replaced. The increase in beam voltage is due to the higher elastance to group velocity ratio, higher compression ratio and higher unloaded to external Q ratio of the new SLED cavities. The average power input is reduced because of the narrower klystron pulse width and because the klystron electro-magnets are replaced by permanent magnets.

  8. Design, fabrication and characterization of a micro-fluxgate intended for parallel robot application

    NASA Astrophysics Data System (ADS)

    Kirchhoff, M. R.; Bogdanski, G.; Büttgenbach, S.

    2009-05-01

    This paper presents a micro-magnetometer based on the fluxgate principle. Fluxgates detect the magnitude and direction of DC and low-frequency AC magnetic fields. The detectable flux density typically ranges from several 10 nT to about 1 mT. The introduced fluxgate sensor is fabricated using MEMS-technologies, basically UV depth lithography and electroplating for manufacturing high aspect ratio structures. It consists of helical copper coils around a soft magnetic nickel-iron (NiFe) core. The core is designed in so-called racetrack geometry, whereby the directional sensitivity of the sensor is considerably higher compared to common ring-core fluxgates. The electrical operation is based on analyzing the 2nd harmonic of the AC output signal. Configuration, manufacturing and selected characteristics of the fluxgate magnetometer are discussed in this work. The fluxgate builds the basis of an innovative angular sensor system for a parallel robot with HEXA-structure. Integrated into the passive joints of the parallel robot, the fluxgates are combined with permanent magnets rotating on the joint shafts. The magnet transmits the angular information via its magnetic orientation. In this way, the angles between the kinematic elements are measured, which allows self-calibration of the robot and the fast analytical solution of direct kinematics for an advanced workspace monitoring.

  9. Polymerization of room-temperature ionic liquid monomers by electron beam irradiation with the aim of fabricating three-dimensional micropolymer/nanopolymer structures.

    PubMed

    Minamimoto, H; Irie, H; Uematsu, T; Tsuda, T; Imanishi, A; Seki, S; Kuwabata, S

    2015-04-14

    A novel method for fabricating microsized and nanosized polymer structures from a room-temperature ionic liquid (RTIL) on a Si substrate was developed by the patterned irradiation of an electron beam (EB). An extremely low vapor pressure of the RTIL, 1-allyl-3-ethylimidazolium bis((trifluoromethane)sulfonyl)amide, allows it to be introduced into the high-vacuum chamber of an electron beam apparatus to conduct a radiation-induced polymerization in the nanoregion. We prepared various three-dimensional (3D) micro/nanopolymer structures having high aspect ratios of up to 5 with a resolution of sub-100 nm. In addition, the effects of the irradiation dose and beam current on the physicochemical properties of the deposited polymers were investigated by recording the FT-IR spectra and Young's modulus. Interestingly, the overall shapes of the obtained structures were different from those prepared in our recent study using a focused ion beam (FIB) even if the samples were irradiated in a similar manner. This may be due to the different transmission between the two types of beams as discussed on the basis of the theoretical calculations of the quantum beam trajectories. Perceptions obtained in this study provide facile preparation procedures for the micro/nanostructures.

  10. Evaluation of support loss in micro-beam resonators: A revisit

    NASA Astrophysics Data System (ADS)

    Chen, S. Y.; Liu, J. Z.; Guo, F. L.

    2017-12-01

    This paper presents an analytical study on evaluation of support loss in micromechanical resonators undergoing in-plane flexural vibrations. Two-dimensional elastic wave theory is used to determine the energy transmission from the vibrating resonator to the support. Fourier transform and Green's function technique are adopted to solve the problem of wave motions on the surface of the support excited by the forces transmitted by the resonator onto the support. Analytical expressions of support loss in terms of quality factor, taking into account distributed normal stress and shear stress in the attachment region, and coupling between the normal stress and shear stress as well as material disparity between the support and the resonator, have been derived. Effects of geometry of micro-beam resonators, and material dissimilarity between support and resonator on support loss are examined. Numerical results show that 'harder resonator' and 'softer support' combination leads to larger support loss. In addition, the Perfectly Matched Layer (PML) numerical simulation technique is employed for validation of the proposed analytical model. Comparing with results of quality factor obtained by PML technique, we find that the present model agrees well with the results of PML technique and the pure-shear model overestimates support loss noticeably, especially for resonators with small aspect ratio and large material dissimilarity between the support and resonator.

  11. Micromechanics of ultra-toughened electrospun PMMA/PEO fibres as revealed by in-situ tensile testing in an electron microscope

    PubMed Central

    Andersson, Richard L.; Ström, Valter; Gedde, Ulf W.; Mallon, Peter E.; Hedenqvist, Mikael S.; Olsson, Richard T.

    2014-01-01

    A missing cornerstone in the development of tough micro/nano fibre systems is an understanding of the fibre failure mechanisms, which stems from the limitation in observing the fracture of objects with dimensions one hundredth of the width of a hair strand. Tensile testing in the electron microscope is herein adopted to reveal the fracture behaviour of a novel type of toughened electrospun poly(methyl methacrylate)/poly(ethylene oxide) fibre mats for biomedical applications. These fibres showed a toughness more than two orders of magnitude greater than that of pristine PMMA fibres. The in-situ microscopy revealed that the toughness were not only dependent on the initial molecular alignment after spinning, but also on the polymer formulation that could promote further molecular orientation during the formation of micro/nano-necking. The true fibre strength was greater than 150 MPa, which was considerably higher than that of the unmodified PMMA (17 MPa). This necking phenomenon was prohibited by high aspect ratio cellulose nanocrystal fillers in the ultra–tough fibres, leading to a decrease in toughness by more than one order of magnitude. The reported necking mechanism may have broad implications also within more traditional melt–spinning research. PMID:25208692

  12. Membrane wing aerodynamics for micro air vehicles

    NASA Astrophysics Data System (ADS)

    Lian, Yongsheng; Shyy, Wei; Viieru, Dragos; Zhang, Baoning

    2003-10-01

    The aerodynamic performance of a wing deteriorates considerably as the Reynolds number decreases from 10 6 to 10 4. In particular, flow separation can result in substantial change in effective airfoil shape and cause reduced aerodynamic performance. Lately, there has been growing interest in developing suitable techniques for sustained and robust flight of micro air vehicles (MAVs) with a wingspan of 15 cm or smaller, flight speed around 10 m/ s, and a corresponding Reynolds number of 10 4-10 5. This paper reviews the aerodynamics of membrane and corresponding rigid wings under the MAV flight conditions. The membrane wing is observed to yield desirable characteristics in delaying stall as well as adapting to the unsteady flight environment, which is intrinsic to the designated flight speed. Flow structures associated with the low Reynolds number and low aspect ratio wing, such as pressure distribution, separation bubble and tip vortex are reviewed. Structural dynamics in response to the surrounding flow field is presented to highlight the multiple time-scale phenomena. Based on the computational capabilities for treating moving boundary problems, wing shape optimization can be conducted in automated manners. To enhance the lift, the effect of endplates is evaluated. The proper orthogonal decomposition method is also discussed as an economic tool to describe the flow structure around a wing and to facilitate flow and vehicle control.

  13. The local strength of individual alumina particles

    NASA Astrophysics Data System (ADS)

    Pejchal, Václav; Fornabaio, Marta; Žagar, Goran; Mortensen, Andreas

    2017-12-01

    We implement the C-shaped sample test method and micro-cantilever beam testing to measure the local strength of microscopic, low-aspect-ratio ceramic particles, namely high-purity vapor grown α-alumina Sumicorundum® particles 15-30 μm in diameter, known to be attractive reinforcing particles for aluminum. Individual particles are shaped by focused ion beam micromachining so as to probe in tension a portion of the particle surface that is left unaffected by ion-milling. Mechanical testing of C-shaped specimens is done ex-situ using a nanoindentation apparatus, and in the SEM using an in-situ nanomechanical testing system for micro-cantilever beams. The strength is evaluated for each individual specimen using bespoke finite element simulation. Results show that, provided the particle surface is free of readily observable defects such as pores, twins or grain boundaries and their associated grooves, the particles can achieve local strength values that approach those of high-perfection single-crystal alumina whiskers, on the order of 10 GPa, outperforming high-strength nanocrystalline alumina fibers and nano-thick alumina platelets used in bio-inspired composites. It is also shown that by far the most harmful defects are grain boundaries, leading to the general conclusion that alumina particles must be single-crystalline or alternatively nanocrystalline to fully develop their potential as a strong reinforcing phase in composite materials.

  14. Characteristics of soft x-ray spectra from ultra-fast micro-capillary discharge plasmas

    NASA Astrophysics Data System (ADS)

    Li, Jing; Avaria, Gonzalo; Shlyaptsev, Vyacheslav; Tomasel, Fernando; Grisham, Michael; Dawson, Quincy; Rocca, Jorge; NSF CenterExtreme Ultraviolet Science; Technology Collaboration

    2013-10-01

    The efficient generation of high aspect ratio (e.g. 300:1) plasma columns ionized to very high degrees of ionization (e.g. Ni-like Xenon) by an ultrafast current pulses of moderate amplitude in micro-capillary channels is of interest for fundamental plasma studies and for applications such as the generation of discharge-pumped soft x-ray lasers. Spectra and simulations for plasmas generated in 500 um alumina capillary discharges driven by 35-40 kA current pulses with 4 ns rise time were obtained in Xenon and Neon discharges. The first shows the presence of lines corresponding to ionization stages up to Fe-like Xe. The latter show that Al impurities from the walls and Si (from injected SiH4) are ionized to the H-like and He-like stages. He-like spectra containing the resonance line significantly broaden by opacity, the intercombination line, and Li-like satellites are analyzed and modeled. For Xenon discharges, the spectral lines from the Ni-like transitions the 3d94d(3/2, 3/2)J=0 to the 3d94p(5/2, 3/2)J=1 and to 3d94p(3/2, 1/2)J=1 are observed at gas pressures up to 2.0 Torr. Work supported by NSF Award PHY-1004295.

  15. Report of the panel on theoretical aerodynamics. [for the National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Bobbitt, P. J.; Carter, J. E.

    1977-01-01

    Requirements for flow quality in the National Transonic Facility are explored. Viscous flow effects of concern to theoreticians are discussed. Experiments outlined for theory validation in the facility include validating high aspect ratio wing-body combination; low aspect ratio moderately swept wing; low aspect ratio highly swept wing; high lift systems on high aspect ration wings; Reynolds number scaling; dynamic shock- boundary layer interaction; and the effect of R and M on dynamic stall.

  16. Test Report on Three- and Six-Component Measurements on a Series of Tapered Wings of Small Aspect Ratio

    NASA Technical Reports Server (NTRS)

    Lange; Wacke

    1948-01-01

    The investigations of the reports to 4 on wings of small aspect ratio are continued. The present report deals with the results of the three- and six-component measurements and the flow pictures of the triangular wing series with the aspect ratio Lambda = 3 to Lambda = 1.

  17. Energy and economic trade offs for advanced technology subsonic aircraft

    NASA Technical Reports Server (NTRS)

    Maddalon, D. V.; Wagner, R. D.

    1976-01-01

    Changes in future aircraft technology which conserve energy are studied, along with the effect of these changes on economic performance. Among the new technologies considered are laminar-flow control, composite materials with and without laminar-flow control, and advanced airfoils. Aircraft design features studied include high-aspect-ratio wings, thickness ratio, and range. Engine technology is held constant at the JT9D level. It is concluded that wing aspect ratios of future aircraft are likely to significantly increase as a result of new technology and the push of higher fuel prices. Whereas current airplanes have been designed for AR = 7, supercritical technology and much higher fuel prices will drive aspect ratio to the AR = 9-10 range. Composite materials may raise aspect ratio to about 11-12 and practical laminar flow-control systems may further increase aspect ratio to 14 or more. Advanced technology provides significant reductions in aircraft take-off gross weight, energy consumption, and direct operating cost.

  18. Guidelines for the functional annotation of microRNAs using the Gene Ontology

    PubMed Central

    D'Eustachio, Peter; Smith, Jennifer R.; Zampetaki, Anna

    2016-01-01

    MicroRNA regulation of developmental and cellular processes is a relatively new field of study, and the available research data have not been organized to enable its inclusion in pathway and network analysis tools. The association of gene products with terms from the Gene Ontology is an effective method to analyze functional data, but until recently there has been no substantial effort dedicated to applying Gene Ontology terms to microRNAs. Consequently, when performing functional analysis of microRNA data sets, researchers have had to rely instead on the functional annotations associated with the genes encoding microRNA targets. In consultation with experts in the field of microRNA research, we have created comprehensive recommendations for the Gene Ontology curation of microRNAs. This curation manual will enable provision of a high-quality, reliable set of functional annotations for the advancement of microRNA research. Here we describe the key aspects of the work, including development of the Gene Ontology to represent this data, standards for describing the data, and guidelines to support curators making these annotations. The full microRNA curation guidelines are available on the GO Consortium wiki (http://wiki.geneontology.org/index.php/MicroRNA_GO_annotation_manual). PMID:26917558

  19. Core compressor exit stage study. 1: Aerodynamic and mechanical design

    NASA Technical Reports Server (NTRS)

    Burdsall, E. A.; Canal, E., Jr.; Lyons, K. A.

    1979-01-01

    The effect of aspect ratio on the performance of core compressor exit stages was demonstrated using two three stage, highly loaded, core compressors. Aspect ratio was identified as having a strong influence on compressors endwall loss. Both compressors simulated the last three stages of an advanced eight stage core compressor and were designed with the same 0.915 hub/tip ratio, 4.30 kg/sec (9.47 1bm/sec) inlet corrected flow, and 167 m/sec (547 ft/sec) corrected mean wheel speed. The first compressor had an aspect ratio of 0.81 and an overall pressure ratio of 1.357 at a design adiabatic efficiency of 88.3% with an average diffusion factor or 0.529. The aspect ratio of the second compressor was 1.22 with an overall pressure ratio of 1.324 at a design adiabatic efficiency of 88.7% with an average diffusion factor of 0.491.

  20. Power reduction and the radial limit of stall delay in revolving wings of different aspect ratio

    PubMed Central

    Kruyt, Jan W.; van Heijst, GertJan F.; Altshuler, Douglas L.; Lentink, David

    2015-01-01

    Airplanes and helicopters use high aspect ratio wings to reduce the power required to fly, but must operate at low angle of attack to prevent flow separation and stall. Animals capable of slow sustained flight, such as hummingbirds, have low aspect ratio wings and flap their wings at high angle of attack without stalling. Instead, they generate an attached vortex along the leading edge of the wing that elevates lift. Previous studies have demonstrated that this vortex and high lift can be reproduced by revolving the animal wing at the same angle of attack. How do flapping and revolving animal wings delay stall and reduce power? It has been hypothesized that stall delay derives from having a short radial distance between the shoulder joint and wing tip, measured in chord lengths. This non-dimensional measure of wing length represents the relative magnitude of inertial forces versus rotational accelerations operating in the boundary layer of revolving and flapping wings. Here we show for a suite of aspect ratios, which represent both animal and aircraft wings, that the attachment of the leading edge vortex on a revolving wing is determined by wing aspect ratio, defined with respect to the centre of revolution. At high angle of attack, the vortex remains attached when the local radius is shorter than four chord lengths and separates outboard on higher aspect ratio wings. This radial stall limit explains why revolving high aspect ratio wings (of helicopters) require less power compared with low aspect ratio wings (of hummingbirds) at low angle of attack and vice versa at high angle of attack. PMID:25788539

  1. Electrical Conductivity in Transparent Silver Nanowire Networks: Simulations and Experiments

    NASA Astrophysics Data System (ADS)

    Sherrott, Michelle; Mutiso, Rose; Rathmell, Aaron; Wiley, Benjamin; Winey, Karen

    2012-02-01

    We model and experimentally measure the electrical conductivity of two-dimensional networks containing finite, conductive cylinders with aspect ratio ranging from 33 to 333. We have previously used our simulations to explore the effects of cylinder orientation and aspect ratio in three-dimensional composites, and now extend the simulation to consider two-dimensional silver nanowire networks. Preliminary results suggest that increasing the aspect ratio and area fraction of these rods significantly decreases the sheet resistance of the film. For all simulated aspect ratios, this sheet resistance approaches a constant value for high area fractions of rods. This implies that regardless of aspect ratio, there is a limiting minimum sheet resistance that is characteristic of the properties of the nanowires. Experimental data from silver nanowire networks will be incorporated into the simulations to define the contact resistance and corroborate experimentally measured sheet resistances of transparent thin films.

  2. Numerical analysis of two-fluid tearing mode instability in a finite aspect ratio cylinder

    NASA Astrophysics Data System (ADS)

    Ito, Atsushi; Ramos, Jesús J.

    2018-01-01

    The two-fluid resistive tearing mode instability in a periodic plasma cylinder of finite aspect ratio is investigated numerically for parameters such that the cylindrical aspect ratio and two-fluid effects are of order unity, hence the real and imaginary parts of the mode eigenfunctions and growth rate are comparable. Considering a force-free equilibrium, numerical solutions of the complete eigenmode equations for general aspect ratios and ion skin depths are compared and found to be in very good agreement with the corresponding analytic solutions derived by means of the boundary layer theory [A. Ito and J. J. Ramos, Phys. Plasmas 24, 072102 (2017)]. Scaling laws for the growth rate and the real frequency of the mode are derived from the analytic dispersion relation by using Taylor expansions and Padé approximations. The cylindrical finite aspect ratio effect is inferred from the scaling law for the real frequency of the mode.

  3. Collisionless microtearing modes in hot tokamaks: Effect of trapped electrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swamy, Aditya K.; Ganesh, R., E-mail: ganesh@ipr.res.in; Brunner, S.

    2015-07-15

    Collisionless microtearing modes have recently been found linearly unstable in sharp temperature gradient regions of large aspect ratio tokamaks. The magnetic drift resonance of passing electrons has been found to be sufficient to destabilise these modes above a threshold plasma β. A global gyrokinetic study, including both passing electrons as well as trapped electrons, shows that the non-adiabatic contribution of the trapped electrons provides a resonant destabilization, especially at large toroidal mode numbers, for a given aspect ratio. The global 2D mode structures show important changes to the destabilising electrostatic potential. The β threshold for the onset of the instabilitymore » is found to be generally downshifted by the inclusion of trapped electrons. A scan in the aspect ratio of the tokamak configuration, from medium to large but finite values, clearly indicates a significant destabilizing contribution from trapped electrons at small aspect ratio, with a diminishing role at larger aspect ratios.« less

  4. The Hydrodynamic Characteristics of Modified Rectangular Flat Plates Having Aspect Ratios of 1.00, 0.25, and 0.125 and Operating near a Free Water Surface

    NASA Technical Reports Server (NTRS)

    Wadlin, Kenneth L; Ramsen, John A; Vaughan, Victor L , Jr

    1955-01-01

    Report presents the results of an investigation conducted to determine the hydrodynamic forces and moments acting on modified rectangular flat plates with aspect ratios of 1.00, 0.25, and 0.125 mounted on a single strut and operating at several depths of submersion. A simple method has been developed by modification of Falkner's vortex-lattice theory which enables the prediction of the lift characteristics in unseparated flow at large depths. This method shows good agreement with experimental data from the present tests and with aerodynamic data at all angles investigated for aspect ratios of 1.00 and 0.25 and at angles up to 16 degrees for aspect ratio 0.125. Above 16 degrees for aspect ratio 0.125, the predicted lift proved too high.

  5. A Study on Aspect Ratio of Heat Dissipation Fin for the Heat Dissipation Performance of Ultra Constant Discharge Lamp

    NASA Astrophysics Data System (ADS)

    Ko, Dong Guk; Cong Ge, Jun; Im, Ik Tae; Choi, Nag Jung; Kim, Min Soo

    2018-01-01

    In this study, we analyzed the heat dissipation performance of UCD lamp ballast fin with various aspect ratios. The minimum grid size was 0.02 mm and the number of grid was approximately 11,000. In order to determine the influence of the aspect ratio on the heat dissipation performance of UCD lamp ballast fin, the heat transfer area of the fin was kept constant at 4 mm2. The aspect ratios of the fin were 2 mm: 2 mm (basic model), 1.5 mm: 2.7 mm and 2.7 mm: 1.5 mm, respectively. The heat flux and heat flux time at fin were kept constant at 1×105 W/m2 and 10 seconds, respectively. The heat dissipation performance by the fin was the best at an aspect ratio of 1.5 mm: 2.7 mm.

  6. Co-generation of biohydrogen and biomethane through two-stage batch co-fermentation of macro- and micro-algal biomass.

    PubMed

    Ding, Lingkan; Cheng, Jun; Xia, Ao; Jacob, Amita; Voelklein, Markus; Murphy, Jerry D

    2016-10-01

    Aquatic micro-algae can be used as feedstocks for gaseous biofuel production via biological fermentation. However, micro-algae usually have low C/N ratios, which are not advantageous for fermentation. In this study, carbon-rich macro-algae (Laminaria digitata) mixed with nitrogen-rich micro-algae (Chlorella pyrenoidosa and Nannochloropsis oceanica) were used to maintain a suitable C/N ratio of 20 for a two-stage process combining hydrogen and methane fermentation. Co-fermentation of L. digitata and micro-algae facilitated hydrolysis and acidogenesis, resulting in hydrogen yields of 94.5-97.0mL/gVS; these values were 15.5-18.5% higher than mono-fermentation using L. digitata. Through the second stage of methane co-fermentation, a large portion of energy remaining in the hydrogenogenic effluents was recovered in the form of biomethane. The two-stage batch co-fermentation markedly increased the energy conversion efficiencies (ECEs) from 4.6-6.6% during the hydrogen fermentation to 57.0-70.9% in the combined hydrogen and methane production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Microvax-based data management and reduction system for the regional planetary image facilities

    NASA Technical Reports Server (NTRS)

    Arvidson, R.; Guinness, E.; Slavney, S.; Weiss, B.

    1987-01-01

    Presented is a progress report for the Regional Planetary Image Facilities (RPIF) prototype image data management and reduction system being jointly implemented by Washington University and the USGS, Flagstaff. The system will consist of a MicroVAX with a high capacity (approx 300 megabyte) disk drive, a compact disk player, an image display buffer, a videodisk player, USGS image processing software, and SYSTEM 1032 - a commercial relational database management package. The USGS, Flagstaff, will transfer their image processing software including radiometric and geometric calibration routines, to the MicroVAX environment. Washington University will have primary responsibility for developing the database management aspects of the system and for integrating the various aspects into a working system.

  8. Research trends in biomimetic medical materials for tissue engineering: 3D bioprinting, surface modification, nano/micro-technology and clinical aspects in tissue engineering of cartilage and bone.

    PubMed

    Chen, Cen; Bang, Sumi; Cho, Younghak; Lee, Sahnghoon; Lee, Inseop; Zhang, ShengMin; Noh, Insup

    2016-01-01

    This review discusses about biomimetic medical materials for tissue engineering of bone and cartilage, after previous scientific commentary of the invitation-based, Korea-China joint symposium on biomimetic medical materials, which was held in Seoul, Korea, from October 22 to 26, 2015. The contents of this review were evolved from the presentations of that symposium. Four topics of biomimetic medical materials were discussed from different research groups here: 1) 3D bioprinting medical materials, 2) nano/micro-technology, 3) surface modification of biomaterials for their interactions with cells and 4) clinical aspects of biomaterials for cartilage focusing on cells, scaffolds and cytokines.

  9. An Experimental Study on the Edgewise Compressive Failure of Paper Honeycomb Sandwich Panels with Respect to Various Aspect Ratios

    NASA Astrophysics Data System (ADS)

    Samad, W. A.; Warsame, A. A.; Khan, A.

    2018-04-01

    The present work investigates the edgewise compression failure for honeycomb paperboards. Various panels are tested under a fixed loading rate with varying aspect ratios. The influence of the varying properties aspect ratio on yield strength is recorded. The experimental results indicate that the honeycomb paperboards are subject a decrease in yield strength with an increase in aspect ratio towards more slender bodies. Buckling was not observed in any of the tested specimens. All experiments are conducted under the general framework of ASTM C364/C364M -16 with a few noted changes.

  10. Transport phenomena during vapor growth of optoelectronic material - A mercurous chloride system

    NASA Technical Reports Server (NTRS)

    Singh, N. B.

    1990-01-01

    Crystal growth velocity was measured in a mercurous chloride system in a two-zone transparent furnace as a function of the Rayleigh number by varying a/L, where a is the radius of the growth tube and L is the transport length. Growth velocity data showed different trends at low and high aspect ratio, a result that does not support the velocity-aspect ratio trend predicted by theories. The system cannot be scaled on the basis of measurements done at a low aspect ratio. Some change in fluid flow behavior occurs in the growth tube as the aspect ratio increases.

  11. Multiscale Pores in TBCs for Lower Thermal Conductivity

    NASA Astrophysics Data System (ADS)

    Zhang, Wei-Wei; Li, Guang-Rong; Zhang, Qiang; Yang, Guan-Jun

    2017-08-01

    The morphology and pattern (including orientation and aspect ratio) of pores in thermal barrier coatings (TBCs) significantly affect their thermal insulation performance. In this work, finite element analysis was used to comprehensively understand the thermal insulation effect of pores and correlate the effective thermal conductivity with the structure. The results indicated that intersplat pores, and in particular their aspect ratio, dominantly affect the heat transfer in the top coat. The effective thermal conductivity decreased as a function of aspect ratio, since a larger aspect ratio often corresponds to a greater proportion of effective length of the pores. However, in conventional plasma-sprayed TBCs, intersplat pores often fail to maximize thermal insulation due to their distinct lower aspect ratios. Therefore, considering this effect of aspect ratio, a new structure design with multiscale pores is proposed and a corresponding structural model developed to correlate the thermal properties with this pore-rich structure. The predictions of the model are well consistent with experimental data. This study provides comprehensive understanding of the effect of pores on the thermal insulation performance, shedding light on the possibility of structural tailoring to obtain advanced TBCs with lower thermal conductivity.

  12. DIANA-microT web server: elucidating microRNA functions through target prediction.

    PubMed

    Maragkakis, M; Reczko, M; Simossis, V A; Alexiou, P; Papadopoulos, G L; Dalamagas, T; Giannopoulos, G; Goumas, G; Koukis, E; Kourtis, K; Vergoulis, T; Koziris, N; Sellis, T; Tsanakas, P; Hatzigeorgiou, A G

    2009-07-01

    Computational microRNA (miRNA) target prediction is one of the key means for deciphering the role of miRNAs in development and disease. Here, we present the DIANA-microT web server as the user interface to the DIANA-microT 3.0 miRNA target prediction algorithm. The web server provides extensive information for predicted miRNA:target gene interactions with a user-friendly interface, providing extensive connectivity to online biological resources. Target gene and miRNA functions may be elucidated through automated bibliographic searches and functional information is accessible through Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The web server offers links to nomenclature, sequence and protein databases, and users are facilitated by being able to search for targeted genes using different nomenclatures or functional features, such as the genes possible involvement in biological pathways. The target prediction algorithm supports parameters calculated individually for each miRNA:target gene interaction and provides a signal-to-noise ratio and a precision score that helps in the evaluation of the significance of the predicted results. Using a set of miRNA targets recently identified through the pSILAC method, the performance of several computational target prediction programs was assessed. DIANA-microT 3.0 achieved there with 66% the highest ratio of correctly predicted targets over all predicted targets. The DIANA-microT web server is freely available at www.microrna.gr/microT.

  13. Introduction: MicroRNAs in human reproduction: small molecules with crucial regulatory roles.

    PubMed

    Imbar, Tal; Galliano, Daniela; Pellicer, Antonio; Laufer, Neri

    2014-06-01

    MicroRNAs constitute a large family of approximately 21-nucleotide-long, noncoding RNAs. They emerged more than 20 years ago as key posttranscriptional regulators of gene expression. The regulatory role of these small RNA molecules has recently begun to be explored in the human reproductive system. In this issue's Views and Reviews, the authors present the current knowledge regarding the involvement of microRNAs in several aspects of human reproduction and discuss its future implications for clinical practice. Copyright © 2014 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  14. Histological examination of the oral mucosa after fractional diode laser irradiation with different power and pulse duration

    NASA Astrophysics Data System (ADS)

    Belikov, Andrey V.; Ermolaeva, Ludmila A.; Korzhevsky, Dmitriy E.; Sergeeva, Elena S.; Semyashkina, Yulia V.; Antropova, Maria M.; Fedotov, Denis Y.; Zaitseva, Maria A.; Kashina, Tatiana V.

    2018-04-01

    Optical and histological methods were used to examination of influence the power and pulse duration of 980-nm diode laser to the dimensions and morphology of tissue around fractional micro injuries created by the radiation of that laser in the oral mucosa of rats in vivo. The power of laser radiation (P) varied in the range of 1÷21 W, and its pulse duration (tp) - in the range 50÷500 ms. Histological examination showed that in the mucosa of the oral cavity after the laser fractional irradiation, there following effects are found: a tissue defect, a transudate in the lumen of ablative micro injury, stretching and compacting effect of the nuclei of the basal epithelium, the disappearance of granules of the keratohialin, destroying the structure of the connective tissue, erythrocyte stasis in the vessels, the disappearance of transverse striation in the muscle fibers in muscle layer. It has been found that ablative micro injury begins to form up at P = 5 W, tp = 100 ms and affects only the epithelial layer of the mucosa. At P = 7 W, tp = 120 ms, the ratio of width to depth of ablative micro injury is 1 : 1, and at P = 10 W, tp = 100 ms, an ablative micro column with ratio of 1 : 1.5 is formed in the epithelial and submucosal layers of the mucosa. The laser effect with P = 15 W, tp = 200 ms leads to lengthening of the ablation micro-column to 1 : 2, with the bottom of the ablative micro column reaching the muscular layer. With a further growth of laser power or pulse duration, the width of the micro injury increases, and the growth of the micro injury depth is slowed down so that the micro column buildup is ceased.

  15. CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Surface Micromachined Adjustable Micro-Concave Mirror for Bio-Detection Applications

    NASA Astrophysics Data System (ADS)

    Kuo, Ju-Nan; Chen, Wei-Lun; Jywe, Wen-Yuh

    2009-08-01

    We present a bio-detection system integrated with an adjustable micro-concave mirror. The bio-detection system consists of an adjustable micro-concave mirror, micro flow cytometer chip and optical detection module. The adjustable micro-concave mirror can be fabricated with ease using commercially available MEMS foundry services (such as multiuser MEMS processes, MUMPs) and its curvature can be controlled utilizing thermal or electrical effects. Experimental results show that focal lengths of the micro-concave mirror ranging from 313.5 to 2275.0 μm are achieved. The adjustable micro-concave mirror can be used to increase the efficiency of optical detection and provide a high signal-to-noise ratio. The developed micro-concave mirror is integrated with a micro flow cytometer for cell counting applications. Successful counting of fluorescent-labeled beads is demonstrated using the developed method.

  16. Effects of Surfactants on the Preparation of Nanocellulose-PLA Composites

    PubMed Central

    Immonen, Kirsi; Lahtinen, Panu; Pere, Jaakko

    2017-01-01

    Thermoplastic composite materials containing wood fibers are gaining increasing interest in the manufacturing industry. One approach is to use nano- or micro-size cellulosic fibrils as additives and to improve the mechanical properties obtainable with only small fibril loadings by exploiting the high aspect ratio and surface area of nanocellulose. In this study, we used four different wood cellulose-based materials in a thermoplastic polylactide (PLA) matrix: cellulose nanofibrils produced from softwood kraft pulp (CNF) and dissolving pulp (CNFSD), enzymatically prepared high-consistency nanocellulose (HefCel) and microcellulose (MC) together with long alkyl chain dispersion-improving agents. We observed increased impact strength with HefCel and MC addition of 5% and increased tensile strength with CNF addition of 3%. The addition of a reactive dispersion agent, epoxy-modified linseed oil, was found to be favorable in combination with HefCel and MC. PMID:29149057

  17. Micromolding of polymer waveguides

    NASA Astrophysics Data System (ADS)

    Hanemann, Thomas; Ulrich, Hermann; Ruprecht, Robert; Hausselt, Juergen H.

    1999-10-01

    In microsystem technology the fabrication of either passive or active micro optical components made from polymers becomes more and more evident with respect to the intense expanding application possibilities e.g. in telecommunication. Actually, the LIGA process developed at the FZK, Germany allows the direct fabrication of microcomponents with lateral dimensions in the micrometer range, structural details in the submicrometer range, high aspect ratios of up to several hundreds and a final average surface roughness of less than 50 nm in small up to large scales. The molding of polymer components for microoptical applications, especially in the singlemode range, is determined by the achievable maximum accuracy of the molding technique itself and of the acceptable tolerances for low damping and coupling losses. Following the LIGA and related technique e.g. mechanical microengineering we want to present in this work the fabrication of polymer singlemode waveguides using a combination of micromolding and light- curing steps.

  18. Electrospun materials for affinity-based engineering and drug delivery

    NASA Astrophysics Data System (ADS)

    Sill, T. J.; von Recum, H. A.

    2015-10-01

    Electrospinning is a process which can quickly and cheaply create materials of high surface to volume and aspect ratios from many materials, however in application toward drug delivery this can be a strong disadvantage as well. Diffusion of drug is proportional to the thickness of that device. In moving from macro to micro to nano-sized electrospun materials drug release rates change to profiles that are too fast to be therapeutically beneficial. In this work we use molecular interactions to further control the rate of release beyond that capable of diffusion alone. To do this we create materials with molecular pockets, which can "hold" therapeutic drugs through a reversible interaction such as a host/guest complexation. Through these complexes we show we are able to impact delivery of drug from electrospun materials, and also apply them in tissue engineering for the reversible presentation of biomolecules on a fiber surface.

  19. Single cell electroporation using proton beam fabricated biochips

    NASA Astrophysics Data System (ADS)

    Homhuan, S.; Zhang, B.; Sheu, F.-S.; Bettiol, A. A.; Watt, F.

    2010-05-01

    We report the design and fabrication of a novel single cell electroporation biochip fabricated by the Proton Beam Writing technique (PBW), a new technique capable of direct-writing high-aspect-ratio nano and microstructures. The biochip features nickel micro-electrodes with straight-side walls between which individual cells are positioned. By applying electrical impulses across the electrodes, SYTOX® Green nucleic acid stain is incorporated into mouse neuroblastoma (N2a) cells. When the stain binds with DNA inside the cell nucleus, green fluorescence is observed upon excitation from a halogen lamp. Three parameters; electric field strength, pulse duration, and the number of pulses have been considered and optimized for the single cell electroporation. The results show that our biochip gives successfully electroporated cells . This single cell electroporation system represents a promising method for investigating the introduction of a wide variety of fluorophores, nanoparticles, quantum dots, DNAs and proteins into cells.

  20. Limiting factors in the production of deep microstructures

    NASA Astrophysics Data System (ADS)

    Tolfree, David W. L.; O'Neill, William; Tunna, Leslie; Sutcliffe, Christopher

    1999-10-01

    Microsystems increasingly require precision deep microstructures that can be cost-effectively designed and manufactured. New products must be able to meet the demands of the rapidly growing markets for microfluidic, micro- optical and micromechanical devices in industrial sectors which include chemicals, pharmaceuticals, biosciences, medicine and food. The realization of such products, first requires an effective process to design and manufacture prototypes. Two process methods used for the fabrication of high aspect-ratio microstructures are based on X-ray beam lithography with electroforming processes and direct micromachining with a frequency multiplied Nd:YAG laser using nanosecond pulse widths. Factors which limit the efficiency and precision obtainable using such processes are important parameters when deciding on the best fabrication method to use. A basic microstructure with narrow channels suitable for a microfluidic mixer have been fabricated using both these techniques and comparisons made of the limitations and suitability of the processes in respect of fast prototyping and manufacture or working devices.

  1. Influence of Reservoirs on Pressure Driven Gas Flow in a Microchannel

    NASA Astrophysics Data System (ADS)

    Shterev, K. S.; Stefanov, S. K.

    2011-11-01

    Rapidly emerging micro-electro-mechanical devices create new potential microfluidic applications. A simulation of an internal and external gas flows with accurate boundary conditions for these devices is important for their design. In this paper we study influence of reservoirs used at the microchannel inlet and outlet on the characteristics of the gas flow in the microchannel. The problem is solved by using finite volume method SIMPLE-TS (continuum approach), which is validated using Direct Simulation Monte Carlo (molecular approach). We investigate two cases: a microchannels with reservoirs and without reservoirs. We compare the microchannels with different aspect ratios A = Lch/Hch = 10,15,20,30,40 and 50, where Lch is the channel length, Hch is the channel height. Comparisons of results obtained by using continuum approach for pressure driven flow in a microchannel with and without reservoirs at the channel ends are presented.

  2. Fiber laser welding of nickel based superalloy Inconel 625

    NASA Astrophysics Data System (ADS)

    Janicki, Damian M.

    2013-01-01

    The paper describes the application of single mode high power fiber laser (HPFL) for the welding of nickel based superalloy Inconel 625. Butt joints of Inconel 625 sheets 0,8 mm thick were laser welded without an additional material. The influence of laser welding parameters on weld quality and mechanical properties of test joints was studied. The quality and mechanical properties of the joints were determined by means of tensile and bending tests, and micro hardness tests, and also metallographic examinations. The results showed that a proper selection of laser welding parameters provides non-porous, fully-penetrated welds with the aspect ratio up to 2.0. The minimum heat input required to achieve full penetration butt welded joints with no defect was found to be 6 J/mm. The yield strength and ultimate tensile strength of the joints are essentially equivalent to that for the base material.

  3. Alignment nature of ZnO nanowires grown on polished and nanoscale etched lithium niobate surface through self-seeding thermal evaporation method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohanan, Ajay Achath; Parthiban, R.; Ramakrishnan, N., E-mail: ramakrishnan@monash.edu

    Highlights: • ZnO nanowires were grown directly on LiNbO{sub 3} surface for the first time by thermal evaporation. • Self-alignment of the nanowires due to step bunching of LiNbO{sub 3} surface is observed. • Increased roughness in surface defects promoted well-aligned growth of nanowires. • Well-aligned growth was then replicated in 50 nm deep trenches on the surface. • Study opens novel pathway for patterned growth of ZnO nanowires on LiNbO{sub 3} surface. - Abstract: High aspect ratio catalyst-free ZnO nanowires were directly synthesized on lithium niobate substrate for the first time through thermal evaporation method without the use ofmore » a buffer layer or the conventional pre-deposited ZnO seed layer. As-grown ZnO nanowires exhibited a crisscross aligned growth pattern due to step bunching of the polished lithium niobate surface during the nanowire growth process. On the contrary, scratches on the surface and edges of the substrate produced well-aligned ZnO nanowires in these defect regions due to high surface roughness. Thus, the crisscross aligned nature of high aspect ratio nanowire growth on the lithium niobate surface can be changed to well-aligned growth through controlled etching of the surface, which is further verified through reactive-ion etching of lithium niobate. The investigations and discussion in the present work will provide novel pathway for self-seeded patterned growth of well-aligned ZnO nanowires on lithium niobate based micro devices.« less

  4. Some physical and functional properties of finger millet (Eleusine coracana) obtained in sub-Saharan Africa.

    PubMed

    Ramashia, S E; Gwata, E T; Meddows-Taylor, S; Anyasi, T A; Jideani, A I O

    2018-02-01

    The study determined the physical properties of finger millet (FM) (Eluesine coracana) grains and the functional properties of FM flour. Physical properties such as colour attributes, sample weight, bulk density, true density, porosity, surface area, sample volume, aspect ratio, sphericity, dimensional properties and moisture content of grain cultivars were determined. Water absorption capacity (WAC), bulk density (BD), dispersibility, viscosity and micro-structure of FM flours were also evaluated. Data collected were analyzed using SPSS statistical software version 23.0. Results showed that milky cream cultivar was significantly higher (p<0.05) than other samples in sample weight, bulk density, true density, aspect ratio and sphericity. However, pearl millet, used as a control, was significantly different from FM flour on all dimensional properties. Moisture content of milky cream showed higher significant difference for both grains and flours as compared to brown and black grain/flours. Milky cream cultivar was significantly different in L*, b*, C*, H* values, WAC, BD and dispersibility for both FM grains and flours. Data showed that brown flour was significantly higher in viscosity than in milky and black flours. Microstructure results revealed that starch granules of raw FM flours had oval/spherical and smooth surface. The study is important for agricultural and food engineers, designers, scientists and processors in the design of equipment for FM grain processing. Results are likely to be useful in assessing the quality of grains used to fortify FM flour. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Fabrication and characterization of artificial hair cell sensor based on MWCNT-PDMS composite

    NASA Astrophysics Data System (ADS)

    Kim, Chi Yeon; Lee, Hyun Sup; Cho, Yo Han; Joh, Cheeyoung; Choi, Pyung; Park, Seong Jin

    2011-06-01

    The aim of this work is to design and fabricate a flow sensor using an artificial hair cell (AHC) inspired by biological hair cells of fish. The sensor consists of a single cilium structure with high aspect ratio and a mechanoreceptor using force sensitive resistor (FSR). The cilium structure is designed for capturing a drag force with direction due to flow field around the sensor and the mechanoreceptor is designed for sensing the drag force with direction from the cilium structure and converting it into an electric signal. The mechanoreceptor has a symmetric four electrodes to sense the drag force and its direction. To fabricate the single cilium structure with high aspect ratio, we have proposed a new design concept using a separated micro mold system (SMS) fabricated by the LIGA process. For a successful replication of the cilium structure, we used the hot embossing process with the help of a double-sided mold system. We used a composite of multiwall carbon nanotube and polydimethylsiloxane (MWCNT-PDMS). The performance of the mechanoreceptors was measured by a computer-controlled nanoindenter. We carried out several experiments with the sensor in the different flow rate and direction using the experimental test apparatus. To calibrate the sensor and calculate the velocity with direction based the signal from the sensor, we analyzed the coupled phenomena between flow field and the cilium structure to calculate the deflection of the cilium structure and the drag force applying to the cilium structure due to the flow field around sensor.

  6. Fabrication of high aspect ratio nanogrid transparent electrodes via capillary assembly of Ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Kang, Juhoon; Park, Chang-Goo; Lee, Su-Han; Cho, Changsoon; Choi, Dae-Geun; Lee, Jung-Yong

    2016-05-01

    In this report, we describe the fabrication of periodic Ag nanogrid electrodes by capillary assembly of silver nanoparticles (AgNPs) along patterned nanogrid templates. By assembling the AgNPs into these high-aspect-ratio nanogrid patterns, we can obtain high-aspect-ratio nanogratings, which can overcome the inherent trade-off between the optical transmittance and the sheet resistance of transparent electrodes. The junction resistance between the AgNPs is effectively reduced by photochemical welding and post-annealing. The fabricated high-aspect-ratio nanogrid structure with a line width of 150 nm and a height of 450 nm has a sheet resistance of 15.2 Ω sq-1 and an optical transmittance of 85.4%.In this report, we describe the fabrication of periodic Ag nanogrid electrodes by capillary assembly of silver nanoparticles (AgNPs) along patterned nanogrid templates. By assembling the AgNPs into these high-aspect-ratio nanogrid patterns, we can obtain high-aspect-ratio nanogratings, which can overcome the inherent trade-off between the optical transmittance and the sheet resistance of transparent electrodes. The junction resistance between the AgNPs is effectively reduced by photochemical welding and post-annealing. The fabricated high-aspect-ratio nanogrid structure with a line width of 150 nm and a height of 450 nm has a sheet resistance of 15.2 Ω sq-1 and an optical transmittance of 85.4%. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01896c

  7. Experimental study of low aspect ratio compressor blading

    NASA Technical Reports Server (NTRS)

    Reid, L.; Moore, R. D.

    1979-01-01

    The effects of low aspect ratio blading on aerodynamic performance were examined. Four individual transonic compressor stages, representative of the inlet stage of an advanced high pressure ratio core compressor, are discussed. The flow phenomena for the four stages are investigated. Comparisons of blade element parameters are presented for the two different aspect ratio configurations. Blade loading levels are compared for the near stall conditions and comparisons are made of loss and diffusion factors over the operating range of incidence angles.

  8. Differentials in sex ratio at birth among natives and immigrants in Greece: an analysis employing nationwide micro-data.

    PubMed

    Verropoulou, Georgia; Tsimbos, Cleon

    2010-05-01

    This study uses micro-level information on the live births registered in Greece for 2006 to assess differentials in the propensity to have a male offspring between natives and immigrants. The sex ratio at birth for the whole population is 106.3 but it is considerably higher among immigrants (110.9) than among natives (105.4). Relatively high sex ratios at birth are observed for several migrant groups; differentials between natives, on the one hand, and Albanians (109.5) and Asians (129.0), on the other, are significant. The high sex ratio at birth for Albanians seems typical of that population. For Asians, the result is consistent with international findings though it may also be partly related to the small number of observations.

  9. Study on Electricity Business Expansion and Electricity Sales Based on Seasonal Adjustment

    NASA Astrophysics Data System (ADS)

    Zhang, Yumin; Han, Xueshan; Wang, Yong; Zhang, Li; Yang, Guangsen; Sun, Donglei; Wang, Bolun

    2017-05-01

    [1] proposed a novel analysis and forecast method of electricity business expansion based on Seasonal Adjustment, we extend this work to include the effect the micro and macro aspects, respectively. From micro aspect, we introduce the concept of load factor to forecast the stable value of electricity consumption of single new consumer after the installation of new capacity of the high-voltage transformer. From macro aspects, considering the growth of business expanding is also stimulated by the growth of electricity sales, it is necessary to analyse the antecedent relationship between business expanding and electricity sales. First, forecast electricity consumption of customer group and release rules of expanding capacity, respectively. Second, contrast the degree of fitting and prediction accuracy to find out the antecedence relationship and analyse the reason. Also, it can be used as a contrast to observe the influence of customer group in different ranges on the prediction precision. Finally, Simulation results indicate that the proposed method is accurate to help determine the value of expanding capacity and electricity consumption.

  10. A review on the determination of isotope ratios of boron with mass spectrometry.

    PubMed

    Aggarwal, Suresh Kumar; You, Chen-Feng

    2017-07-01

    The present review discusses different mass spectrometric techniques-viz, thermal ionization mass spectrometry (TIMS), inductively coupled plasma mass spectrometry (ICPMS), and secondary ion mass spectrometry (SIMS)-used to determine 11 B/ 10 B isotope ratio, and concentration of boron required for various applications in earth sciences, marine geochemistry, nuclear technology, environmental, and agriculture sciences, etc. The details of the techniques-P-TIMS, which uses Cs 2 BO 2 + , N-TIMS, which uses BO 2 - , and MC-ICPMS, which uses B + ions for bulk analysis or B - and B + ions for in situ micro-analysis with SIMS-are highlighted. The capabilities, advantages, limitations, and problems in each mass spectrometric technique are summarized. The results of international interlaboratory comparison experiments conducted at different times are summarized. The certified isotopic reference materials available for boron are also listed. Recent developments in laser ablation (LA) ICPMS and QQQ-ICPMS for solids analysis and MS/MS analysis, respectively, are included. The different aspects of sample preparation and analytical chemistry of boron are summarized. Finally, the future requirements of boron isotope ratios for future applications are also given. Presently, MC-ICPMS provides the best precision and accuracy (0.2-0.4‰) on isotope ratio measurements, whereas N-TIMS holds the potential to analyze smallest amount of boron, but has the issue of bias (+2‰ to 4‰) which needs further investigations. © 2016 Wiley Periodicals, Inc. Mass Spec Rev 36:499-519, 2017. © 2016 Wiley Periodicals, Inc.

  11. Effects of surface topography and vibrations on wetting: Superhydrophobicity, icephobicity and corrosion resistance

    NASA Astrophysics Data System (ADS)

    Ramachandran, Rahul

    Concrete and metallic materials are widely used in construction and water industry. The interaction of both these materials with water and ice (or snow) produces undesirable results and is therefore of interest. Water that gets absorbed into the pores of dry concrete expands on freezing and can lead to crack formation. Also, the ice accretion on concrete surfaces such as roadways can have disastrous consequence. Metallic components used in the water industry undergo corrosion due to contact with aqueous corrosive solutions. Therefore, it is desirable to make concrete water/ice-repellent, and to make metallic surfaces corrosion-resistant. Recent advances in micro/nanotechnology have made it possible to design functional micro/nanostructured surfaces with micro/nanotopography providing low adhesion. Some examples of such surfaces are superhydrophobic surfaces, which are extremely water repellent, and icephobic surfaces, which have low ice adhesion, repel incoming water droplets before freezing, or delay ice nucleation. This dissertation investigates the effects of surface micro/nanotopography and small amplitude fast vibrations on the wetting and adhesion of concrete with the goal of producing hydrophobic and icephobic concrete, and on the wetting of metallic surfaces to prevent corrosion. The relationship between surface micro/nanotopography and small fast vibrations is established using the method of separation of motions. Both these small scale effects can be substituted by an effective force or energy. The structure-property relationships in materials and surfaces are established. Both vibrations as well as surface micro/nanopatterns can affect wetting properties such as contact angle and surface free energy. Hydrophobic engineered cementitious composite samples are produced by controlling their surface topography and surface free energy. The surface topography is controlled by varying the concrete mixture composition. The surface free energy of concrete is lowered using a hydrophobic emulsion. The hydrophobic concrete samples were able to repel incoming water droplets as well as resist droplet pinning. Corrosion resistance is achieved in cast iron samples by rendering them superhydrophobic. The corrosion resistance of superhydrophobic surfaces with micro/nanotopography may be explained by the low effective contact area with the electrolyte. The experimental results matched the theoretical predictions based on surface roughness and wettability. The icephobicity of engineered cementitious composite samples is achieved by hydrophobization, by using coatings containing dielectric material (such as polyvinyl alcohol fibers), and by controlling the surface topography. Two aspects of the icephobicity of concrete, namely, the repulsion of incoming water droplets before freezing and the ice adhesion strength, are investigated experimentally. It is found that icephobic performance of concrete depends on these parameters --- the hydrophobic emulsion concentration, the polyvinyl alcohol fiber content, the water to cement ratio, and the sand to cement ratio. The potential for biomimetic icephobicity of thermogenic skunk cabbage plant is investigated, and it is found that the surface topography of its leaves can affect the heat transfer from the plant to the surrounding snow. The hierarchical microstructure of the leaf surface coupled with its high adhesion to water suggests the presence of an impregnated wetting state, which can minimize the heat loss. Thus functional materials and surfaces, such as hydrophobic and icephobic engineered cementitious composites and corrosion resistant metallic surfaces, can be produced by controlling the surface micro/nanotopography.

  12. Experimental investigation of a supersonic micro turbine running with hexamethyldisiloxane

    NASA Astrophysics Data System (ADS)

    Weiß Andreas, P.; Josef, Hauer; Tobias, Popp; Markus, Preißinger

    2017-09-01

    Experimentally determined efficiency characteristics of a supersonic micro turbine are discussed in the present paper. The micro turbine is a representative of a "micro-turbine-generator-construction-kit" for ORC small scale waste heat recovery. The isentropic total-to-static efficiency of the 12 kW turbine reaches an excellent design point performance of 73.4 %. Furthermore, its off-design operating behavior is very advantageous for small waste heat recovery plants: the turbine efficiency keeps a high level over a wide range of pressure ratio and rotational speed.

  13. Optimization of stress relief heat treatment of PHWR pressure tubes (Zr 2.5Nb alloy)

    NASA Astrophysics Data System (ADS)

    Choudhuri, Gargi; Srivastava, D.; Gurumurthy, K. R.; Shah, B. K.

    2008-12-01

    The micro-structure of cold worked Zr-2.5%Nb pressure tube material consists of elongated grains of α-zirconium enclosed by a thin film of β-zirconium phase. This β-Zr phase is unstable and on heating, progressively decomposes to α-Zr phase and β-phase enriched with Nb and ultimately form β Nb. Meta-stable ω-phase precipitates as an intermediate step during decomposition depending on the heat treatment schedule, β→α+β→α+ω+β→α+β→α+β Morphological changes occur in the β-zirconium phase during the decomposition. The continuous ligaments of β Zr phase turn into a discontinuous array of particles followed by globulization of the β-phase. The morphological changes impose a significant effect on the creep rate and on the delayed hydride cracking velocity due to reduction in the hydrogen diffusion coefficient in α Zr. If the continuity of β-phase is disrupted by heat treatment, the effective diffusion coefficient decreases with a concomitant reduction in DHC velocity. The pressure tubes for the Indian PHWRs are made by a process of hot extrusion followed by cold pilgering in two stages and an intermediate annealing. Autoclaving at 400 °C for 36 h ensures stress relieving of the finished tubes. In the present studies, autoclaving duration at 400 °C was varied from 24 h to 96 h at 12 h-steps and the micro-structural changes in the β-phase were observed by TEM. Dislocation density, hardness and the micro-structural features such as thickness of β-phase, inter-particle spacing and volume fraction of the phases were measured at each stage. Autoclaving for a longer duration was found to change the morphology of β-phase and increase the inter-particle spacing. Progressive changes in the aspect ratio of the β-phase and their size and distribution are documented and reported. These micro-structural modifications are expected to decrease DHC velocity during reactor operation.

  14. Chondrocyte Deformations as a Function of Tibiofemoral Joint Loading Predicted by a Generalized High-Throughput Pipeline of Multi-Scale Simulations

    PubMed Central

    Sibole, Scott C.; Erdemir, Ahmet

    2012-01-01

    Cells of the musculoskeletal system are known to respond to mechanical loading and chondrocytes within the cartilage are not an exception. However, understanding how joint level loads relate to cell level deformations, e.g. in the cartilage, is not a straightforward task. In this study, a multi-scale analysis pipeline was implemented to post-process the results of a macro-scale finite element (FE) tibiofemoral joint model to provide joint mechanics based displacement boundary conditions to micro-scale cellular FE models of the cartilage, for the purpose of characterizing chondrocyte deformations in relation to tibiofemoral joint loading. It was possible to identify the load distribution within the knee among its tissue structures and ultimately within the cartilage among its extracellular matrix, pericellular environment and resident chondrocytes. Various cellular deformation metrics (aspect ratio change, volumetric strain, cellular effective strain and maximum shear strain) were calculated. To illustrate further utility of this multi-scale modeling pipeline, two micro-scale cartilage constructs were considered: an idealized single cell at the centroid of a 100×100×100 μm block commonly used in past research studies, and an anatomically based (11 cell model of the same volume) representation of the middle zone of tibiofemoral cartilage. In both cases, chondrocytes experienced amplified deformations compared to those at the macro-scale, predicted by simulating one body weight compressive loading on the tibiofemoral joint. In the 11 cell case, all cells experienced less deformation than the single cell case, and also exhibited a larger variance in deformation compared to other cells residing in the same block. The coupling method proved to be highly scalable due to micro-scale model independence that allowed for exploitation of distributed memory computing architecture. The method’s generalized nature also allows for substitution of any macro-scale and/or micro-scale model providing application for other multi-scale continuum mechanics problems. PMID:22649535

  15. Acicular photomultiplier photocathode structure

    DOEpatents

    Craig, Richard A.; Bliss, Mary

    2003-09-30

    A method and apparatus for increasing the quantum efficiency of a photomultiplier tube by providing a photocathode with an increased surface-to-volume ratio. The photocathode includes a transparent substrate, upon one major side of which is formed one or more large aspect-ratio structures, such as needles, cones, fibers, prisms, or pyramids. The large aspect-ratio structures are at least partially composed of a photoelectron emitting material, i.e., a material that emits a photoelectron upon absorption of an optical photon. The large aspect-ratio structures may be substantially composed of the photoelectron emitting material (i.e., formed as such upon the surface of a relatively flat substrate) or be only partially composed of a photoelectron emitting material (i.e., the photoelectron emitting material is coated over large aspect-ratio structures formed from the substrate material itself.) The large aspect-ratio nature of the photocathode surface allows for an effective increase in the thickness of the photocathode relative the absorption of optical photons, thereby increasing the absorption rate of incident photons, without substantially increasing the effective thickness of the photocathode relative the escape incidence of the photoelectrons.

  16. Visualization of Secondary Flow Development in High Aspect Ratio Channels with Curvature

    NASA Technical Reports Server (NTRS)

    Meyer, Michael L.; Giuliani, James E.

    1994-01-01

    The results of an experimental project to visually examine the secondary flow structure that develops in curved, high aspect-ratio rectangular channels are presented. The results provide insight into the fluid dynamics within high aspect ratio channels. A water flow test rig constructed out of plexiglass, with an adjustable aspect ratio, was used for these experiments. Results were obtained for a channel geometry with a hydraulic diameter of 10.6 mm (0.417 in.), an aspect ratio of 5.0, and a hydraulic radius to curvature radius ratio of 0.0417. Flow conditions were varied to achieve Reynolds numbers up to 5,100. A new particle imaging velocimetry technique was developed which could resolve velocity information from particles entering and leaving the field of view. Time averaged secondary flow velocity vectors, obtained using this velocimetry technique, are presented for 30 degrees, 60 degrees, and 90 degrees into a 180 degrees bend and at a Reynolds number of 5,100. The secondary flow results suggest the coexistence of both the classical curvature induced vortex pair flow structure and the eddies seen in straight turbulent channel flow.

  17. Stable isotopes in mid-ocean ridge hydrothermal systems: Interactions between fluids, minerals, and organisms

    NASA Astrophysics Data System (ADS)

    Shanks, W. C., III; Böhlke, J. K.; Seal, R. R., II

    Studies of abundance variations of light stable isotopes in nature have had a tremendous impact on all aspects of geochemistry since the development, in 1947, of a gas source isotope ratio mass spectrometer capable of measuring small variations in stable isotope ratios [Nier, 1947] Stable isotope geochemistry is now a mature field, as witnessed by the proliferation of commercially available mass spectrometers installed at virtually every major academic, government, and private-sector research geochemistry laboratory. A recent search of a literature database revealed over 3,000 articles that utilized stable isotope geochemistry over the last 20 years. Nonetheless, many exciting new technical developments are leading to exciting new discoveries and applications. In particular, micro analytical techniques involving new generations of laser- and ion-microprobes are revolutionizing the types of analyses that can be done on spot sizes as small as a few tens of micrometers [Shanks and Criss, 1989]. New generations of conventional gas source and thermal ionization mass spectrometers, with high levels of automation and increased sensitivity and precision, are allowing analyses of large numbers of samples, like those needed for stable isotope stratigraphy in marine sediments, and are enabling the development and application of new isotopic systems.

  18. Stable isotopes in mid-ocean ridge hydrothermal systems: Interactions between fluids, minerals, and organisms

    USGS Publications Warehouse

    Shanks, Wayne C.; Böhlke, John Karl; Seal, Robert R.; Humphries, S.D.; Zierenberg, Robert A.; Mullineaux, Lauren S.; Thomson, Richard E.

    1995-01-01

    Studies of abundance variations of light stable isotopes in nature have had a tremendous impact on all aspects of geochemistry since the development, in 1947, of a gas source isotope ratio mass spectrometer capable of measuring small variations in stable isotope ratios (Nice, 1947]. Stable isotope geochemistry is now a mature field, as witnessed by the proliferation of commercially available mass spectrometers installed at virtually every major academic, government, and private-sector research geochemistry laboratory. A recent search of a literature database revealed over 3,000 articles that utilized stable isotope geochemistry over the last 20 years. Nonetheless, many exciting new technical developments are leading to exciting new discoveries and applications. In particular, micro-analytical techniques involving new generations of laser- and ion-microprobes are revolutionizing the types of analyses that can be done on spot sizes as small as a few tens of micrometers [Shanks and Criss, 1989]. New generations of conventional gas source and thermal ionization mass spectrometers, with high levels of automation and increased sensitivity and precision, are allowing analyses of large numbers of samples, like those needed for stable isotope stratigraphy in marine sediments, and are enabling the development and application of new isotopic systems.

  19. [Biotechnological aspects in "loco" larvae].

    PubMed

    Inestrosa, N C; Labarca, R; Perelman, A; Campos, E O; Araneda, R; González, M; Brandan, E; Sánchez, J P; González-Plaza, R

    1990-10-01

    The biology of planktotrophic larvae of Concholepas concholepas is the main bottleneck towards developing biotechnologies to rear this muricid. Data concerning planktonic larvae development, diets and environmental signals triggering larval settlement and recruitment is scarce. We have begun the study of the molecular and cell biology of embryos, larvae and recruits having as a final goal, the development of appropriate biotechnologies to rear this gastropod. First, an inverse ratio between BuChE and AChE enzyme activities was established. This ratio may be a precise developmental marker for this species. Second, for the first time a phosphoinositide related regulatory pathway is reported in a muricid, opening a new approach to the biotechnological management of larvae. Third, the relation between sulfate in sea water and larval motility was studied. Concentrations below 125 microM sulfate decreases larval motility. The sulfate is incorporated in proteoglycans which participate in different developmental phenomena. Lastly, a genomic Concholepas concholepas DNA sequence, similar to that of a human growth hormone probe was detected. This is very interesting since growth factors are key molecules during development, growth and are involved in food conversion rates in fish and also, in a variety of marine invertebrates.

  20. Testing Aspects of the Usability of an Online Learner Dictionary Prototype: A Product- and Process-Oriented Study

    ERIC Educational Resources Information Center

    Hamel, Marie-Josee

    2012-01-01

    This article reports on a study which took place in the context of the design and development of an online dictionary prototype for learners of French. Aspects of the "usability", i.e. the quality of the "learner-task-dictionary interaction" of the prototype were tested. Micro-tasks were designed to focus on learners'…

  1. INFLUENCE OF SCALE RATIO, ASPECT RATIO, AND PLANFORM ON THE PERFORMANCE OF SUPERCAVITATING HYDROFOILS.

    DTIC Science & Technology

    performance of supercavitating hydrofoils. No appreciable scale effect was found for scale ratios up to 3 in the fully-cavitating flow region. The...overall performance of the hydrofoil by increasing the aspect ratio above 3, and (2) moderate taper ratio seems to be advantageous in view of the overall performance of supercavitating hydrofoils. (Author)

  2. Micro-optics for microfluidic analytical applications.

    PubMed

    Yang, Hui; Gijs, Martin A M

    2018-02-19

    This critical review summarizes the developments in the integration of micro-optical elements with microfluidic platforms for facilitating detection and automation of bio-analytical applications. Micro-optical elements, made by a variety of microfabrication techniques, advantageously contribute to the performance of an analytical system, especially when the latter has microfluidic features. Indeed the easy integration of optical control and detection modules with microfluidic technology helps to bridge the gap between the macroscopic world and chip-based analysis, paving the way for automated and high-throughput applications. In our review, we start the discussion with an introduction of microfluidic systems and micro-optical components, as well as aspects of their integration. We continue with a detailed description of different microfluidic and micro-optics technologies and their applications, with an emphasis on the realization of optical waveguides and microlenses. The review continues with specific sections highlighting the advantages of integrated micro-optical components in microfluidic systems for tackling a variety of analytical problems, like cytometry, nucleic acid and protein detection, cell biology, and chemical analysis applications.

  3. Optimal Micro-Jet Flow Control for Compact Air Vehicle Inlets

    NASA Technical Reports Server (NTRS)

    Anderson, Bernhard H.; Miller, Daniel N.; Addington, Gregory A.; Agrell, Johan

    2004-01-01

    The purpose of this study on micro-jet secondary flow control is to demonstrate the viability and economy of Response Surface Methodology (RSM) to optimally design micro-jet secondary flow control arrays, and to establish that the aeromechanical effects of engine face distortion can also be included in the design and optimization process. These statistical design concepts were used to investigate the design characteristics of "low mass" micro-jet array designs. The term "low mass" micro-jet may refers to fluidic jets with total (integrated) mass flow ratios between 0.10 and 1.0 percent of the engine face mass flow. Therefore, this report examines optimal micro-jet array designs for compact inlets through a Response Surface Methodology.

  4. On virial analysis at low aspect ratio

    DOE PAGES

    Bongard, Michael W.; Barr, Jayson L.; Fonck, Raymond J.; ...

    2016-07-28

    The validity of virial analysis to infer global MHD equilibrium poloidal beta β p and internal inductance ℓ i from external magnetics measurements is examined for low aspect ratio configurations with A < 2. Numerical equilibrium studies at varied aspect ratio are utilized to validate the technique at finite aspect ratio. The effect of applying high-A approximations to low-A experimental data is quantified and demonstrates significant over-estimation of stored energy (factors of 2–10) in spherical tokamak geometry. Experimental approximations to equilibrium-dependent volume integral terms in the analysis are evaluated at low-A. Highly paramagnetic configurations are found to be inadequately representedmore » through the virial mean radius parameter R T. Alternate formulations for inferring β p and ℓ i that are independent of R T to avoid this difficulty are presented for the static isotropic limit. Lastly, these formulations are suitable for fast estimation of tokamak stored energy components at low aspect ratio using virial analysis.« less

  5. Framework to model neutral particle flux in convex high aspect ratio structures using one-dimensional radiosity

    NASA Astrophysics Data System (ADS)

    Manstetten, Paul; Filipovic, Lado; Hössinger, Andreas; Weinbub, Josef; Selberherr, Siegfried

    2017-02-01

    We present a computationally efficient framework to compute the neutral flux in high aspect ratio structures during three-dimensional plasma etching simulations. The framework is based on a one-dimensional radiosity approach and is applicable to simulations of convex rotationally symmetric holes and convex symmetric trenches with a constant cross-section. The framework is intended to replace the full three-dimensional simulation step required to calculate the neutral flux during plasma etching simulations. Especially for high aspect ratio structures, the computational effort, required to perform the full three-dimensional simulation of the neutral flux at the desired spatial resolution, conflicts with practical simulation time constraints. Our results are in agreement with those obtained by three-dimensional Monte Carlo based ray tracing simulations for various aspect ratios and convex geometries. With this framework we present a comprehensive analysis of the influence of the geometrical properties of high aspect ratio structures as well as of the particle sticking probability on the neutral particle flux.

  6. A review on non-linear aeroelasticity of high aspect-ratio wings

    NASA Astrophysics Data System (ADS)

    Afonso, Frederico; Vale, José; Oliveira, Éder; Lau, Fernando; Suleman, Afzal

    2017-02-01

    Current economic constraints and environmental regulations call for design of more efficient aircraft configurations. An observed trend in aircraft design to reduce the lift induced drag and improve fuel consumption and emissions is to increase the wing aspect-ratio. However, a slender wing is more flexible and subject to higher deflections under the same operating conditions. This effect may lead to changes in dynamic behaviour and in aeroelastic response, potentially resulting in instabilities. Therefore, it is important to take into account geometric non-linearities in the design of high aspect-ratio wings, as well as having accurate computational codes that couple the aerodynamic and structural models in the presence of non-linearities. Here, a review on the state-of-the-art on non-linear aeroelasticity of high aspect-ratio wings is presented. The methodologies employed to analyse high aspect-ratio wings are presented and their applications discussed. Important observations from the state-of-the-art studies are drawn and the current challenges in the field are identified.

  7. Turbo Pump Fed Micro-Rocket Engine

    NASA Astrophysics Data System (ADS)

    Miotti, P.; Tajmar, M.; Seco, F.; Guraya, C.; Perennes, F.; Soldati, A.; Lang, M.

    2004-10-01

    Micro-satellites (from 10kg up to 100kg) have mass, volume, and electrical power constraints due to their low dimensions. These limitations lead to the lack in currently available active orbit control systems in micro-satellites. Therefore, a micro-propulsion system with a high thrust to mass ratio is required to increase the potential functionality of small satellites. Mechatronic is presently working on a liquid bipropellant micro-rocket engine under contract with ESA (Contract No.16914/NL/Sfe - Micro-turbo-machinery Based Bipropellant System Using MNT). The advances in Mechatronic's project are to realise a micro-rocket engine with propellants pressurised by micro-pumps. The energy for driving the pumps would be extracted from a micro-turbine. Cooling channels around the nozzle would be also used in order to maintain the wall material below its maximum operating temperature. A mass budget comparison with more traditional pressure-fed micro-rockets shows a real benefit from this system in terms of mass reduction. In the paper, an overview of the project status in Mechatronic is presented.

  8. Shape matters: pore geometry and orientation influences the strength and stiffness of porous rocks

    NASA Astrophysics Data System (ADS)

    Griffiths, Luke; Heap, Michael; Xu, Tao; Chen, Chong-Feng; Baud, Patrick

    2017-04-01

    The geometry of voids in porous rock fall between two end-members: very low aspect ratio (the ratio of the minor to the major semi-axis) microcracks and perfectly spherical pores with an aspect ratio of unity. Although the effect of these end-member geometries on the mechanical behaviour of porous rock has received considerable attention, our understanding of the influence of voids with an intermediate aspect ratio is much less robust. Here we perform two-dimensional numerical simulations (Rock Failure Process Analysis, RFPA2D) to better understand the influence of pore aspect ratio (from 0.2 to 1.0) and the angle between the pore major axis and the applied stress (from 0 to 90°) on the mechanical behaviour of porous rock. Our numerical simulations show that, for a fixed aspect ratio (0.5) the uniaxial compressive strength and Young's modulus of porous rock can be reduced by a factor of 2.4 and 1.3, respectively, as the angle between the major axis of the elliptical pores and the applied stress is rotated from 0 to 90°. This weakening effect is accentuated at higher porosities. The influence of pore aspect ratio (which we vary from 0.2 to 1.0) on strength and Young's modulus depends on the pore angle. At low angles ( 0-10°) an increase in aspect ratio reduces the strength and Young's modulus. At higher angles ( 40-90°), however, strength and Young's modulus increase as aspect ratio is increased. At intermediate angles ( 20-30°), strength and Young's modulus first increase and then decrease as pore aspect ratio approaches unity. We find that the analytical solutions for the stress and Young's modulus at the boundary of a single elliptical pore are in excellent agreement with our numerical simulations. The results of our numerical modelling are also in agreement with recent experimental data for porous basalt, but fail to capture the strength anisotropy observed in experiments on sandstone. The alignment of grains or platy minerals such as clays may play an important role in controlling strength anisotropy in porous sandstones. The modelling presented herein shows that porous rocks containing elliptical pores can display a strength and stiffness anisotropy, with implications for the preservation and destruction of porosity and permeability, as well as the distribution of stress and strain within the Earth's crust.

  9. An Analysis of the Effects of Wing Aspect Ratio and Tail Location on Static Longitudinal Stability Below the Mach Number of Lift Divergence

    NASA Technical Reports Server (NTRS)

    Axelson, John A.; Crown, J. Conrad

    1948-01-01

    An analysis is presented of the influence of wing aspect ratio and tail location on the effects of compressibility upon static longitudinal stability. The investigation showed that the use of reduced wing aspect ratios or short tail lengths leads to serious reductions in high-speed stability and the possibility of high-speed instability.

  10. A numerical simulation of finite-length Taylor-Couette flow

    NASA Technical Reports Server (NTRS)

    Streett, C. L.; Hussaini, M. Y.

    1988-01-01

    Results from numerical simulations of finite-length Taylor-Couette flow are presented. Included are time-accurate and steady-state studies of the change in the nature of the symmetric two-cell/asymmetric one-cell bifurcation with varying aspect ratio and of the Reynolds number/aspect ratio locus of the two-cell/four-cell bifurcation. Preliminary results from wavy-vortex simulations at low aspect ratios are also presented.

  11. Soft-lithography fabrication of microfluidic features using thiol-ene formulations.

    PubMed

    Ashley, John F; Cramer, Neil B; Davis, Robert H; Bowman, Christopher N

    2011-08-21

    In this work, a novel thiol-ene based photopolymerizable resin formulation was shown to exhibit highly desirable characteristics, such as low cure time and the ability to overcome oxygen inhibition, for the photolithographic fabrication of microfluidic devices. The feature fidelity, as well as various aspects of the feature shape and quality, were assessed as functions of various resin attributes, particularly the exposure conditions, initiator concentration and inhibitor to initiator ratio. An optical technique was utilized to evaluate the feature fidelity as well as the feature shape and quality. These results were used to optimize the thiol-ene resin formulation to produce high fidelity, high aspect ratio features without significant reductions in feature quality. For structures with aspect ratios below 2, little difference (<3%) in feature quality was observed between thiol-ene and acrylate based formulations. However, at higher aspect ratios, the thiol-ene resin exhibited significantly improved feature quality. At an aspect ratio of 8, raised feature quality for the thiol-ene resin was dramatically better than that achieved by using the acrylate resin. The use of the thiol-ene based resin enabled fabrication of a pinched-flow microfluidic device that has complex channel geometry, small (50 μm) channel dimensions, and high aspect ratio (14) features. This journal is © The Royal Society of Chemistry 2011

  12. Modeling of Turbulent Natural Convection in Enclosed Tall Cavities

    NASA Astrophysics Data System (ADS)

    Goloviznin, V. M.; Korotkin, I. A.; Finogenov, S. A.

    2017-12-01

    It was shown in our previous work (J. Appl. Mech. Tech. Phys 57 (7), 1159-1171 (2016)) that the eddy-resolving parameter-free CABARET scheme as applied to two-and three-dimensional de Vahl Davis benchmark tests (thermal convection in a square cavity) yields numerical results on coarse (20 × 20 and 20 × 20 × 20) grids that agree surprisingly well with experimental data and highly accurate computations for Rayleigh numbers of up to 1014. In the present paper, the sensitivity of this phenomenon to the cavity shape (varying from cubical to highly elongated) is analyzed. Box-shaped computational domains with aspect ratios of 1: 4, 1: 10, and 1: 28.6 are considered. The results produced by the CABARET scheme are compared with experimental data (aspect ratio of 1: 28.6), DNS results (aspect ratio of 1: 4), and an empirical formula (aspect ratio of 1: 10). In all the cases, the CABARET-based integral parameters of the cavity flow agree well with the other authors' results. Notably coarse grids with mesh refinement toward the walls are used in the CABARET calculations. It is shown that acceptable numerical accuracy on extremely coarse grids is achieved for an aspect ratio of up to 1: 10. For higher aspect ratios, the number of grid cells required for achieving prescribed accuracy grows significantly.

  13. Microwave synthesis and photocatalytic activities of ZnO bipods with different aspect ratios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Fazhe; Zhao, Zengdian; Qiao, Xueliang, E-mail: xuelqiao@163.com

    2016-02-15

    Highlights: • We synthesized linked ZnO nanorods by a facile microwave method. • The effect of reaction parameters on ZnO was investigated. • ZnO bipods with different aspect ratios were prepared. • The photocatalytic performance of ZnO bipods was evaluated. - Abstract: Linked ZnO nanorods have been successfully prepared via a facile microwave method without any post-synthesis treatment. The X-ray diffraction (XRD) patterns indicated the precursor had completely transformed into the pure ZnO crystal. The images of field emitting scanning electron microscope (FESEM) and transmission electron microscope (TEM) showed that linked ZnO nanorods consisted predominantly of ZnO bipods. The formationmore » process of the ZnO bipods was clearly discussed. ZnO bipods with different aspect ratios have been obtained by tuning the concentrations of reagents and microwave power. Moreover, the photocatalytic performance of ZnO bipods with different aspect ratios for degradation of methylene blue was systematically evaluated. The results of photocatalytic experiments showed that the photocatalytic activity increased with the aspect ratios of ZnO bipods increased. The reason is that ZnO bipods with larger aspect ratio have higher surface area, which can absorb more MB molecules to react with ·OH radicals.« less

  14. Hydrodynamic thrust generation and power consumption investigations for piezoelectric fins with different aspect ratios

    NASA Astrophysics Data System (ADS)

    Shahab, S.; Tan, D.; Erturk, A.

    2015-12-01

    Bio-inspired hydrodynamic thrust generation using piezoelectric transduction has recently been explored using Macro-Fiber Composite (MFC) actuators. The MFC technology strikes a balance between the actuation force and structural deformation levels for effective swimming performance, and additionally offers geometric scalability, silent operation, and ease of fabrication. Recently we have shown that mean thrust levels comparable to biological fish of similar size can be achieved using MFC fins. The present work investigates the effect of length-to-width (L/b) aspect ratio on the hydrodynamic thrust generation performance of MFC cantilever fins by accounting for the power consumption level. It is known that the hydrodynamic inertia and drag coefficients are controlled by the aspect ratio especially for L/b< 5. The three MFC bimorph fins explored in this work have the aspect ratios of 2.1, 3.9, and 5.4. A nonlinear electrohydroelastic model is employed to extract the inertia and drag coefficients from the vibration response to harmonic actuation for the first bending mode. Experiments are then conducted for various actuation voltage levels to quantify the mean thrust resultant and power consumption levels for different aspect ratios. Variation of the thrust coefficient of the MFC bimorph fins with changing aspect ratio is also semi-empirically modeled and presented.

  15. Microengineering of Metals and Ceramics: Part II: Special Replication Techniques, Automation and Properties; Volume 4: Advanced Micro & Nanosystems

    NASA Astrophysics Data System (ADS)

    Baltes, Henry; Brand, Oliver; Fedder, Gary K.; Hierold, Christofer; Korvink, Jan G.; Tabata, Osamu; Löhe, Detlef; Haußelt, Jürgen

    2005-10-01

    Microstructures, electronics, nanotechnology - these vast fields of research are growing together as the size gap narrows and many different materials are combined. Current research, engineering sucesses and newly commercialized products hint at the immense innovative potentials and future applications that open up once mankind controls shape and function from the atomic level right up to the visible world without any gaps. Continuing from the previous volume, authors from three major competence centres for microengineering here cover all aspects of specialized replication techniques and how to employ state-of-the-art technologies for testing and characterizing micro-scale components, and illustrate quality control aspects and strategies for automation of production procedures in view of future industrial production and commercialisation.

  16. Some Effects of Sweep and Aspect Ratio on the Transonic Flutter Characteristics of a Series of Thin Cantilever Wings Having a Taper Ratio of 0.6

    NASA Technical Reports Server (NTRS)

    Jones, G. W., Jr.; Unangst, J. R.

    1963-01-01

    An investigation of the flutter characteristics of a series of thin cantilever wings having taper ratios of 0.6 was conducted in the Langley transonic blowdown tunnel at Mach numbers between 0.76 and 1.42. The angle of sweepback was varied from 0 degrees to 60 degrees on wings of aspect ratio 4, and the aspect ratio was varied from 2.4 to 6.4 on wings with 45 degrees of sweepback. The results are presented as ratios between the experimental flutter speeds and the reference flutter speeds calculated on the basis of incompressible two-dimensional flow. These ratios, designated the flutter-speed ratios, are given as functions of Mach number for the various wings. The flutter-speed ratios were characterized, in most cases, by values near 1.0 at subsonic speeds with large increases in the speed ratios in the range of supersonic speeds investigated. Increasing the sweep effected increases in the flutter-speed ratios between 0 degrees and 30 degrees followed by progressive reductions of the speed ratios to nearly 1.0 as the sweep was increased from 30 degrees to 60 degrees. Reducing the aspect ratio from 6.4 to 2.4 resulted in progressively larger values of the flutter-speed ratios throughout the Mach number range investigated.

  17. Carbonate pore system evaluation using the velocity-porosity-pressure relationship, digital image analysis, and differential effective medium theory

    NASA Astrophysics Data System (ADS)

    Lima Neto, Irineu A.; Misságia, Roseane M.; Ceia, Marco A.; Archilha, Nathaly L.; Oliveira, Lucas C.

    2014-11-01

    Carbonate reservoirs exhibit heterogeneous pore systems and a wide variety of grain types, which affect the rock's elastic properties and the reservoir parameter relationships. To study the Albian carbonates in the Campos Basin, a methodology is proposed to predict the amount of microporosity and the representative aspect ratio of these inclusions. The method assumes three pore-space scales in two representative inclusion scenarios: 1) a macro-mesopore median aspect ratio from the thin-section digital image analysis (DIA) and 2) a microporosity aspect ratio predicted based on the measured P-wave velocities. Through a laboratory analysis of 10 grainstone core samples of the Albian age, the P- and S-wave velocities (Vp and Vs) are evaluated at effective pressures of 0-10 MPa. The analytical theories in the proposed methodology are functions of the aspect ratios from the differential effective medium (DEM) theory, the macro-mesopore system recognized from the DIA, the amount of microporosity determined by the difference between the porosities estimated from laboratorial helium-gas and the thin-section petrographic images, and the P-wave velocities under dry effective pressure conditions. The DIA procedure is applied to estimate the local and global parameters, and the textural implications concerning ultrasonic velocities and image resolution. The macro-mesopore inclusions contribute to stiffer rocks and higher velocities, whereas the microporosity inclusions contribute to softer rocks and lower velocities. We observe a high potential for this methodology, which uses the microporosity aspect ratio inverted from Vp to predict Vs with a good agreement. The results acceptably characterize the Albian grainstones. The representative macro-mesopore aspect ratio is 0.5, and the inverted microporosity aspect ratio ranges from 0.01 to 0.07. The effective pressure induced an effect of slight porosity reduction during the triaxial tests, mainly in the microporosity inclusions, slightly changing the amount and the aspect ratio of the microporosity.

  18. Mechanisms of Transendothelial Migration of Primary Human Invasive Ductal Carcinoma Cells from ER+, Her2+, and Triple-Negative Disease

    DTIC Science & Technology

    2015-09-01

    Intravital imaging in animal models has revealed many aspects of meta- stasis (3–6), including the essential roles that macrophages play in the...micro- environments inwhichmammary tumor cells invade,migrate, and intravasate (5, 7). In particular, intravital imaging of rodent mammary tumors shows...cell intravasation, called TMEM (tumor micro- environment of metastasis) sites (22, 23). These sites, initially observed by intravital imaging of

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barrett, J C; Karmanos Cancer Institute McLaren-Macomb, Clinton Township, MI; Knill, C

    Purpose: To determine small field correction factors for PTW’s microDiamond detector in Elekta’s Gamma Knife Model-C unit. These factors allow the microDiamond to be used in QA measurements of output factors in the Gamma Knife Model-C; additionally, the results also contribute to the discussion on the water equivalence of the relatively-new microDiamond detector and its overall effectiveness in small field applications. Methods: The small field correction factors were calculated as k correction factors according to the Alfonso formalism. An MC model of the Gamma Knife and microDiamond was built with the EGSnrc code system, using BEAMnrc and DOSRZnrc user codes.more » Validation of the model was accomplished by simulating field output factors and measurement ratios for an available ABS plastic phantom and then comparing simulated results to film measurements, detector measurements, and treatment planning system (TPS) data. Once validated, the final k factors were determined by applying the model to a more waterlike solid water phantom. Results: During validation, all MC methods agreed with experiment within the stated uncertainties: MC determined field output factors agreed within 0.6% of the TPS and 1.4% of film; and MC simulated measurement ratios matched physically measured ratios within 1%. The final k correction factors for the PTW microDiamond in the solid water phantom approached unity to within 0.4%±1.7% for all the helmet sizes except the 4 mm; the 4 mm helmet size over-responded by 3.2%±1.7%, resulting in a k factor of 0.969. Conclusion: Similar to what has been found in the Gamma Knife Perfexion, the PTW microDiamond requires little to no corrections except for the smallest 4 mm field. The over-response can be corrected via the Alfonso formalism using the correction factors determined in this work. Using the MC calculated correction factors, the PTW microDiamond detector is an effective dosimeter in all available helmet sizes. The authors would like to thank PTW (Friedberg, Germany) for providing the PTW microDiamond detector for this research.« less

  20. The Rejuvenating Effect in Hot Asphalt Recycling by Mortar Transfer Ratio and Image Analysis.

    PubMed

    Wang, Fusong; Wang, Zipeng; Li, Chao; Xiao, Yue; Wu, Shaopeng; Pan, Pan

    2017-05-24

    Using a rejuvenator to improve the performance of asphalt pavement is an effective and economic way of hot asphalt recycling. This research analyzes the rejuvenating effect on aged asphalt by means of a Mortar Transfer Ratio (MTR) test, which concerns the ratio of asphalt mortar that moves from recycled aggregates (RAP aggregates) to fresh added aggregates when aged asphalt is treated with a regenerating agent and comes into contact with fresh aggregates. The proposed MTR test analyzes the regeneration in terms of the softening degree on aged asphalt when the rejuvenator is applied. The covered area ratio is studied with an image analyzing tool to understand the possibility of mortar transferring from RAP aggregates to fresh aggregates. Additionally, a micro-crack closure test is conducted and observed through a microscope. The repairing ability and diffusion characteristics of micro-cracks can therefore be analyzed. The test results demonstrate that the proposed mortar transfer ratio is a feasible way to evaluate rejuvenator diffusion during hot recycling. The mortar transfer ratio and uncovered area ratio on fresh aggregates are compatible, and can be used to quantify the contribution of the rejuvenator. Within a certain temperature range, the diffusing effect of the rejuvenator is better when the diffusing temperature is higher. The diffusion time of the rejuvenator is optimum when diffusion occurs for 4-8 h. When the rejuvenator is properly applied, the rough and cracking surface can be repaired, resulting in better covered aggregates. The micro-closure analysis visually indicates that rejuvenators can be used to repair the RAP aggregates during hot recycling.

  1. The Rejuvenating Effect in Hot Asphalt Recycling by Mortar Transfer Ratio and Image Analysis

    PubMed Central

    Wang, Fusong; Wang, Zipeng; Li, Chao; Xiao, Yue; Wu, Shaopeng; Pan, Pan

    2017-01-01

    Using a rejuvenator to improve the performance of asphalt pavement is an effective and economic way of hot asphalt recycling. This research analyzes the rejuvenating effect on aged asphalt by means of a Mortar Transfer Ratio (MTR) test, which concerns the ratio of asphalt mortar that moves from recycled aggregates (RAP aggregates) to fresh added aggregates when aged asphalt is treated with a regenerating agent and comes into contact with fresh aggregates. The proposed MTR test analyzes the regeneration in terms of the softening degree on aged asphalt when the rejuvenator is applied. The covered area ratio is studied with an image analyzing tool to understand the possibility of mortar transferring from RAP aggregates to fresh aggregates. Additionally, a micro-crack closure test is conducted and observed through a microscope. The repairing ability and diffusion characteristics of micro-cracks can therefore be analyzed. The test results demonstrate that the proposed mortar transfer ratio is a feasible way to evaluate rejuvenator diffusion during hot recycling. The mortar transfer ratio and uncovered area ratio on fresh aggregates are compatible, and can be used to quantify the contribution of the rejuvenator. Within a certain temperature range, the diffusing effect of the rejuvenator is better when the diffusing temperature is higher. The diffusion time of the rejuvenator is optimum when diffusion occurs for 4–8 h. When the rejuvenator is properly applied, the rough and cracking surface can be repaired, resulting in better covered aggregates. The micro-closure analysis visually indicates that rejuvenators can be used to repair the RAP aggregates during hot recycling. PMID:28772935

  2. The optional selection of micro-motion feature based on Support Vector Machine

    NASA Astrophysics Data System (ADS)

    Li, Bo; Ren, Hongmei; Xiao, Zhi-he; Sheng, Jing

    2017-11-01

    Micro-motion form of target is multiple, different micro-motion forms are apt to be modulated, which makes it difficult for feature extraction and recognition. Aiming at feature extraction of cone-shaped objects with different micro-motion forms, this paper proposes the best selection method of micro-motion feature based on support vector machine. After the time-frequency distribution of radar echoes, comparing the time-frequency spectrum of objects with different micro-motion forms, features are extracted based on the differences between the instantaneous frequency variations of different micro-motions. According to the methods based on SVM (Support Vector Machine) features are extracted, then the best features are acquired. Finally, the result shows the method proposed in this paper is feasible under the test condition of certain signal-to-noise ratio(SNR).

  3. A modeling investigation of the impact of street and building configurations on personal air pollutant exposure in isolated deep urban canyons.

    PubMed

    Ng, Wai-Yin; Chau, Chi-Kwan

    2014-01-15

    This study evaluated the effectiveness of different configurations for two building design elements, namely building permeability and setback, proposed for mitigating air pollutant exposure problems in isolated deep canyons by using an indirect exposure approach. The indirect approach predicted the exposures of three different population subgroups (i.e. pedestrians, shop vendors and residents) by multiplying the pollutant concentrations with the duration of exposure within a specific micro-environment. In this study, the pollutant concentrations for different configurations were predicted using a computational fluid dynamics model. The model was constructed based on the Reynolds-Averaged Navier-Stokes (RANS) equations with the standard k-ε turbulence model. Fifty-one canyon configurations with aspect ratios of 2, 4, 6 and different building permeability values (ratio of building spacing to the building façade length) or different types of building setback (recess of a high building from the road) were examined. The findings indicated that personal exposures of shop vendors were extremely high if they were present inside a canyon without any setback or separation between buildings and when the prevailing wind was perpendicular to the canyon axis. Building separation and building setbacks were effective in reducing personal air exposures in canyons with perpendicular wind, although their effectiveness varied with different configurations. Increasing the permeability value from 0 to 10% significantly lowered the personal exposures on the different population subgroups. Likewise, the personal exposures could also be reduced by the introduction of building setbacks despite their effects being strongly influenced by the aspect ratio of a canyon. Equivalent findings were observed if the reduction in the total development floor area (the total floor area permitted to be developed within a particular site area) was also considered. These findings were employed to formulate a hierarchy decision making model to guide the planning of deep canyons in high density urban cities. © 2013 Elsevier B.V. All rights reserved.

  4. Fabrication of micro-cell UO2-Mo pellet with enhanced thermal conductivity

    NASA Astrophysics Data System (ADS)

    Kim, Dong-Joo; Rhee, Young Woo; Kim, Jong Hun; Kim, Keon Sik; Oh, Jang Soo; Yang, Jae Ho; Koo, Yang-Hyun; Song, Kun-Woo

    2015-07-01

    As one of accident tolerant fuel pellets which should have features of good thermal conductivity and high fission product retention, a micro-cell UO2-Mo pellet has been studied in the aspect of fabrication and thermal property. It was intended to develop the compatible process with conventional UO2 pellet fabrication process. The effects of processing parameters such as the size and density of UO2 granule and the size of Mo powder have been studied to produce sound and dense pellet with completely connected uniform Mo cell-walls. The micro-cell UO2-Mo pellet consists of many Mo micro-cells and UO2 in them. The thermal conductivity of the micro-cell UO2-Mo pellet was measured and compared to those of the UO2 pellet and the UO2-Mo pellet with dispersed form of Mo particles. The thermal conductivity of the micro-cell UO2-Mo pellet was much enhanced and was found to be influenced by the Mo volumetric fraction and pellet integrity. A continuous Mo micro-cell works as a heat conducting channel in the pellet, greatly enhancing the thermal conductivity of the micro cell UO2-Mo pellet.

  5. Laser-drilled micro-hole arrays on polyurethane synthetic leather for improvement of water vapor permeability

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Wang, A. H.; Zheng, R. R.; Tang, H. Q.; Qi, X. Y.; Ye, B.

    2014-06-01

    Three kinds of lasers at 1064, 532 and 355 nm wavelengths respectively were adopted to construct micro-hole arrays on polyurethane (PU) synthetic leather with an aim to improve water vapor permeability (WVP) of PU synthetic leather. The morphology of the laser-drilled micro-holes was observed to optimize laser parameters. The WVP and slit tear resistance of the laser-drilled leather were measured. Results show that the optimized pulse energy for the 1064, 532 and 355 nm lasers are 0.8, 1.1 and 0.26 mJ, respectively. The diameters of the micro-holes drilled with the optimized laser pulse energy were about 20, 15 and 10 μm, respectively. The depths of the micro-holes drilled with the optimized pulse energy were about 21, 60 and 69 μm, respectively. Compared with the untreated samples, the highest WVP growth ratio was 38.4%, 46.8% and 53.5% achieved by the 1064, 532 and 355 nm lasers, respectively. And the highest decreasing ratio of slit tear resistance was 11.1%, 14.8%, and 22.5% treated by the 1064, 532 and 355 nm lasers, respectively. Analysis of the interaction mechanism between laser beams at three kinds of laser wavelengths and the PU synthetic leather revealed that laser micro-drilling at 355 nm wavelength displayed both photochemical ablation and photothermal ablation, while laser micro-drilling at 1064 and 532 nm wavelengths leaded to photothermal ablation only.

  6. Experiments on two- and three-dimensional vortex flows in lid-driven cavities

    NASA Astrophysics Data System (ADS)

    Siegmann-Hegerfeld, Tanja; Albensoeder, Stefan; Kuhlmann, Hendrik C.

    2009-11-01

    Vortex flows in one-sided lid-driven cavities with different cross-sectional aspect ratios (γ = 0.26 up to γ = 6.3) are investigated experimentally. In all cases the spanwise aspect ratio λ>>γ is very large and much larger than most previous experiments. Flow-structure visualizations will be presented together with quantitative LDA and PIV measurements. The experimental results are in good agreement with the critical data from numerical stability analyses and with nonlinear simulations. Experimentally, we find four different three-dimensional instabilities. Particular attention is paid to the so-called C4 mode which arises at large cross-sectional aspect ratios. When the spanwise aspect ratio is small the first bifurcation of the C4 mode is strongly imperfect.

  7. Computational Modeling And Analysis Of Synthetic Jets

    NASA Technical Reports Server (NTRS)

    Mittal, Rajat; Cattafesta, Lou

    2005-01-01

    In the last report we focused on the study of 3D synthetic jets of moderate jet aspect-ratio. Jets in quiescent and cross-flow cases were investigated. Since most of the synthetic jets in practical applications are found to be of large aspect ratio, the focus was shifted to studying synthetic jets of large aspect ratio. In the current year, further progress has been made by studying jets of aspect ratio 8 and infinity. Some other aspects of the jet, like the vorticity flux is looked into apart from analyzing the vortex dynamics, velocity profiles and the other dynamical characteristics of the jet which allows us to extract some insight into the effect of these modifications on the jet performance. Also, efforts were made to qualitatively validate the simulated results with the NASA Langley test cases at higher jet Reynolds number for the quiescent jet case.

  8. Deformation mechanisms in negative Poisson's ratio materials - Structural aspects

    NASA Technical Reports Server (NTRS)

    Lakes, R.

    1991-01-01

    Poisson's ratio in materials is governed by the following aspects of the microstructure: the presence of rotational degrees of freedom, non-affine deformation kinematics, or anisotropic structure. Several structural models are examined. The non-affine kinematics are seen to be essential for the production of negative Poisson's ratios for isotropic materials containing central force linkages of positive stiffness. Non-central forces combined with pre-load can also give rise to a negative Poisson's ratio in isotropic materials. A chiral microstructure with non-central force interaction or non-affine deformation can also exhibit a negative Poisson's ratio. Toughness and damage resistance in these materials may be affected by the Poisson's ratio itself, as well as by generalized continuum aspects associated with the microstructure.

  9. The influence of pore geometry and orientation on the strength and stiffness of porous rock

    NASA Astrophysics Data System (ADS)

    Griffiths, Luke; Heap, Michael J.; Xu, Tao; Chen, Chong-feng; Baud, Patrick

    2017-03-01

    The geometry of voids in porous rock falls between two end-members: very low aspect ratio (the ratio of the minor to the major axis) microcracks and perfectly spherical pores with an aspect ratio of unity. Although the effect of these end-member geometries on the mechanical behaviour of porous rock has received considerable attention, our understanding of the influence of voids with an intermediate aspect ratio is much less robust. Here we perform two-dimensional numerical simulations (Rock Failure Process Analysis, RFPA2D) to better understand the influence of pore aspect ratio (from 0.2 to 1.0) and the angle between the pore major axis and the applied stress (from 0 to 90°) on the mechanical behaviour of porous rock under uniaxial compression. Our numerical simulations show that, for a fixed aspect ratio (0.5) the uniaxial compressive strength and Young's modulus of porous rock can be reduced by a factor of ∼2.4 and ∼1.3, respectively, as the angle between the major axis of the elliptical pores and the applied stress is rotated from 0 to 90°. The influence of pore aspect ratio on strength and Young's modulus depends on the pore angle. At low angles (∼0-10°) an increase in aspect ratio reduces the strength and Young's modulus. At higher angles (∼40-90°), however, strength and Young's modulus increase as aspect ratio is increased. At intermediate angles (∼20-30°), strength and Young's modulus first increase and then decrease as pore aspect ratio approaches unity. These simulations also highlight that the influence of pore angle on compressive strength and Young's modulus decreases as the pore aspect ratio approaches unity. We find that the analytical solution for the stress concentration around a single elliptical pore, and its contribution to elasticity, are in excellent qualitative agreement with our numerical simulations. The results of our numerical modelling are also in agreement with recent experimental data for porous basalt, but fail to capture the strength anisotropy observed in experiments on sandstone. We conclude that the alignment of grains or platy minerals such as clays exerts a greater influence on strength anisotropy in porous sandstones than pore geometry. Finally, we show that the strength anisotropy that arises as a result of preferentially aligned elliptical pores is of a similar magnitude to that generated by bedding in porous sandstones and foliation in low-porosity metamorphic rocks. The modelling presented herein shows that porous rocks containing elliptical pores can display a strength and stiffness anisotropy, with implications for the preservation and destruction of porosity and permeability, as well as the distribution of stress and strain within the Earth's crust.

  10. Development of electrical-erosion instrument for direct write micro-patterning on large area conductive thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Álvarez, Ángel Luis; Coya, Carmen; García-Vélez, Miguel

    2015-08-15

    We have developed a complete instrument to perform direct, dry, and cost-effective lithography on conductive materials, based on localized electrical discharges, which avoids using masks or chemicals typical of conventional photolithography. The technique is considered fully compatible with substrate transport based systems, like roll-to-roll technology. The prototype is based on two piezo nano-steppers coupled to three linear micro-stages to cover a large scale operation from micrometers to centimeters. The operation mode consists of a spring probe biased at low DC voltage with respect to a grounded conductive layer. The tip slides on the target layer keeping contact with the materialmore » in room conditions, allowing continuous electric monitoring of the process, and also real-time tilt correction via software. The sliding tip leaves an insulating path (limited by the tip diameter) along the material, enabling to draw electrically insulated tracks and pads. The physical principle of operation is based in the natural self-limitation of the discharge due to material removal or insulation. The so produced electrical discharges are very fast, in the range of μs, so features may be performed at speeds of few cm/s, enabling scalability to large areas. The instrument has been tested on different conducting materials as gold, indium tin oxide, and aluminum, allowing the fabrication of alphanumeric displays based on passive matrix of organic light emitting diodes without the use of masks or photoresists. We have verified that the highest potential is achieved on graphene, where no waste material is detected, producing excellent well defined edges. This allows manufacturing graphene micro-ribbons with a high aspect ratio up to 1200:1.« less

  11. Fabrication of 3D Carbon Microelectromechanical Systems (C-MEMS).

    PubMed

    Pramanick, Bidhan; Martinez-Chapa, Sergio O; Madou, Marc; Hwang, Hyundoo

    2017-06-17

    A wide range of carbon sources are available in nature, with a variety of micro-/nanostructure configurations. Here, a novel technique to fabricate long and hollow glassy carbon microfibers derived from human hairs is introduced. The long and hollow carbon structures were made by the pyrolysis of human hair at 900 °C in a N2 atmosphere. The morphology and chemical composition of natural and pyrolyzed human hairs were investigated using scanning electron microscopy (SEM) and electron-dispersive X-ray spectroscopy (EDX), respectively, to estimate the physical and chemical changes due to pyrolysis. Raman spectroscopy was used to confirm the glassy nature of the carbon microstructures. Pyrolyzed hair carbon was introduced to modify screen-printed carbon electrodes ; the modified electrodes were then applied to the electrochemical sensing of dopamine and ascorbic acid. Sensing performance of the modified sensors was improved as compared to the unmodified sensors. To obtain the desired carbon structure design, carbon micro-/nanoelectromechanical system (C-MEMS/C-NEMS) technology was developed. The most common C-MEMS/C-NEMS fabrication process consists of two steps: (i) the patterning of a carbon-rich base material, such as a photosensitive polymer, using photolithography; and (ii) carbonization through the pyrolysis of the patterned polymer in an oxygen-free environment. The C-MEMS/NEMS process has been widely used to develop microelectronic devices for various applications, including in micro-batteries, supercapacitors, glucose sensors, gas sensors, fuel cells, and triboelectric nanogenerators. Here, recent developments of a high-aspect ratio solid and hollow carbon microstructures with SU8 photoresists are discussed. The structural shrinkage during pyrolysis was investigated using confocal microscopy and SEM. Raman spectroscopy was used to confirm the crystallinity of the structure, and the atomic percentage of the elements present in the material before and after pyrolysis was measured using EDX.

  12. Development of electrical-erosion instrument for direct write micro-patterning on large area conductive thin films

    NASA Astrophysics Data System (ADS)

    Álvarez, Ángel Luis; Coya, Carmen; García-Vélez, Miguel

    2015-08-01

    We have developed a complete instrument to perform direct, dry, and cost-effective lithography on conductive materials, based on localized electrical discharges, which avoids using masks or chemicals typical of conventional photolithography. The technique is considered fully compatible with substrate transport based systems, like roll-to-roll technology. The prototype is based on two piezo nano-steppers coupled to three linear micro-stages to cover a large scale operation from micrometers to centimeters. The operation mode consists of a spring probe biased at low DC voltage with respect to a grounded conductive layer. The tip slides on the target layer keeping contact with the material in room conditions, allowing continuous electric monitoring of the process, and also real-time tilt correction via software. The sliding tip leaves an insulating path (limited by the tip diameter) along the material, enabling to draw electrically insulated tracks and pads. The physical principle of operation is based in the natural self-limitation of the discharge due to material removal or insulation. The so produced electrical discharges are very fast, in the range of μs, so features may be performed at speeds of few cm/s, enabling scalability to large areas. The instrument has been tested on different conducting materials as gold, indium tin oxide, and aluminum, allowing the fabrication of alphanumeric displays based on passive matrix of organic light emitting diodes without the use of masks or photoresists. We have verified that the highest potential is achieved on graphene, where no waste material is detected, producing excellent well defined edges. This allows manufacturing graphene micro-ribbons with a high aspect ratio up to 1200:1.

  13. Design and Optimization of Ultrasonic Vibration Mechanism using PZT for Precision Laser Machining

    NASA Astrophysics Data System (ADS)

    Kim, Woo-Jin; Lu, Fei; Cho, Sung-Hak; Park, Jong-Kweon; Lee, Moon G.

    As the aged population grows around the world, many medical instruments and devices have been developed recently. Among the devices, a drug delivery stent is a medical device which requires precision machining. Conventional drug delivery stent has problems of residual polymer and decoating because the drug is coated on the surface of stent with the polymer. If the drug is impregnated in the micro sized holes on the surface, the problems can be overcome because there is no need to use the polymer anymore. Micro sized holes are generally fabricated by laser machining; however, the fabricated holes do not have a high aspect ratio or a good surface finish. To overcome these problems, we propose a vibration-assisted machining mechanism with PZT (Piezoelectric Transducers) for the fabrication of micro sized holes. If the mechanism vibrates the eyepiece of the laser machining head, the laser spot on the workpiece will vibrate vertically because objective lens in the eyepiece shakes by the mechanism's vibration. According to the former researches, the vibrating frequency over 20 kHz and amplitude over 500 nm are preferable. The vibration mechanism has cylindrical guide, hollowed PZT and supports. In the cylinder, the eyepiece is mounted. The cylindrical guide has upper and low plates and side wall. The shape of plates and side wall are designed to have high resonating frequency and large amplitude of motion. The PZT is also selected to have high actuating force and high speed of motion. The support has symmetrical and rigid configuration. The mechanism secures linear motion of the eyepiece. This research includes sensitivity analysis and design of ultrasonic vibration mechanism. As a result of design, the requirements of high frequency and large amplitude are achieved.

  14. Development of electrical-erosion instrument for direct write micro-patterning on large area conductive thin films.

    PubMed

    Álvarez, Ángel Luis; Coya, Carmen; García-Vélez, Miguel

    2015-08-01

    We have developed a complete instrument to perform direct, dry, and cost-effective lithography on conductive materials, based on localized electrical discharges, which avoids using masks or chemicals typical of conventional photolithography. The technique is considered fully compatible with substrate transport based systems, like roll-to-roll technology. The prototype is based on two piezo nano-steppers coupled to three linear micro-stages to cover a large scale operation from micrometers to centimeters. The operation mode consists of a spring probe biased at low DC voltage with respect to a grounded conductive layer. The tip slides on the target layer keeping contact with the material in room conditions, allowing continuous electric monitoring of the process, and also real-time tilt correction via software. The sliding tip leaves an insulating path (limited by the tip diameter) along the material, enabling to draw electrically insulated tracks and pads. The physical principle of operation is based in the natural self-limitation of the discharge due to material removal or insulation. The so produced electrical discharges are very fast, in the range of μs, so features may be performed at speeds of few cm/s, enabling scalability to large areas. The instrument has been tested on different conducting materials as gold, indium tin oxide, and aluminum, allowing the fabrication of alphanumeric displays based on passive matrix of organic light emitting diodes without the use of masks or photoresists. We have verified that the highest potential is achieved on graphene, where no waste material is detected, producing excellent well defined edges. This allows manufacturing graphene micro-ribbons with a high aspect ratio up to 1200:1.

  15. Experimental research on micro-pit defects of SUS 430 stainless steel strip in cold rolling process

    NASA Astrophysics Data System (ADS)

    Li, Changsheng; Li, Miao; Zhu, Tao; Huo, Gang

    2013-05-01

    In order to improve surface glossiness of stainless steel strip in tandem cold rolling, experimental research on micro-pit defects of SUS 430 ferrite stainless steel was investigated in laboratory. The surface morphology of micro-pit defects was observed by SEM. The effects of micro-pit defects on rolling reduction, roll surface roughness and emulsion parameters were analyzed. With the pass number increasing, the quantity and surface of micro-pit defects were reduced, uneven peak was decreased and gently along rolling direction, micro-pit defects had equally distributed tendency along tranverse direction. The micro-pit defects were increased with the roll surface roughness increase. The defects ratio was declined with larger gradient at pass number 1 to 3, but gentle slope at pass number 4 to 5. The effects of temperature 55° and 63°, concentration 3% and 6% of emulsion on micro-pit effects had not obvious difference. Maintain of micro-pit was effected by rolling oil or air in the micro-pit, the quality of oil was much more than the air in the micro-pit in lubrication rolling.

  16. Methodological Aspects of Strategic Development of Regional Socio-Economic System (Following the Example of Radio-Electronic Industry Enterprises in the Republic of Tatarstan)

    ERIC Educational Resources Information Center

    Uraev, Nikolay N.; Mingaleev, Gaziz F.; Kushimov, Aleksandr T.; Kolesov, Nikolay A.

    2016-01-01

    This paper considers the methodological aspects of forming a development strategy for the regional socioeconomic system (by the example of radio-electronic enterprises in the Republic of Tatarstan). The paper suggests a conceptual scheme of the macro- and micro-factors' influence on the regional socioeconomic system. This scheme is based on the…

  17. Comparison of dynamic FDG-microPET study in a rabbit turpentine-induced inflammatory model and in a rabbit VX2 tumor model.

    PubMed

    Hamazawa, Yoshimasa; Koyama, Koichi; Okamura, Terue; Wada, Yasuhiro; Wakasa, Tomoko; Okuma, Tomohisa; Watanabe, Yasuyoshi; Inoue, Yuichi

    2007-01-01

    We investigated the optimum time for the differentiation tumor from inflammation using dynamic FDG-microPET scans obtained by a MicroPET P4 scanner in animal models. Forty-six rabbits with 92 inflammatory lesions that were induced 2, 5, 7, 14, 30 and 60 days after 0.2 ml (Group 1) or 1.0 ml (Group 2) of turpentine oil injection were used as inflammatory models. Five rabbits with 10 VX2 tumors were used as the tumor model. Helical CT scans were performed before the PET studies. In the PET study, after 4 hours fasting, and following transmission scans and dynamic emission data acquisitions were performed until 2 hours after intravenous FDG injection. Images were reconstructed every 10 minutes using a filtered-back projection method. PET images were analyzed visually referring to CT images. For quantitative analysis, the inflammation-to-muscle (I/M) ratio and tumor-to-muscle (T/M) ratio were calculated after regions of interest were set in tumors and muscles referring to CT images and the time-I/M ratio and time-T/M ratio curves (TRCs) were prepared to show the change over time in these ratios. The histological appearance of both inflammatory lesions and tumor lesions were examined and compared with the CT and FDG-microPET images. In visual and quantitative analysis, All the I/M ratios and the T/M ratios increased over time except that Day 60 of Group 1 showed an almost flat curve. The TRC of the T/M ratio showed a linear increasing curve over time, while that of the I/M ratios showed a parabolic increasing over time at the most. FDG uptake in the inflammatory lesions reflected the histological findings. For differentiating tumors from inflammatory lesions with the early image acquired at 40 min for dual-time imaging, the delayed image must be acquired 30 min after the early image, while imaging at 90 min or later after intravenous FDG injection was necessary in single-time-point imaging. Our results suggest the possibility of shortening the overall testing time in clinical practice by adopting dual-time-point imaging rather than single-time-point imaging.

  18. Mixing enhancement by biologically inspired convection in a micro-chamber using alternating current galvanotactic control of the Tetrahymena pyriformis

    NASA Astrophysics Data System (ADS)

    Kim, Jihoon; Jang, Yonghee; Byun, Doyoung; Hyung Kim, Dal; Jun Kim, Min

    2013-09-01

    Recently, there has been increasing interest in the swimming behavior of microorganisms and biologically inspired micro-robots. In this study, we investigated biologically induced convection flow with living microorganism using galvanotaxis. We fabricated and evaluated our micro-mixer with motile cells. For the cell based active micro-mixers, two miscible fluids were used to measure the mixing index. Under alternating current (AC) electric fields with varying frequency, a group of motile Tetrahymena pyriformis cells generated reciprocal motion with circulating flows around their pathline, enhancing the mixing ratio.

  19. CFD Assessment of Orifice Aspect Ratio and Mass Flow Ratio on Jet Mixing in Rectangular Ducts

    NASA Technical Reports Server (NTRS)

    Bain, D. B.; Smith, C. E.; Holdeman, J. D.

    1994-01-01

    Isothermal CFD analysis was performed on axially opposed rows of jets mixing with cross flow in a rectangular duct. Laterally, the jets' centerlines were aligned with each other on the top and bottom walls. The focus of this study was to characterize the effects of orifice aspect ratio and jet-to-mainstream mass flow ratio on jet penetration and mixing. Orifice aspect ratios (L/W) of 4-to-1, 2-to-1, and 1-to-1, along with circular holes, were parametrically analyzed. Likewise, jet-to-mainstream mass flow ratios (MR) of 2.0, 0.5, and 0.25 were systematically investigated. The jet-to-mainstream momentum-flux ratio (J) was maintained at 36 for all cases, and the orifice spacing-to-duct height (S/H) was varied until optimum mixing was attained for each configuration. The numerical results showed that orifice aspect ratio (and likewise orifice blockage) had little effect on jet penetration and mixing. Based on mixing characteristics alone, the 4-to-1 slot was comparable to the circular orifice. The 4-to-1 slot has a smaller jet wake which may be advantageous for reducing emissions. However, the axial length of a 4-to-1 slot may be prohibitively long for practical application, especially for MR of 2.0. The jet-to-mainstream mass flow ratio had a more significant effect on jet penetration and mixing. For a 4-to-1 aspect ratio orifice, the design correlating parameter for optimum mixing (C = (S/H)(sq. root J)) varied from 2.25 for a mass flow ratio of 2.0 to 1.5 for a mass flow ratio of 0.25.

  20. Sub-surface structures and collapse mechanisms of summit pit craters

    NASA Astrophysics Data System (ADS)

    Roche, O.; van Wyk de Vries, B.; Druitt, T. H.

    2001-01-01

    Summit pit craters are found in many types of volcanoes and are generally thought to be the product of collapse into an underpressured reservoir caused by magma withdrawal. We investigate the mechanisms and structures associated with summit pit crater formation by scaled analogue experiments and make comparisons with natural examples. Models use a sand plaster mixture as analogue rock over a cylinder of silicone simulating an underpressured magma reservoir. Experiments are carried out using different roof aspect ratios (roof thickness/roof width) of 0.2-2. They reveal two basic collapse mechanisms, dependant on the roof aspect ratio. One occurs at low aspect ratios (≤1), as illustrated by aspect ratios of 0.2 and 1. Outward dipping reverse faults initiated at the silicone margins propagates through the entire roof thickness and cause subsidence of a coherent block. Collapse along the reverse faults is accommodated by marginal flexure of the block and tension fractures at the surface (aspect ratio of 0.2) or by the creation of inward dipping normal faults delimiting a terrace (aspect ratio of 1). At an aspect ratio of 1, overhanging pit walls are the surface expressions of the reverse faults. Experiments at high aspect ratio (>1.2) reveal a second mechanism. In this case, collapse occurs by stopping, which propagates upwards by a complex pattern of both reverse faults and tension fractures. The initial underground collapse is restricted to a zone above the reservoir and creates a cavity with a stable roof above it. An intermediate mechanism occurs at aspect ratios of 1.1-1.2. In this case, stopping leads to the formation of a cavity with a thin and unstable roof, which collapses suddenly. The newly formed depression then exhibits overhanging walls. Surface morphology and structure of natural examples, such as the summit pit craters at Masaya Volcano, Nicaragua, have many of the features created in the models, indicating that the internal structural geometry of experiments can be applied to real examples. In particular, the surface area and depth of the underpressured reservoir can be roughly estimated. We present a morphological analysis of summit pit craters at volcanoes such as Kilimanjaro (Tanzania), San Cristobal, Telica and Masaya (Nicaragua), and Ubinas (Peru), and indicate a likely type of subsidence and possible position of the former magma reservoir responsible for collapse in each case.

  1. Contact fatigue mechanisms as a function of crystal aspect ratio in baria-silicate glass ceramics

    NASA Astrophysics Data System (ADS)

    Suputtamongkol, Kallaya

    2003-10-01

    Ceramic materials are potentially useful for dental applications because of their esthetic potential and biocompatibility. However, the existence of fatigue damage in ceramics raises considerable concern regarding its effect on the life prediction of dental prostheses. During normal mastication, dental restorations are subjected to repeated loading more than a thousand times per day and relatively high clinical failure rates for ceramic prostheses have been reported. To simulate the intraoral loads, Hertzian indentation loading was used in this study to characterize the fatigue failure mechanisms of ceramic materials using clinically relevant parameters. The baria-silicate system was chosen because of the nearly identical composition between the crystal and the glass matrix. Little or no residual stress is expected from the elastic modulus and thermal expansion mismatches between the two phases. Crystallites with different aspect ratios can also be produced by controlled heat treatment schedules. The objective of this study was to characterize the effect of crystal morphology on the fatigue mechanisms of bariasilicate glass-ceramics under clinically relevant conditions. The results show that the failure of materials with a low toughness such as baria-silicate glass (0.7 MPa•m1/2) and glass-ceramic with an aspect ratio of 3/1 (1.3 MPa•m1/2) initiated from a cone crack developed during cyclic loading for 103 to 105 cycles. The mean strength values of baria-silicate glass and glass-ceramic with an aspect ratio of 3/1 decreased significantly as a result of the presence of a cone crack. Failure of baria-silicate glass-ceramics with an aspect ratio of 8/1 (Kc = 2.1 MPa•m1/2) was initiated from surface flaws caused by either polishing or cyclic loading. The gradual decrease of fracture stress was observed in specimens with an aspect ratio of 8/1 after loading in air for 103 to 10 5 cycles. A reduction of approximately 50% in fracture stress levels was found for specimens with an aspect ratio of 8/1 after loading for 10 5 cycles in deionized water. The mechanisms for cyclic fatigue crack propagation in baria-silicate glass-ceramics are similar to those observed under quasi-static loading conditions. An intergranular fracture path was observed in glass-ceramics with an aspect ratio of 3/1. For an aspect ratio of 8/1, a transgranular fracture mode was dominant.

  2. Effect of aspect ratio on the mechanical behavior of packings of spheroids

    NASA Astrophysics Data System (ADS)

    Parafiniuk, Piotr; Bańda, Maciej; Stasiak, Mateusz; Horabik, Józef; Wiącek, Joanna; Molenda, Marek

    2018-07-01

    This paper presents measurements of the mechanical response of assemblages formed by spheroid particles. Sets of such particles in the form of thin, cylindrical samples were subjected to uniaxial confined compression. The particles were flattened and elongated, with aspect ratios ranging from 0.5 to 2.5. All particles were fabricated using a 3D printer and each had the same volume. Because the particles had well-defined shapes, it was possible to experimentally observe how the mechanical response of the anisotropic and highly constrained samples depended on the elongation of the particles. In particular, we showed how the sample density, lateral pressure ratio, and work done to compact a sample of elongated or flattened particles changed with change in particle aspect ratio. Furthermore, we found that the evolution of packing density in subsequent loading-unloading cycles followed a stretched exponential law regardless of particle aspect ratio.

  3. Precession feature extraction of ballistic missile warhead with high velocity

    NASA Astrophysics Data System (ADS)

    Sun, Huixia

    2018-04-01

    This paper establishes the precession model of ballistic missile warhead, and derives the formulas of micro-Doppler frequency induced by the target with precession. In order to obtain micro-Doppler feature of ballistic missile warhead with precession, micro-Doppler bandwidth estimation algorithm, which avoids velocity compensation, is presented based on high-resolution time-frequency transform. The results of computer simulations confirm the effectiveness of the proposed method even with low signal-to-noise ratio.

  4. Single-Crystalline InGaAs/InP Dense Micro-Pillar Forest on Poly-Silicon Substrates for Low-Cost High-Efficiency Solar Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang-Hasnain, Constance

    2015-05-04

    The ultimate goal of this project is to develop a photovoltaic system high conversion efficiency (>20%) using high quality III-V compound-based three-dimensional micro-structures on silicon and poly-silicon. Such a PV-system could be of very low cost due to minimum usages of III-V materials. This project will address the barriers that currently hamper the performance of solar cells based on three-dimensional micro-structures. To accomplish this goal the project is divided into 4 tasks, each dealing with a different aspect of the project: materials quality, micropillar growth control, light management, and pillar based solar cells. Materials Quality: the internal quantum efficiency (IQE)more » - by which is meant here the internal fluorescence yield - of the micro-pillars has to be increased. We aim at achieving an IQE of 45% by the end of the first year. By the end of the second year there will be a go-no-go milestone of 65% IQE. By the end of year 3 and 4 we aim to achieve 75% and 90% IQE, respectively. Micropillar growth control: dense forests of micropillars with high fill ratios need to be grown. Pillars within forests should show minimum variations in size. We aim at achieving fill ratios of 2%, 10%, >15%, >20% in years 1, 2, 3, and 4, respectively. Variations in dimension should be minimized by site-controlled growth of pillars. By the end of year 1 we will aim at achieving site-controlled growth with > 15% yield. By end of year 2 the variation of critical pillar dimensions should be less than 25%. Light management: high light absorption in the spectral range of the sun has been to be demonstrated for the micropillar forests. By the end of year 1 we will employ FDTD simulation techniques to demonstrate that pillar forests with fill ratios <20% can achieve 99% light absorption. By end of year 2 our original goal was to demonstrate >85% absorption. By end of year 3 > 90% absorption should be demonstrated. Pillar based solar cells: devices will be studied to explore ways to achieve high open-circuit voltages which will lead to high efficiency micropillar-based solar cells. We will start on single pillar devices and the findings in these studies should pave the way for devices based on forests/ arrays of pillars. By the end of the second year we aim to demonstrate a single pillar device with an open-circuit voltage of 0.7 V, as well as a pillar-forest based device with 8% conversion efficiency. By the end of year 3 these numbers should be improved to 0.9 V open-circuit voltage for single pillar devices and >15% efficiency for forest/array-based devices. We will aim to realize a device with 20% efficiency by the end of the project period.« less

  5. Analysis of micro-failure behaviors in artificial muscles based on fishing line and sewing thread

    NASA Astrophysics Data System (ADS)

    Xu, J. B.; Cheng, K. F.; Tu, S. L.; He, X. M.; Ma, C.; Jin, Y. Z.; Kang, X. N.; Sun, T.; Zhang, Y.

    2017-06-01

    The aim of the present study was to discuss a new and effective method for testing artificial muscles based on micro-failure behaviors analysis. Thermo-mechanical actuators based on fishing line and sewing thread, also, the capability of responding to ambient temperature variations producing a large amount of shrinkage ratio of a resulting variation in longitudinal length. The minimum micro-failure value is 0.02μm and the maximum value is 1.72μm with nylon twist pattern. The discovery of an innovative effective testing of artificial muscles based on polymeric fibers specimens on micro-failure, rupture, slippage, etc. This research finds out a micro-failure behavior analysis of thermo-mechanical actuators based on fishing line and sewing thread. The specimens show large deformations when heated together with warping performance in terms of shrinkage of energy and densities. With the purpose of providing useful analysis data for the further technology applications, we attempt micrometre-sized artificial muscles which were also tested was readily accessible and also can be applied to other polymeric fibers. Effective use of this technique achievement relies on rotate speed, temperature and tensile direction. The results of the tensile testing experiments were outstanding with respect to some important issues related to the response of micro-structure, twisted polymeric fibers and shrinkage ratio.

  6. The influence of the focus position on laser machining and laser micro-structuring monocrystalline diamond surface

    NASA Astrophysics Data System (ADS)

    Wu, Mingtao; Guo, Bing; Zhao, Qingliang; Fan, Rongwei; Dong, Zhiwei; Yu, Xin

    2018-06-01

    Micro-structured surface on diamond is widely used in microelectronics, optical elements, MEMS and NEMS components, ultra-precision machining tools, etc. The efficient micro-structuring of diamond material is still a challenging task. In this article, the influence of the focus position on laser machining and laser micro-structuring monocrystalline diamond surface were researched. At the beginning, the ablation threshold and its incubation effect of monocrystalline diamond were determined and discussed. As the accumulated laser pulses ranged from 40 to 5000, the laser ablation threshold decreased from 1.48 J/cm2 to 0.97 J/cm2. Subsequently, the variation of the ablation width and ablation depth in laser machining were studied. With enough pulse energy, the ablation width mainly depended on the laser propagation attributes while the ablation depth was a complex function of the focus position. Raman analysis was used to detect the variation of the laser machined diamond surface after the laser machining experiments. Graphite formation was discovered on the machined diamond surface and graphitization was enhanced after the defocusing quantity exceeded 45 μm. At last, several micro-structured surfaces were successfully fabricated on diamond surface with the defined micro-structure patterns and structuring ratios just by adjusting the defocusing quantity. The experimental structuring ratio was consistent with the theoretical analysis.

  7. Effects of aspect ratio of multi-walled carbon nanotubes on coal washery waste water treatment.

    PubMed

    Aliyu, Ahmed; Kariim, Ishaq; Abdulkareem, Saka Ambali

    2017-11-01

    The dependency of adsorption behaviour on the aspect ratio of multi-walled carbon nanotubes (MWCNTs) has been explored. In this study, effect of growth temperature on yield and aspect ratio of MWCNTs by catalytic chemical vapour deposition (CCVD) method is reported. The result revealed that yield and aspect ratio of synthesised MWCNTs strongly depend on the growth temperature during CCVD operation. The resulting MWCNTs were characterized by High Resolution Transmission Electron Microscope (HRTEM), Dynamic Light Scattering (DLS) and X-ray diffraction (XRD) techniques to determine it diameter, hydrodynamic diameter and crystallinity respectively. Aspect ratio and length of the grown MWCNTs were determined from the HRTEM images with the hydrodynamic diameter using the modified Navier-Stokes and Stokes-Einstein equations. The effect of the prepared MWCNTs dosage were investigated on the Turbidity, Iron (Fe) and Lead (Pb) removal efficiency of coal washery effluent. The MWCNTs with higher length (58.17 μm) and diameter (71 nm) tend to show high turbidity and Fe removal, while MWCNTs with lower length (38.87 μm) and diameter (45 nm) tend to show high removal of Pb. Hence, the growth temperature during CCVD operation shows a great effluence on the aspect ratio of MWCNTs which determines it area of applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Investigation at low speeds of the effect of aspect ratio and sweep on rolling stability derivatives of untapered wings

    NASA Technical Reports Server (NTRS)

    Goodman, Alex; Fisher, Lewis R.

    1949-01-01

    A low scale wind tunnel investigation was conducted in rolling flow to determine the effects of aspect ratio and sweep (when varied independently) on the rolling stability derivatives for a series of untapered wings. Test results indicate that when the aspect ratio was held constant, an increase in the sweepback angle caused a significant reduction in the damping in roll at low lift coefficients for only the higher aspect ratios that were tested. This result was in agreement with available swept wing theory which indicated no effect of sweep for aspect ratios near zero. The result of the linear theory that the damping in roll is independent of lift coefficient and that the yawing moment and lateral force due to rolling are directly proportional to the lift coefficient was found to be valid for only a very limited lift coefficient range when the wings were highly swept. For such wings, the damping was found to increase in magnitude and the yawing moment due to rolling, to change from negative to positive at moderate lift coefficients. The effect of wing tip suction, not acounted for by present theory, was found to be very important with regard to the yawing moment due to rolling, particularly for low aspect ratio swept wings. An empirical means of correcting present theory for the effect of tip suction is suggested.

  9. Numerical modeling on air quality in an urban environment with changes of the aspect ratio and wind direction.

    PubMed

    Yassin, Mohamed F

    2013-06-01

    Due to heavy traffic emissions within an urban environment, air quality during the last decade becomes worse year by year and hazard to public health. In the present work, numerical modeling of flow and dispersion of gaseous emissions from vehicle exhaust in a street canyon were investigated under changes of the aspect ratio and wind direction. The three-dimensional flow and dispersion of gaseous pollutants were modeled using a computational fluid dynamics (CFD) model which was numerically solved using Reynolds-averaged Navier-Stokes (RANS) equations. The diffusion flow field in the atmospheric boundary layer within the street canyon was studied for different aspect ratios (W/H=1/2, 3/4, and 1) and wind directions (θ=90°, 112.5°, 135°, and 157.5°). The numerical models were validated against wind tunnel results to optimize the turbulence model. The numerical results agreed well with the wind tunnel results. The simulation demonstrated that the minimum concentration at the human respiration height within the street canyon was on the windward side for aspect ratios W/H=1/2 and 1 and wind directions θ=112.5°, 135°, and 157.5°. The pollutant concentration level decreases as the wind direction and aspect ratio increase. The wind velocity and turbulence intensity increase as the aspect ratio and wind direction increase.

  10. Preliminary design characteristics of a subsonic business jet concept employing an aspect ratio 25 strut braced wing

    NASA Technical Reports Server (NTRS)

    Turriziani, R. V.; Lovell, W. A.; Martin, G. L.; Price, J. E.; Swanson, E. E.; Washburn, G. F.

    1980-01-01

    The advantages of replacing the conventional wing on a transatlantic business jet with a larger, strut braced wing of aspect ratio 25 were evaluated. The lifting struts reduce both the induced drag and structural weight of the heavier, high aspect ratio wing. Compared to the conventional airplane, the strut braced wing design offers significantly higher lift to drag ratios achieved at higher lift coefficients and, consequently, a combination of lower speeds and higher altitudes. The strut braced wing airplane provides fuel savings with an attendant increase in construction costs.

  11. The microbiology of biomining: development and optimization of mineral-oxidizing microbial consortia.

    PubMed

    Rawlings, Douglas E; Johnson, D Barrie

    2007-02-01

    Biomining, the use of micro-organisms to recover precious and base metals from mineral ores and concentrates, has developed into a successful and expanding area of biotechnology. While careful considerations are made in the design and engineering of biomining operations, microbiological aspects have been subjected to far less scrutiny and control. Biomining processes employ microbial consortia that are dominated by acidophilic, autotrophic iron- or sulfur-oxidizing prokaryotes. Mineral biooxidation takes place in highly aerated, continuous-flow, stirred-tank reactors or in irrigated dump or heap reactors, both of which provide an open, non-sterile environment. Continuous-flow, stirred tanks are characterized by homogeneous and constant growth conditions where the selection is for rapid growth, and consequently tank consortia tend to be dominated by two or three species of micro-organisms. In contrast, heap reactors provide highly heterogeneous growth environments that change with the age of the heap, and these tend to be colonized by a much greater variety of micro-organisms. Heap micro-organisms grow as biofilms that are not subject to washout and the major challenge is to provide sufficient biodiversity for optimum performance throughout the life of a heap. This review discusses theoretical and pragmatic aspects of assembling microbial consortia to process different mineral ores and concentrates, and the challenges for using constructed consortia in non-sterile industrial-scale operations.

  12. Experimental and Calculated Characteristics of Several NACA 44-series Wings with Aspect Ratios of 8, 10, and 12 and Taper Ratios of 2.5 and 3.5

    NASA Technical Reports Server (NTRS)

    Neely, Robert H; Bollech, Thomas V; Westrick, Gertrude C

    1947-01-01

    The aerodynamic characteristics of seven unswept tapered wings were determined by calculation from two-dimensional data and by wind-tunnel tests in order to demonstrate the accuracy of the calculations and to show some of the effects of aspect ratio, taper ratio, and root thickness-chord ratio. The characteristics were calculated by the usual application of the lifting-line theory which assumes linear section lift curves and also by an application of the theory which allows the use of nonlinear lift curves. A correction to the lift for the effect of chord was made by using the Jones edge-velocity factor. The wings had aspect ratios of 8, 10, and 12, taper ratios of 2.5 and 3.5, and NACA 44-series airfoils.

  13. Towards fractional-order capacitors with broad tunable constant phase angles: multi-walled carbon nanotube-polymer composite as a case study

    NASA Astrophysics Data System (ADS)

    Agambayev, Agamyrat; Rajab, Karam H.; Hassan, Ali H.; Farhat, Mohamed; Bagci, Hakan; Salama, Khaled N.

    2018-02-01

    In this study, multi-walled carbon nanotube (MWCNT) filled polyevinelidenefluoride-trifluoroethylene-chlorofluoroethylene composites are used to realize fractional-order capacitors (FOCs). A solution-mixing and drop-casting approach is used to fabricate the composite. Due to the high aspect ratio of MWCNTs, percolation regime starts at a small weight percentage (wt%), 1.00%.The distributed MWCNTs inside the polymer act as an electrical network of micro-capacitors and micro-resistors, which, in effect, behaves like a FOC. The resulting FOCs’ constant phase angle (CPA) can be tuned from -65{\\hspace{0pt}}^\\circ to -7{\\hspace{0pt}}^\\circ by changing the wt% of the MWCNTs. This is the largest dynamic range reported so far at the frequency range from 150 kHz to 2 MHz for an FOC. Furthermore, the CPA and pseudo-capacitance are shown to be practically stable (with less than 1% variation) when the applied voltage is, changed between 500 µV and 5 V. For a fixed value of CPA, the pseudo-capacitance can be tuned by changing the thickness of the composite, which can be done in a straightforward manner via the solution-mixing and drop-casting fabrication approach. Finally, it is shown that the frequency of a Hartley oscillator built using an FOC is almost 15 times higher than that of a Hartley oscillator built using a conventional capacitor.

  14. Anisometric Particle Systems—from Shape Characterization to Suspension Rheology

    NASA Astrophysics Data System (ADS)

    Gregorová, Eva; Pabst, Willi; Vaněrková, Lucie

    2009-06-01

    Methods for the characterization of anisometric particle systems are discussed. For prolate particles, the aspect ratio determination via microscopic image analysis is recalled, and aspect ratio distributions as well as shape-size dependences are commented upon. For oblate particles a simple relation is recalled with can be used to determine an average aspect ratio when size distributions are available from two methods, typically from sedimentation analysis and laser diffraction. The connection between particle shape (aspect ratio) and suspension rheology is outlined and it is shown how a generic procedure, based on Brenner's theory, can be applied to predict the intrinsic viscosity when the aspect ratio is known. On the other hand it is shown, how information on the intrinsic viscosity and the critical solids volume fraction can be extracted from experiments, when the measured concentration dependence of the effective suspension viscosity is adequately interpreted (using the Krieger relation for fitting). The examples mentioned in this paper include systems with oblate or prolate ceramic particles (kaolins, pyrophyllite, wollastonite, silicon carbide) as well as (prolate) pharmaceuticals (mesalamine, ibuprofen, nifuroxazide, paracetamol).

  15. Percolation in suspensions of hard nanoparticles: From spheres to needles

    NASA Astrophysics Data System (ADS)

    Schilling, Tanja; Miller, Mark A.; van der Schoot, Paul

    2015-09-01

    We investigate geometric percolation and scaling relations in suspensions of nanorods, covering the entire range of aspect ratios from spheres to extremely slender needles. A new version of connectedness percolation theory is introduced and tested against specialised Monte Carlo simulations. The theory accurately predicts percolation thresholds for aspect ratios of rod length to width as low as 10. The percolation threshold for rod-like particles of aspect ratios below 1000 deviates significantly from the inverse aspect ratio scaling prediction, thought to be valid in the limit of infinitely slender rods and often used as a rule of thumb for nanofibres in composite materials. Hence, most fibres that are currently used as fillers in composite materials cannot be regarded as practically infinitely slender for the purposes of percolation theory. Comparing percolation thresholds of hard rods and new benchmark results for ideal rods, we find that i) for large aspect ratios, they differ by a factor that is inversely proportional to the connectivity distance between the hard cores, and ii) they approach the slender rod limit differently.

  16. The Protein Micro-Crystallography Beamlines for Targeted Protein Research Program

    NASA Astrophysics Data System (ADS)

    Hirata, Kunio; Yamamoto, Masaki; Matsugaki, Naohiro; Wakatsuki, Soichi

    In order to collect proper diffraction data from outstanding micro-crystals, a brand-new data collection system should be designed to provide high signal-to noise ratio in diffraction images. SPring-8 and KEK-PF are currently developing two micro-beam beamlines for Targeted Proteins Research Program by MEXT of Japan. The program aims to reveal the structure and function of proteins that are difficult to solve but have great importance in both academic research and industrial application. At SPring-8, a new 1-micron beam beamline for protein micro-crystallography, RIKEN Targeted Proteins Beamline (BL32XU), is developed. At KEK-PF a new low energy micro-beam beamline, BL-1A, is dedicated for SAD micro-crystallography. The two beamlines will start operation in the end of 2010. The present status of the research and development for protein micro-crystallography will be presented.

  17. Aspect Ratio Model for Radiation-Tolerant Dummy Gate-Assisted n-MOSFET Layout.

    PubMed

    Lee, Min Su; Lee, Hee Chul

    2014-01-01

    In order to acquire radiation-tolerant characteristics in integrated circuits, a dummy gate-assisted n-type metal oxide semiconductor field effect transistor (DGA n-MOSFET) layout was adopted. The DGA n-MOSFET has a different channel shape compared with the standard n-MOSFET. The standard n-MOSFET has a rectangular channel shape, whereas the DGA n-MOSFET has an extended rectangular shape at the edge of the source and drain, which affects its aspect ratio. In order to increase its practical use, a new aspect ratio model is proposed for the DGA n-MOSFET and this model is evaluated through three-dimensional simulations and measurements of the fabricated devices. The proposed aspect ratio model for the DGA n-MOSFET exhibits good agreement with the simulation and measurement results.

  18. Aspect Ratio Model for Radiation-Tolerant Dummy Gate-Assisted n-MOSFET Layout

    PubMed Central

    Lee, Min Su; Lee, Hee Chul

    2014-01-01

    In order to acquire radiation-tolerant characteristics in integrated circuits, a dummy gate-assisted n-type metal oxide semiconductor field effect transistor (DGA n-MOSFET) layout was adopted. The DGA n-MOSFET has a different channel shape compared with the standard n-MOSFET. The standard n-MOSFET has a rectangular channel shape, whereas the DGA n-MOSFET has an extended rectangular shape at the edge of the source and drain, which affects its aspect ratio. In order to increase its practical use, a new aspect ratio model is proposed for the DGA n-MOSFET and this model is evaluated through three-dimensional simulations and measurements of the fabricated devices. The proposed aspect ratio model for the DGA n-MOSFET exhibits good agreement with the simulation and measurement results. PMID:27350975

  19. Silicon macroporous arrays with high aspect ratio prepared by ICP etching

    NASA Astrophysics Data System (ADS)

    Wang, Guozheng; Yang, Bingchen; Wang, Ji; Yang, Jikai; Duanmu, Qingduo

    2018-02-01

    This paper reports on a macroporous silicon arrays with high aspect ratio, the pores of which are of 162, 205, 252, 276μm depths with 6, 10, 15 and 20 μm diameters respectively, prepared by Multiplex Inductively Coupled Plasma (ICP) etching. It was shown that there are very differences in process of high aspect ratio microstructures between the deep pores, a closed structure, and deep trenches, a open structure. The morphology and the aspect ratio dependent etching were analyzed and discussed. The macroporous silicon etched by ICP process yield an uneven, re-entrant, notched and ripples surface within the pores. The main factors effecting on the RIE lag of HARP etching are the passivation cycle time, the pressure of reactive chamber, and the platen power of ICP system.

  20. Effects of aspect ratio on the phase diagram of spheroidal particles

    NASA Astrophysics Data System (ADS)

    Kutlu, Songul; Haaga, Jason; Rickman, Jeffrey; Gunton, James

    Ellipsoidal particles occur in both colloidal and protein science. Models of protein phase transitions based on interacting spheroidal particles can often be more realistic than those based on spherical molecules. One of the interesting questions is how the aspect ratio of spheroidal particles affects the phase diagram. Some results have been obtained in an earlier study by Odriozola (J. Chem. Phys. 136:134505 (2012)). In this poster we present results for the phase diagram of hard spheroids interacting via a quasi-square-well potential, for different aspect ratios. These results are obtained from Monte Carlo simulations using the replica exchange method. We find that the phase diagram, including the crystal phase transition, is sensitive to the choice of aspect ratio. G. Harold and Leila Y. Mathers Foundation.

  1. Novel acyl-CoA: cholesterol acyltransferase inhibitor: indoline-based sulfamide derivatives with low lipophilicity and protein binding ratio.

    PubMed

    Takahashi, Kenji; Ohta, Masaru; Shoji, Yoshimichi; Kasai, Masayasu; Kunishiro, Kazuyoshi; Miike, Tomohiro; Kanda, Mamoru; Shirahase, Hiroaki

    2010-08-01

    To find a novel acyl-CoA: cholesterol acyltransferase inhibitor, a series of sulfamide derivatives were synthesized and evaluated. Compound 1d, in which carboxymethyl moiety at the 5-position of Pactimibe was replaced by a sulfamoylamino group, showed 150-fold more potent anti-foam cell formation activity (IC(50): 0.02 microM), 1.6-fold higher log D(7.0) (4.63), and a slightly lower protein binding ratio (93.2%) than Pactimibe. Compound 1i, in which the octyl chain at the 1-position in 1d was replaced by an ethoxyethyl, showed markedly low log D(7.0) (1.73) and maintained 3-fold higher anti-foam cell formation activity (IC(50): 1.0 microM), than Pactimibe. The plasma protein binding ratio (PBR) of 1i was much lower than that of Pactimibe (62.5% vs. 98.1%), and its partition ratio to the rabbit atherosclerotic aorta after oral administration was higher than that of Pactimibe. Compound 1i at 10 microM markedly inhibited cholesterol esterification in atherosclerotic rabbit aortas even when incubated with serum, while Pactimibe had little effect probably due to its high PBR. In conclusion, compound 1i is expected to more efficiently inhibit the progression of atherosclerosis than Pactimibe.

  2. Siderophores, the answer for micro to nanosized asbestos fibre related health hazard

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Shabori; Ledwani, Lalita; John, P. J.

    2016-04-01

    Recent studies on the potential toxicity of High Aspect Ratio Nanoparticles (HARN) has yet once again reinforced the health hazard imposed by asbestos fibres ranging from nano to micro size. Asbestos a naturally occurring fibrous mineral declared a Group I definite carcinogen by IARC (International Agency for Research on Cancer), a unit of WHO in the year 1987, has been extensively used since World War II to the near past for various commercial products. According to the most recent World Health Organization (WHO) estimates, asbestos-related diseases, resulting from exposure at workplace claims more than 107000 lives every year worldwide. The various types of toxic effects induced by asbestos in humans include - i) inflammation and fibrogenesis of lung, ii) mesothelioma iii) asbestosis and iv) bronchogenic carcinoma. The stability of asbestos in natural environment and its biological aggressiveness is related to their fibrous structure and dimensions. The actual risk associated with the exposure to nanosized asbestos, which is still unknown and escapes most regulations worldwide, has been shown in various toxicity assessment studies conducted on various animal models.In an effort to reduce the size of asbestos and therby its toxicity by limiting its biopersistence, oxalic acid treatment of asbestos coupled to power ultrasound treatment was carried out. The nanosized particles formed were still found to retain their hazardous effect. Similar were the results obtained on strong acid treatment of asbestos as well. A probable solution to the asbestos toxicity problem therefore envisaged was bioremediation. This involved the secretion of iron chelating molecules termed siderophores by microbes, which are of significance due to their ability to form very stable and soluble complexes with iron. Iron in asbestos composition is a major factor responsible for its carcinogenicity, removal or extraction of which would prove to be an effective answer to the worldwide problem. Siderophores are low molecular weight organic compounds with a very high and specific affinity to chelate iron and enhance their diffusion to the microbial cell surface. A number of successful experiments carried out in vitro have shown positive results concerning reduction in asbestos toxicity on chelation of iron by siderophores. The present investigation tends to put forth the aspect of these biomolecules secreted by specific bacteria and fungi as potent tools to fight the micro to nano sized asbestos fibre toxicity.

  3. [Qi as a materialist concept on the level of medical philosophy].

    PubMed

    Su, Zhan-Qing

    2005-03-01

    This paper has made a distinction between the materialist concept of qi on the medical philosophical level and its substantial existence, and illustrated the materiality and multiplicity of qi. Materiality refers to the objective reality, a summation of various things or phenomena related to human beings; while multiplicity refers to diversity of specific substances, each holding its individual essence. Based on two essential conceptions "xiang" and "xiangji", and combining the theories of traditional Chinese medicine and Western medicine, this paper has also made a preliminary study on the substantial existence of qi at macro- and micro-levels, and on physiological (normal) and pathological (abnormal) aspects. It is the author's argument that studies of the substantial existence of qi from different aspects, micro-dimension in particular, will push the syndrome differentiation of traditional Chinese medicine to a more subtle sphere.

  4. Nano-material aspects of shock absorption in bone joints.

    PubMed

    Tributsch, H; Copf, F; Copf, P; Hindenlang, U; Niethard, F U; Schneider, R

    2010-01-01

    This theoretical study is based on a nano-technological evaluation of the effect of pressure on the composite bone fine structure. It turned out, that the well known macroscopic mechano-elastic performance of bones in combination with muscles and tendons is just one functional aspect which is critically supported by additional micro- and nano- shock damping technology aimed at minimising local bone material damage within the joints and supporting spongy bone material. The identified mechanisms comprise essentially three phenomena localised within the three-dimensional spongy structure with channels and so called perforated flexible tensulae membranes of different dimensions intersecting and linking them. Kinetic energy of a mechanical shock may be dissipated within the solid-liquid composite bone structure into heat via the generation of quasi-chaotic hydromechanic micro-turbulence. It may generate electro-kinetic energy in terms of electric currents and potentials. And the resulting specific structural and surface electrochemical changes may induce the compressible intra-osseal liquid to build up pressure dependent free chemical energy. Innovative bone joint prostheses will have to consider and to be adapted to the nano-material aspects of shock absorption in the operated bones.

  5. Hydrodynamic Characteristics of Two Low-Drag Supercavitating Hydrofoils

    NASA Technical Reports Server (NTRS)

    McGehee, John R.; Johnson, Virgil E., Jr.

    1959-01-01

    An experimental investigation has been conducted in Langley tank no. 2 to determine the hydrodynamic characteristics of two low-drag supercavitating hydrofoils operating in a range of cavitation numbers from 0 to approximately 6. The hydrofoils had aspect ratios of 1 and 3, and the sections were derived by assuming five terms in the vorticity-distribution expansion of the equivalent airfoil. The aspect-ratio-1 hydrofoil was also tested at zero cavitation number with two sets of end plates having depths of 3/8 and 1/4 chords. Zero cavitation number was established by operating the hydrofoils near the water surface so that complete ventilation of the upper surfaces could be obtained. For those depths of submersion where complete ventilation was not obtained through vortex ventilation, two probes were used to introduce air to the upper surfaces of the hydrofoils and to induce complete ventilation. Data were obtained for a range of speeds from 20 to 80 fps, angles of attack from 2 to 20 deg, and ratios of depth of submersion to chord from 0 to 0.85. The experimental results obtained from the aspect-ratio-1 and aspect-ratio-3, five-term hydrofoils were compared with a three-dimensional zero-cavitation-number theory. The theoretical and experimental values of lift and center of pressure for the aspect-ratio-1 hydrofoil were in agreement, within engineering accuracy, for the range of lift coefficients investigated. The theoretical drag coefficients were lower, by a constant amount, than the experimental drag coefficients. The theoretical expressions derived for the lift, drag, and center of pressure of the aspect-ratio-3 hydrofoil were in agreement, within engineering accuracy, with the experimental values. The theoretical and experimental drag coefficients of the aspect-ratio-3 five-term hydrofoil were lower than the theoretical drag coefficients computed for a comparable Tulin-Burkart hydrofoil.

  6. Segmented media and medium damping in microwave assisted magnetic recording

    NASA Astrophysics Data System (ADS)

    Bai, Xiaoyu; Zhu, Jian-Gang

    2018-05-01

    In this paper, we present a methodology of segmented media stack design for microwave assisted magnetic recording. Through micro-magnetic modeling, it is demonstrated that an optimized media segmentation is able to yield high signal-to-noise ratio even with limited ac field power. With proper segmentation, the ac field power could be utilized more efficiently and this can alleviate the requirement for medium damping which has been previously considered a critical limitation. The micro-magnetic modeling also shows that with segmentation optimization, recording signal-to-noise ratio can have very little dependence on damping for different recording linear densities.

  7. Some applications of the NASTRAN level 16 subsonic flutter analysis capability. [to transport wing and arrow wing

    NASA Technical Reports Server (NTRS)

    Doggett, R. V., Jr.; Cunningham, H. J.

    1976-01-01

    The Level 16 flutter analysis capability was applied to an aspect-ratio-6.8 subsonic transport type wing, an aspect-ratio-1.7 arrow wing, and an aspect-ratio-1.3 all movable horizontal tail with a geared elevator. The transport wing and arrow wing results are compared with experimental results obtained in the Langley transonic dynamic tunnel and with other calculated results obtained using subsonic lifting surface (kernel function) unsteady aerodynamic theory.

  8. Method of fabricating a high aspect ratio microstructure

    DOEpatents

    Warren, John B.

    2003-05-06

    The present invention is for a method of fabricating a high aspect ratio, freestanding microstructure. The fabrication method modifies the exposure process for SU-8, an negative-acting, ultraviolet-sensitive photoresist used for microfabrication whereby a UV-absorbent glass substrate, chosen for complete absorption of UV radiation at 380 nanometers or less, is coated with a negative photoresist, exposed and developed according to standard practice. This UV absorbent glass enables the fabrication of cylindrical cavities in a negative photoresist microstructures that have aspect ratios of 8:1.

  9. Nonlinear oscillatory rarefied gas flow inside a rectangular cavity

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Zhu, Lianhua; Su, Wei; Wu, Lei; Zhang, Yonghao

    2018-04-01

    The nonlinear oscillation of rarefied gas flow inside a two-dimensional rectangular cavity is investigated on the basis of the Shakhov kinetic equation. The gas dynamics, heat transfer, and damping force are studied numerically via the discrete unified gas-kinetic scheme for a wide range of parameters, including gas rarefaction, cavity aspect ratio, and oscillation frequency. Contrary to the linear oscillation where the velocity, temperature, and heat flux are symmetrical and oscillate with the same frequency as the oscillating lid, flow properties in nonlinear oscillatory cases turn out to be asymmetrical, and second-harmonic oscillation of the temperature field is observed. As a consequence, the amplitude of the shear stress near the top-right corner of the cavity could be several times larger than that at the top-left corner, while the temperature at the top-right corner could be significantly higher than the wall temperature in nearly the whole oscillation period. For the linear oscillation with the frequency over a critical value, and for the nonlinear oscillation, the heat transfer from the hot to cold region dominates inside the cavity, which is contrary to the anti-Fourier heat transfer in a low-speed rarefied lid-driven cavity flow. The damping force exerted on the oscillating lid is studied in detail, and the scaling laws are developed to describe the dependency of the resonance and antiresonance frequencies (corresponding to the damping force at a local maximum and minimum, respectively) on the reciprocal aspect ratio from the near hydrodynamic to highly rarefied regimes. These findings could be useful in the design of the micro-electro-mechanical devices operating in the nonlinear-flow regime.

  10. Set-up of a pump as turbine use in micro-pumped hydro energy storage: a case of study in Froyennes Belgium

    NASA Astrophysics Data System (ADS)

    Morabito, A.; Steimes, J.; Bontems, O.; Zohbi, G. Al; Hendrick, P.

    2017-04-01

    Its maturity makes pumped hydro energy storage (PHES) the most used technology in energy storage. Micro-hydro plants (<100 kW) are globally emerging due to further increases in the share of renewable electricity production such as wind and solar power. This paper presents the design of a micro-PHES developed in Froyennes, Belgium, using a pump as turbine (PaT) coupled with a variable frequency driver (VFD). The methods adopted for the selection of the most suitable pump for pumping and reverse mode are compared and discussed. Controlling and monitoring the PaT performances represent a compulsory design phase in the analysis feasibility of PaT coupled with VFD in micro PHES plant. This study aims at answering technical research aspects of µ-PHES site used with reversible pumps.

  11. Early clinical applications for imaging at microscopic detail: microfocus computed tomography (micro-CT).

    PubMed

    Hutchinson, J Ciaran; Shelmerdine, Susan C; Simcock, Ian C; Sebire, Neil J; Arthurs, Owen J

    2017-07-01

    Microfocus CT (micro-CT) has traditionally been used in industry and preclinical studies, although it may find new applicability in the routine clinical setting. It can provide high-resolution three-dimensional digital imaging data sets to the same level of detail as microscopic examination without the need for tissue dissection. Micro-CT is already enabling non-invasive detailed internal assessment of various tissue specimens, particularly in breast imaging and early gestational fetal autopsy, not previously possible from more conventional modalities such as MRI or CT. In this review, we discuss the technical aspects behind micro-CT image acquisition, how early work with small animal studies have informed our knowledge of human disease and the imaging performed so far on human tissue specimens. We conclude with potential future clinical applications of this novel and emerging technique.

  12. Potential of lattice Boltzmann to model droplets on chemically stripe-patterned substrates

    NASA Astrophysics Data System (ADS)

    Patrick Jansen, H.; Sotthewes, K.; Zandvliet, Harold J. W.; Kooij, E. Stefan

    2016-01-01

    Lattice Boltzmann modelling (LBM) has recently been applied to a range of different wetting situations. Here we demonstrate its potential in representing complex kinetic effects encountered in droplets on chemically stripe-patterned surfaces. An ultimate example of the power of LBM is provided by comparing simulations and experiments of impacting droplets with varying Weber numbers. Also, the shape evolution of droplets is discussed in relation to their final shape. The latter can then be compared to Surface Evolver (SE) results, since under the proper boundary conditions both approaches should yield the same configuration in a static state. During droplet growth in LBM simulations, achieved by increasing the density within the droplet, the contact line initially advances in the direction parallel to the stripes, therewith increasing its aspect ratio. Once the volume becomes too large the droplet starts wetting additional stripes, leading to a lower aspect ratio. The maximum aspect ratio is shown to be a function of the width ratio of the hydrophobic and hydrophilic stripes and also their absolute widths. In the limit of sufficiently large stripe widths the aspect ratio is solely dependent on the relative stripe widths. The maximum droplet aspect ratio in the LBM simulations is compared to SE simulations and results are shown to be in good agreement. Additionally, we also show the ability of LBM to investigate single stripe wetting, enabling determination of the maximum aspect ratio that can be achieved in the limit of negligible hydrophobic stripe width, under the constraint that the stripe widths are large enough such that they are not easily crossed.

  13. Electrokinetic transport phenomena: Mobility measurement and electrokinetic instability

    NASA Astrophysics Data System (ADS)

    Oddy, Michael Huson

    Miniaturization and integration of traditional bioassay procedures into microfabricated on-chip assay systems, commonly referred to as "Micro Total Analysis" (muTAS) systems, may have a significant impact on the fields of genomics, proteomics, and clinical analysis. These bioanalytical microsystems leverage electroosmosis and electrophoresis for sample transport, mixing, manipulation, and separation. This dissertation addresses the following three topics relevant to such systems: a new diagnostic for measuring the electrophoretic mobility of sub-micron, fluorescently-labeled particles and the electroosmotic mobility of a microchannel; a novel method and device for rapidly stirring micro- and nanoliter volume solutions for microfluidic bioanalytical applications; and a multiple-species electrokinetic instability model. Accurate measurement of the electrophoretic particle mobility and the electroosmotic mobility of microchannel surfaces is crucial to understanding the stability of colloidal suspensions, obtaining particle tracking-based velocimetry measurements of electroosmotic flow fields, and the quantification of electrokinetic bioanalytical device performance. A method for determining these mobilities from alternating and direct current electrokinetic particle tracking measurements is presented. The ability to rapidly mix fluids at low Reynolds numbers is important to the functionality of many bioanalytical, microfluidic devices. We present an electrokinetic process for rapidly stirring microflow streams by initiating an electrokinetic flow instability. The design, fabrication and performance analysis of two micromixing devices capable of rapidly stirring two low Reynolds number fluid streams are presented. Electroosmotic and electrophoretic transport in the presence of conductivity mismatches between reagent streams and the background electrolytes, can lead to an unstable flow field generating significant sample dispersion. In the multiple-species electrokinetic instability model, we consider a high aspect ratio microchannel geometry, a conductivity gradient orthogonal to the applied electric field, and a four-species chemistry model. A linear stability analysis of the depth-averaged governing equations shows unstable eigenmodes for conductivity ratios as close to unity as 1.01. Experiments and full nonlinear simulations of the governing equations were conducted for a conductivity ratio of 1.05. Images of the disturbance dye field from the nonlinear simulations show good qualitative and quantitative agreement with experiment. Species electromigration is shown to a have significant influence on the development of the conductivity field and instability dynamics in multi-ion configurations.

  14. The study of LED light source illumination conditions for ideal algae cultivation

    NASA Astrophysics Data System (ADS)

    Tsai, Chun-Chin; Huang, Chien-Fu; Chen, Cin-Fu; Yue, Cheng-Feng

    2017-02-01

    Utilizing LED light source modules with 3 different RGB colors, the illumination effect of different wavelengths had been investigated on the growth curve of the same kind of micro algae. It was found that the best micro algae culturing status came out with long wavelength light such as red light (650 670 nm). Based on the same condition for a period of 3 weeks , the grown micro algae population density ratio represented by Optical Density (O.D.) ratio is 1?0.4?0.7 corresponding to growth with Red, Green, Blue light sources, respectively. Mixing 3 types and 2 types of LEDs with different parameters, the grown micro algae population densities were compared in terms of O.D. Interestingly enough, different light sources resulted in significant discoloration on micro algae growth, appearing yellow, brown, green, etc. Our experiments results showed such discoloration effect is reversible. Based on the same lighting condition, micro algae growth can be also affected by incubator size, nutrition supply, and temperature variation. In recent years, micro algae related technologies have been international wise a hot topic of energy and environmental protection for research and development institutes, and big energy companies among those developed countries. There will be an economically prosperous future. From this study of LED lighting to ideal algae cultivation, it was found that such built system would be capable of optimizing artificial cultivation system, leading to economic benefits for its continuous development. Since global warming causing weather change, accompanying with reducing energy sources and agriculture growth shortage are all threatening human being survival.

  15. Hybrid micro/nanostructural surface offering improved stress distribution and enhanced osseointegration properties of the biomedical titanium implant.

    PubMed

    Hou, Ping-Jen; Ou, Keng-Liang; Wang, Chin-Chieh; Huang, Chiung-Fang; Ruslin, Muhammad; Sugiatno, Erwan; Yang, Tzu-Sen; Chou, Hsin-Hua

    2018-03-01

    The aim of the present study was to investigate the surface characteristic, biomechanical behavior, hemocompatibility, bone tissue response and osseointegration of the optimal micro-arc oxidation surface-treated titanium (MST-Ti) dental implant. The surface characteristic, biomechanical behavior and hemocompatibility of the MST-Ti dental implant were performed using scanning electron microscope, finite element method, blood dripping and immersion tests. The mini-pig model was utilized to evaluate the bone tissue response and osseointegration of the MST-Ti dental implant in vivo. Data were analyzed by analysis of variance using the Student's t-test (P ≤ 0.05). The hybrid volcano-like micro/nanoporous structure was formed on the surface of the MST-Ti dental implant. The hybrid volcano-like micro/nanoporous surface played an important role to improve the stress transfer between fixture, cortical bone and cancellous bone for the MST-Ti dental implant. Moreover, the MST-Ti implant was considered to have the outstanding hemocompatibility. In vivo testing results showed that the bone-to-implant contact (BIC) ratio significantly altered as the implant with micro/nanoporous surface. After 12 weeks of implantation, the MST-Ti dental implant group exhibited significantly higher BIC ratio than the untreated dental implant group. In addition, the MST-Ti dental implant group also presented an enhancing osseointegration, particularly in the early stages of bone healing. It can be concluded that the micro-arc oxidation approach induced the formation of micro/nanoporous surface is a promising and reliable alternative surface modification for Ti dental implant applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. High-Frequency Fiber-Optic Ultrasonic Sensor Using Air Micro-Bubble for Imaging of Seismic Physical Models.

    PubMed

    Gang, Tingting; Hu, Manli; Rong, Qiangzhou; Qiao, Xueguang; Liang, Lei; Liu, Nan; Tong, Rongxin; Liu, Xiaobo; Bian, Ce

    2016-12-14

    A micro-fiber-optic Fabry-Perot interferometer (FPI) is proposed and demonstrated experimentally for ultrasonic imaging of seismic physical models. The device consists of a micro-bubble followed by the end of a single-mode fiber (SMF). The micro-structure is formed by the discharging operation on a short segment of hollow-core fiber (HCF) that is spliced to the SMF. This micro FPI is sensitive to ultrasonic waves (UWs), especially to the high-frequency (up to 10 MHz) UW, thanks to its ultra-thin cavity wall and micro-diameter. A side-band filter technology is employed for the UW interrogation, and then the high signal-to-noise ratio (SNR) UW signal is achieved. Eventually the sensor is used for lateral imaging of the physical model by scanning UW detection and two-dimensional signal reconstruction.

  17. Under-response of a PTW-60019 microDiamond detector in the Bragg peak of a 62 MeV/n carbon ion beam

    NASA Astrophysics Data System (ADS)

    Rossomme, S.; Hopfgartner, J.; Vynckier, S.; Palmans, H.

    2016-06-01

    To investigate the linear energy transfer (LET) dependence of the response of a PTW-60019 Freiburg microDiamond detector, its response was compared to the response of a plane-parallel Markus chamber in a 62 MeV/n mono-energetic carbon ion beam. Results obtained with two different experimental setups are in agreement. As recommended by IAEA TRS-398, the response of the Markus chamber was corrected for temperature, pressure, polarity effects and ion recombination. No correction was applied to the response of the microDiamond detector. The ratio of the response of the Markus chamber to the response of the microDiamond is close to unity in the plateau region. In the Bragg peak region, a significant increase of the ratio is observed, which increases to 1.2 in the distal edge region. Results indicate a correlation between the under-response of the microDiamond detector and high LET values. The combined relative standard uncertainty of the results is estimated to be 2.38% in the plateau region and 12% in the distal edge region. These values are dominated by the uncertainty of alignment in the non-uniform beam and the uncertainty of range determination.

  18. Numerical analysis on effect of aspect ratio of planar solid oxide fuel cell fueled with decomposed ammonia

    NASA Astrophysics Data System (ADS)

    Tan, Wee Choon; Iwai, Hiroshi; Kishimoto, Masashi; Brus, Grzegorz; Szmyd, Janusz S.; Yoshida, Hideo

    2018-04-01

    Planar solid oxide fuel cells (SOFCs) with decomposed ammonia are numerically studied to investigate the effect of the cell aspect ratio. The ammonia decomposer is assumed to be located next to the SOFCs, and the heat required for the endothermic decomposition reaction is supplied by the thermal radiation from the SOFCs. Cells with aspect ratios (ratios of the streamwise length to the spanwise width) between 0.130 and 7.68 are provided with the reactants at a constant mass flow rate. A parametric study is conducted by varying the cell temperature and fuel utility factor to investigate their effects on the cell performance in terms of the voltage efficiency. The effect of the heat supply to the ammonia decomposer is also studied. The developed model shows good agreement, in terms of the current-voltage curve, with the experimental data obtained from a short stack without parameter tuning. The simulation study reveals that the cell with the highest aspect ratio achieves the highest performance under furnace operation. On the other hand, the 0.750 aspect ratio cell with the highest voltage efficiency of 0.67 is capable of thermally sustaining the ammonia decomposers at a fuel utility of 0.80 using the thermal radiation from both sidewalls.

  19. Making connections: Where STEM learning and Earth science data services meet

    NASA Astrophysics Data System (ADS)

    Bugbee, K.; Ramachandran, R.; Maskey, M.; Gatlin, P. N.; Weigel, A. M.

    2016-12-01

    STEM learning is most effective when students are encouraged to see the connections between science, technology and real world problems. Helping to make these connections has become an increasingly important aspect of Earth science data research. The Global Hydrology Resource Center (GHRC), one of NASA's 12 EOSDIS data centers, has developed a new type of documentation called the micro article to facilitate making connections between data and Earth science research problems. Micro articles are short academic texts that enable a reader to quickly understand a scientific phenomena, a case study, or an instrument used to collect data. While originally designed to increase data discovery and usability, micro articles also serve as a reliable starting point for project-based learning, an educational approach in STEM education, for high school and higher education environments. This presentation will highlight micro articles at the Global Hydrology Resource Center data center and will demonstrate the potential applications of micro articles in project-based learning.

  20. Evolution: Help for the Confused.

    ERIC Educational Resources Information Center

    Scheer, Bradley T.

    1979-01-01

    Written in response to an earlier article questioning certain aspects of evolution theory. Discusses ontogeny and phylogeny, the basis of evolution, chance or purpose in evolution, micro and macro-evolution, reversibility, and the evolution processes today. (MA)

  1. Applying a foil queue micro-electrode in micro-EDM to fabricate a 3D micro-structure

    NASA Astrophysics Data System (ADS)

    Xu, Bin; Guo, Kang; Wu, Xiao-yu; Lei, Jian-guo; Liang, Xiong; Guo, Deng-ji; Ma, Jiang; Cheng, Rong

    2018-05-01

    Applying a 3D micro-electrode in a micro electrical discharge machining (micro-EDM) can fabricate a 3D micro-structure with an up and down reciprocating method. However, this processing method has some shortcomings, such as a low success rate and a complex process for fabrication of 3D micro-electrodes. By focusing on these shortcomings, this paper proposed a novel 3D micro-EDM process based on the foil queue micro-electrode. Firstly, a 3D micro-electrode was discretized into several foil micro-electrodes and these foil micro-electrodes constituted a foil queue micro-electrode. Then, based on the planned process path, foil micro-electrodes were applied in micro-EDM sequentially and the micro-EDM results of each foil micro-electrode were able to superimpose the 3D micro-structure. However, the step effect will occur on the 3D micro-structure surface, which has an adverse effect on the 3D micro-structure. To tackle this problem, this paper proposes to reduce this adverse effect by rounded corner wear at the end of the foil micro-electrode and studies the impact of machining parameters on rounded corner wear and the step effect on the micro-structure surface. Finally, using a wire cutting voltage of 80 V, a current of 0.5 A and a pulse width modulation ratio of 1:4, the foil queue micro-electrode was fabricated by wire electrical discharge machining. Also, using a pulse width of 100 ns, a pulse interval of 200 ns, a voltage of 100 V and workpiece material of 304# stainless steel, the foil queue micro-electrode was applied in micro-EDM for processing of a 3D micro-structure with hemispherical features, which verified the feasibility of this process.

  2. Ultra-high aspect ratio replaceable AFM tips using deformation-suppressed focused ion beam milling.

    PubMed

    Savenko, Alexey; Yildiz, Izzet; Petersen, Dirch Hjorth; Bøggild, Peter; Bartenwerfer, Malte; Krohs, Florian; Oliva, Maria; Harzendorf, Torsten

    2013-11-22

    Fabrication of ultra-high aspect ratio exchangeable and customizable tips for atomic force microscopy (AFM) using lateral focused ion beam (FIB) milling is presented. While on-axis FIB milling does allow high aspect ratio (HAR) AFM tips to be defined, lateral milling gives far better flexibility in terms of defining the shape and size of the tip. Due to beam-induced deformation, it has so far not been possible to define HAR structures using lateral FIB milling. In this work we obtain aspect ratios of up to 45, with tip diameters down to 9 nm, by a deformation-suppressing writing strategy. Several FIB milling strategies for obtaining sharper tips are discussed. Finally, assembly of the HAR tips on a custom-designed probe as well as the first AFM scanning is shown.

  3. Energy and Economic Trade Offs for Advanced Technology Subsonic Aircraft

    NASA Technical Reports Server (NTRS)

    Maddalon, D. V.; Wagner, R. D.

    1976-01-01

    Changes in future aircraft technology which conserve energy are studied, along with the effect of these changes on economic performance. Among the new technologies considered are laminar-flow control, composite materials with and without laminar-flow control, and advanced airfoils. Aircraft design features studied include high-aspect-ratio wings, thickness ratio, and range. Engine technology is held constant at the JT9D level. It is concluded that wing aspect ratios of future aircraft are likely to significantly increase as a result of new technology and the push of higher fuel prices. Composite materials may raise aspect radio to about 11 to 12 and practical laminar flow-control systems may further increase aspect ratio to 14 or more. Advanced technology provides significant reductions in aircraft take-off gross weight, energy consumption, and direct operating cost.

  4. Global two-fluid simulations of geodesic acoustic modes in strongly shaped tight aspect ratio tokamak plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, J. R.; Hnat, B.; Thyagaraja, A.

    2013-05-15

    Following recent observations suggesting the presence of the geodesic acoustic mode (GAM) in ohmically heated discharges in the Mega Amp Spherical Tokamak (MAST) [J. R. Robinson et al., Plasma Phys. Controlled Fusion 54, 105007 (2012)], the behaviour of the GAM is studied numerically using the two fluid, global code CENTORI [P. J. Knight et al. Comput. Phys. Commun. 183, 2346 (2012)]. We examine mode localisation and effects of magnetic geometry, given by aspect ratio, elongation, and safety factor, on the observed frequency of the mode. An excellent agreement between simulations and experimental data is found for simulation plasma parameters matchedmore » to those of MAST. Increasing aspect ratio yields good agreement between the GAM frequency found in the simulations and an analytical result obtained for elongated large aspect ratio plasmas.« less

  5. Cryogenic Etching of High Aspect Ratio 400 nm Pitch Silicon Gratings.

    PubMed

    Miao, Houxun; Chen, Lei; Mirzaeimoghri, Mona; Kasica, Richard; Wen, Han

    2016-10-01

    The cryogenic process and Bosch process are two widely used processes for reactive ion etching of high aspect ratio silicon structures. This paper focuses on the cryogenic deep etching of 400 nm pitch silicon gratings with various etching mask materials including polymer, Cr, SiO 2 and Cr-on-polymer. The undercut is found to be the key factor limiting the achievable aspect ratio for the direct hard masks of Cr and SiO 2 , while the etch selectivity responds to the limitation of the polymer mask. The Cr-on-polymer mask provides the same high selectivity as Cr and reduces the excessive undercut introduced by direct hard masks. By optimizing the etching parameters, we etched a 400 nm pitch grating to ≈ 10.6 μ m depth, corresponding to an aspect ratio of ≈ 53.

  6. Collapse of elongated voids in porous energetic materials: Effects of void orientation and aspect ratio on initiation

    NASA Astrophysics Data System (ADS)

    Rai, Nirmal Kumar; Schmidt, Martin J.; Udaykumar, H. S.

    2017-04-01

    The sensitivity of porous energetic materials depends on mesostructural heterogeneities such as voids, defects, cracks, and grain boundaries. The mesostructure of pressed explosives contains voids of arbitrary shapes including elongated voids of various orientations and aspect ratios. Mesoscale simulations to date have analyzed the effect of void morphology on the sensitivity of energetic materials for idealized shapes such as cylindrical, conical, and elliptical. This work analyzes the sensitivity behavior of elongated voids in an HMX matrix subject to shock loading. Simulations show that sensitivity of elongated voids depends strongly on orientation as well as aspect ratio. Ranges of orientations and aspects ratios are identified that enhance or inhibit initiation. Insights obtained from single elongated void analyses are used to identify sensitive locations in an imaged mesostructure of a pressed explosive sample.

  7. Short revolving wings enable hovering animals to avoid stall and reduce drag

    NASA Astrophysics Data System (ADS)

    Lentink, David; Kruyt, Jan W.; Heijst, Gertjan F.; Altshuler, Douglas L.

    2014-11-01

    Long and slender wings reduce the drag of airplanes, helicopters, and gliding animals, which operate at low angle of attack (incidence). Remarkably, there is no evidence for such influence of wing aspect ratio on the energetics of hovering animals that operate their wings at much higher incidence. High incidence causes aircraft wings to stall, hovering animals avoid stall by generating an attached vortex along the leading edge of their wings that elevates lift. Hypotheses that explain this capability include the necessity for a short radial distance between the shoulder joint and wing tip, measured in chord lengths, instead of the long tip-to-tip distance that elevates aircraft performance. This stems from how hovering animals revolve their wings around a joint, a condition for which the precise effect of aspect ratio on stall performance is unknown. Here we show that the attachment of the leading edge vortex is determined by wing aspect ratio with respect to the center of rotation-for a suite of aspect ratios that represent both animal and aircraft wings. The vortex remains attached when the local radius is shorter than 4 chord lengths, and separates outboard on more slender wings. Like most other hovering animals, hummingbirds have wing aspect ratios between 3 and 4, much stubbier than helicopters. Our results show this makes their wings robust against flow separation, which reduces drag below values obtained with more slender wings. This revises our understanding of how aspect ratio improves performance at low Reynolds numbers.

  8. Effect of a multi-layer infection control barrier on the micro-hardness of a composite resin

    PubMed Central

    HWANG, In-Nam; HONG, Sung-Ok; LEE, Bin-Na; HWANG, Yun-Chan; OH, Won-Mann; CHANG, Hoon-Sang

    2012-01-01

    Objective The aim of this study was to evaluate the effect of multiple layers of an infection control barrier on the micro-hardness of a composite resin. Material and Methods One, two, four, and eight layers of an infection control barrier were used to cover the light guides of a high-power light emitting diode (LED) light curing unit (LCU) and a low-power halogen LCU. The composite specimens were photopolymerized with the LCUs and the barriers, and the micro-hardness of the upper and lower surfaces was measured (n=10). The hardness ratio was calculated by dividing the bottom surface hardness of the experimental groups by the irradiated surface hardness of the control groups. The data was analyzed by two-way ANOVA and Tukey's HSD test. Results The micro-hardness of the composite specimens photopolymerized with the LED LCU decreased significantly in the four- and eight-layer groups of the upper surface and in the two-, four-, and eight-layer groups of the lower surface. The hardness ratio of the composite specimens was <80% in the eight-layer group. The micro-hardness of the composite specimens photopolymerized with the halogen LCU decreased significantly in the eight-layer group of the upper surface and in the two-, four-, and eight-layer groups of the lower surface. However, the hardness ratios of all the composite specimens photopolymerized with barriers were <80%. Conclusions The two-layer infection control barrier could be used on high-power LCUs without decreasing the surface hardness of the composite resin. However, when using an infection control barrier on the low-power LCUs, attention should be paid so as not to sacrifice the polymerization efficiency. PMID:23138746

  9. Biomechanical aspects of initial intraosseous stability and implant design: a quantitative micro-morphometric analysis.

    PubMed

    Akça, Kivanç; Chang, Ting-Ling; Tekdemir, Ibrahim; Fanuscu, Mete I

    2006-08-01

    The objective of this biomechanical study was to explore the effect of bone micro-morphology on initial intraosseous stability of implants with different designs. Straumann and Astra Tech dental implants were placed into anterior and posterior regions of completely edentulous maxilla and mandible of a human cadaver. Experiments were undertaken to quantify initial implant stability and bone micro-morphology. Installation torque values (ITVs) and implant stability quotients (ISQs) were measured to determine initial intraosseous implant stability. For quantification of relative bone volume and micro-architecture, sectioned implant-bone and bone core specimens of each implant placement site were consecutively scanned and trabecular bone was analyzed in a micro-computed tomography (micro-CT) unit. Experimental outcomes were evaluated for correlations among implant designs, initial intraosseous implant stability and bone micro-structural parameters. ITVs correlated higher with bone volume fraction (BV/TV) than ISQs, at 88.1% and 68.9% levels, respectively. Correlations between ITVs and micro-morphometric parameters were significant at the 95% confidence level (P<0.05) while ISQs were not. Differences in ITVs, ISQs and BV/TV data in regards to implant designs used were not significant at the 95% confidence level (P>0.05). Bone micro-morphology has a prevailing effect over implant design on intraosseus initial implant stability, and ITV is more sensitive in terms of revealing biomechanical properties at the bone-implant interface in comparison with ISQ.

  10. Comparison of a portable micro-X-ray fluorescence spectrometry with inductively coupled plasma atomic emission spectrometry for the ancient ceramics analysis

    NASA Astrophysics Data System (ADS)

    Papadopoulou, D. N.; Zachariadis, G. A.; Anthemidis, A. N.; Tsirliganis, N. C.; Stratis, J. A.

    2004-12-01

    Two multielement instrumental methods of analysis, micro X-ray fluorescence spectrometry (micro-XRF) and inductively coupled plasma atomic emission spectrometry (ICP-AES) were applied for the analysis of 7th and 5th century B.C. ancient ceramic sherds in order to evaluate the above two methods and to assess the potential to use the current compact and portable micro-XRF instrument for the in situ analysis of ancient ceramics. The distinguishing factor of interest is that micro-XRF spectrometry offers the possibility of a nondestructive analysis, an aspect of primary importance in the compositional analysis of cultural objects. Micro-XRF measurements were performed firstly directly on the ceramic sherds with no special pretreatment apart from surface cleaning (micro-XRF on sherds) and secondly on pressed pellet disks which were prepared for each ceramic sherd (micro-XRF on pellet). For the ICP-AES determination of elements, test solutions were prepared by the application of a microwave-assisted decomposition procedure in closed high-pressure PFA vessels. Also, the standard reference material SARM 69 was used for the efficiency calibration of the micro-XRF instrument and was analysed by both methods. In order to verify the calibration, the standard reference materials NCS DC 73332 and SRM620 as well as the reference materials AWI-1 and PRI-1 were analysed by micro-XRF. Elemental concentrations determined by the three analytical procedures (ICP-AES, micro-XRF on sherds and micro-XRF on pellets) were statistically treated by correlation analysis and Student's t-test (at the 95% confidence level).

  11. Simultaneous shape repulsion and global assimilation in the perception of aspect ratio

    PubMed Central

    Sweeny, Timothy D.; Grabowecky, Marcia; Suzuki, Satoru

    2012-01-01

    Although local interactions involving orientation and spatial frequency are well understood, less is known about spatial interactions involving higher level pattern features. We examined interactive coding of aspect ratio, a prevalent two-dimensional feature. We measured perception of two simultaneously flashed ellipses by randomly post-cueing one of them and having observers indicate its aspect ratio. Aspect ratios interacted in two ways. One manifested as an aspect-ratio-repulsion effect. For example, when a slightly tall ellipse and a taller ellipse were simultaneously flashed, the less tall ellipse appeared flatter and the taller ellipse appeared even taller. This repulsive interaction was long range, occurring even when the ellipses were presented in different visual hemifields. The other interaction manifested as a global assimilation effect. An ellipse appeared taller when it was a part of a global vertical organization than when it was a part of a global horizontal organization. The repulsion and assimilation effects temporally dissociated as the former slightly strengthened, and the latter disappeared when the ellipse-to-mask stimulus onset asynchrony was increased from 40 to 140 ms. These results are consistent with the idea that shape perception emerges from rapid lateral and hierarchical neural interactions. PMID:21248223

  12. Fabrication of ultra-high aspect ratio (>160:1) silicon nanostructures by using Au metal assisted chemical etching

    NASA Astrophysics Data System (ADS)

    Li, Hailiang; Ye, Tianchun; Shi, Lina; Xie, Changqing

    2017-12-01

    We present a facile and effective approach for fabricating high aspect ratio, dense and vertical silicon nanopillar arrays, using a combination of metal etching following electron-beam lithography and Au metal assisted chemical etching (MacEtch). Ti/Au nanostructures used as catalysts in MacEtch are formed by single layer resist-based electron-beam exposure followed by ion beam etching. The effects of MacEtch process parameters, including half period, etching time, the concentrations of H2O2 and HF, etching temperature and drying method are systematically investigated. Especially, we demonstrate an enhancement of etching quality by employing cold MacEtch process, and an enhancement in preventing the collapse of high aspect ratio nanostructures by employing low surface tension rinse liquid and natural evaporation in the drying stage. Using an optimized MacEtch process, vertical silicon nanopillar arrays with a period of 250 nm and aspect ratio up to 160:1 are realized. Our results should be instructive for exploring the achievable aspect ratio limit in silicon nanostructures and may find potential applications in photovoltaic devices, thermoelectric devices and x-ray diffractive optics.

  13. Preparation of HCPT-Loaded Nanoneedles with Pointed Ends for Highly Efficient Cancer Chemotherapy

    NASA Astrophysics Data System (ADS)

    Wu, Shichao; Yang, Xiangrui; Li, Yang; Wu, Hongjie; Huang, Yu; Xie, Liya; Zhang, Ying; Hou, Zhenqing; Liu, Xiangyang

    2016-06-01

    The high-aspect-ratio nanoparticles were proved to be internalized much more rapidly and efficiently by cancer cells than the nanoparticles with an equal aspect ratio. Herein, a kind of high-aspect ratio, pointed-end nanoneedles (NDs) with a high drug loading (15.04 %) and the prolonged drug release profile were fabricated with an anti-tumor drug—10-hydroxycamptothecin (HCPT)—via an ultrasound-assisted emulsion crystallization technique. It is surprising to see that the cellular internalization of NDs with an average length of 5 μm and an aspect ratio of about 12:1 was even much faster and higher than that of nanorods with the same size and the nanospheres with a much smaller size of 150 nm. The results further validated that cellular internalization of the nanoparticles exhibited a strong shape-dependent effect, and cellular uptake may favor the particles with sharp ends as well as a high-aspect ratio instead of particle size. The NDs with enhanced cytotoxicity would lead to a promising sustained local drug delivery system for highly efficient anticancer therapy. More importantly, the fabrication of NDs opens a door to design new formulations of nanoneedle drug delivery systems for highly efficient cancer.

  14. An effective medium approach to modelling the pressure-dependent electrical properties of porous rocks

    NASA Astrophysics Data System (ADS)

    Han, Tongcheng

    2018-07-01

    Understanding the electrical properties of rocks under varying pressure is important for a variety of geophysical applications. This study proposes an approach to modelling the pressure-dependent electrical properties of porous rocks based on an effective medium model. The so-named Textural model uses the aspect ratios and pressure-dependent volume fractions of the pores and the aspect ratio and electrical conductivity of the matrix grains. The pores were represented by randomly oriented stiff and compliant spheroidal shapes with constant aspect ratios, and their pressure-dependent volume fractions were inverted from the measured variation of total porosity with differential pressure using a dual porosity model. The unknown constant stiff and compliant pore aspect ratios and the aspect ratio and electrical conductivity of the matrix grains were inverted by best fitting the modelled electrical formation factor to the measured data. Application of the approach to three sandstone samples covering a broad porosity range showed that the pressure-dependent electrical properties can be satisfactorily modelled by the proposed approach. The results demonstrate that the dual porosity concept is sufficient to explain the electrical properties of porous rocks under pressure through the effective medium model scheme.

  15. Aggregation kinetics of microplastics in aquatic environment: Complex roles of electrolytes, pH, and natural organic matter.

    PubMed

    Li, Shuocong; Liu, Hong; Gao, Rui; Abdurahman, Abliz; Dai, Juan; Zeng, Feng

    2018-06-01

    Microplastics are an emerging contaminants of concern in aquatic environments. The aggregation behaviors of microplastics governing their fate and ecological risks in aquatic environments is in need of evaluation. In this study, the aggregation behavior of polystyrene microspheres (micro-PS) in aquatic environments was systematically investigated over a range of monovalent and divalent electrolytes with and without natural organic matter (i.e., Suwannee River humic acid (HA)), at pH 6.0, respectively. The zeta potentials and hydrodynamic diameters of micro-PS were measured and the subsequent aggregation kinetics and attachment efficiencies (α) were calculated. The aggregation kinetics of micro-PS exhibited reaction- and diffusion-limited regimes in the presence of monovalent or divalent electrolytes with distinct critical coagulation concentration (CCC) values, followed the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. The CCC values of micro-PS were14.9, 13.7, 14.8, 2.95 and 3.20 mM for NaCl, NaNO 3 , KNO 3 , CaCl 2 and BaCl 2 , respectively. As expected, divalent electrolytes (i.e., CaCl 2 and BaCl 2 ) had stronger influence on the aggregation behaviors of micro-PS as compared to monovalent electrolytes (i.e., NaCl, NaNO 3 and KNO 3 ). HA enhanced micro-PS stability and shifted the CCC values to higher electrolyte concentrations for all types of electrolytes. The CCC values of micro-PS were lower than reported carbonaceous nanoparticles CCC values. The CCC[Ca 2+ ]/CCC [Na + ] ratios in the absence and presence of HA at pH 6.0 were proportional to Z -2.34 and Z -2.30 , respectively. These ratios were in accordance with the theoretical Schulze-Hardy rule, which considers that the CCC is proportional to z -6 -z -2 . These results indicate that the stability of micro-PS in the natural aquatic environment and the possibility of significant aqueous transport of micro-PS. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Effect of [D-Phe6] bombesin (6-13) methylester, a bombesin receptor antagonist, towards bombesin-induced contractions in the guinea-pig and rat isolated urinary bladder.

    PubMed

    Maggi, C A; Coy, D H; Giuliani, S

    1992-08-01

    1. The effect of [D-Phe6] bombesin (6-13) methylester (OMe), a newly developed potent antagonist of bombesin receptors, has been investigated against bombesin-induced contractions of the guinea-pig and rat isolated urinary bladder. 2. Bombesin (0.1 nM-10 microM) produced a concentration-dependent contraction of the guinea-pig isolated bladder which approached the same maximum response as KCl (80 mM). The response to bombesin was antagonized in a competitive manner (rightward shift of the concentration-response curve without depression of the maximal response) by [D-Phe6] bombesin (6-13) OMe (0.3-10 microM). Degree of antagonism was concentration-dependent between 0.3 and 3 microM (dose ratios = 2.4, 9 and 39 in the presence of 0.3, 1, 3 microM of the antagonist). However, a larger concentration (10 microM) of the antagonist was not more effective (dose ratio = 36) than 3 microM. 3. Neither the action of bombesin nor the activity of the antagonist was influenced by peptidase inhibitors (bestatin, captopril and thiorphan 3 microM each) or by atropine, indomethacin, chlorpheniramine and desensitization of P2x purinoceptors by alpha, beta methylene ATP. 4. The bombesin antagonist was ineffective against contraction of the guinea-pig urinary bladder produced by the NK-1 tachykinin receptor-selective agonist, [Sar9] substance P sulphone. The action of the NK-1 receptor agonist was antagonized by L 668, 169 (3 microM), a cyclic peptide tachykinin antagonist. L 668, 169 had no effect toward bombesin-induced contraction. 5. The bombesin antagonist (1-10 microM) had no effect against the non-adrenergic non-cholinergic response of the guinea-pig isolated urinary bladder to electrical field stimulation.(ABSTRACT TRUNCATED AT 250 WORDS)

  17. Advanced Sensor and Packaging Technologies for Intelligent Adaptive Engine Controls (Preprint)

    DTIC Science & Technology

    2013-05-01

    combination of micro-electromechanical systems (MEMS) sensor technology, novel ceramic materials, high - temperature electronics, and advanced harsh...with simultaneous pressure measurements up to 1,000 psi. The combination of a high - temperature , high -pressure-ratio compressor system, and adaptive...combination of micro-electromechanical systems (MEMS) sensor technology, novel ceramic materials, high temperature electronics, and advanced harsh

  18. Experimental transonic flutter characteristics of two 72 deg-sweep delta-wing models

    NASA Technical Reports Server (NTRS)

    Doggett, Robert V., Jr.; Soistmann, David L.; Spain, Charles V.; Parker, Ellen C.; Silva, Walter A.

    1989-01-01

    Transonic flutter boundaries are presented for two simple, 72 deg. sweep, low-aspect-ratio wing models. One model was an aspect-ratio 0.65 delta wing; the other model was an aspect-ratio 0.54 clipped-delta wing. Flutter boundaries for the delta wing are presented for the Mach number range of 0.56 to 1.22. Flutter boundaries for the clipped-delta wing are presented for the Mach number range of 0.72 to 0.95. Selected vibration characteristics of the models are also presented.

  19. High Rayleigh number convection in rectangular enclosures with differentially heated vertical walls and aspect ratios between zero and unity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kassemi, S.A.

    1988-04-01

    High Rayleigh number convection in a rectangular cavity with insulated horizontal surfaces and differentially heated vertical walls was analyzed for an arbitrary aspect ratio smaller than or equal to unity. Unlike previous analytical studies, a systematic method of solution based on linearization technique and analytical iteration procedure was developed to obtain approximate closed-form solutions for a wide range of aspect ratios. The predicted velocity and temperature fields are shown to be in excellent agreement with available experimental and numerical data.

  20. High Rayleigh number convection in rectangular enclosures with differentially heated vertical walls and aspect ratios between zero and unity

    NASA Technical Reports Server (NTRS)

    Kassemi, Siavash A.

    1988-01-01

    High Rayleigh number convection in a rectangular cavity with insulated horizontal surfaces and differentially heated vertical walls was analyzed for an arbitrary aspect ratio smaller than or equal to unity. Unlike previous analytical studies, a systematic method of solution based on linearization technique and analytical iteration procedure was developed to obtain approximate closed-form solutions for a wide range of aspect ratios. The predicted velocity and temperature fields are shown to be in excellent agreement with available experimental and numerical data.

  1. The MPGD-based photon detectors for the upgrade of COMPASS RICH-1

    NASA Astrophysics Data System (ADS)

    Alexeev, M.; Azevedo, C. D. R.; Birsa, R.; Bradamante, F.; Bressan, A.; Büchele, M.; Chiosso, M.; Ciliberti, P.; Dalla Torre, S.; Dasgupta, S.; Denisov, O.; Finger, M.; Finger, M.; Fischer, H.; Gobbo, B.; Gregori, M.; Hamar, G.; Herrmann, F.; Levorato, S.; Maggiora, A.; Makke, A.; Martin, A.; Menon, G.; Steiger, K.; Novy, J.; Panzieri, D.; Pereira, F. A. B.; Santos, C. A.; Sbrizzai, G.; Schopferer, S.; Slunecka, M.; Steiger, L.; Sulc, M.; Tessarotto, F.; Veloso, J. F. C. A.

    2017-12-01

    The RICH-1 Detector of the COMPASS experiment at CERN SPS has undergone an important upgrade for the 2016 physics run. Four new photon detectors, based on Micro Pattern Gaseous Detector technology and covering a total active area larger than 1.2 m2 have replaced the previously used MWPC-based photon detectors. The upgrade answers the challenging efficiency and stability quest for the new phase of the COMPASS spectrometer physics programme. The new detector architecture consists in a hybrid MPGD combination of two Thick Gas Electron Multipliers and a MicroMegas stage. Signals, extracted from the anode pad by capacitive coupling, are read-out by analog F-E based on the APV25 chip. The main aspects of the COMPASS RICH-1 photon detectors upgrade are presented focussing on detector design, engineering aspects, mass production, the quality assessment and assembly challenges of the MPGD components. The status of the detector commissioning is also presented.

  2. Multi-criteria analysis of the mechanism of degradation of Portland cement based mortars exposed to external sulphate attack

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    El-Hachem, R.; Roziere, E.; Grondin, F.

    2012-10-15

    This work aims to contribute to the design of durable concrete structures exposed to external sulphate attacks (ESA). Following a preliminary study aimed at designing a representative test, the present paper suggests a study on the effect of the water-to-cement (w/c) ratio and the cement composition in order to understand the degradation mechanisms. Length and mass measurements were registered continuously, leached calcium and hydroxide ions were also quantified. In parallel, scanning electron microscopy observations as well as X-ray microtomography were realised at different times to identify the formed products and the crack morphology. Test results provide information on the basicmore » aspects of the degradation mechanism, such as the main role of leaching and diffusion in the sulphate attack process. The mortar composition with a low w/c ratio leads to a better resistance to sulphate attack because the microstructure is less permeable. Reducing the C{sub 3}A content results in a macro-cracking decrease but it does not prevent expansion, which suggests the contribution of other expansive products, such as gypsum, in damage due to ESA. The observation of the cracks network in the microstructure helps to understand the micro-mechanisms of the degradation process.« less

  3. Qualitative skeletal correlates of wing shape in extant birds (Aves: Neoaves).

    PubMed

    Hieronymus, Tobin L

    2015-02-27

    Among living fliers (birds, bats, and insects), birds display relatively high aspect ratios, a dimensionless shape variable that distinguishes long and narrow vs. short and broad wings. Increasing aspect ratio results in a functional tradeoff between low induced drag (efficient cruise) and increased wing inertia (difficult takeoff). Given the wide scope of its functional effects, the pattern of aspect ratio evolution is an important factor that contributes to the substantial ecological and phylogenetic diversity of living birds. However, because the feathers that define the wingtip (and hence wingspan and aspect ratio) often do not fossilize, resolution in the pattern of avian wing shape evolution is obscured by missing information. Here I use a comparative approach to investigate the relationship between skeletal proxies of flight feather attachment and wing shape. An accessory lobe of the internal index process of digit II-1, a bony correlate of distal primary attachment, shows weak but statistically significant relationships to aspect ratio and mass independent of other skeletal morphology. The dorsal phalangeal fossae of digit II-1, which house distal primaries VIII and IX, also show a trend of increased prominence with higher aspect ratio. Quill knobs on the ulna are examined concurrently, but do not show consistent signal with respect to wing shape. Although quill knobs are cited as skeletal correlates of flight performance in birds, their relationship to wing shape is inconsistent among extant taxa, and may reflect diverging selection pressures acting on a conserved architecture. In contrast, correlates of distal primary feather attachment on the major digit show convergent responses to increasing aspect ratio. In light of the diversity of musculoskeletal and integumentary mophology that underlies wing shape in different avian clades, it is unlikely that a single skeletal feature will show consistent predictive power across Neoaves. Confident inference of wing shape in basal ornithurine birds will require multiple lines of evidence, together with an understanding of clade-specific evolutionary trends within the crown.

  4. A design multifunctional plasmonic optical device by micro ring system

    NASA Astrophysics Data System (ADS)

    Pornsuwancharoen, N.; Youplao, P.; Amiri, I. S.; Ali, J.; Yupapin, P.

    2018-03-01

    A multi-function electronic device based on the plasmonic circuit is designed and simulated by using the micro-ring system. From which a nonlinear micro-ring resonator is employed and the selected electronic devices such as rectifier, amplifier, regulator and filter are investigated. A system consists of a nonlinear micro-ring resonator, which is known as a modified add-drop filter and made of an InGaAsP/InP material. The stacked waveguide of an InGaAsP/InP - graphene -gold/silver is formed as a part of the device, the required output signals are formed by the specific control of input signals via the input and add ports. The material and device aspects are reviewed. The simulation results are obtained using the Opti-wave and MATLAB software programs, all device parameters are based on the fabrication technology capability.

  5. Feature extraction of micro-motion frequency and the maximum wobble angle in a small range of missile warhead based on micro-Doppler effect

    NASA Astrophysics Data System (ADS)

    Li, M.; Jiang, Y. S.

    2014-11-01

    Micro-Doppler effect is induced by the micro-motion dynamics of the radar target itself or any structure on the target. In this paper, a simplified cone-shaped model for ballistic missile warhead with micro-nutation is established, followed by the theoretical formula of micro-nutation is derived. It is confirmed that the theoretical results are identical to simulation results by using short-time Fourier transform. Then we propose a new method for nutation period extraction via signature maximum energy fitting based on empirical mode decomposition and short-time Fourier transform. The maximum wobble angle is also extracted by distance approximate approach in a small range of wobble angle, which is combined with the maximum likelihood estimation. By the simulation studies, it is shown that these two feature extraction methods are both valid even with low signal-to-noise ratio.

  6. A normally-closed piezoelectric micro-valve with flexible stopper

    NASA Astrophysics Data System (ADS)

    Chen, Song; Lu, Song; Liu, Yong; Wang, Jiantao; Tian, Xiaochao; Liu, Guojun; Yang, Zhigang

    2016-04-01

    In the field of controlled drug delivery system, there are still many problems on those reported micro-valves, such as the small opening height, unsatisfactory particle tolerance and high cost. To solve the above problems, a novel normally-closed piezoelectric micro-valve is presented in this paper. The micro-valve was driven by circular unimorph piezoelectric vibrator and natural rubber membrane with high elasticity was used as the valve stopper. The small axial displacement of piezoelectric vibrator can be converted into a large stroke of valve stopper based on hydraulic amplification mechanism. The experiment indicates that maximum hydraulic amplification ratio is up to 14, and the cut-off pressure of the micro-valve is 39kPa in the case of no working voltage. The presented micro valve has a large flow control range (ranging from 0 to 8.75mL/min).

  7. Surface Texturing of Polyimide Composite by Micro-Ultrasonic Machining

    NASA Astrophysics Data System (ADS)

    Qu, N. S.; Zhang, T.; Chen, X. L.

    2018-03-01

    In this study, micro-dimples were prepared on a polyimide composite surface to obtain the dual benefits of polymer materials and surface texture. Micro-ultrasonic machining is employed for the first time for micro-dimple fabrication on polyimide composite surfaces. Surface textures of simple patterns were fabricated successfully with dimple depths of 150 μm, side lengths of 225-425 μm, and area ratios of 10-30%. The friction coefficient of the micro-dimple surfaces with side lengths of 325 or 425 μm could be increased by up to 100% of that of non-textured surfaces, alongside a significant enhancement of wear resistance. The results show that surface texturing of polyimide composite can be applied successfully to increase the friction coefficient and reduce wear, thereby contributing to a large output torque.

  8. Elliptic nozzle aspect ratio effect on controlled jet propagation

    NASA Astrophysics Data System (ADS)

    Aravindh Kumar, S. M.; Rathakrishnan, Ethirajan

    2017-04-01

    The present study deals with the control of a Mach 2 elliptic jet from a convergent-divergent elliptic nozzle of aspect ratio 4 using tabs at the nozzle exit. The experiments were carried out for rectangular and triangular tabs of the same blockage, placed along the major and minor axes of the nozzle exit, at different levels of nozzle expansion. The triangular tabs along the minor axis promoted superior mixing compared to the other controlled jets and caused substantial core length reduction at all the nozzle pressure ratios studied. The rectangular tabs along the minor axis caused core length reduction at all pressure ratios, but the values were minimal compared to that of triangular tabs along the minor axis. For all the test conditions, the mixing promotion caused by tabs along the major axis was inferior to that of tabs along the minor axis. The waves present in the core of controlled jets were visualized using a shadowgraph. Comparison of the present results with the results of a controlled Mach 2 elliptic jet of aspect ratio 2 (Aravindh Kumar and Sathakrishnan 2016 J. Propulsion Power 32 121-33, Aravindh Kumar and Rathakrishnan 2016 J. Aerospace Eng. at press (doi:10.1177/0954410016652921)) show that for all levels of expansion, the mixing effectiveness of triangular tabs along the minor axis of an aspect ratio 4 nozzle is better than rectangular or triangular tabs along the minor axis of an aspect ratio 2 nozzle.

  9. Micro-computed tomography assessment of human alveolar bone: bone density and three-dimensional micro-architecture.

    PubMed

    Kim, Yoon Jeong; Henkin, Jeffrey

    2015-04-01

    Micro-computed tomography (micro-CT) is a valuable means to evaluate and secure information related to bone density and quality in human necropsy samples and small live animals. The aim of this study was to assess the bone density of the alveolar jaw bones in human cadaver, using micro-CT. The correlation between bone density and three-dimensional micro architecture of trabecular bone was evaluated. Thirty-four human cadaver jaw bone specimens were harvested. Each specimen was scanned with micro-CT at resolution of 10.5 μm. The bone volume fraction (BV/TV) and the bone mineral density (BMD) value within a volume of interest were measured. The three-dimensional micro architecture of trabecular bone was assessed. All the parameters in the maxilla and the mandible were subject to comparison. The variables for the bone density and the three-dimensional micro architecture were analyzed for nonparametric correlation using Spearman's rho at the significance level of p < .05. A wide range of bone density was observed. There was a significant difference between the maxilla and mandible. All micro architecture parameters were consistently higher in the mandible, up to 3.3 times greater than those in the maxilla. The most linear correlation was observed between BV/TV and BMD, with Spearman's rho = 0.99 (p = .01). Both BV/TV and BMD were highly correlated with all micro architecture parameters with Spearman's rho above 0.74 (p = .01). Two aspects of bone density using micro-CT, the BV/TV and BMD, are highly correlated with three-dimensional micro architecture parameters, which represent the quality of trabecular bone. This noninvasive method may adequately enhance evaluation of the alveolar bone. © 2013 Wiley Periodicals, Inc.

  10. Seismogenic width controls aspect ratios of earthquake ruptures

    NASA Astrophysics Data System (ADS)

    Weng, Huihui; Yang, Hongfeng

    2017-03-01

    We investigate the effect of seismogenic width on aspect ratios of earthquake ruptures by using numerical simulations of strike-slip faulting and an energy balance criterion near rupture tips. If the seismogenic width is smaller than a critical value, then ruptures cannot break the entire fault, regardless of the size of the nucleation zone. The seismic moments of these self-arresting ruptures increase with the nucleation size, forming nucleation-related events. The aspect ratios increase with the seismogenic width but are smaller than 8. In contrast, ruptures become breakaway and tend to have high aspect ratios (>8) if the seismogenic width is sufficiently large. But the critical nucleation size is larger than the theoretical estimate for an unbounded fault. The eventual seismic moments of breakaway ruptures do not depend on the nucleation size. Our results suggest that estimating final earthquake magnitude from the nucleation phase may only be plausible on faults with small seismogenic width.

  11. Effect of Cell Aspect Ratio on Swarming Bacteria

    NASA Astrophysics Data System (ADS)

    Ilkanaiv, Bella; Kearns, Daniel B.; Ariel, Gil; Be'er, Avraham

    2017-04-01

    Swarming bacteria collectively migrate on surfaces using flagella, forming dynamic whirls and jets that consist of millions of individuals. Because some swarming bacteria elongate prior to actual motion, cell aspect ratio may play a significant role in the collective dynamics. Extensive research on self-propelled rodlike particles confirms that elongation promotes alignment, strongly affecting the dynamics. Here, we study experimentally the collective dynamics of variants of swarming Bacillus subtilis that differ in length. We show that the swarming statistics depends on the aspect ratio in a critical, fundamental fashion not predicted by theory. The fastest motion was obtained for the wild-type and variants that are similar in length. However, shorter and longer cells exhibit anomalous, non-Gaussian statistics and nonexponential decay of the autocorrelation function, indicating lower collective motility. These results suggest that the robust mechanisms to maintain aspect ratios may be important for efficient swarming motility. Wild-type cells are optimal in this sense.

  12. Multielement suppressor nozzles for thrust augmentation systems.

    NASA Technical Reports Server (NTRS)

    Lawrence, R. L.; O'Keefe, J. V.; Tate, R. B.

    1972-01-01

    The noise reduction and nozzle performance characteristics of large-scale, high-aspect-ratio multielement nozzle arrays operated at low velocities were determined by test. The nozzles are selected for application to high-aspect-ratio augmentor suppressors to be used for augmentor wing airplanes. Significant improvements in noise characteristics for multielement nozzles over those of round or high-aspect-ratio slot nozzles are obtained. Elliptical noise patterns typical of slot nozzles are presented for high-aspect-ratio multielement nozzle arrays. Additional advantages are available in OASPL noise reduction from the element size and spacing. Augmentor-suppressor systems can be designed for maximum beam pattern directivity and frequency spectrum shaping advantages. Measurements of the nozzle wakes show a correlation with noise level data and frequency spectrum peaks. The noise and jet wake results are compared with existing prediction procedures based on empirical jet flow equations, Lighthill relationships, Strouhal number, and empirical shock-induced screech noise effects.

  13. Stability of low aspect ratio inverted flags and rods in a uniform flow

    NASA Astrophysics Data System (ADS)

    Huertas-Cerdeira, Cecilia; Sader, John E.; Gharib, Morteza

    2016-11-01

    Cantilevered elastic plates and rods in an inverted configuration, where the leading edge is free to move and the trailing edge is clamped, undergo complex dynamics when subjected to a uniform flow. The stability of low aspect ratio inverted plates and rods is theoretically examined, showing that it is markedly different from that of their large aspect ratio counterpart. In the limit of zero aspect ratio, the undeflected equilibrium position is found to be stable for all wind speeds. A saddle-node bifurcation emerges at finite wind speed, giving rise to a strongly deflected stable and a weakly deflected unstable equilibria. This theory is compared to experimental measurements, where good agreement is found. This research was supported by a Grant of the Gordon and Betty Moore Foundation, the Australian Research Council Grants scheme and a "la Caixa" Fellowship Grant for Post-Graduate Studies of "la Caixa" Banking Foundation.

  14. FFT-impedance spectroscopy analysis of the growth of magnetic metal nanowires in ultra-high aspect ratio InP membranes

    NASA Astrophysics Data System (ADS)

    Gerngross, M.-D.; Carstensen, J.; Föll, H.; Adelung, R.

    2016-01-01

    This paper reports on the characterization of the electrochemical growth process of magnetic nanowires in ultra-high-aspect ratio InP membranes via in situ fast Fourier transform impedance spectroscopy in a typical frequency range from 75 Hz to 18.5 kHz. The measured impedance data from the Ni, Co, and FeCo can be very well fitted using the same electric equivalent circuit consisting of a series resistance in serial connection to an RC-element and a Maxwell element. The impedance data clearly indicate the similarities in the growth behavior of Ni, Co and FeCo nanowires in ultra-high aspect ratio InP membranes—the beneficial impact of boric acid on the metal deposition in ultra-high aspect ratio membranes and the diffusion limitation of boric acid, as well as differences such as passivation or side reactions.

  15. Rheology of concentrated suspensions of non-colloidal rigid fibers

    NASA Astrophysics Data System (ADS)

    Guazzelli, Elisabeth; Tapia, Franco; Shaikh, Saif; Butler, Jason E.; Pouliquen, Olivier

    2017-11-01

    Pressure and volume-imposed rheology is used to study suspensions of non-colloidal, rigid fibers in the concentrated regime for aspect ratios ranging from 3 to 15. The suspensions exhibit yield-stresses. Subtracting these apparent yield-stresses reveals a viscous scaling for both the shear and normal stresses. The variation in aspect ratio does not affect the friction coefficient (ratio of shear and normal stresses), but increasing the aspect ratio lowers the maximum volume fraction at which the suspension flows. Constitutive laws are proposed for the viscosities and the friction coefficient close to this maximum flowable fraction. The scaling of the stresses near this jamming transition are found to differ substantially from that of a suspension of spheres.

  16. High-rate production of micro- and nanostructured surfaces: Injection molding and novel process for metal tooling manufacturing

    NASA Astrophysics Data System (ADS)

    De Jesus Vega, Marisely

    Devices containing micro and nanostructured surfaces are developing and constantly finding new applications, especially for medical diagnostics, point-of-care applications, and microneedles. They are also employed in the functionalization of surfaces for superhydrophobicity, drag reduction, or reversible adhesion by mimicking bio-inspired surfaces. This research provides a thorough investigation on the effects of different polymeric materials and processing conditions on the replication of micro and nanostructured surfaces via injection molding. In addition, this dissertation also presents a novel approach for the production of durable microstructured metal tooling to be used for the production of surfaces with microchannels via injection molding. Materials such as thermoplastic vulcanizates are substituting regular thermoplastic materials and vulcanized elastomers in many applications due to their outstanding properties and ease of processability. These material properties broaden the scope of applications for microstructured surfaces. However, there is a need for understanding how these materials behave in microinjection molding since thermoplastic elastomers' behavior during injection molding have been shown to differ from that of the widely understood behavior of thermoplastics. Replication of microstructured surfaces using thermoplastic vulcanizates (TPV) was studied in the first part of this thesis. TPVs with different hardness's were molded using microinjection molding with various processing conditions and the replication and surface details of 20 microm pillars (aspect ratio of 1:1) were characterized. In the second part of this research liquid silicone rubber (LSR) was studied as a material for the production of micro and nanostructured surfaces. LSR is a silicone based material such as polydimethylsiloxane (PDMS), which is widely used for research and development of micro and nanostructured devices, and thus provides all the benefits of PDMS but can be rapidly processed via liquid injection molding. LSR with its excellent mechanical properties, transparency, non-toxicity and rapid molding capabilities can bring the production of micro and nanostructured surfaces from laboratory research facilities to high-rate manufacturing. However, previous research on microstructured surfaces made off LSR does not focus on the processing aspect of this material. Therefore, there is a lack of understanding of how different processing conditions affect the replication of microstructures. Additionally, there are no reports molding nanostructures of LSR. Features between 115 microm and 0.250 microm were molded in this work and the effect of different processing conditions and features sizes were studied. For the last part of this work, a novel metal additive manufacturing technique was used for the production of microstructured surfaces to be used as tooling for injection molding. The printing method consists of metal pastes printed through a tip onto a steel substrate. Prior work has shown spreading and swelling of features when metal pastes extrude out of the printing tip. PDMS was studied as a binder material to minimize spreading and swelling of the features by curing right after printing. In addition, prior work has shown durability of this metal printed tool up to 5000 injection molding cycles. This work compares this durability to durability of commercially available selective laser sintering metal tools. Furthermore, surface roughness was studied as this is one of the most important things to consider when molding microchannels for certain applications.

  17. Complexation of intracellular cyanide by hydroxocobalamin using a human cellular model.

    PubMed

    Astier, A; Baud, F J

    1996-01-01

    1. The rational for administering hydroxocobalamin (OHCbl) as an antidote to cyanide poisoning is based on the high affinity of CN ion for cobalt compounds. However, only few data are available on the influence of OHCbl on the intracellular cyanide pool. 2. In human fibroblasts incubated for 10 min with 500 microM of [14C] cyanide, the accumulation ratio was 25 at 37 degrees C (10.45 +/- 1.51 mM) and 11.9 at 4 degrees C. 3. Using the monoblastic U-937 cell line, a rapid uptake of radioactive cyanide was observed with a maximum accumulation ratio of 1.97 at 5 min. 4. A linear relationship between cyanide uptake by U-937 cells and cyanide concentration in incubation medium (10-500 microM; 5 min) was found suggesting a first order process (k = 0.25 min-1). 5. After incubation of fibroblasts with 500 microM of OHCbl, a 75% decrease of intracellular cyanide was observed, with concomittant formation of intracellular cyanocobalamin CNCbl (intracellular/extracellular ratio: 158). 6. These findings suggest that OHCbl is able to penetrate into heavily cyanide loaded cells and to complex cyanide to the non-toxic CNCbl form.

  18. Functional polymer sheet patterning using microfluidics.

    PubMed

    Li, Minggan; Humayun, Mouhita; Kozinski, Janusz A; Hwang, Dae Kun

    2014-07-22

    Poly(dimethylsiloxane) (PDMS)-based microfluidics provide a novel approach to advanced material synthesis. While PDMS has been successfully used in a wide range of industrial applications, due to the weak mechanical property channels generally possess low aspect ratios (AR) and thus produce microparticles with similarly low ARs. By increasing the channel width to nearly 1 cm, AR to 267, and implementing flow lithography, we were able to establish the slit-channel lithography. Not only does this allow us to synthesize sheet materials bearing multiscale features and tunable chemical anisotropy but it also allows us to fabricate functional layered sheet structures in a one-step, high-throughput fashion. We showcased the technique's potential role in various applications, such as the synthesis of planar material with micro- and nanoscale features, surface morphologies, construction of tubular and 3D layered hydrogel tissue scaffolds, and one-step formation of radio frequency identification (RFID) tags. The method introduced offers a novel route to functional sheet material synthesis and sheet system fabrication.

  19. Deformable micro torque swimmer

    NASA Astrophysics Data System (ADS)

    Ishikawa, Takuji; Tanaka, Tomoyuki; Omori, Toshihiro; Imai, Yohsuke

    2015-11-01

    We investigated the deformation of a ciliate swimming freely in a fluid otherwise at rest. The cell body was modeled as a capsule with a hyper elastic membrane enclosing Newtonian fluid. Thrust forces due to the ciliary beat were modeled as torques distributed above the cell body. Effects of the membrane elasticity, the aspect ratio of cell's reference shape and the density difference between the cell and the surrounding fluid were investigated. The results showed that the cell deformed like heart shape when Capillary number (Ca) was sufficiently large, and the swimming velocity decreased as Ca was increased. The gravity effect on the membrane tension suggested that the upwards and downwards swimming velocities of Paramecium might be reglated by the calcium ion channels distributed locally around the anterior end. Moreover, the gravity induced deformation made a cell directed vertically downwards, which resulted in a positive geotaxis like behavior with physical origin. These results are important to understand physiology of ciliate's biological responses to mechanical stimuli.

  20. Extreme degree of ionization in homogenous micro-capillary plasma columns heated by ultrafast current pulses.

    PubMed

    Avaria, G; Grisham, M; Li, J; Tomasel, F G; Shlyaptsev, V N; Busquet, M; Woolston, M; Rocca, J J

    2015-03-06

    Homogeneous plasma columns with ionization levels typical of megaampere discharges are created by rapidly heating gas-filled 520-μm-diameter channels with nanosecond rise time current pulses of 40 kA. Current densities of up to 0.3  GA cm^{-2} greatly increase Joule heating with respect to conventional capillary discharge Z pinches, reaching unprecedented degrees of ionization for a high-Z plasma column heated by a current pulse of remarkably low amplitude. Dense xenon plasmas are ionized to Xe^{28+}, while xenon impurities in hydrogen discharges reach Xe^{30+}. The unique characteristics of these hot, ∼300:1 length-to-diameter aspect ratio plasmas allow the observation of unexpected spectroscopic phenomena. Axial spectra show the unusual dominance of the intercombination line over the resonance line of He-like Al by nearly an order of magnitude, caused by differences in opacities in the axial and radial directions. These plasma columns could enable the development of sub-10-nm x-ray lasers.

  1. Comparative study of soft thermal printing and lamination of dry thick photoresist films for the uniform fabrication of polymer MOEMS on small-sized samples

    NASA Astrophysics Data System (ADS)

    Abada, S.; Salvi, L.; Courson, R.; Daran, E.; Reig, B.; Doucet, J. B.; Camps, T.; Bardinal, V.

    2017-05-01

    A method called ‘soft thermal printing’ (STP) was developed to ensure the optimal transfer of 50 µm-thick dry epoxy resist films (DF-1050) on small-sized samples. The aim was the uniform fabrication of high aspect ratio polymer-based MOEMS (micro-optical-electrical-mechanical system) on small and/or fragile samples, such as GaAs. The printing conditions were optimized, and the resulting thickness uniformity profiles were compared to those obtained via lamination and SU-8 standard spin-coating. Under the best conditions tested, STP and lamination produced similar results, with a maximum deviation to the central thickness of 3% along the sample surface, compared to greater than 40% for SU-8 spin-coating. Both methods were successfully applied to the collective fabrication of DF1050-based MOEMS designed for the dynamic focusing of VCSELs (vertical-cavity surface-emitting lasers). Similar, efficient electro-thermo-mechanical behaviour was obtained in both cases.

  2. Micro and Nanostructured Materials for the Development of Optical Fibre Sensors

    PubMed Central

    Arregui, Francisco Javier; Ruiz-Zamarreño, Carlos; Corres, Jesus M.; Bariain, Candido; Goicoechea, Javier; Hernaez, Miguel; Rivero, Pedro J.; Urrutia, Aitor; Sanchez, Pedro; Zubiate, Pablo; Lopez-Torres, Diego; Acha, Nerea De; Ascorbe, Joaquin; Ozcariz, Aritz; Matias, Ignacio R.

    2017-01-01

    The measurement of chemical and biomedical parameters can take advantage of the features exclusively offered by optical fibre: passive nature, electromagnetic immunity and chemical stability are some of the most relevant ones. The small dimensions of the fibre generally require that the sensing material be loaded into a supporting matrix whose morphology is adjusted at a nanometric scale. Thanks to the advances in nanotechnology new deposition methods have been developed: they allow reagents from different chemical nature to be embedded into films with a thickness always below a few microns that also show a relevant aspect ratio to ensure a high transduction interface. This review reveals some of the main techniques that are currently been employed to develop this kind of sensors, describing in detail both the resulting supporting matrices as well as the sensing materials used. The main objective is to offer a general view of the state of the art to expose the main challenges and chances that this technology is facing currently. PMID:29019945

  3. Characterising the material properties at the interface between skin and a skin vaccination microprojection device.

    PubMed

    Crichton, Michael L; Archer-Jones, Cameron; Meliga, Stefano; Edwards, Grant; Martin, Darren; Huang, Han; Kendall, Mark A F

    2016-05-01

    The rapid emergence of micro-devices for biomedical applications over the past two decades has introduced new challenges for the materials used in the devices. Devices like microneedles and the Nanopatch, require sufficient strength to puncture skin often with sharp-slender micro-scale profiles, while maintaining mechanical integrity. For these technologies we sought to address two important questions: 1) On the scale at which the device operates, what forces are required to puncture the skin? And 2) What loads can the projections/microneedles withstand prior to failure. First, we used custom fabricated nanoindentation micro-probes to puncture skin at the micrometre scale, and show that puncture forces are ∼0.25-1.75mN for fresh mouse skin, in agreement with finite element simulations for our device. Then, we used two methods to perform strength tests of Nanopatch projections with varied aspect ratios. The first method used a nanoindenter to apply a force directly on the top or on the side of individual silicon projections (110μm in length, 10μm base radius), to measure the force of fracture. Our second method used an Instron to fracture full rows of projections and characterise a range of projection designs (with the method verified against previous nanoindentation experiments). Finally, we used Cryo-Scanning Electron Microscopy to visualise projections in situ in the skin to confirm the behaviour we quantified, qualitatively. Micro-device development has proliferated in the past decade, including devices that interact with tissues for biomedical outcomes. The field of microneedles for vaccine delivery to skin has opened new material challenges both in understanding tissue material properties and device material. In this work we characterise both the biomaterial properties of skin and the material properties of our microprojection vaccine delivery device. This study directly measures the micro-scale puncture properties of skin, whilst demonstrating clearly how these relate to device design. This will be of strong interest to those in the field of biomedical microdevices. This includes work in the field of wearable and semi-implantable devices, which will require clear understanding of tissue behaviour and material characterisation. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  4. Numerical Simulations of Noise Generated by High Aspect Ratio Supersonic Rectangular Jets - Validation

    NASA Astrophysics Data System (ADS)

    Viswanath, Kamal; Johnson, Ryan; Kailasanath, Kailas; Malla, Bhupatindra; Gutmark, Ephraim

    2017-11-01

    The noise from high performance jet engines of both civilian and military aircraft is an area of active concern. Asymmetric exhaust nozzle configurations, in particular rectangular, potentially offer a passive way of modulating the farfield noise and are likely to become more important in the future. High aspect ratio nozzles offer the further benefit of easier airframe integration. In this study we validate the far field noise for ideally and over expanded supersonic jets issuing from a high aspect ratio rectangular nozzle geometry. Validation of the acoustic data is performed against experimentally recorded sound pressure level (SPL) spectra for a host of observer locations around the asymmetric nozzle. Data is presented for a slightly heated jet case for both nozzle pressure ratios. The contrast in the noise profile from low aspect ratio rectangular and circular nozzle jets are highlighted, especially the variation in the azimuthal direction that shows ``quiet'' and ``loud'' planes in the farfield in the peak noise direction. This variation is analyzed in the context of the effect of mixing at the sharp corners, the sense of the vortex pairs setup in the exit plane, and the evolution of the high aspect ratio exit cross-section as it propagates downstream including possible axis-switching. Supported by Office of Naval Research (ONR) through the Computational Physics Task Area under the NRL 6.1 Base Program.

  5. Pore-Scale Modeling of Pore Structure Effects on P-Wave Scattering Attenuation in Dry Rocks

    PubMed Central

    Li, Tianyang; Qiu, Hao; Wang, Feifei

    2015-01-01

    Underground rocks usually have complex pore system with a variety of pore types and a wide range of pore size. The effects of pore structure on elastic wave attenuation cannot be neglected. We investigated the pore structure effects on P-wave scattering attenuation in dry rocks by pore-scale modeling based on the wave theory and the similarity principle. Our modeling results indicate that pore size, pore shape (such as aspect ratio), and pore density are important factors influencing P-wave scattering attenuation in porous rocks, and can explain the variation of scattering attenuation at the same porosity. From the perspective of scattering attenuation, porous rocks can safely suit to the long wavelength assumption when the ratio of wavelength to pore size is larger than 15. Under the long wavelength condition, the scattering attenuation coefficient increases as a power function as the pore density increases, and it increases exponentially with the increase in aspect ratio. For a certain porosity, rocks with smaller aspect ratio and/or larger pore size have stronger scattering attenuation. When the pore aspect ratio is larger than 0.5, the variation of scattering attenuation at the same porosity is dominantly caused by pore size and almost independent of the pore aspect ratio. These results lay a foundation for pore structure inversion from elastic wave responses in porous rocks. PMID:25961729

  6. 2D fall of granular columns controlled by slow horizontal withdrawal of a retaining wall

    NASA Astrophysics Data System (ADS)

    Mériaux, C. A.

    2006-12-01

    This paper describes a series of experiments designed to investigate the fall of granular columns in quasi- static regime. Columns made of alternatively green and red sand layers were initially laid out in a box and then released when a retaining wall was set in slow motion with constant speed. The dependence of the dynamics of the fall on the initial aspect ratio of the columns, the velocity of the wall and the material properties was investigated within the quasi-static regime. A change in the behaviour of the columns was identified to be a function of the aspect ratio (height/length) of the initial sand column. Columns of high aspect ratio first subsided before sliding along failure planes, while columns of small aspect ratio were only observed to slide along failure planes. The transition between these two characteristic falls occurred regardless of the material and the velocity of the wall in the context of the quasi-static regime. When the final height and length of the piles were analyzed, we found power-law relations of the ratio of initial to final height and final run-out to initial length with the aspect ratio of the column. The dissipation of energy is also shown to increase with the run-out length of the pile until it reaches a plateau.

  7. Morphological constraints on changing avian migration phenology.

    PubMed

    Møller, A P; Rubolini, D; Saino, N

    2017-06-01

    Many organisms at northern latitudes have responded to climate warming by advancing their spring phenology. Birds are known to show earlier timing of spring migration and reproduction in response to warmer springs. However, species show heterogeneous phenological responses to climate warming, with those that have not advanced or have delayed migration phenology experiencing population declines. Although some traits (such as migration distance) partly explain heterogeneity in phenological responses, the factors affecting interspecies differences in the responsiveness to climate warming have yet to be fully explored. In this comparative study, we investigate whether variation in wing aspect ratio (reflecting relative wing narrowness), an ecomorphological trait that is strongly associated with flight efficiency and migratory behaviour, affects the ability to advance timing of spring migration during 1960-2006 in a set of 80 European migratory bird species. Species with larger aspect ratio (longer and narrower wings) showed smaller advancement of timing of spring migration compared to species with smaller aspect ratio (shorter and wider wings) while controlling for phylogeny, migration distance and other life-history traits. In turn, migration distance positively predicted aspect ratio across species. Hence, species that are better adapted to migration appear to be more constrained in responding phenologically to rapid climate warming by advancing timing of spring migration. Our findings corroborate the idea that aspect ratio is a major evolutionary correlate of migration, and suggest that selection for energetically efficient flights, as reflected by high aspect ratio, may hinder phenotypically plastic/microevolutionary adjustments of migration phenology to ongoing climatic changes. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  8. On current drive by Ohkawa mechanism of electron cyclotron wave in large inverse aspect ratio tokamaks

    NASA Astrophysics Data System (ADS)

    Zheng, Pingwei; Gong, Xueyu; Lu, Xingqiang; He, Lihua; Cao, Jingjia; Huang, Qianhong; Deng, Sheng

    2018-03-01

    A localized and efficient current drive method in the outer-half region of the tokamak with a large inverse aspect ratio is proposed via the Ohkawa mechanism of electron cyclotron (EC) waves. Further off-axis Ohkawa current drive (OKCD) via EC waves was investigated in high electron beta β e HL-2M-like tokamaks with a large inverse aspect ratio, and in EAST-like tokamaks with a low inverse aspect ratio. OKCD can be driven efficiently, and the driven current profile is spatially localized in the radial region, ranging from 0.62 to 0.85, where the large fraction of trapped electrons provides an excellent advantage for OKCD. Furthermore, the current drive efficiency increases with an increase in minor radius, and then drops when the minor radius beyond a certain value. The effect of trapped electrons greatly enhances the current driving capability of the OKCD mechanism. The highest current drive efficiency can reach 0.183 by adjusting the steering mirror to change the toroidal and poloidal incident angle, and the total driven current by OKCD can reach 20-32 kA MW-1 in HL-2M-like tokamaks. The current drive is less efficient for the EAST-like scenario due to the lower inverse aspect ratio. The results show that OKCD may be a valuable alternative current drive method in large inverse aspect ratio tokamaks, and the potential capabilities of OKCD can be used to suppress some important magnetohydrodynamics instabilities in the far off-axis region.

  9. Optimized spray drying process for preparation of one-step calcium-alginate gel microspheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Popeski-Dimovski, Riste

    Calcium-alginate micro particles have been used extensively in drug delivery systems. Therefore we establish a one-step method for preparation of internally gelated micro particles with spherical shape and narrow size distribution. We use four types of alginate with different G/M ratio and molar weight. The size of the particles is measured using light diffraction and scanning electron microscopy. Measurements showed that with this method, micro particles with size distribution around 4 micrometers can be prepared, and SEM imaging showed that those particles are spherical in shape.

  10. Characteristics of flow and reactive pollutant dispersion in urban street canyons

    NASA Astrophysics Data System (ADS)

    Park, Soo-Jin; Kim, Jae-Jin; Kim, Minjoong J.; Park, Rokjin J.; Cheong, Hyeong-Bin

    2015-05-01

    In this study, the effects of aspect ratio defined as the ratio of building height to street width on the dispersion of reactive pollutants in street canyons were investigated using a coupled CFD-chemistry model. Flow characteristics for different aspect ratios were analyzed first. For each aspect ratio, six emission scenarios with different VOC-NOX ratios were considered. One vortex was generated when the aspect ratio was less than 1.6 (shallow street canyon). When the aspect ratio was greater than 1.6 (deep street canyon), two vortices were formed in the street canyons. Comparing to previous studies on two-dimensional street canyons, the vortex center is slanted toward the upwind building and reverse and downward flows are dominant in street canyons. Near the street bottom, there is a marked difference in flow pattern between in shallow and deep street canyons. Near the street bottom, reverse and downward flows are dominant in shallow street canyon and flow convergence exists near the center of the deep street canyons, which induces a large difference in the NOX and O3 dispersion patterns in the street canyons. NOX concentrations are high near the street bottom and decreases with height. The O3 concentrations are low at high NO concentrations near the street bottom because of NO titration. At a low VOC-NOX ratio, the NO concentrations are sufficiently high to destroy large amount of O3 by titration, resulting in an O3 concentration in the street canyon much lower than the background concentration. At high VOC-NOX ratios, a small amount of O3 is destroyed by NO titration in the lower layer of the street canyons. However, in the upper layer, O3 is formed through the photolysis of NO2 by VOC degradation reactions. As the aspect ratio increases, NOX (O3) concentrations averaged over the street canyons decrease (increase) in the shallow street canyons. This is because outward flow becomes strong and NOX flux toward the outsides of the street canyons increases, resulting in less NO titration. In the deep street canyons, outward flow becomes weak and outward NOX flux decreases, resulting in an increase (decrease) in NOX (O3) concentration.

  11. Design of an Efficient Turbulent Micro-Mixer for Protein Folding Experiments

    NASA Astrophysics Data System (ADS)

    Inguva, Venkatesh; Perot, Blair

    2015-11-01

    Protein folding studies require the development of micro-mixers that require less sample, mix at faster rates, and still provide a high signal to noise ratio. Chaotic to marginally turbulent micro-mixers are promising candidates for this application. In this study, various turbulence and unsteadiness generation concepts are explored that avoid cavitation. The mixing enhancements include flow turning regions, flow splitters, and vortex shedding. The relative effectiveness of these different approaches for rapid micro-mixing is discussed. Simulations found that flow turning regions provided the best mixing profile. Experimental validation of the optimal design is verified through laser confocal microscopy experiments. This work is support by the National Science Foundation.

  12. Comparison of High Aspect Ratio Cooling Channel Designs for a Rocket Combustion Chamber with Development of an Optimized Design

    NASA Technical Reports Server (NTRS)

    Wadel, Mary F.

    1998-01-01

    An analytical investigation on the effect of high aspect ratio (height/width) cooling channels, considering different coolant channel designs, on hot-gas-side wall temperature and coolant pressure drop for a liquid hydrogen cooled rocket combustion chamber, was performed. Coolant channel design elements considered were: length of combustion chamber in which high aspect ratio cooling was applied, number of coolant channels, and coolant channel shape. Seven coolant channel designs were investigated using a coupling of the Rocket Thermal Evaluation code and the Two-Dimensional Kinetics code. Initially, each coolant channel design was developed, without consideration for fabrication, to reduce the hot-gas-side wall temperature from a given conventional cooling channel baseline. These designs produced hot-gas-side wall temperature reductions up to 22 percent, with coolant pressure drop increases as low as 7.5 percent from the baseline. Fabrication constraints for milled channels were applied to the seven designs. These produced hot-gas-side wall temperature reductions of up to 20 percent, with coolant pressure drop increases as low as 2 percent. Using high aspect ratio cooling channels for the entire length of the combustion chamber had no additional benefit on hot-gas-side wall temperature over using high aspect ratio cooling channels only in the throat region, but increased coolant pressure drop 33 percent. Independent of coolant channel shape, high aspect ratio cooling was able to reduce the hot-gas-side wall temperature by at least 8 percent, with as low as a 2 percent increase in coolant pressure drop. ne design with the highest overall benefit to hot-gas-side wall temperature and minimal coolant pressure drop increase was the design which used bifurcated cooling channels and high aspect ratio cooling in the throat region. An optimized bifurcated high aspect ratio cooling channel design was developed which reduced the hot-gas-side wall temperature by 18 percent and reduced the coolant pressure drop by 4 percent. Reductions of coolant mass flow rate of up to 50 percent were possible before the hot-gas-side wall temperature reached that of the baseline. These mass flow rate reductions produced coolant pressure drops of up to 57 percent.

  13. 17 CFR 229.503 - (Item 503) Prospectus summary, risk factors, and ratio of earnings to fixed charges.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... provide a brief overview of the key aspects of the offering. Carefully consider and identify those aspects...) Foreign private issuers. A foreign private issuer must show the ratio based on the figures in the primary financial statement. A foreign private issuer must show the ratio based on the figures resulting from the...

  14. 17 CFR 229.503 - (Item 503) Prospectus summary, risk factors, and ratio of earnings to fixed charges.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... provide a brief overview of the key aspects of the offering. Carefully consider and identify those aspects...) Foreign private issuers. A foreign private issuer must show the ratio based on the figures in the primary financial statement. A foreign private issuer must show the ratio based on the figures resulting from the...

  15. Blade tip, finite aspect ratio, and dynamic stall effects on the Darrieus rotor

    NASA Astrophysics Data System (ADS)

    Paraschivoiu, I.; Desy, P.; Masson, C.

    1988-02-01

    The objective of the work described in this paper was to apply the Boeing-Vertol dynamic stall model in an asymmetric manner to account for the asymmetry of the flow between the left and right sides of the rotor. This phenomenon has been observed by the flow visualization of a two-straight-bladed Darrieus rotor in the IMST water tunnel. Also introduced into the aerodynamic model are the effects of the blade tip and finite aspect ratio on the aerodynamic performance of the Darrieus wind turbine. These improvements are compatible with the double-multiple-streamtube model and have been included in the CARDAAV computer code for predicting the aerodynamic performance. Very good agreement has been observed between the test data (Sandia 17 m) and theoretical predictions; a significant improvement over the previous dynamic stall model was obtained for the rotor power at low tip speed ratios, while the inclusion of the finite aspect ratio effects enhances the prediction of the rotor power for high tip speed ratios. The tip losses and finite aspect ratio effects were also calculated for a small-scale vertical-axis wind turbine, with a two-straight-bladed (NACA 0015) rotor.

  16. Sedimentation and mobility of PDCs: a reappraisal of ignimbrites' aspect ratio.

    PubMed

    Giordano, Guido; Doronzo, Domenico M

    2017-06-30

    The aspect ratio of ignimbrites is a commonly used parameter that has been related to the energy of the parent pyroclastic density currents (PDCs). However this parameter, calculated as the ratio between the average thickness and the average lateral extent of ignimbrites, does not capture fundamental differences in pyroclastic flow mobility nor relates to lithofacies variations of the final deposits. We herein introduce the "topological aspect ratio" (ARt) as the ratio of the local deposit thickness (Ht) to the distance between the local site and the maximum runout distance (Lt), where Ht is a proxy for the PDC tendency to deposit, and Lt a proxy for the PDC mobility or its tendency to further transport the pyroclastic material. The positive versus negative spatial gradient d(ARt)/dx along flow paths discriminate zones where PDCs are forced (i.e. where they transport the total energy under the action of mass discharge rate) from zones where they are inertial (i.e. where they transport the total energy under the action of viscous or turbulent fluidization). Though simple to apply, the topological aspect ratio and its spatial gradient are powerful descriptors of the interplay between sedimentation and mobility of PDCs, and of the resulting lithofacies variations.

  17. Simultaneous determination of the quantity and isotopic ratios of uranium in individual micro-particles by isotope dilution thermal ionization mass spectrometry (ID-TIMS).

    PubMed

    Park, Jong-Ho; Choi, Eun-Ju

    2016-11-01

    A method to determine the quantity and isotopic ratios of uranium in individual micro-particles simultaneously by isotope dilution thermal ionization mass spectrometry (ID-TIMS) has been developed. This method consists of sequential sample and spike loading, ID-TIMS for isotopic measurement, and application of a series of mathematical procedures to remove the contribution of uranium in the spike. The homogeneity of evaporation and ionization of uranium content was confirmed by the consistent ratio of n((233)U)/n((238)U) determined by TIMS measurements. Verification of the method was performed using U030 solution droplets and U030 particles. Good agreements of resulting uranium quantity, n((235)U)/n((238)U), and n((236)U)/n((238)U) with the estimated or certified values showed the validity of this newly developed method for particle analysis when simultaneous determination of the quantity and isotopic ratios of uranium is required. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. [Effect of X-ray micro-computed tomography on the metabolic activity and diversity of soil microbial communities in two Chinese soils].

    PubMed

    Zu, Qianhui; Fang, Huan; Zhou, Hu; Zhang, Jianwei; Peng, Xinhua; Lin, Xiangui; Feng, Youzhi

    2016-01-04

    X-ray micro-computed tomography (micro-CT) technology, as used in the in situ and nondestructive analysis of soil physical structure, provides the opportunity of associating soil physical and biological assays. Due to the high heterogeneity of the soil matrix, X-ray micro-CT scanning and soil microbial assays should be conducted on the same soil sample. This raises the question whether X-ray micro-CT influences microbial function and diversity of the sample soil to be analyzed. To address this question, we used plate counting, microcalorimetry and pyrosequencing approaches to evaluate the effect of X-ray--at doses typically used in micro-CT--on soil microorganisms in a typical soil of North China Plain, Fluvo-aquic soil and in a typical soil of subtropical China, Ultisol soil, respectively. In both soils radiation decreased the number of viable soil bacteria and disturbed their thermogenic profiles. At DNA level, pyrosequencing revealed that alpha diversities of two soils biota were influenced in opposite ways, while beta diversity was not affected although the relative abundances of some guilds were changed. These findings indicate that the metabolically active aspects of soil biota are not compatible with X-ray micro-CT; while the beta molecular diversity based on pyrosequencing could be compatible.

  19. Method of making an InAsSb/InAsSbP diode lasers

    DOEpatents

    Razeghi, M.

    1997-08-19

    InAsSb/InAsSbP/InAs Double Heterostructures (DH) and Separate Confinement Heterostructure Multiple Quantum Well (SCH-MQW) structures are taught wherein the ability to tune to a specific wavelength within 3 {micro}m to 5 {micro}m is possible by varying the ratio of As:Sb in the active layer. 9 figs.

  20. An Experimental Investigation of the Effect of a Canard Control on the Lift, Drag, and Pitching Moment of an Aspect-Ratio 2.0 Triangular Wing Incorporating a Form of Conical Camber

    NASA Technical Reports Server (NTRS)

    Menees, Gene P.; Boyd, John W.

    1959-01-01

    The results of an experimental investigation to determine the effect of a canard control on the lift, drag, and pitching-moment characteristics of an aspect-ratio-2.0 triangular wing incorporating a form of conical camber are presented. The canard had a triangular plan form of aspect ratio 2.0 and was mounted in the extended chord plane of the wing. The ratio of the area of the exposed canard panels to the total wing area was 6.9 percent, and the ratio of the total areas was 12.9 percent. Data were obtained at Mach numbers from 0.70 to 2.22 through an angle-of-attack range from -6 deg to +18 deg with the canard on, and with the canard off. To provide a basis for comparison, the canard was also tested with a symmetrical wing having the same plan form, aspect ratio, and thickness distribution as the cambered wing. The results of the investigation showed that at the high subsonic speeds the gain in maximum lift-drag ratio achieved by camber was considerably reduced by the addition of a canard. At the supersonic speeds, the addition of the canard did not change the effect of camber on the maximum lift-drag ratios.

  1. Synthesis of hierarchical Mg-doped Fe3O4 micro/nano materials for the decomposition of hexachlorobenzene.

    PubMed

    Su, Guijin; Liu, Yexuan; Huang, Linyan; Lu, Huijie; Liu, Sha; Li, Liewu; Zheng, Minghui

    2014-03-01

    An ethylene-glycol (EG) mediated self-assembly process was firstly developed to synthesize micrometer-sized nanostructured Mg-doped Fe3O4 composite oxides to decompose hexachlorobenzene (HCB) at 300°C. The synthesized samples were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, energy dispersive X-ray spectroscopy and inductively coupled plasma optical emission spectrometer. The morphology and composition of the composite oxide precursor were regulated by the molar ratio of the magnesium acetate and ferric nitrate as the reactants. Calcination of the precursor particles, prepared with different molar ratio of the metal salts, under a reducing nitrogen atmosphere, generated three kinds of Mg doped Fe3O4 composite oxide micro/nano materials. Their reactivity toward HCB decomposition was likely influenced by the material morphology and content of Mg dopants. Ball-like MgFe2O4-Fe3O4 composite oxide micro/nano material showed superior HCB dechlorination efficiencies when compared with pure Fe3O4 micro/nano material, prepared under similar experimental conditions, thus highlighting the benefits of doping Mg into Fe3O4 matrices. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Nano-Material Aspects of Shock Absorption in Bone Joints

    PubMed Central

    Tributsch, H; Copf, F; Copf, p; Hindenlang, U; Niethard, F.U; Schneider, R

    2010-01-01

    This theoretical study is based on a nano-technological evaluation of the effect of pressure on the composite bone fine structure. It turned out, that the well known macroscopic mechano-elastic performance of bones in combination with muscles and tendons is just one functional aspect which is critically supported by additional micro- and nano- shock damping technology aimed at minimising local bone material damage within the joints and supporting spongy bone material. The identified mechanisms comprise essentially three phenomena localised within the three–dimensional spongy structure with channels and so called perforated flexible tensulae membranes of different dimensions intersecting and linking them. Kinetic energy of a mechanical shock may be dissipated within the solid-liquid composite bone structure into heat via the generation of quasi-chaotic hydromechanic micro-turbulence. It may generate electro-kinetic energy in terms of electric currents and potentials. And the resulting specific structural and surface electrochemical changes may induce the compressible intra-osseal liquid to build up pressure dependent free chemical energy. Innovative bone joint prostheses will have to consider and to be adapted to the nano-material aspects of shock absorption in the operated bones. PMID:21625375

  3. Metallurgy and mechanical properties variation with heat input,during dissimilar metal welding between stainless and carbon steel

    NASA Astrophysics Data System (ADS)

    Ramdan, RD; Koswara, AL; Surasno; Wirawan, R.; Faturohman, F.; Widyanto, B.; Suratman, R.

    2018-02-01

    The present research focus on the metallurgy and mechanical aspect of dissimilar metal welding.One of the common parameters that significantly contribute to the metallurgical aspect on the metal during welding is heat input. Regarding this point, in the present research, voltage, current and the welding speed has been varied in order to observe the effect of heat input on the metallurgical and mechanical aspect of both welded metals. Welding was conducted by Gas Metal Arc Welding (GMAW) on stainless and carbon steel with filler metal of ER 309. After welding, hardness test (micro-Vickers), tensile test, macro and micro-structure characterization and Energy Dispersive Spectroscopy (EDS) characterization were performed. It was observed no brittle martensite observed at HAZ of carbon steel, whereas sensitization was observed at the HAZ of stainless steel for all heat input variation at the present research. Generally, both HAZ at carbon steel and stainless steel did not affect tensile test result, however the formation of chromium carbide at the grain boundary of HAZ structure (sensitization) of stainless steel, indicate that better process and control of welding is required for dissimilar metal welding, especially to overcome this issue.

  4. Oscillatory/chaotic thermocapillary flow induced by radiant heating

    NASA Technical Reports Server (NTRS)

    Hsieh, Kwang-Chung; Thompson, Robert L.; Vanzandt, David; Dewitt, Kenneth; Nash, Jon

    1994-01-01

    The objective of this paper is to conduct ground-based experiments to measure the onset conditions of oscillatory Marangoni flow in laser-heated silicone oil in a cylindrical container. For a single fluid, experimental data are presented using the aspect ratio and the dynamic Bond number. It is found that for a fixed aspect ratio, there seems to be an asymptotic limit of the dynamic Bond number beyond which no onset of flow oscillation could occur. Experimental results also suggested that there could be a lower limit of the aspect ratio below which there is no onset of oscillatory flow.

  5. Electrohydrodynamic pressure enhanced by free space charge for electrically induced structure formation with high aspect ratio.

    PubMed

    Tian, Hongmiao; Wang, Chunhui; Shao, Jinyou; Ding, Yucheng; Li, Xiangming

    2014-10-28

    Electrically induced structure formation (EISF) is an interesting and unique approach for generating a microstructured duplicate from a rheological polymer by a spatially modulated electric field induced by a patterned template. Most of the research on EISF have so far used various dielectric polymers (with an electrical conductivity smaller than 10(-10) S/m that can be considered a perfect dielectric), on which the electric field induces a Maxwell stress only due to the dipoles (or bounded charges) in the polymer molecules, leading to a structure with a small aspect ratio. This paper presents a different approach for improving the aspect ratio allowed in EISF by doping organic salt into the perfect dielectric polymer, i.e., turning the perfect dielectric into a leaky dielectric, considering the fact that the free space charges enriched in the leaky dielectric polymer can make an additional contribution to the Maxwell stress, i.e., electrohydrodynamic pressure, which is desirable for high aspect ratio structuring. Our numerical simulations and experimental tests have shown that a leaky dielectric polymer, with a small conductivity comparable to that of deionized water, can be much more effective at being electrohydrodynamically deformed into a high aspect ratio in comparison with a perfect dielectric polymer when both of them have roughly the same dielectric constant.

  6. Effect of Aspect Ratio on Electrical, Rheological and Glass Transition Properties of PC/MWCNT Nanocomposites.

    PubMed

    Cruz, Heidy; Son, Younggon

    2018-02-01

    Since the discovery of carbon nanotubes (CNT), significant research works have focused on the application of CNT as conductive filler to polymer nanocomposites which can be used in several fields such as electrostatic dissipation (ESD), electrostatic painting and electromagnetic interference shielding (EMI-shielding). However, the main challenge in the large-scale manufacturing of this technology is the poor electrical conductivity of polymer nanocomposites produced by injection molding process. This study aims to investigate the effect of CNT aspect ratio in improving the electrical conductivity of injection molded nanocomposites. In this work, three types of multiwall carbon nanotubes with different lengths were melt-mixed with polycarbonate in a twin screw extruder followed by injection and compression molding. Results show that nanocomposites with higher CNT aspect ratio exhibit higher electrical conductivity. Longer nanotubes form a stronger conductive network during secondary agglomeration which can withstand the high shear forces during injection molding. Higher melt viscosity and storage modulus were observed in nanocomposites with higher CNT aspect ratio which is attributed to the effective constriction of polymer chains by longer nanotubes. It was also found that Tg of the composites increased with nanotube aspect ratio and the addition of CNT causes degradation which leads to the general Tg depression of polycarbonate.

  7. Significantly Enhanced Energy Storage Density by Modulating the Aspect Ratio of BaTiO3 Nanofibers

    PubMed Central

    Zhang, Dou; Zhou, Xuefan; Roscow, James; Zhou, Kechao; Wang, Lu; Luo, Hang; Bowen, Chris R.

    2017-01-01

    There is a growing need for high energy density capacitors in modern electric power supplies. The creation of nanocomposite systems based on one-dimensional nanofibers has shown great potential in achieving a high energy density since they can optimize the energy density by exploiting both the high permittivity of ceramic fillers and the high breakdown strength of the polymer matrix. In this paper, BaTiO3 nanofibers (NFs) with different aspect ratio were synthesized by a two-step hydrothermal method and the permittivity and energy storage of the P(VDF-HFP) nanocomposites were investigated. It is found that as the BaTiO3 NF aspect ratio and volume fraction increased the permittivity and maximum electric displacement of the nanocomposites increased, while the breakdown strength decreased. The nanocomposites with the highest aspect ratio BaTiO3 NFs exhibited the highest energy storage density at the same electric field. However, the nanocomposites with the lowest aspect ratio BaTiO3 NFs achieved the maximal energy storage density of 15.48 J/cm3 due to its higher breakdown strength. This contribution provides a potential route to prepare and tailor the properties of high energy density capacitor nanocomposites. PMID:28332636

  8. Influence of aspect ratio and surface defect density on hydrothermally grown ZnO nanorods towards amperometric glucose biosensing applications

    NASA Astrophysics Data System (ADS)

    Shukla, Mayoorika; Pramila; Dixit, Tejendra; Prakash, Rajiv; Palani, I. A.; Singh, Vipul

    2017-11-01

    In this work, hydrothermally grown ZnO Nanorods Array (ZNA) has been synthesized over Platinum (Pt) coated glass substrate, for biosensing applications. In-situ addition of strong oxidizing agent viz KMnO4 during hydrothermal growth was found to have profound effect on the physical properties of ZNA. Glucose oxidase (GOx) was later immobilized over ZNA by means of physical adsorption process. Further influence of varying aspect ratio, enzyme loading and surface defects on amperometric glucose biosensor has been analyzed. Significant variation in biosensor performance was observed by varying the amount of KMnO4 addition during the growth. Moreover, investigations revealed that the suppression of surface defects and aspect ratio variation of the ZNA played key role towards the observed improvement in the biosensor performance, thereby significantly affecting the sensitivity and response time of the fabricated biosensor. Among different biosensors fabricated having varied aspect ratio and surface defect density of ZNA, the best electrode resulted into sensitivity and response time to be 18.7 mA cm-2 M-1 and <5 s respectively. The observed results revealed that apart from high aspect ratio nanostructures and the extent of enzyme loading, surface defect density also hold a key towards ZnO nanostructures based bio-sensing applications.

  9. Equilibrium state of a cylindrical particle with flat ends in nematic liquid crystals.

    PubMed

    Hashemi, S Masoomeh; Ejtehadi, Mohammad Reza

    2015-01-01

    A continuum theory is employed to numerically study the equilibrium orientation and defect structures of a circular cylindrical particle with flat ends under a homeotropic anchoring condition in a uniform nematic medium. Different aspect ratios of this colloidal geometry from thin discotic to long rodlike shapes and several colloidal length scales ranging from mesoscale to nanoscale are investigated. We show that the equilibrium state of this colloidal geometry is sensitive to the two geometrical parameters: aspect ratio and length scale of the particle. For a large enough mesoscopic particle, there is a specific asymptotic equilibrium angle associated to each aspect ratio. Upon reducing the particle size to nanoscale, the equilibrium angle follows a descending or ascending trend in such a way that the equilibrium angle of a particle with the aspect ratio bigger than 1:1 (a discotic particle) goes to a parallel alignment with respect to the far-field nematic, whereas the equilibrium angle for a particle with the aspect ratio 1:1 and smaller (a rodlike particle) tends toward a perpendicular alignment to the uniform nematic direction. The discrepancy between the equilibrium angles of the mesoscopic and nanoscopic particles originates from the significant differences between their defect structures. The possible defect structures related to mesoscopic and nanoscopic colloidal particles of this geometry are also introduced.

  10. Significantly Enhanced Energy Storage Density by Modulating the Aspect Ratio of BaTiO3 Nanofibers

    NASA Astrophysics Data System (ADS)

    Zhang, Dou; Zhou, Xuefan; Roscow, James; Zhou, Kechao; Wang, Lu; Luo, Hang; Bowen, Chris R.

    2017-03-01

    There is a growing need for high energy density capacitors in modern electric power supplies. The creation of nanocomposite systems based on one-dimensional nanofibers has shown great potential in achieving a high energy density since they can optimize the energy density by exploiting both the high permittivity of ceramic fillers and the high breakdown strength of the polymer matrix. In this paper, BaTiO3 nanofibers (NFs) with different aspect ratio were synthesized by a two-step hydrothermal method and the permittivity and energy storage of the P(VDF-HFP) nanocomposites were investigated. It is found that as the BaTiO3 NF aspect ratio and volume fraction increased the permittivity and maximum electric displacement of the nanocomposites increased, while the breakdown strength decreased. The nanocomposites with the highest aspect ratio BaTiO3 NFs exhibited the highest energy storage density at the same electric field. However, the nanocomposites with the lowest aspect ratio BaTiO3 NFs achieved the maximal energy storage density of 15.48 J/cm3 due to its higher breakdown strength. This contribution provides a potential route to prepare and tailor the properties of high energy density capacitor nanocomposites.

  11. Significantly Enhanced Energy Storage Density by Modulating the Aspect Ratio of BaTiO3 Nanofibers.

    PubMed

    Zhang, Dou; Zhou, Xuefan; Roscow, James; Zhou, Kechao; Wang, Lu; Luo, Hang; Bowen, Chris R

    2017-03-23

    There is a growing need for high energy density capacitors in modern electric power supplies. The creation of nanocomposite systems based on one-dimensional nanofibers has shown great potential in achieving a high energy density since they can optimize the energy density by exploiting both the high permittivity of ceramic fillers and the high breakdown strength of the polymer matrix. In this paper, BaTiO 3 nanofibers (NFs) with different aspect ratio were synthesized by a two-step hydrothermal method and the permittivity and energy storage of the P(VDF-HFP) nanocomposites were investigated. It is found that as the BaTiO 3 NF aspect ratio and volume fraction increased the permittivity and maximum electric displacement of the nanocomposites increased, while the breakdown strength decreased. The nanocomposites with the highest aspect ratio BaTiO 3 NFs exhibited the highest energy storage density at the same electric field. However, the nanocomposites with the lowest aspect ratio BaTiO 3 NFs achieved the maximal energy storage density of 15.48 J/cm 3 due to its higher breakdown strength. This contribution provides a potential route to prepare and tailor the properties of high energy density capacitor nanocomposites.

  12. Fluid Dynamics of a High Aspect-Ratio Jet

    NASA Technical Reports Server (NTRS)

    Munro, Scott E.; Ahuja, K. K.

    2003-01-01

    Circulation control wings are a type of pneumatic high-lift device that have been extensively researched as to their aerodynamic benefits. However, there has been little research into the possible airframe noise reduction benefits of a circulation control wing. The key element of noise is the jet noise associated with the jet sheet emitted from the blowing slot. High aspect-ratio jet acoustic results (aspect-ratios from 100 to 3,000) from a related study showed that the jet noise of this type of jet was proportional to the slot height to the 3/2 power and slot width to the 1/2 power. Fluid dynamic experiments were performed in the present study on the high aspect-ratio nozzle to gain understanding of the flow characteristics in an effort to relate the acoustic results to flow parameters. Single hot-wire experiments indicated that the jet exhaust from the high aspect-ratio nozzle was similar to a 2-d turbulent jet. Two-wire space-correlation measurements were performed to attempt to find a relationship between the slot height of the jet and the length-scale of the flow noise generating turbulence structure. The turbulent eddy convection velocity was also calculated, and was found to vary with the local centerline velocity, and also as a function of the frequency of the eddy.

  13. The Flow Field Downstream of a Dynamic Low Aspect Ratio Circular Cylinder: A Parametric Study

    NASA Astrophysics Data System (ADS)

    Gildersleeve, Samantha; Dan, Clingman; Amitay, Michael

    2015-11-01

    Flow past a static, low aspect ratio cylinder (pin) has shown the formation of vortical structures, namely the horseshoe and arch-type vortex. These vortical structures may have substantial effects in controlling flow separation over airfoils. In the present experiments, the flow field associated with a low aspect ratio cylinder as it interacts with a laminar boundary layer under static and dynamic conditions was investigated through a parametric study over a flat plate. As a result of the pin being actuated in the wall-normal direction, the structures formed in the wake of the pin were seen to be a strong function of actuation amplitude, driving frequency, and aspect ratio of the cylinder. The study was conducted at a Reynolds number of 1875, based on the local boundary layer thickness, with a free stream velocity of 10 m/s. SPIV data were collected for two aspect ratios of 0.75 and 1.125, actuation amplitudes of 6.7% and 16.7%, and driving frequencies of 175 Hz and 350 Hz. Results indicate that the presence and interactions between vortical structures are altered in comparison to the static case and suggest increased large-scale mixing when the pin is driven at the shedding frequency (350 Hz). Supported by the Boeing Company.

  14. Anomalous Buckling Characteristics of Laminated Metal-Matrix Composite Plates with Central Square Holes

    NASA Technical Reports Server (NTRS)

    Ko, William L.

    1998-01-01

    Compressive buckling analysis was performed on metal-matrix composite (MMC) plates with central square holes. The MMC plates have varying aspect ratios and hole sizes and are supported under different boundary conditions. The finite-element structural analysis method was used to study the effects of plate boundary conditions, plate aspect ratio, hole size, and the composite stacking sequence on the compressive buckling strengths of the perforated MMC plates. Studies show that by increasing the hole sizes, compressive buckling strengths of the perforated MMC plates could be considerably increased under certain boundary conditions and aspect ratios ("anomalous" buckling behavior); and that the plate buckling mode could be symmetrical or antisymmetrical, depending on the plate boundary conditions, aspect ratio, and the hole size. For same-sized plates with same-sized holes, the compressive buckling strengths of the perforated MMC plates with [90/0/0/90]2 lamination could be as much as 10 percent higher or lower than those of the [45/- 45/- 45/45]2 laminations, depending on the plate boundary conditions, plate aspect ratios, and the hole size. Clamping the plate edges induces far stronger "anomalous" buckling behavior (enhancing compressive buckling strengths at increasing hole sizes) of the perforated MMC plates than simply supporting the plate edges.

  15. Bulk purification and deposition methods for selective enrichment in high aspect ratio single-walled carbon nanotubes.

    PubMed

    Bhatt, Nidhi P; Vichchulada, Pornnipa; Lay, Marcus D

    2012-06-06

    Aqueous batch processing methods for the concurrent purification of single-walled carbon nanotube (SWNT) soot and enrichment in high aspect ratio nanotubes are essential to their use in a wide variety of electronic, structural, and mechanical applications. This manuscript presents a new route to the bulk purification and enrichment of unbundled SWNTs having average lengths in excess of 2 μm. Iterative centrifugation cycles at low centripetal force not only removed amorphous C and catalyst nanoparticles but also allowed the enhanced buoyancy of surfactant encapsulated, unbundled, high aspect ratio SWNTs to be used to isolate them in the supernatant. UV-vis-NIR and Raman spectroscopy were used to verify the removal of residual impurities from as-produced (AP-grade) arc discharge soot and the simultaneous enrichment in unbundled, undamaged, high aspect ratio SWNTs. The laminar flow deposition process (LFD) used to form two-dimensional networks of SWNTs prevented bundle formation during network growth. Additionally, it further enhanced the quality of deposits by taking advantage of the inverse relationship between the translational diffusion coefficient and length for suspended nanoparticles. This resulted in preferential deposition of pristine, unbundled, high aspect ratio SWNTs over residual impurities, as observed by Raman spectroscopy and atomic force microscopy (AFM).

  16. Posttranscriptional control of neuronal development by microRNA networks.

    PubMed

    Gao, Fen-Biao

    2008-01-01

    The proper development of the nervous system requires precise spatial and temporal control of gene expression at both the transcriptional and translational levels. In different experimental model systems, microRNAs (miRNAs) - a class of small, endogenous, noncoding RNAs that control the translation and stability of many mRNAs - are emerging as important regulators of various aspects of neuronal development. Further dissection of the in vivo physiological functions of individual miRNAs promises to offer novel mechanistic insights into the gene regulatory networks that ensure the precise assembly of a functional nervous system.

  17. Wakes behind surface-mounted obstacles: Impact of aspect ratio, incident angle, and surface roughness

    NASA Astrophysics Data System (ADS)

    Tobin, Nicolas; Chamorro, Leonardo P.

    2018-03-01

    The so-called wake-moment coefficient C˜h and lateral wake deflection of three-dimensional windbreaks are explored in the near and far wake. Wind-tunnel experiments were performed to study the functional dependence of C˜h with windbreak aspect ratio, incidence angle, and the ratio of the windbreak height and surface roughness (h /z0 ). Supported with the data, we also propose basic models for the wake deflection of the windbreak in the near and far fields. The near-wake model is based on momentum conservation considering the drag on the windbreak, whereas the far-wake counterpart is based on existing models for wakes behind surface-mounted obstacles. Results show that C˜h does not change with windbreak aspect ratios of 10 or greater; however, it may be lower for an aspect ratio of 5. C˜h is found to change roughly with the cosine of the incidence angle, and to depend strongly on h /z0 . The data broadly support the proposed wake-deflection models, though better predictions could be made with improved knowledge of the windbreak drag coefficient.

  18. Scalable Manufacturing of Metal Micro/Nanowires and Applications by Thermal Fiber Drawing Method

    NASA Astrophysics Data System (ADS)

    Hwang, Injoo

    The objective of this study is to better understand the fundamental principal of the thermal fiber drawing process with metal-core preforms. This would enable us to overcome the fundamental limits of current thermal drawing techniques by tuning material properties of core metals and interactions between core and cladding materials using nanoparticles. Metal micro/nanowires with controlled size, aspect ratio and spatial configurations of core and cladding materials exhibit extraordinary mechanical, thermal, electrical and optical properties. These metal micro/nanowires can be utilized for widespread applications such as: thermoelectric, conductive electrode and plasmonic photonic crystal fibers. Thermal fiber drawing method has emerged as an advanced scalable manufacturing technique for micro/nanowires production due to its unique characteristics that allow mass production of continuous and arbitrary designed wires. It is of tremendous scientific and technical interests to conduct a fundamental study on thermal fiber drawing methods and to break the current limits of the crystalline metal core thermal fiber drawing process. In this study, metal core was fabricated by cold compaction of the Zinc (Zn)-Tungsten Carbide (WC) nanopowders. Our characterizations through scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) showed that WC nanoparticle are uniformly dispersed in Zn matrix. The effects of WC nanoparticles on the mechanical properties and degradation rate in Zn-WC nanocomposites were carefully analyzed by tensile, compressive, hardness, degradation and viscosity tests. Metallic stents are commonly used to expand blood vessels that have been narrowed by plaque buildup (atherosclerosis). Fabrication difficulty and other constrains of metallic stents result in high cost. Zn-WC nanocomposite microwires were controllably drawn for stent struts with a diameter of 200 ?m. Characterizations by the tensile and degradation tests of Zn-WC nanocomposite microwires validate the eligibility for stent fabrication. Single cell Zn-WC nanocomposite stents were fabricated by braiding thermally drawn Zn-WC nanocomposite microwires on a weaving stage built by 3D printing. Zn-WC nanocomposite stents with an inner diameter of 2 mm was expanded up to 10 mm without recoil by a catheter, which is thin tube inserted into human body serving in a broad range of functions. For the purpose of in vivo test, Zn-WC nanocomposite stents were deployed in a pig by percutaneous coronary intervention method (angioplasty with stent). The surgery under fluoroscopy that continuous X-ray beam is passed through the body part being examined. X-ray opaque Zn-WC nanocomposite stents were distinctly shown to be expanded by a catheter and remained without bounce back through the whole procedure. The Zn-WC nanocomposite stents were extracted from the pig a month later and studied for the degradability by SEM and EDS mapping analysis. SEM images of Zn-WC stents showed that the degradation of the stents was uniformly proceeded on the surface without fractures. While the Zn-WC nanocomposite stents stayed inside the vessel, good endothelializations between the Zn-WC stents and surrounding cell tissues as well as no acute pathological problems were discovered from this study. One of the current challenges of thermal fiber drawing process for crystalline metal nanowires is low aspect ratio (< 10,000). A molten metal nanowire in a cladding material breaks up into shorter nanowires or smaller droplets due to Plateau-Rayleigh instability. It was experimentally and theoretically shown that molten liquid tends to minimize their surface area by virtue of surface tensions. The Tomotika model introduced the relation among instability time, viscosities of core and cladding materials, the wavelength and diameter of the core fluid, and interfacial energy between core and cladding materials as specifying the Plateau-Rayleigh instability [1]. The instability time was impeded by high viscosity of the Zn-WC nanocomposite core material while the preform of Zn-WC nanocomposite was thermally drawn by the stack-and-draw method. Consequently, high aspect ratio (> 1,500,000) of Zn-WC nanocomposite nanowires that are 200 nm in diameter and up to 31 cm length were achieved. Herein, we present that WC nanoparticles decreased interfacial energy between metal and glass due to its inherent characteristic such as partly metallic bonding. As a result, the nanoparticle can play the role of anchors to prevent breakage by capillary instability in nanoscale thermal fiber drawing process. Zn-WC nanocomposite nanowires surrounded by borosilicate glass were shown through the TEM (transmission electron microscope) diffraction patterns. By the electrical resistance test, not onlythe electrical resistance and but also the continuity of the Zn-WC nanocomposite nanowires was presented. (Abstract shortened by ProQuest.).

  19. Treatment of oilfield wastewater by combined process of micro-electrolysis, Fenton oxidation and coagulation.

    PubMed

    Zhang, Zhenchao

    2017-12-01

    In this study, a combined process was developed that included micro-electrolysis, Fenton oxidation and coagulation to treat oilfield fracturing wastewater. Micro-electrolysis and Fenton oxidation were applied to reduce chemical oxygen demand (COD) organic load and to enhance organic components gradability, respectively. Orthogonal experiment were employed to investigate the influence factors of micro-electrolysis and Fenton oxidation on COD removal efficiency. For micro-electrolysis, the optimum conditions were: pH, 3; iron-carbon dosage, 50 mg/L; mass ratio of iron-carbon, 2:3; reaction time, 60 min. For Fenton oxidation, a total reaction time of 90 min, a H 2 O 2 dosage of 12 mg/L, with a H 2 O 2 /Fe 2+ mole ratio of 30, pH of 3 were selected to achieve optimum oxidation. The optimum conditions in coagulation process: pH, cationic polyacrylamide dosage, mixing speed and time is 4.3, 2 mg/L, 150 rpm and 30 s, respectively. In the continuous treatment process under optimized conditions, the COD of oily wastewater fell 56.95%, 46.23%, 30.67%, respectively, from last stage and the total COD removal efficiency reached 83.94% (from 4,314 to 693 mg/L). In the overall treatment process under optimized conditions, the COD of oily wastewater was reduced from 4,314 to 637 mg/L, and the COD removal efficiency reached 85.23%. The contribution of each stage is 68.45% (micro-electrolysis), 24.07% (Fenton oxidation), 7.48% (coagulation), respectively. Micro-electrolysis is the uppermost influencing process on COD removal. Compared with the COD removal efficiency of three processes on raw wastewater under optimized conditions: the COD removal efficiency of single micro-electrolysis, single Fenton oxidation, single coagulation is 58.34%, 44.88% and 39.72%, respectively. Experiments proved the effect of combined process is marvelous and the overall water quality of the final effluent could meet the class III national wastewater discharge standard of petrochemical industry of China (GB8978-1996).

  20. Optimization of Orifice Geometry for Cross-Flow Mixing in a Cylindrical Duct

    NASA Technical Reports Server (NTRS)

    Sowa, W. A.; Kroll, J. T.; Samuelsen, G. S.; Holdeman, J. D.

    1994-01-01

    Mixing of gaseous jets in a cross-flow has significant applications in engineering, one example of which is the dilution zone of a gas turbine combustor. Despite years of study, the design of jet injection in combustors is largely based on practical experience. A series of experiments was undertaken to delineate the optimal mixer orifice geometry. A cross-flow to core-flow momentum-flux ratio of 40 and a mass flow ratio of 2.5 were selected as representative of an advanced design. An experimental test matrix was designed around three variables: the number of orifices, the orifice aspect ratio (long-to-short dimension), and the orifice angle. A regression analysis was performed on the data to arrive at an interpolating equation that predicted the mixing performance of orifice geometry combinations within the range of the test matrix parameters. Results indicate that mixture uniformity is a non-linear function of the number of orifices, the orifice aspect ratio, and the orifice angle. Optimum mixing occurs when the asymptotic mean jet trajectories are in the range of 0.35 less than r/R less than 0.5 (where r = 0 is at the mixer wall) at z/R = 1.0. At the optimum number of orifices, the difference between shallow-angled slots with large aspect ratios and round holes is minimal and either approach will lead to good mixing performance. At the optimum number of orifices, it appears possible to have two local optimums where one corresponds to an aspect ratio of 1.0 and the other to a high aspect ratio.

  1. Evaluation and improvement of micro-surfacing mix design method and modelling of asphalt emulsion mastic in terms of filler-emulsion interaction

    NASA Astrophysics Data System (ADS)

    Robati, Masoud

    This Doctorate program focuses on the evaluation and improving the rutting resistance of micro-surfacing mixtures. There are many research problems related to the rutting resistance of micro-surfacing mixtures that still require further research to be solved. The main objective of this Ph.D. program is to experimentally and analytically study and improve rutting resistance of micro-surfacing mixtures. During this Ph.D. program major aspects related to the rutting resistance of micro-surfacing mixtures are investigated and presented as follow: 1) evaluation of a modification of current micro-surfacing mix design procedures: On the basis of this effort, a new mix design procedure is proposed for type III micro-surfacing mixtures as rut-fill materials on the road surface. Unlike the current mix design guidelines and specification, the new mix design is capable of selecting the optimum mix proportions for micro-surfacing mixtures; 2) evaluation of test methods and selection of aggregate grading for type III application of micro-surfacing: Within the term of this study, a new specification for selection of aggregate grading for type III application of micro-surfacing is proposed; 3) evaluation of repeatability and reproducibility of micro-surfacing mixture design tests: In this study, limits for repeatability and reproducibility of micro-surfacing mix design tests are presented; 4) a new conceptual model for filler stiffening effect on asphalt mastic of micro-surfacing: A new model is proposed, which is able to establish limits for minimum and maximum filler concentrations in the micro-surfacing mixture base on only the filler important physical and chemical properties; 5) incorporation of reclaimed asphalt pavement and post-fabrication asphalt shingles in micro-surfacing mixture: The effectiveness of newly developed mix design procedure for micro-surfacing mixtures is further validated using recycled materials. The results present the limits for the use of RAP and RAS amount in micro-surfacing mixtures; 6) new colored micro-surfacing formulations with improved durability and performance: The significant improvement of around 45% in rutting resistance of colored and conventional micro-surfacing mixtures is achieved through employing low penetration grade bitumen polymer modified asphalt emulsion stabilized using nanoparticles.

  2. Microengineering of magnetic bearings and actuators

    NASA Astrophysics Data System (ADS)

    Ghantasala, Muralihar K.; Qin, LiJiang; Sood, Dinesh K.; Zmood, Ronald B.

    2000-06-01

    Microengineering has evolved in the last decade as a subject of its own with the current research encompassing every possible area of devices from electromagnetic to optical and bio-micro electromechanical systems (MEMS). The primary advantage of the micro system technology is its small size, potential to produce high volume and low cost devices. However, the major impediments in the successful realization of many micro devices in practice are the reliability, packaging and integration with the existing microelectronics technology. Microengineering of actuators has recently grown tremendously due to its possible applicability to a wide range of devices of practical importance and the availability of a choice of materials. Selection of materials has been one of the important aspects of the design and fabrication of many micro system and actuators. This paper discusses the issues related to the selection of materials and subsequently their effect on the performance of the actuator. These will be discussed taking micro magnetic actuators and bearings, in particular, as examples. Fabrication and processing strategies and performance evaluation methods adopted will be described. Current status of the technology and projected futuristic applications in this area will be reviewed.

  3. GPS-based microenvironment tracker (MicroTrac) model to estimate time–location of individuals for air pollution exposure assessments: Model evaluation in central North Carolina

    PubMed Central

    Breen, Michael S.; Long, Thomas C.; Schultz, Bradley D.; Crooks, James; Breen, Miyuki; Langstaff, John E.; Isaacs, Kristin K.; Tan, Yu-Mei; Williams, Ronald W.; Cao, Ye; Geller, Andrew M.; Devlin, Robert B.; Batterman, Stuart A.; Buckley, Timothy J.

    2014-01-01

    A critical aspect of air pollution exposure assessment is the estimation of the time spent by individuals in various microenvironments (ME). Accounting for the time spent in different ME with different pollutant concentrations can reduce exposure misclassifications, while failure to do so can add uncertainty and bias to risk estimates. In this study, a classification model, called MicroTrac, was developed to estimate time of day and duration spent in eight ME (indoors and outdoors at home, work, school; inside vehicles; other locations) from global positioning system (GPS) data and geocoded building boundaries. Based on a panel study, MicroTrac estimates were compared with 24-h diary data from nine participants, with corresponding GPS data and building boundaries of home, school, and work. MicroTrac correctly classified the ME for 99.5% of the daily time spent by the participants. The capability of MicroTrac could help to reduce the time–location uncertainty in air pollution exposure models and exposure metrics for individuals in health studies. PMID:24619294

  4. Silica Nanofiber Combat Hemostat (SINCH)

    DTIC Science & Technology

    2008-10-13

    1.5mg 0.6 65 205 High aspect ratio silica fibers (30um x 60nm) 9mg 0.63 58.9 140 Kaolin (TEG control) 0.2mg n/a 59.8 155 TiO2 high aspect ratio...high surface area to volume ratio and thus the material is difficult to handle in an uncontrolled environment. It is easily dispersed and is not easy

  5. Ectoenzymatic ratios in relation to particulate organic matter distribution (Ross Sea, Antarctica).

    PubMed

    Misic, C; Povero, P; Fabiano, M

    2002-10-01

    The results of a study on ectoenzymatic activity (the enzyme activity bound to particles larger than 0.2 micro m) and its relation to organic particle concentration are reported here. The sampling was carried out during the 1994 Antarctic spring, at a fixed station (Station 11) in the polynya of the Ross Sea, an area characterized by quick changes in sea ice cover. The sampling was repeated 4 times over a 20-day time period. The particulate organic matter distribution followed the physical structure of the water column, which depends on ice dynamics and is mainly determined by salinity. In the mixed-water surface layer (0-50 m) the concentrations were higher (on average 65.6 micro gC/L) than in the deeper water layer (50 m-bottom) (on average 19.1 micro gC/L). This distribution and quality, expressed by the protein:carbohydrate ratio, linked the particulate organic matter to the phytoplanktonic bloom which was in progress in the area. We determined the kinetic parameters of the glycolytic and proteolytic ectoenzymes and also the total activity for the proteolytic enzyme, in order to evaluate the contribution of the particle-bound activity. We observed higher values in the surface layer than in the deeper layer. b-Glucosidase activity ranged between 0.03 and 0.92 nmol L(-1) h(-1); b-N-acetylglucosaminidase activity was in the range of 0.04-0.58 nmol (L-1) (h-1). The total proteolytic activity (leucine aminopeptidase) ranged between 0.85 and 33.71 nmol L(-1) (h-1). The ectoproteolytic activity was about 35-60% of the total. The Km values were slightly higher for the proteolytic activity (on average 0.43 micro M for ectoproteolytic activity and 0.58 micro M for total proteolytic activity) than for the b-glucosidase (on average 0.36 micro M) and b-N-acetylglucosaminidase (on average 0.17 micro M), showing no remarkable variations in the water column. The ectoenzymatic ratios and their relationship with particulate organic substrates confirm the close link between organic substrate availability and degradation system response. The significant and positive correlations are not specific and suggest a prompt and efficient systemic response to the input of trophic resources. Nevertheless, changes in ectoenzyme activity and synthesis may act as adaptive responses to changing features of the ecosystem. In particular, variations in the proteolysis:glycolysis ratio depend on the functional features of the ecological system. In our study area this ratio is higher (about 10 or more) during production (particularly autotrophic) and lower (about 5 or less) during degradation/consumption events. The analysis of previous data, collected over a larger area characterized by different environmental conditions due to the changes of the pack ice cover, during the same cruise, confirms the existence of a significant relationship. Furthermore, the analysis of enzyme-uptake systems, expressed as Vmax:Km ratio, suggests that glycolytic ectoenzymes, although poorly expressed, may encourage microconsumers to grow rapidly on a wide range of organic substrates, including the refractory ones such as cellulose and chitin. However, low ectoenzyme potential exploitation rates of available organic substrates (on average about 5% for glycolytic and 12% for proteolytic ectoenzymes) would suggest that, during spring, zooplankton grazing or vertical and lateral transport are likely to play an important role in the removal of organic materials from the system.

  6. Nanocomposites with increased energy density through high aspect ratio PZT nanowires.

    PubMed

    Tang, Haixiong; Lin, Yirong; Andrews, Clark; Sodano, Henry A

    2011-01-07

    High energy storage plays an important role in the modern electric industry. Herein, we investigated the role of filler aspect ratio in nanocomposites for energy storage. Nanocomposites were synthesized using lead zirconate titanate (PZT) with two different aspect ratio (nanowires, nanorods) fillers at various volume fractions dispersed in a polyvinylidene fluoride (PVDF) matrix. The permittivity constants of composites containing nanowires (NWs) were higher than those with nanorods (NRs) at the same inclusion volume fraction. It was also indicated that the high frequency loss tangent of samples with PZT nanowires was smaller than for those with nanorods, demonstrating the high electrical energy storage efficiency of the PZT NW nanocomposite. The high aspect ratio PZT NWs showed a 77.8% increase in energy density over the lower aspect ratio PZT NRs, under an electric field of 15 kV mm(-1) and 50% volume fraction. The breakdown strength was found to decrease with the increasing volume fraction of PZT NWs, but to only change slightly from a volume fraction of around 20%-50%. The maximum calculated energy density of nanocomposites is as high as 1.158 J cm(-3) at 50% PZT NWs in PVDF. Since the breakdown strength is lower compared to a PVDF copolymer such as poly(vinylidene fluoride-tertrifluoroethylene-terchlorotrifluoroethylene) P(VDF-TreEE-CTFE) and poly(vinylidene fluoride-co-hexafluoropropylene) P(VDF-HFP), the energy density of the nanocomposite could be significantly increased through the use of PZT NWs and a polymer with greater breakdown strength. These results indicate that higher aspect ratio fillers show promising potential to improve the energy density of nanocomposites, leading to the development of advanced capacitors with high energy density.

  7. Control of glucose homeostasis and insulin sensitivity by the Let-7 family of microRNAs

    PubMed Central

    Frost, Robert J. A.; Olson, Eric N.

    2011-01-01

    Diabetes mellitus is the most common metabolic disorder worldwide and a major risk factor for cardiovascular disease. MicroRNAs are negative regulators of gene expression that have been implicated in many biological processes, including metabolism. Here we show that the Let-7 family of microRNAs regulates glucose metabolism in multiple organs. Global and pancreas-specific overexpression of Let-7 in mice resulted in impaired glucose tolerance and reduced glucose-induced pancreatic insulin secretion. Mice overexpressing Let-7 also had decreased fat mass and body weight, as well as reduced body size. Global knockdown of the Let-7 family with an antimiR was sufficient to prevent and treat impaired glucose tolerance in mice with diet-induced obesity, at least in part by improving insulin sensitivity in liver and muscle. AntimiR treatment of mice on a high-fat diet also resulted in increased lean and muscle mass, but not increased fat mass, and prevented ectopic fat deposition in the liver. These findings demonstrate that Let-7 regulates multiple aspects of glucose metabolism and suggest antimiR-induced Let-7 knockdown as a potential treatment for type 2 diabetes mellitus. Furthermore, our Cre-inducible Let-7-transgenic mice provide a unique model for studying tissue-specific aspects of body growth and type 2 diabetes. PMID:22160727

  8. Development of CE-dual opposite carbon-fiber micro-disk electrode detection for peak purity assessment of polyphenols in red wine.

    PubMed

    Du, Fuying; Fung, Ying Sing

    2010-07-01

    A new dual opposite carbon-fiber micro-disk electrode detector was fabricated and tested for hyphenation with CE in the polyphenol determination. Under optimized conditions, CE-dual opposite carbon-fiber micro-disk electrode was found able to baseline separate and determine five important polyphenols (trans-resveratrol, (+)-catechin, (-)-epicatechin, quercetin and gallic acid) in red wine within 16 min with low detection limit (0.031-0.21 mg/L) and satisfactory repeatability (2.0-3.3% RSD, n=5). The opposite dual electrode enables simultaneous determination of CE eluents for current ratio measured at +0.8 and +1.0 V versus Ag/AgCl for the peak purity assessment. The capability to identify the presence of co-migrating impurities in given polyphenol peaks was demonstrated in a mixed standard solution with overlapping (+)-catechin and (-)-epicatechin peaks and in commercial red wine with unknown impurities and confirming the reliability for polyphenol quantitation in red wine with matching migration time and current ratio.

  9. The formation of periodic micro/nano structured on stainless steel by femtosecond laser irradiation

    NASA Astrophysics Data System (ADS)

    Yao, Caizhen; Gao, Wei; Ye, Yayun; Jiang, Yong; Xu, Shizhen; Yuan, Xiaodong

    2017-07-01

    Stainless steel surface was irradiated by linear polarized laser (800 nm, 35 fs, 4 Hz and 0.7 J/cm2) with different pulse numbers. Environmental scanning electron microscope (ESEM/EDS) was used for detailed morphology, microstructure and composition studies. The wettability of irradiated steel surface was tested by Interface Tensiometer JC-2000X and compared with untreated stainless steel. Results showed that micro/nanostripes with different periods were formed. The period increased with the increasing pulse numbers from 450 nm for 90 pulses to 500 nm for 180 pulses. The orientation of those stripes was parallel with the laser beam polarization. Nanoparticles were observed on those periodic structures. EDS indicated that the atomic ratio of Cr increased and the atomic ratios of Fe and Ni decreased after laser irradiation, which may enhance the corrosion resistance due to the Cr-rich layer. The prepared structure exhibited hydrophobic property without further treatment. The formation mechanism of micro/nanoperiodic structures was also explored.

  10. Superhydrophobic and transparent coatings prepared by self-assembly of dual-sized silica particles

    NASA Astrophysics Data System (ADS)

    Xu, Qian-Feng; Wang, Jian-Nong

    2010-06-01

    Superhydrophobic and transparent coatings have been prepared by self-assembly of dual-sized silica particles from a mixed dispersion. The desirable micro/nano hierarchical structure for superhydrophobicity is constructed simply by adjusting the size and ratio of the dual-sized particles without organic/inorganic templates. The transparency of the prepared coatings is also researched, and the light scattering can be reduced by lowering the ratio of big sub-micro particles while the superhydrophobicity maintains unchanged. When nano particles with a diameter of 50 nm and sub-micro particles with a diameter of 350 nm are assembled, a superhydrophobic property with a water contact angle of 161° is achieved. Additionally, the coated glass is also very transparent. The highest transmittance of the coated glass can reach 85%. Compared to traditional colloid self-assembly approach, which often involves dozens of steps of layer-by-layer processing and organic/inorganic templates, the present approach is much simpler and has advantages for large-scale coating.

  11. Image Reconstruction Under Contact Impedance Effect in Micro Electrical Impedance Tomography Sensors.

    PubMed

    Liu, Xiayi; Yao, Jiafeng; Zhao, Tong; Obara, Hiromichi; Cui, Yahui; Takei, Masahiro

    2018-06-01

    Contact impedance has an important effect on micro electrical impedance tomography (EIT) sensors compared to conventional macro sensors. In the present work, a complex contact impedance effect ratio ξ is defined to quantitatively evaluate the effect of the contact impedance on the accuracy of the reconstructed images by micro EIT. Quality of the reconstructed image under various ξ is estimated by the phantom simulation to find the optimum algorithm. The generalized vector sampled pattern matching (GVSPM) method reveals the best image quality and the best tolerance to ξ. Moreover, the images of yeast cells sedimentary distribution in a multilayered microchannel are reconstructed by the GVSPM method under various mean magnitudes of contact impedance effect ratio |ξ|. The result shows that the best image quality that has the smallest voltage error U E = 0.581 is achieved with measurement frequency f = 1 MHz and mean magnitude |ξ| = 26. In addition, the reconstructed images of cells distribution become improper while f < 10 kHz and mean value of |ξ| > 2400.

  12. Concrete with onyx waste aggregate as aesthetically valued structural concrete

    NASA Astrophysics Data System (ADS)

    Setyowati E., W.; Soehardjono, A.; Wisnumurti

    2017-09-01

    The utillization of Tulungagung onyx stone waste as an aggregate of concrete mixture will improve the economic value of the concrete due to the brighter color and high aesthetic level of the products. We conducted the research of 75 samples as a test objects to measure the compression stress, splits tensile stress, flexural tensile stress, elasticity modulus, porosity modulus and also studied 15 test objects to identify the concrete micro structures using XRD test, EDAX test and SEM test. The test objects were made from mix designed concrete, having ratio cement : fine aggregate : coarse aggregate ratio = 1 : 1.5 : 2.1, and W/C ratio = 0.4. The 28 days examination results showed that the micro structure of Tulungagung onyx waste concrete is similar with normal concrete. Moreover, the mechanical test results proved that Tulungagung onyx waste concretes also have a qualified level of strength to be used as a structural concrete with higher aesthetic level.

  13. A (very) Simple Model for the Aspect Ratio of High-Order River Basins

    NASA Astrophysics Data System (ADS)

    Shelef, E.

    2017-12-01

    The structure of river networks dictates the distribution of elevation, water, and sediments across Earth's surface. Despite its intricate shape, the structure of high-order river networks displays some surprising regularities such as the consistent aspect ratio (i.e., basin's width over length) of river basins along linear mountain fronts. This ratio controls the spacing between high-order channels as well as the spacing between the depositional bodies they form. It is generally independent of tectonic and climatic conditions and is often attributed to the initial topography over which the network was formed. This study shows that a simple, cross-like channel model explains this ratio via a requirement for equal elevation gain between the outlets and drainage-divides of adjacent channels at topographic steady state. This model also explains the dependence of aspect ratio on channel concavity and the location of the widest point on a drainage divide.

  14. Laser velocimeter and total pressure measurements in circular-to-rectangular transition ducts

    NASA Technical Reports Server (NTRS)

    Patrick, William P.; Mccormick, Duane C.

    1988-01-01

    A comprehensive set of total pressure and three-component laser velocimetry (LV) data were obtained within two circular-to-rectangular transition ducts at low subsonic speeds. This set of reference data was acquired for use in identifying secondary flow mechanisms and for assessing the accuracy of computational procedures for calculating such flows. Data were obtained at the inlet and exit planes of an aspect ratio three duct having a length-to-diameter ratio of one (AR310) and an aspect ratio six duct having a length-to-diameter ratio of three (AR630). Each duct was unseparated throughout its transition section. It is therefore concluded that secondary flows can play an important part in the fluid dynamics of transition ducts and needs to be addressed in computational analysis. The strength of the secondary flows depends on both the aspect ratio and relative axial duct length.

  15. Relation between self-organized criticality and grain aspect ratio in granular piles

    NASA Astrophysics Data System (ADS)

    Denisov, D. V.; Villanueva, Y. Y.; Lőrincz, K. A.; May, S.; Wijngaarden, R. J.

    2012-05-01

    We investigate experimentally whether self-organized criticality (SOC) occurs in granular piles composed of different grains, namely, rice, lentils, quinoa, and mung beans. These four grains were selected to have different aspect ratios, from oblong to oblate. As a function of aspect ratio, we determined the growth (β) and roughness (α) exponents, the avalanche fractal dimension (D), the avalanche size distribution exponent (τ), the critical angle (γ), and its fluctuation. At superficial inspection, three types of grains seem to have power-law-distributed avalanches with a well-defined τ. However, only rice is truly SOC if we take three criteria into account: a power-law-shaped avalanche size distribution, finite size scaling, and a universal scaling relation relating characteristic exponents. We study SOC as a spatiotemporal fractal; in particular, we study the spatial structure of criticality from local observation of the slope angle. From the fluctuation of the slope angle we conclude that greater fluctuation (and thus bigger avalanches) happen in piles consisting of grains with larger aspect ratio.

  16. Dimensional and compositional dependent analysis of plasmonic bimetallic nanorods

    NASA Astrophysics Data System (ADS)

    Bansal, Amit; Singh Sekhon, Jagmeet; Verma, S. S.

    2015-11-01

    The individual noble metal nanoparticles (NPs) are combined to form alloys with improved optical response, cost effectiveness and better stability. The selection of noble metal alloy NPs for their better use in plasmonic applications is being made on the bases of surface plasmon resonance peak position, its intensity and full width at half maxima (FWHM). Presently, the effect of metal composition (x), aspect ratio (R), size and metal type on the longitudinal plasmon resonance (LPR) of noble metal Ag-Au alloy nanorods (NRs) has been studied by applying modified Gans theory including finite wavelength effects and found that the LPR shifts towards the longer wavelength region with increase in aspect ratio and size of the NR. Moreover, a linear relationship which is in good agreement to the experimental results between the plasmon resonance and aspect ratio has been obtained. The aspect ratio and NR width-dependent absorption efficiency and FWHM have also been calculated. Further, a negligible effect of metal composition and its type is found on the LPR.

  17. Multiscale modeling for SiO2 atomic layer deposition for high-aspect-ratio hole patterns

    NASA Astrophysics Data System (ADS)

    Miyano, Yumiko; Narasaki, Ryota; Ichikawa, Takashi; Fukumoto, Atsushi; Aiso, Fumiki; Tamaoki, Naoki

    2018-06-01

    A multiscale simulation model is developed for optimizing the parameters of SiO2 plasma-enhanced atomic layer deposition of high-aspect-ratio hole patterns in three-dimensional (3D) stacked memory. This model takes into account the diffusion of a precursor in a reactor, that in holes, and the adsorption onto the wafer. It is found that the change in the aperture ratio of the holes on the wafer affects the concentration of the precursor near the top of the wafer surface, hence the deposition profile in the hole. The simulation results reproduced well the experimental results of the deposition thickness for the various hole aperture ratios. By this multiscale simulation, we can predict the deposition profile in a high-aspect-ratio hole pattern in 3D stacked memory. The atomic layer deposition parameters for conformal deposition such as precursor feeding time and partial pressure of precursor for wafers with various hole aperture ratios can be estimated.

  18. Modeling Dynamic Food Choice Processes to Understand Dietary Intervention Effects.

    PubMed

    Marcum, Christopher Steven; Goldring, Megan R; McBride, Colleen M; Persky, Susan

    2018-02-17

    Meal construction is largely governed by nonconscious and habit-based processes that can be represented as a collection of in dividual, micro-level food choices that eventually give rise to a final plate. Despite this, dietary behavior intervention research rarely captures these micro-level food choice processes, instead measuring outcomes at aggregated levels. This is due in part to a dearth of analytic techniques to model these dynamic time-series events. The current article addresses this limitation by applying a generalization of the relational event framework to model micro-level food choice behavior following an educational intervention. Relational event modeling was used to model the food choices that 221 mothers made for their child following receipt of an information-based intervention. Participants were randomized to receive either (a) control information; (b) childhood obesity risk information; (c) childhood obesity risk information plus a personalized family history-based risk estimate for their child. Participants then made food choices for their child in a virtual reality-based food buffet simulation. Micro-level aspects of the built environment, such as the ordering of each food in the buffet, were influential. Other dynamic processes such as choice inertia also influenced food selection. Among participants receiving the strongest intervention condition, choice inertia decreased and the overall rate of food selection increased. Modeling food selection processes can elucidate the points at which interventions exert their influence. Researchers can leverage these findings to gain insight into nonconscious and uncontrollable aspects of food selection that influence dietary outcomes, which can ultimately improve the design of dietary interventions.

  19. Molecular aspects of diabetes mellitus: Resistin, microRNA, and exosome.

    PubMed

    Saeedi Borujeni, Mohammad Javad; Esfandiary, Ebrahim; Taheripak, Gholamreza; Codoñer-Franch, Pilar; Alonso-Iglesias, Eulalia; Mirzaei, Hamed

    2018-02-01

    Diabetes mellitus (DM) is known as one of important common endocrine disorders which could due to deregulation of a variety of cellular and molecular pathways. A large numbers studies indicated that various pathogenesis events including mutation, serin phosphorylation, and increasing/decreasing expression of many genes could contribute to initiation and progression of DM. Insulin resistance is one of important factors which could play critical roles in DM pathogenesis. It has been showed that insulin resistance via targeting a sequence of cellular and molecular pathways (eg, PI3 kinases, PPARγ co-activator-1, microRNAs, serine/threonine kinase Akt, and serin phosphorylation) could induce DM. Among of various factors involved in DM pathogenesis, microRNAs, and exosomes have been emerged as effective factors in initiation and progression of DM. A variety of studies indicated that deregulation of these molecules could change behavior of various types of cells and contribute to progression of DM. Resistin is other main factor which is known as signal molecule involved in insulin resistance. Multiple lines evidence indicated that resistin exerts its effects via affecting on glucose metabolism, inhibition of fatty acid uptake and metabolism with affecting on a variety of targets such as CD36, fatty acid transport protein 1, Acetyl-CoA carboxylase, and AMP-activated protein kinase. Here, we summarized various molecular aspects are associated with DM particularly the molecular pathways involved in insulin resistance and resistin in DM. Moreover, we highlighted exosomes and microRNAs as effective players in initiation and progression of DM. © 2017 Wiley Periodicals, Inc.

  20. The Effect of Experimental Variables on Industrial X-Ray Micro-Computed Sensitivity

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Rauser, Richard W.

    2014-01-01

    A study was performed on the effect of experimental variables on radiographic sensitivity (image quality) in x-ray micro-computed tomography images for a high density thin wall metallic cylinder containing micro-EDM holes. Image quality was evaluated in terms of signal-to-noise ratio, flaw detectability, and feature sharpness. The variables included: day-to-day reproducibility, current, integration time, voltage, filtering, number of frame averages, number of projection views, beam width, effective object radius, binning, orientation of sample, acquisition angle range (180deg to 360deg), and directional versus transmission tube.

  1. The History of Early Polar Ice Cores

    DTIC Science & Technology

    2008-01-01

    different aspects of the research discussed herein; they include J. Weertman, R, Rutford, G. Denton, H. Ueda, J. Brown, G. Frankenstein , B. Stauffer, H...continuously measure micro-particle concentrations and eruptive volcanic-acid horizons by the new electrical conductivity method (ECM) invented by

  2. Revealing the nanoparticles aspect ratio in the glass-metal nanocomposites irradiated with femtosecond laser

    PubMed Central

    Chervinskii, S.; Drevinskas, R.; Karpov, D. V.; Beresna, M.; Lipovskii, A. A.; Svirko, Yu. P.; Kazansky, P. G.

    2015-01-01

    We studied a femtosecond laser shaping of silver nanoparticles embedded in soda-lime glass. Comparing experimental absorption spectra with the modeling based on Maxwell Garnett approximation modified for spheroidal inclusions, we obtained the mean aspect ratio of the re-shaped silver nanoparticles as a function of the laser fluence. We demonstrated that under our experimental conditions the spherical shape of silver nanoparticles changed to a prolate spheroid with the aspect ratio as high as 3.5 at the laser fluence of 0.6 J/cm2. The developed approach can be employed to control the anisotropy of the glass-metal composites. PMID:26348691

  3. Design and Analyses of High Aspect Ratio Nozzles for Distributed Propulsion Acoustic Measurements

    NASA Technical Reports Server (NTRS)

    Dippold, Vance F., III

    2016-01-01

    A series of three convergent round-to-rectangular high-aspect ratio nozzles were designed for acoustics measurements. The nozzles have exit area aspect ratios of 8:1, 12:1, and 16:1. With septa inserts, these nozzles will mimic an array of distributed propulsion system nozzles, as found on hybrid wing-body aircraft concepts. Analyses were performed for the three nozzle designs and showed that the flow through the nozzles was free of separated flow and shocks. The exit flow was mostly uniform with the exception of a pair of vortices at each span-wise end of the nozzle.

  4. On-demand drawing of high aspect-ratio, microsphere-tipped elastomeric micropillars

    NASA Astrophysics Data System (ADS)

    Li, Qiang; Kim, Jaeyoun

    2017-08-01

    High aspect-ratio elastomeric micropillars are widely used in a plethora of applications, such as functional surfaces, actuators, and sensors. Their fabrication at arbitrary positions on non-planar substrates, however, has rarely been reported. Here we demonstrate a new technique for facile fabrication of high aspect-ratio, microsphere-tipped elastomeric micropillars on structures with uncommon geometries. As a proof-of-concept exemplary application, a fiber optic contact sensor is realized by integrating a micropillar onto the end facet of an optical fiber. Overall, both the fabrication technique and the resulting outcomes of this work will add new tools to the toolbox of soft-MEMS and softrobotics.

  5. Jet-Surface Interaction - High Aspect Ratio Nozzle Test: Test Summary

    NASA Technical Reports Server (NTRS)

    Brown, Clifford A.

    2016-01-01

    The Jet-Surface Interaction High Aspect Ratio Nozzle Test was conducted in the Aero-Acoustic Propulsion Laboratory at the NASA Glenn Research Center in the fall of 2015. There were four primary goals specified for this test: (1) extend the current noise database for rectangular nozzles to higher aspect ratios, (2) verify data previously acquired at small-scale with data from a larger model, (3) acquired jet-surface interaction noise data suitable for creating verifying empirical noise models and (4) investigate the effect of nozzle septa on the jet-mixing and jet-surface interaction noise. These slides give a summary of the test with representative results for each goal.

  6. Acoustic properties associated with rectangular geometry supersonic nozzles

    NASA Technical Reports Server (NTRS)

    Seiner, J. M.; Manning, J. C.; Ponton, M. K.

    1986-01-01

    Acoustic property experiments have been conducted to ascertain the behavior of rectangular geometry supersonic nozzles whose throat aspect ratios vary over a 2.0-7.6 range, and whose three partial sidewall geometries range from full to 75-percent cutback. The tests employed unheated air at static conditions for nozzle Mach numbers of 1.35-1.66. It is found that sonic fatigue failures are possible at certain partial sidewall geometries and high nozzle aspect ratios. Unlike axisymmetric supersonic nozzles, shock noise dominates both the rear and forward arc for throat aspect ratio cases greater than 5.6. Jet screech frequency was adequately predicted with a simple vortex sheel model.

  7. Investigation of TESCOM Driveshaft Assembly Failure

    DTIC Science & Technology

    1998-10-01

    ratio, two-stage axial -flow compressor with a corrected tip speed of 1250 ft/sec at design . The flowpath casing diameter downstream of the inlet... Design of a 1250 ft/sec. Low-Aspect-Ratio, Single-Stage Axial -Flow Compressor , AFAPL-TR-79-2096, Air Force Aero Propulsion Laboratory, Wright...The TESCOM compressor described in this report is a 2.5-stage, low aspect ratio, axial -flow compressor . The performance objectives of this compressor

  8. Critical aspect ratio for tungsten fibers in copper-nickel matrix composites

    NASA Technical Reports Server (NTRS)

    Jech, R. W.

    1975-01-01

    Stress-rupture and tensile tests were conducted at 816 C (1500 F) to determine the effect of matrix composition on the minimum fiber length to diameter ratio (critical aspect ratio) below which fibers in a tungsten fiber/copper-nickel alloy matrix composite could not be stressed to their ultimate load carrying capability. This study was intended to simulate some of the conditions that might be encountered with materials combinations used in high-temperature composites. The critical aspect ratio for stress-rupture was found to be greater than for short-time tension, and it increased as the time to rupture increased. The increase was relatively slight, and calculated fiber lengths for long service appear to be well within practical size limits for effective reinforcement and ease of fabrication of potential gas turbine components.

  9. Wind-tunnel investigation of several high aspect-ratio supercritical wing configurations on a wide-body-type fuselage

    NASA Technical Reports Server (NTRS)

    Bartlett, D. W.

    1977-01-01

    An investigation was conducted in the Langley 8-foot transonic pressure tunnel on two aspect-ratio 11.95 supercritical wings that were tested in combination with a representative wide-body-type fuselage. The two supercritical wings have identical planforms for equal sweep angles and differ only in thickness. Each wing was tested at quarter-chord sweep angles of 27 deg and 30 deg. At the higher sweep angle, the aspect ratio is reduced to 11.36. At 27 deg of quarter-chord sweep, the thicker supercritical wing (SCW-1) has maximum streamwise thickness-to-chord ratios of 0.16 at the wing-fuselage juncture, 0.14 at the planform break station, and 0.12 at the tip. The thinner wing (SCW-2) has maximum streamwise thickness-to-chord ratios of 0.144, 0.12, and 0.10 at the same stations respectively. Tests were also conducted on the thinner supercritical wing at the 27 deg sweep angle with a 15.24 cm (6.0 in.) shorter span which results in an aspect ratio of 10.25. For comparison, data were obtained on a current wide-body transport wing (AR=7) that was tested on the same fuselage used with the supercritical wings.

  10. Public Data Set: H-mode Plasmas at Very Low Aspect Ratio on the Pegasus Toroidal Experiment

    DOE Data Explorer

    Thome, Kathreen E. [University of Wisconsin-Madison; Oak Ridge Associated Universities] (ORCID:0000000248013922); Bongard, Michael W. [University of Wisconsin-Madison] (ORCID:0000000231609746); Barr, Jayson L. [University of Wisconsin-Madison] (ORCID:0000000177685931); Bodner, Grant M. [University of Wisconsin-Madison] (ORCID:0000000324979172); Burke, Marcus G. [University of Wisconsin-Madison] (ORCID:0000000176193724); Fonck, Raymond J. [University of Wisconsin-Madison] (ORCID:0000000294386762); Kriete, David M. [University of Wisconsin-Madison] (ORCID:0000000236572911); Perry, Justin M. [University of Wisconsin-Madison] (ORCID:0000000171228609); Reusch, Joshua A. [University of Wisconsin-Madison] (ORCID:0000000284249422); Schlossberg, David J. [University of Wisconsin-Madison] (ORCID:0000000287139448)

    2016-09-30

    This data set contains openly-documented, machine readable digital research data corresponding to figures published in K.E. Thome et al., 'H-mode Plasmas at Very Low Aspect Ratio on the Pegasus Toroidal Experiment,' Nucl. Fusion 57, 022018 (2017).

  11. Facile Synthesis of Silver Nanowires with Different Aspect Ratios and Used as High-Performance Flexible Transparent Electrodes

    NASA Astrophysics Data System (ADS)

    Xue, Qingwen; Yao, Weijing; Liu, Jun; Tian, Qingyong; Liu, Li; Li, Mengxiao; Lu, Qiang; Peng, Rui; Wu, Wei

    2017-08-01

    Silver nanowires (Ag NWs) are the promising materials to fabricate flexible transparent electrodes, aiming to replace indium tin oxide (ITO) in the next generation of flexible electronics. Herein, a feasible polyvinylpyrrolidone (PVP)-mediated polyol synthesis of Ag NWs with different aspect ratios is demonstrated and high-quality Ag NWs transparent electrodes (NTEs) are fabricated without high-temperature thermal sintering. When employing the mixture of PVP with different average molecular weight as the capping agent, the diameters of Ag NWs can be tailored and Ag NWs with different aspect ratios varying from ca. 30 to ca. 1000 are obtained. Using these as-synthesized Ag NWs, the uniform Ag NWs films are fabricated by repeated spin coating. When the aspect ratios exceed 500, the optoelectronic performance of Ag NWs films improve remarkably and match up to those of ITO films. Moreover, an optimal Ag NTEs with low sheet resistance of 11.4 Ω/sq and a high parallel transmittance of 91.6% at 550 nm are achieved when the aspect ratios reach almost 1000. In addition, the sheet resistance of Ag NWs films does not show great variation after 400 cycles of bending test, suggesting an excellent flexibility. The proposed approach to fabricate highly flexible and high-performance Ag NTEs would be useful to the development of flexible devices.

  12. Cause and Cure - Deterioration in Accuracy of CFD Simulations with Use of High-Aspect-Ratio Triangular/Tetrahedral Grids

    NASA Technical Reports Server (NTRS)

    Chang, Sin-Chung; Chang, Chau-Lyan; Venkatachari, Balaji Shankar

    2017-01-01

    Traditionally high-aspect ratio triangular/tetrahedral meshes are avoided by CFD researchers in the vicinity of a solid wall, as it is known to reduce the accuracy of gradient computations in those regions. Although for certain complex geometries, the use of high-aspect ratio triangular/tetrahedral elements in the vicinity of a solid wall can be replaced by quadrilateral/prismatic elements, ability to use triangular/tetrahedral elements in such regions without any degradation in accuracy can be beneficial from a mesh generation point of view. The benefits also carry over to numerical frameworks such as the space-time conservation element and solution element (CESE), where simplex elements are the mandatory building blocks. With the requirement of the CESE method in mind, a rigorous mathematical framework that clearly identifies the reason behind the difficulties in use of such high-aspect ratio simplex elements is formulated using two different approaches and presented here. Drawing insights from the analysis, a potential solution to avoid that pitfall is also provided as part of this work. Furthermore, through the use of numerical simulations of practical viscous problems involving high-Reynolds number flows, how the gradient evaluation procedures of the CESE framework can be effectively used to produce accurate and stable results on such high-aspect ratio simplex meshes is also showcased.

  13. Experimental simulation of air quality in street canyon under changes of building orientation and aspect ratio.

    PubMed

    Yassin, Mohamed F; Ohba, Masaake

    2012-09-01

    To assist validation of numerical simulations of urban pollution, air quality in a street canyon was investigated using a wind tunnel as a research tool under neutral atmospheric conditions. We used tracer gas techniques from a line source without buoyancy. Ethylene (C(2)H(4)) was used as the tracer gas. The street canyon model was formed of six parallel building rows of the same length. The flow and dispersion field was analyzed and measured using a hot-wire anemometer with split fiber probe and fast flame ionization detector. The diffusion flow field in the boundary layer within the street canyon was examined at different locations, with varying building orientations (θ=90°, 112.5°, 135° and 157.5°) and street canyon aspect ratios (W/H=1/2, 3/4 and 1) downwind of the leeward side of the street canyon model. Results show that velocity increases with aspect ratio, and with θ>90°. Pollutant concentration increases as aspect ratio decreases. This concentration decreases exponentially in the vertical direction, and decreases as θ increases from 90°. Measured pollutant concentration distributions indicate that variability of building orientation and aspect ratio in the street canyon are important for estimating air quality in the canyon. The data presented here can be used as a comprehensive database for validation of numerical models.

  14. Experimental investigation of the effect orifice shape and fluid pressure has on high aspect ratio cross-sectional jet behaviour.

    PubMed

    Wakes, S J; Holdø, A E; Meares, A J

    2002-01-04

    Prevention of major disasters such as Piper Alpha is a concern of oil and gas companies when commissioning a new offshore superstructure. Safety studies are undertaken to identify potential major hazards, risks to personnel and that sufficient precautions have been employed to minimise these. Such an assessment will also include the consideration of the protection from gas leaks such as the optimum positions of gas leak detectors and startup safety procedures after a leak. This requires a comprehensive knowledge of the behaviour of the leaking hydrocarbons as they emerge from the leak into the area of concern. Such leaks are most likely to emanate from a high aspect ratio cross-sectional curved slot in a pipeline. This paper challenges the conventional view that it is sufficient to model such leaks as axisymmetric jets. This paper is therefore concerned with an experimental study carried out on a series of more realistic high aspect ratio cross-sectional jets issuing from a flange orifice. Both high quality photographs in both planes of the jets and some quantitative pressure data is examined for a high aspect ratio cross-sectional jet of air at pressures up to 4.136bar. The effect of changing aspect ratio, fluid pressure and orifice shape will be discussed and put into context with regard to how this relates to offshore analysis studies.

  15. Parallel multipoint recording of aligned and cultured neurons on corresponding Micro Channel Array toward on-chip cell analysis.

    PubMed

    Tonomura, W; Moriguchi, H; Jimbo, Y; Konishi, S

    2008-01-01

    This paper describes an advanced Micro Channel Array (MCA) so as to record neuronal network at multiple points simultaneously. Developed MCA is designed for neuronal network analysis which has been studied by co-authors using MEA (Micro Electrode Arrays) system. The MCA employs the principle of the extracellular recording. Presented MCA has the following advantages. First of all, the electrodes integrated around individual micro channels are electrically isolated for parallel multipoint recording. Sucking and clamping of cells through micro channels is expected to improve the cellular selectivity and S/N ratio. In this study, hippocampal neurons were cultured on the developed MCA. As a result, the spontaneous and evoked spike potential could be recorded by sucking and clamping the cells at multiple points. Herein, we describe the successful experimental results together with the design and fabrication of the advanced MCA toward on-chip analysis of neuronal network.

  16. Ultrafine cementitious grout

    DOEpatents

    Ahrens, E.H.

    1998-07-07

    An ultrafine cementitious grout is described having a particle size 90% of which are less than 6 {micro}m in diameter and an average size of about 2.5 {micro}m or less, and preferably 90% of which are less than 5 {micro}m in diameter and an average size of about 2 {micro}m or less containing Portland cement, pumice as a pozzolanic material and superplasticizer in the amounts of about 40 wt. % to about 50 wt. % Portland cement; from about 50 wt. % to about 60 wt. % pumice containing at least 60% amorphous silicon dioxide; and from 0.1 wt. % to about 1.5 wt. % superplasticizer. The grout is mixed with water in the W/CM ratio of about 0.4--0.6/1. The grout has very high strength and very low permeability with good workability. The ultrafine particle sizes allow for sealing of microfractures below 10 {micro}m in width. 4 figs.

  17. Determination of muscle-specific glucose flux using radioactive stereoisomers and microdialysis

    NASA Technical Reports Server (NTRS)

    MacLean, D. A.; Ettinger, S. M.; Sinoway, L. I.; Lanoue, K. F.

    2001-01-01

    The purpose of the present study was to evaluate a novel approach for determining skeletal muscle-specific glucose flux using radioactive stereoisomers and the microdialysis technique. Microdialysis probes were inserted into the vastus lateralis muscle of human subjects and perfused (4 microl/min) with a Ringer solution containing small amounts of radioactive D- and L-glucose as the internal reference markers for determining probe recovery as well as varying concentrations of insulin (0-10 microM). The rationale behind this approach was that both stereoisomers would be equally affected by the factors that determine probe recovery, with the exception of L-glucose, which is nonmetabolizable and would not be influenced by tissue uptake. Therefore, any differences in the probe recovery ratios between the D- and L-stereoisomers represent changes in skeletal muscle glucose uptake directly at the tissue level. There were no differences in probe recovery between the D- (42.3 +/- 3.5%) and L- (41.2 +/- 3.5) stereoisomers during the control period (no insulin), which resulted in a D/L ratio of 1.04 +/- 0.03. However, during insulin perfusion (1 microM), The D/L ratio increased to 1.62 +/- 0.08 and 1.58 +/- 0.07 (P < 0.05) during the two collection (0-15 and 15-30 min) periods, respectively. This was accomplished solely by an increase (P < 0.05) in D-glucose probe recovery, as L-glucose probe recovery remained unchanged. In a second set of experiments, the perfusion of 10 microM insulin did not increase the D/L ratio (1.40 +/- 0.11) above that observed during 1.0 microM (1.41 +/- 0.07) insulin perfusion. These data suggest that this method is sufficiently sensitive to detect differences in insulin-stimulated glucose uptake; thus the use of radioactive stereoisomers in conjunction with the microdialysis technique provides a novel and useful technique for determining tissue-specific glucose flux and insulin sensitivity.

  18. Impact of cardiosynchronous brain pulsations on Monte Carlo calculated doses for synchrotron micro- and minibeam radiation therapy.

    PubMed

    Manchado de Sola, Francisco; Vilches, Manuel; Prezado, Yolanda; Lallena, Antonio M

    2018-05-15

    The purpose of this study was to assess the effects of brain movements induced by heartbeat on dose distributions in synchrotron micro- and minibeam radiation therapy and to develop a model to help guide decisions and planning for future clinical trials. The Monte Carlo code PENELOPE was used to simulate the irradiation of a human head phantom with a variety of micro- and minibeam arrays, with beams narrower than 100 μm and above 500 μm, respectively, and with radiation fields of 1 × 2 cm and 2 × 2 cm. The dose in the phantom due to these beams was calculated by superposing the dose profiles obtained for a single beam of 1 μm × 2 cm. A parameter δ, accounting for the total displacement of the brain during the irradiation and due to the cardiosynchronous pulsation, was used to quantify the impact on peak-to-valley dose ratios and the full width at half maximum. The difference between the maximum (at the phantom entrance) and the minimum (at the phantom exit) values of the peak-to-valley dose ratio reduces when the parameter δ increases. The full width at half maximum remains almost constant with depth for any δ value. Sudden changes in the two quantities are observed at the interfaces between the various tissues (brain, skull, and skin) present in the head phantom. The peak-to-valley dose ratio at the center of the head phantom reduces when δ increases, remaining above 70% of the static value only for minibeams and δ smaller than ∼200 μm. Optimal setups for brain treatments with synchrotron radiation micro- and minibeam combs depend on the brain displacement due to cardiosynchronous pulsation. Peak-to-valley dose ratios larger than 90% of the maximum values obtained in the static case occur only for minibeams and relatively large dose rates. © 2018 American Association of Physicists in Medicine.

  19. Effects of hydraulic retention time and [Formula: see text] ratio on thiosulfate-driven autotrophic denitrification for nitrate removal from micro-polluted surface water.

    PubMed

    Wang, Zheng; Fei, Xiang; He, Sheng-Bing; Huang, Jung-Chen; Zhou, Wei-Li

    2017-11-01

    This study was carried out to investigate the possibility of a thiosulfate-driven autotrophic denitrification for nitrate-N removal from micro-polluted surface water. The aim was to study the effects of [Formula: see text] ratio (S/N molar ratio) and hydraulic retention time (HRT) on the autotrophic denitrification performance. Besides, utilization efficiencies of [Formula: see text] along the biofilter and the restart-up of the bioreactor were also investigated. Autotrophic denitrification using thiosulfate as an electron donor for treating micro-polluted surface water without the addition of external alkalinity proved to be feasible and the biofilter could be readied in two weeks. Average nitrate-N removal efficiencies at HRTs of 0.5, 1 and 2 h were 78.7%, 87.8% and 97.4%, respectively, and corresponding removal rates were 186.24, 103.92 and 58.56 g [Formula: see text], respectively. When water temperature was in the range of 8-12°C and HRT was 1 h, average nitrate-N removal efficiencies of 41.9%, 97.1% and 97.0%, nitrite accumulation concentrations of 1.45, 0.46 and 0.22 mg/L and thiosulfate utilization efficiencies of 100%, 98.8% and 92.1% were obtained at S/N ratios of 1.0, 1.2 and 1.5, respectively. Besides, the autotrophic denitrification rate in the filtration media layer was the highest along the biofilter at an S/N ratio of 1.5. Finally, after a one-month period of starvation, the biofilter could be restarted successfully in three weeks without inoculation of seed sludge.

  20. Capture envelopes of rectangular hoods in cross drafts.

    PubMed

    Huang, R F; Sir, S Y; Chen, Y K; Yeh, W Y; Chen, C W; Chen, C C

    2001-01-01

    The suction fields of the rectangular hoods of various aspect ratios varying from 0.1 to 10 that are subject to the influence of cross drafts were experimentally studied in an apparatus consisting of a hood model/wind tunnel assembly. The velocity field on the symmetry plane was measured with a two-component laser Doppler anemometer. Being under the influence of cross draft, the suction field presents a characteristic capture envelope, which is described by a dividing streamline. The characteristics of the capture envelope were found to be determined by the cross-draft to hood-suction velocity ratio R and the hood-opening aspect ratio AR. The flow characteristics of the hoods with aspect ratios less than unity were dramatically different from those with aspect ratios greater than one. If areas of the hood openings had the same values, the hydraulic-diameter normalized characteristic length scales of the capture zone of the square hood were as same as those of the circular hood. When the diameter of a circular hood was equal to the width of a square hood, the physical dimensions of the capture zones created by these two hoods coincided with each other.

Top