Science.gov

Sample records for aspergillus nidulans modified

  1. Ammonium Regulation in Aspergillus nidulans

    PubMed Central

    Pateman, J. A.; Kinghorn, J. R.; Dunn, Etta; Forbes, E.

    1973-01-01

    l-Glutamate uptake, thiourea uptake, and methylammonium uptake and the intracellular ammonium concentration were measured in wild-type and mutant cells of Aspergillus nidulans held in various concentrations of ammonium and urea. The levels of l-glutamate uptake, thiourea uptake, nitrate reductase, and hypoxanthine dehydrogenase activity are determined by the extracellular ammonium concentration. The level of methylammonium uptake is determined by the intracellular ammonium concentration. The uptake and enzyme characteristics of the ammonium-derepressed mutants, meaA8, meaB6, DER3, amrA1, xprD1, and gdhA1, are described. The gdhA mutants lack normal nicotinamide adenine dinucleotide phosphate-glutamate dehydrogenase (NADP-GDH) activity and are derepressed with respect to both external and internal ammonium. The other mutant classes are derepressed only with respect to external ammonium. The mutants meaA8, DER3, amrA1, and xprD1 have low levels of one or more of the l-glutamate, thiourea, and methylammonium uptake systems. A model for ammonium regulation in A. nidulans is put forward which suggests: (i) NADP-GDH located in the cell membrane complexes with extracellular ammonium. This first regulatory complex determines the level of l-glutamate uptake, thiourea uptake, nitrate reductase, and xanthine dehydrogenase by repression or inhibition, or both. (ii) NADP-GDH also complexes with intracellular ammonium. This second and different form of regulatory complex determines the level of methylammonium uptake by repression or inhibition, or both. PMID:4145865

  2. Methylammonium Resistance in Aspergillus nidulans

    PubMed Central

    Arst, H. N.; Cove, D. J.

    1969-01-01

    Mutants of Aspergillus nidulans resistant to methylammonium toxicity are simultaneously derepressed in the presence of ammonium for apparently all ammonium-repressible activities. Enzyme assays directly demonstrate derepression of nitrate, nitrite, and hydroxylamine reductases, xanthine dehydrogenase, urate oxidase, and allantoinase, whereas in vivo tests show that ammonium and methylammonium repression or inhibition (or both) is relieved in these mutants in pathways of nitrate assimilation, purine transport and degradation, and amino acid, amine, and amide catabolism. Ammonium and methylammonium uptake is apparently not defective in these mutants, for they grow normally on limiting levels of these ions as sole nitrogen source. There is no evidence that more than one gene can mutate to produce the methylammonium resistance (meaR) phenotype. Such mutations are semidominant in both heterocaryons and diploids. The ability of meaR mutations to effect derepression of activities specified by genes within another nucleus in a heterocaryon shows that the action of the mea product is not restricted to the nucleus. Three types of hypotheses might explain this generalized derepression. First, ammonium and methylammonium might not themselves be co-repressors but might require a metabolic conversion, blocked in these mutants, to become co-repressors. Secondly, the mea locus might specify an activity expressed in meaR but not wild-type (meaS) strains, which diminishes the concentration of ammonium and methylammonium participating in co-repression. Finally, ammonium repression might involve a macromolecular control element specified by the meaR locus and common to many or all ammonium-repressible systems. The existence of “regulation reversal mutations” at the meaR locus and the lack of uniformity and coordination with which different enzymatic activities respond to mutational derepression is most compatible with the last type of hypothesis. Images PMID:5788705

  3. Mitochondrial inheritance in Aspergillus nidulans.

    PubMed

    Coenen, A; Croft, J H; Slakhorst, M; Debets, F; Hoekstra, R

    1996-04-01

    Mitochondrial chloramphenicol and oligomycin resistance mutations were used to investigate mitochondrial inheritance in A. nidulans. Mitochondrial RFLPs could not be used to distinguish between paternal and maternal mitochondria because none were detected in the 54 isolates investigated. Several thousand ascospores from each of 111 hybrid cleistothecia from 21 different crosses between 7 heterokaryon incompatible isolates were tested for biparental inheritance. All mitochondrial inheritance was strictly uniparental. Not one instance of paternal inheritance of mitochondria was observed. The implications of our results for the theory that uniparental inheritance evolved to avoid cytoplasmic conflict are discussed. Possible explanations for the maintenance of strict uniparental inheritance of mitochondria in an inbreeding homothallic organism are suggested. The chloramphenicol resistance marker was inherited preferentially to the oligomycin resistance marker probably due to the inhibited energy production of mitochondria with the oligomycin resistance mutation. The maternal parent was determined for 93 hybrid cleistothecia from 17 crosses between 7 different strains. Contrary to previous reports A. nidulans strains functioned as both maternal and paternal parent in most crosses.

  4. Urea and thiourea transport in Aspergillus nidulans.

    PubMed

    Pateman, J A; Dunn, E; Mackay, E M

    1982-08-01

    Wild-type Aspergillus nidulans has an active transport system specific for urea which concentrates urea at least 50-fold relative to the extracellular concentration. It is substrate concentration dependent, with an apparent Km of 3 x 10-(5) M for urea. Competition studies and the properties of mutants indicate that thiourea is taken up by the same system as urea. Thiourea is toxic at 5mM to wild-type cells of Aspergillus nidulans. Mutants, designated ureA1 to ureA16, resistant to thiourea have been isolated, and transport assays and growth tests show that they are specifically impaired in urea transport. The mutant ureA1 has a higher Km value than the wild type for thiourea uptake. The ureA locus has been assigned to linkage group VIII. ureA1 is recessive for thiourea resistance while semidominant for the low uptake characteristic. The urea uptake system is under nitrogen regulation, with L-glutamine as the probable effector. The mutants, meaA8 and gdhA1, which are insensitive to ammonium control of many nitrogen-regulated metabolic systems, are also insensitive to ammonium control of urea uptake, but both are sensitive to L-glutamine regulation.

  5. Heterologous expression of Gaeumannomyces graminis lipoxygenase in Aspergillus nidulans.

    PubMed

    Heshof, Ruud; van Schayck, J Paul; Tamayo-Ramos, Juan Antonio; de Graaff, Leo H

    2014-01-01

    Aspergillus sp. contain ppo genes coding for Ppo enzymes that produce oxylipins from polyunsaturated fatty acids. These oxylipins function as signal molecules in sporulation and influence the asexual to sexual ratio of Aspergillus sp. Fungi like Aspergillus nidulans and Aspergillus niger contain just ppo genes where the human pathogenic Aspergillus flavus and Aspergillus fumigatus contain ppo genes as well as lipoxygenases. Lipoxygenases catalyze the synthesis of oxylipins and are hypothesized to be involved in quorum-sensing abilities and invading plant tissue. In this study we used A. nidulans WG505 as an expression host to heterologously express Gaeumannomyces graminis lipoxygenase. The presence of the recombinant LOX induced phenotypic changes in A. nidulans transformants. Also, a proteomic analysis of an A. nidulans LOX producing strain indicated that the heterologous protein was degraded before its glycosylation in the secretory pathway. We observed that the presence of LOX induced the specific production of aminopeptidase Y that possibly degrades the G. graminis lipoxygenase intercellularly. Also the presence of the protein thioredoxin reductase suggests that the G. graminis lipoxygenase is actively repressed in A. nidulans.

  6. Identification of Glucose Transporters in Aspergillus nidulans

    PubMed Central

    dos Reis, Thaila Fernanda; Menino, João Filipe; Bom, Vinícius Leite Pedro; Brown, Neil Andrew; Colabardini, Ana Cristina; Savoldi, Marcela; Goldman, Maria Helena S.; Rodrigues, Fernando; Goldman, Gustavo Henrique

    2013-01-01

    To characterize the mechanisms involved in glucose transport, in the filamentous fungus Aspergillus nidulans, we have identified four glucose transporter encoding genes hxtB-E. We evaluated the ability of hxtB-E to functionally complement the Saccharomyces cerevisiae EBY.VW4000 strain that is unable to grow on glucose, fructose, mannose or galactose as single carbon source. In S. cerevisiae HxtB-E were targeted to the plasma membrane. The expression of HxtB, HxtC and HxtE was able to restore growth on glucose, fructose, mannose or galactose, indicating that these transporters accept multiple sugars as a substrate through an energy dependent process. A tenfold excess of unlabeled maltose, galactose, fructose, and mannose were able to inhibit glucose uptake to different levels (50 to 80 %) in these s. cerevisiae complemented strains. Moreover, experiments with cyanide-m-chlorophenylhydrazone (CCCP), strongly suggest that hxtB, -C, and –E mediate glucose transport via active proton symport. The A. nidulans ΔhxtB, ΔhxtC or ΔhxtE null mutants showed ~2.5-fold reduction in the affinity for glucose, while ΔhxtB and -C also showed a 2-fold reduction in the capacity for glucose uptake. The ΔhxtD mutant had a 7.8-fold reduction in affinity, but a 3-fold increase in the capacity for glucose uptake. However, only the ΔhxtB mutant strain showed a detectable decreased rate of glucose consumption at low concentrations and an increased resistance to 2-deoxyglucose. PMID:24282591

  7. Genetics of Polyketide Metabolism in Aspergillus nidulans

    PubMed Central

    Klejnstrup, Marie L.; Frandsen, Rasmus J. N.; Holm, Dorte K.; Nielsen, Morten T.; Mortensen, Uffe H.; Larsen, Thomas O.; Nielsen, Jakob B.

    2012-01-01

    Secondary metabolites are small molecules that show large structural diversity and a broad range of bioactivities. Some metabolites are attractive as drugs or pigments while others act as harmful mycotoxins. Filamentous fungi have the capacity to produce a wide array of secondary metabolites including polyketides. The majority of genes required for production of these metabolites are mostly organized in gene clusters, which often are silent or barely expressed under laboratory conditions, making discovery and analysis difficult. Fortunately, the genome sequences of several filamentous fungi are publicly available, greatly facilitating the establishment of links between genes and metabolites. This review covers the attempts being made to trigger the activation of polyketide metabolism in the fungal model organism Aspergillus nidulans. Moreover, it will provide an overview of the pathways where ten polyketide synthase genes have been coupled to polyketide products. Therefore, the proposed biosynthesis of the following metabolites will be presented; naphthopyrone, sterigmatocystin, aspyridones, emericellamides, asperthecin, asperfuranone, monodictyphenone/emodin, orsellinic acid, and the austinols. PMID:24957370

  8. Spotlight on Aspergillus nidulans photosensory systems.

    PubMed

    Bayram, Ozgür; Braus, Gerhard H; Fischer, Reinhard; Rodriguez-Romero, Julio

    2010-11-01

    Aspergilli are ubiquitous soil-borne fungi growing within or on the surface of numerous organic substrates. Growth within a substrate or growth on the surface correlates to different growth conditions for the hyphae due to significant changes in oxygen or reactive oxygen species levels and variations in humidity or temperature. The production of air-borne spores is supported by the substrate-air interphase and also requires a sensing system to adapt appropriately. Here we focus on light as important parameter for the mycelium to discriminate between different habitats. The fungal 'eye' includes several light sensors which react to a broad plethora of wavelengths. Aspergillus nidulans light receptors comprise a phytochrome for red-light sensing, white collar-like blue-light signaling proteins, a putative green-light sensing opsin and a cryptochrome/photolyase as distinct sensory systems. Red- and blue-light receptors are assembled into a light-sensing protein complex. Light receptors transmit their signal to a number of other regulatory proteins including a bridging protein, VeA, as part of a trimeric complex. VeA plays a central role in the balance of asexual and sexual development and in the coordination of morphogenesis and secondary metabolism.

  9. Identification and structural elucidation of ergotryptamine, a new ergot alkaloid produced by genetically modified aspergillus nidulans and natural isolates of Epichloë species.

    PubMed

    Ryan, Katy L; Akhmedov, Novruz G; Panaccione, Daniel G

    2015-01-14

    Ergot alkaloid pathway reconstruction in Aspergillus nidulans is an approach used to better understand the biosynthesis of these mycotoxins. An engineered strain named A. nidulans WFC (expressing ergot alkaloid synthesis genes dmaW, easF, and easC) produced the established intermediate N-methyl-4-dimethylallyltryptophan, as well as an uncharacterized ergot alkaloid. We investigated the chemical structure of the new metabolite and its role in the ergot alkaloid pathway. Mass spectrometry, labeling, and NMR studies showed that the unknown ergot alkaloid, designated here as ergotryptamine, differed from N-methyl-4-dimethylallyltryptophan by the loss of the carboxyl group, addition of a hydroxyl group, and shift in position of a carbon–carbon double bond. Feeding studies with Aspergillus mutants did not show ergotryptamine turnover, suggesting it is a pathway byproduct as opposed to an authentic intermediate. Several Epichloë species also produced this metabolite, and further investigations revealed the equivalency of ergotryptamine with an Epichloë-derived ergot alkaloid provisionally described as 6,7-secolysergine.

  10. Arabinan degrading enzymes from Aspergillus nidulans: induction and purification.

    PubMed

    Ramón, D; vd Veen, P; Visser, J

    1993-10-01

    The presence in Aspergillus nidulans of two enzymes related to the Aspergillus niger endo-arabinase and alpha-L-arabinofuranosidase B has been established using antibodies against the purified A. niger enzymes. Moreover, the absence of an equivalent in A. nidulans to the alpha-L-arabinofuranosidase A of A. niger has been confirmed both at the protein and at the DNA level. Both A. nidulans arabinases have been purified and physico-chemically and kinetically characterized. They have a much higher temperature optimum than the corresponding A. niger enzymes. The pattern of induction has been studied on media containing different carbon sources showing an important role of L-arabitol in the induction of these enzymes.

  11. Purification and properties of beta-galactosidase from Aspergillus nidulans.

    PubMed

    Díaz, M; Pedregosa, A M; de Lucas, J R; Torralba, S; Monistrol, I F; Laborda, F

    1996-12-01

    Beta-Galactosidase from mycelial extract of Aspergillus nidulans has been purified by substrate affinity chromatography and used to obtain anti-beta-galactosidase polyclonal antibodies. A. nidulans growing in lactose as carbon source synthesizes one active form of beta-galactosidase which seems to be a multimeric enzyme of 450 kDa composed of monomers with 120 and 97 kDa. Although the enzyme was not released to the culture medium, some enzymatic activity was detected in a cell-wall extract, thus suggesting that it can be an extracellular enzyme. Beta-Galactosidase of A. nidulans is a very unstable enzyme with an optimum pH value of 7.5 and an optimum temperature of 30 degrees C. It was only active against beta-galactoside substrates like lactose and p-nitrophenyl-beta-D-galactoside (PNPG).

  12. Interference of Griseofulvin with the Segregation of Chromosomes at Mitosis in Diploid Aspergillus nidulans

    PubMed Central

    Kappas, A.; Georgopoulos, S. G.

    1974-01-01

    Low concentrations of the antibiotic griseofulvin were found to cause increased frequencies of somatic segregation due to chromosome nondisjunction in a diploid strain of Aspergillus nidulans. PMID:4600705

  13. Isolation and Characterization of Sexual Spore Pigments from Aspergillus nidulans

    PubMed Central

    Brown, Daren W.; Salvo, Joseph J.

    1994-01-01

    The homothallic ascomycete Aspergillus nidulans produces two types of pigmented spores: conidia and ascospores. The synthesis and localization of the spore pigments is developmentally regulated and occurs in specialized cell types. On the basis of spectroscopic evidence, we propose that the major ascospore pigment of A. nidulans (ascoquinone A) is a novel dimeric hydroxylated anthraquinone. The structure of ascoquinone A, as well as a comparison to model compounds, suggests that it is the product of a polyketide synthase. Previous studies have revealed that the conidial pigments from A. nidulans and a related Aspergillus species (A. parasiticus) also appear to be produced via polymerization of polyketide precursors (D. W. Brown, F. M. Hauser, R. Tommasi, S. Corlett, and J. J. Salvo, Tetrahedron Lett. 34:419-422, 1993; M. E. Mayorga and W. E. Timberlake, Mol. Gen. Genet. 235:205-212, 1992). The structural similarity between the ascospore pigment and the toxic anthraquinone norsolorinic acid, the first stable intermediate in the aflatoxin pathway, suggests an evolutionary relationship between the respective polyketide synthase systems. PMID:16349224

  14. Response of Aspergillus nidulans and Physarum polycephalum to microwave irradiation.

    PubMed

    Mezykowski, T; Bal, J; Debiec, H; Kwarecki, K

    1980-06-01

    The influence of microwaves on genetic processes in Aspergillus nidulans and Physarum polycephalum was investigated. Suspensions of organisms were exposed in the far zone to 2450-MHz waves at 10 mW/cm2 for one hour in both CW and pulsed (1 microsecond, 600 pps) fields. Spores of A. nidulans were irradiated before and during germination. No changes in survival rate or in frequency of morphological mutation were found. Polycephalum under the influence of CW microwaves incorporated 3H-Thymine into DNA at a rate five times that of controls and twice that of thermal controls. The accelerated synthesis may reflect more efficient volume heating by microwaves, or in the presence of microthermal gradients in suspensions, or field-specific influences in concern with focal or volume heating.

  15. Regulation of Conidiation by Light in Aspergillus nidulans

    PubMed Central

    Ruger-Herreros, Carmen; Rodríguez-Romero, Julio; Fernández-Barranco, Raul; Olmedo, María; Fischer, Reinhard; Corrochano, Luis M.; Canovas, David

    2011-01-01

    Light regulates several aspects of the biology of many organisms, including the balance between asexual and sexual development in some fungi. To understand how light regulates fungal development at the molecular level we have used Aspergillus nidulans as a model. We have performed a genome-wide expression analysis that has allowed us to identify >400 genes upregulated and >100 genes downregulated by light in developmentally competent mycelium. Among the upregulated genes were genes required for the regulation of asexual development, one of the major biological responses to light in A. nidulans, which is a pathway controlled by the master regulatory gene brlA. The expression of brlA, like conidiation, is induced by light. A detailed analysis of brlA light regulation revealed increased expression after short exposures with a maximum after 60 min of light followed by photoadaptation with longer light exposures. In addition to brlA, genes flbA–C and fluG are also light regulated, and flbA–C are required for the correct light-dependent regulation of the upstream regulator fluG. We have found that light induction of brlA required the photoreceptor complex composed of a phytochrome FphA, and the white-collar homologs LreA and LreB, and the fluffy genes flbA–C. We propose that the activation of regulatory genes by light is the key event in the activation of asexual development by light in A. nidulans. PMID:21624998

  16. Identification and Characterization of Aspergillus Nidulans Mutants Defective in Cytokinesis

    PubMed Central

    Harris, S. D.; Morrell, J. L.; Hamer, J. E.

    1994-01-01

    Filamentous fungi undergo cytokinesis by forming crosswalls termed septa. Here, we describe the genetic and physiological controls governing septation in Aspergillus nidulans. Germinating conidia do not form septa until the completion of their third nuclear division. The first septum is invariantly positioned at the basal end of the germ tube. Block-and-release experiments of nuclear division with benomyl or hydroxyurea, and analysis of various nuclear division mutants demonstrated that septum formation is dependent upon the third mitotic division. Block-and-release experiments with cytochalasin A and the localization of actin in germlings by indirect immunofluorescence showed that actin participated in septum formation. In addition to being concentrated at the growing hyphal tips, a band of actin was also apparent at the site of septum formation. Previous genetic analysis in A. nidulans identified four genes involved in septation (sepA-D). We have screened a new collection of temperature sensitive (ts) mutants of A. nidulans for strains that failed to form septa at the restrictive temperature but were able to complete early nuclear divisions. We identified five new genes designated sepE, G, H, I and J, along with one additional allele of a previously identified septation gene. On the basis of temperature shift experiments, nuclear counts and cell morphology, we sorted these cytokinesis mutants into three phenotypic classes. Interestingly, one class of mutants fails to form septa and fails to progress past the third nuclear division. This class of mutants suggests the existence of a regulatory mechanism in A. nidulans that ensures the continuation of nuclear division following the initiation of cytokinesis. PMID:8150280

  17. Aspergillus nidulans mutants defective in stc gene cluster regulation.

    PubMed Central

    Butchko, R A; Adams, T H; Keller, N P

    1999-01-01

    The genes involved in the biosynthesis of sterigmatocystin (ST), a toxic secondary metabolite produced by Aspergillus nidulans and an aflatoxin (AF) precursor in other Aspergillus spp., are clustered on chromosome IV of A. nidulans. The sterigmatocystin gene cluster (stc gene cluster) is regulated by the pathway-specific transcription factor aflR. The function of aflR appears to be conserved between ST- and AF-producing aspergilli, as are most of the other genes in the cluster. We describe a novel screen for detecting mutants defective in stc gene cluster activity by use of a genetic block early in the ST biosynthetic pathway that results in the accumulation of the first stable intermediate, norsolorinic acid (NOR), an orange-colored compound visible with the unaided eye. We have mutagenized this NOR-accumulating strain and have isolated 176 Nor(-) mutants, 83 of which appear to be wild type in growth and development. Sixty of these 83 mutations are linked to the stc gene cluster and are likely defects in aflR or known stc biosynthetic genes. Of the 23 mutations not linked to the stc gene cluster, 3 prevent accumulation of NOR due to the loss of aflR expression. PMID:10511551

  18. Genomics of Compensatory Adaptation in Experimental Populations of Aspergillus nidulans

    PubMed Central

    Dettman, Jeremy R.; Rodrigue, Nicolas; Schoustra, Sijmen E.; Kassen, Rees

    2016-01-01

    Knowledge of the number and nature of genetic changes responsible for adaptation is essential for understanding and predicting evolutionary trajectories. Here, we study the genomic basis of compensatory adaptation to the fitness cost of fungicide resistance in experimentally evolved strains of the filamentous fungus Aspergillus nidulans. The original selection experiment tracked the fitness recovery of lines founded by an ancestral strain that was resistant to fludioxonil, but paid a fitness cost in the absence of the fungicide. We obtained whole-genome sequence data for the ancestral A. nidulans strain and eight experimentally evolved strains. We find that fludioxonil resistance in the ancestor was likely conferred by a mutation in histidine kinase nikA, part of the two-component signal transduction system of the high-osmolarity glycerol (HOG) stress response pathway. To compensate for the pleiotropic negative effects of the resistance mutation, the subsequent fitness gains observed in the evolved lines were likely caused by secondary modification of HOG pathway activity. Candidate genes for the compensatory fitness increases were significantly overrepresented by stress response functions, and some were specifically associated with the HOG pathway itself. Parallel evolution at the gene level was rare among evolved lines. There was a positive relationship between the predicted number of adaptive steps, estimated from fitness data, and the number of genomic mutations, determined by whole-genome sequencing. However, the number of genomic mutations was, on average, 8.45 times greater than the number of adaptive steps inferred from fitness data. This research expands our understanding of the genetic basis of adaptation in multicellular eukaryotes and lays out a framework for future work on the genomics of compensatory adaptation in A. nidulans. PMID:27903631

  19. Induction and Repression of Amidase Enzymes in Aspergillus nidulans

    PubMed Central

    Hynes, M. J.

    1970-01-01

    Aspergillus nidulans can grow on acetamide as both a carbon and nitrogen source and can also grow on formamide as a nitrogen source. Two distinct enzymes, an acetamidase and a formamidase, are produced. The control of the synthesis of these two enzymes in a wild-type strain was investigated. The formamidase is induced by acetamide and formamide and repressed by ammonia. The acetamidase is induced by formamide and acetamide, repressed by carbon metabolites derived from glucose and acetate, and repressed by ammonia. Repression of the acetamidase by ammonia depends on the carbon source; growth on glucose but not on acetate or acetamide allows repression to occur. The pattern of acetamidase repression is compared with that of histidine catabolic enzymes in various bacteria. PMID:5432013

  20. Purification and Characterization of Acid Phosphatase V from Aspergillus nidulans

    PubMed Central

    Harsanyi, Zsolt; Dorn, Gordon L.

    1972-01-01

    Acid phosphatase V of Aspergillus nidulans was purified by ammonium sulfate precipitation, gel filtration, and ion-exchange chromatography. The enzyme demonstrated a charge microheterogeneity on starch and acrylamide gel electrophoresis, but proved to be homogeneous on ultracentrifugation and gel filtration. Phosphatase V was found to be a classic acid orthophosphoric monoester phosphohydrolase, and it cleaved p-nitrophenylphosphate, glucose-6-phosphate, and uridine-5′-monophosphate at maximal rates. It was inhibited by fluoride, borate, and molybdate ions, and demonstrated end-product inhibition by inorganic phosphate. Metallic ions or cofactors were not required for activity. The molecular weight was estimated to be 100,000, the S20,w was calculated to be 4.1, and the pH optimum was found to be 6.1. Images PMID:4552990

  1. [Comparison of genomes between Aspergillus nidulans and 30 filamentous ascomycetes].

    PubMed

    Zeng, Zhao-Qing; Zhao, Fu-Yong; Hsiang, Tom; Yu, Zhi-He

    2010-11-01

    To investigate the conserved homologs of filamentous ascomycetes genomes, the local fungal genome database used in this analysis was established, which consisted of 31 latest and complete genome data publicly available on the Internet. An expectation value cutoff of 0.1 was used to identify significant hits. Each complete gene set of the query genome Aspergillus nidulans genome with 10,560 annotated genes was splitted into individual FASTA files with Seqverter and then compared separately against each filamentous ascomycete genome using Standalone BLASTN. The result indicated that the number of matches reflected the evolutional relationships of the filamentous ascomycetes analysed. Of 10,560 genes in Aspergillus nidulans genome, 924 had match sequences with other 30 filamentous ascomycetes ones. The number of homology sequences were 6, 3, 6, and 6 at E-values in the range of 10(-5) to 0.1, 10(-30) to 10(-5), 10(-100) to 10(-30) and 0 to 1000(-100), respectively. Six homologs at E-values ranging from 10(-5) to 0.1 and 3 at E-values ranging from 10(-30) to 10(-5) were variable, while the 6 at E-values ranging from 0 to 10(-100) were highly conserved based on the alignments using ClustalX. Six homologs were relatively conserved at E-values in the range of 10(-100) to 10(-30), which can be used in phylogeny of these filamentous ascomycetes in this study.

  2. Analysis of Aspergillus nidulans conidial antigens and their prevalence in other Aspergillus species.

    PubMed Central

    Puente, P; Ovejero, M C; Fernández, N; Leal, F

    1991-01-01

    Aspergillus nidulans is an ascomycetous fungus that reproduces asexually by forming multicellular conidiophores and uninucleate spores called conidia. These elements constitute the main vehicle for the transmission of this and other pathogenic Aspergillus species and are the starting point of the different forms of aspergillosis. In order to use A. nidulans as a potential source of useful antigens for the immunodiagnosis of these diseases, we have examined the total protein composition of conidial extracts of this fungus by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis in gels of different percent T. Injection of SDS-extracted conidial proteins into rabbits allowed us to raise a battery of polyclonal antibodies which have defined some important immunogenic polypeptides. Several of these immunogens were both present in mycelial extracts and recognized by antimycelium antibodies. Four of them, designated cdA, cdB, cdC, and cdE, were also found in conidial extracts of other pathogenic Aspergillus species. Only cdE was undetectable in cell extracts of the nonrelated species Fusarium culmorum and Phycomyces blakesleeanus. Images PMID:1937806

  3. The regulation of urease activity in Aspergillus nidulans.

    PubMed

    Mackay, E M; Pateman, J A

    1982-08-01

    Aspergillus nidulans can utilize urea as a sole source of nitrogen but not as a carbon source. Urea is degraded by a urease. Mutation at any one of three genes, ureB, ureC, and ureD, may result in deficient urease activity. The ureB gene is closely linked to ureA, the structural gene for the urea transport protein. The heat lability of ureB- revertant strain, intragenic complementation tests, and the linkage of ureB to ureA suggest that ureB is the urease structural gene. The ureD gene is probably involved in the synthesis or incorporation of a nickel cofactor essential for urease activity. The function of the ureC gene is not known. Urease is not induced but is subject to nitrogen regulation. The urease activities of ammonium-derepressed mutants show that the effector of nitrogen regulation is more likely to be glutamine than ammonium. When glutamine is present in the medium, urease appears to be inactivated by some means which does not involve a newly synthesized protease or a direct interaction between glutamine and urease.

  4. Autoregulation of the Synthesis of Nitrate Reductase in Aspergillus nidulans

    PubMed Central

    Cove, D. J.; Pateman, J. A.

    1969-01-01

    In Aspergillus nidulans, the syntheses of nitrate and nitrite reductases are induced by nitrate, and are repressed by ammonium. It is possible in wild-type strains to overcome partially the repressive effect of ammonium, by the addition of high concentrations of nitrate to the growth medium. Mutations which lead to the production of abnormal nitrate reductase affect in addition the control of the synthesis of the nitrate-metabolizing enzymes, which in these strains are produced constitutively. That this is not due to the accumulation of an internal inducer has now been shown, as these mutants have been found to be unable to respond to nitrate induction in the presence of ammonium in the same way as do wild-type strains. To explain these findings, we propose that the nitrate reductase molecule provides the recognition site for nitrate in the control system, such that when it is not complexed with nitrate it acts as a co-repressor, and, when it is complexed, as a co-inducer. PMID:5776531

  5. Regulatory Aspects of l-Glutamate Transport in Aspergillus nidulans

    PubMed Central

    Pateman, J. A.; Kinghorn, J. R.; Dunn, Etta

    1974-01-01

    Wild-type cells of Aspergillus nidulans synthesize a transport system which appears to be specific for l-glutamate and l-aspartate. The system is energy dependent and concentrates l-glutamate at least 60-fold. In cells grown in the presence of 1% sucrose, l-glutamate uptake activity is regulated by ammonium control, although it is not certain whether this is at the level of transcription or translation. Mutants that are insensitive to ammonium control of certain other unrelated systems, e.g., nitrate reductase, are also insensitive, except in the case of one class of ammonium-insensitive mutants, to ammonium control of l-glutamate transport. The activity of this transport system is specifically impaired in a mutant at the aauA locus. This mutation results in poor growth with l-glutamate or l-aspartate as the sole carbon or nitrogen source and is recessive in the heterozygous diploid aauA1/+ for transport and growth characteristics. The likelihood that the mutation results in a defect of the transport mechanism rather than abnormal ammonium control is discussed. PMID:4605030

  6. [Effect of microparticles on echinocandin B production by Aspergillus nidulans].

    PubMed

    Niu, Kun; Hu, Yibo; Mao, Jian; Zou, Shuping; Zheng, Yuguo

    2015-07-01

    Anidulafungin is an effective antifungal medicine, which can inhibit activities of candida in vitro and in vivo. Echinocandin B (ECB) is the key precursor of Anidulafungin, thus the price and market prospect of Anidulafungin is directly due to the fermentation titer of ECB. In this study, Aspergillus nidulans was used for ECB fermentation, and the influence of adding microparticles on ECB fermentation was studied, such as talcum powder, Al2O3, and glass beads. The particle size and concentration were the key factors for mycelium morphology and ECB production, and ECB production could reach 1 262.9 mg/L and 1 344.1 mg/L by adding talcum powder of 20 g/L (d50 = 14.2 μm) and 7 glass beads (6 mm), an increase by 33.2% and 41.7%, respectively. The results indicated that the mycelium morphology of filamentous microorganisms and the product yield of fermentation could be improved by adding microparticles remarkably, and it provide an important method for the fermentative optimization of filamentous microorganisms.

  7. abaA controls phialide differentiation in Aspergillus nidulans.

    PubMed Central

    Sewall, T C; Mims, C W; Timberlake, W E

    1990-01-01

    Aspergillus nidulans is an ascomycetous fungus that reproduces asexually by forming multicellular conidiophores and uninucleate spores called conidia. Loss of function mutations in the abacus A (abaA) regulatory locus result in formation of aberrant conidiophores that fail to produce conidia. Wild-type conidiophores form two tiers of sterigmata. The first tier, metulae, divide to produce the second tier, phialides. Phialides are sporogenous cells that produce conidia through a specialized apical budding process. We have examined conidiophore development in an abaA- strain at the ultrastructural level. The results showed that in the mutant metulae produce supernumerary tiers of cells with metula-like, rather than phialide-like, properties. Temperature shift experiments with an abaA14ts strain demonstrated that abaA+ function induced phialide formation by the aberrant abacus cells and was continuously required for maintenance of phialide function. In the absence of abaA+ activity, metulae simply proliferated and later developmental steps never occurred. We conclude that abaA+ directs the differentiation of phialides and is continuously required for maintenance of their function. PMID:2152124

  8. Novel Sexual-Cycle-Specific Gene Silencing in Aspergillus nidulans

    PubMed Central

    Czaja, Wioletta; Miller, Karen Y.; Miller, Bruce L.

    2013-01-01

    We report a novel sexual-cycle-specific gene-silencing system in the genetic model Aspergillus nidulans. Duplication of the mating type matAHMG gene in this haploid organism triggers Mat-induced silencing (MatIS) of both endogenous and transgenic matA genes, eliminates function of the encoded SRY structural ortholog, and results in formation of barren fruiting bodies. MatIS is spatiotemporally restricted to the prezygotic stage of the sexual cycle and does not interfere with vegetative growth, asexual reproduction, differentiation of early sexual tissues, or fruiting body development. MatIS is reversible upon deletion of the matA transgene. In contrast to other sex-specific silencing phenomena, MatIS silencing has nearly 100% efficiency and appears to be independent of homologous duplicated DNA segments. Remarkably, transgene-derived matA RNA might be sufficient to induce MatIS. A unique feature of MatIS is that RNA-mediated silencing is RNA interference/Argonaute-independent and is restricted to the nucleus having the duplicated gene. The silencing phenomenon is recessive and does not spread between nuclei within the common cytoplasm of a multinucleate heterokaryon. Gene silencing induced by matA gene duplication emerges as a specific feature associated with matAHMG regulation during sexual development. PMID:23341415

  9. Novel sexual-cycle-specific gene silencing in Aspergillus nidulans.

    PubMed

    Czaja, Wioletta; Miller, Karen Y; Miller, Bruce L

    2013-04-01

    We report a novel sexual-cycle-specific gene-silencing system in the genetic model Aspergillus nidulans. Duplication of the mating type matA(HMG) gene in this haploid organism triggers Mat-induced silencing (MatIS) of both endogenous and transgenic matA genes, eliminates function of the encoded SRY structural ortholog, and results in formation of barren fruiting bodies. MatIS is spatiotemporally restricted to the prezygotic stage of the sexual cycle and does not interfere with vegetative growth, asexual reproduction, differentiation of early sexual tissues, or fruiting body development. MatIS is reversible upon deletion of the matA transgene. In contrast to other sex-specific silencing phenomena, MatIS silencing has nearly 100% efficiency and appears to be independent of homologous duplicated DNA segments. Remarkably, transgene-derived matA RNA might be sufficient to induce MatIS. A unique feature of MatIS is that RNA-mediated silencing is RNA interference/Argonaute-independent and is restricted to the nucleus having the duplicated gene. The silencing phenomenon is recessive and does not spread between nuclei within the common cytoplasm of a multinucleate heterokaryon. Gene silencing induced by matA gene duplication emerges as a specific feature associated with matA(HMG) regulation during sexual development.

  10. alpha-L-arabinofuranosidase production by Aspergillus nidulans.

    PubMed

    Fernández-Espinar, M T; Peña, J L; Piñaga, F; Vallés, S

    1994-01-01

    The effects of some physico-chemical parameters on production of extracellular alpha-L-arabinofuranosidase by Aspergillus nidulans were examined. Highest levels of alpha-L-arabinofuranosidase were generated with cultures grown on 1% (w/v) purified beet pulp arabinan at 30 degrees C and at an initial pH of 7.0. The enzyme was shown to be very sensitive to the action of proteases. Zymogram overlay of a protein profile obtained by SDS-PAGE revealed the occurrence of a band (M(r) 36,000) exhibiting alpha-L-arabinofuranosidase activity. The isoelectric pH of the enzyme lay near 4.3. Temperature and pH optima for the activity of crude alpha-L-arabinofuranosidase preparations were 55 degrees C and 5.5, respectively. Enzyme activity was greatly reduced by thiol reagents such as Hg2+ and p-hydroxymercuribenzoate and showed a Km value of 2.7 mM on p-nitrophenyl alpha-L-arabinofuranoside as substrate.

  11. Engineering Aspergillus nidulans for heterologous ent-kaurene and gamma-terpinene production.

    PubMed

    Bromann, Kirsi; Toivari, Mervi; Viljanen, Kaarina; Ruohonen, Laura; Nakari-Setälä, Tiina

    2016-07-01

    Terpenes are a large and varied group of natural products with a wide array of bioactivities and applications. The chemical production of industrially relevant terpenes can be expensive and time-consuming due to the structural complexity of these compounds. Here, we studied Aspergillus nidulans as a heterologous host for monoterpene and diterpene production. Previously, we identified a novel diterpene gene cluster in A. nidulans and showed that overexpression of the cluster-specific transcription factor (pbcR) led to ent-pimara-8(14),15-diene (PD) production. We report further characterization of the A. nidulans PD synthase gene (pbcA). In A. nidulans, overexpression of pbcA resulted in PD production, while deletion of pbcA abolished PD production. Overexpression of Fusarium fujikuroi ent-kaurene synthase (cps/ks) and Citrus unshiu gamma-terpinene synthase resulted in ent-kaurene and gamma-terpinene production, respectively. A. nidulans is a fungal model organism and a close relative to other industrially relevant Aspergillus species. A. nidulans is a known producer of many secondary metabolites, but its ability to produce heterologous monoterpene and diterpene compounds has not been characterized. Here, we show that A. nidulans is capable of heterologous terpene production and thus has potential as a production host for industrially relevant compounds. The genetic engineering principles reported here could also be applied to other Aspergilli.

  12. HYP1, a hydrophobin gene from Aspergillus fumigatus, complements the rodletless phenotype in Aspergillus nidulans.

    PubMed Central

    Parta, M; Chang, Y; Rulong, S; Pinto-DaSilva, P; Kwon-Chung, K J

    1994-01-01

    Aspergillus fumigatus produces conidia that are highly dispersable and resistant to degradation. We have sought to analyze these properties by studying the rodlets which form the outer spore coat protein. Degenerate primers based on hydrophobins in other fungi were applied to genomic DNA from A. fumigatus in PCR. A product of this reaction with similarity to an Aspergillus nidulans gene as judged by Southern hybridization was chosen for further study. Cloning and sequencing revealed a gene with two introns which encodes a protein of 159 amino acids. Structural characteristics consistent with those of other fungal hydrophobin genes, especially conserved cysteine residues, are present. The expression of the gene is limited to the developmental stages in which maturing conidiophores are present. This A. fumigatus gene, HYP1, was used to transform a mutant strain of A. nidulans that lacks rodlets. Transformants with a single copy of HYP1 expressed a rodlet layer on their conidia as observed by freeze-fracture electron microscopy. Images PMID:7927700

  13. Genetic and biochemical studies of nitrate reduction in Aspergillus nidulans

    PubMed Central

    Pateman, J. A.; Rever, B. M.; Cove, D. J.

    1967-01-01

    1. In Aspergillus nidulans nitrate and nitrite induce nitrate reductase, nitrite reductase and hydroxylamine reductase, and ammonium represses the three enzymes. 2. Nitrate reductase can donate electrons to a wide variety of acceptors in addition to nitrate. These artificial acceptors include benzyl viologen, 2-(p-iodophenyl)-3-(p-nitrophenyl)-5-phenyltetrazolium chloride, cytochrome c and potassium ferricyanide. Similarly nitrite reductase and hydroxylamine reductase (which are possibly a single enzyme in A. nidulans) can donate electrons to these same artificial acceptors in addition to the substrates nitrite and hydroxylamine. 3. Nitrate reductase can accept electrons from reduced benzyl viologen in place of the natural donor NADPH. The NADPH–nitrate-reductase activity is about twice that of reduced benzyl viologen–nitrate reductase under comparable conditions. 4. Mutants at six gene loci are known that cannot utilize nitrate and lack nitrate-reductase activity. Most mutants in these loci are constitutive for nitrite reductase, hydroxylamine reductase and all the nitrate-induced NADPH-diaphorase activities. It is argued that mutants that lack nitrate-reductase activity are constitutive for the enzymes of the nitrate-reduction pathway because the functional nitrate-reductase molecule is a component of the regulatory system of the pathway. 5. Mutants are known at two gene loci, niiA and niiB, that cannot utilize nitrite and lack nitrite-reductase and hydroxylamine-reductase activities. 6. Mutants at the niiA locus possess inducible nitrate reductase and lack nitrite-reductase and hydroxylamine-reductase activities. It is suggested that a single enzyme protein is responsible for the reduction of nitrite to ammonium in A. nidulans and that the niiA locus is the structural gene for this enzyme. 7. Mutants at the niiB locus lack nitrate-reductase, nitrite-reductase and hydroxylamine-reductase activities. It is argued that the niiB gene is a regulator gene whose

  14. Genetic and biochemical studies of nitrate reduction in Aspergillus nidulans.

    PubMed

    Pateman, J A; Rever, B M; Cove, D J

    1967-07-01

    1. In Aspergillus nidulans nitrate and nitrite induce nitrate reductase, nitrite reductase and hydroxylamine reductase, and ammonium represses the three enzymes. 2. Nitrate reductase can donate electrons to a wide variety of acceptors in addition to nitrate. These artificial acceptors include benzyl viologen, 2-(p-iodophenyl)-3-(p-nitrophenyl)-5-phenyltetrazolium chloride, cytochrome c and potassium ferricyanide. Similarly nitrite reductase and hydroxylamine reductase (which are possibly a single enzyme in A. nidulans) can donate electrons to these same artificial acceptors in addition to the substrates nitrite and hydroxylamine. 3. Nitrate reductase can accept electrons from reduced benzyl viologen in place of the natural donor NADPH. The NADPH-nitrate-reductase activity is about twice that of reduced benzyl viologen-nitrate reductase under comparable conditions. 4. Mutants at six gene loci are known that cannot utilize nitrate and lack nitrate-reductase activity. Most mutants in these loci are constitutive for nitrite reductase, hydroxylamine reductase and all the nitrate-induced NADPH-diaphorase activities. It is argued that mutants that lack nitrate-reductase activity are constitutive for the enzymes of the nitrate-reduction pathway because the functional nitrate-reductase molecule is a component of the regulatory system of the pathway. 5. Mutants are known at two gene loci, niiA and niiB, that cannot utilize nitrite and lack nitrite-reductase and hydroxylamine-reductase activities. 6. Mutants at the niiA locus possess inducible nitrate reductase and lack nitrite-reductase and hydroxylamine-reductase activities. It is suggested that a single enzyme protein is responsible for the reduction of nitrite to ammonium in A. nidulans and that the niiA locus is the structural gene for this enzyme. 7. Mutants at the niiB locus lack nitrate-reductase, nitrite-reductase and hydroxylamine-reductase activities. It is argued that the niiB gene is a regulator gene whose

  15. Effect of cytochalasin A on apical growth, actin cytoskeleton organization and enzyme secretion in Aspergillus nidulans.

    PubMed

    Torralba, S; Raudaskoski, M; Pedregosa, A M; Laborda, F

    1998-01-01

    The role of actin in apical growth and enzyme secretion in the filamentous fungus Aspergillus nidulans was studied by treating the hyphae with cytochalasin A (CA), which inhibits actin polymerization. Indirect immunofluorescence microscopy revealed actin at the tips of main hyphae and branches, and at the site of developing septa. CA inhibited the growth of the fungus and changed the growth pattern of hyphal tips from cylindrical tubes to spherical beads. The regions with swellings showed no actin fluorescence, and neither was actin seen in association with septa. After 4 h exposure, hyphae were able to resume the normal tip growth pattern in the presence of CA for a short period of time and new cylindrical hyphae, with actin fluorescence at the apex, emerged from the swollen tips. Later, the tips of the hyphae swelled again, which led to a beaded appearance. We also studied the effect of CA on the secretion of alpha- and beta-galactosidase. alpha-Galactosidase is secreted into the culture medium, whereas beta-galactosidase remains in the mycelium, with part of its activity bound to the cell wall. When A. nidulans mycelium was incubated in the presence of CA, a reduction in the secretion of alpha-galactosidase into the culture medium and a decrease in the alpha- and beta-galactosidase activities bound to the cell wall was detected. However, the CA dose used for the hyphae did not modify the secretion of the enzymes from protoplasts. Results described here provide evidence that a polymerized actin cytoskeleton is required for normal apical growth, hyphal tip shape and polarized enzyme secretion in A. nidulans. Cytochalasin-induced disruptions of the actin cytoskeleton could result in the alterations of apical growth and inhibition of enzyme secretion observed by blocking secretory vesicle transport to the apex.

  16. First reported case of Aspergillus nidulans eumycetoma in a sporotrichoid distribution.

    PubMed

    Verma, Rajesh; Vasudevan, Biju; Sahni, Ajay K; Vijendran, Pragasam; Neema, Shekhar; Kharayat, Veena

    2015-01-01

    Mycetomas are chronic subcutaneous infections caused by either fungi (eumycetomas) or bacteria (actinomycetomas). Eumycetoma is commonly seen in tropical and subtropical climates, usually in males working in occupations prone to trauma. Aspergillus spp. are an uncommon cause of mycetomas. We describe a patient with eumycetoma attributable to Aspergillus nidulans presenting in a sporotrichoid distribution. A 45-year-old man with type 2 diabetes mellitus and hypertension presented with multiple lumps over the right lower limb of four months in duration. He had initially developed a solitary lesion over the right ankle, followed by multiple similar lumps which had spread upwards to involve the right thigh. The entire lower limb was edematous. The patient denied any trauma preceding the symptoms. Biopsy revealed pseudoepitheliomatous hyperplasia with extensive granulomatous infiltrate in the dermis and subcutaneous tissue. Grocott-Gomorri staining revealed fungal elements. Culture on Sabouraud's agar revealed a whitish colony that later turned green. Aspergillus nidulans mycetoma in a sporotrichoid distribution was diagnosed. The patient was started on oral itraconazole 200 mg twice daily, which resulted in complete regression of the lesions. Aspergillus spp. have emerged as important opportunistic pathogens, especially in immunosuppressed patients. Aspergillus nidulans occurs frequently in soil, decaying vegetation, and water but has very rarely been described as a cause of mycetoma. The infection responds well to treatment with itraconazole, voriconazole, and amphotericin B. The current patient represents the first demonstration of A. nidulans mycetoma presenting in a sporotrichoid distribution. © 2014 The International Society of Dermatology.

  17. Partial Reconstruction of the Ergot Alkaloid Pathway by Heterologous Gene Expression in Aspergillus nidulans

    PubMed Central

    Ryan, Katy L.; Moore, Christopher T.; Panaccione, Daniel G.

    2013-01-01

    Ergot alkaloids are pharmaceutically and agriculturally important secondary metabolites produced by several species of fungi. Ergot alkaloid pathways vary among different fungal lineages, but the pathway intermediate chanoclavine-I is evolutionarily conserved among ergot alkaloid producers. At least four genes, dmaW, easF, easE, and easC, are necessary for pathway steps prior to chanoclavine-I; however, the sufficiency of these genes for chanoclavine-I synthesis has not been established. A fragment of genomic DNA containing dmaW, easF, easE, and easC was amplified from the human-pathogenic, ergot alkaloid-producing fungus Aspergillus fumigatus and transformed into Aspergillus nidulans, a model fungus that does not contain any of the ergot alkaloid synthesis genes. HPLC and LC-MS analyses demonstrated that transformed A. nidulans strains produced chanoclavine-I and an earlier pathway intermediate. Aspergillus nidulans transformants containing dmaW, easF, and either easE or easC did not produce chanoclavine-I but did produce an early pathway intermediate and, in the case of the easC transformant, an additional ergot alkaloid-like compound. We conclude that dmaW, easF, easE, and easC are sufficient for the synthesis of chanoclavine-I in A. nidulans and expressing ergot alkaloid pathway genes in A. nidulans provides a novel approach to understanding the early steps in ergot alkaloid synthesis. PMID:23435153

  18. Molecular cloning and expression in Saccharomyces cerevisiae of two Aspergillus nidulans xylanase genes.

    PubMed Central

    Pérez-Gonzalez, J A; De Graaff, L H; Visser, J; Ramón, D

    1996-01-01

    Two Aspergillus nidulans genes, xlnA and xlnB, encoding the X22 and X24 xylanases from this fungus, respectively, have been cloned and sequenced. Their cDNAs have been expressed in a laboratory Saccharomyces cerevisiae strain under the control of a constitutive yeast promoter, resulting in the construction of recombinant xylanolytic yeast strains. PMID:8787417

  19. Live-cell imaging of Aspergillus nidulans autophagy

    PubMed Central

    Pinar, Mario; Pantazopoulou, Areti; Peñalva, Miguel A.

    2013-01-01

    We exploited the amenability of the fungus Aspergillus nidulans to genetics and live-cell microscopy to investigate autophagy. Upon nitrogen starvation, GFP-Atg8-containing pre-autophagosomal puncta give rise to cup-shaped phagophores and circular (0.9-μm diameter) autophagosomes that disappear in the vicinity of the vacuoles after their shape becomes irregular and their GFP-Atg8 fluorescence decays. This ‘autophagosome cycle’ gives rise to characteristic cone-shaped traces in kymographs. Autophagy does not require endosome maturation or ESCRTs, as autophagosomes fuse with vacuoles directly in a RabS (homolog of Saccharomyces cerevisiae Ypt7 and mammalian RAB7; written hereafter as RabSRAB7)-HOPS-(homotypic fusion and vacuole protein sorting complex)-dependent manner. However, by removing RabSRAB7 or Vps41 (a component of the HOPS complex), we show that autophagosomes may still fuse, albeit inefficiently, with the endovacuolar system in a process almost certainly mediated by RabARAB5/RabBRAB5 (yeast Vps21 homologs)-CORVET (class C core vacuole/endosome tethering complex), because acute inactivation of HbrA/Vps33, a key component of HOPS and CORVET, completely precludes access of GFP-Atg8 to vacuoles without affecting autophagosome biogenesis. Using a FYVE2-GFP probe and endosomal PtdIns3P-depleted cells, we imaged PtdIns3P on autophagic membranes. PtdIns3P present on autophagosomes decays at late stages of the cycle, preceding fusion with the vacuole. Autophagy does not require Golgi traffic, but it is crucially dependent on RabORAB1. TRAPPIII-specific factor AN7311 (yeast Trs85) localizes to the phagophore assembly site (PAS) and RabORAB1 localizes to phagophores and autophagosomes. The Golgi and autophagy roles of RabORAB1 are dissociable by mutation: rabOA136D hyphae show relatively normal secretion at 28°C but are completely blocked in autophagy. This finding and the lack of Golgi traffic involvement pointed to the ER as one potential source of membranes

  20. Qualitative ubiquitome unveils the potential significances of protein lysine ubiquitination in hyphal growth of Aspergillus nidulans.

    PubMed

    Chu, Xin-Ling; Feng, Ming-Guang; Ying, Sheng-Hua

    2016-02-01

    Protein ubiquitination is an evolutionarily conserved post-translational modification process in eukaryotes, and it plays an important role in many biological processes. Aspergillus nidulans, a model filamentous fungus, contributes to our understanding of cellular physiology, metabolism and genetics, but its ubiquitination is not completely revealed. In this study, the ubiquitination sites in the proteome of A. nidulans were identified using a highly sensitive mass spectrometry combined with immuno-affinity enrichment of the ubiquitinated peptides. The 4816 ubiquitination sites were identified in 1913 ubiquitinated proteins, accounting for 18.1% of total proteins in A. nidulans. Bioinformatic analysis suggested that the ubiquitinated proteins associated with a number of biological functions and displayed various sub-cellular localisations. Meanwhile, seven motifs were revealed from the ubiquitinated peptides, and significantly over-presented in the different pathways. Comparison of the enriched functional catalogues indicated that the ubiquitination functions divergently during growth of A. nidulans and Saccharomyces cerevisiae. Additionally, the proteins in A. nidulans-specific sub-category (cell growth/morphogenesis) were subjected to the protein interaction analysis which demonstrated that ubiquitination is involved in the comprehensive protein interactions. This study presents a first proteomic view of ubiquitination in the filamentous fungus, and provides an initial framework for exploring the physiological roles of ubiquitination in A. nidulans.

  1. The Aspergillus nidulans nucA(EndoG) homologue is not involved in cell death.

    PubMed

    de Castro Pimentel Figueiredo, Bárbara; de Castro, Patrícia Alves; Dinamarco, Taísa Magnani; Goldman, Maria Helena S; Goldman, Gustavo Henrique

    2011-02-01

    Upon apoptosis induction, translocation of mammalian mitochondrial endonuclease G (EndoG) to the nucleus coincides with large-scale DNA fragmentation. Here, we describe for the first time a homologue of EndoG in filamentous fungi by investigating if the Aspergillus nidulans homologue of the EndoG gene, named nucA(EndoG), is being activated during farnesol-induced cell death. Our results suggest that NucA is not involved in cell death, but it plays a role in the DNA-damaging response in A. nidulans.

  2. A Large Cluster of Highly Expressed Genes Is Dispensable for Growth and Development in Aspergillus Nidulans

    PubMed Central

    Aramayo, R.; Adams, T. H.; Timberlake, W. E.

    1989-01-01

    We investigated the functions of the highly expressed, sporulation-specific SpoC1 genes of Aspergillus nidulans by deleting the entire 38-kb SpoC1 gene cluster. The resultant mutant strain did not differ from the wild type in (1) growth rate, (2) morphology of specialized reproductive structures formed during completion of the asexual or sexual life cycles, (3) sporulation efficiency, (4) spore viability or (5) spore resistance to environmental stress. Thus, deletion of the SpoC1 gene cluster, representing 0.15% of the A. nidulans genome, had no readily detectable phenotypic effects. Implications of this result are discussed in the context of major alterations in gene expression that occur during A. nidulans development. PMID:2471671

  3. The genetic activity of 6-N-hydroxylaminopurine in Aspergillus nidulans.

    PubMed

    Babudri, N; Salvini, D; Pimpinelli, S; Morpurgo, G

    1994-04-01

    The activity of a base analog (6-N-hydroxylaminopurine, HAP) has been tested on Aspergillus nidulans. In germinating haploid conidia HAP is a strong mutagen, while it does not have any activity in resting conidia. Moreover, HAP does not increase the frequency of recombination in germinating conidia. The mutagenic activity of this base analog has also been tested in diploid conidia of A. nidulans; in fact, it has been shown (Pavlov et al., 1991) that the HAP-induced frequency of heteroallelic recessive mutations in diploid cells of the yeast S. cerevisiae is higher than expected. In A. nidulans, we did not observe any increase in the frequency of recessive homozygous fpaA/fpaA (p-fluorophenylalanine-resistant) mutants over the expected one, which has been calculated on the basis of the observed mutation frequency in the haploid strain.

  4. Novel Telomere-Anchored PCR Approach for Studying Sexual Stage Telomeres in Aspergillus nidulans

    PubMed Central

    Wang, Nengding; Rizvydeen, Saajidha; Vahedi, Mithaq; Vargas Gonzalez, Daysi M.; Allred, Amanda L.; Perry, Dustin W.; Mirabito, Peter M.; Kirk, Karen E.

    2014-01-01

    Telomere length varies between germline and somatic cells of the same organism, leading to the hypothesis that telomeres are lengthened during meiosis. However, little is known about the meiotic telomere length in many organisms. In the filamentous fungus Aspergillus nidulans, the telomere lengths in hyphae and asexual spores are invariant. No study using existing techniques has determined the telomere length of the sexual ascospores due to the relatively low abundance of pure meiotic cells in A. nidulans and the small quantity of DNA present. To address this, we developed a simple and sensitive PCR strategy to measure the telomere length of A. nidulans meiotic cells. This novel technique, termed “telomere-anchored PCR,” measures the length of the telomere on chromosome II-L using a small fraction of the DNA required for the traditional terminal restriction fragment (TRF) Southern analysis. Using this approach, we determined that the A. nidulans ascospore telomere length is virtually identical to telomeres of other cell types from this organism, approximately 110 bp, indicating that a surprisingly strict telomere length regulation exists in the major cell types of A. nidulans. When the hyphal telomeres were measured in a telomerase reverse transcriptase (TERT) knockout strain, small decreases in length were readily detected. Thus, this technique can detect telomeres in relatively rare cell types and is particularly sensitive in measuring exceptionally short telomeres. This rapid and inexpensive telomere-anchored PCR method potentially can be utilized in other filamentous fungi and types of organisms. PMID:24927411

  5. Gβ-Like CpcB Plays a Crucial Role for Growth and Development of Aspergillus nidulans and Aspergillus fumigatus

    PubMed Central

    Kong, Qing; Wang, Long; Liu, Zengran; Kwon, Nak-Jung; Kim, Sun Chang; Yu, Jae-Hyuk

    2013-01-01

    Growth, development, virulence and secondary metabolism in fungi are governed by heterotrimeric G proteins (G proteins). A Gβ-like protein called Gib2 has been shown to function as an atypical Gβ in Gpa1-cAMP signaling in Cryptococcus neoformans. We found that the previously reported CpcB (cross pathway control B) protein is the ortholog of Gib2 in Aspergillus nidulans and Aspergillus fumigatus. In this report, we further characterize the roles of CpcB in governing growth, development and toxigenesis in the two aspergilli. The deletion of cpcB results in severely impaired cellular growth, delayed spore germination, and defective asexual sporulation (conidiation) in both aspergilli. Moreover, CpcB is necessary for proper expression of the key developmental activator brlA during initiation and progression of conidiation in A. nidulans and A. fumigatus. Somewhat in accordance with the previous study, the absence of cpcB results in the formation of fewer, but not micro-, cleistothecia in A. nidulans in the presence of wild type veA, an essential activator of sexual development. However, the cpcB deletion mutant cleistothecia contain no ascospores, validating that CpcB is required for progression and completion of sexual fruiting including ascosporogenesis. Furthermore, unlike the canonical GβSfaD, CpcB is not needed for the biosynthesis of the mycotoxin sterigmatocystin (ST) as the cpcB null mutant produced reduced amount of ST with unaltered STC gene expression. However, in A. fumigatus, the deletion of cpcB results in the blockage of gliotoxin (GT) production. Further genetic analyses in A. nidulans indicate that CpcB may play a central role in vegetative growth, which might be independent of FadA- and GanB-mediated signaling. A speculative model summarizing the roles of CpcB in conjunction with SfaD in A. nidulans is presented. PMID:23936193

  6. Gβ-like CpcB plays a crucial role for growth and development of Aspergillus nidulans and Aspergillus fumigatus.

    PubMed

    Kong, Qing; Wang, Long; Liu, Zengran; Kwon, Nak-Jung; Kim, Sun Chang; Yu, Jae-Hyuk

    2013-01-01

    Growth, development, virulence and secondary metabolism in fungi are governed by heterotrimeric G proteins (G proteins). A Gβ-like protein called Gib2 has been shown to function as an atypical Gβ in Gpa1-cAMP signaling in Cryptococcus neoformans. We found that the previously reported CpcB (cross pathway control B) protein is the ortholog of Gib2 in Aspergillus nidulans and Aspergillus fumigatus. In this report, we further characterize the roles of CpcB in governing growth, development and toxigenesis in the two aspergilli. The deletion of cpcB results in severely impaired cellular growth, delayed spore germination, and defective asexual sporulation (conidiation) in both aspergilli. Moreover, CpcB is necessary for proper expression of the key developmental activator brlA during initiation and progression of conidiation in A. nidulans and A. fumigatus. Somewhat in accordance with the previous study, the absence of cpcB results in the formation of fewer, but not micro-, cleistothecia in A. nidulans in the presence of wild type veA, an essential activator of sexual development. However, the cpcB deletion mutant cleistothecia contain no ascospores, validating that CpcB is required for progression and completion of sexual fruiting including ascosporogenesis. Furthermore, unlike the canonical GβSfaD, CpcB is not needed for the biosynthesis of the mycotoxin sterigmatocystin (ST) as the cpcB null mutant produced reduced amount of ST with unaltered STC gene expression. However, in A. fumigatus, the deletion of cpcB results in the blockage of gliotoxin (GT) production. Further genetic analyses in A. nidulans indicate that CpcB may play a central role in vegetative growth, which might be independent of FadA- and GanB-mediated signaling. A speculative model summarizing the roles of CpcB in conjunction with SfaD in A. nidulans is presented.

  7. Identification and characterization of a novel diterpene gene cluster in Aspergillus nidulans.

    PubMed

    Bromann, Kirsi; Toivari, Mervi; Viljanen, Kaarina; Vuoristo, Anu; Ruohonen, Laura; Nakari-Setälä, Tiina

    2012-01-01

    Fungal secondary metabolites are a rich source of medically useful compounds due to their pharmaceutical and toxic properties. Sequencing of fungal genomes has revealed numerous secondary metabolite gene clusters, yet products of many of these biosynthetic pathways are unknown since the expression of the clustered genes usually remains silent in normal laboratory conditions. Therefore, to discover new metabolites, it is important to find ways to induce the expression of genes in these otherwise silent biosynthetic clusters. We discovered a novel secondary metabolite in Aspergillus nidulans by predicting a biosynthetic gene cluster with genomic mining. A Zn(II)(2)Cys(6)-type transcription factor, PbcR, was identified, and its role as a pathway-specific activator for the predicted gene cluster was demonstrated. Overexpression of pbcR upregulated the transcription of seven genes in the identified cluster and led to the production of a diterpene compound, which was characterized with GC/MS as ent-pimara-8(14),15-diene. A change in morphology was also observed in the strains overexpressing pbcR. The activation of a cryptic gene cluster by overexpression of its putative Zn(II)(2)Cys(6)-type transcription factor led to discovery of a novel secondary metabolite in Aspergillus nidulans. Quantitative real-time PCR and DNA array analysis allowed us to predict the borders of the biosynthetic gene cluster. Furthermore, we identified a novel fungal pimaradiene cyclase gene as well as genes encoding 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA) reductase and a geranylgeranyl pyrophosphate (GGPP) synthase. None of these genes have been previously implicated in the biosynthesis of terpenes in Aspergillus nidulans. These results identify the first Aspergillus nidulans diterpene gene cluster and suggest a biosynthetic pathway for ent-pimara-8(14),15-diene.

  8. Cross-talk between light and glucose regulation controls toxin production and morphogenesis in Aspergillus nidulans.

    PubMed

    Atoui, A; Kastner, C; Larey, C M; Thokala, R; Etxebeste, O; Espeso, E A; Fischer, R; Calvo, A M

    2010-12-01

    Light is a major environmental stimulus that has a broad effect on organisms, triggering a cellular response that results in an optimal adaptation enhancing fitness and survival. In fungi, light affects growth, and causes diverse morphological changes such as those leading to reproduction. Light can also affect fungal metabolism, including the biosynthesis of natural products. In this study we show that in Aspergillus nidulans the effect of light on the production of the sterigmatocystin (ST) toxin depends on the glucose concentration. In cultures grown with 1% glucose and exposed to light, ST production was lower than when grown in the dark. This lower ST production coincided with an elevated rate of cellular damage with partial loss of nuclear integrity and vacuolated cytoplasm. However, in cultures grown with 2% glucose these effects were reversed and light enhanced ST production. Glucose abundance also affected the light-dependent subcellular localization of the VeA (velvet) protein, a key regulator necessary for normal light-dependent morphogenesis and secondary metabolism in Aspergilli and other fungal genera. The role of other VeA-associated proteins, particularly the blue-light-sensing proteins LreA and LreB (WC-1 and WC-2 orthologs), on conidiation could also be modified by the abundance of glucose. We also show that LreA and LreB, as well as the phytochrome FphA, modulate not only the synthesis of sterigmatocystin, but also the production of the antibiotic penicillin.

  9. A Novel Automethylation Reaction in the Aspergillus nidulans LaeA Protein Generates S-Methylmethionine*

    PubMed Central

    Patananan, Alexander N.; Palmer, Jonathan M.; Garvey, Graeme S.; Keller, Nancy P.; Clarke, Steven G.

    2013-01-01

    The filamentous fungi in the genus Aspergillus are opportunistic plant and animal pathogens that can adapt to their environment by producing various secondary metabolites, including lovastatin, penicillin, and aflatoxin. The synthesis of these small molecules is dependent on gene clusters that are globally regulated by the LaeA protein. Null mutants of LaeA in all pathogenic fungi examined to date show decreased virulence coupled with reduced secondary metabolism. Although the amino acid sequence of LaeA contains the motifs characteristic of seven-β-strand methyltransferases, a methyl-accepting substrate of LaeA has not been identified. In this work we did not find a methyl-accepting substrate in Aspergillus nidulans with various assays, including in vivo S-adenosyl-[methyl-3H]methionine labeling, targeted in vitro methylation experiments using putative protein substrates, or in vitro methylation assays using whole cell extracts grown under different conditions. However, in each experiment LaeA was shown to self-methylate. Amino acid hydrolysis of radioactively labeled LaeA followed by cation exchange and reverse phase chromatography identified methionine as the modified residue. Point mutations show that the major site of modification of LaeA is on methionine 207. However, in vivo complementation showed that methionine 207 is not required for the biological function of LaeA. LaeA is the first protein to exhibit automethylation at a methionine residue. These findings not only indicate LaeA may perform novel chemistry with S-adenosylmethionine but also provide new insights into the physiological function of LaeA. PMID:23532849

  10. Functional characterization of a xylose transporter in Aspergillus nidulans

    PubMed Central

    2014-01-01

    Background The production of bioethanol from lignocellulosic feedstocks will only become economically feasible when the majority of cellulosic and hemicellulosic biopolymers can be efficiently converted into bioethanol. The main component of cellulose is glucose, whereas hemicelluloses mainly consist of pentose sugars such as D-xylose and L-arabinose. The genomes of filamentous fungi such as A. nidulans encode a multiplicity of sugar transporters with broad affinities for hexose and pentose sugars. Saccharomyces cerevisiae, which has a long history of use in industrial fermentation processes, is not able to efficiently transport or metabolize pentose sugars (e.g. xylose). Subsequently, the aim of this study was to identify xylose-transporters from A. nidulans, as potential candidates for introduction into S. cerevisiae in order to improve xylose utilization. Results In this study, we identified the A. nidulans xtrD (xylose transporter) gene, which encodes a Major Facilitator Superfamily (MFS) transporter, and which was specifically induced at the transcriptional level by xylose in a XlnR-dependent manner, while being partially repressed by glucose in a CreA-dependent manner. We evaluated the ability of xtrD to functionally complement the S. cerevisiae EBY.VW4000 strain which is unable to grow on glucose, fructose, mannose or galactose as single carbon source. In S. cerevisiae, XtrD was targeted to the plasma membrane and its expression was able to restore growth on xylose, glucose, galactose, and mannose as single carbon sources, indicating that this transporter accepts multiple sugars as a substrate. XtrD has a high affinity for xylose, and may be a high affinity xylose transporter. We were able to select a S. cerevisiae mutant strain that had increased xylose transport when expressing the xtrD gene. Conclusions This study characterized the regulation and substrate specificity of an A. nidulans transporter that represents a good candidate for further directed

  11. Aspergillus nidulans verA is required for production of the mycotoxin sterigmatocystin.

    PubMed Central

    Keller, N P; Kantz, N J; Adams, T H

    1994-01-01

    Aspergillus nidulans produces the carcinogenic mycotoxin sterigmatocystin (ST), the next-to-last precursor in the aflatoxin (AF) biosynthetic pathway found in the closely related fungi Aspergillus flavus and Aspergillus parasiticus. We identified and characterized an A. nidulans gene, verA, that is required for converting the AF precursor versicolorin A to ST. verA is closely related to several polyketide biosynthetic genes involved in polyketide production in Streptomyces spp. and exhibits extended sequence similarity to A. parasiticus ver-1, a gene proposed to encode an enzyme involved in converting versicolorin A to ST. By performing a sequence analysis of the region 3' to verA, we identified two additional open reading frames, designated ORF1 and ORF2. ORF2 is closely related to a number of cytochrome P-450 monooxygenases, while ORF1 shares identity with the gamma subunit of translation elongation factor 1. Given that several steps in the ST-AF pathway may require monooxygenase activity and that AF biosynthetic genes are clustered in A. flavus and A. parasiticus, we suggest that verA may be part of a cluster of genes required for ST biosynthesis. We disrupted the verA coding region by inserting the A. nidulans argB gene into the center of the coding region and transformed an A. nidulans argB2 mutant to arginine prototrophy. Seven transformants that produced DNA patterns indicative of a verA disruption event were grown under ST-inducing conditions, and all of the transformants produced versicolorin A but negligible amounts of ST (200-fold to almost 1,000-fold less than the wild type), confirming the hypothesis that verA encodes an enzyme necessary for converting versicolorin A to ST. Images PMID:8017929

  12. Multiple Phosphatases Regulate Carbon Source-Dependent Germination and Primary Metabolism in Aspergillus nidulans.

    PubMed

    de Assis, Leandro José; Ries, Laure Nicolas Annick; Savoldi, Marcela; Dinamarco, Taisa Magnani; Goldman, Gustavo Henrique; Brown, Neil Andrew

    2015-03-11

    Aspergillus nidulans is an important mold and a model system for the study of fungal cell biology. In addition, invasive A. nidulans pulmonary infections are common in humans with chronic granulomatous disease. The morphological and biochemical transition from dormant conidia into active, growing, filamentous hyphae requires the coordination of numerous biosynthetic, developmental, and metabolic processes. The present study exhibited the diversity of roles performed by seven phosphatases in regulating cell cycle, development, and metabolism in response to glucose and alternative carbon sources. The identified phosphatases highlighted the importance of several signaling pathways regulating filamentous growth, the action of the pyruvate dehydrogenase complex as a metabolic switch controlling carbon usage, and the identification of the key function performed by the α-ketoglutarate dehydrogenase during germination. These novel insights into the fundamental roles of numerous phosphatases in germination and carbon sensing have provided new avenues of research into the identification of inhibitors of fungal germination, with implications for the food, feed, and pharmaceutical industries.

  13. Ammonium-induced internalisation of UapC, the general purine permease from Aspergillus nidulans.

    PubMed

    Valdez-Taubas, Javier; Harispe, Laura; Scazzocchio, Claudio; Gorfinkiel, Lisette; Rosa, Alberto L

    2004-01-01

    The Aspergillus nidulans UapC protein is a high-affinity, moderate-capacity, uric acid-xanthine transporter, which also displays a low transport capacity for hypoxanthine, adenine, and guanine. It has been previously shown that a functional UapC-GFP fusion protein localises at the plasma membrane. Here, we demonstrate that ammonium, a preferred nitrogen source, dramatically changes the subcellular distribution of UapC. After addition of ammonium, UapC-GFP is removed from the plasma membrane and is concentrated into the vacuolar compartment. A chimeric gene construct in which an inducible promoter, insensitive to nitrogen repression, drives the expression of UapC-GFP, allowed us to demonstrate that the ammonium-dependent redistribution of UapC can be dissociated from the transcriptional repression of the gene. These results provide further support for the occurrence of endocytosis and the lysosomal-endosomal function of the vacuolar compartment in A. nidulans.

  14. Cloning and characterization of Aspergillus nidulans vpsA gene which is involved in vacuolar biogenesis.

    PubMed

    Tarutani, Y; Ohsumi, K; Arioka, M; Nakajima, H; Kitamoto, K

    2001-05-02

    In Saccharomyces cerevisiae, vacuoles play very important roles in pH and osmotic regulation, protein degradation and storage of amino acids, small ions as well as polyphosphates. In filamentous fungi, however, little is known about vacuolar functions at a molecular level. In this paper, we report the isolation of the vpsA gene from the filamentous fungus Aspergillus nidulans as a homologue of the VPS1 gene of S. cerevisiae which encodes a dynamin-related protein. The vpsA gene encodes a polypeptide consisting of 696 amino acids that is nearly 60% homologous to the S. cerevisiae Vps1. Similar to Vps1, VpsA contains a highly conserved tripartite GTPase domain but lacks the pleckstrin homology domain and proline-rich region. The vpsA disruptant shows poor growth and contains highly fragmented vacuoles. These results suggest that A. nidulans VpsA functions in the vacuolar biogenesis.

  15. Hypertonic conditions trigger transient plasmolysis, growth arrest and blockage of transporter endocytosis in Aspergillus nidulans and Saccharomyces cerevisiae.

    PubMed

    Bitsikas, Vassilis; Karachaliou, Mayia; Gournas, Christos; Diallinas, George

    2011-01-01

    By using Aspergillus nidulans strains expressing functional GFP-tagged transporters under hypertonic conditions, we noticed the rapid appearance of cortical, relatively static, fluorescent patches (0.5-2.3 μm). These patches do not correspond to transporter microdomains as they co-localize with other plasma membrane-associated molecules, such as the pleckstrin homology (PH) domain and the SsoA t-Snare, or the lipophilic markers FM4-64 and filipin. In addition, they do not show characteristics of lipid rafts, MCCs or other membrane microdomains. Deconvoluted microscopic images showed that fluorescent patches correspond to plasma membrane invaginations. Transporters remain fully active during this phenomenon of localized plasmolysis. Plasmolysis was however associated with reduced growth rate and a dramatic blockage in transporter and FM4-64 endocytosis. These phenomena are transient and rapidly reversible upon wash-out of hypertonic media. Based on the observation that block in endocytosis by hypertonic treatment altered dramatically the cellular localization of tropomyosin (GFP-TpmA), although it did not affect the cortical appearance of upstream (SlaB-GFP) or downstream (AbpA-mRFP) endocytic components, we conclude that hypertonicity modifies actin dynamics and thus acts indirectly on endocytosis. This was further supported by the effect of latrunculin B, an actin depolymerization agent, on endocytosis. We show that the phenomena observed in A. nidulans also occur in Saccharomyces cerevisiae, suggesting that they constitute basic homeostatic responses of ascomycetes to hypertonic shock. Finally, our work shows that hypertonic treatments can be used as physiological tools to study the endocytic down-regulation of transporters in A. nidulans, as non-conditional genetic blocks affecting endocytic internalization are lethal or severely debilitating.

  16. Relationships between phosphatidylcholine content, chitin synthesis, growth, and morphology of Aspergillus nidulans choC.

    PubMed

    Binks, P R; Robson, G D; Goosey, M W; Trinci, A P

    1991-10-01

    The phosphatidylcholine (PC) content of Aspergillus nidulans choC was varied by growing the auxotroph in medium containing various concentrations of choline chloride. Direct linear correlations were observed between PC content and in vivo chitin synthase activity, between in vivo chitin synthase activity and mean hyphal extension rate, and between mean hyphal extension rate and hyphal growth unit length; hyphal growth unit length is a measure of hyphal branching. Further, there was a correlation between PC content and colony radial growth rate. Thus, membrane composition is an important determinant of both hyphal (and colony) extension rate and mycelial morphology.

  17. Transcriptional Changes in the Transition from Vegetative Cells to Asexual Development in the Model Fungus Aspergillus nidulans

    PubMed Central

    Garzia, Aitor; Etxebeste, Oier; Rodríguez-Romero, Julio; Fischer, Reinhard; Espeso, Eduardo A.

    2013-01-01

    Morphogenesis encompasses programmed changes in gene expression that lead to the development of specialized cell types. In the model fungus Aspergillus nidulans, asexual development involves the formation of characteristic cell types, collectively known as the conidiophore. With the aim of determining the transcriptional changes that occur upon induction of asexual development, we have applied massive mRNA sequencing to compare the expression pattern of 19-h-old submerged vegetative cells (hyphae) with that of similar hyphae after exposure to the air for 5 h. We found that the expression of 2,222 (20.3%) of the predicted 10,943 A. nidulans transcripts was significantly modified after air exposure, 2,035 being downregulated and 187 upregulated. The activation during this transition of genes that belong specifically to the asexual developmental pathway was confirmed. Another remarkable quantitative change occurred in the expression of genes involved in carbon or nitrogen primary metabolism. Genes participating in polar growth or sexual development were transcriptionally repressed, as were those belonging to the HogA/SakA stress response mitogen-activated protein (MAP) kinase pathway. We also identified significant expression changes in several genes purportedly involved in redox balance, transmembrane transport, secondary metabolite production, or transcriptional regulation, mainly binuclear-zinc cluster transcription factors. Genes coding for these four activities were usually grouped in metabolic clusters, which may bring regulatory implications for the induction of asexual development. These results provide a blueprint for further stage-specific gene expression studies during conidiophore development. PMID:23264642

  18. Aspergillus nidulans Ambient pH Signaling Does Not Require Endocytosis

    PubMed Central

    Lucena-Agell, Daniel; Galindo, Antonio; Arst, Herbert N.

    2015-01-01

    Aspergillus nidulans (Pal) ambient pH signaling takes place in cortical structures containing components of the ESCRT pathway, which are hijacked by the alkaline pH-activated, ubiquitin-modified version of the arrestin-like protein PalF and taken to the plasma membrane. There, ESCRTs scaffold the assembly of dedicated Pal proteins acting downstream. The molecular details of this pathway, which results in the two-step proteolytic processing of the transcription factor PacC, have received considerable attention due to the key role that it plays in fungal pathogenicity. While current evidence strongly indicates that the pH signaling role of ESCRT complexes is limited to plasma membrane-associated structures where PacC proteolysis would take place, the localization of the PalB protease, which almost certainly catalyzes the first and only pH-regulated proteolytic step, had not been investigated. In view of ESCRT participation, this formally leaves open the possibility that PalB activation requires endocytic internalization. As endocytosis is essential for hyphal growth, nonlethal endocytic mutations are predicted to cause an incomplete block. We used a SynA internalization assay to measure the extent to which any given mutation prevents endocytosis. We show that none of the tested mutations impairing endocytosis to different degrees, including slaB1, conditionally causing a complete block, have any effect on the activation of the pathway. We further show that PalB, like PalA and PalC, localizes to cortical structures in an alkaline pH-dependent manner. Therefore, signaling through the Pal pathway does not involve endocytosis. PMID:25841020

  19. Linkage of Oxidative Stress and Mitochondrial Dysfunctions to Spontaneous Culture Degeneration in Aspergillus nidulans*

    PubMed Central

    Li, Lin; Hu, Xiao; Xia, Yongliang; Xiao, Guohua; Zheng, Peng; Wang, Chengshu

    2014-01-01

    Filamentous fungi including mushrooms frequently and spontaneously degenerate during subsequent culture maintenance on artificial media, which shows the loss or reduction abilities of asexual sporulation, sexuality, fruiting, and production of secondary metabolites, thus leading to economic losses during mass production. To better understand the underlying mechanisms of fungal degeneration, the model fungus Aspergillus nidulans was employed in this study for comprehensive analyses. First, linkage of oxidative stress to culture degeneration was evident in A. nidulans. Taken together with the verifications of cell biology and biochemical data, a comparative mitochondrial proteome analysis revealed that, unlike the healthy wild type, a spontaneous fluffy sector culture of A. nidulans demonstrated the characteristics of mitochondrial dysfunctions. Relative to the wild type, the features of cytochrome c release, calcium overload and up-regulation of apoptosis inducing factors evident in sector mitochondria suggested a linkage of fungal degeneration to cell apoptosis. However, the sector culture could still be maintained for generations without the signs of growth arrest. Up-regulation of the heat shock protein chaperones, anti-apoptotic factors and DNA repair proteins in the sector could account for the compromise in cell death. The results of this study not only shed new lights on the mechanisms of spontaneous degeneration of fungal cultures but will also provide alternative biomarkers to monitor fungal culture degeneration. PMID:24345786

  20. ArfB links protein lipidation and endocytosis to polarized growth of Aspergillus nidulans

    PubMed Central

    Lee, Soo Chan

    2008-01-01

    Aspergillus nidulans undergoes polarized hyphal growth during the majority of its life cycle. Regulatory mechanisms for hyphal polarity have been intensively investigated in a variety of filamentous fungi. Two important cellular processes, which have received recent attention, include protein myristoylation and endocytosis. It is clear that protein myristoylation is essential for polarity establishment because germinating A. nidulans conidia lost polarity in the presence of cerulenin, a lipid metabolism inhibitor and in an N-myristoyl transferase mutant background. Only 41 predicted proteins encoded by A. nidulans posses an N-myristoylation motif, one of which is ADP ribosylation factor B (ArfB). Disruption of ArfB leads to failure of polarity establishment and maintenance during early morphogenesis and in a delay in endocytosis. Therefore, ArfB connects N-myristoylation and endocytosis to polarized growth. Exocytotic vesicle trafficking through the Spitzenkörper may also require Arf proteins in their role in vesicle formation. Taken together, ArfB is one of the important key components for the fungal hyphal growth. PMID:19704790

  1. Mitotic nuclear pore complex segregation involves Nup2 in Aspergillus nidulans.

    PubMed

    Suresh, Subbulakshmi; Markossian, Sarine; Osmani, Aysha H; Osmani, Stephen A

    2017-09-04

    Transport through nuclear pore complexes (NPCs) during interphase is facilitated by the nucleoporin Nup2 via its importin α- and Ran-binding domains. However, Aspergillus nidulans and vertebrate Nup2 also locate to chromatin during mitosis, suggestive of mitotic functions. In this study, we report that Nup2 is required for mitotic NPC inheritance in A. nidulans Interestingly, the role of Nup2 during mitotic NPC segregation is independent of its importin α- and Ran-binding domains but relies on a central targeting domain that is necessary for localization and viability. To test whether mitotic chromatin-associated Nup2 might function to bridge NPCs with chromatin during segregation, we provided an artificial link between NPCs and chromatin via Nup133 and histone H1. Using this approach, we bypassed the requirement of Nup2 for NPC segregation. This indicates that A. nidulans cells ensure accurate mitotic NPC segregation to daughter nuclei by linking mitotic DNA and NPC segregation via the mitotic specific chromatin association of Nup2. © 2017 Suresh et al.

  2. The Glutathione System of Aspergillus nidulans Involves a Fungus-specific Glutathione S-Transferase*S⃞

    PubMed Central

    Sato, Ikuo; Shimizu, Motoyuki; Hoshino, Takayuki; Takaya, Naoki

    2009-01-01

    The tripeptide glutathione is involved in cellular defense mechanisms for xenobiotics and reactive oxygen species. This study investigated glutathione-dependent mechanisms in the model organism Aspergillus nidulans. A recombinant dimeric protein of A. nidulans glutathione reductase (GR) contained FAD and reduced oxidized glutathione (GSSG) using NADPH as an electron donor. A deletion strain of the GR gene (glrA) accumulated less intracellular reduced glutathione (GSH), indicating that the fungal GR contributes to GSSG reduction in vivo. Growth of the deletion strain of glrA was temperature-sensitive, and this phenotype was suppressed by adding GSH to the medium. The strain subsequently accumulated more intracellular superoxide, and cell-free respiration activity was partly defective. Growth of the strain decreased in the presence of oxidants, which induced glrA expression 1.5-6-fold. These results indicated that the fungal glutathione system functions as an antioxidant mechanism in A. nidulans. Our findings further revealed an initial proteomic differential display on GR-depleted and wild type strains. Up-regulation of thioredoxin reductase, peroxiredoxins, catalases, and cytochrome c peroxidase in the glrA-deletion strain revealed interplay between the glutathione system and both the thioredoxin system and hydrogen peroxide defense mechanisms. We also identified a hypothetical, up-regulated protein in the GR-depleted strains as glutathione S-transferase, which is unique among Ascomycetes fungi. PMID:19171936

  3. The Aspergillus nidulans Pbp1 homolog is required for normal sexual development and secondary metabolism.

    PubMed

    Soukup, Alexandra A; Fischer, Gregory J; Luo, Jerry; Keller, Nancy P

    2017-03-01

    P bodies and stress granules are RNA-containing structures governing mRNA degradation and translational arrest, respectively. Saccharomyces cerevisiae Pbp1 protein localizes to stress granules and promotes their formation and is involved in proper polyadenylation, suppression of RNA-DNA hybrids, and preventing aberrant rDNA recombination. A genetic screen for Aspergillus nidulans mutants aberrant in secondary metabolism identified the Pbp1 homolog, PbpA. Using Dcp1 (mRNA decapping) as a marker for P-body formation and FabM (Pab1, poly-A binding protein) to track stress granule accumulation, we examine the dynamics of RNA granule formation in A. nidulans cells lacking pub1, edc3, and pbpA. Although PbpA acts as a functional homolog of yeast PBP1, PbpA had little impact on either P-body or stress granule formation in A. nidulans in contrast to Pub1 and Edc3. However, we find that PbpA is critical for sexual development and its loss increases the production of some secondary metabolites including the carcinogen sterigmatocystin.

  4. An "instant gene bank" method for heterologous gene cloning: complementation of two Aspergillus nidulans mutants with Gaeumannomyces graminis DNA.

    PubMed

    Bowyer, P; Osbourn, A E; Daniels, M J

    1994-02-01

    We present a novel technique for gene cloning by complementation of mutations in Aspergillus nidulans with DNA from a heterologous organism, Gaeumannomyces graminis. This technique bypasses the time-consuming and difficult construction of gene libraries, making it both rapid and simple. The method relies on recombination between a fungal replicating vector pHELP1 and linear G. graminis genomic DNA during co-transformation. We were able to complement two out of seven A. nidulans mutants tested and to rescue transforming DNA from both in Escherichia coli. Complementation of the A. nidulans argB mutation resulted from integration of 8-10 kb segments of G. graminis DNA into pHELP1. The complementation of the A. nidulans pyrG mutation resulted from a complex rearrangement. Complementing DNA was shown to originate from G. graminis, and was capable of retransforming the original mutants to give the expected phenotype.

  5. Cloning and characterization of the Aspergillus nidulans DNA topoisomerase I gene.

    PubMed

    Van Dross, R T; Rao, K V; Eisenberg, E; Sanders, M M

    1997-12-12

    The topoisomerase I (TOP1) gene was cloned and sequenced from Aspergillus nidulans using the polymerase chain reaction (PCR). Genomic DNA was used as a template to obtain a 2987-bp gene containing five small introns. PCR from a cDNA library yielded a 2613-bp sequence which codes for an 871 amino acid protein. Comparison of the deduced amino acid sequence with other DNA topoisomerase I (topo I) protein sequences shows a somewhat higher degree of identity with other fungal amino acid sequences than with the human enzyme. Topo I is a ubiquitous enzyme which can be converted to a cytotoxic molecule in the presence of drugs that function as topo I poisons. The Aspergillus TOP1 cDNA will be used in an effort to identify novel cytotoxic antifungals which target this enzyme.

  6. Two divergent catalase genes are differentially regulated during Aspergillus nidulans development and oxidative stress.

    PubMed Central

    Kawasaki, L; Wysong, D; Diamond, R; Aguirre, J

    1997-01-01

    Catalases are ubiquitous hydrogen peroxide-detoxifying enzymes that are central to the cellular antioxidant response. Of two catalase activities detected in the fungus Aspergillus nidulans, the catA gene encodes the spore-specific catalase A (CatA). Here we characterize a second catalase gene, identified after probing a genomic library with catA, and demonstrate that it encodes catalase B. This gene, designated catB, predicts a 721-amino-acid polypeptide (CatB) showing 78% identity to an Aspergillus fumigatus catalase and 61% identity to Aspergillus niger CatR. Notably, similar levels of identity are found when comparing CatB to Escherichia coli catalase HPII (43%), A. nidulans CatA (40%), and the predicted peptide of a presumed catA homolog from A. fumigatus (38%). In contrast, the last two peptides share a 79% identity. The catalase B activity was barely detectable in asexual spores (conidia), disappeared after germination, and started to accumulate 10 h after spore inoculation, throughout growth and conidiation. The catB mRNA was absent from conidia, and its accumulation correlated with catalase activity, suggesting that catB expression is regulated at the transcription level. In contrast, the high CatA activity found in spores was lost gradually during germination and growth. In addition to its developmental regulation, CatB was induced by H2O2, heat shock, paraquat, or uric acid catabolism but not by osmotic stress. This pattern of regulation and the protective role against H2O2 offered by CatA and CatB, at different stages of the A. nidulans life cycle, suggest that catalase gene redundancy performs the function of satisfying catalase demand at the two different stages of metabolic and genetic regulation represented by growing hyphae versus spores. Alternative H2O2 detoxification pathways in A. nidulans were indicated by the fact that catA/catB double mutants were able to grow in substrates whose catabolism generates H2O2. PMID:9150225

  7. Purification and preliminary characterization of alcohol dehydrogenase from Aspergillus nidulans.

    PubMed Central

    Creaser, E H; Porter, R L; Britt, K A; Pateman, J A; Doy, C H

    1985-01-01

    Aspergillus alcohol dehydrogenase is produced in response to growth in the presence of a wide variety of inducers, of which the most effective are short-chain alcohols and ketones, e.g. butan-2-one and propan-2-ol. The enzyme can be readily extracted from fresh or freeze-dried cells and purified to homogeneity on Blue Sepharose in a single step by using specific elution with NAD+ and pyrazole. The pure enzyme has Mr 290 000 by electrophoresis or gel filtration; it is a homopolymer with subunit Mr 37 500 by electrophoresis in sodium dodecyl sulphate; its amino acid composition corresponds to Mr 37 900, and the native enzyme contains one zinc atom per subunit. The enzyme is NAD-specific and has a wide substrate activity in the forward and reverse reactions; its activity profile is not identical with those of other alcohol dehydrogenases. PMID:3156582

  8. Preparative separation of echinocandin B from Aspergillus nidulans broth using macroporous resin adsorption chromatography.

    PubMed

    Zou, Shu-Ping; Liu, Miao; Wang, Qiu-Liang; Xiong, Yan; Niu, Kun; Zheng, Yu-Guo; Shen, Yin-Chu

    2015-01-26

    Echinocandin B (ECB), an echinocandin type of lipopeptide antibiotic produced by Aspergillus nidulans, is a precursor for the synthesis of novel anti-fungal drug - anidulafungin. In this work, a separation strategy involving one-step macroporous resin adsorption chromatography was established for ECB purification from Aspergillus nidulans CCTCC M 2010275 fermentation broth. Among nine macroporous resin adsorbents tested, the non-polar resin HP-20 had the best adsorption and desorption performance. The static equilibrium adsorption data fitted well with the Langmuir equation, and the adsorption kinetic followed the pseudo-second order model. The separation parameters of ECB from broth were optimised by dynamic adsorption/desorption experiments with the column packed with HP-20 resin. Under optimal conditions, the purity increased by 3.8-fold from 23.2% in broth to 88.5% in eluent with 87.1% recovery yield by a one-step treatment. Our study provided a one-step and effective method for large-scale production of ECB, and offered references for separating other echinocandins from broth. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Functional Analysis of Sterol Transporter Orthologues in the Filamentous Fungus Aspergillus nidulans

    PubMed Central

    Bühler, Nicole; Hagiwara, Daisuke

    2015-01-01

    Polarized growth in filamentous fungi needs a continuous supply of proteins and lipids to the growing hyphal tip. One of the important membrane compounds in fungi is ergosterol. At the apical plasma membrane ergosterol accumulations, which are called sterol-rich plasma membrane domains (SRDs). The exact roles and formation mechanism of the SRDs remained unclear, although the importance has been recognized for hyphal growth. Transport of ergosterol to hyphal tips is thought to be important for the organization of the SRDs. Oxysterol binding proteins, which are conserved from yeast to human, are involved in nonvesicular sterol transport. In Saccharomyces cerevisiae seven oxysterol-binding protein homologues (OSH1 to -7) play a role in ergosterol distribution between closely located membranes independent of vesicle transport. We found five homologous genes (oshA to oshE) in the filamentous fungi Aspergillus nidulans. The functions of OshA-E were characterized by gene deletion and subcellular localization. Each gene-deletion strain showed characteristic phenotypes and different sensitivities to ergosterol-associated drugs. Green fluorescent protein-tagged Osh proteins showed specific localization in the late Golgi compartments, puncta associated with the endoplasmic reticulum, or diffusely in the cytoplasm. The genes expression and regulation were investigated in a medically important species Aspergillus fumigatus, as well as A. nidulans. Our results suggest that each Osh protein plays a role in ergosterol distribution at distinct sites and contributes to proper fungal growth. PMID:26116213

  10. Screening of medicinal plants for induction of somatic segregation activity in Aspergillus nidulans.

    PubMed

    Ramos Ruiz, A; De la Torre, R A; Alonso, N; Villaescusa, A; Betancourt, J; Vizoso, A

    1996-07-05

    Knowledge about mutagenic properties of plants commonly used in traditional medicine is limited. A screening for genotoxic activity was carried out in aqueous or alcoholic extracts prepared from 13 medicinal plants widely used as folk medicine in Cuba: Lepidium virginicum L. (Brassicaceae): Plantago major L. and Plantago lanceolata L. (Plantaginaceae); Ortosiphon aristatus Blume, Mentha x piperita L., Melissa officinalis L. and Plectranthus amboinicus (Lour.) Spreng. (Lamiaceae); Cymbopogon citratus (DC.) Stapf (Poaceae); Passiflora incarnata L. (Passifloraceae); Zingiber officinale Roscoe (Zingiberaceae); Piper auritum HBK. (Piperaceae); Schinus terebinthifolius Raddi (Anacardeaceae) and Momordica charantia L. (Cucurbitaceae). A plate incorporation assay with Aspergillus nidulans was employed, allowing detection of somatic segregation as a result of mitotic crossing-over, chromosome malsegregation or clastogenic effects. Aspergillus nidulans D-30, a well-marked strain carrying four recessive mutations for conidial color in heterozygosity, which permitted the direct visual detection of segregants, was used throughout this study. As a result, only in the aqueous extract of one of the plants screened (Momordica charantia) a statistical significant increase in the frequency of segregant sectors per colony was observed, and consequently, a genotoxic effect is postulated.

  11. The WOPR Domain Protein OsaA Orchestrates Development in Aspergillus nidulans

    PubMed Central

    Alkahyyat, Fahad; Ni, Min; Kim, Sun Chang; Yu, Jae-Hyuk

    2015-01-01

    Orchestration of cellular growth and development occurs during the life cycle of Aspergillus nidulans. A multi-copy genetic screen intended to unveil novel regulators of development identified the AN6578 locus predicted to encode a protein with the WOPR domain, which is a broadly present fungi-specific DNA-binding motif. Multi-copy of AN6578 disrupted the normal life cycle of the fungus leading to enhanced proliferation of vegetative cells, whereas the deletion resulted in hyper-active sexual fruiting with reduced asexual development (conidiation), thus named as osaA (Orchestrator of Sex and Asex). Further genetic studies indicate that OsaA balances development mainly by repressing sexual development downstream of the velvet regulator VeA. The absence of osaA is sufficient to suppress the veA1 allele leading to the sporulation levels comparable to veA+ wild type (WT). Genome-wide transcriptomic analyses of WT, veA1, and ΔosaA veA1 strains by RNA-Seq further corroborate that OsaA functions in repressing sexual development downstream of VeA. However, OsaA also plays additional roles in controlling development, as the ΔosaA veA1 mutant exhibits precocious and enhanced formation of Hülle cells compared to WT. The OsaA orthologue of Aspergillus flavus is able to complement the osaA null phenotype in A. nidulans, suggesting a conserved role of this group of WOPR domain proteins. In summary, OsaA is an upstream orchestrator of morphological and chemical development in Aspergillus that functions downstream of VeA. PMID:26359867

  12. TINA interacts with the NIMA kinase in Aspergillus nidulans and negatively regulates astral microtubules during metaphase arrest.

    PubMed

    Osmani, Aysha H; Davies, Jonathan; Oakley, C Elizabeth; Oakley, Berl R; Osmani, Stephen A

    2003-08-01

    The tinA gene of Aspergillus nidulans encodes a protein that interacts with the NIMA mitotic protein kinase in a cell cycle-specific manner. Highly similar proteins are encoded in Neurospora crassa and Aspergillus fumigatus. TINA and NIMA preferentially interact in interphase and larger forms of TINA are generated during mitosis. Localization studies indicate that TINA is specifically localized to the spindle pole bodies only during mitosis in a microtubule-dependent manner. Deletion of tinA alone is not lethal but displays synthetic lethality in combination with the anaphase-promoting complex/cyclosome mutation bimE7. At the bimE7 metaphase arrest point, lack of TINA enhanced the nucleation of bundles of cytoplasmic microtubules from the spindle pole bodies. These microtubules interacted to form spindles joined in series via astral microtubules as revealed by live cell imaging. Because TINA is modified and localizes to the spindle pole bodies at mitosis, and lack of TINA causes enhanced production of cytoplasmic microtubules at metaphase arrest, we suggest TINA is involved in negative regulation of the astral microtubule organizing capacity of the spindle pole bodies during metaphase.

  13. Production of cell wall-degrading enzymes by Aspergillus nidulans: a model system for fungal pathogenesis of plants.

    PubMed Central

    Dean, R A; Timberlake, W E

    1989-01-01

    The cell wall-degrading enzymes polygalacturonase and pectate lyase have been suggested to be crucial for penetration and colonization of plant tissues by some fungal pathogens. We have found that Aspergillus nidulans (= Emericella nidulans), a saprophytic Ascomycete, produces levels of these enzymes equal to those produced by soft-rotting Erwinia species. Induction of polygacturonase and pectate lyase in A. nidulans requires substrate and is completely repressed by glucose. Surprisingly, inoculation of excised plant tissues with A. nidulans conidia leads to formation of necrotic, water-soaked lesions within which the organism sporulates. Thus, A. nidulans has phytopathogenic potential. The release of glucose and other sugars from wounded tissues may repress pectolytic enzyme production and limit disease development. Therefore, we tested creA204, a mutation that relieves glucose repression of some A. nidulans carbon utilization enzymes, for its effect on production of pectolytic enzymes. creA204 failed to relieve catabolite repression of polygalacturonase or pectate lyase and had no effect on disease severity. PMID:2535501

  14. The echinocandin B producer fungus Aspergillus nidulans var. roseus ATCC 58397 does not possess innate resistance against its lipopeptide antimycotic.

    PubMed

    Tóth, Viktória; Nagy, Csilla Terézia; Pócsi, István; Emri, Tamás

    2012-07-01

    Aspergillus nidulans var. roseus ATCC 58397 is an echinocandin B (ECB) producer ascomycete with great industrial importance. As demonstrated by ECB/caspofungin sensitivity assays, A. nidulans var. roseus does not possess any inherent resistance to echinocandins, and its tolerance to these lipopeptide antimycotics are even lower than those of the non-producer A. nidulans FGSC A4 strain. Under ECB producing conditions or ECB exposures, A. nidulans var. roseus induced its ECB tolerance via up-regulating elements of the chitin biosynthetic machinery and, hence, through changing dynamically the composition of its own cell wall. Importantly, although the specific β-1,3-glucan synthase activity was elevated, these changes reduced the β-glucan content of hyphae considerably, but the expression of fksA, encoding the catalytic subunit of β-1,3-glucan synthase, the putative target of echinocandins in the aspergilli, was not affected. These data suggest that compensatory chitin biosynthesis is the centerpiece of the induced ECB tolerance of A. nidulans var. roseus. It is important to note that the induced tolerance to ECB (although resulted in paradoxical growth at higher ECB concentrations) was accompanied with reduced growth rate and, under certain conditions, even sensitized the fungus to other stress-generating agents like SDS. We hypothesize that although ECB-resistant mutants may arise in vivo in A. nidulans var. roseus cultures, their widespread propagation is severely restricted by the disadvantageous physiological effects of such mutations.

  15. Aspergillus nidulans cell wall composition and function change in response to hosting several Aspergillus fumigatus UDP-galactopyranose mutase activity mutants.

    PubMed

    Alam, Md Kausar; van Straaten, Karin E; Sanders, David A R; Kaminskyj, Susan G W

    2014-01-01

    Deletion or repression of Aspergillus nidulans ugmA (AnugmA), involved in galactofuranose biosynthesis, impairs growth and increases sensitivity to Caspofungin, a β-1,3-glucan synthesis antagonist. The A. fumigatus UgmA (AfUgmA) crystal structure has been determined. From that study, AfUgmA mutants with altered enzyme activity were transformed into AnugmA▵ to assess their effect on growth and wall composition in A. nidulans. The complemented (AnugmA::wild type AfugmA) strain had wild type phenotype, indicating these genes had functional homology. Consistent with in vitro studies, AfUgmA residues R182 and R327 were important for its function in vivo, with even conservative amino (RK) substitutions producing AnugmA? phenotype strains. Similarly, the conserved AfUgmA loop III histidine (H63) was important for Galf generation: the H63N strain had a partially rescued phenotype compared to AnugmA▵. Collectively, A. nidulans strains that hosted mutated AfUgmA constructs with low enzyme activity showed increased hyphal surface adhesion as assessed by binding fluorescent latex beads. Consistent with previous qPCR results, immunofluorescence and ELISA indicated that AnugmA▵ and AfugmA-mutated A. nidulans strains had increased α-glucan and decreased β-glucan in their cell walls compared to wild type and AfugmA-complemented strains. Like the AnugmA▵ strain, A. nidulans strains containing mutated AfugmA showed increased sensitivity to antifungal drugs, particularly Caspofungin. Reduced β-glucan content was correlated with increased Caspofungin sensitivity. Aspergillus nidulans wall Galf, α-glucan, and β-glucan content was correlated in A. nidulans hyphal walls, suggesting dynamic coordination between cell wall synthesis and cell wall integrity.

  16. The genetic control of molybdoflavoproteins in Aspergillus nidulans. A xanthine dehydrogenase I half-molecule in cnx- mutant strains of Aspergillus nidulans.

    PubMed

    Lewis, N J; Scazzocchio, C

    1977-06-15

    The cnx- group of mutants of Aspergillus nidulans lacks xanthine dehydrogenase (xanthine: NAD+ oxidoreductase, EC 1.2.1.37) and nitrate reductase (EC 1.6.6.3) activities and are thought to be defective in the synthesis of a molybdenum-containing cofactor, 'cnx', common to xanthine dehydrogenase and nitrate reductase [Pateman, J.A., Rever, B.M., Cove, D.J. and Roberts, D.B. (1964) Nature (Lond.) 201, 58-60]. The cnx cofactor has a role in maintaining the aggregated multimeric structure of nitrate reductase [MacDonald, D.W., Cove, D.J. and Coddington, A. (1974) Mol. Gen. Genet. 128, 187-199]. We report here that, in cnx- mutants grown under conditions inducing xanthine dehydrogenase I, a species cross-reacting with antisera to the native enzyme and of half its molecular weight is present, together with cross-reacting molecules of similar molecular weight to the native enzyme. This suggests that the cnx cofactor has a role in maintaining the aggregated structure of xanthine dehydrogenase I. Both cross-reacting species are capable of passing reducing equivalents from NADH to a tetrazolium salt, showing that the cnx cofactor is not necessary for enzymic activity towards NADH.

  17. Metabolic network driven analysis of genome-wide transcription data from Aspergillus nidulans

    PubMed Central

    David, Helga; Hofmann, Gerald; Oliveira, Ana Paula; Jarmer, Hanne; Nielsen, Jens

    2006-01-01

    Background Aspergillus nidulans (the asexual form of Emericella nidulans) is a model organism for aspergilli, which are an important group of filamentous fungi that encompasses human and plant pathogens as well as industrial cell factories. Aspergilli have a highly diversified metabolism and, because of their medical, agricultural and biotechnological importance, it would be valuable to have an understanding of how their metabolism is regulated. We therefore conducted a genome-wide transcription analysis of A. nidulans grown on three different carbon sources (glucose, glycerol, and ethanol) with the objective of identifying global regulatory structures. Furthermore, we reconstructed the complete metabolic network of this organism, which resulted in linking 666 genes to metabolic functions, as well as assigning metabolic roles to 472 genes that were previously uncharacterized. Results Through combination of the reconstructed metabolic network and the transcription data, we identified subnetwork structures that pointed to coordinated regulation of genes that are involved in many different parts of the metabolism. Thus, for a shift from glucose to ethanol, we identified coordinated regulation of the complete pathway for oxidation of ethanol, as well as upregulation of gluconeogenesis and downregulation of glycolysis and the pentose phosphate pathway. Furthermore, on change in carbon source from glucose to ethanol, the cells shift from using the pentose phosphate pathway as the major source of NADPH (nicotinamide adenine dinucleotide phosphatase, reduced form) for biosynthesis to use of the malic enzyme. Conclusion Our analysis indicates that some of the genes are regulated by common transcription factors, making it possible to establish new putative links between known transcription factors and genes through clustering. PMID:17107606

  18. Elucidation of Substrate Specificity in Aspergillus nidulans UDP-Galactose-4-Epimerase

    PubMed Central

    Dalrymple, Sean A.; Ko, John; Sheoran, Inder; Kaminskyj, Susan G. W.; Sanders, David A. R.

    2013-01-01

    The frequency of invasive fungal infections has rapidly increased in recent years. Current clinical treatments are experiencing decreased potency due to severe host toxicity and the emergence of fungal drug resistance. As such, new targets and their corresponding synthetic pathways need to be explored for drug development purposes. In this context, galactofuranose residues, which are employed in fungal cell wall construction, but are notably absent in animals, represent an appealing target. Herein we present the structural and biochemical characterization of UDP-galactose-4-epimerase from Aspergillus nidulans which produces the precursor UDP-galactopyranose required for galactofuranose synthesis. Examination of the structural model revealed both NAD+ and UDP-glucopyranose were bound within the active site cleft in a near identical fashion to that found in the Human epimerase. Mutational studies on the conserved catalytic motif support a similar mechanism to that established for the Human counterpart is likely operational within the A. nidulans epimerase. While the Km and kcat for the enzyme were determined to be 0.11 mM and 12.8 s-1, respectively, a single point mutation, namely L320C, activated the enzyme towards larger N-acetylated substrates. Docking studies designed to probe active site affinity corroborate the experimentally determined activity profiles and support the kinetic inhibition results. PMID:24116166

  19. Characterization of Aspergillus nidulans α-glucan synthesis: roles for two synthases and two amylases.

    PubMed

    He, Xiaoxiao; Li, Shengnan; Kaminskyj, Susan G W

    2014-02-01

    Cell walls are essential for fungal survival and growth. Fungal walls are ∼ 90% carbohydrate, mostly types not found in humans, making them promising targets for anti-fungal drug development. Echinocandins, which inhibit the essential β-glucan synthase, are already clinically available. In contrast, α-glucan, another abundant fungal cell wall component has attracted relatively little research attention because it is not essential for most fungi. Aspergillus nidulans has two α-glucan synthases (AgsA and AgsB) and two α-amylases (AmyD and AmyG), all of which affect α-glucan synthesis. Gene deletion showed that AgsB was the major synthase. In addition, AmyG promoted α-glucan synthesis whereas AmyD had a repressive effect. The lack of α-glucan had no phenotypic impact on solid medium, but reduced conidial adhesion during germination in shaken liquid. Moreover, α-glucan level correlated with resistance to Calcofluor White. Intriguingly, overexpression of agsA could compensate for the loss of agsB at the α-glucan level, but not for phenotypic defects. Thus, products of AgsA and AgsB have different roles in the cell wall, consistent with agsA being mainly expressed at conidiation. These results suggest that α-glucan contributes to drug sensitivity and conidia adhesion in A. nidulans, and is differentially regulated by two synthases and two amylases.

  20. Isolation, purification, and characterization of a cold-active lipase from Aspergillus nidulans.

    PubMed

    Mayordomo, I; Randez-Gil, F; Prieto, J A

    2000-01-01

    Aspergillus nidulans WG312 strain secreted lipase activity when cultured in liquid media with olive oil as carbon source. Highest lipase productivity was found when the mycelium was grown at 30 degrees C in a rich medium. The new enzyme was purified to homogeneity from the extracellular culture of A. nidulans by phenyl-Sepharose chromatography and affinity binding on linolenic acid-agarose. The lipase was monomeric with an apparent M(r) of 29 kDa and a pI of 4.85 and showed no glycosylation. Kinetic of enzyme activity versus substrate concentration showed a typical lipase behavior, with K(M) and K(cat) values of 0.28 mM and 494 s(-)(1) and 0.30 mM and 320 s(-)(1) for the isotropic solution and for the turbid emulsion, respectively. All glycerides assayed were hydrolyzed efficiently by the enzyme, but this showed preference toward esters of short- and middle-chain fatty acids. The optimum temperature and pH for the lipolytic activity were 40 degrees C and 6.5, with high activity in the range 0-20 degrees C and reduced thermal stability.

  1. G-protein coupled receptor-mediated nutrient sensing and developmental control in Aspergillus nidulans.

    PubMed

    Brown, Neil Andrew; Dos Reis, Thaila Fernanda; Ries, Laure Nicolas Annick; Caldana, Camila; Mah, Jae-Hyung; Yu, Jae-Hyuk; Macdonald, Jeffrey M; Goldman, Gustavo Henrique

    2015-10-01

    Nutrient sensing and utilisation are fundamental for all life forms. As heterotrophs, fungi have evolved a diverse range of mechanisms for sensing and taking up various nutrients. Despite its importance, only a limited number of nutrient receptors and their corresponding ligands have been identified in fungi. G-protein coupled receptors (GPCRs) are the largest family of transmembrane receptors. The Aspergillus nidulans genome encodes 16 putative GPCRs, but only a few have been functionally characterised. Our previous study showed the increased expression of an uncharacterised putative GPCR, gprH, during carbon starvation. GprH appears conserved throughout numerous filamentous fungi. Here, we reveal that GprH is a putative receptor involved in glucose and tryptophan sensing. The absence of GprH results in a reduction in cAMP levels and PKA activity upon adding glucose or tryptophan to starved cells. GprH is pre-formed in conidia and is increasingly active during carbon starvation, where it plays a role in glucose uptake and the recovery of hyphal growth. GprH also represses sexual development under conditions favouring sexual fruiting and during carbon starvation in submerged cultures. In summary, the GprH nutrient-sensing system functions upstream of the cAMP-PKA pathway, influences primary metabolism and hyphal growth, while represses sexual development in A. nidulans.

  2. Multiple Phosphatases Regulate Carbon Source-Dependent Germination and Primary Metabolism in Aspergillus nidulans

    PubMed Central

    de Assis, Leandro José; Ries, Laure Nicolas Annick; Savoldi, Marcela; Dinamarco, Taisa Magnani; Goldman, Gustavo Henrique; Brown, Neil Andrew

    2015-01-01

    Aspergillus nidulans is an important mold and a model system for the study of fungal cell biology. In addition, invasive A. nidulans pulmonary infections are common in humans with chronic granulomatous disease. The morphological and biochemical transition from dormant conidia into active, growing, filamentous hyphae requires the coordination of numerous biosynthetic, developmental, and metabolic processes. The present study exhibited the diversity of roles performed by seven phosphatases in regulating cell cycle, development, and metabolism in response to glucose and alternative carbon sources. The identified phosphatases highlighted the importance of several signaling pathways regulating filamentous growth, the action of the pyruvate dehydrogenase complex as a metabolic switch controlling carbon usage, and the identification of the key function performed by the α-ketoglutarate dehydrogenase during germination. These novel insights into the fundamental roles of numerous phosphatases in germination and carbon sensing have provided new avenues of research into the identification of inhibitors of fungal germination, with implications for the food, feed, and pharmaceutical industries. PMID:25762568

  3. GDP-mannose transporter paralogues play distinct roles in polarized growth of Aspergillus nidulans.

    PubMed

    Jackson-Hayes, Loretta; Hill, Terry W; Loprete, Darlene M; Gordon, Barbara S; Groover, Chassidy J; Johnson, Laura R; Martin, Stuart A

    2010-01-01

    GDP-mannose transporters (GMT) carry GDP-mannose nucleotide sugars from the cytosol across the Golgi apparatus membrane for use as substrates in protein glycosylation in plants, animals and fungi. Genomes of some fungal species, such as the yeast Saccharomyces cerevisiae, contain only one gene encoding a GMT, while others, including Aspergillus nidulans, contain two (gmtA and gmtB). We previously showed that cell wall integrity and normal hyphal morphogenesis in A. nidulans depend upon the function of GmtA and that GmtA localizes to a Golgi-like compartment. Cells bearing the calI11 mutation in gmtA also have reduced cell surface mannosylation. Here we show that GmtB colocalizes with GmtA, suggesting that the role of GmtB is similar to that of GmtA, although the respective transcript levels differ during spore germination and early development. Transcript levels of gmtB are high in ungerminated spores and remain so throughout the first 16 h of germination. In contrast, transcript levels of gmrtA are negligible in ungerminated spores but increase to levels comparable to those of gmtB during germination. These observations suggest that although GmtA and GmtB reside within the same subcellular compartments, they nevertheless perform distinct functions at different stages of development.

  4. Thiamine synthesis regulates the fermentation mechanisms in the fungus Aspergillus nidulans.

    PubMed

    Shimizu, Motoyuki; Masuo, Shunsuke; Itoh, Eriko; Zhou, Shengmin; Kato, Masashi; Takaya, Naoki

    2016-09-01

    Thiamine pyrophosphate (TPP) is a critical cofactor and its biosynthesis is under the control of TPP availability. Here we disrupted a predicted thiA gene of the fungus Aspergillus nidulans and demonstrated that it is essential for synthesizing cellular thiamine. The thiamine riboswitch is a post-transcriptional mechanism for TPP to repress gene expression and it is located on A. nidulans thiA pre-messenger RNA. The thiA riboswitch was not fully derepressed under thiamine-limited conditions, and fully derepressed under environmental stressors. Upon exposure to hypoxic stress, the fungus accumulated more ThiA and NmtA proteins, and more thiamine than under aerobic conditions. The thiA gene was required for the fungus to upregulate hypoxic branched-chain amino acids and ethanol fermentation that involve enzymes containing TPP. These findings indicate that hypoxia modulates thiA expression through the thiamine riboswitch, and alters cellular fermentation mechanisms by regulating the activity of the TPP enzymes.

  5. Heme-Biosynthetic Porphobilinogen Deaminase Protects Aspergillus nidulans from Nitrosative Stress

    PubMed Central

    Zhou, Shengmin; Narukami, Toshiaki; Nameki, Misuzu; Ozawa, Tomoko; Kamimura, Yosuke; Hoshino, Takayuki

    2012-01-01

    Microorganisms have developed mechanisms to combat reactive nitrogen species (RNS); however, only a few of the fungal genes involved have been characterized. Here we screened RNS-resistant Aspergillus nidulans strains from fungal transformants obtained by introducing a genomic DNA library constructed in a multicopy vector. We found that the AN0121.3 gene (hemC) encodes a protein similar to the heme biosynthesis enzyme porphobilinogen deaminase (PBG-D) and facilitates RNS-tolerant fungal growth. The overproduction of PBG-D in A. nidulans promoted RNS tolerance, whereas PBG-D repression caused growth that was hypersensitive to RNS. PBG-D levels were comparable to those of cellular protoheme synthesis as well as flavohemoglobin (FHb; encoded by fhbA and fhbB) and nitrite reductase (NiR; encoded by niiA) activities. Both FHb and NiR are hemoproteins that consume nitric oxide and nitrite, respectively, and we found that they are required for maximal growth in the presence of RNS. The transcription of hemC was upregulated by RNS. These results demonstrated that PBG-D is a novel NO-tolerant protein that modulates the reduction of environmental NO and nitrite levels by FHb and NiR. PMID:22038601

  6. The Aspergillus nidulans peripheral ER: disorganization by ER stress and persistence during mitosis.

    PubMed

    Markina-Iñarrairaegui, Ane; Pantazopoulou, Areti; Espeso, Eduardo A; Peñalva, Miguel A

    2013-01-01

    The genetically amenable fungus Aspergillus nidulans is well suited for cell biology studies involving the secretory pathway and its relationship with hyphal tip growth by apical extension. We exploited live-cell epifluorescence microscopy of the ER labeled with the translocon component Sec63, endogenously tagged with GFP, to study the organization of 'secretory' ER domains. The Sec63 A. nidulans ER network includes brightly fluorescent peripheral strands and more faintly labeled nuclear envelopes. In hyphae, the most abundant peripheral ER structures correspond to plasma membrane-associated strands that are polarized, but do not invade the hyphal tip dome, at least in part because the subapical collar of endocytic actin patches constrict the cortical strands in this region. Thus the subapical endocytic ring might provide an attachment for ER strands, thereby ensuring that the growing tip remains 'loaded' with secretory ER. Acute disruption of secretory ER function by reductive stress-mediated induction of the unfolded protein response results in the reversible aggregation of ER strands, cessation of exocytosis and swelling of the hyphal tips. The secretory ER is insensitive to brefeldin A treatment and does not undergo changes during mitosis, in agreement with the reports that apical extension continues at normal rates during this period.

  7. Hyphal tip extension in Aspergillus nidulans requires the manA gene, which encodes phosphomannose isomerase.

    PubMed Central

    Smith, D J; Payton, M A

    1994-01-01

    A strain of Aspergillus nidulans carrying a temperature-sensitive mutation in the manA gene produces cell walls depleted of D-mannose and forms hyphal tip balloons at the restrictive temperature (B.P. Valentine and B.W. Bainbridge, J. Gen. Microbiol. 109:155-168, 1978). We have isolated and characterized the manA gene and physically located it between 3.5 and 5.5 kb centromere distal of the riboB locus on chromosome VIII. The manA gene contains four introns and encodes a 50.6-kDa protein which has significant sequence identity to type I phosphomannose isomerase proteins from other eukaryotes. We have constructed by integrative transformation a null mutation in the manA gene which can only be maintained in a heterokaryotic strain with wild-type manA+ nuclei. Thus, a manA null mutation is lethal in A. nidulans. The phenotype of the mutation was analyzed in germinating conidia. Such conidia are able to commence germination but swell abnormally, sometimes producing a misshapen germ tube, before growth ceases. The reason for the lethality is probably the lack of synthesis of mannose-containing cell wall polymers that must be required for normal cell wall development in growing hyphae. Images PMID:8065336

  8. High-yield recombinant xylanase production by Aspergillus nidulans under pyridoxine limitation.

    PubMed

    Müller, Michael; Segato, Fernando; Prade, Rolf A; Wilkins, Mark R

    2014-10-01

    The present study investigated the limitation of pyridoxine on an Aspergillus nidulans culture that produces xylanase B (XynB) as a client enzyme and was unable to synthesize pyridoxine. This technique was used to limit cell growth and divert substrate to product formation for a surface grown culture that could be used in trickle bed reactors. It was observed that growth was limited when pyridoxine was absent, while enzyme production was unaffected. Enzyme production was 1,026 U after 480 h of continuous fermentation, which was similar to a culture that grew on medium with pyridoxine. Furthermore, the present study investigated the growth rate of A. nidulans with pyridoxine in the medium and determined the productivity of XynB production with and without pyridoxine. A maximum growth rate of 0.311/h was observed. The maximum XynB productivity of 21.14 U/g h was achieved when pyridoxine was not added to the medium.

  9. A Wiskott-Aldrich syndrome protein is involved in endocytosis in Aspergillus nidulans.

    PubMed

    Hoshi, Hiro-Omi; Zheng, Lu; Ohta, Akinori; Horiuchi, Hiroyuki

    2016-09-01

    Endocytosis is vital for hyphal tip growth in filamentous fungi and is involved in the tip localization of various membrane proteins. To investigate the function of a Wiskott-Aldrich syndrome protein (WASP) in endocytosis of filamentous fungi, we identified a WASP ortholog-encoding gene, wspA, in Aspergillus nidulans and characterized it. The wspA product, WspA, localized to the tips of germ tubes during germination and actin rings in the subapical regions of mature hyphae. wspA is essential for the growth and functioned in the polarity establishment and maintenance during germination of conidia. We also investigated its function in endocytosis and revealed that endocytosis of SynA, a synaptobrevin ortholog that is known to be endocytosed at the subapical regions of hyphal tips in A. nidulans, did not occur when wspA expression was repressed. These results suggest that WspA plays roles in endocytosis at hyphal tips and polarity establishment during germination.

  10. Cremophor EL stimulates mitotic recombination in uvsH//uvsH diploid strain of Aspergillus nidulans.

    PubMed

    Busso, Cleverson; Castro-Prado, Marialba A A

    2004-03-01

    Cremophor EL is a solubilizer and emulsifier agent used in the pharmaceutical and foodstuff industries. The solvent is the principal constituent of paclitaxel's clinical formulation vehicle. Since mitotic recombination plays a crucial role in multistep carcinogenesis, the study of the recombinagenic potential of chemical compounds is of the utmost importance. In our research genotoxicity of cremophor EL has been studied by using an uvsH//uvsH diploid strain of Aspergillus nidulans. Since it spends a great part of its cell cycle in the G2period, this fungus is a special screening system for the study of mitotic recombination induced by chemical substances. Homozygotization Indexes (HI) for paba and bi markers from heterozygous B211//A837 diploid strain were determined for the evaluation of the recombinagenic effect of cremophor EL. It has been shown that cremophor EL induces increase in mitotic crossing-over events at nontoxic concentrations (0.05 and 0.075% v/v).

  11. The 2008 update of the Aspergillus nidulans genome annotation: a community effort

    PubMed Central

    Wortman, Jennifer Russo; Gilsenan, Jane Mabey; Joardar, Vinita; Deegan, Jennifer; Clutterbuck, John; Andersen, Mikael R.; Archer, David; Bencina, Mojca; Braus, Gerhard; Coutinho, Pedro; von Döhren, Hans; Doonan, John; Driessen, Arnold J.M.; Durek, Pawel; Espeso, Eduardo; Fekete, Erzsébet; Flipphi, Michel; Estrada, Carlos Garcia; Geysens, Steven; Goldman, Gustavo; de Groot, Piet W.J.; Hansen, Kim; Harris, Steven D.; Heinekamp, Thorsten; Helmstaedt, Kerstin; Henrissat, Bernard; Hofmann, Gerald; Homan, Tim; Horio, Tetsuya; Horiuchi, Hiroyuki; James, Steve; Jones, Meriel; Karaffa, Levente; Karányi, Zsolt; Kato, Masashi; Keller, Nancy; Kelly, Diane E.; Kiel, Jan A.K.W.; Kim, Jung-Mi; van der Klei, Ida J.; Klis, Frans M.; Kovalchuk, Andriy; Kraševec, Nada; Kubicek, Christian P.; Liu, Bo; MacCabe, Andrew; Meyer, Vera; Mirabito, Pete; Miskei, Márton; Mos, Magdalena; Mullins, Jonathan; Nelson, David R.; Nielsen, Jens; Oakley, Berl R.; Osmani, Stephen A.; Pakula, Tiina; Paszewski, Andrzej; Paulsen, Ian; Pilsyk, Sebastian; Pócsi, István; Punt, Peter J.; Ram, Arthur F.J.; Ren, Qinghu; Robellet, Xavier; Robson, Geoff; Seiboth, Bernhard; Solingen, Piet van; Specht, Thomas; Sun, Jibin; Taheri-Talesh, Naimeh; Takeshita, Norio; Ussery, Dave; vanKuyk, Patricia A.; Visser, Hans; van de Vondervoort, Peter J.I.; de Vries, Ronald P.; Walton, Jonathan; Xiang, Xin; Xiong, Yi; Zeng, An Ping; Brandt, Bernd W.; Cornell, Michael J.; van den Hondel, Cees A.M.J.J.; Visser, Jacob; Oliver, Stephen G.; Turner, Geoffrey

    2010-01-01

    The identification and annotation of protein-coding genes is one of the primary goals of whole-genome sequencing projects, and the accuracy of predicting the primary protein products of gene expression is vital to the interpretation of the available data and the design of downstream functional applications. Nevertheless, the comprehensive annotation of eukaryotic genomes remains a considerable challenge. Many genomes submitted to public databases, including those of major model organisms, contain significant numbers of wrong and incomplete gene predictions. We present a community-based reannotation of the Aspergillus nidulans genome with the primary goal of increasing the number and quality of protein functional assignments through the careful review of experts in the field of fungal biology. PMID:19146970

  12. Crystallization and preliminary X-ray diffraction studies on recombinant isopenicillin N synthase from Aspergillus nidulans.

    PubMed Central

    Roach, P. L.; Schofield, C. J.; Baldwin, J. E.; Clifton, I. J.; Hajdu, J.

    1995-01-01

    Recombinant Aspergillus nidulans isopenicillin N synthase was purified from an Escherichia coli expression system. The apoenzyme in the presence of saturating concentrations of MnCl2 could be crystallized by either macro- or microseeding, using the hanging drop vapor diffusion technique with polyethylene glycol 8000 as precipitant. The crystals (0.5-1.0 mm overall dimensions) diffract X-rays to at least 2.0 A resolution at synchrotrons and belong to space group P212121 with unit cell dimensions of a = 59.2 A, b = 127.0 A, and c = 139.6 A. The asymmetric unit contains one dimer, and the solvent content of the crystals is 60%. The crystals are radiation sensitive. PMID:7663335

  13. Acyl coenzyme A: 6-aminopenicillanic acid acyltransferase from Penicillium chrysogenum and Aspergillus nidulans.

    PubMed

    Whiteman, P A; Abraham, E P; Baldwin, J E; Fleming, M D; Schofield, C J; Sutherland, J D; Willis, A C

    1990-03-26

    A study of the final stages of the biosynthesis of the penicillins in Penicillium chrysogenum has revealed two types of enzyme. One hydrolyses phenoxymethyl penicillin to 6-aminopenicillanic acid (6-APA). The other, also obtained from Aspergillus nidulans, transfers a phenylacetyl group from phenylacetyl CoA to 6-APA. The acyltransferase, purified to apparent homogeneity, had a molecular mass of 40 kDa. It also catalyses the conversion of isopenicillin N (IPN) to benzylpenicillin (Pen G) and hydrolyses IPN to 6-APA. In the presence of SDS it dissociates, with loss of activity, into fragments of ca 30 and 10.5 kDa, but activity is regained when these fragments recombine in the absence of SDS.

  14. Suppression and enhancement of the Aspergillus nidulans medusa mutation by altered dosage of the bristle and stunted genes.

    PubMed

    Busby, T M; Miller, K Y; Miller, B L

    1996-05-01

    Asexual reproduction in Aspergillus nidulans is characterized by the orderly differentiation of multicellular reproductive structures (conidiophores) and chains of uninucleate conidia (spores). Mutations in the developmental modifier medusa (medA) result in aberrant conidiophores with branching chains of reiterated reproductive cells (metulae), delayed conidial differentiation and frequent reinitiation of secondary conidiophores. We show that incorrect morphology is in part a consequence of modified bristle (brlA) and abacus (abaA) expression, key regulators of the core genetic pathway directing conidial differentiation. First, correct temporal expression of both brlA transcripts (brlA alpha and brlA beta) requires MedAp. Second, MedAp functions as a coactivator required for normal levels of abaA expression. Finally, we show that wild-type morphology results from a finely tuned balance in the expression of brlA, medA and the developmental modifier stunted (stuA). One extra copy of brlA suppresses medA mutations and restores normal abaA mRNA abundance. In contrast, an extra copy of stuA in a medA- strain results in an enhanced medusoid phenotype with extensive metulae proliferation and nearly complete absence of conidia. abaA and brlA alpha transcription are completely repressed in these strains. In general, low stuA:brlA ratios promoted conidiation while high ratios caused proliferation of unicellular sterigmata and inhibited conidiation.

  15. Suppression and Enhancement of the Aspergillus Nidulans Medusa Mutation by Altered Dosage of the Bristle and Stunted Genes

    PubMed Central

    Busby, T. M.; Miller, K. Y.; Miller, B. L.

    1996-01-01

    Asexual reproduction in Aspergillus nidulans is characterized by the orderly differentiation of multicellular reproductive structures (conidiophores) and chains of uninucleate conidia (spores). Mutations in the developmental modifier medusa (medA) result in aberrant conidiophores with branching chains of reiterated reproductive cells (metulae), delayed conidial differentiation and frequent reinitiation of secondary conidiophores. We show that incorrect morphology is in part a consequence of modified bristle (brlA) and abacus (abaA) expression, key regulators of the core genetic pathway directing conidial differentiation. First, correct temporal expression of both brlA transcripts (brlAα and brlAβ) requires MedAp. Second, MedAp functions as a coactivator required for normal levels of abaA expression. Finally, we show that wild-type morphology results from a finely tuned balance in the expression of brlA, medA and the developmental modifier stunted (stuA). One extra copy of brlA suppresses medA mutations and restores normal abaA mRNA abundance. In contrast, an extra copy of stuA in a medA(-) strain results in an enhanced medusoid phenotype with extensive metulae proliferation and nearly complete absence of conidia. abaA and brlAα transcription are completely repressed in these strains. In general, low stuA:brlA ratios promoted conidiation while high ratios caused proliferation of unicellular sterigmata and inhibited conidiation. PMID:8722771

  16. Use of expressed sequence tag analysis and cDNA microarrays of the filamentous fungus Aspergillus nidulans.

    PubMed

    Sims, Andrew H; Robson, Geoffrey D; Hoyle, David C; Oliver, Stephen G; Turner, Geoffrey; Prade, Rolf A; Russell, Hugh H; Dunn-Coleman, Nigel S; Gent, Manda E

    2004-02-01

    The use of microarrays in the analysis of gene expression is becoming widespread for many organisms, including yeast. However, although the genomes of a number of filamentous fungi have been fully or partially sequenced, microarray analysis is still in its infancy in these organisms. Here, we describe the construction and validation of microarrays for the fungus Aspergillus nidulans using PCR products from a 4092 EST conidial germination library. An experiment was designed to validate these arrays by monitoring the expression profiles of known genes following the addition of 1% (w/v) glucose to wild-type A. nidulans cultures grown to mid-exponential phase in Vogel's minimal medium with ethanol as the sole carbon source. The profiles of genes showing statistically significant differential expression following the glucose up-shift are presented and an assessment of the quality and reproducibility of the A. nidulans arrays discussed.

  17. The Aspergillus nidulans cetA and calA genes are involved in conidial germination and cell wall morphogenesis.

    PubMed

    Belaish, Ravit; Sharon, Haim; Levdansky, Emma; Greenstein, Shulamit; Shadkchan, Yana; Osherov, Nir

    2008-03-01

    The Aspergillus nidulans genes cetA (AN3079.2) and calA (AN7619.2) encode a novel class of fungal thaumatin-like proteins of unknown function. Deletion of cetA does not result in an observable phenotype [Greenstein, S., Shadkchan, Y., Jadoun, J., Sharon, C., Markovich, S., Osherov, N., 2006. Analysis of the Aspergillus nidulans thaumatin-like cetA gene and evidence for transcriptional repression of pyr4 expression in the cetA-disrupted strain. Fungal Genet. Biol. 43, 42-53]. We prepared knockout calA and calA/cetA A. nidulans strains. The calA mutants were phenotypically identical to the wild-type. In contrast, the cetA/calA double mutant showed a synthetic lethal phenotype suggesting that the two genes affect a single function or pathway: most of its conidia were completely inhibited in germination. Many collapsed and underwent lysis. A few showed abnormal germination characterized by short swollen hyphae and abnormal hyphal branching. Nongerminated conidia contained a single condensed nucleus suggesting a block in early germination. This is the first functional analysis of the novel cetA/calA family of thaumatin-like genes and their role in A. nidulans conidial germination. We show that CETA and CALA are secreted proteins that together play an essential role in early conidial germination.

  18. A screen for dynein synthetic lethals in Aspergillus nidulans identifies spindle assembly checkpoint genes and other genes involved in mitosis.

    PubMed Central

    Efimov, V P; Morris, N R

    1998-01-01

    Cytoplasmic dynein is a ubiquitously expressed microtubule motor involved in vesicle transport, mitosis, nuclear migration, and spindle orientation. In the filamentous fungus Aspergillus nidulans, inactivation of cytoplasmic dynein, although not lethal, severely impairs nuclear migration. The role of dynein in mitosis and vesicle transport in this organism is unclear. To investigate the complete range of dynein function in A. nidulans, we searched for synthetic lethal mutations that significantly reduced growth in the absence of dynein but had little effect on their own. We isolated 19 sld (synthetic lethality without dynein) mutations in nine different genes. Mutations in two genes exacerbate the nuclear migration defect seen in the absence of dynein. Mutations in six other genes, including sldA and sldB, show a strong synthetic lethal interaction with a mutation in the mitotic kinesin bimC and, thus, are likely to play a role in mitosis. Mutations in sldA and sldB also confer hypersensitivity to the microtubule-destabilizing drug benomyl. sldA and sldB were cloned by complementation of their mutant phenotypes using an A. nidulans autonomously replicating vector. Sequencing revealed homology to the spindle assembly checkpoint genes BUB1 and BUB3 from Saccharomyces cerevisiae. Genetic interaction between dynein and spindle assembly checkpoint genes, as well as other mitotic genes, indicates that A. nidulans dynein plays a role in mitosis. We suggest a model for dynein motor action in A. nidulans that can explain dynein involvement in both mitosis and nuclear distribution. PMID:9584089

  19. ANCUT2, a Thermo-alkaline Cutinase from Aspergillus nidulans and Its Potential Applications.

    PubMed

    Bermúdez-García, Eva; Peña-Montes, Carolina; Castro-Rodríguez, José Augusto; González-Canto, Augusto; Navarro-Ocaña, Arturo; Farrés, Amelia

    2017-07-01

    Biochemical characterization of purified ANCUT2 cutinase from Aspergillus nidulans is described. The identified amino acid sequence differs from that predicted in Aspergillus genomic databases in amino acids not relevant for catalysis. The enzyme is thermo-alkaline, showing its maximum activity at pH 9 and 60 °C, and it retains more than 60% of its initial activity after incubation for 1 h at 60 °C for pH values between 6 and 10. ANCUT2 is more active towards long-chain esters and it hydrolyzes cutin; however, it also hydrolyzes short-chain esters. Cutinase is inhibited by metal ions, PMSF, SDS, and EDTA (10 mM). It retains 50% of its activity in most of the solvents tested, although it is more stable in hydrophobic solvents. According to its found biochemical properties, preliminary assays demonstrate its ability to synthesize methyl esters from sesame oil and the most likely application of this enzyme remains in detergent formulations.

  20. Genetic Bypass of Aspergillus nidulans crzA Function in Calcium Homeostasis

    PubMed Central

    Almeida, Ricardo S.; Loss, Omar; Colabardini, Ana Cristina; Brown, Neil Andrew; Bignell, Elaine; Savoldi, Marcela; Pantano, Sergio; Goldman, Maria Helena S.; Arst, Herbert N.; Goldman, Gustavo H.

    2013-01-01

    After dephosphorylation by the phosphatase calcineurin, the fungal transcription factor CrzA enters the nucleus and activates the transcription of genes responsible for calcium homeostasis and many other calcium-regulated activities. A lack of CrzA confers calcium-sensitivity to the filamentous fungus Aspergillus nidulans. To further understand calcium signaling in filamentous fungi and to identify genes that interact genetically with CrzA, we selected for mutations that were able to suppress crzAΔ calcium intolerance and identified three genes. Through genetic mapping, gene sequencing, and mutant rescue, we were able to identify these as cnaB (encoding the calcineurin regulatory subunit), folA (encoding an enzyme involved in folic acid biosynthesis, dihydroneopterin aldolase), and scrC (suppression of crzA-, encoding a hypothetical protein). By using a calcium indicator, Fluo-3, we were able to determine that the wild-type and the suppressor strains were either able to regulate intracellular calcium levels or were able to take up and or store calcium correctly. The increased expression of calcium transporters, pmcA and/or pmcB, in suppressor mutants possibly enabled tolerance to high levels of calcium. Our results suggest that a cnaB suppressor mutation confers calcium tolerance to crzAΔ strains through restoration of calcium homeostasis. These results stress that in A. nidulans there are calcineurin-dependent and CrzA-independent pathways. In addition, it is possible that CrzA is able to contribute to the modulation of folic acid biosynthesis. PMID:23665873

  1. Expression of Aspergillus nidulans phy gene in Nicotiana benthamiana produces active phytase with broad specificities.

    PubMed

    Oh, Tae-Kyun; Oh, Sung; Kim, Seongdae; Park, Jae Sung; Vinod, Nagarajan; Jang, Kyung Min; Kim, Sei Chang; Choi, Chang Won; Ko, Suk-Min; Jeong, Dong Kee; Udayakumar, Rajangam

    2014-09-03

    A full-length phytase gene (phy) of Aspergillus nidulans was amplified from the cDNA library by polymerase chain reaction (PCR), and it was introduced into a bacterial expression vector, pET-28a. The recombinant protein (rPhy-E, 56 kDa) was overexpressed in the insoluble fraction of Escherichia coli culture, purified by Ni-NTA resin under denaturing conditions and injected into rats as an immunogen. To express A. nidulans phytase in a plant, the full-length of phy was cloned into a plant expression binary vector, pPZP212. The resultant construct was tested for its transient expression by Agrobacterium-infiltration into Nicotiana benthamiana leaves. Compared with a control, the agro-infiltrated leaf tissues showed the presence of phy mRNA and its high expression level in N. benthamiana. The recombinant phytase (rPhy-P, 62 kDa) was strongly reacted with the polyclonal antibody against the nonglycosylated rPhy-E. The rPhy-P showed glycosylation, two pH optima (pH 4.5 and pH 5.5), an optimum temperature at 45~55 °C, thermostability and broad substrate specificities. After deglycosylation by peptide-N-glycosidase F (PNGase-F), the rPhy-P significantly lost the phytase activity and retained 1/9 of the original activity after 10 min of incubation at 45 °C. Therefore, the deglycosylation caused a significant reduction in enzyme thermostability. In animal experiments, oral administration of the rPhy-P at 1500 U/kg body weight/day for seven days caused a significant reduction of phosphorus excretion by 16% in rat feces. Besides, the rPhy-P did not result in any toxicological changes and clinical signs.

  2. Aspergillus nidulans ArfB Plays a Role in Endocytosis and Polarized Growth ▿ †

    PubMed Central

    Lee, Soo Chan; Schmidtke, Sabrina N.; Dangott, Lawrence J.; Shaw, Brian D.

    2008-01-01

    Filamentous fungi undergo polarized growth throughout most of their life cycles. The Spitzenkörper is an apical organelle composed primarily of vesicles that is unique to filamentous fungi and is likely to act as a vesicle supply center for tip growth. Vesicle assembly and trafficking are therefore important for hyphal growth. ADP ribosylation factors (Arfs), a group of small GTPase proteins, play an important role in nucleating vesicle assembly. Little is known about the role of Arfs in filamentous hyphal growth. We found that Aspergillus nidulans is predicted to encode six Arf family proteins. Analysis of protein sequence alignments suggests that A. nidulans ArfB shares similarity with ARF6 of Homo sapiens and Arf3p of Saccharomyces cerevisiae. An arfB null allele (arfB disrupted by a transposon [arfB::Tn]) was characterized by extended isotropic growth of germinating conidia followed by cell lysis or multiple, random germ tube emergence, consistent with a failure to establish polarity. The mutant germ tubes and hyphae that do form initially meander abnormally off of the axis of polarity and frequently exhibit dichotomous branching at cell apices, consistent with a defect in polarity maintenance. FM4-64 staining of the arfB::Tn strain revealed that another phenotypic characteristic seen for arfB::Tn is a reduction and delay in endocytosis. ArfB is myristoylated at its N terminus. Green fluorescent protein-tagged ArfB (ArfB::GFP) localizes to the plasma membrane and endomembranes and mutation (ArfBG2A::GFP) of the N-terminal myristoylation motif disperses the protein to the cytoplasm rather than to the membranes. These results demonstrate that ArfB functions in endocytosis to play important roles in polarity establishment during isotropic growth and polarity maintenance during hyphal extension. PMID:18539885

  3. Functional Characterization of Aspergillus nidulans ypkA, a Homologue of the Mammalian Kinase SGK

    PubMed Central

    Colabardini, Ana Cristina; Brown, Neil Andrew; Savoldi, Marcela; Goldman, Maria Helena S.; Goldman, Gustavo Henrique

    2013-01-01

    The serum- and glucocorticoid-regulated protein kinase (SGK) is an AGC kinase involved in signal cascades regulated by glucocorticoid hormones and serum in mammals. The Saccharomyces cerevisiae ypk1 and ypk2 genes were identified as SGK homologues and Ypk1 was shown to regulate the balance of sphingolipids between the inner and outer plasma membrane. This investigation characterized the Aspergillus nidulans YPK1 homologue, YpkA, representing the first filamentous fungal YPK1 homologue. Two conditional mutant strains were constructed by replacing the endogenous ypk1 promoter with two different regulatable promoters, alcA (from the alcohol dehydrogenase gene) and niiA (from the nitrate reductase gene). Both constructs confirmed that ypkA was an essential gene in A. nidulans. Repression of ypkA caused decreased radial growth, a delay in conidial germination, deficient polar axis establishment, intense branching during late stages of growth, a lack of asexual spores, and a terminal phenotype. Membrane lipid polarization, endocytosis, eisosomes and vacuolar distribution were also affected by ypkA repression, suggesting that YpkA plays a role in hyphal morphogenesis via coordinating the delivery of cell membrane and wall constituents to the hyphal apex. The A. nidulans Pkh1 homologue pkhA was also shown to be an essential gene, and preliminary genetic analysis suggested that the ypkA gene is not directly downstream of pkhA or epistatic to pkhA, rather, ypkA and pkhA are genetically independent or in parallel. BarA is a homologue of the yeast Lag1 acyl-CoA-dependent ceramide synthase, which catalyzes the condensation of phytosphingosine with a fatty acyl-CoA to form phytoceramide. When barA was absent, ypkA repression was lethal to the cell. Therefore, there appears to be a genetic interaction between ypkA, barA, and the sphingolipid synthesis. Transcriptional profiling of ypkA overexpression and down-regulation revealed several putative YpkA targets associated with the

  4. Isolation of an Aspergillus terreus mutant impaired in arginine biosynthesis and its complementation with the argB gene from Aspergillus nidulans.

    PubMed

    Ventura, L; Ramón, D; Pérez-González, J A

    1992-12-01

    Using filtration enrichment techniques, an Aspergillus terreus arginine auxotrophic strain which contains a mutation that abolishes ornithine transcarbamylase (OTCase) activity has been isolated. This mutant has been genetically transformed with the cloned Aspergillus nidulans OTCase gene. Prototrophic transformants arose at a frequency of about 50 transformants per microgram of plasmid DNA. Southern blot analysis of DNA from the transformants showed that the transforming DNA was ectopically integrated at different locations in the A. terreus genome, often in multiple tandem copies. The transformants were phenotypically stable for several mitotic divisions and retained their capacity to produce extracellular enzymes.

  5. NiaA, the structural nitrate reductase gene of Phytophthora infestans: isolation, characterization and expression analysis in Aspergillus nidulans.

    PubMed

    Pieterse, C M; van't Klooster, J; van den Berg-Velthuis, G C; Govers, F

    1995-03-01

    The nitrate reductase (NR) gene niaA of the oomycete Phytophthora infestans was selected from a gene library by heterologous hybridization. NiaA occurs as a single-copy gene ant its expression is regulated by the nitrogen source. The nucleotide sequence of niaA was determined and comparison of the deduced amino-acid sequence of 902 residues with NRs of higher fungi and plants revealed a significant homology, particularly within the three cofactor-binding domains for molybdenum, heme and FAD. The P. infestans niaA gene was used as a model gene to test whether oomycete genes are functional in the ascomycete Aspergillus nidulans, a fungus which is highly accessible for molecular genetic studies. The complete niaA gene was stably integrated into the genome of a nia- deletion mutant of A. nidulans. However, transformants containing one or more copies of the niaA gene were not able to complement the nia- mutant. This suggests that there is no functional expression of the introduced niaA gene in A. nidulans. In addition, the activity of two other oomycete gene promoters was analyzed in a transient expression assay. Plasmids containing chimaeric genes with the promoter of the P. infestans ubiquitin gene ubi3R, or the Bremia lactucae ham34 gene, fused to the coding sequence of the Escherichia coli beta-glucuronidase (GUS) reporter gene, were transferred to A. nidulans protoplasts. No significant GUS activity was detectable indicating that the ubi3R and ham34 promoters are not active in A. nidulans. Apparently, the regulatory sequences which are sufficient for gene activation in oomycetes are not functional in the ascomycete A. nidulans.

  6. The Aspergillus nidulans ATM Kinase Regulates Mitochondrial Function, Glucose Uptake and the Carbon Starvation Response

    PubMed Central

    Krohn, Nadia Graciele; Brown, Neil Andrew; Colabardini, Ana Cristina; Reis, Thaila; Savoldi, Marcela; Dinamarco, Taísa Magnani; Goldman, Maria Helena S.; Goldman, Gustavo Henrique

    2013-01-01

    Mitochondria supply cellular energy and also perform a role in the adaptation to metabolic stress. In mammals, the ataxia-telangiectasia mutated (ATM) kinase acts as a redox sensor controlling mitochondrial function. Subsequently, transcriptomic and genetic studies were utilized to elucidate the role played by a fungal ATM homolog during carbon starvation. In Aspergillus nidulans, AtmA was shown to control mitochondrial function and glucose uptake. Carbon starvation responses that are regulated by target of rapamycin (TOR) were shown to be AtmA-dependent, including autophagy and hydrolytic enzyme secretion. AtmA also regulated a p53-like transcription factor, XprG, inhibiting starvation-induced XprG-dependent protease secretion and cell death. Thus, AtmA possibly represents a direct or indirect link between mitochondrial stress, metabolism, and growth through the influence of TOR and XprG function. The coordination of cell growth and division with nutrient availability is crucial for all microorganisms to successfully proliferate in a heterogeneous environment. Mitochondria supply cellular energy but also perform a role in the adaptation to metabolic stress and the cross-talk between prosurvival and prodeath pathways. The present study of Aspergillus nidulans demonstrated that AtmA also controlled mitochondrial mass, function, and oxidative phosphorylation, which directly or indirectly influenced glucose uptake. Carbon starvation responses, including autophagy, shifting metabolism to the glyoxylate cycle, and the secretion of carbon scavenging enzymes were AtmA-dependent. Transcriptomic profiling of the carbon starvation response demonstrated how TOR signaling and the retrograde response, which signals mitochondrial dysfunction, were directly or indirectly influenced by AtmA. The AtmA kinase was also shown to influence a p53-like transcription factor, inhibiting starvation-induced XprG-dependent protease secretion and cell death. Therefore, in response to metabolic

  7. The Aspergillus nidulans ATM kinase regulates mitochondrial function, glucose uptake and the carbon starvation response.

    PubMed

    Krohn, Nadia Graciele; Brown, Neil Andrew; Colabardini, Ana Cristina; Reis, Thaila; Savoldi, Marcela; Dinamarco, Taísa Magnani; Goldman, Maria Helena S; Goldman, Gustavo Henrique

    2014-01-10

    Mitochondria supply cellular energy and also perform a role in the adaptation to metabolic stress. In mammals, the ataxia-telangiectasia mutated (ATM) kinase acts as a redox sensor controlling mitochondrial function. Subsequently, transcriptomic and genetic studies were utilized to elucidate the role played by a fungal ATM homolog during carbon starvation. In Aspergillus nidulans, AtmA was shown to control mitochondrial function and glucose uptake. Carbon starvation responses that are regulated by target of rapamycin (TOR) were shown to be AtmA-dependent, including autophagy and hydrolytic enzyme secretion. AtmA also regulated a p53-like transcription factor, XprG, inhibiting starvation-induced XprG-dependent protease secretion and cell death. Thus, AtmA possibly represents a direct or indirect link between mitochondrial stress, metabolism, and growth through the influence of TOR and XprG function. The coordination of cell growth and division with nutrient availability is crucial for all microorganisms to successfully proliferate in a heterogeneous environment. Mitochondria supply cellular energy but also perform a role in the adaptation to metabolic stress and the cross-talk between prosurvival and prodeath pathways. The present study of Aspergillus nidulans demonstrated that AtmA also controlled mitochondrial mass, function, and oxidative phosphorylation, which directly or indirectly influenced glucose uptake. Carbon starvation responses, including autophagy, shifting metabolism to the glyoxylate cycle, and the secretion of carbon scavenging enzymes were AtmA-dependent. Transcriptomic profiling of the carbon starvation response demonstrated how TOR signaling and the retrograde response, which signals mitochondrial dysfunction, were directly or indirectly influenced by AtmA. The AtmA kinase was also shown to influence a p53-like transcription factor, inhibiting starvation-induced XprG-dependent protease secretion and cell death. Therefore, in response to metabolic

  8. Control of metabolic flux through the quinate pathway in Aspergillus nidulans.

    PubMed Central

    Wheeler, K A; Lamb, H K; Hawkins, A R

    1996-01-01

    The quinic acid ulitization (qut) pathway in Aspergillus nidulans is a dispensable carbon utilization pathway that catabolizes quinate to protocatechuate via dehydroquinate and dehydroshikimate(DHS). At the usual in vitro growth pH of 6.5, quinate enters the mycelium by means of a specific permease and is converted into PCA by the sequential action of the enzymes quinate dehydrogenase, 3-dehydroquinase and DHS dehydratase. The extent of control on metabolic flux exerted by the permease and the three pathway enzymes was investigated by applying the techniques of Metabolic Control Analysis. The flux control coefficients for each of the three quinate pathway enzymes were determined empirically, and the flux control coefficient of the quinate permease was inferred by use of the summation theorem. There measurements implied that, under the standard growth conditions used, the values for the flux control coefficients of the components of the quinate pathway were: quinate permease, 0.43; quinate dehydrogenase, 0.36; dehydroquinase, 0.18; DHS dehydratase, <0,03. Attempts to partially decouple quinate permease from the control over flux by measuring flux at pH 3.5 (when a significant percentage of the soluble quinate is protonated and able to enter the mycelium without the aid of a permease) led to an increase of approx. 50% in the flux control coefficient for dehydroquinase. Taken together with the fact that A. nidulans has a very efficient pH homeostasis mechanism, these experiments are consistent with the view that quinate permease exerts a high degree of control over pathway flux under the standard laboratory growth conditions at pH 6.5. The enzymes quinate dehydrogenase and 3-dehydroquinase have previously been overproduced in Escherichia coli, and protocols for their purification published. The remaining qut pathway enzyme DHS dehydratase was overproduced in E. coli and a purification protocol established. The purified DHS dehydratase was shown to have a K(m) of 530

  9. Studies of the production of fungal polyketides in Aspergillus nidulans by using systems biology tools.

    PubMed

    Panagiotou, Gianni; Andersen, Mikael R; Grotkjaer, Thomas; Regueira, Torsten B; Nielsen, Jens; Olsson, Lisbeth

    2009-04-01

    Many filamentous fungi produce polyketide molecules with great significance as human pharmaceuticals; these molecules include the cholesterol-lowering compound lovastatin, which was originally isolated from Aspergillus terreus. The chemical diversity and potential uses of these compounds are virtually unlimited, and it is thus of great interest to develop a well-described microbial production platform for polyketides. Using genetic engineering tools available for the model organism Aspergillus nidulans, we constructed two recombinant strains, one expressing the Penicillium griseofulvum 6-methylsalicylic acid (6-MSA) synthase gene and one expressing the 6-MSA synthase gene and overexpressing the native xylulose-5-phosphate phosphoketolase gene (xpkA) for increasing the pool of polyketide precursor levels. The physiology of the recombinant strains and that of a reference wild-type strain were characterized on glucose, xylose, glycerol, and ethanol media in controlled bioreactors. Glucose was found to be the preferred carbon source for 6-MSA production, and 6-MSA concentrations up to 455 mg/liter were obtained for the recombinant strain harboring the 6-MSA gene. Our findings indicate that overexpression of xpkA does not directly improve 6-MSA production on glucose, but it is possible, if the metabolic flux through the lower part of glycolysis is reduced, to obtain quite high yields for conversion of sugar to 6-MSA. Systems biology tools were employed for in-depth analysis of the metabolic processes. Transcriptome analysis of 6-MSA-producing strains grown on glucose and xylose in the presence and absence of xpkA overexpression, combined with flux and physiology data, enabled us to propose an xpkA-msaS interaction model describing the competition between biomass formation and 6-MSA production for the available acetyl coenzyme A.

  10. Intimate bacterial-fungal interaction triggers biosynthesis of archetypal polyketides in Aspergillus nidulans.

    PubMed

    Schroeckh, Volker; Scherlach, Kirstin; Nützmann, Hans-Wilhelm; Shelest, Ekaterina; Schmidt-Heck, Wolfgang; Schuemann, Julia; Martin, Karin; Hertweck, Christian; Brakhage, Axel A

    2009-08-25

    Fungi produce numerous low molecular weight molecules endowed with a multitude of biological activities. However, mining the full-genome sequences of fungi indicates that their potential to produce secondary metabolites is greatly underestimated. Because most of the biosynthesis gene clusters are silent under laboratory conditions, one of the major challenges is to understand the physiological conditions under which these genes are activated. Thus, we cocultivated the important model fungus Aspergillus nidulans with a collection of 58 soil-dwelling actinomycetes. By microarray analyses of both Aspergillus secondary metabolism and full-genome arrays and Northern blot and quantitative RT-PCR analyses, we demonstrate at the molecular level that a distinct fungal-bacterial interaction leads to the specific activation of fungal secondary metabolism genes. Most surprisingly, dialysis experiments and electron microscopy indicated that an intimate physical interaction of the bacterial and fungal mycelia is required to elicit the specific response. Gene knockout experiments provided evidence that one induced gene cluster codes for the long-sought after polyketide synthase (PKS) required for the biosynthesis of the archetypal polyketide orsellinic acid, the typical lichen metabolite lecanoric acid, and the cathepsin K inhibitors F-9775A and F-9775B. A phylogenetic analysis demonstrates that orthologs of this PKS are widespread in nature in all major fungal groups, including mycobionts of lichens. These results provide evidence of specific interaction among microorganisms belonging to different domains and support the hypothesis that not only diffusible signals but intimate physical interactions contribute to the communication among microorganisms and induction of otherwise silent biosynthesis genes.

  11. Mutants of Aspergillus nidulans lacking nicotinamide adenine dinucleotide-specific glutamate dehydrogenase.

    PubMed Central

    Kinghorn, J R; Pateman, J A

    1976-01-01

    Ten mutants of Aspergillus nidulans lacking nicotinamide adenine dinucleotide-specific glutamate dehydrogenase (NAD-GDH) have been isolated, and their mutations (gdhB1 through gdhB10) have been shown to lie in the gdhB gene. In addition, a temperature-sensitive gdhB mutant (gdhB11) has been isolated. A revertant (designated R-5) of the mutant gdhB1 bears an additional lesion in the gdhB gene and has altered NAD-GDH activity with altered Km values for ammonia or ammonium ions and for alpha-ketoglutarate. These results suggest that gdhB specifies a structural component for NAD-GDH. The growth characteristics of gdhB mutants indicate the routes by which amino acids are utilized as nitrogen and carbon energy sources. The properties are described of the double mutants bearing the mutations gdhB1 and gdhA1 or tamA119, which have low NADP-GDH activity. PMID:173707

  12. Arp11 Affects Dynein–Dynactin Interaction and is Essential for Dynein Function in Aspergillus nidulans

    PubMed Central

    Zhang, Jun; Wang, Liqin; Zhuang, Lei; Huo, Liang; Musa, Shamsideen; Li, Shihe; Xiang, Xin

    2008-01-01

    The dynactin complex contains proteins including p150 that interacts with cytoplasmic dynein and an actin-related protein Arp1 that forms a minifilament. Proteins including Arp11 and p62 locate at the pointed end of the Arp1 filament, but their biochemical functions are unclear (Schroer TA. Dynactin. Annu Rev Cell Dev Biol 2004;20: 759–779). In Aspergillus nidulans, loss of Arp11 or p62 causes the same nuclear distribution (nud) defect displayed by dynein mutants, indicating that these pointed-end proteins are essential for dynein function. We constructed a strain with S-tagged p150 of dynactin that allows us to pull down components of the dynactin and dynein complexes. Surprisingly, while the ratio of pulled-down Arp1 to S-p150 in Arp11-depleted cells is clearly lower than that in wild-type cells, the ratio of pulled-down dynein to S-p150 is significantly higher. We further show that the enhanced dynein–dynactin interaction in Arp11-depleted cells is also present in the soluble fraction and therefore is not dependent upon the affinity of these proteins to the membrane. We suggest that loss of the pointed-end proteins alters the Arp1 filament in a way that affects the conformation of p150 required for its proper interaction with the dynein motor. PMID:18410488

  13. Sphingolipids Mediate Differential Echinocandin Susceptibility in Candida albicans and Aspergillus nidulans

    PubMed Central

    Healey, Kelley R.; Challa, Krishna K.; Edlind, Thomas D.

    2015-01-01

    The cell wall synthesis-inhibiting echinocandins, including caspofungin and micafungin, play important roles in the treatment of candidiasis and aspergillosis. Previous studies revealed that, in the haploid yeast Candida glabrata, sphingolipid biosynthesis pathway mutations confer caspofungin reduced susceptibility (CRS) but micafungin increased susceptibility (MIS). Here, we describe one Candida albicans strain (of 10 tested) that similarly yields CRS-MIS mutants at relatively high frequency. Mutants demonstrated increased levels of long-chain bases (sphingolipid pathway intermediates) and, unique to this strain, loss of His104/Pro104 heterozygosity in the TSC13-encoded enoyl reductase. CRS-MIS was similarly observed in a C. albicans homozygous fen1Δ fen12Δ laboratory strain and in diverse wild-type strains following exogenous long-chain-base treatment. Analogous to these results, CRS-MIS was demonstrated in an Aspergillus nidulans basA mutant encoding defective sphingolipid C4-hydroxylase and in its wild-type parent exposed to long-chain bases. Sphingolipids likely modulate echinocandin interaction with their Fks membrane target in all susceptible fungi, with potential implications for optimizing therapy with existing antifungals and the development of novel agents. PMID:25824222

  14. A Plastic Vegetative Growth Threshold Governs Reproductive Capacity in Aspergillus nidulans.

    PubMed

    Noble, Luke M; Holland, Linda M; McLauchlan, Alisha J; Andrianopoulos, Alex

    2016-11-01

    Ontogenetic phases separating growth from reproduction are a common feature of cellular life. Long recognized for flowering plants and animals, early literature suggests this life-history component may also be prevalent among multicellular fungi. We establish the basis of developmental competence-the capacity to respond to induction of asexual development-in the filamentous saprotroph Aspergillus nidulans, describing environmental influences, including genotype-by-environment interactions among precocious mutants, gene expression associated with wild type and precocious competence acquisition, and the genetics of competence timing. Environmental effects are consistent with a threshold driven by metabolic rate and organism density, with pH playing a particularly strong role in determining competence timing. Gene expression diverges significantly over the competence window, despite a lack of overt morphological change, with differentiation in key metabolic, signaling, and cell trafficking processes. We identify five genes for which mutant alleles advance competence timing, including the conserved GTPase RasB (AN5832) and ambient pH sensor PalH (AN6886). In all cases examined, inheritance of competence timing is complex and non-Mendelian, with F1 progeny showing highly variable transgressive timing and dominant parental effects with a weak contribution from progeny genotype. Competence provides a new model for nutrient-limited life-cycle phases, and their elaboration from unicellular origins. Further work is required to establish the hormonal and bioenergetic basis of the trait across fungi, and underlying mechanisms of variable inheritance.

  15. Elucidating how the saprophytic fungus Aspergillus nidulans uses the plant polyester suberin as carbon source.

    PubMed

    Martins, Isabel; Hartmann, Diego O; Alves, Paula C; Martins, Celso; Garcia, Helga; Leclercq, Céline C; Ferreira, Rui; He, Ji; Renaut, Jenny; Becker, Jörg D; Silva Pereira, Cristina

    2014-07-21

    Lipid polymers in plant cell walls, such as cutin and suberin, build recalcitrant hydrophobic protective barriers. Their degradation is of foremost importance for both plant pathogenic and saprophytic fungi. Regardless of numerous reports on fungal degradation of emulsified fatty acids or cutin, and on fungi-plant interactions, the pathways involved in the degradation and utilisation of suberin remain largely overlooked. As a structural component of the plant cell wall, suberin isolation, in general, uses harsh depolymerisation methods that destroy its macromolecular structure. We recently overcame this limitation isolating suberin macromolecules in a near-native state. Suberin macromolecules were used here to analyse the pathways involved in suberin degradation and utilisation by Aspergillus nidulans. Whole-genome profiling data revealed the complex degrading enzymatic machinery used by this saprophytic fungus. Initial suberin modification involved ester hydrolysis and ω-hydroxy fatty acid oxidation that released long chain fatty acids. These fatty acids were processed through peroxisomal β-oxidation, leading to up-regulation of genes encoding the major enzymes of these pathways (e.g. faaB and aoxA). The obtained transcriptome data was further complemented by secretome, microscopic and spectroscopic analyses. Data support that during fungal growth on suberin, cutinase 1 and some lipases (e.g. AN8046) acted as the major suberin degrading enzymes (regulated by FarA and possibly by some unknown regulatory elements). Suberin also induced the onset of sexual development and the boost of secondary metabolism.

  16. Organization and Dynamics of the Aspergillus nidulans Golgi during Apical Extension and Mitosis

    PubMed Central

    Pantazopoulou, Areti

    2009-01-01

    Aspergillus nidulans hyphae grow exclusively by apical extension. Golgi equivalents (GEs) labeled with mRFP-tagged PHOSBP domain form a markedly polarized, dynamic network of ring-shaped and fenestrated cisternae that remains intact during “closed” mitosis. mRFP-PHOSBP GEs advance associated with the growing apex where secretion predominates but do not undergo long-distance movement toward the tip that could account for their polarization. mRFP-PHOSBP GEs overlap with the trans-Golgi resident Sec7 but do not colocalize with also polarized accretions of the early Golgi marker GrhAGrh1-GFP, indicating that early and late Golgi membranes segregate spatially. AnSec23-GFP ER exit sites (ERES) are numerous, relatively static foci localizing across the entire cell. However, their density is greatest near the tip, correlating with predominance of early and trans-Golgi elements in this region. Whereas GrhA-GFP structures and ERES reach the apical dome, mRFP-PHOSBP GEs are excluded from this region, which contains the endosome dynein loading zone. After latrunculin-mediated F-actin disruption, mRFP-PHOSBP GEs fragment and, like AnSec23-GFP ERES, depolarize. Brefeldin A transiently collapses late and early GEs into distinct aggregates containing Sec7/mRFP-PHOSBP and GrhA-GFP, respectively, temporarily arresting apical extension. Rapid growth reinitiates after washout, correlating with reacquisition of the normal Golgi organization that, we conclude, is required for apical extension. PMID:19692566

  17. The Aspergillus nidulans pyrG89 mutation alters glycosylation of secreted acid phosphatase.

    PubMed

    Justino, A; Nozawa, S R; Maccheroni, W; May, G S; Martinez-Rossi, N M; Rossi, A

    2001-03-01

    The glycosylation level of the pacA-encoded acid phosphatase secreted by Aspergillus nidulans was reduced in strains pabaA1 pyroA4and pabaA1 pyroA4 pyrG89, compared to strains carrying these mutations singly. The molecular mass of the enzyme secreted by the triple mutant grown at pH 5.0 was 105 and 45 kDa as determined by exclusion chromatography and SDS-PAGE, respectively. In contrast, the pabaA1 strain secreted acid phosphatases of 119 and 62 kDa. The enzyme also had an altered electrophoretic mobility and glycosylation had a protective effect against its heat inactivation. Thus, this combination of mutants alters glycosylation of the enzyme, leading to changes in their structural properties. In spite of this, no deviation was observed in the apparent optimum pH and Michaelis kinetics for enzymatic hydrolysis of p-nitrophenyl phosphate or alpha-naphthyl phosphate.

  18. Protein expression and subcellular localization of the general purine transporter UapC from Aspergillus nidulans.

    PubMed

    Valdez-Taubas, J; Diallinas, G; Scazzocchio, C; Rosa, A L

    2000-07-01

    The uapC gene of Aspergillus nidulans belongs to a family of nucleobase-specific transporters conserved in prokaryotic and eucaryotic organisms. We report the use of immunological and green fluorescent protein based strategies to study protein expression and subcellular distribution of UapC. A chimeric protein containing a plant-adapted green fluorescent protein (sGFP) fused to the C-terminus of UapC was shown to be functional in vivo, as it complements a triple mutant (i.e., uapC(-) uapA(-) azgA(-)) unable to grow on uric acid as the sole nitrogen source. UapC-GFP is located in the plasma membrane and, secondarily, in internal structures observed as fluorescent dots. A strong correlation was found between cellular levels of UapC-GFP fluorescence and known patterns of uapC gene expression. This work represents the first in vivo study of protein expression and subcellular localization of a filamentous fungal nucleobase transporter.

  19. An Alpha Tubulin Mutation Suppresses Nuclear Migration Mutations in Aspergillus Nidulans

    PubMed Central

    Willins, D. A.; Xiang, X.; Morris, N. R.

    1995-01-01

    Microtubules and cytoplasmic dynein, a microtubule-dependent motor, are required for nuclei to move along the hyphae of filamentous fungi. Nuclear migration in Aspergillus nidulans is blocked by heat-sensitive (hs(-)) mutations in the nudA gene, which encodes dynein heavy chain, and the nudF gene, which encodes a G protein β-subunit-like protein. Hs(-) mutations in the nudC and nudG genes also prevent nuclear migration. We have isolated extragenic suppressor mutations that reverse the hs(-) phenotypes caused by these mutations. Here we show that one nudF suppressor also suppresses hs(-) mutations in nudA, nudC, and nudG and deletions in nudA and nudF. This suppressor mutation is in the tubA alpha tubulin gene, and its characteristics suggest that it destabilizes microtubules. The mutation alters microtubule staining and confers sensitivity to cold and benomyl, two treatments that destabilize microtubules. Treatment with low concentrations of benomyl also suppresses the hs(-) nudA, nudC, nudF, and nudG mutations and the nudA and nudF deletions. Suppression of the hs(-) nudA mutation and the nudA deletion is especially interesting because these strains lack active dynein heavy chain. Together, these results suggest that microtubule destabilization allows nuclei to migrate even in the absence of cytoplasmic dynein motor function. PMID:8601474

  20. Continuous xylanase production with Aspergillus nidulans under pyridoxine limitation using a trickle bed reactor.

    PubMed

    Müller, Michael; Prade, Rolf A; Segato, Fernando; Atiyeh, Hasan K; Wilkins, Mark R

    2015-01-01

    A trickle bed reactor (TBR) with recycle was designed and tested using Aspergillus nidulans with a pyridoxine marker and over-expressing/secreting recombinant client xylanase B (XynB). The pyridoxine marker prevented the fungus from synthesizing its own pyridoxine and fungus was unable to grow when no pyridoxine was present in the medium; however, enzyme production was unaffected. Uncontrolled mycelia growth that led to clogging of the TBR was observed when fungus without a pyridoxine marker was used for XynB production. Using the fungus with pyridoxine marker, the TBR was operated continuously for 18 days and achieved a XynB output of 41 U/ml with an influent and effluent flow rate of 0.5 ml/min and a recycle flow rate of 56 ml/min. Production yields in the TBR were 1.4 times greater than a static tray culture and between 1.1 and 67 times greater than yields for SSF enzyme production stated in the literature. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Nucleolar separation from chromosomes during Aspergillus nidulans mitosis can occur without spindle forces.

    PubMed

    Ukil, Leena; De Souza, Colin P; Liu, Hui-Lin; Osmani, Stephen A

    2009-04-01

    How the nucleolus is segregated during mitosis is poorly understood and occurs by very different mechanisms during closed and open mitosis. Here we report a new mechanism of nucleolar segregation involving removal of the nucleolar-organizing regions (NORs) from nucleoli during Aspergillus nidulans mitosis. This involves a double nuclear envelope (NE) restriction which generates three NE-associated structures, two daughter nuclei (containing the NORs), and the nucleolus. Therefore, a remnant nucleolar structure can exist in the cytoplasm without NORs. In G1, this parental cytoplasmic nucleolus undergoes sequential disassembly releasing nucleolar proteins to the cytoplasm as nucleoli concomitantly reform in daughter nuclei. By depolymerizing microtubules and mutating spindle assembly checkpoint function, we demonstrate that a cycle of nucleolar "segregation" can occur without a spindle in a process termed spindle-independent mitosis (SIM). During SIM physical separation of the NOR from the nucleolus occurs, and NE modifications promote expulsion of the nucleolus to the cytoplasm. Subsequently, the cytoplasmic nucleolus is disassembled and rebuilt at a new site around the nuclear NOR. The data demonstrate the existence of a mitotic machinery for nucleolar segregation that is normally integrated with mitotic spindle formation but that can function without it.

  2. Inducible alkyltransferase DNA repair proteins in the filamentous fungus Aspergillus nidulans.

    PubMed Central

    Baker, S M; Margison, G P; Strike, P

    1992-01-01

    We have investigated the response of the filamentous fungus Aspergillus nidulans to low, non-killing, doses of the alkylating agent MNNG (N-methyl-N'-nitro-N-nitrosoguanidine). Such treatment causes a substantial induction of DNA alkyltransferase activity, with the specific activity in treated cells increasing up to one hundred-fold. Fluorography reveals the two main inducible species as proteins of 18.5 kDa and 21 kDa, both of which have activity primarily against O6-methylguanine (O6-MeG) lesions. In addition, two other alkyltransferase proteins can also be detected. One, of MW 16 kDa, is expressed in non-treated cells, but is not induced to the same extent as the 18.5 and 21 kDa proteins. The other, a protein of 19.5 kDa, is highly inducible and can only be detected in treated cells. Unlike the other three proteins, it acts primarily against methyl-phosphotriester (Me-PT) lesions. This is the first instance in which an MePT alkyltransferase has been detected in a eukaryotic organism and, coupled with the high level of induction of the O6-MeG alkyltransferase enzymes, this indicates that a control system similar to the bacterial adaptive response may be present in filamentous fungi. Images PMID:1542560

  3. Live Cell Imaging of Actin Dynamics in the Filamentous Fungus Aspergillus nidulans.

    PubMed

    Schultzhaus, Zachary; Quintanilla, Laura; Hilton, Angelyn; Shaw, Brian D

    2016-04-01

    Hyphal cells of filamentous fungi grow at their tips in a method analogous to pollen tube and root hair elongation. This process, generally referred to as tip growth, requires precise regulation of the actin cytoskeleton, and characterizing the various actin structures in these cell types is currently an active area of research. Here, the actin marker Lifeact was used to document actin dynamics in the filamentous fungus Aspergillus nidulans. Contractile double rings were observed at septa, and annular clusters of puncta were seen subtending growing hyphal tips, corresponding to the well-characterized subapical endocytic collar. However, Lifeact also revealed two additional structures. One, an apical array, was dynamic on the face opposite the tip, while a subapical web was dynamic on the apical face and was located several microns behind the growth site. Each was observed turning into the other over time, implying that they could represent different localizations of the same structure, although hyphae with a subapical web grew faster than those exhibiting an apical array. The subapical web has not been documented in any filamentous fungus to date, and is separate from the networks of F-actin seen in other tip-growing organisms surrounding septa or stationary along the plasmalemma.

  4. Cytochrome abnormalities and cyanide-resistant respiration in extranuclear mutants of Aspergillus nidulans.

    PubMed Central

    Turner, G; Rowlands, R T

    1976-01-01

    The cytochrome spectra of two extranuclear mutants of Aspergillus nidulans and the double-mutant recombinant formed from them have been examined both at room temperature and at the temperature of liquid N2 and compared with those of the wild-type strain. The oligomycin-resistant, slow growing mutant contained an increased amount of cytochrome c without any loss of cytochromes b and a,a3. The cold-sensitive mutant, apparently normal when grown at 37 C, showed an increased amount of cytochrome c and a partial loss of cytochromes b and a,a3 when grown at 20 C. A combination of these effects was observed in the double-mutant recombinant. Cyanide-resistant respiration was present in both mutant strains and in the recombinant at much higher levels than in the wild-type strain. In the oligomycin-resistant mutant, this was usually present together with cyanide-sensitive respiration, whereas in the cold-sensitive mutant and recombinant grown at 20 C cyanide-resistant approached 100%. Inhibitor and growth yield studies indicated that the cyanide-resistant pathway was not used by the cold-sensitive mutant during growth at 20 C. PMID:1107321

  5. RNAseq reveals hydrophobins that are involved in the adaptation of Aspergillus nidulans to lignocellulose.

    PubMed

    Brown, Neil Andrew; Ries, Laure N A; Reis, Thaila F; Rajendran, Ranjith; Corrêa Dos Santos, Renato Augusto; Ramage, Gordon; Riaño-Pachón, Diego Mauricio; Goldman, Gustavo H

    2016-01-01

    Sugarcane is one of the world's most profitable crops. Waste steam-exploded sugarcane bagasse (SEB) is a cheap, abundant, and renewable lignocellulosic feedstock for the next-generation biofuels. In nature, fungi seldom exist as planktonic cells, similar to those found in the nutrient-rich environment created within an industrial fermenter. Instead, fungi predominantly form biofilms that allow them to thrive in hostile environments. In turn, we adopted an RNA-sequencing approach to interrogate how the model fungus, Aspergillus nidulans, adapts to SEB, revealing the induction of carbon starvation responses and the lignocellulolytic machinery, in addition to morphological adaptations. Genetic analyses showed the importance of hydrophobins for growth on SEB. The major hydrophobin, RodA, was retained within the fungal biofilm on SEB fibres. The StuA transcription factor that regulates fungal morphology was up-regulated during growth on SEB and controlled hydrophobin gene induction. The absence of the RodA or DewC hydrophobins reduced biofilm formation. The loss of a RodA or a functional StuA reduced the retention of the hydrolytic enzymes within the vicinity of the fungus. Hence, hydrophobins promote biofilm formation on SEB, and may enhance lignocellulose utilisation via promoting a compact substrate-enzyme-fungus structure. This novel study highlights the importance of hydrophobins to the formation of biofilms and the efficient deconstruction of lignocellulose.

  6. Microtubules are reversibly depolymerized in response to changing gaseous microenvironments within Aspergillus nidulans biofilms.

    PubMed

    Shukla, Nandini; Osmani, Aysha H; Osmani, Stephen A

    2017-03-01

    How microtubules (MTs) are regulated during fungal biofilm formation is unknown. By tracking MT +end-binding proteins (+TIPS) in Aspergillus nidulans, we find that MTs are regulated to depolymerize within forming fungal biofilms. During this process, EB1, dynein, and ClipA form transient fibrous and then bar-like structures, novel configurations for +TIPS. Cells also respond in an autonomous manner, with cells separated by a septum able to maintain different MT dynamics. Surprisingly, all cells with depolymerized MTs rapidly repolymerize their MTs after air exchange above the static culture medium of biofilms. Although the specific gasotransmitter for this biofilm response is not known, we find that addition of hydrogen sulfide gas to growing cells recapitulates all aspects of reversible MT depolymerization and transient formation of +TIPs bars. However, as biofilms mature, physical removal of part of the biofilm is required to promote MT repolymerization, which occurs at the new biofilm edge. We further show MT depolymerization within biofilms is regulated by the SrbA hypoxic transcription factor and that without SrbA, MTs are maintained as biofilms form. This reveals a new mode of MT regulation in response to changing gaseous biofilm microenvironments, which could contribute to the unique characteristics of fungal biofilms in medical and industrial settings.

  7. Velvet-mediated repression of β-glucan synthesis in Aspergillus nidulans spores.

    PubMed

    Park, Hee-Soo; Yu, Yeong Man; Lee, Mi-Kyung; Maeng, Pil Jae; Kim, Sun Chang; Yu, Jae-Hyuk

    2015-05-11

    Beta-glucans are a heterologous group of fibrous glucose polymers that are a major constituent of cell walls in Ascomycetes and Basidiomycetes fungi. Synthesis of β (1,3)- and (1,6)-glucans is coordinated with fungal cell growth and development, thus, is under tight genetic regulation. Here, we report that β-glucan synthesis in both asexual and sexual spores is turned off by the NF-kB like fungal regulators VosA and VelB in Aspergillus nidulans. Our genetic and genomic analyses have revealed that both VosA and VelB are necessary for proper down-regulation of cell wall biosynthetic genes including those associated with β-glucan synthesis in both types of spores. The deletion of vosA or velB results in elevated accumulation of β-glucan in asexual spores. Double mutant analyses indicate that VosA and VelB play an inter-dependent role in repressing β-glucan synthesis in asexual spores. In vivo chromatin immuno-precipitation analysis shows that both VelB and VosA bind to the promoter region of the β-glucan synthase gene fksA in asexual spores. Similarly, VosA is required for proper repression of β-glucan synthesis in sexual spores. In summary, the VosA-VelB hetero-complex is a key regulatory unit tightly controlling proper levels of β-glucan synthesis in asexual and sexual spores.

  8. Cloning and characterization of the citA gene encoding the mitochondrial citrate synthase of Aspergillus nidulans.

    PubMed

    Park, B W; Han, K H; Lee, C Y; Lee, C H; Maeng, P J

    1997-04-30

    We isolated a citrate synthase gene (citA) from Aspergillus nidulans. By analysis of the protein coding region, citA was shown to encode a citrate synthase (CitA) of 52.2 kDa consisting of 474 amino acid residues that were interrupted by seven introns. Also, the precursor CitA protein was revealed to have an N-terminal mitochondrial targeting signal of 35 amino acid residues containing an R-3 cleavage motif, R(32)-C-Y decreases S(35), which supports the fact that citA encodes the mitochondrial form of citrate synthase of A. nidulans. Southern blot analysis showed that citA is present as a single copy in the genome.

  9. Cloning and Characterization of an Aspergillus nidulans Gene Involved in the Regulation of Penicillin Biosynthesis

    PubMed Central

    Van den Brulle, Jan; Steidl, Stefan; Brakhage, Axel A.

    1999-01-01

    To identify regulators of penicillin biosynthesis, a previously isolated mutant of Aspergillus nidulans (Prg-1) which carried the trans-acting prgA1 mutation was used. This mutant also contained fusions of the penicillin biosynthesis genes acvA and ipnA with reporter genes (acvA-uidA and ipnA-lacZ) integrated in a double-copy arrangement at the chromosomal argB gene. The prgA1 mutant strain exhibited only 20 to 50% of the ipnA-lacZ and acvA-uidA expression exhibited by the wild-type strain and had only 20 to 30% of the penicillin produced by the wild-type strain. Here, using complementation with a genomic cosmid library, we isolated a gene (suAprgA1) which complemented the prgA1 phenotype to the wild-type phenotype; i.e., the levels of expression of both gene fusions and penicillin production were nearly wild-type levels. Analysis of the suAprgA1 gene in the prgA1 mutant did not reveal any mutation in the suAprgA1 gene or unusual transcription of the gene. This suggested that the suAprgA1 gene is a suppressor of the prgA1 mutation. The suAprgA1 gene is 1,245 bp long. Its five exons encode a deduced protein that is 303 amino acids long. The putative SUAPRGA1 protein was similar to both the human p32 protein and Mam33p of Saccharomyces cerevisiae. Analysis of the ordered gene library of A. nidulans indicated that suAprgA1 is located on chromosome VI. Deletion of the suAprgA1 gene resulted in an approximately 50% reduction in ipnA-lacZ expression and in a slight reduction in acvA-uidA expression. The ΔsuAprgA1 strain produced about 60% of the amount of penicillin produced by the wild-type strain. PMID:10583968

  10. Modelling the Survival of Escherichia coli O157:H7 on Raw Portioned Tomatoes, Inoculated with Aspergillus fumigatus and Emericella nidulans

    PubMed Central

    Cardillo, Daniela; Bevilacqua, Antonio; Cibelli, Francesca; Altieri, Clelia; Sinigaglia, Milena

    2009-01-01

    The metabiotic interactions occurring among two fungi (Aspergillus fumigatus and Emericella nidulans) and Escherichia coli O157:H7 on raw portioned tomatoes were studied. Tomatoes, preinoculated with the moulds and inoculated with the pathogen, were packaged in air and stored at 4, 8 and 12∘C for 9 days; pathogen cell number and pH were monitored throughout the storage and the data were modeled using three different equations (Geeraerd, Weibull, and modified Weibull), to assess the shoulder length, the 1-log reduction time, and the death time. Both A. fumigatus and E. nidulans increased the survival of E. coli O157:H7 through the prolongation of the shoulder length; in contrast, the death time was significantly increased. The results of this paper suggested that the metabiotic interactions aspergilli/E. coli O 157:H7 could be of public concern, as the consumption of tomatoes (or other fruits and vegetables) contaminated both by the moulds and the pathogen is a possible scenario. PMID:20037729

  11. Velvet-mediated repression of β-glucan synthesis in Aspergillus nidulans spores

    PubMed Central

    Park, Hee-Soo; Man Yu, Yeong; Lee, Mi-Kyung; Jae Maeng, Pil; Chang Kim, Sun; Yu, Jae-Hyuk

    2015-01-01

    Beta-glucans are a heterologous group of fibrous glucose polymers that are a major constituent of cell walls in Ascomycetes and Basidiomycetes fungi. Synthesis of β (1,3)- and (1,6)-glucans is coordinated with fungal cell growth and development, thus, is under tight genetic regulation. Here, we report that β-glucan synthesis in both asexual and sexual spores is turned off by the NF-kB like fungal regulators VosA and VelB in Aspergillus nidulans. Our genetic and genomic analyses have revealed that both VosA and VelB are necessary for proper down-regulation of cell wall biosynthetic genes including those associated with β-glucan synthesis in both types of spores. The deletion of vosA or velB results in elevated accumulation of β-glucan in asexual spores. Double mutant analyses indicate that VosA and VelB play an inter-dependent role in repressing β-glucan synthesis in asexual spores. In vivo chromatin immuno-precipitation analysis shows that both VelB and VosA bind to the promoter region of the β-glucan synthase gene fksA in asexual spores. Similarly, VosA is required for proper repression of β-glucan synthesis in sexual spores. In summary, the VosA-VelB hetero-complex is a key regulatory unit tightly controlling proper levels of β-glucan synthesis in asexual and sexual spores. PMID:25960370

  12. Novel β-1,4-Mannanase Belonging to a New Glycoside Hydrolase Family in Aspergillus nidulans*

    PubMed Central

    Shimizu, Motoyuki; Kaneko, Yuhei; Ishihara, Saaya; Mochizuki, Mai; Sakai, Kiyota; Yamada, Miyuki; Murata, Shunsuke; Itoh, Eriko; Yamamoto, Tatsuya; Sugimura, Yu; Hirano, Tatsuya; Takaya, Naoki; Kobayashi, Tetsuo; Kato, Masashi

    2015-01-01

    Many filamentous fungi produce β-mannan-degrading β-1,4-mannanases that belong to the glycoside hydrolase 5 (GH5) and GH26 families. Here we identified a novel β-1,4-mannanase (Man134A) that belongs to a new glycoside hydrolase (GH) family (GH134) in Aspergillus nidulans. Blast analysis of the amino acid sequence using the NCBI protein database revealed that this enzyme had no similarity to any sequences and no putative conserved domains. Protein homologs of the enzyme were distributed to limited fungal and bacterial species. Man134A released mannobiose (M2), mannotriose (M3), and mannotetraose (M4) but not mannopentaose (M5) or higher manno-oligosaccharides when galactose-free β-mannan was the substrate from the initial stage of the reaction, suggesting that Man134A preferentially reacts with β-mannan via a unique catalytic mode. Man134A had high catalytic efficiency (kcat/Km) toward mannohexaose (M6) compared with the endo-β-1,4-mannanase Man5C and notably converted M6 to M2, M3, and M4, with M3 being the predominant reaction product. The action of Man5C toward β-mannans was synergistic. The growth phenotype of a Man134A disruptant was poor when β-mannans were the sole carbon source, indicating that Man134A is involved in β-mannan degradation in vivo. These findings indicate a hitherto undiscovered mechanism of β-mannan degradation that is enhanced by the novel β-1,4-mannanase, Man134A, when combined with other mannanolytic enzymes including various endo-β-1,4-mannanases. PMID:26385921

  13. Changes of global gene expression and secondary metabolite accumulation during light-dependent Aspergillus nidulans development.

    PubMed

    Bayram, Özgür; Feussner, Kirstin; Dumkow, Marc; Herrfurth, Cornelia; Feussner, Ivo; Braus, Gerhard H

    2016-02-01

    Fungal development and secondary metabolite production are coordinated by regulatory complexes as the trimeric velvet complex. Light accelerates asexual but decreases sexual development of the filamentous fungus Aspergillus nidulans. Changes in gene expression and secondary metabolite accumulation in response to environmental stimuli have been the focus of many studies, but a comprehensive comparison during entire development is lacking. We compared snapshots of transcript and metabolite profiles during fungal development in dark or light. Overall 2.014 genes corresponding to 19% of the genome were differentially expressed when submerged vegetative hyphae were compared to surface development. Differentiation was preferentially asexual in light or preferentially sexual connected to delayed asexual development in dark. Light induces significantly gene expression within the first 24-48h after the transfer to surfaces. Many light induced genes are also expressed in dark after a delay of up to two days, which might be required for preparation of enhanced sexual development. Darkness results in a massive transcriptional reprogramming causing a peak of lipid-derived fungal pheromone synthesis (psi factors) during early sexual development and the expression of genes for cell-wall degradation presumably to mobilize the energy for sexual differentiation. Accumulation of secondary metabolites like antitumoral terrequinone A or like emericellamide start under light conditions, whereas the mycotoxin sterigmatocystin or asperthecin and emodin appear under dark conditions during sexual development. Amino acid synthesis and pool rapidly drop after 72-96h in dark. Subsequent initiation of apoptotic cell-death pathways in darkness happens significantly later than in light. This illustrates that fungal adaptation in differentiation and secondary metabolite production to light conditions requires the reprogramming of one fifth of the potential of its genome.

  14. The Aspergillus nidulans npeA locus consists of three contiguous genes required for penicillin biosynthesis.

    PubMed Central

    MacCabe, A P; Riach, M B; Unkles, S E; Kinghorn, J R

    1990-01-01

    Clones of Aspergillus nidulans genomic DNA spanning 20 kb have been isolated and shown by a combination of classical and molecular genetic means to represent the npeA locus, previously found to be one of four loci (npeA, npeB, npeC and npeD) involved in the synthesis of penicillin. As well as containing the gene encoding the second enzyme for penicillin biosynthesis, namely isopenicillin N synthetase (IPNS) (designated ipnA), our results show that these clones (pSTA200, pSTA201 and pSTA207) contain two more genes to form a cluster of three contiguous penicillin biosynthetic genes. Our evidence suggests that these genes encode delta (L-alpha-aminoadipyl)-L-cysteinyl-D-valine synthetase (ACVS) and acyl transferase (ACYT) (designated acvA and acyA respectively), the first and third enzymes required for penicillin biosynthesis, with the gene order being acvA-ipnA-acyA. Transcripts have been identified for the three genes and their approximate sizes determined--acvA 9.5 kb, ipnA 1.4 kb and acyA 1.6 kb. All three mRNA species are observed in cells grown in fermentation medium but not in cells grown in minimal medium, suggesting that the control of penicillin biosynthesis is, in part, at the level of mRNA accumulation. Finally our results show that acvA and ipnA genes are divergently transcribed, whilst acyA is transcribed in the same orientation as ipnA. Images Fig. 2. Fig. 4. Fig. 5. Fig. 6. Fig. 7. Fig. 8. PMID:2403928

  15. A putative APSES transcription factor is necessary for normal growth and development of Aspergillus nidulans.

    PubMed

    Lee, Ji-Yeon; Kim, Lee-Han; Kim, Ha-Eun; Park, Jae-Sin; Han, Kap-Hoon; Han, Dong-Min

    2013-12-01

    The nsdD gene encoding a GATA type transcription factor positively controls sexual development in Aspergillus nidulans. According to microarray data, 20 genes that were upregulated by deleting nsdD during various life cycle stages were randomly selected and deleted for functional analysis. None of the mutants showed apparent changes in growth or development compared with those of the wild-type except the AN3154 gene that encodes a putative APSES transcription factor and is an ortholog of Saccharomyces cerevisiae swi4. Deleting AN3154 resulted in retarded growth and development, and the gene was named rgdA (retared growth and development). The rgdA deletion mutant developed a reduced number of conidia even under favorable conditions for asexual development. The retarded growth and development was partially suppressed by the veA1 mutation. The conidial heads of the mutant aborted, showing reduced and irregular shaped phialides. Fruiting body development was delayed compared with that in the wild-type. The mutant did not respond to various nutritional or environmental factors that affected the development patterns. The rgdA gene was expressed at low levels throughout the life cycle and was not significantly affected by several regulators of sexual and asexual development such as nsdD, veA, stuA, or brlA. However, the rgdA gene affected brlA and abaA expression, which function as key regulators of asexual sporulation, suggesting that rgdA functions upstream of those genes.

  16. A Role for NIMA in the Nuclear Localization of Cyclin B in Aspergillus nidulans

    PubMed Central

    Wu, L.; Osmani, S.A.; Mirabito, P.M.

    1998-01-01

    NIMA promotes entry into mitosis in late G2 by some mechanism that is after activation of the Aspergillus nidulans G2 cyclin-dependent kinase, NIMXCDC2/NIMECyclin B. Here we present two independent lines of evidence which indicate that this mechanism involves control of NIMXCDC2/NIMECyclin B localization. First, we found that NIMECyclin B localized to the nucleus and the nucleus-associated organelle, the spindle pole body, in a NIMA-dependent manner. Analysis of cells from asynchronous cultures, synchronous cultures, and cultures arrested in S or G2 showed that NIMECyclin B was predominantly nuclear during interphase, with maximal nuclear accumulation in late G2. NIMXCDC2 colocalized with NIMECyclin B in G2 cells. Although inactivation of NIMA using either the nimA1 or nimA5 temperature-sensitive mutations blocked cells in G2, NIMXCDC2/NIMECyclin B localization was predominantly cytoplasmic rather than nuclear. Second, we found that nimA interacts genetically with sonA, which is a homologue of the yeast nucleocytoplasmic transporter GLE2/RAE1. Mutations in sonA were identified as allele-specific suppressors of nimA1. The sonA1 suppressor alleviated the nuclear division and NIMECyclin B localization defects of nimA1 cells without markedly increasing NIMXCDC2 or NIMA kinase activity. These results indicate that NIMA promotes the nuclear localization of the NIMXCDC2/ NIMECyclin B complex, by a process involving SONA. This mechanism may be involved in coordinating the functions of NIMXCDC2 and NIMA in the regulation of mitosis. PMID:9647650

  17. Improvement of Aspergillus nidulans penicillin production by targeting AcvA to peroxisomes.

    PubMed

    Herr, Andreas; Fischer, Reinhard

    2014-09-01

    Aspergillus nidulans is able to synthesize penicillin and serves as a model to study the regulation of its biosynthesis. Only three enzymes are required to form the beta lactam ring tripeptide, which is comprised of l-cysteine, l-valine and l-aminoadipic acid. Whereas two enzymes, AcvA and IpnA localize to the cytoplasm, AatA resides in peroxisomes. Here, we tested a novel strategy to improve penicillin production, namely the change of the residence of the enzymes involved in the biosynthesis. We tested if targeting of AcvA or IpnA (or both) to peroxisomes would increase the penicillin yield. Indeed, AcvA peroxisomal targeting led to a 3.2-fold increase. In contrast, targeting IpnA to peroxisomes caused a complete loss of penicillin production. Overexpression of acvA, ipnA or aatA resulted in 1.4, 2.8 and 3.1-fold more penicillin, respectively in comparison to wildtype. Simultaneous overexpression of all three enzymes resulted even in 6-fold more penicillin. Combination of acvA peroxisomal targeting and overexpression of the gene led to 5-fold increase of the penicillin titer. At last, the number of peroxisomes was increased through overexpression of pexK. A strain with the double number of peroxisomes produced 2.3 times more penicillin. These results show that penicillin production can be triggered at several levels of regulation, one of which is the subcellular localization of the enzymes. Copyright © 2014 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  18. Proteolytic activation of both components of the cation stress–responsive Slt pathway in Aspergillus nidulans

    PubMed Central

    Mellado, Laura; Arst, Herbert N.; Espeso, Eduardo A.

    2016-01-01

    Tolerance of Aspergillus nidulans to alkalinity and elevated cation concentrations requires both SltA and SltB. Transcription factor SltA and the putative pseudokinase/protease signaling protein SltB comprise a regulatory pathway specific to filamentous fungi. In vivo, SltB is proteolytically cleaved into its two principal domains. Mutational analysis defines a chymotrypsin-like serine protease domain that mediates SltB autoproteolysis and proteolytic cleavage of SltA. The pseudokinase domain might modulate the protease activity of SltB. Three forms of the SltA transcription factor coexist in cells: a full-length, 78-kDa version and a processed, 32-kDa form, which is found in phosphorylated and unphosphorylated states. The SltA32kDa version mediates transcriptional regulation of sltB and, putatively, genes required for tolerance to cation stress and alkalinity. The full-length form, SltA78kDa, apparently has no transcriptional function. In the absence of SltB, only the primary product of SltA is detectable, and its level equals that of SltA78kDa. Mutations in sltB selected as suppressors of null vps alleles and resulting in cation/alkalinity sensitivity either reduced or eliminated SltA proteolysis. There is no evidence for cation or alkalinity regulation of SltB cleavage, but activation of sltB expression requires SltA. This work identifies the molecular mechanisms governing the Slt pathway. PMID:27307585

  19. Proteolytic activation of both components of the cation stress-responsive Slt pathway in Aspergillus nidulans.

    PubMed

    Mellado, Laura; Arst, Herbert N; Espeso, Eduardo A

    2016-08-15

    Tolerance of Aspergillus nidulans to alkalinity and elevated cation concentrations requires both SltA and SltB. Transcription factor SltA and the putative pseudokinase/protease signaling protein SltB comprise a regulatory pathway specific to filamentous fungi. In vivo, SltB is proteolytically cleaved into its two principal domains. Mutational analysis defines a chymotrypsin-like serine protease domain that mediates SltB autoproteolysis and proteolytic cleavage of SltA. The pseudokinase domain might modulate the protease activity of SltB. Three forms of the SltA transcription factor coexist in cells: a full-length, 78-kDa version and a processed, 32-kDa form, which is found in phosphorylated and unphosphorylated states. The SltA32kDa version mediates transcriptional regulation of sltB and, putatively, genes required for tolerance to cation stress and alkalinity. The full-length form, SltA78kDa, apparently has no transcriptional function. In the absence of SltB, only the primary product of SltA is detectable, and its level equals that of SltA78kDa. Mutations in sltB selected as suppressors of null vps alleles and resulting in cation/alkalinity sensitivity either reduced or eliminated SltA proteolysis. There is no evidence for cation or alkalinity regulation of SltB cleavage, but activation of sltB expression requires SltA. This work identifies the molecular mechanisms governing the Slt pathway. © 2016 Mellado et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  20. Variability of Aspergillus nidulans antigens with media and time and temperature of growth.

    PubMed Central

    Calera, J A; López-Medrano, R; Ovejero, M C; Puente, P; Leal, F

    1994-01-01

    The influence of culture medium and time and temperature of growth on the appearance of Aspergillus nidulans antigens was determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, followed by silver staining or Western blot (immunoblot), of the proteins present in total cellular extracts or culture supernatants. Samples in the exponential, deceleration, and stationary growth phases were selected by biochemical, morphological, and ultrastructural criteria. Protein and antigen patterns (detected with rabbit antibodies) from total extracts were very similar in all cases, and the major differences observed seemed to depend on the age of the cultures. Culture supernatant patterns were highly dependent on the type of medium (complex or defined) and the age of the culture. Temperature did not significantly influence these results. The reproducible reactivity of selected human sera from aspergilloma-affected individuals was strictly associated with the use of defined media, especially Czapek Dox-AOAC, in both total extracts and culture supernatants. Extended growth times were necessary in the case of metabolic antigens (those obtained from culture supernatants). Screening of a battery of 10 selected human serum samples from patients with aspergilloma or invasive aspergillosis demonstrated that two of the antigens (96 to 98 and 45 kDa) from stationary-phase culture supernatants in Czapek Dox-AOAC medium were consistently reactive. When considered together as one unit, both antigens reacted with more than 50% of the sera, and at least one or the other of the antigens reacted with more than 90% of the sera. Less consistent results were obtained for two somatic antigens (from total cell extracts) of 45 to 50 and 20 to 22 kDa. Images PMID:8188355

  1. The facC Gene of Aspergillus nidulans Encodes an Acetate-Inducible Carnitine Acetyltransferase

    PubMed Central

    Stemple, Christopher J.; Davis, Meryl A.; Hynes, Michael J.

    1998-01-01

    Mutations in the facC gene of Aspergillus nidulans result in an inability to use acetate as a sole carbon source. This gene has been cloned by complementation. The proposed translation product of the facC gene has significant similarity to carnitine acetyltransferases (CAT) from other organisms. Total CAT activity was found to be inducible by acetate and fatty acids and repressed by glucose. Acetate-inducible activity was found to be absent in facC mutants, while fatty acid-inducible activity was absent in an acuJ mutant. Acetate induction of facC expression was dependent on the facB regulatory gene, and an expressed FacB fusion protein was demonstrated to bind to 5′ facC sequences. Carbon catabolite repression of facC expression was affected by mutations in the creA gene and a CreA fusion protein bound to 5′ facC sequences. Mutations in the acuJ gene led to increased acetate induction of facC expression and also of an amdS-lacZ reporter gene, and it is proposed that this results from accumulation of acetate, as well as increased expression of facB. A model is presented in which facC encodes a cytosolic CAT enzyme, while a different CAT enzyme, which is acuJ dependent, is present in peroxisomes and mitochondria, and these activities are required for the movement of acetyl groups between intracellular compartments. PMID:9829933

  2. Aspergillus nidulans VeA subcellular localization is dependent on the importin alpha carrier and on light.

    PubMed

    Stinnett, Suzanne M; Espeso, Eduardo A; Cobeño, Laura; Araújo-Bazán, Lidia; Calvo, Ana M

    2007-01-01

    The veA gene is a light-dependent regulator governing development and secondary metabolism in Aspergillus nidulans. We have identified a putative bipartite nuclear localization signal (NLS) motif in the A. nidulans VeA amino acid sequence and demonstrated its functionality when expressed in yeast. Furthermore, migration of VeA to the nucleus was dependent on the importin alpha. This bipartite NLS is also functional when VeA is expressed in A. nidulans. Interestingly, we found that VeA migration to the nucleus is light-dependent. While in the dark VeA is located mainly in the nuclei, under light VeA is found abundantly in the cytoplasm. The VeA1 mutant protein (lacking the first 36 amino acids at the N-terminus) was found predominantly in the cytoplasm independent of illumination. This indicates that the truncated bipartite NLS in VeA1 is not functional and fails to respond to light. These results might explain the lack of the morphological light-dependent response in strains carrying the veA1 allele. We also evaluated the effect of light on production of the mycotoxin sterigmatocystin in a veA wild-type and the veA1 mutant strains and found that the highest amount of toxin was produced by the veA+ strain growing in the dark, condition favouring accumulation of VeA in the nucleus.

  3. Effect of biotransformation by liver S9 enzymes on the mutagenicity and cytotoxicity of melanin extracted from Aspergillus nidulans.

    PubMed

    de Cássia Ribeiro Gonçalves, Rita; Rezende Kitagawa, Rodrigo; Aparecida Varanda, Eliana; Stella Gonçalves Raddi, Maria; Andrea Leite, Carla; Regina Pombeiro Sponchiado, Sandra

    2016-01-01

    A mutant that exhibited increased melanin pigment production was isolated from Aspergillus nidulans fungus. This pigment has aroused biotechnological interest due to its photoprotector and antioxidant properties. In a recent study, we showed that melanin from A. nidulans also inhibits NO and TNF-α production. The present study evaluates the mutagenicity and cytotoxicity of melanin extracted from A. nidulans after its exposure to liver S9 enzymes. The cytotoxicity of multiple concentrations of melanin (31.2-500 μg/mL) against the McCoy cell line was evaluated using the Neutral Red assay, after incubation for 24 h. Mutagenicity was assessed using the Ames test with the Salmonella typhimurium strains TA98, TA97a, TA100, and TA102 at concentrations ranging from 125 μg/plate to 1 mg/plate after incubation for 48 h. The cytotoxicity of A. nidulans melanin after incubation with S9 enzymes was less than (CI50 value= 413.4 ± 3.1 μg/mL) that of other toxins, such as cyclophosphamide (CI50 value = 15 ± 1.2 μg/mL), suggesting that even the metabolised pigment does not cause significant damage to cellular components at concentrations up to 100 μg/mL. In addition, melanin did not exhibit mutagenic properties against the TA 97a, TA 98, TA 100, or TA 102 strains of S. typhimurium, as shown by a mutagenic index (MI)  <2 in all assays. The significance of these results supports the use of melanin as a therapeutic reagent because it possesses low cytotoxicity and mutagenic potential, even when processed through an external metabolising system.

  4. A novel thermostable xylanase GH10 from Malbranchea pulchella expressed in Aspergillus nidulans with potential applications in biotechnology.

    PubMed

    Ribeiro, Liliane Fc; De Lucas, Rosymar C; Vitcosque, Gabriela L; Ribeiro, Lucas F; Ward, Richard J; Rubio, Marcelo V; Damásio, Andre Rl; Squina, Fabio M; Gregory, Rebecca C; Walton, Paul H; Jorge, João A; Prade, Rolf A; Buckeridge, Marcos S; Polizeli, Maria de Lourdes Tm

    2014-01-01

    The search for novel thermostable xylanases for industrial use has intensified in recent years, and thermophilic fungi are a promising source of useful enzymes. The present work reports the heterologous expression and biochemical characterization of a novel thermostable xylanase (GH10) from the thermophilic fungus Malbranchea pulchella, the influence of glycosylation on its stability, and a potential application in sugarcane bagasse hydrolysis. Xylanase MpXyn10A was overexpressed in Aspergillus nidulans and was active against birchwood xylan, presenting an optimum activity at pH 5.8 and 80°C. MpXyn10A was 16% glycosylated and thermostable, preserving 85% activity after 24 hours at 65°C, and deglycosylation did not affect thermostability. Circular dichroism confirmed the high alpha-helical content consistent with the canonical GH10 family (β/α)8 barrel fold observed in molecular modeling. Primary structure analysis revealed the existence of eight cysteine residues which could be involved in four disulfide bonds, and this could explain the high thermostability of this enzyme even in the deglycosylated form. MpXyn10A showed promising results in biomass degradation, increasing the amount of reducing sugars in bagasse in natura and in three pretreated sugarcane bagasses. MpXyn10A was successfully secreted in Aspergillus nidulans, and a potential use for sugarcane bagasse biomass degradation was demonstrated.

  5. Characterization of the bZip-type transcription factor NapA with reference to oxidative stress response in Aspergillus nidulans.

    PubMed

    Asano, Yoshihiro; Hagiwara, Daisuke; Yamashino, Takafumi; Mizuno, Takeshi

    2007-07-01

    Microorganisms growing in natural habitats are constantly confronted with a wide variety of external stresses. Here we provide several lines of experimental evidence for the thesis that the filamentous fungus Aspergillus nidulans has a homolog of the AP-1-like bZip transcription factor, which is known to play general roles in oxidative responses in many types of yeast.

  6. Characterization of the Aspergillus nidulans aspnd1 gene demonstrates that the ASPND1 antigen, which it encodes, and several Aspergillus fumigatus immunodominant antigens belong to the same family.

    PubMed Central

    Calera, J A; Ovejero, M C; López-Medrano, R; Segurado, M; Puente, P; Leal, F

    1997-01-01

    For the first time, an immunodominant Aspergillus nidulans antigen (ASPND1) consistently reactive with serum samples from aspergilloma patients has been purified and characterized, and its coding gene (aspnd1) has been cloned and sequenced. ASPND1 is a glycoprotein with four N-glycosidically-bound sugar chains (around 2.1 kDa each) which are not necessary for reactivity with immune human sera. The polypeptide part is synthesized as a 277-amino-acid precursor of 30.6 kDa that after cleavage of a putative signal peptide of 16 amino acids, affords a mature protein of 261 amino acids with a molecular mass of 29 kDa and a pI of 4.24 (as deduced from the sequence). The ASPND1 protein is 53.1% identical to the AspfII allergen from Aspergillus fumigatus and 48% identical to an unpublished Candida albicans antigen. All of the cysteine residues and most of the glycosylation sites are perfectly conserved in the three proteins, suggesting a similar but yet unknown function. Analysis of the primary structure of the ASPND1 coding gene (aspnd1) has allowed the establishment of a clear relationship between several previously reported A. fumigatus and A. nidulans immunodominant antigens. PMID:9119471

  7. Analysis of the ionic interaction between the hydrophobin RodA and two cutinases of Aspergillus nidulans obtained via an Aspergillus oryzae expression system.

    PubMed

    Tanaka, Takumi; Nakayama, Mayumi; Takahashi, Toru; Nanatani, Kei; Yamagata, Youhei; Abe, Keietsu

    2017-03-01

    Hydrophobins are amphipathic secretory proteins with eight conserved cysteine residues and are ubiquitous among filamentous fungi. In the fungus Aspergillus oryzae, the hydrophobin RolA and the polyesterase CutL1 are co-expressed when the sole available carbon source is the biodegradable polyester polybutylene succinate-co-adipate (PBSA). RolA promotes the degradation of PBSA by attaching to the particle surface, changing its structure and interacting with CutL1 to concentrate CutL1 on the PBSA surface. We previously reported that positively charged residues in RolA and negatively charged residues in CutL1 are cooperatively involved in the ionic interaction between RolA and CutL1. We also reported that hydrophobin RodA of the model fungus Aspergillus nidulans, which was obtained via an A. oryzae expression system, interacted via ionic interactions with CutL1. In the present study, phylogenetic and alignment analyses revealed that the N-terminal regions of several RolA orthologs contained positively charged residues and that the corresponding negatively charged residues on the surface of CutL1 that were essential for the RolA-CutL1 interaction were highly conserved in several CutL1 orthologs. A PBSA microparticle degradation assay, a pull-down assay using a dispersion of Teflon particles, and a kinetic analysis using a quartz crystal microbalance revealed that recombinant A. nidulans RodA interacted via ionic interactions with two recombinant A. nidulans cutinases. Together, these results imply that ionic interactions between hydrophobins and cutinases may be common among aspergilli and other filamentous fungi.

  8. A second component of the SltA-dependent cation tolerance pathway in Aspergillus nidulans

    PubMed Central

    Mellado, Laura; Calcagno-Pizarelli, Ana Maria; Lockington, Robin A.; Cortese, Marc S.; Kelly, Joan M.; Arst, Herbert N.; Espeso, Eduardo A.

    2015-01-01

    The transcriptional response to alkali metal cation stress is mediated by the zinc finger transcription factor SltA in Aspergillus nidulans and probably in other fungi of the pezizomycotina subphylum. A second component of this pathway has been identified and characterized. SltB is a 1272 amino acid protein with at least two putative functional domains, a pseudo-kinase and a serine-endoprotease, involved in signaling to the transcription factor SltA. Absence of SltB activity results in nearly identical phenotypes to those observed for a null sltA mutant. Hypersensitivity to a variety of monovalent and divalent cations, and to medium alkalinization are among the phenotypes exhibited by a null sltB mutant. Calcium homeostasis is an exception and this cation improves growth of sltΔ mutants. Moreover, loss of kinase HalA in conjunction with loss-of-function sltA or sltB mutations leads to pronounced calcium auxotrophy. sltA sltB double null mutants display a cation stress sensitive phenotype indistinguishable from that of single slt mutants showing the close functional relationship between these two proteins. This functional relationship is reinforced by the fact that numerous mutations in both slt loci can be isolated as suppressors of poor colonial growth resulting from certain null vps (vacuolar protein sorting) mutations. In addition to allowing identification of sltB, our sltB missense mutations enabled prediction of functional regions in the SltB protein. Although the relationship between the Slt and Vps pathways remains enigmatic, absence of SltB, like that of SltA, leads to vacuolar hypertrophy. Importantly, the phenotypes of selected sltA and sltB mutations demonstrate that suppression of null vps mutations is not dependent on the inability to tolerate cation stress. Thus a specific role for both SltA and SltB in the VPS pathway seems likely. Finally, it is noteworthy that SltA and SltB have a similar, limited phylogenetic distribution, being restricted to

  9. A second component of the SltA-dependent cation tolerance pathway in Aspergillus nidulans.

    PubMed

    Mellado, Laura; Calcagno-Pizarelli, Ana Maria; Lockington, Robin A; Cortese, Marc S; Kelly, Joan M; Arst, Herbert N; Espeso, Eduardo A

    2015-09-01

    The transcriptional response to alkali metal cation stress is mediated by the zinc finger transcription factor SltA in Aspergillus nidulans and probably in other fungi of the pezizomycotina subphylum. A second component of this pathway has been identified and characterized. SltB is a 1272 amino acid protein with at least two putative functional domains, a pseudo-kinase and a serine-endoprotease, involved in signaling to the transcription factor SltA. Absence of SltB activity results in nearly identical phenotypes to those observed for a null sltA mutant. Hypersensitivity to a variety of monovalent and divalent cations, and to medium alkalinization are among the phenotypes exhibited by a null sltB mutant. Calcium homeostasis is an exception and this cation improves growth of sltΔ mutants. Moreover, loss of kinase HalA in conjunction with loss-of-function sltA or sltB mutations leads to pronounced calcium auxotrophy. sltA sltB double null mutants display a cation stress sensitive phenotype indistinguishable from that of single slt mutants showing the close functional relationship between these two proteins. This functional relationship is reinforced by the fact that numerous mutations in both slt loci can be isolated as suppressors of poor colonial growth resulting from certain null vps (vacuolar protein sorting) mutations. In addition to allowing identification of sltB, our sltB missense mutations enabled prediction of functional regions in the SltB protein. Although the relationship between the Slt and Vps pathways remains enigmatic, absence of SltB, like that of SltA, leads to vacuolar hypertrophy. Importantly, the phenotypes of selected sltA and sltB mutations demonstrate that suppression of null vps mutations is not dependent on the inability to tolerate cation stress. Thus a specific role for both SltA and SltB in the VPS pathway seems likely. Finally, it is noteworthy that SltA and SltB have a similar, limited phylogenetic distribution, being restricted to

  10. Application of a New Dual Localization-Affinity Purification Tag Reveals Novel Aspects of Protein Kinase Biology in Aspergillus nidulans

    PubMed Central

    De Souza, Colin P.; Hashmi, Shahr B.; Osmani, Aysha H.; Osmani, Stephen A.

    2014-01-01

    Filamentous fungi occupy critical environmental niches and have numerous beneficial industrial applications but devastating effects as pathogens and agents of food spoilage. As regulators of essentially all biological processes protein kinases have been intensively studied but how they regulate the often unique biology of filamentous fungi is not completely understood. Significant understanding of filamentous fungal biology has come from the study of the model organism Aspergillus nidulans using a combination of molecular genetics, biochemistry, cell biology and genomic approaches. Here we describe dual localization-affinity purification (DLAP) tags enabling endogenous N or C-terminal protein tagging for localization and biochemical studies in A. nidulans. To establish DLAP tag utility we endogenously tagged 17 protein kinases for analysis by live cell imaging and affinity purification. Proteomic analysis of purifications by mass spectrometry confirmed association of the CotA and NimXCdk1 kinases with known binding partners and verified a predicted interaction of the SldABub1/R1 spindle assembly checkpoint kinase with SldBBub3. We demonstrate that the single TOR kinase of A. nidulans locates to vacuoles and vesicles, suggesting that the function of endomembranes as major TOR cellular hubs is conserved in filamentous fungi. Comparative analysis revealed 7 kinases with mitotic specific locations including An-Cdc7 which unexpectedly located to mitotic spindle pole bodies (SPBs), the first such localization described for this family of DNA replication kinases. We show that the SepH septation kinase locates to SPBs specifically in the basal region of apical cells in a biphasic manner during mitosis and again during septation. This results in gradients of SepH between G1 SPBs which shift along hyphae as each septum forms. We propose that SepH regulates the septation initiation network (SIN) specifically at SPBs in the basal region of G1 cells and that localized gradients

  11. Bacteria-induced natural product formation in the fungus Aspergillus nidulans requires Saga/Ada-mediated histone acetylation.

    PubMed

    Nützmann, Hans-Wilhelm; Reyes-Dominguez, Yazmid; Scherlach, Kirstin; Schroeckh, Volker; Horn, Fabian; Gacek, Agnieszka; Schümann, Julia; Hertweck, Christian; Strauss, Joseph; Brakhage, Axel A

    2011-08-23

    Sequence analyses of fungal genomes have revealed that the potential of fungi to produce secondary metabolites is greatly underestimated. In fact, most gene clusters coding for the biosynthesis of antibiotics, toxins, or pigments are silent under standard laboratory conditions. Hence, it is one of the major challenges in microbiology to uncover the mechanisms required for pathway activation. Recently, we discovered that intimate physical interaction of the important model fungus Aspergillus nidulans with the soil-dwelling bacterium Streptomyces rapamycinicus specifically activated silent fungal secondary metabolism genes, resulting in the production of the archetypal polyketide orsellinic acid and its derivatives. Here, we report that the streptomycete triggers modification of fungal histones. Deletion analysis of 36 of 40 acetyltransferases, including histone acetyltransferases (HATs) of A. nidulans, demonstrated that the Saga/Ada complex containing the HAT GcnE and the AdaB protein is required for induction of the orsellinic acid gene cluster by the bacterium. We also showed that Saga/Ada plays a major role for specific induction of other biosynthesis gene clusters, such as sterigmatocystin, terrequinone, and penicillin. Chromatin immunoprecipitation showed that the Saga/Ada-dependent increase of histone 3 acetylation at lysine 9 and 14 occurs during interaction of fungus and bacterium. Furthermore, the production of secondary metabolites in A. nidulans is accompanied by a global increase in H3K14 acetylation. Increased H3K9 acetylation, however, was only found within gene clusters. This report provides previously undescribed evidence of Saga/Ada dependent histone acetylation triggered by prokaryotes.

  12. Genetic Interactions of the Aspergillus nidulans atmAATM Homolog With Different Components of the DNA Damage Response Pathway

    PubMed Central

    Malavazi, Iran; Lima, Joel Fernandes; de Castro, Patrícia Alves; Savoldi, Marcela; de Souza Goldman, Maria Helena; Goldman, Gustavo Henrique

    2008-01-01

    Ataxia telangiectasia mutated (ATM) is a phosphatidyl-3-kinase-related protein kinase that functions as a central regulator of the DNA damage response in eukaryotic cells. In humans, mutations in ATM cause the devastating neurodegenerative disease ataxia telangiectasia. Previously, we characterized the homolog of ATM (AtmA) in the filamentous fungus Aspergillus nidulans. In addition to its expected role in the DNA damage response, we found that AtmA is also required for polarized hyphal growth. Here, we extended these studies by investigating which components of the DNA damage response pathway are interacting with AtmA. The AtmAATM loss of function caused synthetic lethality when combined with mutation in UvsBATR. Our results suggest that AtmA and UvsB are interacting and they are probably partially redundant in terms of DNA damage sensing and/or repairing and polar growth. We identified and inactivated A. nidulans chkACHK1 and chkBCHK2 genes. These genes are also redundantly involved in A. nidulans DNA damage response. We constructed several combinations of double mutants for ΔatmA, ΔuvsB, ΔchkA, and ΔchkB. We observed a complex genetic relationship with these mutations during the DNA replication checkpoint and DNA damage response. Finally, we observed epistatic and synergistic interactions between AtmA, and bimEAPC1, ankAWEE1 and the cdc2-related kinase npkA, at S-phase checkpoint and in response to DNA-damaging agents. PMID:18245360

  13. Phosphopantetheinyl Transferase CfwA/NpgA Is Required for Aspergillus nidulans Secondary Metabolism and Asexual Development▿ †

    PubMed Central

    Márquez-Fernández, Olivia; Trigos, Ángel; Ramos-Balderas, Jose Luis; Viniegra-González, Gustavo; Deising, Holger B.; Aguirre, Jesús

    2007-01-01

    Polyketide synthases (PKSs) and/or nonribosomal peptide synthetases (NRPSs) are central components of secondary metabolism in bacteria, plants, and fungi. In filamentous fungi, diverse PKSs and NRPSs participate in the biosynthesis of secondary metabolites such as pigments, antibiotics, siderophores, and mycotoxins. However, many secondary metabolites as well as the enzymes involved in their production are yet to be discovered. Both PKSs and NRPSs require activation by enzyme members of the 4′-phosphopantetheinyl transferase (PPTase) family. Here, we report the isolation and characterization of Aspergillus nidulans strains carrying conditional (cfwA2) and null (ΔcfwA) mutant alleles of the cfwA gene, encoding an essential PPTase. We identify the polyketides shamixanthone, emericellin, and dehydroaustinol as well as the sterols ergosterol, peroxiergosterol, and cerevisterol in extracts from A. nidulans large-scale cultures. The PPTase CfwA/NpgA was required for the production of these polyketide compounds but dispensable for ergosterol and cerevisterol and for fatty acid biosynthesis. The asexual sporulation defects of cfwA, ΔfluG, and ΔtmpA mutants were not rescued by the cfwA-dependent compounds identified here. However, a cfwA2 mutation enhanced the sporulation defects of both ΔtmpA and ΔfluG single mutants, suggesting that unidentified CfwA-dependent PKSs and/or NRPSs are involved in the production of hitherto-unknown compounds required for sporulation. Our results expand the number of known and predicted secondary metabolites requiring CfwA/NpgA for their biosynthesis and, together with the phylogenetic analysis of fungal PPTases, suggest that a single PPTase is responsible for the activation of all PKSs and NRPSs in A. nidulans. PMID:17277172

  14. Cytological characterization of an Aspergillus Nidulans mutant from a strain with chromosomic duplication

    PubMed Central

    Giancoli, Ágata Cristiane Huppert; de Azevedo, João Lúcio; Pizzirani-Kleiner, Aline Aparecida

    2010-01-01

    A development mutant, named V103, was obtained spontaneously from the A strain of A. nidulans. The A strain contains a duplicated segment of chromosome I that has undergone translocation to chromosome II (I II). It is mitotically unstable and generates phenotypically deteriorated types, some with enhanced stability. The deteriorated variants of A. nidulans show abnormal development, exhibiting slower colony growth, variations in colony pigmentation and changes in conidiophore structure. The alterations observed in the conidiophore include fewer metulae and phialides, further elongation and ramification of these structures, delayed nuclear migration and the presence of secondary conidiophores. PMID:24031489

  15. Comprehensive annotation of secondary metabolite biosynthetic genes and gene clusters of Aspergillus nidulans, A. fumigatus, A. niger and A. oryzae

    PubMed Central

    2013-01-01

    Background Secondary metabolite production, a hallmark of filamentous fungi, is an expanding area of research for the Aspergilli. These compounds are potent chemicals, ranging from deadly toxins to therapeutic antibiotics to potential anti-cancer drugs. The genome sequences for multiple Aspergilli have been determined, and provide a wealth of predictive information about secondary metabolite production. Sequence analysis and gene overexpression strategies have enabled the discovery of novel secondary metabolites and the genes involved in their biosynthesis. The Aspergillus Genome Database (AspGD) provides a central repository for gene annotation and protein information for Aspergillus species. These annotations include Gene Ontology (GO) terms, phenotype data, gene names and descriptions and they are crucial for interpreting both small- and large-scale data and for aiding in the design of new experiments that further Aspergillus research. Results We have manually curated Biological Process GO annotations for all genes in AspGD with recorded functions in secondary metabolite production, adding new GO terms that specifically describe each secondary metabolite. We then leveraged these new annotations to predict roles in secondary metabolism for genes lacking experimental characterization. As a starting point for manually annotating Aspergillus secondary metabolite gene clusters, we used antiSMASH (antibiotics and Secondary Metabolite Analysis SHell) and SMURF (Secondary Metabolite Unknown Regions Finder) algorithms to identify potential clusters in A. nidulans, A. fumigatus, A. niger and A. oryzae, which we subsequently refined through manual curation. Conclusions This set of 266 manually curated secondary metabolite gene clusters will facilitate the investigation of novel Aspergillus secondary metabolites. PMID:23617571

  16. The Aspergillus nidulans xprF gene encodes a hexokinase-like protein involved in the regulation of extracellular proteases.

    PubMed Central

    Katz, M E; Masoumi, A; Burrows, S R; Shirtliff, C G; Cheetham, B F

    2000-01-01

    The extracellular proteases of Aspergillus nidulans are produced in response to limitation of carbon, nitrogen, or sulfur, even in the absence of exogenous protein. Mutations in the A. nidulans xprF and xprG genes have been shown to result in elevated levels of extracellular protease in response to carbon limitation. The xprF gene was isolated and sequence analysis indicates that it encodes a 615-amino-acid protein, which represents a new type of fungal hexokinase or hexokinase-like protein. In addition to their catalytic role, hexokinases are thought to be involved in triggering carbon catabolite repression. Sequence analysis of the xprF1 and xprF2 alleles showed that both alleles contain nonsense mutations. No loss of glucose or fructose phosphorylating activity was detected in xprF1 or xprF2 mutants. There are two possible explanations for this observation: (1) the xprF gene may encode a minor hexokinase or (2) the xprF gene may encode a protein with no hexose phosphorylating activity. Genetic evidence suggests that the xprF and xprG genes are involved in the same regulatory pathway. Support for this hypothesis was provided by the identification of a new class of xprG(-) mutation that suppresses the xprF1 mutation and results in a protease-deficient phenotype. PMID:11102357

  17. Two separate gene clusters encode the biosynthetic pathway for the meroterpenoids, austinol and dehydroaustinol in Aspergillus nidulans

    PubMed Central

    Lo, Hsien-Chun; Entwistle, Ruth; Guo, Chun-Jun; Ahuja, Manmeet; Szewczyk, Edyta; Hung, Jui-Hsiang; Chiang, Yi-Ming; Oakley, Berl R.; Wang, Clay C. C.

    2012-01-01

    Meroterpenoids are a class of fungal natural products that are produced from polyketide and terpenoid precursors. An understanding of meroterpenoid biosynthesis at the genetic level should facilitate engineering of second-generation molecules and increasing production of first-generation compounds. The filamentous fungus Aspergillus nidulans has previously been found to produce two meroterpenoids, austinol and dehydroaustinol. Using targeted deletions that we created, we have determined that, surprisingly, two separate gene clusters are required for meroterpenoid biosynthesis. One is a cluster of four genes including a polyketide synthase gene, ausA. The second is a cluster of ten additional genes including a prenyltransferase gene, ausN, located on a separate chromosome. Chemical analysis of mutant extracts enabled us to isolate 3,5-dimethylorsellinic acid and ten additional meroterpenoids that are either intermediates or shunt products from the biosynthetic pathway. Six of them were identified as novel meroterpenoids in this study. Our data, in aggregate, allow us to propose a complete biosynthetic pathway for the A. nidulans meroterpenoids. PMID:22329759

  18. KdmA, a histone H3 demethylase with bipartite function, differentially regulates primary and secondary metabolism in Aspergillus nidulans.

    PubMed

    Gacek-Matthews, Agnieszka; Noble, Luke M; Gruber, Clemens; Berger, Harald; Sulyok, Michael; Marcos, Ana T; Strauss, Joseph; Andrianopoulos, Alex

    2015-05-01

    Aspergillus nidulans kdmA encodes a member of the KDM4 family of jumonji histone demethylase proteins, highly similar to metazoan orthologues both within functional domains and in domain architecture. This family of proteins exhibits demethylase activity towards lysines 9 and 36 of histone H3 and plays a prominent role in gene expression and chromosome structure in many species. Mass spectrometry mapping of A. nidulans histones revealed that around 3% of bulk histone H3 carried trimethylated H3K9 (H3K9me3) but more than 90% of histones carried either H3K36me2 or H3K36me3. KdmA functions as H3K36me3 demethylase and has roles in transcriptional regulation. Genetic manipulation of KdmA levels is tolerated without obvious effect in most conditions, but strong phenotypes are evident under various conditions of stress. Transcriptome analysis revealed that - in submerged early and late cultures - between 25% and 30% of the genome is under KdmA influence respectively. Transcriptional imbalance in the kdmA deletion mutant may contribute to the lethal phenotype observed upon exposure of mutant cells to low-density visible light on solid medium. Although KdmA acts as transcriptional co-repressor of primary metabolism genes, it is required for full expression of several genes involved in biosynthesis of secondary metabolites. © 2015 The Authors. Molecular Microbiology published by John Wiley & Sons Ltd.

  19. Six Hydrophobins Are Involved in Hydrophobin Rodlet Formation in Aspergillus nidulans and Contribute to Hydrophobicity of the Spore Surface

    PubMed Central

    Seidel, Constanze; Gutt, Beatrice; Röhrig, Julian; Strunk, Timo; Vincze, Paul; Walheim, Stefan; Schimmel, Thomas; Wenzel, Wolfgang; Fischer, Reinhard

    2014-01-01

    Hydrophobins are amphiphilic proteins able to self-assemble at water-air interphases and are only found in filamentous fungi. In Aspergillus nidulans two hydrophobins, RodA and DewA, have been characterized, which both localize on the conidiospore surface and contribute to its hydrophobicity. RodA is the constituent protein of very regularly arranged rodlets, 10 nm in diameter. Here we analyzed four more hydrophobins, DewB-E, in A. nidulans and found that all six hydrophobins contribute to the hydrophobic surface of the conidiospores but only deletion of rodA caused loss of the rodlet structure. Analysis of the rodlets in the dewB-E deletion strains with atomic force microscopy revealed that the rodlets appeared less robust. Expression of DewA and DewB driven from the rodA promoter and secreted with the RodA secretion signal in a strain lacking RodA, restored partly the hydrophobicity. DewA and B were able to form rodlets to some extent but never reached the rodlet structure of RodA. The rodlet-lacking rodA-deletion strain opens the possibility to systematically study rodlet formation of other natural or synthetic hydrophobins. PMID:24722460

  20. Six hydrophobins are involved in hydrophobin rodlet formation in Aspergillus nidulans and contribute to hydrophobicity of the spore surface.

    PubMed

    Grünbacher, André; Throm, Tanja; Seidel, Constanze; Gutt, Beatrice; Röhrig, Julian; Strunk, Timo; Vincze, Paul; Walheim, Stefan; Schimmel, Thomas; Wenzel, Wolfgang; Fischer, Reinhard

    2014-01-01

    Hydrophobins are amphiphilic proteins able to self-assemble at water-air interphases and are only found in filamentous fungi. In Aspergillus nidulans two hydrophobins, RodA and DewA, have been characterized, which both localize on the conidiospore surface and contribute to its hydrophobicity. RodA is the constituent protein of very regularly arranged rodlets, 10 nm in diameter. Here we analyzed four more hydrophobins, DewB-E, in A. nidulans and found that all six hydrophobins contribute to the hydrophobic surface of the conidiospores but only deletion of rodA caused loss of the rodlet structure. Analysis of the rodlets in the dewB-E deletion strains with atomic force microscopy revealed that the rodlets appeared less robust. Expression of DewA and DewB driven from the rodA promoter and secreted with the RodA secretion signal in a strain lacking RodA, restored partly the hydrophobicity. DewA and B were able to form rodlets to some extent but never reached the rodlet structure of RodA. The rodlet-lacking rodA-deletion strain opens the possibility to systematically study rodlet formation of other natural or synthetic hydrophobins.

  1. Antimutagenicity and antigenotoxicity of Aloe arborescens Miller and Aloe barbadensis Miller in Aspergillus nidulans and Wistar rats.

    PubMed

    Berti, A P; Palioto, G F; Rocha, C L M S C

    2016-09-02

    Medicinal plants such as Aloe arborescens Miller and Aloe barbadensis Miller are used by the general population to treat various diseases. Therefore, the aim of this study was to evaluate the antimutagenicity of these two species using a methG1 system in Aspergillus nidulans and the comet assay in rats. The animals were treated with the plants at concentrations of 360 and 720 mg/kg body weight (1 and 2, respectively) by gavage for 14 days, followed by the administration of etoposide on treatment day 8. Blood samples were prepared for analysis of DNA damage. For the test in A. nidulans, the biA1methG1 lineage conidia were treated for 4 h with both plant species at concentrations of 4 and 8% (w/v). Then, they were washed and plated on a selective medium for frequency analysis of survival and mutation. The results of the comet assay showed that both plants were antigenotoxic compared to etoposide, which was not a typical response of methG1 systems, where only the highest concentration of plant extracts usually exhibit beneficial effects. This study demonstrates the potential antigenotoxicity and antimutagenicity of the Aloe plants tested and, therefore, supports their use as a form of preventive therapy and for health maintenance by the population.

  2. The antifungal protein PAF interferes with PKC/MPK and cAMP/PKA signalling of Aspergillus nidulans.

    PubMed

    Binder, Ulrike; Oberparleiter, Christoph; Meyer, Vera; Marx, Florentine

    2010-01-01

    The Penicillium chrysogenum antifungal protein PAF inhibits polar growth and induces apoptosis in Aspergillus nidulans. We report here that two signalling cascades are implicated in its antifungal activity. PAF activates the cAMP/protein kinase A (Pka) signalling cascade. A pkaA deletion mutant exhibited reduced sensitivity towards PAF. This was substantiated by the use of pharmacological modulators: PAF aggravated the effect of the activator 8-Br-cAMP and partially relieved the repressive activity of caffeine. Furthermore, the Pkc/mitogen-activated protein kinase (Mpk) signalling cascade mediated basal resistance to PAF, which was independent of the small GTPase RhoA. Non-functional mutations of both genes resulted in hypersensitivity towards PAF. PAF did not increase MpkA phosphorylation or induce enzymes involved in the remodelling of the cell wall, which normally occurs in response to activators of the cell wall integrity pathway. Notably, PAF exposure resulted in actin gene repression and a deregulation of the chitin deposition at hyphal tips of A. nidulans, which offers an explanation for the morphological effects evoked by PAF and which could be attributed to the interconnection of the two signalling pathways. Thus, PAF represents an excellent tool to study signalling pathways in this model organism and to define potential fungal targets to develop new antifungals.

  3. The choC gene encoding a putative phospholipid methyltransferase is essential for growth and development in Aspergillus nidulans.

    PubMed

    Tao, Li; Gao, Na; Chen, Sanfeng; Yu, Jae-Hyuk

    2010-06-01

    Phosphatidylcholines (PCs) are a class of major cell membrane phospholipids that participate in many physiological processes. Three genes, choA, choB and choC, have been proposed to function in the endogenous biosynthesis of PC in Aspergillus nidulans. In this study, we characterize the choC gene encoding a putative highly conserved phospholipid methyltransferase. The previously reported choC3 mutant allele results from a mutation leading to the E177K amino acid substitution. The transcript of choC accumulates at high levels during vegetative growth and early asexual developmental phases. The deletion of choC causes severe impairment of vegetative growth, swelling of hyphal tips and the lack of both asexual and sexual development, suggesting the requirement of ChoC and PC in growth and development. Noticeably, supplementation of the mutant with the penultimate precursor of PC N, N-dimethylaminoethanol leads to full recovery of vegetative growth, but incomplete progression of asexual and sexual development, implying differential roles of PC and its intermediates in fungal growth and development. Importantly, while the choC deletion mutant shows reduced vegetative growth and precocious cell death until day 4, it regains hyphal proliferation and cell viability from day 5, indicating the presence of an alternative route for cellular membrane function in A. nidulans.

  4. Deletion of the RING-finger peroxin 2 gene in Aspergillus nidulans does not affect meiotic development.

    PubMed

    Hynes, Michael J; Murray, Sandra L; Kahn, Freya K

    2010-05-01

    Peroxins are required for protein import into peroxisomes as well as for peroxisome biogenesis and proliferation. Loss-of-function mutations in genes for the RING-finger peroxins Pex2, Pex10 and Pex12 lead to a specific block in meiosis in the ascomycete Podospora anserina. However, loss of protein import into peroxisomes does not result in this meiotic defect. Therefore, it has been suggested that these peroxins have a specific function required for meiosis. To determine whether this role is conserved in other filamentous fungi, we have deleted the gene encoding Pex2 in Aspergillus nidulans. The phenotypes resulting from this deletion are no different from those of previously isolated pex mutants affected in peroxisomal protein import, and viable ascospores are produced in selfed crosses. Therefore, the role of the RING-finger peroxins in meiosis is not conserved in filamentous ascomycetes.

  5. Sexual differentiation in Aspergillus nidulans: the requirement for manganese and the correlation between phosphoglucomutase and the synthesis of reserve material.

    PubMed

    Zonneveld, B J

    1975-10-27

    Aspergillus nidulans was completely devoid of fruit bodies when grown on manganese deficient cultures. This result was shown earlier to be due to a lack of alpha-1,3 glucan in the cell wall. Several enzymes of carbon and nitrogen metabolism were investigated in an attempt to explain the absence of this reserve material. Synthesis of glucose-6-phosphate dehydrogenase, phosphoglucoisomerase and aldolase, were not strongly affected by manganese deficiency. However, phosphoglucomutase showed only 60% of the activity of the control cultures and it was argued that this was connected with the low amounts of alpha-1,3 glucan synthesized. Malate dehydrogenase was the enzyme the least affected by manganese deficiency and the two to threefold higher activity measured after glucose depletion might indicate the induction of the glyoxylate cycle. An impaired glutamine synthetase could explain the increase in activity observed for NAD-glutamine dehydrogenase.

  6. Prevention of melanin formation during aryl alcohol oxidase production under growth-limited conditions using an Aspergillus nidulans cell factory.

    PubMed

    Pardo-Planas, Oscar; Prade, Rolf A; Müller, Michael; Atiyeh, Hasan K; Wilkins, Mark R

    2017-11-01

    An Aspergillus nidulans cell factory was genetically engineered to produce an aryl alcohol oxidase (AAO). The cell factory initiated production of melanin when growth-limited conditions were established using stationary plates and shaken flasks. This phenomenon was more pronounced when the strain was cultured in a trickle bed reactor (TBR). This study investigated different approaches to reduce melanin formation in fungal mycelia and liquid medium in order to increase the enzyme production yield. Removal of copper from the medium recipe reduced melanin formation in agar cultures and increased enzyme activities by 48% in agitated liquid cultures. Copper has been reported as a key element for tyrosinase, an enzyme responsible for melanin production. Ascorbic acid (0.44g/L) stopped melanin accumulation, did not affect growth parameters and resulted in AAO activity that was more than two-fold greater than a control treatment with no ascorbic acid. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Physiological and Biochemical Characterization of AnNitA, the Aspergillus nidulans High-Affinity Nitrite Transporter ▿

    PubMed Central

    Unkles, Shiela E.; Symington, Vicki F.; Kotur, Zorica; Wang, Ye; Siddiqi, M. Yaeesh; Kinghorn, James R.; Glass, Anthony D. M.

    2011-01-01

    High-affinity nitrite influx into mycelia of Aspergillus nidulans has been characterized by use of 13NO2−, giving average Km and Vmax values of 48 ± 8 μM and 228 ± 49 nmol mg−1 dry weight (DW) h−1, respectively. Kinetic analysis of a plot that included an additional large number of low-concentration fluxes gave an excellent monophasic fit (r2 = 0.96), with no indication of sigmoidal kinetics. Two-dimensional (2D) and three-dimensional (3D) models of AnNitA are presented, and the possible roles of conserved asparagine residues N122 (transmembrane domain 3 ]Tm 3]), N173 (Tm 4), N214 (Tm 5), and N246 (Tm 6) are discussed. PMID:22021238

  8. The septin AspB in Aspergillus nidulans forms bars and filaments and plays roles in growth emergence and conidiation.

    PubMed

    Hernández-Rodríguez, Yainitza; Hastings, Susan; Momany, Michelle

    2012-03-01

    In yeast, septins form rings at the mother-bud neck and function as diffusion barriers. In animals, septins form filaments that can colocalize with other cytoskeletal elements. In the filamentous fungus Aspergillus nidulans there are five septin genes, aspA (an ortholog of Saccharomyces cerevisiae CDC11), aspB (an ortholog of S. cerevisiae CDC3), aspC (an ortholog of S. cerevisiae CDC12), aspD (an ortholog of S. cerevisiae CDC10), and aspE (found only in filamentous fungi). The aspB gene was previously reported to be the most highly expressed Aspergillus nidulans septin and to be essential. Using improved gene targeting techniques, we found that deletion of aspB is not lethal but results in delayed septation, increased emergence of germ tubes and branches, and greatly reduced conidiation. We also found that AspB-green fluorescent protein (GFP) localizes as rings and collars at septa, branches, and emerging layers of the conidiophore and as bars and filaments in conidia and hyphae. Bars are found in dormant and isotropically expanding conidia and in subapical nongrowing regions of hyphae and display fast movements. Filaments form as the germ tube emerges, localize to hyphal and branch tips, and display slower movements. All visible AspB-GFP structures are retained in ΔaspD and lost in ΔaspA and ΔaspC strains. Interestingly, in the ΔaspE mutant, AspB-GFP rings, bars, and filaments are visible in early growth, but AspB-GFP rods and filaments disappear after septum formation. AspE orthologs are only found in filamentous fungi, suggesting that this class of septins might be required for stability of septin bars and filaments in highly polar cells.

  9. Resolution of chromosomes III and VI of Aspergillus nidulans by pulsed-field gel electrophoresis shows that the penicillin biosynthetic pathway genes pcbAB, pcbC, and penDE are clustered on chromosome VI (3.0 megabases).

    PubMed Central

    Montenegro, E; Fierro, F; Fernandez, F J; Gutiérrez, S; Martín, J F

    1992-01-01

    An improved electrophoretic molecular karyotype of Aspergillus nidulans ATCC 28901 has been obtained by contour-clamped electric field gel electrophoresis, which separates seven chromosomal bands and allows resolution of chromosomes III and VI. The three genes of the penicillin biosynthetic pathway, pcbAB, pcbC, and penDE, encoding alpha-aminoadipyl-cysteinyl-valine synthetase, isopenicillin N synthase, and isopenicillin N acyltransferase, respectively, are clustered together on a chromosome of 3.0 Mg, corresponding to linkage group VI, whereas the argB gene was located on a chromosome of 3.4 Mb, corresponding to linkage group III. Three other strains of A. nidulans contained a modified chromosome III of about 3.1 Mb that overlaps with chromosome VI, forming a doublet. Resolution of chromosomes III and VI in strain ATCC 28901 allowed unequivocal mapping of the penicillin gene cluster on chromosome VI of A. nidulans. Images PMID:1400258

  10. Resolution of chromosomes III and VI of Aspergillus nidulans by pulsed-field gel electrophoresis shows that the penicillin biosynthetic pathway genes pcbAB, pcbC, and penDE are clustered on chromosome VI (3.0 megabases).

    PubMed

    Montenegro, E; Fierro, F; Fernandez, F J; Gutiérrez, S; Martín, J F

    1992-11-01

    An improved electrophoretic molecular karyotype of Aspergillus nidulans ATCC 28901 has been obtained by contour-clamped electric field gel electrophoresis, which separates seven chromosomal bands and allows resolution of chromosomes III and VI. The three genes of the penicillin biosynthetic pathway, pcbAB, pcbC, and penDE, encoding alpha-aminoadipyl-cysteinyl-valine synthetase, isopenicillin N synthase, and isopenicillin N acyltransferase, respectively, are clustered together on a chromosome of 3.0 Mg, corresponding to linkage group VI, whereas the argB gene was located on a chromosome of 3.4 Mb, corresponding to linkage group III. Three other strains of A. nidulans contained a modified chromosome III of about 3.1 Mb that overlaps with chromosome VI, forming a doublet. Resolution of chromosomes III and VI in strain ATCC 28901 allowed unequivocal mapping of the penicillin gene cluster on chromosome VI of A. nidulans.

  11. Secondary Metabolism and Development Is Mediated by LlmF Control of VeA Subcellular Localization in Aspergillus nidulans

    PubMed Central

    Palmer, Jonathan M.; Theisen, Jeffrey M.; Duran, Rocio M.; Grayburn, W. Scott; Calvo, Ana M.; Keller, Nancy P.

    2013-01-01

    Secondary metabolism and development are linked in Aspergillus through the conserved regulatory velvet complex composed of VeA, VelB, and LaeA. The founding member of the velvet complex, VeA, shuttles between the cytoplasm and nucleus in response to alterations in light. Here we describe a new interaction partner of VeA identified through a reverse genetics screen looking for LaeA-like methyltransferases in Aspergillus nidulans. One of the putative LaeA-like methyltransferases identified, LlmF, is a negative regulator of sterigmatocystin production and sexual development. LlmF interacts directly with VeA and the repressive function of LlmF is mediated by influencing the localization of VeA, as over-expression of llmF decreases the nuclear to cytoplasmic ratio of VeA while deletion of llmF results in an increased nuclear accumulation of VeA. We show that the methyltransferase domain of LlmF is required for function; however, LlmF does not directly methylate VeA in vitro. This study identifies a new interaction partner for VeA and highlights the importance of cellular compartmentalization of VeA for regulation of development and secondary metabolism. PMID:23341778

  12. Mutation in the Bimd Gene of Aspergillus Nidulans Confers a Conditional Mitotic Block and Sensitivity to DNA Damaging Agents

    PubMed Central

    Denison, S. H.; Kafer, E.; May, G. S.

    1993-01-01

    Mutation in the bimD gene of Aspergillus nidulans results in a mitotic block in anaphase characterized by a defective mitosis. Mutation in bimD also confers, at temperatures permissive for the mitotic arrest phenotype, an increased sensitivity to DNA damaging agents, including methyl methanesulfonate and ultraviolet light. In order to better understand the relationship between DNA damage and mitotic progression, we cloned the bimD gene from Aspergillus. A cosmid containing the bimD gene was identified among pools of cosmids by cotransformation with the nutritional selective pyrG gene of a strain carrying the recessive, temperature-sensitive lethal bimD6 mutation. The bimD gene encodes a predicted polypeptide of 166,000 daltons in mass and contains amino acid sequence motifs similar to those found in some DNA-binding transcription factors. These sequences include a basic domain followed by a leucine zipper, which together are called a bZIP motif, and a carboxyl-terminal domain enriched in acidic amino acids. Overexpression of the wild-type bimD protein resulted in an arrest of the nuclear division cycle that was reversible and determined to be in either the G(1) or S phase of the cell cycle. Our data suggest that bimD may play an essential regulatory role relating to DNA metabolism which is required for a successful mitosis. PMID:8375649

  13. Protein kinase C overexpression suppresses calcineurin-associated defects in Aspergillus nidulans and is involved in mitochondrial function.

    PubMed

    Colabardini, Ana Cristina; Ries, Laure Nicolas Annick; Brown, Neil Andrew; Savoldi, Marcela; Dinamarco, Taísa Magnani; von Zeska Kress, Marcia Regina; von Zeska, Marcia Regina; Goldman, Maria Helena S; Goldman, Gustavo Henrique

    2014-01-01

    In filamentous fungi, intracellular signaling pathways which are mediated by changing calcium levels and/or by activated protein kinase C (Pkc), control fungal adaptation to external stimuli. A rise in intracellular Ca2+ levels activates calcineurin subunit A (CnaA), which regulates cellular calcium homeostasis among other processes. Pkc is primarily involved in maintaining cell wall integrity (CWI) in response to different environmental stresses. Cross-talk between the Ca2+ and Pkc-mediated pathways has mainly been described in Saccharomyces cerevisiae and in a few other filamentous fungi. The presented study describes a genetic interaction between CnaA and PkcA in the filamentous fungus Aspergillus nidulans. Overexpression of pkcA partially rescues the phenotypes caused by a cnaA deletion. Furthermore, CnaA appears to affect the regulation of a mitogen-activated kinase, MpkA, involved in the CWI pathway. Reversely, PkcA is involved in controlling intracellular calcium homeostasis, as was confirmed by microarray analysis. Furthermore, overexpression of pkcA in a cnaA deletion background restores mitochondrial number and function. In conclusion, PkcA and CnaA-mediated signaling appear to share common targets, one of which appears to be MpkA of the CWI pathway. Both pathways also regulate components involved in mitochondrial biogenesis and function. This study describes targets for PkcA and CnaA-signaling pathways in an A. nidulans and identifies a novel interaction of both pathways in the regulation of cellular respiration.

  14. Protein Kinase C Overexpression Suppresses Calcineurin-Associated Defects in Aspergillus nidulans and Is Involved in Mitochondrial Function

    PubMed Central

    Brown, Neil Andrew; Savoldi, Marcela; Dinamarco, Taísa Magnani; von Zeska, Marcia Regina; Goldman, Maria Helena S.; Goldman, Gustavo Henrique

    2014-01-01

    In filamentous fungi, intracellular signaling pathways which are mediated by changing calcium levels and/or by activated protein kinase C (Pkc), control fungal adaptation to external stimuli. A rise in intracellular Ca2+ levels activates calcineurin subunit A (CnaA), which regulates cellular calcium homeostasis among other processes. Pkc is primarily involved in maintaining cell wall integrity (CWI) in response to different environmental stresses. Cross-talk between the Ca2+ and Pkc-mediated pathways has mainly been described in Saccharomyces cerevisiae and in a few other filamentous fungi. The presented study describes a genetic interaction between CnaA and PkcA in the filamentous fungus Aspergillus nidulans. Overexpression of pkcA partially rescues the phenotypes caused by a cnaA deletion. Furthermore, CnaA appears to affect the regulation of a mitogen-activated kinase, MpkA, involved in the CWI pathway. Reversely, PkcA is involved in controlling intracellular calcium homeostasis, as was confirmed by microarray analysis. Furthermore, overexpression of pkcA in a cnaA deletion background restores mitochondrial number and function. In conclusion, PkcA and CnaA-mediated signaling appear to share common targets, one of which appears to be MpkA of the CWI pathway. Both pathways also regulate components involved in mitochondrial biogenesis and function. This study describes targets for PkcA and CnaA-signaling pathways in an A. nidulans and identifies a novel interaction of both pathways in the regulation of cellular respiration. PMID:25153325

  15. The role of VosA/VelB-activated developmental gene vadA in Aspergillus nidulans.

    PubMed

    Park, Hee-Soo; Lee, Mi-Kyung; Kim, Sun Chang; Yu, Jae-Hyuk

    2017-01-01

    The filamentous fungus Aspergillus nidulans primarily reproduces by forming asexual spores called conidia, the integrity of which is governed by the NF-κB type velvet regulators VosA and VelB. The VosA-VelB hetero-complex regulates the expression of spore-specific structural and regulatory genes during conidiogenesis. Here, we characterize one of the VosA/VelB-activated developmental genes, called vadA, the expression of which in conidia requires activity of both VosA and VelB. VadA (AN5709) is predicted to be a 532-amino acid length fungal-specific protein with a highly conserved domain of unknown function (DUF) at the N-terminus. This DUF was found to be conserved in many Ascomycota and some Glomeromycota species, suggesting a potential evolutionarily conserved function of this domain in fungi. Deletion studies of vadA indicate that VadA is required for proper downregulation of brlA, fksA, and rodA, and for proper expression of tpsA and orlA during sporogenesis. Moreover, vadA null mutant conidia exhibit decreased trehalose content, but increased β(1,3)-glucan levels, lower viability, and reduced tolerance to oxidative stress. We further demonstrate that the vadA null mutant shows increased production of the mycotoxin sterigmatocystin. In summary, VadA is a dual-function novel regulator that controls development and secondary metabolism, and participates in bridging differentiation and viability of newly formed conidia in A. nidulans.

  16. Characterization of the Mutagenic Spectrum of 4-Nitroquinoline 1-Oxide (4-NQO) in Aspergillus nidulans by Whole Genome Sequencing

    PubMed Central

    Downes, Damien J.; Chonofsky, Mark; Tan, Kaeling; Pfannenstiel, Brandon T.; Reck-Peterson, Samara L.; Todd, Richard B.

    2014-01-01

    4-Nitroquinoline 1-oxide (4-NQO) is a highly carcinogenic chemical that induces mutations in bacteria, fungi, and animals through the formation of bulky purine adducts. 4-NQO has been used as a mutagen for genetic screens and in both the study of DNA damage and DNA repair. In the model eukaryote Aspergillus nidulans, 4-NQO−based genetic screens have been used to study diverse processes, including gene regulation, mitosis, metabolism, organelle transport, and septation. Early work during the 1970s using bacterial and yeast mutation tester strains concluded that 4-NQO was a guanine-specific mutagen. However, these strains were limited in their ability to determine full mutagenic potential, as they could not identify mutations at multiple sites, unlinked suppressor mutations, or G:C to C:G transversions. We have now used a whole genome resequencing approach with mutant strains generated from two independent genetic screens to determine the full mutagenic spectrum of 4-NQO in A. nidulans. Analysis of 3994 mutations from 38 mutant strains reveals that 4-NQO induces substitutions in both guanine and adenine residues, although with a 19-fold preference for guanine. We found no association between mutation load and mutagen dose and observed no sequence bias in the residues flanking the mutated purine base. The mutations were distributed randomly throughout most of the genome. Our data provide new evidence that 4-NQO can potentially target all base pairs. Furthermore, we predict that current practices for 4-NQO−induced mutagenesis are sufficient to reach gene saturation for genetic screens with feasible identification of causative mutations via whole genome resequencing. PMID:25352541

  17. Functional characterisation of the non-essential protein kinases and phosphatases regulating Aspergillus nidulans hydrolytic enzyme production

    PubMed Central

    2013-01-01

    Background Despite recent advances in the understanding of lignocellulolytic enzyme regulation, less is known about how different carbon sources are sensed and the signaling cascades that result in the adaptation of cellular metabolism and hydrolase secretion. Therefore, the role played by non-essential protein kinases (NPK) and phosphatases (NPP) in the sensing of carbon and/or energetic status was investigated in the model filamentous fungus Aspergillus nidulans. Results Eleven NPKs and seven NPPs were identified as being involved in cellulase, and in some cases also hemicellulase, production in A. nidulans. The regulation of CreA-mediated carbon catabolite repression (CCR) in the parental strain was determined by fluorescence microscopy, utilising a CreA::GFP fusion protein. The sensing of phosphorylated glucose, via the RAS signalling pathway induced CreA repression, while carbon starvation resulted in derepression. Growth on cellulose represented carbon starvation and derepressing conditions. The involvement of the identified NPKs in the regulation of cellulose-induced responses and CreA derepression was assessed by genome-wide transcriptomics (GEO accession 47810). CreA::GFP localisation and the restoration of endocellulase activity via the introduction of the ∆creA mutation, was assessed in the NPK-deficient backgrounds. The absence of either the schA or snfA kinase dramatically reduced cellulose-induced transcriptional responses, including the expression of hydrolytic enzymes and transporters. The mechanism by which these two NPKs controlled gene transcription was identified, as the NPK-deficient mutants were not able to unlock CreA-mediated carbon catabolite repression under derepressing conditions, such as carbon starvation or growth on cellulose. Conclusions Collectively, this study identified multiple kinases and phosphatases involved in the sensing of carbon and/or energetic status, while demonstrating the overlapping, synergistic roles of schA and

  18. Transformation system of Beauveria bassiana and Metarhizium anisopliae using nitrate reductase gene of Aspergillus nidulans.

    PubMed

    Sandhu, S S; Kinghorn, J R; Rajak, R C; Unkles, S E

    2001-07-01

    An heterologous transformation system for entomopathogenic fungi B. bassiana and M. anisopliae was developed based on the use of A. nidulans nitrate reductase gene (niaD). B. bassiana and M. anisopliae niaD stable mutants were selected by treatment of protoplast with ethane methane sulphonate (EMS) and regenerated on chlorate medium. The cloned gene was capable of transforming B. bassiana and M. anisopliae at a frequency of 5.8 to 20 transformants per microg of DNA. Most of them were mitotically stable.

  19. stcS, a putative P-450 monooxygenase, is required for the conversion of versicolorin A to sterigmatocystin in Aspergillus nidulans.

    PubMed Central

    Keller, N P; Segner, S; Bhatnagar, D; Adams, T H

    1995-01-01

    Sterigmatocystin (ST) and aflatoxin are carcinogenic end point metabolites derived from the same biochemical pathway, which is found in several Aspergillus spp. Recently, an ST gene cluster, containing approximately 25 distinct genes that are each proposed to function specifically in ST biosynthesis, has been identified in Aspergillus nidulans. Each of these structural genes is named stc (sterigmatocystin) followed by a consecutive letter of the alphabet. We have previously described stcU (formerly verA) as encoding a keto-reductase required for the conversion of versicolorin A to ST. We now describe a second A. nidulans gene, stcS (formerly verB), that is located within 2 kb of stcU in the ST gene cluster. An stcS-disrupted strain of A. nidulans, TSS17, was unable to produce ST and converted ST/aflatoxin precursors to versicolorin A rather than ST, indicating that stcS functions at the same point in the pathway as stcU. Genomic sequence analysis of stcS shows that it encodes a cytochrome P-450 monooxygenase and constitutes a novel P-450 family, CYP59. Assuming that StcU activity mimics that of similar P-450s, it is likely that StcU catalyzes one of the proposed oxidation steps necessary to convert versicolorin A to ST. These results constitute the first genetic proof that the conversion of versicolorin A to ST requires more than one enzymatic activity. PMID:7486998

  20. Dynein light intermediate chain in Aspergillus nidulans is essential for the interaction between heavy and intermediate chains.

    PubMed

    Zhang, Jun; Li, Shihe; Musa, Shamsideen; Zhou, Henry; Xiang, Xin

    2009-12-11

    Cytoplasmic dynein is a complex containing heavy chains (HCs), intermediate chains (ICs), light intermediate chains (LICs), and light chains (LCs). The HCs are responsible for motor activity. The ICs at the tail region of the motor interact with dynactin, which is essential for dynein function. However, functions of other subunits and how they contribute to the assembly of the core complex are not clearly defined. Here, we analyzed in the filamentous fungus Aspergillus nidulans functions of the only LIC and two LCs, RobA (Roadblock/LC7) and TctexA (Tctex1) in dynein-mediated nuclear distribution (nud). Whereas the deletion mutant of tctexA did not exhibit an apparent nud mutant phenotype, the deletion mutant of robA exhibited a nud phenotype at an elevated temperature, which is similar to the previously characterized nudG (LC8) deletion mutant. Remarkably, in contrast to the single mutants, the robA and nudG double deletion mutant exhibits a severe nud phenotype at various temperatures. Thus, functions of these two LC classes overlap to some extent, but the presence of both becomes important under specific conditions. The single LIC, however, is essential for dynein function in nuclear distribution. This is evidenced by the identification of the nudN gene as the LIC coding gene, and by the nud phenotype exhibited by the LIC down-regulating mutant, alcA-LIC. Without a functional LIC, the HC-IC association is significantly weakened, and the HCs could no longer accumulate at the microtubule plus end. Thus, the LIC is essential for the assembly of the core complex of dynein in Aspergillus.

  1. Dynein Light Intermediate Chain in Aspergillus nidulans Is Essential for the Interaction between Heavy and Intermediate Chains*

    PubMed Central

    Zhang, Jun; Li, Shihe; Musa, Shamsideen; Zhou, Henry; Xiang, Xin

    2009-01-01

    Cytoplasmic dynein is a complex containing heavy chains (HCs), intermediate chains (ICs), light intermediate chains (LICs), and light chains (LCs). The HCs are responsible for motor activity. The ICs at the tail region of the motor interact with dynactin, which is essential for dynein function. However, functions of other subunits and how they contribute to the assembly of the core complex are not clearly defined. Here, we analyzed in the filamentous fungus Aspergillus nidulans functions of the only LIC and two LCs, RobA (Roadblock/LC7) and TctexA (Tctex1) in dynein-mediated nuclear distribution (nud). Whereas the deletion mutant of tctexA did not exhibit an apparent nud mutant phenotype, the deletion mutant of robA exhibited a nud phenotype at an elevated temperature, which is similar to the previously characterized nudG (LC8) deletion mutant. Remarkably, in contrast to the single mutants, the robA and nudG double deletion mutant exhibits a severe nud phenotype at various temperatures. Thus, functions of these two LC classes overlap to some extent, but the presence of both becomes important under specific conditions. The single LIC, however, is essential for dynein function in nuclear distribution. This is evidenced by the identification of the nudN gene as the LIC coding gene, and by the nud phenotype exhibited by the LIC down-regulating mutant, alcA-LIC. Without a functional LIC, the HC-IC association is significantly weakened, and the HCs could no longer accumulate at the microtubule plus end. Thus, the LIC is essential for the assembly of the core complex of dynein in Aspergillus. PMID:19837669

  2. Kinetic studies of the induction of nitrate reductase and cytochrome c reductase in the fungus Aspergillus nidulans

    PubMed Central

    Cove, D. J.

    1967-01-01

    In an earlier paper (Cove, 1966) it was reported that the kinetics of appearance of nitrate reductase (NADPH–nitrate oxidoreductase, EC 1.6.6.3) on the addition of nitrate to a growing culture of Aspergillus nidulans were different in certain respects from those found for many Escherichia coli enzymes. When urea is used as an initial nitrogen source, a further difference is found: enzyme synthesis is no longer continuous. This interruption of synthesis does not appear to be due to synchronous cell division in the culture, nor to be due to accumulation of ammonia. Fluctuations in the intracellular concentration of nitrate, though appearing to be partly responsible for the discontinuity of enzyme syntheses, cannot account for all the observations. Two related hypotheses are put forward to explain this discontinuity of synthesis; each suggests that nitrate reductase is intimately concerned with its own synthesis. One possibility is that the enzyme when it is not in the form of a complex with nitrate is a co-repressor of its own synthesis, and the other that the enzyme is its own repressor. PMID:6049855

  3. Mutational analysis of the gephyrin-related molybdenum cofactor biosynthetic gene cnxE from the lower eukaryote Aspergillus nidulans.

    PubMed Central

    Heck, Immanuel S; Schrag, Joseph D; Sloan, Joan; Millar, Lindsey J; Kanan, Ghassan; Kinghorn, James R; Unkles, Shiela E

    2002-01-01

    We report the identification of a number of mutations that result in amino acid replacements (and their phenotypic characterization) in either the MogA-like domain or domains 2 and 3 of the MoeA-like region of the Aspergillus nidulans cnxE gene. These domains are functionally required since mutations that result in amino acid substitutions in any one domain lead to the loss or to a substantial reduction in all three identified molybdoenzyme activities (i.e., nitrate reductase, xanthine dehydrogenase, and nicotinate hydroxylase). Certain cnxE mutants that show partial growth with nitrate as the nitrogen source in contrast do not grow on hypoxanthine or nicotinate. Complementation between mutants carrying lesions in the MogA-like domain or the MoeA-like region, respectively, most likely occurs at the protein level. A homology model of CnxE based on the dimeric structure of E. coli MoeA is presented and the position of inactivating mutations (due to amino acid replacements) in the MoeA-like functional region of the CnxE protein is mapped to this model. Finally, the activity of nicotinate hydroxylase, unlike that of nitrate reductase and xanthine dehydrogenase, is not restored in cnxE mutants grown in the presence of excess molybdate. PMID:12072459

  4. The low affinity glucose transporter HxtB is also involved in glucose signalling and metabolism in Aspergillus nidulans

    PubMed Central

    dos Reis, Thaila Fernanda; Nitsche, Benjamin M.; de Lima, Pollyne Borborema Almeida; de Assis, Leandro José; Mellado, Laura; Harris, Steven D.; Meyer, Vera; dos Santos, Renato A. Corrêa; Riaño-Pachón, Diego M.; Ries, Laure Nicolas Annick; Goldman, Gustavo H.

    2017-01-01

    One of the drawbacks during second-generation biofuel production from plant lignocellulosic biomass is the accumulation of glucose, the preferred carbon source of microorganisms, which causes the repression of hydrolytic enzyme secretion by industrially relevant filamentous fungi. Glucose sensing, subsequent transport and cellular signalling pathways have been barely elucidated in these organisms. This study therefore characterized the transcriptional response of the filamentous fungus Aspergillus nidulans to the presence of high and low glucose concentrations under continuous chemostat cultivation with the aim to identify novel factors involved in glucose sensing and signalling. Several transcription factor- and transporter-encoding genes were identified as being differentially regulated, including the previously characterized glucose and xylose transporter HxtB. HxtB was confirmed to be a low affinity glucose transporter, localizing to the plasma membrane under low- and high-glucose conditions. Furthermore, HxtB was shown to be involved in conidiation-related processes and may play a role in downstream glucose signalling. A gene predicted to encode the protein kinase PskA was also identified as being important for glucose metabolism. This study identified several proteins with predicted roles in glucose metabolic processes and provides a foundation for further investigation into the response of biotechnologically important filamentous fungi to glucose. PMID:28361917

  5. The low affinity glucose transporter HxtB is also involved in glucose signalling and metabolism in Aspergillus nidulans.

    PubMed

    Dos Reis, Thaila Fernanda; Nitsche, Benjamin M; de Lima, Pollyne Borborema Almeida; de Assis, Leandro José; Mellado, Laura; Harris, Steven D; Meyer, Vera; Dos Santos, Renato A Corrêa; Riaño-Pachón, Diego M; Ries, Laure Nicolas Annick; Goldman, Gustavo H

    2017-03-31

    One of the drawbacks during second-generation biofuel production from plant lignocellulosic biomass is the accumulation of glucose, the preferred carbon source of microorganisms, which causes the repression of hydrolytic enzyme secretion by industrially relevant filamentous fungi. Glucose sensing, subsequent transport and cellular signalling pathways have been barely elucidated in these organisms. This study therefore characterized the transcriptional response of the filamentous fungus Aspergillus nidulans to the presence of high and low glucose concentrations under continuous chemostat cultivation with the aim to identify novel factors involved in glucose sensing and signalling. Several transcription factor- and transporter-encoding genes were identified as being differentially regulated, including the previously characterized glucose and xylose transporter HxtB. HxtB was confirmed to be a low affinity glucose transporter, localizing to the plasma membrane under low- and high-glucose conditions. Furthermore, HxtB was shown to be involved in conidiation-related processes and may play a role in downstream glucose signalling. A gene predicted to encode the protein kinase PskA was also identified as being important for glucose metabolism. This study identified several proteins with predicted roles in glucose metabolic processes and provides a foundation for further investigation into the response of biotechnologically important filamentous fungi to glucose.

  6. Properties and application of a partially purified alkaline xylanase from an alkalophilic fungus Aspergillus nidulans KK-99.

    PubMed

    Taneja, Kavita; Gupta, Saurabh; Kuhad, Ramesh Chander

    2002-10-01

    An alkalophilic Aspergillus nidulans KK-99 produced an alkaline, thermostable xylanase (40 IU/ml) in a basal medium supplemented with wheat bran (2% w/v) and KNO3 (at 0.15% N) pH 10.0 and 37 degrees C. The partially purified xylanase was optimally active at pH 8.0 and 55 degrees C. The xylanase was stable in a broad pH range of 4.0-9.5 for 1 h at 55 degrees C, retaining more than 80% of its activity. The enzyme exhibited greater binding affinity for xylan from hardwood than from softwood. The xylanase activity was stimulated (+25%) by Na+ and Fe2+ and was strongly inhibited (maximum by 70%) by Tween-20, 40, 60, SDS, acetic anhydride, phenylmethane sulphonyl fluoride, Triton-X-100. The xylanase dose of 1.0 IU/g dry weight pulp gave optimum bleach boosting of Kraft pulp at pH 8.0 and temperature 55 degrees C for 3 h reaction time.

  7. Development of a Candida glabrata dominant nutritional transformation marker utilizing the Aspergillus nidulans acetamidase gene (amdS).

    PubMed

    Fu, Jianmin; Blaylock, Morganne; Wickes, Cameron F; Welte, William; Mehrtash, Adrian; Wiederhold, Nathan; Wickes, Brian L

    2016-05-01

    The gene encoding Aspergillus nidulans acetamidase (amdS) was placed under control of Candida albicans ACT1 promoter and terminator sequences and then cloned into a plasmid containing C. glabrata ARS10,CEN8 or ARS10+CEN8 sequences. All plasmids transformed C. glabrata wild-type cells to acetamide+, with the ARS-only containing plasmid transforming cells at the highest frequencies (>1.0 × 10(4) transformants μg(-1)). Plasmids were rapidly lost under non-selective conditions with the frequency dependent on chromosomal element, thus recycling the acetamide- phenotype. The amdS plasmid was used to transform a set of clinical isolates resistant to a variety of antifungal drugs. All strains were successfully transformed to the acetamide+ phenotype at high frequency, confirming that this plasmid construct could be used as a simple dominant marker on virtually any strain. Gap repair experiments demonstrated that just as in Saccharomyces cerevisiae, gap repair functions efficiently inC. glabrata, suggesting that C. glabrata has numerous similarities toS. cerevisiae with regard to ease of molecular manipulation. The amdS system is inexpensive and efficient, and combined with existing C. glabrata plasmid elements, confers a high transformation frequency for C. glabrata with a phenotype that can be easily recycled. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Aspergillus nidulans ChiA is a glycosylphosphatidylinositol (GPI)-anchored chitinase specifically localized at polarized growth sites.

    PubMed

    Yamazaki, Harutake; Tanaka, Aya; Kaneko, Jun-ichi; Ohta, Akinori; Horiuchi, Hiroyuki

    2008-06-01

    It is believed that chitinases play important physiological roles in filamentous fungi since chitin is one of the major cell wall components in these organisms. In this paper we investigated a chitinase gene, chiA, of Aspergillus nidulans and found that the gene product of chiA consists of a signal sequence, a region including chitinase consensus motifs, a Ser/Thr/Pro-rich region and a glycosylphosphatidylinositol (GPI)-anchor attachment motif. Phosphatidylinositol-specific phospholipase C treatment of the fusion protein of ChiA and enhanced green fluorescent protein (EGFP)-ChiA-EGFP-caused a change in its hydrophobicity, indicating that ChiA is a GPI-anchored protein. ChiA-EGFP localized at the germ tubes of conidia, at hyphal branching sites and hyphal tips. chiA expression was specifically high during conidia germination and in the marginal growth regions of colonies. These results suggest that ChiA functions as a GPI-anchored chitinase at the sites where cell wall remodeling and/or cell wall maturation actively take place.

  9. Aspergillus nidulans Septin AspB Plays Pre- and Postmitotic Roles in Septum, Branch, and Conidiophore Development

    PubMed Central

    Westfall, Patrick J.; Momany, Michelle

    2002-01-01

    Members of the septin family of proteins act as organizational scaffolds in areas of cell division and new growth in a variety of organisms. Herein, we show that in the filamentous fungus Aspergillus nidulans, the septin AspB is important for cellular division, branching, and conidiation both pre- and postmitotically. AspB localizes postmitotically to the septation site with an underlying polarity that is evident as cytokinesis progresses. This localization at the septation site is dependent on actin and occurs before the cross-wall is visible. AspB localizes premitotically as a ring at sites of branching and secondary germ tube emergence. It is the only known branch site marker. In addition, AspB is found at several stages during the development of the asexual reproductive structure, the conidiophore. It localizes transiently to the vesicle/metula and metula/phialide interfaces, and persistently to the phialide/conidiospore interface. A temperature-sensitive mutant of AspB shows phenotypic abnormalities, including irregular septa, high numbers of branches, and immature asexual reproductive structures. PMID:11809826

  10. Mitochondrial Four-Point Crosses in ASPERGILLUS NIDULANS : Mapping of a Suppressor of a Mitochondrially Inherited Cold-Sensitive Mutation

    PubMed Central

    Waring, Richard B.; Scazzocchio, Claudio

    1983-01-01

    Four-point mitochondrial crosses were conducted in heterokaryons of Aspergillus nidulans. The mutations used were (oliA1), conferring resistance to oligomycin, (camA112), conferring resistance to chloramphenicol; (cs-67), conferring cold-sensitivity, and ( sumD16), a suppressor of (cs-67). Initially, the crosses were conducted by observing the segregation of extranuclear markers in heterokaryotic sectors emerging from the original point of heterokaryosis. This showed that (camA112), (cs-67) and (sumD16) were linked but were probably all unlinked to (oliA1). Second, four-point crosses were conducted using a double marker selection technique, in which (camA112 ) and (oliA1) were always set in repulsion and the frequency of the phenotypes produced by the segregation of the mutant and wild-type alleles of (cs-67) and (sumD) were observed in (camA112 oliA1) recombinants. From these results we concluded that (camA112 ), (cs-67) and (sumD16) were linked and probably mapped in the order given. It was observed that the two nuclear types of conidia from a heterokaryon often had a dissimilar frequency distribution of the segregants of a mitochondrial cross. PMID:17246113

  11. Co-cultivation of Aspergillus nidulans Recombinant Strains Produces an Enzymatic Cocktail as Alternative to Alkaline Sugarcane Bagasse Pretreatment

    PubMed Central

    Lima, Matheus S.; Damasio, André R. de L.; Crnkovic, Paula M.; Pinto, Marcelo R.; da Silva, Ana M.; da Silva, Jean C. R.; Segato, Fernando; de Lucas, Rosymar C.; Jorge, João A.; Polizeli, Maria de L. T. de M.

    2016-01-01

    Plant materials represent a strategic energy source because they can give rise to sustainable biofuels through the fermentation of their carbohydrates. A clear example of a plant-derived biofuel resource is the sugar cane bagasse exhibiting 60–80% of fermentable sugars in its composition. However, the current methods of plant bioconversion employ severe and harmful chemical/physical pretreatments raising biofuel cost production and environmental degradation. Replacing these methods with co-cultivated enzymatic cocktails is an alternative. Here we propose a pretreatment for sugarcane bagasse using a multi-enzymatic cocktail from the co-cultivation of four Aspergillus nidulans recombinant strains. The co-cultivation resulted in the simultaneous production of GH51 arabinofuranosidase (AbfA), GH11 endo-1,4-xylanase (XlnA), GH43 endo-1,5-arabinanase (AbnA) and GH12 xyloglucan specific endo-β-1,4-glucanase (XegA). This core set of recombinant enzymes was more efficient than the alternative alkaline method in maintaining the cellulose integrity and exposing this cellulose to the following saccharification process. Thermogravimetric and differential thermal analysis revealed residual byproducts on the alkali pretreated biomass, which were not found in the enzymatic pretreatment. Therefore, the enzymatic pretreatment was residue-free and seemed to be more efficient than the applied alkaline method, which makes it suitable for bioethanol production. PMID:27199917

  12. Co-cultivation of Aspergillus nidulans Recombinant Strains Produces an Enzymatic Cocktail as Alternative to Alkaline Sugarcane Bagasse Pretreatment.

    PubMed

    Lima, Matheus S; Damasio, André R de L; Crnkovic, Paula M; Pinto, Marcelo R; da Silva, Ana M; da Silva, Jean C R; Segato, Fernando; de Lucas, Rosymar C; Jorge, João A; Polizeli, Maria de L T de M

    2016-01-01

    Plant materials represent a strategic energy source because they can give rise to sustainable biofuels through the fermentation of their carbohydrates. A clear example of a plant-derived biofuel resource is the sugar cane bagasse exhibiting 60-80% of fermentable sugars in its composition. However, the current methods of plant bioconversion employ severe and harmful chemical/physical pretreatments raising biofuel cost production and environmental degradation. Replacing these methods with co-cultivated enzymatic cocktails is an alternative. Here we propose a pretreatment for sugarcane bagasse using a multi-enzymatic cocktail from the co-cultivation of four Aspergillus nidulans recombinant strains. The co-cultivation resulted in the simultaneous production of GH51 arabinofuranosidase (AbfA), GH11 endo-1,4-xylanase (XlnA), GH43 endo-1,5-arabinanase (AbnA) and GH12 xyloglucan specific endo-β-1,4-glucanase (XegA). This core set of recombinant enzymes was more efficient than the alternative alkaline method in maintaining the cellulose integrity and exposing this cellulose to the following saccharification process. Thermogravimetric and differential thermal analysis revealed residual byproducts on the alkali pretreated biomass, which were not found in the enzymatic pretreatment. Therefore, the enzymatic pretreatment was residue-free and seemed to be more efficient than the applied alkaline method, which makes it suitable for bioethanol production.

  13. High-Affinity Glucose Transport in Aspergillus nidulans Is Mediated by the Products of Two Related but Differentially Expressed Genes

    PubMed Central

    Ventura, Luisa; González, Ramón; Ramón, Daniel; MacCabe, Andrew P.

    2014-01-01

    Independent systems of high and low affinity effect glucose uptake in the filamentous fungus Aspergillus nidulans. Low-affinity uptake is known to be mediated by the product of the mstE gene. In the current work two genes, mstA and mstC, have been identified that encode high-affinity glucose transporter proteins. These proteins' primary structures share over 90% similarity, indicating that the corresponding genes share a common origin. Whilst the function of the paralogous proteins is little changed, they differ notably in their patterns of expression. The mstC gene is expressed during the early phases of germination and is subject to CreA-mediated carbon catabolite repression whereas mstA is expressed as a culture tends toward carbon starvation. In addition, various pieces of genetic evidence strongly support allelism of mstC and the previously described locus sorA. Overall, our data define MstC/SorA as a high-affinity glucose transporter expressed in germinating conidia, and MstA as a high-affinity glucose transporter that operates in vegetative hyphae under conditions of carbon limitation. PMID:24751997

  14. Two amino acid sequences direct Aspergillus nidulans protein kinase C (PkcA) localization to hyphal apices and septation sites.

    PubMed

    Jackson-Hayes, Loretta; Hill, Terry W; Loprete, Darlene M; DelBove, Claire E; Shapiro, Justin A; Henley, Jordan L; Dawodu, Omolola O

    2015-01-01

    The Aspergillus nidulans ortholog of protein kinase C (pkcA) is involved in the organism's putative cell wall integrity (CWI) pathway, and PkcA also is highly localized at growing tips and forming septa. In the present work we identify the regions within PkcA that are responsible for its localization to hyphal tips and septation sites. To this end, we used serially truncated pkcA constructs and expressed them as green fluorescent protein (GFP) chimeras and identified two regions that direct PkcA localization. The first region is a 10 amino-acid sequence near the carboxyl end of the C2 domain that is required for localization to hyphal tips. Proteins containing this sequence also localize to septation sites. A second region between C2 and C1B (encompassing C1A) is sufficient for localization to septation sites but not to hyphal tips. We also report that localization to hyphal tips and septation sites alone is not sufficient for truncated constructs to complement hypersensitivity to the cell wall compromising agent calcofluor white in a strain bearing a mutation in the pkcA gene. Taken together, these results suggest that localization and stress response might be independent.

  15. Air-borne genotype by genotype indirect genetic effects are substantial in the filamentous fungus Aspergillus nidulans.

    PubMed

    Rode, N O; Soroye, P; Kassen, R; Rundle, H D

    2017-03-15

    Genotype by genotype indirect genetic effects (G × G IGEs) occur when the phenotype of an individual is influenced by an interaction between its own genotype and those of neighbour individuals. Little is known regarding the relative importance of G × G IGEs compared with other forms of direct and indirect genetic effects. We quantified the relative importance of IGEs in the filamentous fungus Aspergillus nidulans, a species in which IGEs are likely to be important as air-borne social interactions are known to affect growth. We used a collection of distantly related wild isolates, lab strains and a set of closely related mutation accumulation lines to estimate the contribution of direct and indirect genetic effects on mycelium growth rate, a key fitness component. We found that indirect genetic effects were dominated by G × G IGEs that occurred primarily between a focal genotype and its immediate neighbour within a vertical stack, and these accounted for 11% of phenotypic variation. These results indicate that G × G IGEs may be substantial, at least in some systems, and that the evolutionary importance of these interactions may be underappreciated, especially in microbes. We advocate for a wider use of the IGE framework in both applied (for example, choice of varietal mixtures in plant breeding) and evolutionary genetics (kin selection/kin competition studies).Heredity advance online publication, 15 March 2017; doi:10.1038/hdy.2017.9.

  16. Cloning of a heat-stable chitin deacetylase gene from Aspergillus nidulans and its functional expression in Escherichia coli.

    PubMed

    Wang, Yun; Song, Jin-Zhu; Yang, Qian; Liu, Zhi-Hua; Huang, Xiao-Mei; Chen, Yan

    2010-10-01

    A gene encoding chitin deacetylase was cloned by polymerase chain reaction from Aspergillus nidulans. Sequencing result showed 40% homology to the corresponding gene from Colletotrichum lindemuthianum. The complete gene contains an open reading frame of 747 nucleotides encoding a sequence of 249 amino acid residues. The chitin deacetylase gene was subcloned into a pET28a expression vector and expressed in Escherichia coli BL21 and then purified by metal affinity chromatography using a His-bind column. The purified chitin deacetylase demonstrated an activity of 0.77 U ml(-1) for the glycol chitin substrates, and its specific activity was 4.17 U mg(-1) for it. The optimal temperature and pH of the purified enzyme were 50 degrees C and 8.0, respectively. When glycol chitin was used as the substrate, K (m) was 4.92 mg ml(-1), and K (cat) showed 6.25 s(-1), thus the ratio of K (cat) and K (m) was 1.27 ml s(-1) mg(-1). The activity of chitin deacetylase was affected by a range of metal ions and ethylenediaminetetraacetic acid.

  17. Aspergillus nidulans Synthesize Insect Juvenile Hormones upon Expression of a Heterologous Regulatory Protein and in Response to Grazing by Drosophila melanogaster Larvae

    PubMed Central

    Rohlfs, Marko; Anyaogu, Diana Chinyere; Nielsen, Jakob Blæsbjerg; Gotfredsen, Charlotte Held; Andersen, Mikael Rørdam; Hansen, Bjarne Gram; Mortensen, Uffe Hasbro; Larsen, Thomas Ostenfeld

    2013-01-01

    Secondary metabolites are known to serve a wide range of specialized functions including communication, developmental control and defense. Genome sequencing of several fungal model species revealed that the majority of predicted secondary metabolite related genes are silent in laboratory strains, indicating that fungal secondary metabolites remain an underexplored resource of bioactive molecules. In this study, we combine heterologous expression of regulatory proteins in Aspergillus nidulans with systematic variation of growth conditions and observe induced synthesis of insect juvenile hormone-III and methyl farnesoate. Both compounds are sesquiterpenes belonging to the juvenile hormone class. Juvenile hormones regulate developmental and metabolic processes in insects and crustaceans, but have not previously been reported as fungal metabolites. We found that feeding by Drosophila melanogaster larvae induced synthesis of juvenile hormone in A. nidulans indicating a possible role of juvenile hormone biosynthesis in affecting fungal-insect antagonisms. PMID:23991191

  18. Characterization of NpgA, a 4'-phosphopantetheinyl transferase of Aspergillus nidulans, and evidence of its involvement in fungal growth and formation of conidia and cleistothecia for development.

    PubMed

    Kim, Jung-Mi; Song, Ha-Yeon; Choi, Hyo-Jin; So, Kum-Kang; Kim, Dae-Hyuk; Chae, Keon-Sang; Han, Dong-Min; Jahng, Kwang-Yeop

    2015-01-01

    The null pigmentation mutant (npgA1) in Aspergillus nidulans results in a phenotype with colorless organs, decreased branching growth, delayed of asexual spore development, and aberrant cell wall structure. The npgA gene was isolated from A. nidulans to investigate these pleiomorphic phenomena of npgA1 mutant. Sequencing analysis of the complementing gene indicated that it contained a 4'-phosphopantetheinyl transferase (PPTase) superfamily domain. Enzymatic assay of the PPTase, encoded by the npgA gene, was implemented in vivo and in vitro. Loss-of-function of LYS5, which encoded a PPTase in Saccharomyces cerevisiae, was functionally complemented by NpgA, and Escherichia coli-derived NpgA revealed phosphopantetheinylation activity with the elaboration of 3'5'-ADP. Deletion of the npgA gene caused perfectly a lethal phenotype and the absence of asexual/sexual sporulation and secondary metabolites such as pigments in A. nidulans. However, a cross feeding effect with A. nidulans wild type allowed recovery from deletion defects, and phased-culture filtrate from the wild type were used to verify that the npgA gene was essential for formation of metabolites needed for development as well as growth. In addition, forced expression of npgA promoted the formation of conidia and cleistothecia as well as growth. These results indicate that the npgA gene is involved in the phosphopantetheinylation required for primary biological processes such as growth, asexual/sexual development, and the synthesis of secondary metabolites in A. nidulans.

  19. NapA Mediates a Redox Regulation of the Antioxidant Response, Carbon Utilization and Development in Aspergillus nidulans.

    PubMed

    Mendoza-Martínez, Ariann E; Lara-Rojas, Fernando; Sánchez, Olivia; Aguirre, Jesús

    2017-01-01

    The redox-regulated transcription factors (TFs) of the bZIP AP1 family, such as yeast Yap1 and fission yeast Pap1, are activated by peroxiredoxin proteins (Prxs) to regulate the antioxidant response. Previously, Aspergillus nidulans mutants lacking the Yap1 ortholog NapA have been characterized as sensitive to H2O2 and menadione. Here we study NapA roles in relation to TFs SrrA and AtfA, also involved in oxidant detoxification, showing that these TFs play different roles in oxidative stress resistance, catalase gene regulation and development, during A. nidulans life cycle. We also uncover novel NapA roles in repression of sexual development, normal conidiation, conidial mRNA accumulation, and carbon utilization. The phenotypic characterization of ΔgpxA, ΔtpxA, and ΔtpxB single, double and triple peroxiredoxin mutants in wild type or ΔnapA backgrounds shows that none of these Prxs is required for NapA function in H2O2 and menadione resistance. However, these Prxs participate in a minor NapA-independent H2O2 resistance pathway and NapA and TpxA appear to regulate conidiation along the same route. Using transcriptomic analysis we show that during conidial development NapA-dependent gene expression pattern is different from canonical oxidative stress patterns. In the course of conidiation, NapA is required for regulation of at least 214 genes, including ethanol utilization genes alcR, alcA and aldA, and large sets of genes encoding proteins involved in transcriptional regulation, drug detoxification, carbohydrate utilization and secondary metabolism, comprising multiple oxidoreductases, membrane transporters and hydrolases. In agreement with this, ΔnapA mutants fail to grow or grow very poorly in ethanol, arabinose or fructose as sole carbon sources. Moreover, we show that NapA nuclear localization is induced not only by oxidative stress but also by growth in ethanol and by carbon starvation. Together with our previous work, these results show that SakA-AtfA, Srr

  20. Mutations affecting mitotic recombination frequency in haploids and diploids of the filamentous fungus Aspergillus nidulans.

    PubMed

    Parag, Y; Parag, G

    1975-01-01

    A haploid strain of Asp. nidulans with a chromosome segment in duplicate (one in normal position on chromosome I, one translocated to chromosome II) shows mitotic recombination, mostly by conversion, in adE in a frequency slightly higher than in the equivalent diploid. A method has been devised, using this duplication, for the selection of rec and uvs mutations. Six rec mutations have been found which decrease recombination frequency in the haploid. One mutation selected as UV sensitive showed a hundred fold increase in recombination frequency in the haploid (pop mutation) and probably the same in diploids. The increased frequency is both in gene conversion and in crossing over, and the exchanges appear in clusters of two or more. pop is allelic to uvsB (Jansen, 1970) which had been found to affect mitotic but not meiotic recombination. It is suggested that mutations of this type interfere with the control mechanism which determines that high recombination is confirmed to the meiotic nuclei and avoided in somatic nuclei.

  1. Probing the effect of tip pressure on fungal growth: Application to Aspergillus nidulans

    NASA Astrophysics Data System (ADS)

    González-Bermúdez, Blanca; Li, Qingxuan; Guinea, Gustavo V.; Peñalva, Miguel A.; Plaza, Gustavo R.

    2017-08-01

    The study of fungal cells is of great interest due to their importance as pathogens and as fermenting fungi and for their appropriateness as model organisms. The differential pressure between the hyphal cytoplasm and the bordering medium is essential for the growth process, because the pressure is correlated with the growth rate. Notably, during the invasion of tissues, the external pressure at the tip of the hypha may be different from the pressure in the surrounding medium. We report the use of a method, based on the micropipette-aspiration technique, to study the influence of this external pressure at the hyphal tip. Moreover, this technique makes it possible to study hyphal growth mechanics in the case of very thin hyphae, not accessible to turgor pressure probes. We found a correlation between the local pressure at the tip and the growth rate for the species Arpergillus nidulans. Importantly, the proposed method allows one to measure the pressure at the tip required to arrest the hyphal growth. Determining that pressure could be useful to develop new medical treatments for fungal infections. Finally, we provide a mechanical model for these experiments, taking into account the cytoplasm flow and the wall deformation.

  2. The tamA gene of Aspergillus nidulans contains a putative zinc cluster motif which is not required for gene function.

    PubMed Central

    Davis, M A; Small, A J; Kourambas, S; Hynes, M J

    1996-01-01

    Expression of many nitrogen catabolic enzymes is controlled by nitrogen metabolite repression in Aspergillus nidulans. Although the phenotypes of tamA mutants have implicated this gene in nitrogen regulation, its function is unknown. We have cloned the tamA gene by complementation of a new tamA allele. The tamA sequence shares significant homology with the UGA35/DAL81/DURL gene of Saccharomyces cerevisiae. In vitro mutagenesis of sequences encoding a putative zinc cluster DNA binding domain indicated that this motif is not required for in vivo TamA function. PMID:8655534

  3. Acute hepatic necrosis and death in a subadult southern white rhinoceros (Ceratotherium simum) associated with exposure to sterigmatocystin in forage contaminated with Aspergillus nidulans.

    PubMed

    Bryant, B R; Campbell, M; Sangster, C

    2016-11-01

    A young male southern white rhinoceros (Ceratotherium simum), which was resident in a zoo as part of a multi-rhinoceros group, died suddenly. Necropsy and histopathological findings supported a diagnosis of death from acute hepatic necrosis. The microscopic distribution of liver lesions was suggestive of hepatotoxicosis. Further investigation revealed potential exposure to a mycotoxin, sterigmatocystin, present in spoiled lucerne hay contaminated with Aspergillus nidulans. It was concluded that mycotoxicosis was the likely cause of the hepatic necrosis and death in this animal. © 2016 Australian Veterinary Association.

  4. The Set1/COMPASS histone H3 methyltransferase helps regulate mitosis with the CDK1 and NIMA mitotic kinases in Aspergillus nidulans.

    PubMed

    Govindaraghavan, Meera; Anglin, Sarah Lea; Osmani, Aysha H; Osmani, Stephen A

    2014-08-01

    Mitosis is promoted and regulated by reversible protein phosphorylation catalyzed by the essential NIMA and CDK1 kinases in the model filamentous fungus Aspergillus nidulans. Protein methylation mediated by the Set1/COMPASS methyltransferase complex has also been shown to regulate mitosis in budding yeast with the Aurora mitotic kinase. We uncover a genetic interaction between An-swd1, which encodes a subunit of the Set1 protein methyltransferase complex, with NIMA as partial inactivation of nimA is poorly tolerated in the absence of swd1. This genetic interaction is additionally seen without the Set1 methyltransferase catalytic subunit. Importantly partial inactivation of NIMT, a mitotic activator of the CDK1 kinase, also causes lethality in the absence of Set1 function, revealing a functional relationship between the Set1 complex and two pivotal mitotic kinases. The main target for Set1-mediated methylation is histone H3K4. Mutational analysis of histone H3 revealed that modifying the H3K4 target residue of Set1 methyltransferase activity phenocopied the lethality seen when either NIMA or CDK1 are partially functional. We probed the mechanistic basis of these genetic interactions and find that the Set1 complex performs functions with CDK1 for initiating mitosis and with NIMA during progression through mitosis. The studies uncover a joint requirement for the Set1 methyltransferase complex with the CDK1 and NIMA kinases for successful mitosis. The findings extend the roles of the Set1 complex to include the initiation of mitosis with CDK1 and mitotic progression with NIMA in addition to its previously identified interactions with Aurora and type 1 phosphatase in budding yeast.

  5. The Set1/COMPASS Histone H3 Methyltransferase Helps Regulate Mitosis With the CDK1 and NIMA Mitotic Kinases in Aspergillus nidulans

    PubMed Central

    Govindaraghavan, Meera; Anglin, Sarah Lea; Osmani, Aysha H.; Osmani, Stephen A.

    2014-01-01

    Mitosis is promoted and regulated by reversible protein phosphorylation catalyzed by the essential NIMA and CDK1 kinases in the model filamentous fungus Aspergillus nidulans. Protein methylation mediated by the Set1/COMPASS methyltransferase complex has also been shown to regulate mitosis in budding yeast with the Aurora mitotic kinase. We uncover a genetic interaction between An-swd1, which encodes a subunit of the Set1 protein methyltransferase complex, with NIMA as partial inactivation of nimA is poorly tolerated in the absence of swd1. This genetic interaction is additionally seen without the Set1 methyltransferase catalytic subunit. Importantly partial inactivation of NIMT, a mitotic activator of the CDK1 kinase, also causes lethality in the absence of Set1 function, revealing a functional relationship between the Set1 complex and two pivotal mitotic kinases. The main target for Set1-mediated methylation is histone H3K4. Mutational analysis of histone H3 revealed that modifying the H3K4 target residue of Set1 methyltransferase activity phenocopied the lethality seen when either NIMA or CDK1 are partially functional. We probed the mechanistic basis of these genetic interactions and find that the Set1 complex performs functions with CDK1 for initiating mitosis and with NIMA during progression through mitosis. The studies uncover a joint requirement for the Set1 methyltransferase complex with the CDK1 and NIMA kinases for successful mitosis. The findings extend the roles of the Set1 complex to include the initiation of mitosis with CDK1 and mitotic progression with NIMA in addition to its previously identified interactions with Aurora and type 1 phosphatase in budding yeast. PMID:24835271

  6. F-Box Protein RcyA Controls Turnover of the Kinesin-7 Motor KipA in Aspergillus nidulans

    PubMed Central

    Herrero, Saturnino; Takeshita, Norio

    2014-01-01

    Fungal filamentous growth depends on continuous membrane insertion at the tip, the delivery of membrane-bound positional markers, and the secretion of enzymes for cell wall biosynthesis. This is achieved through exocytosis. At the same time, polarized growth requires membrane and protein recycling through endocytosis. Endocytic vesicles are thought to enter the protein degradation pathway or recycle their content to the cell surface. In Saccharomyces cerevisiae, the Rcy1 F-box protein is involved in the recycling process of a v-SNARE protein. We identified a Rcy1 orthologue, RcyA, in the filamentous fungus Aspergillus nidulans as a protein interacting with the KipA kinesin-7 motor protein in a yeast two-hybrid screen. The interaction was confirmed through bimolecular fluorescence complementation. RcyA possesses an F-box domain at the N terminus and a prenylation (CaaX) motif at the C terminus. RcyA shows also similarity to Sec10, a component of the exocyst complex. The RcyA protein localized to the hyphal tip and forming septa, likely through transportation on secretory vesicles and partially on early endosomes, but independently of KipA. Deletion of rcyA did not cause severe morphological changes but caused partial defects in the recycling of the SynA v-SNARE protein and the positioning of the cell end markers TeaA and TeaR. In addition, deletion of rcyA led to increased concentrations of the KipA protein, whereas the transcript concentration was unaffected. These results suggest that RcyA probably labels KipA for degradation and thereby controls the protein amount of KipA. PMID:24951440

  7. Minos as a novel Tc1/mariner-type transposable element for functional genomic analysis in Aspergillus nidulans.

    PubMed

    Evangelinos, Minoas; Anagnostopoulos, Gerasimos; Karvela-Kalogeraki, Iliana; Stathopoulou, Panagiota M; Scazzocchio, Claudio; Diallinas, George

    2015-08-01

    Transposons constitute powerful genetic tools for gene inactivation, exon or promoter trapping and genome analyses. The Minos element from Drosophila hydei, a Tc1/mariner-like transposon, has proved as a very efficient tool for heterologous transposition in several metazoa. In filamentous fungi, only a handful of fungal-specific transposable elements have been exploited as genetic tools, with the impala Tc1/mariner element from Fusarium oxysporum being the most successful. Here, we developed a two-component transposition system to manipulate Minos transposition in Aspergillus nidulans (AnMinos). Our system allows direct selection of transposition events based on re-activation of niaD, a gene necessary for growth on nitrate as a nitrogen source. On average, among 10(8) conidiospores, we obtain up to ∼0.8×10(2) transposition events leading to the expected revertant phenotype (niaD(+)), while ∼16% of excision events lead to AnMinos loss. Characterized excision footprints consisted of the four terminal bases of the transposon flanked by the TA target duplication and led to no major DNA rearrangements. AnMinos transposition depends on the presence of its homologous transposase. Its frequency was not significantly affected by temperature, UV irradiation or the transcription status of the original integration locus (niaD). Importantly, transposition is dependent on nkuA, encoding an enzyme essential for non-homologous end joining of DNA in double-strand break repair. AnMinos proved to be an efficient tool for functional analysis as it seems to transpose in different genomic loci positions in all chromosomes, including a high proportion of integration events within or close to genes. We have used Minos to obtain morphological and toxic analogue resistant mutants. Interestingly, among morphological mutants some seem to be due to Minos-elicited over-expression of specific genes, rather than gene inactivation.

  8. Metabolic and developmental effects resulting from deletion of the citA gene encoding citrate synthase in Aspergillus nidulans.

    PubMed

    Murray, Sandra L; Hynes, Michael J

    2010-04-01

    Citrate synthase is a central activity in carbon metabolism. It is required for the tricarboxylic acid (TCA) cycle, respiration, and the glyoxylate cycle. In Saccharomyces cerevisiae and Arabidopsis thaliana, there are mitochondrial and peroxisomal isoforms encoded by separate genes, while in Aspergillus nidulans, a single gene, citA, encodes a protein with predicted mitochondrial and peroxisomal targeting sequences (PTS). Deletion of citA results in poor growth on glucose but not on derepressing carbon sources, including those requiring the glyoxylate cycle. Growth on glucose is restored by a mutation in the creA carbon catabolite repressor gene. Methylcitrate synthase, required for propionyl-coenzyme A (CoA) metabolism, has previously been shown to have citrate synthase activity. We have been unable to construct the mcsADelta citADelta double mutant, and the expression of mcsA is subject to CreA-mediated carbon repression. Therefore, McsA can substitute for the loss of CitA activity. Deletion of citA does not affect conidiation or sexual development but results in delayed conidial germination as well as a complete loss of ascospores in fruiting bodies, which can be attributed to loss of meiosis. These defects are suppressed by the creA204 mutation, indicating that McsA activity can substitute for the loss of CitA. A mutation of the putative PTS1-encoding sequence in citA had no effect on carbon source utilization or development but did result in slower colony extension arising from single conidia or ascospores. CitA-green fluorescent protein (GFP) studies showed mitochondrial localization in conidia, ascospores, and hyphae. Peroxisomal localization was not detected. However, a very low and variable detection of punctate GFP fluorescence was sometimes observed in conidia germinated for 5 h when the mitochondrial targeting sequence was deleted.

  9. The pH-induced glycosylation of secreted phosphatases is mediated in Aspergillus nidulans by the regulatory gene pacC-dependent pathway.

    PubMed

    Nozawa, S R; Ferreira-Nozawa, M S; Martinez-Rossi, N M; Rossi, A

    2003-08-01

    In this communication, we show that the pacC(c)14 mutation drastically reduced the mannose and N-acetylglycosamine content of the pacA-encoded acid phosphatase secreted by the fungus Aspergillus nidulans when grown at 22 degrees C, pH 5.0, compared to a control strain. The staining after PAGE was not observed for the pacA-encoded acid phosphatase, while the palD-encoded Pi-repressible alkaline phosphatase had an altered electrophoretic mobility. In addition, the secreted acid phosphatase also had a reduced number of isoforms visualized by staining after IEF and glycosylation had a protective effect against its heat inactivation. We also show that a full-length version of gene pacC-1 cloned from Neurospora crassa complemented the pacC(c)14 mutation of A. nidulans, including the remediation of both the acid and alkaline Pi-repressible phosphatases secreted at pH 5.0, which indicates that glycosylation of secreted phosphatases is mediated in A. nidulans by the conserved PacC pathway that governs pH-responsive gene expression.

  10. The isopenicillin N acyltransferases of Aspergillus nidulans and Penicillium chrysogenum differ in their ability to maintain the 40-kDa alphabeta heterodimer in an undissociated form.

    PubMed

    Fernández, Francisco J; Cardoza, Rosa E; Montenegro, Eduardo; Velasco, Javier; Gutiérrez, Santiago; Martín, Juan F

    2003-05-01

    The isopenicillin N acyltransferases (IATs) of Aspergillus nidulans and Penicillium chrysogenum differed in their ability to maintain the 40-kDa proacyltransferase alphabeta heterodimer in an undissociated form. The native A. nidulans IAT exhibited a molecular mass of 40 kDa by gel filtration. The P. chrysogenum IAT showed a molecular mass of 29 kDa by gel filtration (corresponding to the beta subunit of the enzyme) but the undissociated 40-kDa heterodimer was never observed even in crude extracts. Heterologous expression experiments showed that the chromatographic behaviour of IAT was determined by the source of the penDE gene used in the expression experiments and not by the host itself. When the penDE gene of A. nidulans was expressed in P. chrysogenum npe6 and npe8 or in Acremonium chrysogenum, the IAT formed had a molecular mass of 40 kDa. On the other hand, when the penDE gene originating from P. chrysogenum was expressed in A. chrysogenum, the active IAT had a molecular mass of 29 kDa. The intronless form of the penDE gene cloned from an A. nidulans cDNA library and overexpressed in Escherichia coli formed the enzymatically active 40-kDa proIAT, which was not self-processed as shown by immunoblotting with antibodies to IAT. This 40-kDa protein remained unprocessed even when treated with A. nidulans crude extract. In contrast, the P. chrysogenum penDE intronless gene cloned from a cDNA library was expressed in E. coli, and the IAT was self-processed efficiently into its alpha (29 kDa) and beta (11 kDa) subunits. It is concluded that P. chrysogenum and A. nidulans differ in their ability to self-process their respective proIAT protein and to maintain the alpha and beta subunits as an undissociated heterodimer, probably because of the amino-acid sequence differences in the proIAT which affect the autocatalytic activity.

  11. The veA gene is necessary for the negative regulation of the veA expression in Aspergillus nidulans.

    PubMed

    Kim, Hyoun-Young; Han, Kap-Hoon; Lee, Mimi; Oh, Miae; Kim, Hee-Seo; Zhixiong, Xie; Han, Dong-Min; Jahng, Kwang-Yeop; Kim, Jong Hwa; Chae, Keon-Sang

    2009-08-01

    The veA gene is one of the key genes in regulating sexual development of Aspergillus nidulans. During the study on the veA gene, it was observed that the veA expression level is slightly higher in a veA1 mutant than in a wild type at 37 degrees C, suggesting that the wild type veA gene is necessary for the negative regulation of the veA expression. In the veA1 mutant, the veA expression was higher than in a wild type grown at 42 degrees C but equal at 30 degrees C. Furthermore, in a veA deletion mutant having its own promoter and the N-terminus of the VeA ORF, expression of the N-terminus by the veA promoter was highly up-regulated, supporting the possibility that the veA gene is important for the negative regulation of the veA expression. Analyses of the lacZ transcript and the beta-galactosidase activity from the reporter strains in the veA1 background, which were constructed by transformation of the lacZ reporter plasmids containing the lacZ gene under the control of the intact or the truncated veA promoters from the -943 to +262 bp region, showed that the truncated promoters produced more veA transcript and higher beta-galactosidase activity than the intact one at 30 degrees C, but equal at 42 degrees C. In addition, the serial-deletion analysis of the veA promoter identified a crucial region in the promoter from -943 to -740 bp for this derepression of the veA expression. Taken together, these results indicated that the veA gene is necessary for the negative regulation of the veA expression. Moreover, the veA expression was derepressed in the light-illuminated condition, where the VeA protein is hardly transported into the nucleus.

  12. Versatile Enzyme Expression and Characterization System for Aspergillus nidulans, with the Penicillium brevicompactum Polyketide Synthase Gene from the Mycophenolic Acid Gene Cluster as a Test Case▿†

    PubMed Central

    Hansen, Bjarne G.; Salomonsen, Bo; Nielsen, Morten T.; Nielsen, Jakob B.; Hansen, Niels B.; Nielsen, Kristian F.; Regueira, Torsten B.; Nielsen, Jens; Patil, Kiran R.; Mortensen, Uffe H.

    2011-01-01

    Assigning functions to newly discovered genes constitutes one of the major challenges en route to fully exploiting the data becoming available from the genome sequencing initiatives. Heterologous expression in an appropriate host is central in functional genomics studies. In this context, filamentous fungi offer many advantages over bacterial and yeast systems. To facilitate the use of filamentous fungi in functional genomics, we present a versatile cloning system that allows a gene of interest to be expressed from a defined genomic location of Aspergillus nidulans. By a single USER cloning step, genes are easily inserted into a combined targeting-expression cassette ready for rapid integration and analysis. The system comprises a vector set that allows genes to be expressed either from the constitutive PgpdA promoter or from the inducible PalcA promoter. Moreover, by using the vector set, protein variants can easily be made and expressed from the same locus, which is mandatory for proper comparative analyses. Lastly, all individual elements of the vectors can easily be substituted for other similar elements, ensuring the flexibility of the system. We have demonstrated the potential of the system by transferring the 7,745-bp large mpaC gene from Penicillium brevicompactum to A. nidulans. In parallel, we produced defined mutant derivatives of mpaC, and the combined analysis of A. nidulans strains expressing mpaC or mutated mpaC genes unequivocally demonstrated that mpaC indeed encodes a polyketide synthase that produces the first intermediate in the production of the medically important immunosuppressant mycophenolic acid. PMID:21398493

  13. Versatile enzyme expression and characterization system for Aspergillus nidulans, with the Penicillium brevicompactum polyketide synthase gene from the mycophenolic acid gene cluster as a test case.

    PubMed

    Hansen, Bjarne G; Salomonsen, Bo; Nielsen, Morten T; Nielsen, Jakob B; Hansen, Niels B; Nielsen, Kristian F; Regueira, Torsten B; Nielsen, Jens; Patil, Kiran R; Mortensen, Uffe H

    2011-05-01

    Assigning functions to newly discovered genes constitutes one of the major challenges en route to fully exploiting the data becoming available from the genome sequencing initiatives. Heterologous expression in an appropriate host is central in functional genomics studies. In this context, filamentous fungi offer many advantages over bacterial and yeast systems. To facilitate the use of filamentous fungi in functional genomics, we present a versatile cloning system that allows a gene of interest to be expressed from a defined genomic location of Aspergillus nidulans. By a single USER cloning step, genes are easily inserted into a combined targeting-expression cassette ready for rapid integration and analysis. The system comprises a vector set that allows genes to be expressed either from the constitutive PgpdA promoter or from the inducible PalcA promoter. Moreover, by using the vector set, protein variants can easily be made and expressed from the same locus, which is mandatory for proper comparative analyses. Lastly, all individual elements of the vectors can easily be substituted for other similar elements, ensuring the flexibility of the system. We have demonstrated the potential of the system by transferring the 7,745-bp large mpaC gene from Penicillium brevicompactum to A. nidulans. In parallel, we produced defined mutant derivatives of mpaC, and the combined analysis of A. nidulans strains expressing mpaC or mutated mpaC genes unequivocally demonstrated that mpaC indeed encodes a polyketide synthase that produces the first intermediate in the production of the medically important immunosuppressant mycophenolic acid.

  14. Proteomic analysis of the soil filamentous fungus Aspergillus nidulans exposed to a Roundup formulation at a dose causing no macroscopic effect: a functional study.

    PubMed

    Poirier, Florence; Boursier, Céline; Mesnage, Robin; Oestreicher, Nathalie; Nicolas, Valérie; Vélot, Christian

    2017-09-23

    Roundup® is a glyphosate-based herbicide (GBH) used worldwide both in agriculture and private gardens. Thus, it constitutes a substantial source of environmental contaminations, especially for water and soil, and may impact a number of non-target organisms essential for ecosystem balance. The soil filamentous fungus Aspergillus nidulans has been shown to be highly affected by a commercial formulation of Roundup® (R450), containing 450 g/L of glyphosate (GLY), at doses far below recommended agricultural application rate. In the present study, we used two-dimensional gel electrophoresis combined to mass spectrometry to analyze proteomic pattern changes in A. nidulans exposed to R450 at a dose corresponding to the no-observed-adverse-effect level (NOAEL) for macroscopic parameters (31.5 mg/L GLY among adjuvants). Comparative analysis revealed a total of 82 differentially expressed proteins between control and R450-treated samples, and 85% of them (70) were unambiguously identified. Their molecular functions were mainly assigned to cell detoxification and stress response (16%), protein synthesis (14%), amino acid metabolism (13%), glycolysis/gluconeogenesis/glycerol metabolism/pentose phosphate pathway (13%) and Krebs TCA cycle/acetyl-CoA synthesis/ATP metabolism (10%). These results bring new insights into the understanding of the toxicity induced by higher doses of this herbicide in the soil model organism A. nidulans. To our knowledge, this study represents the first evidence of protein expression modulation and, thus, possible metabolic disturbance, in response to an herbicide treatment at a dose that does not cause any visible effect. These data are likely to challenge the concept of "substantial equivalence" when applied to herbicide-tolerant plants.

  15. gfsA encodes a novel galactofuranosyltransferase involved in biosynthesis of galactofuranose antigen of O-glycan in Aspergillus nidulans and A. fumigatus

    PubMed Central

    Futagami, Taiki; Kizjakina, Karina; Sobrado, Pablo; Ekino, Keisuke; Takegawa, Kaoru; Goto, Masatoshi; Nomura, Yoshiyuki; Oka, Takuji

    2013-01-01

    The cell walls of filamentous fungi in the genus Aspergillus have galactofuranose-containing polysaccharides and glycoconjugates, including O-glycans, N-glycans, fungal-type galactomannan, and glycosylinositolphosphoceramide, which are important for cell wall integrity. Here, we attempted to identify galactofuranosyltransferases that couple galactofuranose monomers onto other wall components in Aspergillus nidulans. Using reverse-genetic and biochemical approaches, we identified that the AN8677 gene encoded a galactofuranosyltransferase, which we called GfsA, involved in galactofuranose (Galf) antigen biosynthesis. Disruption of gfsA reduced binding of β-Galf-specific antibody EB-A2 to O-glycosylated WscA protein and galactomannoproteins. The results of an in-vitro galactofuranose antigen synthase assay revealed that GfsA has β1,5- or β1,6- galactofuranosyltransferase activity for O-glycans in glycoproteins, uses UDP-D-galactofuranose as a sugar donor, and requires a divalent manganese cation for activity. GfsA was found to be localized at the Golgi apparatus based on cellular fractionation experiments. ΔgfsA cells exhibited an abnormal morphology characterized by poor hyphal extension, hyphal curvature, and limited formation of conidia. Several gfsA orthologs were identified in members of the Pezizomycotina subphylum of Ascomycota, including the human pathogen Aspergillus fumigatus. To our knowledge, this is the first characterization of a fungal β-galactofuranosyltransferase, which was shown to be involved in galactofuranose antigen biosynthesis of O-glycans in the Golgi. PMID:24118544

  16. The Aspergillus nidulans acuL gene encodes a mitochondrial carrier required for the utilization of carbon sources that are metabolized via the TCA cycle.

    PubMed

    Flipphi, Michel; Oestreicher, Nathalie; Nicolas, Valérie; Guitton, Audrey; Vélot, Christian

    2014-07-01

    In Aspergillus nidulans, the utilization of acetate as sole carbon source requires several genes (acu). Most of them are also required for the utilization of fatty acids. This is the case for acuD and acuE, which encode the two glyoxylate cycle-specific enzymes, isocitrate lyase and malate synthase, respectively, but also for acuL that we have identified as AN7287, and characterized in this study. Deletion of acuL resulted in the same phenotype as the original acuL217 mutant. acuL encodes a 322-amino acid protein which displays all the structural features of a mitochondrial membrane carrier, and shares 60% identity with the Saccharomyces cerevisiae succinate/fumarate mitochondrial antiporter Sfc1p (also named Acr1p). Consistently, the AcuL protein was shown to localize in mitochondria, and partial cross-complementation was observed between the S. cerevisiae and A. nidulans homologues. Extensive phenotypic characterization suggested that the acuL gene is involved in the utilization of carbon sources that are catabolized via the TCA cycle, and therefore require gluconeogenesis. In addition, acuL proves to be co-regulated with acuD and acuE. Overall, our data suggest that AcuL could link the glyoxylate cycle to gluconeogenesis by exchanging cytoplasmic succinate for mitochondrial fumarate.

  17. Analysis of the Aspergillus nidulans thaumatin-like cetA gene and evidence for transcriptional repression of pyr4 expression in the cetA-disrupted strain.

    PubMed

    Greenstein, Shulamit; Shadkchan, Yona; Jadoun, Jeries; Sharon, Chaim; Markovich, Sarit; Osherov, Nir

    2006-01-01

    The asexual spore or conidium plays a critical role in the life cycle of many filamentous fungi. However, the process of conidial germination remains surprisingly obscure. To better understand this process at the molecular level we characterized the Aspergillus nidulans cetA gene which is uniquely transcribed in conidiating cultures and whose transcript is significantly enriched in mature conidia. CetA is a member of a novel family of fungal genes of unknown function with homology to plant thaumatin-like (PR-5) defense proteins. We demonstrate by Northern analysis that cetA is a glucose-repressible gene. Transcriptional repression is dependent on the presence of protein kinase A. Western analysis indicates that the CETA protein is absent from conidia but is highly expressed during the first 6h of germination and is secreted into the medium. Disruption of the cetA gene seemingly results in delayed germination, slow growth, abnormal hyphal branching, and cell-wall defects. However, further analysis shows that the mutant phenotype is the result of glucose-dependent transcriptional repression of the pyr4 selectable marker used to disrupt the cetA gene. This is the first time that repression of a selectable marker ("position effect") has been reported in A. nidulans, a finding that may well be of significance in the analysis and interpretation of mutant phenotypes in this organism.

  18. Timely Septation Requires SNAD-dependent Spindle Pole Body Localization of the Septation Initiation Network Components in the Filamentous Fungus Aspergillus nidulans

    PubMed Central

    Kim, Jung-Mi; Zeng, Cui Jing Tracy; Nayak, Tania; Shao, Rongzhong; Huang, An-Chi; Oakley, Berl R.

    2009-01-01

    In the filamentous fungus Aspergillus nidulans, cytokinesis/septation is triggered by the septation initiation network (SIN), which first appears at the spindle pole body (SPB) during mitosis. The coiled-coil protein SNAD is associated with the SPB and is required for timely septation and conidiation. We have determined that SNAD acted as a scaffold protein that is required for the localization of the SIN proteins of SIDB and MOBA to the SPB. Another scaffold protein SEPK, whose localization at the SPB was dependent on SNAD, was also required for SIDB and MOBA localization to the SPB. In the absence of either SEPK or SNAD, SIDB/MOBA successfully localized to the septation site, indicating that their earlier localization at SPB was not essential for their later appearance at the division site. Unlike their functional counterparts in fission yeast, SEPK and SNAD were not required for vegetative growth but only for timely septation. Furthermore, down-regulation of negative regulators of the SIN suppressed the septation and conidiation phenotypes due to the loss of SNAD. Therefore, we conclude that SPB localization of SIN components is not essential for septation per se, but critical for septation to take place in a timely manner in A. nidulans. PMID:19386763

  19. veA-dependent RNA-pol II transcription elongation factor like protein, RtfA, is associated with secondary metabolism and morphological development in Aspergillus nidulans

    PubMed Central

    Ramamoorthy, Vellaisamy; Shantappa, Sourabha; Dhingra, Sourabh; Calvo, Ana M.

    2012-01-01

    In Aspergillus nidulans the global regulatory gene veA is necessary for the biosynthesis of several secondary metabolites, including the mycotoxin sterigmatocystin (ST). In order to identify additional veA-dependent genetic elements involved in regulating ST production, we performed a mutagenesis on a deletion veA (ΔveA) strain to obtain revertant mutants (RM) that regained the capability to produce toxin. Genetic analysis and molecular characterization of one of the revertant mutants, RM3, revealed that a point mutation occurred at the coding region of the rtfA gene, encoding a RNA-pol II transcription elongation factor like protein, similar to Saccharomyces cerevisiae Rtf1. The A. nidulans rtfA gene product accumulates in nuclei. Deletion of rtfA gene in a ΔveA background restored mycotoxin production in a medium-dependent manner. rtfA also affects the production of other metabolites including penicillin. Biosynthesis of this antibiotic decreased in the absence of rtfA. Furthermore, rtfA is necessary for normal morphological development. Deletion of the rtfA gene in wild-type strains (veA+) resulted in a slight decrease in growth rate, drastic reduction in conidiation, and complete loss of sexual development. This is the first study of an Rtf1 like gene in filamentous fungi. We found rtfA putative orthologs extensively conserved in numerous fungal species. PMID:22783880

  20. Copper Resistance in Aspergillus nidulans Relies on the PI-Type ATPase CrpA, Regulated by the Transcription Factor AceA

    PubMed Central

    Antsotegi-Uskola, Martzel; Markina-Iñarrairaegui, Ane; Ugalde, Unai

    2017-01-01

    Copper homeostasis has been extensively studied in mammals, bacteria, and yeast, but it has not been well-documented in filamentous fungi. In this report, we investigated the basis of copper tolerance in the model fungus Aspergillus nidulans. Three genes involved in copper homeostasis have been characterized. First, crpA the A. nidulans ortholog of Candida albicans CaCRP1 gene encoding a PI-type ATPase was identified. The phenotype of crpA deletion led to a severe sensitivity to Cu+2 toxicity and a characteristic morphological growth defect in the presence of high copper concentration. CrpA displayed some promiscuity regarding metal species response. The expression pattern of crpA showed an initial strong elevation of mRNA and a low continuous gene expression in response to long term toxic copper levels. Coinciding with maximum protein expression level, CrpA was localized close to the cellular surface, however protein distribution across diverse organelles suggests a complex regulated trafficking process. Secondly, aceA gene, encoding a transcription factor was identified and deleted, resulting in an even more extreme copper sensitivity than the ΔcrpA mutant. Protein expression assays corroborated that AceA was necessary for metal inducible expression of CrpA, but not CrdA, a putative metallothionein the function of which has yet to be elucidated. PMID:28611736

  1. The Aspergillus nidulans uvsB gene encodes an ATM-related kinase required for multiple facets of the DNA damage response.

    PubMed Central

    Hofmann, A F; Harris, S D

    2000-01-01

    In Aspergillus nidulans, uvsB and uvsD belong to the same epistasis group of DNA repair mutants. Recent observations suggest that these genes are likely to control cell cycle checkpoint responses to DNA damage and incomplete replication. Consistent with this notion, we show here that UVSB is a member of the conserved family of ATM-related kinases. Phenotypic characterization of uvsB mutants shows that they possess defects in additional aspects of the DNA damage response besides checkpoint control, including inhibition of septum formation, regulation of gene expression, and induced mutagenesis. The musN227 mutation partially suppresses the poor growth and DNA damage sensitivity of uvsB mutants. Although musN227 partially suppresses several uvsB defects, it does not restore checkpoint function to uvsB mutants. Notably, the failure of uvsB mutants to restrain septum formation in the presence of DNA damage is suppressed by the musN227 mutation. We propose that UVSB functions as the central regulator of the A. nidulans DNA damage response, whereas MUSN promotes recovery by modulating a subset of the response. PMID:10747054

  2. An ortholog of farA of Aspergillus nidulans is implicated in the transcriptional activation of genes involved in fatty acid utilization in the yeast Yarrowia lipolytica

    SciTech Connect

    Poopanitpan, Napapol; Kobayashi, Satoshi; Fukuda, Ryouichi; Horiuchi, Hiroyuki; Ohta, Akinori

    2010-11-26

    Research highlights: {yields} POR1 is a Yarrowia lipolytica ortholog of farA involved in fatty acid response in A. nidulans. {yields} Deletion of POR1 caused growth defects on fatty acids. {yields} {Delta}por1 strain exhibited defects in the induction of genes involved in fatty acid utilization. -- Abstract: The yeast Yarrowia lipolytica effectively utilizes hydrophobic substrates such as fatty acids and n-alkanes. To identify a gene(s) regulating fatty acid utilization in Y. lipolytica, we first studied homologous genes to OAF1 and PIP2 of Saccharomyces cerevisiae, but their disruption did not change growth on oleic acid at all. We next characterized a Y. lipolytica gene, POR1 (primary oleate regulator 1), an ortholog of farA encoding a transcriptional activator that regulates fatty acid utilization in Aspergillus nidulans. The deletion mutant of POR1 was defective in the growth on various fatty acids, but not on glucose, glycerol, or n-hexadecane. It exhibited slight defect on n-decane. The transcriptional induction of genes involved in {beta}-oxidation and peroxisome proliferation by oleate was distinctly diminished in the {Delta}por1 strains. These data suggest that POR1 encodes a transcriptional activator widely regulating fatty acid metabolism in Y. lipolytica.

  3. The oxpA5 mutation of Aspergillus nidulans is an allele of adB, the gene encoding adenylosuccinate synthetase.

    PubMed

    Ribard, C; Scazzocchio, C; Oestreicher, N

    2001-12-01

    The oxpA5 mutation in Aspergillus nidulans results in a pleiotropic phenotype, including resistance to oxypurinol and partial constitutivity of the enzymes of purine catabolism. Here we show that the oxpA5 mutation is an allele of adB, the gene encoding adenylosuccinate synthetase (ASS). Cloning, sequencing and characterisation of the adB gene are reported in this paper. In vivo complementation tests indicate that the oxpA5 mutation is a partial loss-of-function mutation, and altered kinetic parameters of the ASS could account for the pleiotropic phenotype of the oxpA5 mutant. The transcriptional regulation of adB presents some interesting features, including increased gene expression in the presence of ammonium and of AMP, the final product of purine biosynthesis. The adB gene is located adjacent to helA, a newly identified gene coding for a putative RNA helicase.

  4. Production and secretion of Aspergillus nidulans catalase B in filamentous fungi driven by the promoter and signal peptide of the Cladosporium fulvum hydrophobin gene hcf-1.

    PubMed

    Johnson, Hannah; Whiteford, James R; Eckert, Sabine E; Spanu, Pietro D

    2003-11-01

    We describe here the use of sequences from the hydrophobin gene hcf-1 of Cladosporium fulvum to construct pCatBex, a vector for high-level expression and secretion of CatB, a catalase from Aspergillus nidulans. Transformation of C. fulvum with pCatBex results in a 60-fold increase in the mycelial activity in the fungus and the appearance of up to 5.4 mkat/l of catalase in the growth medium. The levels of catalase in the supernatant increased dramatically following removal of nitrogen from the medium. Conversely, the overall specific activity of catalase in the cytoplasm did not change appreciably. This indicates that nitrogen depletion induces greater secretion of protein. The vector pCatBex also directs the expression and secretion of CatB in Magnaporthe grisea and may be a useful vector for the expression of genes in other filamentous fungi.

  5. 4-Phenyl-3,4-dihydroquinolone derivatives from Aspergillus nidulans MA-143, an endophytic fungus isolated from the mangrove plant Rhizophora stylosa.

    PubMed

    An, Chun-Yan; Li, Xiao-Ming; Luo, Han; Li, Chun-Shun; Wang, Ming-Hui; Xu, Gang-Ming; Wang, Bin-Gui

    2013-10-25

    Six new 4-phenyl-3,4-dihydroquinolone derivatives (1-6) along with the related aflaquinolone A (7) were isolated and identified from the cultures of Aspergillus nidulans MA-143, an endophytic fungus obtained from the fresh leaves of the marine mangrove plant Rhizophora stylosa. Their structures including absolute configurations were determined by spectroscopic analysis and electronic circular dichroism experiments, and the structure of compound 1 was confirmed by single-crystal X-ray crystallographic analysis. In bioscreening experiments, none of the isolated compounds showed potent antibacterial or cytotoxic activity. However, compounds 2, 3, and 7 exhibited lethality against brine shrimp (Artemia salina), with LD50 values of 7.1, 4.5, and 5.5 μM, respectively.

  6. Carbon regulation of the cuticle-degrading enzyme PR1 from Metarhizium anisopliae may involve a trans-acting DNA-binding protein CRR1, a functional equivalent of the Aspergillus nidulans CREA protein.

    PubMed

    Screen, S; Bailey, A; Charnley, K; Cooper, R; Clarkson, J

    1997-06-01

    The pr1 gene of the entomopathogenic fungus Metarhizium anisopliae encodes a serine protease that is highly active towards the insect cuticle and whose synthesis is subject to both carbon and nitrogen repression. The pr1 promoter region was sequenced revealing the presence of putative CREA- and AREA-binding sites. In vitro bandshift experiments demonstrated that an Aspergillus nidulans GST-CREA fusion protein was capable of binding to two of the three putative CREA sites. Using a PCR-based strategy the M. anisopliae crr1 gene was identified; it encodes a putative C2H2-type DNA-binding protein with significant sequence similarity to A. nidulans CREA. Complementation experiments with an A. nidulans strain carrying creA204 demonstrated that CRR1 can partially substitute for CREA function.

  7. The Polo-like kinase PLKA in Aspergillus nidulans is not essential but plays important roles during vegetative growth and development.

    PubMed

    Mogilevsky, Klarita; Glory, Amandeep; Bachewich, Catherine

    2012-02-01

    The Polo-like kinases (Plks) are conserved, multifunctional cell cycle regulators that are induced in many forms of cancer and play additional roles in metazoan development. We previously identified plkA in Aspergillus nidulans, the only Plk investigated in filamentous fungi to date, and partially characterized its function through overexpression. Here, we report the plkA null phenotype. Surprisingly, plkA was not essential, unlike Plks in other organisms that contain a single homologue. A subset of cells lacking PLKA contained defects in spindle formation and chromosome organization, supporting some conservation in cell cycle function. However, septa were present, suggesting that PLKA, unlike other Plks, is not a central regulator of septation. Colonies lacking PLKA were compact with multibranched hyphae, implying a role for this factor in aspects of hyphal morphogenesis. These defects were suppressed by high temperature or low concentrations of benomyl, suggesting that PLKA may function during vegetative growth by influencing microtubule dynamics. However, the colonies also showed reduced conidiation and precocious formation of sexual Hülle cells in a benomyl- and temperature-insensitive manner. This result suggests that PLKA may influence reproduction through distinct mechanisms and represents the first example of a link between Plk function and development in fungi. Finally, filamentous fungal Plks have distinct features, and phylogenetic analyses reveal that they may group more closely with metazoan PLK4. In contrast, yeast Plks are more similar to metazoan proteins PLK1 to PLK3. Thus, A. nidulans PLKA shows some conservation in cell cycle function but may also play novel roles during hyphal morphogenesis and development.

  8. The Polo-Like Kinase PLKA in Aspergillus nidulans Is Not Essential but Plays Important Roles during Vegetative Growth and Development

    PubMed Central

    Mogilevsky, Klarita; Glory, Amandeep

    2012-01-01

    The Polo-like kinases (Plks) are conserved, multifunctional cell cycle regulators that are induced in many forms of cancer and play additional roles in metazoan development. We previously identified plkA in Aspergillus nidulans, the only Plk investigated in filamentous fungi to date, and partially characterized its function through overexpression. Here, we report the plkA null phenotype. Surprisingly, plkA was not essential, unlike Plks in other organisms that contain a single homologue. A subset of cells lacking PLKA contained defects in spindle formation and chromosome organization, supporting some conservation in cell cycle function. However, septa were present, suggesting that PLKA, unlike other Plks, is not a central regulator of septation. Colonies lacking PLKA were compact with multibranched hyphae, implying a role for this factor in aspects of hyphal morphogenesis. These defects were suppressed by high temperature or low concentrations of benomyl, suggesting that PLKA may function during vegetative growth by influencing microtubule dynamics. However, the colonies also showed reduced conidiation and precocious formation of sexual Hülle cells in a benomyl- and temperature-insensitive manner. This result suggests that PLKA may influence reproduction through distinct mechanisms and represents the first example of a link between Plk function and development in fungi. Finally, filamentous fungal Plks have distinct features, and phylogenetic analyses reveal that they may group more closely with metazoan PLK4. In contrast, yeast Plks are more similar to metazoan proteins PLK1 to PLK3. Thus, A. nidulans PLKA shows some conservation in cell cycle function but may also play novel roles during hyphal morphogenesis and development. PMID:22140227

  9. Sensitivity of Aspergillus nidulans to the Cellulose Synthase Inhibitor Dichlobenil: Insights from Wall-Related Genes’ Expression and Ultrastructural Hyphal Morphologies

    PubMed Central

    Obersriebnig, Michael; Salerno, Marco; Pum, Dietmar; Strauss, Joseph

    2013-01-01

    The fungal cell wall constitutes an important target for the development of antifungal drugs, because of its central role in morphogenesis, development and determination of fungal-specific molecular features. Fungal walls are characterized by a network of interconnected glycoproteins and polysaccharides, namely α-, β-glucans and chitin. Cell walls promptly and dynamically respond to environmental stimuli by a signaling mechanism, which triggers, among other responses, modulations in wall biosynthetic genes’ expression. Despite the absence of cellulose in the wall of the model filamentous fungus Aspergillus nidulans, we found in this study that fungal growth, spore germination and morphology are affected by the addition of the cellulose synthase inhibitor dichlobenil. Expression analysis of selected genes putatively involved in cell wall biosynthesis, carried out at different time points of drug exposure (i.e. 0, 1, 3, 6 and 24 h), revealed increased expression for the putative mixed linkage β-1,3;1,4 glucan synthase celA together with the β-1,3-glucan synthase fksA and the Rho-related GTPase rhoA. We also compared these data with the response to Congo Red, a known plant/fungal drug affecting both chitin and cellulose biosynthesis. The two drugs exerted different effects at the cell wall level, as shown by gene expression analysis and the ultrastructural features observed through atomic force microscopy and scanning electron microscopy. Although the concentration of dichlobenil required to affect growth of A. nidulans is approximately 10-fold higher than that required to inhibit plant cellulose biosynthesis, our work for the first time demonstrates that a cellulose biosynthesis inhibitor affects fungal growth, changes fungal morphology and expression of genes connected to fungal cell wall biosynthesis. PMID:24312197

  10. Sensitivity of Aspergillus nidulans to the cellulose synthase inhibitor dichlobenil: insights from wall-related genes' expression and ultrastructural hyphal morphologies.

    PubMed

    Guerriero, Gea; Silvestrini, Lucia; Obersriebnig, Michael; Salerno, Marco; Pum, Dietmar; Strauss, Joseph

    2013-01-01

    The fungal cell wall constitutes an important target for the development of antifungal drugs, because of its central role in morphogenesis, development and determination of fungal-specific molecular features. Fungal walls are characterized by a network of interconnected glycoproteins and polysaccharides, namely α-, β-glucans and chitin. Cell walls promptly and dynamically respond to environmental stimuli by a signaling mechanism, which triggers, among other responses, modulations in wall biosynthetic genes' expression. Despite the absence of cellulose in the wall of the model filamentous fungus Aspergillus nidulans, we found in this study that fungal growth, spore germination and morphology are affected by the addition of the cellulose synthase inhibitor dichlobenil. Expression analysis of selected genes putatively involved in cell wall biosynthesis, carried out at different time points of drug exposure (i.e. 0, 1, 3, 6 and 24 h), revealed increased expression for the putative mixed linkage β-1,3;1,4 glucan synthase celA together with the β-1,3-glucan synthase fksA and the Rho-related GTPase rhoA. We also compared these data with the response to Congo Red, a known plant/fungal drug affecting both chitin and cellulose biosynthesis. The two drugs exerted different effects at the cell wall level, as shown by gene expression analysis and the ultrastructural features observed through atomic force microscopy and scanning electron microscopy. Although the concentration of dichlobenil required to affect growth of A. nidulans is approximately 10-fold higher than that required to inhibit plant cellulose biosynthesis, our work for the first time demonstrates that a cellulose biosynthesis inhibitor affects fungal growth, changes fungal morphology and expression of genes connected to fungal cell wall biosynthesis.

  11. Screening for Microtubule-Disrupting Antifungal Agents by Using a Mitotic-Arrest Mutant of Aspergillus nidulans and Novel Action of Phenylalanine Derivatives Accompanying Tubulin Loss

    PubMed Central

    Kiso, Tetsuo; Fujita, Ken-Ichi; Ping, Xu; Tanaka, Toshio; Taniguchi, Makoto

    2004-01-01

    The microtubule, which is one of the major targets of anthelmintics, anticancer drugs, and fungicides, is composed mainly of α- and β-tubulins. We focused on a unique characteristic of an Aspergillus nidulans benA33 mutant to screen for microtubule-disrupting antifungal agents. This mutant, which has a β-tubulin with a mutation of a single amino acid, undergoes mitotic arrest due to the formation of hyperstable microtubules at 37°C. The heat sensitivity of the mutant is remedied by some antimicrotubule agents. We found that an agar plate assay with the mutant was able to distinguish three types of microtubule inhibitors. The growth recovery zones of the mutant were formed around paper disks containing microtubule inhibitors, including four benzimidazoles, ansamitocin P-3, griseofulvin, and rhizoxin, on the agar plate at 37°C. Nocodazole, thiabendazole, and griseofulvin reversed the mitotic arrest of the mutant and promoted its hyphal growth. Ansamitocin P-3 and rhizoxin showed growth recovery zones around the growth-inhibitory zones. Benomyl and carbendazim also reversed mitotic arrest but produced weaker growth recovery than the aforementioned drugs. Other microtubule inhibitors, such as colchicine, Colcemid, paclitaxel, podophyllotoxin, TN-16, vinblastine, and vincristine, as well as some cytoskeletal inhibitors tested, did not show such activity. In our screening, we newly identified two mycotoxins, citrinin and patulin, two sesquiterpene dialdehydes, polygodial and warburganal, and four phenylalanine derivatives, arphamenine A, l-2,5-dihydrophenylalanine (DHPA), N-tosyl-l-phenylalanine chloromethylketone, and N-carbobenzoxy-l-phenylalanine chloromethyl ketone. In a wild-type strain of A. nidulans, DHPA caused selective losses of microtubules, as determined by fluorescence microscopy, and of both α- and β-tubulins, as determined by Western blot analysis. This screening method involving the benA33 mutant of A. nidulans is useful, convenient, and highly

  12. Growth-Phase Sterigmatocystin Formation on Lactose Is Mediated via Low Specific Growth Rates in Aspergillus nidulans

    PubMed Central

    Németh, Zoltán; Molnár, Ákos P.; Fejes, Balázs; Novák, Levente; Karaffa, Levente; Keller, Nancy P.; Fekete, Erzsébet

    2016-01-01

    Seed contamination with polyketide mycotoxins such as sterigmatocystin (ST) produced by Aspergilli is a worldwide issue. The ST biosynthetic pathway is well-characterized in A. nidulans, but regulatory aspects related to the carbon source are still enigmatic. This is particularly true for lactose, inasmuch as some ST production mutant strains still synthesize ST on lactose but not on other carbon substrates. Here, kinetic data revealed that on d-glucose, ST forms only after the sugar is depleted from the medium, while on lactose, ST appears when most of the carbon source is still available. Biomass-specified ST production on lactose was significantly higher than on d-glucose, suggesting that ST formation may either be mediated by a carbon catabolite regulatory mechanism, or induced by low specific growth rates attainable on lactose. These hypotheses were tested by d-glucose limited chemostat-type continuous fermentations. No ST formed at a high growth rate, while a low growth rate led to the formation of 0.4 mg·L−1 ST. Similar results were obtained with a CreA mutant strain. We concluded that low specific growth rates may be the primary cause of mid-growth ST formation on lactose in A. nidulans, and that carbon utilization rates likely play a general regulatory role during biosynthesis. PMID:27916804

  13. TamA interacts with LeuB, the homologue of Saccharomyces cerevisiae Leu3p, to regulate gdhA expression in Aspergillus nidulans.

    PubMed

    Polotnianka, R; Monahan, B J; Hynes, M J; Davis, M A

    2004-11-01

    Previous studies have shown that expression of the gdhA gene, encoding NADP-linked glutamate dehydrogenase (NADP-GDH), in Aspergillus nidulans is regulated by the major nitrogen regulatory protein AreA and its co-activator TamA. We show here that loss of TamA function has a more severe effect on the levels of gdhA expression than loss of AreA function. Using TamA as the bait in a yeast two-hybrid screen, we have identified a second protein that interacts with TamA. Sequencing analysis and functional studies have shown that this protein, designated LeuB, is a transcriptional activator with similar function to the homologous Leu3p of Saccharomyces cerevisiae. Inactivation of leuB revealed that this gene is involved in the regulation of gdhA, and an areA; leuB double mutant was shown to have similar NADP-GDH levels to a tamA single mutant. The requirement for TamA function to promote gdhA expression is likely to be due to its dual interaction with AreA and LeuB.

  14. Arabidopsis and Brachypodium distachyon Transgenic Plants Expressing Aspergillus nidulans Acetylesterases Have Decreased Degree of Polysaccharide Acetylation and Increased Resistance to Pathogens1[C][W][OA

    PubMed Central

    Pogorelko, Gennady; Lionetti, Vincenzo; Fursova, Oksana; Sundaram, Raman M.; Qi, Mingsheng; Whitham, Steven A.; Bogdanove, Adam J.; Bellincampi, Daniela; Zabotina, Olga A.

    2013-01-01

    The plant cell wall has many significant structural and physiological roles, but the contributions of the various components to these roles remain unclear. Modification of cell wall properties can affect key agronomic traits such as disease resistance and plant growth. The plant cell wall is composed of diverse polysaccharides often decorated with methyl, acetyl, and feruloyl groups linked to the sugar subunits. In this study, we examined the effect of perturbing cell wall acetylation by making transgenic Arabidopsis (Arabidopsis thaliana) and Brachypodium (Brachypodium distachyon) plants expressing hemicellulose- and pectin-specific fungal acetylesterases. All transgenic plants carried highly expressed active Aspergillus nidulans acetylesterases localized to the apoplast and had significant reduction of cell wall acetylation compared with wild-type plants. Partial deacetylation of polysaccharides caused compensatory up-regulation of three known acetyltransferases and increased polysaccharide accessibility to glycosyl hydrolases. Transgenic plants showed increased resistance to the fungal pathogens Botrytis cinerea and Bipolaris sorokiniana but not to the bacterial pathogens Pseudomonas syringae and Xanthomonas oryzae. These results demonstrate a role, in both monocot and dicot plants, of hemicellulose and pectin acetylation in plant defense against fungal pathogens. PMID:23463782

  15. Beyond asexual development: modifications in the gene expression profile caused by the absence of the Aspergillus nidulans transcription factor FlbB.

    PubMed

    Oiartzabal-Arano, Elixabet; Garzia, Aitor; Gorostidi, Ana; Ugalde, Unai; Espeso, Eduardo A; Etxebeste, Oier

    2015-04-01

    In the model fungus Aspergillus nidulans, asexual development is induced from vegetative hyphae by a set of early regulators including the bZIP-type transcription factor FlbB. To determine the range of genes under the influence of the transcriptional activity of FlbB and to characterize their role in fungal development, we sequenced and compared the transcriptomes of a ΔflbB mutant and its isogenic wild-type strain at different developmental stages. Results confirmed the activating role of FlbB on downstream regulators of conidiation such as flbD and brlA. However, FlbB has additional functions beyond the induction of asexual development. Among the changes observed, absence of a functional FlbB caused induction of the dba cluster and synthesis of a secondary metabolite with bactericidal properties. In addition, a new transcriptional target of FlbB was unveiled, urdA, that codes for a putative transcription factor that represses premature sexual development. Taken together, our results indicate that the activators of asexual development simultaneously exert a role on other cellular functions, including an inhibitory effect on the sexual cycle, and reinforce the hypothesis that mutually exclusive metabolic and cellular patterns are associated with different morphogenetic programs.

  16. A WDR Gene Is a Conserved Member of a Chitin Synthase Gene Cluster and Influences the Cell Wall in Aspergillus nidulans

    PubMed Central

    Guerriero, Gea; Silvestrini, Lucia; Obersriebnig, Michael; Hausman, Jean-Francois; Strauss, Joseph; Ezcurra, Inés

    2016-01-01

    WD40 repeat (WDR) proteins are pleiotropic molecular hubs. We identify a WDR gene that is a conserved genomic neighbor of a chitin synthase gene in Ascomycetes. The WDR gene is unique to fungi and plants, and was called Fungal Plant WD (FPWD). FPWD is within a cell wall metabolism gene cluster in the Ascomycetes (Pezizomycotina) comprising chsD, a Chs activator and a GH17 glucanase. The FPWD, AN1556.2 locus was deleted in Aspergillus nidulans strain SAA.111 by gene replacement and only heterokaryon transformants were obtained. The re-annotation of Aspergilli genomes shows that AN1556.2 consists of two tightly linked separate genes, i.e., the WDR gene and a putative beta-flanking gene of unknown function. The WDR and the beta-flanking genes are conserved genomic neighbors localized within a recently identified metabolic cell wall gene cluster in genomes of Aspergilli. The heterokaryons displayed increased susceptibility to drugs affecting the cell wall, and their phenotypes, observed by optical, confocal, scanning electron and atomic force microscopy, suggest cell wall alterations. Quantitative real-time PCR shows altered expression of some cell wall-related genes. The possible implications on cell wall biosynthesis are discussed. PMID:27367684

  17. Modelling and mutational analysis of Aspergillus nidulans UreA, a member of the subfamily of urea/H+ transporters in fungi and plants

    PubMed Central

    Sanguinetti, Manuel; Amillis, Sotiris; Pantano, Sergio; Scazzocchio, Claudio; Ramón, Ana

    2014-01-01

    We present the first account of the structure–function relationships of a protein of the subfamily of urea/H+ membrane transporters of fungi and plants, using Aspergillus nidulans UreA as a study model. Based on the crystal structures of the Vibrio parahaemolyticus sodium/galactose symporter (vSGLT) and of the Nucleobase-Cation-Symport-1 benzylhydantoin transporter from Microbacterium liquefaciens (Mhp1), we constructed a three-dimensional model of UreA which, combined with site-directed and classical random mutagenesis, led to the identification of amino acids important for UreA function. Our approach allowed us to suggest roles for these residues in the binding, recognition and translocation of urea, and in the sorting of UreA to the membrane. Residues W82, Y106, A110, T133, N275, D286, Y388, Y437 and S446, located in transmembrane helixes 2, 3, 7 and 11, were found to be involved in the binding, recognition and/or translocation of urea and the sorting of UreA to the membrane. Y106, A110, T133 and Y437 seem to play a role in substrate selectivity, while S446 is necessary for proper sorting of UreA to the membrane. Other amino acids identified by random classical mutagenesis (G99, R141, A163, G168 and P639) may be important for the basic transporter's structure, its proper folding or its correct traffic to the membrane. PMID:24966243

  18. Metabolism of D-galactose is dispensable for the induction of the beta-galactosidase (bgaD) and lactose permease (lacpA) genes in Aspergillus nidulans.

    PubMed

    Orosz, Anita; Fekete, Erzsébet; Flipphi, Michel; Karaffa, Levente

    2014-10-01

    In this study, we analyze the expression of the Aspergillus nidulans bgaD-lacpA gene couple (encoding an intracellular beta-galactosidase and a lactose permease) in the presence of D-galactose. This monosaccharide can be catabolized via alternative, independent pathways in this model organism. The inductive capabilities of intermediates of the two alternative routes of D-galactose utilization were addressed in loss-of-function mutants defective in a defined step in one of the two pathways. In a galactokinase (galE9) mutant, the cluster is strongly induced by D-galactose, suggesting that formation of Leloir pathway intermediates is not required. The expression profiles of bgaD and lacpA were similar in wild type, L-arabinitol dehydrogenase (araA1), and hexokinase (hxkA1) negative backgrounds, indicating that intermediates of the oxido-reductive pathway downstream of galactitol are not necessary either. Furthermore, bgaD-lacpA transcription was not induced in any of the tested strains when galactitol was provided as the growth substrate. An hxkA1/galE9 double mutant cannot grow on d-galactose at all, but still produced bgaD and lacpA transcripts upon transfer to d-galactose. We therefore concluded that the physiological inducer of the bgaD-lacpA gene cluster upon growth on D-galactose is the nonmetabolized sugar itself.

  19. An Amylase-Like Protein, AmyD, Is the Major Negative Regulator for α-Glucan Synthesis in Aspergillus nidulans during the Asexual Life Cycle.

    PubMed

    He, Xiaoxiao; Li, Shengnan; Kaminskyj, Susan

    2017-03-27

    α-Glucan affects fungal cell-cell interactions and is important for the virulence of pathogenic fungi. Interfering with production of α-glucan could help to prevent fungal infection. In our previous study, we reported that an amylase-like protein, AmyD, could repress α-glucan accumulation in Aspergillus nidulans. However, the underlying molecular mechanism was not clear. Here, we examined the localization of AmyD and found it was a membrane-associated protein. We studied AmyD function in α-glucan degradation, as well as with other predicted amylase-like proteins and three annotated α-glucanases. AmyC and AmyE share a substantial sequence identity with AmyD, however, neither affects α-glucan synthesis. In contrast, AgnB and MutA (but not AgnE) are functional α-glucanases that also repress α-glucan accumulation. Nevertheless, the functions of AmyD and these glucanases were independent from each other. The dynamics of α-glucan accumulation showed different patterns between the AmyD overexpression strain and the α-glucanase overexpression strains, suggesting AmyD may not be involved in the α-glucan degradation process. These results suggest the function of AmyD is to directly suppress α-glucan synthesis, but not to facilitate its degradation.

  20. The regulatory gene areA mediating nitrogen metabolite repression in Aspergillus nidulans. Mutations affecting specificity of gene activation alter a loop residue of a putative zinc finger.

    PubMed Central

    Kudla, B; Caddick, M X; Langdon, T; Martinez-Rossi, N M; Bennett, C F; Sibley, S; Davies, R W; Arst, H N

    1990-01-01

    The regulatory gene areA mediating nitrogen metabolite repression in Aspergillus nidulans has been sequenced and its transcript mapped and orientated. A single ORF can encode a protein of 719 amino acids. A 52 amino acid region including a putative 'zinc finger' strongly resembles putative DNA binding regions of the major regulatory protein of erythroid cells. The derived protein sequence also contains a highly acidic region possibly involved in gene activation and 22 copies of the motif S(T)PXX, abundant in DNA binding proteins. Analysis of chromosomal rearrangements and transformation with deletion clones identified 342 N-terminal and 124 C-terminal residues as inessential and localized a C-terminal region required for nitrogen metabolite repressibility. A -1 frameshift eliminating the inessential 122 C-terminal amino acids is a surprising loss-of-function mutation. Extraordinary basicity of the replacement C terminus might explain its phenotype. Mutant sequencing also identified a polypeptide chain termination and several missense mutations, but most interesting are sequence changes associated with specificity mutations. A mutation elevating expression of some structural genes under areA control whilst reducing or not affecting expression of others is a leucine to valine change in the zinc finger loop. It reverts to a partly reciprocal phenotype by replacing the mutant valine by methionine. Images Fig.2 Fig.4 Fig.5 Fig. 8. Fig. 9. PMID:1970293

  1. Beyond Asexual Development: Modifications in the Gene Expression Profile Caused by the Absence of the Aspergillus nidulans Transcription Factor FlbB

    PubMed Central

    Oiartzabal-Arano, Elixabet; Garzia, Aitor; Gorostidi, Ana; Ugalde, Unai; Espeso, Eduardo A.; Etxebeste, Oier

    2015-01-01

    In the model fungus Aspergillus nidulans, asexual development is induced from vegetative hyphae by a set of early regulators including the bZIP-type transcription factor FlbB. To determine the range of genes under the influence of the transcriptional activity of FlbB and to characterize their role in fungal development, we sequenced and compared the transcriptomes of a ΔflbB mutant and its isogenic wild-type strain at different developmental stages. Results confirmed the activating role of FlbB on downstream regulators of conidiation such as flbD and brlA. However, FlbB has additional functions beyond the induction of asexual development. Among the changes observed, absence of a functional FlbB caused induction of the dba cluster and synthesis of a secondary metabolite with bactericidal properties. In addition, a new transcriptional target of FlbB was unveiled, urdA, that codes for a putative transcription factor that represses premature sexual development. Taken together, our results indicate that the activators of asexual development simultaneously exert a role on other cellular functions, including an inhibitory effect on the sexual cycle, and reinforce the hypothesis that mutually exclusive metabolic and cellular patterns are associated with different morphogenetic programs. PMID:25701285

  2. High-yield production of aryl alcohol oxidase under limited growth conditions in small-scale systems using a mutant Aspergillus nidulans strain.

    PubMed

    Pardo-Planas, Oscar; Prade, Rolf A; Wilkins, Mark R

    2017-02-01

    Aryl alcohol oxidase (MtGloA) is an enzyme that belongs to the ligninolytic consortium and can play an important role in the bioenergy industry. This study investigated production of an MtGloA client enzyme by a mutant strain of Aspergillus nidulans unable to synthesize its own pyridoxine. Pyridoxine limitation can be used to control cell growth, diverting substrate to protein production. In agitated culture, enzyme production was similar when using media with 1 mg/L and without pyridoxine (26.64 ± 6.14 U/mg mycelia and 26.14 ± 8.39 U/mg mycelia using media with and without pyridoxine, respectively). However, the treatment lacking pyridoxine had to be supplemented with pyridoxine after 156 h of fermentation to sustain continued enzyme production. Use of extremely diluted pyridoxine levels allowed reduced fungal growth while maintaining steady enzyme production. Concentrations of 9 and 13.5 µg/L pyridoxine allowed MtGloA production with a growth rate of only 5% of that observed when using the standard 1 mg/L pyridoxine media.

  3. Genetic involvement of a cAMP-dependent protein kinase in a G protein signaling pathway regulating morphological and chemical transitions in Aspergillus nidulans.

    PubMed Central

    Shimizu, K; Keller, N P

    2001-01-01

    In the filamentous fungus Aspergillus nidulans, a heterotrimeric G protein alpha-subunit and an RGS domain protein, encoded by fadA and flbA, respectively, regulate production of the carcinogenic metabolite sterigmatocystin (ST) and asexual spores (i.e., conidia). We investigated the genetic involvement of the cAMP-dependent protein kinase catalytic subunit (PkaA), a potential downstream target of FadA activity, in ST production and conidiation. Relative to wild type, sporulation was decreased in the pkaA overexpression strain but was not totally absent, as occurs in DeltaflbA or fadA(G42R) (fadA-dominant active) strains. Deletion of pkaA resulted in a hyper-conidiating strain with limited radial growth. This phenotype was epistatic to mutation in flbA or fadA; the double mutants DeltapkaA; DeltaflbA and DeltapkaA; fadA(G42R) recovered sporulation and their radial growth was severely restricted. PkaA overexpression also negatively regulated AflR, the ST biosynthesis-specific transcription factor, both transcriptionally and post-transcriptionally. Deletion of pkaA restored ST production in the DeltaflbA background but not in the fadA(G42R) background. These data provide genetic evidence that the FlbA/FadA signaling pathway regulating ST production and morphological development is partially mediated through PkaA. PMID:11156981

  4. ami1, an orthologue of the Aspergillus nidulans apsA gene, is involved in nuclear migration events throughout the life cycle of Podospora anserina.

    PubMed Central

    Graïa, F; Berteaux-Lecellier, V; Zickler, D; Picard, M

    2000-01-01

    The Podospora anserina ami1-1 mutant was identified as a male-sterile strain. Microconidia (which act as male gametes) form, but are anucleate. Paraphysae from the perithecium beaks are also anucleate when ami1-1 is used as the female partner in a cross. Furthermore, in crosses heterozygous for ami1-1, some crozier cells are uninucleate rather than binucleate. In addition to these nuclear migration defects, which occur at the transition between syncytial and cellular states, ami1-1 causes abnormal distribution of the nuclei in both mycelial filaments and asci. Finally, an ami1-1 strain bearing information for both mating types is unable to self-fertilize. The ami1 gene is an orthologue of the Aspergillus nidulans apsA gene, which controls nuclear positioning in filaments and during conidiogenesis (at the syncytial/cellular transition). The ApsA and AMI1 proteins display 42% identity and share structural features. The apsA gene complements some ami1-1 defects: it increases the percentage of nucleate microconidia and restores self-fertility in an ami1-1 mat+ (mat-) strain. The latter effect is puzzling, since in apsA null mutants sexual reproduction is quite normal. The functional differences between the two genes are discussed with respect to their possible history in these two fungi, which are very distant in terms of evolution. PMID:10835387

  5. Overexpression of a three-gene conidial pigment biosynthetic pathway in Aspergillus nidulans reveals the first NRPS known to acetylate tryptophan.

    PubMed

    Sung, Calvin T; Chang, Shu-Lin; Entwistle, Ruth; Ahn, Green; Lin, Tzu-Shyang; Petrova, Vessela; Yeh, Hsu-Hua; Praseuth, Mike B; Chiang, Yi-Ming; Oakley, Berl R; Wang, Clay C C

    2017-04-01

    Fungal nonribosomal peptide synthetases (NRPSs) are megasynthetases that produce cyclic and acyclic peptides. In Aspergillus nidulans, the NRPS ivoA (AN10576) has been associated with the biosynthesis of grey-brown conidiophore pigments. Another gene, ivoB (AN0231), has been demonstrated to be an N-acetyl-6-hydroxytryptophan oxidase that putatively acts downstream of IvoA. A third gene, ivoC, has also been predicted to be involved in pigment biosynthesis based on publicly available genomic and transcriptomic information. In this paper, we report the replacement of the promoters of the ivoA, ivoB, and ivoC genes with the inducible promoter alcA in a single cotransformation. Co-overexpression of the three genes resulted in the production of a dark-brown pigment in hyphae. In addition, overexpression of each of the Ivo genes, ivoA-C, individually or in combination, allowed us to isolate intermediates and confirm the function of each gene. IvoA was found to be the first known NRPS to carry out the acetylation of the amino acid, tryptophan. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Arabidopsis and Brachypodium distachyon transgenic plants expressing Aspergillus nidulans acetylesterases have decreased degree of polysaccharide acetylation and increased resistance to pathogens.

    PubMed

    Pogorelko, Gennady; Lionetti, Vincenzo; Fursova, Oksana; Sundaram, Raman M; Qi, Mingsheng; Whitham, Steven A; Bogdanove, Adam J; Bellincampi, Daniela; Zabotina, Olga A

    2013-05-01

    The plant cell wall has many significant structural and physiological roles, but the contributions of the various components to these roles remain unclear. Modification of cell wall properties can affect key agronomic traits such as disease resistance and plant growth. The plant cell wall is composed of diverse polysaccharides often decorated with methyl, acetyl, and feruloyl groups linked to the sugar subunits. In this study, we examined the effect of perturbing cell wall acetylation by making transgenic Arabidopsis (Arabidopsis thaliana) and Brachypodium (Brachypodium distachyon) plants expressing hemicellulose- and pectin-specific fungal acetylesterases. All transgenic plants carried highly expressed active Aspergillus nidulans acetylesterases localized to the apoplast and had significant reduction of cell wall acetylation compared with wild-type plants. Partial deacetylation of polysaccharides caused compensatory up-regulation of three known acetyltransferases and increased polysaccharide accessibility to glycosyl hydrolases. Transgenic plants showed increased resistance to the fungal pathogens Botrytis cinerea and Bipolaris sorokiniana but not to the bacterial pathogens Pseudomonas syringae and Xanthomonas oryzae. These results demonstrate a role, in both monocot and dicot plants, of hemicellulose and pectin acetylation in plant defense against fungal pathogens.

  7. Mutations in proteins of the Conserved Oligomeric Golgi Complex affect polarity, cell wall structure, and glycosylation in the filamentous fungus Aspergillus nidulans.

    PubMed

    Gremillion, S K; Harris, S D; Jackson-Hayes, L; Kaminskyj, S G W; Loprete, D M; Gauthier, A C; Mercer, S; Ravita, A J; Hill, T W

    2014-12-01

    We have described two Aspergillus nidulans gene mutations, designated podB1 (polarity defective) and swoP1 (swollen cell), which cause temperature-sensitive defects during polarization. Mutant strains also displayed unevenness and abnormal thickness of cell walls. Un-polarized or poorly-polarized mutant cells were capable of establishing normal polarity after a shift to a permissive temperature, and mutant hyphae shifted from permissive to restrictive temperature show wall and polarity abnormalities in subsequent growth. The mutated genes (podB=AN8226.3; swoP=AN7462.3) were identified as homologues of COG2 and COG4, respectively, each predicted to encode a subunit of the multi-protein COG (Conserved Oligomeric Golgi) Complex involved in retrograde vesicle trafficking in the Golgi apparatus. Down-regulation of COG2 or COG4 resulted in abnormal polarization and cell wall staining. The GFP-tagged COG2 and COG4 homologues displayed punctate, Golgi-like localization. Lectin-blotting indicated that protein glycosylation was altered in the mutant strains compared to the wild type. A multicopy expression experiment showed evidence for functional interactions between the homologues COG2 and COG4 as well as between COG2 and COG3. To date, this work is the first regarding a functional role of the COG proteins in the development of a filamentous fungus.

  8. A WDR Gene Is a Conserved Member of a Chitin Synthase Gene Cluster and Influences the Cell Wall in Aspergillus nidulans.

    PubMed

    Guerriero, Gea; Silvestrini, Lucia; Obersriebnig, Michael; Hausman, Jean-Francois; Strauss, Joseph; Ezcurra, Inés

    2016-06-29

    WD40 repeat (WDR) proteins are pleiotropic molecular hubs. We identify a WDR gene that is a conserved genomic neighbor of a chitin synthase gene in Ascomycetes. The WDR gene is unique to fungi and plants, and was called Fungal Plant WD (FPWD). FPWD is within a cell wall metabolism gene cluster in the Ascomycetes (Pezizomycotina) comprising chsD, a Chs activator and a GH17 glucanase. The FPWD, AN1556.2 locus was deleted in Aspergillus nidulans strain SAA.111 by gene replacement and only heterokaryon transformants were obtained. The re-annotation of Aspergilli genomes shows that AN1556.2 consists of two tightly linked separate genes, i.e., the WDR gene and a putative beta-flanking gene of unknown function. The WDR and the beta-flanking genes are conserved genomic neighbors localized within a recently identified metabolic cell wall gene cluster in genomes of Aspergilli. The heterokaryons displayed increased susceptibility to drugs affecting the cell wall, and their phenotypes, observed by optical, confocal, scanning electron and atomic force microscopy, suggest cell wall alterations. Quantitative real-time PCR shows altered expression of some cell wall-related genes. The possible implications on cell wall biosynthesis are discussed.

  9. The nadA gene of Aspergillus nidulans, encoding adenine deaminase, is subject to a unique regulatory pattern.

    PubMed

    Oestreicher, Nathalie; Ribard, Carin; Scazzocchio, Claudio

    2008-05-01

    The adenine deaminase of A. nidulans, encoded by nadA, can be considered both as a catabolic and a purine salvage enzyme. We show that its transcriptional regulation reflects this double metabolic role. As all other genes involved in purine utilisation it is induced by uric acid, and this induction is mediated by the UaY transcription factor. However, it is also independently and synergistically induced by adenosine by a UaY-independent mechanism. At variance with all other enzymes of purine catabolism it is not repressed but induced by ammonium. This is at least partly due to the ammonium responsive GATA factor, AreA, acting in the nadA promoter as a competitor rather than in synergy with UaY. The adB gene, encoding adenylo-succinate synthetase, which can be considered both a biosynthetic and a salvage pathway enzyme, shares with nadA both ammonium and adenosine induction.

  10. The Adenylate-Forming Enzymes AfeA and TmpB Are Involved in Aspergillus nidulans Self-Communication during Asexual Development

    PubMed Central

    Soid-Raggi, Gabriela; Sánchez, Olivia; Ramos-Balderas, Jose L.; Aguirre, Jesús

    2016-01-01

    Aspergillus nidulans asexual sporulation (conidiation) is triggered by different environmental signals and involves the differentiation of specialized structures called conidiophores. The elimination of genes flbA-E, fluG, and tmpA results in a fluffy phenotype characterized by delayed conidiophore development and decreased expression of the conidiation essential gene brlA. While flbA-E encode regulatory proteins, fluG and tmpA encode enzymes involved in the biosynthesis of independent signals needed for normal conidiation. Here we identify afeA and tmpB as new genes encoding members the adenylate-forming enzyme superfamily, whose inactivation cause different fluffy phenotypes and decreased conidiation and brlA expression. AfeA is most similar to unknown function coumarate ligase-like (4CL-Lk) enzymes and consistent with this, a K544N active site modification eliminates AfeA function. TmpB, identified previously as a larger homolog of the oxidoreductase TmpA, contains a NRPS-type adenylation domain. A high degree of synteny in the afeA-tmpA and tmpB regions in the Aspergilli suggests that these genes are part of conserved gene clusters. afeA, tmpA, and tmpB double and triple mutant analysis as well as afeA overexpression experiments indicate that TmpA and AfeA act in the same conidiation pathway, with TmpB acting in a different pathway. Fluorescent protein tagging shows that functional versions of AfeA are localized in lipid bodies and the plasma membrane, while TmpA and TmpB are localized at the plasma membrane. We propose that AfeA participates in the biosynthesis of an acylated compound, either a p-cuomaryl type or a fatty acid compound, which might be oxidized by TmpA and/or TmpB, while TmpB adenylation domain would be involved in the activation of a hydrophobic amino acid, which in turn would be oxidized by the TmpB oxidoreductase domain. Both, AfeA-TmpA and TmpB signals are involved in self-communication and reproduction in A. nidulans. PMID:27047469

  11. Comparison of gene expression signatures of diamide, H2O2 and menadione exposed Aspergillus nidulans cultures – linking genome-wide transcriptional changes to cellular physiology

    PubMed Central

    Pócsi, István; Miskei, Márton; Karányi, Zsolt; Emri, Tamás; Ayoubi, Patricia; Pusztahelyi, Tünde; Balla, György; Prade, Rolf A

    2005-01-01

    Background In addition to their cytotoxic nature, reactive oxygen species (ROS) are also signal molecules in diverse cellular processes in eukaryotic organisms. Linking genome-wide transcriptional changes to cellular physiology in oxidative stress-exposed Aspergillus nidulans cultures provides the opportunity to estimate the sizes of peroxide (O22-), superoxide (O2•-) and glutathione/glutathione disulphide (GSH/GSSG) redox imbalance responses. Results Genome-wide transcriptional changes triggered by diamide, H2O2 and menadione in A. nidulans vegetative tissues were recorded using DNA microarrays containing 3533 unique PCR-amplified probes. Evaluation of LOESS-normalized data indicated that 2499 gene probes were affected by at least one stress-inducing agent. The stress induced by diamide and H2O2 were pulse-like, with recovery after 1 h exposure time while no recovery was observed with menadione. The distribution of stress-responsive gene probes among major physiological functional categories was approximately the same for each agent. The gene group sizes solely responsive to changes in intracellular O22-, O2•- concentrations or to GSH/GSSG redox imbalance were estimated at 7.7, 32.6 and 13.0 %, respectively. Gene groups responsive to diamide, H2O2 and menadione treatments and gene groups influenced by GSH/GSSG, O22- and O2•- were only partly overlapping with distinct enrichment profiles within functional categories. Changes in the GSH/GSSG redox state influenced expression of genes coding for PBS2 like MAPK kinase homologue, PSK2 kinase homologue, AtfA transcription factor, and many elements of ubiquitin tagging, cell division cycle regulators, translation machinery proteins, defense and stress proteins, transport proteins as well as many enzymes of the primary and secondary metabolisms. Meanwhile, a separate set of genes encoding transport proteins, CpcA and JlbA amino acid starvation-responsive transcription factors, and some elements of sexual development

  12. The Adenylate-Forming Enzymes AfeA and TmpB Are Involved in Aspergillus nidulans Self-Communication during Asexual Development.

    PubMed

    Soid-Raggi, Gabriela; Sánchez, Olivia; Ramos-Balderas, Jose L; Aguirre, Jesús

    2016-01-01

    Aspergillus nidulans asexual sporulation (conidiation) is triggered by different environmental signals and involves the differentiation of specialized structures called conidiophores. The elimination of genes flbA-E, fluG, and tmpA results in a fluffy phenotype characterized by delayed conidiophore development and decreased expression of the conidiation essential gene brlA. While flbA-E encode regulatory proteins, fluG and tmpA encode enzymes involved in the biosynthesis of independent signals needed for normal conidiation. Here we identify afeA and tmpB as new genes encoding members the adenylate-forming enzyme superfamily, whose inactivation cause different fluffy phenotypes and decreased conidiation and brlA expression. AfeA is most similar to unknown function coumarate ligase-like (4CL-Lk) enzymes and consistent with this, a K544N active site modification eliminates AfeA function. TmpB, identified previously as a larger homolog of the oxidoreductase TmpA, contains a NRPS-type adenylation domain. A high degree of synteny in the afeA-tmpA and tmpB regions in the Aspergilli suggests that these genes are part of conserved gene clusters. afeA, tmpA, and tmpB double and triple mutant analysis as well as afeA overexpression experiments indicate that TmpA and AfeA act in the same conidiation pathway, with TmpB acting in a different pathway. Fluorescent protein tagging shows that functional versions of AfeA are localized in lipid bodies and the plasma membrane, while TmpA and TmpB are localized at the plasma membrane. We propose that AfeA participates in the biosynthesis of an acylated compound, either a p-cuomaryl type or a fatty acid compound, which might be oxidized by TmpA and/or TmpB, while TmpB adenylation domain would be involved in the activation of a hydrophobic amino acid, which in turn would be oxidized by the TmpB oxidoreductase domain. Both, AfeA-TmpA and TmpB signals are involved in self-communication and reproduction in A. nidulans.

  13. Establishment of the Ambient pH Signaling Complex in Aspergillus nidulans: PalI Assists Plasma Membrane Localization of PalH▿

    PubMed Central

    Calcagno-Pizarelli, Ana M.; Negrete-Urtasun, Susana; Denison, Steven H.; Rudnicka, Joanna D.; Bussink, Henk-Jan; Múnera-Huertas, Tatiana; Stanton, Ljiljana; Hervás-Aguilar, América; Espeso, Eduardo A.; Tilburn, Joan; Arst, Herbert N.; Peñalva, Miguel A.

    2007-01-01

    The Aspergillus nidulans ambient pH signaling pathway involves two transmembrane domain (TMD)-containing proteins, PalH and PalI. We provide in silico and mutational evidence suggesting that PalI is a three TMD (3-TMD) protein with an N-terminal signal peptide, and we show that PalI localizes to the plasma membrane. PalI is not essential for the proteolytic conversion of the PacC translation product into the processed 27-kDa form, but its absence markedly reduces the accumulation of the 53-kDa intermediate after cells are shifted to an alkaline pH. PalI and its homologues contain a predicted luminal, conserved Gly-Cys-containing motif that distantly resembles a Gly-rich dimerization domain. The Gly44Arg and Gly47Asp substitutions within this motif lead to loss of function. The Gly47Asp substitution prevents plasma membrane localization of PalI-green fluorescent protein (GFP) and leads to its missorting into the multivesicular body pathway. Overexpression of the likely ambient alkaline pH receptor, the 7-TMD protein PalH, partially suppresses the null palI32 mutation. Although some PalH-GFP localizes to the plasma membrane, it predominates in internal membranes. However, the coexpression of PalI to stoichiometrically similar levels results in the strong predominance of PalH-GFP in the plasma membrane. Thus, one role for PalI, but possibly not the only role, is to assist with plasma membrane localization of PalH. These data, considered along with previous reports for both Saccharomyces cerevisiae and A. nidulans, strongly support the prevailing model of pH signaling involving two spatially segregated complexes: a plasma membrane complex containing PalH, PalI, and the arrestin-like protein PalF and an endosomal membrane complex containing PalA and PalB, to which PacC is recruited for its proteolytic activation. PMID:17951518

  14. Aspergillus flavus aswA, a gene homolog of Aspergillus nidulans oefC, regulates sclerotial development and biosynthesis of sclerotium-associated secondary metabolites

    USDA-ARS?s Scientific Manuscript database

    Aspergillus flavus aswA (AFLA_085170) is a gene encoding a Zn(II)2Cys6 DNA-binding domain. Partial deletion of aswA yielded strains that made a truncated gene transcript and generated a fungus that produced a greatly increased number of sclerotia. These sclerotia were odd-shaped and non-pigmented (w...

  15. An Aspergillus nidulans bZIP response pathway hardwired for defensive secondary metabolism operates through aflR

    PubMed Central

    Yin, Wenbing; Amaike, Saori; Wohlbach, Dana J.; Gasch, Audrey P.; Chiang, Yi-Ming; Wang, Clay C.; Bok, JinWoo; Rohlfs, Marko; Keller, Nancy P.

    2012-01-01

    Summary The eukaryotic bZIP transcription factors are critical players in organismal response to environmental challenges. In fungi, the production of secondary metabolites (SMs) is hypothesized as one of the responses to environmental insults, e.g. attack by fungivorous insects, yet little data to support this hypothesis exists. Here we establish a mechanism of bZIP regulation of SMs through RsmA, a recently discovered YAP-like bZIP protein. RsmA greatly increases SM production by binding to two sites in the A. nidulans AflR promoter region, a C6 transcription factor known for activating production of the carcinogenic and anti-predation SM, sterigmatocystin (ST). Deletion of aflR in an overexpression rsmA (OE::rsmA) background not only eliminates ST production but also significantly reduces asperthecin synthesis. Furthermore, the fungivore, Folsomia candida, exhibited a distinct preference for feeding on wild type rather than an OE::rsmA strain. RsmA may thus have a critical function in mediating direct chemical resistance against predation. Taken together, these results suggest RsmA represents a bZIP pathway hardwired for defensive SM production. PMID:22283524

  16. Calcineurin and Calcium Channel CchA Coordinate the Salt Stress Response by Regulating Cytoplasmic Ca2+ Homeostasis in Aspergillus nidulans

    PubMed Central

    Wang, Sha; Liu, Xiao; Qian, Hui

    2016-01-01

    ABSTRACT The eukaryotic calcium/calmodulin-dependent protein phosphatase calcineurin is crucial for the environmental adaption of fungi. However, the mechanism of coordinate regulation of the response to salt stress by calcineurin and the high-affinity calcium channel CchA in fungi is not well understood. Here we show that the deletion of cchA suppresses the hyphal growth defects caused by the loss of calcineurin under salt stress in Aspergillus nidulans. Additionally, the hypersensitivity of the ΔcnaA strain to extracellular calcium and cell-wall-damaging agents can be suppressed by cchA deletion. Using the calcium-sensitive photoprotein aequorin to monitor the cytoplasmic Ca2+ concentration ([Ca2+]c) in living cells, we found that calcineurin negatively regulates CchA on calcium uptake in response to external calcium in normally cultured cells. However, in salt-stress-pretreated cells, loss of either cnaA or cchA significantly decreased the [Ca2+]c, but a deficiency in both cnaA and cchA switches the [Ca2+]c to the reference strain level, indicating that calcineurin and CchA synergistically coordinate calcium influx under salt stress. Moreover, real-time PCR results showed that the dysfunction of cchA in the ΔcnaA strain dramatically restored the expression of enaA (a major determinant for sodium detoxification), which was abolished in the ΔcnaA strain under salt stress. These results suggest that double deficiencies of cnaA and cchA could bypass the requirement of calcineurin to induce enaA expression under salt stress. Finally, YvcA, a member of the transient receptor potential channel (TRPC) protein family of vacuolar Ca2+ channels, was proven to compensate for calcineurin-CchA in fungal salt stress adaption. IMPORTANCE The feedback inhibition relationship between calcineurin and the calcium channel Cch1/Mid1 has been well recognized from yeast. Interestingly, our previous study (S. Wang et al., PLoS One 7:e46564, 2012, http://dx.doi.org/10.1371/journal

  17. Aspergillus nidulans transcription factor AtfA interacts with the MAPK SakA to regulate general stress responses, development and spore functions.

    PubMed

    Lara-Rojas, Fernando; Sánchez, Olivia; Kawasaki, Laura; Aguirre, Jesús

    2011-04-01

    Fungi utilize a phosphorelay system coupled to a MAP kinase module for sensing and processing environmental signals. In Aspergillus nidulans, response regulator SskA transmits osmotic and oxidative stress signals to the stress MAPK (SAPK) SakA. Using a genetic approach together with GFP tagging and molecular bifluorescence we show that SakA and ATF/CREB transcription factor AtfA define a general stress-signalling pathway that plays differential roles in oxidative stress responses during growth and development. AtfA is permanently localized in the nucleus, while SakA accumulates in the nucleus in response to oxidative or osmotic stress signals or during normal spore development, where it physically interacts with AtfA. AtfA is required for expression of several genes, the conidial accumulation of SakA and the viability of conidia. Furthermore, SakA is active (phosphorylated) in asexual spores, remaining phosphorylated in dormant conidia and becoming dephosphorylated during germination. SakA phosphorylation in spores depends on certain (SskA) but not other (SrrA and NikA) components of the phosphorelay system. Constitutive phosphorylation of SakA induced by the fungicide fludioxonil prevents both, germ tube formation and nuclear division. Similarly, Neurospora crassa SakA orthologue OS-2 is phosphorylated in intact conidia and gets dephosphorylated during germination. We propose that SakA-AtfA interaction regulates gene expression during stress and conidiophore development and that SAPK phosphorylation is a conserved mechanism to regulate transitions between non-growing (spore) and growing (mycelia) states.

  18. High-affinity nitrate/nitrite transporters NrtA and NrtB of Aspergillus nidulans exhibit high specificity and different inhibitor sensitivity

    PubMed Central

    Akhtar, Naureen; Karabika, Eugenia; Kinghorn, James R.; Glass, Anthony D.M.; Unkles, Shiela E.

    2015-01-01

    The NrtA and NrtB nitrate transporters are paralogous members of the major facilitator superfamily in Aspergillus nidulans. The availability of loss-of-function mutations allowed individual investigation of the specificity and inhibitor sensitivity of both NrtA and NrtB. In this study, growth response tests were carried out at a growth-limiting concentration of nitrate (1 mM) as the sole nitrogen source, in the presence of a number of potential nitrate analogues at various concentrations, to evaluate their effect on nitrate transport. Both chlorate and chlorite inhibited fungal growth, with chlorite exerting the greater inhibition. The main transporter of nitrate, NrtA, proved to be more sensitive to chlorate than the minor transporter, NrtB. Similarly, the cation caesium was shown to exert differential effects, strongly inhibiting the activity of NrtB, but not NrtA. In contrast, no inhibition of nitrate uptake by NrtA or NrtB transporters was observed in either growth tests or uptake assays in the presence of bicarbonate, formate, malonate or oxalate (sulphite could not be tested in uptake assays owing to its reaction with nitrate), indicating significant specificity of nitrate transport. Kinetic analyses of nitrate uptake revealed that both chlorate and chlorite inhibited NrtA competitively, while these same inhibitors inhibited NrtB in a non-competitive fashion. The caesium ion appeared to inhibit NrtA in a non-competitive fashion, while NrtB was inhibited uncompetitively. The results provide further evidence of the distinctly different characteristics as well as the high specificity of nitrate uptake by these two transporters. PMID:25855763

  19. Multiple effects of a commercial Roundup® formulation on the soil filamentous fungus Aspergillus nidulans at low doses: evidence of an unexpected impact on energetic metabolism.

    PubMed

    Nicolas, Valérie; Oestreicher, Nathalie; Vélot, Christian

    2016-07-01

    Soil microorganisms are highly exposed to glyphosate-based herbicides (GBH), especially to Roundup® which is widely used worldwide. However, studies on the effects of GBH formulations on specific non-rhizosphere soil microbial species are scarce. We evaluated the toxicity of a commercial formulation of Roundup® (R450), containing 450 g/L of glyphosate (GLY), on the soil filamentous fungus Aspergillus nidulans, an experimental model microorganism. The median lethal dose (LD50) on solid media was between 90 and 112 mg/L GLY (among adjuvants, which are also included in the Roundup® formulation), which corresponds to a dilution percentage about 100 times lower than that used in agriculture. The LOAEL and NOAEL (lowest- and no-observed-adverse-effect levels) associated to morphology and growth were 33.75 and 31.5 mg/L GLY among adjuvants, respectively. The formulation R450 proved to be much more active than technical GLY. At the LD50 and lower concentrations, R450 impaired growth, cellular polarity, endocytosis, and mitochondria (average number, total volume and metabolism). In contrast with the depletion of mitochondrial activities reported in animal studies, R450 caused a stimulation of mitochondrial enzyme activities, thus revealing a different mode of action of Roundup® on energetic metabolism. These mitochondrial disruptions were also evident at a low dose corresponding to the NOAEL for macroscopic parameters, indicating that these mitochondrial biomarkers are more sensitive than those for growth and morphological ones. Altogether, our data indicate that GBH toxic effects on soil filamentous fungi, and thus potential impairment of soil ecosystems, may occur at doses far below recommended agricultural application rate.

  20. New natural products isolated from Metarhizium robertsii ARSEF 23 by chemical screening and identification of the gene cluster through engineered biosynthesis in Aspergillus nidulans A1145.

    PubMed

    Kato, Hiroki; Tsunematsu, Yuta; Yamamoto, Tsuyoshi; Namiki, Takuya; Kishimoto, Shinji; Noguchi, Hiroshi; Watanabe, Kenji

    2016-07-01

    To rapidly identify novel natural products and their associated biosynthetic genes from underutilized and genetically difficult-to-manipulate microbes, we developed a method that uses (1) chemical screening to isolate novel microbial secondary metabolites, (2) bioinformatic analyses to identify a potential biosynthetic gene cluster and (3) heterologous expression of the genes in a convenient host to confirm the identity of the gene cluster and the proposed biosynthetic mechanism. The chemical screen was achieved by searching known natural product databases with data from liquid chromatographic and high-resolution mass spectrometric analyses collected on the extract from a target microbe culture. Using this method, we were able to isolate two new meroterpenes, subglutinols C (1) and D (2), from an entomopathogenic filamentous fungus Metarhizium robertsii ARSEF 23. Bioinformatics analysis of the genome allowed us to identify a gene cluster likely to be responsible for the formation of subglutinols. Heterologous expression of three genes from the gene cluster encoding a polyketide synthase, a prenyltransferase and a geranylgeranyl pyrophosphate synthase in Aspergillus nidulans A1145 afforded an α-pyrone-fused uncyclized diterpene, the expected intermediate of the subglutinol biosynthesis, thereby confirming the gene cluster to be responsible for the subglutinol biosynthesis. These results indicate the usefulness of our methodology in isolating new natural products and identifying their associated biosynthetic gene cluster from microbes that are not amenable to genetic manipulation. Our method should facilitate the natural product discovery efforts by expediting the identification of new secondary metabolites and their associated biosynthetic genes from a wider source of microbes.

  1. Physiological characterization of recombinant Saccharomyces cerevisiae expressing the Aspergillus nidulans phosphoketolase pathway: validation of activity through 13C-based metabolic flux analysis.

    PubMed

    Papini, Marta; Nookaew, Intawat; Siewers, Verena; Nielsen, Jens

    2012-08-01

    Several bacterial species and filamentous fungi utilize the phosphoketolase pathway (PHK) for glucose dissimilation as an alternative to the Embden-Meyerhof-Parnas pathway. In Aspergillus nidulans, the utilization of this metabolic pathway leads to increased carbon flow towards acetate and acetyl CoA. In the first step of the PHK, the pentose phosphate pathway intermediate xylulose-5-phosphate is converted into acetylphosphate and glyceraldehyde-3-phosphate through the action of xylulose-5-phosphate phosphoketolase, and successively acetylphosphate is converted into acetate by the action of acetate kinase. In the present work, we describe a metabolic engineering strategy used to express the fungal genes of the phosphoketolase pathway in Saccharomyces cerevisiae and the effects of the expression of this recombinant route in yeast. The phenotype of the engineered yeast strain MP003 was studied during batch and chemostat cultivations, showing a reduced biomass yield and an increased acetate yield during batch cultures. To establish whether the observed effects in the recombinant strain MP003 were due directly or indirectly to the expression of the phosphoketolase pathway, we resolved the intracellular flux distribution based on (13)C labeling during chemostat cultivations. From flux analysis it is possible to conclude that yeast is able to use the recombinant pathway. Our work indicates that the utilization of the phosphoketolase pathway does not interfere with glucose assimilation through the Embden-Meyerhof-Parnas pathway and that the expression of this route can contribute to increase the acetyl CoA supply, therefore holding potential for future metabolic engineering strategies having acetyl CoA as precursor for the biosynthesis of industrially relevant compounds.

  2. Differential expression of citA gene encoding the mitochondrial citrate synthase of Aspergillus nidulans in response to developmental status and carbon sources.

    PubMed

    Min, In Sook; Bang, Ji Young; Seo, Soon Won; Lee, Cheong Ho; Maeng, Pil Jae

    2010-04-01

    As an extension of our previous studies on the mitochondrial citrate synthase of Aspergillus nidulans and cloning of its coding gene (citA), we analyzed differential expression of citA in response to the progress of development and change of carbon source. The cDNA consisted of 1,700 nucleotides and was predicted to encode a 474-amino acid protein. By comparing the cDNA sequence with the corresponding genomic sequence, we confirmed that citA gene contains 7 introns and that its transcription starts at position -26 (26-nucleotide upstream from the initiation codon). Four putative CreA binding motifs and three putative stress-response elements (STREs) were found within the 1.45-kb citA promoter region. The mode of citA expression was examined by both Northern blot and confocal microscopy using green fluorescent protein (sGFP) as a vital reporter. During vegetative growth and asexual development, the expression of citA was ubiquitous throughout the whole fungal body including mycelia and conidiophores. During sexual development, the expression of citA was quite strong in cleistothecial shells, but significantly weak in the content of cleistothecia including ascospores. Acetate showed a strong inductive effect on citA expression, which is subjected to carbon catabolite repression (CCR) caused by glucose. The recombinant fusion protein CitA(40)::sGFP (sGFP containing the 40-amino acid N-terminal segment of CitA) was localized into mitochondria, which supports that a mitochondrial targeting signal is included within the 40-amino acid N-terminal segment of CitA.

  3. The Inner Nuclear Membrane Protein Src1 Is Required for Stable Post-Mitotic Progression into G1 in Aspergillus nidulans

    PubMed Central

    Osmani, Aysha H.; Osmani, Stephen A.

    2015-01-01

    How membranes and associated proteins of the nuclear envelope (NE) are assembled specifically and inclusively around segregated genomes during exit from mitosis is incompletely understood. Inner nuclear membrane (INM) proteins play key roles by providing links between DNA and the NE. In this study we have investigated the highly conserved INM protein Src1 in Aspergillus nidulans and have uncovered a novel cell cycle response during post mitotic formation of G1 nuclei. Live cell imaging indicates Src1 could have roles during mitotic exit as it preferentially locates to the NE abscission points during nucleokinesis and to the NE surrounding forming daughter G1 nuclei. Deletion analysis further supported this idea revealing that although Src1 is not required for interphase progression or mitosis it is required for stable post-mitotic G1 nuclear formation. This conclusion is based upon the observation that in the absence of Src1 newly formed G1 nuclei are structurally unstable and immediately undergo architectural modifications typical of mitosis. These changes include NPC modifications that stop nuclear transport as well as disassembly of nucleoli. More intriguingly, the newly generated G1 nuclei then cycle between mitotic- and interphase-like states. The findings indicate that defects in post-mitotic G1 nuclear formation caused by lack of Src1 promote repeated failed attempts to generate stable G1 nuclei. To explain this unexpected phenotype we suggest a type of regulation that promotes repetition of defective cell cycle transitions rather than preventing progression past the defective cell cycle transition. We suggest the term “reboot regulation” to define this mode of cell cycle regulation. The findings are discussed in relationship to recent studies showing the Cdk1 master oscillator can entrain subservient oscillators that when uncoupled cause cell cycle transitions to be repeated. PMID:26147902

  4. NapA and NapB are the Aspergillus nidulans Nap/SET family members and NapB is a nuclear protein specifically interacting with importin alpha.

    PubMed

    Araújo-Bazán, Lidia; Fernández-Martínez, Javier; Ríos, Vivian Maythe de Los; Etxebeste, Oier; Albar, Juan Pablo; Peñalva, Miguel Angel; Espeso, Eduardo Antonio

    2008-03-01

    In eukaryotic cells, importin alpha is the major carrier for transport protein cargoes into the nucleus. We characterize here kapA, the single Aspergillus nidulans gene encoding an importin alpha. Using an affinity approach, we identify six potential interactors of KapA(50), a deleted version of KapA lacking the autoinhibitory importin-beta-binding domain. One such interactor is NapB, the A. nidulans orthologue of Saccharomyces cerevisiae Vps75p, a histone chaperone member of the Nap/SET family of proteins that additionally plays a cytosolic role in vacuolar protein sorting. NapB, but not its close relative NapA (the A. nidulans orthologue of yeast Nap1p) interacts directly with KapA(50) in pull down assays, despite the fact that NapB does not contain a classical nuclear localization sequence. NapB is a nuclear protein which exits nuclei at the onset of mitosis when two simultaneous mechanisms might be acting, the partial disassembly of the nuclear pore complexes and as yet unidentified posttranslational modification of NapB. The mitotic cytosolic localization of NapB might facilitate its putative role in the sorting of protein cargoes to the vacuole. In addition, we show that NapB and the mitotic B-type cyclin NimE compete for in vitro binding to KapA.

  5. Molecular characterization of the acyl-coenzyme A:isopenicillin N acyltransferase gene (penDE) from Penicillium chrysogenum and Aspergillus nidulans and activity of recombinant enzyme in Escherichia coli.

    PubMed Central

    Tobin, M B; Fleming, M D; Skatrud, P L; Miller, J R

    1990-01-01

    The final step in the biosynthesis of beta-lactam antibiotics in Penicillium chrysogenum and Aspergillus nidulans involves removal of the L-alpha-aminoadipyl side chain from isopenicillin N (IPN) and exchange with a nonpolar side chain. The enzyme catalyzing this reaction, acyl-coenzyme A:isopenicillin N acyltransferase (acyltransferase), was purified from P. chrysogenum and A. nidulans. Based on NH2-terminal amino acid sequence information, the acyltransferase gene (penDE) from P. chrysogenum and A. nidulans were cloned. In both organisms, penDE was located immediately downstream from the isopenicillin N synthetase gene (pcbC) and consisted of four exons encoding an enzyme of 357 amino acids (approximately 40 kilodaltons [kDa]). The DNA coding sequences showed approximately 73% identity, while the amino acid sequences were approximately 76% identical. Noncoding DNA regions (including the region between pcbC and penDE) were not conserved. Acyltransferase activity from Escherichia coli producing the 40-kDa protein accepted either 6-aminopenicillanic acid or IPN as the substrate and made a penicillinase-sensitive antibiotic in the presence of phenylacetyl coenzyme A. Therefore, a single gene is responsible for converting IPN to penicillin G. The active form of the enzyme may result from processing of the 40-kDa monomeric precursor to a heterodimer containing subunits of 11 and 29 kDa. Images PMID:2120195

  6. Genetic Interaction of Aspergillus nidulans galR, xlnR and araR in Regulating D-Galactose and L-Arabinose Release and Catabolism Gene Expression.

    PubMed

    Kowalczyk, Joanna E; Gruben, Birgit S; Battaglia, Evy; Wiebenga, Ad; Majoor, Eline; de Vries, Ronald P

    2015-01-01

    In Aspergillus nidulans, the xylanolytic regulator XlnR and the arabinanolytic regulator AraR co-regulate pentose catabolism. In nature, the pentose sugars D-xylose and L-arabinose are both main building blocks of the polysaccharide arabinoxylan. In pectin and arabinogalactan, these two monosaccharides are found in combination with D-galactose. GalR, the regulator that responds to the presence of D-galactose, regulates the D-galactose catabolic pathway. In this study we investigated the possible interaction between XlnR, AraR and GalR in pentose and/or D-galactose catabolism in A. nidulans. Growth phenotypes and metabolic gene expression profiles were studied in single, double and triple disruptant A. nidulans strains of the genes encoding these paralogous transcription factors. Our results demonstrate that AraR and XlnR not only control pentose catabolic pathway genes, but also genes of the oxido-reductive D-galactose catabolic pathway. This suggests an interaction between three transcriptional regulators in D-galactose catabolism. Conversely, GalR is not involved in regulation of pentose catabolism, but controls only genes of the oxido-reductive D-galactose catabolic pathway.

  7. Isolation of a gene involved in 1,3-beta-glucan synthesis in Aspergillus nidulans and purification of the corresponding protein.

    PubMed Central

    Kelly, R; Register, E; Hsu, M J; Kurtz, M; Nielsen, J

    1996-01-01

    Saccharomyces cerevisiae has two highly homologous genes, FKS1 and FKS2, which encode interchangeable putative catalytic subunits of 1,3-beta-glucan synthase (GS), an enzyme that synthesizes an essential polymer of the fungal cell wall. To determine if GS in Aspergillus species is similar, an FKS homolog, fksA, was cloned from Aspergillus nidulans by cross-hybridization, and the corresponding protein was purified. Sequence analysis revealed a 5,716-nucleotide coding region interrupted by two 56-bp introns. The fksA gene encodes a predicted peptide of 229 kDa, FksAp, that shows a remarkable degree of conservation in size, charge, amino acid identity, and predicted membrane topology with the S. cerevisiae FKS proteins (Fksps). FksAp exhibits 64 and 65% identity to Fks1p and Fks2p, respectively, and 79% similarity. Hydropathy analysis of FksAp suggests an integral membrane protein with 16 transmembrane helices that coincide with the transmembrane helices of the Saccharomyces Fksps. The sizes of the nontransmembrane domains are strikingly similar to those of Fks1p. The region of FksAp most homologous to the Saccharomyces FKS polypeptides is a large hydrophilic domain of 578 amino acids that is predicted to be cytoplasmic. This domain is 86% identical to the corresponding region of Fks1p and is a good candidate for the location of the catalytic site. Antibodies raised against a peptide derived from the FksAp sequence recognize a protein of approximately 200 kDa in crude membranes and detergent-solubilized active extracts. This protein is enriched approximately 300-fold in GS purified by product entrapment. Purified anti-FksAp immunoglobulin G immunodepletes nearly all of the GS activity in crude or purified extracts when Staphylococcus aureus cells are used to precipitate the antibodies, although it does not inhibit enzymatic activity when added to extracts. The purified GS is inhibited by echinocandins with a sensitivity equal to that displayed by whole cells. Thus

  8. Use of Analogues and the Substrate-Sensitivity of Mutants in Analysis of Purine Uptake and Breakdown in Aspergillus nidulans

    PubMed Central

    Darlington, A. J.; Scazzocchio, C.

    1967-01-01

    Aspergillus mutants resistant to various purine analogues (purine, 8-azaguanine, 2-thioxanthine, and 2-thiouric acid) are defective in at least one step of purine uptake or breakdown. The properties of these mutants show that there are two uptake systems for purines, one which mediates the uptake of hypoxanthine, guanine, and adenine, and the other, xanthine and uric acid. Allantoinase-less strains are sensitive to the toxic effects of allantoin accumulation. They are severely inhibited when grown in the presence of naturally occurring purines. Mutant strains derived from these, resistant to naturally occurring purines, may be isolated. These are either wild-type revertants, or carry a second metabolic block in the uptake or breakdown of purines. The properties of these double mutants confirm the interpretation of the nature of the analogue-resistant mutants. PMID:6025432

  9. An efficient arabinoxylan-debranching α-L-arabinofuranosidase of family GH62 from Aspergillus nidulans contains a secondary carbohydrate binding site.

    PubMed

    Wilkens, Casper; Andersen, Susan; Petersen, Bent O; Li, An; Busse-Wicher, Marta; Birch, Johnny; Cockburn, Darrell; Nakai, Hiroyuki; Christensen, Hans E M; Kragelund, Birthe B; Dupree, Paul; McCleary, Barry; Hindsgaul, Ole; Hachem, Maher Abou; Svensson, Birte

    2016-07-01

    An α-L-arabinofuranosidase of GH62 from Aspergillus nidulans FGSC A4 (AnAbf62A-m2,3) has an unusually high activity towards wheat arabinoxylan (WAX) (67 U/mg; k cat = 178/s, K m = 4.90 mg/ml) and arabinoxylooligosaccharides (AXOS) with degrees of polymerisation (DP) 3-5 (37-80 U/mg), but about 50 times lower activity for sugar beet arabinan and 4-nitrophenyl-α-L-arabinofuranoside. α-1,2- and α-1,3-linked arabinofuranoses are released from monosubstituted, but not from disubstituted, xylose in WAX and different AXOS as demonstrated by NMR and polysaccharide analysis by carbohydrate gel electrophoresis (PACE). Mutants of the predicted general acid (Glu(188)) and base (Asp(28)) catalysts, and the general acid pK a modulator (Asp(136)) lost 1700-, 165- and 130-fold activities for WAX. WAX, oat spelt xylan, birchwood xylan and barley β-glucan retarded migration of AnAbf62A-m2,3 in affinity electrophoresis (AE) although the latter two are neither substrates nor inhibitors. Trp(23) and Tyr(44), situated about 30 Å from the catalytic site as seen in an AnAbf62A-m2,3 homology model generated using Streptomyces thermoviolaceus SthAbf62A as template, participate in carbohydrate binding. Compared to wild-type, W23A and W23A/Y44A mutants are less retarded in AE, maintain about 70 % activity towards WAX with K i of WAX substrate inhibition increasing 4-7-folds, but lost 77-96 % activity for the AXOS. The Y44A single mutant had less effect, suggesting Trp(23) is a key determinant. AnAbf62A-m2,3 seems to apply different polysaccharide-dependent binding modes, and Trp(23) and Tyr(44) belong to a putative surface binding site which is situated at a distance of the active site and has to be occupied to achieve full activity.

  10. The SrkA Kinase Is Part of the SakA Mitogen-Activated Protein Kinase Interactome and Regulates Stress Responses and Development in Aspergillus nidulans

    PubMed Central

    Jaimes-Arroyo, Rafael; Lara-Rojas, Fernando; Bayram, Özgür; Valerius, Oliver; Braus, Gerhard H.

    2015-01-01

    Fungi and many other eukaryotes use specialized mitogen-activated protein kinases (MAPK) of the Hog1/p38 family to transduce environmental stress signals. In Aspergillus nidulans, the MAPK SakA and the transcription factor AtfA are components of a central multiple stress-signaling pathway that also regulates development. Here we characterize SrkA, a putative MAPK-activated protein kinase, as a novel component of this pathway. ΔsrkA and ΔsakA mutants share a derepressed sexual development phenotype. However, ΔsrkA mutants are not sensitive to oxidative stress, and in fact, srkA inactivation partially suppresses the sensitivity of ΔsakA mutant conidia to H2O2, tert-butyl-hydroperoxide (t-BOOH), and menadione. In the absence of stress, SrkA shows physical interaction with nonphosphorylated SakA in the cytosol. We show that H2O2 induces a drastic change in mitochondrial morphology consistent with a fission process and the relocalization of SrkA to nuclei and mitochondria, depending on the presence of SakA. SakA-SrkA nuclear interaction is also observed during normal asexual development in dormant spores. Using SakA and SrkA S-tag pulldown and purification studies coupled to mass spectrometry, we found that SakA interacts with SrkA, the stress MAPK MpkC, the PPT1-type phosphatase AN6892, and other proteins involved in cell cycle regulation, DNA damage response, mRNA stability and protein synthesis, mitochondrial function, and other stress-related responses. We propose that oxidative stress induces DNA damage and mitochondrial fission and that SakA and SrkA mediate cell cycle arrest and regulate mitochondrial function during stress. Our results provide new insights into the mechanisms by which SakA and SrkA regulate the remodelling of cell physiology during oxidative stress and development. PMID:25820520

  11. The functional properties of a xyloglucanase (GH12) of Aspergillus terreus expressed in Aspergillus nidulans may increase performance of biomass degradation.

    PubMed

    Vitcosque, Gabriela Leal; Ribeiro, Liliane Fraga Costa; de Lucas, Rosymar Coutinho; da Silva, Tony Marcio; Ribeiro, Lucas Ferreira; de Lima Damasio, André Ricardo; Farinas, Cristiane Sanchez; Gonçalves, Aline Zorzetto Lopes; Segato, Fernando; Buckeridge, Marcos Silveira; Jorge, João Atilio; Polizeli, Maria de Lourdes T M

    2016-11-01

    Filamentous fungi are attractive hosts for heterologous protein expression due to their capacity to secrete large amounts of enzymes into the extracellular medium. Xyloglucanases, which specifically hydrolyze xyloglucan, have been recently applied in lignocellulosic biomass degradation and conversion in many other industrial processes. In this context, this work aimed to clone, express, and determine the functional properties of a recombinant xyloglucanase (AtXEG12) from Aspergillus terreus, and also its solid-state (SSF) and submerged (SmF) fermentation in bioreactors. The purified AtXEG12 showed optimum pH and temperature of 5.5 and 65 °C, respectively, demonstrating to be 90 % stable after 24 h of incubation at 50 °C. AtXEG12 activity increased in the presence of 2-mercaptoethanol (65 %) and Zn(+2) (45 %), while Cu(+2) and Ag(+) ions drastically decreased its activity. A substrate assay showed, for the first time for this enzyme's family, xylanase activity. The enzyme exhibited high specificity for tamarind xyloglucan (K M 1.2 mg mL(-1)) and V max of 17.4 μmol min(-1) mg(-1) of protein. The capillary zone electrophoresis analysis revealed that AtXEG12 is an endo-xyloglucanase. The heterologous xyloglucanase secretion was greater than the production by wild-type A. terreus cultivated in SmF. On the other hand, AtXEG12 activity reached by SSF was sevenfold higher than values achieved by SmF, showing that the expression of recombinant enzymes can be significantly improved by cultivation under SSF.

  12. Functional Analysis of the α-1,3-Glucan Synthase Genes agsA and agsB in Aspergillus nidulans: AgsB Is the Major α-1,3-Glucan Synthase in This Fungus

    PubMed Central

    Yoshimi, Akira; Sano, Motoaki; Inaba, Azusa; Kokubun, Yuko; Fujioka, Tomonori; Mizutani, Osamu; Hagiwara, Daisuke; Fujikawa, Takashi; Nishimura, Marie; Yano, Shigekazu; Kasahara, Shin; Shimizu, Kiminori; Yamaguchi, Masashi; Kawakami, Kazuyoshi; Abe, Keietsu

    2013-01-01

    Although α-1,3-glucan is one of the major cell wall polysaccharides in filamentous fungi, the physiological roles of α-1,3-glucan remain unclear. The model fungus Aspergillus nidulans possesses two α-1,3-glucan synthase (AGS) genes, agsA and agsB. For functional analysis of these genes, we constructed several mutant strains in A. nidulans: agsA disruption, agsB disruption, and double-disruption strains. We also constructed several CagsB strains in which agsB expression was controlled by the inducible alcA promoter, with or without the agsA-disrupting mutation. The agsA disruption strains did not show markedly different phenotypes from those of the wild-type strain. The agsB disruption strains formed dispersed hyphal cells under liquid culture conditions, regardless of the agsA genetic background. Dispersed hyphal cells were also observed in liquid culture of the CagsB strains when agsB expression was repressed, whereas these strains grew normally in plate culture even under the agsB-repressed conditions. Fractionation of the cell wall based on the alkali solubility of its components, quantification of sugars, and 13C-NMR spectroscopic analysis revealed that α-1,3-glucan was the main component of the alkali-soluble fraction in the wild-type and agsA disruption strains, but almost no α-1,3-glucan was found in the alkali-soluble fraction derived from either the agsB disruption strain or the CagsB strain under the agsB-repressed conditions, regardless of the agsA genetic background. Taken together, our data demonstrate that the two AGS genes are dispensable in A. nidulans, but that AgsB is required for normal growth characteristics under liquid culture conditions and is the major AGS in this species. PMID:23365684

  13. AgtA, the Dicarboxylic Amino Acid Transporter of Aspergillus nidulans, Is Concertedly Down-Regulated by Exquisite Sensitivity to Nitrogen Metabolite Repression and Ammonium-Elicited Endocytosis▿ †

    PubMed Central

    Apostolaki, Angeliki; Erpapazoglou, Zoi; Harispe, Laura; Billini, Maria; Kafasla, Panagiota; Kizis, Dimosthenis; Peñalva, Miguel Angel; Scazzocchio, Claudio; Sophianopoulou, Vicky

    2009-01-01

    We identified agtA, a gene that encodes the specific dicarboxylic amino acid transporter of Aspergillus nidulans. The deletion of the gene resulted in loss of utilization of aspartate as a nitrogen source and of aspartate uptake, while not completely abolishing glutamate utilization. Kinetic constants showed that AgtA is a high-affinity dicarboxylic amino acid transporter and are in agreement with those determined for a cognate transporter activity identified previously. The gene is extremely sensitive to nitrogen metabolite repression, depends on AreA for its expression, and is seemingly independent from specific induction. We showed that the localization of AgtA in the plasma membrane necessitates the ShrA protein and that an active process elicited by ammonium results in internalization and targeting of AgtA to the vacuole, followed by degradation. Thus, nitrogen metabolite repression and ammonium-promoted vacuolar degradation act in concert to downregulate dicarboxylic amino acid transport activity. PMID:19168757

  14. An extract of Morinda citrifolia interferes with the serum-induced formation of filamentous structures in Candida albicans and inhibits germination of Aspergillus nidulans.

    PubMed

    Banerjee, Saswati; Johnson, Andrew D; Csiszar, Katalin; Wansley, Daniel L; McGeady, Paul

    2006-01-01

    An aqueous extract of Morinda citrifolia was shown to interfere with the serum-induced morphological conversion of Candida albicans from a cellular yeast to a filamentous form in vitro. The conversion of C. albicans from a cellular yeast to a filamentous form in vivo is associated with pathogenicity. No significant effect on growth in serum-free media was seen at the concentrations used to interfere with the morphological change. The same extract also inhibited the germination of Apergillus nidulans spores. These results demonstrate that M. citrifolia contains a water-soluble component or components that interfere with the morphological conversion of C. albicans and the germination of A. nidulans and may have potential therapeutic value with regard to candidiasis and aspergillosis.

  15. FigA, a Putative Homolog of Low-Affinity Calcium System Member Fig1 in Saccharomyces cerevisiae, Is Involved in Growth and Asexual and Sexual Development in Aspergillus nidulans

    PubMed Central

    Zhang, Shizhu; Zheng, Hailin; Long, Nanbiao; Carbó, Natalia; Chen, Peiying; Aguilar, Pablo S.

    2014-01-01

    Calcium-mediated signaling pathways are widely employed in eukaryotes and are implicated in the regulation of diverse biological processes. In Saccharomyces cerevisiae, at least two different calcium uptake systems have been identified: the high-affinity calcium influx system (HACS) and the low-affinity calcium influx system (LACS). Compared to the HACS, the LACS in fungi is not well known. In this study, FigA, a homolog of the LACS member Fig1 from S. cerevisiae, was functionally characterized in the filamentous fungus Aspergillus nidulans. Loss of figA resulted in retardant hyphal growth and a sharp reduction of conidial production. Most importantly, FigA is essential for the homothallic mating (self-fertilization) process; further, FigA is required for heterothallic mating (outcrossing) in the absence of HACS midA. Interestingly, in a figA deletion mutant, adding extracellular Ca2+ rescued the hyphal growth defects but could not restore asexual and sexual reproduction. Furthermore, quantitative PCR results revealed that figA deletion sharply decreased the expression of brlA and nsdD, which are known as key regulators during asexual and sexual development, respectively. In addition, green fluorescent protein (GFP) tagging at the C terminus of FigA (FigA::GFP) showed that FigA localized to the center of the septum in mature hyphal cells, to the location between vesicles and metulae, and between the junctions of metulae and phialides in conidiophores. Thus, our findings suggest that FigA, apart from being a member of a calcium uptake system in A. nidulans, may play multiple unexplored roles during hyphal growth and asexual and sexual development. PMID:24376003

  16. FigA, a putative homolog of low-affinity calcium system member Fig1 in Saccharomyces cerevisiae, is involved in growth and asexual and sexual development in Aspergillus nidulans.

    PubMed

    Zhang, Shizhu; Zheng, Hailin; Long, Nanbiao; Carbó, Natalia; Chen, Peiying; Aguilar, Pablo S; Lu, Ling

    2014-02-01

    Calcium-mediated signaling pathways are widely employed in eukaryotes and are implicated in the regulation of diverse biological processes. In Saccharomyces cerevisiae, at least two different calcium uptake systems have been identified: the high-affinity calcium influx system (HACS) and the low-affinity calcium influx system (LACS). Compared to the HACS, the LACS in fungi is not well known. In this study, FigA, a homolog of the LACS member Fig1 from S. cerevisiae, was functionally characterized in the filamentous fungus Aspergillus nidulans. Loss of figA resulted in retardant hyphal growth and a sharp reduction of conidial production. Most importantly, FigA is essential for the homothallic mating (self-fertilization) process; further, FigA is required for heterothallic mating (outcrossing) in the absence of HACS midA. Interestingly, in a figA deletion mutant, adding extracellular Ca(2+) rescued the hyphal growth defects but could not restore asexual and sexual reproduction. Furthermore, quantitative PCR results revealed that figA deletion sharply decreased the expression of brlA and nsdD, which are known as key regulators during asexual and sexual development, respectively. In addition, green fluorescent protein (GFP) tagging at the C terminus of FigA (FigA::GFP) showed that FigA localized to the center of the septum in mature hyphal cells, to the location between vesicles and metulae, and between the junctions of metulae and phialides in conidiophores. Thus, our findings suggest that FigA, apart from being a member of a calcium uptake system in A. nidulans, may play multiple unexplored roles during hyphal growth and asexual and sexual development.

  17. The cell-end marker TeaA and the microtubule polymerase AlpA contribute to microtubule guidance at the hyphal tip cortex of Aspergillus nidulans to provide polarity maintenance.

    PubMed

    Takeshita, Norio; Mania, Daniel; Herrero, Saturnino; Ishitsuka, Yuji; Nienhaus, G Ulrich; Podolski, Marija; Howard, Jonathon; Fischer, Reinhard

    2013-12-01

    In the absence of landmark proteins, hyphae of Aspergillus nidulans lose their direction of growth and show a zigzag growth pattern. Here, we show that the cell-end marker protein TeaA is important for localizing the growth machinery at hyphal tips. The central position of TeaA at the tip correlated with the convergence of the microtubule (MT) ends to a single point. Conversely, in the absence of TeaA, the MTs often failed to converge to a single point at the cortex. Further analysis suggested a functional connection between TeaA and AlpA (an ortholog of the MT polymerase Dis1/CKAP5/XMAP215) for proper regulation of MT growth at hyphal tips. AlpA localized at MT plus-ends, and bimolecular fluorescence complementation assays suggested that it interacted with TeaA after MT plus-ends reached the tip cortex. In vitro MT polymerization assays showed that AlpA promoted MT growth up to sevenfold. Addition of the C-terminal region of TeaA increased the catastrophe frequency of the MTs. Thus, the control of the AlpA activity through TeaA might be a novel principle for MT growth regulation after reaching the cortex. In addition, we present evidence that the curvature of hyphal tips also could be involved in the control of MT growth at hyphal tips.

  18. A lacZ reporter fusion method for the genetic analysis of regulatory mutations in pathways of fungal secondary metabolism and its application to the Aspergillus nidulans penicillin pathway.

    PubMed Central

    Pérez-Esteban, B; Gómez-Pardo, E; Peñalva, M A

    1995-01-01

    Secondary metabolism, usually superfluous under laboratory conditions, is intrinsically elusive to genetic analysis of its regulation. We describe here a method of analyzing regulatory mutations affecting expression of secondary metabolic genes, with an Aspergillus nidulans penicillin structural gene (ipnA [encoding isopenicillin N-synthase]) as a model. The method is based on a targeted double integration of a lacZ fusion reporter gene in a chromosome different from that containing the penicillin gene cluster. The trans-acting regulatory mutations simultaneously affect lacZ expression and penicillin biosynthesis. One of these mutations (npeE1) has been analyzed in detail. This mutation is recessive, prevents penicillin production and ipnA'::'lacZ expression, and results in very low levels of the ipnA message at certain times of growth. This indicates that npeE positively controls ipnA transcription. We also show that this tandem reporter fusion allows genetic analysis of npeE1 by using the sexual and parasexual cycles and that lacZ expression is an easily scorable phenotype. Haploidization analysis established that npeE is located in chromosome IV, but npeE1 does not show meiotic linkage to a number of known chromosome IV markers. This method might be of general applicability to genetic analysis of regulation of other fungal secondary metabolic pathways. PMID:7592369

  19. Comparison of the sequences of the Aspergillus nidulans hxB and Drosophila melanogaster ma-l genes with nifS from Azotobacter vinelandii suggests a mechanism for the insertion of the terminal sulphur atom in the molybdopterin cofactor.

    PubMed

    Amrani, L; Primus, J; Glatigny, A; Arcangeli, L; Scazzocchio, C; Finnerty, V

    2000-10-01

    The molybdopterin cofactor (MoCF) is required for the activity of a variety of oxidoreductases. The xanthine oxidase class of molybdoenzymes requires the MoCF to have a terminal, cyanolysable sulphur ligand. In the sulphite oxidase/nitrate reductase class, an oxygen is present in the same position. Mutations in both the ma-l gene of Drosophila melanogaster and the hxB gene of Aspergillus nidulans result in loss of activities of all molybdoenzymes that necessitate a cyanolysable sulphur in the active centre. The ma-l and hxB genes encode highly similar proteins containing domains common to pyridoxal phosphate-dependent cysteine transulphurases, including the cofactor binding site and a conserved cysteine, which is the putative sulphur donor. Key similarities were found with NifS, the enzyme involved in the generation of the iron-sulphur centres in nitrogenase. These similarities suggest an analogous mechanism for the generation of the terminal molybdenum-bound sulphur ligand. We have identified putative homologues of these genes in a variety of organisms, including humans. The human homologue is located in chromosome 18.q12.

  20. Deletion of the Aspergillus flavus orthologue of A. nidulans fluG reduces conidiation and promotes production of sclerotia but does not abolish aflatoxin biosynthesis

    USDA-ARS?s Scientific Manuscript database

    Aspergillus flavus fluG deletion strains showed decreased conidiation but had elevated sclerotial production. These developmental changes were not remediated by co-culturing with fluG-positive strains. The fluG mutant still retained its aflatoxin-producing ability. The A. flavus fluG gene functions ...

  1. Identification of Metabolic Pathways Influenced by the G-Protein Coupled Receptors GprB and GprD in Aspergillus nidulans

    PubMed Central

    de Souza, Wagner R.; Morais, Enyara Rezende; Krohn, Nadia Graciele; Savoldi, Marcela; Goldman, Maria Helena S.; Rodrigues, Fernando; Caldana, Camila; Semelka, Charles T.; Tikunov, Andrey P.; Macdonald, Jeffrey M.; Goldman, Gustavo Henrique

    2013-01-01

    Heterotrimeric G-protein-mediated signaling pathways play a pivotal role in transmembrane signaling in eukaryotes. Our main aim was to identify signaling pathways regulated by A. nidulans GprB and GprD G-protein coupled receptors (GPCRs). When these two null mutant strains were compared to the wild-type strain, the ΔgprB mutant showed an increased protein kinase A (PKA) activity while growing in glucose 1% and during starvation. In contrast, the ΔgprD has a much lower PKA activity upon starvation. Transcriptomics and 1H NMR-based metabolomics were performed on two single null mutants grown on glucose. We noted modulation in the expression of 11 secondary metabolism gene clusters when the ΔgprB and ΔgprD mutant strains were grown in 1% glucose. Several members of the sterigmatocystin-aflatoxin gene cluster presented down-regulation in both mutant strains. The genes of the NR-PKS monodictyphenone biosynthesis cluster had overall increased mRNA accumulation in ΔgprB, while in the ΔgprD mutant strain the genes had decreased mRNA accumulation. Principal component analysis of the metabolomic data demonstrated that there was a significant metabolite shift in the ΔgprD strain. The 1H NMR analysis revealed significant expression of essential amino acids with elevated levels in the ΔgprD strain, compared to the wild-type and ΔgprB strains. With the results, we demonstrated the differential expression of a variety of genes related mainly to secondary metabolism, sexual development, stress signaling, and amino acid metabolism. We propose that the absence of GPCRs triggered stress responses at the genetic level. The data suggested an intimate relationship among different G-protein coupled receptors, fine-tune regulation of secondary and amino acid metabolisms, and fungal development. PMID:23658706

  2. Identification of metabolic pathways influenced by the G-protein coupled receptors GprB and GprD in Aspergillus nidulans.

    PubMed

    de Souza, Wagner R; Morais, Enyara Rezende; Krohn, Nadia Graciele; Savoldi, Marcela; Goldman, Maria Helena S; Rodrigues, Fernando; Caldana, Camila; Semelka, Charles T; Tikunov, Andrey P; Macdonald, Jeffrey M; Goldman, Gustavo Henrique

    2013-01-01

    Heterotrimeric G-protein-mediated signaling pathways play a pivotal role in transmembrane signaling in eukaryotes. Our main aim was to identify signaling pathways regulated by A. nidulans GprB and GprD G-protein coupled receptors (GPCRs). When these two null mutant strains were compared to the wild-type strain, the ΔgprB mutant showed an increased protein kinase A (PKA) activity while growing in glucose 1% and during starvation. In contrast, the ΔgprD has a much lower PKA activity upon starvation. Transcriptomics and (1)H NMR-based metabolomics were performed on two single null mutants grown on glucose. We noted modulation in the expression of 11 secondary metabolism gene clusters when the ΔgprB and ΔgprD mutant strains were grown in 1% glucose. Several members of the sterigmatocystin-aflatoxin gene cluster presented down-regulation in both mutant strains. The genes of the NR-PKS monodictyphenone biosynthesis cluster had overall increased mRNA accumulation in ΔgprB, while in the ΔgprD mutant strain the genes had decreased mRNA accumulation. Principal component analysis of the metabolomic data demonstrated that there was a significant metabolite shift in the ΔgprD strain. The (1)H NMR analysis revealed significant expression of essential amino acids with elevated levels in the ΔgprD strain, compared to the wild-type and ΔgprB strains. With the results, we demonstrated the differential expression of a variety of genes related mainly to secondary metabolism, sexual development, stress signaling, and amino acid metabolism. We propose that the absence of GPCRs triggered stress responses at the genetic level. The data suggested an intimate relationship among different G-protein coupled receptors, fine-tune regulation of secondary and amino acid metabolisms, and fungal development.

  3. Functional characterization of the Aspergillus nidulans glucosylceramide pathway reveals that LCB Δ8-desaturation and C9-methylation are relevant to filamentous growth, lipid raft localization and Psd1 defensin activity.

    PubMed

    Fernandes, C M; de Castro, P A; Singh, A; Fonseca, F L; Pereira, M D; Vila, T V M; Atella, G C; Rozental, S; Savoldi, M; Del Poeta, M; Goldman, G H; Kurtenbach, E

    2016-11-01

    C8-desaturated and C9-methylated glucosylceramide (GlcCer) is a fungal-specific sphingolipid that plays an important role in the growth and virulence of many species. In this work, we investigated the contribution of Aspergillus nidulans sphingolipid Δ8-desaturase (SdeA), sphingolipid C9-methyltransferases (SmtA/SmtB) and glucosylceramide synthase (GcsA) to fungal phenotypes, sensitivity to Psd1 defensin and Galleria mellonella virulence. We showed that ΔsdeA accumulated C8-saturated and unmethylated GlcCer, while gcsA deletion impaired GlcCer synthesis. Although increased levels of unmethylated GlcCer were observed in smtA and smtB mutants, ΔsmtA and wild-type cells showed a similar 9,Me-GlcCer content, reduced by 50% in the smtB disruptant. The compromised 9,Me-GlcCer production in the ΔsmtB strain was not accompanied by reduced filamentation or defects in cell polarity. When combined with the smtA deletion, smtB repression significantly increased unmethylated GlcCer levels and compromised filamentous growth. Furthermore, sdeA and gcsA mutants displayed growth defects and raft mislocalization, which were accompanied by reduced neutral lipids levels and attenuated G. mellonella virulence in the ΔgcsA strain. Finally, ΔsdeA and ΔgcsA showed increased resistance to Psd1, suggesting that GlcCer synthesis and fungal sphingoid base structure specificities are relevant not only to differentiation but also to proper recognition by this antifungal defensin. © 2016 John Wiley & Sons Ltd.

  4. Purification and physico-chemical characterisation of genetically modified phytases expressed in Aspergillus awamori.

    PubMed

    Martin, Judith A; Murphy, Richard A; Power, Ronan F G

    2006-09-01

    Two heterologous phytases from Aspergillus awamori and Aspergillus fumigatus obtained from submerged cultures of genetically modified fungal strains in addition to two commercially available phytase preparations (Allzyme and Natuphos phytases) were purified to homogeneity using a combination of ultrafiltration, gel filtration and ion exchange. The purified preparations were used in subsequent characterisation studies, in which Western Immunoblot analysis, pH and temperature optima, thermal stability and substrate specificity were assessed. A. fumigatus phyA phytase expressed in A. awamori exhibited activity over a broad pH range together with an increased temperature optimum, and slightly enhanced thermal stability compared to the other phytases tested, and is thus a promising candidate for animal feed applications. This particular phytase retains activity over a wide range of pH values characteristic of the digestive tract and could conceivably be more suited to the increasingly higher feed processing temperatures being utilised today, than the corresponding phytases from Aspergillus niger.

  5. Nitrogen Metabolism and Growth Enhancement in Tomato Plants Challenged with Trichoderma harzianum Expressing the Aspergillus nidulans Acetamidase amdS Gene.

    PubMed

    Domínguez, Sara; Rubio, M Belén; Cardoza, Rosa E; Gutiérrez, Santiago; Nicolás, Carlos; Bettiol, Wagner; Hermosa, Rosa; Monte, Enrique

    2016-01-01

    Trichoderma is a fungal genus that includes species that are currently being used as biological control agents and/or as biofertilizers. In addition to the direct application of Trichoderma spp. as biocontrol agents in plant protection, recent studies have focused on the beneficial responses exerted on plants, stimulating the growth, activating the defenses, and/or improving nutrient uptake. The amdS gene, encoding an acetamidase of Aspergillus, has been used as a selectable marker for the transformation of filamentous fungi, including Trichoderma spp., but the physiological effects of the introduction of this gene into the genome of these microorganisms still remains unexplored. No evidence of amdS orthologous genes has been detected within the Trichoderma spp. genomes and the amdS heterologous expression in Trichoderma harzianum T34 did not affect the growth of this fungus in media lacking acetamide. However, it did confer the ability for the fungus to use this amide as a nitrogen source. Although a similar antagonistic behavior was observed for T34 and amdS transformants in dual cultures against Rhizoctonia solani, Botrytis cinerea, and Fusarium oxysporum, a significantly higher antifungal activity was detected in amdS transformants against F. oxysporum, compared to that of T34, in membrane assays on media lacking acetamide. In Trichoderma-tomato interaction assays, amdS transformants were able to promote plant growth to a greater extent than the wild-type T34, although compared with this strain the transformants showed similar capability to colonize tomato roots. Gene expression patterns from aerial parts of 3-week-old tomato plants treated with T34 and the amdS transformants have also been investigated using GeneChip Tomato Genome Arrays. The downregulation of defense genes and the upregulation of carbon and nitrogen metabolism genes observed in the microarrays were accompanied by (i) enhanced growth, (ii) increased carbon and nitrogen levels, and (iii) a

  6. Nitrogen Metabolism and Growth Enhancement in Tomato Plants Challenged with Trichoderma harzianum Expressing the Aspergillus nidulans Acetamidase amdS Gene

    PubMed Central

    Domínguez, Sara; Rubio, M. Belén; Cardoza, Rosa E.; Gutiérrez, Santiago; Nicolás, Carlos; Bettiol, Wagner; Hermosa, Rosa; Monte, Enrique

    2016-01-01

    Trichoderma is a fungal genus that includes species that are currently being used as biological control agents and/or as biofertilizers. In addition to the direct application of Trichoderma spp. as biocontrol agents in plant protection, recent studies have focused on the beneficial responses exerted on plants, stimulating the growth, activating the defenses, and/or improving nutrient uptake. The amdS gene, encoding an acetamidase of Aspergillus, has been used as a selectable marker for the transformation of filamentous fungi, including Trichoderma spp., but the physiological effects of the introduction of this gene into the genome of these microorganisms still remains unexplored. No evidence of amdS orthologous genes has been detected within the Trichoderma spp. genomes and the amdS heterologous expression in Trichoderma harzianum T34 did not affect the growth of this fungus in media lacking acetamide. However, it did confer the ability for the fungus to use this amide as a nitrogen source. Although a similar antagonistic behavior was observed for T34 and amdS transformants in dual cultures against Rhizoctonia solani, Botrytis cinerea, and Fusarium oxysporum, a significantly higher antifungal activity was detected in amdS transformants against F. oxysporum, compared to that of T34, in membrane assays on media lacking acetamide. In Trichoderma-tomato interaction assays, amdS transformants were able to promote plant growth to a greater extent than the wild-type T34, although compared with this strain the transformants showed similar capability to colonize tomato roots. Gene expression patterns from aerial parts of 3-week-old tomato plants treated with T34 and the amdS transformants have also been investigated using GeneChip Tomato Genome Arrays. The downregulation of defense genes and the upregulation of carbon and nitrogen metabolism genes observed in the microarrays were accompanied by (i) enhanced growth, (ii) increased carbon and nitrogen levels, and (iii) a

  7. Aspergillus awamori Feeding Modifies Lipid Metabolism in Rats

    PubMed Central

    Saleh, Ahmed A.; Ohtsuka, Akira; Yamamoto, Masahiro; Hayashi, Kunioki

    2013-01-01

    In the present study, an experiment was conducted to show that A. awamori modifies lipid metabolism in mammals. A total number of 24 rats at 6 weeks of age were divided into 2 groups (10% and 30% fat dietary groups), and each group was further divided into control and experimental groups (6 rats per group). Rats in the experimental groups were given diets containing 0.05% A. awamori. The diets were administered for 3 weeks to evaluate the effects of A. awamori on growth, plasma lipid profile, and the expressions of genes related to lipid metabolism in the liver. After the rats were fed A. awamori, body weight gain was increased, while food intake was decreased; therefore, food efficiency was increased in both A. awamori groups. Plasma triglycerides, LDL cholesterol, and glucose levels were decreased, but plasma HDL cholesterol levels were increased. Furthermore, saturated fatty acids were decreased while; unsaturated fatty acids were increased in the liver. The liver mRNA levels of FAS, ACC, delta-6-desaturase, and HMG-CoA reductase were increased, while the mRNA level of LDL receptor was decreased. From these data, it is proposed that A. awamori could be used as an effective probiotic to prevent lifestyle-related diseases in humans. PMID:23841078

  8. Biodegradation of phenol by immobilized Aspergillus awamori NRRL 3112 on modified polyacrylonitrile membrane.

    PubMed

    Yordanova, G; Ivanova, D; Godjevargova, T; Krastanov, A

    2009-09-01

    Covalent immobilization of Aspergillus awamori NRRL 3112 was conducted onto modified polyacrylonitrile membrane with glutaraldehyde as a coupling agent. The polymer carrier was preliminarily modified in an aqueous solution of NaOH and 1,2-diaminoethane. The content of amino groups was determined to be 0.58 mgeq g(-1). Two ways of immobilization were used-in the presence of 0.2 g l(-1) phenol and without phenol. The capability of two immobilized system to degrade phenol (concentration-0.5 g l(-1)) as a sole carbon and energy source was investigated in batch experiments. Seven cycles of phenol biodegradation were conducted. Better results were obtained with the immobilized system prepared in the presence of phenol, regarding degradation time and phenol biodegradation rate. Scanning electron micrographs of the polyacrylonitrile membrane/immobilized Aspergillus awamori NRRL at the beginning of repeated batch cultivation and after the 7th cycle were compared. After the 7th cycle of cultivation the observations showed large groups of cells. The results from the batch experiments with immobilized system were compared to the results produced by the free strain. Phenol biodegradation experiments were carried out also in a bioreactor with spirally wound membrane with bound Aspergillus awamori NRRL 3112 in a regime of recirculation. 10 cycles of 0.5 g l(-1) phenol biodegradation were run consecutively to determine the degradation time and rate for each cycle. The design of the bioreactor appeared to be quite effective, providing large membrane surface to bind the strain.

  9. Enhancers of Conidiation Mutants in Aspergillus Nidulans

    PubMed Central

    Gems, D. H.; Clutterbuck, A. J.

    1994-01-01

    Mutants at a number of loci, designated sthenyo, have been isolated as enhancers of the oligoconidial mutations at the medA locus. Two loci have been mapped: sthA on linkage group I, and sthB on linkage group V. Two probable alleles have been identified at each locus but two further mutants were unlinked to either sthA or sthB. Neither sthA nor sthB mutants have conspicuous effects on morphology on their own, nor could the sthA1 sthB2 double mutant be distinguished from wild type. Mutants at both loci also interact with the temperature-sensitive brlA42 mutant at the permissive temperature to give a phenotype described as ``Abacoid.'' sthA1 also induces a slight modification of the phenotype of an abaA mutant. We conclude that sthenyo genes act mainly at the phialide stage of conidiation. We also describe the isolation of new medA mutants arising spontaneously as outgrowths on brlA42 colonies. PMID:8056325

  10. Modified release itraconazole amorphous solid dispersion to treat Aspergillus fumigatus: importance of the animal model selection.

    PubMed

    Maincent, Julien P; Najvar, Laura K; Kirkpatrick, William R; Huang, Siyuan; Patterson, Thomas F; Wiederhold, Nathan P; Peters, Jay I; Williams, Robert O

    2017-02-01

    Previously, modified release itraconazole in the form of a melt-extruded amorphous solid dispersion based on a pH dependent enteric polymer combined with hydrophilic additives (HME-ITZ), exhibited improved in vitro dissolution properties. These properties agreed with pharmacokinetic results in rats showing high and sustained itraconazole (ITZ) systemic levels. The objective of the present study was to better understand the best choice of rodent model for evaluating the pharmacokinetic and efficacy of this orally administered modified release ITZ dosage form against invasive Aspergillus fumigatus. A mouse model and a guinea pig model were investigated and compared to results previously published. In the mouse model, despite similar levels as previously reported values, plasma and lung levels were variable and fungal burden was not statistically different for placebo controls, HME-ITZ and Sporanox(®) (ITZ oral solution). This study demonstrated that the mouse model is a poor choice for studying modified release ITZ dosage forms based on pH dependent enteric polymers due to low fluid volume available for dissolution and low intestinal pH. To the contrary, guinea pig was a suitable model to evaluate modified release ITZ dosage forms. Indeed, a significant decrease in lung fungal burden as a result of high and sustained ITZ tissue levels was measured. Sufficiently high intestinal pH and fluids available for dissolution likely facilitated the dissolution process. Despite high ITZ tissue level, the primary therapeutic agent voriconazole exhibited an even more pronounced decrease in fungal burden due to its reported higher clinical efficacy specifically against Aspergillus fumigatus.

  11. Decolourization and detoxification of pulp and paper mill effluent by Emericella nidulans var. nidulans.

    PubMed

    Singhal, Anjali; Thakur, Indu Shekhar

    2009-11-15

    In this study geno-toxicity analysis along with effluent treatment was taken up to evaluate the efficiency of biological treatment process for safe disposal of treated effluent. Four fungi were isolated from sediments of pulp and paper mill in which PF4 reduced colour (30%) and lignin content (24%) of the effluent on 3rd day. The fungal strain was identified as Emericella nidulans var. nidulans (anamorph: Aspergillus nidulans) on the basis of rDNA ITS1 and rDNA ITS2 region sequences. The process of decolourization was optimized by Taguchi approach. The optimum conditions were temperature (30-35 degrees C), rpm (125), dextrose (0.25%), tryptone (0.1%), inoculum size (7.5%), pH (5) and duration (24h). Decolourization of effluent improved by 31% with reduction in colour (66.66%) and lignin (37%) after treatment by fungi in shake flask. Variation in pH from 6 to 5 had most significant effect on decolourization (71%) while variation in temperature from 30 to 35 degrees C had no effect on the process. Treated effluent was further evaluated for geno-toxicity by alkaline single cell gel electrophoresis (SCGE) assay using Saccharomyces cerevisiae MTCC 36 as model organism, indicated 60% reduction.

  12. Application of an Aspergillus saitoi protease preparation to soybean curd to modify its functional and rheological properties.

    PubMed

    Nishinoaki, Mizuho; Asakura, Tomiko; Watanabe, Tomomi; Kunizaki, Etsuko; Matsumoto, Mami; Eto, Wakako; Tamura, Tomoko; Minami, Michiko; Obata, Akio; Abe, Keiko; Funaki, Junko

    2008-02-01

    An Aspergillus saitoi protease preparation, Molsin, was found to contain beta-glucosidase as well as protease activities. Application of Molsin to soybean curd improved its functionality by converting the contained isoflavone glycosides to their aglycones through beta-glucosidase, and also modified the rheological property into a creamy consistency through protease. The enzymatically modified soybean curd was characterized by a ductility flow having no particular rupture point.

  13. Survival of Aspergillus flavus and Fusarium moniliforme in High-Moisture Corn Stored Under Modified Atmospheres

    PubMed Central

    Wilson, David M.; Huang, L. H.; Jay, Edward

    1975-01-01

    Freshly harvested high-moisture corn with 29.4% moisture and corn remoistened to 19.6% moisture were inoculated with Aspergillus flavus Link ex Fr. and stored for 4 weeks at about 27 C in air (0.03% CO2, 21% O2, and 78% N2) and three modified atmospheres: (i) 99.7% N2 and 0.3% O2; (ii) 61.7% CO2, 8.7% O2, and 29.6% N2; and (iii) 13.5% CO2, 0.5% O2, and 84.8% N2. Kernel infections by A. flavus, Fusarium moniliforme (Sheld.) Snyd. et Hans., and other fungi were monitored weekly. The modified-atmosphere treatments delayed deterioration by A. flavus and F. moniliforme, but their growth was not completely stopped. A. flavus survived better in the remoistened than in the freshly harvested corn. F. moniliforme survived in both. A. flavus and F. moniliforme were the dominant fungi in corn removed from the modified atmospheres and exposed to normal air for 1 week. PMID:811165

  14. Development of RFLP-PCR method for the identification of medically important Aspergillus species using single restriction enzyme MwoI

    PubMed Central

    Diba, K.; Mirhendi, H.; Kordbacheh, P.; Rezaie, S.

    2014-01-01

    In this study we attempted to modify the PCR-RFLP method using restriction enzyme MwoI for the identification of medically important Aspergillus species. Our subjects included nine standard Aspergillus species and 205 Aspergillus isolates of approved hospital acquired infections and hospital indoor sources. First of all, Aspergillus isolates were identified in the level of species by using morphologic method. A twenty four hours culture was performed for each isolates to harvest Aspergillus mycelia and then genomic DNA was extracted using Phenol-Chloroform method. PCR-RFLP using single restriction enzyme MwoI was performed in ITS regions of rDNA gene. The electrophoresis data were analyzed and compared with those of morphologic identifications. Total of 205 Aspergillus isolates included 153 (75%) environmental and 52 (25%) clinical isolates. A. flavus was the most frequently isolate in our study (55%), followed by A. niger 65(31.7%), A. fumigatus 18(8.7%), A. nidulans and A. parasiticus 2(1% each). MwoI enabled us to discriminate eight medically important Aspergillus species including A. fumigatus, A. niger, A. flavus as the most common isolated species. PCR-RFLP method using the restriction enzyme MwoI is a rapid and reliable test for identification of at least the most medically important Aspergillus species. PMID:25242934

  15. Reduced by-product formation and modified oxygen availability improve itaconic acid production in Aspergillus niger.

    PubMed

    Li, An; Pfelzer, Nina; Zuijderwijk, Robbert; Brickwedde, Anja; van Zeijl, Cora; Punt, Peter

    2013-05-01

    Aspergillus niger has an extraordinary potential to produce organic acids as proven by its application in industrial citric acid production. Previously, it was shown that expression of the cis-aconitate decarboxylase gene (cadA) from Aspergillus terreus converted A. niger into an itaconic acid producer (Li et al., Fungal Genet Bio 48: 602-611, 2011). After some initial steps in production optimization in the previous research (Li et al., BMC biotechnol 12: 57, 2012), this research aims at modifying host strains and fermentation conditions to further improve itaconic acid production. Expression of two previously identified A. terreus genes encoding putative organic acid transporters (mttA, mfsA) increased itaconic acid production in an A. niger cis-aconitate decarboxylase expressing strain. Surprisingly, the production did not increase further when both transporters were expressed together. Meanwhile, oxalic acid was accumulated as a by-product in the culture of mfsA transformants. In order to further increase itaconic acid production and eliminate by-product formation, the non-acidifying strain D15#26 and the oxaloacetate acetylhydrolase (oahA) deletion strain AB 1.13 ∆oahA #76 have been analyzed for itaconic acid production. Whereas cadA expression in AB 1.13 ∆oahA #76 resulted in higher itaconic acid production than strain CAD 10.1, this was not the case in strain D15#26. As expected, oxalic acid production was eliminated in both strains. In a further attempt to increase itaconic acid levels, an improved basal citric acid-producing strain, N201, was used for cadA expression. A selected transformant (N201CAD) produced more itaconic acid than strain CAD 10.1, derived from A. niger strain AB1.13. Subsequently, we have focused on the influence of dissolved oxygen (D.O.) on itaconic acid production. Interestingly, reduced D.O. levels (10-25 %) increased itaconic acid production using strain N201 CAD. Similar results were obtained in strain AB 1.13 CAD + HBD2

  16. Mms Sensitivity of All Amino Acid-Requiring Mutants in Aspergillus and Its Suppression by Mutations in a Single Gene

    PubMed Central

    Käfer, Etta

    1987-01-01

    All available amino acid-requiring mutants of Aspergillus nidulans were found to be hypersensitive to MMS (methyl methanesulfonate) to various degrees. On MMS media, secondary mutations could be selected which suppress this MMS sensitivity but do not affect the requirement. Many such mutations were analyzed and found to be alleles of one gene, smsA (= suppressor of MMS sensitivity), which mapped distal on the right arm of chromosome V. This gene is more likely to be involved in general regulation of amino acid biosynthesis than MMS uptake, since a variety of pathway interactions were clearly modified by smsA suppressors in the absence of MMS. PMID:3556318

  17. KdmB, a Jumonji Histone H3 Demethylase, Regulates Genome-Wide H3K4 Trimethylation and Is Required for Normal Induction of Secondary Metabolism in Aspergillus nidulans

    PubMed Central

    Gacek-Matthews, Agnieszka; Sasaki, Takahiko; Wittstein, Kathrin; Gruber, Clemens; Strauss, Joseph

    2016-01-01

    Histone posttranslational modifications (HPTMs) are involved in chromatin-based regulation of fungal secondary metabolite biosynthesis (SMB) in which the corresponding genes—usually physically linked in co-regulated clusters—are silenced under optimal physiological conditions (nutrient-rich) but are activated when nutrients are limiting. The exact molecular mechanisms by which HPTMs influence silencing and activation, however, are still to be better understood. Here we show by a combined approach of quantitative mass spectrometry (LC-MS/MS), genome-wide chromatin immunoprecipitation (ChIP-seq) and transcriptional network analysis (RNA-seq) that the core regions of silent A. nidulans SM clusters generally carry low levels of all tested chromatin modifications and that heterochromatic marks flank most of these SM clusters. During secondary metabolism, histone marks typically associated with transcriptional activity such as H3 trimethylated at lysine-4 (H3K4me3) are established in some, but not all gene clusters even upon full activation. KdmB, a Jarid1-family histone H3 lysine demethylase predicted to comprise a BRIGHT domain, a zinc-finger and two PHD domains in addition to the catalytic Jumonji domain, targets and demethylates H3K4me3 in vivo and mediates transcriptional downregulation. Deletion of kdmB leads to increased transcription of about ~1750 genes across nutrient-rich (primary metabolism) and nutrient-limiting (secondary metabolism) conditions. Unexpectedly, an equally high number of genes exhibited reduced expression in the kdmB deletion strain and notably, this group was significantly enriched for genes with known or predicted functions in secondary metabolite biosynthesis. Taken together, this study extends our general knowledge about multi-domain KDM5 histone demethylases and provides new details on the chromatin-level regulation of fungal secondary metabolite production. PMID:27548260

  18. RmtA, a putative arginine methyltransferase, regulates secondary metabolism and development in Aspergillus flavus

    USDA-ARS?s Scientific Manuscript database

    Aspergillus flavus is found colonizing numerous oil seed crops such as corn, peanuts, sorghum, treenuts and cotton worldwide, contaminating them with aflatoxin and other harmful potent toxins. In the phylogenetically related model fungus Aspergillus nidulans, the methyltransferase, RmtA, has been de...

  19. NsdC and NsdD affect Aspergillus flavus morphogenesis and aflatoxin production

    USDA-ARS?s Scientific Manuscript database

    The transcription factors NsdC and NsdD have been shown to be necessary for sexual development in Aspergillus nidulans. Herein we examine the role of these proteins in development and aflatoxin production of the agriculturally important, aflatoxin-producing fungus, Aspergillus flavus. We found tha...

  20. Aspergillus flavus VelB acts distinctly from VeA in conidiation and may coordinate with FluG to modulate sclerotial production

    USDA-ARS?s Scientific Manuscript database

    Asexual and sexual differentiation in Aspergillus nidulans involve complex control by a number of factors and is light-dependent. The velvet protein, VeA, in A. nidulans is a negative regulator of conidiation and a positive regulator of sexual development. It forms a complex with VelB and LaeA to co...

  1. Construction of a Genetically Modified Wine Yeast Strain Expressing the Aspergillus aculeatus rhaA Gene, Encoding an α-l-Rhamnosidase of Enological Interest

    PubMed Central

    Manzanares, Paloma; Orejas, Margarita; Gil, José Vicente; de Graaff, Leo H.; Visser, Jaap; Ramón, Daniel

    2003-01-01

    The Aspergillus aculeatus rhaA gene encoding an α-l-rhamnosidase has been expressed in both laboratory and industrial wine yeast strains. Wines produced in microvinifications, conducted using a combination of the genetically modified industrial strain expressing rhaA and another strain expressing a β-glucosidase, show increased content mainly of the aromatic compound linalool. PMID:14660415

  2. Rescue of Aspergillus nidulans severely debilitating null mutations in ESCRT-0, I, II and III genes by inactivation of a salt-tolerance pathway allows examination of ESCRT gene roles in pH signalling.

    PubMed

    Calcagno-Pizarelli, Ana M; Hervás-Aguilar, América; Galindo, Antonio; Abenza, Juan F; Peñalva, Miguel A; Arst, Herbert N

    2011-12-01

    The Aspergillus pal pathway hijacks ESCRT proteins into ambient pH signalling complexes. We show that components of ESCRT-0, ESCRT-I, ESCRT-II and ESCRT-III are nearly essential for growth, precluding assessment of null mutants for pH signalling or trafficking. This severely debilitating effect is rescued by loss-of-function mutations in two cation tolerance genes, one of which, sltA, encodes a transcription factor whose inactivation promotes hypervacuolation. Exploiting a conditional expression sltA allele, we demonstrate that deletion of vps27 (ESCRT-0), vps23 (ESCRT-I), vps36 (ESCRT-II), or vps20 or vps32 (both ESCRT-III) leads to numerous small vacuoles, a phenotype also suppressed by SltA downregulation. This situation contrasts with normal vacuoles and vacuole-associated class E compartments seen in Saccharomyces cerevisiae ESCRT null mutants. Exploiting the suppressor phenotype of sltA(-) mutations, we establish that Vps23, Vps36, Vps20 and Vps32 are essential for pH signalling. Phosphatidylinositol 3-phosphate-recognising protein Vps27 (ESCRT-0) is not, consistent with normal pH signalling in rabB null mutants unable to recruit Vps34 kinase to early endosomes. In contrast to the lack of pH signalling in the absence of Vps20 or Vps32, detectable signalling occurs in the absence of ESCRT-III subunit Vps24. Our data support a model in which certain ESCRT proteins are recruited to the plasma membrane to mediate pH signalling.

  3. Sporogenic Effect of Polyunsaturated Fatty Acids on Development of Aspergillus spp.

    PubMed Central

    Calvo, Ana M.; Hinze, Lori L.; Gardner, Harold W.; Keller, Nancy P.

    1999-01-01

    Aspergillus spp. are frequently occurring seed-colonizing fungi that complete their disease cycles through the development of asexual spores, which function as inocula, and through the formation of cleistothecia and sclerotia. We found that development of all three of these structures in Aspergillus nidulans, Aspergillus flavus, and Aspergillus parasiticus is affected by linoleic acid and light. The specific morphological effects of linoleic acid include induction of precocious and increased asexual spore development in A. flavus and A. parasiticus strains and altered sclerotium production in some A. flavus strains in which sclerotium production decreases in the light but increases in the dark. In A. nidulans, both asexual spore production and sexual spore production were altered by linoleic acid. Spore development was induced in all three species by hydroperoxylinoleic acids, which are linoleic acid derivatives that are produced during fungal colonization of seeds. The sporogenic effects of these linoleic compounds on A. nidulans are similar to the sporogenic effects of A. nidulans psi factor, an endogenous mixture of hydroxylinoleic acid moieties. Light treatments also significantly increased asexual spore production in all three species. The sporogenic effects of light, linoleic acid, and linoleic acid derivatives on A. nidulans required an intact veA gene. The sporogenic effects of light and linoleic acid on Aspergillus spp., as well as members of other fungal genera, suggest that these factors may be significant environmental signals for fungal development. PMID:10427064

  4. A Novel Motif in Fungal Class 1 Histone Deacetylases Is Essential for Growth and Development of Aspergillus

    PubMed Central

    Tribus, Martin; Bauer, Ingo; Galehr, Johannes; Rieser, Gudrun; Trojer, Patrick; Brosch, Gerald; Loidl, Peter; Haas, Hubertus

    2010-01-01

    Acetylation of the N-terminal tails of core histones is an important regulatory mechanism in eukaryotic organisms. In filamentous fungi, little is known about the enzymes that modify histone tails. However, it is increasingly evident that histone deacetylases and histone acetyltransferases are critical factors for the regulation of genes involved in fungal pathogenicity, stress response, and production of secondary metabolites such as antibiotics or fungal toxins. Here, we show that depletion of RpdA, an RPD3-type histone deacetylase of Aspergillus nidulans, leads to a pronounced reduction of growth and sporulation of the fungus. We demonstrate that a so far unnoticed motif in the C terminus of fungal RpdA histone deacetylases is required for the catalytic activity of the enzyme and consequently is essential for the viability of A. nidulans. Moreover, we provide evidence that this motif is also crucial for the survival of other, if not all, filamentous fungi, including pathogens such as Aspergillus fumigatus or Cochliobolus carbonum. Thus, the extended C terminus of RpdA-type enzymes represents a promising target for fungal-specific histone deacetylase-inhibitors that may have potential as novel antifungal compounds with medical and agricultural applications. PMID:19940017

  5. A novel motif in fungal class 1 histone deacetylases is essential for growth and development of Aspergillus.

    PubMed

    Tribus, Martin; Bauer, Ingo; Galehr, Johannes; Rieser, Gudrun; Trojer, Patrick; Brosch, Gerald; Loidl, Peter; Haas, Hubertus; Graessle, Stefan

    2010-01-15

    Acetylation of the N-terminal tails of core histones is an important regulatory mechanism in eukaryotic organisms. In filamentous fungi, little is known about the enzymes that modify histone tails. However, it is increasingly evident that histone deacetylases and histone acetyltransferases are critical factors for the regulation of genes involved in fungal pathogenicity, stress response, and production of secondary metabolites such as antibiotics or fungal toxins. Here, we show that depletion of RpdA, an RPD3-type histone deacetylase of Aspergillus nidulans, leads to a pronounced reduction of growth and sporulation of the fungus. We demonstrate that a so far unnoticed motif in the C terminus of fungal RpdA histone deacetylases is required for the catalytic activity of the enzyme and consequently is essential for the viability of A. nidulans. Moreover, we provide evidence that this motif is also crucial for the survival of other, if not all, filamentous fungi, including pathogens such as Aspergillus fumigatus or Cochliobolus carbonum. Thus, the extended C terminus of RpdA-type enzymes represents a promising target for fungal-specific histone deacetylase-inhibitors that may have potential as novel antifungal compounds with medical and agricultural applications.

  6. Cloning and expression of fungal phytases in genetically modified strains of Aspergillus awamori.

    PubMed

    Martin, Judith A; Murphy, Richard A; Power, Ronan F G

    2003-09-01

    In an effort to produce phytases cost-effectively, and to determine the efficiency of a novel expression system, the genes for Aspergillus awamori ( phyA) phytase and Aspergillus fumigatus ( phyA) phytase (a putative thermostable enzyme) were cloned and overexpressed in A. awamori. Regulation of phytase expression was achieved by separately placing the genes under the transcriptional control of the glucoamylase A ( glaA) promoter of A. awamori. A gene fusion strategy was employed that involved the insertion of a hexapeptide Kex-2 protease cleavage site between the native glucoamylase and heterologous proteins and allowed for the efficient secretion and processing of the resultant chimeric proteins produced in this system by an endogenous Kex-2 protease. The genes for both of the above-mentioned phytases have already been cloned; however, this is the first report of either of the two phytases being fused with the glucoamylase gene, placed under the transcriptional control of the glaA promoter and overexpressed in A. awamori. Following transformation of A. awamori with separate expression vectors (one for each phytase), induction of phytase expression in submerged culture was effected by utilisation of a starch-containing medium. Optimisation of heterologous protein production in small shake-flask cultures involved changes in medium constituents. Maximum phytase expression levels of 200 phytase units (PU) ml(-1) and 62 PU ml(-1) for recombinantly expressed phytases from A. awamori and A. fumigatus, respectively, were obtained in crude fermentation extracts. Subsequent process scale-up to 4 l batch fermentation yielded phytase production levels comparable to those obtained on small scale. The enzyme yields herein reported demonstrate that the expression system developed and the host strain utilised were capable of expressing phytase at levels comparable to, or exceeding, previously reported data.

  7. Revitalization of a forward genetic screen identifies three new regulators of fungal secondary metabolism in the genus Aspergillus

    Treesearch

    Brandon T. Pfannenstiel; Xixi Zhao; Jennifer Wortman; Philipp Wiemann; Kurt Throckmorton; Joseph E. Spraker; Alexandra A. Soukup; Xingyu Luo; Daniel L. Lindner; Fang Yun Lim; Benjamin P. Knox; Brian Haas; Gregory J. Fischer; Tsokyi Choera; Robert A. E. Butchko; Jin-Woo Bok; Katharyn J. Affeldt; Nancy P. Keller; Jonathan M. Palmer; B. Gillian Turgeon

    2017-01-01

    The study of aflatoxin in Aspergillus spp. has garnered the attention of many researchers due to aflatoxin's carcinogenic properties and frequency as a food and feed contaminant. Significant progress has been made by utilizing the model organism Aspergillus nidulans to characterize the regulation of sterigmatocystin (ST),...

  8. RNA sequencing of an nsdC mutant reveals global regulation of secondary metabolic gene clusters in Aspergillus flavus

    USDA-ARS?s Scientific Manuscript database

    The zinc finger transcription factor nsdC is required for both sexual development and aflatoxin production in the saprophytic fungus Aspergillus flavus. While previous work with an nsdC knockout mutant was conducted in Aspergillus nidulans and A. flavus strain 3357, here we demonstrate perturbations...

  9. Aspergillus species cystitis in a cat.

    PubMed

    Adamama-Moraitou, K K; Paitaki, C G; Rallis, T S; Tontis, D

    2001-03-01

    A Persian male cat with a history of lower urinary tract disease was presented because of polydipsia, polyuria, constipation and nasal discharge. Ten weeks before admission, the cat had been treated for lower urinary tract disease by catheterisation and flushing of the bladder. The animal was thin, dehydrated, anaemic and azotaemic. Urine culture revealed Aspergillus species cystitis. Antibodies against Aspergillus nidulans were identified in serum. Fluconazole was administered orally (7.5 mg/kg, q 12 h) for 10 consecutive weeks. The azotaemia was resolved, the kidney concentrating ability was recovered and the cat has remained healthy without similar problems.

  10. Verruculogen associated with Aspergillus fumigatus hyphae and conidia modifies the electrophysiological properties of human nasal epithelial cells.

    PubMed

    Khoufache, Khaled; Puel, Olivier; Loiseau, Nicolas; Delaforge, Marcel; Rivollet, Danièle; Coste, André; Cordonnier, Catherine; Escudier, Estelle; Botterel, Françoise; Bretagne, Stéphane

    2007-01-23

    The role of Aspergillus fumigatus mycotoxins in the colonization of the respiratory tract by conidia has not been studied extensively, even though patients at risk from invasive aspergillosis frequently exhibit respiratory epithelium damage. In a previous study, we found that filtrates of A. fumigatus cultures can specifically alter the electrophysiological properties of human nasal epithelial cells (HNEC) compared to those of non pathogenic moulds. We fractionated the organic phase of filtrate from 3-day old A. fumigatus cultures using high-performance liquid chromatography. The different fractions were tested for their ability to modify the electrophysiological properties of HNEC in an in vitro primary culture model. The fraction collected between 20 and 30 min mimicked the effects of the whole filtrate, i.e. decrease of transepithelial resistance and increase of potential differences, and contained secondary metabolites such as helvolic acid, fumagillin, and verruculogen. Only verruculogen (10(-8) M) had effects similar to the whole filtrate. We verified that verruculogen was produced by a collection of 67 human, animal, plant and environmental A. fumigatus isolates. Using MS-MS analysis, we found that verruculogen was associated with both mycelium and conidia extracts. Verruculogen is a secondary metabolite that modifies the electrophysiological properties of HNEC. The role of these modifications in the colonization and invasion of the respiratory epithelium by A. fumigatus on first contact with the epithelium remains to be determined.

  11. Verruculogen associated with Aspergillus fumigatus hyphae and conidia modifies the electrophysiological properties of human nasal epithelial cells

    PubMed Central

    Khoufache, Khaled; Puel, Olivier; Loiseau, Nicolas; Delaforge, Marcel; Rivollet, Danièle; Coste, André; Cordonnier, Catherine; Escudier, Estelle; Botterel, Françoise; Bretagne, Stéphane

    2007-01-01

    Background The role of Aspergillus fumigatus mycotoxins in the colonization of the respiratory tract by conidia has not been studied extensively, even though patients at risk from invasive aspergillosis frequently exhibit respiratory epithelium damage. In a previous study, we found that filtrates of A. fumigatus cultures can specifically alter the electrophysiological properties of human nasal epithelial cells (HNEC) compared to those of non pathogenic moulds. Results We fractionated the organic phase of filtrate from 3-day old A. fumigatus cultures using high-performance liquid chromatography. The different fractions were tested for their ability to modify the electrophysiological properties of HNEC in an in vitro primary culture model. The fraction collected between 20 and 30 min mimicked the effects of the whole filtrate, i.e. decrease of transepithelial resistance and increase of potential differences, and contained secondary metabolites such as helvolic acid, fumagillin, and verruculogen. Only verruculogen (10-8 M) had effects similar to the whole filtrate. We verified that verruculogen was produced by a collection of 67 human, animal, plant and environmental A. fumigatus isolates. Using MS-MS analysis, we found that verruculogen was associated with both mycelium and conidia extracts. Conclusion Verruculogen is a secondary metabolite that modifies the electrophysiological properties of HNEC. The role of these modifications in the colonization and invasion of the respiratory epithelium by A. fumigatus on first contact with the epithelium remains to be determined. PMID:17244350

  12. A modified recombineering protocol for the genetic manipulation of gene clusters in Aspergillus fumigatus.

    PubMed

    Alcazar-Fuoli, Laura; Cairns, Timothy; Lopez, Jordi F; Zonja, Bozo; Pérez, Sandra; Barceló, Damià; Igarashi, Yasuhiro; Bowyer, Paul; Bignell, Elaine

    2014-01-01

    Genomic analyses of fungal genome structure have revealed the presence of physically-linked groups of genes, termed gene clusters, where collective functionality of encoded gene products serves a common biosynthetic purpose. In multiple fungal pathogens of humans and plants gene clusters have been shown to encode pathways for biosynthesis of secondary metabolites including metabolites required for pathogenicity. In the major mould pathogen of humans Aspergillus fumigatus, multiple clusters of co-ordinately upregulated genes were identified as having heightened transcript abundances, relative to laboratory cultured equivalents, during the early stages of murine infection. The aim of this study was to develop and optimise a methodology for manipulation of gene cluster architecture, thereby providing the means to assess their relevance to fungal pathogenicity. To this end we adapted a recombineering methodology which exploits lambda phage-mediated recombination of DNA in bacteria, for the generation of gene cluster deletion cassettes. By exploiting a pre-existing bacterial artificial chromosome (BAC) library of A. fumigatus genomic clones we were able to implement single or multiple intra-cluster gene replacement events at both subtelomeric and telomere distal chromosomal locations, in both wild type and highly recombinogenic A. fumigatus isolates. We then applied the methodology to address the boundaries of a gene cluster producing a nematocidal secondary metabolite, pseurotin A, and to address the role of this secondary metabolite in insect and mammalian responses to A. fumigatus challenge.

  13. A Modified Recombineering Protocol for the Genetic Manipulation of Gene Clusters in Aspergillus fumigatus

    PubMed Central

    Alcazar-Fuoli, Laura; Cairns, Timothy; Lopez, Jordi F.; Zonja, Bozo; Pérez, Sandra; Barceló, Damià; Igarashi, Yasuhiro; Bowyer, Paul; Bignell, Elaine

    2014-01-01

    Genomic analyses of fungal genome structure have revealed the presence of physically-linked groups of genes, termed gene clusters, where collective functionality of encoded gene products serves a common biosynthetic purpose. In multiple fungal pathogens of humans and plants gene clusters have been shown to encode pathways for biosynthesis of secondary metabolites including metabolites required for pathogenicity. In the major mould pathogen of humans Aspergillus fumigatus, multiple clusters of co-ordinately upregulated genes were identified as having heightened transcript abundances, relative to laboratory cultured equivalents, during the early stages of murine infection. The aim of this study was to develop and optimise a methodology for manipulation of gene cluster architecture, thereby providing the means to assess their relevance to fungal pathogenicity. To this end we adapted a recombineering methodology which exploits lambda phage-mediated recombination of DNA in bacteria, for the generation of gene cluster deletion cassettes. By exploiting a pre-existing bacterial artificial chromosome (BAC) library of A. fumigatus genomic clones we were able to implement single or multiple intra-cluster gene replacement events at both subtelomeric and telomere distal chromosomal locations, in both wild type and highly recombinogenic A. fumigatus isolates. We then applied the methodology to address the boundaries of a gene cluster producing a nematocidal secondary metabolite, pseurotin A, and to address the role of this secondary metabolite in insect and mammalian responses to A. fumigatus challenge. PMID:25372385

  14. Genomics of Aspergillus oryzae.

    PubMed

    Kobayashi, Tetsuo; Abe, Keietsu; Asai, Kiyoshi; Gomi, Katsuya; Juvvadi, Praveen Rao; Kato, Masashi; Kitamoto, Katsuhiko; Takeuchi, Michio; Machida, Masayuki

    2007-03-01

    The genome sequence of Aspergillus oryzae, a fungus used in the production of the traditional Japanese fermentation foods sake (rice wine), shoyu (soy sauce), and miso (soybean paste), has revealed prominent features in its gene composition as compared to those of Saccharomyces cerevisiae and Neurospora crassa. The A. oryzae genome is extremely enriched with genes involved in biomass degradation, primary and secondary metabolism, transcriptional regulation, and cell signaling. Even compared to the related species A. nidulans and A. fumigatus, an abundance of metabolic genes is apparent, with acquisition of more than 6 Mb of sequence in the A. oryzae lineage, interspersed throughout the A. oryzae genome. Besides the various already established merits of A. oryzae for industrial uses, the genome sequence and the abundance of metabolic genes should significantly accelerate the biotechnological use of A. oryzae in industry.

  15. Allergens/Antigens, toxins and polyketides of important Aspergillus species.

    PubMed

    Bhetariya, Preetida J; Madan, Taruna; Basir, Seemi Farhat; Varma, Anupam; Usha, Sarma P

    2011-04-01

    The medical, agricultural and biotechnological importance of the primitive eukaryotic microorganisms, the Fungi was recognized way back in 1920. Among various groups of fungi, the Aspergillus species are studied in great detail using advances in genomics and proteomics to unravel biological and molecular mechanisms in these fungi. Aspergillus fumigatus, Aspergillus flavus, Aspergillus niger, Aspergillus parasiticus, Aspergillus nidulans and Aspergillus terreus are some of the important species relevant to human, agricultural and biotechnological applications. The potential of Aspergillus species to produce highly diversified complex biomolecules such as multifunctional proteins (allergens, antigens, enzymes) and polyketides is fascinating and demands greater insight into the understanding of these fungal species for application to human health. Recently a regulator gene for secondary metabolites, LaeA has been identified. Gene mining based on LaeA has facilitated new metabolites with antimicrobial activity such as emericellamides and antitumor activity such as terrequinone A from A. nidulans. Immunoproteomic approach was reported for identification of few novel allergens for A. fumigatus. In this context, the review is focused on recent developments in allergens, antigens, structural and functional diversity of the polyketide synthases that produce polyketides of pharmaceutical and biological importance. Possible antifungal drug targets for development of effective antifungal drugs and new strategies for development of molecular diagnostics are considered.

  16. Reciprocal oxylipin-mediated cross-talk in the Aspergillus-seed pathosystem.

    PubMed

    Brodhagen, Marion; Tsitsigiannis, Dimitrios I; Hornung, Ellen; Goebel, Cornelia; Feussner, Ivo; Keller, Nancy P

    2008-01-01

    In Aspergilli, mycotoxin production and sporulation are governed, in part, by endogenous oxylipins (oxygenated, polyunsaturated fatty acids and metabolites derived therefrom). In Aspergillus nidulans, oxylipins are synthesized by the dioxygenase enzymes PpoA, PpoB and PpoC. Structurally similar oxylipins are synthesized in seeds via the action of lipoxygenase (LOX) enzymes. Previous reports have shown that exogenous application of seed oxylipins to Aspergillus cultures alters sporulation and mycotoxin production. Herein, we explored whether a plant oxylipin biosynthetic gene (ZmLOX3) could substitute functionally for A. nidulans ppo genes. We engineered ZmLOX3 into wild-type A. nidulans, and into a DeltappoAC strain that was reduced in production of oxylipins, conidia and the mycotoxin sterigmatocystin. ZmLOX3 expression increased production of conidia and sterigmatocystin in both backgrounds. We additionally explored whether A. nidulans oxylipins affect seed LOX gene expression during Aspergillus colonization. We observed that peanut seed pnlox2-3 expression was decreased when infected by A. nidulansDeltappo mutants compared with infection by wild type. This result provides genetic evidence that fungal oxylipins are involved in plant LOX gene expression changes, leading to possible alterations in the fungal/host interaction. This report provides the first genetic evidence for reciprocal oxylipin cross-talk in the Aspergillus-seed pathosystem.

  17. Aspergillus fumigatus densities in relation to forest succession and edge effects: implications for wildlife health in modified environments.

    PubMed

    Perrott, John K; Armstrong, Doug P

    2011-09-01

    The hihi (or stitchbird, Notiomystis cincta) is a New Zealand endemic nectivorous forest bird now restricted to one pristine island. Relocation to establish viable hihi populations on other islands has been the main conservation action since the early 1980s. To date, hihi reintroductions to young growth islands have had poor success despite the absence of mammalian predators. It was thought that past failures were due to food limitation, but research suggests that food limitation alone cannot account for their poor survivorship. Post-mortems of dead hihi has shown that aspergillosis caused by Aspergillus fumigatus is a major mortality factor and there is current concern regarding their susceptibility to this fungal disease. In this paper we develop and assess the hypothesis that A. fumigatus limits hihi population viability on modified islands, and suggest that A. fumigatus is a potential indicator species for habitat disturbance. We report that the prevalence of A. fumigatus spores in the soil is much higher in young growth forests and forest edge habitats. Results suggest that hihi mortality rates between islands are potentially due to differential exposure to A. fumigatus spores. We assess relationships between habitat disturbance, A. fumigatus contamination and hihi mortality rates by testing the following predictions: (1) that densities of A. fumigatus spores will be higher on modified islands, (2) that densities of A. fumigatus spores on islands will be correlated with hihi mortality rates and (3) that densities of A. fumigatus spores will be higher at the forest edge than in the interior. We test each of these predictions using soil samples, air samples and samples of nectar from plant species fed on by hihi.

  18. Extracellular Production of Neoculin, a Sweet-Tasting Heterodimeric Protein with Taste-Modifying Activity, by Aspergillus oryzae†

    PubMed Central

    Nakajima, Ken-ichiro; Asakura, Tomiko; Maruyama, Jun-ichi; Morita, Yuji; Oike, Hideaki; Shimizu-Ibuka, Akiko; Misaka, Takumi; Sorimachi, Hiroyuki; Arai, Soichi; Kitamoto, Katsuhiko; Abe, Keiko

    2006-01-01

    Neoculin (NCL), a protein with sweetness approximately 500-fold that of sugar, can be utilized as a nonglycemic sweetener. It also has taste-modifying activity to convert sourness to sweetness. NCL is a heterodimer composed of an N-glycosylated acidic subunit (NAS) and a basic subunit (NBS), which are conjugated by disulfide bonds. For the production of recombinant NCL (rNCL) by Aspergillus oryzae, α-amylase with a KEX2 cleavage site, -K-R-, was fused upstream of each of NAS and NBS and the resulting fusion proteins were simultaneously expressed. For accurate and efficient cleavage of the fusion construct by KEX2-like protease, a triglycine motif was inserted after the KEX2 cleavage site. As NBS showed lower production efficiency than did NAS, a larger amount of the NBS expression plasmid than of NAS expression plasmid was introduced during cotransformation, resulting in successful production of rNCL in the culture medium. Moreover, to obtain a higher production yield of rNCL, the active form of hacA cDNA encoding a transcription factor that induces an unfolded protein response was cloned and expressed constitutively. This resulted in a 1.5-fold increase in the level of rNCL production (2.0 mg/liter). rNCL was purified by chromatography, and its NAS was found to be N-glycosylated as expected. The original sweetness and taste-modifying activity of rNCL were comparable to those of native NCL when confirmed by calcium imaging with human embryonic kidney cells expressing the human sweet taste receptor and by sensory tests. PMID:16672522

  19. Enzymatic activity of Glucose Oxidase from Aspergillus niger IPBCC.08.610 On Modified Carbon Paste Electrode as Glucose Biosensor

    NASA Astrophysics Data System (ADS)

    Rohmayanti, T.; Ambarsari, L.; Maddu, A.

    2017-03-01

    Glucose oxidase (GOx) has been developed as glucose sensor for measuring blood glucose level because of its specificity to glucose oxidation. This research aimed to determine kinetic parameters of GOx activity voltametrically and further test its potential as a glucose biosensor. GOx, in this research, was produced by local fungi Aspergillus niger IPBCC.08.610 which was isolated from local vine in Tarakan, East Borneo, Indonesia. GOx was immobilized with glutaraldehyde, which cross-linked onto modified carbon paste electrode (MCPE) nanofiber polyaniline. Intracellular GOx activity was higher than extracellular ones. Immobilized GOx used glutaraldehyde 2.5% and dripped on the surface of MCPE nanofiber polyaniline. MCPE have a high conductance in copper with the diameter of 3 mm. The concentration of glucose in the lowest concentration of 0.2 mM generated a current value of 0.413 mA while 2 mM of glucose induced a current of 3,869 mA value. Km and Imax of GOx in MCPE activities polyaniline nanofiber were 2.88 mM and 3.869 mA,respectively, with turnover (Kcat) of 13 s-1. Sensitivity was 1.09 mA/mM and response time to produce a maximum peak current was 25 seconds. Km value was then converted into units of mg/dL and obtained 56.4 mg/dL. GOximmo-IPB|MCPE electrode is potential to be able to detect blood glucose level in a normal condition and hypoglycemia conditions

  20. Transformation of Aspergillus terreus with the hygromycin B resistance marker from Escherichia coli.

    PubMed

    Ventura, L; Ramón, D

    1991-08-01

    Aspergillus terreus was transformed to hygromycin B resistance using a bacterial resistance gene under the control of Aspergillus nidulans regulatory sequences. Southern hybridization of transformants indicated that in most of the cases the vector DNA was integrated into the recipient chromosome in the form of tandem arrays. Transformants were mitotically stable in both selective and non-selective medium and retained their capacity to produce xylanase or glucoamylase activities.

  1. Antifungal Activity of Eugenol against Penicillium, Aspergillus, and Fusarium Species.

    PubMed

    Campaniello, Daniela; Corbo, Maria Rosaria; Sinigaglia, Milena

    2010-06-01

    The antifungal activity of eugenol in a model system against aspergilli (Aspergillus niger, Aspergillus terreus, and Emericella nidulans), penicilli (Penicillium expansum, Penicillium glabrum, and Penicillium italicum), and fusaria (Fusarium oxysporum and Fusarium avenaceum) was investigated. Minimum detection time (time to attain a colony diameter of 1 cm) and the kinetic parameters were evaluated. The effectiveness of the active compound seemed to be strain or genus dependent; 100 mg/liter represented a critical value for P. expansum, P. glabrum, P. italicum, A. niger, and E. nidulans because a further increase of eugenol resulted in fungistatic activity. The radial growth of A. terreus and F. avenaceum was inhibited at 140 mg/liter, and growth of F. oxysporum was completely inhibited at 150 mg/liter.

  2. Rapid Differentiation of Aspergillus Species from Other Medically Important Opportunistic Molds and Yeasts by PCR-Enzyme Immunoassay

    PubMed Central

    de Aguirre, Liliana; Hurst, Steven F.; Choi, Jong Soo; Shin, Jong Hee; Hinrikson, Hans Peter; Morrison, Christine J.

    2004-01-01

    We developed a PCR-based assay to differentiate medically important species of Aspergillus from one another and from other opportunistic molds and yeasts by employing universal, fungus-specific primers and DNA probes in an enzyme immunoassay format (PCR-EIA). Oligonucleotide probes, directed to the internal transcribed spacer 2 region of ribosomal DNA from Aspergillus flavus, Aspergillus fumigatus, Aspergillus nidulans, Aspergillus niger, Aspergillus terreus, Aspergillus ustus, and Aspergillus versicolor, differentiated 41 isolates (3 to 9 each of the respective species; P < 0.001) in a PCR-EIA detection matrix and gave no false-positive reactions with 33 species of Acremonium, Exophiala, Candida, Fusarium, Mucor, Paecilomyces, Penicillium, Rhizopus, Scedosporium, Sporothrix, or other aspergilli tested. A single DNA probe to detect all seven of the most medically important Aspergillus species (A. flavus, A. fumigatus, A. nidulans, A. niger, A. terreus, A. ustus, and A. versicolor) was also designed. Identification of Aspergillus species was accomplished within a single day by the PCR-EIA, and as little as 0.5 pg of fungal DNA could be detected by this system. In addition, fungal DNA extracted from tissues of experimentally infected rabbits was successfully amplified and identified using the PCR-EIA system. This method is simple, rapid, and sensitive for the identification of medically important Aspergillus species and for their differentiation from other opportunistic fungi. PMID:15297489

  3. The Aspergillus Genome Database: multispecies curation and incorporation of RNA-Seq data to improve structural gene annotations

    PubMed Central

    Cerqueira, Gustavo C.; Arnaud, Martha B.; Inglis, Diane O.; Skrzypek, Marek S.; Binkley, Gail; Simison, Matt; Miyasato, Stuart R.; Binkley, Jonathan; Orvis, Joshua; Shah, Prachi; Wymore, Farrell; Sherlock, Gavin; Wortman, Jennifer R.

    2014-01-01

    The Aspergillus Genome Database (AspGD; http://www.aspgd.org) is a freely available web-based resource that was designed for Aspergillus researchers and is also a valuable source of information for the entire fungal research community. In addition to being a repository and central point of access to genome, transcriptome and polymorphism data, AspGD hosts a comprehensive comparative genomics toolbox that facilitates the exploration of precomputed orthologs among the 20 currently available Aspergillus genomes. AspGD curators perform gene product annotation based on review of the literature for four key Aspergillus species: Aspergillus nidulans, Aspergillus oryzae, Aspergillus fumigatus and Aspergillus niger. We have iteratively improved the structural annotation of Aspergillus genomes through the analysis of publicly available transcription data, mostly expressed sequenced tags, as described in a previous NAR Database article (Arnaud et al. 2012). In this update, we report substantive structural annotation improvements for A. nidulans, A. oryzae and A. fumigatus genomes based on recently available RNA-Seq data. Over 26 000 loci were updated across these species; although those primarily comprise the addition and extension of untranslated regions (UTRs), the new analysis also enabled over 1000 modifications affecting the coding sequence of genes in each target genome. PMID:24194595

  4. Phosphate solubilizing ability of Emericella nidulans strain V1 isolated from vermicompost.

    PubMed

    Bhattacharya, Satya Sunder; Barman, Soma; Ghosh, Ranjan; Duary, Raj Kumar; Goswami, Linee; Mandal, Narayan C

    2013-10-01

    Phosphorus is one of the key factors that regulate soil fertility. Its deficiencies in soil are largely replenished by chemical fertilizers. The present study was aimed to isolate efficient phosphate solubilizing fungal strains from Eisenia fetida vermicompost. Out of total 30 fungal strains the most efficient phosphate solubilizing one was Emericella (Aspergillus) nidulans V1 (MTCC 11044), identified by custom sequencing of beta-tubulin gene and BLAST analysis. This strain solubilized 13 to 36% phosphate from four different rock phosphates. After three days of incubation of isolated culture with black Mussorie phosphate rock, the highest percentage of phosphate solubilization was 35.5 +/- 1.01 with a pH drop of 4.2 +/- 0.09. Kinetics of solubilization and acid production showed a linear relationship until day five of incubation. Interestingly, from zero to tenth day of incubation, solubility of soil phosphate increased gradually from 4.31 +/- 1.57 to 13.65 +/- 1.82 (mg kg(-1)) recording a maximum of 21.23 +/- 0.54 on day 45 in respect of the V1 isolate. Further, enhanced phosphorus uptake by Phaseolus plants with significant pod yield due to soil inoculation of Emericella nidulans V1 (MTCC 11044), demonstrated its prospect as an effective biofertilizer for plant growth.

  5. Localization of pyruvate carboxylase in organic acid-producing Aspergillus strains.

    PubMed Central

    Bercovitz, A; Peleg, Y; Battat, E; Rokem, J S; Goldberg, I

    1990-01-01

    The localization of pyruvate carboxylase (cytosolic or mitochondrial) was studied in nine different Aspergillus species (14 strains). In some species (A. aculeatus, A. flavus, A. foetidus, A. nidulans, A. ochraceus, and A. sojae), the pyruvate carboxylase activity could be detected only in the cytosolic fraction of the cells. Pyruvate carboxylase has been found only in the mitochondrial fraction of two strains of Aspergillus wentii. In Aspergillus oryzae and in five strains of Aspergillus niger, pyruvate carboxylase activity was detected both in the mitochondrial fraction and in the cytosol. There was no quantitative or qualitative correlation between the activities of pyruvate carboxylase in the mitochondrial and cytosolic fractions of the cells and the ability of the various Aspergillus strains to accumulate different organic acids. PMID:2383004

  6. In vitro reconstruction of the Aspergillus (= Emericella) nidulans genome

    PubMed Central

    Prade, Rolf A.; Griffith, James; Kochut, Krys; Arnold, Jonathan; Timberlake, William E.

    1997-01-01

    A physical map of the 31-megabase Aspergillus nidulans genome is reported, in which 94% of 5,134 cosmids are assigned to 49 contiguous segments. The physical map is the result of a two-way ordering process, in which clones and probes were ordered simultaneously on a binary DNA/DNA hybridization matrix. Compression by elimination of redundant clones resulted in a minimal map, which is a chromosome walk. Repetitive DNA is nonrandomly dispersed in the A. nidulans genome, reminiscent of heterochromatic banding patterns of higher eukaryotes. We hypothesize gene clusters may arise by horizontal transfer and spread by transposition to explain the nonrandom pattern of repeats along chromosomes. PMID:9405653

  7. Dirhamnolipids secreted from Pseudomonas aeruginosa modify anjpegungal susceptibility of Aspergillus fumigatus by inhibiting β1,3 glucan synthase activity.

    PubMed

    Briard, Benoit; Rasoldier, Vero; Bomme, Perrine; ElAouad, Noureddine; Guerreiro, Catherine; Chassagne, Pierre; Muszkieta, Laetitia; Latgé, Jean-Paul; Mulard, Laurence; Beauvais, Anne

    2017-03-24

    Pseudomonas aeruginosa and Aspergillus fumigatus are the two microorganisms responsible for most of the chronic infections in cystic fibrosis patients. P. aeruginosa is known to produce quorum-sensing controlled rhamnolipids during chronic infections. Here we show that the dirhamnolipids secreted from P. aeruginosa (i) induce A. fumigatus to produce an extracellular matrix, rich in galactosaminogalactan, 1,8-dihydroxynaphthalene (DHN)- and pyo-melanin, surrounding their hyphae, which facilitates P. aeruginosa binding and (ii) inhibit A. fumigatus growth by blocking β1,3 glucan synthase (GS) activity, thus altering the cell wall architecture. A. fumigatus in the presence of diRhls resulted in a growth phenotype similar to that upon its treatment with anjpegungal echinocandins, showing multibranched hyphae and thicker cell wall rich in chitin. The diRhl structure containing two rhamnose moieties attached to fatty acyl chain is essential for the interaction with β1,3 GS; however, the site of action of diRhls on GS is different from that of echinocandins, and showed synergistic anjpegungal effect with azoles.The ISME Journal advance online publication, 24 March 2017; doi:10.1038/ismej.2017.32.

  8. Photosynthetic Membrane System in Anacystis nidulans

    PubMed Central

    Allen, Mary Mennes

    1968-01-01

    Cultures of Anacystis nidulans were grown under conditions of varying light intensity and temperature. Changes in pigment content were compared with changes in the fine structure of these cells. Pigment concentration and lamellar content varied inversely with the light intensity in cells grown with 100 and 1,000 foot candles of fluorescent light. Estimations of the relative area and volume of lamellae in cells showed that the amount of double membrane was directly proportional to the chlorophyll content of whole cells. Continuity of double membranes with cytoplasmic membrane was observed. Images PMID:5732512

  9. In vitro susceptibilities of Aspergillus spp. causing otomycosis to amphotericin B, voriconazole and itraconazole.

    PubMed

    Kaya, Ayse Demet; Kiraz, Nuri

    2007-11-01

    Otomycosis is worldwide in distribution and most commonly caused by Aspergillus species. Amphotericin B, itraconazole and voriconazole are used for the treatment of aspergillosis, but recently an increase in resistance to these agents has been reported. We aimed at investigating the in vitro activities of amphotericin B, voriconazole and itraconazole against Aspergillus isolates causing otomycosis. Mycological analysis of samples from the ear canals of patients was performed by culturing onto Sabouraud Dextrose Agar and by evaluating microscopically. Aspergillus species were identified with colony morphology and microscopic appearance, and tested for susceptibilities to amphotericin B, itraconazole and voriconazole by the CLSI reference broth microdilution method (M38-A document). A total of 120 isolates from 120 patients, comprising 57 Aspergillus niger, 42 Aspergillus fumigatus, nine Aspergillus flavus, six Aspergillus nidulans and six Aspergillus terreus strains were tested. No resistance was determined against amphotericin B and voriconazole, while six A. fumigatus and three A. niger isolates were resistant to itraconazole. In vitro data obtained in this study showed the resistance to itraconazole, while all of the isolates were susceptible to voriconazole and amphotericin B. Voriconazole seemed to be an alternative in the treatment of infections related to Aspergillus spp. but further studies are needed to learn more about the antifungal resistance of different species of Aspergillus to different agents.

  10. rtfA, a putative RNA-Pol II transcription elongation factor gene, is necessary for normal morphological and chemical development in Aspergillus flavus

    USDA-ARS?s Scientific Manuscript database

    The filamentous fungus Aspergillus flavus is an agriculturally important opportunistic plant pathogen that produces potent carcinogenic compounds called aflatoxins. We identified the A. flavus rtfA gene, the ortholog of rtf1 in S. cerevisiae and rtfA in A. nidulans. Interestingly, rtfA has multiple ...

  11. Epigenetic modifier induced enhancement of fumiquinazoline C production in Aspergillus fumigatus (GA-L7): an endophytic fungus from Grewia asiatica L.

    PubMed

    Magotra, Ankita; Kumar, Manjeet; Kushwaha, Manoj; Awasthi, Praveen; Raina, Chand; Gupta, Ajai Prakash; Shah, Bhahwal A; Gandhi, Sumit G; Chaubey, Asha

    2017-12-01

    Present study relates to the effect of valproic acid, an epigenetic modifier on the metabolic profile of Aspergillus fumigatus (GA-L7), an endophytic fungus isolated from Grewia asiatica L. Seven secondary metabolites were isolated from A. fumigatus (GA-L7) which were identified as: pseurotin A, pseurotin D, pseurotin F2, fumagillin, tryprostatin C, gliotoxin and bis(methylthio)gliotoxin. Addition of valproic acid in the growth medium resulted in the alteration of secondary metabolic profile with an enhanced production of a metabolite, fumiquinazoline C by tenfolds. In order to assess the effect of valproic acid on the biosynthetic pathway of fumiquinazoline C, we studied the expression of the genes involved in its biosynthesis, both in the valproic acid treated and untreated control culture. The results revealed that all the genes i.e. Afua_6g 12040, Afua_6g 12050, Afua_6g 12060, Afua_6g 12070 and Afua_6g 12080, involved in the biosynthesis of fumiquinazoline C were overexpressed significantly by 7.5, 8.8, 3.4, 5.6 and 2.1 folds respectively, resulting in overall enhancement of fumiquinazoline C production by about tenfolds.

  12. Development of a Rapid Immunochromatographic Lateral Flow Device Capable of Differentiating Phytase Expressed from Recombinant Aspergillus niger phyA2 and Genetically Modified Corn.

    PubMed

    Zhou, Xiaojin; Hui, Elizabeth; Yu, Xiao-Lin; Lin, Zhen; Pu, Ling-Kui; Tu, Zhiguan; Zhang, Jun; Liu, Qi; Zheng, Jian; Zhang, Juan

    2015-05-06

    Phytase is a phosphohydrolase considered highly specific for the degradation of phytate to release bound phosphorus for animal consumption and aid in the reduction of environmental nutrient loading. New sources of phytase have been sought that are economically and efficiently productive including the construction of genetically modified (GM) phytase products designed to bypass the costs associated with feed processing. Four monoclonal antibodies (EH10a, FA7, AF9a, and CC1) raised against recombinant Aspergillus niger phyA2 were used to develop a highly specific and sensitive immunochromatographic lateral flow device for rapid detection of transgenic phytase, such as in GM corn. Antibodies sequentially paired and tested along lateral flow strips showed that the EH10a-FA7 antibody pair was able to detect the recombinant yeast-phytase at 5 ng/mL, whereas the AF9a-CC1 antibody pair to GM phytase corn was able to detect at 2 ng/mL. Concurrent to this development, evidence was revealed which suggests that antibody binding sites may be glycosylated.

  13. Aspergillus flavus

    USDA-ARS?s Scientific Manuscript database

    Contamination of certain crops with aflatoxins is a serious concern for agriculture and animal and human health. The predominant species associated with this crop contamination is Aspergillus flavus. The ability of A. flavus to produce other toxins could also be an additional concern. Phylogenetic e...

  14. Aspergillus contaminans

    USDA-ARS?s Scientific Manuscript database

    Aspergillus contaminans is described as a new species from the fingernail of a patient with an infected nail. Phylogenetic analysis of four loci (ITS, calmodulin, beta tubulin and RNA polymerase beta, second largest subunit) showed that this species is most closely related to A. carlsbadensis from A...

  15. Molecular detection and identification of Aspergillus spp. from clinical samples using real-time PCR.

    PubMed

    Ramírez, Mercedes; Castro, Carmen; Palomares, José Carlos; Torres, M José; Aller, Ana Isabel; Ruiz, Maite; Aznar, Javier; Martín-Mazuelos, Estrella

    2009-03-01

    The definite and rapid diagnosis of invasive aspergillosis is necessary because of the high mortality caused. The objective of this study was to evaluate a real-time PCR assay to detect Aspergillus spp. in clinical samples, based on the Light Cycler technology. Specificity was assessed by using DNA extracted from pathogenic and non-pathogenic bacteria/fungi from Spanish Collection including: two Aspergillus flavus, four Aspergillus fumigatus, two Aspergillus nidulans, two Aspergillus niger and two Aspergillus terreus isolates. The analytical sensitivity was evaluated with different inocula (10(1)-10(5) conidia ml(-1)), and serially diluted DNA of A. fumigatus. To assess clinical applicability, samples from patients at risk were analysed. Species identification was determined by analysing the melting curves. Reactions using genomic DNA from other species of different genera than Aspergillus were negative (specificity: 100%). Analytical sensitivity was 60 fg using DNA and 5-20 conidia using conidial suspensions. The linear range was from 60 to 6 x 10(7) fg. The Tm ranged from 67.34 to 70.7 degrees C for the different Aspergillus spp. studied. Nine hundred and forty-eight consecutive blood samples from 127 patients were processed. In total, 10 (1%) of 948 samples from blood samples were PCR-positive. The real-time PCR assay provides a high sensitivity and specificity for detection of fungal DNA and rapidly identifies most of clinically relevant Aspergillus species.

  16. A Genomics Based Discovery of Secondary Metabolite Biosynthetic Gene Clusters in Aspergillus ustus

    PubMed Central

    Pi, Borui; Yu, Dongliang; Dai, Fangwei; Song, Xiaoming; Zhu, Congyi; Li, Hongye; Yu, Yunsong

    2015-01-01

    Secondary metabolites (SMs) produced by Aspergillus have been extensively studied for their crucial roles in human health, medicine and industrial production. However, the resulting information is almost exclusively derived from a few model organisms, including A. nidulans and A. fumigatus, but little is known about rare pathogens. In this study, we performed a genomics based discovery of SM biosynthetic gene clusters in Aspergillus ustus, a rare human pathogen. A total of 52 gene clusters were identified in the draft genome of A. ustus 3.3904, such as the sterigmatocystin biosynthesis pathway that was commonly found in Aspergillus species. In addition, several SM biosynthetic gene clusters were firstly identified in Aspergillus that were possibly acquired by horizontal gene transfer, including the vrt cluster that is responsible for viridicatumtoxin production. Comparative genomics revealed that A. ustus shared the largest number of SM biosynthetic gene clusters with A. nidulans, but much fewer with other Aspergilli like A. niger and A. oryzae. These findings would help to understand the diversity and evolution of SM biosynthesis pathways in genus Aspergillus, and we hope they will also promote the development of fungal identification methodology in clinic. PMID:25706180

  17. The Aspergillus Genome Database (AspGD): recent developments in comprehensive multispecies curation, comparative genomics and community resources.

    PubMed

    Arnaud, Martha B; Cerqueira, Gustavo C; Inglis, Diane O; Skrzypek, Marek S; Binkley, Jonathan; Chibucos, Marcus C; Crabtree, Jonathan; Howarth, Clinton; Orvis, Joshua; Shah, Prachi; Wymore, Farrell; Binkley, Gail; Miyasato, Stuart R; Simison, Matt; Sherlock, Gavin; Wortman, Jennifer R

    2012-01-01

    The Aspergillus Genome Database (AspGD; http://www.aspgd.org) is a freely available, web-based resource for researchers studying fungi of the genus Aspergillus, which includes organisms of clinical, agricultural and industrial importance. AspGD curators have now completed comprehensive review of the entire published literature about Aspergillus nidulans and Aspergillus fumigatus, and this annotation is provided with streamlined, ortholog-based navigation of the multispecies information. AspGD facilitates comparative genomics by providing a full-featured genomics viewer, as well as matched and standardized sets of genomic information for the sequenced aspergilli. AspGD also provides resources to foster interaction and dissemination of community information and resources. We welcome and encourage feedback at aspergillus-curator@lists.stanford.edu.

  18. Conidial Hydrophobins of Aspergillus fumigatus

    PubMed Central

    Paris, Sophie; Debeaupuis, Jean-Paul; Crameri, Reto; Carey, Marilyn; Charlès, Franck; Prévost, Marie Christine; Schmitt, Christine; Philippe, Bruno; Latgé, Jean Paul

    2003-01-01

    The surface of Aspergillus fumigatus conidia, the first structure recognized by the host immune system, is covered by rodlets. We report that this outer cell wall layer contains two hydrophobins, RodAp and RodBp, which are found as highly insoluble complexes. The RODA gene was previously characterized, and ΔrodA conidia do not display a rodlet layer (N. Thau, M. Monod, B. Crestani, C. Rolland, G. Tronchin, J. P. Latgé, and S. Paris, Infect. Immun. 62:4380-4388, 1994). The RODB gene was cloned and disrupted. RodBp was highly homologous to RodAp and different from DewAp of A. nidulans. ΔrodB conidia had a rodlet layer similar to that of the wild-type conidia. Therefore, unlike RodAp, RodBp is not required for rodlet formation. The surface of ΔrodA conidia is granular; in contrast, an amorphous layer is present at the surface of the conidia of the ΔrodA ΔrodB double mutant. These data show that RodBp plays a role in the structure of the conidial cell wall. Moreover, rodletless mutants are more sensitive to killing by alveolar macrophages, suggesting that RodAp or the rodlet structure is involved in the resistance to host cells. PMID:12620846

  19. Phospholipid flippases DnfA and DnfB exhibit differential dynamics within the A. nidulans Spitzenkörper.

    PubMed

    Schultzhaus, Zachary; Zheng, Wenhui; Wang, Zonghua; Mouriño-Pérez, Rosa; Shaw, Brian

    2017-02-01

    The Spitzenkörper is a structure at the apex of growing cells in many filamentous fungi. Ultrastructural studies indicate that the Spitzenkörper is an organized mass of secretory vesicles, with different types of vesicles present in outer and inner layers. Here, we used live-cell imaging to demonstrate that the phospholipid flippases DnfA and DnfB, which preferentially localize to the outer and inner layers, respectively, exhibit different dynamics in the Spitzenkörper of Aspergillus nidulans. Additionally, deletion of dnfA partially destabilized the Spitzenkörper, while the depletion of cdc50, an essential β-subunit of most flippases, had dramatic effects on hyphal tip organization and morphology. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Secondary Metabolites from the Fungus Emericella nidulans

    PubMed Central

    Tarawneh, Amer H.; León, Francisco; Radwan, Mohamed M.; Rosa, Luiz H.

    2014-01-01

    A new polyketide derivative koninginin H (1), has been isolated from the fungus Emericella nidulans, together with koninginin E (2), koninginin A (3), trichodermatide B (4), citrantifidiol (5), (4S,5R)-4-hydroxy-5-methylfuran-2-one (6), the glycerol derivatives gingerglycolipid B (7), (2S)-bis[9Z,12Z]-1-O, 2-O-dilinoleoyl-3-O-[α-d-galactopyranosyl-(1″→6′)β-d-galactopyranosyl]glycerol (8), (2S)-bis[9Z,12Z]-1-O, 2-O-dilinoleoyl-3-O-β-d-galactopyranosylglycerol (9), the cerebroside flavuside B (10), and the known sterols β-sitosterol glucoside and ergosta-5,7,22-trien-3-ol. Their structures were established by extensive NMR studies (1H NMR, 13C NMR, DEPT, 1H–1H COSY, HSQC, HMBC) and mass spectrometry. The antibacterial, antimalarial, antifungal and antileishmanial activities of compounds 1-10 were examined and the results indicated that compound 4 showed good antifungal activity against Cryptococcus neoformans with an IC50 value of 4.9 μg /mL. PMID:24273867

  1. Effect of Media Modified To Mimic Cystic Fibrosis Sputum on the Susceptibility of Aspergillus fumigatus, and the Frequency of Resistance at One Center

    PubMed Central

    Moss, Richard B.; Hernandez, Cathy; Clemons, Karl V.; Martinez, Marife

    2016-01-01

    Studies of cystic fibrosis (CF) patient exacerbations attributed to Pseudomonas aeruginosa infection have indicated a lack of correlation of outcome with in vitro susceptibility results. One explanation is that the media used for testing do not mimic the airway milieu, resulting in incorrect conclusions. Therefore, media have been devised to mimic CF sputum. Aspergillus fumigatus is the leading fungal pathogen in CF, and susceptibility testing is also used to decide therapeutic choices. We assessed whether media designed to mimic CF sputa would give different fungal susceptibility results than those of classical methods, assaying voriconazole, the most utilized anti-Aspergillus drug in this setting, and 30 CF Aspergillus isolates. The frequency of marked resistance (defined as an MIC of >4 μg/ml) in our CF unit by classical methods is 7%. Studies performed with classical methods and with digested sputum medium, synthetic sputum medium, and artificial sputum medium revealed prominent differences in Aspergillus susceptibility results, as well as growth rate, with each medium. Clinical correlative studies are required to determine which results are most useful in predicting outcome. Comparison of MICs with non-CF isolates also indicated the CF isolates were generally more resistant. PMID:26810647

  2. Ethylene modulates development and toxin biosynthesis in aspergillus possibly via an ethylene sensor-mediated signaling pathway.

    PubMed

    Roze, L V; Calvo, A M; Gunterus, A; Beaudry, R; Kall, M; Linz, J E

    2004-03-01

    Ethylene, a biologically active natural compound, inhibited aflatoxin accumulation by Aspergillus parasiticus on a solid growth medium in a dose-dependent manner at concentrations of 0.1 to 150 ppm. The activity of the nor-1 promoter (an early aflatoxin gene) was reduced to nondetectable levels by similar quantities of ethylene, suggesting that the inhibitory effect on toxin synthesis occurred, at least in part, at the level of transcription. The inhibitory effect of ethylene on aflatoxin accumulation was also observed when A. parasiticus was grown on raw peanuts. Under similar growth conditions and doses, ethylene strongly inhibited development of asci and ascospores in Aspergillus nidulans, with no detectable effect on Hülle cell formation, conidiation, or sterigmatocystin accumulation. During early growth, A. parasiticus and A. nidulans produced ethylene with approximately twofold higher quantities measured in continuous light than in the dark. 1-Methylcyclopropene (an inhibitor of ethylene receptors in plants), light, CO2, temperature, and growth medium composition altered the effect of ethylene on A. nidulans and A. parasiticus. These observations are consistent with the existence of an ethylene sensor molecule that mediates the function of an ethylene-responsive signaling pathway(s) in Aspergillus.

  3. Discovery of a novel superfamily of type III polyketide synthases in Aspergillus oryzae.

    PubMed

    Seshime, Yasuyo; Juvvadi, Praveen Rao; Fujii, Isao; Kitamoto, Katsuhiko

    2005-05-27

    Identification of genes encoding type III polyketide synthase (PKS) superfamily members in the industrially useful filamentous fungus, Aspergillus oryzae, revealed that their distribution is not specific to plants or bacteria. Among other Aspergilli (Aspergillus nidulans and Aspergillus fumigatus), A. oryzae was unique in possessing four chalcone synthase (CHS)-like genes (csyA, csyB, csyC, and csyD). Expression of csyA, csyB, and csyD genes was confirmed by RT-PCR. Comparative genome analyses revealed single putative type III PKS in Neurospora crassa and Fusarium graminearum, two each in Magnaporthe grisea and Podospora anserina, and three in Phenarocheate chrysosporium, with a phylogenic distinction from bacteria and plants. Conservation of catalytic residues in the CHSs across species implicated enzymatically active nature of these newly discovered homologs.

  4. The Putative Guanine Nucleotide Exchange Factor RicA Mediates Upstream Signaling for Growth and Development in Aspergillus

    PubMed Central

    Kwon, Nak-Jung; Park, Hee-Soo; Jung, Seunho; Kim, Sun Chang

    2012-01-01

    Heterotrimeric G proteins (G proteins) govern growth, development, and secondary metabolism in various fungi. Here, we characterized ricA, which encodes a putative GDP/GTP exchange factor for G proteins in the model fungus Aspergillus nidulans and the opportunistic human pathogen Aspergillus fumigatus. In both species, ricA mRNA accumulates during vegetative growth and early developmental phases, but it is not present in spores. The deletion of ricA results in severely impaired colony growth and the total (for A. nidulans) or near (for A. fumigatus) absence of asexual sporulation (conidiation). The overexpression (OE) of the A. fumigatus ricA gene (AfricA) restores growth and conidiation in the ΔAnricA mutant to some extent, indicating partial conservation of RicA function in Aspergillus. A series of double mutant analyses revealed that the removal of RgsA (an RGS protein of the GanB Gα subunit), but not sfgA, flbA, rgsB, or rgsC, restored vegetative growth and conidiation in ΔAnricA. Furthermore, we found that RicA can physically interact with GanB in yeast and in vitro. Moreover, the presence of two copies or OE of pkaA suppresses the profound defects caused by ΔAnricA, indicating that RicA-mediated growth and developmental signaling is primarily through GanB and PkaA in A. nidulans. Despite the lack of conidiation, brlA and vosA mRNAs accumulated to normal levels in the ΔricA mutant. In addition, mutants overexpressing fluG or brlA (OEfluG or OEbrlA) failed to restore development in the ΔAnricA mutant. These findings suggest that the commencement of asexual development requires unknown RicA-mediated signaling input in A. nidulans. PMID:23002107

  5. The putative guanine nucleotide exchange factor RicA mediates upstream signaling for growth and development in Aspergillus.

    PubMed

    Kwon, Nak-Jung; Park, Hee-Soo; Jung, Seunho; Kim, Sun Chang; Yu, Jae-Hyuk

    2012-11-01

    Heterotrimeric G proteins (G proteins) govern growth, development, and secondary metabolism in various fungi. Here, we characterized ricA, which encodes a putative GDP/GTP exchange factor for G proteins in the model fungus Aspergillus nidulans and the opportunistic human pathogen Aspergillus fumigatus. In both species, ricA mRNA accumulates during vegetative growth and early developmental phases, but it is not present in spores. The deletion of ricA results in severely impaired colony growth and the total (for A. nidulans) or near (for A. fumigatus) absence of asexual sporulation (conidiation). The overexpression (OE) of the A. fumigatus ricA gene (AfricA) restores growth and conidiation in the ΔAnricA mutant to some extent, indicating partial conservation of RicA function in Aspergillus. A series of double mutant analyses revealed that the removal of RgsA (an RGS protein of the GanB Gα subunit), but not sfgA, flbA, rgsB, or rgsC, restored vegetative growth and conidiation in ΔAnricA. Furthermore, we found that RicA can physically interact with GanB in yeast and in vitro. Moreover, the presence of two copies or OE of pkaA suppresses the profound defects caused by ΔAnricA, indicating that RicA-mediated growth and developmental signaling is primarily through GanB and PkaA in A. nidulans. Despite the lack of conidiation, brlA and vosA mRNAs accumulated to normal levels in the ΔricA mutant. In addition, mutants overexpressing fluG or brlA (OEfluG or OEbrlA) failed to restore development in the ΔAnricA mutant. These findings suggest that the commencement of asexual development requires unknown RicA-mediated signaling input in A. nidulans.

  6. HGT-Finder: A New Tool for Horizontal Gene Transfer Finding and Application to Aspergillus genomes.

    PubMed

    Nguyen, Marcus; Ekstrom, Alex; Li, Xueqiong; Yin, Yanbin

    2015-10-09

    Horizontal gene transfer (HGT) is a fast-track mechanism that allows genetically unrelated organisms to exchange genes for rapid environmental adaptation. We developed a new phyletic distribution-based software, HGT-Finder, which implements a novel bioinformatics algorithm to calculate a horizontal transfer index and a probability value for each query gene. Applying this new tool to the Aspergillus fumigatus, Aspergillus flavus, and Aspergillus nidulans genomes, we found 273, 542, and 715 transferred genes (HTGs), respectively. HTGs have shorter length, higher guanine-cytosine (GC) content, and relaxed selection pressure. Metabolic process and secondary metabolism functions are significantly enriched in HTGs. Gene clustering analysis showed that 61%, 41% and 74% of HTGs in the three genomes form physically linked gene clusters (HTGCs). Overlapping manually curated, secondary metabolite gene clusters (SMGCs) with HTGCs found that 9 of the 33 A. fumigatus SMGCs and 31 of the 65 A. nidulans SMGCs share genes with HTGCs, and that HTGs are significantly enriched in SMGCs. Our genome-wide analysis thus presented very strong evidence to support the hypothesis that HGT has played a very critical role in the evolution of SMGCs. The program is freely available at http://cys.bios.niu.edu/HGTFinder/ HGTFinder.tar.gz.

  7. Photoinhibition and reactivation of photosynthesis in the cyanobacterium Anacystis nidulans

    SciTech Connect

    Samuelsson, G.; Loenneborg, A.; Rosenqvist, E.; Gustafsson, P.; Oequist, G.

    1985-12-01

    The susceptibility of photosynthesis to photoinhibition and its recovery were studied on cultures of the cyanobacterium Anacystis nidulans. Oxygen evolution and low temperature fluorescence kinetics were measured. Upon exposure to high light A. nidulans showed a rapid decrease in oxygen evolution followed by a quasi steady state rate of photosynthesis. This quasi steady state rate decreased with increasing photon flux density of the photoinhibitory light. Reactivation of photosynthesis in dim light after the photoinhibitory treatment was rapid: 85 to 95% recovery occurred within 2 hours. In the presence of the translation inhibitor, streptomycin (250 micrograms per milliliter), no reactivation occurred. We also found that the damage increased dramatically if the high light treatment was done with streptomycin added. A transcription inhibitor, rifampicin, did not inhibit the reactivation process. Based on these data we conclude that the photoinhibitory damage observed is the net result of a balance between the photoinhibitory process and the operation of the repairing mechanism(s).

  8. Picosecond energy transfer in Porphyridium cruentum and Anacystis nidulans.

    PubMed Central

    Brody, S S; Treadwell, C; Barber, J

    1981-01-01

    Picosecond energy transfer is measured in Anacystis nidulans and Porphyridium cruentum. Fluorescence is sensitized by a 6-ps laser flash, at 530 nm. The time dependence of fluorescence is measured with reference to the laser pulse. Fluorescence is recorded from phycoerythrin (576 nm), R-phycocyanin (640 nm), allophycocyanin (666 nm), Photosystem II chlorophyll (690 nm) and long wave length chlorophyll (715 nm). Energy transfer measurements are made at 37 degrees C, 23 degrees C, and 0 degrees C, and 77 degrees K. It is shown that the rate of energy transfer can be varied with temperature. In both A. nidulans and P. cruentum there is a sequential transfer of excitation energy from phycoerythrin to phycocyanin to allophycocyan to Photosystem II chlorophyll fluorescence. The long wavelength chlorophyll fluorescence at 715 nm, however, does not always follow a sequential transfer of excitation energy. Depending on the temperature, fluorescence at 715 nm can precede fluorescence from phycocyanin. PMID:6788106

  9. New applications for known drugs: Human glycogen synthase kinase 3 inhibitors as modulators of Aspergillus fumigatus growth.

    PubMed

    Sebastián, Víctor; Manoli, Maria-Tsampika; Pérez, Daniel I; Gil, Carmen; Mellado, Emilia; Martínez, Ana; Espeso, Eduardo A; Campillo, Nuria E

    2016-06-30

    Invasive aspergillosis (IA) is one of the most severe forms of fungi infection. IA disease is mainly due to Aspergillus fumigatus, an air-borne opportunistic pathogen. Mortality rate caused by IA is still very high (50-95%), because of difficulty in early diagnostics and reduced antifungal treatment options, thus new and efficient drugs are necessary. The aim of this work is, using Aspergillus nidulans as non-pathogen model, to develop efficient drugs to treat IA. The recent discovered role of glycogen synthase kinase-3 homologue, GskA, in A. fumigatus human infection and our previous experience on human GSK-3 inhibitors focus our attention on this kinase as a target for the development of antifungal drugs. With the aim to identify effective inhibitors of colonial growth of A. fumigatus we use A. nidulans as an accurate model for in vivo and in silico studies. Several well-known human GSK-3β inhibitors were tested for inhibition of A. nidulans colony growth. Computational tools as docking studies and binding site prediction was used to explain the different biological profile of the tested inhibitors. Three of the five tested hGSK3β inhibitors are able to reduce completely the colonial growth by covalent bind to the enzyme. Therefore these compounds may be useful in different applications to eradicate IA.

  10. Isolation and identification of Aspergillus spp. from brown kiwi (Apteryx mantelli) nocturnal houses in New Zealand.

    PubMed

    Glare, Travis R; Gartrell, Brett D; Brookes, Jenny J; Perrott, John K

    2014-03-01

    Aspergillosis, a disease caused by infection with Aspergillus spp., is a common cause of death in birds globally and is an irregular cause of mortality of captive kiwi (Apteryx spp.). Aspergillus spp. are often present in rotting plant material, including the litter and nesting material used for kiwi in captivity. The aim of this study was to survey nocturnal kiwi houses in New Zealand to assess the levels of Aspergillus currently present in leaf litter. Samples were received from 11 nocturnal kiwi houses from throughout New Zealand, with one site supplying multiple samples over time. Aspergillus was isolated and quantified by colony counts from litter samples using selective media and incubation temperatures. Isolates were identified to the species level by amplification and sequencing of ITS regions of the ribosomal. Aspergillus spp. were recovered from almost every sample; however, the levels in most kiwi houses were below 1000 colony-forming units (CFU)/g of wet material. The predominant species was Aspergillus fumigatus, with rare occurrences of Aspergillus niger, Aspergillus nidulans, and Aspergillus parasiticus. Only one site had no detectable Aspergillus. The limit of detection was around 50 CFU/g wet material. One site was repeatedly sampled as it had a high loading of A. fumigatus at the start of the survey and had two recent clinical cases of aspergillosis diagnosed in resident kiwi. Environmental loading at this site with Aspergillus spp. reduced but was not eliminated despite changes of the litter. The key finding of our study is that the background levels of Aspergillus spores in kiwi nocturnal houses in New Zealand are low, but occasional exceptions occur and are associated with the onset of aspergillosis in otherwise healthy birds. The predominant Aspergillus species present in the leaf litter was A. fumigatus, but other species were also present. Further research is needed to confirm the optimal management of leaf litter to minimize Aspergillus

  11. Role of nitric oxide and flavohemoglobin homolog genes in Aspergillus nidulans sexual development and mycotoxin production

    USDA-ARS?s Scientific Manuscript database

    Flavohemoglobins are widely distributed proteins in both prokaryotic and eukaryotic organisms, conferring resistance against nitrosative stress. In the present study we investigated the role of two flavohemoglobin homologous genes, fhbA and fhbB, in morphogenesis and in the production of the mycotox...

  12. Basic-zipper-type transcription factor FlbB controls asexual development in Aspergillus nidulans.

    PubMed

    Etxebeste, Oier; Ni, Min; Garzia, Aitor; Kwon, Nak-Jung; Fischer, Reinhard; Yu, Jae-Hyuk; Espeso, Eduardo A; Ugalde, Unai

    2008-01-01

    The fungal colony is a complex multicellular unit consisting of various cell types and functions. Asexual spore formation (conidiation) is integrated through sensory and regulatory elements into the general morphogenetic plan, in which the activation of the transcription factor BrlA is the first determining step. A number of early regulatory elements acting upstream of BrlA (fluG and flbA-E) have been identified, but their functional relations remain to be further investigated. In this report we describe FlbB as a putative basic-zipper-type transcription factor restricted to filamentous fungi. FlbB accumulates at the hyphal apex during early vegetative growth but is later found in apical nuclei, suggesting that an activating modification triggers nuclear import. Moreover, proper temporal and quantitative expression of FlbB is a prerequisite for brlA transcription, and misscheduled overexpression inhibits conidiation. We also present evidence that FlbB activation results in the production of a second diffusible signal, acting downstream from the FluG factor, to induce conidiation.

  13. Aspergillus spinal epidural abscess

    SciTech Connect

    Byrd, B.F. III; Weiner, M.H.; McGee, Z.A.

    1982-12-17

    A spinal epidural abscess developed in a renal transplant recipient; results of a serum radioimmunoassay for Aspergillus antigen were positive. Laminectomy disclosed an abscess of the L4-5 interspace and L-5 vertebral body that contained hyphal forms and from which Aspergillus species was cultured. Serum Aspergillus antigen radioimmunoassay may be a valuable, specific early diagnostic test when systemic aspergillosis is a consideration in an immunosuppressed host.

  14. Aspergillus Collagen-Like Genes (acl): Identification, Sequence Polymorphism, and Assessment for PCR-Based Pathogen Detection

    PubMed Central

    Tuntevski, Kiril; Durney, Brandon C.; Snyder, Anna K.; LaSala, P. Rocco; Nayak, Ajay P.; Green, Brett J.; Beezhold, Donald H.; Rio, Rita V. M.; Holland, Lisa A.

    2013-01-01

    The genus Aspergillus is a burden to public health due to its ubiquitous presence in the environment, its production of allergens, and wide demographic susceptibility among cystic fibrosis, asthmatic, and immunosuppressed patients. Current methods of detection of Aspergillus colonization and infection rely on lengthy morphological characterization or nonstandardized serological assays that are restricted to identifying a fungal etiology. Collagen-like genes have been shown to exhibit species-specific conservation across the noncollagenous regions as well as strain-specific polymorphism in the collagen-like regions. Here we assess the conserved region of the Aspergillus collagen-like (acl) genes and explore the application of PCR amplicon size-based discrimination among the five most common etiologic species of the Aspergillus genus, including Aspergillus fumigatus, A. flavus, A. nidulans, A. niger, and A. terreus. Genetic polymorphism and phylogenetic analysis of the aclF1 gene were additionally examined among the available strains. Furthermore, the applicability of the PCR-based assay to identification of these five species in cultures derived from sputum and bronchoalveolar fluid from 19 clinical samples was explored. Application of capillary electrophoresis on nanogels was additionally demonstrated to improve the discrimination between Aspergillus species. Overall, this study demonstrated that Aspergillus acl genes could be used as PCR targets to discriminate between clinically relevant Aspergillus species. Future studies aim to utilize the detection of Aspergillus acl genes in PCR and microfluidic applications to determine the sensitivity and specificity for the identification of Aspergillus colonization and invasive aspergillosis in immunocompromised subjects. PMID:24123732

  15. Proteome analysis of Aspergillus niger: Lactate added in starch-containing medium can increase production of the mycotoxin fumonisin B2 by modifying acetyl-CoA metabolism

    PubMed Central

    2009-01-01

    Background Aspergillus niger is a filamentous fungus found in the environment, on foods and feeds and is used as host for production of organic acids, enzymes and proteins. The mycotoxin fumonisin B2 was recently found to be produced by A. niger and hence very little is known about production and regulation of this metabolite. Proteome analysis was used with the purpose to reveal how fumonisin B2 production by A. niger is influenced by starch and lactate in the medium. Results Fumonisin B2 production by A. niger was significantly increased when lactate and starch were combined in the medium. Production of a few other A. niger secondary metabolites was affected similarly by lactate and starch (fumonisin B4, orlandin, desmethylkotanin and pyranonigrin A), while production of others was not (ochratoxin A, ochratoxin alpha, malformin A, malformin C, kotanin, aurasperone B and tensidol B). The proteome of A. niger was clearly different during growth on media containing 3% starch, 3% starch + 3% lactate or 3% lactate. The identity of 59 spots was obtained, mainly those showing higher or lower expression levels on medium with starch and lactate. Many of them were enzymes in primary metabolism and other processes that affect the intracellular level of acetyl-CoA or NADPH. This included enzymes in the pentose phosphate pathway, pyruvate metabolism, the tricarboxylic acid cycle, ammonium assimilation, fatty acid biosynthesis and oxidative stress protection. Conclusions Lactate added in a medium containing nitrate and starch can increase fumonisin B2 production by A. niger as well as production of some other secondary metabolites. Changes in the balance of intracellular metabolites towards a higher level of carbon passing through acetyl-CoA and a high capacity to regenerate NADPH during growth on medium with starch and lactate were found to be the likely cause of this effect. The results lead to the hypothesis that fumonisin production by A. niger is regulated by acetyl

  16. Aspergillus Oxylipin Signaling and Quorum Sensing Pathways Depend on G Protein-Coupled Receptors

    PubMed Central

    Affeldt, Katharyn J.; Brodhagen, Marion; Keller, Nancy P.

    2012-01-01

    Oxylipins regulate Aspergillus development and mycotoxin production and are also involved in Aspergillus quorum sensing mechanisms. Despite extensive knowledge of how these oxylipins are synthesized and what processes they regulate, nothing is known about how these signals are detected and transmitted by the fungus. G protein-coupled receptors (GPCR) have been speculated to be involved as they are known oxylipin receptors in mammals, and many putative GPCRs have been identified in the Aspergilli. Here, we present evidence that oxylipins stimulate a burst in cAMP in A. nidulans, and that loss of an A. nidulans GPCR, gprD, prevents this cAMP accumulation. A. flavus undergoes an oxylipin-mediated developmental shift when grown at different densities, and this regulates spore, sclerotial and aflatoxin production. A. flavus encodes two putative GprD homologs, GprC and GprD, and we demonstrate here that they are required to transition to a high-density development state, as well as to respond to spent medium of a high-density culture. The finding of GPCRs that regulate production of survival structures (sclerotia), inoculum (spores) and aflatoxin holds promise for future development of anti-fungal therapeutics. PMID:23105976

  17. Germination of Aspergillus niger conidia is triggered by nitrogen compounds related to L-amino acids.

    PubMed

    Hayer, Kimran; Stratford, Malcolm; Archer, David B

    2014-10-01

    Conidial germination is fundamentally important to the growth and dissemination of most fungi. It has been previously shown (K. Hayer, M. Stratford, and D. B. Archer, Appl. Environ. Microbiol. 79:6924-6931, 2013, http://dx.doi.org/10.1128/AEM.02061-13), using sugar analogs, that germination is a 2-stage process involving triggering of germination and then nutrient uptake for hyphal outgrowth. In the present study, we tested this 2-stage germination process using a series of nitrogen-containing compounds for the ability to trigger the breaking of dormancy of Aspergillus niger conidia and then to support the formation of hyphae by acting as nitrogen sources. Triggering and germination were also compared between A. niger and Aspergillus nidulans using 2-deoxy-D-glucose (trigger), D-galactose (nontrigger in A. niger but trigger in A. nidulans), and an N source (required in A. niger but not in A. nidulans). Although most of the nitrogen compounds studied served as nitrogen sources for growth, only some nitrogen compounds could trigger germination of A. niger conidia, and all were related to L-amino acids. Using L-amino acid analogs without either the amine or the carboxylic acid group revealed that both the amine and carboxylic acid groups were essential for an L-amino acid to serve as a trigger molecule. Generally, conidia were able to sense and recognize nitrogen compounds that fitted into a specific size range. There was no evidence of uptake of either triggering or nontriggering compounds over the first 90 min of A. niger conidial germination, suggesting that the germination trigger sensors are not located within the spore.

  18. Determination of Isavuconazole Susceptibility of Aspergillus and Candida Species by the EUCAST Method

    PubMed Central

    Howard, Susan J.; Lass-Flörl, Cornelia; Cuenca-Estrella, Manuel; Gomez-Lopez, Alicia

    2013-01-01

    Isavuconazole is a novel expanded-spectrum triazole, which has recently been approved by the FDA as an orphan drug to treat invasive aspergillosis and is currently being studied in phase III clinical trials for invasive candidiasis. The susceptibility of relatively few clinical isolates has been reported. In this study, the isavuconazole susceptibilities of 1,237 Aspergillus and 2,010 Candida geographically diverse clinical isolates were determined by EUCAST methodology at four European mycology laboratories, producing the largest multicenter data set thus far for this compound. In addition, a blinded collection of 30 cyp51A mutant Aspergillus fumigatus clinical isolates and 10 wild-type isolates was tested. From these two data sets, the following preliminary epidemiological cutoff (ECOFF) values were suggested: 2 mg/liter for Aspergillus fumigatus, Aspergillus terreus, and Aspergillus flavus; 4 mg/liter for Aspergillus niger; 0.25 mg/liter for Aspergillus nidulans; and 0.03 mg/liter for Candida albicans, Candida parapsilosis, and Candida tropicalis. Unfortunately, ECOFFs could not be determined for Candida glabrata or Candida krusei due to an unexplained interlaboratory MIC variation. For the blinded collection of A. fumigatus isolates, all MICs were ≤2 mg/liter for wild-type isolates. Differential isavuconazole MICs were observed for triazole-resistant A. fumigatus isolates with different cyp51A alterations: TR34/L98H mutants had elevated isavuconazole MICs, whereas isolates with G54 and M220 alterations had MICs in the wild-type range, suggesting that the efficacy of isavuconazole may not be affected by these alterations. This study will be an aid in interpreting isavuconazole MICs for clinical care and an important step in the future process of setting official clinical breakpoints. PMID:23959309

  19. Identification of Aspergillus Species Using Internal Transcribed Spacer Regions 1 and 2

    PubMed Central

    Henry, Travis; Iwen, Peter C.; Hinrichs, Steven H.

    2000-01-01

    Aspergillus species are the most frequent cause of invasive mold infections in immunocompromised patients. Although over 180 species are found within the genus, 3 species, Aspergillus flavus, A. fumigatus, and A. terreus, account for most cases of invasive aspergillosis (IA), with A. nidulans, A. niger, and A. ustus being rare causes of IA. The ability to distinguish between the various clinically relevant Aspergillus species may have diagnostic value, as certain species are associated with higher mortality and increased virulence and vary in their resistance to antifungal therapy. A method to identify Aspergillus at the species level and differentiate it from other true pathogenic and opportunistic molds was developed using the 18S and 28S rRNA genes for primer binding sites. The contiguous internal transcribed spacer (ITS) region, ITS 1–5.8S–ITS 2, from referenced strains and clinical isolates of aspergilli and other fungi were amplified, sequenced, and compared with non-reference strain sequences in GenBank. ITS amplicons from Aspergillus species ranged in size from 565 to 613 bp. Comparison of reference strains and GenBank sequences demonstrated that both ITS 1 and ITS 2 regions were needed for accurate identification of Aspergillus at the species level. Intraspecies variation among clinical isolates and reference strains was minimal. Sixteen other pathogenic molds demonstrated less than 89% similarity with Aspergillus ITS 1 and 2 sequences. A blind study of 11 clinical isolates was performed, and each was correctly identified. Clinical application of this approach may allow for earlier diagnosis and selection of effective antifungal agents for patients with IA. PMID:10747135

  20. Multicenter Study of Isavuconazole MIC Distributions and Epidemiological Cutoff Values for Aspergillus spp. for the CLSI M38-A2 Broth Microdilution Method

    PubMed Central

    Chowdhary, A.; Gonzalez, G. M.; Lass-Flörl, C.; Martin-Mazuelos, E.; Meis, J.; Peláez, T.; Pfaller, M. A.; Turnidge, J.

    2013-01-01

    Epidemiological cutoff values (ECVs) were established for the new triazole isavuconazole and Aspergillus species wild-type (WT) MIC distributions (organisms in a species-drug combination with no detectable acquired resistance mechanisms) that were defined with 855 Aspergillus fumigatus, 444 A. flavus, 106 A. nidulans, 207 A. niger, 384 A. terreus, and 75 A. versicolor species complex isolates; 22 Aspergillus section Usti isolates were also included. CLSI broth microdilution MIC data gathered in Europe, India, Mexico, and the United States were aggregated to statistically define ECVs. ECVs were 1 μg/ml for the A. fumigatus species complex, 1 μg/ml for the A. flavus species complex, 0.25 μg/ml for the A. nidulans species complex, 4 μg/ml for the A. niger species complex, 1 μg/ml for the A. terreus species complex, and 1 μg/ml for the A. versicolor species complex; due to the small number of isolates, an ECV was not proposed for Aspergillus section Usti. These ECVs may aid in detecting non-WT isolates with reduced susceptibility to isavuconazole due to cyp51A (an A. fumigatus species complex resistance mechanism among the triazoles) or other mutations. PMID:23716059

  1. Aspergillus tanneri sp. nov., a New Pathogen That Causes Invasive Disease Refractory to Antifungal Therapy

    PubMed Central

    Sugui, Janyce A.; Peterson, Stephen W.; Clark, Lily P.; Nardone, Glenn; Folio, Les; Riedlinger, Gregory; Zerbe, Christa S.; Shea, Yvonne; Henderson, Christina M.; Zelazny, Adrian M.; Holland, Steven M.

    2012-01-01

    The most common cause of invasive aspergillosis (IA) in patients with chronic granulomatous disease (CGD) is Aspergillus fumigatus followed by A. nidulans; other aspergilli rarely cause the disease. Here we review two clinical cases of fatal IA in CGD patients and describe a new etiologic agent of IA refractory to antifungal therapy. Unlike typical IA caused by A. fumigatus, the disease caused by the new species was chronic and spread from the lung to multiple adjacent organs. Mycological characteristics and the phylogenetic relationship with other aspergilli based on the sequence analysis of Mcm7, RPB2, and Tsr1 indicated that the new species, which we named as A. tanneri, belongs to Aspergillus section Circumdati. The species has a higher amphotericin B, voriconazole, and itraconazole MIC and causes more chronic infection in CGD mice than A. fumigatus. This is the first report documenting IA in CGD patients caused by a species belonging to the Aspergillus section Circumdati that is inherently resistant to azoles and amphotericin B. Unlike the results seen with many members of Aspergillus section Circumdati, ochratoxin was not detected in filtrates of cultures grown in various media. Our phenotypic and genetic characterization of the new species and the case reports will assist future diagnosis of infection caused by A. tanneri and lead to more appropriate patient management. PMID:22855513

  2. Isolation of mutants deficient in acetyl-CoA synthetase and a possible regulator of acetate induction in Aspergillus niger.

    PubMed

    Sealy-Lewis, H M; Fairhurst, V

    1998-07-01

    Acetate-non-utilizing mutants in Aspergillus niger were selected by resistance to 1.2% propionate in the presence of 0.1% glucose. Mutants showing normal morphology fell into two complementation groups. One class of mutant lacked acetyl-CoA synthetase but had high levels of isocitrate lyase, while the second class showed reduced levels of both acetyl-CoA synthetase and isocitrate lyase compared to the wild-type strain. By analogy with mutants selected by resistance to 1.2% propionate in Aspergillus nidulans, the properties of the mutants in A. niger suggest that the mutations are either in the structural gene for acetyl-CoA synthetase (acuA) or in a possible regulatory gene of acetate induction (acuB). A third class of mutant in a different complementation group was obtained which had abnormal morphology (yellow mycelium and few conidia); the specific lesion in these mutants has not been determined.

  3. Comparative Genome Analysis Between Aspergillus oryzae Strains Reveals Close Relationship Between Sites of Mutation Localization and Regions of Highly Divergent Genes among Aspergillus Species

    PubMed Central

    Umemura, Myco; Koike, Hideaki; Yamane, Noriko; Koyama, Yoshinori; Satou, Yuki; Kikuzato, Ikuya; Teruya, Morimi; Tsukahara, Masatoshi; Imada, Yumi; Wachi, Youji; Miwa, Yukino; Yano, Shuichi; Tamano, Koichi; Kawarabayasi, Yutaka; Fujimori, Kazuhiro E.; Machida, Masayuki; Hirano, Takashi

    2012-01-01

    Aspergillus oryzae has been utilized for over 1000 years in Japan for the production of various traditional foods, and a large number of A. oryzae strains have been isolated and/or selected for the effective fermentation of food ingredients. Characteristics of genetic alterations among the strains used are of particular interest in studies of A. oryzae. Here, we have sequenced the whole genome of an industrial fungal isolate, A. oryzae RIB326, by using a next-generation sequencing system and compared the data with those of A. oryzae RIB40, a wild-type strain sequenced in 2005. The aim of this study was to evaluate the mutation pressure on the non-syntenic blocks (NSBs) of the genome, which were previously identified through comparative genomic analysis of A. oryzae, Aspergillus fumigatus, and Aspergillus nidulans. We found that genes within the NSBs of RIB326 accumulate mutations more frequently than those within the SBs, regardless of their distance from the telomeres or of their expression level. Our findings suggest that the high mutation frequency of NSBs might contribute to maintaining the diversity of the A. oryzae genome. PMID:22912434

  4. Development in Aspergillus

    PubMed Central

    Krijgsheld, P.; Bleichrodt, R.; van Veluw, G.J.; Wang, F.; Müller, W.H.; Dijksterhuis, J.; Wösten, H.A.B.

    2013-01-01

    The genus Aspergillus represents a diverse group of fungi that are among the most abundant fungi in the world. Germination of a spore can lead to a vegetative mycelium that colonizes a substrate. The hyphae within the mycelium are highly heterogeneous with respect to gene expression, growth, and secretion. Aspergilli can reproduce both asexually and sexually. To this end, conidiophores and ascocarps are produced that form conidia and ascospores, respectively. This review describes the molecular mechanisms underlying growth and development of Aspergillus. PMID:23450714

  5. Aspergillus fumigatus scleritis.

    PubMed

    Rodriguez-Ares, M T; De Rojas Silva, M V; Pereiro, M; Fente Sampayo, B; Gallegos Chamas, G; S-Salorio, M

    1995-10-01

    We report a case of scleritis caused by Aspergillus fumigatus. The infection was successfully treated with antifungal drugs, cryotherapy and dura mater grafting. A 67-year-old man developed a scleral ulcer 2 months after suffering a trauma in his right eye caused by the branch of a tree. Diagnosis was made after biopsy of a scleral nodule. Scrapings showed hyphal fragments and cultures were positive for Aspergillus fumigatus. Although therapy with oral fluconazol and topical amphotericin B was begun, the scleritis continued to worsen, so cryotherapy and dura mater grafting were performed. The patient showed no signs of infection for 8 months after discontinuation of antifungal drugs.

  6. Proteomics as a Tool to Identify New Targets Against Aspergillus and Scedosporium in the Context of Cystic Fibrosis.

    PubMed

    Ramirez-Garcia, Andoni; Pellon, Aize; Buldain, Idoia; Antoran, Aitziber; Arbizu-Delgado, Aitana; Guruceaga, Xabier; Rementeria, Aitor; Hernando, Fernando L

    2017-05-08

    Cystic fibrosis (CF) is a genetic disorder that increases the risk of suffering microbial, including fungal, infections. In this paper, proteomics-based information was collated relating to secreted and cell wall proteins with potential medical applications from the most common filamentous fungi in CF, i.e., Aspergillus and Scedosporium/Lomentospora species. Among the Aspergillus fumigatus secreted allergens, β-1,3-endoglucanase, the alkaline protease 1 (Alp1/oryzin), Asp f 2, Asp f 13/15, chitinase, chitosanase, dipeptidyl-peptidase V (DppV), the metalloprotease Asp f 5, mitogillin/Asp f 1, and thioredoxin reductase receive a special mention. In addition, the antigens β-glucosidase 1, catalase, glucan endo-1,3-β-glucosidase EglC, β-1,3-glucanosyltransferases Gel1 and Gel2, and glutaminase A were also identified in secretomes of other Aspergillus species associated with CF: Aspergillus flavus, Aspergillus niger, Aspergillus nidulans, and Aspergillus terreus. Regarding cell wall proteins, cytochrome P450 and eEF-3 were proposed as diagnostic targets, and alkaline protease 2 (Alp2), Asp f 3 (putative peroxiredoxin pmp20), probable glycosidases Asp f 9/Crf1 and Crf2, GPI-anchored protein Ecm33, β-1,3-glucanosyltransferase Gel4, conidial hydrophobin Hyp1/RodA, and secreted aspartyl protease Pep2 as protective vaccines in A. fumigatus. On the other hand, for Scedosporium/Lomentospora species, the heat shock protein Hsp70 stands out as a relevant secreted and cell wall antigen. Additionally, the secreted aspartyl proteinase and an ortholog of Asp f 13, as well as the cell wall endo-1,3-β-D-glucosidase and 1,3-β-glucanosyl transferase, were also found to be significant proteins. In conclusion, proteins mentioned in this review may be promising candidates for developing innovative diagnostic and therapeutic tools for fungal infections in CF patients.

  7. FHIP and FTS proteins are critical for dynein-mediated transport of early endosomes in Aspergillus

    PubMed Central

    Yao, Xuanli; Wang, Xiangfeng; Xiang, Xin

    2014-01-01

    The minus end–directed microtubule motor cytoplasmic dynein transports various cellular cargoes, including early endosomes, but how dynein binds to its cargo remains unclear. Recently fungal Hook homologues were found to link dynein to early endosomes for their transport. Here we identified FhipA in Aspergillus nidulans as a key player for HookA (A. nidulans Hook) function via a genome-wide screen for mutants defective in early-endosome distribution. The human homologue of FhipA, FHIP, is a protein in the previously discovered FTS/Hook/FHIP (FHF) complex, which contains, besides FHIP and Hook proteins, Fused Toes (FTS). Although this complex was not previously shown to be involved in dynein-mediated transport, we show here that loss of either FhipA or FtsA (A. nidulans FTS homologue) disrupts HookA–early endosome association and inhibits early endosome movement. Both FhipA and FtsA associate with early endosomes, and interestingly, while FtsA–early endosome association requires FhipA and HookA, FhipA–early endosome association is independent of HookA and FtsA. Thus FhipA is more directly linked to early endosomes than HookA and FtsA. However, in the absence of HookA or FtsA, FhipA protein level is significantly reduced. Our results indicate that all three proteins in the FtsA/HookA/FhipA complex are important for dynein-mediated early endosome movement. PMID:24870033

  8. Eisosome Organization in the Filamentous AscomyceteAspergillus nidulans▿†

    PubMed Central

    Vangelatos, Ioannis; Roumelioti, Katerina; Gournas, Christos; Suarez, Teresa; Scazzocchio, Claudio; Sophianopoulou, Vicky

    2010-01-01

    Eisosomes are subcortical organelles implicated in endocytosis and have hitherto been described only in Saccharomyces cerevisiae. They comprise two homologue proteins, Pil1 and Lsp1, which colocalize with the transmembrane protein Sur7. These proteins are universally conserved in the ascomycetes. We identify in Aspergillus nidulans (and in all members of the subphylum Pezizomycotina) two homologues of Pil1/Lsp1, PilA and PilB, originating from a duplication independent from that extant in the subphylum Saccharomycotina. In the aspergilli there are several Sur7-like proteins in each species, including one strict Sur7 orthologue (SurG in A. nidulans). In A. nidulans conidiospores, but not in hyphae, the three proteins colocalize at the cell cortex and form tightly packed punctate structures that appear different from the clearly distinct eisosome patches observed in S. cerevisiae. These structures are assembled late during the maturation of conidia. In mycelia, punctate structures are present, but they are composed only of PilA, while PilB is diffused in the cytoplasm and SurG is located in vacuoles and endosomes. Deletion of each of the genes does not lead to any obvious growth phenotype, except for moderate resistance to itraconazole. We could not find any obvious association between mycelial (PilA) eisosome-like structures and endocytosis. PilA and SurG are necessary for conidial eisosome organization in ways that differ from those for their S. cerevisiae homologues. These data illustrate that conservation of eisosomal proteins within the ascomycetes is accompanied by a striking functional divergence. PMID:20693301

  9. [Aspergillus insulicola Sp. Nov].

    PubMed

    de Montemayor, L; Santiago, A R

    1975-04-30

    A strain of Aspergillus sp. is described and proposed as a new species under the name "Aspergillus insulicola sp. nov." Montemayor & Santiago, 1973. This strain was isolated from soil samples taken in "Aves Island" during a scientific expedition.--Aves Island, situated at 15 degrees, 40 feet, 42 inches N and 63 degrees, 36 feet, 47 inches W, about 665 Km of the coast of Venezuela, has very special ecological conditions. Due to its smallness: 550 m long and 40 to 120 m across and to its low profile only 3 m over sea level, it is swept by the sea during the periodical storms and hurricanes in the area. It has thus a very interesting fauna and flora. We took a series of soil samples to study its mycological flora. Forty samples were inoculated by dilution method. In this first paper a species is described and proposed as a new species because of its macroscopic and microscopic characteristics, as well as by its biological properties, under the name "Aspergillus insulicola sp. nov.". In its study we have tried to follow as closely as possible the methods recommended by Kennet B. Raper & Dorothy Fenell, world authorities on the genera Aspergillus and Penicillium. The strain is being kept in USB under the number T1, and has been sent to ATCC & CBSC to be incorporated in their collections.

  10. A Developmentally Regulated Gene Cluster Involved in Conidial Pigment Biosynthesis in Aspergillus fumigatus

    PubMed Central

    Tsai, Huei-Fung; Wheeler, Michael H.; Chang, Yun C.; Kwon-Chung, K. J.

    1999-01-01

    Aspergillus fumigatus, a filamentous fungus producing bluish-green conidia, is an important opportunistic pathogen that primarily affects immunocompromised patients. Conidial pigmentation of A. fumigatus significantly influences its virulence in a murine model. In the present study, six genes, forming a gene cluster spanning 19 kb, were identified as involved in conidial pigment biosynthesis in A. fumigatus. Northern blot analyses showed the six genes to be developmentally regulated and expressed during conidiation. The gene products of alb1 (for “albino 1”), arp1 (for “aspergillus reddish-pink 1”), and arp2 have high similarity to polyketide synthases, scytalone dehydratases, and hydroxynaphthalene reductases, respectively, found in the dihydroxynaphthalene (DHN)-melanin pathway of brown and black fungi. The abr1 gene (for “aspergillus brown 1”) encodes a putative protein possessing two signatures of multicopper oxidases. The abr2 gene product has homology to the laccase encoded by the yA gene of Aspergillus nidulans. The function of ayg1 (for “aspergillus yellowish-green 1”) remains unknown. Involvement of the six genes in conidial pigmentation was confirmed by the altered conidial color phenotypes that resulted from disruption of each gene in A. fumigatus. The presence of a DHN-melanin pathway in A. fumigatus was supported by the accumulation of scytalone and flaviolin in the arp1 deletant, whereas only flaviolin was accumulated in the arp2 deletants. Scytalone and flaviolin are well-known signature metabolites of the DHN-melanin pathway. Based on DNA sequence similarity, gene disruption results, and biochemical analyses, we conclude that the 19-kb DNA fragment contains a six-gene cluster which is required for conidial pigment biosynthesis in A. fumigatus. However, the presence of abr1, abr2, and ayg1 in addition to alb1, arp1, and arp2 suggests that conidial pigment biosynthesis in A. fumigatus is more complex than the known DHN-melanin pathway

  11. GDP-mannose pyrophosphorylase is essential for cell wall integrity, morphogenesis and viability of Aspergillus fumigatus.

    PubMed

    Jiang, Hechun; Ouyang, Haomiao; Zhou, Hui; Jin, Cheng

    2008-09-01

    GDP-mannose pyrophosphorylase (GMPP) catalyses the synthesis of GDP-mannose, which is the precursor for the mannose residues in glycoconjugates, using mannose 1-phosphate and GTP as substrates. Repression of GMPP in yeast leads to phenotypes including cell lysis, defective cell wall, and failure of polarized growth and cell separation. Although several GMPPs have been isolated and characterized in filamentous fungi, the physiological consequences of their actions are not clear. In this study, Afsrb1, which is a homologue of yeast SRB1/PSA1/VIG9, was identified in the Aspergillus fumigatus genome. The Afsrb1 gene was expressed in Escherichia coli, and recombinant AfSrb1 was functionally confirmed as a GMPP. By the replacement of the native Afsrb1 promoter with an inducible Aspergillus nidulans alcA promoter, the conditional inactivation mutant strain YJ-gmpp was constructed. The presence of 3 % glucose completely blocked transcription of P(alcA)-Afsrb1, and was lethal to strain YJ-gmpp. Repression of Afsrb1 expression in strain YJ-gmpp led to phenotypes including hyphal lysis, defective cell wall, impaired polarity maintenance, and branching site selection. Also, rapid germination and reduced conidiation were documented. However, in contrast to yeast, strain YJ-gmpp retained the ability to direct polarity establishment and septation. Our results showed that the Afsrb1 gene is essential for cell wall integrity, morphogenesis and viability of Aspergillus fumigatus.

  12. Abundant respirable ergot alkaloids from the common airborne fungus Aspergillus fumigatus.

    PubMed

    Panaccione, Daniel G; Coyle, Christine M

    2005-06-01

    Ergot alkaloids are mycotoxins that interact with several monoamine receptors, negatively affecting cardiovascular, nervous, reproductive, and immune systems of exposed humans and animals. Aspergillus fumigatus, a common airborne fungus and opportunistic human pathogen, can produce ergot alkaloids in broth culture. The objectives of this study were to determine if A. fumigatus accumulates ergot alkaloids in a respirable form in or on its conidia, to quantify ergot alkaloids associated with conidia produced on several different substrates, and to measure relevant physical properties of the conidia. We found at least four ergot alkaloids, fumigaclavine C, festuclavine, fumigaclavine A, and fumigaclavine B (in order of abundance), associated with conidia of A. fumigatus. Under environmentally relevant conditions, the total mass of ergot alkaloids often constituted >1% of the mass of the conidium. Ergot alkaloids were extracted from conidia produced on all media tested, and the greatest quantities were observed when the fungus was cultured on latex paint or cultured maize seedlings. The values for physical properties of conidia likely to affect their respirability (i.e., diameter, mass, and specific gravity) were significantly lower for A. fumigatus than for Aspergillus nidulans, Aspergillus niger, and Stachybotrys chartarum. The demonstration of relatively high concentrations of ergot alkaloids associated with conidia of A. fumigatus presents opportunities for investigations of potential contributions of the toxins to adverse health effects associated with the fungus and to aspects of the biology of the fungus that contribute to its success.

  13. Redox metabolites signal polymicrobial biofilm development via the NapA oxidative stress cascade in Aspergillus

    PubMed Central

    Zheng, He; Kim, Jaekuk; Liew, Mathew; Yan, John K.; Herrera, Oscar; Bok, JinWoo; Kelleher, Neil L.; Keller, Nancy P.; Wang, Yun

    2014-01-01

    Summary Background Filamentous fungi and bacteria form mixed-species biofilms in nature and diverse clinical contexts. They secrete a wealth of redox-active small molecule secondary metabolites, which are traditionally viewed as toxins that inhibit growth of competing microbes. Results Here we report that these “toxins” can act as interspecies signals, affecting filamentous fungal development via oxidative stress regulation. Specifically, in co-culture biofilms, Pseudomonas aeruginosa phenazine-derived metabolites differentially modulated Aspergillus fumigatus development, shifting from weak vegetative growth to induced asexual sporulation (conidiation) along a decreasing phenazine gradient. The A. fumigatus morphological shift correlated with the production of phenazine radicals and concomitant reactive oxygen species (ROS) production generated by phenazine redox cycling. Phenazine conidiation signaling was conserved in the genetic model A. nidulans, and mediated by NapA, a homolog of AP-1-like bZIP transcription factor, which is essential for the response to oxidative stress in humans, yeast, and filamentous fungi. Expression profiling showed phenazine treatment induced a NapA-dependent response of the global oxidative stress metabolome including the thioredoxin, glutathione and NADPH-oxidase systems. Conidiation induction in A. nidulans by another microbial redox-active secondary metabolite, gliotoxin, also required NapA. Conclusions This work highlights that microbial redox metabolites are key signals for sporulation in filamentous fungi, which are communicated through an evolutionarily conserved eukaryotic stress response pathway. It provides a foundation for interspecies signaling in environmental and clinical biofilms involving bacteria and filamentous fungi. PMID:25532893

  14. Persistence versus Escape: Aspergillus terreus and Aspergillus fumigatus Employ Different Strategies during Interactions with Macrophages

    PubMed Central

    Slesiona, Silvia; Gressler, Markus; Mihlan, Michael; Zaehle, Christoph; Schaller, Martin; Barz, Dagmar; Hube, Bernhard; Jacobsen, Ilse D.; Brock, Matthias

    2012-01-01

    Invasive bronchopulmonary aspergillosis (IBPA) is a life-threatening disease in immunocompromised patients. Although Aspergillus terreus is frequently found in the environment, A. fumigatus is by far the main cause of IBPA. However, once A. terreus establishes infection in the host, disease is as fatal as A. fumigatus infections. Thus, we hypothesized that the initial steps of disease establishment might be fundamentally different between these two species. Since alveolar macrophages represent one of the first phagocytes facing inhaled conidia, we compared the interaction of A. terreus and A. fumigatus conidia with alveolar macrophages. A. terreus conidia were phagocytosed more rapidly than A. fumigatus conidia, possibly due to higher exposure of β-1,3-glucan and galactomannan on the surface. In agreement, blocking of dectin-1 and mannose receptors significantly reduced phagocytosis of A. terreus, but had only a moderate effect on phagocytosis of A. fumigatus. Once phagocytosed, and in contrast to A. fumigatus, A. terreus did not inhibit acidification of phagolysosomes, but remained viable without signs of germination both in vitro and in immunocompetent mice. The inability of A. terreus to germinate and pierce macrophages resulted in significantly lower cytotoxicity compared to A. fumigatus. Blocking phagolysosome acidification by the v-ATPase inhibitor bafilomycin increased A. terreus germination rates and cytotoxicity. Recombinant expression of the A. nidulans wA naphthopyrone synthase, a homologue of A. fumigatus PksP, inhibited phagolysosome acidification and resulted in increased germination, macrophage damage and virulence in corticosteroid-treated mice. In summary, we show that A. terreus and A. fumigatus have evolved significantly different strategies to survive the attack of host immune cells. While A. fumigatus prevents phagocytosis and phagolysosome acidification and escapes from macrophages by germination, A. terreus is rapidly phagocytosed, but

  15. Disinfection efficacy of chlorine and peracetic acid alone or in combination against Aspergillus spp. and Candida albicans in drinking water.

    PubMed

    Sisti, Maurizio; Brandi, Giorgio; De Santi, Mauro; Rinaldi, Laura; Schiavano, Giuditta F

    2012-03-01

    The aim of the present study was to evaluate the fungicidal activity of chlorine and peracetic acid in drinking water against various pathogenic Aspergillus spp. and Candida albicans strains. A. nidulans exhibited the greatest resistance, requiring 10 ppm of chlorine for 30 min contact time for a complete inactivation. Under the same experimental conditions, peracetic acid was even less fungicidal. In this case, A. niger proved to be the most resistant species (50 ppm for 60 min for complete inactivation). All Aspergillus spp. were insensitive to 10 ppm even with extended exposure (>5 h). The combination of chlorine and peracetic acid against Aspergillus spp. did not show synergistic effects except in the case of A. flavus. Complete growth inhibition of C. albicans was observed after about 3 h contact time with 0.2 ppm. C. albicans was less sensitive to peracetic acid. Hence the concentrations of chlorine that are usually present in drinking water distribution systems are ineffective against several Aspergillus spp. and peracetic acid cannot be considered an alternative to chlorine for disinfecting drinking water. The combination of the two biocides is not very effective in eliminating filamentous fungi at the concentrations permitted for drinking water disinfection.

  16. FluG affects secretion in colonies of Aspergillus niger.

    PubMed

    Wang, Fengfeng; Krijgsheld, Pauline; Hulsman, Marc; de Bekker, Charissa; Müller, Wally H; Reinders, Marcel; de Vries, Ronald P; Wösten, Han A B

    2015-01-01

    Colonies of Aspergillus niger are characterized by zonal heterogeneity in growth, sporulation, gene expression and secretion. For instance, the glucoamylase gene glaA is more highly expressed at the periphery of colonies when compared to the center. As a consequence, its encoded protein GlaA is mainly secreted at the outer part of the colony. Here, multiple copies of amyR were introduced in A. niger. Most transformants over-expressing this regulatory gene of amylolytic genes still displayed heterogeneous glaA expression and GlaA secretion. However, heterogeneity was abolished in transformant UU-A001.13 by expressing glaA and secreting GlaA throughout the mycelium. Sequencing the genome of UU-A001.13 revealed that transformation had been accompanied by deletion of part of the fluG gene and disrupting its 3' end by integration of a transformation vector. Inactivation of fluG in the wild-type background of A. niger also resulted in breakdown of starch under the whole colony. Asexual development of the ∆fluG strain was not affected, unlike what was previously shown in Aspergillus nidulans. Genes encoding proteins with a signal sequence for secretion, including part of the amylolytic genes, were more often downregulated in the central zone of maltose-grown ∆fluG colonies and upregulated in the intermediate part and periphery when compared to the wild-type. Together, these data indicate that FluG of A. niger is a repressor of secretion.

  17. Biomarkers of Aspergillus spores

    NASA Astrophysics Data System (ADS)

    Sulc, Miroslav; Peslova, Katerina; Zabka, Martin; Hajduch, Marian; Havlicek, Vladimir

    2009-02-01

    We applied both matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) mass spectrometric and 1D sodium dodecylsulfate polyacrylamide gel electrophoretic (1D-PAGE) approaches for direct analysis of intact fungal spores of twenty four Aspergillus species. In parallel, we optimized various protocols for protein extraction from Aspergillus spores using acidic conditions, step organic gradient and variable sonication treatment. The MALDI-TOF mass spectra obtained from optimally prepared samples provided a reproducible fingerprint demonstrating the capability of the MALDI-TOF approach to type and characterize different fungal strains within the Aspergillus genus. Mass spectra of intact fungal spores provided signals mostly below 20 kDa. The minimum material amount represented 0.3 [mu]g (10,000 spores). Proteins with higher molecular weight were detected by 1D-PAGEE Eleven proteins were identified from three selected strains in the range 5-25 kDa by the proteomic approach. Hemolysin and hydrophobin have the highest relevance in host-pathogen interactions.

  18. Identification of possible targets of the Aspergillus fumigatus CRZ1 homologue, CrzA

    PubMed Central

    2010-01-01

    Background Calcineurin, a serine/threonine-specific protein phosphatase, plays an important role in the control of cell morphology and virulence in fungi. Calcineurin regulates localization and activity of a transcription factor called CRZ1. Recently, we characterize Aspergillus fumigatus CRZ1 homologue, AfCrzA. Here, we investigate which pathways are influenced by A. fumigatus AfCrzA during a short pulse of calcium by comparatively determining the transcriptional profile of A. fumigatus wild type and ΔAfcrzA mutant strains. Results We were able to observe 3,622 genes modulated in at least one timepoint in the mutant when compared to the wild type strain (3,211 and 411 at 10 and 30 minutes, respectively). Decreased mRNA abundance in the ΔcrzA was seen for genes encoding calcium transporters, transcription factors and genes that could be directly or indirectly involved in calcium metabolism. Increased mRNA accumulation was observed for some genes encoding proteins involved in stress response. AfCrzA overexpression in A. fumigatus increases the expression of several of these genes. The deleted strain of one of these genes, AfRcnA, belonging to a class of endogenous calcineurin regulators, calcipressins, had more calcineurin activity after exposure to calcium and was less sensitive to menadione 30 μM, hydrogen peroxide 2.5 mM, EGTA 25 mM, and MnCl2 25 mM. We constructed deletion, overexpression, and GFP fusion protein for the closely related A. nidulans AnRcnA. GFP::RcnA was mostly detected along the germling, did not accumulate in the nuclei and its location is not affected by the cellular response to calcium chloride. Conclusion We have performed a transcriptional profiling analysis of the A. fumigatus ΔAfcrzA mutant strain exposed to calcium stress. This provided an excellent opportunity to identify genes and pathways that are under the influence of AfCrzA. AfRcnA, one of these selected genes, encodes a modulator of calcineurin activity. Concomitantly with A

  19. Examining the Evolution of the Regulatory Circuit Controlling Secondary Metabolism and Development in the Fungal Genus Aspergillus

    PubMed Central

    Lind, Abigail L.; Wisecaver, Jennifer H.; Smith, Timothy D.; Feng, Xuehuan; Calvo, Ana M.; Rokas, Antonis

    2015-01-01

    Filamentous fungi produce diverse secondary metabolites (SMs) essential to their ecology and adaptation. Although each SM is typically produced by only a handful of species, global SM production is governed by widely conserved transcriptional regulators in conjunction with other cellular processes, such as development. We examined the interplay between the taxonomic narrowness of SM distribution and the broad conservation of global regulation of SM and development in Aspergillus, a diverse fungal genus whose members produce well-known SMs such as penicillin and gliotoxin. Evolutionary analysis of the 2,124 genes comprising the 262 SM pathways in four Aspergillus species showed that most SM pathways were species-specific, that the number of SM gene orthologs was significantly lower than that of orthologs in primary metabolism, and that the few conserved SM orthologs typically belonged to non-homologous SM pathways. RNA sequencing of two master transcriptional regulators of SM and development, veA and mtfA, showed that the effects of deletion of each gene, especially veA, on SM pathway regulation were similar in A. fumigatus and A. nidulans, even though the underlying genes and pathways regulated in each species differed. In contrast, examination of the role of these two regulators in development, where 94% of the underlying genes are conserved in both species showed that whereas the role of veA is conserved, mtfA regulates development in the homothallic A. nidulans but not in the heterothallic A. fumigatus. Thus, the regulation of these highly conserved developmental genes is divergent, whereas–despite minimal conservation of target genes and pathways–the global regulation of SM production is largely conserved. We suggest that the evolution of the transcriptional regulation of secondary metabolism in Aspergillus represents a novel type of regulatory circuit rewiring and hypothesize that it has been largely driven by the dramatic turnover of the target genes

  20. Investigation of a 6-MSA Synthase Gene Cluster in Aspergillus aculeatus Reveals 6-MSA-derived Aculinic Acid, Aculins A-B and Epi-Aculin A.

    PubMed

    Petersen, Lene M; Holm, Dorte K; Gotfredsen, Charlotte H; Mortensen, Uffe H; Larsen, Thomas O

    2015-10-12

    Aspergillus aculeatus, a filamentous fungus belonging to the Aspergillus clade Nigri, is an industrial workhorse in enzyme production. Recently we reported a number of secondary metabolites from this fungus; however, its genetic potential for the production of secondary metabolites is vast. In this study we identified a 6-methylsalicylic acid (6-MSA) synthase from A. aculeatus, and verified its functionality by episomal expression in A. aculeatus and heterologous expression in A. nidulans. Feeding studies with fully (13) C-labeled 6-MSA revealed that 6-MSA is incorporated into aculinic acid, which further incorporates into three compounds that we name aculins A and B, and epi-aculin A, described here for the first time. Based on NMR data and bioinformatic studies we propose the structures of the compounds as well as a biosynthetic pathway leading to formation of aculins from 6-MSA.

  1. 76 FR 16297 - Aspergillus flavus

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-23

    ... tolerance exemption for Aspergillus flavus AF36, a non-aflatoxin-producing strain of Aspergillus flavus, in... reduction of aflatoxin. No further toxicological data are required to support this exemption from the..., including drinking water from ground water or surface water and exposure through pesticide use in...

  2. Wild-Type MIC Distributions and Epidemiological Cutoff Values for Amphotericin B and Aspergillus spp. for the CLSI Broth Microdilution Method (M38-A2 Document)▿

    PubMed Central

    Espinel-Ingroff, A.; Cuenca-Estrella, M.; Fothergill, A.; Fuller, J.; Ghannoum, M.; Johnson, E.; Pelaez, T.; Pfaller, M. A.; Turnidge, J.

    2011-01-01

    Although clinical breakpoints have not been established for mold testing, epidemiological cutoff values (ECVs) are available for Aspergillus spp. versus the triazoles and caspofungin. Wild-type (WT) MIC distributions (organisms in a species-drug combination with no acquired resistance mechanisms) were defined in order to establish ECVs for six Aspergillus spp. and amphotericin B. Two sets (CLSI/EUCAST broth microdilution) of available MICs were evaluated: those for A. fumigatus (3,988/833), A. flavus (793/194), A. nidulans (184/69), A. niger (673/140), A. terreus (545/266), and A. versicolor (135/22). Three sets of data were analyzed: (i) CLSI data gathered in eight independent laboratories in Canada, Europe, and the United States; (ii) EUCAST data from a single laboratory; and (iii) the combined CLSI and EUCAST data. ECVs, expressed in μg/ml, that captured 95%, 97.5%, and 99% of the modeled wild-type population (CLSI and combined data) were as follows: for A. fumigatus, 2, 2, and 4; for A. flavus, 2, 4, and 4; for A. nidulans, 4, 4, and 4; for A. niger, 2, 2, and 2; for A. terreus, 4, 4, and 8; and for A. versicolor, 2, 2, and 2. Similar to the case for the triazoles and caspofungin, amphotericin B ECVs may aid in the detection of strains with acquired mechanisms of resistance to this agent. PMID:21876047

  3. Wild-type MIC distributions and epidemiological cutoff values for amphotericin B and Aspergillus spp. for the CLSI broth microdilution method (M38-A2 document).

    PubMed

    Espinel-Ingroff, A; Cuenca-Estrella, M; Fothergill, A; Fuller, J; Ghannoum, M; Johnson, E; Pelaez, T; Pfaller, M A; Turnidge, J

    2011-11-01

    Although clinical breakpoints have not been established for mold testing, epidemiological cutoff values (ECVs) are available for Aspergillus spp. versus the triazoles and caspofungin. Wild-type (WT) MIC distributions (organisms in a species-drug combination with no acquired resistance mechanisms) were defined in order to establish ECVs for six Aspergillus spp. and amphotericin B. Two sets (CLSI/EUCAST broth microdilution) of available MICs were evaluated: those for A. fumigatus (3,988/833), A. flavus (793/194), A. nidulans (184/69), A. niger (673/140), A. terreus (545/266), and A. versicolor (135/22). Three sets of data were analyzed: (i) CLSI data gathered in eight independent laboratories in Canada, Europe, and the United States; (ii) EUCAST data from a single laboratory; and (iii) the combined CLSI and EUCAST data. ECVs, expressed in μg/ml, that captured 95%, 97.5%, and 99% of the modeled wild-type population (CLSI and combined data) were as follows: for A. fumigatus, 2, 2, and 4; for A. flavus, 2, 4, and 4; for A. nidulans, 4, 4, and 4; for A. niger, 2, 2, and 2; for A. terreus, 4, 4, and 8; and for A. versicolor, 2, 2, and 2. Similar to the case for the triazoles and caspofungin, amphotericin B ECVs may aid in the detection of strains with acquired mechanisms of resistance to this agent.

  4. Stabilizing the heterologously expressed uric acid-xanthine transporter UapA from the lower eukaryote Aspergillus nidulans.

    PubMed

    Leung, James; Cameron, Alexander D; Diallinas, George; Byrne, Bernadette

    2013-02-01

    Despite detailed genetic and mutagenic analysis and a recent high-resolution structure of a bacterial member of the nucleobase-ascorbate transporter (NAT) family, understanding of the mechanism of action of eukaryotic NATs is limited. Preliminary studies successfully expressed and purified wild-type UapA to high homogeneity; however, the protein was extremely unstable, degrading almost completely after 48 h at 4°C. In an attempt to increase UapA stability we generated a number of single point mutants (E356D, E356Q, N409A, N409D, Q408E and G411V) previously shown to have reduced or no transport activity, but correct targeting to the membrane. The mutant UapA constructs expressed well as GFP fusions in Saccharomyces cerevisiae and exhibited similar fluorescent size exclusion chromatography (FSEC) profiles to the wild-type protein, following solubilization in 1% DDM, LDAO or OM + 1 mM xanthine. In order to assess the relative stabilities of the mutants, solubilized fractions prepared in 1% DDM + 1 mM xanthine were heated at 45°C for 10 min prior to FSEC. The Q408E and G411V mutants gave markedly better profiles than either wild-type or the other mutants. Further FSEC analysis following solubilization of the mutants in 1% NG ± xanthine confirmed that G411V is more stable than the other mutants, but showed that Q408E is unstable under these conditions. G411V and an N-terminally truncated construct G411VΔ1-11 were submitted to large-scale expression and purification. Long-term stability analysis revealed that G411VΔ1-11 was the most stable construct and the most suited to downstream structural studies.

  5. Metabolomics of Aspergillus fumigatus.

    PubMed

    Frisvad, Jens C; Rank, Christian; Nielsen, Kristian F; Larsen, Thomas O

    2009-01-01

    Aspergillus fumigatus is the most important species in Aspergillus causing infective lung diseases. This species has been reported to produce a large number of extrolites, including secondary metabolites, acids, and proteins such as hydrophobins and extracellular enzymes. At least 226 potentially bioactive secondary metabolites have been reported from A. fumigatus that can be ordered into 24 biosynthetic families. Of these families we have detected representatives from the following families of secondary metabolites: fumigatins, fumigaclavines, fumiquinazolines, trypacidin and monomethylsulochrin, fumagillins, gliotoxins, pseurotins, chloroanthraquinones, fumitremorgins, verruculogen, helvolic acids, and pyripyropenes by HPLC with diode array detection and mass spectrometric detection. There is still doubt whether A. fumigatus can produce tryptoquivalins, but all isolates produce the related fumiquinazolines. We also tentatively detected sphingofungins in A. fumigatus Af293 and in an isolate of A. lentulus. The sphingofungins may have a similar role as the toxic fumonisins, found in A. niger. A further number of mycotoxins, including ochratoxin A, and other secondary metabolites have been reported from A. fumigatus, but in those cases either the fungus or its metabolite appear to be misidentified.

  6. Previously unknown species of Aspergillus.

    PubMed

    Gautier, M; Normand, A-C; Ranque, S

    2016-08-01

    The use of multi-locus DNA sequence analysis has led to the description of previously unknown 'cryptic' Aspergillus species, whereas classical morphology-based identification of Aspergillus remains limited to the section or species-complex level. The current literature highlights two main features concerning these 'cryptic' Aspergillus species. First, the prevalence of such species in clinical samples is relatively high compared with emergent filamentous fungal taxa such as Mucorales, Scedosporium or Fusarium. Second, it is clearly important to identify these species in the clinical laboratory because of the high frequency of antifungal drug-resistant isolates of such Aspergillus species. Matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) has recently been shown to enable the identification of filamentous fungi with an accuracy similar to that of DNA sequence-based methods. As MALDI-TOF MS is well suited to the routine clinical laboratory workflow, it facilitates the identification of these 'cryptic' Aspergillus species at the routine mycology bench. The rapid establishment of enhanced filamentous fungi identification facilities will lead to a better understanding of the epidemiology and clinical importance of these emerging Aspergillus species. Based on routine MALDI-TOF MS-based identification results, we provide original insights into the key interpretation issues of a positive Aspergillus culture from a clinical sample. Which ubiquitous species that are frequently isolated from air samples are rarely involved in human invasive disease? Can both the species and the type of biological sample indicate Aspergillus carriage, colonization or infection in a patient? Highly accurate routine filamentous fungi identification is central to enhance the understanding of these previously unknown Aspergillus species, with a vital impact on further improved patient care.

  7. Molecular Diagnostic Testing for Aspergillus

    PubMed Central

    Powers-Fletcher, Margaret V.

    2016-01-01

    The direct detection of Aspergillus nucleic acid in clinical specimens has the potential to improve the diagnosis of aspergillosis by offering more rapid and sensitive identification of invasive infections than is possible with traditional techniques, such as culture or histopathology. Molecular tests for Aspergillus have been limited historically by lack of standardization and variable sensitivities and specificities. Recent efforts have been directed at addressing these limitations and optimizing assay performance using a variety of specimen types. This review provides a summary of standardization efforts and outlines the complexities of molecular testing for Aspergillus in clinical mycology. PMID:27487954

  8. Effect of mutation of lysine-128 of the large subunit of ribulose bisphosphate carboxylase/oxygenase from Anacystis nidulans.

    PubMed

    Bainbridge, G; Anralojc, P J; Madgwick, P J; Pitts, J E; Parry, M A

    1998-12-01

    The contribution of lysine-128 within the active site of Anacystis nidulans d-ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco; EC 4.1.1.39) was investigated by the characterization of mutants in which lysine-128 was replaced with arginine, glycine, glutamine, histidine or aspartic acid. Mutated genes encoding the Rubisco large subunit were expressed in Escherichia coli and the resultant polypeptides assembled into active complexes. All of the mutant enzymes had a lower affinity for ribulose 1,5-bisphosphate (RuBP) and lower rates of carboxylation. Substitution of lysine-128 with glutamine, histidine or aspartic acid decreased the specificity factor and led to the production of an additional monophosphate reaction product. We show that this product results from the loss of the phosphate from C-1 of RuBP, most probably by beta-elimination from the 2,3-enediolate derivative of RuBP. The results confirm that lysine-128 is important in determining the position of the essential epsilon-amino group of lysine-334 within the active site and in loop dynamics. This further demonstrates that residues remote from the active site can be manipulated to modify catalytic function.

  9. Sequence Analysis, Overexpression, and Antisense Inhibition of a β-Xylosidase Gene, xylA, from Aspergillus oryzae KBN616

    PubMed Central

    Kitamoto, Noriyuki; Yoshino, Shoko; Ohmiya, Kunio; Tsukagoshi, Norihiro

    1999-01-01

    β-Xylosidase secreted by the shoyu koji mold, Aspergillus oryzae, is the key enzyme responsible for browning of soy sauce. To investigate the role of β-xylosidase in the brown color formation, a major β-xylosidase, XylA, and its encoding gene were characterized. β-Xylosidase XylA was purified to homogeneity from culture filtrates of A. oryzae KBN616. The optimum pH and temperature of the enzyme were found to be 4.0 and 60°C, respectively, and the molecular mass was estimated to be 110 kDa based on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The xylA gene comprises 2,397 bp with no introns and encodes a protein consisting of 798 amino acids (86,475 Da) with 14 potential N-glycosylation sites. The deduced amino acid sequence shows high similarity to Aspergillus nidulans XlnD (70%), Aspergillus niger XlnD (64%), and Trichoderma reesei BxII (63%). The xylA gene was overexpressed under control of the strong and constitutive A. oryzae TEF1 promoter. One of the A. oryzae transformants produced approximately 13 times more of the enzyme than did the host strain. The partial-length antisense xylA gene expressed under control of the A. oryzae TEF1 promoter decreased the β-xylosidase level in A. oryzae to about 20% of that of the host strain. PMID:9872754

  10. Aspergillus fumigatus AcuM Regulates both Iron Acquisition and Gluconeogenesis

    PubMed Central

    Liu, Hong; Gravelat, Fabrice N.; Chiang, Lisa Y.; Chen, Dan; Vanier, Ghyslaine; Ejzykowicz, Daniele E.; Ibrahim, Ashraf S.; Nierman, William C.; Sheppard, Donald C.; Filler, Scott G.

    2010-01-01

    Summary Relatively few transcription factors that govern the virulence of Aspergillus fumigatus are known. We constructed 11 A. fumigatus transcription factor mutants and screened them for altered virulence in Galleria mellonella larvae. We discovered that the zinc cluster transcription factor, AcuM, is essential for maximal virulence in this model, as well as in murine models of hematogenously disseminated and invasive pulmonary aspergillosis. Transcriptional profiling experiments suggested that AcuM suppresses sreA and induces hapX to stimulate expression of genes involved in both reductive iron assimilation and siderophore-mediated iron uptake. Consistent with these results, a ΔacuM mutant had reduced iron incorporation, decreased extracellular siderophore production, and impaired capacity to grow under iron-limited conditions. Interestingly, an Aspergillus nidulans ΔacuM mutant had normal extracellular siderophore production and growth under iron-limited conditions, indicating that AcuM does not govern iron acquisition in this organism. A. fumigatus AcuM also regulated genes involved in gluconeogenesis, and the ΔacuM mutant had impaired growth on gluconeogenic carbon sources. Deletion of sreA in the ΔacuM mutant restored iron uptake, extracellular siderophore production, and virulence, but not the defect in gluconeogenesis. Thus, AcuM represses SreA and thereby induces iron acquisition, a process that is essential for the maximal virulence of A. fumigatus. PMID:21062375

  11. Functional Analysis of the Nitrogen Metabolite Repression Regulator Gene nmrA in Aspergillus flavus.

    PubMed

    Han, Xiaoyun; Qiu, Mengguang; Wang, Bin; Yin, Wen-Bing; Nie, Xinyi; Qin, Qiuping; Ren, Silin; Yang, Kunlong; Zhang, Feng; Zhuang, Zhenhong; Wang, Shihua

    2016-01-01

    In Aspergillus nidulans, the nitrogen metabolite repression (NMR) regulator NmrA plays a major role in regulating the activity of the GATA transcription factor AreA during nitrogen metabolism. However, the function of nmrA in A. flavus has not been previously studied. Here, we report the identification and functional analysis of nmrA in A. flavus. Our work showed that the amino acid sequences of NmrA are highly conserved among Aspergillus species and that A. flavus NmrA protein contains a canonical Rossmann fold motif. Deletion of nmrA slowed the growth of A. flavus but significantly increased conidiation and sclerotia production. Moreover, seed infection experiments indicated that nmrA is required for the invasive virulence of A. flavus. In addition, the ΔnmrA mutant showed increased sensitivity to rapamycin and methyl methanesulfonate, suggesting that nmrA could be responsive to target of rapamycin signaling and DNA damage. Furthermore, quantitative real-time reverse transcription polymerase chain reaction analysis suggested that nmrA might interact with other nitrogen regulatory and catabolic genes. Our study provides a better understanding of NMR and the nitrogen metabolism network in fungi.

  12. Functional Analysis of the Nitrogen Metabolite Repression Regulator Gene nmrA in Aspergillus flavus

    PubMed Central

    Han, Xiaoyun; Qiu, Mengguang; Wang, Bin; Yin, Wen-Bing; Nie, Xinyi; Qin, Qiuping; Ren, Silin; Yang, Kunlong; Zhang, Feng; Zhuang, Zhenhong; Wang, Shihua

    2016-01-01

    In Aspergillus nidulans, the nitrogen metabolite repression (NMR) regulator NmrA plays a major role in regulating the activity of the GATA transcription factor AreA during nitrogen metabolism. However, the function of nmrA in A. flavus has not been previously studied. Here, we report the identification and functional analysis of nmrA in A. flavus. Our work showed that the amino acid sequences of NmrA are highly conserved among Aspergillus species and that A. flavus NmrA protein contains a canonical Rossmann fold motif. Deletion of nmrA slowed the growth of A. flavus but significantly increased conidiation and sclerotia production. Moreover, seed infection experiments indicated that nmrA is required for the invasive virulence of A. flavus. In addition, the ΔnmrA mutant showed increased sensitivity to rapamycin and methyl methanesulfonate, suggesting that nmrA could be responsive to target of rapamycin signaling and DNA damage. Furthermore, quantitative real-time reverse transcription polymerase chain reaction analysis suggested that nmrA might interact with other nitrogen regulatory and catabolic genes. Our study provides a better understanding of NMR and the nitrogen metabolism network in fungi. PMID:27933036

  13. Caspofungin Etest endpoint for Aspergillus isolates shows poor agreement with the reference minimum effective concentration.

    PubMed

    Fuller, Jeff; Schofield, Adam; Jiwa, Safeer; Sand, Crystal; Jansen, Brad; Rennie, Robert

    2010-02-01

    The Clinical and Laboratory Standards Institute (CLSI) M38-A2 reference broth microdilution (BMD) method for the antifungal susceptibility testing of filamentous fungi now includes guidelines for testing echinocandin activity using the minimum effective concentration (MEC) as the endpoint measurement. In this study, we compared the caspofungin Etest MIC on RPMI agar and Mueller-Hinton agar (supplemented with glucose and methylene blue [MGM]) to the BMD MEC for 345 clinical Aspergillus isolates, including A. flavus, A. fumigatus, A. nidulans, A. niger, and A. terreus. The essential agreement (+/-1 log(2) dilution) of the Etest on MGM and RPMI agar with the reference BMD MEC was 18 and 26%, respectively. The geometric mean values for BMD MEC and MGM Etest were 0.137 and 0.024 microg/ml, respectively, and the geometric mean values for BMD and RPMI agar were 0.128 and 0.031 microg/ml, respectively. Comparatively, 91% of paired MGM and RPMI Etest results were within 2 log(2) dilutions of each other and consistently produced clearly defined endpoints. In conclusion, the caspofungin Etest MIC, like the BMD MEC, is a reproducible endpoint but is markedly lower than the reference BMD. In anticipation of susceptibility breakpoint assignments, optimization studies will be required to improve the concordance of these two assays so that the potential for underreporting echinocandin resistance in Aspergillus is mitigated.

  14. Aspergillus fumigatus in Poultry

    PubMed Central

    Arné, Pascal; Thierry, Simon; Wang, Dongying; Deville, Manjula; Le Loc'h, Guillaume; Desoutter, Anaïs; Féménia, Françoise; Nieguitsila, Adélaïde; Huang, Weiyi; Chermette, René; Guillot, Jacques

    2011-01-01

    Aspergillus fumigatus remains a major respiratory pathogen in birds. In poultry, infection by A. fumigatus may induce significant economic losses particularly in turkey production. A. fumigatus develops and sporulates easily in poor quality bedding or contaminated feedstuffs in indoor farm environments. Inadequate ventilation and dusty conditions increase the risk of bird exposure to aerosolized spores. Acute cases are seen in young animals following inhalation of spores, causing high morbidity and mortality. The chronic form affects older birds and looks more sporadic. The respiratory tract is the primary site of A. fumigatus development leading to severe respiratory distress and associated granulomatous airsacculitis and pneumonia. Treatments for infected poultry are nonexistent; therefore, prevention is the only way to protect poultry. Development of avian models of aspergillosis may improve our understanding of its pathogenesis, which remains poorly understood. PMID:21826144

  15. Tremorgenic mycotoxins from Aspergillus caespitosus.

    PubMed

    Schroeder, H W; Cole, R J; Hein, H; Kirksey, J W

    1975-06-01

    Two tremorgenic mycotoxins were isolated from Aspergillus caespitosus, and identified as verruculogen and fumitremorgin B. They were produced at the rate of 172 and 325 mg per kg, respectively, on autoclaved cracked field corn.

  16. Tremorgenic Mycotoxins from Aspergillus Caespitosus

    PubMed Central

    Schroeder, H. W.; Cole, R. J.; Hein, H.; Kirksey, J. W.

    1975-01-01

    Two tremorgenic mycotoxins were isolated from Aspergillus caespitosus, and identified as verruculogen and fumitremorgin B. They were produced at the rate of 172 and 325 mg per kg, respectively, on autoclaved cracked field corn. PMID:1155935

  17. Aspergillus antigen skin test (image)

    MedlinePlus

    ... After 48 to 72 hours the site of injection is evaluated by a physician. If a positive reaction occurs (the test site is inflamed), the person has been exposed to the aspergillus mold and is at risk for developing aspergillosis.

  18. Genetic and biosynthetic studies of the fungal prenylated xanthone shamixanthone and related metabolites in Aspergillus spp. revisited.

    PubMed

    Simpson, Thomas J

    2012-07-23

    Biosynthetic genes for the prenylated xanthone shamixanthone have been identified in the Aspergillus nidulans genome; based on assignment of putative functions from sequence analyses and selected gene deletions, a pathway was proposed leading from the anthraquinone emodin via the benzophenone carboxylic acid monodictyphenone and the xanthone emericellin to shamixanthone. Several aspects of this proposed pathway are inconsistent with previously identified biosynthetic intermediates: the anthraquinone chrysophanol and the benzophenone aldehyde derivatives arugosins F and A/B, isotopic labelling studies and chemical precedents. A new pathway is presented that provides a full rationale for the results of the gene deletion studies and reconciles them with previous biosynthetic results, and is in accord with established chemical and biosynthetic mechanisms. The importance of interpreting genetic information in terms of established biosynthetic events is discussed.

  19. Photorecovery of gamma irradiated cultures of blue-green alga, Anacystis nidulans.

    NASA Technical Reports Server (NTRS)

    Asato, Y.

    1971-01-01

    Evidence is given for photorecovery of Anacystis nidulans after exposures to Co 60 gamma radiation. After irradiation the levels of viable cells were higher in cultures kept in white light than in cultures kept dark for 24 hr. The post-irradiation survival rate increase after 30-min exposures to visible light is demonstrated in cultures irradiated with 35 krad. An increase in survival rates was not observed after exposures to ?red' light.

  20. Complete nucleotide sequence of the 23S rRNA gene of the Cyanobacterium, Anacystis nidulans.

    PubMed Central

    Douglas, S E; Doolittle, W F

    1984-01-01

    The nucleotide sequence of the Anacystis nidulans 23S rRNA gene, including the 5'- and 3'-flanking regions has been determined. The gene is 2876 nucleotides long and shows higher primary sequence homology to the 23S rRNAs of plastids (84.5%) than to that of E. coli (79%). The predicted rRNA transcript also shares many secondary structural features with those of plastids, reinforcing the endosymbiont hypothesis for the origin of these organelles. PMID:6326060

  1. Photorecovery of gamma irradiated cultures of blue-green alga, Anacystis nidulans.

    NASA Technical Reports Server (NTRS)

    Asato, Y.

    1971-01-01

    Evidence is given for photorecovery of Anacystis nidulans after exposures to Co 60 gamma radiation. After irradiation the levels of viable cells were higher in cultures kept in white light than in cultures kept dark for 24 hr. The post-irradiation survival rate increase after 30-min exposures to visible light is demonstrated in cultures irradiated with 35 krad. An increase in survival rates was not observed after exposures to ?red' light.

  2. Photosynthetic Light Reactions in Chemically Fixed Anacystis nidulans, Chlorella pyrenoidosa, and Porphyridium cruentum1

    PubMed Central

    Hallier, U. W.; Park, R. B.

    1969-01-01

    The photochemical activities of various species of unicellular algae (Anacystis nidulans, Chlorella pyrenoidosa, and Porphyridium cruentum) were studied following chemical fixation. Fixation with formaldehyde and glutaraldehyde yielded cells which retained their ability to perform photosystem I and photosystem II reactions. The photochemical efficiencies of some fixed algae are as great as those of unfixed spinach chloroplasts. Fixed algae containing accessory pigments appear to be useful models for further studies of the light reactions of photosynthesis. PMID:16657097

  3. Effect of barium and nickel on the growth of anacystis nidulans

    SciTech Connect

    Lustigman, L.H.L.B.

    1996-12-31

    Anacystis nidulans is a simple, unicellular, prokaryotic microorganism. Like other cyanobacteria it is an obligate photoautotroph that is similar to gram-negative bacteria in cell wall structure, replication, and ability to harbor plasmids. Cyanobacteria are excellent organisms to serve as models for the investigation of a wide variety of biological problems, including indicators of environmental pollution. There have been several studies on the effects of heavy metals on A. nidulans. Toxic metals are a major water pollution problem. Metals come from natural weathering processes of the earth`s crust, but industrialization and urbanization have led to an increase in contamination of aquatic environments, mainly from industrial discharge, pest or disease control agents applied to plants, urban run-off, mining, soil erosion, sewage effluents, air pollution fallout, and other sources. Among these contaminants are nickel, barium, and their derivatives. This study examined the effects of selected concentrations of nickel chloride and barium chloride on the growth of A. nidulans, with and without the addition of EDTA. 19 refs., 3 figs.

  4. Genome mining and functional genomics for siderophore production in Aspergillus niger.

    PubMed

    Franken, Angelique C W; Lechner, Beatrix E; Werner, Ernst R; Haas, Hubertus; Lokman, B Christien; Ram, Arthur F J; van den Hondel, Cees A M J J; de Weert, Sandra; Punt, Peter J

    2014-11-01

    Iron is an essential metal for many organisms, but the biologically relevant form of iron is scarce because of rapid oxidation resulting in low solubility. Simultaneously, excessive accumulation of iron is toxic. Consequently, iron uptake is a highly controlled process. In most fungal species, siderophores play a central role in iron handling. Siderophores are small iron-specific chelators that can be secreted to scavenge environmental iron or bind intracellular iron with high affinity. A second high-affinity iron uptake mechanism is reductive iron assimilation (RIA). As shown in Aspergillus fumigatus and Aspergillus nidulans, synthesis of siderophores in Aspergilli is predominantly under control of the transcription factors SreA and HapX, which are connected by a negative transcriptional feedback loop. Abolishing this fine-tuned regulation corroborates iron homeostasis, including heme biosynthesis, which could be biotechnologically of interest, e.g. the heterologous production of heme-dependent peroxidases. Aspergillus niger genome inspection identified orthologues of several genes relevant for RIA and siderophore metabolism, as well as sreA and hapX. Interestingly, genes related to synthesis of the common fungal extracellular siderophore triacetylfusarinine C were absent. Reverse-phase high-performance liquid chromatography (HPLC) confirmed the absence of triacetylfusarinine C, and demonstrated that the major secreted siderophores of A. niger are coprogen B and ferrichrome, which is also the dominant intracellular siderophore. In A. niger wild type grown under iron-replete conditions, the expression of genes involved in coprogen biosynthesis and RIA was low in the exponential growth phase but significantly induced during ascospore germination. Deletion of sreA in A. niger resulted in elevated iron uptake and increased cellular ferrichrome accumulation. Increased sensitivity toward phleomycin and high iron concentration reflected the toxic effects of excessive

  5. Three extracellular dipeptidyl peptidases found in Aspergillus oryzae show varying substrate specificities.

    PubMed

    Maeda, Hiroshi; Sakai, Daisuke; Kobayashi, Takuji; Morita, Hiroto; Okamoto, Ayako; Takeuchi, Michio; Kusumoto, Ken-Ichi; Amano, Hitoshi; Ishida, Hiroki; Yamagata, Youhei

    2016-06-01

    Three extracellular dipeptidyl peptidase genes, dppB, dppE, and dppF, were unveiled by sequence analysis of the Aspergillus oryzae genome. We investigated their differential enzymatic profiles, in order to gain an understanding of the diversity of these genes. The three dipeptidyl peptidases were expressed using Aspergillus nidulans as the host. Each recombinant enzyme was purified and subsequently characterized. The enzymes displayed similar optimum pH values, but optimum temperatures, pH stabilities, and substrate specificities varied. DppB was identified as a Xaa-Prolyl dipeptidyl peptidase, while DppE scissile substrates were similar to the substrates for Aspergillus fumigatus DPPV (AfDPPV). DppF was found to be a novel enzyme that could digest both substrates for A. fumigatus DPPIV and AfDPPV. Semi-quantitative PCR revealed that the transcription of dppB in A. oryzae was induced by protein substrates and repressed by the addition of an inorganic nitrogen source, despite the presence of protein substrates. The transcription of dppE depended on its growth time, while the transcription of dppF was not affected by the type of the nitrogen source in the medium, and it started during the early stage of the fungal growth. Based on these results, we conclude that these enzymes may represent the nutrition acquisition enzymes. Additionally, DppF may be one of the sensor peptidases responsible for the detection of the protein substrates in A. oryzae environment. DppB may be involved in nitrogen assimilation control, since the transcription of dppB was repressed by NaNO3, despite the presence of protein substrates.

  6. Glycosylinositolphosphoceramides in Aspergillus fumigatus.

    PubMed

    Simenel, Catherine; Coddeville, Bernadette; Delepierre, Muriel; Latgé, Jean-Paul; Fontaine, Thierry

    2008-01-01

    Fungal glycosylinositolphosphoceramides (GIPCs) are involved in cell growth and fungal-host interactions. In this study, six GIPCs from the mycelium of the human pathogen Aspergillus fumigatus were purified and characterized using Q-TOF mass spectrometry and 1H, 13C, and 31P NMR. All structures have the same inositolphosphoceramide moiety with the presence of a C(18:0)-phytosphingosine conjugated to a 2-hydroxylated saturated fatty acid (2-hydroxy-lignoceric acid). The carbohydrate moiety defines two types of GIPC. The first, a mannosylated zwitterionic glycosphingolipid contains a glucosamine residue linked in alpha1-2 to an inositol ring that has been described in only two other fungal pathogens. The second type of GIPC presents an alpha-Manp-(1-->3)-alpha-Manp-(1-->2)-IPC common core. A galactofuranose residue is found in four GIPC structures, mainly at the terminal position via a beta1-2 linkage. Interestingly, this galactofuranose residue could be substituted by a choline-phosphate group, as observed only in the GIPC of Acremonium sp., a plant pathogen.

  7. Aspergillus fumigatus and Aspergillosis

    PubMed Central

    Latgé, Jean-Paul

    1999-01-01

    Aspergillus fumigatus is one of the most ubiquitous of the airborne saprophytic fungi. Humans and animals constantly inhale numerous conidia of this fungus. The conidia are normally eliminated in the immunocompetent host by innate immune mechanisms, and aspergilloma and allergic bronchopulmonary aspergillosis, uncommon clinical syndromes, are the only infections observed in such hosts. Thus, A. fumigatus was considered for years to be a weak pathogen. With increases in the number of immunosuppressed patients, however, there has been a dramatic increase in severe and usually fatal invasive aspergillosis, now the most common mold infection worldwide. In this review, the focus is on the biology of A. fumigatus and the diseases it causes. Included are discussions of (i) genomic and molecular characterization of the organism, (ii) clinical and laboratory methods available for the diagnosis of aspergillosis in immunocompetent and immunocompromised hosts, (iii) identification of host and fungal factors that play a role in the establishment of the fungus in vivo, and (iv) problems associated with antifungal therapy. PMID:10194462

  8. Tracheobronchial Manifestations of Aspergillus Infections

    PubMed Central

    Krenke, Rafal; Grabczak, Elzbieta M.

    2011-01-01

    Human lungs are constantly exposed to a large number of Aspergillus spores which are present in ambient air. These spores are usually harmless to immunocompetent subjects but can produce a symptomatic disease in patients with impaired antifungal defense. In a small percentage of patients, the trachea and bronchi may be the main or even the sole site of Aspergillus infection. The clinical entities that may develop in tracheobronchial location include saprophytic, allergic and invasive diseases. Although this review is focused on invasive Aspergillus tracheobronchial infections, some aspects of allergic and saprophytic tracheobronchial diseases are also discussed in order to present the whole spectrum of tracheobronchial aspergillosis. To be consistent with clinical practice, an approach basing on specific conditions predisposing to invasive Aspergillus tracheobronchial infections is used to present the differences in the clinical course and prognosis of these infections. Thus, invasive or potentially invasive Aspergillus airway diseases are discussed separately in three groups of patients: (1) lung transplant recipients, (2) highly immunocompromised patients with hematologic malignancies and/or patients undergoing hematopoietic stem cell transplantation, and (3) the remaining, less severely immunocompromised patients or even immunocompetent subjects. PMID:22194666

  9. Genomics of Aspergillus flavus mycotoxin production

    USDA-ARS?s Scientific Manuscript database

    The aspergilli show immense ecological and metabolic diversity. To date, the sequences of fifteen different Aspergillus genomes have been determined providing scientists with an exciting resource to improve the understanding of Aspergillus molecular genomics. Aspergillus flavus, one of the most wide...

  10. Cyclopiazonic Acid Biosynthesis of Aspergillus flavus and Aspergillus oryzae

    USDA-ARS?s Scientific Manuscript database

    Cyclopiazonic acid (CPA) is an indole-tetramic acid neurotoxin produced by some of the same strains of A. flavus that produce aflatoxins and by some Aspergillus oryzae strains. Despite its discovery 40 years ago, few reviews of its toxicity and biosynthesis have been reported. This review examines w...

  11. Effect of manganese and zinc on the growth of Anacystis nidulans

    SciTech Connect

    Lee, L.H.; Lustigman, B.; Dandorf, D. )

    1994-07-01

    Anacystis nidulans is a unicellular member of the cyanobacteria, one of the largest groups of the Kingdom Monera. It is similar to other bacteria in the structure and chemistry of the cell wall, and its cell division and genetic recombination. Photoautotrophy is the main mode of nutrition and the photosynthetic apparatus is similar to that of other cyanobacteria. Cyanobacteria are excellent organisms to serve as environmental pollution indicators for the investigation of a wide variety of biological problems. There have been several studies on the effects of heavy metals on A. nidulans. Some of these elements, such as manganese, are known to be essential nutrients for cyanobacteria. Others, such as cadmium, are not known to be necessary for normal growth and metabolism. Large amounts of either essential or non-essential elements can be toxic. Manganese and zinc are essential elements for all living organisms. Manganese is a cofactor for a number of different enzymatic reactions particularly those involved in phosphorylation. Iron deficiency induced by a number of metals, cobalt and manganese in particular, inhibit chlorophyll biosynthesis. Zinc deficiency affects early mitotic events and the cells are large and aberrant in appearance. Light is essential for cells to take in zinc. As an industrial contaminant, zinc has been found to block photosynthesis by causing structural damage to the photosynthetic apparatus. In the presence of various pH ranges, high zinc concentrations can be associated with low pH. It has been indicated that pH value and EDTA (Ethylene Diamine Tetraacetic Acid) have an influence on the effect of some metals. The purpose of this study was to determine the effect of manganese and zinc on the growth of Anacystis nidulans, with and without EDTA.

  12. Sexual reproduction in Aspergillus flavus

    USDA-ARS?s Scientific Manuscript database

    Aspergillus flavus is the major producer of carcinogenic aflatoxins in crops worldwide and is also an important opportunistic human pathogen in aspergillosis. The sexual state of this heterothallic fungus is described from crosses between strains of the opposite mating type. Sexual reproduction oc...

  13. Sexual recombination in Aspergillus tubingensis

    USDA-ARS?s Scientific Manuscript database

    Aspergillus tubingensis from section Nigri (Black Aspergilli) is closely related to A. niger and is used extensively in the industrial production of enzymes and organic acids. We recently discovered sexual reproduction in A. tubingensis and in this study, demonstrate that the progeny are products o...

  14. Aspergillus infections in cystic fibrosis.

    PubMed

    King, Jill; Brunel, Shan F; Warris, Adilia

    2016-07-05

    Patients with cystic fibrosis (CF) suffer from chronic lung infection and airway inflammation. Respiratory failure secondary to chronic or recurrent infection remains the commonest cause of death and accounts for over 90% of mortality. Bacteria as Staphylococcus aureus, Pseudomonas aeruginosa and Burkholderia cepacia complex have been regarded the main CF pathogens and their role in progressive lung decline has been studied extensively. Little attention has been paid to the role of Aspergillus spp. and other filamentous fungi in the pathogenesis of non-ABPA (allergic bronchopulmonary aspergillosis) respiratory disease in CF, despite their frequent recovery in respiratory samples. It has become more apparent however, that Aspergillus spp. may play an important role in chronic lung disease in CF. Research delineating the underlying mechanisms of Aspergillus persistence and infection in the CF lung and its link to lung deterioration is lacking. This review summarizes the Aspergillus disease phenotypes observed in CF, discusses the role of CFTR (cystic fibrosis transmembrane conductance regulator)-protein in innate immune responses and new treatment modalities. Copyright © 2016. Published by Elsevier Ltd.

  15. Characterization of the product of a nonribosomal peptide synthetase-like (NRPS-like) gene using the doxycycline dependent Tet-on system in Aspergillus terreus.

    PubMed

    Sun, Wei-Wen; Guo, Chun-Jun; Wang, Clay C C

    2016-04-01

    Genome sequencing of the fungus Aspergillus terreus uncovered a number of silent core structural biosynthetic genes encoding enzymes presumed to be involved in the production of cryptic secondary metabolites. There are five nonribosomal peptide synthetase (NRPS)-like genes with the predicted A-T-TE domain architecture within the A. terreus genome. Among the five genes, only the product of pgnA remains unknown. The Tet-on system is an inducible, tunable and metabolism-independent expression system originally developed for Aspergillus niger. Here we report the adoption of the Tet-on system as an effective gene activation tool in A. terreus. Application of this system in A. terreus allowed us to uncover the product of the cryptic NRPS-like gene, pgnA. Furthermore expression of pgnA in the heterologous Aspergillus nidulans host suggested that the pgnA gene alone is necessary for phenguignardic acid (1) biosynthesis. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Increased production of free fatty acids in Aspergillus oryzae by disruption of a predicted acyl-CoA synthetase gene.

    PubMed

    Tamano, Koichi; Bruno, Kenneth S; Koike, Hideaki; Ishii, Tomoko; Miura, Ai; Umemura, Myco; Culley, David E; Baker, Scott E; Machida, Masayuki

    2015-04-01

    Fatty acids are attractive molecules as source materials for the production of biodiesel fuel. Previously, we attained a 2.4-fold increase in fatty acid production by increasing the expression of fatty acid synthesis-related genes in Aspergillus oryzae. In this study, we achieved an additional increase in the production of fatty acids by disrupting a predicted acyl-CoA synthetase gene in A. oryzae. The A. oryzae genome is predicted to encode six acyl-CoA synthetase genes and disruption of AO090011000642, one of the six genes, resulted in a 9.2-fold higher accumulation (corresponding to an increased production of 0.23 mmol/g dry cell weight) of intracellular fatty acid in comparison to the wild-type strain. Furthermore, by introducing a niaD marker from Aspergillus nidulans to the disruptant, as well as changing the concentration of nitrogen in the culture medium from 10 to 350 mM, fatty acid productivity reached 0.54 mmol/g dry cell weight. Analysis of the relative composition of the major intracellular free fatty acids caused by disruption of AO090011000642 in comparison to the wild-type strain showed an increase in stearic acid (7 to 26 %), decrease in linoleic acid (50 to 27 %), and no significant changes in palmitic or oleic acid (each around 20-25 %).

  17. Thaumatin Production in Aspergillus awamori by Use of Expression Cassettes with Strong Fungal Promoters and High Gene Dosage

    PubMed Central

    Moralejo, Francisco-Jose; Cardoza, Rosa-Elena; Gutierrez, Santiago; Martin, Juan F.

    1999-01-01

    Four expression cassettes containing strong fungal promoters, a signal sequence for protein translocation, a KEX protease cleavage site, and a synthetic gene (tha) encoding the sweet protein thaumatin II were used to overexpress this protein in Aspergillus awamori lpr66, a PepA protease-deficient strain. The best expression results were obtained with the gdhA promoter of A. awamori or with the gpdA promoter of Aspergillus nidulans. There was good correlation of tha gene dosage, transcript levels, and thaumatin secretion. The thaumatin gene was expressed as a transcript of the expected size in each construction (1.9 or 1.4 kb), and the transcript levels and thaumatin production rate decayed at the end of the growth phase, except in the double transformant TB2b1-44-GD5, in which secretion of thaumatin continued until 96 h. The recombinant thaumatin secreted by a high-production transformant was purified to homogeneity, giving one major component and two minor components. In all cases, cleavage of the fused protein occurred at the KEX recognition sequence. This work provides new expression systems in A. awamori that result in very high levels of thaumatin production. PMID:10049878

  18. Thaumatin production in Aspergillus awamori by use of expression cassettes with strong fungal promoters and high gene dosage.

    PubMed

    Moralejo, F J; Cardoza, R E; Gutierrez, S; Martin, J F

    1999-03-01

    Four expression cassettes containing strong fungal promoters, a signal sequence for protein translocation, a KEX protease cleavage site, and a synthetic gene (tha) encoding the sweet protein thaumatin II were used to overexpress this protein in Aspergillus awamori lpr66, a PepA protease-deficient strain. The best expression results were obtained with the gdhA promoter of A. awamori or with the gpdA promoter of Aspergillus nidulans. There was good correlation of tha gene dosage, transcript levels, and thaumatin secretion. The thaumatin gene was expressed as a transcript of the expected size in each construction (1.9 or 1.4 kb), and the transcript levels and thaumatin production rate decayed at the end of the growth phase, except in the double transformant TB2b1-44-GD5, in which secretion of thaumatin continued until 96 h. The recombinant thaumatin secreted by a high-production transformant was purified to homogeneity, giving one major component and two minor components. In all cases, cleavage of the fused protein occurred at the KEX recognition sequence. This work provides new expression systems in A. awamori that result in very high levels of thaumatin production.

  19. Expression, purification, crystallization and preliminary X-ray diffraction analysis of Aspergillus terreus endo-β-1,4-glucanase from glycoside hydrolase family 12

    PubMed Central

    Segato, Fernando; Berto, Gabriela L.; Ares de Araújo, Evandro; Muniz, João Renato; Polikarpov, Igor

    2014-01-01

    Endoglucanases are important enzymes that are involved in the modification and degradation of cellulose. Filamentous fungi such as Aspergillus terreus are effective biomass degraders in nature owing to their capacity to produce an enzymatic arsenal of glycoside hydrolases, including endoglucanase from glycoside hydrolase family 12 (GH12). The A. terreus GH12 endoglucanase was cloned and overexpressed in A. nidulans, purified and crystallized. A single crystal was obtained from a solution consisting of 2 M ammonium sulfate, 5%(v/v) 2-propanol. X-ray diffraction data were collected to a resolution of 1.85 Å using synchrotron radiation and a preliminary molecular-replacement solution was obtained in the trigonal space group P3221. The unit-cell parameters were a = b = 103.24, c = 48.96 Å. PMID:24637772

  20. Expression, purification, crystallization and preliminary X-ray diffraction analysis of Aspergillus terreus endo-β-1,4-glucanase from glycoside hydrolase family 12.

    PubMed

    Segato, Fernando; Berto, Gabriela L; Ares de Araújo, Evandro; Muniz, João Renato; Polikarpov, Igor

    2014-02-01

    Endoglucanases are important enzymes that are involved in the modification and degradation of cellulose. Filamentous fungi such as Aspergillus terreus are effective biomass degraders in nature owing to their capacity to produce an enzymatic arsenal of glycoside hydrolases, including endoglucanase from glycoside hydrolase family 12 (GH12). The A. terreus GH12 endoglucanase was cloned and overexpressed in A. nidulans, purified and crystallized. A single crystal was obtained from a solution consisting of 2 M ammonium sulfate, 5%(v/v) 2-propanol. X-ray diffraction data were collected to a resolution of 1.85 Å using synchrotron radiation and a preliminary molecular-replacement solution was obtained in the trigonal space group P3(2)21. The unit-cell parameters were a = b = 103.24, c = 48.96 Å.

  1. The Aspergillus PacC zinc finger transcription factor mediates regulation of both acid- and alkaline-expressed genes by ambient pH.

    PubMed Central

    Tilburn, J; Sarkar, S; Widdick, D A; Espeso, E A; Orejas, M; Mungroo, J; Peñalva, M A; Arst, H N

    1995-01-01

    The pH regulation of gene expression in Aspergillus nidulans is mediated by pacC, whose 678 residue-derived protein contains three putative Cys2His2 zinc fingers. Ten pacCc mutations mimicking growth at alkaline pH remove between 100 and 214 C-terminal residues, including a highly acidic region containing an acidic glutamine repeat. Nine pacC+/- mutations mimicking acidic growth conditions remove between 299 and 505 C-terminal residues. Deletion of the entire pacC coding region mimics acidity but leads additionally to poor growth and conidiation. A PacC fusion protein binds DNA with the core consensus GCCARG. At alkaline ambient pH, PacC activates transcription of alkaline-expressed genes (including pacC itself) and represses transcription of acid-expressed genes. pacCc mutations obviate the need for pH signal transduction. Images PMID:7882981

  2. E-Test Method for Testing Susceptibilities of Aspergillus spp. to the New Triazoles Voriconazole and Posaconazole and to Established Antifungal Agents: Comparison with NCCLS Broth Microdilution Method

    PubMed Central

    Espinel-Ingroff, Ana; Rezusta, A.

    2002-01-01

    NCCLS document M38-P describes standard parameters for testing the fungistatic activities (MICs) of established agents against filamentous fungi (molds). This study evaluated the in vitro susceptibilities of 15 Aspergillus flavus isolates, 62 A. fumigatus isolates, and 10 isolates each of A. niger, A. nidulans, and A. terreus to voriconazole, posaconazole, itraconazole, and amphotericin B by the E-test and NCCLS M38-P microdilution methods. The agreement (within 3 dilutions) between methods for voriconazole was independent of the E-test incubation time (93.3 to 100% for four of five species at both incubation times). In contrast, with amphotericin B, itraconazole, and posaconazole, E-test results were more dependent on the incubation time for certain species. For A. fumigatus, posaconazole E-test MICs had better concordance with reference values after 48 h (95.2%) than after 24 h (90%), while the highest agreement for itraconazole MICs was after 24 h (90.3 versus 74.2%) of incubation. Better agreement between the methods was also obtained with 24-h E-test amphotericin B MICs for A. flavus (73.3 versus 26.7%) and A. fumigatus (96.7 versus 64.5%). E-test MICs of the four agents had the lowest percentages of agreement with reference values for A. nidulans (60 to 80%). For isolates for which high MICs were obtained for the four agents by the reference method, high MICs were also obtained by E-test at both 24 and 48 h. The utility of in vitro results of either the E-test or the NCCLS broth microdilution (M38-P) method for Aspergillus spp. needs to be established in clinical trials. PMID:12037072

  3. Conidial Dihydroxynaphthalene Melanin of the Human Pathogenic Fungus Aspergillus fumigatus Interferes with the Host Endocytosis Pathway.

    PubMed

    Thywißen, Andreas; Heinekamp, Thorsten; Dahse, Hans-Martin; Schmaler-Ripcke, Jeannette; Nietzsche, Sandor; Zipfel, Peter F; Brakhage, Axel A

    2011-01-01

    Aspergillus fumigatus is the most important air-borne fungal pathogen of humans. The interaction of the pathogen with the host's immune system represents a key process to understand pathogenicity. For elimination of invading microorganisms, they need to be efficiently phagocytosed and located in acidified phagolysosomes. However, as shown previously, A. fumigatus is able to manipulate the formation of functional phagolysosomes. Here, we demonstrate that in contrast to pigmentless pksP mutant conidia of A. fumigatus, the gray-green wild-type conidia inhibit the acidification of phagolysosomes of alveolar macrophages, monocyte-derived macrophages, and human neutrophil granulocytes. Therefore, this inhibition is independent of the cell type and applies to the major immune effector cells required for defense against A. fumigatus. Studies with melanin ghosts indicate that the inhibitory effect of wild-type conidia is due to their dihydroxynaphthalene (DHN)-melanin covering the conidia, whereas the hydrophobin RodA rodlet layer plays no role in this process. This is also supported by the observation that pksP conidia still exhibit the RodA hydrophobin layer, as shown by scanning electron microscopy. Mutants defective in different steps of the DHN-melanin biosynthesis showed stronger inhibition than pksP mutant conidia but lower inhibition than wild-type conidia. Moreover, A. fumigatus and A. flavus led to a stronger inhibition of phagolysosomal acidification than A. nidulans and A. terreus. These data indicate that a certain type of DHN-melanin that is different in the various Aspergillus species, is required for maximal inhibition of phagolysosomal acidification. Finally, we identified the vacuolar ATPase (vATPase) as potential target for A. fumigatus based on the finding that addition of bafilomycin which inhibits vATPase, led to complete inhibition of the acidification whereas the fusion of phagosomes containing wild-type conidia and lysosomes was not affected.

  4. Conidial Dihydroxynaphthalene Melanin of the Human Pathogenic Fungus Aspergillus fumigatus Interferes with the Host Endocytosis Pathway

    PubMed Central

    Thywißen, Andreas; Heinekamp, Thorsten; Dahse, Hans-Martin; Schmaler-Ripcke, Jeannette; Nietzsche, Sandor; Zipfel, Peter F.; Brakhage, Axel A.

    2011-01-01

    Aspergillus fumigatus is the most important air-borne fungal pathogen of humans. The interaction of the pathogen with the host's immune system represents a key process to understand pathogenicity. For elimination of invading microorganisms, they need to be efficiently phagocytosed and located in acidified phagolysosomes. However, as shown previously, A. fumigatus is able to manipulate the formation of functional phagolysosomes. Here, we demonstrate that in contrast to pigmentless pksP mutant conidia of A. fumigatus, the gray-green wild-type conidia inhibit the acidification of phagolysosomes of alveolar macrophages, monocyte-derived macrophages, and human neutrophil granulocytes. Therefore, this inhibition is independent of the cell type and applies to the major immune effector cells required for defense against A. fumigatus. Studies with melanin ghosts indicate that the inhibitory effect of wild-type conidia is due to their dihydroxynaphthalene (DHN)-melanin covering the conidia, whereas the hydrophobin RodA rodlet layer plays no role in this process. This is also supported by the observation that pksP conidia still exhibit the RodA hydrophobin layer, as shown by scanning electron microscopy. Mutants defective in different steps of the DHN-melanin biosynthesis showed stronger inhibition than pksP mutant conidia but lower inhibition than wild-type conidia. Moreover, A. fumigatus and A. flavus led to a stronger inhibition of phagolysosomal acidification than A. nidulans and A. terreus. These data indicate that a certain type of DHN-melanin that is different in the various Aspergillus species, is required for maximal inhibition of phagolysosomal acidification. Finally, we identified the vacuolar ATPase (vATPase) as potential target for A. fumigatus based on the finding that addition of bafilomycin which inhibits vATPase, led to complete inhibition of the acidification whereas the fusion of phagosomes containing wild-type conidia and lysosomes was not affected. PMID

  5. Distinct Roles of Myosins in Aspergillus fumigatus Hyphal Growth and Pathogenesis

    PubMed Central

    Renshaw, Hilary; Vargas-Muñiz, José M.; Richards, Amber D.; Asfaw, Yohannes G.; Juvvadi, Praveen R.

    2016-01-01

    Myosins are a family of actin-based motor proteins found in many organisms and are categorized into classes based on their structures. Class II and V myosins are known to be important for critical cellular processes, including cytokinesis, endocytosis, exocytosis, and organelle trafficking, in the model fungi Saccharomyces cerevisiae and Aspergillus nidulans. However, the roles of myosins in the growth and virulence of the pathogen Aspergillus fumigatus are unknown. We constructed single- and double-deletion strains of the class II and class V myosins in A. fumigatus and found that while the class II myosin (myoB) is dispensable for growth, the class V myosin (myoE) is required for proper hyphal extension; deletion of myoE resulted in hyperbranching and loss of hyphal polarity. Both myoB and myoE are necessary for proper septation, conidiation, and conidial germination, but only myoB is required for conidial viability. Infection with the ΔmyoE strain in the invertebrate Galleria mellonella model and also in a persistently immunosuppressed murine model of invasive aspergillosis resulted in hypovirulence, while analysis of bronchoalveolar lavage fluid revealed that tumor necrosis factor alpha (TNF-α) release and cellular infiltration were similar compared to those of the wild-type strain. The ΔmyoE strain showed fungal growth in the murine lung, while the ΔmyoB strain exhibited little fungal burden, most likely due to the reduced conidial viability. These results show, for the first time, the important role these cytoskeletal components play in the growth of and disease caused by a known pathogen, prompting future studies to understand their regulation and potential targeting for novel antifungal therapies. PMID:26953327

  6. RmtA, a Putative Arginine Methyltransferase, Regulates Secondary Metabolism and Development in Aspergillus flavus

    PubMed Central

    Satterlee, Timothy; Cary, Jeffrey W.; Calvo, Ana M.

    2016-01-01

    Aspergillus flavus colonizes numerous oil seed crops such as corn, peanuts, treenuts and cotton worldwide, contaminating them with aflatoxin and other harmful potent toxins. In the phylogenetically related model fungus Aspergillus nidulans, the methyltransferase, RmtA, has been described to be involved in epigenetics regulation through histone modification. Epigenetics regulation affects a variety of cellular processes, including morphogenesis and secondary metabolism. Our study shows that deletion of rmtA in A. flavus results in hyperconidiating colonies, indicating that rmtA is a repressor of asexual development in this fungus. The increase in conidiation in the absence of rmtA coincides with greater expression of brlA, abaA, and wetA compared to that in the wild type. Additionally, the rmtA deletion mutant presents a drastic reduction or loss of sclerotial production, while forced expression of this gene increased the ability of this fungus to generate these resistant structures, revealing rmtA as a positive regulator of sclerotial formation. Importantly, rmtA is also required for the production of aflatoxin B1 in A. flavus, affecting the expression of aflJ. Furthermore, biosynthesis of additional metabolites is also controlled by rmtA, indicating a broad regulatory output in the control of secondary metabolism. This study also revealed that rmtA positively regulates the expression of the global regulatory gene veA, which could contribute to mediate the effects of rmtA on development and secondary metabolism in this relevant opportunistic plant pathogen. PMID:27213959

  7. Developmental regulators in Aspergillus fumigatus.

    PubMed

    Park, Hee-Soo; Yu, Jae-Hyuk

    2016-03-01

    The filamentous fungus Aspergillus fumigatus is the most prevalent airborne fungal pathogen causing severe and usually fatal invasive aspergillosis in immunocompromised patients. This fungus produces a large number of small hydrophobic asexual spores called conidia as the primary means of reproduction, cell survival, propagation, and infectivity. The initiation, progression, and completion of asexual development (conidiation) is controlled by various regulators that govern expression of thousands of genes associated with formation of the asexual developmental structure conidiophore, and biogenesis of conidia. In this review, we summarize key regulators that directly or indirectly govern conidiation in this important pathogenic fungus. Better understanding these developmental regulators may provide insights into the improvement in controlling both beneficial and detrimental aspects of various Aspergillus species.

  8. Atypical Aspergillus parasiticus isolates from pistachio with aflR gene nucleotide insertion identical to Aspergillus sojae

    USDA-ARS?s Scientific Manuscript database

    Aflatoxins are the most toxic and carcinogenic secondary metabolites produced primarily by the filamentous fungi Aspergillus flavus and Aspergillus parasiticus. The toxins cause devastating economic losses because of strict regulations on distribution of contaminated products. Aspergillus sojae are...

  9. A novel method used to delete a new Aspergillus fumigatus ABC transporter-encoding gene.

    PubMed

    Langfelder, Kim; Gattung, Stephanie; Brakhage, Axel A

    2002-07-01

    Aspergillus fumigatus is an important opportunistic human pathogenic fungus. In severely immunocompromised patients, the fungus causes life-threatening diseases, such as pneumonia and invasive aspergillosis. In order to obtain a better understanding of the key elements involved in A. fumigatus virulence and for identifying possible drug targets, it is essential to be able to generate gene-deletion strains. Until recently, the molecular techniques available did not provide a rapid method for gene deletion. A novel method described for A. nidulans was adapted for A. fumigatus. This method is quick and produces an increased homologous recombination efficiency. By using an Escherichia coli strain expressing the lambda red operon, it is possible to induce an in vivo recombination of a PCR fragment flanked by >50-bp regions with a cosmid containing the gene of interest. This produces cosmids in which the gene of interest has been replaced by a bi-functional marker. Such cosmids have large flanking regions surrounding the selectable marker pyrG of A. fumigatus used here, which result in high recombination efficiencies in A. fumigatus. Here, we identified a new ABC transporter-encoding gene in A. fumigatus, designated abcA. By using this method, an A. fumigatus knock-out mutant was generated, providing evidence that this method of generating gene deletions can also be used in A. fumigatus and significantly broadens our repertoire of molecular techniques to study A. fumigatus.

  10. chsZ, a gene for a novel class of chitin synthase from Aspergillus oryzae.

    PubMed

    Chigira, Yuko; Abe, Keietsu; Gomi, Katsuya; Nakajima, Tasuku

    2002-07-01

    We cloned and characterized a novel Aspergillus oryzae chitin synthase gene, chsZ, encoding a polypeptide containing a new myosin motor-like domain in its N-terminal half. Alignment analysis revealed that ChsZ was less homologous to known class V enzymes, except for its probable chitin synthase conserved region in the C-terminal half. We also found a chsY gene and found that ChsY showed higher similarity to the class V enzymes than did ChsZ. Phylogenetic analysis clearly demonstrated that the A. oryzae ChsZ, together with Chs4 of Paracoccidioides brasiliensis and Chs6 of Ustilago maydis, formed a new subclass distinct from A. oryzae ChsY and known class V chitin synthases, including A. nidulans CsmA (ChsD) and A. fumigatus ChsE. In conclusion, we propose a new class, class VI chitin synthases, represented by A. oryzae ChsZ, P. brasiliensis Chs4 and U. maydis Chs6. Expression analysis suggested that the regulation of chsZ expression is distinct from that of chsY expression.

  11. Workflow to study genetic biodiversity of aflatoxigenic Aspergillus spp. in Georgia, USA

    USDA-ARS?s Scientific Manuscript database

    Peanut seeds were sampled from the entire state of Georgia in 2014. More than 600 isolates of Aspergillus spp. were collected using modified-dichloran rose Bengal (MDRB) medium, 240 of those isolates were fingerprinted with 25 InDel markers within the aflatoxin-biosynthesis gene cluster (ABC). Clust...

  12. Wild-Type MIC Distributions and Epidemiological Cutoff Values for the Triazoles and Six Aspergillus spp. for the CLSI Broth Microdilution Method (M38-A2 Document)▿

    PubMed Central

    Espinel-Ingroff, A.; Diekema, D. J.; Fothergill, A.; Johnson, E.; Pelaez, T.; Pfaller, M. A.; Rinaldi, M. G.; Canton, E.; Turnidge, J.

    2010-01-01

    Clinical breakpoints have not been established for mold testing. Wild-type (WT) MIC distributions (organisms in a species/drug combination with no detectable acquired resistance mechanisms) were defined in order to establish epidemiologic cutoff values (ECVs) for five Aspergillus spp. and itraconazole, posaconazole, and voriconazole. Also, we have expanded prior ECV data for Aspergillus fumigatus. The number of available isolates varied according to the species/triazole combination as follows: 1,684 to 2,815 for A. fumigatus, 323 to 592 for A. flavus, 131 to 143 for A. nidulans, 366 to 520 for A. niger, 330 to 462 for A. terreus, and 45 to 84 for A. versicolor. CLSI broth microdilution MIC data gathered in five independent laboratories in Europe and the United States were aggregated for the analyses. ECVs expressed in μg/ml were as follows (percentages of isolates for which MICs were equal to or less than the ECV are in parentheses): A. fumigatus, itraconazole, 1 (98.8%); posaconazole, 0.5 (99.2%); voriconazole, 1 (97.7%); A. flavus, itraconazole, 1 (99.6%); posaconazole, 0.25 (95%); voriconazole, 1 (98.1%); A. nidulans, itraconazole, 1 (95%); posaconazole, 1 (97.7%); voriconazole, 2 (99.3%); A. niger, itraconazole, 2 (100%); posaconazole, 0.5 (96.9%); voriconazole, 2 (99.4%); A. terreus, itraconazole, 1 (100%); posaconazole, 0.5 (99.7%); voriconazole, 1 (99.1%); A. versicolor, itraconazole, 2 (100%); posaconazole, 1 (not applicable); voriconazole, 2 (97.5%). Although ECVs do not predict therapy outcome as clinical breakpoints do, they may aid in detection of azole resistance (non-WT MIC) due to cyp51A mutations, a resistance mechanism in some Aspergillus spp. These ECVs should be considered for inclusion in the future CLSI M38-A2 document revision. PMID:20592159

  13. A new high-performance heterologous fungal expression system based on regulatory elements from the Aspergillus terreus terrein gene cluster.

    PubMed

    Gressler, Markus; Hortschansky, Peter; Geib, Elena; Brock, Matthias

    2015-01-01

    Recently, the Aspergillus terreus terrein gene cluster was identified and selected for development of a new heterologous expression system. The cluster encodes the specific transcription factor TerR that is indispensable for terrein cluster induction. To identify TerR binding sites, different recombinant versions of the TerR DNA-binding domain were analyzed for specific motif recognition. The high affinity consensus motif TCGGHHWYHCGGH was identified from genes required for terrein production and binding site mutations confirmed their essential contribution to gene expression in A. terreus. A combination of TerR with its terA target promoter was tested as recombinant expression system in the heterologous host Aspergillus niger. TerR mediated target promoter activation was directly dependent on its transcription level. Therefore, terR was expressed under control of the regulatable amylase promoter PamyB and the resulting activation of the terA target promoter was compared with activation levels obtained from direct expression of reporters from the strong gpdA control promoter. Here, the coupled system outcompeted the direct expression system. When the coupled system was used for heterologous polyketide synthase expression high metabolite levels were produced. Additionally, expression of the Aspergillus nidulans polyketide synthase gene orsA revealed lecanoric acid rather than orsellinic acid as major polyketide synthase product. Domain swapping experiments assigned this depside formation from orsellinic acid to the OrsA thioesterase domain. These experiments confirm the suitability of the expression system especially for high-level metabolite production in heterologous hosts.

  14. A new high-performance heterologous fungal expression system based on regulatory elements from the Aspergillus terreus terrein gene cluster

    PubMed Central

    Gressler, Markus; Hortschansky, Peter; Geib, Elena; Brock, Matthias

    2015-01-01

    Recently, the Aspergillus terreus terrein gene cluster was identified and selected for development of a new heterologous expression system. The cluster encodes the specific transcription factor TerR that is indispensable for terrein cluster induction. To identify TerR binding sites, different recombinant versions of the TerR DNA-binding domain were analyzed for specific motif recognition. The high affinity consensus motif TCGGHHWYHCGGH was identified from genes required for terrein production and binding site mutations confirmed their essential contribution to gene expression in A. terreus. A combination of TerR with its terA target promoter was tested as recombinant expression system in the heterologous host Aspergillus niger. TerR mediated target promoter activation was directly dependent on its transcription level. Therefore, terR was expressed under control of the regulatable amylase promoter PamyB and the resulting activation of the terA target promoter was compared with activation levels obtained from direct expression of reporters from the strong gpdA control promoter. Here, the coupled system outcompeted the direct expression system. When the coupled system was used for heterologous polyketide synthase expression high metabolite levels were produced. Additionally, expression of the Aspergillus nidulans polyketide synthase gene orsA revealed lecanoric acid rather than orsellinic acid as major polyketide synthase product. Domain swapping experiments assigned this depside formation from orsellinic acid to the OrsA thioesterase domain. These experiments confirm the suitability of the expression system especially for high-level metabolite production in heterologous hosts. PMID:25852654

  15. The Aspergillus fumigatus Septins Play Pleiotropic Roles in Septation, Conidiation, and Cell Wall Stress, but are Dispensable for Virulence

    PubMed Central

    Vargas-Muñiz, José M.; Renshaw, Hilary; Richards, Amber D.; Lamoth, Frédéric; Soderblom, Erik J.; Moseley, M. Arthur; Juvvadi, Praveen R.; Steinbach, William J.

    2015-01-01

    Septins are a conserved family of GTPases that regulate important cellular processes such as cell wall integrity, and septation in fungi. The requirement of septins for virulence has been demonstrated in the human pathogenic yeasts Candida albicans and Cryptococcus neoformans, as well as the plant pathogen Magnaporthe oryzae. Aspergillus spp. contains five genes encoding for septins (aspA-E). While the importance of septins AspA, AspB, AspC, and AspE for growth and conidiation has been elucidated in the filamentous fungal model Aspergillus nidulans, nothing is known on the role of septins in growth and virulence in the human pathogen Aspergillus fumigatus. Here we deleted all five A. fumigatus septins, and generated certain double and triple septin deletion strains. Phenotypic analyses revealed that while all the septins are dispensable in normal growth conditions, AspA, AspB, AspC and AspE are required for regular septation. Furthermore, deletion of only the core septin genes significantly reduced conidiation. Concomitant with the absence of an electron-dense outer conidial wall, the ΔaspB strain was also sensitive to anti-cell wall agents. Infection with the ΔaspB strain in a Galleria mellonella model of invasive aspergillosis showed hypervirulence, but no virulence difference was noted when compared to the wild-type strain in a murine model of invasive aspergillosis. Although the deletion of aspB resulted in increased release of TNF-α from the macrophages, no significant inflammation differences in lung histology was noted between the ΔaspB strain and the wild-type strain. Taken together, these results point to the importance of septins in A. fumigatus growth, but not virulence in a murine model. PMID:26051489

  16. The Aspergillus fumigatus septins play pleiotropic roles in septation, conidiation, and cell wall stress, but are dispensable for virulence.

    PubMed

    Vargas-Muñiz, José M; Renshaw, Hilary; Richards, Amber D; Lamoth, Frédéric; Soderblom, Erik J; Moseley, M Arthur; Juvvadi, Praveen R; Steinbach, William J

    2015-08-01

    Septins are a conserved family of GTPases that regulate important cellular processes such as cell wall integrity, and septation in fungi. The requirement of septins for virulence has been demonstrated in the human pathogenic yeasts Candida albicans and Cryptococcus neoformans, as well as the plant pathogen Magnaporthe oryzae. Aspergillus spp. contains five genes encoding for septins (aspA-E). While the importance of septins AspA, AspB, AspC, and AspE for growth and conidiation has been elucidated in the filamentous fungal model Aspergillus nidulans, nothing is known on the role of septins in growth and virulence in the human pathogen Aspergillus fumigatus. Here we deleted all five A. fumigatus septins, and generated certain double and triple septin deletion strains. Phenotypic analyses revealed that while all the septins are dispensable in normal growth conditions, AspA, AspB, AspC and AspE are required for regular septation. Furthermore, deletion of only the core septin genes significantly reduced conidiation. Concomitant with the absence of an electron-dense outer conidial wall, the ΔaspB strain was also sensitive to anti-cell wall agents. Infection with the ΔaspB strain in a Galleria mellonella model of invasive aspergillosis showed hypervirulence, but no virulence difference was noted when compared to the wild-type strain in a murine model of invasive aspergillosis. Although the deletion of aspB resulted in increased release of TNF-α from the macrophages, no significant inflammation differences in lung histology was noted between the ΔaspB strain and the wild-type strain. Taken together, these results point to the importance of septins in A. fumigatus growth, but not virulence in a murine model. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Palmitoylation of the Cysteine Residue in the DHHC Motif of a Palmitoyl Transferase Mediates Ca2+ Homeostasis in Aspergillus

    PubMed Central

    Zhang, Yuanwei; Zheng, Qingqing; Sun, Congcong; Song, Jinxing; Gao, Lina; Zhang, Shizhu; Muñoz, Alberto; Read, Nick D.; Lu, Ling

    2016-01-01

    Finely tuned changes in cytosolic free calcium ([Ca2+]c) mediate numerous intracellular functions resulting in the activation or inactivation of a series of target proteins. Palmitoylation is a reversible post-translational modification involved in membrane protein trafficking between membranes and in their functional modulation. However, studies on the relationship between palmitoylation and calcium signaling have been limited. Here, we demonstrate that the yeast palmitoyl transferase ScAkr1p homolog, AkrA in Aspergillus nidulans, regulates [Ca2+]c homeostasis. Deletion of akrA showed marked defects in hyphal growth and conidiation under low calcium conditions which were similar to the effects of deleting components of the high-affinity calcium uptake system (HACS). The [Ca2+]c dynamics in living cells expressing the calcium reporter aequorin in different akrA mutant backgrounds were defective in their [Ca2+]c responses to high extracellular Ca2+ stress or drugs that cause ER or plasma membrane stress. All of these effects on the [Ca2+]c responses mediated by AkrA were closely associated with the cysteine residue of the AkrA DHHC motif, which is required for palmitoylation by AkrA. Using the acyl-biotin exchange chemistry assay combined with proteomic mass spectrometry, we identified protein substrates palmitoylated by AkrA including two new putative P-type ATPases (Pmc1 and Spf1 homologs), a putative proton V-type proton ATPase (Vma5 homolog) and three putative proteins in A. nidulans, the transcripts of which have previously been shown to be induced by extracellular calcium stress in a CrzA-dependent manner. Thus, our findings provide strong evidence that the AkrA protein regulates [Ca2+]c homeostasis by palmitoylating these protein candidates and give new insights the role of palmitoylation in the regulation of calcium-mediated responses to extracellular, ER or plasma membrane stress. PMID:27058039

  18. Ecophysiological characterization of Aspergillus carbonarius, Aspergillus tubingensis and Aspergillus niger isolated from grapes in Spanish vineyards.

    PubMed

    García-Cela, E; Crespo-Sempere, A; Ramos, A J; Sanchis, V; Marin, S

    2014-03-03

    The aim of this study was to evaluate the diversity of black aspergilli isolated from berries from different agroclimatic regions of Spain. Growth characterization (in terms of temperature and water activity requirements) of Aspergillus carbonarius, Aspergillus tubingensis and Aspergillus niger was carried out on synthetic grape medium. A. tubingensis and A. niger showed higher maximum temperatures for growth (>45 °C versus 40-42 °C), and lower minimum aw requirements (0.83 aw versus 0.87 aw) than A. carbonarius. No differences in growth boundaries due to their geographical origin were found within A. niger aggregate isolates. Conversely, A. carbonarius isolates from the hotter and drier region grew and produced OTA at lower aw than other isolates. However, little genetic diversity in A. carbonarius was observed for the microsatellites tested and the same sequence of β-tubulin gene was observed; therefore intraspecific variability did not correlate with the geographical origin of the isolates or with their ability to produce OTA. Climatic change prediction points to drier and hotter climatic scenarios where A. tubingensis and A. niger could be even more prevalent over A. carbonarius, since they are better adapted to extreme high temperature and drier conditions.

  19. Coupling of Solar Energy to Hydrogen Peroxide Production in the Cyanobacterium Anacystis nidulans

    PubMed Central

    Roncel, Mercedes; Navarro, José A.; De la Rosa, Miguel A.

    1989-01-01

    Hydrogen peroxide production by blue-green algae (cyanobacteria) under photoautotrophic conditions is of great interest as a model system for the bioconversion of solar energy. Our experimental system was based on the photosynthetic reduction of molecular oxygen with electrons from water by Anacystis nidulans 1402-1 as the biophotocatalyst and methyl viologen as a redox intermediate. It has been demonstrated that the metabolic conditions of the algae in their different growth stages strongly influence the capacity for hydrogen peroxide photoproduction, and so the initial formation rate and net peroxide yield became maximum in the mid-log phase of growth. The overall process can be optimized in the presence of certain metabolic inhibitors such as iodoacetamide and p-hydroxymercuribenzoate, as well as by permeabilization of the cellular membrane after drastic temperature changes and by immobilization of the cells in inert supports such as agar and alginate. PMID:16347855

  20. Adsorption of cyanophage AS-1 to unicellular cyanobacteria and isolation of receptor material from Anacystis nidulans.

    PubMed Central

    Samimi, B; Drews, G

    1978-01-01

    Cells of unicellular cyanobacteria of typological group Ia, containing approximately 50 mol% guanine + cytosine (G+C) in their DNA (R. Y. Stanier, R. Kunisawa, M. Mandel, and G. Cohen-Bazire, Bacteriol. Rev. 35:171-205, 1971), were susceptible to infection by the cyanophage AS-1. Cyanobacteria of the same typological group, containing approximately 65 mol% G+C in their DNA, did not adsorb the cyanophage AS-1 or adsorbed it at a low rate. AS-1 was not propagated by any of the investigated strains with a high G+C content in their DNA. However, cells of strains 6907 and 6911 were lysed by cyanophage AS-1. A comparison of the host range of this phage with the lipopolysaccharide composition of host and non-host cell walls suggests that lipopolysaccharides are involved in the adsorption process. About 8 microgram of lipopolysaccharide per ml from host strains inactivated 50% of the particles of a solution containing 100 PFU/ml after 60 min of incubation at 30 degrees C. Material with receptor activity was extracted from the host strain Anacystis nidulans KM. The extract was purified of glycolipids and pigments, and a fraction showing receptor activity was isolated. This fraction contained three polypeptides of molecular weights between 54,000 and 64,000. Heat and protease treatment of whole cells and of isolated receptor material decreased the receptor activity. The fluorescence intensity of A. nidulans cells labeled with 1-anilino-8-naphthalene sulfonate was increased when AS-1 was adsorbed to these cells. The participation of lipopolysaccharides and proteins in the formation of the receptor complex is discussed. Images PMID:413935

  1. Aspergillus Osteomyelitis of the Skull.

    PubMed

    Nicholson, Simon; King, Richard; Chumas, Paul; Russell, John; Liddington, Mark

    2016-07-01

    Osteomyelitis of the craniofacial skeleton is rare, with fungal pathogens least commonly implicated. The authors present 2 patients of osteomyelitis of the skull caused by Aspergillus spp. and discuss the diagnosis, clinicopathological course, and management strategies.Late recurrence seen in this type of infection warrants long-term follow-up and a high index of suspicion for the clinical signs associated with recurrence.Such patients would benefit from their surgical debridement being planned and managed via a specialist craniofacial unit, so as to utilize the most aesthetically sensitive approach and the experience of specialists from several surgical disciplines.

  2. Two novel species of Aspergillus section Nigri from indoor air

    USDA-ARS?s Scientific Manuscript database

    Aspergillus collinsii, Aspergillus floridensis, and Aspergillus trinidadensis are described as novel uniseriate species of Aspergillus section Nigri isolated from air samples. To describe the species we used phenotypes from 7-d Czapek yeast extract agar culture (CYA) and malt extract agar culture (M...

  3. NITRIFICATION BY ASPERGILLUS FLAVUS1

    PubMed Central

    Marshall, K. C.; Alexander, M.

    1962-01-01

    Marshall, K. C. (Cornell University, Ithaca, N. Y.) and M. Alexander. Nitrification by Aspergillus flavus. J. Bacteriol. 83:572–578. 1962.—Aspergillus flavus has been shown to produce bound hydroxylamine, nitrite, and nitrate when grown in peptone, amino acid, or buffered ammonium media. Free hydroxylamine was not detected in these cultures, but it was found in an unbuffered ammonium medium in which neither nitrite nor nitrate was formed. Evidence was obtained for the presence of β-nitropropionic acid in the filtrate of an actively nitrifying culture. Alumina treatment of an ammonium medium prevented the formation by growing cultures of nitrite and nitrate but not bound hydroxylamine. The effect of alumina treatment was reversed by the addition of 10−3m CeCl3 to the medium. Extracts of the fungus contained peroxidase and an enzyme capable of catalyzing the production of nitrite from β-nitropropionic acid. The nitrite-forming enzyme is apparently specific for β-nitropropionate; no activity was found with nitromethane, nitroethane, and nitropropane as substrates. Nitrate was not reduced to nitrite nor was nitrite oxidized to nitrate by the hyphal extracts. The significance of these observations in nitrification by A. flavus is discussed. PMID:14470254

  4. Secondary metabolite profiles and antifungal drug susceptibility of Aspergillus fumigatus and closely related species, Aspergillus lentulus, Aspergillus udagawae, and Aspergillus viridinutans.

    PubMed

    Tamiya, Hiroyuki; Ochiai, Eri; Kikuchi, Kazuyo; Yahiro, Maki; Toyotome, Takahito; Watanabe, Akira; Yaguchi, Takashi; Kamei, Katsuhiko

    2015-05-01

    The incidence of Aspergillus infection has been increasing in the past few years. Also, new Aspergillus fumigatus-related species, namely Aspergillus lentulus, Aspergillus udagawae, and Aspergillus viridinutans, were shown to infect humans. These fungi exhibit marked morphological similarities to A. fumigatus, albeit with different clinical courses and antifungal drug susceptibilities. The present study used liquid chromatography/time-of-flight mass spectrometry to identify the secondary metabolites secreted as virulence factors by these Aspergillus species and compared their antifungal susceptibility. The metabolite profiles varied widely among A. fumigatus, A. lentulus, A. udagawae, and A. viridinutans, producing 27, 13, 8, and 11 substances, respectively. Among the mycotoxins, fumifungin, fumiquinazoline A/B and D, fumitremorgin B, gliotoxin, sphingofungins, pseurotins, and verruculogen were only found in A. fumigatus, whereas auranthine was only found in A. lentulus. The amount of gliotoxin, one of the most abundant mycotoxins in A. fumigatus, was negligible in these related species. In addition, they had decreased susceptibility to antifungal agents such as itraconazole and voriconazole, even though metabolites that were shared in the isolates showing higher minimum inhibitory concentrations than epidemiological cutoff values were not detected. These strikingly different secondary metabolite profiles may lead to the development of more discriminative identification protocols for such closely related Aspergillus species as well as improved treatment outcomes. Copyright © 2015 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  5. Aspergillus uvarum sp. nov., an uniseriate black Aspergillus species isolated from grapes in Europe.

    PubMed

    Perrone, Giancarlo; Varga, János; Susca, Antonia; Frisvad, Jens C; Stea, Gaetano; Kocsubé, Sándor; Tóth, Beáta; Kozakiewicz, Zofia; Samson, Robert A

    2008-04-01

    A novel species, Aspergillus uvarum sp. nov., is described within Aspergillus section Nigri. This species can be distinguished from other black aspergilli based on internal transcribed spacers (ITS), beta-tubulin and calmodulin gene sequences, by AFLP analysis and by extrolite profiles. Aspergillus uvarum sp. nov. isolates produced secalonic acid, common to other Aspergillus japonicus-related taxa, and geodin, erdin and dihydrogeodin, which are not produced by any other black aspergilli. None of the isolates were found to produce ochratoxin A. The novel species is most closely related to two atypical strains of Aspergillus aculeatus, CBS 114.80 and CBS 620.78, and was isolated from grape berries in Portugal, Italy, France, Israel, Greece and Spain. The type strain of Aspergillus uvarum sp. nov. is IMI 388523T=CBS 127591T=ITEM 4834T=IBT26606T.

  6. Aspergillus coronary embolization causing acute myocardial infarction.

    PubMed

    Laszewski, M; Trigg, M; de Alarcon, P; Giller, R

    1988-05-01

    An increased frequency of disseminated aspergillosis has been observed in the last decade, mostly occurring in immunocompromised patients including the bone marrow transplant population. Cardiac involvement by Aspergillus remains rare. We report the clinical and postmortem findings of an unusual case of Aspergillus pancarditis in a 7-year-old bone marrow transplant patient with Aspergillus embolization to the coronary arteries leading to a massive acute myocardial infarction. This case suggests that myocardial injury secondary to disseminated aspergillosis should be included in the differential diagnosis of chest pain in the immunocompromised pediatric patient.

  7. Development of a pyrG Mutant of Aspergillus oryzae Strain S1 as a Host for the Production of Heterologous Proteins

    PubMed Central

    Ling, Selina Oh Siew; Storms, Reginald; Zheng, Yun; Rodzi, Mohd Rohaizad Mohd; Mahadi, Nor Muhammad; Illias, Rosli Md

    2013-01-01

    The ease with which auxotrophic strains and genes that complement them can be manipulated, as well as the stability of auxotrophic selection systems, are amongst the advantages of using auxotrophic markers to produce heterologous proteins. Most auxotrophic markers in Aspergillus oryzae originate from chemical or physical mutagenesis that may yield undesirable mutations along with the mutation of interest. An auxotrophic A. oryzae strain S1 was generated by deleting the orotidine-5′-monophosphate decarboxylase gene (pyrG) by targeted gene replacement. The uridine requirement of the resulting strain GR6 pyrGΔ0 was complemented by plasmids carrying a pyrG gene from either Aspergillus nidulans or A. oryzae. β-Galactosidase expression by strain GR6 pyrGΔ0 transformed with an A. niger plasmid encoding a heterologous β-galactosidase was at least 150 times more than that obtained with the untransformed strain. Targeted gene replacement is thus an efficient way of developing auxotrophic mutants in A. oryzae and the auxotrophic strain GR6 pyrGΔ0 facilitated the production of a heterologous protein in this fungus. PMID:24381522

  8. Characterization and nitrogen-source regulation at the transcriptional level of the gdhA gene of Aspergillus awamori encoding an NADP-dependent glutamate dehydrogenase.

    PubMed

    Cardoza, R E; Moralejo, F J; Gutiérrez, S; Casqueiro, J; Fierro, F; Martín, J F

    1998-07-01

    A 28.7-kb DNA region containing the gdhA gene of Aspergillus awamori was cloned from a genomic DNA library. A fragment of 2570 nucleotides was sequenced that contained ORF1, of 1380 bp, encoding a protein of 460 amino acids (Mr 49.4 kDa). The encoded protein showed high similarity to the NADP-dependent glutamate dehydrogenases of different organisms. The cloned gene was functional since it complemented two different Aspergillus nidulans gdhA mutants, restoring high levels of NADP-dependent glutamate dehydrogenase to the transformants. The A. awamori gdhA gene was located by pulsed-field gel electrophoresis in a 5.5-Mb band (corresponding to a doublet of chromosomes II and III), and was transcribed as a monocistronic transcript of 1.7 kb. Transcript levels of the gdhA gene were very high during the rapid growth phase and decreased drastically after 48 h of cultivation. Very high expression levels of the gdhA gene were observed in media with ammonium or asparagine as the nitrogen source, whereas glutamic acid repressed transcription of the gdhA gene. These results indicate that expression of the gdhA gene is subject to a strong nitrogen regulation at the transcriptional level.

  9. Functional characterization of NAT/NCS2 proteins of Aspergillus brasiliensis reveals a genuine xanthine-uric acid transporter and an intrinsically misfolded polypeptide.

    PubMed

    Krypotou, Emilia; Scazzocchio, Claudio; Diallinas, George

    2015-02-01

    The Nucleobase-Ascorbate Transporter (NAT) family includes members in nearly all domains of life. Functionally characterized NAT transporters from bacteria, fungi, plants and mammals are ion-coupled symporters specific for the uptake of purines, pyrimidines and related analogues. The characterized mammalian NATs are specific for the uptake of L-ascorbic acid. In this work we identify in silico a group of fungal putative transporters, named UapD-like proteins, which represent a novel NAT subfamily. To understand the function and specificity of UapD proteins, we cloned and functionally characterized the two Aspergillus brasiliensis NAT members (named AbUapC and AbUapD) by heterologous expression in Aspergillus nidulans. AbUapC represents canonical NATs (UapC or UapA), while AbUapD represents the new subfamily. AbUapC is a high-affinity, high-capacity, H(+)/xanthine-uric acid transporter, which can also recognize other purines with very low affinity. No apparent transport function could be detected for AbUapD. GFP-tagging showed that, unlike AbUapC which is localized in the plasma membrane, AbUapD is ER-retained and degraded in the vacuoles, a characteristic of misfolded proteins. Chimeric UapA/AbUapD molecules are also turned-over in the vacuole, suggesting that UapD includes intrinsic peptidic sequences leading to misfolding. The possible evolutionary implication of such conserved, but inactive proteins is discussed.

  10. Genetic diversity of Aspergillus species isolated from onychomycosis and Aspergillus hongkongensis sp. nov., with implications to antifungal susceptibility testing.

    PubMed

    Tsang, Chi-Ching; Hui, Teresa W S; Lee, Kim-Chung; Chen, Jonathan H K; Ngan, Antonio H Y; Tam, Emily W T; Chan, Jasper F W; Wu, Andrea L; Cheung, Mei; Tse, Brian P H; Wu, Alan K L; Lai, Christopher K C; Tsang, Dominic N C; Que, Tak-Lun; Lam, Ching-Wan; Yuen, Kwok-Yung; Lau, Susanna K P; Woo, Patrick C Y

    2016-02-01

    Thirteen Aspergillus isolates recovered from nails of 13 patients (fingernails, n=2; toenails, n=11) with onychomycosis were characterized. Twelve strains were identified by multilocus sequencing as Aspergillus spp. (Aspergillus sydowii [n=4], Aspergillus welwitschiae [n=3], Aspergillus terreus [n=2], Aspergillus flavus [n=1], Aspergillus tubingensis [n=1], and Aspergillus unguis [n=1]). Isolates of A. terreus, A. flavus, and A. unguis were also identifiable by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The 13th isolate (HKU49(T)) possessed unique morphological characteristics different from other Aspergillus spp. Molecular characterization also unambiguously showed that HKU49(T) was distinct from other Aspergillus spp. We propose the novel species Aspergillus hongkongensis to describe this previously unknown fungus. Antifungal susceptibility testing showed most Aspergillus isolates had low MICs against itraconazole and voriconazole, but all Aspergillus isolates had high MICs against fluconazole. A diverse spectrum of Aspergillus species is associated with onychomycosis. Itraconazole and voriconazole are probably better drug options for Aspergillus onychomycosis.

  11. Aspergillus Infections in Transplant Recipients

    PubMed Central

    Singh, Nina; Paterson, David L.

    2005-01-01

    Aspergillus infections are occurring with an increasing frequency in transplant recipients. Notable changes in the epidemiologic characteristics of this infection have occurred; these include a change in risk factors and later onset of infection. Management of invasive aspergillosis continues to be challenging, and the mortality rate, despite the use of newer antifungal agents, remains unacceptably high. Performing molecular studies to discern new targets for antifungal activity, identifying signaling pathways that may be amenable to immunologic interventions, assessing combination regimens of antifungal agents or combining antifungal agents with modulation of the host defense mechanisms, and devising diagnostic assays that can rapidly and reliably diagnose infections represent areas for future investigations that may lead to further improvement in outcomes. PMID:15653818

  12. Three new species of Aspergillus section Flavi isolated from almonds and maize in Portugal

    USDA-ARS?s Scientific Manuscript database

    Three new aflatoxin-producing species belonging to Aspergillus section Flavi are described, Aspergillus mottae, Aspergillus sergii and Aspergillus transmontanensis. These species were isolated from Portuguese almonds and maize. An investigation examining morphology, extrolites and molecular data was...

  13. Performance of Galactomannan Antigen, Beta-d-Glucan, and Aspergillus-Lateral-Flow Device for the Diagnosis of Invasive Aspergillosis.

    PubMed

    Metan, Gökhan; Keklik, Muzaffer; Dinç, Gökçen; Pala, Çiğdem; Yıldırım, Afra; Saraymen, Berkay; Köker, Mustafa Yavuz; Kaynar, Leylagül; Eser, Bülent; Çetin, Mustafa

    2017-03-01

    Aspergillus lateral-flow device (LFD) was recently introduced as a practical tool for the diagnosis of invasive aspergillosis (IA). We investigated the performance of Aspergillus-LFD as a point-of-care test for the diagnosis of IA. Serum samples were collected twice weekly from patients who received intensive chemotherapy for acute leukemia, or recepients of allogeneic stem cell transplantation. Aspergillus galactomannan (GM) antigen, 1,3-beta-d-glucan and Aspergillus-LFD tests were carried out according to manufacturers' recommendations. GM testing was repeated with a modified procedure which was proven to increase the sensitivity. Aspergillus-LFD was performed without applying any pretreatment procedure to allow the kit to fit as a point-of-care test. Fungal infections were categorized according to European Organization for Research and Treatment of Cancer/Invasive Fungal Infections Cooperative Group and the National Institute of Allergy and Infectious Diseases Mycoses Study Group (EORTC/MSG) criteria. A total of 75 neutropenia episodes in 64 patients were prospectively followed between February 2012 and January 2013. Probable IA was diagnosed in 11 patients, probable pulmonary fungal disease was diagnosed in one patient, and rhinocerebral aspergillosis was diagnosed in one patient. Fungemia was detected in two patients. Aspergillus-LFD was positive in serum of a patient with probable IA and in the bronchoalveolar lavage fluid of an other patient with probable IA. Aspergillus-LFD was false positive in serum of two patients. Although there was no radiological finding of IA or documented fungemia, fever resolved after empirical caspofungin therapy in one of these patients. The sensitivity of Aspergillus-LFD as a point-of-care test without any pretreatment of serum sample is low.

  14. Construction of a Shuttle Vector for Heterologous Expression of a Novel Fungal α-Amylase Gene in Aspergillus oryzae.

    PubMed

    Yin, Yanchen; Mao, Youzhi; Yin, Xiaolie; Gao, Bei; Wei, Dongzhi

    2015-07-01

    The filamentous fungus Aspergillus oryzae is a well-known expression host used to express homologous and heterologous proteins in a number of industrial applications. To facilitate higher yields of proteins of interest, we constructed the pAsOP vector to express heterologous proteins in A. oryzae. pAsOP carries a selectable marker, pyrG, derived from Aspergillus nidulans, and a strong promoter and a terminator of the amyB gene derived from A. oryzae. pAsOP transformed A. oryzae efficiently via the PEG-CaCl2-mediated transformation method. As proof of concept, green fluorescent protein (GFP) was successfully expressed in A. oryzae transformed by pAsOP-GFP. Additionally, we identified a novel fungal α-amylase (PcAmy) gene from Penicillium sp. and cloned the gene into the vector. After transformation by pAsOPPcAmy, the α-amylase PcAmy from Penicillium sp. was successfully expressed in a heterologous host system for the first time. The α-amylase activity in the A. oryzae transformant was increased by 62.3% compared with the untransformed A. oryzae control. The PcAmy protein produced in the system had an optimum pH of 5.0 and optimum temperature of 30°C. As a cold-adapted enzyme, PcAmy shows potential value in industrial applications because of its high catalytic activity at low temperature. Furthermore, the expression vector reported in this study provides promising utility for further scientific research and biotechnological applications.

  15. Aspergillus waksmanii sp. nov. and Aspergillus marvanovae sp. nov., two closely related species in section Fumigati

    USDA-ARS?s Scientific Manuscript database

    Two new and phylogenetically closely related species in Aspergillus section Fumigati are described and illustrated. Homothallic A. waksmanii was isolated from New Jersey soil (USA) and is represented by the ex-type isolate NRRL 179T (=CCF 4266= IBT 31900). Aspergillus marvanovae was isolated from wa...

  16. Aspergillus tubingensis and Aspergillus niger as the dominant black Aspergillus, use of simple PCR-RFLP for preliminary differentiation.

    PubMed

    Mirhendi, H; Zarei, F; Motamedi, M; Nouripour-Sisakht, S

    2016-03-01

    This work aimed to identify the species distribution of common clinical and environmental isolates of black Aspergilli based on simple restriction fragment length polymorphism (RFLP) analysis of the β-tubulin gene. A total of 149 clinical and environmental strains of black Aspergilli were collected and subjected to preliminary morphological examination. Total genomic DNAs were extracted, and PCR was performed to amplify part of the β-tubulin gene. At first, 52 randomly selected samples were species-delineated by sequence analysis. In order to distinguish the most common species, PCR amplicons of 117 black Aspergillus strains were identified by simple PCR-RFLP analysis using the enzyme TasI. Among 52 sequenced isolates, 28 were Aspergillus tubingensis, 21 Aspergillus niger, and the three remaining isolates included Aspergillus uvarum, Aspergillus awamori, and Aspergillus acidus. All 100 environmental and 17 BAL samples subjected to TasI-RFLP analysis of the β-tubulin gene, fell into two groups, consisting of about 59% (n=69) A. tubingensis and 41% (n=48) A. niger. Therefore, the method successfully and rapidly distinguished A. tubingensis and A. niger as the most common species among the clinical and environmental isolates. Although tardy, the Ehrlich test was also able to differentiate A. tubingensis and A. niger according to the yellow color reaction specific to A. niger. A. tubingensis and A. niger are the most common black Aspergillus in both clinical and environmental isolates in Iran. PCR-RFLP using TasI digestion of β-tubulin DNA enables rapid screening for these common species.

  17. Cloning and characterisation of genes for tetrapyrrole biosynthesis from the cyanobacterium Anacystis nidulans R2.

    PubMed

    Jones, M C; Jenkins, J M; Smith, A G; Howe, C J

    1994-02-01

    The genes for 5-aminolevulinic acid dehydratase (ALAD) and uroporphyrinogen III synthase (UROS), two enzymes in the biosynthetic pathway for tetrapyrroles, were independently isolated from a plasmid-based genomic library of Anacystis nidulans R2 (also called Synechococcus sp. PCC7942), by their ability to complement Escherichia coli strains carrying mutations in the equivalent genes (hemB and hemD respectively). The identity of the genes was confirmed by comparing the appropriate enzyme activities in complemented and mutant strains. Subclones of the original plasmids that were also capable of complementing the mutants were sequenced. The inferred amino acid sequence of the cyanobacterial HemB protein indicates a significant difference in the metal cofactor requirement from the higher-plant enzymes, which was confirmed by overexpression and biochemical analysis. The organisation of the cyanobacterial hemD locus differs markedly from other prokaryotes. Two open reading frames were found immediately upstream of hemD. The product of one shows considerable similarity to published sequences from other organisms for uroporphyrinogen III methylase (UROM), an enzyme involved in the production of sirohaem and cobalamins (including vitamin B-12). The product of the other shows motifs which are similar to those found in proteins responsible for metabolic regulation in yeast and indicates that this family of transcription control proteins, which has previously been reported only from eukaryotes, is also represented in prokaryotes.

  18. Nitrate transport in the cyanobacterium Anacystis nidulans R2. Kinetic and energetic aspects.

    PubMed Central

    Rodríguez, R; Lara, C; Guerrero, M G

    1992-01-01

    Nitrate transport has been studied in the cyanobacterium Anacystis nidulans R2 by monitoring intracellular nitrate accumulation in intact cells of the mutant strain FM6, which lacks nitrate reductase activity and is therefore unable to reduce the transported nitrate. Kinetic analysis of nitrate transport as a function of external nitrate concentration revealed apparent substrate inhibition, with a peak velocity at 20-25 microM-nitrate. A Ks (NO3-) of 1 microM was calculated. Nitrate transport exhibited a stringent requirement for Na+. Neither Li+ nor K+ could substitute for Na+. Monensin depressed nitrate transport in a concentration-dependent manner, inhibition being more than 60% at 2 microM, indicating that the Na(+)-dependence of active nitrate transport relies on the maintenance of a Na+ electrochemical gradient. The operation of an Na+/NO3- symport system is suggested. Nitrite behaved as an effective competitive inhibitor of nitrate transport, with a Ki (NO2-) of 3 microM. The time course of nitrite inhibition of nitrate transport was consistent with competitive inhibition by mixed alternative substrates. Nitrate and nitrite might be transported by the same carrier. PMID:1554347

  19. Influence of Iron Deprivation on the Membrane Composition of Anacystis nidulans.

    PubMed

    Guikema, J A; Sherman, L A

    1984-01-01

    Cultures of the cyanobacterium Anacystis nidulans were grown under iron-deficient conditions and then restored by the addition of iron. Membrane proteins from iron-deficient and iron-restored cells were analyzed by lithium dodecyl sulfate-polyacrylamide gradient gel electrophoresis. The incorporation of [(35)S]sulfate into membrane proteins and lactoperoxidase-catalyzed (125)I iodination were used to monitor the rates of polypeptide biosynthesis and surface exposure of membrane proteins, respectively. These polypeptide profiles revealed major differences in the membrane composition of iron-deficient and normal cells. Iron deficiency caused a decrease in the amount of certain important membrane proteins, reflecting a decreased rate of biosynthesis of these peptides. Several photosystem II peptides also showed an increase in surface exposure after iron stress. In addition, iron deficiency led to the synthesis of proteins at 34 and 52 kilodaltons which were not present in normal cells. When iron was restored to a deficient culture, a metabolic sequence was initiated within the first 12 h after the addition of iron which led to phenotypically normal cells. Pulse labeling with [(35)S]sulfate during this period demonstrated that iron addition initiates a coordinated pattern of synthesis that leads to the assembly of normal membranes.

  20. Membrane development in the cyanobacterium, Anacystis nidulans, during recovery from iron starvation

    SciTech Connect

    Pakrasi, H.B.; Goldenberg, A.; Sherman, L.A.

    1985-09-01

    Deprivation of iron from the growth medium results in physiological as well as structural changes in the unicellular cyanobacterium Anacystis nidulans R2. Important among these changes are alterations in the composition and function of the photosynthetic membranes. Room-temperature absorption spectra of iron-starved cyanobacterial cells show a chlorophyll absorption peak at 672 nanometers, 7 nanometers blue-shifted from its normal position at 679 nanometers. Iron-starved cells have decreased amounts of chlorophyll and phycobilins. Their fluorescence spectra (77K) have one prominent chlorophyll emission peak at 684 nanometers as compared to three peaks at 687, 696, and 717 nanometers from normal cells. Chlorophyll-protein analysis of iron-deprived cells indicated the absence of high molecular weight bands. Addition of iron to iron-starved cells induced a restoration process in which new components were initially synthesized and integrated into preexisting membranes; at later times, new membranes were assembled and cell division commenced. Synthesis of chlorophyll and phycocyanins started almost immediately after the addition of iron. The origin of the fluorescence emission at 687 and 696 nanometers is discussed in relation to the specific chlorophyll-protein complexes formed during iron reconstitution. 26 references, 2 figures, 1 table.

  1. Purification and characterization of a DNA polymerase from the cyanobacterium Anacystis nidulans R2.

    PubMed

    Lin, H J; Cannon, G C; Heinhorst, S

    1990-11-25

    A DNA polymerase has been highly purified from Anacystis nidulans R2. Electrophoretic analysis in sodium dodecyl sulfate-polyacrylamide gels revealed that the final fraction contains three bands of Mr 107,000, 93,000, and 51,000, respectively. Analysis of purified DNA polymerase activity in situ indicates that of the three polypeptides the Mr 107,000 species has the catalytic activities. The native molecular weight of the enzyme was estimated by glycerol gradient sedimentation to be 100,000. The enzyme has an absolute requirement for a divalent cation. Mg2+ can be replaced with Mn2+, but the DNA polymerase is less active. Potassium chloride stimulates the enzyme, while potassium phosphate has no apparent effect. The enzyme is active over a pH range from 7.5 to 9.5 in 50mM Tris-HCl buffer. The ability of the cyanobacterial DNA polymerase to use activated DNA as a template, its associated 3'----5' and 5'----3' exonuclease activities, as well as its resistance to N-ethylmaleimide, dideoxynucleotides, arabinosyl-CTP and aphidicolin suggest a similarity between this enzyme and E. coli DNA polymerase I. This is the first characterization of a DNA polymerase from a cyanobacterium.

  2. Purification and characterization of a DNA polymerase from the cyanobacterium Anacystis nidulans R2.

    PubMed Central

    Lin, H J; Cannon, G C; Heinhorst, S

    1990-01-01

    A DNA polymerase has been highly purified from Anacystis nidulans R2. Electrophoretic analysis in sodium dodecyl sulfate-polyacrylamide gels revealed that the final fraction contains three bands of Mr 107,000, 93,000, and 51,000, respectively. Analysis of purified DNA polymerase activity in situ indicates that of the three polypeptides the Mr 107,000 species has the catalytic activities. The native molecular weight of the enzyme was estimated by glycerol gradient sedimentation to be 100,000. The enzyme has an absolute requirement for a divalent cation. Mg2+ can be replaced with Mn2+, but the DNA polymerase is less active. Potassium chloride stimulates the enzyme, while potassium phosphate has no apparent effect. The enzyme is active over a pH range from 7.5 to 9.5 in 50mM Tris-HCl buffer. The ability of the cyanobacterial DNA polymerase to use activated DNA as a template, its associated 3'----5' and 5'----3' exonuclease activities, as well as its resistance to N-ethylmaleimide, dideoxynucleotides, arabinosyl-CTP and aphidicolin suggest a similarity between this enzyme and E. coli DNA polymerase I. This is the first characterization of a DNA polymerase from a cyanobacterium. Images PMID:2123541

  3. Involvement of thylakoid membranes in supramolecular organisation of Calvin cycle enzymes in Anacystis nidulans.

    PubMed

    Sainis, Jayashree Krishna; Dani, Diksha Narhar; Dey, Gautam Kumar

    2003-01-01

    The cells of unicellular photosynthetic cyanobacterium Anacystis nidulans were permeated with lysozyme, toluene, toluene-triton, toluene-triton-lysozyme. Transmission electron microscopy of semi-thin sections (500 nm) using TEM at 160 kV showed that cells permeated with only lysozyme or toluene showed the typical concentric arrangement of thylakoid membranes. However, when toluene-treated cells were further treated with triton and lysozyme the thylakoid membranes were disrupted. Sequential reactions of Calvin cycle were studied in the differentially permeated cells in vivo, using various intermediates such as 3-PGA, GA-3-P, FDP, SDP, R-5-P, RuBP and cofactors like ATP, NADPH depending on the requirement. RuBP and R-5-P + ATP dependent activities could be observed in all types of permeated cells. Sequential reactions of the entire Calvin cycle using 3-PGA could be detected in the cells that had retained the internal organisation of the thylakoid membranes after permeation and were lost on disruption of this organisation. Light dependent CO2 fixation could be detected only in the cells permeated with lysozyme. This activity was abolished in the cells after treatment with toluene. The results suggested that the integrity of thylakoid membranes may be essential for the organisation of sequential enzymes of the Calvin cycle in vivo and facilitate their functioning.

  4. Aspergillus brasiliensis sp. nov., a biseriate black Aspergillus species with world-wide distribution.

    PubMed

    Varga, János; Kocsubé, Sándor; Tóth, Beáta; Frisvad, Jens C; Perrone, Giancarlo; Susca, Antonia; Meijer, Martin; Samson, Robert A

    2007-08-01

    A novel species, Aspergillus brasiliensis sp. nov., is described within Aspergillus section Nigri. This species can be distinguished from other black aspergilli based on intergenic transcribed region, beta-tubulin and calmodulin gene sequences, by amplified fragment length polymorphism analysis and by extrolite profiles. A. brasiliensis isolates produced naphtho-gamma-pyrones, tensidol A and B and pyrophen in common with Aspergillus niger and Aspergillus tubingensis, but also several unique compounds, justifying their treatment as representing a separate species. None of the isolates were found to produce ochratoxin A, kotanins, funalenone or pyranonigrins. The novel species was most closely related to A. niger, and was isolated from soil from Brazil, Australia, USA and The Netherlands, and from grape berries from Portugal. The type strain of Aspergillus brasiliensis sp. nov. is CBS 101740(T) (=IMI 381727(T)=IBT 21946(T)).

  5. Characterisation of the CipC-like protein AFUA_5G09330 of the opportunistic human pathogenic mould Aspergillus fumigatus.

    PubMed

    Bauer, Bettina; Schwienbacher, Monika; Broniszewska, Marzena; Israel, Lars; Heesemann, Jürgen; Ebel, Frank

    2010-07-01

    Aspergillus fumigatus is currently the major airborne fungal pathogen that menaces immunocompromised individuals. Germination of inhaled conidia is a hallmark of the early infection process, but little is known about the underlying mechanisms. The intention of our ongoing studies is the identification of A. fumigatus proteins that are differentially expressed during germination and may provide insights in the germination process. Using a proteomic approach, we identified AFUA_5G09330 as a major hyphal-specific protein. This result was confirmed using monoclonal antibodies generated in this study. AFUA_5G09330 belongs to a fungal-specific protein family. The eponymous CipC protein of A. nidulans has been shown to be induced by concanamycin A, and transcriptional data from Cryptococcus neoformans demonstrate a strong up-regulation of the expression of a homologous gene during infection. Our data provide evidence that AFUA_5G09330 is a monomeric, cytoplasmic protein. We found no evidence for an overexpression of AFUA_5G09330 induced by concanamycin A or other stress conditions. AFUA_5G09330 is exclusively found in the hyphal morphotype that enables an invasive growth of A. fumigatus during infection. Further studies are required to define the biological function of this hyphae-specific protein and its potential relevance for the pathogenicity of A. fumigatus.

  6. Cloning, heterologous expression and biochemical characterization of a non-specific endoglucanase family 12 from Aspergillus terreus NIH2624.

    PubMed

    Segato, Fernando; Dias, Bruno; Berto, Gabriela L; de Oliveira, Dyoni M; De Souza, Flávio H M; Citadini, Ana Paula; Murakami, Mario T; Damásio, André R L; Squina, Fábio Márcio; Polikarpov, Igor

    2017-04-01

    The cellulases from Glycoside Hydrolyses family 12 (GH12) play an important role in cellulose degradation and plant cell wall deconstruction being widely used in a number of bioindustrial processes. Aiming to contribute toward better comprehension of these class of the enzymes, here we describe a high-yield secretion of a endoglucanase GH12 from Aspegillus terreus (AtGH12), which was cloned and expressed in Aspergillus nidulans strain A773. The purified protein was used for complete biochemical and functional characterization. The optimal temperature and pH of the enzyme were 55°C and 5.0 respectively, which has high activity against β-glucan and xyloglucan and also is active toward glucomannan and CMC. The enzyme retained activity up to 60°C. AtGH12 is strongly inhibited by Cu(2+), Fe(2+), Cd(2+), Mn(2+), Ca(2+), Zn(2+) and EDTA, whereas K(+), Tween, Cs(+), DMSO, Triton X-100 and Mg(2+) enhanced the enzyme activity. Furthermore, SAXS data reveal that the enzyme has a globular shape and CD analysis demonstrated a prevalence of a β-strand structure corroborating with typical β-sheets fold commonly found for other endoglucanases from GH12 family. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Septins AspA and AspC are important for normal development and limit the emergence of new growth foci in the multicellular fungus Aspergillus nidulans

    USDA-ARS?s Scientific Manuscript database

    Septins are cytoskeletal proteins found in fungi, animals and microsporidia where they form multi-septin heteropolymeric complexes that act as scaffolds recruiting and organizing other proteins to ensure normal cell division and development. Here we characterize AspA and AspC, two of the five septin...

  8. Boron Tolerance in Aspergillus nidulans Is Sustained by the SltA Pathway Through the SLC-Family Transporters SbtA and SbtB

    PubMed Central

    Villarino, María; Mendizabal, Gorka; Garzia, Aitor; Ugalde, Unai

    2017-01-01

    Microbial cells interact with the environment by adapting to external changes. Signal transduction pathways participate in both sensing and responding in the form of modification of gene expression patterns, enabling cell survival. The filamentous fungal-specific SltA pathway regulates tolerance to alkalinity, elevated cation concentrations and, as shown in this work, also stress conditions induced by borates. Growth of sltA− mutants is inhibited by increasing millimolar concentrations of boric acid or borax (sodium tetraborate). In an attempt to identify genes required for boron-stress response, we determined the boric acid or borax-dependent expression of sbtA and sbtB, orthologs of Saccharomyces cerevisiae bor1, and a reduction in their transcript levels in a ΔsltA mutant. Deletion of sbtA, but mainly that of sbtB, decreased the tolerance to boric acid or borax. In contrast, null mutants of genes coding for additional transporters of the Solute Carrier (SLC) family, sB, sbtD or sbtE, showed an unaltered growth pattern under the same stress conditions. Taken together, our results suggest that the SltA pathway induces, through SbtA and SbtB, the export of toxic concentrations of borates, which have largely recognized antimicrobial properties. PMID:28753996

  9. Boron Tolerance in Aspergillus nidulans Is Sustained by the SltA Pathway Through the SLC-Family Transporters SbtA and SbtB.

    PubMed

    Villarino, María; Etxebeste, Oier; Mendizabal, Gorka; Garzia, Aitor; Ugalde, Unai; Espeso, Eduardo A

    2017-07-21

    Microbial cells interact with the environment by adapting to external changes. Signal transduction pathways participate in both sensing and responding in the form of modification of gene expression patterns, enabling cell survival. The filamentous fungal-specific SltA pathway regulates tolerance to alkalinity, elevated cation concentrations and, as shown in this work, also stress conditions induced by borates. Growth of sltA(-) mutants is inhibited by increasing millimolar concentrations of boric acid or borax (sodium tetraborate). In an attempt to identify genes required for boron-stress response, we determined the boric acid or borax-dependent expression of sbtA and sbtB, orthologs of Saccharomyces cerevisiae bor1, and a reduction in their transcript levels in a ΔsltA mutant. Deletion of sbtA, but mainly that of sbtB, decreased the tolerance to boric acid or borax. In contrast, null mutants of genes coding for additional transporters of the Solute Carrier (SLC) family, sB, sbtD or sbtE, showed an unaltered growth pattern under the same stress conditions. Taken together, our results suggest that the SltA pathway induces, through SbtA and SbtB, the export of toxic concentrations of borates, which have largely recognized antimicrobial properties.

  10. The Aspergillus nidulans Proline Permease as a Model for Understanding the Factors Determining Substrate Binding and Specificity of Fungal Amino Acid Transporters*

    PubMed Central

    Gournas, Christos; Evangelidis, Thomas; Athanasopoulos, Alexandros; Mikros, Emmanuel; Sophianopoulou, Vicky

    2015-01-01

    Amino acid uptake in fungi is mediated by general and specialized members of the yeast amino acid transporter (YAT) family, a branch of the amino acid polyamine organocation (APC) transporter superfamily. PrnB, a highly specific l-proline transporter, only weakly recognizes other Put4p substrates, its Saccharomyces cerevisiae orthologue. Taking advantage of the high sequence similarity between the two transporters, we combined molecular modeling, induced fit docking, genetic, and biochemical approaches to investigate the molecular basis of this difference and identify residues governing substrate binding and specificity. We demonstrate that l-proline is recognized by PrnB via interactions with residues within TMS1 (Gly56, Thr57), TMS3 (Glu138), and TMS6 (Phe248), which are evolutionary conserved in YATs, whereas specificity is achieved by subtle amino acid substitutions in variable residues. Put4p-mimicking substitutions in TMS3 (S130C), TMS6 (F252L, S253G), TMS8 (W351F), and TMS10 (T414S) broadened the specificity of PrnB, enabling it to recognize more efficiently l-alanine, l-azetidine-2-carboxylic acid, and glycine without significantly affecting the apparent Km for l-proline. S253G and W351F could transport l-alanine, whereas T414S, despite displaying reduced proline uptake, could transport l-alanine and glycine, a phenotype suppressed by the S130C mutation. A combination of all five Put4p-ressembling substitutions resulted in a functional allele that could also transport l-alanine and glycin