Science.gov

Sample records for aspergillus niger group

  1. Induced Autolysis of Aspergillus oryzae (A. niger group)

    PubMed Central

    Emiliani, Ezio; de Davie, I. Ucha

    1962-01-01

    The examination of substances formed during induced autolysis by Aspergillus niger was continued in this work, which dealt in particular with carbohydrates. The autolysate contained a large amount of d-glucose (14 to 20% dry wt) and traces of glycolic aldehyde, dihydroxyacetone, ribose, xylose, and fructose. It also contained glycopeptides (about 10% dry wt), which were split from the cell wall during autolysis and which differed from one another in their level of polymerization and their composition. They were constituted by glucose and mannose, glucose and galactose, or mannose, glucose, and galactose (mannose being the most abundant in this case), and amino acids (chiefly alanine, serine, glutamic acid, and aspartic acid). During autolysis, only a part of the cell wall was dissolved, since it retained its shape. Upon further chemical hydrolysis, it produced mostly glucose and glucosamine, and smaller amounts of mannose, galactose, and amino acids. Presumably, glucomannoproteins and glucogalactoproteins were present in the intact cell as a macromolecular complex, constituting, together with chitin, the major part of the cell wall of Aspergillus. PMID:16349623

  2. Review of secondary metabolites and mycotoxins from the Aspergillus niger group.

    PubMed

    Nielsen, Kristian Fog; Mogensen, Jesper Mølgaard; Johansen, Maria; Larsen, Thomas O; Frisvad, Jens Christian

    2009-11-01

    Filamentous fungi in the Aspergillus section Nigri (the black aspergilli) represent some of the most widespread food and feed contaminants known but they are also some of the most important workhorses used by the biotechnological industry. The Nigri section consists of six commonly found species (excluding A. aculeatus and its close relatives) from which currently 145 different secondary metabolites have been isolated and/or detected. From a human and animal safety point of view, the mycotoxins ochratoxin A (from A. carbonarius and less frequently A. niger) and fumonisin B(2) (from A. niger) are currently the most problematic compounds. Especially in foods and feeds such as coffee, nuts, dried fruits, and grape-based products where fumonisin-producing fusaria are not a problem, fumonisins pose a risk. Moreover, compounds such as malformins, naptho-gamma-pyrones, and bicoumarins (kotanins) call for monitoring in food, feed, and biotechnology products as well as for a better toxicological evaluation, since they are often produced in large amounts by the black aspergilli. For chemical differentiation/identification of the less toxic species the diketopiperazine asperazine can be used as a positive marker since it is consistently produced by A. tubingensis (177 of 177 strains tested) and A. acidus (47 of 47 strains tested) but never by A. niger (140 strains tested). Naptho-gamma-pyrones are the compounds produced in the highest quantities and are produced by all six common species in the group (A. niger 134 of 140; A. tubingensis 169 of 177; A. acidus 44 of 47; A. carbonarius 40 of 40, A. brasiliensis 18 of 18; and A. ibericus three of three).

  3. A new group of exo-acting family 28 glycoside hydrolases of Aspergillus niger that are involved in pectin degradation

    PubMed Central

    Martens-Uzunova, Elena S.; Zandleven, Joris S.; Benen, Jaques A. E.; Awad, Hanem; Kools, Harrie J.; Beldman, Gerrit; Voragen, Alphons G. J.; Van Den Berg, Johan A.; Schaap, Peter J.

    2006-01-01

    The fungus Aspergillus niger is an industrial producer of pectin-degrading enzymes. The recent solving of the genomic sequence of A. niger allowed an inventory of the entire genome of the fungus for potential carbohydrate-degrading enzymes. By applying bioinformatics tools, 12 new genes, putatively encoding family 28 glycoside hydrolases, were identified. Seven of the newly discovered genes form a new gene group, which we show to encode exoacting pectinolytic glycoside hydrolases. This group includes four exo-polygalacturonan hydrolases (PGAX, PGXA, PGXB and PGXC) and three putative exo-rhamnogalacturonan hydrolases (RGXA, RGXB and RGXC). Biochemical identification using polygalacturonic acid and xylogalacturonan as substrates demonstrated that indeed PGXB and PGXC act as exo-polygalacturonases, whereas PGXA acts as an exo-xylogalacturonan hydrolase. The expression levels of all 21 genes were assessed by microarray analysis. The results from the present study demonstrate that exo-acting glycoside hydrolases play a prominent role in pectin degradation. PMID:16822232

  4. Aspergillus niger contains the cryptic phylogenetic species A. awamori.

    PubMed

    Perrone, Giancarlo; Stea, Gaetano; Epifani, Filomena; Varga, János; Frisvad, Jens C; Samson, Robert A

    2011-11-01

    Aspergillus section Nigri is an important group of species for food and medical mycology, and biotechnology. The Aspergillus niger 'aggregate' represents its most complicated taxonomic subgroup containing eight morphologically indistinguishable taxa: A. niger, Aspergillus tubingensis, Aspergillus acidus, Aspergillus brasiliensis, Aspergillus costaricaensis, Aspergillus lacticoffeatus, Aspergillus piperis, and Aspergillus vadensis. Aspergillus awamori, first described by Nakazawa, has been compared taxonomically with other black aspergilli and recently it has been treated as a synonym of A. niger. Phylogenetic analyses of sequences generated from portions of three genes coding for the proteins β-tubulin (benA), calmodulin (CaM), and the translation elongation factor-1 alpha (TEF-1α) of a population of A. niger strains isolated from grapes in Europe revealed the presence of a cryptic phylogenetic species within this population, A. awamori. Morphological, physiological, ecological and chemical data overlap occurred between A. niger and the cryptic A. awamori, however the splitting of these two species was also supported by AFLP analysis of the full genome. Isolates in both phylospecies can produce the mycotoxins ochratoxin A and fumonisin B₂, and they also share the production of pyranonigrin A, tensidol B, funalenone, malformins, and naphtho-γ-pyrones. In addition, sequence analysis of four putative A. awamori strains from Japan, used in the koji industrial fermentation, revealed that none of these strains belong to the A. awamori phylospecies.

  5. Ochratoxin A production by strains of Aspergillus niger var. niger.

    PubMed Central

    Abarca, M L; Bragulat, M R; Castellá, G; Cabañes, F J

    1994-01-01

    In a survey of the occurrence of ochratoxin A (OA)-positive strains isolated from feedstuffs, two of the 19 isolates of Aspergillus niger var. niger that were studied produced OA in 2% yeast extract-15% sucrose broth and in corn cultures. This is the first report of production of OA by this species. PMID:8074536

  6. Aspergillus Niger Genomics: Past, Present and into the Future

    SciTech Connect

    Baker, Scott E.

    2006-09-01

    Aspergillus niger is a filamentous ascomycete fungus that is ubiquitous in the environment and has been implicated in opportunistic infections of humans. In addition to its role as an opportunistic human pathogen, A. niger is economically important as a fermentation organism used for the production of citric acid. Industrial citric acid production by A. niger represents one of the most efficient, highest yield bioprocesses in use currently by industry. The genome size of A. niger is estimated to be between 35.5 and 38.5 megabases (Mb) divided among eight chromosomes/linkage groups that vary in size from 3.5 - 6.6 Mb. Currently, there are three independent A. niger genome projects, an indication of the economic importance of this organism. The rich amount of data resulting from these multiple A. niger genome sequences will be used for basic and applied research programs applicable to fermentation process development, morphology and pathogenicity.

  7. [The distribution of free and esterified carboxyl groups within the pectin molecule after the action of pectin esterase from Aspergillus niger and oranges].

    PubMed

    Kohn, R; Dongowski, G; Bock, W

    1985-01-01

    By reaction of pectin esterase (PE) from Aspergillus niger and oranges as well as lye, with 95% esterified citrus and apple pectin we prepared series of preparations with degrees of esterification between 35 and 77%. In these partial deesterified pectins the form of distribution of the free and esterified carboxyl groups has been determined from the activity coefficient gamma Ca2+ of the calcium counterions in the solutions of the corresponding calcium pectinates, from the electrostatic free enthalpy delta (Gel/N)KCa of the ion exchange Ca2+----2K+ in these systems as well as from the relative activity of the polygalacturonase reacting with sodium pectinate. The PE from A niger hydrolyzes the esterified carboxyl groups more or less randomly, in a manner similar to the effect of lye on pectin. On the other hand PE from oranges brings about block-like groupings of free carboxyl groups in the pectin molecule. The study revealed different reaction mechanisms of the pectin deesterification by pectin esterases from Aspergillus species and higher plants.

  8. Aspergillus tubingensis and Aspergillus niger as the dominant black Aspergillus, use of simple PCR-RFLP for preliminary differentiation.

    PubMed

    Mirhendi, H; Zarei, F; Motamedi, M; Nouripour-Sisakht, S

    2016-03-01

    This work aimed to identify the species distribution of common clinical and environmental isolates of black Aspergilli based on simple restriction fragment length polymorphism (RFLP) analysis of the β-tubulin gene. A total of 149 clinical and environmental strains of black Aspergilli were collected and subjected to preliminary morphological examination. Total genomic DNAs were extracted, and PCR was performed to amplify part of the β-tubulin gene. At first, 52 randomly selected samples were species-delineated by sequence analysis. In order to distinguish the most common species, PCR amplicons of 117 black Aspergillus strains were identified by simple PCR-RFLP analysis using the enzyme TasI. Among 52 sequenced isolates, 28 were Aspergillus tubingensis, 21 Aspergillus niger, and the three remaining isolates included Aspergillus uvarum, Aspergillus awamori, and Aspergillus acidus. All 100 environmental and 17 BAL samples subjected to TasI-RFLP analysis of the β-tubulin gene, fell into two groups, consisting of about 59% (n=69) A. tubingensis and 41% (n=48) A. niger. Therefore, the method successfully and rapidly distinguished A. tubingensis and A. niger as the most common species among the clinical and environmental isolates. Although tardy, the Ehrlich test was also able to differentiate A. tubingensis and A. niger according to the yellow color reaction specific to A. niger. A. tubingensis and A. niger are the most common black Aspergillus in both clinical and environmental isolates in Iran. PCR-RFLP using TasI digestion of β-tubulin DNA enables rapid screening for these common species.

  9. Shedding light on Aspergillus niger volatile exometabolome

    PubMed Central

    Costa, Carina Pedrosa; Gonçalves Silva, Diogo; Rudnitskaya, Alisa; Almeida, Adelaide; Rocha, Sílvia M.

    2016-01-01

    An in-depth exploration of the headspace content of Aspergillus niger cultures was performed upon different growth conditions, using a methodology based on advanced multidimensional gas chromatography. This volatile fraction comprises 428 putatively identified compounds distributed over several chemical families, being the major ones hydrocarbons, alcohols, esters, ketones and aldehydes. These metabolites may be related with different metabolic pathways, such as amino acid metabolism, biosynthesis and metabolism of fatty acids, degradation of aromatic compounds, mono and sesquiterpenoid synthesis and carotenoid cleavage. The A. niger molecular biomarkers pattern was established, comprising the 44 metabolites present in all studied conditions. This pattern was successfully used to distinguish A. niger from other fungi (Candida albicans and Penicillium chrysogenum) with 3 days of growth by using Partial Least Squares-Discriminant Analysis (PLS-DA). In addition, PLS-DA-Variable Importance in Projection was applied to highlight the metabolites playing major roles in fungi distinction; decreasing the initial dataset to only 16 metabolites. The data pre-processing time was substantially reduced, and an improvement of quality-of-fit value was achieved. This study goes a step further on A. niger metabolome construction and A. niger future detection may be proposed based on this molecular biomarkers pattern. PMID:27264696

  10. Fingernail Onychomycosis Due to Aspergillus niger

    PubMed Central

    Kim, Dong Min; Ha, Gyoung Yim; Sohng, Seung Hyun

    2012-01-01

    Onychomycosis is usually caused by dermatophytes, but some species of nondermatophytic molds and yeasts are also associated with nail invasion. Aspergillus niger is a nondermatophytic mold which exists as an opportunistic filamentous fungus in all environments. Here, we report a case of onychomycosis caused by A. niger in a 66-year-old female. The patient presented with a black discoloration and a milky white base and onycholysis on the proximal portion of the right thumb nail. Direct microscopic examination of scrapings after potassium hydroxide (KOH) preparation revealed dichotomous septate hyphae. Repeated cultures on Sabouraud's dextrose agar (SDA) without cycloheximide produced the same black velvety colonies. No colony growth occurred on SDA with cycloheximide slants. Biseriate phialides covering the entire vesicle with radiate conidial heads were observed on the slide culture. The DNA sequence of the internal transcribed spacer region of the clinical sample was a 100% match to that of A. niger strain ATCC 16888 (GenBank accession number AY373852). A. niger was confirmed by KOH mount, colony identification, light microscopic morphology, and DNA sequence analysis. The patient was treated orally with 250 mg terbinafine daily and topical amorolfine 5% nail lacquer for 3 months. As a result, the patient was completely cured clinically and mycologically. PMID:23197914

  11. Chronic bilateral otomycosis caused by Aspergillus niger.

    PubMed

    Mishra, G S; Mehta, Niral; Pal, M

    2004-02-01

    Aspergillus niger, an opportunistic filamentous fungus, was identified as the cause of chronic bilateral otomycosis in a 46-year-old female patient who was unresponsive to different drugs. The patient showed signs of erythema, otalgia, itching, otorrhoea and presence of greyish black coloured mass in both the ear canals. The direct microscopical examination of the ear debris in potassium hydroxide preparations, Giemsa, phase contrast and Gram revealed many thin, branched septate hyphae, condia and conidiophores morphologically indistinguishable from Aspergillus spp. The histopathological section of the ear wax mass by haematoxylin and eosin and periodic acid-Schiff techniques also showed similar fungal elements. The patient responded to 1% solution of mercurochrome. The use of mercurochrome in developing countries like India may be recommended to treat the fungal otitis in patients. We also emphasize that 'Narayan' stain should be routinely employed by microbiology and public health laboratories to study the morphology of pathogenic fungi.

  12. Fumonisin and Ochratoxin Production in Industrial Aspergillus niger Strains

    PubMed Central

    Frisvad, Jens C.; Larsen, Thomas O.; Thrane, Ulf; Meijer, Martin; Varga, Janos; Samson, Robert A.; Nielsen, Kristian F.

    2011-01-01

    Aspergillus niger is perhaps the most important fungus used in biotechnology, and is also one of the most commonly encountered fungi contaminating foods and feedstuffs, and occurring in soil and indoor environments. Many of its industrial applications have been given GRAS status (generally regarded as safe). However, A. niger has the potential to produce two groups of potentially carcinogenic mycotoxins: fumonisins and ochratoxins. In this study all available industrial and many non-industrial strains of A. niger (180 strains) as well as 228 strains from 17 related black Aspergillus species were examined for mycotoxin production. None of the related 17 species of black Aspergilli produced fumonisins. Fumonisins (B2, B4, and B6) were detected in 81% of A. niger, and ochratoxin A in 17%, while 10% of the strains produced both mycotoxins. Among the industrial strains the same ratios were 83%, 33% and 26% respectively. Some of the most frequently used strains in industry NRRL 337, 3112 and 3122 produced both toxins and several strains used for citric acid production were among the best producers of fumonisins in pure agar culture. Most strains used for other biotechnological processes also produced fumonisins. Strains optimized through random mutagenesis usually maintained their mycotoxin production capability. Toxigenic strains were also able to produce the toxins on media suggested for citric acid production with most of the toxins found in the biomass, thereby questioning the use of the remaining biomass as animal feed. In conclusion it is recommended to use strains of A. niger with inactive or inactivated gene clusters for fumonisins and ochratoxins, or to choose isolates for biotechnological uses in related non-toxigenic species such as A. tubingensis, A. brasiliensis, A vadensis or A. acidus, which neither produce fumonisins nor ochratoxins. PMID:21853139

  13. Fumonisin and ochratoxin production in industrial Aspergillus niger strains.

    PubMed

    Frisvad, Jens C; Larsen, Thomas O; Thrane, Ulf; Meijer, Martin; Varga, Janos; Samson, Robert A; Nielsen, Kristian F

    2011-01-01

    Aspergillus niger is perhaps the most important fungus used in biotechnology, and is also one of the most commonly encountered fungi contaminating foods and feedstuffs, and occurring in soil and indoor environments. Many of its industrial applications have been given GRAS status (generally regarded as safe). However, A. niger has the potential to produce two groups of potentially carcinogenic mycotoxins: fumonisins and ochratoxins. In this study all available industrial and many non-industrial strains of A. niger (180 strains) as well as 228 strains from 17 related black Aspergillus species were examined for mycotoxin production. None of the related 17 species of black Aspergilli produced fumonisins. Fumonisins (B(2), B(4), and B(6)) were detected in 81% of A. niger, and ochratoxin A in 17%, while 10% of the strains produced both mycotoxins. Among the industrial strains the same ratios were 83%, 33% and 26% respectively. Some of the most frequently used strains in industry NRRL 337, 3112 and 3122 produced both toxins and several strains used for citric acid production were among the best producers of fumonisins in pure agar culture. Most strains used for other biotechnological processes also produced fumonisins. Strains optimized through random mutagenesis usually maintained their mycotoxin production capability. Toxigenic strains were also able to produce the toxins on media suggested for citric acid production with most of the toxins found in the biomass, thereby questioning the use of the remaining biomass as animal feed. In conclusion it is recommended to use strains of A. niger with inactive or inactivated gene clusters for fumonisins and ochratoxins, or to choose isolates for biotechnological uses in related non-toxigenic species such as A. tubingensis, A. brasiliensis, A vadensis or A. acidus, which neither produce fumonisins nor ochratoxins.

  14. Ecophysiological characterization of Aspergillus carbonarius, Aspergillus tubingensis and Aspergillus niger isolated from grapes in Spanish vineyards.

    PubMed

    García-Cela, E; Crespo-Sempere, A; Ramos, A J; Sanchis, V; Marin, S

    2014-03-03

    The aim of this study was to evaluate the diversity of black aspergilli isolated from berries from different agroclimatic regions of Spain. Growth characterization (in terms of temperature and water activity requirements) of Aspergillus carbonarius, Aspergillus tubingensis and Aspergillus niger was carried out on synthetic grape medium. A. tubingensis and A. niger showed higher maximum temperatures for growth (>45 °C versus 40-42 °C), and lower minimum aw requirements (0.83 aw versus 0.87 aw) than A. carbonarius. No differences in growth boundaries due to their geographical origin were found within A. niger aggregate isolates. Conversely, A. carbonarius isolates from the hotter and drier region grew and produced OTA at lower aw than other isolates. However, little genetic diversity in A. carbonarius was observed for the microsatellites tested and the same sequence of β-tubulin gene was observed; therefore intraspecific variability did not correlate with the geographical origin of the isolates or with their ability to produce OTA. Climatic change prediction points to drier and hotter climatic scenarios where A. tubingensis and A. niger could be even more prevalent over A. carbonarius, since they are better adapted to extreme high temperature and drier conditions.

  15. Biosorption potency of Aspergillus niger for removal of chromium (VI).

    PubMed

    Srivastava, Shaili; Thakur, Indu Shekhar

    2006-09-01

    Aspergillus niger isolated from soil and effluent of leather tanning mills had higher activity to remove chromium. The potency of Aspergillus niger was evaluated in shake flask culture by absorption of chromium at pH 6 and temperature 30 degrees C. The results of the study indicated removal of more than 75% chromium by Aspergillus niger determined by diphenylcarbazide colorimetric assay and atomic absorption spectrophotometry after 7 days. Study of microbial Cr(VI) reduction and identification of reduction intermediates has been hindered by the lack of analytical techniques that can identify the oxidation state with subcellular spatial resolution. Therefore, removal of chromium was further substantiated by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX), which indicated an accumulation of chromium in the fungal mycelium.

  16. Aspergillus niger: an unusual cause of invasive pulmonary aspergillosis

    PubMed Central

    Person, A. K.; Chudgar, S. M.; Norton, B. L.; Tong, B. C.; Stout, J. E.

    2010-01-01

    Infections due to Aspergillus species cause significant morbidity and mortality. Most are attributed to Aspergillus fumigatus, followed by Aspergillus flavus and Aspergillus terreus. Aspergillus niger is a mould that is rarely reported as a cause of pneumonia. A 72-year-old female with chronic obstructive pulmonary disease and temporal arteritis being treated with steroids long term presented with haemoptysis and pleuritic chest pain. Chest radiography revealed areas of heterogeneous consolidation with cavitation in the right upper lobe of the lung. Induced bacterial sputum cultures, and acid-fast smears and cultures were negative. Fungal sputum cultures grew A. niger. The patient clinically improved on a combination therapy of empiric antibacterials and voriconazole, followed by voriconazole monotherapy. After 4 weeks of voriconazole therapy, however, repeat chest computed tomography scanning showed a significant progression of the infection and near-complete necrosis of the right upper lobe of the lung. Serum voriconazole levels were low–normal (1.0 μg ml−1, normal range for the assay 0.5–6.0 μg ml−1). A. niger was again recovered from bronchoalveolar lavage specimens. A right upper lobectomy was performed, and lung tissue cultures grew A. niger. Furthermore, the lung histopathology showed acute and organizing pneumonia, fungal hyphae and oxalate crystallosis, confirming the diagnosis of invasive A. niger infection. A. niger, unlike A. fumigatus and A. flavus, is less commonly considered a cause of invasive aspergillosis (IA). The finding of calcium oxalate crystals in histopathology specimens is classic for A. niger infection and can be helpful in making a diagnosis even in the absence of conidia. Therapeutic drug monitoring may be useful in optimizing the treatment of IA given the wide variations in the oral bioavailability of voriconazole. PMID:20299503

  17. Electrochemical monitoring of citric acid production by Aspergillus niger.

    PubMed

    Kutyła-Olesiuk, Anna; Wawrzyniak, Urszula E; Ciosek, Patrycja; Wróblewski, Wojciech

    2014-05-01

    Hybrid electronic tongue was developed for the monitoring of citric acid production by Aspergillus niger. The system based on various potentiometric/voltammetric sensors and appropriate chemometric techniques provided correct qualitative and quantitative classification of the samples collected during standard Aspergillus niger culture and culture infected with yeast. The performance of the proposed approach was compared with the monitoring of the fermentation process carried out using classical methods. The results obtained proved, that the designed hybrid electronic tongue was able to evaluate the progress and correctness of the fermentation process.

  18. In-silico analysis of Aspergillus niger beta-glucosidases

    NASA Astrophysics Data System (ADS)

    Yeo S., L.; Shazilah, K.; Suhaila, S.; Abu Bakar F., D.; Murad A. M., A.

    2014-09-01

    Genomic data mining was carried out and revealed a total of seventeen β-glucosidases in filamentous fungi Aspergillus niger. Two of them belonged to glycoside hydrolase family 1 (GH1) while the rest belonged to genes in family 3 (GH3). These proteins were then named according to the nomenclature as proposed by the International Union of Biochemistry (IUB), starting from the lowest pI and glycoside hydrolase family. Their properties were predicted using various bionformatic tools showing the presence of domains for signal peptide and active sites. Interestingly, one particular domain, PA14 (protective antigen) was present in four of the enzymes, predicted to be involved in carbohydrate binding. A phylogenetic tree grouped the two glycoside hydrolase families with GH1 and GH3 related organisms. This study showed that the various domains present in these β-glucosidases are postulated to be crucial for the survival of this fungus, as supported by other analysis.

  19. Biotransformation of quinazoline and phthalazine by Aspergillus niger.

    PubMed

    Sutherland, John B; Heinze, Thomas M; Schnackenberg, Laura K; Freeman, James P; Williams, Anna J

    2011-03-01

    Cultures of Aspergillus niger NRRL-599 in fluid Sabouraud medium were grown with quinazoline and phthalazine for 7 days. Metabolites were purified by high-performance liquid chromatography and identified by mass spectrometry and proton nuclear magnetic resonance spectroscopy. Quinazoline was oxidized to 4-quinazolinone and 2,4-quinazolinedione, and phthalazine was oxidized to 1-phthalazinone.

  20. Novel Route for Agmatine Catabolism in Aspergillus niger Involves 4-Guanidinobutyrase.

    PubMed

    Kumar, Sunil; Saragadam, Tejaswani; Punekar, Narayan S

    2015-08-15

    Agmatine, a significant polyamine in bacteria and plants, mostly arises from the decarboxylation of arginine. The functional importance of agmatine in fungi is poorly understood. The metabolism of agmatine and related guanidinium group-containing compounds in Aspergillus niger was explored through growth, metabolite, and enzyme studies. The fungus was able to metabolize and grow on l-arginine, agmatine, or 4-guanidinobutyrate as the sole nitrogen source. Whereas arginase defined the only route for arginine catabolism, biochemical and bioinformatics approaches suggested the absence of arginine decarboxylase in A. niger. Efficient utilization by the parent strain and also by its arginase knockout implied an arginase-independent catabolic route for agmatine. Urea and 4-guanidinobutyrate were detected in the spent medium during growth on agmatine. The agmatine-grown A. niger mycelia contained significant levels of amine oxidase, 4-guanidinobutyraldehyde dehydrogenase, 4-guanidinobutyrase (GBase), and succinic semialdehyde dehydrogenase, but no agmatinase activity was detected. Taken together, the results support a novel route for agmatine utilization in A. niger. The catabolism of agmatine by way of 4-guanidinobutyrate to 4-aminobutyrate into the Krebs cycle is the first report of such a pathway in any organism. A. niger GBase peptide fragments were identified by tandem mass spectrometry analysis. The corresponding open reading frame from the A. niger NCIM 565 genome was located and cloned. Subsequent expression of GBase in both Escherichia coli and A. niger along with its disruption in A. niger functionally defined the GBase locus (gbu) in the A. niger genome.

  1. Novel Route for Agmatine Catabolism in Aspergillus niger Involves 4-Guanidinobutyrase

    PubMed Central

    Kumar, Sunil; Saragadam, Tejaswani

    2015-01-01

    Agmatine, a significant polyamine in bacteria and plants, mostly arises from the decarboxylation of arginine. The functional importance of agmatine in fungi is poorly understood. The metabolism of agmatine and related guanidinium group-containing compounds in Aspergillus niger was explored through growth, metabolite, and enzyme studies. The fungus was able to metabolize and grow on l-arginine, agmatine, or 4-guanidinobutyrate as the sole nitrogen source. Whereas arginase defined the only route for arginine catabolism, biochemical and bioinformatics approaches suggested the absence of arginine decarboxylase in A. niger. Efficient utilization by the parent strain and also by its arginase knockout implied an arginase-independent catabolic route for agmatine. Urea and 4-guanidinobutyrate were detected in the spent medium during growth on agmatine. The agmatine-grown A. niger mycelia contained significant levels of amine oxidase, 4-guanidinobutyraldehyde dehydrogenase, 4-guanidinobutyrase (GBase), and succinic semialdehyde dehydrogenase, but no agmatinase activity was detected. Taken together, the results support a novel route for agmatine utilization in A. niger. The catabolism of agmatine by way of 4-guanidinobutyrate to 4-aminobutyrate into the Krebs cycle is the first report of such a pathway in any organism. A. niger GBase peptide fragments were identified by tandem mass spectrometry analysis. The corresponding open reading frame from the A. niger NCIM 565 genome was located and cloned. Subsequent expression of GBase in both Escherichia coli and A. niger along with its disruption in A. niger functionally defined the GBase locus (gbu) in the A. niger genome. PMID:26048930

  2. Utility of Aspergillus niger citrate synthase promoter for heterologous expression.

    PubMed

    Dave, Kashyap; Punekar, Narayan S

    2011-09-10

    Citrate synthase is a central player in the acidogenic metabolism of Aspergillus niger. The 5' upstream sequence (0.9kb DNA) of citrate synthase gene (citA) from A. niger NCIM 565 was analyzed and its promoter function demonstrated through the heterologous expression of two proteins. The cloned citrate synthase promoter (PcitA) sequence was able to express bar coding sequence thereby conferring phosphinothricin resistance. This sequence was further analyzed by systematic deletions to define an effective but compact functional promoter. The PcitA driven egfp expression showed that PcitA was active in all differentiation cell-stages of A. niger. EGFP expression was highest on non-repressible carbon sources like acetate and glycerol. Mycelial EGFP levels increased during acidogenic growth suggesting that PcitA is functional throughout this cultivation. A. niger PcitA is the first Krebs cycle gene promoter used to express heterologous proteins in filamentous fungi.

  3. Identification of thermostable beta-xylosidase activities produced by Aspergillus brasiliensis and Aspergillus niger.

    PubMed

    Pedersen, Mads; Lauritzen, Henrik Klitgaard; Frisvad, Jens Christian; Meyer, Anne S

    2007-05-01

    Twenty Aspergillus strains were evaluated for production of extracellular cellulolytic and xylanolytic activities. Aspergillus brasiliensis, A. niger and A. japonicus produced the highest xylanase activities with the A. brasiliensis and A. niger strains producing thermostable beta-xylosidases. The beta-xylosidase activities of the A. brasiliensis and A. niger strains had similar temperature and pH optima at 75 degrees C and pH 5 and retained 62% and 99%, respectively, of these activities over 1 h at 60 degrees C. At 75 degrees C, these values were 38 and 44%, respectively. Whereas A. niger is a well known enzyme producer, this is the first report of xylanase and thermostable beta-xylosidase production from the newly identified, non-ochratoxin-producing species A. brasiliensis.

  4. Production of extremophilic bacterial cellulase enzymes in aspergillus niger.

    SciTech Connect

    Gladden, John Michael

    2013-09-01

    Enzymes can be used to catalyze a myriad of chemical reactions and are a cornerstone in the biotechnology industry. Enzymes have a wide range of uses, ranging from medicine with the production of pharmaceuticals to energy were they are applied to biofuel production. However, it is difficult to produce large quantities of enzymes, especially if they are non-native to the production host. Fortunately, filamentous fungi, such as Aspergillus niger, are broadly used in industry and show great potential for use a heterologous enzyme production hosts. Here, we present work outlining an effort to engineer A. niger to produce thermophilic bacterial cellulases relevant to lignocellulosic biofuel production.

  5. Purification and immobilization of Aspergillus niger. beta. -xylosidase

    SciTech Connect

    Oguntimein, G.B.; Reilly, P.J.

    1980-01-01

    ..beta..-Xylosidase from a commercial Aspergillus niger preparation was purified by differential ammonium sulfate precipitation and either gel permeation or cation exchange chromatography, giving 16-fold purification in 32% yield for the first technique or 27-fold purification in 19% yield for the second. Enzyme prepared by this method was immobilized to 10 different carriers, but only when it was bound to alumina with TiCl/sub 4/ and to alkylamine porous silica with glutaraldehyde were substantial efficiencies and stabilities achieved.

  6. Prospecting for the incidence of genes involved in ochratoxin and fumonisin biosynthesis in Brazilian strains of Aspergillus niger and Aspergillus welwitschiae.

    PubMed

    Massi, Fernanda Pelisson; Sartori, Daniele; de Souza Ferranti, Larissa; Iamanaka, Beatriz Thie; Taniwaki, Marta Hiromi; Vieira, Maria Lucia Carneiro; Fungaro, Maria Helena Pelegrinelli

    2016-03-16

    Aspergillus niger "aggregate" is an informal taxonomic rank that represents a group of species from the section Nigri. Among A. niger "aggregate" species Aspergillus niger sensu stricto and its cryptic species Aspergillus welwitschiae (=Aspergillus awamori sensu Perrone) are proven as ochratoxin A and fumonisin B2 producing species. A. niger has been frequently found in tropical and subtropical foods. A. welwitschiae is a new species, which was recently dismembered from the A. niger taxon. These species are morphologically very similar and molecular data are indispensable for their identification. A total of 175 Brazilian isolates previously identified as A. niger collected from dried fruits, Brazil nuts, coffee beans, grapes, cocoa and onions were investigated in this study. Based on partial calmodulin gene sequences about one-half of our isolates were identified as A. welwitschiae. This new species was the predominant species in onions analyzed in Brazil. A. niger and A. welwitschiae differ in their ability to produce ochratoxin A and fumonisin B2. Among A. niger isolates, approximately 32% were OTA producers, but in contrast only 1% of the A. welwitschiae isolates revealed the ability to produce ochratoxin A. Regarding fumonisin B2 production, there was a higher frequency of FB2 producing isolates in A. niger (74%) compared to A. welwitschiae (34%). Because not all A. niger and A. welwitschiae strains produce ochratoxin A and fumonisin B2, in this study a multiplex PCR was developed for detecting the presence of essential genes involved in ochratoxin (polyketide synthase and radHflavin-dependent halogenase) and fumonisin (α-oxoamine synthase) biosynthesis in the genome of A. niger and A. welwitschiae isolates. The frequency of strains harboring the mycotoxin genes was markedly different between A. niger and A. welwitschiae. All OTA producing isolates of A. niger and A. welwitschiae showed in their genome the pks and radH genes, and 95.2% of the nonproducing

  7. Six novel constitutive promoters for metabolic engineering of Aspergillus niger.

    PubMed

    Blumhoff, Marzena; Steiger, Matthias G; Marx, Hans; Mattanovich, Diethard; Sauer, Michael

    2013-01-01

    Genetic tools for the fine-tuning of gene expression levels are a prerequisite for rational strain optimization through metabolic engineering. While Aspergillus niger is an industrially important fungus, widely used for production of organic acids and heterologous proteins, the available genetic tool box for this organism is still rather limited. Here, we characterize six novel constitutive promoters of A. niger providing different expression levels. The selection of the promoters was based on published transcription data of A. niger. The promoter strength was determined with the β-glucuronidase (gusA) reporter gene of Escherichia coli. The six promoters covered a GUS activity range of two to three orders of magnitude depending on the strain background. In order to demonstrate the power of the newly characterized promoters for metabolic engineering, they were used for heterologous expression of the cis-aconitate decarboxylase (cad1) gene of Aspergillus terreus, allowing the production of the building block chemical itaconic acid with A. niger. The CAD activity, dependent on the choice of promoter, showed a positive correlation with the specific productivity of itaconic acid. Product titers from the detection limit to up to 570 mg/L proved that the set of constitutive promoters is a powerful tool for the fine-tuning of metabolic pathways for the improvement of industrial production processes.

  8. Transcriptome analysis of Aspergillus niger grown on sugarcane bagasse

    PubMed Central

    2011-01-01

    Background Considering that the costs of cellulases and hemicellulases contribute substantially to the price of bioethanol, new studies aimed at understanding and improving cellulase efficiency and productivity are of paramount importance. Aspergillus niger has been shown to produce a wide spectrum of polysaccharide hydrolytic enzymes. To understand how to improve enzymatic cocktails that can hydrolyze pretreated sugarcane bagasse, we used a genomics approach to investigate which genes and pathways are transcriptionally modulated during growth of A. niger on steam-exploded sugarcane bagasse (SEB). Results Herein we report the main cellulase- and hemicellulase-encoding genes with increased expression during growth on SEB. We also sought to determine whether the mRNA accumulation of several SEB-induced genes encoding putative transporters is induced by xylose and dependent on glucose. We identified 18 (58% of A. niger predicted cellulases) and 21 (58% of A. niger predicted hemicellulases) cellulase- and hemicellulase-encoding genes, respectively, that were highly expressed during growth on SEB. Conclusions Degradation of sugarcane bagasse requires production of many different enzymes which are regulated by the type and complexity of the available substrate. Our presently reported work opens new possibilities for understanding sugarcane biomass saccharification by A. niger hydrolases and for the construction of more efficient enzymatic cocktails for second-generation bioethanol. PMID:22008461

  9. Transcriptome analysis of Aspergillus niger grown on sugarcane bagasse.

    PubMed

    de Souza, Wagner R; de Gouvea, Paula F; Savoldi, Marcela; Malavazi, Iran; de Souza Bernardes, Luciano A; Goldman, Maria Helena S; de Vries, Ronald P; de Castro Oliveira, Juliana V; Goldman, Gustavo H

    2011-10-18

    Considering that the costs of cellulases and hemicellulases contribute substantially to the price of bioethanol, new studies aimed at understanding and improving cellulase efficiency and productivity are of paramount importance. Aspergillus niger has been shown to produce a wide spectrum of polysaccharide hydrolytic enzymes. To understand how to improve enzymatic cocktails that can hydrolyze pretreated sugarcane bagasse, we used a genomics approach to investigate which genes and pathways are transcriptionally modulated during growth of A. niger on steam-exploded sugarcane bagasse (SEB). Herein we report the main cellulase- and hemicellulase-encoding genes with increased expression during growth on SEB. We also sought to determine whether the mRNA accumulation of several SEB-induced genes encoding putative transporters is induced by xylose and dependent on glucose. We identified 18 (58% of A. niger predicted cellulases) and 21 (58% of A. niger predicted hemicellulases) cellulase- and hemicellulase-encoding genes, respectively, that were highly expressed during growth on SEB. Degradation of sugarcane bagasse requires production of many different enzymes which are regulated by the type and complexity of the available substrate. Our presently reported work opens new possibilities for understanding sugarcane biomass saccharification by A. niger hydrolases and for the construction of more efficient enzymatic cocktails for second-generation bioethanol.

  10. Mutagenesis and genetic characterisation of amylolytic Aspergillus niger.

    PubMed

    Shafique, Sobiya; Bajwa, Rukhsana; Shafique, Shazia

    2010-07-01

    Aspergillus niger FCBP-198 was genetically modified for its ability to reveal extra cellular alpha-amylase enzyme activity. From 76 efficient mutants isolated after ultraviolet (UV) irradiation, An-UV-5.6 was selected as the most efficient UV mutant, with 76.41 units mL(-1) of alpha-amylase activity compared to wild (34.45 units mL(-1)). In case of ethyl methane sulphonate (EMS), among 242 survivors, 74 were assayed quantitatively and An-Ch-4.7 was found to be the most competent, as it exhibited a three-fold increase in alpha-amylase activity (89.38 units mL(-1)) than the parental strain. Genetic relationships of the mutants of A. niger FCBP-198 were analysed with a randomly amplified polymorphic DNA-polymerase chain reaction (RAPD-PCR). Results obtained from the comparison between genotypes of A. niger FCBP-198 showed differences in the sizes and numbers of amplified fragments per primer for each isolate. The dendrogram showed that genotypes An-Ch-4.7 and An-Ch-4.2 were distinctly classified into one category, while the isolates An-UV-5.6, An-UV-5.1 and A. niger FCBP-198 have the nearest genetic relationship. The five isolates from A. niger FCBP-198 genotypes shared an average of 65% bands.

  11. Overexpression of Aspergillus tubingensis faeA in protease-deficient Aspergillus niger enables ferulic acid production from plant material.

    PubMed

    Zwane, Eunice N; Rose, Shaunita H; van Zyl, Willem H; Rumbold, Karl; Viljoen-Bloom, Marinda

    2014-06-01

    The production of ferulic acid esterase involved in the release of ferulic acid side groups from xylan was investigated in strains of Aspergillus tubingensis, Aspergillus carneus, Aspergillus niger and Rhizopus oryzae. The highest activity on triticale bran as sole carbon source was observed with the A. tubingensis T8.4 strain, which produced a type A ferulic acid esterase active against methyl p-coumarate, methyl ferulate and methyl sinapate. The activity of the A. tubingensis ferulic acid esterase (AtFAEA) was inhibited twofold by glucose and induced twofold in the presence of maize bran. An initial accumulation of endoglucanase was followed by the production of endoxylanase, suggesting a combined action with ferulic acid esterase on maize bran. A genomic copy of the A. tubingensis faeA gene was cloned and expressed in A. niger D15#26 under the control of the A. niger gpd promoter. The recombinant strain has reduced protease activity and does not acidify the media, therefore promoting high-level expression of recombinant enzymes. It produced 13.5 U/ml FAEA after 5 days on autoclaved maize bran as sole carbon source, which was threefold higher than for the A. tubingensis donor strain. The recombinant AtFAEA was able to extract 50 % of the available ferulic acid from non-pretreated maize bran, making this enzyme suitable for the biological production of ferulic acid from lignocellulosic plant material.

  12. Growth and hydrolase profiles can be used as characteristics to distinguish Aspergillus niger and other black aspergilli.

    PubMed

    Meijer, M; Houbraken, J A M P; Dalhuijsen, S; Samson, R A; de Vries, R P

    2011-06-30

    Wild type Aspergillus niger isolates from different biotopes from all over the world were compared to each other and to the type strains of other black Aspergillus species with respect to growth and extracellular enzyme profiles. The origin of the A. niger isolate did not result in differences in growth profile with respect to monomeric or polymeric carbon sources. Differences were observed in the growth rate of the A. niger isolates, but these were observed on all carbon sources and not specific for a particular carbon source. In contrast, carbon source specific differences were observed between the different species. Aspergillus brasiliensis is the only species able to grow on D-galactose, and A. aculeatus had significantly better growth on Locus Bean gum than the other species. Only small differences were found in the extracellular enzyme profile of the A. niger isolates during growth on wheat bran, while large differences were observed in the profiles of the different black aspergilli. In addition, differences were observed in temperature profiles between the black Aspergillus species, but not between the A. niger isolates, demonstrating no isolate-specific adaptations to the environment.These data indicate that the local environment does not result in stable adaptations of A. niger with respect to growth profile or enzyme production, but that the potential is maintained irrespective of the environmental parameters. It also demonstrates that growth, extracellular protein and temperature profiles can be used for species identification within the group of black aspergilli.

  13. 21 CFR 173.120 - Carbohydrase and cellulase derived from Aspergillus niger.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Enzyme Preparations and Microorganisms § 173.120 Carbohydrase and cellulase derived from Aspergillus niger. Carbohydrase and cellulase enzyme preparation derived from Aspergillus niger may be safely used... the carbohydrase and cellulase enzyme product. (d) The additive is used or intended for use as follows...

  14. 21 CFR 173.120 - Carbohydrase and cellulase derived from Aspergillus niger.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... PERMITTED IN FOOD FOR HUMAN CONSUMPTION Enzyme Preparations and Microorganisms § 173.120 Carbohydrase and cellulase derived from Aspergillus niger. Carbohydrase and cellulase enzyme preparation derived from... Aspergillus niger from the carbohydrase and cellulase enzyme product. (d) The additive is used or intended for...

  15. 21 CFR 173.120 - Carbohydrase and cellulase derived from Aspergillus niger.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... PERMITTED IN FOOD FOR HUMAN CONSUMPTION Enzyme Preparations and Microorganisms § 173.120 Carbohydrase and cellulase derived from Aspergillus niger. Carbohydrase and cellulase enzyme preparation derived from... Aspergillus niger from the carbohydrase and cellulase enzyme product. (d) The additive is used or intended for...

  16. 21 CFR 173.120 - Carbohydrase and cellulase derived from Aspergillus niger.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... PERMITTED IN FOOD FOR HUMAN CONSUMPTION Enzyme Preparations and Microorganisms § 173.120 Carbohydrase and cellulase derived from Aspergillus niger. Carbohydrase and cellulase enzyme preparation derived from... Aspergillus niger from the carbohydrase and cellulase enzyme product. (d) The additive is used or intended for...

  17. 21 CFR 173.120 - Carbohydrase and cellulase derived from Aspergillus niger.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... PERMITTED IN FOOD FOR HUMAN CONSUMPTION Enzyme Preparations and Microorganisms § 173.120 Carbohydrase and cellulase derived from Aspergillus niger. Carbohydrase and cellulase enzyme preparation derived from... Aspergillus niger from the carbohydrase and cellulase enzyme product. (d) The additive is used or intended for...

  18. Contribution of arginase to manganese metabolism of Aspergillus niger.

    PubMed

    Keni, Sarita; Punekar, Narayan S

    2016-02-01

    Aspects of manganese metabolism during normal and acidogenic growth of Aspergillus niger were explored. Arginase from this fungus was a Mn[II]-enzyme. The contribution of the arginase protein towards A. niger manganese metabolism was investigated using arginase knockout (D-42) and arginase over-expressing (ΔXCA-29) strains of A. niger NCIM 565. The Mn[II] contents of various mycelial fractions were found in the order: D-42 strain < parent strain < ΔXCA-29 strain. While the soluble fraction forms 60% of the total mycelial Mn[II] content, arginase accounted for a significant fraction of this soluble Mn[II] pool. Changes in the arginase levels affected the absolute mycelial Mn[II] content but not its distribution in the various mycelial fractions. The A. niger mycelia harvested from acidogenic growth media contain substantially less Mn[II] as compared to those from normal growth media. Nevertheless, acidogenic mycelia harbor considerable Mn[II] levels and a functional arginase. Altered levels of mycelial arginase protein did not significantly influence citric acid production. The relevance of arginase to cellular Mn[II] pool and homeostasis was evaluated and the results suggest that arginase regulation could occur via manganese availability.

  19. Aspergillus niger time to growth in dried tomatoes.

    PubMed

    Gómez-Ramírez, C; Sosa-Morales, M E; Palou, E; López-Malo, A

    2013-06-03

    Individual and combined effects of aw and incorporation of selected concentrations of Mexican oregano essential oil on the time to growth (TTG) of Aspergillus niger intentionally inoculated into dried tomatoes were studied during storage at 25°C for 100 days. For aw 0.96, 1,000 ppm of Mexican oregano essential oil inhibited A. niger growth during 100 days, whereas 500 ppm were sufficient at aw 0.91 and 250 ppm for tomatoes with aw 0.78. A. niger growth was evident at different incubation times depending on tested tomato aw and concentration of essential oil; these data were utilized to model TTG. Regression analysis revealed good agreement between experimental and predicted data with a correlation coefficient higher than 0.98. Analysis of mold growth data through TTG models makes possible to include observations detected as no growth and can be utilized to predict mold time to growth for specific preservation factor combinations or to select preservation factor levels for an expected shelf-life based on A. niger growth.

  20. A novel selectable marker based on Aspergillus niger arginase expression.

    PubMed

    Dave, Kashyap; Ahuja, Manmeet; Jayashri, T N; Sirola, Rekha Bisht; Punekar, Narayan S

    2012-06-10

    Selectable markers are valuable tools in transforming asexual fungi like Aspergillus niger. An arginase (agaA) expression vector and a suitable arginase-disrupted host would define a novel nutritional marker/selection for transformation. The development of such a marker was successfully achieved in two steps. The single genomic copy of A. niger arginase gene was disrupted by homologous integration of the bar marker. The agaA disruptant was subsequently complemented by transforming it with agaA expression vectors. Both citA and trpC promoters were able to drive the expression of arginase cDNA. Such agaA+ transformants displayed arginase expression pattern distinct from that of the parent strain. The results are also consistent with a single catabolic route for arginine in this fungus. A simple yet novel arginine-based selection for filamentous fungal transformation is thus described.

  1. Biotransformation of (-)beta-pinene by Aspergillus niger ATCC 9642.

    PubMed

    Toniazzo, Geciane; de Oliveira, Débora; Dariva, Cláudio; Oestreicher, Enrique Guillermo; Antunes, Octávio A C

    2005-01-01

    The main objective of this work was to investigate the biotransformations of (-)alpha-pinene, (-)beta-pinene, and (+) limonene by Aspergillus niger ATCC 9642. The culture conditions involved--concentration of cosolvent (EtOH), substrate applied, and sequential addition of substrates were--investigated. Adaptation of the precultures with small amounts of substrate was also studied. The experiments were performed in conical flasks with liquid cultures. This strain of A. niger was able to convert only (-)beta-pinene into alpha-terpineol. An optimum conversion of (-)beta-pinene into alpha-terpineol of about 4% was obtained when the substrate was applied as a diluted solution in EtOH and sequential addition of substrate was used.

  2. FluG affects secretion in colonies of Aspergillus niger.

    PubMed

    Wang, Fengfeng; Krijgsheld, Pauline; Hulsman, Marc; de Bekker, Charissa; Müller, Wally H; Reinders, Marcel; de Vries, Ronald P; Wösten, Han A B

    2015-01-01

    Colonies of Aspergillus niger are characterized by zonal heterogeneity in growth, sporulation, gene expression and secretion. For instance, the glucoamylase gene glaA is more highly expressed at the periphery of colonies when compared to the center. As a consequence, its encoded protein GlaA is mainly secreted at the outer part of the colony. Here, multiple copies of amyR were introduced in A. niger. Most transformants over-expressing this regulatory gene of amylolytic genes still displayed heterogeneous glaA expression and GlaA secretion. However, heterogeneity was abolished in transformant UU-A001.13 by expressing glaA and secreting GlaA throughout the mycelium. Sequencing the genome of UU-A001.13 revealed that transformation had been accompanied by deletion of part of the fluG gene and disrupting its 3' end by integration of a transformation vector. Inactivation of fluG in the wild-type background of A. niger also resulted in breakdown of starch under the whole colony. Asexual development of the ∆fluG strain was not affected, unlike what was previously shown in Aspergillus nidulans. Genes encoding proteins with a signal sequence for secretion, including part of the amylolytic genes, were more often downregulated in the central zone of maltose-grown ∆fluG colonies and upregulated in the intermediate part and periphery when compared to the wild-type. Together, these data indicate that FluG of A. niger is a repressor of secretion.

  3. Steady-state shear characteristics of Aspergillus niger broths

    SciTech Connect

    Svihla, C.K.; Dronawat, S.N.; Hanley, T.R.

    1995-12-31

    It can be difficult to obtain reliable rheological data for filamentous fermentation broths using conventional instruments. One common approach is to measure the torque drawn by an impeller rotating in the suspension. Many previous workers have assumed that the applicable shear rate in such a device is related to the impeller speed by a fluid-independent constant determined by calibration with Newtonian and non-Newtonian fluids. The rheology of Aspergillus niger broths have been characterized using the impeller viscometer approach. The changes in the broth rheology were measured, and used to interpret the growth of biomass and the evolution of the microorganism morphology.

  4. Mineral Nutrition of Aspergillus niger for citric acid production.

    PubMed

    Banik, A K

    1976-01-01

    The mineral requirements of a strain of Aspergillus niger for the production of citric acid in a synthetic medium were studied. It was observed that K2HPO4 and MgSO4. 7 H2O were required at concentrations of 0.1% and 0.02% respectively. The optimum level of each of the trace elements Fe, Mn and Zn was 1.0 mug/ml. NaC1 and CaC12 at lower concentrations had no effect on citric acid production. Trace elements, Cu, Co and Mo, had an adverse effect on the production of citric acid while Ni and V were without effect.

  5. Cryptic Species and Azole Resistance in the Aspergillus niger Complex▿†

    PubMed Central

    Howard, Susan J.; Harrison, Elizabeth; Bowyer, Paul; Varga, Janos; Denning, David W.

    2011-01-01

    Aspergillus niger is a common clinical isolate. Multiple species comprise the Aspergillus section Nigri and are separable using sequence data. The antifungal susceptibility of these cryptic species is not known. We determined the azole MICs of 50 black aspergilli, 45 from clinical specimens, using modified EUCAST (mEUCAST) and Etest methods. Phylogenetic trees were prepared using the internal transcribed spacer, beta-tubulin, and calmodulin sequences to identify strains to species level and the results were compared with those obtained with cyp51A sequences. We attempted to correlate cyp51A mutations with azole resistance. Etest MICs were significantly different from mEUCAST MICs (P < 0.001), with geometric means of 0.77 and 2.79 mg/liter, respectively. Twenty-six of 50 (52%) isolates were itraconazole resistant by mEUCAST (MICs > 8 mg/liter), with limited cross-resistance to other azoles. Using combined beta-tubulin/calmodulin sequences, the 45 clinical isolates grouped into 5 clades, A. awamori (55.6%), A. tubingensis (17.8%), A. niger (13.3%), A. acidus (6.7%), and an unknown group (6.7%), none of which were morphologically distinguishable. Itraconazole resistance was found in 36% of the isolates in the A. awamori group, 90% of the A. tubingensis group, 33% of the A. niger group, 100% of the A. acidus group, and 67% of the unknown group. These data suggest that cyp51A mutations in section Nigri may not play as important a role in azole resistance as in A. fumigatus, although some mutations (G427S, K97T) warrant further study. Numerous cryptic species are found in clinical isolates of the Aspergillus section Nigri and are best reported as “A. niger complex” by clinical laboratories. Itraconazole resistance was common in this data set, but azole cross-resistance was unusual. The mechanism of resistance remains obscure. PMID:21768508

  6. Germination of Aspergillus niger conidia is triggered by nitrogen compounds related to L-amino acids.

    PubMed

    Hayer, Kimran; Stratford, Malcolm; Archer, David B

    2014-10-01

    Conidial germination is fundamentally important to the growth and dissemination of most fungi. It has been previously shown (K. Hayer, M. Stratford, and D. B. Archer, Appl. Environ. Microbiol. 79:6924-6931, 2013, http://dx.doi.org/10.1128/AEM.02061-13), using sugar analogs, that germination is a 2-stage process involving triggering of germination and then nutrient uptake for hyphal outgrowth. In the present study, we tested this 2-stage germination process using a series of nitrogen-containing compounds for the ability to trigger the breaking of dormancy of Aspergillus niger conidia and then to support the formation of hyphae by acting as nitrogen sources. Triggering and germination were also compared between A. niger and Aspergillus nidulans using 2-deoxy-D-glucose (trigger), D-galactose (nontrigger in A. niger but trigger in A. nidulans), and an N source (required in A. niger but not in A. nidulans). Although most of the nitrogen compounds studied served as nitrogen sources for growth, only some nitrogen compounds could trigger germination of A. niger conidia, and all were related to L-amino acids. Using L-amino acid analogs without either the amine or the carboxylic acid group revealed that both the amine and carboxylic acid groups were essential for an L-amino acid to serve as a trigger molecule. Generally, conidia were able to sense and recognize nitrogen compounds that fitted into a specific size range. There was no evidence of uptake of either triggering or nontriggering compounds over the first 90 min of A. niger conidial germination, suggesting that the germination trigger sensors are not located within the spore.

  7. Antibiotic Extraction as a Recent Biocontrol Method for Aspergillus Niger andAspergillus Flavus Fungi in Ancient Egyptian mural paintings

    NASA Astrophysics Data System (ADS)

    Hemdan, R. Elmitwalli; Fatma, Helmi M.; Rizk, Mohammed A.; Hagrassy, Abeer F.

    Biodeterioration of mural paintings by Aspergillus niger and Aspergillus flavus Fungi has been proved in different mural paintings in Egypt nowadays. Several researches have studied the effect of fungi on mural paintings, the mechanism of interaction and methods of control. But none of these researches gives us the solution without causing a side effect. In this paper, for the first time, a recent treatment by antibiotic "6 penthyl α pyrone phenol" was applied as a successful technique for elimination of Aspergillus niger and Aspergillus flavus. On the other hand, it is favorable for cleaning Surfaces of Murals executed by tembera technique from the fungi metabolism which caused a black pigments on surfaces.

  8. Aspergillus niger Enhance Bioactive Compounds Biosynthesis As Well As Expression of Functional Genes in Adventitious Roots of Glycyrrhiza uralensis Fisch.

    PubMed

    Li, Jing; Wang, Juan; Li, Jinxin; Liu, Dahui; Li, Hongfa; Gao, Wenyuan; Li, Jianli; Liu, Shujie

    2016-02-01

    In the present study, the culture conditions for the accumulation of Glycyrrhiza uralensis adventitious root metabolites in balloon-type bubble bioreactors (BTBBs) have been optimized. The results of the culture showed that the best culture conditions were a cone angle of 90° bioreactor and 0.4-0.6-0.4-vvm aeration volume. Aspergillus niger can be used as a fungal elicitor to enhance the production of defense compounds in plants. With the addition of a fungal elicitor (derived from Aspergillus niger), the maximum accumulation of total flavonoids (16.12 mg g(-1)) and glycyrrhetinic acid (0.18 mg g(-1)) occurred at a dose of 400 mg L(-1) of Aspergillus niger resulting in a 3.47-fold and 1.8-fold increase over control roots. However, the highest concentration of polysaccharide (106.06 mg g(-1)) was achieved with a mixture of elicitors (Aspergillus niger and salicylic acid) added to the medium, resulting in a 1.09-fold increase over Aspergillus niger treatment alone. Electrospray ionization tandem mass spectrometry (ESI-MS(n)) analysis was performed, showing that seven compounds were present after treatment with the elicitors, including uralsaponin B, licorice saponin B2, liquiritin, and (3R)-vestitol, only identified in the mixed elicitor treatment group. It has also been found that elicitors (Aspergillus niger and salicylic acid) significantly upregulated the expression of the cinnamate 4-hydroxylase (C4H), β-amyrin synthase (β-AS), squalene epoxidase (SE) and a cytochrome P450 monooxygenase (CYP72A154) genes, which are involved in the biosynthesis of bioactive compounds, and increased superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) activity.

  9. Characterization of Humanized Antibodies Secreted by Aspergillus niger

    PubMed Central

    Ward, Michael; Lin, Cherry; Victoria, Doreen C.; Fox, Bryan P.; Fox, Judith A.; Wong, David L.; Meerman, Hendrik J.; Pucci, Jeff P.; Fong, Robin B.; Heng, Meng H.; Tsurushita, Naoya; Gieswein, Christine; Park, Minha; Wang, Huaming

    2004-01-01

    Two different humanized immunoglobulin G1(κ) antibodies and an Fab′ fragment were produced by Aspergillus niger. The antibodies were secreted into the culture supernatant. Both light and heavy chains were initially synthesized as fusion proteins with native glucoamylase. After antibody assembly, cleavage by A. niger KexB protease allowed the release of free antibody. Purification by hydrophobic charge induction chromatography proved effective at removing any antibody to which glucoamylase remained attached. Glycosylation at N297 in the Fc region of the heavy chain was observed, but this site was unoccupied on approximately 50% of the heavy chains. The glycan was of the high-mannose type, with some galactose present, and the size ranged from Hex6GlcNAc2 to Hex15GlcNAc2. An aglycosyl mutant form of antibody was also produced. No significant difference between the glycosylated antibody produced by Aspergillus and that produced by mammalian cell cultures was observed in tests for affinity, avidity, pharmacokinetics, or antibody-dependent cellular cytotoxicity function. PMID:15128505

  10. Molecular Dynamics Approach in Designing Thermostable Aspergillus niger Xylanase

    NASA Astrophysics Data System (ADS)

    Malau, N. D.; Sianturi, M.

    2017-03-01

    Molecular dynamics methods we have applied as a tool in designing thermostable Aspergillus niger Xylanase, by examining Root Mean Square Deviation (RMSD) and The Stability of the Secondary Structure of enzymes structure at its optimum temperature and compare with its high temperature behavior. As RMSD represents structural fluctuation at a particular temperature, a better understanding of this factor will suggest approaches to bioengineer these enzymes to enhance their thermostability. In this work molecular dynamic simulations of Aspergillus niger xylanase (ANX) have been carried at 400K (optimum catalytic temperature) for 2.5 ns and 500K (ANX reported inactive temperature) for 2.5 ns. Analysis have shown that the Root Mean Square Deviation (RMSD) significant increase at higher temperatures compared at optimum temperature and some of the secondary structures of ANX that have been damaged at high temperature. Structural analysis revealed that the fluctuations of the α-helix and β-sheet regions are larger at higher temperatures compared to the fluctuations at optimum temperature.

  11. Heterogeneity of Aspergillus niger Microcolonies in Liquid Shaken Cultures▿ †

    PubMed Central

    de Bekker, Charissa; van Veluw, G. Jerre; Vinck, Arman; Wiebenga, L. Ad; Wösten, Han A. B.

    2011-01-01

    The fungus Aspergillus niger forms (sub)millimeter microcolonies within a liquid shaken culture. Here, we show that such microcolonies are heterogeneous with respect to size and gene expression. Microcolonies of strains expressing green fluorescent protein (GFP) from the promoter of the glucoamlyase gene glaA or the ferulic acid esterase gene faeA were sorted on the basis of diameter and fluorescence using the Complex Object Parametric Analyzer and Sorter (COPAS) technology. Statistical analysis revealed that the liquid shaken culture consisted of two populations of microcolonies that differ by 90 μm in diameter. The population of small microcolonies of strains expressing GFP from the glaA or faeA promoter comprised 39% and 25% of the culture, respectively. Two populations of microcolonies could also be distinguished when the expression of GFP in these strains was analyzed. The population expressing a low level of GFP consisted of 68% and 44% of the culture, respectively. We also show that mRNA accumulation is heterogeneous within microcolonies of A. niger. Central and peripheral parts of the mycelium were isolated with laser microdissection and pressure catapulting (LMPC), and RNA from these samples was used for quantitative PCR analysis. This analysis showed that the RNA content per hypha was about 45 times higher at the periphery than in the center of the microcolony. Our data imply that the protein production of A. niger can be improved in industrial fermentations by reducing the heterogeneity within the culture. PMID:21169437

  12. ADOPTING SELECTED HYDROGEN BONDING AND IONIC INTERACTIONS FROM ASPERGILLUS FUMIGATUS PHYTASE STRUCTURE IMPROVES THE THERMOSTABILITY OF ASPERGILLUS NIGER PHYA PHYTASE

    USDA-ARS?s Scientific Manuscript database

    Although it has been widely used as a feed supplement to reduce manure phosphorus pollution of swine and poultry, Aspergillus niger PhyA phytase is unable to withstand heat inactivation during feed pelleting. Crystal structure comparisons with its close homolog, the thermostable Aspergillus fumigatu...

  13. Constitutive expression of fluorescent protein by Aspergillus var. niger and Aspergillus carbonarius to monitor fungal colonization in maize plants

    USDA-ARS?s Scientific Manuscript database

    Aspergillus niger and A. carbonarius are two species in the Aspergillus section Nigri (black-spored aspergilli) frequently associated with peanut (Arachis hypogea), maize (Zea mays), and other plants as pathogens. These infections are symptomless and as such are major concerns since some black aspe...

  14. Antimicrobial textile treated with chitosan from Aspergillus niger mycelial waste.

    PubMed

    Tayel, Ahmed A; Moussa, Shaaban H; El-Tras, Wael F; Elguindy, Nihal M; Opwis, Klaus

    2011-08-01

    The waste biomass of Aspergillus niger, following citric acid production, was used as a source for fungal chitosan extraction. The produced chitosan was characterized with deacetylation degree of 89.6%, a molecular weight of 25,000 dalton, 97% solubility in 1% acetic acid solution and comparable FT-IR spectra to standard shrimp chitosan. Fungal chitosan was applied as a cotton fabric finishing agent using pad-dry-cure method. The topographical structure of chitosan-treated fabrics (CTF) was much improved compared with control fabrics. CTF, after durability tests, exhibited a powerful antimicrobial activity against both E. coli and Candida albicans, the captured micrographs for E. coli cells contacted with CTF showed a complete lysis of cell walls with the prolonging contact time. The produced antimicrobial CTF could be proposed as a suitable material for many medical and hygienic applications.

  15. Immobilization of polymethylgalacturonase producing Aspergillus niger on Luffa sponge material.

    PubMed

    Slokoska, L S; Angelova, M B

    1998-01-01

    The vegetable sponge of Luffa cylindrica was studied as a matrix for the immobilization of Aspergillus niger 26, producer of polymethylgalacturonase (PMG). Entrapped spores could grow and multiply within the lattice of the sponge. The influence of loofa sponge inoculum content, initial spore inoculum content, and duration of the growth cycle on the enzyme activity and mycelium growth was studied. The best yield of PMG was reached with 1 piece of loofa sponge (approx. 0.10 g dry weight), 10(9) spores per g carrier and 48 h duration of one cycle. Data obtained during long-term semicontinuous cultivation showed that production capacity increased significantly and the production period was extended more than 10 times compared with the free cell culture.

  16. Nanosulfur: A Potent Fungicide Against Food Pathogen, Aspergillus niger

    NASA Astrophysics Data System (ADS)

    Choudhury, Samrat Roy; Nair, Kishore K.; Kumar, Rajesh; Gogoi, Robin; Srivastava, Chitra; Gopal, Madhuban; Subhramanyam, B. S.; devakumar, C.; Goswami, Arunava

    2010-10-01

    Elemental sulfur (S0), man's oldest eco-friendly fungicide for curing fungal infections in plants and animals, is registered in India as a non-systemic and contact fungicide. However due to its high volume requirement, Indian agrochemical industry and farmers could not effectively use this product till date. We hypothesize that intelligent nanoscience applications might increase the visibility of nanosulfur in Indian agriculture as a potent and eco-safe fungicide. Sulfur nanoparticles (NPs) were synthesized bottom-up via a liquid synthesis method with average particle size in the range of 50-80 nm and the shapes of the NPs were spherical. A comparative study of elemental and nano-sulfur produced has been tested against facultative fungal food pathogen, Aspergillus niger. Results showed that nanosulfur is more efficacious than its elemental form.

  17. Nanosulfur: A Potent Fungicide Against Food Pathogen, Aspergillus niger

    SciTech Connect

    Choudhury, Samrat Roy; Goswami, Arunava; Nair, Kishore K.; Kumar, Rajesh; Gopal, Madhuban; Devakumar, C.; Gogoi, Robin; Srivastava, Chitra; Subhramanyam, B. S.

    2010-10-04

    Elemental sulfur (S{sup 0}), man's oldest eco-friendly fungicide for curing fungal infections in plants and animals, is registered in India as a non-systemic and contact fungicide. However due to its high volume requirement, Indian agrochemical industry and farmers could not effectively use this product till date. We hypothesize that intelligent nanoscience applications might increase the visibility of nanosulfur in Indian agriculture as a potent and eco-safe fungicide. Sulfur nanoparticles (NPs) were synthesized bottom-up via a liquid synthesis method with average particle size in the range of 50-80 nm and the shapes of the NPs were spherical. A comparative study of elemental and nano-sulfur produced has been tested against facultative fungal food pathogen, Aspergillus niger. Results showed that nanosulfur is more efficacious than its elemental form.

  18. Microbial abatement of toluene using Aspergillus niger in upflow bioreactor.

    PubMed

    Gopinath, M; Mohanapriya, C; Sivakumar, K; Baskar, G; Muthukumaran, C; Dhanasekar, R

    2016-12-01

    Microbial abatement of toluene using Aspergillus niger in coir packed upflow bioreactor was investigated in this study. Toluene degrading microbes were isolated from municipal sewage effluent and identified by 16s rRNA sequencing method. The microbes were cultured in 2% (v/v) toluene input per day, which exhibited 95% removal efficiency with the kinetic correction value (R(2)) of 0.9024 at the optimum flow rate of about 0.4m(3)h(-1). Various parameters such as effect of flow rate, column height, elimination capacity and EBRT with removal efficiency for 50 day cycle were also optimized. The plug flow model for toluene degradation was properly expressed and the Monod kinetics constant Km and rmax values were determined as 2.25gm(-3) and 67.773gm(-3)h(-1) respectively for microbial growth rate. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Kinetic studies on the aggregation of Aspergillus niger conidia.

    PubMed

    Grimm, L H; Kelly, S; Hengstler, J; Göbel, A; Krull, R; Hempel, D C

    2004-07-20

    Morphology has a crucial effect on productivity and the supply of substrate for cultures of filamentous fungi. However, cultivation parameters leading to the desired morphology are often chosen empirically as the mechanisms governing the processes involved are usually unknown. For coagulating microorganisms like Aspergillus niger the morphological development is considered to start with the aggregation of conidia right after inoculation. To elucidate the mechanism of this process, kinetic studies were carried out using an in-line particle size analyzer. Based on the data obtained from these experiments a model for conidial aggregation is proposed in this article. It consists of two separate aggregation steps. The first one takes place immediately after inoculation, but only leads to a small decrease of total particle concentration. Most suspended conidia aggregate after a second aggregation step triggered by germination and hyphal growth. Aggregation velocity of this second phase is linearly dependent on the particle growth rate.

  20. Mapping the polysaccharide degradation potential of Aspergillus niger.

    PubMed

    Andersen, Mikael R; Giese, Malene; de Vries, Ronald P; Nielsen, Jens

    2012-07-16

    The degradation of plant materials by enzymes is an industry of increasing importance. For sustainable production of second generation biofuels and other products of industrial biotechnology, efficient degradation of non-edible plant polysaccharides such as hemicellulose is required. For each type of hemicellulose, a complex mixture of enzymes is required for complete conversion to fermentable monosaccharides. In plant-biomass degrading fungi, these enzymes are regulated and released by complex regulatory structures. In this study, we present a methodology for evaluating the potential of a given fungus for polysaccharide degradation. Through the compilation of information from 203 articles, we have systematized knowledge on the structure and degradation of 16 major types of plant polysaccharides to form a graphical overview. As a case example, we have combined this with a list of 188 genes coding for carbohydrate-active enzymes from Aspergillus niger, thus forming an analysis framework, which can be queried. Combination of this information network with gene expression analysis on mono- and polysaccharide substrates has allowed elucidation of concerted gene expression from this organism. One such example is the identification of a full set of extracellular polysaccharide-acting genes for the degradation of oat spelt xylan. The mapping of plant polysaccharide structures along with the corresponding enzymatic activities is a powerful framework for expression analysis of carbohydrate-active enzymes. Applying this network-based approach, we provide the first genome-scale characterization of all genes coding for carbohydrate-active enzymes identified in A. niger.

  1. Starch-binding domain shuffling in Aspergillus niger glucoamylase.

    PubMed

    Cornett, Catherine A G; Fang, Tsuei-Yun; Reilly, Peter J; Ford, Clark

    2003-07-01

    Aspergillus niger glucoamylase (GA) consists mainly of two forms, GAI [from the N-terminus, catalytic domain + linker + starch-binding domain (SBD)] and GAII (catalytic domain + linker). These domains were shuffled to make RGAI (SBD + linker + catalytic domain), RGAIDeltaL (SBD + catalytic domain) and RGAII (linker + catalytic domain), with domains defined by function rather than by tertiary structure. In addition, Paenibacillus macerans cyclomaltodextrin glucanotransferase SBD replaced the closely related A.niger GA SBD to give GAE. Soluble starch hydrolysis rates decreased as RGAII approximately GAII approximately GAI > RGAIDeltaL approximately RGAI approximately GAE. Insoluble starch hydrolysis rates were GAI > RGAIDeltaL > RGAI > GAE approximately RGAII > GAII, while insoluble starch-binding capacities were GAI > RGAI > RGAIDeltaL > RGAII > GAII > GAE. These results indicate that: (i) moving the SBD to the N-terminus or replacing the native SBD somewhat affects soluble starch hydrolysis; (ii) SBD location significantly affects insoluble starch binding and hydrolysis; (iii) insoluble starch hydrolysis is imperfectly correlated with its binding by the SBD; and (iv) placing the P.macerans cyclomaltodextrin glucanotransferase SBD at the end of a linker, instead of closely associated with the rest of the enzyme, severely reduces its ability to bind and hydrolyze insoluble starch.

  2. Mapping the polysaccharide degradation potential of Aspergillus niger

    PubMed Central

    2012-01-01

    Background The degradation of plant materials by enzymes is an industry of increasing importance. For sustainable production of second generation biofuels and other products of industrial biotechnology, efficient degradation of non-edible plant polysaccharides such as hemicellulose is required. For each type of hemicellulose, a complex mixture of enzymes is required for complete conversion to fermentable monosaccharides. In plant-biomass degrading fungi, these enzymes are regulated and released by complex regulatory structures. In this study, we present a methodology for evaluating the potential of a given fungus for polysaccharide degradation. Results Through the compilation of information from 203 articles, we have systematized knowledge on the structure and degradation of 16 major types of plant polysaccharides to form a graphical overview. As a case example, we have combined this with a list of 188 genes coding for carbohydrate-active enzymes from Aspergillus niger, thus forming an analysis framework, which can be queried. Combination of this information network with gene expression analysis on mono- and polysaccharide substrates has allowed elucidation of concerted gene expression from this organism. One such example is the identification of a full set of extracellular polysaccharide-acting genes for the degradation of oat spelt xylan. Conclusions The mapping of plant polysaccharide structures along with the corresponding enzymatic activities is a powerful framework for expression analysis of carbohydrate-active enzymes. Applying this network-based approach, we provide the first genome-scale characterization of all genes coding for carbohydrate-active enzymes identified in A. niger. PMID:22799883

  3. Maturation of conidia on conidiophores of Aspergillus niger.

    PubMed

    Teertstra, Wieke R; Tegelaar, Martin; Dijksterhuis, Jan; Golovina, Elena A; Ohm, Robin A; Wösten, Han A B

    2017-01-01

    Conidia of Aspergillus niger are produced on conidiophores. Here, maturation of conidia on these asexual reproductive structures was studied. Pigmented conidia that had developed on conidiophores for 2, 5, and 8days were similarly resistant to heat and were metabolically active as shown by CO2 release and conversion of the metabolic probe Tempone. A total number of 645-2421 genes showed a ⩾2-fold change in expression when 2-day-old conidia were compared to 5- and 8-day-old spores. Melanin was extracted more easily from the cell wall of 2-day-old conidia when compared to the older spores. In addition, mannitol content and germination rate of the 2-day-old conidia were higher. Dispersal efficiency by water was lower in the case of the 8-day-old conidia but no differences were observed in dispersal by wind and a hydrophobic moving object. These data and the fact that only a minor fraction of the conidia on a conidiophore were dispersed in the assays imply that a single colony of A. niger releases a heterogeneous population of conidia. This heterogeneity would provide a selective advantage in environments with rapidly changing conditions such as availability of water. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  4. The biochemistry of citric acid accumulation by Aspergillus niger.

    PubMed

    Karaffa, L; Sándor, E; Fekete, E; Szentirmai, A

    2001-01-01

    Fungi, in particular Aspergilli, are well known for their potential to overproduce a variety of organic acids. These microorganisms have an intrinsic ability to accumulate these substances and it is generally believed that this provides the fungi with an ecological advantage, since they grow rather well at pH 3 to 5, while some species even tolerate pH values as low as 1.5. Organic acid production can be stimulated and in a number of cases conditions have been found that result in almost quantitative conversion of carbon substrate into acid. This is exploited in large-scale production of a number of organic acids like citric-, gluconic- and itaconic acid. Both in production volume as well as in knowledge available, citrate is by far the major organic acid. Citric acid (2-hydroxy-propane-1,2,3-tricarboxylic acid) is a true bulk product with an estimated global production of over 900 thousand tons in the year 2000. Till the beginning of the 20th century, it was exclusively extracted from lemons. Since the global market was dominated by an Italian cartel, other means of production were sought. Chemical synthesis was possible, but not suitable due to expensive raw materials and a complicated process with low yield. The discovery of citrate accumulation by Aspergillus niger led to a rapid development of a fermentation process, which only a decade later accounted for a large part of the global production. The application of citric acid is based on three of its properties: (1) acidity and buffer capacity, (2) taste and flavour, and (3) chelation of metal ions. Because of its three acid groups with pKa values of 3.1, 4.7 and 6.4, citrate is able to produce a very low pH in solution, but is also useful as a buffer over a broad range of pH values (2 to 7). Citric acid has a pleasant acid taste which leaves little aftertaste. It sometimes enhances flavour, but is also able to mask sweetness, such as the aspartame taste in diet beverages. Chelation of metal ions is a very

  5. Isotherms, thermodynamic and mechanism studies of removal of low concentration uranium (VI) by Aspergillus niger.

    PubMed

    Wang, Xiaoyu; Wang, Tieshan; Zheng, Xinyan; Shen, Yanghao; Lu, Xia

    2017-06-01

    In order to develop an effective and economical method for removing low concentration radioactive wastewater of uranium, the biomass of 'CMCC(F)-98003' Aspergillus niger was investigated in a batch system. The maximum uranium adsorption capacity of 12.5 mg g(-1) was obtained at the initial uranium concentration of 0.75 mg L(-1). The biosorption data on a biomass concentration of 0.029 g L(-1) fitted well to the Freundlich isotherm with a correlation coefficient (R(2)) of 0.987. The calculated thermodynamic parameters showed that the biosorption of uranium ions was endothermic (ΔH° < 0). The results of scanning electron microscope and Fourier transform infrared spectrometry analysis revealed that nano-particles of uranium precipitation were formed on the cell surfaces after biosorption, and the functional groups of -CH, N-H, -COOH, P = O and the carbohydrates and alcohols were involved in the biosorption process between A. niger and uranium ions.

  6. Hypersensitivity testing for Aspergillus fumigatus IgE is significantly more sensitive than testing for Aspergillus niger IgE.

    PubMed

    Selvaggi, Thomas A; Walco, Jeremy P; Parikh, Sujal; Walco, Gary A

    2012-02-01

    We sought to determine if sufficient redundancy exists between specific IgE testing for Aspergillus fumigatus and Aspergillus niger to eliminate one of the assays in determining Aspergillus hypersensitivity. We reviewed regional laboratory results comparing A fumigatus-specific IgE with A niger-specific IgE using the Pharmacia UniCAP system (Pharmacia, Kalamazoo, MI). By using the Fisher exact test as an index of concordance among paired results, we showed a significant difference between 109 paired samples for the presence of specific IgE to A fumigatus and A niger (P < .0001). Of these specimens, 94 were negative for IgE to both species, 10 were positive for A fumigatus and negative for A niger; no specimen was positive for A niger and negative for A fumigatus. We conclude that A fumigatus-specific IgE is sufficient to detect Aspergillus hypersensitivity. The assay for A niger-specific IgE is redundant, less sensitive, and unnecessary if the assay for specific IgE for A fumigatus is performed.

  7. An antibody-sensitized microfabricated cantilever for the growth detection of Aspergillus niger spores.

    PubMed

    Nugaeva, Natalia; Gfeller, Karin Y; Backmann, Natalia; Düggelin, Marcel; Lang, Hans Peter; Güntherodt, Hans-Joachim; Hegner, Martin

    2007-02-01

    We demonstrate a new sensitive biosensor for detection of vital fungal spores of Aspergillus niger. The biosensor is based on silicon microfabricated cantilever arrays operated in dynamic mode. The change in resonance frequency of the sensor is a function of mass binding to the cantilever surface. For specific A. niger spore immobilization on the cantilever, each cantilever was individually coated with anti-Aspergillus niger polyclonal antibodies. We demonstrate the detection of single A. niger spores and their subsequent growth on the functionalized cantilever surface by online measurements of resonance frequency shifts. The new biosensor operating in humid air allows quantitative and qualitative detection of A. niger spores as well as detection of vital, functional spores in situ within approximately 4 h. The detection limit of the sensor is 103 CFU mL-1. Mass sensitivity of the cantilever sensor is approximately 53 pg Hz-1.

  8. Antifungal effects of citronella oil against Aspergillus niger ATCC 16404.

    PubMed

    Li, Wen-Ru; Shi, Qing-Shan; Ouyang, You-Sheng; Chen, Yi-Ben; Duan, Shun-Shan

    2013-08-01

    Essential oils are aromatic oily liquids obtained from some aromatic plant materials. Certain essential oils such as citronella oil contain antifungal activity, but the antifungal effect is still unknown. In this study, we explored the antifungal effect of citronella oil with Aspergillus niger ATCC 16404. The antifungal activity of citronella oil on conidia of A. niger was determined by poisoned food technique, broth dilution method, and disc volatility method. Experimental results indicated that the citronella oil has strong antifungal activity: 0.125 (v/v) and 0.25 % (v/v) citronella oil inhibited the growth of 5 × 10⁵ spore/ml conidia separately for 7 and 28 days while 0.5 % (v/v) citronella oil could completely kill the conidia of 5 × 10⁵ spore/ml. Moreover, the fungicidal kinetic curves revealed that more than 90 % conidia (initial concentration is 5 × 10⁵ spore/ml) were killed in all the treatments with 0.125 to 2 % citronella oil after 24 h. Furthermore, with increase of citronella oil concentration and treatment time, the antifungal activity was increased correspondingly. The 0.5 % (v/v) concentration of citronella oil was a threshold to kill the conidia thoroughly. The surviving conidia treated with 0.5 to 2 % citronella oil decreased by an order of magnitude every day, and no fungus survived after 10 days. With light microscope, scanning electron microscope, and transmission electron microscope, we found that citronella oil could lead to irreversible alteration of the hyphae and conidia. Based on our observation, we hypothesized that the citronella oil destroyed the cell wall of the A. niger hyphae, passed through the cell membrane, penetrated into the cytoplasm, and acted on the main organelles. Subsequently, the hyphae was collapsed and squashed due to large cytoplasm loss, and the organelles were severely destroyed. Similarly, citronella oil could lead to the rupture of hard cell wall and then act on the sporoplasm to kill the

  9. Screening a strain of Aspergillus niger and optimization of fermentation conditions for degradation of aflatoxin B₁.

    PubMed

    Zhang, Wei; Xue, Beibei; Li, Mengmeng; Mu, Yang; Chen, Zhihui; Li, Jianping; Shan, Anshan

    2014-11-13

    Aflatoxin B₁, a type of highly toxic mycotoxin produced by some species belonging to the Aspergillus genus, such as Aspergillus flavus and Aspergillus parasiticus, is widely distributed in feed matrices. Here, coumarin was used as the sole carbon source to screen microorganism strains that were isolated from types of feed ingredients. Only one isolate (ND-1) was able to degrade aflatoxin B₁ after screening. ND-1 isolate, identified as a strain of Aspergillus niger using phylogenetic analysis on the basis of 18S rDNA, could remove 26.3% of aflatoxin B₁ after 48 h of fermentation in nutrient broth (NB). Optimization of fermentation conditions for aflatoxin B₁ degradation by selected Aspergillus niger was also performed. These results showed that 58.2% of aflatoxin B₁ was degraded after 24 h of culture under the optimal fermentation conditions. The aflatoxin B₁ degradation activity of Aspergillus niger supernatant was significantly stronger than cells and cell extracts. Furthermore, effects of temperature, heat treatment, pH, and metal ions on aflatoxin B₁ degradation by the supernatant were examined. Results indicated that aflatoxin B₁ degradation of Aspergillus niger is enzymatic and this process occurs in the extracellular environment.

  10. A novel fungal fruiting structure formed by Aspergillus niger and Aspergillus carbonarius in grape berries.

    PubMed

    Pisani, Cristina; Nguyen, Trang Thoaivan; Gubler, Walter Douglas

    2015-09-01

    Sour rot, is a pre-harvest disease that affects many grape varieties. Sour rot symptoms include initial berry cracking and breakdown of berry tissue. This is a disease complex with many filamentous fungi and bacteria involved, but is usually initiated by Aspergillus niger or Aspergillus carbonarius. Usually, by the time one sees the rot there are many other organisms involved and it is difficult to attribute the disease to one species. In this study two species of Aspergillus were shown to produce a previously unknown fruiting structure in infected berries. The nodulous morphology, bearing conidia, suggests them to be an 'everted polymorphic stroma'. This structure forms freely inside the berry pulp and assumes multiple shapes and sizes, sometimes sclerotium-like in form. It is composed of a mass of vegetative hyphae with or without tissue of the host containing spores or fruiting bodies bearing spores. Artificially inoculated berries placed in soil in winter showed the possible overwintering function of the fruiting body. Inoculated berry clusters on standing vines produced fruiting structures within 21 d post inoculation when wounds were made at veraison or after (July-September). Histological studies confirmed that the fruiting structure was indeed fungal tissue.

  11. Some factors affecting tannase production by Aspergillus niger Van Tieghem.

    PubMed

    Aboubakr, Hamada A; El-Sahn, Malak A; El-Banna, Amr A

    2013-01-01

    One variable at a time procedure was used to evaluate the effect of qualitative variables on the production of tannase from Aspergillus niger Van Tieghem. These variables including: fermentation technique, agitation condition, tannins source, adding carbohydrates incorporation with tannic acid, nitrogen source type and divalent cations. Submerged fermentation under intermittent shaking gave the highest total tannase activity. Maximum extracellular tannase activity (305 units/50 mL) was attained in medium containing tannic acid as tannins source and sodium nitrate as nitrogen source at 30 °C for 96 h. All added carbohydrates showed significant adverse effects on the production of tannase. All tested divalent cations significantly decreased tannase production. Moreover, split plot design was carried out to study the effect of fermentation temperature and fermentation time on tannase production. The results indicated maximum tannase production (312.7 units/50 mL) at 35 °C for 96 h. In other words, increasing fermentation temperature from 30 °C to 35 °C resulted in increasing tannase production.

  12. Hyphal differentiation in the exploring mycelium of Aspergillus niger.

    PubMed

    Vinck, Arman; Terlou, Maarten; Pestman, Wiebe R; Martens, Edwin P; Ram, Arthur F; van den Hondel, Cees A M J J; Wösten, Han A B

    2005-11-01

    Mycelial fungi play a central role in element cycling in nature by degrading dead organic material such as wood. Fungal colonization of a substrate starts with the invasion of exploring hyphae. These hyphae secrete enzymes that convert the organic material into small molecules that can be taken up by the fungus to serve as nutrients. Using green fluorescent protein (GFP) as a reporter, we show for the first time that exploring hyphae of Aspergillus niger differentiate with respect to enzyme secretion; some strongly express the glucoamylase gene glaA, while others hardly express it at all. When a cytoplasmic GFP was used, 27% of the exploring hyphae of a 5-day-old colony belonged to the low expressing hyphae. By fusing GFP to glucoamylase and by introducing an ER retention signal, this number increased to 50%. This difference is due to cytoplasmic streaming of the reporter in the former case, as was shown by using a photo-activatable GFP. Our findings indicate that a fungal mycelium is highly differentiated, especially when taking into account that hyphae in the exploration zone were exposed to the same nutritional conditions.

  13. Some factors affecting tannase production by Aspergillus niger Van Tieghem

    PubMed Central

    Aboubakr, Hamada A.; El-Sahn, Malak A.; El-Banna, Amr A.

    2013-01-01

    One variable at a time procedure was used to evaluate the effect of qualitative variables on the production of tannase from Aspergillus niger Van Tieghem. These variables including: fermentation technique, agitation condition, tannins source, adding carbohydrates incorporation with tannic acid, nitrogen source type and divalent cations. Submerged fermentation under intermittent shaking gave the highest total tannase activity. Maximum extracellular tannase activity (305 units/50 mL) was attained in medium containing tannic acid as tannins source and sodium nitrate as nitrogen source at 30 °C for 96 h. All added carbohydrates showed significant adverse effects on the production of tannase. All tested divalent cations significantly decreased tannase production. Moreover, split plot design was carried out to study the effect of fermentation temperature and fermentation time on tannase production. The results indicated maximum tannase production (312.7 units/50 mL) at 35 °C for 96 h. In other words, increasing fermentation temperature from 30 °C to 35 °C resulted in increasing tannase production. PMID:24294255

  14. Population balance modeling of the conidial aggregation of Aspergillus niger.

    PubMed

    Lin, P-J; Grimm, L H; Wulkow, M; Hempel, D C; Krull, R

    2008-02-01

    Numerous biotechnological production processes are based on the submerse cultivation of filamentous fungi. Process design, however, is often hampered by the complex growth pattern of these organisms. In the morphologic development of coagulating filamentous fungi, like Aspergillus niger, conidial aggregation is the first step of filamentous morphogenesis. For a proper description of this phenomenon it is necessary to characterize conidial populations. Kinetic studies performed with an in-line particle size analyzer suggested that two distinct aggregation steps have to be considered. The first step of conidial aggregation starts immediately after inoculation. Both the rate constants of formation and disintegration of aggregates have been determined by measuring the concentration of conidia at the beginning of the cultivation and the concentration of particles at steady state during the first hours of cultivation. In contrast to the first aggregation step, where the collision of conidia is presumed to be responsible for the process, the second aggregation step is thought to be initiated by germination of conidia. Growing hyphae provide additional surface for the attachment of non- germinated conidia, which leads to a strong decrease in particle concentration. The specific hyphal length growth rate and the ratio of particle concentration to the growing adhesion hyphal surface are decisive matters of the second aggregation step. Both aggregation steps can be described by population dynamics and simulated using the program package PARSIVAL (PARticle SIze eVALution) for the treatment of general particle population balances.

  15. Isolation of mutants deficient in acetyl-CoA synthetase and a possible regulator of acetate induction in Aspergillus niger.

    PubMed

    Sealy-Lewis, H M; Fairhurst, V

    1998-07-01

    Acetate-non-utilizing mutants in Aspergillus niger were selected by resistance to 1.2% propionate in the presence of 0.1% glucose. Mutants showing normal morphology fell into two complementation groups. One class of mutant lacked acetyl-CoA synthetase but had high levels of isocitrate lyase, while the second class showed reduced levels of both acetyl-CoA synthetase and isocitrate lyase compared to the wild-type strain. By analogy with mutants selected by resistance to 1.2% propionate in Aspergillus nidulans, the properties of the mutants in A. niger suggest that the mutations are either in the structural gene for acetyl-CoA synthetase (acuA) or in a possible regulatory gene of acetate induction (acuB). A third class of mutant in a different complementation group was obtained which had abnormal morphology (yellow mycelium and few conidia); the specific lesion in these mutants has not been determined.

  16. Enhanced itaconic acid production in Aspergillus niger using genetic modification and medium optimization

    PubMed Central

    2012-01-01

    Background Aspergillus niger was selected as a host for producing itaconic acid due to its versatile and tolerant character in various growth environments, and its extremely high capacity of accumulating the precursor of itaconic acid: citric acid. Expressing the CAD gene from Aspergillus terreus opened the metabolic pathway towards itaconic acid in A. niger. In order to increase the production level, we continued by modifying its genome and optimizing cultivation media. Results Based on the results of previous transcriptomics studies and research from other groups, two genes : gpdA encoding the glyceraldehyde −3-dehydrogenase (GPD) and hbd1 encoding a flavohemoglobin domain (HBD) were overexpressed in A. niger. Besides, new media were designed based on a reference medium for A. terreus. To analyze large numbers of cultures, we developed an approach for screening both fungal transformants and various media in 96-well micro-titer plates. The hbd1 transformants (HBD 2.2/2.5) did not improve itaconic acid titer while the gpdA transformant (GPD 4.3) decreased the itaconic acid production. Using 20 different media, copper was discovered to have a positive influence on itaconic acid production. Effects observed in the micro-titer plate screening were confirmed in controlled batch fermentation. Conclusions The performance of gpdA and hbd1 transformants was found not to be beneficial for itaconic acid production using the tested cultivation conditions. Medium optimization showed that, copper was positively correlated with improved itaconic acid production. Interestingly, the optimal conditions for itaconic acid clearly differ from conditions optimal for citric- and oxalic acid production. PMID:22925689

  17. The Aspergillus niger multicopper oxidase family: analysis and overexpression of laccase-like encoding genes

    PubMed Central

    2011-01-01

    Background Many filamentous fungal genomes contain complex groups of multicopper oxidase (MCO) coding genes that makes them a good source for new laccases with potential biotechnological interest. A bioinformatics analysis of the Aspergillus niger ATCC 1015 genome resulted in the identification of thirteen MCO genes. Ten of them were cloned and homologously overexpressed. Results A bioinformatic analysis of the A. niger ATCC 1015 genome revealed the presence of 13 MCO genes belonging to three different subfamilies on the basis of their phylogenetic relationships: ascomycete laccases, fungal pigment MCOs and fungal ferroxidases. According to in silico amino acid sequence analysis, the putative genes encoding for functional extracellular laccases (mcoA, mcoB, mcoC, mcoD, mcoE, mcoF, mcoG, mcoI, mcoJ and mcoM) were placed under the control of the glaA promoter and overexpressed in A. niger N593. Enzyme activity plate assays with several common laccase substrates showed that all genes are actually expressed and code for active MCOs. Interestingly, expressed enzymes show different substrate specificities. In addition, optimization of fungal pigment MCOs extracellular production was investigated. The performance of the widely used glucoamylase signal sequence (ssGlaA) in McoA secretion was studied. Results obtained suggest that ssGlaA do not yield higher levels of secreted McoA when compared to its native secretion signal. Also, McoB synthesis was investigated using different nitrogen sources in minimal medium liquid cultures. Higher yields of extracellular McoB were achieved with (NH4)2 tartrate. Conclusions Aspergillus niger is a good source of new laccases. The different substrate specificity observed in plate assays makes them interesting to be purified and biochemically compared. The homologous signal sequence of McoA has been shown to be a good choice for its extracellular overexpression. From the nitrogen sources tested (NH4)2 tartrate has been found to be the

  18. Bioaccumulation potential of Aspergillus niger and Aspergillus flavus for removal of heavy metals from paper mill effluent.

    PubMed

    Thippeswamy, B; Shivakumar, C K; Krishnappa, M

    2012-11-01

    In the present study Aspergillus niger and Aspergillus flavus isolated from paper mill effluent showed tolerance and accumulation of toxic metals Ni, Zn, Cd, Pb, Cr and Cu from synthetic medium and paper mill effluent. Physico-chemical and heavy metals characterization of industrially treated paper mill effluent showed insignificant reduction in BOD, hardness, TDS and heavy metals as compared to permissible limits of BIS and WHO. A. niger and A. flavus were treated with synthetic medium containing 100-1000 mg l(-1) of six heavy metals. A. niger was able to tolerate and grow in 1000 mg l(-1) Pb, 500 mg l(-1) Cu, 250 mg l(-1) Zn and 100 mg l(-1) Cr, Ni respectively. No growth of A. niger was observed in 100 mg l-(-1) of Cd. A. flavus was capable to tolerate and grow in 1000 mg l(-1) Pb, Zn and Ni, 100mg l(-1) Cu. A. flavus growth was completely inhibited in 100 mg l(-1) of Cd and Cr. The Cd, Zn, Cu and Pb reduction were found significant (p < 0.05) in the paper effluent inoculated with A. niger and A. flavus biomass compared to industrial treated effluent. A. niger and A. flavus accumulated maximum of Pb (75.82%) followed by Zn (49.40%) > Cu (45.34%) > Ni (25.20%), while only 41% Cr was accumulated by A. nigerfrom 100 mg l(-1) of Cr solution.

  19. Invasive Aspergillus niger complex infections in a Belgian tertiary care hospital.

    PubMed

    Vermeulen, E; Maertens, J; Meersseman, P; Saegeman, V; Dupont, L; Lagrou, K

    2014-05-01

    The incidence of invasive infections caused by the Aspergillus niger species complex was 0.043 cases/10 000 patient-days in a Belgian university hospital (2005-2011). Molecular typing was performed on six available A. niger complex isolates involved in invasive disease from 2010 to 2011, revealing A. tubingensis, which has higher triazole minimal inhibitory concentrations, in five out of six cases.

  20. An artificially constructed Syngonium podophyllum-Aspergillus niger combinate system for removal of uranium from wastewater.

    PubMed

    He, Jia-dong; Wang, Yong-dong; Hu, Nan; Ding, Dexin; Sun, Jing; Deng, Qin-wen; Li, Chang-wu; Xu, Fei

    2015-12-01

    Aspergillus niger was inoculated to the roots of five plants, and the Syngonium podophyllum-A. niger combinate system (SPANCS) was found to be the most effective in removing uranium from hydroponic liquid with initial uranium concentration of 5 mg L(-1). Furthermore, the hydroponic experiments on the removal of uranium from the hydroponic liquids with initial uranium concentrations of 0.5, 1.0, and 3.0 mg L(-1) by the SPANCS were conducted, the inhibitory effect of A. niger on the growth of S. podophyllum in the SPANCS was studied, the accumulation characteristics of uranium by S. podophyllum in the SPANCS were analyzed, and the Fourier transform infrared (FT-IR) and extended X-ray absorption fine structure (EXAFS) spectra were measured. The results show that the removal of uranium by the SPANCS from the hydroponic liquids with initial uranium concentrations of 0.5, 1.0, and 3.0 mg L(-1) reached 98.20, 97.90, and 98.50%, respectively, after 37 days of accumulation of uranium; that the uranium concentrations in the hydroponic liquids decreased to 0.009, 0.021, and 0.045 mg L(-1), respectively, which are lower than the stipulated concentration for discharge of 0.050 mg L(-1) by the People's Republic of China; that A. niger helped to generate more groups in the root of S. podophyllum which can improve the complexing capability of S. podophyllum for uranium; and that the uranium accumulated in the root of S. podophyllum was in the form of phosphate uranyl and carboxylic uranyl.

  1. The infrared spectral transmittance of Aspergillus niger spore aggregated particle swarm

    NASA Astrophysics Data System (ADS)

    Zhao, Xinying; Hu, Yihua; Gu, Youlin; Li, Le

    2015-10-01

    Microorganism aggregated particle swarm, which is quite an important composition of complex media environment, can be developed as a new kind of infrared functional materials. Current researches mainly focus on the optical properties of single microorganism particle. As for the swarm, especially the microorganism aggregated particle swarm, a more accurate simulation model should be proposed to calculate its extinction effect. At the same time, certain parameters deserve to be discussed, which helps to better develop the microorganism aggregated particle swarm as a new kind of infrared functional materials. In this paper, take Aspergillus Niger spore as an example. On the one hand, a new calculation model is established. Firstly, the cluster-cluster aggregation (CCA) model is used to simulate the structure of Aspergillus Niger spore aggregated particle. Secondly, the single scattering extinction parameters for Aspergillus Niger spore aggregated particle are calculated by using the discrete dipole approximation (DDA) method. Thirdly, the transmittance of Aspergillus Niger spore aggregated particle swarm is simulated by using Monte Carlo method. On the other hand, based on the model proposed above, what influences can wavelength causes has been studied, including the spectral distribution of scattering intensity of Aspergillus Niger spore aggregated particle and the infrared spectral transmittance of the aggregated particle swarm within the range of 8~14μm incident infrared wavelengths. Numerical results indicate that the scattering intensity of Aspergillus Niger spore aggregated particle reduces with the increase of incident wavelengths at each scattering angle. Scattering energy mainly concentrates on the scattering angle between 0~40°, forward scattering has an obvious effect. In addition, the infrared transmittance of Aspergillus Niger spore aggregated particle swarm goes up with the increase of incident wavelengths. However, some turning points of the trend

  2. Calcium oxalate crystal deposition in a patient with Aspergilloma due to Aspergillus niger

    PubMed Central

    Oda, Miku; Wakayama, Megumi; Shibuya, Kazutoshi; Ogawa, Yukari; Inui, Toshiya; Yokoyama, Emi; Inoue, Manami; Shimoyamada, Hiroaki; Fujiwara, Masachika; Ota, Tomohiro; Takizawa, Hajime; Goto, Hajime

    2013-01-01

    Discrimination between aspergilloma and chronic necrotizing pulmonary aspergillosis (CNPA) based on radiological findings can difficult. We describe a patient with aspergilloma and organizing pneumonia that was possibly caused by Aspergillus niger infection and radiologically mimicked CNPA. A postmortem histological analysis showed diffuse alveolar damage that had originated in peri-cavitary lung parenchyma. Calcium oxalate or Aspergillus niger was located inside, but not outside the cavity in the right upper lobe. Calcium oxalate or other unknown hyphal bioactive components might provoke severe lung inflammation not only adjacent to the cavity, but also on the contralateral side. PMID:23991333

  3. Crystallization and preliminary X-ray crystallographic analysis of recombinant β-mannosidase from Aspergillus niger

    PubMed Central

    Demo, Gabriel; Fliedrová, Barbora; Weignerová, Lenka; Wimmerová, Michaela

    2013-01-01

    β-Mannosidase (EC 3.2.1.25) is an important exoglycosidase specific for the hydrolysis of terminal β-linked mannoside in various oligomeric saccharide structures. β-Mannosidase from Aspergillus niger was expressed in Pichia pastoris and purified to clear homogeneity. β-Mannosidase was crystallized in the presence of d-mannose and the crystal diffracted to 2.41 Å resolution. The crystal belonged to space group P1, with unit-cell parameters a = 62.37, b = 69.73, c = 69.90 Å, α = 108.20, β = 101.51, γ = 103.20°. The parameters derived from the data collection indicate the presence of one molecule in the asymmetric unit. PMID:23519806

  4. Crystallization and preliminary X-ray crystallographic analysis of recombinant β-mannosidase from Aspergillus niger.

    PubMed

    Demo, Gabriel; Fliedrová, Barbora; Weignerová, Lenka; Wimmerová, Michaela

    2013-03-01

    β-Mannosidase (EC 3.2.1.25) is an important exoglycosidase specific for the hydrolysis of terminal β-linked mannoside in various oligomeric saccharide structures. β-Mannosidase from Aspergillus niger was expressed in Pichia pastoris and purified to clear homogeneity. β-Mannosidase was crystallized in the presence of D-mannose and the crystal diffracted to 2.41 Å resolution. The crystal belonged to space group P1, with unit-cell parameters a=62.37, b=69.73, c=69.90 Å, α=108.20, β=101.51, γ=103.20°. The parameters derived from the data collection indicate the presence of one molecule in the asymmetric unit.

  5. Characterization of the fumonisin B2 biosynthetic gene cluster in Aspergillus niger and A. awamori.

    USDA-ARS?s Scientific Manuscript database

    Aspergillus niger and A. awamori strains isolated from grapes cultivated in Mediterranean basin were examined for fumonisin B2 (FB2) production and presence/absence of sequences within the fumonisin biosynthetic gene (fum) cluster. Presence of 13 regions in the fum cluster was evaluated by PCR assay...

  6. Conversion of fusaric acid to fusarinol by Aspergillus niger: A detoxification reaction

    USDA-ARS?s Scientific Manuscript database

    The fungus Fusarium oxysporum causes wilt diseases of plants and produces a potent phytotoxin fusaric acid (FA) which is also toxic to many microorganisms. An Aspergillus strain with high tolerance to FA was isolated from soil. HPLC analysis of culture filtrates from A. niger grown with the addition...

  7. NIGERLYSINTM, HEMOLYSIN PRODUCED BY ASPERGILLUS NIGER, CAUSES LETHALITY OF PRIMARY RAT CORTICAL NEURONAL CELLS IN VITRO

    EPA Science Inventory

    Aspergillus niger produced a proteinaceous hemolysin, nigerlysinTM when incubated on sheep's blood agar at both 23° C and 37°C. Nigerlysin was purified from tryptic soy broth culture filtrate. Purified nigerlysin has a molecular weight of approximately 72 kDa, with an...

  8. NIGERLYSINTM, HEMOLYSIN PRODUCED BY ASPERGILLUS NIGER, CAUSES LETHALITY OF PRIMARY RAT CORTICAL NEURONAL CELLS IN VITRO

    EPA Science Inventory

    Aspergillus niger produced a proteinaceous hemolysin, nigerlysinTM when incubated on sheep's blood agar at both 23° C and 37°C. Nigerlysin was purified from tryptic soy broth culture filtrate. Purified nigerlysin has a molecular weight of approximately 72 kDa, with an...

  9. Enzymatic Comparisons of Aspergillus niger PhyA and Escherichia coli AppA2 Phytases

    USDA-ARS?s Scientific Manuscript database

    This study was to compare three phytase activity assays and kinetics of Aspergillus niger PhyA and Escherichia coli AppA2 phytases expressed in Pichia pastoris at the observed stomach pH of 3.5. In Experiment 1, equivalent phytase activities in the crude preparations of PhyA and AppA2 were tested ...

  10. Aspergillus niger Infection of an Orbital Exenteration Socket Can Be Treated with Oral Itraconazole

    PubMed Central

    So, Wing Lung Alvin; Hardy, Thomas G.

    2012-01-01

    Aspergillus niger infection is a rare complication following orbital exenteration, especially in immunocompetent patients. If untreated, the infection may lead to significant morbidities. We report a patient with this rare infection, who has been treated successfully with oral itraconazole. PMID:23320225

  11. Production of feruloyl/rho-coumaroyl esterase activity by Penicillium expansum, Penicillium brevicompactum and Aspergillus niger.

    PubMed

    Donaghy, J A; McKay, A M

    1995-12-01

    Extracellular esterase production by Penicillium expansum, Penicillium brevicompactum and Aspergillus niger was determined in both liquid and solid-state culture. Methyl ferulate was used as the main carbon source in liquid culture whereas wheat bran and sugar beet pulp were used in solid-state culture. Extracted enzyme for each fungus showed activity in the presence of ONP butyrate, methyl ferulate, methyl coumarate and two 'natural' feruloylated carbohydrate esters. Higher enzyme recoveries were obtained using wheat bran in solid-state culture. Higher levels of feruloyl esterase activity were recovered from P. expansum on all feruloylated substrates than from P. brevicompactum or A. niger. Using ONP butyrate as substrate the pH and temperature optima for the esterases of both Penicillium spp. were 6.0 and 25-30 degrees C. Aspergillus niger esterase activity showed a broader temperature range with an optimum at 40 degrees C.

  12. [Construction and application of black-box model for glucoamylase production by Aspergillus niger].

    PubMed

    Li, Lianwei; Lu, Hongzhong; Xia, Jianye; Chu, Ju; Zhuang, Yingping; Zhang, Siliang

    2015-07-01

    Carbon-limited continuous culture was used to study the relationship between the growth of Aspergillus niger and the production of glucoamylase. The result showed that when the specific growth rate was lower than 0.068 h(-1), the production of glucoamylase was growth-associated, when the specific growth rate was higher than 0.068 h(-1), the production of glucoamylase was not growth-associated. Based on the result of continuous culture, the Monod dynamics model of glucose consumption of A. niger was constructed, Combining Herbert-Pirt equation of glucose and oxygen consumption with Luedeking-Piret equation of enzyme production, the black-box model of Aspergillus niger for enzyme production was established. The exponential fed-batch culture was designed to control the specific growth rate at 0.05 h(-1) by using this model and the highest yield for glucoamylase production by A. niger reached 0.127 g glucoamylase/g glucose. The black-box model constructed in this study successfully described the glucoamylase production by A. niger and the result of the model fitted the measured value well. The black-box model could guide the design and optimization of glucoamylase production by A. niger.

  13. Cloning and Genomic Organization of a Rhamnogalacturonase Gene from Locally Isolated Strain of Aspergillus niger.

    PubMed

    Damak, Naourez; Abdeljalil, Salma; Taeib, Noomen Hadj; Gargouri, Ali

    2015-08-01

    The rhg gene encoding a rhamnogalacturonase was isolated from the novel strain A1 of Aspergillus niger. It consists of an ORF of 1.505 kb encoding a putative protein of 446 amino acids with a predicted molecular mass of 47 kDa, belonging to the family 28 of glycosyl hydrolases. The nature and position of amino acids comprising the active site as well as the three-dimensional structure were well conserved between the A. niger CTM10548 and fungal rhamnogalacturonases. The coding region of the rhg gene is interrupted by three short introns of 56 (introns 1 and 3) and 52 (intron 2) bp in length. The comparison of the peptide sequence with A. niger rhg sequences revealed that the A1 rhg should be an endo-rhamnogalacturonases, more homologous to rhg A than rhg B A. niger known enzymes. The comparison of rhg nucleotide sequence from A. niger A1 with rhg A from A. niger shows several base changes. Most of these changes (59 %) are located at the third base of codons suggesting maintaining the same enzyme function. We used the rhamnogalacturonase A from Aspergillus aculeatus as a template to build a structural model of rhg A1 that adopted a right-handed parallel β-helix.

  14. High levels of genetic variation exist in Aspergillus niger populations infecting Welwitschia mirabilis hook.

    PubMed

    Pekarek, Elizabeth; Jacobson, Kathryn; Donovan, Anna

    2006-01-01

    Aspergillus niger is an asexual, haploid fungus which infects the seeds of Namibia's national plant, Welwitschia mirabilis, severely affecting plant viability. We used 31 randomly amplified polymorphic DNA markers to assess genetic variation among 89 A. niger isolates collected from three W. mirabilis populations in the Namib Desert. While all isolates belonged to the same vegetative compatibility group, 84% were unique genotypes, and estimates of genotypic evenness and Simpson's index of diversity approached 1.0 in the three populations. Analysis of molecular variance revealed that 78% of the total variation sampled was among isolates from individual W. mirabilis plants. Lower, but significant, amounts of variation detected among isolates from different plants (12%) and different sites (10%) also indicated some site- and plant-level genetic differentiation. Total gene diversity (H(T) = 0.264) was mostly attributable to diversity within populations (H(S) = 0.217); the relatively low level of genetic differentiation among the sites (G(ST) = 0.141) suggests that gene flow is occurring among the three distant sites. Although sexual reproduction has never been observed in this fungus, parasexuality is a well-known phenomenon in laboratory strains. We thus attribute the high levels of genetic variation to parasexuality and/or wind-facilitated gene flow from an as of yet undocumented broader host range of the fungus on other desert vegetation. Given the apparent ease of transmission, high levels of genetic diversity, and potentially broad host range, A. niger infections of W. mirabilis may be extremely difficult to control or prevent.

  15. Toolkit for visualization of the cellular structure and organelles in Aspergillus niger.

    PubMed

    Buren, Emiel B J Ten; Karrenbelt, Michiel A P; Lingemann, Marit; Chordia, Shreyans; Deng, Ying; Hu, JingJing; Verest, Johanna M; Wu, Vincen; Gonzalez, Teresita J Bello; Heck, Ruben G A van; Odoni, Dorett I; Schonewille, Tom; Straat, Laura van der; Graaff, Leo H de; Passel, Mark W J van

    2014-12-19

    Aspergillus niger is a filamentous fungus that is extensively used in industrial fermentations for protein expression and the production of organic acids. Inherent biosynthetic capabilities, such as the capacity to secrete these biomolecules in high amounts, make A. niger an attractive production host. Although A. niger is renowned for this ability, the knowledge of the molecular components that underlie its production capacity, intercellular trafficking processes and secretion mechanisms is far from complete. Here, we introduce a standardized set of tools, consisting of an N-terminal GFP-actin fusion and codon optimized eforRed chromoprotein. Expression of the GFP-actin construct facilitates visualization of the actin filaments of the cytoskeleton, whereas expression of the chromoprotein construct results in a clearly distinguishable red phenotype. These experimentally validated constructs constitute the first set of standardized A. niger biomarkers, which can be used to study morphology, intercellular trafficking, and secretion phenomena.

  16. The effects of agitation and aeration on the production of gluconic acid by Aspergillus niger

    SciTech Connect

    Dronawat, S.N.; Svihla, C.K.; Hanley, T.R.

    1995-12-31

    The effects of agitation and aeration in the production of gluconic acid by Aspergillus niger from a glucose medium were investigated. Experiments were conducted at aeration rates of 5.0 and 10.0 L/min. Four different agitation speeds were investigated for each aeration rate. Gluconic acid concentration and biomass concentration were analyzed, and the rate of consumption of substrate by A. niger was noted. The main purpose of this work was to find the optimal conditions of agitation and aeration for the growth of A. niger and production of gluconic acid in submerged culture in a batch fermentor at a bench-top scale. The oxygen-transfer rates at different agitation and aeration rates were calculated. The gluconic acid concentration and rate of growth of A. niger increased with increase in the agitation and aeration rates.

  17. Effects of Clitoria ternatea leaf extract on growth and morphogenesis of Aspergillus niger.

    PubMed

    Kamilla, L; Mansor, S M; Ramanathan, S; Sasidharan, S

    2009-08-01

    Clitoria ternatea is known for its antimicrobial activity but the antifungal effects of leaf extract on growth and morphogenesis of Aspergillus niger have not been observed. The extract showed a favorable antifungal activity against A. niger with a minimum inhibition concentration 0.8 mg/mL and minimum fungicidal concentration 1.6 mg/mL, respectively. The leaf extract exhibited considerable antifungal activity against filamentous fungi in a dose-dependent manner with 0.4 mg/mL IC50 value on hyphal growth of A. niger. The main changes observed under scanning electron microscopy after C. ternatea extract treatment were loss of cytoplasm in fungal hyphae and the hyphal wall and its diameter became markedly thinner, distorted, and resulted in cell wall disruption. In addition, conidiophore alterations were also observed when A. niger was treated with C. ternatea leaf extract.

  18. Phytase Production by Aspergillus niger CFR 335 and Aspergillus ficuum SGA 01 through Submerged and Solid-State Fermentation

    PubMed Central

    Shivanna, Gunashree B.; Venkateswaran, Govindarajulu

    2014-01-01

    Fermentation is one of the industrially important processes for the development of microbial metabolites that has immense applications in various fields. This has prompted to employ fermentation as a major technique in the production of phytase from microbial source. In this study, a comparison was made between submerged (SmF) and solid-state fermentations (SSF) for the production of phytase from Aspergillus niger CFR 335 and Aspergillus ficuum SGA 01. It was found that both the fungi were capable of producing maximum phytase on 5th day of incubation in both submerged and solid-state fermentation media. Aspergillus niger CFR 335 and A. ficuum produced a maximum of 60.6 U/gds and 38 U/gds of the enzyme, respectively, in wheat bran solid substrate medium. Enhancement in the enzyme level (76 and 50.7 U/gds) was found when grown in a combined solid substrate medium comprising wheat bran, rice bran, and groundnut cake in the ratio of 2 : 1 : 1. A maximum of 9.6 and 8.2 U/mL of enzyme activity was observed in SmF by A. niger CFR 335 and A.ficuum, respectively, when grown in potato dextrose broth. PMID:24688383

  19. Phytase production by Aspergillus niger CFR 335 and Aspergillus ficuum SGA 01 through submerged and solid-state fermentation.

    PubMed

    Shivanna, Gunashree B; Venkateswaran, Govindarajulu

    2014-01-01

    Fermentation is one of the industrially important processes for the development of microbial metabolites that has immense applications in various fields. This has prompted to employ fermentation as a major technique in the production of phytase from microbial source. In this study, a comparison was made between submerged (SmF) and solid-state fermentations (SSF) for the production of phytase from Aspergillus niger CFR 335 and Aspergillus ficuum SGA 01. It was found that both the fungi were capable of producing maximum phytase on 5th day of incubation in both submerged and solid-state fermentation media. Aspergillus niger CFR 335 and A. ficuum produced a maximum of 60.6 U/gds and 38 U/gds of the enzyme, respectively, in wheat bran solid substrate medium. Enhancement in the enzyme level (76 and 50.7 U/gds) was found when grown in a combined solid substrate medium comprising wheat bran, rice bran, and groundnut cake in the ratio of 2 : 1 : 1. A maximum of 9.6 and 8.2 U/mL of enzyme activity was observed in SmF by A. niger CFR 335 and A.ficuum, respectively, when grown in potato dextrose broth.

  20. The Aspergillus niger growth on the treated concrete substrate using variable antifungals

    NASA Astrophysics Data System (ADS)

    Parjo, U. K.; Sunar, N. M.; Leman, A. M.; Gani, P.; Embong, Z.; Tajudin, S. A. A.

    2016-11-01

    The aim of this study was to evaluate the Aspergillus niger (A. niger) growth on substrates after incorporates with different compounds of antifungals which is normally used in food industry. The antifungals named as potassium sorbate (PS), calcium benzoate (CB) and zinc salicylate (ZS) were applied on concrete substrate covered with different wall finishing such as acrylic paint (AP), glycerol based paint (GBP), thin wallpaper (THIN) and thick wallpaper (THICK). The concrete substrate were inoculated with spore suspension, incubated at selected temperature (30oC) and relative humidity (90%)in plant growth chamber. The observations were done from the Day 3 until Day 27. The results showed that the growth of the A. niger for concrete treated by PS for AP, GBP, THIN, and THICK were 64%, 32%, 11% and 100%, respectively. Meanwhile for CB, the growth of A. niger on AP, GBP, THIN, and THICK were 100%, 12%, 41%, and 13%, respectively. Similarly, treated concrete by ZS revealed that the growth of A. niger on the same substrate cover were 33%, 47%, 40%, and 39%, respectively. The results obtained in this study provide a valuable knowledge on the abilities of antifungals to remediate A. niger that inoculated on the concrete substrate. Consequently, this study proved that the PS covering with THIN more efficiency compares CB and ZS to prevent A. niger growth.

  1. VeA of Aspergillus niger increases spore dispersing capacity by impacting conidiophore architecture.

    PubMed

    Wang, Fengfeng; Dijksterhuis, Jan; Wyatt, Timon; Wösten, Han A B; Bleichrodt, Robert-Jan

    2015-01-01

    Aspergillus species are highly abundant fungi worldwide. Their conidia are among the most dominant fungal spores in the air. Conidia are formed in chains on the vesicle of the asexual reproductive structure called the conidiophore. Here, it is shown that the velvet protein VeA of Aspergillus niger maximizes the diameter of the vesicle and the spore chain length. The length and width of the conidiophore stalk and vesicle were reduced nearly twofold in a ΔveA strain. The latter implies a fourfold reduced surface area to develop chains of spores. Over and above this, the conidial chain length was approximately fivefold reduced. The calculated 20-fold reduction in formation of conidia by ΔveA fits the 8- to 17-fold decrease in counted spore numbers. Notably, morphology of the ΔveA conidiophores of A. niger was very similar to that of wild-type Aspergillus sydowii. This suggests that VeA is key in conidiophore architecture diversity in the fungal kingdom. The finding that biomass formation of the A. niger ΔveA strain was reduced twofold shows that VeA not only impacts dispersion capacity but also colonization capacity of A. niger.

  2. Towards semisynthetic natural compounds with a biaryl axis: Oxidative phenol coupling in Aspergillus niger.

    PubMed

    Hugentobler, Katharina Gloria; Müller, Michael

    2017-08-31

    Regio- and stereoselective phenol coupling is difficult to achieve using synthetic strategies. However, in nature, cytochrome P450 enzyme-mediated routes are employed to achieve complete axial stereo- and regiocontrol in the biosynthesis of compounds with potent bioactivity. Here, we report a synthetic biology approach whereby the bicoumarin metabolic pathway in Aspergillus niger was specifically tailored towards the formation of new coupling products. This strategy represents a manipulation of the bicoumarin pathway in A. niger via interchange of the phenol-coupling biocatalyst and could be applied to other components of the pathway to access a variety of atropisomeric natural product derivatives. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Host-Pathogen Interactions: VI. A Single Plant Protein Efficiently Inhibits Endopolygalacturonases Secreted by Colletotrichum Lindemuthianum and Aspergillus Niger.

    PubMed

    Fisher, M L; Anderson, A J; Albersheim, P

    1973-03-01

    Endopolygalacturonases have been purified from the extracellular enzymes of Colletotrichum lindemuthianum and Aspergillus niger. A protein, purified from Red Kidney (Phaseolus vulgaris) beans for its ability to inhibit the endopolygalacturonase secreted by C. lindemuthianum, inhibits the A. niger endopolygalacturonase almost as efficiently as it inhibits the C. lindemuthianum enzyme.

  4. Constitutive expression of fluorescent protein by Aspergillus var. niger and Aspergillus carbonarius to monitor fungal colonization in maize plants.

    PubMed

    Palencia, Edwin Rene; Glenn, Anthony Elbie; Hinton, Dorothy Mae; Bacon, Charles Wilson

    2013-09-01

    Aspergillus niger and Aspergillus carbonarius are two species in the Aspergillus section Nigri (black-spored aspergilli) frequently associated with peanut (Arachis hypogea), maize (Zea mays), and other plants as pathogens. These infections are symptomless and as such are major concerns since some black aspergilli produce important mycotoxins, ochratoxins A, and the fumonisins. To facilitate the study of the black aspergilli-maize interactions with maize during the early stages of infections, we developed a method that used the enhanced yellow fluorescent protein (eYFP) and the monomeric red fluorescent protein (mRFP1) to transform A. niger and A. carbonarius, respectively. The results were constitutive expressions of the fluorescent genes that were stable in the cytoplasms of hyphae and conidia under natural environmental conditions. The hyphal in planta distribution in 21-day-old seedlings of maize were similar wild type and transformants of A. niger and A. carbonarius. The in planta studies indicated that both wild type and transformants internally colonized leaf, stem and root tissues of maize seedlings, without any visible disease symptoms. Yellow and red fluorescent strains were capable of invading epidermal cells of maize roots intercellularly within the first 3 days after inoculation, but intracellular hyphal growth was more evident after 7 days of inoculation. We also tested the capacity of fluorescent transformants to produce ochratoxin A and the results with A. carbonarius showed that this transgenic strain produced similar concentrations of this secondary metabolite. This is the first report on the in planta expression of fluorescent proteins that should be useful to study the internal plant colonization patterns of two ochratoxigenic species in the Aspergillus section Nigri.

  5. Thermal stability of Trichoderma reesei c30 cellulase and aspergillus niger; -glucosidase after ph and chemical modification

    SciTech Connect

    Woodward, J.; Whaley, K.S.; Zachry, G.S.; Wohlpart, D.L.

    1981-01-01

    Treatment of Trichoderma reesei C30 cellulase at pH 10.0 for 1 h at room temperature increased its pH and thermal stability. Chemical modification of the free epsilon-amino groups of cellulase at pH 10.0 resulted in no further increase in stability. Such chemical modification, however, decreased the thermal stability of the cellulose-cellulase complex. On the contrary, the chemical modification of Aspergillus niger glucosidase with glutaraldehyde at pH 8.0 increased the thermal stability of this enzyme.

  6. Thermal stability of Trichoderma reesei C30 cellulase and Aspergillus niger. beta. -glucosidase after pH and chemical modification

    SciTech Connect

    Woodward, J.; Whaley, K.S.; Zachry, G.S.; Wohlpart, D.L.

    1981-01-01

    Treatment of Trichoderma reesei C30 cellulase at pH 10.0 for 1 h at room temperature increased its pH and thermal stability. Chemical modification of the free epsilon-amino groups of cellulase at pH 10.0 resulted in no further increase in stability. Such chemical modification, however, decreased the thermal stability of the cellulose-cellulase complex. On the contrary, the chemical modification of Aspergillus niger ..beta..-glucosidase with glutaraldehyde at pH 8.0 increased the thermal stability of this enzyme.

  7. Autophagy promotes survival in aging submerged cultures of the filamentous fungus Aspergillus niger.

    PubMed

    Nitsche, Benjamin M; Burggraaf-van Welzen, Anne-Marie; Lamers, Gerda; Meyer, Vera; Ram, Arthur F J

    2013-09-01

    Autophagy is a well-conserved catabolic process constitutively active in eukaryotes that is involved in maintaining cellular homeostasis by the targeting of cytoplasmic content and organelles to vacuoles. Autophagy is strongly induced by the limitation of nutrients including carbon, nitrogen, and oxygen and is clearly associated with cell death. It has been demonstrated that the accumulation of empty hyphal compartments and cryptic growth in carbon-starved submerged cultures of the filamentous fungus Aspergillus niger is accompanied by a joint transcriptional induction of autophagy genes. This study examines the role of autophagy by deleting the atg1, atg8, and atg17 orthologs in A. niger and phenotypically analyzing the deletion mutants in surface and submerged cultures. The results indicate that atg1 and atg8 are essential for efficient autophagy, whereas deletion of atg17 has little to no effect on autophagy in A. niger. Depending on the kind of oxidative stress confronted with, autophagy deficiency renders A. niger either more resistant (menadione) or more sensitive (H2O2) to oxidative stress. Fluorescence microscopy showed that mitochondrial turnover upon carbon depletion in submerged cultures is severely blocked in autophagy-impaired A. niger mutants. Furthermore, automated image analysis demonstrated that autophagy promotes survival in maintained carbon-starved cultures of A. niger. Taken together, the results suggest that besides its function in nutrient recycling, autophagy plays important roles in physiological adaptation by organelle turnover and protection against cell death upon carbon depletion in submerged cultures.

  8. Comparing phosphorus mobilization strategies using Aspergillus niger for the mineral dissolution of three phosphate rocks.

    PubMed

    Schneider, K D; van Straaten, P; de Orduña, R Mira; Glasauer, S; Trevors, J; Fallow, D; Smith, P S

    2010-01-01

    Phosphorus deficiencies are limiting crop production in agricultural soils worldwide. Locally available sources of raw phosphate rock (PR) are being recognized for their potential role in soil fertility improvement. Phosphorus bioavailability is essential for the efficiency of PRs and can be increased by acid treatments. The utilization of organic acid producing micro-organisms, notably Aspergillus niger, presents a sustainable alternative to the use of strong inorganic acids, but acid production of A. niger strongly depends on the mineral content of the growth media. This study compared the phosphorus mobilization efficiency of two biological treatments, namely addition of acidic cell-free supernatants from A. niger cultivations to PRs and the direct cultivation of A. niger with PRs. The results show that addition of PR to cultivations leads to significant differences in the profile of organic acids produced by A. niger. Additions of PR, especially igneous rocks containing high amounts of iron and manganese, lead to reduced citric acid concentrations. In spite of these differences, phosphorus mobilization was similar between treatments, suggesting that the simpler direct cultivation method was not inferior. In addition to citric acid, it is suggested that oxalic acid contributes to PR solubilization in direct cultivations with A. niger, which would benefit farmers in developing countries where conventional fertilizers are not adequately accessible.

  9. Expression of Lactate Dehydrogenase in Aspergillus niger for L-Lactic Acid Production

    PubMed Central

    Dave, Khyati K.; Punekar, Narayan S.

    2015-01-01

    Different engineered organisms have been used to produce L-lactate. Poor yields of lactate at low pH and expensive downstream processing remain as bottlenecks. Aspergillus niger is a prolific citrate producer and a remarkably acid tolerant fungus. Neither a functional lactate dehydrogenase (LDH) from nor lactate production by A. niger is reported. Its genome was also investigated for the presence of a functional ldh. The endogenous A. niger citrate synthase promoter relevant to A. niger acidogenic metabolism was employed to drive constitutive expression of mouse lactate dehydrogenase (mldhA). An appraisal of different branches of the A. niger pyruvate node guided the choice of mldhA for heterologous expression. A high copy number transformant C12 strain, displaying highest LDH specific activity, was analyzed under different growth conditions. The C12 strain produced 7.7 g/l of extracellular L-lactate from 60 g/l of glucose, in non-neutralizing minimal media. Significantly, lactate and citrate accumulated under two different growth conditions. Already an established acidogenic platform, A. niger now promises to be a valuable host for lactate production. PMID:26683313

  10. Expression of Lactate Dehydrogenase in Aspergillus niger for L-Lactic Acid Production.

    PubMed

    Dave, Khyati K; Punekar, Narayan S

    2015-01-01

    Different engineered organisms have been used to produce L-lactate. Poor yields of lactate at low pH and expensive downstream processing remain as bottlenecks. Aspergillus niger is a prolific citrate producer and a remarkably acid tolerant fungus. Neither a functional lactate dehydrogenase (LDH) from nor lactate production by A. niger is reported. Its genome was also investigated for the presence of a functional ldh. The endogenous A. niger citrate synthase promoter relevant to A. niger acidogenic metabolism was employed to drive constitutive expression of mouse lactate dehydrogenase (mldhA). An appraisal of different branches of the A. niger pyruvate node guided the choice of mldhA for heterologous expression. A high copy number transformant C12 strain, displaying highest LDH specific activity, was analyzed under different growth conditions. The C12 strain produced 7.7 g/l of extracellular L-lactate from 60 g/l of glucose, in non-neutralizing minimal media. Significantly, lactate and citrate accumulated under two different growth conditions. Already an established acidogenic platform, A. niger now promises to be a valuable host for lactate production.

  11. Effect of different polyphenol sources on the efficiency of ellagic acid release by Aspergillus niger.

    PubMed

    Sepúlveda, Leonardo; de la Cruz, Reynaldo; Buenrostro, José Juan; Ascacio-Valdés, Juan Alberto; Aguilera-Carbó, Antonio Francisco; Prado, Arely; Rodríguez-Herrera, Raúl; Aguilar, Cristóbal Noé

    2016-01-01

    Fungal hydrolysis of ellagitannins produces hexahydroxydiphenic acid, which is considered an intermediate molecule in ellagic acid release. Ellagic acid has important and desirable beneficial health properties. The aim of this work was to identify the effect of different sources of ellagitannins on the efficiency of ellagic acid release by Aspergillus niger. Three strains of A. niger (GH1, PSH and HT4) were assessed for ellagic acid release from different polyphenol sources: cranberry, creosote bush, and pomegranate used as substrate. Polyurethane foam was used as support for solid-state culture in column reactors. Ellagitannase activity was measured for each of the treatments. Ellagic acid was quantified by high performance liquid chromatography. When pomegranate polyphenols were used, a maximum value of ellagic acid (350.21 mg/g) was reached with A. niger HT4 in solid-state culture. The highest amount of ellagitannase (5176.81 U/l) was obtained at 8h of culture when cranberry polyphenols and strain A. niger PSH were used. Results demonstrated the effect of different polyphenol sources and A. niger strains on ellagic acid release. It was observed that the best source for releasing ellagic acid was pomegranate polyphenols and A. niger HT4 strain, which has the ability to degrade these compounds for obtaining a potent bioactive molecule such as ellagic acid. Copyright © 2015 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  12. Secretome data from Trichoderma reesei and Aspergillus niger cultivated in submerged and sequential fermentation methods.

    PubMed

    Florencio, Camila; Cunha, Fernanda M; Badino, Alberto C; Farinas, Cristiane S; Ximenes, Eduardo; Ladisch, Michael R

    2016-09-01

    The cultivation procedure and the fungal strain applied for enzyme production may influence levels and profile of the proteins produced. The proteomic analysis data presented here provide critical information to compare proteins secreted by Trichoderma reesei and Aspergillus niger when cultivated through submerged and sequential fermentation processes, using steam-explosion sugarcane bagasse as inducer for enzyme production. The proteins were organized according to the families described in CAZy database as cellulases, hemicellulases, proteases/peptidases, cell-wall-protein, lipases, others (catalase, esterase, etc.), glycoside hydrolases families, predicted and hypothetical proteins. Further detailed analysis of this data is provided in "Secretome analysis of Trichoderma reesei and Aspergillus niger cultivated by submerged and sequential fermentation process: enzyme production for sugarcane bagasse hydrolysis" C. Florencio, F.M. Cunha, A.C Badino, C.S. Farinas, E. Ximenes, M.R. Ladisch (2016) [1].

  13. Korean Ginseng Berry Fermented by Mycotoxin Non-producing Aspergillus niger and Aspergillus oryzae: Ginsenoside Analyses and Anti-proliferative Activities.

    PubMed

    Li, Zhipeng; Ahn, Hyung Jin; Kim, Nam Yeon; Lee, Yu Na; Ji, Geun Eog

    2016-01-01

    To transform ginsenosides, Korean ginseng berry (KGB) was fermented by mycotoxin non-producing Aspergillus niger and Aspergillus oryzae. Changes of ginsenoside profile and anti-proliferative activities were observed. Results showed that A. niger tended to efficiently transform protopanaxadiol (PPD) type ginsenosides such as Rb1, Rb2, Rd to compound K while A. oryzae tended to efficiently transform protopanaxatriol (PPT) type ginsenoside Re to Rh1 via Rg1. Butanol extracts of fermented KGB showed high cytotoxicity on human adenocarcinoma HT-29 cell line and hepatocellular carcinoma HepG2 cell line while that of unfermented KGB showed little. The minimum effective concentration of niger-fermented KGB was less than 2.5 µg/mL while that of oryzae-fermented KGB was about 5 µg/mL. As A. niger is more inclined to transform PPD type ginsenosides, niger-fermented KGB showed stronger anti-proliferative activity than oryzae-fermented KGB.

  14. A possible water-soluble inducer for synthesis of cellulase in Aspergillus niger.

    PubMed

    Zhang, Jian-Guo; Li, Qi-Meng; Thakur, Kiran; Faisal, Shah; Wei, Zhao-Jun

    2017-02-01

    The synthesis of cellulase in filamentous fungi can be triggered by several inducers. In this study, a bamboo-shoot shell pretreated with Pleurotus ostreatus could promote the formation of cellulases in Aspergillus niger. Further identification, including UPLC-TOF-MS, ultrafiltration, and FT-IR, denoted that the soluble inducer was not a traditional disaccharide but a type of modified lignin polymer. This revelation may result in incipient strategies to ameliorate cellulase productivity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Characterization of novel thermostable polygalacturonases from Penicillium brasilianum and Aspergillus niger.

    PubMed

    Zeni, Jamile; Pili, Jonaina; Cence, Karine; Toniazzo, Geciane; Treichel, Helen; Valduga, Eunice

    2015-12-01

    The aim of this research was the partial characterization of polygalacturonase (PG) extracts produced by a newly isolated Penicillium brasilianum and Aspergillus niger in submerged fermentation. The partial characterization of the crude enzymatic extracts showed optimum activity at pH 5.5 and 37 °C for both extracts. The results of temperature stability showed that PG from both microorganisms were more stable at 55 °C. However, the enzyme obtained by P. brasilianum presents a half-life time (t 1/2 = 693.10 h), about one order of magnitude higher than those observed in for A. niger at 55 °C. In terms of pH stability, the PG produced by P. brasilianum presented higher stability at pH 4.0 and 5.0, while the PG from A. niger showed higher stability at pH 5.0.

  16. Novel Antifungal Peptides Produced by Leuconostoc mesenteroides DU15 Effectively Inhibit Growth of Aspergillus niger.

    PubMed

    Muhialdin, Belal J; Hassan, Zaiton; Abu Bakar, Fatimah; Algboory, Hussein L; Saari, Nazamid

    2015-05-01

    The ability of Leuconostoc mesenteroides DU15 to produce antifungal peptides that inhibit growth of Aspergillus niger was evaluated under optimum growth conditions of 30 °C for 48 h. The cell-free supernatant showed inhibitory activity against A. niger. Five novel peptides were isolated with the sequences GPFPL, YVPLF, LLHGVPLP, GPFPLEMTLGPT, and TVYPFPGPL as identified by de novo sequencing using PEAKS 6 software. Peptide LLHGVPLP was the only positively charged (cationic peptides) and peptide GPFPLEMTLGPT negatively charged (anionic), whereas the rest are neutral. The identified peptides had high hydrophobicity ratio and low molecular weights with amino acids sequences ranging from 5 to 12 residues. The mode of action of these peptides is observed under the scanning electron microscope and is due to cell lysis of fungi. This work reveals the potential of peptides from L. mesenteroides DU15 as natural antifungal preservatives in inhibiting the growth of A. niger that is implicated to the spoilage during storage.

  17. Production of a bioflocculant from Aspergillus niger using palm oil mill effluent as carbon source.

    PubMed

    Aljuboori, Ahmad H Rajab; Uemura, Yoshimitsu; Osman, Noridah Binti; Yusup, Suzana

    2014-11-01

    This study evaluated the potential of bioflocculant production from Aspergillus niger using palm oil mill effluent (POME) as carbon source. The bioflocculant named PM-5 produced by A. niger showed a good flocculating capability and flocculating rate of 76.8% to kaolin suspension could be achieved at 60 h of culture time. Glutamic acid was the most favorable nitrogen source for A. niger in bioflocculant production at pH 6 and temperature 35 °C. The chemical composition of purified PM-5 was mainly carbohydrate and protein with 66.8% and 31.4%, respectively. Results showed the novel bioflocculant (PM-5) had high potential to treat river water from colloids and 63% of turbidity removal with the present of Ca(2+) ion.

  18. Biocatalytic potential of laccase-like multicopper oxidases from Aspergillus niger

    PubMed Central

    2012-01-01

    Background Laccase-like multicopper oxidases have been reported in several Aspergillus species but they remain uncharacterized. The biocatalytic potential of the Aspergillus niger fungal pigment multicopper oxidases McoA and McoB and ascomycete laccase McoG was investigated. Results The laccase-like multicopper oxidases McoA, McoB and McoG from the commonly used cell factory Aspergillus niger were homologously expressed, purified and analyzed for their biocatalytic potential. All three recombinant enzymes were monomers with apparent molecular masses ranging from 80 to 110 kDa. McoA and McoG resulted to be blue, whereas McoB was yellow. The newly obtained oxidases displayed strongly different activities towards aromatic compounds and synthetic dyes. McoB exhibited high catalytic efficiency with N,N-dimethyl-p-phenylenediamine (DMPPDA) and 2,2-azino-di(3-ethylbenzthiazoline) sulfonic acid (ABTS), and appeared to be a promising biocatalyst. Besides oxidizing a variety of phenolic compounds, McoB catalyzed successfully the decolorization and detoxification of the widely used textile dye malachite green. Conclusions The A. niger McoA, McoB, and McoG enzymes showed clearly different catalytic properties. Yellow McoB showed broad substrate specificity, catalyzing the oxidation of several phenolic compounds commonly present in different industrial effluents. It also harbored high decolorization and detoxification activity with the synthetic dye malachite green, showing to have an interesting potential as a new industrial biocatalyst. PMID:23270588

  19. Induction of mutation in Aspergillus niger for conversion of cellulose into glucose

    SciTech Connect

    Helmi, S.; Khalil, A.E.; Tahoun, M.K.; Khairy, A.H.

    1991-12-31

    Plant wastes are very important part of biomass used and investigated for energy, chemical, and fuel production. Cellulose is the major renewable form of carbohydrate in the world, about 10{sup 11} tons of which is synthesized annually. For general use, it must be hydrolyzed first, either chemically or by cellulases derived from a few specialized microorganisms. Enzymes are acceptable environmentally but expensive to produce. Certainly, induction of mutations and selection of high cellulose microbial strains with significant adaptability to degrade cellulose to glucose is promising solutions. Induction of mutations in other fungi and Aspergillus sp. rather than Aspergillus niger was reported. Aspergillus ustus and Trichoderma harzianum were induced by gamma irradiation indicating mutants that excrete higher cellulose yields, particularly exocellobiohydrolase (Avicelase) than their respective wild types. Mutants from the celluiolytic fungus Penicillium pinophilum were induced by chemical and UV-irradiation. Enhancing the production of endo-1,4-{Beta}-D-glucanase (CMCase) and particularly {Beta}-glucosidase was obtained by gamma irradiation of Altemaria alternate. To overcome the lower activity of {beta}-glucosidase in certain fungi species rather than A. niger, mixed cultures of different species were tried. Thus, Aspergillus phonicis with Trichoderma reesei Rut 30, produced a cellulose complex that improved activity twofold over cellulose from Trichoderma alone.

  20. High-quality draft genome sequence of a biofilm forming lignocellulolytic Aspergillus niger strain ATCC 10864.

    PubMed

    Paul, Sujay; Ludeña, Yvette; Villena, Gretty K; Yu, Fengan; Sherman, David H; Gutiérrez-Correa, Marcel

    2017-01-01

    Filamentous fungus Aspergillus niger has high industrial value due to their lignocellulolytic enzyme activities and ATCC 10864 is one of the few type strains of A. niger which has a unique biofilm forming capability. Here we report the first draft genome sequence of A. niger ATCC 10864 strain. The genome of A. niger ATCC 10864 is 36,172,237 bp long and comprise of 310 scaffolds with 49.5% average GC content. A total of 10,804 protein-coding genes were predicted among which 10,761 genes were with putative functions. A. niger ATCC 10864 genome coded for 709 putative carbohydrate active enzyme families distributed in six functional categories and among them glycoside hydrolases (GHs) represent the most number of families (279). Genes that include pepA, brlA, exgA, LaeA, rodA, GCN have also been identified in this study, which may play a role in biofilm formation. This high-quality draft genome sequence will facilitate our understanding of the mechanisms behind fungal biofilm formation and higher lignocellulolytic enzyme production.

  1. Enantioselective hydrolysis of epichlorohydrin using whole Aspergillus niger ZJB-09173 cells in organic solvents.

    PubMed

    Jin, Huo-Xi; Hu, Zhong-Ce; Zheng, Yu-Guo

    2012-09-01

    The enantioselective hydrolysis of racemic epichlorohydrin for the production of enantiopure (S)-epichlorohydrin using whole cells of Aspergillus niger ZJB-09173 in organic solvents was investigated. Cyclohexane was used as the reaction medium based on the excellent enantioselectivity of epoxide hydrolase from A. niger ZJB- 09173 in cyclohexane. However, cyclohexane had a negative effect on the stability of epoxide hydrolase from A. niger ZJB-09173. In the cyclohexane medium, substrate inhibition, rather than product inhibition of catalysis, was observed in the hydrolysis of racemic epichlorohydrin using A. niger ZJB-09173. The racemic epichlorohydrin concentration was markedly increased by continuous feeding of substrate without significant decline of the yield. Ultimately, 18.5% of (S)-epichlorohydrin with 98 percent enantiomeric excess from 153.6 mM of racemic epichlorohydrin was obtained by the dry cells of A. niger ZJB-09173, which was the highest substrate concentration in the production of enantiopure (S)-epichlorohydrin by epoxide hydrolases using an organic solvent medium among the known reports.

  2. Cloning and Expression of Gumboro VP2 Antigen in Aspergillus niger

    PubMed Central

    Azizi, Mohammad; Yakhchali, Bagher; Ghamarian, Abdolreza; Enayati, Somayeh; Khodabandeh, Mahvash; Khalaj, Vahid

    2013-01-01

    Background Infectious Bursal Disease Virus (IBDV) causes a highly immunosuppressive disease in chickens and is a pathogen of major economic importance to the poultry industry worldwide. The VP2 protein is the major host-protective immunogen of IBDV and has been considered as a potential subunit vaccine against the disease. VP2 coding sequence was cloned in an inducible fungal vector and the protein was expressed in Aspergillus niger (A. niger). Methods Aiming at a high level of expression, a multicopy AMA1-pyrG-based episomal construct driven by a strong inducible promoter, glaA, was prepared and used in transformation of A. niger pyrG-protoplasts. SDS-PAGE and western blot analysis was carried out to confirm the expression of the protein. Results A number of pyrG + positive transformants were isolated and the presence of expression cassette was confirmed. Western blot analysis of one of these recombinant strains using monospecific anti-VP2 antibodies demonstrated the successful expression of the protein. The recombinant protein was also detected by serum obtained from immunized chicken. Conclusion In the present study, we have generated a recombinant A. niger strain expressing VP2 protein intracellulary. This recombinant strain of A. niger may have potential applications in oral vaccination against IBDV in poultry industry. PMID:23626875

  3. Screening a Strain of Aspergillus niger and Optimization of Fermentation Conditions for Degradation of Aflatoxin B1 †

    PubMed Central

    Zhang, Wei; Xue, Beibei; Li, Mengmeng; Mu, Yang; Chen, Zhihui; Li, Jianping; Shan, Anshan

    2014-01-01

    Aflatoxin B1, a type of highly toxic mycotoxin produced by some species belonging to the Aspergillus genus, such as Aspergillus flavus and Aspergillus parasiticus, is widely distributed in feed matrices. Here, coumarin was used as the sole carbon source to screen microorganism strains that were isolated from types of feed ingredients. Only one isolate (ND-1) was able to degrade aflatoxin B1 after screening. ND-1 isolate, identified as a strain of Aspergillus niger using phylogenetic analysis on the basis of 18S rDNA, could remove 26.3% of aflatoxin B1 after 48 h of fermentation in nutrient broth (NB). Optimization of fermentation conditions for aflatoxin B1 degradation by selected Aspergillus niger was also performed. These results showed that 58.2% of aflatoxin B1 was degraded after 24 h of culture under the optimal fermentation conditions. The aflatoxin B1 degradation activity of Aspergillus niger supernatant was significantly stronger than cells and cell extracts. Furthermore, effects of temperature, heat treatment, pH, and metal ions on aflatoxin B1 degradation by the supernatant were examined. Results indicated that aflatoxin B1 degradation of Aspergillus niger is enzymatic and this process occurs in the extracellular environment. PMID:25401962

  4. Genome mining and functional genomics for siderophore production in Aspergillus niger.

    PubMed

    Franken, Angelique C W; Lechner, Beatrix E; Werner, Ernst R; Haas, Hubertus; Lokman, B Christien; Ram, Arthur F J; van den Hondel, Cees A M J J; de Weert, Sandra; Punt, Peter J

    2014-11-01

    Iron is an essential metal for many organisms, but the biologically relevant form of iron is scarce because of rapid oxidation resulting in low solubility. Simultaneously, excessive accumulation of iron is toxic. Consequently, iron uptake is a highly controlled process. In most fungal species, siderophores play a central role in iron handling. Siderophores are small iron-specific chelators that can be secreted to scavenge environmental iron or bind intracellular iron with high affinity. A second high-affinity iron uptake mechanism is reductive iron assimilation (RIA). As shown in Aspergillus fumigatus and Aspergillus nidulans, synthesis of siderophores in Aspergilli is predominantly under control of the transcription factors SreA and HapX, which are connected by a negative transcriptional feedback loop. Abolishing this fine-tuned regulation corroborates iron homeostasis, including heme biosynthesis, which could be biotechnologically of interest, e.g. the heterologous production of heme-dependent peroxidases. Aspergillus niger genome inspection identified orthologues of several genes relevant for RIA and siderophore metabolism, as well as sreA and hapX. Interestingly, genes related to synthesis of the common fungal extracellular siderophore triacetylfusarinine C were absent. Reverse-phase high-performance liquid chromatography (HPLC) confirmed the absence of triacetylfusarinine C, and demonstrated that the major secreted siderophores of A. niger are coprogen B and ferrichrome, which is also the dominant intracellular siderophore. In A. niger wild type grown under iron-replete conditions, the expression of genes involved in coprogen biosynthesis and RIA was low in the exponential growth phase but significantly induced during ascospore germination. Deletion of sreA in A. niger resulted in elevated iron uptake and increased cellular ferrichrome accumulation. Increased sensitivity toward phleomycin and high iron concentration reflected the toxic effects of excessive

  5. Physicochemical Properties Analysis and Secretome of Aspergillus niger in Fermented Rapeseed Meal.

    PubMed

    Shi, Changyou; He, Jun; Yu, Jie; Yu, Bing; Mao, Xiangbing; Zheng, Ping; Huang, Zhiqing; Chen, Daiwen

    2016-01-01

    The nutrient digestibility and feeding value of rapeseed meal (RSM) for non-ruminant animals is poor due to the presence of anti-nutritional substances such as glucosinolate, phytic acid, crude fiber etc. In the present study, a solid state fermentation (SSF) using Aspergillus niger was carried out with the purpose of improving the nutritional quality of RSM. The chemical composition and physicochemical properties of RSM before and after fermentation were compared. To further understand possible mechanism of solid state fermentation, the composition of extracellular enzymes secreted by Aspergillus niger during fermentation was analysed using two-dimentional difference gel electrophoresis (2D-DIGE) combined with matrix assisted laser desorption ionization-time of flight-mass spectrometer (MALDI-TOF-MS). Results of the present study indicated that SSF had significant effects on chemical composition of RSM. The fermented rapeseed meal (FRSM) contained more crude protein (CP) and amino acid (AA) (except His) than unfermented RSM. Notably, the small peptide in FRSM was 2.26 time larger than that in unfermented RSM. Concentrations of anti-nutritional substrates in FRSM including neutral detergent fiber (NDF), glucosinolates, isothiocyanate, oxazolidithione, and phytic acid declined (P < 0.05) by 13.47, 43.07, 55.64, 44.68 and 86.09%, respectively, compared with unfermented RSM. A. niger fermentation disrupted the surface structure, changed macromolecular organic compounds, and reduced the protein molecular weights of RSM substrate. Total proteins of raw RSM and FRSM were separated and 51 protein spots were selected for mass spectrometry according to 2D-DIGE map. In identified proteins, there were 15 extracellular hydrolases secreted by A. niger including glucoamylase, acid protease, beta-glucanase, arabinofuranosidase, xylanase, and phytase. Some antioxidant related enzymes also were identified. These findings suggested that A. niger is able to secrete many extracellular

  6. Physicochemical Properties Analysis and Secretome of Aspergillus niger in Fermented Rapeseed Meal

    PubMed Central

    Shi, Changyou; He, Jun; Yu, Jie; Yu, Bing; Mao, Xiangbing; Zheng, Ping; Huang, Zhiqing; Chen, Daiwen

    2016-01-01

    The nutrient digestibility and feeding value of rapeseed meal (RSM) for non-ruminant animals is poor due to the presence of anti-nutritional substances such as glucosinolate, phytic acid, crude fiber etc. In the present study, a solid state fermentation (SSF) using Aspergillus niger was carried out with the purpose of improving the nutritional quality of RSM. The chemical composition and physicochemical properties of RSM before and after fermentation were compared. To further understand possible mechanism of solid state fermentation, the composition of extracellular enzymes secreted by Aspergillus niger during fermentation was analysed using two-dimentional difference gel electrophoresis (2D-DIGE) combined with matrix assisted laser desorption ionization—time of flight—mass spectrometer (MALDI-TOF-MS). Results of the present study indicated that SSF had significant effects on chemical composition of RSM. The fermented rapeseed meal (FRSM) contained more crude protein (CP) and amino acid (AA) (except His) than unfermented RSM. Notably, the small peptide in FRSM was 2.26 time larger than that in unfermented RSM. Concentrations of anti-nutritional substrates in FRSM including neutral detergent fiber (NDF), glucosinolates, isothiocyanate, oxazolidithione, and phytic acid declined (P < 0.05) by 13.47, 43.07, 55.64, 44.68 and 86.09%, respectively, compared with unfermented RSM. A. niger fermentation disrupted the surface structure, changed macromolecular organic compounds, and reduced the protein molecular weights of RSM substrate. Total proteins of raw RSM and FRSM were separated and 51 protein spots were selected for mass spectrometry according to 2D-DIGE map. In identified proteins, there were 15 extracellular hydrolases secreted by A. niger including glucoamylase, acid protease, beta-glucanase, arabinofuranosidase, xylanase, and phytase. Some antioxidant related enzymes also were identified. These findings suggested that A. niger is able to secrete many

  7. Purification and characterisation of an extracellular phytase from Aspergillus niger 11T53A9

    PubMed Central

    Greiner, Ralf; da Silva, Lucineia Gomes; Couri, Sonia

    2009-01-01

    An extracellular phytase from Aspergillus niger 11T53A9 was purified about 51-fold to apparent homogeneity with a recovery of 20.3% referred to the phytase activity in the crude extract. Purification was achieved by ammonium sulphate precipitation, ion chromataography and gel filtration. The purified enzyme behaved as a monomeric protein with a molecular mass of about 85 kDa and exhibited maximal phytate-degrading activity at pH 5.0. Optimum temperature for the degradation of phytate was 55°C. The kinetic parameters for the hydrolysis of sodium phytate were determined to be KM = 54 µmol l-1 and kcat = 190 sec-1 at pH 5.0 and 37°C. The purified enzyme was rather specific for phytate dephosphorylation. It was shown that the phytase preferably dephosphorylates myo-inositol hexakisphosphate in a stereospecific way by sequential removal of phosphate groups via D-Ins(1,2,4,5,6)P5, D-Ins(1,2,5,6)P4, D-Ins(1,2,6)P3, D-Ins(1,2)P2 to finally Ins(2)P. PMID:24031427

  8. Evaluation of various chitin-glucan derivatives from Aspergillus niger as transition metal adsorbents.

    PubMed

    Skorik, Yury A; Pestov, Alexander V; Yatluk, Yury G

    2010-03-01

    A number of chelating resins were prepared by chemical derivatization of the chitin-glucan (CG) complex isolated from Aspergillus niger biomass, namely chitosan-glucan (CsG), O-carboxymethyl-chitin-glucan (CM-CG), O-(2-sulfoethyl)chitin-glucan (SE-CG), and N-(2-carboxyethyl)chitosan-glucan (CE-CsG). The chemical modification was confirmed by FT-IR and elemental analysis. Nanosecond electron beam irradiation was used to produce insoluble resins and to preserve the reactive functional groups. Batch experiments were carried out to evaluate the adsorption selectivity and capacity of the resins toward transition metal ions (Cu(2+), Ni(2+), Co(2+), Zn(2+)). The resins showed good adsorption capability with the following selectivity series: Co(2+)Zn(2+). The total metal adsorption capacities of CG, CsG, CM-CG, SE-CG, and CE-CsG resins at pH 6.5 (ammonium acetate buffer) were found to be 0.205, 0.382, 1.752, 0.319, and 0.350 mmol g(-1), respectively. Our results suggest that, depending on the type of chemical modification, the chitin-glucan complexes can be used either for selective Cu(2+) removal (CsG) or for total transition metal adsorption (CM-CG) from aqueous effluents.

  9. On the origin of the electrostatic surface potential of Aspergillus niger spores in acidic environments.

    PubMed

    Wargenau, Andreas; Fleissner, André; Bolten, Christoph Josef; Rohde, Manfred; Kampen, Ingo; Kwade, Arno

    2011-12-01

    The electrostatic surface potential of fungal spores is generally regarded as potentially influencing spore aggregation and pellet formation in submerged cultures of filamentous fungi. Spores of Aspergillus niger are typically characterized by negative zeta potentials over a wide range of pH values. In this study, this particular behavior is ascribed to the presence of an extensive melanin coating. It is proposed on the basis of zeta potential and pigment extraction experiments that this outermost layer affects the pH-dependent surface potential in two manners: (i) by the addition of negative charges to the spore surface and (ii) by the pH-dependent release of melanin pigment. Chemical analyses revealed that deprotonation of melanin-bound carboxyl groups is most probably responsible for pigment release under acidic conditions. These findings were incorporated into a simple model which has the ability to qualitatively explain the results of zeta potential experiments and, moreover, to provide the basis for quantitative investigations on the role of electrostatics in spore aggregation.

  10. Cissus quadrangularis mediated ecofriendly synthesis of copper oxide nanoparticles and its antifungal studies against Aspergillus niger, Aspergillus flavus.

    PubMed

    Devipriya, Duraipandi; Roopan, Selvaraj Mohana

    2017-11-01

    Recently, non-toxic source mediated synthesis of metal and a metal oxide nanoparticle attains more attention due to key applicational responsibilities. This present report stated that the eco-friendly synthesis of copper oxide nanoparticles (CuO NPs) using Cissus quadrangularis (C. quadrangularis) plant extract. Further the eco-friendly synthesized CuO NPs were characterized using a number of analytical techniques. The observed results stated that the synthesized CuO NPs were spherical in shape with 30±2nm. Then the eco-friendly synthesized CuO NPs were subjected for anti-fungal against two strains namely Aspergillus niger (A. niger) resulted in 83% at 500ppm, 86% of inhibition at 1000ppm and Aspergillus flavus (A. flavus) resulted in 81% at 500ppm, 85% of inhibition at 1000ppm respectively. Despite the fact that compared to standard Carbendazim, eco-friendly synthesized CuO NPs exhibits better results were discussed in this manuscript. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Optimization of ellagitannase production by Aspergillus niger GH1 by solid-state fermentation.

    PubMed

    de la Cruz, Reynaldo; Ascacio, Juan A; Buenrostro, Juan; Sepúlveda, Leonardo; Rodríguez, Raúl; Prado-Barragán, Arely; Contreras, Juan C; Aguilera, Antonio; Aguilar, Cristóbal N

    2015-01-01

    Ellagic acid is one of the most bioactive antioxidants with important applications in pharmaceutical, cosmetic, and food industries. However, there are few biotechnological processes developed for its production, because it requires precursors (ellagitannins) and the corresponding biocatalyst (ellagitannase). The aim of this study was to optimize the culture conditions for ellagitannase production by Aspergillus niger in solid-state fermentation (SSF). The bioprocess was carried out into a column bioreactor packed with polyurethane foam impregnated with an ellagitannins solution as carbon source. Four strains of Aspergillus niger (PSH, GH1, HT4, and HC2) were evaluated for ellagitannase production. The study was performed in two experimental steps. A Plackett-Burman design was used to determine the influencing parameters on ellagitannase production. Ellagitannins concentration, KCl, and MgSO4 were determined to be the most significant parameters. Box-Behnken design was used to define the interaction of the selected parameters. The highest enzyme value was obtained by A. niger PSH at concentrations of 7.5 g/L ellagitannins, 3.04 g/L KCl, and 0.76 g/L MgSO4. The methodology followed here allowed increasing the ellagitannase activity 10 times over other researcher results (938.8 U/g ellagitannins). These results are significantly higher than those reported previously and represent an important contribution for the establishment of a new bioprocess for ellagic acid and ellagitannase production.

  12. Comparative Secretome Analysis of Aspergillus niger, Trichoderma reesei, and Penicillium oxalicum During Solid-State Fermentation.

    PubMed

    Gong, Weili; Zhang, Huaiqiang; Liu, Shijia; Zhang, Lili; Gao, Peiji; Chen, Guanjun; Wang, Lushan

    2015-11-01

    Filamentous fungi such as Aspergillus spp., Trichoderma spp., and Penicillium spp. are frequently used to produce high concentrations of lignocellulosic enzymes. This study examined the discrepancies in the compositions and dynamic changes in the extracellular enzyme systems secreted by Aspergillus niger ATCC1015, Trichoderma reesei QM9414, and Penicillium oxalicum 114-2 cultured on corn stover and wheat bran. The results revealed different types and an abundance of monosaccharides and oligosaccharides were released during incubation, which induced the secretion of diverse glycoside hydrolases. Both the enzyme activities and isozyme numbers of the three fungal strains increased with time. A total of 279, 161, and 183 secretory proteins were detected in A. niger, T. reesei, and P. oxalicum secretomes, respectively. In the A. niger secretomes, more enzymes involved in the degradation of (galacto)mannan, xyloglucan, and the backbone of pectin distributed mostly in dicots were detected. In comparison, although P. oxalicum 114-2 hardly secreted any xyloglucanases, the diversities of enzymes involved in the degradation of xylan and β-(1,3;1,4)-D-glucan commonly found in monocots were higher. The cellulase system of P. oxalicum 114-2 was more balanced. The degradation preference provided a new perspective regarding the recomposition of lignocellulosic enzymes based on substrate types.

  13. Polygalacturonase gene pgxB in Aspergillus niger is a virulence factor in apple fruit

    PubMed Central

    Yang, Ying; Yang, Feng; Li, Yan-Hong; Liu, He-Ping; Chen, Xiao-Yan

    2017-01-01

    Aspergillus niger, a saprophytic fungus, is widely distributed in soil, air and cereals, and can cause postharvest diseases in fruit. Polygalacturonase (PG) is one of the main enzymes in fungal pathogens to degrade plant cell wall. To evaluate whether the deletion of an exo-polygalacturonase gene pgxB would influence fungal pathogenicity to fruit, pgxB gene was deleted in Aspergillus niger MA 70.15 (wild type) via homologous recombination. The ΔpgxB mutant showed similar growth behavior compared with the wild type. Pectin medium induced significant higher expression of all pectinase genes in both wild type and ΔpgxB in comparison to potato dextrose agar medium. However, the ΔpgxB mutant was less virulent on apple fruits as the necrosis diameter caused by ΔpgxB mutant was significantly smaller than that of wild type. Results of quantitive-PCR showed that, in the process of infection in apple fruit, gene expressions of polygalacturonase genes pgaI, pgaII, pgaA, pgaC, pgaD and pgaE were enhanced in ΔpgxB mutant in comparison to wild type. These results prove that, despite the increased gene expression of other polygalacturonase genes in ΔpgxB mutant, the lack of pgxB gene significantly reduced the virulence of A. niger on apple fruit, suggesting that pgxB plays an important role in the infection process on the apple fruit. PMID:28257463

  14. Lethal Effects of Aspergillus niger against Mosquitoes Vector of Filaria, Malaria, and Dengue: A Liquid Mycoadulticide

    PubMed Central

    Singh, Gavendra; Prakash, Soam

    2012-01-01

    Aspergillus niger is a fungus of the genus Aspergillus. It has caused a disease called black mold on certain fruits and vegetables. The culture filtrates released from the A. niger ATCC 66566 were grown in Czapek dox broth (CDB) then filtered with flash chromatograph and were used for the bioassay after a growth of thirty days. The result demonstrated these mortalities with LC50, LC90, and LC99 values of Culex quinquefasciatus 0.76, 3.06, and 4.75, Anopheles stephensi 1.43, 3.2, and 3.86, and Aedes aegypti 1.43, 2.2, and 4.1 μl/cm2, after exposure of seven hours. We have calculated significant LT90 values of Cx. quinquefasciatus 4.5, An. stephensi 3.54, and Ae. aegypti 6.0 hrs, respectively. This liquid spray of fungal culture isolate of A. niger can reduce malaria, dengue, and filarial transmission. These results significantly support broadening the current vector control paradigm beyond chemical adulticides. PMID:22629156

  15. Effect of gentian violet on the growth of the N and T RFLP types of the Aspergillus niger aggregate.

    PubMed

    Bragulat, M Rosa; Cabañes, F Javier

    2008-09-01

    Taxa included in the Aspergillus niger aggregate are difficult to distinguish by phenotypic characterization. In this work, the effect of gentian violet on the growth of the N and T RFLP types of A. niger aggregate strains has been investigated. In total, 105 strains from different sources and origins, including reference cultures and field isolates were studied. Type N and T RFLP patterns, ochratoxin A production and the effect of different concentrations of gentian violet on the growth were determined in these strains. Forty nine strains belonged to the N type and 56 strains to the T type. Sixteen out of the 105 strains assayed were OTA producers. All the OTA-producing species belonged to the RFLP type N and none of the T type strains was able to produce OTA. Approximately 90% of the N type strains grew in the presence of 25 ppm of gentian violet. Only five N type strains did not grow on this medium. One of these strains was A. niger ATCC 22343, a well documented induced mutant strain and the remaining four strains belonged to the new species A. brasiliensis. On the contrary, all the T type strains failed to grow on this medium after 3 days of incubation (sensitivity 89.79%; specificity 100%). The use of growth in gentian violet as an additional character for classification and identification purposes in this taxonomic group may be useful because no phenotypic methods have yet been found that can distinguish between these species.

  16. Removal of silver nanoparticles using live and heat shock Aspergillus niger cultures.

    PubMed

    Gomaa, Ola M

    2014-06-01

    Silver nanoparticles (SNPs) are extensively used in many industrial and medical applications; however, the impact of their release in the environment is still considered an understudied field. In the present work, SNPs present in aqueous lab waste water (average size of 30 nm) were used to determine their impact on microflora if released in soil rhizosphere and sewage waste water. The results showed that 24 h incubation with different SNP concentrations resulted in a 2.6-fold decrease for soil rhizosphere microflora and 7.45-fold decrease for sewage waste water microflora, both at 24 ppm. Live and heat shock (50 and 70 °C) Aspergillus niger cultures were used to remove SNP waste, the results show 76.6, 81.74 and 90.8 % SNP removal, respectively after 3 h incubation. There was an increase in the log total bacterial count again after SNP removal by A. niger in the following order: live A. niger < 50 °C heat shock A. niger < 70 °C heat shock A. niger. The pH value decreased from 5.8 to 3.8 in the same order suggesting the production of an acid in the culture media. Scanning electron microscopy images showed agglomeration and/or complexation of SNP particles, in a micron size, in between the fungal mycelia, hence settling on and in between the mycelial network. The results suggest that silver was reduced again and agglomerated and/or chelated together in its oxidized form by an acid in A. niger media. More studies are recommended to determine the acid and the heat shock proteins to confirm the exact mode of action.

  17. Inactivation of Aspergillus niger in mango nectar by high-pressure homogenization combined with heat shock.

    PubMed

    Tribst, Alline A L; Franchi, Mark A; Cristianini, Marcelo; de Massaguer, Pilar R

    2009-01-01

    This research evaluated the inactivation of a heat-resistant Aspergillus niger conidia in mango nectar by high-pressure homogenization (HPH) combined with heat shock. A. niger were inoculated in mango nectar (10(6) conidia mL(-1)) and subjected to HPH (300 to 100 MPa) and heat shock (80 degrees C for 5 to 20 min) before or after HPH. Processes were evaluated according to number of decimal reductions reached by each isolated or combined process. Scanning electron microscopy was performed to observe conidia wall after pressure treatment. Pressures below 150 MPa did not inactivate A. niger while pressures of 200 and 300 MPa resulted in 2 and more than 6 log reductions, respectively. D(80 degrees C) of A. niger was determined as 5.03 min. A heat shock of 80 degrees C/15 min, reaching 3 decimal conidia reductions, was applied before or after a 200 MPa pressure treatment to improve the decimal reduction to 5 log cycles. Results indicated that HPH inactivated A. niger in mango nectar at 300 MPa (>6.24 log cycles) and that, with pressure (200 MPa) combined with post heat shock, it was possible to obtain the same decimal reduction, showing a synergistic effect. On the other hand, pre heat shock associated with HPH resulted in an additive effect. The observation of A. niger conidia treated by HPH at 100 and 200 MPa by scanning electron microscopy indicated that HPH promoted intense cell wall damage, which can sensitize the conidia to post heat shock and possibly explain the synergistic effect observed. Practical Application: The results obtained in this paper are relevant to elucidate the mechanism of conidia inactivation in order to develop the application of HPH as an alternative pasteurization process for the fruit nectar industry.

  18. Generation, annotation, and analysis of an extensive Aspergillus niger EST collection

    PubMed Central

    Semova, Natalia; Storms, Reginald; John, Tricia; Gaudet, Pascale; Ulycznyj, Peter; Min, Xiang Jia; Sun, Jian; Butler, Greg; Tsang, Adrian

    2006-01-01

    Background Aspergillus niger, a saprophyte commonly found on decaying vegetation, is widely used and studied for industrial purposes. Despite its place as one of the most important organisms for commercial applications, the lack of available information about its genetic makeup limits research with this filamentous fungus. Results We present here the analysis of 12,820 expressed sequence tags (ESTs) generated from A. niger cultured under seven different growth conditions. These ESTs identify about 5,108 genes of which 44.5% code for proteins sharing similarity (E ≤ 1e -5) with GenBank entries of known function, 38% code for proteins that only share similarity with GenBank entries of unknown function and 17.5% encode proteins that do not have a GenBank homolog. Using the Gene Ontology hierarchy, we present a first classification of the A. niger proteins encoded by these genes and compare its protein repertoire with other well-studied fungal species. We have established a searchable web-based database that includes the EST and derived contig sequences and their annotation. Details about this project and access to the annotated A. niger database are available. Conclusion This EST collection and its annotation provide a significant resource for fundamental and applied research with A. niger. The gene set identified in this manuscript will be highly useful in the annotation of the genome sequence of A. niger, the genes described in the manuscript, especially those encoding hydrolytic enzymes will provide a valuable source for researchers interested in enzyme properties and applications. PMID:16457709

  19. Formation of sclerotia and production of indoloterpenes by Aspergillus niger and other species in section Nigri.

    PubMed

    Frisvad, Jens C; Petersen, Lene M; Lyhne, E Kirstine; Larsen, Thomas O

    2014-01-01

    Several species in Aspergillus section Nigri have been reported to produce sclerotia on well-known growth media, such as Czapek yeast autolysate (CYA) agar, with sclerotia considered to be an important prerequisite for sexual development. However Aspergillus niger sensu stricto has not been reported to produce sclerotia, and is thought to be a purely asexual organism. Here we report, for the first time, the production of sclerotia by certain strains of Aspergillus niger when grown on CYA agar with raisins, or on other fruits or on rice. Up to 11 apolar indoloterpenes of the aflavinine type were detected by liquid chromatography and diode array and mass spectrometric detection where sclerotia were formed, including 10,23-dihydro-24,25-dehydroaflavinine. Sclerotium induction can thus be a way of inducing the production of new secondary metabolites from previously silent gene clusters. Cultivation of other species of the black aspergilli showed that raisins induced sclerotium formation by A. brasiliensis, A. floridensis A. ibericus, A. luchuensis, A. neoniger, A. trinidadensis and A. saccharolyticus for the first time.

  20. Formation of Sclerotia and Production of Indoloterpenes by Aspergillus niger and Other Species in Section Nigri

    PubMed Central

    Frisvad, Jens C.; Petersen, Lene M.; Lyhne, E. Kirstine; Larsen, Thomas O.

    2014-01-01

    Several species in Aspergillus section Nigri have been reported to produce sclerotia on well-known growth media, such as Czapek yeast autolysate (CYA) agar, with sclerotia considered to be an important prerequisite for sexual development. However Aspergillus niger sensu stricto has not been reported to produce sclerotia, and is thought to be a purely asexual organism. Here we report, for the first time, the production of sclerotia by certain strains of Aspergillus niger when grown on CYA agar with raisins, or on other fruits or on rice. Up to 11 apolar indoloterpenes of the aflavinine type were detected by liquid chromatography and diode array and mass spectrometric detection where sclerotia were formed, including 10,23-dihydro-24,25-dehydroaflavinine. Sclerotium induction can thus be a way of inducing the production of new secondary metabolites from previously silent gene clusters. Cultivation of other species of the black aspergilli showed that raisins induced sclerotium formation by A. brasiliensis, A. floridensis A. ibericus, A. luchuensis, A. neoniger, A. trinidadensis and A. saccharolyticus for the first time. PMID:24736731

  1. Bioethanol potentials of corn cob hydrolysed using cellulases of Aspergillus niger and Penicillium decumbens

    PubMed Central

    Saliu, Bolanle Kudirat; Sani, Alhassan

    2012-01-01

    Corn cob is a major component of agricultural and domestic waste in many parts of the world. It is composed mainly of cellulose which can be converted to energy in form of bioethanol as an efficient and effective means of waste management. Production of cellulolytic enzymes were induced in the fungi Aspergillus niger and Penicillium decumbens by growing them in mineral salt medium containing alkali pre-treated and untreated corn cobs. The cellulases were characterized and partially purified. Alkali pre-treated corn cobs were hydrolysed with the partially purified cellulases and the product of hydrolysis was fermented using the yeast saccharomyces cerevisae to ethanol. Cellulases of A. niger produced higher endoglucanase and exoglucanase activity (0.1698 IU ml-1 and 0.0461 FPU ml-1) compared to that produced by P. decumbens (0.1111 IU ml-1 and 0.153 FPU ml-1). Alkali pre-treated corn cob hydrolysed by cellulases of A. niger yielded 7.63 mg ml-1 sugar which produced 2.67 % (v/v) ethanol on fermentation. Ethanol yield of the hydrolysates of corn cob by cellulases of P. decumbens was much lower at 0.56 % (v/v). Alkali pre-treated corn cob, hydrolysed with cellulases of A. niger is established as suitable feedstock for bioethanol production. PMID:27418920

  2. Type III polyketide synthase is involved in the biosynthesis of protocatechuic acid in Aspergillus niger.

    PubMed

    Lv, Yangyong; Xiao, Jing; Pan, Li

    2014-11-01

    Genomic studies have shown that not only plants but also filamentous fungi contain type III polyketide synthases. To study the function of type III polyketide synthase (AnPKSIII) in Aspergillus niger, a deletion strain (delAnPKSIII) and an overexpression strain (oeAnPKSIII) were constructed in A. niger MA169.4, a derivative of the wild-type (WT) A. niger ATCC 9029 that produces large quantities of gluconic acid. Alterations in the metabolites were analyzed by HPLC when the extract of the overexpression strain was compared with extracts of the WT and deletion strains. Protocatechuic acid (PCA; 3,4-dihydroxybenzoic acid, 3.2 mg/l) was isolated and identified as the main product of AnPKSIII when inductively expressed in A. niger MA169.4. The molecular weight of PCA was 154.1 (m/z 153.1 [M-H](-)), was detected by ESI-MS in the negative ionization mode, and (1)H and (13)C NMR data confirmed its structure.

  3. Simultaneous Production of Amyloglucosidase and Exo-Polygalacturonase by Aspergillus niger in a Rotating Drum Reactor.

    PubMed

    Colla, Eliane; Santos, Lucielen Oliveira; Deamici, Kricelle; Magagnin, Glênio; Vendruscolo, Mauricio; Costa, Jorge Alberto Vieira

    2017-02-01

    Simultaneous production of amyloglucosidase (AMG) and exo-polygalacturonase (exo-PG) was carried out by Aspergillus niger in substrate of defatted rice bran in a rotating drum bioreactor (RDB) and studied by a 3(1) × 2(2) factorial experimental design. Variables under study were A. niger strains (A. niger NRRL 3122 and A. niger t0005/007-2), types of inoculum (spore suspension and fermented bran), and types of inducer (starch, pectin, and a mix of both). Solid-state fermentation process (SSF) was conducted at 30 °C under 60-vvm aeration for 96 h in a pilot scale. Production of AMG and exo-PG was significantly affected by the fungal strain and the type of inoculum, but inducers did not trigger any significant effect, an evidence of the fact that these enzymes are constitutive. The maximum activity of exo-PG was 84 U gdm(-1) whereas the maximum yield of AMG was 886.25 U gdm(-1).

  4. An inducible tool for random mutagenesis in Aspergillus niger based on the transposon Vader.

    PubMed

    Paun, Linda; Nitsche, Benjamin; Homan, Tim; Ram, Arthur F; Kempken, Frank

    2016-07-01

    The ascomycete Aspergillus niger is widely used in the biotechnology, for instance in producing most of the world's citric acid. It is also known as a major food and feed contaminant. While generation of gene knockouts for functional genomics has become feasible in ku70 mutants, analyzing gene functions or metabolic pathways remains a laborious task. An unbiased transposon-based mutagenesis approach may aid this process of analyzing gene functions by providing mutant libraries in a short time. The Vader transposon is a non-autonomous DNA-transposon, which is activated by the homologous tan1-transposase. However, in the most commonly used lab strain of A. niger (N400 strain and derivatives), we found that the transposase, encoded by the tan1 gene, is mutated and inactive. To establish a Vader transposon-based mutagenesis system in the N400 background, we expressed the functional transposase of A. niger strain CBS 513.88 under the control of an inducible promoter based on the Tet-on system, which is activated in the presence of the antibiotic doxycycline (DOX). Increasing amounts of doxycycline lead to higher Vader excision frequencies, whereas little to none activity of Vader was observed without addition of doxycycline. Hence, this system appears to be suitable for producing stable mutants in the A. niger N400 background.

  5. An Antifungal Role of Hydrogen Sulfide on the Postharvest Pathogens Aspergillus niger and Penicillium italicum

    PubMed Central

    Li, Yan-Hong; Hu, Liang-Bin; Yan, Hong; Liu, Yong-Sheng; Zhang, Hua

    2014-01-01

    In this research, the antifungal role of hydrogen sulfide (H2S) on the postharvest pathogens Aspergillus niger and Penicillium italicum growing on fruits and under culture conditions on defined media was investigated. Our results show that H2S, released by sodium hydrosulfide (NaHS) effectively reduced the postharvest decay of fruits induced by A. niger and P. italicum. Furthermore, H2S inhibited spore germination, germ tube elongation, mycelial growth, and produced abnormal mycelial contractions when the fungi were grown on defined media in Petri plates. Further studies showed that H2S could cause an increase in intracellular reactive oxygen species (ROS) in A. niger. In accordance with this observation we show that enzyme activities and the expression of superoxide dismutase (SOD) and catalase (CAT) genes in A. niger treated with H2S were lower than those in control. Moreover, H2S also significantly inhibited the growth of Saccharomyces cerevisiae, Rhizopus oryzae, the human pathogen Candida albicans, and several food-borne bacteria. We also found that short time exposure of H2S showed a microbicidal role rather than just inhibiting the growth of microbes. Taken together, this study suggests the potential value of H2S in reducing postharvest loss and food spoilage caused by microbe propagation. PMID:25101960

  6. Risk assessment of fungal spoilage: A case study of Aspergillus niger on yogurt.

    PubMed

    Gougouli, Maria; Koutsoumanis, Konstantinos P

    2017-08-01

    A quantitative risk assessment model of yogurt spoilage by Aspergillus niger was developed based on a stochastic modeling approach for mycelium growth by taking into account the important sources of variability such as time-temperature conditions during the different stages of chill chain and individual spore behavior. Input parameters were fitted to the appropriate distributions and A. niger colony's diameter at each stage of the chill chain was estimated using Monte Carlo simulation. By combining the output of the growth model with the fungus prevalence, that can be estimated by the industry using challenge tests, the risk of spoilage translated to number of yogurt cups in which a visible mycelium of A. niger is being formed at the time of consumption was assessed. The risk assessment output showed that for a batch of 100,000 cups in which the percentage of contaminated cups with A. niger was 1% the predicted numbers (median (5(th), 95(th) percentiles)) of the cups with a visible mycelium at consumption time were 8 (5, 14). For higher percentages of 3, 5 and 10 the predicted numbers (median (5(th), 95(th) percentiles)) of the spoiled cups at consumption time were estimated to be 24 (16, 35), 39 (29, 52) and 80 (64, 94), respectively. The developed model can lead to a more effective risk-based quality management of yogurt and support the decision making in yogurt production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. [Formation of Aspergillus niger-mineral aggregation and characterization of polysaccharide from aggregation].

    PubMed

    Hu, Jie; Lian, Bin; Yu, Jianping; Hu, Xing

    2011-06-01

    In order to understand the weathering on potassium-bearing mineral by Aspergillus niger, we studied the formation of A. niger-mineral aggregation and polysaccharide in the revolving and fermenting mode and their role in the process of weathering on potassium-bearing mineral. We used four different media to study the morphology of A. niger-mineral aggregation; ultraviolet-visible spectrum (UV-Vis) , fourier transform infrared spectrum (IR), gas chromatography (GC), scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS) were combined to research the changes of polysaccharide and their significances in the micro-environment forming fungal-mineral aggregation. A. niger myclia intertwined, adsorbed and bonded mineral powder to form aggregation by the assistance of polysaccharide and other metabolites. After formation of the aggregation, the concentration and structure of polysaccharide were changed significantly. The changes of polysaccharide would enhance the adsorption on minerals, chelation on metal ions and adsorption on water molecules, which provided a favorable micro-environment for the fungal using mineral nutrients effectively.

  8. Quantitative iTRAQ secretome analysis of Aspergillus niger reveals novel hydrolytic enzymes.

    PubMed

    Adav, Sunil S; Li, An A; Manavalan, Arulmani; Punt, Peter; Sze, Siu Kwan

    2010-08-06

    The natural lifestyle of Aspergillus niger made them more effective secretors of hydrolytic proteins and becomes critical when this species were exploited as hosts for the commercial secretion of heterologous proteins. The protein secretion profile of A. niger and its mutant at different pH was explored using iTRAQ-based quantitative proteomics approach coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS). This study characterized 102 highly confident unique proteins in the secretome with zero false discovery rate based on decoy strategy. The iTRAQ technique identified and relatively quantified many hydrolyzing enzymes such as cellulases, hemicellulases, glycoside hydrolases, proteases, peroxidases, and protein translocating transporter proteins during fermentation. The enzymes have potential application in lignocellulosic biomass hydrolysis for biofuel production, for example, the cellulolytic and hemicellulolytic enzymes glucan 1,4-alpha-glucosidase, alpha-glucosidase C, endoglucanase, alpha l-arabinofuranosidase, beta-mannosidase, glycosyl hydrolase; proteases such as tripeptidyl-peptidase, aspergillopepsin, and other enzymes including cytochrome c oxidase, cytochrome c oxidase, glucose oxidase were highly expressed in A. niger and its mutant secretion. In addition, specific enzyme production can be stimulated by controlling pH of the culture medium. Our results showed comprehensive unique secretory protein profile of A. niger, its regulation at different pH, and the potential application of iTRAQ-based quantitative proteomics for the microbial secretome analysis.

  9. Repeat induced point mutation in two asexual fungi, Aspergillus niger and Penicillium chrysogenum.

    PubMed

    Braumann, Ilka; van den Berg, Marco; Kempken, Frank

    2008-05-01

    Repeat induced point mutation (RIP) is a gene silencing mechanism present in fungal genomes. During RIP, duplicated sequences are efficiently and irreversibly mutated by transitions from C:G to T:A. For the first time, we have identified traces of RIP in transposable elements of Aspergillus niger and Penicillium chrysogenum, two biotechnologically relevant fungi. We found that RIP in P. chrysogenum has affected a large set of sequences, which also contain other mutations. On the other hand, RIP in A. niger is limited to only few sequences, but literally all mutations are RIP-like. Surprisingly, RIP occurred only in transposon sequences that have disrupted open reading frames in A. niger, a phenomenon not yet reported for other fungi. In both fungal species, we identified two sequences with strong sequence similarity to Neurospora crassa RID. RID is a putative DNA methyltransferase and the only known enzyme involved in the RIP process. Our findings suggest that both A. niger and P. chrysogenum either had a sexual past or have a sexual potential. These findings have important implications for future strain development of these fungi.

  10. Enzymatic detergent formulation containing amylase from Aspergillus niger: a comparative study with commercial detergent formulations.

    PubMed

    Mitidieri, Sydnei; Souza Martinelli, Anne Helene; Schrank, Augusto; Vainstein, Marilene Henning

    2006-07-01

    There is a wide range of biotechnological applications for amylases, including the textile, pharmaceutical, food and laundry industries. Hydrolytic enzymes are 100% biodegradable and enzymatic detergents can achieve effective cleaning with lukewarm water. Microorganisms and culture media were tested for amylase production and the best producer was Aspergillus niger L119 (3.9 U ml(-1) +/- 0.2) in submerged culture and its amylase demonstrated excellent activity at 50-55 degrees C and pH 4.0, remaining stable at 53 degrees C for up to 200 h. In order to establish the potential uses of this enzyme in detergents, different formulations were tested using the A. niger amylase extract. Enzyme activity was compared with three commercial formulations. The detergents are used in hospitals to clean surgical and endoscopy equipment. The presence of amylase in the formulation is because of its action within hospital drainage system, whether or not it has any function in cleaning the equipment.

  11. Isolation and structure of the pectin lyase D-encoding gene from Aspergillus niger.

    PubMed

    Gysler, C; Harmsen, J A; Kester, H C; Visser, J; Heim, J

    1990-04-30

    The filamentous fungus, Aspergillus niger, produces a number of extracellular pectin-degrading enzymes. We present here the isolation and the complete nucleotide sequence of the gene, pelD, coding for a pectin lyase D (PLD), which was previously described as pectin lyase I (Van Houdenhoven, Ph.D. Thesis, Wageningen, 1975). The deduced amino acid (aa) sequence corresponds to 373 aa residues including a signal peptide of 19 aa. The coding region is interrupted by four short introns (57-65 bp). The nucleotide sequence of the 5'- and 3'-flanking regions is also presented and shows no unusual features. By comparing the deduced aa sequences of the A. niger PLD and a number of bacterial pectate lyases, short regions of homology were found despite the different substrate specificities (high methoxyl-pectin versus low methoxyl-pectin or polygalacturonate) of these enzymes.

  12. Morphological transitions under oxidative stress in response to metabolite formation in Aspergillus niger.

    PubMed

    Lv, Yangyong; Zhou, Feng; Wang, Bin; Pan, Li

    2015-03-01

    Oxidative stress is associated with metabolite formation in fungi. In contrast to an Aspergillus niger wild-type strain, a sclerotia-formation regulator ansclR deletion strain demonstrated increased susceptibility to oxidative stress and reduced transcription of the catalase gene, catB, while an ansclR overexpression strain showed enhanced resistance to oxidative stress and increased expression of catB. In addition, ansclR complementation strain expressed a wild-type level of catB. The ansclR overexpression strain also produced the same metabolites as the wild type strain treated with H2O2. Furthermore, LC-MS, NMR, and IR analyses showed that the main metabolite was a steroid analog. Our study adds new clues to oxidative stress-related factors and metabolite formation in A. niger.

  13. Efficient Conversion of Inulin to Inulooligosaccharides through Endoinulinase from Aspergillus niger.

    PubMed

    Xu, Yanbing; Zheng, Zhaojuan; Xu, Qianqian; Yong, Qiang; Ouyang, Jia

    2016-03-30

    Inulooligosaccharides (IOS) represent an important class of oligosaccharides at industrial scale. An efficient conversion of inulin to IOS through endoinulinase from Aspergillus niger is presented. A 1482 bp codon optimized gene fragment encoding endoinulinase from A. niger DSM 2466 was cloned into pPIC9K vector and was transformed into Pichia pastoris KM71. Maximum activity of the recombinant endoinulinase, 858 U/mL, was obtained at 120 h of the high cell density fermentation process. The optimal conditions for inulin hydrolysis using the recombinant endoinulinase were investigated. IOS were harvested with a high concentration of 365.1 g/L and high yield up to 91.3%. IOS with different degrees of polymerization (DP, mainly DP 3-6) were distributed in the final reaction products.

  14. Inhibition of Aspergillus niger phosphate solubilization by fluoride released from rock phosphate.

    PubMed

    Mendes, Gilberto de Oliveira; Vassilev, Nikolay Bojkov; Bonduki, Victor Hugo Araújo; da Silva, Ivo Ribeiro; Ribeiro, José Ivo; Costa, Maurício Dutra

    2013-08-01

    The simultaneous release of various chemical elements with inhibitory potential for phosphate solubilization from rock phosphate (RP) was studied in this work. Al, B, Ba, Ca, F, Fe, Mn, Mo, Na, Ni, Pb, Rb, Si, Sr, V, Zn, and Zr were released concomitantly with P during the solubilization of Araxá RP (Brazil), but only F showed inhibitory effects on the process at the concentrations detected in the growth medium. Besides P solubilization, fluoride decreased fungal growth, citric acid production, and medium acidification by Aspergillus niger. At the maximum concentration found during Araxá RP solubilization (22.9 mg F(-) per liter), fluoride decreased P solubilization by 55%. These findings show that fluoride negatively affects RP solubilization by A. niger through its inhibitory action on the fungal metabolism. Given that fluoride is a common component of RPs, the data presented here suggest that most of the microbial RP solubilization systems studied so far were probably operated under suboptimal conditions.

  15. Kinetics of cellobiose hydrolysis using cellobiase composites from Trichoderma reesei and Aspergillus niger

    SciTech Connect

    Grous, W.; Converse, A.; Grethlein, H.; Lynd, L.

    1985-01-01

    The enzymatic hydrolysis of cellulose to glucose involves the formation of cellobiose as an intermediate. It has been found necessary to add cellobiase from Aspergillus niger (NOVO) to the cellobiase component of Trichoderma reesei mutant Rut C-30 (Natick) cellulase enzymes in order to obtain after 48 h complete conversion of the cellobiose formed in the enzymatic hydrolysis of biomass. This study of the cellobiase activity of these two enzyme sources was undertaken as a first step in the formation of a kinetic model for cellulose hydrolysis that can be used in process design. In order to cover the full range of cellobiose concentrations, it was necessary to develop separate kinetic parameters for high- and low-concentration ranges of cellobiose for the enzymes from each organism. Competitive glucose inhibition was observed with the enzymes from both organisms. Substrate inhibition was observed only with the A. niger enzymes.

  16. Additive action of honey and starch against Candida albicans and Aspergillus niger.

    PubMed

    Boukraâ, Laid; Bouchegrane, Sarah

    2007-12-31

    A comparative method of adding honey to culture media with and without starch was used to evaluate the action of starch on the antifungal activity of honey. The minimum inhibitory concentration (MIC) expressed in % (v/v) for two varieties of honey without starch against Candida albicans was 42% and 46%, respectively. For Aspergillus niger the MIC without starch was 51% and 59%, respectively. When starch was incubated with honey and then added to media the MIC for C. albicans was 28% and 38%, respectively, with a starch concentration of 3.6% whereas the MIC for A. niger was 40% and 45%, with a starch concentration of 5.6% and 5.1% respectively. This study suggests that the amylase present in honey increases the osmotic effect in the media by increasing the amount of sugars and consequently increasing the antifungal activity.

  17. Expression of catalytic subunit of bovine enterokinase in the filamentous fungus Aspergillus niger.

    PubMed

    Svetina, M; Krasevec, N; Gaberc-Porekar, V; Komel, R

    2000-01-21

    The cDNA encoding for catalytic subunit of bovine enterokinase (EK(L)), to which the sequence for Kex2 protease cleavage site was inserted, was expressed in the protease deficient filamentous fungus Aspergillus niger AB1.13. Fungal transformants were obtained in which expression of the glucoamylase fusion gene resulted in secretion of the protein into growth medium. Fusion polypeptide was processed to mature EK(L) by endogenous Kex-2 like protease cleavage during secretory pathway. The highest quantity of EK(L), up to 5 mg l(-1), was obtained in soya milk medium. The secreted EK(L) was easily purified from other proteins found in A. niger culture supernatant, using ion exchange and affinity chromatography. The yield of the purified and highly active EK(L) was 1.9 mg l(-1) of culture.

  18. Agricultural residues for cellulolytic enzyme production by Aspergillus niger: effects of pretreatment.

    PubMed

    Salihu, Aliyu; Abbas, Olagunju; Sallau, Abdullahi Balarabe; Alam, Md Zahangir

    2015-12-01

    Different agricultural residues were considered in this study for their ability to support cellulolytic enzyme production by Aspergillus niger. A total of eleven agricultural residues including finger millet hulls, sorghum hulls, soybean hulls, groundnut husk, banana peels, corn stalk, cassava peels, sugarcane bagasse, saw dust, rice straw and sheanut cake were subjected to three pretreatment (acid, alkali and oxidative) methods. All the residues supported the growth and production of cellulases by A. niger after 96 h of incubation. Maximum cellulase production was found in alkali-treated soybean hulls with CMCase, FPase and β-glucosidase yields of 9.91 ± 0.04, 6.20 ± 0.13 and 5.69 ± 0.29 U/g, respectively. Further studies in assessing the potential of soybean hulls are being considered to optimize the medium composition and process parameters for enhanced cellulase production.

  19. Rewiring a secondary metabolite pathway towards itaconic acid production in Aspergillus niger.

    PubMed

    Hossain, Abeer H; Li, An; Brickwedde, Anja; Wilms, Lars; Caspers, Martien; Overkamp, Karin; Punt, Peter J

    2016-07-28

    The industrially relevant filamentous fungus Aspergillus niger is widely used in industry for its secretion capabilities of enzymes and organic acids. Biotechnologically produced organic acids promise to be an attractive alternative for the chemical industry to replace petrochemicals. Itaconic acid (IA) has been identified as one of the top twelve building block chemicals which have high potential to be produced by biotechnological means. The IA biosynthesis cluster (cadA, mttA and mfsA) has been elucidated in its natural producer Aspergillus terreus and transferred to A. niger to enable IA production. Here we report the rewiring of a secondary metabolite pathway towards further improved IA production through the overexpression of a putative cytosolic citrate synthase citB in a A. niger strain carrying the IA biosynthesis cluster. We have previously shown that expression of cadA from A. terreus results in itaconic acid production in A. niger AB1.13, albeit at low levels. This low-level production is boosted fivefold by the overexpression of mttA and mfsA in itaconic acid producing AB1.13 CAD background strains. Controlled batch cultivations with AB1.13 CAD + MFS + MTT strains showed increased production of itaconic acid compared with AB1.13 CAD strain. Moreover, preliminary RNA-Seq analysis of an itaconic acid producing AB1.13 CAD strain has led to the identification of the putative cytosolic citrate synthase citB which was induced in an IA producing strain. We have overexpressed citB in a AB1.13 CAD + MFS + MTT strain and by doing so hypothesize to have targeted itaconic acid production to the cytosolic compartment. By overexpressing citB in AB1.13 CAD + MFS + MTT strains in controlled batch cultivations we have achieved highly increased titers of up to 26.2 g/L IA with a productivity of 0.35 g/L/h while no CA was produced. Expression of the IA biosynthesis cluster in Aspergillus niger AB1.13 strain enables IA production. Moreover, in the AB1.13 CAD

  20. Isolation, Purification, and Identification of Taxol and Related Taxanes from Taxol-Producing Fungus Aspergillus niger subsp. taxi.

    PubMed

    Li, Dan; Fu, Dongwei; Zhang, Yue; Ma, Xueling; Gao, Liguo; Wang, Xioahua; Zhou, Dongpo; Zhao, Kai

    2017-08-28

    The content of taxol in the bark of yews is very low, and this is not affordable from the environmental point of view. Thus, it is a necessity to look for alternative sources of taxol production to solve its supply. Currently, a large portion of the taxol in the market comes from chemical semi-synthesis, but the semi-synthetic precursors such as baccatin III and 10-deacetyl-baccatin III are extracted from needles and twigs of yew trees. Taxol-producing fungi as a renewable resource is a very promising way to increase the scale of taxol production. Our group has obtained a taxol-producing endophytic fungus, Aspergillus niger subsp. taxi HD86-9, to examine if A. niger can produce the taxanes. Six compounds from the fermentation broth of strain HD86-9 were isolated and identified by (1)H NMR, (13)C NMR, and ESI-MS. The results showed that the six compounds included four taxane diterpenoids (taxol, cephalomannine, baccatin III, and 10-deacetyl-baccatin III) and two non-taxane compounds (β-sitosterol and flavonoid isovitexin). The study verified that the taxanes can be produced by the A. niger, which is very important to taxol production via chemical semi-synthesis. Additionally, the finding is potentially very significant to solve the taxol semi-synthetic precursors extracted from needles and twigs of yew trees, and the precursor production can be easily increased through the culture condition optimization, genetic breeding, and metabolic engineering of the A. niger.

  1. Changes in primary metabolism leading to citric acid overflow in Aspergillus niger.

    PubMed

    Legisa, Matic; Mattey, Michael

    2007-02-01

    For citric acid-accumulating Aspergillus niger cells, the enhancement of anaplerotic reactions replenishing tricarboxylic acid cycle intermediates predisposes the cells to form the product. However, there is no increased citrate level in germinating spores and a complex sequence of developmental events is needed to change the metabolism in a way that leads to an increased level of tricarboxylic acid cycle intermediates in mycelia. A review of physiological events that cause such intracellular conditions, with the special emphasis on the discussion of hexose transport into the cells and regulation of primary metabolism, predominantly of glycolytic flux during the process, is presented.

  2. Crystallization and preliminary X-ray diffraction data of β-galactosidase from Aspergillus niger.

    PubMed

    Rico-Díaz, Agustín; Vizoso Vázquez, Ángel; Cerdán, M Esperanza; Becerra, Manuel; Sanz-Aparicio, Julia

    2014-11-01

    β-Galactosidase from Aspergillus niger (An-β-Gal), belonging to the family 35 glycoside hydrolases, hydrolyzes the β-galactosidase linkages in lactose and other galactosides. It is extensively used in industry owing to its high hydrolytic activity and safety. The enzyme has been expressed in yeasts and purified by immobilized metal-ion affinity chromatography for crystallization experiments. The recombinant An-β-Gal, deglycosylated to avoid heterogeneity of the sample, has a molecular mass of 109 kDa. Rod-shaped crystals grew using PEG 3350 as the main precipitant agent. A diffraction data set was collected to 1.8 Å resolution.

  3. Accelerated Death Kinetics of Aspergillus niger Spores under High-Pressure Carbonation

    PubMed Central

    Shimoda, M.; Kago, H.; Kojima, N.; Miyake, M.; Osajima, Y.; Hayakawa, I.

    2002-01-01

    The death kinetics of Aspergillus niger spores under high-pressure carbonation were investigated with respect to the concentration of dissolved CO2 (dCO2) and treatment temperature. All of the inactivation followed first-order death kinetics. The D value (decimal reduction time, or the time required for a 1-log-cycle reduction in the microbial population) in the saline carbonated at 10 MPa was 0.16 min at 52°C. The log D values were linearly related to the treatment temperature and the concentration of dCO2, but a significant interaction was observed between them. PMID:12147527

  4. Synthesis of glucose oxidase and catalase by Aspergillus niger in resting cell culture system.

    PubMed

    Liu, J Z; Yang, H Y; Weng, L P; Ji, L N

    1999-11-01

    The synthesis of glucose oxidase and catalase by Aspergillus niger was investigated using a resting cell culture system without growth being established. Calcium carbonate induced the synthesis of both enzymes and calcium chloride inhibited it. The optimal pH for the biosynthesis of glucose oxidase and catalase was 6.0 and 5.7, respectively. The effects of other bivalent cations, reductive compounds and metabolic products on enzyme synthesis were also tested. The biosynthesis of glucose oxidase and catalase was promoted by MnCO3, thioglycolic acid, pyroracemic acid and gluconic acid.

  5. Crystallization and preliminary X-ray diffraction data of β-galactosidase from Aspergillus niger

    PubMed Central

    Rico-Díaz, Agustín; Vizoso Vázquez, Ángel; Cerdán, M. Esperanza; Becerra, Manuel; Sanz-Aparicio, Julia

    2014-01-01

    β-Galactosidase from Aspergillus niger (An-β-Gal), belonging to the family 35 glycoside hydrolases, hydrolyzes the β-galactosidase linkages in lactose and other galactosides. It is extensively used in industry owing to its high hydrolytic activity and safety. The enzyme has been expressed in yeasts and purified by immobilized metal-ion affinity chromatography for crystallization experiments. The recombinant An-β-Gal, deglycosylated to avoid heterogeneity of the sample, has a molecular mass of 109 kDa. Rod-shaped crystals grew using PEG 3350 as the main precipitant agent. A diffraction data set was collected to 1.8 Å resolution. PMID:25372823

  6. Bilateral allergic fungal rhinosinusitis caused by Schizophillum commune and Aspergillus niger. A case report.

    PubMed

    Ahmed, Mohamed Khalifa; Ishino, Takashi; Takeno, Sachio; Hirakawa, Katsuhiro

    2009-06-01

    Schizophillum commune (S. commune) is a rare type of basidiomycetous fungus that has being reported as a cause of allergic fungal rhinosinusitis (AFRS), invasive type of fungal sinusitis and allergic bronchopulmonary mycosis (ABPM). However, it is believed that S. commune was often misdiagnosed to Aspergillus sp. We report a case of bilateral nasal polyps and maxillary, ethmoidal and sphenoidal involvement within the context of S. commune and Aspergillus niger associated AFRS. Our patient was suffering from a chronic disease with periods of remission and exacerbation and was treated successfully by a combination of surgical and antifungal treatment. In our experience, S. commune may be found frequently in patients with AFRS. AFRS, including the S. commune-associated type, usually runs a prolonged course and can affect any paranasal sinus. Surgical treatment alone is not sufficient and must be combined with medical treatment.

  7. Reduced by-product formation and modified oxygen availability improve itaconic acid production in Aspergillus niger.

    PubMed

    Li, An; Pfelzer, Nina; Zuijderwijk, Robbert; Brickwedde, Anja; van Zeijl, Cora; Punt, Peter

    2013-05-01

    Aspergillus niger has an extraordinary potential to produce organic acids as proven by its application in industrial citric acid production. Previously, it was shown that expression of the cis-aconitate decarboxylase gene (cadA) from Aspergillus terreus converted A. niger into an itaconic acid producer (Li et al., Fungal Genet Bio 48: 602-611, 2011). After some initial steps in production optimization in the previous research (Li et al., BMC biotechnol 12: 57, 2012), this research aims at modifying host strains and fermentation conditions to further improve itaconic acid production. Expression of two previously identified A. terreus genes encoding putative organic acid transporters (mttA, mfsA) increased itaconic acid production in an A. niger cis-aconitate decarboxylase expressing strain. Surprisingly, the production did not increase further when both transporters were expressed together. Meanwhile, oxalic acid was accumulated as a by-product in the culture of mfsA transformants. In order to further increase itaconic acid production and eliminate by-product formation, the non-acidifying strain D15#26 and the oxaloacetate acetylhydrolase (oahA) deletion strain AB 1.13 ∆oahA #76 have been analyzed for itaconic acid production. Whereas cadA expression in AB 1.13 ∆oahA #76 resulted in higher itaconic acid production than strain CAD 10.1, this was not the case in strain D15#26. As expected, oxalic acid production was eliminated in both strains. In a further attempt to increase itaconic acid levels, an improved basal citric acid-producing strain, N201, was used for cadA expression. A selected transformant (N201CAD) produced more itaconic acid than strain CAD 10.1, derived from A. niger strain AB1.13. Subsequently, we have focused on the influence of dissolved oxygen (D.O.) on itaconic acid production. Interestingly, reduced D.O. levels (10-25 %) increased itaconic acid production using strain N201 CAD. Similar results were obtained in strain AB 1.13 CAD + HBD2

  8. Comparative genomics and transcriptome analysis of Aspergillus niger and metabolic engineering for citrate production

    PubMed Central

    Yin, Xian; Shin, Hyun-dong; Li, Jianghua; Du, Guocheng; Liu, Long; Chen, Jian

    2017-01-01

    Despite a long and successful history of citrate production in Aspergillus niger, the molecular mechanism of citrate accumulation is only partially understood. In this study, we used comparative genomics and transcriptome analysis of citrate-producing strains—namely, A. niger H915-1 (citrate titer: 157 g L−1), A1 (117 g L−1), and L2 (76 g L−1)—to gain a genome-wide view of the mechanism of citrate accumulation. Compared with A. niger A1 and L2, A. niger H915-1 contained 92 mutated genes, including a succinate-semialdehyde dehydrogenase in the γ-aminobutyric acid shunt pathway and an aconitase family protein involved in citrate synthesis. Furthermore, transcriptome analysis of A. niger H915-1 revealed that the transcription levels of 479 genes changed between the cell growth stage (6 h) and the citrate synthesis stage (12 h, 24 h, 36 h, and 48 h). In the glycolysis pathway, triosephosphate isomerase was up-regulated, whereas pyruvate kinase was down-regulated. Two cytosol ATP-citrate lyases, which take part in the cycle of citrate synthesis, were up-regulated, and may coordinate with the alternative oxidases in the alternative respiratory pathway for energy balance. Finally, deletion of the oxaloacetate acetylhydrolase gene in H915-1 eliminated oxalate formation but neither influence on pH decrease nor difference in citrate production were observed. PMID:28106122

  9. Identification of Genes Associated with Morphology in Aspergillus Niger by Using Suppression Subtractive Hybridization

    SciTech Connect

    Dai, Ziyu; Mao, Xingxue; Magnuson, Jon K.; Lasure, Linda L.

    2004-04-01

    The morphology of citric acid production strains of Aspergillus niger is sensitive to a variety of factors including the concentration of manganese (Mn2+). Upon increasing the Mn2+ concentration in A. niger (ATCC 11414) cultures to 14 ppb or higher, the morphology switches from pelleted to filamentous, accompanied by a rapid decline in citric acid production. Molecular mechanisms through which Mn2+ exerts effects on morphology and citric acid production in A. niger have not been well defined, but our use of suppression subtractive hybridization has identified 22 genes responsive to Mn2+. Fifteen genes were differentially expressed when A. niger was grown in media containing 1000 ppb Mn2+ (filamentous form) and seven genes in 10 ppb Mn2+ (pelleted form). Of the fifteen filamentous-associated genes, seven are novel and eight share 47-100% identity to genes from other organisms. Five of the pellet-associated genes are novel, and the other two genes encode a pepsin-type protease and polyubiquitin. All ten genes with deduced functions are either involved in amino acid metabolism/protein catabolism or cell regulatory processes. Northern-blot analysis showed that the transcripts of all 22 genes were rapidly enhanced or suppressed by Mn2+. Steady-state mRNA levels of six selected filamentous associated genes remained high during five days of culture in a filamentous state and low under pelleted growth conditions. The opposite behavior was observed for four selected pellet-associated genes. The full-length cDNA of the filamentous-associated clone, Brsa-25 was isolated. Antisense expression of Brsa-25 permitted pelleted growth and increased citrate production at higher concentrations of Mn2+ than could be tolerated by the parent strain. The results suggest the involvement of the newly isolated genes in regulation of A. niger morphology.

  10. Studies on influence of natural biowastes on cellulase production by Aspergillus niger.

    PubMed

    Kiranmayi, M Usha; Poda, Sudhakar; Vijayalakshmi, M; Krishna, P V

    2011-11-01

    The objective of this study was to determine the influence of natural biowaste substrates such as banana peel powder and coir powder at varying environmental parameters of pH (4-9) and temperature (20-50 degrees C) on the cellulase enzyme production by Aspergillus niger. The cellulase enzyme production was analyzed by measuring the amount of glucose liberated in IU ml(-1) by using the dinitrosalicylic acid assay method. The substrates were pretreated with 1% NaOH (alkaline treatment) and autoclaved. The maximum activity of the enzyme was assayed at varying pH with temperatures being constant and varying temperatures with pH being constant. The highest activity of the enzyme at varying pH was recorded at pH 6 for banana peel powder (0.068 +/- 0.002 IU ml) and coir powder (0.049 +/- 0.002 IU ml(-1)) and the maximum activity of the enzyme at varying temperature was recorded at 35 degrees C for both banana peel powder (0.072 +/- 0.001 IU ml(-1)) and coir powder (0.046 +/- 0.003 IU ml(-1)). At varying temperatures and pH the high level of enzyme production was obtained at 35 degrees C and pH 6 by using both the substrates, respectively. However among the two substrates used for the production of cellulases by Aspergillus niger banana peel powder showed maximum enzymatic activity than coir powder as substrate.

  11. Purification and characterisation of a novel enantioselective epoxide hydrolase from Aspergillus niger M200.

    PubMed

    Kotik, Michael; Kyslík, Pavel

    2006-02-01

    Purification of a novel enantioselective epoxide hydrolase from Aspergillus niger M200 has been achieved using ammonium sulphate precipitation, ionic exchange, hydrophobic interaction, and size-exclusion chromatography, in conjunction with two additional chromatographic steps employing hydroxylapatite, and Mimetic Green. The enzyme was purified 186-fold with a yield of 15%. The apparent molecular mass of the enzyme was determined to be 77 kDa under native conditions and 40 kDa under denaturing conditions, implying a dimeric structure of the native enzyme. The isoelectric point of the enzyme was estimated to be 4.0 by isoelectric focusing electrophoresis. The enzyme has a broad substrate specificity with highest specificities towards tert-butyl glycidyl ether, para-nitrostyrene oxide, benzyl glycidyl ether, and styrene oxide. Enantiomeric ratios of 30 to more than 100 were determined for the hydrolysis reactions of 4 epoxidic substrates using the purified enzyme at a reaction temperature of 10 degrees C. Product inhibition studies suggest that the enzyme is able to differentiate to a high degree between the (R)-diol and (S)-diol product of the hydrolysis reaction with tert-butyl glycidyl ether as the substrate. The highest activity of the enzyme was at 42 degrees C and a pH of 6.8. Six peptide sequences, which were obtained by cleavage of the purified enzyme with trypsin and mass spectrometry analysis of the tryptic peptides, show high similarity with corresponding sequences originated from the epoxide hydrolase from Aspergillus niger LCP 521.

  12. Extracellular Expression in Aspergillus niger of an Antibody Fused to Leishmania sp. Antigens.

    PubMed

    Magaña-Ortíz, Denis; Fernández, Francisco; Loske, Achim M; Gómez-Lim, Miguel A

    2017-08-31

    Nucleoside hydrolase and sterol 24-c-methyltransferase, two antigenic proteins of Leishmania sp., were expressed in Aspergillus niger. Genetic transformation of conidia was achieved using underwater shock waves. scFv antibody addressed to DEC205, a receptor of dendritic cells, was fused to two proteins of Leishmania sp. Receptor 205 has a relevant role in the immune system in mammals; it can modulate T cell response to different antigens. Extracellular expression strategy of recombinant antibody was achieved using a fragment of native glucoamylase A (514 aa) as a carrier. Fermentations in shake flasks showed that the recombinant protein (104 kDa) was expressed and secreted only when maltose was used as carbon source; on the contrary, the expression was highly repressed in presence of xylose. Noteworthy, recombinant protein was secreted without glucoamylase-carrier and accumulation at intracellular level was not observed. The results presented here demonstrate the high value of Aspergillus niger as biotechnological platform for recombinant antibodies against Leishmania sp. at low cost. To the best of our knowledge, this is the first report about the recombinant expression of antigenic proteins of Leishmania sp. in filamentous fungi. The protein obtained can be used to explore novel strategies to induce immunity against Leishmania sp. or it can be employed in diagnostic kits to detect this neglected disease.

  13. Removal and recovery of uranium (VI) from aqueous solutions by immobilized Aspergillus niger powder beads.

    PubMed

    Ding, De-Xin; Tan, Xiang; Hu, Nan; Li, Guang-Yue; Wang, Yong-Dong; Tan, Yan

    2012-11-01

    The immobilized Aspergillus niger powder beads were obtained by entrapping nonviable A. niger powder into Ca-alginate gel. The effects of pH, contact time, initial uranium (VI) concentration and biomass dosage on the biosorption of uranium (VI) onto the beads from aqueous solutions were investigated in a batch system. Biosorption equilibrium data were agreeable with Langmuir isotherm model and the maximum biosorption capacity of the beads for uranium (VI) was estimated to be 649.4 mg/g at 30 °C. The biosorption kinetics followed the pseudo-second-order model and intraparticle diffusion equation. The variations in enthalpy (26.45 kJ/mol), entropy (0.167 kJ/mol K) and Gibbs free energy were calculated from the experimental data. SEM and EDS analysis indicated that the beads have strong adsorption capability for uranium (VI). The adsorbed uranium (VI) on the beads could be released with HNO(3) or HCl. The results showed that the immobilized A. niger powder beads had great potential for removing and recovering uranium (VI) from aqueous solutions.

  14. Efficacy and possible mechanisms of perillaldehyde in control of Aspergillus niger causing grape decay.

    PubMed

    Tian, Jun; Wang, Yanzhen; Zeng, Hong; Li, Zongyun; Zhang, Peng; Tessema, Akalate; Peng, Xue

    2015-06-02

    A variety of plant products have been recognized for their antifungal activity and recently have attracted food industry attention for their efficacy in controlling postharvest fungal decay of fruits. The antifungal activity of perillaldehyde (PAE) was evaluated against Aspergillus niger, a known cause of grape spoilage, and possible mechanisms were explored. PAE showed notable antifungal activity against A. niger, with a minimum inhibitory concentration (MIC) and a minimum fungicidal concentration (MFC) of 0.25 and 1 μl/ml, respectively. The accumulation of mycelial biomass was also inhibited by PAE in a dose-dependent manner, completely inhibiting mycelial growth at 1 μl/ml. In vivo data confirmed that the vapour treatment of grapes with various concentrations of PAE markedly improved control of A. niger and suppressed natural decay. Concentrations of PAE of 0.075 μl/ml air showed the greatest inhibition of fungal growth compared to the controls. Further experiments indicated that PAE activated a membrane-active mechanism that inhibits ergosterol synthesis, increases membrane permeability (as evidenced by extracellular pH and conductivity measurements), and disrupts membrane integrity, leading to cell death. Our findings suggest that this membrane-active mechanism makes PAE a promising potential antifungal agent for postharvest control of grape spoilage.

  15. Regulation of the alpha-glucuronidase-encoding gene ( aguA) from Aspergillus niger.

    PubMed

    de Vries, R P; van de Vondervoort, P J I; Hendriks, L; van de Belt, M; Visser, J

    2002-09-01

    The alpha-glucuronidase gene aguA from Aspergillus niger was cloned and characterised. Analysis of the promoter region of aguA revealed the presence of four putative binding sites for the major carbon catabolite repressor protein CREA and one putative binding site for the transcriptional activator XLNR. In addition, a sequence motif was detected which differed only in the last nucleotide from the XLNR consensus site. A construct in which part of the aguA coding region was deleted still resulted in production of a stable mRNA upon transformation of A. niger. The putative XLNR binding sites and two of the putative CREA binding sites were mutated individually in this construct and the effects on expression were examined in A. niger transformants. Northern analysis of the transformants revealed that the consensus XLNR site is not actually functional in the aguA promoter, whereas the sequence that diverges from the consensus at a single position is functional. This indicates that XLNR is also able to bind to the sequence GGCTAG, and the XLNR binding site consensus should therefore be changed to GGCTAR. Both CREA sites are functional, indicating that CREA has a strong influence on aguA expression. A detailed expression analysis of aguA in four genetic backgrounds revealed a second regulatory system involved in activation of aguA gene expression. This system responds to the presence of glucuronic and galacturonic acids, and is not dependent on XLNR.

  16. Enhancing fructooligosaccharides production by genetic improvement of the industrial fungus Aspergillus niger ATCC 20611.

    PubMed

    Zhang, Jing; Liu, Caixia; Xie, Yijia; Li, Ning; Ning, Zhanguo; Du, Na; Huang, Xirong; Zhong, Yaohua

    2017-03-23

    Aspergillus niger ATCC20611 is one of the most potent filamentous fungi used commercially for production of fructooligosaccharides (FOS), which are prospective components of functional food by stimulating probiotic bacteria in the human gut. However, current strategies for improving FOS yield still rely on production process development. The genetic engineering approach hasn't been applied in industrial strains to increase FOS production level. Here, an optimized polyethylene glycol (PEG)-mediated protoplast transformation system was established in A. niger ATCC 20611 and used for further strain improvement. The pyrithiamine resistance gene (ptrA) was selected as a dominant marker and protoplasts were prepared with high concentration (up to 10(8)g(-1) wet weight mycelium) by using mixed cell wall-lysing enzymes. The transformation frequency with ptrA can reach 30-50 transformants per μg of DNA. In addition, the efficiency of co-transformation with the EGFP reporter gene (egfp) was high (approx. 82%). Furthermore, an activity-improved variant of β-fructofuranosidase, FopA(A178P), was successfully overexpressed in A. niger ATCC 20611 by using the transformation system. The transformant, CM6, exhibited a 58% increase in specific β-fructofuranosidase activity (up to 507U/g), compared to the parental strain (320U/g), and effectively reduced the time needed for completion of FOS synthesis. These results illustrate the feasibility of strain improvement through genetic engineering for further enhancement of FOS production level.

  17. Heterogenic expression of genes encoding secreted proteins at the periphery of Aspergillus niger colonies.

    PubMed

    Vinck, Arman; de Bekker, Charissa; Ossin, Adam; Ohm, Robin A; de Vries, Ronald P; Wösten, Han A B

    2011-01-01

    Colonization of a substrate by fungi starts with the invasion of exploring hyphae. These hyphae secrete enzymes that degrade the organic material into small molecules that can be taken up by the fungus to serve as nutrients. We previously showed that only part of the exploring hyphae of Aspergillus niger highly express the glucoamylase gene glaA. This was an unexpected finding since all exploring hyphae are exposed to the same environmental conditions. Using GFP as a reporter, we here demonstrate that the acid amylase gene aamA, the α-glucuronidase gene aguA, and the feruloyl esterase gene faeA of A. niger are also subject to heterogenic expression within the exploring mycelium. Coexpression studies using GFP and dTomato as reporters showed that hyphae that highly express one of these genes also highly express the other genes encoding secreted proteins. Moreover, these hyphae also highly express the amylolytic regulatory gene amyR, and the glyceraldehyde-3-phosphate dehydrogenase gene gpdA. In situ hybridization demonstrated that the high expressers are characterized by a high 18S rRNA content. Taken together, it is concluded that two subpopulations of hyphae can be distinguished within the exploring mycelium of A. niger. The experimental data indicate that these subpopulations differ in their transcriptional and translational activity.

  18. Biosorption of phenol from an aqueous solution by Aspergillus niger biomass.

    PubMed

    Rao, J R; Viraraghavan, T

    2002-11-01

    Phenols in trace quantities are usually present in the treated effluent of many wastewater-treatment plants. Phenol contamination of drinking water even at 1 microg/l concentration can cause significant taste and odor problems. This study investigates the use of non-viable pretreated cells of Aspergillus niger to remove phenol from an aqueous solution. Five types of non-viable pretreated A. niger biomass powders were used as a biosorbent to remove phenol present in an aqueous solution at a concentration of 1,000 microg/l. Sulfuric acid-treated non-viable biomass powder, which was the most effective, was used as a biosorbent in a further study. The maximum removal of phenol was observed at an initial pH of 5.1 for the sulfuric acid-treated biomass. The adsorption of phenol by pretreated A. niger biomass was best described by the Brunauer Emmet Teller model. Desorption of phenol using distilled deionized water was found to be approximately 5% suggesting a strong biosorption by the biomass. Sulfuric acid-treated biomass beads developed through immobilization in polysulphone were used in a column study. Approximately 66% of phenol was removed in the column operated at an initial pH of 5.1 and an initial concentration of 1,000 microg/l of phenol.

  19. Evaluation of the catalase promoter for expressing the alkaline xylanase gene (alx) in Aspergillus niger.

    PubMed

    Sharma, Ruchika; Katoch, Meenu; Govindappa, Nagraj; Srivastava, P S; Sastry, Kedarnath N; Qazi, Ghulam Nabi

    2012-02-01

    Aspergillus niger represents a promising host for the expression of recombinant proteins, but only a few expression systems are available for this organism. In this study, the inducible catalase promoter (PcatR) from A. niger was characterized. For this, constructs were developed and checked for the expression of the alkaline xylanase gene transcriptionally fused under the cat R promoter. Two versions of the catalase (catR) promoter sequence from A. niger (P(cat300,) P(cat924)) were isolated and tested for their ability to drive expression of the alkaline xylanase (alx) gene. P(cat924) showed better efficiency (more than 10-fold increase in AlX activity compared to P(cat300)) under the optimized culture conditions. Induction of the catR promoter with 0.20% H(2)O(2) and 1.5% CaCO(3) in the culture medium, further increased expression of AlX 2.61- and 2.20-fold, respectively, clarifying its inducible nature. Specific induction or repression of the catR promoter provides the possibility for utilization of this promoter in heterologous protein production.

  20. Glucoamylase starch-binding domain of Aspergillus niger B1: molecular cloning and functional characterization.

    PubMed Central

    Paldi, Tzur; Levy, Ilan; Shoseyov, Oded

    2003-01-01

    Carbohydrate-binding modules (CBMs) are protein domains located within a carbohydrate-active enzyme, with a discrete fold that can be separated from the catalytic domain. Starch-binding domains (SBDs) are CBMs that are usually found at the C-terminus in many amylolytic enzymes. The SBD from Aspergillus niger B1 (CMI CC 324262) was cloned and expressed in Escherichia coli as an independent domain and the recombinant protein was purified on starch. The A. niger B1 SBD was found to be similar to SBD from A. kawachii, A. niger var. awamori and A. shirusami (95-96% identity) and was classified as a member of the CBM family 20. Characterization of SBD binding to starch indicated that it is essentially irreversible and that its affinity to cationic or anionic starch, as well as to potato or corn starch, does not differ significantly. These observations indicate that the fundamental binding area on these starches is essentially the same. Natural and chemically modified starches are among the most useful biopolymers employed in the industry. Our study demonstrates that SBD binds effectively to both anionic and cationic starch. PMID:12646045

  1. Effects of Stenochlaena palustris Leaf Extract on Growth and Morphogenesis of Food Borne Pathogen, Aspergillus niger.

    PubMed

    Sumathy, V; Jothy Lachumy, S; Zuraini, Z; Sasidharan, S

    2010-12-01

    Some synthetic preservatives have become controversial because they have been proven to cause health problems. These increased health concerns have led consumers to prefer food preservatives based on natural products. Hence, Stenochlaena palustris leaf extract was used in this study to evaluate the antifungal activity against food borne pathogen, Aspergillus niger. The value of minimum inhibitory concentration and minimum fungicidal concentration of leaf extract for this fungus grown on Potato Dextrose Agar medium was 50 mg/ml. IC50 value for the hyphal growth of A. niger was at a concentration of 17.41 mg/ml. Morphology changes of A. niger treated with the fern leaf extract was observed through scanning electron microscope. The thread-like and elongated hyphae cell wall was disrupted, with some appearing flattened and others being broken. Currently, there is growing interest in using natural food preservatives such as medicinal plant extracts for preserving foods to reduce outbreaks of foodborne pathogenic microorganisms. Hence, S. palustris appears to have promise as a safe alternative natural product-based food preservative for future generations.

  2. Solubilisation of some naturally occurring metal-bearing minerals, limescale and lead phosphate by Aspergillus niger.

    PubMed

    Sayer, J A; Kierans, M; Gadd, G M

    1997-09-01

    The ability of the soil fungus Aspergillus niger to tolerate and solubilise seven naturally occurring metal-bearing minerals, limescale and lead phosphate was investigated. A. niger was able to solubilise four of the test insoluble compounds when incorporated into solid medium: cuprite (CuO2), galena (PbS), rhodochrosite (Mn(CO3)x) and limescale (CaCO3). A. niger was able to grow on all concentrations of all the test compounds, whether solubilisation occurred or not, with no reduction in growth rate from the control. In some cases, stimulation of growth occurred, most marked with the phosphate-containing mineral, apatite. Precipitation of insoluble copper and manganese oxalate crystals under colonies growing on agar amended with cuprite and rhodochrosite was observed after 1-2 days growth at 25 degrees C. This process of oxalate formation represents a reduction in bioavailability of toxic cations, and could represent an important means of toxic metal immobilisation of physiological and environmental significance.

  3. Production of biologically active oxidized derivatives of finasteride through metabolism by Aspergillus niger culture.

    PubMed

    Ali, Sajid; Nisar, Muhammad; Shah, Zarbad

    2016-11-01

    Among the 4-azasteroids, finasteride is biologically the most important compound having preventive effect against male pattern baldness (MPH) and benign prostatic hyperplasia commonly called enlargement of prostate gland. The microbial transformation of finasteride by fungus Aspergillus niger (ATCC 10549) has been investigated to obtain biologically more potent derivatives. Fermentation of finasteride was performed with filamentous fungus Aspergillus niger (ATCC 10549). This transformation resulted in the production of two transformed products, which were purified through column chromatography. In vitro lipoxygenase inhibitory potential was determined by incubating 20 mL of the enzyme with 10 mL of test sample (100 μM) in 0.1 mM (pH 7.0) phosphate buffer for 5 min at 258 °C followed by addition of 10 μL of substrate (linolenic acid) to reaction mixture and measuring the formation of complex spectrophotometrically. Structure elucidation of biotransformed metabolites was ascertained through extensive 1D and 2D spectroscopic techniques. This study established the fact that A. niger promoted stereospecific dihydroxylation at C-11 and C-15 of finasteride. The resulting biotransformed metabolites were characterized as 11α-hydroxyfinasteride and 15β-hydroxyfinasteride, respectively. Finasteride along with transformed metabolites were analyzed for their in vitro lipoxygenase (LOX) inhibition assay. Among the tested compounds 15β-hydroxyfinasteride showed good activity with IC50 value 112.56 ± 2.23 μM while inhibitory effect in case of 11α-hydroxyfinasteride was low with IC50 value 186.05 ± 1.34 μM. Standard compound baicalein revealed IC50 value being 22.0 ± 0.05 μM. The present investigation highlighted the fact that potentially active compound can be produced through the technology of biotransformation.

  4. Chemical mimicking of bio-assisted aluminium extraction by Aspergillus niger's exometabolites.

    PubMed

    Boriová, Katarína; Urík, Martin; Bujdoš, Marek; Pifková, Ivana; Matúš, Peter

    2016-11-01

    Presence of microorganisms in soils strongly affects mobility of metals. This fact is often excluded when mobile metal fraction in soil is studied using extraction procedures. Thus, the first objective of this paper was to evaluate strain Aspergillus niger's exometabolites contribution on aluminium mobilization. Fungal exudates collected in various time intervals during cultivation were analyzed and used for two-step bio-assisted extraction of alumina and gibbsite. Oxalic, citric and gluconic acids were identified in collected culture media with concentrations up to 68.4, 2.0 and 16.5 mmol L(-1), respectively. These exometabolites proved to be the most efficient agents in mobile aluminium fraction extraction with aluminium extraction efficiency reaching almost 2.2%. However, fungal cultivation is time demanding process. Therefore, the second objective was to simplify acquisition of equally efficient extracting agent by chemically mimicking composition of main organic acid components of fungal exudates. This was successfully achieved with organic acids mixture prepared according to medium composition collected on the 12th day of Aspergillus niger cultivation. This mixture extracted similar amounts of aluminium from alumina compared to culture medium. The aluminium extraction efficiency from gibbsite by organic acids mixture was lesser than 0.09% which is most likely because of more rigid mineral structure of gibbsite compared to alumina. The prepared organic acid mixture was then successfully applied for aluminium extraction from soil samples and compared to standard single step extraction techniques. This showed there is at least 2.9 times higher content of mobile aluminium fraction in soils than it was previously considered, if contribution of microbial metabolites is considered in extraction procedures. Thus, our contribution highlights the significance of fungal metabolites in aluminium extraction from environmental samples, but it also simplifies the

  5. Presence of epoxide hydrolase activity in Aspergillus niger: Hydrolysis of 6', 7'-epoxybergamottin to 6', 7'-dihydroxybergamottin

    USDA-ARS?s Scientific Manuscript database

    The 6', 7'-epoxybergamottin (EB) is one of major furanocoumarins in grapefruit. Previously, we have shown that Aspergillus niger has a capability of metabolizing EB into 6', 7'-dihydroxybergamottin (DHB), which is further metabolized to bergaptol and bergaptol-5-sulfate in vivo. In this study, we at...

  6. Comparison of different inoculating methods to evaluate the pathogenicity and virulence of Aspergillus niger on two maize hybrids

    USDA-ARS?s Scientific Manuscript database

    A two-year field study was conducted to determine the effects of inoculation techniques on the aggressiveness of Aspergillus niger kernel infection in A. flavus resistant and susceptible maize hybrids. Ears were inoculated with the silk-channel, side-needle, and spray techniques 7 days after midsilk...

  7. Decolorization and detoxification of Synozol red HF-6BN azo dye, by Aspergillus niger and Nigrospora sp

    PubMed Central

    2013-01-01

    In the present investigation the fungi, Aspergillus niger and Nigrospora sp. were employed for decolorization of Synozol red HF-6BN. Decolorization study showed that Aspergillus niger and Nigrospora sp. were able to decolorize 88% and 96% Synozol red 6BN, respectively, in 24 days. It was also studied that 86% and 90% Synozol red containing of dye effluent was decolorized by Aspergillus niger and Nigrospora sp. after 28 days of incubation at room temperature. A fungal-based protein with relative molecular mass of 70 kDa was partially purified and examined for enzymatic characteristics. The enzyme exhibited highest activity at temperature ranging from 40-50°C and at pH=6.0. The enzyme activity was enhanced in the presence of metal cations. High performance liquid chromatography analysis confirmed that these fungal strains are capable to degrade Synozol red dye into metabolites. No zones of inhibition on agar plates and growth of Vigna radiata in the presence of dye extracted sample, indicated that the fungal degraded dye metabolites are nontoxic to beneficial micro-flora and plant growth. Aspergillus niger and Nigrospora sp. have promising potential in color removal from textile wastewater-containing azo dyes. PMID:23369298

  8. Radiosensitization of Aspergillus niger and Penicillium chrysogenum using basil essential oil and ionizing radiation for food decontamination.

    USDA-ARS?s Scientific Manuscript database

    The Minimum Inhibitory Concentration (MIC) of basil oil, was determined for two pathogenic fungi of rice, Aspergillus niger and Penicillium chrysogenum. The antifungal activity of the basil oil in combination with ionising radiation was then investigated to determine if basil oil caused radiosensit...

  9. Decolorization and detoxification of Synozol red HF-6BN azo dye, by Aspergillus niger and Nigrospora sp.

    PubMed

    Ilyas, Sidra; Rehman, Abdul

    2013-01-01

    In the present investigation the fungi, Aspergillus niger and Nigrospora sp. were employed for decolorization of Synozol red HF-6BN. Decolorization study showed that Aspergillus niger and Nigrospora sp. were able to decolorize 88% and 96% Synozol red 6BN, respectively, in 24 days. It was also studied that 86% and 90% Synozol red containing of dye effluent was decolorized by Aspergillus niger and Nigrospora sp. after 28 days of incubation at room temperature. A fungal-based protein with relative molecular mass of 70 kDa was partially purified and examined for enzymatic characteristics. The enzyme exhibited highest activity at temperature ranging from 40-50°C and at pH=6.0. The enzyme activity was enhanced in the presence of metal cations. High performance liquid chromatography analysis confirmed that these fungal strains are capable to degrade Synozol red dye into metabolites. No zones of inhibition on agar plates and growth of Vigna radiata in the presence of dye extracted sample, indicated that the fungal degraded dye metabolites are nontoxic to beneficial micro-flora and plant growth. Aspergillus niger and Nigrospora sp. have promising potential in color removal from textile wastewater-containing azo dyes.

  10. Cytosolic streaming in vegetative mycelium and aerial structures of Aspergillus niger

    PubMed Central

    Bleichrodt, R.; Vinck, A.; Krijgsheld, P.; van Leeuwen, M.R.; Dijksterhuis, J.; Wösten, H.A.B.

    2013-01-01

    Aspergillus niger forms aerial hyphae and conidiophores after a period of vegetative growth. The hyphae within the mycelium of A. niger are divided by septa. The central pore in these septa allows for cytoplasmic streaming. Here, we studied inter- and intra-compartmental streaming of the reporter protein GFP in A. niger. Expression of the gene encoding nuclear targeted GFP from the gpdA or glaA promoter resulted in strong fluorescence of nuclei within the vegetative hyphae and weak fluorescence in nuclei within the aerial structures. These data and nuclear run on experiments showed that gpdA and glaA are higher expressed in the vegetative mycelium when compared to aerial hyphae, conidiophores and conidia. Notably, gpdA or glaA driven expression of the gene encoding cytosolic GFP resulted in strongly fluorescent vegetative hyphae and aerial structures. Apparently, GFP streams from vegetative hyphae into aerial structures. This was confirmed by monitoring fluorescence of photo-activatable GFP (PA-GFP). In contrast, PA-GFP did not stream from aerial structures to vegetative hyphae. Streaming of PA-GFP within vegetative hyphae or within aerial structures of A. niger occurred at a rate of 10–15 μm s-1. Taken together, these results not only show that GFP streams from the vegetative mycelium to aerial structures but it also indicates that its encoding RNA is not streaming. Absence of RNA streaming would explain why distinct RNA profiles were found in aerial structures and the vegetative mycelium by nuclear run on analysis and micro-array analysis. PMID:23450745

  11. Cytosolic streaming in vegetative mycelium and aerial structures of Aspergillus niger.

    PubMed

    Bleichrodt, R; Vinck, A; Krijgsheld, P; van Leeuwen, M R; Dijksterhuis, J; Wösten, H A B

    2013-03-15

    Aspergillus niger forms aerial hyphae and conidiophores after a period of vegetative growth. The hyphae within the mycelium of A. niger are divided by septa. The central pore in these septa allows for cytoplasmic streaming. Here, we studied inter- and intra-compartmental streaming of the reporter protein GFP in A. niger. Expression of the gene encoding nuclear targeted GFP from the gpdA or glaA promoter resulted in strong fluorescence of nuclei within the vegetative hyphae and weak fluorescence in nuclei within the aerial structures. These data and nuclear run on experiments showed that gpdA and glaA are higher expressed in the vegetative mycelium when compared to aerial hyphae, conidiophores and conidia. Notably, gpdA or glaA driven expression of the gene encoding cytosolic GFP resulted in strongly fluorescent vegetative hyphae and aerial structures. Apparently, GFP streams from vegetative hyphae into aerial structures. This was confirmed by monitoring fluorescence of photo-activatable GFP (PA-GFP). In contrast, PA-GFP did not stream from aerial structures to vegetative hyphae. Streaming of PA-GFP within vegetative hyphae or within aerial structures of A. niger occurred at a rate of 10-15 μm s(-1). Taken together, these results not only show that GFP streams from the vegetative mycelium to aerial structures but it also indicates that its encoding RNA is not streaming. Absence of RNA streaming would explain why distinct RNA profiles were found in aerial structures and the vegetative mycelium by nuclear run on analysis and micro-array analysis.

  12. Morphology engineering - Osmolality and its effect on Aspergillus niger morphology and productivity

    PubMed Central

    2011-01-01

    Background The filamentous fungus Aspergillus niger is a widely used strain in a broad range of industrial processes from food to pharmaceutical industry. One of the most intriguing and often uncontrollable characteristics of this filamentous organism is its complex morphology, ranging from dense spherical pellets to viscous mycelia depending on culture conditions. Optimal productivity correlates strongly with a specific morphological form, thus making high demands on process control. Results In about 50 2L stirred tank cultivations the influence of osmolality on A. niger morphology and productivity was investigated. The specific productivity of fructofuranosidase producing strain A. niger SKAn 1015 could be increased notably from 0.5 to 9 U mg-1 h-1 around eighteen fold, by increasing the culture broth osmolality by addition of sodium chloride. The specific productivity of glucoamylase producing strain A. niger AB1.13, could be elevated using the same procedure. An optimal producing osmolality was shown to exist well over the standard osmolality at about 3.2 osmol kg-1 depending on the strain. Fungal morphology of all cultivations was examined by microscope and characterized by digital image analysis. Particle shape parameters were combined to a dimensionless Morphology number, which enabled a comprehensive characterization of fungal morphology correlating closely with productivity. A novel method for determination of germination time in submerged cultivations by laser diffraction, introduced in this study, revealed a decelerated germination process with increasing osmolality. Conclusions Through the introduction of the versatile Morphology number, this study provides the means for a desirable characterization of fungal morphology and demonstrates its relation to productivity. Furthermore, osmolality as a fairly new parameter in process engineering is introduced and found to affect fungal morphology and productivity. Osmolality might provide an auspicious and

  13. Production of plant cell wall degrading enzymes by monoculture and co-culture of Aspergillus niger and Aspergillus terreus under SSF of banana peels.

    PubMed

    Rehman, Shazia; Aslam, Hina; Ahmad, Aqeel; Khan, Shakeel Ahmed; Sohail, Muhammad

    2014-01-01

    Filamentous fungi are considered to be the most important group of microorganisms for the production of plant cell wall degrading enzymes (CWDE), in solid state fermentations. In this study, two fungal strains Aspergillus niger MS23 and Aspergillus terreus MS105 were screened for plant CWDE such as amylase, pectinase, xylanase and cellulases (β-glucosidase, endoglucanase and filterpaperase) using a novel substrate, Banana Peels (BP) for SSF process. This is the first study, to the best of our knowledge, to use BP as SSF substrate for plant CWDE production by co-culture of fungal strains. The titers of pectinase were significantly improved in co-culture compared to mono-culture. Furthermore, the enzyme preparations obtained from monoculture and co-culture were used to study the hydrolysis of BP along with some crude and purified substrates. It was observed that the enzymatic hydrolysis of different crude and purified substrates accomplished after 26 h of incubation, where pectin was maximally hydrolyzed by the enzyme preparations of mono and co-culture. Along with purified substrates, crude materials were also proved to be efficiently degraded by the cocktail of the CWDE. These results demonstrated that banana peels may be a potential substrate in solid-state fermentation for the production of plant cell wall degrading enzymes to be used for improving various biotechnological and industrial processes.

  14. Production of plant cell wall degrading enzymes by monoculture and co-culture of Aspergillus niger and Aspergillus terreus under SSF of banana peels

    PubMed Central

    Rehman, Shazia; Aslam, Hina; Ahmad, Aqeel; Khan, Shakeel Ahmed; Sohail, Muhammad

    2014-01-01

    Filamentous fungi are considered to be the most important group of microorganisms for the production of plant cell wall degrading enzymes (CWDE), in solid state fermentations. In this study, two fungal strains Aspergillus niger MS23 and Aspergillus terreus MS105 were screened for plant CWDE such as amylase, pectinase, xylanase and cellulases (β-glucosidase, endoglucanase and filterpaperase) using a novel substrate, Banana Peels (BP) for SSF process. This is the first study, to the best of our knowledge, to use BP as SSF substrate for plant CWDE production by co-culture of fungal strains. The titers of pectinase were significantly improved in co-culture compared to mono-culture. Furthermore, the enzyme preparations obtained from monoculture and co-culture were used to study the hydrolysis of BP along with some crude and purified substrates. It was observed that the enzymatic hydrolysis of different crude and purified substrates accomplished after 26 h of incubation, where pectin was maximally hydrolyzed by the enzyme preparations of mono and co-culture. Along with purified substrates, crude materials were also proved to be efficiently degraded by the cocktail of the CWDE. These results demonstrated that banana peels may be a potential substrate in solid-state fermentation for the production of plant cell wall degrading enzymes to be used for improving various biotechnological and industrial processes. PMID:25763058

  15. Characterization of Aspergillus section Nigri group-maize interactions by a green fluorescent protein-tagging approach

    USDA-ARS?s Scientific Manuscript database

    Ochratoxin A, produced by some members of the Aspergillus section Nigri group, is a potent nephrotoxic and a potential carcinogenic mycotoxin. Two members of this group A. niger and A. carbonarius are notorious ochratoxin producers in plant substrates, including corn, coffee, grapes, onions, and pea...

  16. Asperpyrone-Type Bis-Naphtho-γ-Pyrones with COX-2-Inhibitory Activities from Marine-Derived Fungus Aspergillus niger.

    PubMed

    Fang, Wei; Lin, Xiuping; Wang, Jianjiao; Liu, Yonghong; Tao, Huaming; Zhou, Xuefeng

    2016-07-20

    Bis-naphtho-γ-pyrones (BNPs) are an important group of aromatic polyketides derived from fungi, and asperpyrone-type BNPs are produced primarily by Aspergillus species. The fungal strain Aspergillus niger SCSIO Jcsw6F30, isolated from a marine alga, Sargassum sp., and identified according to its morphological traits and the internal transcribed spacer (ITS) region sequence, was studied for BNPs secondary metabolisms. After HPLC/MS analysis of crude extract of the fermentation broth, 11 asperpyrone-type BNPs were obtained directly and quickly by chromatographic separation in the extract, and those isolated asperpyrone-type BNPs were structurally identified by NMR and MS analyses. All of the BNPs showed weak cytotoxicities against 10 human tumor cells (IC50 > 30 μM). However, three of them, aurasperone F (3), aurasperone C (6) and asperpyrone A (8), exhibited obvious COX-2-inhibitory activities, with the IC50 values being 11.1, 4.2, and 6.4 μM, respectively. This is the first time the COX-2-inhibitory activities of BNPs have been reported.

  17. Effects of Aspergillus niger-fermented Terminalia catappa seed meal-based diet on selected enzymes of some tissues of broiler chicks.

    PubMed

    Muhammad, N O; Oloyede, O B

    2010-05-01

    Effects of Aspergillus niger-fermented Terminalia catappa seed meal-based diet on the activities of alkaline phosphatase (ALP), alanine transaminase (ALT), aspartate transaminase (AST) and gamma-glutamate transferase (gamma-GT) in the crop, small intestine, gizzard, heart, liver and serum of broiler chicks were investigated. Milled T. catappa seed was inoculated with spores of A.niger (2.21 x 10(4) spores per ml) for 3 weeks. Forty-five day-old broiler chicks weighing between 27.62 and 36.21 g, were divided into three groups. The first group was fed soybean-based (control) diet; the second on raw T. catappa seed meal-based diet; and the third on A. niger-fermented T. catappa seed meal-based diet for 7 weeks. The results revealed a significantly increased (p<0.05) activity of ALP in the tissues. Contrarily, there were significant reductions (p<0.05) in the activities of ALP, ALT, AST and gamma-GT in the liver and heart of the broilers fed the raw T. catappa seed meal-based diet while there were significant increase (p<0.05) in the activities of these enzymes in the serum of the broilers in this group. The data obtained showed that A. niger-fermented T. catappa seed meal reduced the toxic effects of the raw seed meal on the tissues of broiler chicks.

  18. Oxalic acid production by citric acid-producing Aspergillus niger overexpressing the oxaloacetate hydrolase gene oahA.

    PubMed

    Kobayashi, Keiichi; Hattori, Takasumi; Honda, Yuki; Kirimura, Kohtaro

    2014-05-01

    The filamentous fungus Aspergillus niger is used worldwide in the industrial production of citric acid. However, under specific cultivation conditions, citric acid-producing strains of A. niger accumulate oxalic acid as a by-product. Oxalic acid is used as a chelator, detergent, or tanning agent. Here, we sought to develop oxalic acid hyperproducers using A. niger as a host. To generate oxalic acid hyperproducers by metabolic engineering, transformants overexpressing the oahA gene, encoding oxaloacetate hydrolase (OAH; EC 3.7.1.1), were constructed in citric acid-producing A. niger WU-2223L as a host. The oxalic acid production capacity of this strain was examined by cultivation of EOAH-1 under conditions appropriate for oxalic acid production with 30 g/l glucose as a carbon source. Under all the cultivation conditions tested, the amount of oxalic acid produced by EOAH-1, a representative oahA-overexpressing transformant, exceeded that produced by A. niger WU-2223L. A. niger WU-2223L and EOAH-1 produced 15.6 and 28.9 g/l oxalic acid, respectively, during the 12-day cultivation period. The yield of oxalic acid for EOAH-1 was 64.2 % of the maximum theoretical yield. Our method for oxalic acid production gave the highest yield of any study reported to date. Therefore, we succeeded in generating oxalic acid hyperproducers by overexpressing a single gene, i.e., oahA, in citric acid-producing A. niger as a host.

  19. Refinement of the crystal structures of biomimetic weddellites produced by microscopic fungus Aspergillus niger

    NASA Astrophysics Data System (ADS)

    Rusakov, A. V.; Frank-Kamenetskaya, O. V.; Gurzhiy, V. V.; Zelenskaya, M. S.; Izatulina, A. R.; Sazanova, K. V.

    2014-05-01

    The single-crystal structures of four biomimetic weddellites CaC2O4 · (2 + x)H2O with different contents of zeolitic water ( x = 0.10-0.24 formula units) produced by the microscopic fungus Aspergillus niger were refined from X-ray diffraction data ( R = 0.029-0.038). The effect of zeolitic water content on the structural stability of weddellite was analyzed. The parameter a was shown to increase with increasing x due to the increase in the distance between water molecules along this direction. The water content and structural parameters of the synthesized weddellites are similar to those of weddellites from biofilms and kidney stones.

  20. Aspergillus niger infection in an immunosuppressed patient confined solely to the brain.

    PubMed

    Simmonds, Lucy; Mitchell, Sian; White, Barrie; Crusz, Shanika A; Denning, David

    2017-03-22

    A 68-year-old woman with a background of hypertension, stroke and rheumatoid arthritis presented to her local hospital after a 4-week history of gradual deterioration and increasing confusion with new onset right-sided weakness. Her initial CT scan revealed a rim enhancing mass lesion with surrounding oedema in the left parietal lobe for which she underwent CT stealth-guided biopsy. Microbiology culture of the 2 biopsy samples yielded Aspergillus niger and she was started on the antifungal agent voriconazole. MRI 2 weeks after the procedure also demonstrated radiological findings consistent with intracranial aspergillosis. She later developed leucopenia with neutrophils of 1.5×10(9)/L and her methotrexate and voriconazole were stopped. Voriconazole was changed to oral posaconazole. She did not undergo surgical resection and has continued to improve clinically on posaconazole, with recovery in her white cell count.

  1. Catalytic properties of mycelium-bound lipases from Aspergillus niger MYA 135.

    PubMed

    Romero, Cintia M; Baigori, Mario D; Pera, Licia M

    2007-09-01

    A constitutive level of a mycelium-bound lipolytic activity from Aspergillus niger MYA 135 was strongly increased by 97% in medium supplemented with 2% olive oil. The constitutive lipase showed an optimal activity in the pH range of 3.0-6.5, while the mycelium-bound lipase activity produced in the presence of olive oil had two pH optima at pH 4 and 7. Interestingly, both lipolytic sources were cold-active showing high catalytic activities in the temperature range of 4-8 degrees C. These mycelium-bound lipase activities were also very stable in reaction mixtures containing methanol and ethanol. In fact, the constitutive lipase maintained almost 100% of its activity after exposure by 1 h at 37 degrees C in ethanol. A simple methodology to evaluate suitable transesterification activities in organic solvents was also reported.

  2. Xylanase production in solid state fermentation by Aspergillus niger mutant using statistical experimental designs.

    PubMed

    Park, Y S; Kang, S W; Lee, J S; Hong, S I; Kim, S W

    2002-05-01

    The initial moisture content, cultivation time, inoculum size and concentration of basal medium were optimized in solid state fermentation (SSF) for the production of xylanase by an Aspergillus niger mutant using statistical experimental designs. The cultivation time and concentration of basal medium were the most important factors affecting xylanase activity. An inoculum size of 5 x 10(5) spores/g, initial moisture content of 65%, cultivation time of 5 days and 10 times concentration of basal medium containing 50 times concentration of corn steep liquor were optimum for xylanase production in SSF. Under the optimized conditions, the activity and productivity of xylanase obtained after 5 days of fermentation were 5,071 IU/g of rice straw and 14,790 IU l(-1) h(-1), respectively. The xylanase activity predicted by a polynomial model was 5,484 IU/g of rice straw.

  3. Effect of Microgravity on Fungistatic Activity of an α-Aminophosphonate Chitosan Derivative against Aspergillus niger.

    PubMed

    Devarayan, Kesavan; Sathishkumar, Yesupatham; Lee, Yang Soo; Kim, Byoung-Suhk

    2015-01-01

    Biocontamination within the international space station is ever increasing mainly due to human activity. Control of microorganisms such as fungi and bacteria are important to maintain the well-being of the astronauts during long-term stay in space since the immune functions of astronauts are compromised under microgravity. For the first time control of the growth of an opportunistic pathogen, Aspergillus niger, under microgravity is studied in the presence of α-aminophosphonate chitosan. A low-shear modelled microgravity was used to mimic the conditions similar to space. The results indicated that the α-aminophosphonate chitosan inhibited the fungal growth significantly under microgravity. In addition, the inhibition mechanism of the modified chitosan was studied by UV-Visible spectroscopy and cyclic voltammetry. This work highlighted the role of a bio-based chitosan derivative to act as a disinfectant in space stations to remove fungal contaminants.

  4. Isolation and properties of Aspergillus niger IBT-90 xylanase for bakery.

    PubMed

    Romanowska, Irena; Polak, Jacek; Bielecki, Stanisław

    2006-02-01

    Xylanase of low molecular weight (K II) was isolated from the fungus Aspergillus niger IBT-90 cultivated in medium with wheat bran. K II was purified by precipitation with ammonium sulphate (20-80% saturation) and gel filtration on Biogel P-10. This enzyme is most active in hydrolysis of birchwood xylan at 50 degrees C and pH 5.5. Xylanase K II has an ability to degrade 1,4-beta-bonds and to debranch substrates. It degrades not only xylans but also cellulose, an important factor for its application in bakery. Ag+, Fe3+ and NBS are strong inhibitors of the enzyme. DTT and Na+ activate xylanase K II by 24 and 13%, respectively. Enzyme K II used as additive to flour improves dough properties, increases the volume of wheat-rye and whole meal bread, and increases the porosity of crumb and the moisture of the final product, consequently extending the shelf life of bread.

  5. Effect of trace elements on citric acid fermentation by Aspergillus niger.

    PubMed

    Sánchez-Marroquín, A; Carreño, R; Ledezma, M

    1970-12-01

    Citric acid yields of 98.7% (sugar consumption basis) were reached in shaker flasks with mutant UV-ET-71-15 of Aspergillus niger in a resin-treated sucrose medium of the following composition (g/100 ml): sucrose, 14.0; NH(4)NO(3), 0.20; KH(2)PO(4), 0.10; MgSO(4).7H(2)O, 0.025; and (mg/liter): FeSO(4), 0.15 to 0.75; ZnSO(4), 0.10; and CuSO(4), 0.01. Yields of 75% were obtained in medium with resin-treated clarified syrup and 68% with ferrocyanide-treated blackstrap molasses. Optimal conditions included selection of appropriate pellets as inoculum at 3%, pH of 4.5, temperature at 30 C, agitation at 250 rev/min, and fermentation time of 8 days. The mutant tolerated high concentrations of trace elements.

  6. Screening, mutagenesis and protoplast fusion of Aspergillus niger for the enhancement of extracellular glucose oxidase production.

    PubMed

    Khattab, A A; Bazaraa, W A

    2005-07-01

    Various strains of Aspergillus niger were screened for extracellular glucose oxidase (GOD) activity. The most effective producer, strain FS-3 (15.9 U mL(-1)), was mutagenized using UV-irradiation or ethyl methane sulfonate. Of the 400 mutants obtained, 32 were found to be resistant to 2-deoxy D: -glucose, and 17 of these exhibited higher GOD activities (from 114.5 to 332.1%) than the original FS-3 strain. Following determination of antifungal resistance of the highest producing mutants, four mutants were selected and used in protoplast fusions in three different intraspecific crosses. All fusants showed higher activities (from 285.5 to 394.2%) than the original strain. Moreover, of the 30 fusants isolated, 19 showed higher GOD activity than their corresponding higher-producing parent strain.

  7. Effect of Microgravity on Fungistatic Activity of an α-Aminophosphonate Chitosan Derivative against Aspergillus niger

    PubMed Central

    Lee, Yang Soo; Kim, Byoung-Suhk

    2015-01-01

    Biocontamination within the international space station is ever increasing mainly due to human activity. Control of microorganisms such as fungi and bacteria are important to maintain the well-being of the astronauts during long-term stay in space since the immune functions of astronauts are compromised under microgravity. For the first time control of the growth of an opportunistic pathogen, Aspergillus niger, under microgravity is studied in the presence of α-aminophosphonate chitosan. A low-shear modelled microgravity was used to mimic the conditions similar to space. The results indicated that the α-aminophosphonate chitosan inhibited the fungal growth significantly under microgravity. In addition, the inhibition mechanism of the modified chitosan was studied by UV-Visible spectroscopy and cyclic voltammetry. This work highlighted the role of a bio-based chitosan derivative to act as a disinfectant in space stations to remove fungal contaminants. PMID:26468641

  8. Development of an Unmarked Gene Deletion System for the Filamentous Fungi Aspergillus niger and Talaromyces versatilis

    PubMed Central

    Delmas, Stéphane; Llanos, Agustina; Parrou, Jean-Luc; Kokolski, Matthew; Pullan, Steven T.; Shunburne, Lee

    2014-01-01

    In this article, we present a method to delete genes in filamentous fungi that allows recycling of the selection marker and is efficient in a nonhomologous end-joining (NHEJ)-proficient strain. We exemplify the approach by deletion of the gene encoding the transcriptional regulator XlnR in the fungus Aspergillus niger. To show the efficiency and advantages of the method, we deleted 8 other genes and constructed a double mutant in this species. Moreover, we showed that the same principle also functions in a different genus of filamentous fungus (Talaromyces versatilis, basionym Penicillium funiculosum). This technique will increase the versatility of the toolboxes for genome manipulation of model and industrially relevant fungi. PMID:24682295

  9. Microbial carbonylation and hydroxylation of 20(R)-panaxadiol by Aspergillus niger.

    PubMed

    Yan, Bin; Chen, Zhihua; Zhai, Xuguang; Yin, Guibo; Ai, Yafei; Chen, Guangtong

    2017-08-03

    20(R)-panaxadiol (PD) was metabolised by the fungus Aspergillus niger AS 3.3926 to its C-3 carbonylated metabolite and five other hydroxylated metabolites (1-6). Their structures were elucidated as 3-oxo-20(R)-panaxadiol (1), 3-oxo-7β-hydroxyl- 20(R)-panaxadiol (2), 3-oxo-7β,23α-dihydroxyl-20(R)-panaxadiol (3), 3,12-dioxo- 7β,23β-dihydroxyl-20(R)-panaxadiol (4), 3-oxo-1α,7β-dihydroxyl-20(R)-panaxadiol (5) and 3-oxo-7β,15β-dihydroxyl-20(R)-panaxadiol (6) by spectroscopic analysis. Among them, compounds 2-6 were new compounds. Pharmacological studies revealed that compound 6 exhibited significant anti-hepatic fibrosis activity.

  10. Structure-activity relationship of citrus polymethoxylated flavones and their inhibitory effects on Aspergillus niger.

    PubMed

    Liu, Li; Xu, Xiaoyun; Cheng, Dan; Yao, Xiaolin; Pan, Siyi

    2012-05-02

    Citrus peels are rich in polymethoxylated flavones (PMFs) and are potential sources of natural preservatives. Six PMFs extracts, isolated and purified from the peels of three mandarins (Citrus reticulata) and three sweet oranges (Citrus sinensis), were identified and quantitated. Their inhibitory effects on Aspergillus niger were evaluated using a microbroth dilution assay. The Red tangerine variety exhibited the greatest antifungal activity (MIC = 0.2 mg/mL), while Jincheng showed the lowest activity (MIC = 1.8 mg/mL). An analysis of principal components was applied to the results in order to elucidate the structure-activity relationships of the citrus PMFs. The structure-activity relationship analysis revealed that, for good inhibitory effect, the 5-OH, 3-OCH₃, and 8-OCH₃ functionalities were essential, while the presence of 3-OH and 3'-OCH₃ greatly reduced inhibition. The findings of this study provide important information for the exploitation and utilization of citrus PMFs as natural biopreservatives.

  11. New cytotoxic furan from the marine sediment-derived fungi Aspergillus niger.

    PubMed

    Uchoa, Paula Karina S; Pimenta, Antonia T A; Braz-Filho, Raimundo; de Oliveira, Maria da Conceição F; Saraiva, Natália N; Rodrigues, Barbara S F; Pfenning, Ludwig H; Abreu, Lucas M; Wilke, Diego V; Florêncio, Katharine G D; Lima, Mary Anne S

    2017-01-30

    A fungal strain of Aspergillus niger was recovered from sediments collected in the Northeast coast of Brazil (Pecém's offshore port terminal). Cultivation in different growth media yielded a new ester furan derivative, 1, along with malformin A1, malformin C, cyclo (trans-4-hydroxy-L-Pro-L-Leu), cyclo (trans-4-hydroxy-L-Pro-L-Phe), cyclo (L-Pro-L-Leu), cyclo (L-Pro-L-Phe), pseurotin D, pseurotin A, chlovalicin, cyclo (L-Pro-L-Tyr) and cyclo (L-Pro-L-Val). Compound 1 was cytotoxic against HCT-116 cell line, showing IC50 = 2.9 μg/mL (CI 95% from 1.8 to 4.7 μg/mL).

  12. Linking aggregation of Aspergillus niger spores to surface electrostatics: a theoretical approach.

    PubMed

    Wargenau, Andreas; Kampen, Ingo; Kwade, Arno

    2013-12-01

    The effect of medium pH on conidial aggregation during submerged cultivation of Aspergillus niger is considered to originate from the electrostatic surface properties of the spores. As previously shown, these properties are greatly influenced by the presence of a melanin-containing surface coating covering the outer spore wall layer. The present study was designed to elucidate the impact of such a coating on the spores' surface potential and their electrostatic repulsion under acidic conditions. A Poisson-Boltzmann model was proposed and potential profiles across the surface coating of noninteracting and interacting spores were calculated. The surface potentials thus obtained were in line with the observed pH dependence of the zeta potential. This dependence was consistent with the outcome of aggregation experiments. Apparently contradictory results regarding the zeta potential and the aggregation behavior of the spores were obtained when the ionic strength was varied. However, both of these observations could be explained by the model.

  13. Efficacy of lipase from Aspergillus niger as an additive in detergent formulations: a statistical approach.

    PubMed

    Saisubramanian, N; Edwinoliver, N G; Nandakumar, N; Kamini, N R; Puvanakrishnan, R

    2006-08-01

    The efficacy of lipase from Aspergillus niger MTCC 2594 as an additive in laundry detergent formulations was assessed using response surface methodology (RSM). A five-level four-factorial central composite design was chosen to explain the washing protocol with four critical factors, viz. detergent concentration, lipase concentration, buffer pH and washing temperature. The model suggested that all the factors chosen had a significant impact on oil removal and the optimal conditions for the removal of olive oil from cotton fabric were 1.0% detergent, 75 U of lipase, buffer pH of 9.5 and washing temperature of 25 degrees C. Under optimal conditions, the removal of olive oil from cotton fabric was 33 and 17.1% at 25 and 49 degrees C, respectively, in the presence of lipase over treatment with detergent alone. Hence, lipase from A. niger could be effectively used as an additive in detergent formulation for the removal of triglyceride soil both in cold and warm wash conditions.

  14. Optimization of Fermentation Medium for Extracellular Lipase Production from Aspergillus niger Using Response Surface Methodology

    PubMed Central

    Jia, Jia; Yang, Xiaofeng; Wu, Zhiliang; Zhang, Qian; Lin, Zhi; Guo, Hongtao; Lin, Carol Sze Ki; Wang, Jianying; Wang, Yunshan

    2015-01-01

    Lipase produced by Aspergillus niger is widely used in various industries. In this study, extracellular lipase production from an industrial producing strain of A. niger was improved by medium optimization. The secondary carbon source, nitrogen source, and lipid were found to be the three most influential factors for lipase production by single-factor experiments. According to the statistical approach, the optimum values of three most influential parameters were determined: 10.5 g/L corn starch, 35.4 g/L soybean meal, and 10.9 g/L soybean oil. Using this optimum medium, the best lipase activity was obtained at 2,171 U/mL, which was 16.4% higher than using the initial medium. All these results confirmed the validity of the model. Furthermore, results of the Box-Behnken Design and quadratic models analysis indicated that the carbon to nitrogen (C/N) ratio significantly influenced the enzyme production, which also suggested that more attention should be paid to the C/N ratio for the optimization of enzyme production. PMID:26366414

  15. Optimization of Fermentation Medium for Extracellular Lipase Production from Aspergillus niger Using Response Surface Methodology.

    PubMed

    Jia, Jia; Yang, Xiaofeng; Wu, Zhiliang; Zhang, Qian; Lin, Zhi; Guo, Hongtao; Lin, Carol Sze Ki; Wang, Jianying; Wang, Yunshan

    2015-01-01

    Lipase produced by Aspergillus niger is widely used in various industries. In this study, extracellular lipase production from an industrial producing strain of A. niger was improved by medium optimization. The secondary carbon source, nitrogen source, and lipid were found to be the three most influential factors for lipase production by single-factor experiments. According to the statistical approach, the optimum values of three most influential parameters were determined: 10.5 g/L corn starch, 35.4 g/L soybean meal, and 10.9 g/L soybean oil. Using this optimum medium, the best lipase activity was obtained at 2,171 U/mL, which was 16.4% higher than using the initial medium. All these results confirmed the validity of the model. Furthermore, results of the Box-Behnken Design and quadratic models analysis indicated that the carbon to nitrogen (C/N) ratio significantly influenced the enzyme production, which also suggested that more attention should be paid to the C/N ratio for the optimization of enzyme production.

  16. Spatial differentiation of gene expression in Aspergillus niger colony grown for sugar beet pulp utilization.

    PubMed

    Benoit, Isabelle; Zhou, Miaomiao; Vivas Duarte, Alexandra; Downes, Damien J; Todd, Richard B; Kloezen, Wendy; Post, Harm; Heck, Albert J R; Maarten Altelaar, A F; de Vries, Ronald P

    2015-08-28

    Degradation of plant biomass to fermentable sugars is of critical importance for the use of plant materials for biofuels. Filamentous fungi are ubiquitous organisms and major plant biomass degraders. Single colonies of some fungal species can colonize massive areas as large as five soccer stadia. During growth, the mycelium encounters heterogeneous carbon sources. Here we assessed whether substrate heterogeneity is a major determinant of spatial gene expression in colonies of Aspergillus niger. We analyzed whole-genome gene expression in five concentric zones of 5-day-old colonies utilizing sugar beet pulp as a complex carbon source. Growth, protein production and secretion occurred throughout the colony. Genes involved in carbon catabolism were expressed uniformly from the centre to the periphery whereas genes encoding plant biomass degrading enzymes and nitrate utilization were expressed differentially across the colony. A combined adaptive response of carbon-catabolism and enzyme production to locally available monosaccharides was observed. Finally, our results demonstrate that A. niger employs different enzymatic tools to adapt its metabolism as it colonizes complex environments.

  17. Morphology of filamentous fungi: linking cellular biology to process engineering using Aspergillus niger.

    PubMed

    Krull, Rainer; Cordes, Christiana; Horn, Harald; Kampen, Ingo; Kwade, Arno; Neu, Thomas R; Nörtemann, Bernd

    2010-01-01

    In various biotechnological processes, filamentous fungi, e.g. Aspergillus niger, are widely applied for the production of high value-added products due to their secretion efficiency. There is, however, a tangled relationship between the morphology of these microorganisms, the transport phenomena and the related productivity. The morphological characteristics vary between freely dispersed mycelia and distinct pellets of aggregated biomass. Hence, advantages and disadvantages for mycel or pellet cultivation have to be balanced out carefully. Due to this inadequate understanding of morphogenesis of filamentous microorganisms, fungal morphology, along with reproducibility of inocula of the same quality, is often a bottleneck of productivity in industrial production. To obtain an optimisation of the production process it is of great importance to gain a better understanding of the molecular and cell biology of these microorganisms as well as the approaches in biochemical engineering and particle technique, in particular to characterise the interactions between the growth conditions, cell morphology, spore-hyphae-interactions and product formation. Advances in particle and image analysis techniques as well as micromechanical devices and their applications to fungal cultivations have made available quantitative morphological data on filamentous cells. This chapter provides the ambitious aspects of this line of action, focussing on the control and characterisation of the morphology, the transport gradients and the approaches to understand the metabolism of filamentous fungi. Based on these data, bottlenecks in the morphogenesis of A. niger within the complex production pathways from gene to product should be identified and this may improve the production yield.

  18. Bacillus subtilis attachment to Aspergillus niger hyphae results in mutually altered metabolism.

    PubMed

    Benoit, Isabelle; van den Esker, Marielle H; Patyshakuliyeva, Aleksandrina; Mattern, Derek J; Blei, Felix; Zhou, Miaomiao; Dijksterhuis, Jan; Brakhage, Axel A; Kuipers, Oscar P; de Vries, Ronald P; Kovács, Ákos T

    2015-06-01

    Interaction between microbes affects the growth, metabolism and differentiation of members of the microbial community. While direct and indirect competition, like antagonism and nutrient consumption have a negative effect on the interacting members of the population, microbes have also evolved in nature not only to fight, but in some cases to adapt to or support each other, while increasing the fitness of the community. The presence of bacteria and fungi in soil results in various interactions including mutualism. Bacilli attach to the plant root and form complex communities in the rhizosphere. Bacillus subtilis, when grown in the presence of Aspergillus niger, interacts similarly with the fungus, by attaching and growing on the hyphae. Based on data obtained in a dual transcriptome experiment, we suggest that both fungi and bacteria alter their metabolism during this interaction. Interestingly, the transcription of genes related to the antifungal and putative antibacterial defence mechanism of B. subtilis and A. niger, respectively, are decreased upon attachment of bacteria to the mycelia. Analysis of the culture supernatant suggests that surfactin production by B. subtilis was reduced when the bacterium was co-cultivated with the fungus. Our experiments provide new insights into the interaction between a bacterium and a fungus.

  19. Cloning, sequencing and heterologous expression of the monoamine oxidase gene from Aspergillus niger.

    PubMed

    Schilling, B; Lerch, K

    1995-05-20

    The gene encoding the flavin-containing monoamine oxidase (MAO-N) of the filamentous fungus Aspergillus niger was cloned. MAO-N is the first nonvertebrate monoamine oxidase described to date. Three partial cDNA clones, isolated from an expression library, were used to identify and clone the structural gene (maoN) from an A. niger genomic DNA library. The maoN gene was sequenced, and analysis revealed an open reading frame that codes for a protein of 495 amino acids with a calculated molecular mass of 55.6 kDa. Sequencing of an internal proteolytic fragment of the purified enzyme confirmed the derived amino acid sequence. Analysis of the deduced amino acid sequence indicates that MAO-N is structurally related to the human monoamine oxidases MAO-A and MAO-B. In particular, the regions known to be involved in the binding of the FAD cofactor show a high degree of homology; however, the conserved cysteine residue to which the flavin cofactor is covalently bound in the mammalian forms is absent in the fungal enzyme. MAO-N has the C-terminal tripeptide Ala-Arg-Leu, which corresponds to the consensus targeting sequence found in many peroxisomal enzymes. The full-length cDNA for MAO-N was expressed in Escherichia coli from the T7 promoter of the expression vector pET3a, yielding a soluble and fully active enzyme form.

  20. Production of Proteolytic Enzymes by a Keratin-Degrading Aspergillus niger

    PubMed Central

    Lopes, Fernanda Cortez; Silva, Lucas André Dedavid e; Tichota, Deise Michele; Daroit, Daniel Joner; Velho, Renata Voltolini; Pereira, Jamile Queiroz; Corrêa, Ana Paula Folmer; Brandelli, Adriano

    2011-01-01

    A fungal isolate with capability to grow in keratinous substrate as only source of carbon and nitrogen was identified as Aspergillus niger using the sequencing of the ITS region of the rDNA. This strain produced a slightly acid keratinase and an acid protease during cultivation in feather meal. The peak of keratinolytic activity occurred in 48 h and the maximum proteolytic activity in 96 h. These enzymes were partly characterized as serine protease and aspartic protease, respectively. The effects of feather meal concentration and initial pH on enzyme production were evaluated using a central composite design combined with response surface methodology. The optimal conditions were determined as pH 5.0 for protease and 7.8 for keratinase and 20 g/L of feather meal, showing that both models were predictive. Production of keratinases by A. niger is a less-exploited field that might represent a novel and promising biotechnological application for this microorganism. PMID:22007293

  1. Heavy metals extraction from municipal solid waste incineration fly ash using adapted metal tolerant Aspergillus niger.

    PubMed

    Yang, Jie; Wang, Qunhui; Wang, Qi; Wu, Tingji

    2009-01-01

    This study focused on the adaptation of Aspergillus niger tolerating high concentration of heavy metals for bioleaching of fly ash. The Plackett-Burman design indicated that Al and Fe inhibited the growth of A. niger (AS 3.879 and AS 3.40) significantly. The single metal (Al and Fe) and multi-metals adapted AS 3.879 strain tolerated up to 3500 mg/L Al, 700 mg/L Fe, and 3208.1mg/L multi-metals, respectively. The order of metal extraction yield in two-step bioleaching of 60 and 70 g/L fly ash using Al adapted, multi-metals adapted and un-adapted AS 3.879 strains was as follows: multi-metals adapted>Al adapted>un-adapted. The multi-metals adapted strain grew with up to 70 g/L fly ash and secreted 256 mmol/L organic acids after 288 h, where 87.4% Cd, 64.8% Mn, 49.4% Zn and 45.9% Pb were dissolved. The extracted metals in TCLP test of the bioleached fly ash by multi-metals adapted strain were under the regulated levels in China.

  2. Morphology of Filamentous Fungi: Linking Cellular Biology to Process Engineering Using Aspergillus niger

    NASA Astrophysics Data System (ADS)

    Krull, Rainer; Cordes, Christiana; Horn, Harald; Kampen, Ingo; Kwade, Arno; Neu, Thomas R.; Nörtemann, Bernd

    In various biotechnological processes, filamentous fungi, e.g. Aspergillus niger, are widely applied for the production of high value-added products due to their secretion efficiency. There is, however, a tangled relationship between the morphology of these microorganisms, the transport phenomena and the related productivity. The morphological characteristics vary between freely dispersed mycelia and distinct pellets of aggregated biomass. Hence, advantages and disadvantages for mycel or pellet cultivation have to be balanced out carefully. Due to this inadequate understanding of morphogenesis of filamentous microorganisms, fungal morphology, along with reproducibility of inocula of the same quality, is often a bottleneck of productivity in industrial production. To obtain an optimisation of the production process it is of great importance to gain a better understanding of the molecular and cell biology of these microorganisms as well as the approaches in biochemical engineering and particle technique, in particular to characterise the interactions between the growth conditions, cell morphology, spore-hyphae-interactions and product formation. Advances in particle and image analysis techniques as well as micromechanical devices and their applications to fungal cultivations have made available quantitative morphological data on filamentous cells. This chapter provides the ambitious aspects of this line of action, focussing on the control and characterisation of the morphology, the transport gradients and the approaches to understand the metabolism of filamentous fungi. Based on these data, bottlenecks in the morphogenesis of A. niger within the complex production pathways from gene to product should be identified and this may improve the production yield.

  3. High production of β-glucosidase by Aspergillus niger on corncob.

    PubMed

    Wang, Chunli; Wu, Gaihong; Chen, Chang; Chen, Shulin

    2012-09-01

    Using low-cost raw material is an effective approach for reducing the cost of cellulolytic enzymes. The farmland waste corncob was found in this study to be the best carbon source for the production of β-glucosidase by Aspergillus niger. The maximum yield of β-glucosidase activity was 48.7 IU ml(-1) by using 50 g l(-1) of corncob powder as the substrate. It was found that the water-soluble components of the corncob could increase β-glucosidase production significantly only when mixed with Avicel or wheat bran. The soluble components could not enhance the biomass and β-glucosidase production when used alone. On the other hand, the water-insoluble components of the corncob still produced high level of β-glucosidase (30 IU ml(-1)) although lower than that of using whole corncob. The results suggested that the water-insoluble components of corncob were beneficial for β-glucosidase production. It was further demonstrated that the xylan in the water-insoluble parts of corncob was the important factor in producing β-glucosidase by A. niger.

  4. Inhibition of Aspergillus niger Phosphate Solubilization by Fluoride Released from Rock Phosphate

    PubMed Central

    Mendes, Gilberto de Oliveira; Vassilev, Nikolay Bojkov; Bonduki, Victor Hugo Araújo; da Silva, Ivo Ribeiro; Ribeiro, José Ivo

    2013-01-01

    The simultaneous release of various chemical elements with inhibitory potential for phosphate solubilization from rock phosphate (RP) was studied in this work. Al, B, Ba, Ca, F, Fe, Mn, Mo, Na, Ni, Pb, Rb, Si, Sr, V, Zn, and Zr were released concomitantly with P during the solubilization of Araxá RP (Brazil), but only F showed inhibitory effects on the process at the concentrations detected in the growth medium. Besides P solubilization, fluoride decreased fungal growth, citric acid production, and medium acidification by Aspergillus niger. At the maximum concentration found during Araxá RP solubilization (22.9 mg F− per liter), fluoride decreased P solubilization by 55%. These findings show that fluoride negatively affects RP solubilization by A. niger through its inhibitory action on the fungal metabolism. Given that fluoride is a common component of RPs, the data presented here suggest that most of the microbial RP solubilization systems studied so far were probably operated under suboptimal conditions. PMID:23770895

  5. Spatial differentiation of gene expression in Aspergillus niger colony grown for sugar beet pulp utilization

    PubMed Central

    Benoit, Isabelle; Zhou, Miaomiao; Vivas Duarte, Alexandra; Downes, Damien J.; Todd, Richard B.; Kloezen, Wendy; Post, Harm; Heck, Albert J. R.; Maarten Altelaar, A. F.; de Vries, Ronald P.

    2015-01-01

    Degradation of plant biomass to fermentable sugars is of critical importance for the use of plant materials for biofuels. Filamentous fungi are ubiquitous organisms and major plant biomass degraders. Single colonies of some fungal species can colonize massive areas as large as five soccer stadia. During growth, the mycelium encounters heterogeneous carbon sources. Here we assessed whether substrate heterogeneity is a major determinant of spatial gene expression in colonies of Aspergillus niger. We analyzed whole-genome gene expression in five concentric zones of 5-day-old colonies utilizing sugar beet pulp as a complex carbon source. Growth, protein production and secretion occurred throughout the colony. Genes involved in carbon catabolism were expressed uniformly from the centre to the periphery whereas genes encoding plant biomass degrading enzymes and nitrate utilization were expressed differentially across the colony. A combined adaptive response of carbon-catabolism and enzyme production to locally available monosaccharides was observed. Finally, our results demonstrate that A. niger employs different enzymatic tools to adapt its metabolism as it colonizes complex environments. PMID:26314379

  6. Biochar enhances Aspergillus niger rock phosphate solubilization by increasing organic acid production and alleviating fluoride toxicity.

    PubMed

    Mendes, Gilberto de Oliveira; Zafra, David Lopez; Vassilev, Nikolay Bojkov; Silva, Ivo Ribeiro; Ribeiro, José Ivo; Costa, Maurício Dutra

    2014-05-01

    During fungal rock phosphate (RP) solubilization, a significant quantity of fluoride (F(-)) is released together with phosphorus (P), strongly inhibiting the process. In the present study, the effect of two F(-) adsorbents [activated alumina (Al2O3) and biochar] on RP solubilization by Aspergillus niger was examined. Al2O3 adsorbed part of the F(-) released but also adsorbed soluble P, which makes it inappropriate for microbial RP solubilization systems. In contrast, biochar adsorbed only F(-) while enhancing phosphate solubilization 3-fold, leading to the accumulation of up to 160 mg of P per liter. By comparing the values of F(-) measured in solution at the end of incubation and those from a predictive model, it was estimated that up to 19 mg of F(-) per liter can be removed from solution by biochar when added at 3 g liter(-1) to the culture medium. Thus, biochar acted as an F(-) sink during RP solubilization and led to an F(-) concentration in solution that was less inhibitory to the process. In the presence of biochar, A. niger produced larger amounts of citric, gluconic, and oxalic acids, whether RP was present or not. Our results show that biochar enhances RP solubilization through two interrelated processes: partial removal of the released F(-) and increased organic acid production. Given the importance of organic acids for P solubilization and that most of the RPs contain high concentrations of F(-), the proposed solubilization system offers an important technological improvement for the microbial production of soluble P fertilizers from RP.

  7. GC--MS analysis reveals production of 2--Phenylethanol from Aspergillus niger endophytic in rose.

    PubMed

    Wani, Masood Ahmed; Sanjana, Kaul; Kumar, Dhar Manoj; Lal, Dhar Kanahya

    2010-02-01

    Endophytes include all organisms that during a variable period of their life, colonize the living internal tissues of their hosts without causing detectable symptoms. Several fungal endophytes have been isolated from a variety of plant species which have proved themselves as a rich source of secondary metabolites. The reported natural products from endophytes include antibiotics, immunosuppresants, anticancer compounds, antioxidant agents, etc. For the first time Rosa damacaena (rose) has been explored for its endophytes. The rose oil industry is the major identified deligence for its application in perfumery, flavouring, ointments, and pharmaceuticals including various herbal products. During the present investigation fungal endophytes were isolated from Rosa damacaena. A total of fifty four isolates were isolated out of which sixteen isolates were screened for the production of secondary metabolites. GCMS analysis reveals the production of 2-phenylethanol by one of the isolates JUBT 3M which was identified as Aspergillus niger. This is the first report of production of 2-phenylethanol from endophytic A. niger. 2-phenylethanol is an important constituent of rose oil constituting about 4.06% of rose oil. Presence of 2-phenylethanol indicates that the endophyte of rose may duplicate the biosynthesis of phenyl propanoids by rose plant. Besides this, the other commercial applications of phenylethanol include its use in antiseptics, disinfectants, anti-microbials and preservative in pharmaceuticals.

  8. Metabolic pathway reconstruction of eugenol to vanillin bioconversion in Aspergillus niger.

    PubMed

    Srivastava, Suchita; Luqman, Suaib; Khan, Feroz; Chanotiya, Chandan S; Darokar, Mahendra P

    2010-01-23

    Identification of missing genes or proteins participating in the metabolic pathways as enzymes are of great interest. One such class of pathway is involved in the eugenol to vanillin bioconversion. Our goal is to develop an integral approach for identifying the topology of a reference or known pathway in other organism. We successfully identify the missing enzymes and then reconstruct the vanillin biosynthetic pathway in Aspergillus niger. The procedure combines enzyme sequence similarity searched through BLAST homology search and orthologs detection through COG & KEGG databases. Conservation of protein domains and motifs was searched through CDD, PFAM & PROSITE databases. Predictions regarding how proteins act in pathway were validated experimentally and also compared with reported data. The bioconversion of vanillin was screened on UV-TLC plates and later confirmed through GC and GC-MS techniques. We applied a procedure for identifying missing enzymes on the basis of conserved functional motifs and later reconstruct the metabolic pathway in target organism. Using the vanillin biosynthetic pathway of Pseudomonas fluorescens as a case study, we indicate how this approach can be used to reconstruct the reference pathway in A. niger and later results were experimentally validated through chromatography and spectroscopy techniques.

  9. Bioleaching of valuable metals from spent lithium-ion mobile phone batteries using Aspergillus niger

    NASA Astrophysics Data System (ADS)

    Horeh, N. Bahaloo; Mousavi, S. M.; Shojaosadati, S. A.

    2016-07-01

    In this paper, a bio-hydrometallurgical route based on fungal activity of Aspergillus niger was evaluated for the detoxification and recovery of Cu, Li, Mn, Al, Co and Ni metals from spent lithium-ion phone mobile batteries under various conditions (one-step, two-step and spent medium bioleaching). The maximum recovery efficiency of 100% for Cu, 95% for Li, 70% for Mn, 65% for Al, 45% for Co, and 38% for Ni was obtained at a pulp density of 1% in spent medium bioleaching. The HPLC results indicated that citric acid in comparison with other detected organic acids (gluconic, oxalic and malic acid) had an important role in the effectiveness of bioleaching using A. niger. The results of FTIR, XRD and FE-SEM analysis of battery powder before and after bioleaching process confirmed that the fungal activities were quite effective. In addition, bioleaching achieved higher removal efficiency for heavy metals than the chemical leaching. This research demonstrated the great potential of bio-hydrometallurgical route to recover heavy metals from spent lithium-ion mobile phone batteries.

  10. Antimicrobial Activity of Biocompatible Microemulsions Against Aspergillus niger and Herpes Simplex Virus Type 2

    PubMed Central

    Alkhatib, Mayson H; Aly, Magda M; Rahbeni, Rajaa A; Balamash, Khadijah S

    2016-01-01

    Background Microemulsions (MEs), which consist of oil, water, surfactants, and cosurfactants, have recently generated considerable interest as antimicrobial agents. Objectives To determine the antifungal and antiviral activities of three ME formulations (MEa, MEb, and MEc) that differ in their hydrophilicity. Methods The ME formulas were produced by mixing different fractions of Tween 80, Span 20, ethanol, oil, isopropyl myristate, and distilled water. The antifungal activity of the ME formulas against Aspergillus niger, A. flavus, Bacillus, Candida albicans, and C. glabrata were determined by the solid medium diffusion cytotoxicity test against the mitochondria, measuring the minimum inhibitory concentration, dry biomass, and leakage of potassium, and characterizing the cell morphology. The antiviral activities of the ME formulas against the herpes simplex virus type 2 (HSV-2) were determined using the cytopathic effect assay. Results Significant antimicrobial activities were recorded against A. niger and herpes simplex virus type 2 (HSV-2) when treated with MEb that had hydrophobic nanodroplets with an average diameter of 4.7 ± 1.22 nm. A volume of 0.1 mL of MEb (10 mL of potato dextrose broth) inhibited the germination of A. niger cells, reduced their dry biomass, enhanced the leakage of potassium from the cell membranes, affected their mitochondria, and altered the shape of their conidia, in addition to enlarging them. MEb was able to destroy the HSV-2 virus at a 200-fold dilution in Dulbecco’s modified eagle medium. Conclusions The water-in-oil ME with equivalent surfactant-to-oil ratio (MEb) has great potential as an antifungal and antiviral agent. PMID:27800146

  11. The molecular and genetic basis of conidial pigmentation in Aspergillus niger.

    PubMed

    Jørgensen, Thomas R; Park, Joohae; Arentshorst, Mark; van Welzen, Anne Marie; Lamers, Gerda; Vankuyk, Patricia A; Damveld, Robbert A; van den Hondel, Cees A M; Nielsen, Kristian F; Frisvad, Jens C; Ram, Arthur F J

    2011-05-01

    A characteristic hallmark of Aspergillus niger is the formation of black conidiospores. We have identified four loci involved in spore pigmentation of A. niger by using a combined genomic and classical complementation approach. First, we characterized a newly isolated color mutant, colA, which lacked pigmentation resulting in white or colorless conidia. Pigmentation of the colA mutant was restored by a gene (An12g03950) which encodes a putative 4'phosphopantetheinyl transferase protein (PptA). 4'Phosphopantetheinyl transferase activity is required for the activation of Polyketide Synthases (PKSs) and/or Non-Ribosomal Peptide Synthases (NRPSs). The loci whose mutation resulted in fawn, olive, and brown color phenotypes were identified by complementation. The fawn phenotype was complemented by a PKS protein (FwnA, An09g05730), the ovlA mutant by An14g05350 (OlvA) and the brnA mutant by An14g05370 (BrnA), the respective homologs of alb1/pksP, ayg1 and abr1 in A. fumigatus. Targeted disruption of the pptA, fwnA, olvA and brnA genes confirmed the complementation results. Disruption of the pptA gene abolished synthesis of all polyketides and non-ribosomal peptides, while the naphtho-γ-pyrone subclass of polyketides were specifically dependent on fwnA, and funalenone on fwnA, olvA and brnA. Thus, secondary metabolite profiling of the color mutants revealed a close relationship between polyketide synthesis and conidial pigmentation in A. niger.

  12. Dynamic Fumonisin B2 Production by Aspergillus niger Intented Used in Food Industry in China

    PubMed Central

    Han, Xiaomin; Jiang, Hongru; Xu, Jin; Zhang, Jing; Li, Fengqin

    2017-01-01

    There are a total of 30 strains including 27 strains of Aspergillus niger intended used in Chinese food industry, two strains used as control and one strain isolated from corn for fumonisin (FB) production on 3 media. It was found that FB2 production by A. niger was function-dependent and highly related to culture media, as well as incubation time. All strains studied were unable to produce FB1 and FB3. Almost all strains were found to produce FB2 on corn, rice and wheat bran. Based on their intended use in the food industry, the higher level of FB2 producers were strains used for saccharifying enzyme (n = 13) production, followed by organic acid (n = 6), tannase (n = 7) and β-galactosidase (n = 1) production, with the FB2 mean level of 3553–10,270 μg/kg, 1059–12,036 μg/kg, 3–7 μg/kg and 2–4 μg/kg on corn, 5455–9241 μg/kg, 559–2190 μg/kg, 4–9 μg/kg and 6–10 μg/kg on rice, 5959–7709 μg/kg, 9491–17,339 μg/kg, 8–14 μg/kg and 120–222 μg/kg on wheat bran, respectively. Comparatively, strains of Fusarium verticillioide were capable of producing fumonins simultaneously with broader spectrum including FB1, FB2 and FB3, but at a much lower level. In conclusion, it is necessary to evaluate FB2 production by A. niger before intended use in the food processing industry. PMID:28698485

  13. Dephosphorization of High-Phosphorus Iron Ore Using Different Sources of Aspergillus niger Strains.

    PubMed

    Xiao, Chunqiao; Wu, Xiaoyan; Chi, Ruan

    2015-05-01

    High-phosphorus iron ore is traditionally dephosphorized by chemical process with inorganic acids. However, this process is not recommended nowadays because of its high cost and consequent environmental pollution. With the current tendency for development of a low-cost and eco-friendly process, dephosphorization of high-phosphorus iron ore through microbial process with three different sources of Aspergillus niger strains was studied in this study. Results show that the three strains of A. niger could grow well in the broth, and effectively remove phosphate from high-phosphorus iron ore during the experiments. Meanwhile, the total iron in the broth was also increased. Acidification of the broth seemed to be the major mechanism for the dephosphorization by these strains. High-pressure liquid chromatography analysis indicated that various organic acids were secreted in the broth, which caused a significant drop of the broth pH. Scanning electron microscopy of ore residues revealed that the high-phosphorus iron ore was obviously destroyed by the actions of these strains. Ore residues by energy-dispersive X-ray microanalysis and Fourier transform infrared spectroscopy indicated that the phosphate was obviously removed from the high-phosphorus iron ore. The optimization of the dephosphorization by these strains was also investigated, and the maximum percentages of phosphate removal were recorded at temperature 27-30 °C, initial pH 5.0-6.5, particle size 0.07-0.1 mm, and pulp density of 2-3% (w/v), respectively. The fungus A. niger was found to have good potential for the dephosphorization of high-phosphorus iron ore, and this microbial process seems to be economic and effective in the future industrial application.

  14. Data on the presence or absence of genes encoding essential proteins for ochratoxin and fumonisin biosynthesis in Aspergillus niger and Aspergillus welwitschiae

    PubMed Central

    Massi, Fernanda Pelisson; Sartori, Daniele; Ferranti, Larissa de Souza; Iamanaka, Beatriz Thie; Taniwaki, Marta Hiromi; Vieira, Maria Lucia Carneiro; Fungaro, Maria Helena Pelegrinelli

    2016-01-01

    We present the multiplex PCR data for the presence/absence of genes involved in OTA and FB2 biosynthesis in Aspergillus niger/Aspergillus welwitschiae strains isolated from different food substrates in Brazil. Among the 175 strains analyzed, four mPCR profiles were found: Profile 1 (17%) highlights strains harboring in their genome the pks, radH and the fum8 genes. Profile 2 (3.5%) highlights strains harboring genes involved in OTA biosynthesis i.e. radH and pks. Profile 3 (51.5%) highlights strains harboring the fum8 gene. Profile 4 (28%) highlights strains not carrying the genes studied herein. This research content is supplemental to our original research article, “Prospecting for the incidence of genes involved in ochratoxin and fumonisin biosynthesis in Brazilian strains of A. niger and A. welwitschiae” [1]. PMID:27054181

  15. Evidence that cleavage of the precursor enzyme by autocatalysis caused secretion of multiple amylases by Aspergillus niger.

    PubMed

    Ravi-Kumar, K; Venkatesh, K S; Umesh-Kumar, S

    2004-01-16

    The observation that a mutant strain of Aspergillus niger isolated for protease overproduction accumulated Taka-amylase supported an earlier report that processing of the precursor amylase by protease resulted in the secretion of multiple amylases. Studies using a mutant strain revealed that such processing was not due to aspergillopepsin but to autocatalysis by an inherent protease activity of the precursor and glucoamylase. Alignment of protease sequences with glucoamylase showed regions of consensus with serine carboxypeptidase of A. niger. Thus point mutations in this region due to ultraviolet radiation apparently caused the mutant to evolve with enhanced protease activity that degraded the precursor and accumulated Taka-amylase.

  16. Clarification of Tomato Juice with Polygalacturonase Obtained from Tomato Fruits Infected by Aspergillus niger.

    PubMed

    Ajayi, A A; Peter-Albert, C F; Akeredolu, M; Shokunbi, A A

    2015-02-01

    Two varieties of tomato fruits commonly available in Nigerian markets are the Roma VF and Ibadan local varieties of tomato fruits. The Roma VF fruits are oval in shape. It is a common type of cultivar in the Northern region of Nigeria and it is not susceptible to cracking. The Ibadan local variety of tomato fruits is a local variety commonly found on farmers fields in South-western region of Nigeria. They are highly susceptible to cracking. The Ibadan local variety was employed for this research. There are lots of benefits derived from the consumption of tomato fruits. The fruits can be made into tomato juice clarified with pectinases. Polygalacturonase is one of the pectinases used commercially in the clarification of fruit juice from different fruits. This study examined the production of polygalacturonase during the deterioration of tomato fruits by Aspergillus niger and the role of the purified polygalacturonase in the clarification of tomato juice. Tomato fruits of the Ibadan local variety were inoculated with mycelia discs containing spores of a 96-h-old culture of Aspergillus niger served as the inoculum. The organism from the stock culture was subcultured onto potato dextrose agar plates. The extraction of polygalacturonase after 10 days of incubation at 27 degrees C was carried out by homogenizing the fruits with liquid extractant using the MSE homogenizer after the deteriorated fruits had been chilled for 30 min inside a freezer. Control fruits were similarly treated except that sterile potato dextrose agar served as the inoculum. The effect of different temperature of incubation and different volume of enzyme on the tomato juice from the tomato fruits was investigated. Extracts from the inoculated fruits exhibited appreciable polygalacturonase activity. The juice with polygalacturonase was visually clearer and more voluminous than the juice treated with water for all parameters studied. The highest volume of juice was obtained after an incubation period

  17. Heterologous Expression of Aspergillus Niger --beta--D-Xylosidase (XInD): Characterization on Lignocellulosic Substrates

    SciTech Connect

    Selig, M. J.; Knoshaug, E. P.; Decker, S. R.; Baker, J. O.; Himmel, M. E.; Adney, W. S.

    2008-01-01

    The gene encoding a glycosyl hydrolase family 3 xylan 1,4-beta-xylosidase, xlnD, was successfully cloned from Aspergillus niger strain ATCC 10864. The recombinant product was expressed in Aspergillus awamori, purified by column chromatography, and verified by matrix-assisted laser desorption ionization, tandem time of flight (MALDI-TOF/TOF) mass spectroscopy of tryptic digests. The T{sub max} was determined using differential scanning microcalorimetry (DSC) to be 78.2 C; the K{sub m} and k{sub cat} were found to be 255 {micro}M and 13.7 s{sup -1}, respectively, using {rho}NP-{Beta}-d-xylopyranoside as substrate. End-product inhibition by d-xylose was also verified and shown to be competitive; the K{sub i} for this inhibition was estimated to be 3.3 mM. XlnD was shown to efficiently hydrolyze small xylo-oligomers to monomeric xylose, making it a critical hydrolytic activity in cases where xylose is to be recovered from biomass conversion processes. In addition, the presence of the XlnD was shown to synergistically enhance the ability of an endoxylanase, XynA from Thermomyces lanuginosus, to convert xylan present in selected pretreated lignocellulosic substrates. Furthermore, the addition of the XynA/XlnD complex was effective in enhancing the ability of a simplified cellulase complex to convert glucan present in the substrates.

  18. Heterologous expression of Aspergillus niger beta-D-xylosidase (XlnD): characterization on lignocellulosic substrates.

    PubMed

    Selig, Michael J; Knoshaug, Eric P; Decker, Stephen R; Baker, John O; Himmel, Michael E; Adney, William S

    2008-03-01

    The gene encoding a glycosyl hydrolase family 3 xylan 1,4-beta-xylosidase, xlnD, was successfully cloned from Aspergillus niger strain ATCC 10864. The recombinant product was expressed in Aspergillus awamori, purified by column chromatography, and verified by matrix-assisted laser desorption ionization, tandem time of flight (MALDI-TOF/TOF) mass spectroscopy of tryptic digests. The T (max) was determined using differential scanning microcalorimetry (DSC) to be 78.2 degrees C; the K (m) and k (cat) were found to be 255 microM and 13.7 s(-1), respectively, using pNP-beta-D-xylopyranoside as substrate. End-product inhibition by D-xylose was also verified and shown to be competitive; the K (i) for this inhibition was estimated to be 3.3 mM. XlnD was shown to efficiently hydrolyze small xylo-oligomers to monomeric xylose, making it a critical hydrolytic activity in cases where xylose is to be recovered from biomass conversion processes. In addition, the presence of the XlnD was shown to synergistically enhance the ability of an endoxylanase, XynA from Thermomyces lanuginosus, to convert xylan present in selected pretreated lignocellulosic substrates. Furthermore, the addition of the XynA/XlnD complex was effective in enhancing the ability of a simplified cellulase complex to convert glucan present in the substrates.

  19. Purification and characterization of a nitrilase from Aspergillus niger K10.

    PubMed

    Kaplan, Ondrej; Vejvoda, Vojtech; Plíhal, Ondrej; Pompach, Petr; Kavan, Daniel; Bojarová, Pavla; Bezouska, Karel; Macková, Martina; Cantarella, Maria; Jirků, Vladimír; Kren, Vladimír; Martínková, Ludmila

    2006-12-01

    Aspergillus niger K10 cultivated on 2-cyanopyridine produced high levels of an intracellular nitrilase, which was partially purified (18.6-fold) with a 24% yield. The N-terminal amino acid sequence of the enzyme was highly homologous with that of a putative nitrilase from Aspergillus fumigatus Af293. The enzyme was copurified with two proteins, the N-terminal amino acid sequences of which revealed high homology with those of hsp60 and an ubiquitin-conjugating enzyme. The nitrilase exhibited maximum activity (91.6 U mg(-1)) at 45 degrees C and pH 8.0. Its preferred substrates, in the descending order, were 4-cyanopyridine, benzonitrile, 1,4-dicyanobenzene, thiophen-2-acetonitrile, 3-chlorobenzonitrile, 3-cyanopyridine, and 4-chlorobenzonitrile. Formation of amides as by-products was most intensive, in the descending order, for 2-cyanopyridine, 4-chlorobenzonitrile, 4-cyanopyridine, and 1,4-dicyanobenzene. The enzyme stability was markedly improved in the presence of D: -sorbitol or xylitol (20% w/v each). p-Hydroxymercuribenzoate and heavy metal ions were the most powerful inhibitors of the enzyme.

  20. Biochemical properties of Cu/Zn-superoxide dismutase from fungal strain Aspergillus niger 26

    NASA Astrophysics Data System (ADS)

    Dolashki, Aleksandar; Abrashev, Radoslav; Stevanovic, Stefan; Stefanova, Lilyana; Ali, Syed Abid; Velkova, Ludmila; Hristova, Rumyana; Angelova, Maria; Voelter, Wolfgang; Devreese, Bart; Van Beeumen, Jozef; Dolashka-Angelova, Pavlina

    2008-12-01

    The fungal strain Aspergillus niger produces two superoxide dismutases, Cu/Zn-SOD and Mn-SOD. The primary structure of the Cu/Zn-SOD has been determined by Edman degradation of peptide fragments derived from proteolytic digests. A single chain of the protein, consisting of 153 amino acid residues, reveals a very high degree of structural homology with the amino acid sequences of other Aspergillus Cu/Zn-SODs. The molecular mass of ANSOD, measured by MALDI-MS and ESI-MS, and calculated by its amino acid sequence, was determined to be 15 821 Da. Only one Trp residue, at position 32, and one disulfide bridge were identified. However, neither a Tyr residue nor a carbohydrate chain occupying an N-linkage site (-Asn-Ile-Thr-) were found. Studies on the temperature and pH dependence of fluorescence, and on the temperature dependence of CD spectroscopic properties, confirmed that the enzyme is very stable, which can be explained by the stabilising effect of the disulfide bridge. The enzyme retains about 53% of its activity after incubation for a period of 30 min at 60 °C, and 15% at 85 °C.

  1. Flavone Biotransformation by Aspergillus niger and the Characterization of Two Newly Formed Metabolites

    PubMed Central

    Assawah, Suzan W.; El-Sharkawy, Saleh H.; Abdel-Salam, Amal

    2008-01-01

    Aspergillus niger isolated from Allium sativum was used at large scale fermentation (150 mg flavone/200 ml medium) to obtain suitable amounts of the products, efficient for identification. Then spectral analysis (UV, IR, 1H-NMR, 13C-NMR) and mass spectrometry were performed for the two products, which contributed to the identification process. The metabolite (1) was identified as 2'-hydroxydihydrochalcone, and the metabolite (2) was identified as 2'-hydroxyphenylmethylketone, which were more active than flavone itself. Antioxidant activities of the two isolated metabolites were tested compared with ascorbic acid. Antioxidant activity of metabolite (1) was recorded 64.58% which represented 79% of the antioxidant activity of ascorbic acid, and metabolite (2) was recorded 54.16% (67% of ascorbic acid activity). However, the antioxidant activity of flavone was recorded 37.50% which represented 46% of ascorbic acid activity. The transformed products of flavone have antimicrobial activity against Pseudomonas aeruginosa, Aspergillus flavus and Candida albicans, with MIC was recorded 250 µg/ml for metabolite (2) against all three organism and 500, 300, and 300 µg/ml for metabolite (1) against tested microorganisms (P. aeruginosa, Escherichia coli, Bacillus subtilis, and Klebsiella pneumonia, Fusarium moniliforme, A. flavus, Saccharomyces cerviceae, Kluveromyces lactis and C. albicans) at this order. PMID:23990746

  2. Identification of Aspergillus (A. flavus and A. niger) Allergens and Heterogeneity of Allergic Patients' IgE Response.

    PubMed

    Vermani, Maansi; Vijayan, Vannan Kandi; Agarwal, Mahendra Kumar

    2015-08-01

    Aspergillus species (A. flavus and A. niger) are important sources of inhalant allergens. Current diagnostic modalities employ crude Aspergillus extracts which only indicate the source to which the patient has been sensitized, without identifying the number and type of allergens in crude extracts. We report a study on the identification of major and minor allergens of the two common airborne Aspergillus species and heterogeneity of patients' IgE response to them. Skin prick tests were performed on 300 patients of bronchial asthma and/or allergic rhinitis and 20 healthy volunteers. Allergen specific IgE in patients' sera was estimated by enzyme allergosorbent test (EAST). Immunoblots were performed to identify major/minor allergens of Aspergillus extracts and to study heterogeneity of patients'IgE response to them. Positive cutaneous responses were observed in 17% and 14.7% of patients with A. flavus and A. niger extracts, respectively. Corresponding EAST positivity was 69.2% and 68.7%. In immunoblots, 5 allergenic proteins were identified in A. niger extract, major allergens being 49, 55.4 and 81.5 kDa. Twelve proteins bound patients' IgE in A. flavus extract, three being major allergens (13.3, 34 and 37 kDa). The position and slopes of EAST binding and inhibition curves obtained with individual sera varied from patient to patient. The number and molecular weight of IgE-binding proteins in both the Aspergillus extracts varied among patients. These results gave evidence of heterogeneity of patients' IgE response to major/minor Aspergillus allergens. This approach will be helpful to identify disease eliciting molecules in the individual patients (component resolved diagnosis) and may improve allergen-specific immunotherapy.

  3. Genomic analysis of the aconidial and high-performance protein producer, industrially relevant Aspergillus niger SH2 strain.

    PubMed

    Yin, Chao; Wang, Bin; He, Pan; Lin, Ying; Pan, Li

    2014-05-15

    Aspergillus niger is usually regarded as a beneficial species widely used in biotechnological industry. Obtaining the genome sequence of the widely used aconidial A. niger SH2 strain is of great importance to understand its unusual production capability. In this study we assembled a high-quality genome sequence of A. niger SH2 with approximately 11,517 ORFs. Relatively high proportion of genes enriched for protein expression related FunCat items verify its efficient capacity in protein production. Furthermore, genome-wide comparative analysis between A. niger SH2 and CBS513.88 reveals insights into unique properties of A. niger SH2. A. niger SH2 lacks the gene related with the initiation of asexual sporulation (PrpA), leading to its distinct aconidial phenotype. Frame shift mutations and non-synonymous SNPs in genes of cell wall integrity signaling, β-1,3-glucan synthesis and chitin synthesis influence its cell wall development which is important for its hyphal fragmentation during industrial high-efficiency protein production.

  4. Changes in the physiological properties and kinetics of citric acid accumulation via carbon ion irradiation mutagenesis of Aspergillus niger *

    PubMed Central

    Hu, Wei; Chen, Ji-hong; Wang, Shu-yang; Liu, Jing; Song, Yuan; Wu, Qing-feng; Li, Wen-jian

    2016-01-01

    The objective of this work was to produce citric acid from corn starch using a newly isolated mutant of Aspergillus niger, and to analyze the relationship between changes in the physiological properties of A. niger induced by carbon ion irradiation and citric acid accumulation. Our results showed that the physiological characteristics of conidia in A. niger were closely related to citric acid accumulation and that lower growth rate and viability of conidia may be beneficial to citric acid accumulation. Using corn starch as a raw material, a high-yielding citric acid mutant, named HW2, was obtained. In a 10-L bioreactor, HW2 can accumulate 118.9 g/L citric acid with a residual total sugar concentration of only 14.4 g/L. This represented an 18% increase in citric acid accumulation and a 12.5% decrease in sugar utilization compared with the original strain.

  5. [Influence of fly ash concentrations on the growth of Aspergillus niger and the bioleaching efficiency of heavy metals].

    PubMed

    Yang, Jie; Wang, Qun-Hui; Wang, Qi; Xue, Jun; Tian, Shu-Lei

    2008-03-01

    The bioleaching of municipal solid waste incinerator (MSWI) fly ash for metals extraction by Aspergillus niger was investigated. The influence of fly ash concentrations on the biomass concentration, the pH of suspension, the kinds of bio-produced organic acids and the metals extraction yield during the bioleaching process were studied and the leaching toxicities of fly ash before and after bioleaching were compared. The results showed that the decrease of pH was due to generated organic acids by Aspergillus niger during bioleaching, which resulted in the metals extraction from the fly ash. The alkaline and the heavy metals toxicities of fly ash inhibited the Aspergillus niger growth, which was shown as the "lag phase". When fly ash concentration was 20 g/L, the maximum biomass was 28.61 g/L (after bioleaching 192 h), and the minimum pH was 3.85 (after finished bioleaching). The bioleaching efficiency was the highest (i.e., 93.06% for Cd, around 70% for Mn, Pb and Zn, 22%, 33% and 47% for Fe, Cr and Cu, respectively). The TCLP results of the fly ash after bioleaching indicated that the leaching toxicities of the treated fly ash were far lower than the regulated levels of China.

  6. Biochar Enhances Aspergillus niger Rock Phosphate Solubilization by Increasing Organic Acid Production and Alleviating Fluoride Toxicity

    PubMed Central

    Mendes, Gilberto de Oliveira; Zafra, David Lopez; Vassilev, Nikolay Bojkov; Silva, Ivo Ribeiro; Ribeiro, José Ivo

    2014-01-01

    During fungal rock phosphate (RP) solubilization, a significant quantity of fluoride (F−) is released together with phosphorus (P), strongly inhibiting the process. In the present study, the effect of two F− adsorbents [activated alumina (Al2O3) and biochar] on RP solubilization by Aspergillus niger was examined. Al2O3 adsorbed part of the F− released but also adsorbed soluble P, which makes it inappropriate for microbial RP solubilization systems. In contrast, biochar adsorbed only F− while enhancing phosphate solubilization 3-fold, leading to the accumulation of up to 160 mg of P per liter. By comparing the values of F− measured in solution at the end of incubation and those from a predictive model, it was estimated that up to 19 mg of F− per liter can be removed from solution by biochar when added at 3 g liter−1 to the culture medium. Thus, biochar acted as an F− sink during RP solubilization and led to an F− concentration in solution that was less inhibitory to the process. In the presence of biochar, A. niger produced larger amounts of citric, gluconic, and oxalic acids, whether RP was present or not. Our results show that biochar enhances RP solubilization through two interrelated processes: partial removal of the released F− and increased organic acid production. Given the importance of organic acids for P solubilization and that most of the RPs contain high concentrations of F−, the proposed solubilization system offers an important technological improvement for the microbial production of soluble P fertilizers from RP. PMID:24610849

  7. Biological Control of Meloidogyne incognita by Aspergillus niger F22 Producing Oxalic Acid

    PubMed Central

    Jang, Ja Yeong; Choi, Yong Ho; Shin, Teak Soo; Kim, Tae Hoon; Shin, Kee-Sun; Park, Hae Woong; Kim, Young Ho; Kim, Hun; Choi, Gyung Ja; Jang, Kyoung Soo; Cha, Byeongjin; Kim, In Seon; Myung, Eul Jae

    2016-01-01

    Restricted usage of chemical nematicides has led to development of environmentally safe alternatives. A culture filtrate of Aspergillus niger F22 was highly active against Meloidogyne incognita with marked mortality of second-stage juveniles (J2s) and inhibition of egg hatching. The nematicidal component was identified as oxalic acid by organic acid analysis and gas chromatography-mass spectroscopy (GC-MS). Exposure to 2 mmol/L oxalic acid resulted in 100% juvenile mortality at 1 day after treatment and suppressed egg hatching by 95.6% at 7 days after treatment. Oxalic acid showed similar nematicidal activity against M. hapla, but was not highly toxic to Bursaphelenchus xylophilus. The fungus was incubated on solid medium and dried culture was used for preparation of a wettable powder-type (WP) formulation as an active ingredient. Two WP formulations, F22-WP10 (ai 10%) and oxalic acid-WP8 (ai 8%), were prepared using F22 solid culture and oxalic acid. In a field naturally infested with M. incognita, application of a mixture of F22-WP10 + oxalic acid-WP8 at 1,000- and 500-fold dilutions significantly reduced gall formation on the roots of watermelon plants by 58.8 and 70.7%, respectively, compared to the non-treated control. The disease control efficacy of the mixture of F22-WP10 + oxalic acid-WP8 was significantly higher than that of a chemical nematicide, Sunchungtan (ai 30% fosthiazate). These results suggest that A. niger F22 can be used as a microbial nematicide for the control of root-knot nematode disease. PMID:27258452

  8. Structural features of sugars that trigger or support conidial germination in the filamentous fungus Aspergillus niger.

    PubMed

    Hayer, Kimran; Stratford, Malcolm; Archer, David B

    2013-11-01

    The asexual spores (conidia) of Aspergillus niger germinate to produce hyphae under appropriate conditions. Germination is initiated by conidial swelling and mobilization of internal carbon and energy stores, followed by polarization and emergence of a hyphal germ tube. The effects of different pyranose sugars, all analogues of d-glucose, on the germination of A. niger conidia were explored, and we define germination as the transition from a dormant conidium into a germling. Within germination, we distinguish two distinct stages, the initial swelling of the conidium and subsequent polarized growth. The stage of conidial swelling requires a germination trigger, which we define as a compound that is sensed by the conidium and which leads to catabolism of d-trehalose and isotropic growth. Sugars that triggered germination and outgrowth included d-glucose, d-mannose, and d-xylose. Sugars that triggered germination but did not support subsequent outgrowth included d-tagatose, d-lyxose, and 2-deoxy-d-glucose. Nontriggering sugars included d-galactose, l-glucose, and d-arabinose. Certain nontriggering sugars, including d-galactose, supported outgrowth if added in the presence of a complementary triggering sugar. This division of functions indicates that sugars are involved in two separate events in germination, triggering and subsequent outgrowth, and the structural features of sugars that support each, both, or none of these events are discussed. We also present data on the uptake of sugars during the germination process and discuss possible mechanisms of triggering in the absence of apparent sugar uptake during the initial swelling of conidia.

  9. Aspergillus niger β-Glucosidase Has a Cellulase-like Tadpole Molecular Shape

    PubMed Central

    Lima, Marisa A.; Oliveira-Neto, Mario; Kadowaki, Marco Antonio S.; Rosseto, Flavio R.; Prates, Erica T.; Squina, Fabio M.; Leme, Adriana F. P.; Skaf, Munir S.; Polikarpov, Igor

    2013-01-01

    Aspergillus niger is known to secrete large amounts of β-glucosidases, which have a variety of biotechnological and industrial applications. Here, we purified an A. niger β-glucosidase (AnBgl1) and conducted its biochemical and biophysical analyses. Purified enzyme with an apparent molecular mass of 116 kDa forms monomers in solution as judged by native gel electrophoresis and has a pI value of 4.55, as found for most of the fungi of β-glucosidases. Surprisingly, the small angle x-ray experiments reveal that AnBgl1 has a tadpole-like structure, with the N-terminal catalytic domain and C-terminal fibronectin III-like domain (FnIII) connected by the long linker peptide (∼100 amino acid residues) in an extended conformation. This molecular organization resembles the one adopted by other cellulases (such as cellobiohydrolases, for example) that frequently contain a catalytic domain linked to the cellulose-binding module that mediates their binding to insoluble and polymeric cellulose. The reasons why AnBgl1, which acts on the small soluble substrates, has a tadpole molecular shape are not entirely clear. However, our enzyme pulldown assays with different polymeric substrates suggest that AnBgl1 has little or no capacity to bind to and to adsorb cellulose, xylan, and starch, but it has high affinity to lignin. Molecular dynamics simulations suggested that clusters of residues located in the C-terminal FnIII domain interact strongly with lignin fragments. The simulations showed that numerous arginine residues scattered throughout the FnIII surface play an important role in the interaction with lignin by means of cation-π stacking with the lignin aromatic rings. These results indicate that the C-terminal FnIII domain could be operational for immobilization of the enzyme on the cell wall and for the prevention of unproductive binding of cellulase to the biomass lignin. PMID:24064212

  10. Purification, kinetic and thermodynamic studies of a new ribonuclease from a mutant of Aspergillus niger.

    PubMed

    Xiong, Ya-Hong; Liu, Jian-Zhong; Song, Hai-Yan; Ji, Liang-Nian

    2005-10-10

    Ribonuclease was purified from Aspergillus niger SA-13-20 to homogeneity level by using (NH(4))(2)SO(4) precipitation, DEAE-cellulose anion-exchange chromatography, ultrafiltration and Sephacryl HR-200 chromatography. The molecular weight and isoelectric point of the enzyme was 40.1kDa and 5.3, respectively. The pH- and temperature-dependent kinetic parameters were determined. The RNase showed the strongest affinity with RNA as the substrate, and the highest catalytic efficiency for hydrolysis of the substrate at pH 3.5 and 65 degrees C. It exhibited Michaelis-Menten Kinetics with k(cat) of 118.1s(-1) and K(m) of 57.0 microg ml(-1), respectively. Thermodynamic parameters for catalysis and thermal denaturation were also determined. Activation energy (E(a)) for catalysis of A. niger SA-13-20 RNase was 50.31 kJ mol(-1) and free energy (DeltaG(#)), enthalpy (DeltaH(#)) and entropy (DeltaS(#)) of activation for catalysis of the enzyme at 65 degrees C were 69.76, 47.50 and -65.83 Jmol(-1)K(-1), respectively. Activation energy (E(a,d)) for denaturation of the enzyme was 200.53 kJ mol(-1) and free energy (DeltaG(d)(#)), enthalpy (DeltaH(d)(#)) and entropy (DeltaS(d)(#)) of activation for denaturation of the enzyme at 45 degrees C were 79.18 kJ mol(-1), 197.88 and 373.09 Jmol(-1)K(-1), respectively.

  11. Strain selection and medium optimization for glucoamylase production from industrial potato waste by Aspergillus niger.

    PubMed

    Izmirlioglu, Gulten; Demirci, Ali

    2016-06-01

    Glucoamylase is one of the most common enzymes used in the food industry to break down starch into its monomers. Glucoamylase production and its activity are highly dependent on medium composition. Starch is well known as a glucoamylase inducer, and utilization of industrial starchy potato waste is an inexpensive way of improving glucoamylase production. Since glucoamylase production is highly dependent on medium composition, in this study medium optimization for glucoamylase production was considered to enhance glucoamylase activity. Among the evaluated microbial species, Aspergillus niger van Tieghem was found to be the best glucoamylase-producing fungus. The Plackett-Burman design was used to screen various medium ingredients, and malt extract, FeSO4 .7H2 O and CaCl2 ·2H2 O were found to have significant effects on glucoamylase production. Finally, malt extract, FeSO4 .7H2 O and CaCl2 .2H2 O were optimized by using a central composite design of response surface methodology. The results showed that the optimal medium composition for A. niger van Tieghem was 50 g L(-1) industrial waste potato mash supplemented with 51.82 g L(-1) malt extract, 9.27 g L(-1) CaCl2 ·2H2 O and 0.50 g L(-1) FeSO4 .7H2 O. At the end of optimization, glucoamylase activity and glucose production were improved 126% and 98% compared to only industrial waste potato mash basal medium; 274.4 U mL(-1) glucoamylase activity and 41.7 g L(-1) glucose levels were achieved, respectively. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  12. Structural Features of Sugars That Trigger or Support Conidial Germination in the Filamentous Fungus Aspergillus niger

    PubMed Central

    Hayer, Kimran; Stratford, Malcolm

    2013-01-01

    The asexual spores (conidia) of Aspergillus niger germinate to produce hyphae under appropriate conditions. Germination is initiated by conidial swelling and mobilization of internal carbon and energy stores, followed by polarization and emergence of a hyphal germ tube. The effects of different pyranose sugars, all analogues of d-glucose, on the germination of A. niger conidia were explored, and we define germination as the transition from a dormant conidium into a germling. Within germination, we distinguish two distinct stages, the initial swelling of the conidium and subsequent polarized growth. The stage of conidial swelling requires a germination trigger, which we define as a compound that is sensed by the conidium and which leads to catabolism of d-trehalose and isotropic growth. Sugars that triggered germination and outgrowth included d-glucose, d-mannose, and d-xylose. Sugars that triggered germination but did not support subsequent outgrowth included d-tagatose, d-lyxose, and 2-deoxy-d-glucose. Nontriggering sugars included d-galactose, l-glucose, and d-arabinose. Certain nontriggering sugars, including d-galactose, supported outgrowth if added in the presence of a complementary triggering sugar. This division of functions indicates that sugars are involved in two separate events in germination, triggering and subsequent outgrowth, and the structural features of sugars that support each, both, or none of these events are discussed. We also present data on the uptake of sugars during the germination process and discuss possible mechanisms of triggering in the absence of apparent sugar uptake during the initial swelling of conidia. PMID:23995938

  13. Biological Control of Meloidogyne incognita by Aspergillus niger F22 Producing Oxalic Acid.

    PubMed

    Jang, Ja Yeong; Choi, Yong Ho; Shin, Teak Soo; Kim, Tae Hoon; Shin, Kee-Sun; Park, Hae Woong; Kim, Young Ho; Kim, Hun; Choi, Gyung Ja; Jang, Kyoung Soo; Cha, Byeongjin; Kim, In Seon; Myung, Eul Jae; Kim, Jin-Cheol

    2016-01-01

    Restricted usage of chemical nematicides has led to development of environmentally safe alternatives. A culture filtrate of Aspergillus niger F22 was highly active against Meloidogyne incognita with marked mortality of second-stage juveniles (J2s) and inhibition of egg hatching. The nematicidal component was identified as oxalic acid by organic acid analysis and gas chromatography-mass spectroscopy (GC-MS). Exposure to 2 mmol/L oxalic acid resulted in 100% juvenile mortality at 1 day after treatment and suppressed egg hatching by 95.6% at 7 days after treatment. Oxalic acid showed similar nematicidal activity against M. hapla, but was not highly toxic to Bursaphelenchus xylophilus. The fungus was incubated on solid medium and dried culture was used for preparation of a wettable powder-type (WP) formulation as an active ingredient. Two WP formulations, F22-WP10 (ai 10%) and oxalic acid-WP8 (ai 8%), were prepared using F22 solid culture and oxalic acid. In a field naturally infested with M. incognita, application of a mixture of F22-WP10 + oxalic acid-WP8 at 1,000- and 500-fold dilutions significantly reduced gall formation on the roots of watermelon plants by 58.8 and 70.7%, respectively, compared to the non-treated control. The disease control efficacy of the mixture of F22-WP10 + oxalic acid-WP8 was significantly higher than that of a chemical nematicide, Sunchungtan (ai 30% fosthiazate). These results suggest that A. niger F22 can be used as a microbial nematicide for the control of root-knot nematode disease.

  14. Identification of a Novel L-rhamnose Uptake Transporter in the Filamentous Fungus Aspergillus niger

    PubMed Central

    Sloothaak, Jasper; Odoni, Dorett I.; Martins dos Santos, Vitor A. P.; Schaap, Peter J.

    2016-01-01

    The study of plant biomass utilization by fungi is a research field of great interest due to its many implications in ecology, agriculture and biotechnology. Most of the efforts done to increase the understanding of the use of plant cell walls by fungi have been focused on the degradation of cellulose and hemicellulose, and transport and metabolism of their constituent monosaccharides. Pectin is another important constituent of plant cell walls, but has received less attention. In relation to the uptake of pectic building blocks, fungal transporters for the uptake of galacturonic acid recently have been reported in Aspergillus niger and Neurospora crassa. However, not a single L-rhamnose (6-deoxy-L-mannose) transporter has been identified yet in fungi or in other eukaryotic organisms. L-rhamnose is a deoxy-sugar present in plant cell wall pectic polysaccharides (mainly rhamnogalacturonan I and rhamnogalacturonan II), but is also found in diverse plant secondary metabolites (e.g. anthocyanins, flavonoids and triterpenoids), in the green seaweed sulfated polysaccharide ulvan, and in glycan structures from viruses and bacteria. Here, a comparative plasmalemma proteomic analysis was used to identify candidate L-rhamnose transporters in A. niger. Further analysis was focused on protein ID 1119135 (RhtA) (JGI A. niger ATCC 1015 genome database). RhtA was classified as a Family 7 Fucose: H+ Symporter (FHS) within the Major Facilitator Superfamily. Family 7 currently includes exclusively bacterial transporters able to use different sugars. Strong indications for its role in L-rhamnose transport were obtained by functional complementation of the Saccharomyces cerevisiae EBY.VW.4000 strain in growth studies with a range of potential substrates. Biochemical analysis using L-[3H(G)]-rhamnose confirmed that RhtA is a L-rhamnose transporter. The RhtA gene is located in tandem with a hypothetical alpha-L-rhamnosidase gene (rhaB). Transcriptional analysis of rhtA and rha

  15. Inhibition of oxidative phosphorylation for enhancing citric acid production by Aspergillus niger.

    PubMed

    Wang, Lu; Zhang, Jianhua; Cao, Zhanglei; Wang, Yajun; Gao, Qiang; Zhang, Jian; Wang, Depei

    2015-01-16

    The spore germination rate and growth characteristics were compared between the citric acid high-yield strain Aspergillus niger CGMCC 5751 and A. niger ATCC 1015 in media containing antimycin A or DNP. We inferred that differences in citric acid yield might be due to differences in energy metabolism between these strains. To explore the impact of energy metabolism on citric acid production, the changes in intracellular ATP, NADH and NADH/NAD+ were measured at various fermentation stages. In addition, the effects of antimycin A or DNP on energy metabolism and citric acid production was investigated by CGMCC 5751. By comparing the spore germination rate and the extent of growth on PDA plates containing antimycin A or DNP, CGMCC 5751 was shown to be more sensitive to antimycin A than ATCC 1015. The substrate-level phosphorylation of CGMCC 5751 was greater than that of ATCC 1015 on PDA plates with DNP. DNP at tested concentrations had no apparent effect on the growth of CGMCC 5751. There were no apparent effects on the mycelial morphology, the growth of mycelial pellets or the dry cell mass when 0.2 mg L(-1) antimycin A or 0.1 mg L(-1) DNP was added to medium at the 24-h time point. The concentrations of intracellular ATP, NADH and NADH/NAD+ of CGMCC 5751 were notably lower than those of ATCC 1015 at several fermentation stages. Moreover, at 96 h of fermentation, the citric acid production of CGMCC 5751 reached up to 151.67 g L(-1) and 135.78 g L(-1) by adding 0.2 mg L(-1) antimycin A or 0.1 mg L(-1) DNP, respectively, at the 24-h time point of fermentation. Thus, the citric acid production of CGMCC 5751 was increased by 19.89% and 7.32%, respectively. The concentrations of intracellular ATP, NADH and NADH/NAD+ of the citric acid high-yield strain CGMCC 5751 were notably lower than those of ATCC 1015. The excessive ATP has a strong inhibitory effect on citric acid accumulation by A. niger. Increasing NADH oxidation and appropriately reducing the concentration of

  16. Comparative Secretome Analysis of Trichoderma reesei and Aspergillus niger during Growth on Sugarcane Biomass

    PubMed Central

    Borin, Gustavo Pagotto; Sanchez, Camila Cristina; de Souza, Amanda Pereira; de Santana, Eliane Silva; de Souza, Aline Tieppo; Leme, Adriana Franco Paes; Squina, Fabio Marcio; Buckeridge, Marcos; Goldman, Gustavo Henrique; Oliveira, Juliana Velasco de Castro

    2015-01-01

    Background Our dependence on fossil fuel sources and concern about the environment has generated a worldwide interest in establishing new sources of fuel and energy. Thus, the use of ethanol as a fuel is advantageous because it is an inexhaustible energy source and has minimal environmental impact. Currently, Brazil is the world's second largest producer of ethanol, which is produced from sugarcane juice fermentation. However, several studies suggest that Brazil could double its production per hectare by using sugarcane bagasse and straw, known as second-generation (2G) bioethanol. Nevertheless, the use of this biomass presents a challenge because the plant cell wall structure, which is composed of complex sugars (cellulose and hemicelluloses), must be broken down into fermentable sugar, such as glucose and xylose. To achieve this goal, several types of hydrolytic enzymes are necessary, and these enzymes represent the majority of the cost associated with 2G bioethanol processing. Reducing the cost of the saccharification process can be achieved via a comprehensive understanding of the hydrolytic mechanisms and enzyme secretion of polysaccharide-hydrolyzing microorganisms. In many natural habitats, several microorganisms degrade lignocellulosic biomass through a set of enzymes that act synergistically. In this study, two fungal species, Aspergillus niger and Trichoderma reesei, were grown on sugarcane biomass with two levels of cell wall complexity, culm in natura and pretreated bagasse. The production of enzymes related to biomass degradation was monitored using secretome analyses after 6, 12 and 24 hours. Concurrently, we analyzed the sugars in the supernatant. Results Analyzing the concentration of monosaccharides in the supernatant, we observed that both species are able to disassemble the polysaccharides of sugarcane cell walls since 6 hours post-inoculation. The sugars from the polysaccharides such as arabinoxylan and β-glucan (that compose the most external

  17. Modelling growth of Penicillium expansum and Aspergillus niger at constant and fluctuating temperature conditions.

    PubMed

    Gougouli, Maria; Koutsoumanis, Konstantinos P

    2010-06-15

    The growth of Penicillium expansum and Aspergillus niger, isolated from yogurt production environment, was investigated on malt extract agar with pH=4.2 and a(w)=0.997, simulating yogurt, at isothermal conditions ranging from -1.3 to 35 degrees C and from 5 to 42.3 degrees C, respectively. The growth rate (mu) and (apparent) lag time (lambda) of the mycelium growth were modelled as a function of temperature using a Cardinal Model with Inflection (CMI). The results showed that the CMI can describe successfully the effect of temperature on fungal growth within the entire biokinetic range for both isolates. The estimated values of the CMI for mu were T(min)=-5.74 degrees C, T(max)=30.97 degrees C, T(opt)=22.08 degrees C and mu(opt)=0.221 mm/h for P. expansum and T(min)=10.13 degrees C, T(max)=43.13 degrees C, T(opt)=31.44 degrees C, and mu(opt)=0.840 mm/h for A. niger. The cardinal values for lambda were very close to the respective values for mu indicating similar temperature dependence of the growth rate and the lag time of the mycelium growth. The developed models were further validated under fluctuating temperature conditions using various dynamic temperature scenarios. The time-temperature conditions studied included single temperature shifts before or after the end of the lag time and continuous periodic temperature fluctuations. The prediction of growth at changing temperature was based on the assumption that after a temperature shift the growth rate is adopted instantaneously to the new temperature, while the lag time was predicted using a cumulative lag approach. The results showed that when the temperature shifts occurred before the end of the lag, they did not cause any significant additional lag and the observed total lag was very close to the cumulative lag predicted by the model. In experiments with temperature shifts after the end of the lag time, accurate predictions were obtained when the temperature profile included temperatures which were inside the

  18. Characterization and preparation of Aspergillus niger naringinase for debittering citrus juice.

    PubMed

    Ni, Hui; Chen, Feng; Cai, Huinong; Xiao, Anfeng; You, Qi; Lu, Yunzhen

    2012-01-01

    Naringinase from Aspergillus niger was prepared and characterized to evaluate its effectiveness in debittering citrus juice. The enzyme was purified to homogeneity by sulfate fractionation and chromatographies on Q-Sepharose, Sephacryl S-200, and S-100 HR columns, and estimated by gel filtration chromatography (GFC) to have a molecular weight (MW) of 131 kDa, of which its subunit was measured by sodium dodecyl sulfate-polyacrylamide gel electrophoresis to be around 65.5 kDa. The enzyme showed active and stable pH ranges both within 4.5 to 5.0. Its optimal temperature was in the range of 45 to 55 °C. Freeze drying provided an estimated enzymatic recovery of 95.9%, greater than spray drying with the recovery at 55.6%. The freeze-drying powder could retain its enzymatic activity stably at 4 °C for 6 mo. Also, the enzyme in 0.220 U/mL citrus juice could sufficiently remove the naringin for the bitterness. Oral acute toxicity study revealed the maximum tolerated dose (MTD) of the naringinase powder was >10 g/kg in mice. The contents of arsenic (As), lead (Pb), mercury (Hg), the aerobic plate count, and coliform number in the enzyme powder all met the criteria for food use. These characteristics suggest that the naringinase from A. niger is efficient and suitable for debittering the citrus juice, and the process consisting of fermentation, salt precipitation, ion exchange, ultrafiltration, and freeze drying is a promising means to prepare the naringinase for food industry, setting up a strong base to enzymatically debitter citrus juice. This study focused on characterization, preparation, and validation of naringinase from A. niger, which provided useful information on how to prepare, store, and use the naringinase. In addition, this naringinase met the safety standards for food use and showed strong ability to remove the bitter taste from citrus juice, which provided useful information for interested readers, and the food industry. © 2011 Institute of Food

  19. An inducible hydrolase from Aspergillus niger, acting on carbon–carbon bonds, for phlorrhizin and other C-acylated phenols

    PubMed Central

    Minamikawa, T.; Jayasankar, N. P.; Bohm, B. A.; Taylor, I. E. P.; Towers, G. H. N.

    1970-01-01

    1. An inducible enzyme catalysing the hydrolysis of phloretin to form phloroglucinol and phloretic acid has been extracted from the acetone-dried powders of the mycelial felts of an Aspergillus niger strain grown in the presence of phlorrhizin. The enzyme was partially purified by treatment with protamine sulphate, ammonium sulphate fractionation, negative adsorption on tricalcium phosphate gel, and DEAE-cellulose column chromatography. 2. The hydrolytic activity on phloretin appeared to be maximal at about pH9.6. However, the characteristics of the enzyme were studied at pH7.2, because of the lability of the product, phloroglucinol, under alkaline conditions. 3. The apparent Km value at pH7.2 was about 0.3–0.4mm for phloretin and 0.15mm for 3′-methylphloracetophenone. 4. Maximum activity of the enzyme was obtained without the addition of any cofactor or metal ion. The involvement of thiol groups in the reaction was demonstrated by the potent inhibitory action of both heavy-metal ions and p-chloromercuribenzoate. 5. The enzyme showed a rather broad substrate specificity, and some other C-acylated phenols related to phloretin were hydrolysed. It was found that 3′-methylphloracetophenone, phloracetophenone and 2′,4,4′-trihydroxydihydrochalcone were attacked more efficiently than phloretin. We propose the systematic name C-acylphenol acylhydrolase for the enzyme. This enzyme belongs to EC group 3.7.1. PMID:5441377

  20. Synergistic effect of Aspergillus niger and Trichoderma reesei enzyme sets on the saccharification of wheat straw and sugarcane bagasse.

    PubMed

    van den Brink, Joost; Maitan-Alfenas, Gabriela Piccolo; Zou, Gen; Wang, Chengshu; Zhou, Zhihua; Guimarães, Valéria Monteze; de Vries, Ronald P

    2014-10-01

    Plant-degrading enzymes can be produced by fungi on abundantly available low-cost plant biomass. However, enzymes sets after growth on complex substrates need to be better understood, especially with emphasis on differences between fungal species and the influence of inhibitory compounds in plant substrates, such as monosaccharides. In this study, Aspergillus niger and Trichoderma reesei were evaluated for the production of enzyme sets after growth on two "second generation" substrates: wheat straw (WS) and sugarcane bagasse (SCB). A. niger and T. reesei produced different sets of (hemi-)cellulolytic enzymes after growth on WS and SCB. This was reflected in an overall strong synergistic effect in releasing sugars during saccharification using A. niger and T. reesei enzyme sets. T. reesei produced less hydrolytic enzymes after growth on non-washed SCB. The sensitivity to non-washed plant substrates was not reduced by using CreA/Cre1 mutants of T. reesei and A. niger with a defective carbon catabolite repression. The importance of removing monosaccharides for producing enzymes was further underlined by the decrease in hydrolytic activities with increased glucose concentrations in WS media. This study showed the importance of removing monosaccharides from the enzyme production media and combining T. reesei and A. niger enzyme sets to improve plant biomass saccharification.

  1. Removal of heavy metals from contaminated sewage sludge using Aspergillus niger fermented raw liquid from pineapple wastes.

    PubMed

    Del Mundo Dacera, Dominica; Babel, Sandhya

    2008-04-01

    The environmental benefits derived from using citric acid in the removal of heavy metals from contaminated sewage sludge have made it promising as an extracting agent in the chemical extraction process. At present, citric acid is produced commercially by fermentation of sucrose using mutant strains of Aspergillus niger (A. niger), and chemical synthesis. In recent years, various carbohydrates and wastes (such as pineapple wastes) have been considered experimentally, to produce citric acid by A. niger. This study investigated the potential of using A. niger fermented raw liquid from pineapple wastes as a source of citric acid, in extracting chromium (Cr), copper (Cu), lead (Pb), nickel (Ni) and zinc (Zn) from anaerobically digested sewage sludge. Results of the study revealed that metal removal efficiencies varied with pH, forms of metals in sludge and contact time. At pH approaching 4, and contact time of 11 days, A. niger fermented liquid seemed to remove all Cr and Zn while removing 94% of Ni. Moreover, chemical speciation studies revealed that metals which are predominantly in the exchangeable and oxidizable phases seemed to exhibit ease of leachability (e.g., Zn). The by-products of the process such as pineapple pulp and mycelium which are rich in protein, can still be used as animal feed. It can be said therefore that this novel process provides a sustainable way of managing contaminated sewage sludge.

  2. Cloning and characterization of the NADPH cytochrome P450 oxidoreductase gene from the filamentous fungus Aspergillus niger.

    PubMed

    van den Brink, H J; van Zeijl, C M; Brons, J F; van den Hondel, C A; van Gorcom, R F

    1995-08-01

    In this paper, we describe the cloning and molecular characterization of the Aspergillus niger cytochrome P450 reductase (CPR) gene, cprA. Attempts to clone the cprA gene by heterologous hybridization techniques were unsuccessful. Using the polymerase chain reaction (PCR) with degenerate primers based on conserved regions found in cpr genes from other organisms, we were able to isolate a fragment that contained part of the gene. With the aid of this fragment, a genomic fragment containing the entire coding region and 5' and 3' untranslated ends of the cprA gene was isolated and sequenced. The cprA gene was introduced in multiple copies in A. niger strain N402 using the amdS transformation system. One of the resulting transformants, AB2-2, showed a 14-fold increase in CPR activity, indicating that the cloned cprA gene is functional. We analyzed the induction of cprA gene expression by several generally used cytochrome P450 inducers but did not find any induction of cprA gene expression. However, A. niger cprA gene expression could be induced by benzoic acid, which is the substrate of the highly inducible A. niger cytochrome P450 gene, bphA (cyp53). On the basis of a comparison of the deduced protein sequence of the A. niger cprA gene with CPR proteins isolated from other organisms, the structure-function relationship of some conserved regions is discussed.

  3. The opposite roles of agdA and glaA on citric acid production in Aspergillus niger.

    PubMed

    Wang, Lu; Cao, Zhanglei; Hou, Li; Yin, Liuhua; Wang, Dawei; Gao, Qiang; Wu, Zhenqiang; Wang, Depei

    2016-07-01

    Citric acid is produced by an industrial-scale process of fermentation using Aspergillus niger as a microbial cell factory. However, citric acid production was hindered by the non-fermentable isomaltose and insufficient saccharification ability in A. niger when liquefied corn starch was used as a raw material. In this study, A. niger TNA 101ΔagdA was constructed by deletion of the α-glucosidase-encoding agdA gene in A. niger CGMCC 10142 genome using Agrobacterium tumefaciens-mediated transformation. The transformants A. niger OG 1, OG 17, and OG 31 then underwent overexpression of glucoamylase in A. niger TNA 101ΔagdA. The results showed that the α-glucosidase activity of TNA 101ΔagdA was decreased by 62.5 % compared with CGMCC 10142, and isomaltose was almost undetectable in the fermentation broth. The glucoamylase activity of the transformants OG 1 and OG 17 increased by 34.5 and 16.89 % compared with that of TNA 101ΔagdA, respectively. In addition, for the recombinants TNA 101ΔagdA, OG 1 and OG 17, there were no apparent defects in the growth development. Consequently, in comparison with CGMCC 10142, TNA 101ΔagdA and OG 1 decreased the residual reducing sugar by 52.95 and 88.24 %, respectively, and correspondingly increased citric acid production at the end of fermentation by 8.68 and 16.87 %. Citric acid production was further improved by decreasing the non-fermentable residual sugar and increasing utilization rate of corn starch material in A. niger. Besides, the successive saccharification and citric acid fermentation processes were successfully integrated into one step.

  4. Citric acid production from Aspergillus niger MT-4 using hydrolysate extract of the insect Locusta migratoria.

    PubMed

    Taskin, Mesut; Tasar, Gani Erhan; Incekara, Umit

    2013-06-01

    Citric acid (CA) is the most important organic acid used in the food and other industries. Locusta migratoria is an insect species, which has rich nutritional composition (especially protein) and cultivated in some countries. Therefore, the present study investigated the usability of hydrolysate extract of L. migratoria biomass as substrate for the production of CA from Aspergillus niger MT-4. The insect extract (IE) was found to be rich in ash (34.9 g/100 g), protein (35.6 g/100 g) and mineral contents. Yeast extract was found to be the most favorable substrate for biomass production, whereas the maximum production of CA (41.8 g/L) was achieved in the medium containing IE. Besides, uniform pellets with the smallest size (4 mm) were observed in IE medium. It was thought that rich magnesium (6.78 g/100 g) and manganese (1.14 g/100 g) contents of IE increased the production of CA, resulting in the formation of small uniform pellets. This is the first report on the effect of protein-rich insect biomasses on the production of CA. In this regard, L. migratoria biomass was tested for the first time as a CA-production substrate.

  5. Effective bioconversion of sophoricoside to genistein from Fructus sophorae using immobilized Aspergillus niger and Yeast.

    PubMed

    Feng, Chen; Jin, Shuang; Xia, Xin-Xin; Guan, Yue; Luo, Meng; Zu, Yuan-Gang; Fu, Yu-Jie

    2015-01-01

    In this study, sophoricoside from Fructus sophorae was highly bioconversed to genistein by co-immobilized Aspergillus niger and Yeast. Bioconversion conditions for genistein were optimized with single-factor experiments. The optimal conditions were as follows: microbial concentration 1.5 × 10(7) cells/mL, wet weight of microorganisms beads 10.0 g/g material, pH 5, ratio of liquid to solid 25:1 (mL/g), temperature 32 °C and time 24 h. Under these conditions, a 34.45-fold increase in production of genistein was observed with a bioreactor. Moreover, the antioxidant activities of the extracts from the fermented and untreated F. sophorae were 0.287 ± 0.11, 0.384 ± 0.08 mg/mL (IC50) and 1.84 ± 0.13, 1.28 ± 0.25 mmol Fe(II)/g, according to the DPPH test and FRAP assay, respectively. The results indicated that the method described in the current work were valuable procedure for the production of genistein, which is of most importance for industrial scale applications as well as food industry.

  6. Microbial leaching of chromite overburden from Sukinda mines, Orissa, India using Aspergillus niger

    NASA Astrophysics Data System (ADS)

    Biswas, Supratim; Samanta, Saikat; Dey, Rajib; Mukherjee, Siddhartha; Banerjee, Pataki C.

    2013-08-01

    Leaching of nickel and cobalt from two physical grades (S1, 125-190 μm, coarser and S3, 53-75 μm, finer) of chromite overburden was achieved by treating the overburden (2% pulp density) with 21-d culture filtrate of an Aspergillus niger strain grown in sucrose medium. Metal dissolution increases with ore roasting at 600°C and decreasing particle size due to the alteration of microstructural properties involving the conversion of goethite to hematite and the increase in surface area and porosity as evident from X-ray diffraction (XRD), thermogravimetry-differential thermal analysis (DT-TGA), and field emission scanning electron microscopy (FESEM). About 65% Ni and 59% Co were recovered from the roasted S3 ore employing bioleaching against 26.87% Ni and 31.3% Co using an equivalent amount of synthetic oxalic acid under identical conditions. The results suggest that other fungal metabolites in the culture filtrate played a positive role in the bioleaching process, making it an efficient green approach in Ni and Co recovery from lateritic chromite overburden.

  7. [The intergeneric compatibility of heredity and expression for cellulase genomes between Aspergillus niger and Trichoderma reesei].

    PubMed

    Ai, Y; Teng, R; Gao, P; Meng, F; Wang, Z

    1998-06-01

    By using the developed display techniques of cellulase isozymes and the RAPD-PCR analysis guided by a deduced universal sequence of cellulase genes, the polymorphisms of genomic DNA fingerprints and cellulase isozymes were compared among three typical stable recombinants (3a, 3b, A7-1) and their two parents (Aspergillus niger AMS11, Trichoderma reesei QM9414) in order to provide the molecular evidence of gene recombination, to demonstrate the compatibility of heredity and expression of intergeneric genomes, and to assay on the molecular fundamentals of hybridization dominance. The results showed that in these recombinant strains the recombinantal fingerprints of genomic DNA could be stablly hereditary and the expression of recombinantal CMCase (carboxymethylcellulase) and beta GLase (beta-glucosidase) could be compatibly enhanced. The diversity of molecular fundamentals of cellulase hybridization dominance were (1) the compatible co-existence and enhanced expression of some hereditary beta GLase-coding genes from two parents in recombinant 3b; and (2) the compatibly enhancement of expression between the hereditary genes encoding beta GLase and CMCase from two parents, resulting in the dramatic increase of proteins of corresponding isozymes in recombinants 3a and A7-1. Based on these, a proposal model for the double synergism on cellulase activity in vitro and on its biosynthesis in vivo mediated by beta GLase was suggested. A practical method for assaying on the molecular fundamentals and the stability of hybridization dominance of recombinants was thereby established in this study.

  8. Rubrofusarin from Aspergillus niger GTS01-4 and its biological activity

    NASA Astrophysics Data System (ADS)

    Megawati, Dewi, Rizna Triana; Mulyani, Hanny; Maryani, Faiza; Lotullung, Puspa Dewi N.; Minarti

    2017-01-01

    During the research for bioactive secondary metabolites from microorganisms, the terestrial fungi Aspergillus niger GTS01-4 has been investigated for the evaluation of antimicrobial and cytotoxic activities using brine shrimp (Artemia salina) lethality test and MCF-7 cell line. Further chromatographic separation and purification of myselium extract resulted in the isolation identified as rubrofusarin (1). The structure elucidation of isolated compound was performed using 1D-NMR, and LCMS. Furthermore, the cytotoxicity of rubrofusarin (1) was evaluated and resulted with IC50 of 11.51 µg/mL against MCF-7 and LC50 of 368.11 µg/mL against brine shrimp, respectively. However, rubrofusarin (1) showed moderate activity against E. coli, S. aureus, and B. subtilis compared to standard antibiotic, streptomycin. The average zone of inhibition was ranged from 6 to 8 mm at a concentration of 100 µg/disc. These results suggest that rubrofusarin could be a potential candidate in the field of anticancer drug discovery from terrestrial fungi.

  9. Luffa cylindrica sponges as a thermally and chemically stable support for Aspergillus niger lipase.

    PubMed

    Zdarta, Jakub; Jesionowski, Teofil

    2016-05-01

    The use of biopolymer compounds as matrices for enzyme immobilization is currently a focus of increasing interest. In the present work we propose the use of Luffa cylindrica vegetable sponges as a support for the lipase extracted from Aspergillus niger. Effectiveness of immobilization was analyzed using Fourier transform infrared spectroscopy, elemental analysis and the Bradford method. An initial enzyme solution concentration of 1.0 mg/mL and an immobilization time of 12 h were selected as the parameters that produce a system retaining the highest hydrolytic activity (84% of free enzyme). The resulting biocatalyst system also exhibited high thermal and chemical stability, reusability and storage stability, which makes it a candidate for use in a wide range of applications. Kinetic parameters for the native and immobilized lipase were also calculated. The value of the Michaelis-Menten constant for the immobilized lipase (0.47 mM) is higher than for the free enzyme (0.21 mM), which indicates that the adsorbed enzyme exhibits a lower affinity to the substrate than native lipase. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:657-665, 2016. © 2016 American Institute of Chemical Engineers.

  10. Fate and Role of Ammonium Ions during Fermentation of Citric Acid by Aspergillus niger

    PubMed Central

    Papagianni, Maria; Wayman, Frank; Mattey, Michael

    2005-01-01

    Stoichiometric modeling of the early stages of the citric acid fermentation process by Aspergillus niger revealed that ammonium ions combine with a carbon-containing metabolite inside the cell, in a ratio 1:1, to form a nitrogen compound which is then excreted by the mycelium. High-performance liquid chromatography analysis identified glucosamine as the product of the relationship between glucose and ammonium during the early stages of the citric acid fermentation process. Slightly acidic internal pHs, extremely low ammonium ion concentrations inside the cell, and glucosamine synthesis come into direct contradiction with the earlier theory of the ammonium pool inside the cell, regarded as responsible for inhibition of the enzyme phosphofructokinase. At later fermentation stages, when the mycelium is involved in a process of fragmentation and regrowth, the addition of ammonium sulfate leads to a series of events: the formation and secretion of glucosamine in elevated amounts, the short inhibition of citrate synthesis, growth enhancement, the utilization of glucosamine, and finally, the enhancement of citric acid production rates. Obviously, the enzymatic processes underlining the phenomena need to be reexamined. As a by-product of the citric acid fermentation, glucosamine is reported for the first time here. Suitable process manipulations of the system described in this work could lead to successful glucosamine recovery at the point of its highest yield before degradation by the fungus occurs. PMID:16269757

  11. Microencapsulate Aspergillus niger peptidases from agroindustrial waste wheat bran: spray process evaluation and stability.

    PubMed

    Cabral, T P F; Bellini, N C; Assis, K R; Teixeira, C C C; Lanchote, A D; Cabral, H; Freitas, L A P

    2017-08-29

    The aim of this work was to obtain microencapsulated stable Aspergillus niger peptidases by post fermentation spray drying. The enzymatic extract was evaluated before and after spray drying microencapsulation to verify the effects of five different process parameters on the extract enzymatic activity, i.e. air flow, extract feed rate, drying temperature, homogenising time and weight ratio of extract to encapsulation material. The optimal conditions were determined by desirability functions and experimentally confirmed. Additionally, the stability of the microparticles was assessed during 60 days at 4 °C, 25 °C and 40 °C. The results revealed that the microparticles stored at 4 °C retained approximately 100% of their proteolytic activity at nine days of storage. Considering the industrial adaptation of the bioprocess and the prospect of commercial application of the proteases, the evaluation of different parameters for drying enzymes is required as a valuable alternative to obtain biotechnological products with high added value.

  12. Morphological patterns of Aspergillus niger biofilms and pellets related to lignocellulolytic enzyme productivities.

    PubMed

    Villena, G K; Gutiérrez-Correa, M

    2007-09-01

    To study the morphological patterns of Aspergillus niger during biofilm formation on polyester cloth by using cryo-scanning electron microscopy related to lignocellulolytic enzyme productivity. Biofilm and pellet samples obtained from flask cultures were examined at -80 degrees C in a LEO PV scanning electron microscope. Spore adhesion depends on both its rough surface and adhesive substances that form a pad between spore and support. An extracellular matrix surrounding germ tubes and hyphae was also seen. Biofilm mycelia showed an orderly distribution forming surface and inner channels, while pellets showed highly intertwined superficial hyphae and a densely packed deep mycelium. Morphological differences between both types of culture correlated with differences in enzyme volumetric and specific productivities. Biofilm cultures produced higher filter paper cellulase, endoglucanase, beta-glucosidase and xylanase volumetric and specific productivities than submerged cultures. Fungal biofilms are morphologically efficient systems for enzyme production. Favourable physiological aspects are shared with solid state fermentation, but fungal biofilms present better possibilities for process control and scale-up. The results of this study support the importance of morphology in the productivity of fungal submerged processes, placing biofilms in a preferential category.

  13. Production of cellulase by Aspergillus niger biofilms developed on polyester cloth.

    PubMed

    Villena, G K; Gutiérrez-Correa, M

    2006-09-01

    To compare cellulase production by Aspergillus niger ATCC 10864 biofilms on polyester cloth and freely suspended cultures in shaken flasks and microbioreactors of bubble column type. Both shaken flasks and oxygenated microbioreactors containing 40 ml of production medium were used to compare cellulase secretion by free mycelium and biofilm cultures. Free mycelium cultures grew better in flasks than in microbioreactors producing compact and fluffy pellets, respectively, while the opposite was found for biofilm cultures without any visible change in biofilm morphology. Cellulase activities and volumetric productivities attained by biofilms in flask cultures were 70% higher than that produced by free mycelium cultures and threefold higher when biofilms were grown in microbioreactors. Fungal biofilms developed on polyester cloth in both flasks and microbioreactors produce higher cellulase yields and volumetric productivities than free mycelium cultures at lower biomass levels. The results of the present study are of commercial and biological interest. All productivity parameters revealed that fungal biofilms may be used for the production of cellulase and other proteins in various types of bioreactors. Moreover, they may be used as model systems to study differential gene expression related to cell adhesion.

  14. Cloning, Expression, and Characterization of an GHF 11 Xylanase from Aspergillus niger XZ-3S.

    PubMed

    Fu, Guanhua; Wang, Yongtao; Wang, Dandan; Zhou, Chenyan

    2012-12-01

    A xylanase gene (xynZF-2) from the Aspergillus niger XZ-3S was cloned and expressed in Escherichia coli. The coding region of the gene was separated by only one intron with the 68 bp in length. It encoded 225 amino acid residues of a protein with a calculated molecular weight of 24.04 kDa plus a signal peptide of 18 amino acids. The amino acid sequence of the xynZF-2 gene had a high similarity with those of family 11 of glycosyl hydrolases reported from other microorganisms. The mature peptide encoding cDNA was subcloned into pET-28a(+) expression vector. The resultant recombinant plasmid pET-28a-xynZF-2 was transformed into E. coli BL21(DE3), and finally the recombinant strain BL21/xynZF-2 was obtained. A maximum activity of 42.33 U/mg was gained from cellular of E. coli BL21/xynZF-2 induced by IPTG. The optimum temperature and pH for recombinant enzyme which has a good stability in alkaline conditions were 40 °C and 5.0, respectively. Fe(3+) had an active effect on the enzyme obviously.

  15. Expression of an Aspergillus niger xylanase in yeast: Application in breadmaking and in vitro digestion.

    PubMed

    Elgharbi, Fatma; Hmida-Sayari, Aïda; Zaafouri, Youssef; Bejar, Samir

    2015-08-01

    The cDNA of the β-1,4-endoxylanase of Aspergillus niger US368 was cloned and expressed in Pichia pastoris under the constitutive GAP promoter. The maximum activity obtained was 41 U mL(-1), which was about 3-fold higher than that obtained with the native species. The purified enzyme showed a specific activity of 910 U mg(-1) and a molecular mass of 24 kDa. It had an optimal activity at pH 4 and 50 °C, stable in a wide range of pH and in the presence of some detergents and organic solvents. r-XAn11-His6 (recombinant xylanase) was used as an additive in breadmaking. A decrease in water absorption, an increase in dough rising and improvements in volume and specific volume of the bread were recorded. The r-XAn11-His6 was also used in in vitro digestion of barley and wheat bran leading to a decrease of the viscosities and an increase of the reducing sugars and total sugars contents. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Biosynthesis, purification and characterization of endoglucanase from a xylanase producing strain Aspergillus niger B03

    PubMed Central

    Dobrev, Georgi Todorov; Zhekova, Boriana Yordanova

    2012-01-01

    An extracellular endoglucanase was isolated from the culture liquid of xylanase producing strain Aspergillus niger B03. The enzyme was purified to a homogenous form, using consecutive ultrafiltration, anion exchange chromatography, and gel filtration. Endoglucanase was a monomer protein with a molecular weight of 26,900 Da determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and 28,800 Da determined by gel filtration. The optimal pH and temperature values for the enzyme action were 3.5 and 65 °C respectively. Endoglucanase was stable at 40 °C, pH 3.0 for 210 min. The substrate specificity of the enzyme was determined with carboxymethyl cellulose, filter paper, and different glycosides. Endoglucanase displayed maximum activity in the case of carboxymethyl cellulose, with a Km value of 21.01 mg/mL. The substrate specificity and the pattern of substrate degradation suggested that the enzyme is an endoglucanase. Endoglucanase showed a synergism with endoxylanase in corn cobs hydrolysis. PMID:24031805

  17. The effects of bioprocess parameters on extracellular proteases in a recombinant Aspergillus niger B1-D.

    PubMed

    Li, Qiang; Harvey, Linda M; McNeil, Brian

    2008-02-01

    Although host proteases are often considered to have a negative impact upon heterologous protein production by filamentous fungi, relatively little is known about the pattern of their appearance in recombinant fungal bioprocesses. In the present study, we investigated extracellular proteases from a filamentous fungus, Aspergillus niger B1-D, genetically modified to secrete hen egg white lysozyme (HEWL). Our findings indicate that extracellular protease activity is only detected after the carbon source is completely utilised in batch cultures. The proteases are predominantly acid proteases and have optimal temperature for activity at around 45 degrees C. Their activity could be partially inhibited by protease inhibitors, indicating the existence of at least four kinds of proteases in these culture fluids, aspartic-, serine-, cysteine-, and metallo-proteases. Oxygen enrichment does not have any noticeable effects on extracellular protease activity except that the onset of protease activity appears earlier in oxygen enrichment runs. Oxygen enrichment stimulates HEWL production substantially, and we propose that it is related to fungal morphology. Thermal stress imposed by raising process temperature (from 25 to 30 and 35 degrees C) in early exponential phase, led to appearance of protease activity in the medium following the heat shock. Continued cultivation at high temperatures significantly reduced HEWL production, which was associated with increased activity of the extracellular proteases in these cultures.

  18. Involvement of the Protocatechuate Pathway in the Metabolism of Mandelic Acid by Aspergillus niger

    PubMed Central

    Jamaluddin, M.; Rao, P. V. Subba; Vaidyanathan, C. S.

    1970-01-01

    Cell-free extracts of Aspergillus niger UBC 814 grown in the presence of dl-mandelate oxidized both d(−)- and l(+)-mandelate via benzoylformate and benzaldehyde to benzoate. dl-p-Hydroxymandelate was oxidized, presumably through a parallel pathway, to p-hydroxybenzoate. A particulate d(−)-mandelate dehydrogenase and a supernatant fraction l(+)-mandelate dehydrogenase converted their respective substrates to benzoylformate. Both flavine adenine dinucleotide and flavine mononucleotide showed a stimulatory effect on the activity of the l(+)-mandelate dehydrogenase. Benzoylformate was decarboxylated to benzaldehyde by an enzyme requiring thiamine pyrophosphate for maximal activity. Two benzaldehyde dehydrogenases dependent on nicotinamide adenine dinucleotide (NAD) and nicotinamide adenine dinucleotide phosphate (NADP), respectively, for their activity dehydrogenated benzaldehyde to benzoate. In the presence of reduced NADP (NADPH), benzoate was oxidized via p-hydroxybenzoate and protocatechuate. Reduced NAD could not replace NADPH. Sensitive methods of assay for d(−)-mandelate dehydrogenase and benzoylformate decarboxylase are described. The fungal pathway is compared with these systems in bacteria. PMID:4392397

  19. Biodegradation of pharmaceuticals by Rhodococcus rhodochrous and Aspergillus niger by co-metabolism.

    PubMed

    Gauthier, Hervé; Yargeau, Viviane; Cooper, David G

    2010-03-01

    This work investigated the possible fate of pharmaceuticals in the environment that are known to be resistant to biodegradation. A co-metabolism approach, adding a readily degradable carbon source, was used to study the biodegradation of some pharmaceuticals. The pharmaceuticals selected were all known to be micro pollutants and frequently used by humans. The microorganisms used primarily were Rhodococcus rhodochrous, known to co-metabolize difficult to degrade hydrocarbons and Aspergillus niger. Because of the long periods of time required for the degradation experiments after growth had reached the stationary phase, it was found to be necessary to correct for water loss from the media. Co-metabolism of carbamazepine, sulfamethizole and sulfamethoxazole was observed and as much as 20% of these compounds could be removed. Small amounts of stable metabolites were observed during the degradation of some of these drugs and these were different from the metabolites obtained from abiotic degradation. A metabolite arising from the biodegradation of sulfamethoxazole by R.rhodochrous was identified.

  20. Purification and biochemical characterisation of glucoamylase from a newly isolated Aspergillus niger: relation to starch processing.

    PubMed

    Bagheri, Ahmad; Khodarahmi, Reza; Mostafaie, Ali

    2014-10-15

    Herein, we investigate a glucoamylase from newly isolated Aspergillus niger. The enzyme was purified, using fractionation, followed by anion-exchange chromatography and then characterised. The molecular mass of the enzyme was estimated to be ∼62,000Da, using SDS-PAGE and 57151Da, based on mass spectrometry results. The pI of the protein, and optimum pH/temperature of enzyme activity were 4.4, 5 and 70°C, respectively and the kinetic parameters (Km, Vmax and kcat) were determined to be 0.33 (mgml(-1)), 0.095 (Uμg(-1)min(-1)) and 158.3 (s(-1)) for soluble starch, respectively. The glucoamylase nature of the enzyme was also confirmed using TLC and a specific substrate. Metal ions Fe(3+), Al(3+) and Hg(2+) had the highest inhibitory effect, while Ag(2)(+), Ca(2+), Zn(2+), Mg(2+) and Cd(2+) and EDTA showed no significant effect on the enzyme activity. In addition, thermal stability of the enzyme increased in the presence of starch and calcium ion. Based on the results, the purified glucoamylase appeared to be a newly isolated enzyme.

  1. Bioleaching of nickel and cobalt from lateritic chromite overburden using the culture filtrate of Aspergillus niger.

    PubMed

    Biswas, Supratim; Dey, Rajib; Mukherjee, Siddhartha; Banerjee, Pataki C

    2013-08-01

    Extraction of metals (Ni, Co) from chromite overburden of Sukinda mines of Orissa, India, with the culture filtrate of Aspergillus niger was studied. Results showed that the amounts of metals leached varied directly with reaction temperature and period of fermentation. The culture filtrate was analyzed for citric and oxalic acids, and contained only oxalic acid-the concentration of which increased with time. Although this acid played the major role in leaching of metals, other unidentified metabolites present in the culture filtrate influenced the dissolution of the metals significantly. Maximum recovery of metals from raw and roasted ore samples was achieved at 80 °C with the 21-day culture filtrate containing the highest amount of oxalic acid. Under identical experimental conditions, much higher amounts of the metals were leached from roasted ore. Microstructures of the ore particles were studied by scanning electron microscopy and transmission electron microscopy; the bonding behaviors of metal compounds were identified by Fourier transform infrared spectroscopy which showed that the metals were leached after chelation with oxalic acid.

  2. An acidic pectin lyase from Aspergillus niger with favourable efficiency in fruit juice clarification.

    PubMed

    Xu, S X; Qin, X; Liu, B; Zhang, D Q; Zhang, W; Wu, K; Zhang, Y H

    2015-02-01

    The pectin lyase gene pnl-zj5a from Aspergillus niger ZJ5 was identified and expressed in Pichia pastoris. PNL-ZJ5A was purified by ultrafiltration, anion exchange and gel chromatography. The Km and Vmax values determined using citrus pectin were 0.66 mg ml(-1) and 32.6 μmol min(-1) mg(-1) , respectively. PNL-ZJ5A exhibited optimal activity at 43°C and retained activity over 25-50°C. PNL-ZJ5A was optimally active at pH 5 and effective in apple juice clarification. Compared with controls, PNL-ZJ5A increased the fruit juice yield significantly. Furthermore, PNL-ZJ5A reduced the viscosity of apple juice by 38.8% and increased its transmittance by 86.3%. PNL-ZJ5A combined with a commercial pectin esterase resulted in higher juice volume. © 2014 The Society for Applied Microbiology.

  3. Production of catalases by Aspergillus niger isolates as a response to pollutant stress by heavy metals

    SciTech Connect

    Buckova, M.; Godocikova, J.; Simonovicova, A.; Polek, B.

    2005-04-15

    Isolates of Aspergillus niger, selected from the coal dust of a mine containing arsenic (As; 400 mg/kg) and from the river sediment of mine surroundings (As, 1651 mg/kg, Sb, 362 mg/kg), growing in minimal nitrate medium in the phase of hyphal development and spore formation, exhibited much higher levels of total catalase activity than the same species from the culture collection or a culture adapted to soil contaminated with As (5 mg/L). Electrophoretic resolution of catalases in cell-free extracts revealed three isozymes of catalases and production of individual isozymes was not significantly affected by stress environments. Exogenously added stressors (As{sup 5+}, Cd{sup 2+}, Cu{sup 2+}) at final concentrations of 25 and 50 mg/L and H{sub 2}O{sub 2} (20 or 40 m(M)) mostly stimulated production of catalases only in isolates from mines surroundings, and H{sub 2}O{sub 2} and Hg{sup 2+} caused the disappearance of the smallest catalase I. Isolates exhibited a higher tolerance of the toxic effects of heavy metals and H{sub 2}O{sub 2}, as monitored by growth, than did the strain from the culture collection.

  4. Evaluation of free and immobilized Aspergillus niger NRC1ami pectinase applicable in industrial processes.

    PubMed

    Esawy, Mona A; Gamal, Amira A; Kamel, Zeinat; Ismail, Abdel-Mohsen S; Abdel-Fattah, Ahmed F

    2013-02-15

    The Aspergillus niger NRC1ami pectinase was evaluated according to its hydrolysis efficiency of dry untreated orange peels (UOP), HCl-treated orange peels and NaOH-treated orange peels (HOP and NOP). Pectinase was entrapped in polyvinyl alcohol (PVA) sponge and the optimum pH and temperature of the free and immobilized enzymes were shifted from 4, 40 °C to 6, 50 °C respectively. The study of pH stability of free and immobilized pectinase showed that the immobilization process protected the enzyme strongly from severe alkaline pHs. The immobilization process improved the enzyme thermal stability to great instant. The unique feature of the immobilization process is its ability to solve the orange juice haze problem completely. Immobilized enzyme was reused 12 times in orange juice clarification with 9% activity loss from the original activity. Maximum reaction rate (V(max)) and Michaelis-Menten constant (K(m)) of the partially purified form were significantly changed after immobilization.

  5. Synthesis of disaccharides using β-glucosidases from Aspergillus niger, A. awamori and Prunus dulcis.

    PubMed

    da Silva, Ayla Sant'Ana; Molina, Javier Freddy; Teixeira, Ricardo Sposina Sobral; Valdivieso Gelves, Luis G; Bon, Elba P S; Ferreira-Leitão, Viridiana S

    2017-08-01

    Glucose conversion into disaccharides was performed with β-glucosidases from Prunus dulcis (β-Pd), Aspergillus niger (β-An) and A. awamori (β-Aa), in reactions containing initial glucose of 700 and 900 g l(-1). The reactions' time courses were followed regarding glucose and product concentrations. In all cases, there was a predominant formation of gentiobiose over cellobiose and also of oligosaccharides with a higher molecular mass. For reactions containing 700 g glucose l(-1), the final substrate conversions were 33, 38, and 23.5% for β-An, β-Aa, and β-Pd, respectively. The use of β-An yielded 103 g gentiobiose l(-1) (15.5% yield), which is the highest reported for a fungal β-glucosidase. The increase in glucose concentration to 900 g l(-1) resulted in a significant increase in disaccharide synthesis by β-Pd, reaching 128 g gentiobiose l(-1) (15% yield), while for β-An and β-Aa, there was a shift toward the synthesis of higher oligosaccharides. β-Pd and the fungal β-An and β-Aa β-glucosidases present quite dissimilar kinetics and selective properties regarding the synthesis of disaccharides; while β-Pd showed the highest productivity for gentiobiose synthesis, β-An presented the highest specificity.

  6. Effect of Aspergillus niger xylanase on dough characteristics and bread quality attributes.

    PubMed

    Ahmad, Zulfiqar; Butt, Masood Sadiq; Ahmed, Anwaar; Riaz, Muhammad; Sabir, Syed Mubashar; Farooq, Umar; Rehman, Fazal Ur

    2014-10-01

    The present study was conducted to investigate the impact of various treatments of xylanase produced by Aspergillus niger applied in bread making processes like during tempering of wheat kernels and dough mixing on the dough quality characteristics i.e. dryness, stiffness, elasticity, extensibility, coherency and bread quality parameters i.e. volume, specific volume, density, moisture retention and sensory attributes. Different doses (200, 400, 600, 800 and 1,000 IU) of purified enzyme were applied to 1 kg of wheat grains during tempering and 1 kg of flour (straight grade flour) during mixing of dough in parallel. The samples of wheat kernels were agitated at different intervals for uniformity in tempering. After milling and dough making of both types of flour (having enzyme treatment during tempering and flour mixing) showed improved dough characteristics but the improvement was more prominent in the samples receiving enzyme treatment during tempering. Moreover, xylanase decreased dryness and stiffness of the dough whereas, resulted in increased elasticity, extensibility and coherency and increase in volume & decrease in bread density. Xylanase treatments also resulted in higher moisture retention and improvement of sensory attributes of bread. From the results, it is concluded that dough characteristics and bread quality improved significantly in response to enzyme treatments during tempering as compared to application during mixing.

  7. Overexpression of isocitrate lyase-glyoxylate bypass influence on metabolism in Aspergillus niger.

    PubMed

    Meijer, S; Otero, J; Olivares, R; Andersen, M R; Olsson, L; Nielsen, J

    2009-03-01

    In order to improve the production of succinate and malate by the filamentous fungus Aspergillus niger the activity of the glyoxylate bypass pathway was increased by over-expression of the isocitrate lyase (icl) gene. The hypothesis was that when isocitrate lyase was up-regulated the flux towards glyoxylate would increase, leading to excess formation of malate and succinate compared to the wild-type. However,metabolic network analysis showed that an increased icl expression did not result in an increased glyoxylate bypass flux. The analysis did show a global response with respect to gene expression, leading to an increased flux through the oxidative part of the TCA cycle. Instead of an increased production of succinate and malate, a major increase in fumarate production was observed. The effect of malonate, a competitive inhibitor of succinate dehydrogenase (SDH), on the physiological behaviour of the cells was investigated. Inhibition of SDH was expected to lead to succinate production, but this was not observed. There was an increase in citrate and oxalate production in the wild-type strain. Further more, in the strain with over-expression of icl the organic acid production shifted from fumarate towards malate production when malonate was added to the cultivation medium. Overall,the icl over-expression and malonate addition had a significant impact on metabolism and on organic acid production profiles. Although the expected succinate and malate formation was not observed, a distinct and interesting production of fumarate and malate was found.

  8. Enhancement of invertase production by Aspergillus niger OZ-3 using low-intensity static magnetic fields.

    PubMed

    Taskin, Mesut; Esim, Nevzat; Genisel, Mucip; Ortucu, Serkan; Hasenekoglu, Ismet; Canli, Ozden; Erdal, Serkan

    2013-01-01

    The aim of this study is to investigate the effect of low-intensity static magnetic fields (SMFs) on invertase activity and growth on different newly identified molds. The most positive effect of SMFs on invertase activity and growth was observed for Aspergillus niger OZ-3. The submerged production of invertase was performed with the spores obtained at the different exposure times (120, 144, 168, and 196 hr) and magnetic field intensities (0.45, 3, 5, 7, and 9 mT). The normal magnetic field of the laboratory was assayed as 0.45 mT (control). Optimization of magnetic field intensity and exposure time significantly increased biomass production and invertase activity compared to 0.45 mT. The maximum invertase activity (51.14 U/mL) and biomass concentration (4.36 g/L) were achieved with the spores obtained at the 144 hr exposure time and 5 mT magnetic field intensity. The effect of low-intensity static magnetic fields (SMFs) on invertase activities of molds was investigated for the first time in the present study. As an additional contribution, a new hyper-invertase-producing mold strain was isolated.

  9. Hydroxylation of 1,8-cineole by Mucor ramannianus and Aspergillus niger.

    PubMed

    Ramos, Aline de Souza; Ribeiro, Joyce Benzaquem; Teixeira, Bruna Gomes; Ferreira, José Luiz Pinto; Silva, Jefferson Rocha de A; Ferreira, Alexandre do Amaral; de Souza, Rodrigo Octavio Mendonça Alves; Amaral, Ana Claudia F

    2015-03-01

    The monoterpenoid 1,8-cineole is obtained from the leaves of Eucalyptus globulus and it has important biological activities. It is a cheap natural substrate because it is a by-product of the Eucalyptus cultivation for wood and pulp production. In this study, it was evaluated the potential of three filamentous fungi in the biotransformation of 1,8-cineole. The study was divided in two steps: first, reactions were carried out with 1,8-cineole at 1 g/L for 24 h; afterwards, reactions were carried out with substrate at 5 g/L for 5 days. The substrate was hydroxylated into 2-exo-hydroxy-1,8-cineole and 3-exo-hydroxy-1,8-cineole by fungi Mucor ramannianus and Aspergillus niger with high stereoselectivity. Trichoderma harzianum was also tested but no transformation was detected. M. ramannianus led to higher than 99% of conversion within 24 h with a starting high substrate concentration (1 g/L). When substrate was added at 5 g/L, only M. ramannianus was able to catalyze the reaction, but the conversion level was 21.7% after 5 days. Both products have defined stereochemistry and could be used as chiral synthons. Furthermore, biological activity has been described for 3-exo-hydroxy-1,8-cineol. To the best of our knowledge, this is the first report on the use of M. ramannianus in this reaction.

  10. Continuous production of cheese by immobilized milk-clotting protease from aspergillus niger MC4

    PubMed

    Channe; Shewale

    1998-11-01

    Milk clotting protease from Aspergillus niger MC4 immobilized on glycidyl methacrylate-pentaerythritol triacrylate copolymer GP4 was used for continuous production of cheese using a packed bed reactor. Factors affecting the hydrolysis of kappa-casein and clot formation were studied. Acidified milk (pH 5.8) preincubated at 37 degreesC when passed through the column at a flow rate of 80 mL/min attained the required degree of hydrolysis of kappa-casein for the coagulation in a single pass. Fortification of the hydrolyzed milk with CaCl2 and FeCl3 to a final concentration of 0.01 and 0.02 M, respectively, and incubation of fortified milk at 60 degreesC for 2 h resulted in a hard cake of cheese. The yield of raw cheese was 28 g/100 mL of milk. The immobilized milk-clotting protease was used for 60 days (8 h/day) without any loss in productivity.

  11. [Mixed invasive fungal infection due to Rhizomucor pusillus and Aspergillus niger in an immunocompetent patient].

    PubMed

    Pozo-Laderas, Juan Carlos; Pontes-Moreno, Antonio; Robles-Arista, Juan Carlos; Bautista-Rodriguez, M Dolores; Candau-Alvarez, Alberto; Caro-Cuenca, Maria Teresa; Linares-Sicilia, María José

    2015-01-01

    Mucormycosis infections are rare in immunocompetent patients, and very few cases of mucormycosis associated with aspergillosis in non-haematological patients have been reported. A 17-year-old male, immunocompetent and without any previously known risk factors, was admitted to hospital due to a seizure episode 11 days after a motorcycle accident. He had a complicated clinical course as he had a mixed invasive fungal infection with pulmonary involvement due to Aspergillus niger and disseminated mucormycosis due to Rhizomucor pusillus (histopathological and microbiological diagnosis in several non-contiguous sites). He was treated with liposomal amphotericin B for 7 weeks (total cumulative dose >10 g) and required several surgical operations. The patient survived and was discharged from ICU after 5 months and multiple complications. Treatment with liposomal amphotericin B and aggressive surgical management achieved the eradication of a mixed invasive fungal infection. However, we emphasise the need to maintain a higher level of clinical suspicion and to perform microbiological techniques for early diagnosis of invasive fungal infections in non-immunocompromised patients, in order to prevent spread of the disease and the poor prognosis associated with it. Copyright © 2013 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  12. New approach for selecting pectinase producing mutants of Aspergillus niger well adapted to solid state fermentation.

    PubMed

    Antier, P; Minjares, A; Roussos, S; Viniegra-González, G

    1993-01-01

    The aim of this paper is to review and study a new approach for improving strains of Aspergillus niger specially adapted to produce pectinases by Solid State Fermentation (SSF) with materials having low levels of water activity (a(w)), i.e., coffee pulp. Special emphasis is placed on the use of two antimetabolic compounds: 2-deoxy-glucose (DG) and 2,4-dinitro-phenol (DNP) combined with a water depressant (ethylene glycol = EG) in order to put strong selection pressures on UV treated spores from parental strain C28B25 isolated from a coffee plantation. Such a strain was found to be DG sensitive. Results suggested the existence of a reciprocal relation between adaptation of isolated strains to SSF or to Submerged Fermentation (SmF) systems. Preliminary physiological analysis of isolated strains showed that at least some few initially DG resistant mutants could revert to DG sensitive phenotype but conserving increased pectinase production. Also it was found that phenotype for DNP resistance could be associated to changes of DG resistance. Finally, it was found that low levels of a(w) produced by adding 15% EG to agar plates, were a significant selection factor for strains well adapted to SSF system.

  13. Effect of Trace Elements on Citric Acid Fermentation by Aspergillus niger

    PubMed Central

    Sánchez-Marroquín, A.; Carreño, R.; Ledezma, M.

    1970-01-01

    Citric acid yields of 98.7% (sugar consumption basis) were reached in shaker flasks with mutant UV-ET-71-15 of Aspergillus niger in a resin-treated sucrose medium of the following composition (g/100 ml): sucrose, 14.0; NH4NO3, 0.20; KH2PO4, 0.10; MgSO4·7H2O, 0.025; and (mg/liter): FeSO4, 0.15 to 0.75; ZnSO4, 0.10; and CuSO4, 0.01. Yields of 75% were obtained in medium with resin-treated clarified syrup and 68% with ferrocyanide-treated blackstrap molasses. Optimal conditions included selection of appropriate pellets as inoculum at 3%, pH of 4.5, temperature at 30 C, agitation at 250 rev/min, and fermentation time of 8 days. The mutant tolerated high concentrations of trace elements. PMID:5492439

  14. Fluoride-tolerant mutants of Aspergillus niger show enhanced phosphate solubilization capacity.

    PubMed

    Silva, Ubiana de Cássia; Mendes, Gilberto de Oliveira; Silva, Nina Morena R M; Duarte, Josiane Leal; Silva, Ivo Ribeiro; Tótola, Marcos Rogério; Costa, Maurício Dutra

    2014-01-01

    P-solubilizing microorganisms are a promising alternative for a sustainable use of P against a backdrop of depletion of high-grade rock phosphates (RPs). Nevertheless, toxic elements present in RPs, such as fluorine, can negatively affect microbial solubilization. Thus, this study aimed at selecting Aspergillus niger mutants efficient at P solubilization in the presence of fluoride (F-). The mutants were obtained by exposition of conidia to UV light followed by screening in a medium supplemented with Ca3(PO4)2 and F-. The mutant FS1-555 showed the highest solubilization in the presence of F-, releasing approximately 70% of the P contained in Ca3(PO4)2, a value 1.7 times higher than that obtained for the wild type (WT). The mutant FS1-331 showed improved ability of solubilizing fluorapatites, increasing the solubilization of Araxá, Catalão, and Patos RPs by 1.7, 1.6, and 2.5 times that of the WT, respectively. These mutants also grew better in the presence of F-, indicating that mutagenesis allowed the acquisition of F- tolerance. Higher production of oxalic acid by FS1-331 correlated with its improved capacity for RP solubilization. This mutant represents a significant improvement and possess a high potential for application in solubilization systems with fluoride-rich phosphate sources.

  15. Biodiesel Production by Aspergillus niger Lipase Immobilized on Barium Ferrite Magnetic Nanoparticles

    PubMed Central

    El-Batal, Ahmed I.; Farrag, Ayman A.; Elsayed, Mohamed A.; El-Khawaga, Ahmed M.

    2016-01-01

    In this study, Aspergillus niger ADM110 fungi was gamma irradiated to produce lipase enzyme and then immobilized onto magnetic barium ferrite nanoparticles (BFN) for biodiesel production. BFN were prepared by the citrate sol-gel auto-combustion method and characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR) and scanning electron microscopy with energy dispersive analysis of X-ray (SEM/EDAX) analysis. The activities of free and immobilized lipase were measured at various pH and temperature values. The results indicate that BFN–Lipase (5%) can be reused in biodiesel production without any treatment with 17% loss of activity after five cycles and 66% loss in activity in the sixth cycle. The optimum reaction conditions for biodiesel production from waste cooking oil (WCO) using lipase immobilized onto BFN as a catalyst were 45 °C, 4 h and 400 rpm. Acid values of WCO and fatty acid methyl esters (FAMEs) were 1.90 and 0.182 (mg KOH/g oil), respectively. The measured flash point, calorific value and cetane number were 188 °C, 43.1 MJ/Kg and 59.5, respectively. The cloud point (−3 °C), pour point (−9 °C), water content (0.091%) and sulfur content (0.050%), were estimated as well. PMID:28952576

  16. Formation of beta-fructosyl compounds of pyridoxine in growing culture of Aspergillus niger.

    PubMed

    Suzuki, Y; Uchida, K

    1993-06-01

    Two pyridoxine compounds were found to be formed in a culture filtrate of Aspergillus niger and A. sydowi, when grown in a medium containing sucrose and pyridoxine. Each of the two compounds I and II was obtained as a white powdered preparation by preparative paper chromatography, gel filtration on Toyopearl HW-40S and Sephadex G-10 columns, DEAE-cellulose column chromatography, and lyophilization. Compounds I and II were identified as 5'-O-(beta-D-fructofuranosyl)-pyridoxine and 5'-O-[beta-D-fructofuranosyl-(2-->1)-beta-D-fructofuranosyl]-pyridoxine, on the basis of the various experimental results, viz., elementary analyses, UV, 1H-, and 13C-NMR spectra, products by hydrolysis with acid and yeast beta-D-fructofuranosidase, migration on paper electrophoresis, and Gibbs reaction in the presence and absence of boric acid. Levansucrase from Microbacterium laevaniformans and yeast beta-D-fructofuranosidase did not catalyze the beta-D-fructofuranosyl transfer from sucrose to pyridoxine to give rise to beta-D-fructofuranosyl-pyridoxine.

  17. Improving the Secretory Expression of an α-Galactosidase from Aspergillus niger in Pichia pastoris

    PubMed Central

    Zheng, Xianliang; Fang, Bo; Han, Dongfei; Yang, Wenxia; Qi, Feifei; Chen, Hui; Li, Shengying

    2016-01-01

    α-Galactosidases are broadly used in feed, food, chemical, pulp, and pharmaceutical industries. However, there lacks a satisfactory microbial cell factory that is able to produce α-galactosidases efficiently and cost-effectively to date, which prevents these important enzymes from greater application. In this study, the secretory expression of an Aspergillus niger α-galactosidase (AGA) in Pichia pastoris was systematically investigated. Through codon optimization, signal peptide replacement, comparative selection of host strain, and saturation mutagenesis of the P1’ residue of Kex2 protease cleavage site for efficient signal peptide removal, a mutant P. pastoris KM71H (Muts) strain of AGA-I with the specific P1’ site substitution (Glu to Ile) demonstrated remarkable extracellular α-galactosidase activity of 1299 U/ml upon a 72 h methanol induction in 2.0 L fermenter. The engineered yeast strain AGA-I demonstrated approximately 12-fold higher extracellular activity compared to the initial P. pastoris strain. To the best of our knowledge, this represents the highest yield and productivity of a secreted α-galactosidase in P. pastoris, thus holding great potential for industrial application. PMID:27548309

  18. Influence of mechanical stress and surface interaction on the aggregation of Aspergillus niger conidia.

    PubMed

    Grimm, L H; Kelly, S; Völkerding, I I; Krull, R; Hempel, D C

    2005-12-30

    Productivity of fungal cultures is closely linked with their morphologic development. Morphogenesis of coagulating filamentous fungi, like Aspergillus niger, starts with aggregation of conidia, also denominated as spores. Several parameters are presumed to control this event, but little is known about their mode of action. Rational process optimization requires models that mirror the underlying reaction mechanisms. An approach in this regard is suggested and supported by experimental data. Aggregation kinetics was examined for the first 15 h of cultivation under different cultivation conditions. Mechanical stress was considered as well as pH-dependent surface interaction. Deliberations were based on a two-step aggregation mechanism. The first aggregation step is only affected by the pH-value, not by the fluid dynamic conditions in the bioreactor. The second aggregation step, in contrast, depends on the pH-value as well as on agitation and aeration induced power input. For the given experimental set-up, agitation had much more influence than aeration. In addition, hyphal growth rate was determined to be the driving force for the second aggregation step.

  19. The role of initial spore adhesion in pellet and biofilm formation in Aspergillus niger.

    PubMed

    Priegnitz, Bert-Ewald; Wargenau, Andreas; Brandt, Ulrike; Rohde, Manfred; Dietrich, Sylvia; Kwade, Arno; Krull, Rainer; Fleissner, André

    2012-01-01

    Fungi grow on a great variety of organic and inorganic materials. Colony establishment and growth on solid surfaces require adhesion of spores and hyphae to the substrate, while cell-to-cell interactions among spores and/or hyphae are a prerequisite for the development of three-dimensional mycelial structures such as pellets or biofilms. Surface adherence has been described as a two-step process, comprised of the initial attachment of ungerminated conidia followed by further adhesion of the forming germ tubes and growing hyphae. In the present study, we analyzed the contribution of adhesion of ungerminated spores to pellet and biofilm formation in Aspergillus niger. Mutants deficient in melanin biosynthesis were constructed by the deletion of the alb1 gene, encoding a polyketide synthase essential for pigment biosynthesis. Δalb1 conidia have an altered surface structure and changed physicochemical surface properties. Spore aggregation in liquid culture as well as spore surface attachment differ between the wild type and the mutant in a pH-dependent manner. In liquid culture further pellet formation is unaffected by altered spore-spore interactions, indicating that germ tube and hyphal adherence can compensate for deficiencies in the initial step of spore attachment. In contrast, under conditions promoting adhesion of Δalb1 conidia to polymer surfaces the mutant forms more stable biofilms than the wild type, suggesting that initial spore adhesion supports sessile growth.

  20. Immobilization of Aspergillus niger tannase by microencapsulation and its kinetic characteristics.

    PubMed

    Yu, Xiaowei; Li, Yongquan; Wang, Chunxia; Wu, Dan

    2004-10-01

    Tannase from Aspergillus niger was microcapsulated with a coacervate calcium alginate membrane surrounding a liquid core. The activity yield was 36.8% under the optimum conditions of immobilization, namely 6 g/litre sodium alginate and 0.18 M CaCl(2). The optimum pH and temperature for free and immobilized tannase were 5.0 and 30 degrees C, and 6.0 and 40 degrees C, respectively. The pH stability, as well as thermal stability, was improved significantly after microencapsulation. K(m) values for the free and immobilized enzyme were 0.011 and 0.041 microM respectively. V(max) values changed from 416 to 131 micromol x min(-1) x mg(-1) upon immobilization. The kinetic parameters for free and immobilized tannase were also determined. The immobilized tannase was stable enough to be used for up to 15 runs. These kinetic characteristics of the immobilized tannase show more promise for industrial application than those of the free enzyme.

  1. Fluoride-Tolerant Mutants of Aspergillus niger Show Enhanced Phosphate Solubilization Capacity

    PubMed Central

    Silva, Ubiana de Cássia; Mendes, Gilberto de Oliveira; Silva, Nina Morena R. M.; Duarte, Josiane Leal; Silva, Ivo Ribeiro; Tótola, Marcos Rogério; Costa, Maurício Dutra

    2014-01-01

    P-solubilizing microorganisms are a promising alternative for a sustainable use of P against a backdrop of depletion of high-grade rock phosphates (RPs). Nevertheless, toxic elements present in RPs, such as fluorine, can negatively affect microbial solubilization. Thus, this study aimed at selecting Aspergillus niger mutants efficient at P solubilization in the presence of fluoride (F−). The mutants were obtained by exposition of conidia to UV light followed by screening in a medium supplemented with Ca3(PO4)2 and F−. The mutant FS1-555 showed the highest solubilization in the presence of F−, releasing approximately 70% of the P contained in Ca3(PO4)2, a value 1.7 times higher than that obtained for the wild type (WT). The mutant FS1-331 showed improved ability of solubilizing fluorapatites, increasing the solubilization of Araxá, Catalão, and Patos RPs by 1.7, 1.6, and 2.5 times that of the WT, respectively. These mutants also grew better in the presence of F−, indicating that mutagenesis allowed the acquisition of F− tolerance. Higher production of oxalic acid by FS1-331 correlated with its improved capacity for RP solubilization. This mutant represents a significant improvement and possess a high potential for application in solubilization systems with fluoride-rich phosphate sources. PMID:25310310

  2. Transformation of rutin to antiproliferative quercetin-3-glucoside by Aspergillus niger.

    PubMed

    You, Hyun Ju; Ahn, Hyung Jin; Ji, Geun Eog

    2010-10-27

    The flavonol quercetin in plants and foods occurs predominantly in the form of glycoside whose sugar moiety affects the bioavailability and the mechanism of its biological activities. The antiproliferative activities of quercetin derivatives such as quercetin aglycone, quercetin-3-β-D-glucoside (Q3G), and rutin were compared using six different cancer cell lines including colon, breast, hepatocellular, and lung cancer. The IC50 value of Q3G ranged between 15 and 25 μM in HT-29, HCT 116, MCF-7, HepG2, and A549 cells. In these five cell lines, Q3G showed the most potent growth inhibition, whereas rutin showed the least potency. Transformation of rutin to Q3G was conducted by controlling α-L-rhamnosidase and β-D-glucosidase activities from crude enzyme extract of Aspergillus niger. Carbon sources during culture and transformation conditions such as pH, temperature, and heat-stability were optimized. After 4 h biotransformation, 99% of rutin was transformed to Q3G and no quercetin was detected. This study presented an efficient biotransformation for the conversion of rutin to Q3G which was newly shown to have more potent antiproliferative effect than quercetin and rutin.

  3. [Influence of amaranth on the production of alpha-amylase using Aspergillus niger NRRL 3112].

    PubMed

    Mariani, D D; Lorda, G; Balatti, A P

    2000-01-01

    In this paper the influence of the amaranth seed meal and the aeration conditions on the alpha-amylase production by Aspergillus niger NRRL 3112 were studied. The assays of selection of culture medium were carried out in a rotary shaker at 250 rpm and 2.5 cm stroke. The aeration conditions were studied in a mechanically stirred fermentor New Brunswick type. A concentration of alpha-amylase of 2750 U.Dun/ml was achieved at 120 h with a dry weight of 8.0 g/l, using a base medium with 5.0 g/l Amaranthus cruentus seed meal. In the experiment performed in a New Brunswick fermentor, the highest value was 2806 U.Dun/ml. This result was obtained after 120 h, operating at 300 rpm and an airflow of 1 l/l. min. in a limited dissolved oxygen concentration. It was determined that the increase in the agitation rate was not favorable to the enzyme production, despite that an increase was verified in the dissolved oxygen. The morphology of the microorganism, in long and ramified hyphae, was the critical factor to obtain higher levels of alpha-amylase.

  4. Production of Aspergillus niger pectolytic enzymes by solid state bioprocessing of apple pomace.

    PubMed

    Berovic, M; Ostroversnik, H

    1997-02-28

    The aim of this work was to develop a low cost process for apple pomace utilisation. Accordingly this production of pectynolitic enzymes based on solid state bioprocessing of this actual waste, was developed. Production of pectolytic enzymes of Aspergillus niger, pectinesterase and polygalacturonase as well as the activity of pectolytic enzymatic complex by solid state bioprocessing were studied. The results of preliminary substrate optimization, on open trays in laboratory scale experiments, were transferred to 15 1 horizontal solid state stirred tank reactor (HSS STR). In situ sterilization of solid substrate with periodical mixing was used. Secondary raw material, apple pomace the waste from food and agriculture industry combined with soya flour, wheat bran and simple mineral salts was utilised. Various substrate moistures were studied. Process parameters such as inoculation, influence of mixing, aeration, temperature and moisture content on pectolytic enzymes production were studied. Maximal amounts of 15 g kg-1 of solid medium of polygalacturonase, 200 mg kg-1 pectinesterase at activity up to 900 AJDA U ml-1 of enzyme mixture was obtained on average.

  5. Influence of dietary components on Aspergillus niger prolyl endoprotease mediated gluten degradation.

    PubMed

    Montserrat, Veronica; Bruins, Maaike J; Edens, Luppo; Koning, Frits

    2015-05-01

    Celiac disease (CD) is caused by intolerance to gluten. Oral supplementation with enzymes like Aspergillus niger propyl-endoprotease (AN-PEP), which can hydrolyse gluten, has been proposed to prevent the harmful effects of ingestion of gluten. The influence of meal composition on AN-PEP activity was investigated using an in vitro model that simulates stomach-like conditions. AN-PEP optimal dosage was 20 proline protease units (PPU)/g gluten. The addition of a carbonated drink strongly enhanced AN-PEP activity because of its acidifying effect. While fat did not affect gluten degradation by AN-PEP, the presence of food proteins slowed down gluten detoxification. Moreover, raw gluten was degraded more efficiently by AN-PEP than baked gluten. We conclude that the meal composition influences the amount of AN-PEP needed for gluten elimination. Therefore, AN-PEP should not be used to replace a gluten free diet, but rather to support digestion of occasional and/or inadvertent gluten consumption.

  6. Immobilization of Aspergillus niger lipase on chitosan-coated magnetic nanoparticles using two covalent-binding methods.

    PubMed

    Osuna, Yolanda; Sandoval, José; Saade, Hened; López, Raúl G; Martinez, José L; Colunga, Edith M; de la Cruz, Gabriela; Segura, Elda P; Arévalo, Fernando J; Zon, María A; Fernández, Héctor; Ilyina, Anna

    2015-08-01

    Aspergillus niger lipase immobilization by covalent binding on chitosan-coated magnetic nanoparticles (CMNP), obtained by one-step co-precipitation, was studied. Hydroxyl and amino groups of support were activated using glycidol and glutaraldehyde, respectively. Fourier transform infrared spectrometry, high-resolution transmission electron microscopy and thermogravimetric analysis confirmed reaction of these coupling agents with the enzyme and achievement of a successful immobilization. The derivatives showed activities of 309.5 ± 2.0 and 266.2 ± 2.8 U (g support)(-1) for the CMNP treated with glutaraldehyde and with glycidol, respectively. Immobilization enhanced the enzyme stability against changes of pH and temperature, compared to free lipase. Furthermore, the kinetic parameters K m and V max were determined for the free and immobilized enzyme. K m value quantified for enzyme immobilized by means of glutaraldehyde was 1.7 times lowers than for free lipase. High storage stability during 50 days was observed in the immobilized derivatives. Finally, immobilized derivatives retained above 80% of their initial activity after 15 hydrolytic cycles. The immobilized enzyme can be applied in various biotechnological processes involving magnetic separation.

  7. Quantitative proteomics reveals the mechanism and consequence of gliotoxin-mediated dysregulation of the methionine cycle in Aspergillus niger.

    PubMed

    Manzanares-Miralles, Lara; Sarikaya-Bayram, Özlem; Smith, Elizabeth B; Dolan, Stephen K; Bayram, Özgür; Jones, Gary W; Doyle, Sean

    2016-01-10

    Gliotoxin (GT) is a redox-active metabolite, produced by Aspergillus fumigatus, which inhibits the growth of other fungi. Here we demonstrate how Aspergillus niger responds to GT exposure. Quantitative proteomics revealed that GT dysregulated the abundance of 378 proteins including those involved in methionine metabolism and induced de novo abundance of two S-adenosylmethionine (SAM)-dependent methyltransferases. Increased abundance of enzymes S-adenosylhomocysteinase (p=0.0018) required for homocysteine generation from S-adenosylhomocysteine (SAH), and spermidine synthase (p=0.0068), involved in the recycling of Met, was observed. Analysis of Met-related metabolites revealed significant increases in the levels of Met and adenosine, in correlation with proteomic data. Methyltransferase MT-II is responsible for bisthiobis(methylthio)gliotoxin (BmGT) formation, deletion of MT-II abolished BmGT formation and led to increased GT sensitivity in A. niger. Proteomic analysis also revealed that GT exposure also significantly (p<0.05) increased hydrolytic enzyme abundance, including glycoside hydrolases (n=22) and peptidases (n=16). We reveal that in an attempt to protect against the detrimental affects of GT, methyltransferase-mediated GT thiomethylation alters cellular pathways involving Met and SAM, with consequential dysregulation of hydrolytic enzyme abundance in A. niger. Thus, it provides new opportunities to exploit the response of GT-naïve fungi to GT.

  8. Aspergillus niger PA2: a novel strain for extracellular biotransformation of L-tyrosine into L-DOPA.

    PubMed

    Agarwal, Pragati; Pareek, Nidhi; Dubey, Swati; Singh, Jyoti; Singh, R P

    2016-05-01

    L-DOPA (3,4-dihydroxyphenyl-L-alanine), an amino acid derivative is the most widely used drug of choice for the treatment of Parkinson's disease and other neurologic injuries. The present study deals with the elevated biochemical transformation of L-tyrosine to L-DOPA by Aspergillus niger PA2, a potent tyrosinase producer, isolated from decomposed food wastes. This appears to be the first report on A. niger as a notable extracellular tyrosinase producer. The extracellular tyrosinase activity produced remarkably higher levels of L-DOPA, i.e. 2.44 mg mL(-1) when the media was supplemented with 5 mg mL(-1) L-tyrosine. The optimum pH for tyrosinase production was 6.0, with the maximal L-DOPA production at the same pH. The product thus produced was analyzed by thin-layer chromatography, UV spectroscopy, high-performance liquid chromatography and Fourier transform infrared spectroscopy, that had denoted this to be L-DOPA. Kinetic parameters viz. Y p/s, Q s and Q p had further indicated the notable levels of production. Thus, Aspergillus niger PA2 could be a promising resource and may be further exploited for large-scale production of L-DOPA.

  9. Role of ozone in UV-C disinfection, demonstrated by comparison between wild-type and mutant conidia of Aspergillus niger.

    PubMed

    Liu, Jing; Zhou, Lin; Chen, Ji-Hong; Mao, Wang; Li, Wen-Jian; Hu, Wei; Wang, Shu-Yang; Wang, Chun-Ming

    2014-01-01

    This study aimed to investigate the tolerance of a melanized wild-type strain of Aspergillus niger (CON1) and its light-colored mutant (MUT1) to UV-C light and the concomitantly generated ozone. Treatments were segregated into four groups based on whether UV irradiation was used and the presence or absence of ozone: (-UV, -O3), (-UV, +O3), (+UV, -O3) and (+UV, +O3). The survival of CON1 and MUT1 conidia under +UV decreased as the exposure time increased, with CON1 showing greater resistance to UV irradiation than MUT1. Ozone induced CON1 conidium inactivation only under conditions of UV radiation exposure. While, the inactivation effect of ozone on MUT1 was always detectable regardless of the presence of UV irradiation. Furthermore, the CON1 conidial suspension showed lower UV light transmission than MUT1 when examined at the same concentration. Compared with the pigment in MUT1, the melanin in CON1 exhibited more potent radical-scavenging activity and stronger UV absorbance. These results suggested that melanin protected A. niger against UV disinfection via UV screening and free radical scavenging. The process by which UV-C disinfection induces a continual decrease in conidial survival suggests that UV irradiation and ozone exert a synergistic fungicidal effect on A. niger prior to reaching a plateau.

  10. Gene identification and functional analysis of methylcitrate synthase in citric acid-producing Aspergillus niger WU-2223L.

    PubMed

    Kobayashi, Keiichi; Hattori, Takasumi; Honda, Yuki; Kirimura, Kohtaro

    2013-01-01

    Methylcitrate synthase (EC 2.3.3.5; MCS) is a key enzyme of the methylcitric acid cycle localized in the mitochondria of eukaryotic cells and related to propionic acid metabolism. In this study, cloning of the gene mcsA encoding MCS and heterologous expression of it in Escherichia coli were performed for functional analysis of the MCS of citric acid-producing Aspergillus niger WU-2223L. Only one copy of mcsA (1,495 bp) exists in the A. niger WU-2223L chromosome. It encodes a 51-kDa polypeptide consisting of 465 amino acids containing mitochondrial targeting signal peptides. Purified recombinant MCS showed not only MCS activity (27.6 U/mg) but also citrate synthase (EC 2.3.3.1; CS) activity (26.8 U/mg). For functional analysis of MCS, mcsA disruptant strain DMCS-1, derived from A. niger WU-2223L, was constructed. Although A. niger WU-2223L showed growth on propionate as sole carbon source, DMCS-1 showed no growth. These results suggest that MCS is an essential enzyme in propionic acid metabolism, and that the methylcitric acid cycle operates functionally in A. niger WU-2223L. To determine whether MCS makes a contribution to citric acid production, citric acid production tests on DMCS-1 were performed. The amount of citric acid produced from glucose consumed by DMCS-1 in citric acid production medium over 12 d of cultivation was on the same level to that by WU-2223L. Thus it was found that MCS made no contribution to citric acid production from glucose in A. niger WU-2223L, although MCS showed CS activity.

  11. Highly thermostable and pH-stable cellulases from Aspergillus niger NS-2: properties and application for cellulose hydrolysis.

    PubMed

    Bansal, Namita; Janveja, Chetna; Tewari, Rupinder; Soni, Raman; Soni, Sanjeev Kumar

    2014-01-01

    Optimization of cultural conditions for enhanced cellulase production by Aspergillus niger NS-2 were studied under solid-state fermentation. Significant increase in yields (CMCase 463.9 ± 20.1 U/g, FPase 101.1 ± 3.5 U/g and β-glucosidase 99 ± 4.0 U/g) were obtained under optimized conditions. Effect of different nutritional parameters was studied to induce the maximum production of cellulase complex. Scale-up studies for enzyme production process were carried out. Characterization studies showed that enzymes produced by A. niger NS-2 were highly temperature- and pH stable. At 50 °C, the half life for CMCase, FPase, β-glucosidase were approximately 240 h. Cellulases from A. niger NS-2 were stable at 35 °C for 24 h over a broader pH range of 3.0-9.0. We examined the feasibility of using steam pretreatment to increase the saccharification yields from various lignocellulosic residues for sugar release which can potentially be used in bioethanol production. Saccharification of pretreated dry potato peels, carrot peels, composite waste mixture, orange peels, onion peels, banana peels, pineapple peels by crude enzyme extract from A. niger NS-2, resulted in very high cellulose conversion efficiencies of 92-98 %.

  12. Utilization of ram horn peptone in the production of glucose oxidase by a local isolate Aspergillus niger OC-3.

    PubMed

    Canli, Ozden; Kurbanoglu, Esabi Basaran

    2011-01-01

    Glucose oxidase (GO) is an enzyme that is used in many fields. In this study, ram horn peptone (RHP) was utilized as the nitrogen source and compared with other nitrogen sources in the production of GO by Aspergillus niger. To obtain higher GO activity, 14 A. niger strains were isolated from soil samples around Erzurum, Turkey. Among these strains, the isolate that was named A. niger OC-3 achieved the highest GO production. The production of GO was carried out in 100 mL scaled batch culture. The fermentation conditions such as initial pH, temperature, agitation speed, and time were investigated in order to improve GO production. The results showed that the cultivation conditions would significantly affect the formation of GO, and the utilization of the RHP achieved the highest enzyme production (48.6 U/mL) if compared to other nitrogen sources. On the other hand, the maximum biomass was obtained by using the fish peptone (7.2 g/L), while RHP yielded 6.4 g/L. These results suggest that RHP from waste ram horns could effectively be used in the production of GO by A. niger OC-3.

  13. Value addition of vegetable wastes by solid-state fermentation using Aspergillus niger for use in aquafeed industry.

    PubMed

    Rajesh, N; Imelda-Joseph; Raj, R Paul

    2010-11-01

    Vegetable waste typically has high moisture content and high levels of protein, vitamins and minerals. Its value as an agricultural feed can be enhanced through solid-state fermentation (SSF). Two experiments were conducted to evaluate the nutritional status of the products derived by SSF of a mixture of dried vegetable waste powder and oil cake mixture (soybean flour, wheat flour, groundnut oil cake and sesame oil cake at 4:3:2:1 ratio) using fungi Aspergillus niger S(1)4, a mangrove isolate, and A. niger NCIM 616. Fermentation was carried out for 9 days at 35% moisture level and neutral pH. Significant (p<0.05) increase in crude protein and amino acids were obtained in both the trials. The crude fat and crude fibre content showed significant reduction at the end of fermentation. Nitrogen free extract (NFE) showed a gradual decrease during the fermentation process. The results of the study suggest that the fermented product obtained on days 6 and 9 in case of A. niger S(1)4 and A. niger NCIM 616 respectively contained the highest levels of crude protein.

  14. High-content screening of Aspergillus niger with both increased production and high secretion rate of glucose oxidase.

    PubMed

    Zhu, Xudong; Sun, Jingchun; Chu, Ju

    2017-09-22

    To develop a rapid, dual-parameter, plate-based screening process to improve production and secretion rate of glucose oxidase simultaneously in Aspergillus niger. A morphology engineering based on CaCO3 was implemented, where the yield of GOD by A. niger was increased by up to 50%. Analysis of extracellular GOD activity was achieved in 96-well plates. There was a close negative correlation between the total GOD activity and its residual glucose of the fermentation broth. Based on this, a rapid, plate-based, qualitative analysis method of the total GOD activity was developed. Compared with the conventional analysis method using o-dianisidine, a correlation coefficient of -0.92 by statistical analysis was obtained. Using this dual-parameter screening method, we acquired a strain with GOD activity of 3126 U l(-1), which was 146% higher than the original strain. Its secretion rate of GOD was 83, 32% higher than the original strain.

  15. Activity stabilization of Aspergillus niger and Escherichia coli phytases immobilized on allophanic synthetic compounds and montmorillonite nanoclays.

    PubMed

    Menezes-Blackburn, Daniel; Jorquera, Milko; Gianfreda, Liliana; Rao, Maria; Greiner, Ralf; Garrido, Elizabeth; de la Luz Mora, María

    2011-10-01

    The aim of this work was to study the stabilization of the activity of two commercial microbial phytases (Aspergillus niger and Escherichia coli) after immobilization on nanoclays and to establish optimal conditions for their immobilization. Synthetic allophane, synthetic iron-coated allophanes and natural montmorillonite were chosen as solid supports for phytase immobilization. Phytase immobilization patterns at different pH values were strongly dependent on both enzyme and support characteristics. After immobilization, the residual activity of both phytases was higher under acidic conditions. Immobilization of phytases increased their thermal stability and improved resistance to proteolysis, particularly on iron-coated allophane (6% iron oxide), which showed activation energy (E(a)) and activation enthalpy (ΔH(#)) similar to free enzymes. Montmorillonite as well as allophanic synthetic compounds resulted in a good support for immobilization of E. coli phytase, but caused a severe reduction of A. niger phytase activity.

  16. Production of the Phanerochaete flavido-alba laccase in Aspergillus niger for synthetic dyes decolorization and biotransformation.

    PubMed

    Benghazi, Lamiae; Record, Eric; Suárez, Antonio; Gomez-Vidal, José A; Martínez, José; de la Rubia, Teresa

    2014-01-01

    We investigated the expression of Phanerochaete flavido-alba laccase gene in Aspergillus niger and the physical and biochemical properties of the recombinant enzyme (rLac-LPFA) in order to test it for synthetic dye biotransformation. A. niger was able to produce high levels of active recombinant enzyme (30 mgL(-1)), whose identity was further confirmed by immunodetection using Western blot analysis and N-terminal sequencing. Interestingly, rLac-LPFA exhibited an improved stability at pH (2-9) and organic solvents tested. Furthermore, the percentage of decoloration and biotransformation of synthetic textile dyes, Remazol Brilliant Blue R (RBBR) and Acid Red 299 (NY1), was higher than for the native enzyme. Its high production, simple purification, high activity, stability and ability to transform textile dyes make rLac-LPFA a good candidate for industrial applications.

  17. Replacement P212H altered the pH-temperature profile of phytase from Aspergillus niger NII 08121.

    PubMed

    Ushasree, Mrudula Vasudevan; Vidya, Jalaja; Pandey, Ashok

    2015-03-01

    Microbial phytase, a widely used animal feed enzyme, needs to be active and stable in the acidic milieu for better performance in the monogastric gut. Aspergillus niger phytases exhibit an activity dip in the pH range from 3.0 to 3.5. Replacement of amino acids, which changed the pKa of catalytic residues H82 and D362, resulted in alteration of the pH profile of a thermostable phytase from A. niger NII 08121. Substitution P212H in the protein loop at 14 Å distance to the active site amended the pH optimum from 2.5 to pH 3.2 nevertheless with a decrease in thermostability than the wild enzyme. This study described the utility of amino acid replacements based on pKa shifts of catalytic acid/base to modulate the pH profile of phytases.

  18. Tandem mass spectrometric analysis of aspergillus niger pectin methylesterase: mode of action on fully methyl-esterified oligogalacturonates.

    PubMed Central

    Kester, H C; Benen, J A; Visser, J; Warren, M E; Orlando, R; Bergmann, C; Magaud, D; Anker, D; Doutheau, A

    2000-01-01

    The substrate specificity and the mode of action of Aspergillus niger pectin methylesterase (PME) was determined using both fully methyl-esterified oligogalacturonates with degrees of polymerization (DP) 2-6 and chemically synthesized monomethyl trigalacturonates. The enzymic activity on the different substrates and a preliminary characterization of the reaction products were performed by using high-performance anion-exchange chromatography at neutral pH. Electrospray ionization tandem MS (ESI-MS/MS) was used to localize the methyl esters on the (18)O-labelled reaction products during the course of the enzymic reaction. A. niger PME is able to hydrolyse the methyl esters of fully methyl-esterified oligogalacturonates with DP 2, and preferentially hydrolyses the methyl esters located on the internal galacturonate residues, followed by hydrolysis of the methyl esters towards the reducing end. This PME is unable to hydrolyse the methyl ester of the galacturonate moiety at the non-reducing end. PMID:10677368

  19. Bioconversion of waste office paper to gluconic acid in a turbine blade reactor by the filamentous fungus Aspergillus niger.

    PubMed

    Ikeda, Yuko; Park, Enock Y; Okuda, Naoyuki

    2006-05-01

    Gluconic acid production was investigated using an enzymatic hydrolysate of waste office automation paper in a culture of Aspergillus niger. In repeated batch cultures using flasks, saccharified solution medium (SM) did not show any inhibitory effects on gluconic acid production compared to glucose medium (GM). The average gluconic acid yields were 92% (SM) and 80% (GM). In repeated batch cultures using SM in a turbine blade reactor (TBR), the gluconic acid yields were 60% (SM) and 67% (GM) with 80-100 g/l of gluconic acid. When pure oxygen was supplied the production rate increased to four times higher than when supplying air. Remarkable differences in the morphology of A. niger and dry cell weight between SM and GM were observed. The difference in morphology may have caused a reduction of oxygen transfer, resulting in a decrease in gluconic acid production rate in SM.

  20. Protein kinase A signaling and calcium ions are major players in PAF mediated toxicity against Aspergillus niger

    PubMed Central

    Binder, Ulrike; Benčina, Mojca; Fizil, Ádám; Batta, Gyula; Chhillar, Anil K.; Marx, Florentine

    2015-01-01

    The Penicillium chrysogenum antifungal protein PAF is toxic against potentially pathogenic Ascomycetes. We used the highly sensitive aequorin-expressing model Aspergillus niger to identify a defined change in cytoplasmic free Ca2+ dynamics in response to PAF. This Ca2+ signature depended on an intact positively charged lysine-rich PAF motif. By combining Ca2+ measurements in A. niger mutants with deregulated cAMP/protein kinase A (PKA) signaling, we proved the interconnection of Ca2+ perturbation and cAMP/PKA signaling in the mechanistic function of PAF. A deep understanding of the mode of action of PAF is an invaluable prerequisite for its future application as new antifungal drug. PMID:25882631

  1. Isolation of a thermostable acid phytase from Aspergillus niger UFV-1 with strong proteolysis resistance

    PubMed Central

    Monteiro, Paulo S.; Guimarães, Valéria M.; de Melo, Ricardo R.; de Rezende, Sebastião T.

    2015-01-01

    An Aspergillus niger UFV-1 phytase was characterized and made available for industrial application. The enzyme was purified via ultrafiltration followed by acid precipitation, ion exchange and gel filtration chromatography. This protein exhibited a molecular mass of 161 kDa in gel filtration and 81 kDa in sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), indicating that it may be a dimer. It presented an optimum temperature of 60 °C and optimum pH of 2.0. The K M for sodium phytate hydrolysis was 30.9 mM, while the k cat and k cat / K M were 1.46 ×10 5 s −1 and 4.7 × 10 6 s −1 .M −1 , respectively. The purified phytase exhibited broad specificity on a range of phosphorylated compounds, presenting activity on sodium phytate, p-NPP, 2- naphthylphosphate, 1- naphthylphosphate, ATP, phenyl-phosphate, glucose-6-phosphate, calcium phytate and other substrates. Enzymatic activity was slightly inhibited by Mg 2+ , Cd 2+ , K + and Ca 2+ , and it was drastically inhibited by F − . The enzyme displayed high thermostability, retaining more than 90% activity at 60 °C during 120 h and displayed a t 1/2 of 94.5 h and 6.2 h at 70 °C and 80 °C, respectively. The enzyme demonstrated strong resistance toward pepsin and trypsin, and it retained more than 90% residual activity for both enzymes after 1 h treatment. Additionally, the enzyme efficiently hydrolyzed phytate in livestock feed, liberating 15.3 μmol phosphate/mL after 2.5 h of treatment. PMID:26221114

  2. Novel fungal FAD glucose dehydrogenase derived from Aspergillus niger for glucose enzyme sensor strips.

    PubMed

    Sode, Koji; Loew, Noya; Ohnishi, Yosuke; Tsuruta, Hayato; Mori, Kazushige; Kojima, Katsuhiro; Tsugawa, Wakako; LaBelle, Jeffrey T; Klonoff, David C

    2017-01-15

    In this study, a novel fungus FAD dependent glucose dehydrogenase, derived from Aspergillus niger (AnGDH), was characterized. This enzyme's potential for the use as the enzyme for blood glucose monitor enzyme sensor strips was evaluated, especially by investigating the effect of the presence of xylose during glucose measurements. The substrate specificity of AnGDH towards glucose was investigated, and only xylose was found as a competing substrate. The specific catalytic efficiency for xylose compared to glucose was 1.8%. The specific activity of AnGDH for xylose at 5mM concentration compared to glucose was 3.5%. No other sugars were used as substrate by this enzyme. The superior substrate specificity of AnGDH was also demonstrated in the performance of enzyme sensor strips. The impact of spiking xylose in a sample with physiological glucose concentrations on the sensor signals was investigated, and it was found that enzyme sensor strips using AnGDH were not affected at all by 5mM (75mg/dL) xylose. This is the first report of an enzyme sensor strip using a fungus derived FADGDH, which did not show any positive bias at a therapeutic level xylose concentration on the signal for a glucose sample. This clearly indicates the superiority of AnGDH over other conventionally used fungi derived FADGDHs in the application for SMBG sensor strips. The negligible activity of AnGDH towards xylose was also explained on the basis of a 3D structural model, which was compared to the 3D structures of A. flavus derived FADGDH and of two glucose oxidases.

  3. Citric Acid Production by Aspergillus niger Cultivated on Parkia biglobosa Fruit Pulp

    PubMed Central

    Abidoye, Khadijat Toyin; Tahir, Hauwa; Ibrahim, Aliyu Dabai; Aransiola, Sesan Abiodun

    2014-01-01

    The study was conducted to investigate the potential of Parkia biglobosa fruit pulp as substrate for citric acid production by Aspergillus niger. Reducing sugar was estimated by 3,5-dinitrosalicylic acid and citric acid was estimated spectrophotometrically using pyridine-acetic anhydride methods. The studies revealed that production parameters (pH, inoculum size, substrate concentration, incubation temperature, and fermentation period) had profound effect on the amount of citric acid produced. The maximum yield was obtained at the pH of 2 with citric acid of 1.15 g/L and reducing sugar content of 0.541 mMol−1, 3% vegetative inoculum size with citric acid yield of 0.53 g/L and reducing sugar content of 8.87 mMol−1, 2% of the substrate concentration with citric acid yield of 0.83 g/L and reducing sugar content of 9.36 mMol−1, incubation temperature of 55°C with citric acid yield of 0.62 g/L and reducing sugar content of 8.37 mMol−1, and fermentation period of 5 days with citric acid yield of 0.61 g/L and reducing sugar content of 3.70 mMol−1. The results of this study are encouraging and suggest that Parkia biglobosa pulp can be harnessed at low concentration for large scale citric acid production. PMID:27433535

  4. Isolation of a thermostable acid phytase from Aspergillus niger UFV-1 with strong proteolysis resistance.

    PubMed

    Monteiro, Paulo S; Guimarães, Valéria M; de Melo, Ricardo R; de Rezende, Sebastião T

    2015-03-01

    An Aspergillus niger UFV-1 phytase was characterized and made available for industrial application. The enzyme was purified via ultrafiltration followed by acid precipitation, ion exchange and gel filtration chromatography. This protein exhibited a molecular mass of 161 kDa in gel filtration and 81 kDa in sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), indicating that it may be a dimer. It presented an optimum temperature of 60 °C and optimum pH of 2.0. The K M for sodium phytate hydrolysis was 30.9 mM, while the k cat and k cat / K M were 1.46 ×10 (5) s (-1) and 4.7 × 10 (6) s (-1) .M (-1) , respectively. The purified phytase exhibited broad specificity on a range of phosphorylated compounds, presenting activity on sodium phytate, p-NPP, 2- naphthylphosphate, 1- naphthylphosphate, ATP, phenyl-phosphate, glucose-6-phosphate, calcium phytate and other substrates. Enzymatic activity was slightly inhibited by Mg (2+) , Cd (2+) , K (+) and Ca (2+) , and it was drastically inhibited by F (-) . The enzyme displayed high thermostability, retaining more than 90% activity at 60 °C during 120 h and displayed a t 1/2 of 94.5 h and 6.2 h at 70 °C and 80 °C, respectively. The enzyme demonstrated strong resistance toward pepsin and trypsin, and it retained more than 90% residual activity for both enzymes after 1 h treatment. Additionally, the enzyme efficiently hydrolyzed phytate in livestock feed, liberating 15.3 μmol phosphate/mL after 2.5 h of treatment.

  5. pgaA and pgaB encode two constitutively expressed endopolygalacturonases of Aspergillus niger.

    PubMed Central

    Parenicová, L; Benen, J A; Kester, H C; Visser, J

    2000-01-01

    The nucleotide sequence data for pgaA and pgaB have been deposited with the EMBL, GenBank and DDBJ Databases under accession numbers Y18804 and Y18805 respectively. pgaA and pgaB, two genes encoding endopolygalacturonases (PGs, EC 3.2.1.15) A and B, were isolated from a phage genomic library of Aspergillus niger N400. The 1167 bp protein coding region of the pgaA gene is interrupted by one intron, whereas the 1234 bp coding region of the pgaB gene contains two introns. The corresponding proteins, PGA and PGB, consist of 370 and 362 amino acid residues respectively. Northern-blot analysis revealed that pgaA- and pgaB-specific mRNA accumulate in mycelia grown on sucrose. mRNAs are also present upon transfer to media containing D-galacturonic acid and pectin. Recombinant PGA and PGB were characterized with respect to pH optimum, activity on polygalacturonic acid, and mode of action and kinetics on oligogalacturonates of different chain length (n=3-7). At their pH optimum the specific activities in a standard assay for PGA (pH 4.2) and PGB (pH 5.0) were 16.5 mu+kat.mg(-1) and 8.3 mu+kat.mg(-1) respectively. Product progression analysis, using polygalacturonate as a substrate, revealed a random cleavage pattern for both enzymes and indicated processive behaviour for PGA. This result was confirmed by analysis of the mode of action using oligogalacturonates. Processivity was observed when the degree of polymerization of the substrate exceeded 6. Using pectins of various degrees of methyl esterification, it was shown that PGA and PGB both preferred partially methylated substrates. PMID:10642523

  6. Glycoprotein enzymes secreted by Aspergillus niger: purification and properties of alpha-glaactosidase.

    PubMed Central

    Adya, S; Elbein, A D

    1977-01-01

    An alpha-galactosidase (alpha-D-galactoside galactohydrolase [EC 3.2.1.22]) was purified to homogeneity from the culture filtrate of Aspergillus niger. The enzyme had an apparent molecular weight of 45,000 and was a glycoprotein. Radioactive enzyme was prepared by growing cells in [14C]fructose and this enzyme was used to prepare 14C-labeled glycopeptides. The glycopeptides emerged from Sephadex G-50 between stachyose and the glycopeptide from ovalbumin. Based on calibration of the column with various-sized dextran oligosaccharides, the glycopeptides appeared to have a molecular weight of 1,200 to 1,400. Analysis of the glycopeptide(s) indicated that it contained mannose and N-acetylglucosamine (GlcNAc) in an approximate ratio of 3 or 4 to 1. Assuming that there are two GlcNAc residues in the oligosaccharide and based on the molecular weight of the glycopeptide, the oligosaccharide probably contains eight to nine sugar residues. Alks probably attached to the protein by a GlcNAc leads to asparagine linkage. The purified alpha-galactosidase was most active on raffinose (Km = 5 x 10--4 M, Vmax = 3 mumol/min per mg of protein), but also showed good activity on p-nitrophenyl-alpha-D-galactoside ans somewhat less activity on stachyose and melibitol. The enzyme also hydrolyzed guar flour and locust bean gum, but did not attack the p-nitrophenyl glycosides of beta-galactose, alpha- or beta-glucose, or alpha- or beta-mannose. Images PMID:14112

  7. The carbon starvation response of Aspergillus niger during submerged cultivation: Insights from the transcriptome and secretome

    PubMed Central

    2012-01-01

    Background Filamentous fungi are confronted with changes and limitations of their carbon source during growth in their natural habitats and during industrial applications. To survive life-threatening starvation conditions, carbon from endogenous resources becomes mobilized to fuel maintenance and self-propagation. Key to understand the underlying cellular processes is the system-wide analysis of fungal starvation responses in a temporal and spatial resolution. The knowledge deduced is important for the development of optimized industrial production processes. Results This study describes the physiological, morphological and genome-wide transcriptional changes caused by prolonged carbon starvation during submerged batch cultivation of the filamentous fungus Aspergillus niger. Bioreactor cultivation supported highly reproducible growth conditions and monitoring of physiological parameters. Changes in hyphal growth and morphology were analyzed at distinct cultivation phases using automated image analysis. The Affymetrix GeneChip platform was used to establish genome-wide transcriptional profiles for three selected time points during prolonged carbon starvation. Compared to the exponential growth transcriptome, about 50% (7,292) of all genes displayed differential gene expression during at least one of the starvation time points. Enrichment analysis of Gene Ontology, Pfam domain and KEGG pathway annotations uncovered autophagy and asexual reproduction as major global transcriptional trends. Induced transcription of genes encoding hydrolytic enzymes was accompanied by increased secretion of hydrolases including chitinases, glucanases, proteases and phospholipases as identified by mass spectrometry. Conclusions This study is the first system-wide analysis of the carbon starvation response in a filamentous fungus. Morphological, transcriptomic and secretomic analyses identified key events important for fungal survival and their chronology. The dataset obtained forms a

  8. Purification and physicochemical properties of polygalacturonase from Aspergillus niger MTCC 3323.

    PubMed

    Kant, Shashi; Vohra, Anuja; Gupta, Reena

    2013-01-01

    Polygalacturonases are the pectinolytic enzymes that catalyze the hydrolytic cleavage of the polygalacturonic acid chain. In the present study, polygalacturonase from Aspergillus niger (MTCC 3323) was purified. The enzyme precipitated with 60% ethanol resulted in 1.68-fold purification. The enzyme was purified to 6.52-fold by Sephacryl S-200 gel-filtration chromatography. On SDS-PAGE analysis, enzyme was found to be a heterodimer of 34 and 69 kDa subunit. Homogeneity of the enzyme was checked by NATIVE-PAGE and its molecular weight was found to be 106 kDa. The purified enzyme showed maximum activity in the presence of polygalacturonic acid at temperature of 45 °C, pH of 4.8, reaction time of 15 min. The enzyme was stable within the pH range of 4.0-5.5 for 1 h. At 4 °C it retained 50% activity after 108 h but at room temperature it lost its 50% activity after 3h. The addition of Mn(2+), K(+), Zn(2+), Ca(2+) and Al(3+) inhibited the enzyme activity; it increased in the presence of Mg(2+) and Cu(2+) ions. Enzyme activity was increased on increasing the substrate concentration from 0.1% to 0.5%. The K(m) and V(max) values of the enzyme were found to be 0.083 mg/ml and 18.21 μmol/ml/min. The enzyme was used for guava juice extraction and clarification. The recovery of juice of enzymatically treated pulp increased from 6% to 23%. Addition of purified enzyme increased the %T(650) from 2.5 to 20.4 and °Brix from 1.9 to 4.8. The pH of the enzyme treated juice decreased from 4.5 to 3.02.

  9. Resonance Raman investigation of cyanide ligated beef liver and Aspergillus niger catalases.

    PubMed

    al-Mustafa, J; Sykora, M; Kincaid, J R

    1995-05-05

    Resonance Raman spectroscopy has been used to investigate the properties of cyanide-bound beef liver catalase (BLC) and Aspergillus niger catalase (ANC) in the pH range 4.9-11.5. Evidence has been obtained for the binding of cyanide to both BLC and ANC in two binding geometries. The first conformer, exhibiting the nu[Fe-CN] stretching mode at a higher frequency than the delta[Fe-C-N] bending mode, exists as an essentially linear Fe-C-N linkage. For both BLC-CN and ANC-CN, the nu[Fe-CN] and delta[Fe-C-N] frequencies of this conformer were practically identical and observed at approximately 434 and approximately 413 cm-1, respectively. The second conformer exhibits a nu[Fe-CN] mode at lower frequency than the delta[Fe-C-N] mode, and is thus characteristic of a bent Fe-C-N linkage. The nu[Fe-CN] and delta[Fe-C-N] modes were identified at 349 and 445 cm-1, respectively, for BLC-CN, and at 350 and 456 cm-1, respectively, for ANC-CN. The two conformers persist in the pH range 4.9-11.5. Furthermore, upon raising the pH to 11.5, the nu[Fe-CN] mode of the linear conformer of BLC-CN downshifts to 429 cm-1 while that of the bent conformer remains unchanged. The observed pH-dependent shift is attributed to the deprotonation of a distal-side amino acid residue, probably a distal histidine. The Fe-C-N axial vibrations of the two conformers identified for ANC-CN did not show any significant pH-dependent shifts, indicating a more stable hydrogen bonding interaction relative to BLC-CN.

  10. Use of adapted Aspergillus niger in the bioleaching of spent refinery processing catalyst.

    PubMed

    Santhiya, Deenan; Ting, Yen-Peng

    2006-01-02

    Spent refinery processing catalyst is listed as a hazardous waste; the toxicity characteristic leaching procedure (TCLP) extracts of the catalyst are found to contain heavy metals at concentrations exceeding the regulated levels. In the present investigation, Aspergillus niger was adapted to single metal ions Ni, Mo or Al (at 100-2,000 mg/L in steps of 100mg/L) and then to a mixture of Ni, Mo and Al (at a mass ratio of 1:2:6, as approximately present in the spent catalyst). Adaptation experiments with single metals showed that the fungus could tolerate up to 1,000 mg/L Ni, 1,200 mg/L Mo and 2,000 mg/L Al. In the presence of a mixture of these metals, the fungus was able to tolerate up to 100mg/L Ni, 200mg/L Mo and 600 mg/L Al. One-step bioleaching experiments with 1 wt% spent catalyst (of particle size <37 microm) were carried out using un-adapted and various adapted fungal strains. In contrast to the adapted strains, the un-adapted strain showed no growth in the presence of the catalyst. Ni:Mo:Al-adapted strain was the most efficient in the leaching of metals from the catalyst (at 78.5% Ni, 82.3% Mo and 65.2% Al) over 30 days due to its tolerance to the toxic elements at 1 wt%. More importantly, the Ni:Mo:Al-adapted strain was capable of bioleaching up to 3 wt% spent catalyst. The TCLP extracts of the spent catalyst after bioleaching using the Ni:Mo:Al-adapted strain showed the concentrations of Ni and Mo were well within the regulated levels.

  11. Chelating, film-forming, and coagulating ability of the chitosan-glucan complex from Aspergillus niger industrial wastes.

    PubMed

    Muzzarelli, R A; Tanfani, F; Scarpini, G

    1980-04-01

    Waste mycelia of Aspergillus niger from a citric acid production plant are simply treated with boiling 30-40% NaOH aqueous solutions for 4-6 hr to obtain the insoluble chitosan-glucan complex whose infrared, ESR, and x-ray diffraction spectra are reported. A number of transition- and post-transition-metal ions are chelated and collected by chitosan-glucan with higher yields than by animal chitosan. Immediate flocculation occurs upon mixing chitosan-glucan dispersions with alginate and polymolybdate solutions. Membranes are also obtained from chitosan-glucan dispersions in acetic acid or in chloral and dimethyl formamide mixtures.

  12. Optimization of a biological process for treating potato chips industry wastewater using a mixed culture of Aspergillus foetidus and Aspergillus niger.

    PubMed

    Mishra, B K; Arora, Anju; Lata

    2004-08-01

    Potato chips industry wastewater was collected and analyzed for biochemical oxygen demand (BOD), chemical oxygen demand (COD), total suspended solids (TSS) and total carbohydrates. Two Aspergillus species, A. foetidus and A. niger, were evaluated for their ability to grow and produce biomass and reduce the organic load of the wastewater. A. foetidus MTCC 508 and A. niger ITCC 2012 were able to reduce COD by about 60% and produce biomass 2.4 and 2.85 gl(-1), respectively. Co-inoculation of both Aspergillus strains resulted in increased fungal biomass production and higher COD reduction than in individual culture at different culture pH. pH 6 was optimum for biomass production and COD reduction. Amendment of the wastewater with different N and P sources, increased the biomass production and COD reduction substantially. Under standardized conditions of pH 6 and amendment of wastewater with 0.1% KH2PO4 and 0.1% (NH4)2 SO4, a mixed culture gave 90% reduction in COD within 60 h of incubation.

  13. [Conditions for splitting protodioscine--the main glycoside from Tribulus terrestris L. by the enzymatic preparation from Aspergillus niger BKMt-33].

    PubMed

    Prepelitsa, E D; Razumovsky, P N; Kintya, P K

    1975-01-01

    The conditions for splitting protodioscine--the main steroid saponine isolated from Tribulus terrestris L. by the enzymic preparation of Aspergillus niger str. BKMt-33 were investigated. The optimal conditions were found to be as follows: pH 4-5, temperature 30-37 degrees (the substrate concentration--5 mg%, concentration of the enzymic preparation--1%). Under these conditions the enzymolysis continued 24 hours. Mg+2 and K+ ions accelerated the reaction twice. As a result of the enzymic hydrolysis dioscine and trilline were obtained. This indicates beta-glucosidase and alpha-rhamnosidase activities of the enzymic complex isolated from Aspergillus niger str. BKMt-33.

  14. Effect of temperature, water activity, and pH on growth and production of ochratoxin A by Aspergillus niger and Aspergillus carbonarius from Brazilian grapes.

    PubMed

    Passamani, Fabiana Reinis Franca; Hernandes, Thais; Lopes, Noelly Alves; Bastos, Sabrina Carvalho; Santiago, Wilder Douglas; Cardoso, Maria das Graças; Batista, Luís Roberto

    2014-11-01

    The growth of ochratoxigenic fungus and the presence of ochratoxin A (OTA) in grapes and their derivatives can be caused by a wide range of physical, chemical, and biological factors. The determination of interactions between these factors and fungal species from different climatic regions is important in designing models for minimizing the risk of OTA in wine and grape juice. This study evaluated the influence of temperature, water activity (aw), and pH on the development and production of OTA in a semisynthetic grape culture medium by Aspergillus carbonarius and Aspergillus niger strains. To analyze the growth conditions and production of OTA, an experimental design was conducted using response surface methodology as a tool to assess the effects of these abiotic variables on fungal behavior. A. carbonarius showed the highest growth at temperatures from 20 to 33°C, aw between 0.95 and 0.98, and pH levels between 5 and 6.5. Similarly, for A. niger, temperatures between 24 and 37°C, aw greater than 0.95, and pH levels between 4 and 6.5 were optimal. The greatest toxin concentrations for A. carbonarius and A. niger (10 μg/g and 7.0 μg/g, respectively) were found at 15°C, aw 0.99, and pH 5.35. The lowest pH was found to contribute to greater OTA production. These results show that the evaluated fungi are able to grow and produce OTA in a wide range of temperature, aw, and pH. However, the optimal conditions for toxin production are generally different from those optimal for fungal growth. The knowledge of optimal conditions for fungal growth and production of OTA, and of the stages of cultivation in which these conditions are optimal, allows a more precise assessment of the potential risk to health from consumption of products derived from grapes.

  15. In vivo and in vitro control activity of plant essential oils against three strains of Aspergillus niger.

    PubMed

    Kumar, Peeyush; Mishra, Sapna; Kumar, Atul; Kumar, Sanjeev; Prasad, Chandra Shekhar

    2017-08-07

    Contamination of environment and food from the prevalent spores and mycotoxins of Aspergillus niger has led to several diseases in humans and other animals. The present study investigated the control activity of plant essential oils against three strains of A. niger. In the elaborate assays done through microdilution plate assay and agar disk diffusion assay in the lab condition and in vivo assay on the stored wheat grains, the essential oil of Thymus vulgaris depicted overall superior efficacy. In microdilution plate assay, the oil of Anethum graveolens showed best fungistatic activity, while best fungicidal activity was depicted by Syzygium aromaticum oil. The oil of T. vulgaris showed moderate control efficacy against A. niger strains with its antifungal activity resulting mainly due to killing of microorganism rather than growth inhibition. In agar disk diffusion assay, T. vulgaris oil with a zone of inhibition (ZOI) of 23.3-61.1% was the most effective fungicide. The in vivo assay to evaluate the protection efficacy of oils for stored wheat grains against A. niger (AN1) revealed T. vulgaris (90.5-100%) to be the best control agent, followed by the oil of S. aromaticum (61.9-100%). The GC-MS analysis of T. vulgaris oil indicated the presence of thymol (39.11%), γ-terpinene (19.73%), o-cymene (17.21%), and β-pinene (5.38%) as major oil components. Phytotoxic effects of the oils on wheat seeds showed no significant phytotoxic effect of oils in terms of seed germination or seedling growth. The results of the study demonstrated control potentiality of essential oils for the protection of stored wheat against A. niger with prospect for development of eco-friendly antifungal products.

  16. A biodegradation study of forest biomass by Aspergillus niger F7: correlation between enzymatic activity, hydrolytic percentage and biodegradation index

    PubMed Central

    Sharma, Nivedita; Kaushal, Richa; Gupta, Rakesh; Kumar, Sanjeev

    2012-01-01

    Aspergillus niger F7 isolated from soil was found to be the potent producer of cellulase and xylanase. The residue of forest species Toona ciliata, Celtris australis, Cedrus deodara and Pinus roxburghii was selected as substrate for biodegradation study due to its easy availability and wide use in industry. It was subjected to alkali (sodium hydroxide) treatment for enhancing its degradation. Biodegradation of forest waste by hydrolytic enzymes (cellulase and xylanase) secreted by A. niger under solid state fermentation (SSF) was explored. SSF of pretreated forest biomass was found to be superior over untreated forest biomass. Highest extracellular enzyme activity of 2201±23.91 U/g by A. niger was shown in pretreated C. australis wood resulting in 6.72±0.20 percent hydrolysis and 6.99±0.23 biodegradation index (BI). The lowest BI of 1.40±0.08 was observed in untreated saw dust of C. deodara having the least enzyme activity of 238±1.36 U/g of dry matter. Biodegradation of forest biomass under SSF was increased many folds when moistening agent i.e. tap water had been replaced with modified basal salt media (BSM). In BSM mediated degradation of forest waste with A. niger, extracellular enzyme activity was increased up to 4089±67.11 U/g of dry matter in turn resulting in higher BI of 15.4±0.41 and percent hydrolysis of 19.38±0.81 in pretreated C. australis wood. A. niger exhibited higher enzyme activity on pretreated biomass when moistened with modified BSM in this study. Statistically a positive correlation has been drawn between these three factors i.e. enzyme activity, BI and percent hydrolysis of forest biomass thus proving their direct relationship with each other. PMID:24031853

  17. A biodegradation study of forest biomass by Aspergillus niger F7: correlation between enzymatic activity, hydrolytic percentage and biodegradation index.

    PubMed

    Sharma, Nivedita; Kaushal, Richa; Gupta, Rakesh; Kumar, Sanjeev

    2012-04-01

    Aspergillus niger F7 isolated from soil was found to be the potent producer of cellulase and xylanase. The residue of forest species Toona ciliata, Celtris australis, Cedrus deodara and Pinus roxburghii was selected as substrate for biodegradation study due to its easy availability and wide use in industry. It was subjected to alkali (sodium hydroxide) treatment for enhancing its degradation. Biodegradation of forest waste by hydrolytic enzymes (cellulase and xylanase) secreted by A. niger under solid state fermentation (SSF) was explored. SSF of pretreated forest biomass was found to be superior over untreated forest biomass. Highest extracellular enzyme activity of 2201±23.91 U/g by A. niger was shown in pretreated C. australis wood resulting in 6.72±0.20 percent hydrolysis and 6.99±0.23 biodegradation index (BI). The lowest BI of 1.40±0.08 was observed in untreated saw dust of C. deodara having the least enzyme activity of 238±1.36 U/g of dry matter. Biodegradation of forest biomass under SSF was increased many folds when moistening agent i.e. tap water had been replaced with modified basal salt media (BSM). In BSM mediated degradation of forest waste with A. niger, extracellular enzyme activity was increased up to 4089±67.11 U/g of dry matter in turn resulting in higher BI of 15.4±0.41 and percent hydrolysis of 19.38±0.81 in pretreated C. australis wood. A. niger exhibited higher enzyme activity on pretreated biomass when moistened with modified BSM in this study. Statistically a positive correlation has been drawn between these three factors i.e. enzyme activity, BI and percent hydrolysis of forest biomass thus proving their direct relationship with each other.

  18. Mixed Disulfide Formation at Cys141 Leads to Apparent Unidirectional Attenuation of Aspergillus niger NADP-Glutamate Dehydrogenase Activity

    PubMed Central

    Walvekar, Adhish S.; Choudhury, Rajarshi; Punekar, Narayan S.

    2014-01-01

    NADP-Glutamate dehydrogenase from Aspergillus niger (AnGDH) exhibits sigmoid 2-oxoglutarate saturation. Incubation with 2-hydroxyethyl disulfide (2-HED, the disulfide of 2-mercaptoethanol) resulted in preferential attenuation of AnGDH reductive amination (forward) activity but with a negligible effect on oxidative deamination (reverse) activity, when monitored in the described standard assay. Such a disulfide modified AnGDH displaying less than 1.0% forward reaction rate could be isolated after 2-HED treatment. This unique forward inhibited GDH form (FIGDH), resembling a hypothetical ‘one-way’ active enzyme, was characterized. Kinetics of 2-HED mediated inhibition and protein thiol titrations suggested that a single thiol group is modified in FIGDH. Two site-directed cysteine mutants, C141S and C415S, were constructed to identify the relevant thiol in FIGDH. The forward activity of C141S alone was insensitive to 2-HED, implicating Cys141 in FIGDH formation. It was observed that FIGDH displayed maximal reaction rate only after a pre-incubation with 2-oxoglutarate and NADPH. In addition, compared to the native enzyme, FIGDH showed a four fold increase in K0.5 for 2-oxoglutarate and a two fold increase in the Michaelis constants for ammonium and NADPH. With no change in the GDH reaction equilibrium constant, the FIGDH catalyzed rate of approach to equilibrium from reductive amination side was sluggish. Altered kinetic properties of FIGDH at least partly account for the observed apparent loss of forward activity when monitored under defined assay conditions. In sum, although Cys141 is catalytically not essential, its covalent modification provides a striking example of converting the biosynthetic AnGDH into a catabolic enzyme. PMID:24987966

  19. Identification and functional characterization of novel xylose transporters from the cell factories Aspergillus niger and Trichoderma reesei.

    PubMed

    Sloothaak, Jasper; Tamayo-Ramos, Juan Antonio; Odoni, Dorett I; Laothanachareon, Thanaporn; Derntl, Christian; Mach-Aigner, Astrid R; Martins Dos Santos, Vitor A P; Schaap, Peter J

    2016-01-01

    Global climate change and fossil fuels limitations have boosted the demand for robust and efficient microbial factories for the manufacturing of bio-based products from renewable feedstocks. In this regard, efforts have been done to enhance the enzyme-secreting ability of lignocellulose-degrading fungi, aiming to improve protein yields while taking advantage of their ability to use lignocellulosic feedstocks. Access to sugars in complex polysaccharides depends not only on their release by specific hydrolytic enzymes, but also on the presence of transporters capable of effectively transporting the constituent sugars into the cell. This study aims to identify and characterize xylose transporters from Aspergillus niger and Trichoderma reesei, two fungi that have been industrially exploited for decades for the production of lignocellulose-degrading hydrolytic enzymes. A hidden Markov model for the identification of xylose transporters was developed and used to analyze the A. niger and T. reesei in silico proteomes, yielding a list of candidate xylose transporters. From this list, three A. niger (XltA, XltB and XltC) and three T. reesei (Str1, Str2 and Str3) transporters were selected, functionally validated and biochemically characterized through their expression in a Saccharomyces cerevisiae hexose transport null mutant, engineered to be able to metabolize xylose but unable to transport this sugar. All six transporters were able to support growth of the engineered yeast on xylose but varied in affinities and efficiencies in the uptake of the pentose. Amino acid sequence analysis of the selected transporters showed the presence of specific residues and motifs recently associated to xylose transporters. Transcriptional analysis of A. niger and T. reesei showed that XltA and Str1 were specifically induced by xylose and dependent on the XlnR/Xyr1 regulators, signifying a biological role for these transporters in xylose utilization. This study revealed the existence of a

  20. Genome-wide transcriptional response of Trichoderma reesei to lignocellulose using RNA sequencing and comparison with Aspergillus niger

    PubMed Central

    2013-01-01

    Background A major part of second generation biofuel production is the enzymatic saccharification of lignocellulosic biomass into fermentable sugars. Many fungi produce enzymes that can saccarify lignocellulose and cocktails from several fungi, including well-studied species such as Trichoderma reesei and Aspergillus niger, are available commercially for this process. Such commercially-available enzyme cocktails are not necessarily representative of the array of enzymes used by the fungi themselves when faced with a complex lignocellulosic material. The global induction of genes in response to exposure of T. reesei to wheat straw was explored using RNA-seq and compared to published RNA-seq data and model of how A. niger senses and responds to wheat straw. Results In T. reesei, levels of transcript that encode known and predicted cell-wall degrading enzymes were very high after 24 h exposure to straw (approximately 13% of the total mRNA) but were less than recorded in A. niger (approximately 19% of the total mRNA). Closer analysis revealed that enzymes from the same glycoside hydrolase families but different carbohydrate esterase and polysaccharide lyase families were up-regulated in both organisms. Accessory proteins which have been hypothesised to possibly have a role in enhancing carbohydrate deconstruction in A. niger were also uncovered in T. reesei and categories of enzymes induced were in general similar to those in A. niger. Similarly to A. niger, antisense transcripts are present in T. reesei and their expression is regulated by the growth condition. Conclusions T. reesei uses a similar array of enzymes, for the deconstruction of a solid lignocellulosic substrate, to A. niger. This suggests a conserved strategy towards lignocellulose degradation in both saprobic fungi. This study provides a basis for further analysis and characterisation of genes shown to be highly induced in the presence of a lignocellulosic substrate. The data will help to elucidate the

  1. Effect of media composition and growth conditions on production of beta-glucosidase by Aspergillus niger C-6.

    PubMed

    García-Kirchner, O; Segura-Granados, M; Rodríguez-Pascual, P

    2005-01-01

    The hydrolytic activity of fungal originated beta-glucosidase is exploited in several biotechnological processes to increase the rate and extent of saccharification of several cellulosic materials by hydrolyzing the cellobiose which inhibits cellulases. In a previous presentation, we reported the screening and liquid fermentation with Aspergillus niger, strain C-6 for beta-glucosidase production at shake flask cultures in a basal culture medium with mineral salts, corn syrup liquor, and different waste lignocellulosic materials as the sole carbon source obtaining the maximum enzymatic activity after 5-6 d of 8.5 IU/mL using native sugar cane bagasse. In this work we describe the evaluation of fermentation conditions: growth temperature, medium composition, and pH, also the agitation and aeration effects for beta-glucosidase production under submerged culture using a culture media with corn syrup liquor (CSL) and native sugar cane bagasse pith as the sole carbon source in a laboratory fermenter. The maximum enzyme titer of 7.2 IU/mL was obtained within 3 d of fermentation. This indicates that beta-glucosidase productivity by Aspergillus niger C-6 is function of culture conditions, principally temperature, pH, culture medium conditions, and the oxygen supply given in the bioreactor. Results obtained suggest that this strain is a potential microorganism that can reach a major level of enzyme production and also for enzyme characterization.

  2. Kinetics of enhanced ethanol productivity using raw starch hydrolyzing glucoamylase from Aspergillus niger mutant produced in solid state fermentation.

    PubMed

    Rajoka, M I; Yasmin, A; Latif, F

    2004-01-01

    The present investigation deals with the effect of raw starch hydrolyzing glucoamylase by a derepressed mutant of Aspergillus niger on enhanced productivity of ethanol from uncooked starch under non-aseptic conditions. The parental culture of Aspergillus niger was improved using gamma-ray treatment. One derepressed mutant was isolated after extensive screening and optimization and grown on corn cobs, maize starch, soluble starch and wheat bran solid media moistened with Vogel's salts solution and corn steep liquor. The mutant was 2.5-fold improved over its parent with respect to enzyme productivity, product yield and specific activity. The enzyme from mutated culture was also improved for enzyme properties and could effectively hydrolyze raw starch without the aid of alpha-amylase. Starch hydrolyzed with mutant-derived glucoamylase supported higher volumetric and product yields of ethanol than those of parental and other strains. The results of the present study are of commercial value. Ethanol product yield coefficient, and volumetric productivity revealed the hyper-productivity of ethanol from raw starch hydrolyzate obtained with mutant-derived glucoamylase without addition of liquefying alpha-amylase under non-aseptic conditions.

  3. Effects of Aspergillus niger fermented rapeseed meal on nutrient digestibility, growth performance and serum parameters in growing pigs.

    PubMed

    Shi, Changyou; He, Jun; Wang, Jianping; Yu, Jie; Yu, Bing; Mao, Xiangbing; Zheng, Ping; Huang, Zhiqing; Chen, Daiwen

    2016-04-01

    The aim of the present study was to investigate the influences of Aspergillus niger fermented rapeseed meal (FRSM) on growth performance and nutrient digestibility of growing pigs. A total of 72 growing pigs (body weight = 40.8 ± 2.1 kg) were used in feeding trials, lasting for up to 42 days, and were randomly allotted to one of three diets, including a corn-soybean meal control diet as well as two experimental diets containing 10% unfermented rapeseed meal (RSM) or 10% FRSM. The results showed that average daily gain and feed conversion ratio of pigs fed FRSM were superior (P < 0.05) to that of pigs fed unfermented RSM and did not differ from the control. Pigs fed control diet had higher (P < 0.05) total tract apparent digestibility for dry matter, protein, calcium and phosphorus than pigs fed unfermented RSM diet and did not differ from the FRSM diet. Pigs fed FRSM had lower levels (P < 0.05) of serum aspartate transaminase compared to unfermented RSM. In conclusion, solid state fermentation using Aspergillus niger may improve the growth performance and nutrient digestibility of RSM for pigs and FRSM is a promising alternative protein for pig production.

  4. Enhancement of epoxide hydrolase production by (60) Co gamma and UV irradiation mutagenesis of Aspergillus niger ZJB-09103.

    PubMed

    Jin, Huo-Xi; OuYang, Xiao-Kun; Hu, Zhong-Ce

    2017-05-01

    An effective epoxide hydrolase (EH) production strain was mutagenized using (60) Co gamma and UV irradiation. Among positive mutant strains, the EH activity of C2-44 reached 33.7 U/g, which was 267% as much as that of the original Aspergillus niger ZJB-09103. Compared with the wild type, there were significant changes in morphology for C2-44, including the color of mycelia on the slants and the shape of conidial head. In addition, glucose and soybean cake were the optimal carbon and nitrogen source in terms of EH activity for the mutant C2-44 instead of soluble starch and peptone for the wild-type strain. The reaction time required to reach 99% enantiomeric excesses of (S)-epichlorohydrin from racemic substrate was shortened significantly by the mutant C2-44. This phenomenon was probably explained by the higher Vmax for hydrolysis of racemic epichlorohydrin by C2-44 compared with Aspergillus niger ZJB-09103. © 2016 International Union of Biochemistry and Molecular Biology, Inc.

  5. Effect of temperature and mixing speed on immobilization of crude enzyme from Aspergillus niger on chitosan for hydrolyzing cellulose

    NASA Astrophysics Data System (ADS)

    Hamzah, Afan; Gek Ela Kumala, P.; Ramadhani, Dwi; Maziyah, Nurul; Rahmah, Laila Nur; Soeprijanto, Widjaja, Arief

    2017-05-01

    Conversion of cellulose into reducing sugar through enzymatic hydrolysis has advantageous because it produces greater product yield, higher selectivity, require less energy, more moderate operating conditions and environment friendly. However, the nature of the enzyme that is difficult to separate and its expensive price become an obstacle. These obstacles can be overcome by immobilizing the enzyme on chitosan material so that the enzyme can be reused. Chitosan is chosen because it is cheap, inert, hydrophilic, and biocompatible. In this research, we use covalent attachment and combination between covalent attachment and cross-linking method for immobilizing crude enzyme. This research was focusing in study of Effect of temperature and mixing speed on Immobilization Enzyme From Aspergillus Niger on Chitosan For Hydrolyzing both soluble (Carboxymethylcellulose) and insoluble Cellulose (coconut husk). This Research was carried out by three main step. First, coconut husk was pre-treated mechanically and chemically, Second, Crude enzyme from Aspergillus niger strain was immobilized on chitosan in various immobilization condition. At last, the pre-treated coconut husk and Carboxymetylcellulose (CMC) were hydrolyzed by immobilized cellulose on chitosan for reducing sugar production. The result revealed that the most reducing sugar produced by immobilized enzyme on chitosan+GDA with immobilization condition at 30 °C and 125 rpm. Enzyme immobilized on chitosan cross-linked with GDA produced more reducing sugar from preteated coconut husk than enzyme immobilized on chitosan.

  6. Effect of citrate on Aspergillus niger phytase adsorption and catalytic activity in soil

    NASA Astrophysics Data System (ADS)

    Mezeli, Malika; Menezes-Blackburn, Daniel; Zhang, Hao; Giles, Courtney; George, Timothy; Shand, Charlie; Lumsdon, David; Cooper, Patricia; Wendler, Renate; Brown, Lawrie; Stutter, Marc; Blackwell, Martin; Darch, Tegan; Wearing, Catherine; Haygarth, Philip

    2015-04-01

    Current developments in cropping systems that promote mobilisation of phytate in agricultural soils, by exploiting plant-root exudation of phytase and organic acids, offer potential for developments in sustainable phosphorus use. However, phytase adsorption to soil particles and phytate complexion has been shown to inhibit phytate dephosphorylation, thereby inhibiting plant P uptake, increasing the risk of this pool contributing to diffuse pollution and reducing the potential benefits of biotechnologies and management strategies aimed to utilise this abundant reserve of 'legacy' phosphorus. Citrate has been seen to increase phytase catalytic efficiency towards complexed forms of phytate, but the mechanisms by which citrate promotes phytase remains poorly understood. In this study, we evaluated phytase (from Aspergillus niger) inactivation, and change in catalytic properties upon addition to soil and the effect citrate had on adsorption of phytase and hydrolysis towards free, precipitated and adsorbed phytate. A Langmuir model was fitted to phytase adsorption isotherms showing a maximum adsorption of 0.23 nKat g-1 (19 mg protein g-1) and affinity constant of 435 nKat gˉ1 (8.5 mg protein g-1 ), demonstrating that phytase from A.niger showed a relatively low affinity for our test soil (Tayport). Phytases were partially inhibited upon adsorption and the specific activity was of 40.44 nKat mgˉ1 protein for the free enzyme and 25.35 nKat mgˉ1 protein when immobilised. The kinetics of adsorption detailed that most of the adsorption occurred within the first 20 min upon addition to soil. Citrate had no effect on the rate or total amount of phytase adsorption or loss of activity, within the studied citrate concentrations (0-4mM). Free phytases in soil solution and phytase immobilised on soil particles showed optimum activity (>80%) at pH 4.5-5.5. Immobilised phytase showed greater loss of activity at pH levels over 5.5 and lower activities at the secondary peak at pH 2

  7. Deletion of flbA results in increased secretome complexity and reduced secretion heterogeneity in colonies of Aspergillus niger.

    PubMed

    Krijgsheld, Pauline; Nitsche, Benjamin M; Post, Harm; Levin, Ana M; Müller, Wally H; Heck, Albert J R; Ram, Arthur F J; Altelaar, A F Maarten; Wösten, Han A B

    2013-04-05

    Aspergillus niger is a cell factory for the production of enzymes. This fungus secretes proteins in the central part and at the periphery of the colony. The sporulating zone of the colony overlapped with the nonsecreting subperipheral zone, indicating that sporulation inhibits protein secretion. Indeed, strain ΔflbA that is affected early in the sporulation program secreted proteins throughout the colony. In contrast, the ΔbrlA strain that initiates but not completes sporulation did not show altered spatial secretion. The secretome of 5 concentric zones of xylose-grown ΔflbA colonies was assessed by quantitative proteomics. In total 138 proteins with a signal sequence for secretion were identified in the medium of ΔflbA colonies. Of these, 18 proteins had never been reported to be part of the secretome of A. niger, while 101 proteins had previously not been identified in the culture medium of xylose-grown wild type colonies. Taken together, inactivation of flbA results in spatial changes in secretion and in a more complex secretome. The latter may be explained by the fact that strain ΔflbA has a thinner cell wall compared to the wild type, enabling efficient release of proteins. These results are of interest to improve A. niger as a cell factory.

  8. Role of Aspergillus niger in recovery enhancement of valuable metals from produced red mud in Bayer process.

    PubMed

    Vakilchap, F; Mousavi, S M; Shojaosadati, S A

    2016-10-01

    Annual worldwide growth rate of red mud (RM) as a hazardous waste has caused serious environmental problems for its disposal in the mining and metallurgy industries. Accordingly, the aim of this study was to investigate biological leaching of RM and recovery of metals using organic acids exerted by Aspergillus niger. Experiments using A. niger were conducted in batch cultures with a pulp density of 2% (w/v) RM under one-step, two-step and spent-medium bioleaching. Based on HPLC results, the major lixiviant was the secretion of organic acids (citric, gluconic, oxalic and malic) by A. niger. Leaching efficiency of metals in the one-step process was the highest and the amounts of leached metals were 69.8%, 60% and 25.4% for Al, Ti and Fe, respectively. The fungal leaching technique demonstrated an adequate recovery of metals, with an efficient and cost-effective means and respect to a reuse of RM for economic and environmental purposes.

  9. The antifungal efficacy of nano-metals supported TiO₂ and ozone on the resistant Aspergillus niger spore.

    PubMed

    Yu, Kuo-Pin; Huang, Yi-Ting; Yang, Shang-Chun

    2013-10-15

    Recently, antimicrobial efficacy of nano-metals has been extensively investigated. However, most of the related studies focused on the bactericidal effectiveness. Molds, especially their spores, are more resistant than bacteria, and can build a high concentration in houses due to dampness. Therefore, a comprehensive evaluation of the antifungal effectiveness of nano-metals is necessary. In this study, the nano-metals (Ag, Cu and Ni) supported catalysts were successfully prepared by the incipient wetness impregnation method, while the titanium dioxide (Degussa (Evonik) P25) nanoparticle was served as the support. The antifungal experiments of Aspergillus niger spores were conducted on two surfaces (quartz and putty) in the darkness with and without ozone exposure, respectively. The critical Ag concentration to inhibit the germination and growth of A. niger spores of 5 wt% nano Ag catalyst was 65 mg/mL, lower than several cases in previous studies. The inactivation rate constants (k) of A. niger spores on nano-metals supported catalysts in the presence of ozone (k=0.475-0.966 h(-1)) were much higher than those in the absence of ozone (k=0.001-0.268 h(-1)). However, on the surface of TiO₂ particles, no antifungal effect was observed until 6-h exposure to ozone. Consequently, ozone has a synergetic effect on nano-metals antifungal efficacy. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Biotransformation of ferulic acid to 4-vinylguaiacol by a wild and a diploid strain of Aspergillus niger.

    PubMed

    Baqueiro-Peña, Itzamná; Rodríguez-Serrano, Gabriela; González-Zamora, Eduardo; Augur, Christopher; Loera, Octavio; Saucedo-Castañeda, Gerardo

    2010-06-01

    Ferulic acid biotransformation has a number of interesting industrial uses. Ferulic acid biotransformation by the wild strain Aspergillus niger C28B25 and a diploid strain DAR2, obtained by parasexual recombination, was studied. The wild strain of A.niger C28B25 biotransforms ferulic acid to vanillic acid (VA); while the diploid strain DAR2 preferentially decarboxylates ferulic acid to 4-vinylguaiacol (4VG). The latter was identified by mass spectroscopy, (1)H and (13)C nuclear magnetic resonance spectroscopy, and quantified by HPLC. The diploid strain A.niger DAR2 and the wild strain showed a ferulic acid conversion of 64% and 36%, respectively. Molar yields show that the formation of 4VG was preferred, being as much as 4.4 times higher than the formation of VA in diploid strain cultures. Differential regulation of enzymes involved in the biotransformation of ferulic acid may explain the accumulation of 4VG by diploid DAR2. This strain produced both 4VG and VA. (c) 2010 Elsevier Ltd. All rights reserved.

  11. Production of ethanol directly from potato starch by mixed culture of Saccharomyces cerevisiae and Aspergillus niger using electrochemical bioreactor.

    PubMed

    Jeon, Bo Young; Kim, Dae Hee; Na, Byung Kwan; Ahn, Dae Hee; Park, Doo Hyun

    2008-03-01

    When cultivated aerobically, Aspergillus niger hyphae produced extracellular glucoamylase, which catalyzes the saccharification of unliquified potato starch into glucose, but not when grown under anaerobic conditions. The Km and Vmax of the extracellular glucoamylase were 652.3 mg starch l-1 and 253.3 mg glucose l-1 min-1, respectively. In mixed culture of A. niger and Saccharomyces cerevisiae, oxygen had a negative influence on the alcohol fermentation of yeast, but activated fungal growth. Therefore, oxygen is a critical factor for ethanol production in the mixed culture, and its generation through electrolysis of water in an electrochemical bioreactor needs to be optimized for ethanol production from starch by coculture of fungal hyphae and yeast cells. By applying pulsed electric fields (PEF) into the electrochemical bioreactor, ethanol production from starch improved significantly: Ethanol produced from 50 g potato starch l-1 by a mixed culture of A. niger and S. cerevisiae was about 5 g l-1 in a conventional bioreactor, but was 9 g l-1 in 5 volts of PEF and about 19 g l-1 in 4 volts of PEF for 5 days.

  12. Enhanced hexadecane degradation and low biomass production by Aspergillus niger exposed to an electric current in a model system.

    PubMed

    Velasco-Alvarez, Nancy; González, Ignacio; Damian-Matsumura, Pablo; Gutiérrez-Rojas, Mariano

    2011-01-01

    The effects of an electric current on growth and hexadecane (HXD) degradation by Aspergillus niger growth were determined. A 450-mL electrochemical cell with titanium ruthenium-oxide coated electrodes and packed with 15 g of perlite (inert biomass support) was inoculated with A. niger (2.0×10(7) spores (g of dry inert support)(-1)) and incubated for 12 days (30 °C; constant ventilation). 4.5 days after starting culture a current of 0.42 mA cm(-2) was applied for 24h. The current reduced (52±11%) growth of the culture as compared to that of a culture not exposed to current. However, HXD degradation was 96±1.4% after 8 days whereas it was 81±1.2% after 12 days in control cultures. Carbon balances of cultures not exposed to current suggested an assimilative metabolism, but a non-assimilative metabolism when the current was applied. This change can be related to an increase in total ATP content. The study contributes to the knowledge on the effects of current on the mycelial growth phase of A. niger, and suggests the possibility of manipulating the metabolism of this organism with electric current.

  13. Properties of Aspergillus niger citrate synthase and effects of citA overexpression on citric acid production.

    PubMed

    Ruijter, G J; Panneman, H; Xu, D; Visser, J

    2000-03-01

    Using a combination of dye adsorption and affinity elution we purified Aspergillus niger citrate synthase to homogeneity using a single column and characterised the enzyme. An A. niger citrate synthase cDNA was isolated by immunological screening and used to clone the corresponding citA gene. The deduced amino acid sequence showed high similarity to other fungal citrate synthases. After processing upon mitochondrial import, the calculated M(r) of A. niger citrate synthase is 48501, which agrees well with the estimated molecular mass of the purified protein (48 kDa). In addition to an N-terminal mitochondrial import signal, a peroxisomal target sequence (AKL) was found at the C-terminus of the protein. Whether both signals are functional in vivo is not clear. Strains overexpressing citA were made by transformation and cultured under citric acid-producing conditions. Up to 11-fold overproduction of citrate synthase did not increase the rate of citric acid production by the fungus, suggesting that citrate synthase contributes little to flux control in the pathway involved in citric acid biosynthesis by a non-commercial strain.

  14. Gene encoding a novel invertase from a xerophilic Aspergillus niger strain and production of the enzyme in Pichia pastoris.

    PubMed

    Veana, Fabiola; Fuentes-Garibay, José Antonio; Aguilar, Cristóbal Noé; Rodríguez-Herrera, Raúl; Guerrero-Olazarán, Martha; Viader-Salvadó, José María

    2014-09-01

    β-Fructofuranosidases or invertases (EC 3.2.1.26) are enzymes that are widely used in the food industry, where fructose is preferred over sucrose, because it is sweeter and does not crystallize easily. Since Aspergillus niger GH1, an xerophilic fungus from the Mexican semi-desert, has been reported to be an invertase producer, and because of the need for new enzymes with biotechnological applications, in this work, we describe the gene and amino acid sequence of the invertase from A. niger GH1, and the use of a synthetic gene to produce the enzyme in the methylotrophic yeast Pichia pastoris. In addition, the produced invertase was characterized biochemically. The sequence of the invertase gene had a length of 1770 bp without introns, encodes a protein of 589 amino acids, and presented an identity of 93% and 97% with invertases from Aspergillus kawachi IFO 4308 and A. niger B60, respectively. A 4.2 L culture with the constructed recombinant P. pastoris strain showed an extracellular and periplasmic invertase production at 72 h induction of 498 and 3776 invertase units (U), respectively, which corresponds to 1018 U/L of culture medium. The invertase produced had an optimum pH of 5.0, optimum temperature of 60 °C, and specific activity of 3389 U/mg protein, and after storage for 96 h at 4 °C showed 93.7% of its activity. This invertase could be suitable for producing inverted sugar used in the food industry.

  15. Occurrence of fungi and cytotoxicity of the species: Aspergillus ochraceus, Aspergillus niger and Aspergillus flavus isolated from the air of hospital wards.

    PubMed

    Gniadek, Agnieszka; Krzyściak, Paweł; Twarużek, Magdalena; Macura, Anna B

    2017-03-30

    The basic care requirement for patients with weakened immune systems is to create the environment where the risk of mycosis is reduced to a minimum. Between 2007 and 2013 air samples were collected from various wards of a number of hospitals in Kraków, Poland, by means of the collision method using MAS-100 Iso MH Microbial Air Sampler (Merck Millipore, Germany). The air mycobiota contained several species of fungi, and almost 1/3 of it was made up of the species of the Aspergillus genus. Sixty-one strains of species other than A. fumigatus were selected for the research purposes, namely: 28 strains of A. ochraceus, 22 strains of A. niger and 11 strains of A. flavus species. Selected fungi underwent a cytotoxicity evaluation with the application of the MTT colorimetric assay (3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide). The assay assesses cell viability by means of reducing the yellow tetrazolium salt to insoluble formazan. A semi-quantitative scale for cytotoxicity grading was adopted: low cytotoxic effect (+) with half maximal inhibitory concentration (IC50) for values ranging from 31.251 cm2/ml to 7.813 cm2/ml, medium cytotoxic effect (++) for values ranging from 3.906 cm2/ml to 0.977 cm2/ml and the high one (+++) for values ranging from 0.488 cm2/ml to 0.061 cm2/ml. The absence of cytotoxicity was determined when the IC50 values was at ≥ 50. For 48 samples the analyzed fungi displayed the cytotoxic effect with A. ochraceus in 26 out of 28 cases, with 11 strains displaying the high cytotoxic effect. The lowest cytotoxicity was displayed by fungi of A. niger in 13 out of 22 cases, and the major fungi of A. flavus species were toxic (9 out of 11 cases). A half of the fungi displayed the low cytotoxic effect. On the basis of the comparison of average cytotoxicity levels it was determined that there were

  16. Comprehensive annotation of secondary metabolite biosynthetic genes and gene clusters of Aspergillus nidulans, A. fumigatus, A. niger and A. oryzae

    PubMed Central

    2013-01-01

    Background Secondary metabolite production, a hallmark of filamentous fungi, is an expanding area of research for the Aspergilli. These compounds are potent chemicals, ranging from deadly toxins to therapeutic antibiotics to potential anti-cancer drugs. The genome sequences for multiple Aspergilli have been determined, and provide a wealth of predictive information about secondary metabolite production. Sequence analysis and gene overexpression strategies have enabled the discovery of novel secondary metabolites and the genes involved in their biosynthesis. The Aspergillus Genome Database (AspGD) provides a central repository for gene annotation and protein information for Aspergillus species. These annotations include Gene Ontology (GO) terms, phenotype data, gene names and descriptions and they are crucial for interpreting both small- and large-scale data and for aiding in the design of new experiments that further Aspergillus research. Results We have manually curated Biological Process GO annotations for all genes in AspGD with recorded functions in secondary metabolite production, adding new GO terms that specifically describe each secondary metabolite. We then leveraged these new annotations to predict roles in secondary metabolism for genes lacking experimental characterization. As a starting point for manually annotating Aspergillus secondary metabolite gene clusters, we used antiSMASH (antibiotics and Secondary Metabolite Analysis SHell) and SMURF (Secondary Metabolite Unknown Regions Finder) algorithms to identify potential clusters in A. nidulans, A. fumigatus, A. niger and A. oryzae, which we subsequently refined through manual curation. Conclusions This set of 266 manually curated secondary metabolite gene clusters will facilitate the investigation of novel Aspergillus secondary metabolites. PMID:23617571

  17. Correlation of Mycotoxin Fumonisin B2 Production and Presence of the Fumonisin Biosynthetic Gene fum8 in Aspergillus niger from Grape

    USDA-ARS?s Scientific Manuscript database

    Fumonisins are mycotoxins associated with cancer and several other serious diseases in humans and animals. Production of the mycotoxins has been reported for over two decades in Fusarium species, but has been reported only recently in strains of Aspergillus niger. In addition, a homologue of the f...

  18. Construction of Aspergillus niger integrated with cellulase gene from Ampullaria gigas Spix for improved enzyme production and saccharification of alkaline-pretreated rice straw.

    PubMed

    Yang, Peizhou; Zhang, Haifeng; Cao, Lili; Zheng, Zhi; Jiang, Shaotong

    2016-12-01

    Aspergillus niger is an important microorganism that has been used for decades to produce extracellular enzymes. In this study, a novel Aspergillus niger strain integrated with a eukaryotic expression vector harboring the gpd-Shi promoter of shiitake mushrooms and cellulase gene of Ampullaria gigas Spix was engineered to improve cellulase production for the achievement of highly efficient saccharification of agricultural residues. In one strain, designated ACShi27, which exhibited the highest total cellulase expression, total cellulase, endoglucanase, exoglucanase, and xylanase expression levels were 1.73, 16.23, 17.73, and 150.83 U ml(-1), respectively; these values were 14.5, 22.3, 24.6, and 17.3% higher than those of the wild-type Aspergillus niger M85 using wheat bran as an induction substrate. Production of cellulases and xylanase by solid-state fermentation followed by in situ saccharification of ACShi27 was investigated with alkaline-pretreated rice straw as a substrate. After 2 days of enzyme induction at 30 °C, followed by 48 h of saccharification at 50 °C, the conversion rate of carbon polymers into reducing sugar reached 293.2 mg g(-1), which was 1.23-fold higher than that of the wild-type strain. The expression of sestc in Aspergillus niger can improve the total cellulase and xylanase activity and synergism, thereby enhancing the lignocellulose in situ saccharification.

  19. Phosphate solubilization and promotion of maize growth in a calcareous soil by penicillium oxalicum P4 and aspergillus niger P85

    USDA-ARS?s Scientific Manuscript database

    Alternative tactics for improving phosphorus nutrition in crop production are needed in China and elsewhere as the over-application of phosphatic fertilizers can adversely impact agricultural sustainability. Penicillium oxalicum P4 and Aspergillus niger P85 were isolated from a calcareous soil in C...

  20. The genome of an industrial workhorse : sequencing of the filamentous fungus Aspergillus niger offers new opportunities for the production of specialty chemicals and enzymes

    Treesearch

    Dan Cullen

    2007-01-01

    Few microbes compare with the filamentous fungus Aspergillus niger in its ability to produce prodigious amounts of useful chemicals and enzymes. This fungus is the principal source of citric acid for food, beverages and pharmaceuticals and of several important commercial enzymes, including glucoamylase, which is widely used for the conversion of starch to food syrups...

  1. Variation in fumonisin and ochratoxin production associated with differences in biosynthetic gene content in Aspergillus niger and A. welwitschiae isolates from multiple crop and geographic origins

    USDA-ARS?s Scientific Manuscript database

    The fungi Aspergillus niger and A. welwitschiae are morphologically indistinguishable species used for industrial fermentation and for food and beverage production. The fungi also occur widely on food crops. Concerns about their safety have arisen with the discovery that some isolates of both specie...

  2. Impact of Assay conditions on activity estimate and kinetics comparison of Aspergillus niger PhyA and Escherichia coli AppA2 phytases

    USDA-ARS?s Scientific Manuscript database

    This study was to compare three phytase activity assays and kinetics of Aspergillus niger PhyA and Escherichia coli AppA2 phytases expressed in Pichia pastoris at the observed stomach pH of 3.5. In Experiment 1, equivalent phytase activities in the crude preparations of PhyA and AppA2 were tested ...

  3. Altering the Substrate Specificity Site of Aspergillus Niger PhyB shifts the pH optimum to pH 3.2

    USDA-ARS?s Scientific Manuscript database

    Phytases are of biotechnological importance as animal feed additives for their ability to catalyze the hydrolysis of phosphate from phytate for absorption by simple-stomached animals, and to reduce their fecal phosphorus excretion. Aspergillus niger PhyB has high catalytic activity at low pHs around...

  4. Characterization of a polyketide synthase in Aspergillus niger whose product is a precursor for both dihydroxynaphthalene (DHN) melanin and naphtho-γ-pyrone.

    SciTech Connect

    Chiang, Yi Ming; Meyer, Kristen M; Praseuth, Michael; Baker, Scott E; Bruno, Kenneth S; Wang, Clay C

    2010-12-06

    The genome sequencing of the fungus Aspergillus niger, an industrial workhorse, uncovered a large cache of genes encoding enzymes thought to be involved in the production of secondary metabolites yet to be identified. Identification and structural characterization of many of these predicted secondary metabolites are hampered by their low concentration relative to the known A. niger metabolites such as the naphtho-γ-pyrone family of polyketides. We deleted a nonreducing PKS gene in A. niger strain ATCC 11414, a daughter strain of A. niger ATCC strain 1015 whose genome was sequenced by the DOE Joint Genome Institute. This PKS encoding gene is a predicted ortholog of alb1 from Aspergillus fumigatus which is responsible for production of YWA1, a precursor of fungal DHN melanin. Our results show that the A. niger alb1 PKS is responsible for the production of the polyketide precursor for DHN melanin biosynthesis. Deletion of alb1 elimnates the production of major metabolites, naphtho-γ-pyrones. The generation of an A. niger strain devoid of naphtho-γ-pyrones will greatly facilitate the elucidation of cryptic biosynthetic pathways in this organism.

  5. Response surface optimization for enhanced production of cellulases with improved functional characteristics by newly isolated Aspergillus niger HN-2.

    PubMed

    Oberoi, Harinder Singh; Rawat, Rekha; Chadha, Bhupinder Singh

    2014-01-01

    Fungi isolated from partially decayed wood log samples showing characteristic diversity for spore colour, colony morphology and arrangement of spores were assessed for cellulolytic enzyme production. Isolates showing a cellulolytic index of ≥2.0 were assayed for filter paper (FP) cellulase and β-glucosidase (BGL) production. Molecular characterization confirmed the identity of the selected cellulolytic isolate as a strain of Aspergillus niger (A. niger HN-2). Addition of 2 % (w/v) urea enhanced FP and BGL activity by about 20 and 60 %, respectively. Validation studies conducted at parameters (29 °C, pH 5.4, moisture content 72 % and 66 h) optimized through response surface methodology in a solid-state static tray fermentation resulted in FP, BGL, cellobiohydrolase I (CBHI), endoglucanase (EG), xylanase activity and protein content of 25.3 FPU/g ds, 750 IU/g ds, 13.2 IU/g ds, 190 IU/g ds, 2890 IU/g ds and 0.9 mg/ml, respectively. In comparison, A. niger N402 which is a model organism for growth and development studies, produced significantly lower FP, BGL, CBHI, EG, xylanase activity and protein content of 10.0 FPU/g ds, 100 IU/g ds, 2.3 IU/g ds, 50 IU/g ds, 500 IU/g ds and 0.75 mg/ml, respectively under the same process conditions as were used for A. niger HN-2. Process optimization led to nearly 1.8- and 2.2-fold increase in FP and BGL activity, respectively showing promise for cellulase production by A. niger HN-2 at a higher scale of operation. Zymogram analysis revealed two isoforms each for EG and cellobiohydrolase and three isoforms for BGL. Crude cellulase complex produced by A. niger HN-2 exhibited thermostability under acidic conditions showing potential for use in biofuel industry.

  6. Comparative study of toxicity of azo dye Procion Red MX-5B following biosorption and biodegradation treatments with the fungi Aspergillus niger and Aspergillus terreus.

    PubMed

    Almeida, E J R; Corso, C R

    2014-10-01

    Azo dyes are an important class of environmental contaminants and are characterized by the presence of one or more azo bonds (-N=N-) in their molecular structure. Effluents containing these compounds resist many types of treatments due to their molecular complexity. Therefore, alternative treatments, such as biosorption and biodegradation, have been widely studied to solve the problems caused by these substances, such as their harmful effects on the environment and organisms. The aim of the present study was to evaluate biosorption and biodegradation of the azo dye Procion Red MX-5B in solutions with the filamentous fungi Aspergillus niger and Aspergillus terreus. Decolorization tests were performed, followed by acute toxicity tests using Lactuca sativa seeds and Artemia salina larvae. Thirty percent dye removal of the solutions was achieved after 3 h of biosorption. UV-Vis spectroscopy revealed that removal of the dye molecules occurred without major molecular changes. The acute toxicity tests confirmed lack of molecular degradation following biosorption with A. niger, as toxicity to L. sativa seed reduced from 5% to 0%. For A. salina larvae, the solutions were nontoxic before and after treatment. In the biodegradation study with the fungus A. terreus, UV-Vis and FTIR spectroscopy revealed molecular degradation and the formation of secondary metabolites, such as primary and secondary amines. The biodegradation of the dye molecules was evaluated after 24, 240 and 336 h of treatment. The fungal biomass demonstrated considerable affinity for Procion Red MX-5B, achieving approximately 100% decolorization of the solutions by the end of treatment. However, the solutions resulting from this treatment exhibited a significant increase in toxicity, inhibiting the growth of L. sativa seeds by 43% and leading to a 100% mortality rate among the A. salina larvae. Based on the present findings, biodegradation was effective in the decolorization of the samples, but generated

  7. Identification of the acid/base catalyst of a glycoside hydrolase family 3 (GH3) beta-glucosidase from Aspergillus niger ASKU28.

    PubMed

    Thongpoo, Preeyanuch; McKee, Lauren S; Araújo, Ana Catarina; Kongsaeree, Prachumporn T; Brumer, Harry

    2013-03-01

    The commercially important glycoside hydrolase family 3 (GH3) beta-glucosidases from Aspergillus niger are anomeric-configuration-retaining enzymes that operate through the canonical double-displacement glycosidase mechanism. Whereas the catalytic nucleophile is readily identified across all GH3 members by sequence alignments, the acid/base catalyst in this family is phylogenetically variable and less readily divined. In this report, we employed three-dimensional structure homology modeling and detailed kinetic analysis of site-directed mutants to identify the catalytic acid/base of a GH3 beta-glucosidase from A. niger ASKU28. In comparison to the wild-type enzyme and other mutants, the E490A variant exhibited greatly reduced k(cat) and k(cat)/K(m) values toward the natural substrate cellobiose (67,000- and 61,000-fold, respectively). Correspondingly smaller kinetic effects were observed for artificial chromogenic substrates p-nitrophenyl beta-D-glucoside and 2,4-dinitrophenyl beta-D-glucoside, the aglycone leaving groups of which are less dependent on acid catalysis, although changes in the rate-determining catalytic step were revealed for both. pH-rate profile analyses also implicated E490 as the general acid/base catalyst. Addition of azide as an exogenous nucleophile partially rescued the activity of the E490A variant with the aryl beta-glucosides and yielded beta-glucosyl azide as a product. These results strongly support the assignment of E490 as the acid/base catalyst in a beta-glucosidase from A. niger ASKU28, and provide crucial experimental support for the bioinformatic identification of the homologous residue in a range of related GH3 subfamily members.

  8. Comparative genomics of citric-acid producing Aspergillus niger ATCC 1015 versus enzyme-producing CBS 513.88

    SciTech Connect

    Grigoriev, Igor V.; Baker, Scott E.; Andersen, Mikael R.; Salazar, Margarita P.; Schaap, Peter J.; Vondervoot, Peter J.I. van de; Culley, David; Thykaer, Jette; Frisvad, Jens C.; Nielsen, Kristen F.; Albang, Richard; Albermann, Kaj; Berka, Randy M.; Braus, Gerhard H.; Braus-Stromeyer, Susanna A.; Corrochano, Luis M.; Dai, Ziyu; Dijck, Piet W.M. van; Hofmann, Gerald; Lasure, Linda L.; Magnusson, Jon K.; Meijer, Susan L.; Nielsen, Jakob B.; Nielsen, Michael L.; Ooyen, Albert J.J. van; Panther, Kathyrn S.; Pel, Herman J.; Poulsen, Lars; Samson, Rob A.; Stam, Hen; Tsang, Adrian; Brink, Johannes M. van den; Atkins, Alex; Aerts, Andrea; Shapiro, Harris; Pangilinan, Jasmyn; Salamov, Asaf; Lou, Yigong; Lindquist, Erika; Lucas, Susan; Grimwood, Jane; Kubicek, Christian P.; Martinez, Diego; Peij, Noel N.M.E. van; Roubos, Johannes A.; Nielsen, Jens

    2011-04-28

    The filamentous fungus Aspergillus niger exhibits great diversity in its phenotype. It is found globally, both as marine and terrestrial strains, produces both organic acids and hydrolytic enzymes in high amounts, and some isolates exhibit pathogenicity. Although the genome of an industrial enzyme-producing A. niger strain (CBS 513.88) has already been sequenced, the versatility and diversity of this species compels additional exploration. We therefore undertook whole genome sequencing of the acidogenic A. niger wild type strain (ATCC 1015), and produced a genome sequence of very high quality. Only 15 gaps are present in the sequence and half the telomeric regions have been elucidated. Moreover, sequence information from ATCC 1015 was utilized to improve the genome sequence of CBS 513.88. Chromosome-level comparisons uncovered several genome rearrangements, deletions, a clear case of strain-specific horizontal gene transfer, and identification of 0.8 megabase of novel sequence. Single nucleotide polymorphisms per kilobase (SNPs/kb) between the two strains were found to be exceptionally high (average: 7.8, maximum: 160 SNPs/kb). High variation within the species was confirmed with exo-metabolite profiling and phylogenetics. Detailed lists of alleles were generated, and genotypic differences were observed to accumulate in metabolic pathways essential to acid production and protein synthesis. A transcriptome analysis revealed up-regulation of the electron transport chain, specifically the alternative oxidative pathway in ATCC 1015, while CBS 513.88 showed significant up-regulation of genes relevant to glucoamylase A production, such as tRNA-synthases and protein transporters. Our results and datasets from this integrative systems biology analysis resulted in a snapshot of fungal evolution and will support further optimization of cell factories based on filamentous fungi.[Supplemental materials (10 figures, three text documents and 16 tables) have been made available

  9. Treatment of APMP pulping effluent based on aerobic fermentation with Aspergillus niger and post-coagulation/flocculation.

    PubMed

    Liu, Tingzhi; He, Zhibin; Hu, Huiren; Ni, Yonghao

    2011-04-01

    A novel two-stage biological/flocculation process was developed for treating the pulping effluent from the alkaline peroxide mechanical pulping (APMP) process. In the first biological stage, the aerobic fermentation by using Aspergillus niger can decrease the chemical oxygen demand (COD) by about 60% while producing about 7 g/l of solid biomass. In the second stage (post-coagulation/flocculation), the residual COD, turbidity and color, can be further decreased by using alum and polyacrylamide (PAM). The overall removal efficiencies of COD, color and turbidity from the APMP pulping effluent by the above two-stage biological-coagulation/flocculation process were 93%, 92% and 99%, respectively, under the conditions studied. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Purification and Characterization of a Dimethoate-Degrading Enzyme of Aspergillus niger ZHY256, Isolated from Sewage

    PubMed Central

    Liu, Yu-Huan; Chung, Ying-Cheng; Xiong, Ya

    2001-01-01

    A dimethoate-degrading enzyme from Aspergillus niger ZHY256 was purified to homogeneity with a specific activity of 227.6 U/mg of protein. The molecular mass of the purified enzyme was estimated to be 66 kDa by gel filtration and 67 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The isoelectric point was found to be 5.4, and the enzyme activity was optimal at 50°C and pH 7.0. The activity was inhibited by most of the metal ions and reagents, while it was induced by Cu2+. The Michaelis constant (Km) and Vmax for dimethoate were 1.25 mM and 292 μmol min−1 mg of protein−1, respectively. PMID:11472959

  11. Aspernigrins with anti-HIV-1 activities from the marine-derived fungus Aspergillus niger SCSIO Jcsw6F30.

    PubMed

    Zhou, Xuefeng; Fang, Wei; Tan, Suiyi; Lin, Xiuping; Xun, Tianrong; Yang, Bingjie; Liu, Shuwen; Liu, Yonghong

    2016-01-15

    Two new 2-benzylpyridin-4-one containing metabolites, aspernigrins C (3) and D (4), together with six known compounds (1, 2, and 5-8), were isolated from the marine-derived fungus Aspergillus niger SCSIO Jcsw6F30. The structures of the new compounds were determined by NMR, MS, and optical rotation analyses. All the isolated compounds were evaluated for their inhibitory activities against infection with HIV-1 SF162 in TZM-bl cells. Malformin C (5) showed the strongest anti-HIV-1 activity with IC50 of 1.4±0.06μM (selectivity index, 11.4), meanwhile aspernigrin C (3) also exhibited potent activity with IC50 of 4.7±0.4μM (selectivity index, 7.5).

  12. Molecular and chemical characterization of the biosynthesis of the 6-MSA-derived meroterpenoid yanuthone D in Aspergillus niger.

    PubMed

    Holm, Dorte K; Petersen, Lene M; Klitgaard, Andreas; Knudsen, Peter B; Jarczynska, Zofia D; Nielsen, Kristian F; Gotfredsen, Charlotte H; Larsen, Thomas O; Mortensen, Uffe H

    2014-04-24

    Secondary metabolites in filamentous fungi constitute a rich source of bioactive molecules. We have deduced the genetic and biosynthetic pathway of the antibiotic yanuthone D from Aspergillus niger. Our analyses show that yanuthone D is a meroterpenoid derived from the polyketide 6-methylsalicylic acid (6-MSA). Yanuthone D formation depends on a cluster composed of ten genes including yanA and yanI, which encode a 6-MSA polyketide synthase and a previously undescribed O-mevalon transferase, respectively. In addition, several branching points in the pathway were discovered, revealing five yanuthones (F, G, H, I, and J). Furthermore, we have identified another compound (yanuthone X1) that defines a class of yanuthones that depend on several enzymatic activities encoded by genes in the yan cluster but that are not derived from 6-MSA.

  13. Treatment of African catfish, Clarias gariepinus wastewater utilizing phytoremediation of microalgae, Chlorella sp. with Aspergillus niger bio-harvesting.

    PubMed

    Nasir, Nurfarahana Mohd; Bakar, Nur Syuhada Abu; Lananan, Fathurrahman; Abdul Hamid, Siti Hajar; Lam, Su Shiung; Jusoh, Ahmad

    2015-08-01

    This study focuses on the evaluation of the performance of Chlorella sp. in removing nutrient in aquaculture wastewater and its correlation with the kinetic growth of Chlorella sp. The treatment was applied with various Chlorella sp. inoculation dosage ranging from 0% to 60% (v/v) of wastewater. The optimum inoculation dosage was recorded at 30% (v/v) with effluent concentration of ammonia and orthophosphate recording at 0.012mgL(-1) and 0.647mgL(-1), respectively on Day 11. The optimum dosage for bio-flocculation process was obtained at 30mgL(-1) of Aspergillus niger with a harvesting efficiency of 97%. This type of development of phytoremediation with continuous bio-harvesting could promote the use of sustainable green technology for effective wastewater treatment.

  14. Phase diagram of crystallization of Aspergillus niger acid proteinase A, a non-pepsin-type acid proteinase

    NASA Astrophysics Data System (ADS)

    Kudo, Norio; Ataka, Mitsuo; Sasaki, Hiroshi; Muramatsu, Tomonari; Katsura, Tatsuo; Tanokura, Masaru

    1996-10-01

    Proteinase A from Aspergillus niger var. macrosporus is a non-pepsin-type acid proteinase with an extremely low isoelectric point (pI 3.3). The protein is crystallized from ammonium sulfate solutions of pH lower than 4. The crystallization is affected by the presence of dimethylsulfoxide (DMSO). We have studied the phase diagram of the crystallization of proteinase A in the absence and presence of DMSO, to clarify crystallization at such an extremely low pH and to study the effects of DMSO. The results indicate that the logarithm of protein solubility is a rectilinear function of ammonium sulfate concentration in both the absence and presence of DMSO. DMSO definitely lowers the solubility at relatively low concentrations of ammonium sulfate, but had little effect on protein solubility at higher concentrations of ammonium sulfate.

  15. Gene cloning and soluble expression of Aspergillus niger phytase in E. coli cytosol via chaperone co-expression.

    PubMed

    Ushasree, Mrudula Vasudevan; Vidya, Jalaja; Pandey, Ashok

    2014-01-01

    A phytase gene from Aspergillus niger was isolated and two Escherichia coli expression systems, based on T7 RNA polymerase promoter and tac promoter, were used for its recombinant expression. Co-expression of molecular chaperone, GroES/EL, aided functional cytosolic expression of the phytase in E. coli BL21 (DE3). Untagged and maltose-binding protein-tagged recombinant phytase showed an activity band of ~49 and 92 kDa, respectively, on a zymogram. Heterologously-expressed phytase was fractionated from endogenous E. coli phytase by (NH4)2SO4 precipitation. The enzyme had optimum activity at 50 °C and pH 6.5.

  16. Application of Plackett-Burman Experimental Design for Lipase Production by Aspergillus niger Using Shea Butter Cake.

    PubMed

    Salihu, Aliyu; Bala, Muntari; Bala, Shuaibu M

    2013-01-01

    Plackett-Burman design was used to efficiently select important medium components affecting the lipase production by Aspergillus niger using shea butter cake as the main substrate. Out of the eleven medium components screened, six comprising of sucrose, (NH4)2SO4, Na2HPO4, MgSO4, Tween-80, and olive oil were found to contribute positively to the overall lipase production with a maximum production of 3.35 U/g. Influence of tween-80 on lipase production was investigated, and 1.0% (v/w) of tween-80 resulted in maximum lipase production of 6.10 U/g. Thus, the statistical approach employed in this study allows for rapid identification of important medium parameters affecting the lipase production, and further statistical optimization of medium and process parameters can be explored using response surface methodology.

  17. Application of Plackett-Burman Experimental Design for Lipase Production by Aspergillus niger Using Shea Butter Cake

    PubMed Central

    Salihu, Aliyu; Bala, Muntari; Bala, Shuaibu M.

    2013-01-01

    Plackett-Burman design was used to efficiently select important medium components affecting the lipase production by Aspergillus niger using shea butter cake as the main substrate. Out of the eleven medium components screened, six comprising of sucrose, (NH4)2SO4, Na2HPO4, MgSO4, Tween-80, and olive oil were found to contribute positively to the overall lipase production with a maximum production of 3.35 U/g. Influence of tween-80 on lipase production was investigated, and 1.0% (v/w) of tween-80 resulted in maximum lipase production of 6.10 U/g. Thus, the statistical approach employed in this study allows for rapid identification of important medium parameters affecting the lipase production, and further statistical optimization of medium and process parameters can be explored using response surface methodology. PMID:25937979

  18. Optimisation of combi-lipases from Aspergillus niger for the synergistic and efficient hydrolysis of soybean oil.

    PubMed

    Qiao, Hanzhen; Zhang, Fei; Guan, Wutai; Zuo, Jianjun; Feng, Dingyuan

    2017-05-01

    The enzymatic properties of four lipases (A, B, C and D) from different strains of Aspergillus niger, were investigated, and a 3-factor mixture design and triangular surface analysis were performed to screen the optimal combi-lipase by observing synergistic effects. Lipases B and D differed in optimal pH, temperature and substrate specificity. A combi-lipase with 31.2% lipase B and 68.8% lipase D (w/w, equal to units of 30.36% and 69.64%) exhibited optimal hydrolytic activity on soybean oil, which exceeded the sum of the combined activities of individual lipases (P < 0.05). Free fatty acid from the hydrolyzed soybean oil indicated that the synergistic effect of the combi-lipase resulted from the different fatty acid specificities of the two lipases. Overall, combi-lipase afforded an effective route for the application of lipase enzymes to animal feeds. © 2016 Japanese Society of Animal Science.

  19. Coffee husk: an inexpensive substrate for production of citric acid by Aspergillus niger in a solid-state fermentation system.

    PubMed

    Shankaranand, V S; Lonsane, B K

    1994-03-01

    Aspergillus niger CFTRI 30 produced 1.3 g citric acid/10 g dry coffee husk in 72 h solid-state fermentation when the substrate was moistened with 0.075 M NaOH solution. Production was increased by 17% by adding a mixture of iron, copper and zinc to the medium but enrichment of the moist solid medium with (NH4)2SO4, sucrose or any of four enzymes did not improve production. The production of about 1.5 g citric acid/10 g dry coffee husk at a conversion of 82% (based on sugar consumed) under standardized conditions demonstrates the commercial potential of using the husk in this way.

  20. Purification and characterization of two distinct acidic phytases with broad pH stability from Aspergillus niger NCIM 563

    PubMed Central

    Soni, S. K.; Magdum, A.

    2010-01-01

    Aspergillus niger NCIM 563 produced two different extracellular phytases (Phy I and Phy II) under submerged fermentation conditions at 30°C in medium containing dextrin-glucose-sodium nitrate-salts. Both the enzymes were purified to homogeneity using Rotavapor concentration, Phenyl-Sepharose column chromatography and Sephacryl S-200 gel filtration. The molecular mass of Phy I and II as determined by SDS–PAGE and gel filtration were 66, 264, 150 and 148 kDa respectively, indicating that Phy I consists of four identical subunits and Phy II is a monomer. The pI values of Phy I and II were 3.55 and 3.91, respectively. Phy I was highly acidic with optimum pH of 2.5 and was stable over a broad pH range (1.5–9.0) while Phy II showed a pH optimum of 5.0 with stability in the range of pH 3.5–9.0. Phy I exhibited very broad substrate specificity while Phy II was more specific for sodium phytate. Similarly Phy II was strongly inhibited by Ag+, Hg2+ (1 mM) metal ions and Phy I was partially inhibited. Peptide analysis by Mass Spectrometry (MS) MALDI-TOF also indicated that both the proteins were totally different. The Km for Phy I and II for sodium phytate was 2.01 and 0.145 mM while Vmax was 5,018 and 1,671 μmol min−1 mg−1, respectively. The N-terminal amino acid sequences of Phy I and Phy II were FSYGAAIPQQ and GVDERFPYTG, respectively. Phy II showed no homology with Phy I and any other known phytases from the literature suggesting its unique nature. This, according to us, is the first report of two distinct novel phytases from Aspergillus niger. PMID:20976287

  1. [Influence of the interaction of temperature and water activity on the production of ochratoxin A and the growth of Aspergillus niger, Aspergillus carbonarius and Aspergillus ochraceus on coffee-based culture medium].

    PubMed

    Kouadio, Ahou Irène; Lebrihi, Ahmed; Agbo, Georges N' Zi; Mathieu, Florence; Pfohl-Leszkowiz, Annie; Dosso, Mireille Bretin

    2007-07-01

    In the present study, the effect of temperature and water activity on fungal growth and ochratoxin production on coffee-based medium was assessed. Optimal growth of three Aspergillus strains was observed in the same ecological conditions, namely 30 degrees C and 0.99 water activity. Maximal daily growth is 11.2, 6.92, and 7.22 mm/day for Aspergillus niger, Aspergillus carbonarius, and Aspergillus ochraceus, respectively. However, ecological conditions for optimal ochratoxin production vary according to the toxinogenic strain, with water activity as a limiting factor. Such an ochratoxin A production is inhibited at 42 degrees C and 0.75 water activity. Correspondence between laboratory tested water activity and that measured on a sun-dried ripe cherry batch shows that the first 5 days of drying are critical for fungal growth and ochratoxin A production. Accordingly, artificial drying of cherries at temperatures above 42 degrees C will impede not only fungal growth but also contamination with ochratoxin A.

  2. Optimization of the parameters for decolourization by Aspergillus niger of anaerobically digested distillery spentwash pretreated with polyaluminium chloride.

    PubMed

    Singh, S S; Dikshit, A K

    2010-04-15

    Molasses spentwash from distilleries is characterized by high COD and colour. The fungal decolourization of anaerobically digested molasses spentwash requires significant dilution. In this study, decolourization by Aspergillus niger isolate IITB-V8 was performed on polyaluminium chloride (PAC) treated anaerobically digested spentwash without dilution of wastewater. Optimization of parameters was studied using statistical experimental designs. In the first step, Plackett-Burman design was used for screening the important parameters. Glucose was taken as the carbon source for the growth of A. niger. KH(2)PO(4) and pH were found to be the important factors affecting decolourization. In the second step, Box-Behnken design was used to determine the optimum level of each of the significant parameters. A second-order polynomial was determined by the multiple regression analysis of the experimental data. The optimum values for the important factors to achieve maximum decolourization of 68.4% were 5.5 g/L Glucose, 1.2 g/L KH(2)PO(4) and 5 pH. The determination coefficient (R(2)) was 0.9973, which ensures adequate credibility of the model. The total decolourization obtained after fungal treatment was 86.8% which indicates fungal decolourization after pretreatment with PAC is a viable option for the treatment of digested molasses spentwash. 2009 Elsevier B.V. All rights reserved.

  3. Investigating the expression of F10 and G11 xylanases in Aspergillus niger A09 with qPCR.

    PubMed

    Cui, Shixiu; Wang, Tianwen; Hu, Hong; Liu, Liangwei; Song, Andong; Chen, Hongge

    2016-09-01

    There exist significant differences between the 2 main types of xylanases, family F10 and G11. A clear understanding of the expression pattern of microbial F10 and G11 under different culture conditions would facilitate better production and industrial application of xylanase. In this study, the fungal xylanase producer Aspergillus niger A09 was systematically investigated in terms of induced expression of xylanase F10 and G11. Results showed that carbon and nitrogen sources could influence xylanase F10 and G11 transcript abundance, with G11 more susceptible to changes in culture media composition. The most favorable carbon and nitrogen sources for high G11 and low F10 production by A. niger A09 were xylan (2%) and (NH4)2C2O4 (0.3%), respectively. Following cultivation at 33 °C for 60 h, the highest xylanase activity (1132 IU per gram of wet mycelia) was observed. On the basis of differential gene expression of F10 and G11, as well as their different properties, we deduced that the F10 protein initially targeted xylan and hydrolyzed it into fragments including xylose, after which xylose acted as the inducer of F10 and G11 gene expression. These speculations also accounted for our failure to identify conditions favoring the high production of F10 but a low production of G11.

  4. The AngFus3 Mitogen-Activated Protein Kinase Controls Hyphal Differentiation and Secondary Metabolism in Aspergillus niger.

    PubMed

    Priegnitz, Bert-Ewald; Brandt, Ulrike; Pahirulzaman, Khomaizon A K; Dickschat, Jeroen S; Fleißner, André

    2015-06-01

    Adaptation to a changing environment is essential for the survival and propagation of sessile organisms, such as plants or fungi. Filamentous fungi commonly respond to a worsening of their growth conditions by differentiation of asexually or sexually produced spores. The formation of these specialized cell types is, however, also triggered as part of the general life cycle by hyphal age or density. Spores typically serve for dispersal and, therefore, translocation but can also act as resting states to endure times of scarcity. Eukaryotic differentiation in response to environmental and self-derived signals is commonly mediated by three-tiered mitogen-activated protein (MAP) kinase signaling cascades. Here, we report that the MAP kinase Fus3 of the black mold Aspergillus niger (AngFus3) and its upstream kinase AngSte7 control vegetative spore formation and secondary metabolism. Mutants lacking these kinases are defective in conidium induction in response to hyphal density but are fully competent in starvation-induced sporulation, indicating that conidiation in A. niger is triggered by various independent signals. In addition, the mutants exhibit an altered profile of volatile metabolites and secrete dark pigments into the growth medium, suggesting a dysregulation of the secondary metabolism. By assigning the AngFus3 MAP kinase pathway to the transduction of a potentially self-derived trigger, this work contributes to the unraveling of the intricate signaling networks controlling fungal differentiation. Moreover, our data further support earlier observations that differentiation and secondary metabolism are tightly linked in filamentous fungi.

  5. Effects of Cymbopogon citratus L. essential oil on the growth, lipid content and morphogenesis of Aspergillus niger ML2-strain.

    PubMed

    Helal, G A; Sarhan, M M; Abu Shahla, A N K; Abou El-Khair, E K

    2006-01-01

    The mycelial growth of Aspergillus niger van Tieghem was completely inhibited using 1.5 (microl/ml or 2.0 (microl/ml of Cymbopogon citratus essential oil applied by fumigation or contact method in Czapek liquid medium, respectively. This oil was found also to be fungicidal at the same concentrations. The sublethal doses 1.0 and 1.5 (microl/ml inhibited about 70% of fungal growth after five days of incubation and delayed conidiation as compared with the control. Microscopic observations using Light Microscope (LM), Scanning Electron Microscope (SEM) and Transmission Electron Microscope (TEM) were carried out to determine the ultra structural modifications of A. niger hyphae after treatment with C. citratus essential oil. The hyphal diameter and hyphal wall appeared markedly thinner. This oil also caused plasma membrane disruption and mitochondrial structure disorganization. Moreover, Ca+2, K+ and Mg+2 leakages increased from the fumigated mycelium and its total lipid content decreased, while the saturated fatty acids decreased and unsaturated fatty acids increased. These findings increase the possibility of exploiting C. citratus essential oil as an effective inhibitor of biodegrading and storage contaminating fungi and in fruit juice preservation.

  6. Successive membrane separation processes simplify concentration of lipases produced by Aspergillus niger by solid-state fermentation.

    PubMed

    Reinehr, Christian Oliveira; Treichel, Helen; Tres, Marcus Vinicius; Steffens, Juliana; Brião, Vandré Barbosa; Colla, Luciane Maria

    2017-02-25

    In this study, we developed a simplified method for producing, separating, and concentrating lipases derived from solid-state fermentation of agro-industrial residues by filamentous fungi. First, we used Aspergillus niger to produce lipases with hydrolytic activity. We analyzed the separation and concentration of enzymes using membrane separation processes. The sequential use of microfiltration and ultrafiltration processes made it possible to obtain concentrates with enzymatic activities much higher than those in the initial extract. The permeate flux was higher than 60 L/m(2) h during microfiltration using 20- and 0.45-µm membranes and during ultrafiltration using 100- and 50-kDa membranes, where fouling was reversible during the filtration steps, thereby indicating that the fouling may be removed by cleaning processes. These results demonstrate the feasibility of lipase production using A. niger by solid-state fermentation of agro-industrial residues, followed by successive tangential filtration with membranes, which simplify the separation and concentration steps that are typically required in downstream processes.

  7. Effects of Cymbopogon nardus (L.) W. Watson essential oil on the growth and morphogenesis of Aspergillus niger.

    PubMed

    de Billerbeck, V G; Roques, C G; Bessière, J M; Fonvieille, J L; Dargent, R

    2001-01-01

    The growth inhibitory effect of Cymbopogon nardus (L.) W. Watson var. nurdus essential oil on Aspergillus niger (Van Tieghem) mycelium was determined on agar medium. The mycelium growth was completely inhibited at 800 mg/L. This concentration was found to be lethal under the test conditions. Essential oil at 400 mg/L caused growth inhibition of 80% after 4 days of incubation, and a delay in conidiation of 4 days compared with the control. Microscopic observations were carried out to determine the ultrastructural modifications of A. niger hyphae after treatment with C. nardus essential oil. The main change observed by transmission electron microscopy concerned the hyphal diameter and the hyphal wall, which appeared markedly thinner. These modifications in cytological structure might be caused by the interference of the essential oil with the enzymes responsible for wall synthesis which disturb normal growth. Moreover, the essential oil caused plasma membrane disruption and mitochondrial structure disorganization. The findings thus indicate the possibility of exploiting Cymbopogon nardus essential oil as an effective inhibitor of biodegrading and storage-contaminating fungi.

  8. Production of cellulose by Aspergillus niger under submerged and solid state fermentation using coir waste as a substrate

    PubMed Central

    Mrudula, Soma; Murugammal, Rangasamy

    2011-01-01

    Aspergillus niger was used for cellulase production in submerged (SmF) and solid state fermentation (SSF). The maximum production of cellulase was obtained after 72 h of incubation in SSF and 96 h in Smf. The CMCase and FPase activities recorded in SSF were 8.89 and 3.56 U per g of dry mycelial bran (DBM), respectively. Where as in Smf the CMase & FPase activities were found to be 3.29 and 2.3 U per ml culture broth, respectively. The productivity of extracellular cellulase in SSF was 14.6 fold higher than in SmF. The physical and nutritional parameters of fermentation like pH, temperature, substrate, carbon and nitrogen sources were optimized. The optimal conditions for maximum biosynthesis of cellulase by A. niger were shown to be at pH 6, temperature 30 °C. The additives like lactose, peptone and coir waste as substrate increased the productivity both in SmF and SSF. The moisture ratio of 1:2 (w/v) was observed for optimum production of cellulase in SSF. PMID:24031730

  9. Role of Aspergillus niger acrA in arsenic resistance and its use as the basis for an arsenic biosensor.

    PubMed

    Choe, Se-In; Gravelat, Fabrice N; Al Abdallah, Qusai; Lee, Mark J; Gibbs, Bernard F; Sheppard, Donald C

    2012-06-01

    Arsenic contamination of groundwater sources is a major issue worldwide, since exposure to high levels of arsenic has been linked to a variety of health problems. Effective methods of detection are thus greatly needed as preventive measures. In an effort to develop a fungal biosensor for arsenic, we first identified seven putative arsenic metabolism and transport genes in Aspergillus niger, a widely used industrial organism that is generally regarded as safe (GRAS). Among the genes tested for RNA expression in response to arsenate, acrA, encoding a putative plasma membrane arsenite efflux pump, displayed an over 200-fold increase in gene expression in response to arsenate. We characterized the function of this A. niger protein in arsenic efflux by gene knockout and confirmed that AcrA was located at the cell membrane using an enhanced green fluorescent protein (eGFP) fusion construct. Based on our observations, we developed a putative biosensor strain containing a construct of the native promoter of acrA fused with egfp. We analyzed the fluorescence of this biosensor strain in the presence of arsenic using confocal microscopy and spectrofluorimetry. The biosensor strain reliably detected both arsenite and arsenate in the range of 1.8 to 180 μg/liter, which encompasses the threshold concentrations for drinking water set by the World Health Organization (10 and 50 μg/liter).

  10. Role of Aspergillus niger acrA in Arsenic Resistance and Its Use as the Basis for an Arsenic Biosensor

    PubMed Central

    Choe, Se-In; Gravelat, Fabrice N.; Al Abdallah, Qusai; Lee, Mark J.; Gibbs, Bernard F.

    2012-01-01

    Arsenic contamination of groundwater sources is a major issue worldwide, since exposure to high levels of arsenic has been linked to a variety of health problems. Effective methods of detection are thus greatly needed as preventive measures. In an effort to develop a fungal biosensor for arsenic, we first identified seven putative arsenic metabolism and transport genes in Aspergillus niger, a widely used industrial organism that is generally regarded as safe (GRAS). Among the genes tested for RNA expression in response to arsenate, acrA, encoding a putative plasma membrane arsenite efflux pump, displayed an over 200-fold increase in gene expression in response to arsenate. We characterized the function of this A. niger protein in arsenic efflux by gene knockout and confirmed that AcrA was located at the cell membrane using an enhanced green fluorescent protein (eGFP) fusion construct. Based on our observations, we developed a putative biosensor strain containing a construct of the native promoter of acrA fused with egfp. We analyzed the fluorescence of this biosensor strain in the presence of arsenic using confocal microscopy and spectrofluorimetry. The biosensor strain reliably detected both arsenite and arsenate in the range of 1.8 to 180 μg/liter, which encompasses the threshold concentrations for drinking water set by the World Health Organization (10 and 50 μg/liter). PMID:22467499

  11. Identification and Structural Analysis of Amino Acid Substitutions that Increase the Stability and Activity of Aspergillus niger Glucose Oxidase

    PubMed Central

    Marín-Navarro, Julia; Roupain, Nicole; Talens-Perales, David; Polaina, Julio

    2015-01-01

    Glucose oxidase is one of the most conspicuous commercial enzymes due to its many different applications in diverse industries such as food, chemical, energy and textile. Among these applications, the most remarkable is the manufacture of glucose biosensors and in particular sensor strips used to measure glucose levels in serum. The generation of ameliorated versions of glucose oxidase is therefore a significant biotechnological objective. We have used a strategy that combined random and rational approaches to isolate uncharacterized mutations of Aspergillus niger glucose oxidase with improved properties. As a result, we have identified two changes that increase significantly the enzyme's thermal stability. One (T554M) generates a sulfur-pi interaction and the other (Q90R/Y509E) introduces a new salt bridge near the interphase of the dimeric protein structure. An additional double substitution (Q124R/L569E) has no significant effect on stability but causes a twofold increase of the enzyme's specific activity. Our results disclose structural motifs of the protein which are critical for its stability. The combination of mutations in the Q90R/Y509E/T554M triple mutant yielded a version of A. niger glucose oxidase with higher stability than those previously described. PMID:26642312

  12. Corn steep liquor as a nutrition adjunct for the production of Aspergillus niger lipase and hydrolysis of oils thereof.

    PubMed

    Edwinoliver, N G; Thirunavukarasu, K; Purushothaman, S; Rose, C; Gowthaman, M K; Kamini, N R

    2009-11-25

    Corn steep liquor (CSL) has been used as a nutrition adjunct for the production of an extracellular lipase from Aspergillus niger, which has immense importance as an additive in laundry detergent formulations. A five-level four-factorial central composite design was chosen to determine the optimal medium components with four critical variables, namely, CSL, NH4H2PO4, Na2HPO4, and sesame oil, that were found to be influential for lipase production by the classical one-factor-at-a-time method. The model suggested that all of the factors chosen had a significant impact on lipase production, and the optimum values of the influential parameters were CSL, 2.0%, w/v; NH4H2PO4, 0.05%, w/v; Na2HPO4, 0.75%, w/v; and sesame oil, 2.0%, w/v, with an activity of 26.7 U/mL at 48 h and 30 degrees C, which was 2.16-fold higher than the initial activity (12 U/mL) obtained by the conventional one-factor-at-a-time method. Furthermore, the enzyme has good potential for the hydrolysis of vegetable oils and fish oils, and a hydrolytic ratio of 88.73% was obtained with palm oil at 48 h. The utilization of CSL and sesame oil for lipase production from A. niger makes the process green, because both are renewable substrates and economically viable at an industrial scale.

  13. Lipase Production in Solid-State Fermentation Monitoring Biomass Growth of Aspergillus niger Using Digital Image Processing

    NASA Astrophysics Data System (ADS)

    Dutra, Julio C. V.; da Terzi, Selma C.; Bevilaqua, Juliana Vaz; Damaso, Mônica C. T.; Couri, Sônia; Langone, Marta A. P.; Senna, Lilian F.

    The aim of this study was to monitor the biomass growth of Aspergillus niger in solid-state fermentation (SSF) for lipase production using digital image processing technique. The strain A. niger 11T53A14 was cultivated in SSF using wheat bran as support, which was enriched with 0.91% (m/v) of ammonium sulfate. The addition of several vegetable oils (castor, soybean, olive, corn, and palm oils) was investigated to enhance lipase production. The maximum lipase activity was obtained using 2% (m/m) castor oil. In these conditions, the growth was evaluated each 24 h for 5 days by the glycosamine content analysis and digital image processing. Lipase activity was also determined. The results indicated that the digital image process technique can be used to monitor biomass growth in a SSF process and to correlate biomass growth and enzyme activity. In addition, the immobilized esterification lipase activity was determined for the butyl oleate synthesis, with and without 50% v/v hexane, resulting in 650 and 120 U/g, respectively. The enzyme was also used for transesterification of soybean oil and ethanol with maximum yield of 2.4%, after 30 min of reaction.

  14. Isolation, molecular cloning and expression of cellobiohydrolase B (CbhB) from Aspergillus niger in Escherichia coli

    NASA Astrophysics Data System (ADS)

    Woon, J. S. K.; Murad, A. M. A.; Abu Bakar, F. D.

    2015-09-01

    A cellobiohydrolase B (CbhB) from Aspergillus niger ATCC 10574 was cloned and expressed in E. coli. CbhB has an open reading frame of 1611 bp encoding a putative polypeptide of 536 amino acids. Analysis of the encoded polypeptide predicted a molecular mass of 56.2 kDa, a cellulose binding module (CBM) and a catalytic module. In order to obtain the mRNA of cbhB, total RNA was extracted from A. niger cells induced by 1% Avicel. First strand cDNA was synthesized from total RNA via reverse transcription. The full length cDNA of cbhB was amplified by PCR and cloned into the cloning vector, pGEM-T Easy. A comparison between genomic DNA and cDNA sequences of cbhB revealed that the gene is intronless. Upon the removal of the signal peptide, the cDNA of cbhB was cloned into the expression vector pET-32b. However, the recombinant CbhB was expressed in Escherichia coli Origami DE3 as an insoluble protein. A homology model of CbhB predicted the presence of nine disulfide bonds in the protein structure which may have contributed to the improper folding of the protein and thus, resulting in inclusion bodies in E. coli.

  15. Isolation, molecular cloning and expression of cellobiohydrolase B (CbhB) from Aspergillus niger in Escherichia coli

    SciTech Connect

    Woon, J. S. K. Murad, A. M. A. Abu Bakar, F. D.

    2015-09-25

    A cellobiohydrolase B (CbhB) from Aspergillus niger ATCC 10574 was cloned and expressed in E. coli. CbhB has an open reading frame of 1611 bp encoding a putative polypeptide of 536 amino acids. Analysis of the encoded polypeptide predicted a molecular mass of 56.2 kDa, a cellulose binding module (CBM) and a catalytic module. In order to obtain the mRNA of cbhB, total RNA was extracted from A. niger cells induced by 1% Avicel. First strand cDNA was synthesized from total RNA via reverse transcription. The full length cDNA of cbhB was amplified by PCR and cloned into the cloning vector, pGEM-T Easy. A comparison between genomic DNA and cDNA sequences of cbhB revealed that the gene is intronless. Upon the removal of the signal peptide, the cDNA of cbhB was cloned into the expression vector pET-32b. However, the recombinant CbhB was expressed in Escherichia coli Origami DE3 as an insoluble protein. A homology model of CbhB predicted the presence of nine disulfide bonds in the protein structure which may have contributed to the improper folding of the protein and thus, resulting in inclusion bodies in E. coli.

  16. Transcriptomic Insights into the Physiology of Aspergillus niger Approaching a Specific Growth Rate of Zero ▿ †

    PubMed Central

    Jørgensen, Thomas R.; Nitsche, Benjamin M.; Lamers, Gerda E.; Arentshorst, Mark; van den Hondel, Cees A.; Ram, Arthur F.

    2010-01-01

    The physiology of filamentous fungi at growth rates approaching zero has been subject to limited study and exploitation. With the aim of uncoupling product formation from growth, we have revisited and improved the retentostat cultivation method for Aspergillus niger. A new retention device was designed allowing reliable and nearly complete cell retention even at high flow rates. Transcriptomic analysis was used to explore the potential for product formation at very low specific growth rates. The carbon- and energy-limited retentostat cultures were highly reproducible. While the specific growth rate approached zero (<0.005 h−1), the growth yield stabilized at a minimum (0.20 g of dry weight per g of maltose). The severe limitation led to asexual differentiation, and the supplied substrate was used for spore formation and secondary metabolism. Three physiologically distinct phases of the retentostat cultures were subjected to genome-wide transcriptomic analysis. The severe substrate limitation and sporulation were clearly reflected in the transcriptome. The transition from vegetative to reproductive growth was characterized by downregulation of genes encoding secreted substrate hydrolases and cell cycle genes and upregulation of many genes encoding secreted small cysteine-rich proteins and secondary metabolism genes. Transcription of known secretory pathway genes suggests that A. niger becomes adapted to secretion of small cysteine-rich proteins. The perspective is that A. niger cultures as they approach a zero growth rate can be used as a cell factory for production of secondary metabolites and cysteine-rich proteins. We propose that the improved retentostat method can be used in fundamental studies of differentiation and is applicable to filamentous fungi in general. PMID:20562270

  17. A Transcriptome Meta-Analysis Proposes Novel Biological Roles for the Antifungal Protein AnAFP in Aspergillus niger

    PubMed Central

    Schäpe, Paul; Müller-Hagen, Dirk; Ouedraogo, Jean-Paul; Heiderich, Caroline; Jedamzick, Johanna; van den Hondel, Cees A.; Ram, Arthur F.; Meyer, Vera

    2016-01-01

    Understanding the genetic, molecular and evolutionary basis of cysteine-stabilized antifungal proteins (AFPs) from fungi is important for understanding whether their function is mainly defensive or associated with fungal growth and development. In the current study, a transcriptome meta-analysis of the Aspergillus niger γ-core protein AnAFP was performed to explore co-expressed genes and pathways, based on independent expression profiling microarrays covering 155 distinct cultivation conditions. This analysis uncovered that anafp displays a highly coordinated temporal and spatial transcriptional profile which is concomitant with key nutritional and developmental processes. Its expression profile coincides with early starvation response and parallels with genes involved in nutrient mobilization and autophagy. Using fluorescence- and luciferase reporter strains we demonstrated that the anafp promoter is active in highly vacuolated compartments and foraging hyphal cells during carbon starvation with CreA and FlbA, but not BrlA, as most likely regulators of anafp. A co-expression network analysis supported by luciferase-based reporter assays uncovered that anafp expression is embedded in several cellular processes including allorecognition, osmotic and oxidative stress survival, development, secondary metabolism and autophagy, and predicted StuA and VelC as additional regulators. The transcriptomic resources available for A. niger provide unparalleled resources to investigate the function of proteins. Our work illustrates how transcriptomic meta-analyses can lead to hypotheses regarding protein function and predict a role for AnAFP during slow growth, allorecognition, asexual development and nutrient recycling of A. niger and propose that it interacts with the autophagic machinery to enable these processes. PMID:27835655

  18. Characterization of a starch-hydrolyzing α-amylase produced by Aspergillus niger WLB42 mutated by ethyl methanesulfonate treatment

    PubMed Central

    Wang, Shihui; Lin, Chaoyang; Liu, Yun; Shen, Zhicheng; Jeyaseelan, Jenasia; Qin, Wensheng

    2016-01-01

    Aspergillus niger is the most commonly used fungus for commercial amylase production, the increase of amylase activity will be beneficial to the amylase industry. Herein we report a high α-amylase producing (HAP) A. niger WLB42 mutated from A. niger A4 by ethyl methanesulfonate treatment. The fermentation conditions for the amylase production were optimized. The results showed that both the amylase activity and total protein content reached highest after 48-h incubation in liquid medium using starch as the sole carbon source. The enzyme production reached maximum at temperature of 30°C, pH 7, with 40 g/L starch in the medium inoculated with 1.4% v/v spore. When 0.3% w/v urea was added to the liquid medium as a nitrogen source, the amylase activity was elevated by 20%. Nine monosaccharides and derivatives were tested for α-amylase induction, glucose was the best inducer. Furthermore, the enzymology characterization of amylase was conducted. The molecular weight of amylase was determined to be 50 kD by SDS-PAGE. The amylase had maximum activity at 45°C and pH 7. The activity could be dramatically triggered by adding 1 mM Co2+, increased to 250%. The activity was inhibited by detergents SDS and Triton X-100. Six different brands of starch were tested for amylase activity, the results demonstrated that the more soluble of the starch, the higher hydrolyzability of the substrate by amylase. PMID:27335681

  19. Expression of Aspergillus niger CAZymes is determined by compositional changes in wheat straw generated by hydrothermal or ionic liquid pretreatments

    DOE PAGES

    Daly, Paul; van Munster, Jolanda M.; Blythe, Martin J.; ...

    2017-02-07

    The capacity of fungi, such as Aspergillus niger, to degrade lignocellulose is harnessed in biotechnology to generate biofuels and high-value compounds from renewable feedstocks. Most feedstocks are currently pretreated to increase enzymatic digestibility: improving our understanding of the transcriptomic responses of fungi to pretreated lignocellulosic substrates could help to improve the mix of activities and reduce the production costs of commercial lignocellulose saccharifying cocktails. We investigated the responses of A. niger to untreated, ionic liquid and hydrothermally pretreated wheat straw over a 5-day time course using RNA-seq and targeted proteomics. The ionic liquid pretreatment altered the cellulose crystallinity while retainingmore » more of the hemicellulosic sugars than the hydrothermal pretreatment. Ionic liquid pretreatment of straw led to a dynamic induction and repression of genes, which was correlated with the higher levels of pentose sugars saccharified from the ionic liquid-pretreated straw. Hydrothermal pretreatment of straw led to reduced levels of transcripts of genes encoding carbohydrate-active enzymes as well as the derived proteins and enzyme activities. Both pretreatments abolished the expression of a large set of genes encoding pectinolytic enzymes. These reduced levels could be explained by the removal of parts of the lignocellulose by the hydrothermal pretreatment. The time course also facilitated identification of temporally limited gene induction patterns. The presented transcriptomic and biochemical datasets demonstrate that pretreatments caused modifications of the lignocellulose, to both specific structural features as well as the organisation of the overall lignocellulosic structure, that determined A. niger transcript levels. The experimental setup allowed reliable detection of substrate-specific gene expression patterns as well as hitherto non-expressed genes. Our data suggest beneficial effects of using untreated and

  20. Effect of Matricaria chamomilla L. flower essential oil on the growth and ultrastructure of Aspergillus niger van Tieghem.

    PubMed

    Tolouee, Marziyeh; Alinezhad, Soheil; Saberi, Reza; Eslamifar, Ali; Zad, Seyed Javad; Jaimand, Kamkar; Taeb, Jaleh; Rezaee, Mohammad-Bagher; Kawachi, Masanobu; Shams-Ghahfarokhi, Masoomeh; Razzaghi-Abyaneh, Mehdi

    2010-05-15

    The antifungal activity of Matricaria chamomilla L. flower essential oil was evaluated against Aspergillus niger with the emphasis on the plant's mode of action at the electron microscopy level. A total of 21 compounds were identified in the plant oil using gas chromatography/mass spectrometry (GC/MS) accounting for 92.86% of the oil composition. The main compounds identified were alpha-bisabolol (56.86%), trans-trans-farnesol (15.64%), cis-beta-farnesene (7.12%), guaiazulene (4.24%), alpha-cubebene (2.69%), alpha-bisabolol oxide A (2.19%) and chamazulene (2.18%). In the bioassay, A. niger was cultured on Potato Dextrose Broth medium in 6-well microplates in the presence of serial two fold concentrations of plant oil (15.62 to 1000 microg/mL) for 96 h at 28 degrees C. Based on the results obtained, A. niger growth was inhibited dose dependently with a maximum of approximately 92.50% at the highest oil concentration. A marked retardation in conidial production by the fungus was noticed in relation to the inhibition of hyphal growth. The main changes of hyphae observed by transmission electron microscopy were disruption of cytoplasmic membranes and intracellular organelles, detachment of plasma membrane from the cell wall, cytoplasm depletion, and complete disorganization of hyphal compartments. In scanning electron microscopy, swelling and deformation of hyphal tips, formation of short branches, and collapse of entire hyphae were the major changes observed. Morphological alterations might be due to the effect on cell permeability through direct interaction of M. chamomilla essential oil with the fungal plasma membrane. These findings indicate the potential of M. chamomilla L. essential oil in preventing fungal contamination and subsequent deterioration of stored food and other susceptible materials. 2010 Elsevier B.V. All rights reserved.

  1. Enumeration and identification of Aspergillus group and Penicillium species in poultry feeds from Argentina.

    PubMed

    Magnoli, C; Dalcero, A M; Chiacchiera, S M; Miazzo, R; Saenz, M A

    1998-01-01

    A total of 180 samples of poultry feeds were collected during 1996 and 1997 from different factories in the south of the province of Córdoba-Argentina. They were examined for the occurrence of Penicillium spp. and Aspergillus group species. Likewise, the capacity to produce aflatoxins by the Aspergillus section flavi group was determined. The predominant species of Aspergillus were A. flavus and A. parasiticus. For Penicillium spp., P. brevicompactum, P. purpurogenum and P. oxalicum were identified. Less frequently isolated were A. candidus, A. fumigatus, A. niger, A. orizae, A. parvulus, A. tamarii, A. terreus, and P. expansum, P. funiculosum, P. minioluteum, P. pinophylum, P. restrictum, P. variable and others. The mean value counts ranged from 1 x 10(3) to 9.5 x 10(4) CFU/g for the Aspergillus spp. and from 1.2 x 10(3) to 2.5 x 10(5) CFU/g for the Penicillium spp. When cultured on autoclaved rice kernels for 1 week in the dark at 25 degrees C, mycotoxin production by strains of A. flavus was as follows: 21 of the 45 assayed strains (47%) produced aflatoxins. From them, 24% of the isolates produced AFB1 and AFB2 with levels from 181 to 14545 and 6 to 3640 micrograms/kg respectively. Only 10 strains produced AFB1 with levels from 10 to 920 micrograms/kg. Fifty percent of the A. parasiticus strain was toxicogenic; six aflatoxicogenic profiles were identified. Only 10% of the strains produced all of the aflatoxins. These results showed that a potential exists for the production of mycotoxins by the Aspergillus section flavi and the Penicillium spp. They also suggested an association of mycotoxicosis with poultry feeds in Argentina.

  2. Purification and characterization of a chlorogenic acid hydrolase from Aspergillus niger catalysing the hydrolysis of chlorogenic acid.

    PubMed

    Asther, Michèle; Estrada Alvarado, Maria Isabel; Haon, Mireille; Navarro, David; Asther, Marcel; Lesage-Meessen, Laurence; Record, Eric

    2005-01-12

    Among 15 Aspergillus strains, Aspergillus niger BRFM 131 was selected for its high chlorogenic acid hydrolase activity. The enzyme was purified and characterized with respect to its physico-chemical and kinetic properties. Four chromatographic steps were necessary to purify the protein to homogeneity with a recovery of 2%. Km of the chlorogenic acid hydrolase was estimated to be 10 microM against chlorogenic acid as substrate. Under native conditions, the protein presented a molecular mass of 170 kDa, and SDS-PAGE analysis suggested the presence of two identical 80 kDa subunits. Isoelectric point was 6.0; pH optimum for activity was determined to be 6.0 and temperature optima to be 55 degrees C. The N-terminal sequence did not present any homology with other cinnamoyl ester hydrolases previously described suggesting the purification of a new protein. The chlorogenic acid hydrolase was used successfully for the production of caffeic acid, which possesses strong antioxidant properties, from natural substrates specially rich in chlorogenic acid like apple marc and coffee pulp.

  3. THE EFFECTS OF ULTRAVIOLET RADIATION ON SPORES OF THE FUNGUS ASPERGILLUS NIGER

    PubMed Central

    Zahl, Paul A.; Koller, L. R.; Haskins, C. P.

    1939-01-01

    The survival ratio of Aspergillus spores exposed to ultraviolet radiation has been measured as a function of total incident energy for wave lengths of 2537 Å, 3022 Å, 3129 Å, and 3650 Å. The effect of humidity on killing of Aspergillus spores by ultraviolet radiation has been found to be negligible. A delay in germination as a result of irradiation has been found. The Bunsen-Roscoe reciprocity law has been found to hold within the limits of the radiation intensities studied. Certain morphological changes have been observed. PMID:19873127

  4. Localization of functional β-xylosidases, encoded by the same single gene, xlsIV (xlnD), from Aspergillus niger E-1.

    PubMed

    Inoue, Kotomi; Takahashi, Yui; Obara, Ken; Murakami, Shuichiro

    2017-03-01

    Cell wall-associated β-xylosidase was isolated from Aspergillus niger E-1 and identified as XlsIV, corresponding to the extracellular enzyme XlnD reported previously. xlsIV was transcribed only in the early cultivation period. Cell wall-associated enzyme activity gradually decreased, but extracellular activity increased as the strain grew. These results indicate that XlsIV (XlnD) was secreted into culture after localizing at cell wall.

  5. The impact of dose, irradiance and growth conditions on Aspergillus niger (renamed A. brasiliensis) spores low-pressure (LP) UV inactivation.

    PubMed

    Taylor-Edmonds, Lizbeth; Lichi, Tovit; Rotstein-Mayer, Adi; Mamane, Hadas

    2015-01-01

    The use of Aspergillus niger (A. niger) fungal spores as challenge organism for UV reactor validation studies is attractive due to their high UV-resistance and non-pathogenic nature. However A. niger spores UV dose-response was dependent upon sporulation conditions and did not follow the Bunsen-Roscoe Principle of time-dose reciprocity. Exposure to 8 h of natural sunlight for 10 consecutive days increased UV resistance when compared to spores grown solely in dark conditions. Application of 250 mJ cm(-2) at high irradiance (0.11 mW cm(-2)) resulted in a 2-log inactivation; however, at low irradiance (0.022 mW cm(-2)) a 1-log inactivation was achieved. In addition, surface electron microscopy (SEM) images revealed morphological changes between the control and UV exposed spores in contrast to other well accepted UV calibrated test organisms, which show no morphological difference with UV exposure.

  6. Antifungal effect of gaseous nitric oxide on mycelium growth, sporulation and spore germination of the postharvest horticulture pathogens, Aspergillus niger, Monilinia fructicola and Penicillium italicum.

    PubMed

    Lazar, E E; Wills, R B H; Ho, B T; Harris, A M; Spohr, L J

    2008-06-01

    To evaluate the antifungal activity of nitric oxide (NO) against the growth of the postharvest horticulture pathogens Aspergillus niger, Monilinia fructicola and Penicillium italicum under in vitro conditions. Different volumes of NO gas were injected into the Petri dish headspace to obtain the desired concentrations of 50-500 microl l(-1). The growth of the fungi was measured for 8 days of incubation in air at 25 degrees C. All concentrations of NO were found to produce an antifungal effect on spore germination, sporulation and mycelial growth of the three fungi, with the most effective concentration for A. niger and P. italicum being 100 and 500 microl l(-1) for M. fructicola. Short-term exposure to a low concentration of NO gas was able to inhibit the subsequent growth of A. niger, M. fructicola and P. italicum. NO gas has potential use as a natural fungicide to inhibit microbial growth on postharvest fruit and vegetables.

  7. Proteome analysis of Aspergillus niger: Lactate added in starch-containing medium can increase production of the mycotoxin fumonisin B2 by modifying acetyl-CoA metabolism

    PubMed Central

    2009-01-01

    Background Aspergillus niger is a filamentous fungus found in the environment, on foods and feeds and is used as host for production of organic acids, enzymes and proteins. The mycotoxin fumonisin B2 was recently found to be produced by A. niger and hence very little is known about production and regulation of this metabolite. Proteome analysis was used with the purpose to reveal how fumonisin B2 production by A. niger is influenced by starch and lactate in the medium. Results Fumonisin B2 production by A. niger was significantly increased when lactate and starch were combined in the medium. Production of a few other A. niger secondary metabolites was affected similarly by lactate and starch (fumonisin B4, orlandin, desmethylkotanin and pyranonigrin A), while production of others was not (ochratoxin A, ochratoxin alpha, malformin A, malformin C, kotanin, aurasperone B and tensidol B). The proteome of A. niger was clearly different during growth on media containing 3% starch, 3% starch + 3% lactate or 3% lactate. The identity of 59 spots was obtained, mainly those showing higher or lower expression levels on medium with starch and lactate. Many of them were enzymes in primary metabolism and other processes that affect the intracellular level of acetyl-CoA or NADPH. This included enzymes in the pentose phosphate pathway, pyruvate metabolism, the tricarboxylic acid cycle, ammonium assimilation, fatty acid biosynthesis and oxidative stress protection. Conclusions Lactate added in a medium containing nitrate and starch can increase fumonisin B2 production by A. niger as well as production of some other secondary metabolites. Changes in the balance of intracellular metabolites towards a higher level of carbon passing through acetyl-CoA and a high capacity to regenerate NADPH during growth on medium with starch and lactate were found to be the likely cause of this effect. The results lead to the hypothesis that fumonisin production by A. niger is regulated by acetyl

  8. New insight into the disinfection mechanism of Fusarium monoliforme and Aspergillus niger by TiO2 photocatalyst under low intensity UVA light.

    PubMed

    Pokhum, Chonlada; Viboonratanasri, Duangamon; Chawengkijwanich, Chamorn

    2017-09-15

    Titanium dioxide (TiO2) photocatalytic reaction has great potential for the disinfection of harmful pathogens. However, the disinfection mechanisms of TiO2 photocatalysis are not yet well-known for fungi and protozoa. In this work, the photocatalytic disinfection mechanism of Fusarium monoliforme and Aspergillus niger under low intensity UVA light (365nm, <10W/m(2)) was studied at the ultrastructural level. Photocatalytic treatments showed that the photocatalytic oxidation of 10% TiO2 based paint was efficacious in the complete disinfection of F. monoliforme under low intensity UVA light. No growth of F. monoliforme was observed on agar plate in the subsequent dark. Transmission electron microscopy (TEM) of F. monoliforme exposed to TiO2 photocatalysis treatment showed a distinct damage to electron-dense outer cell wall, but not to an underlying electron-transparent layer cell wall. The TEM image revealed that the UVA-light only did not damage cell wall, cell membrane and cellular organelles. Unlike, A. niger was more sensitive to UVA-light. Serious destructions of cell membrane and cellular organelles were shown in A. niger exposed to UVA-light only and photocatalytic treatments. However, morphological change in A. niger cell wall was only observed in photocatalytic treatment. Changes to the outermost melanin like layer and cell wall of A. niger spore due to photocatalytic treatment were greatly apparent while the intracellular organelles of A. niger spore were not affected. Therefore, regrowth of A. niger on agar plate was expected from the germination of A. niger spore in the subsequent dark. These observations give a better understanding of the photocatalytic disinfection mechanism toward fungi. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Improvement of the optimum pH of Aspergillus niger xylanase towards an alkaline pH by site-directed mutagenesis.

    PubMed

    Li, Fei; Xie, Jingcong; Zhang, Xuesong; Zhao, Linguo

    2015-01-01

    In an attempt to shift the optimal pH of the xylanase B (XynB) from Aspergillus niger towards alkalinity, target mutation sites were selected by alignment between Aspergillus niger xylanase B and other xylanases that have alkalophilic pH optima that highlight charged residues in the eight-residues-longer loop in the alkalophilic xylanase. Multiple engineered XynB mutants were created by site-directed mutagenesis with substitutions Q164K and Q164K+D117N. The variant XynB-117 had the highest optimum pH (at 5.5), which corresponded to a basic 0.5 pH unit shift when compared with the wild-type enzyme. However, the optimal pH of the XynB- 164 mutation was not changed, similar to the wild type. These results suggest that the residues at positions 164 and 117 in the eight-residues-longer loop and the cleft's edge are important in determining the pH optima of XynB from Aspergillus niger.

  10. Effect of Inoculum Dosage Aspergillus niger and Rhizopus oryzae mixture with Fermentation Time of Oil Seed Cake (Jatropha curcas L) to the content of Protein and Crude Fiber

    NASA Astrophysics Data System (ADS)

    Kurniati, T.; Nurlaila, L.; Iim

    2017-04-01

    Jatropha curcas L already widely cultivated for its seeds pressed oil used as an alternative fuel. This plant productivity per hectare obtained 2.5-5 tonnes of oil/ha / year and jatropha seed cake from 5.5 to 9.5 tonnes/ha/year, nutrient content of Jatropha curcas seed L potential to be used as feed material, However, the constraints faced was the low crude protein and high crude protein. The purpose of the research was to determine the dosage of inoculum and fermentation time of Jatropha seed cake by a mixture of Aspergillus niger and Rhizopus oryzae on crude protein and crude fibre. The study was conducted by an experimental method using a Completely Randomised Design (CRD) factorial design (3×3). The treatment consisted of a mixture of three dosage levels of Aspergillus niger and Rhizopus oryzae (= 0.2% d1, d2 and d3 = 0.3% = 0.4%) and three levels of fermentation time (w1 = 72 hours, 96 hours and w2 = w3 = 120 hours) each repeated three times. The parameters measured were crude protein and crude fibre. The results showed that dosages of 0.3% (Aspergillus niger Rhizopus oryzae 0.15% and 0.15%) and 72 hours (d2w1) is the dosage and the optimal time to generate the highest crude protein content of 21.11% and crude fibre amounted to 21.36%.

  11. Impact of biological factors on binding media identification in art objects: identification of animal glue in the presence of Aspergillus niger.

    PubMed

    Tsakalof, Andreas K; Bairachtari, Kyriaki A; Aslani, Ioanna S; Chryssoulakis, Ioannis D; Kolisis, Fragiskos N

    2004-02-01

    The materials and especially organic materials used for creation of art objects can be utilized by various microorganisms for their growth and facilitate the microbial colonization of the object. An understanding of the chemical alterations in artefacts caused by the presence of microorganisms can be crucial for correct identification of the materials initially used for the artefact creation--nowadays an important step in restoration and/or art-historical investigation of the art object. The present article describes a model experiment in which we investigated the possible chemical alterations in animal glue films used as substrate for growth of the fungus Aspergillus niger. The sterilized animal glue solution was poured into Petri dishes, inoculated with Aspergillus niger, and subsequently incubated at 15 degrees C for 0, 7, 9, 14, and 28 days. After interruption of incubation, the content of the Petri dish was analyzed for amino acid composition by the GC-MS based method. It was found that the growth of Aspergillus niger on animal glue films did not cause significant changes in the amino acid composition of the film and had no impact on animal glue identification.

  12. Identification, characterization of levoglucosan kinase, and cloning and expression of levoglucosan kinase cDNA from Aspergillus niger CBX-209 in Escherichia coli.

    PubMed

    Zhuang, Xuliang; Zhang, Hongxun

    2002-10-01

    The first enzyme responsible for assimilating levoglucosan in Aspergillus niger CBX-209 was corroborated to be levoglucosan kinase that catalyzes the transfer of a phosphate group from ATP to levoglucosan to yield a glucose 6-phosphate in the presence of magnesium ion and ATP by FAB-mass spectrometric method combined with previous observations from HPLC and enzymological experiments. Levoglucosan kinase was purified to apparent homogeneity by using a combination of seven purification steps. SDS-PAGE revealed a single protein band of 56 KDa. It is a monomeric enzyme and maximal enzyme activity was measured at pH 9.3 and 30 degrees C. This kinase is stable below 20 degrees C at a quite broad pHs ranging from 6 to 10 and levoglucosan could protect the enzyme from thermal inactivation. Exclusive substrate specificity for levoglucosan suggested that not only the structure of the intramolecular glucosidic linkage but also the configuration of the pyranose frame would be specific for recognition by levoglucosan kinase. The K(m) values of this enzyme were 71.2mM for levoglucosan and 0.25 mM for ATP, determined by double reciprocal plottings and ADP inhibited on the enzyme activity competitively with a Ki value of 0.20mM. A cDNA library from A. niger was constructed in Escherichia coli DH5alpha. The library was screened for levoglucosan kinase gene on NCE selective medium and three positive recombinants were selected after a five day culture. Detection of activities of levoglucosan kinase in the cell extracts indicated that levoglucosan kinase gene (lgk) was expressed by the recombinant strain of E. coli DH5alpha.

  13. Bimutation breeding of Aspergillus niger strain for enhancing β-mannanase production by solid-state fermentation.

    PubMed

    Wu, Minchen; Tang, Cunduo; Li, Jianfang; Zhang, Huimin; Guo, Jing

    2011-10-18

    A parent strain Aspergillus niger LW-1 was mutated by the compound mutagenesis of vacuum microwave (VMW) and ethyl methane sulfonate (EMS). A mutant strain, designated as A. niger E-30, with high- and stable-yield β-mannanase was obtained through a series of screening. The β-mannanase activity of the mutant strain E-30, cultivated on the basic fermentation medium at 32°C for 96 h, reached 36,675 U/g dried koji, being 1.98-fold higher than that (18,50 1U/g dried koji) of the parent strain LW-1. The purified E-30 β-mannanase, a glycoprotein with a carbohydrate content of 19.6%, had an apparent molecular weight of about 42.0 kDa by SDS-PAGE. Its optimal pH and temperature were 3.5 and 65°C, respectively. It was highly stable at a pH range of 3.5-7.0 and at a temperature of 60°C and below. The kinetic parameters K(m) and V(max), toward locust bean gum and at pH 4.8 and 50°C, were 3.68 mg/mL and 1067.5 U/mg, respectively. The β-mannanase activity was not significantly affected by an array of metal ions and EDTA, but strongly inhibited by Ag(+) and Hg(2+). In addition, the hydrolytic conditions of konjak glucomannan using the purified E-30 β-mannanase were optimized as follows: konjak gum solution 240 g/L (dissolved in deionized water), hydrolytic temperature 50°C, β-mannanase dosage 120 U/g konjak gum, and hydrolytic time 8 h. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Expression of the Aspergillus niger glucose oxidase gene in Saccharomyces cerevisiae and its potential applications in wine production.

    PubMed

    Malherbe, D F; du Toit, M; Cordero Otero, R R; van Rensburg, P; Pretorius, I S

    2003-06-01

    There is a growing consumer demand for wines containing lower levels of alcohol and chemical preservatives. The objectives of this study were to express the Aspergillus niger gene encoding a glucose oxidase (GOX; beta- d-glucose:oxygen oxidoreductase, EC 1.1.3.4) in Saccharomyces cerevisiae and to evaluate the transformants for lower alcohol production and inhibition of wine spoilage organisms, such as acetic acid bacteria and lactic acid bacteria, during fermentation. The A. niger structural glucose oxidase (gox) gene was cloned into an integration vector (YIp5) containing the yeast mating pheromone alpha-factor secretion signal (MFalpha1(S)) and the phosphoglycerate-kinase-1 gene promoter (PGK1(P)) and terminator (PGK1(T)). The PGK1(P)- MFalpha1(S)- gox- PGK1(T) cassette (designated GOX1) was introduced into a laboratory strain (Sigma1278) of S. cerevisiae. Yeast transformants were analysed for the production of biologically active glucose oxidase on selective agar plates and in liquid assays. The results indicated that the recombinant glucose oxidase was active and was produced beginning early in the exponential growth phase, leading to a stable level in the stationary phase. The yeast transformants also displayed antimicrobial activity in a plate assay against lactic acid bacteria and acetic acid bacteria. This might be explained by the fact that a final product of the GOX enzymatic reaction is hydrogen peroxide, a known antimicrobial agent. Microvinification with the laboratory yeast transformants resulted in wines containing 1.8-2.0% less alcohol. This was probably due to the production of d-glucono-delta-lactone and gluconic acid from glucose by GOX. These results pave the way for the development of wine yeast starter culture strains for the production of wine with reduced levels of chemical preservatives and alcohol.

  15. The AngFus3 Mitogen-Activated Protein Kinase Controls Hyphal Differentiation and Secondary Metabolism in Aspergillus niger

    PubMed Central

    Priegnitz, Bert-Ewald; Brandt, Ulrike; Pahirulzaman, Khomaizon A. K.; Dickschat, Jeroen S.

    2015-01-01

    Adaptation to a changing environment is essential for the survival and propagation of sessile organisms, such as plants or fungi. Filamentous fungi commonly respond to a worsening of their growth conditions by differentiation of asexually or sexually produced spores. The formation of these specialized cell types is, however, also triggered as part of the general life cycle by hyphal age or density. Spores typically serve for dispersal and, therefore, translocation but can also act as resting states to endure times of scarcity. Eukaryotic differentiation in response to environmental and self-derived signals is commonly mediated by three-tiered mitogen-activated protein (MAP) kinase signaling cascades. Here, we report that the MAP kinase Fus3 of the black mold Aspergillus niger (AngFus3) and its upstream kinase AngSte7 control vegetative spore formation and secondary metabolism. Mutants lacking these kinases are defective in conidium induction in response to hyphal density but are fully competent in starvation-induced sporulation, indicating that conidiation in A. niger is triggered by various independent signals. In addition, the mutants exhibit an altered profile of volatile metabolites and secrete dark pigments into the growth medium, suggesting a dysregulation of the secondary metabolism. By assigning the AngFus3 MAP kinase pathway to the transduction of a potentially self-derived trigger, this work contributes to the unraveling of the intricate signaling networks controlling fungal differentiation. Moreover, our data further support earlier observations that differentiation and secondary metabolism are tightly linked in filamentous fungi. PMID:25888553

  16. Effect of pH on hen egg white lysozyme production and evolution of a recombinant strain of Aspergillus niger.

    PubMed

    Mainwaring, D O; Wiebe, M G; Robson, G D; Goldrick, M; Jeenes, D J; Archer, D B; Trinci, A P

    1999-09-24

    An Aspergillus niger strain (B1) transformed to produce mature hen egg white lysozyme (HEWL) from a glucoamylase fusion protein under control of the A. niger glucoamylase promoter was grown in glucose-limited chemostat culture at a dilution rate of 0.07 h-1 at various pH values. Maximum HEWL production (9.3 mg g-1; specific production rate = 0.65 mg g-1 per h) was obtained at pH 4.5. However, in chemostat culture, HEWL production was not stable at any pH tested. After 240 h in steady state, specific production decreased to only 0.03 +/- 0.01 and 0.24 +/- 0.02 mg g-1 per h at pH 6.5 and 4.5, respectively. Some isolates removed from the chemostat cultures had lost copies of the HEWL gene and when grown in shake flask cultures all of the isolates produced less HEWL than the parental strain. Morphological mutants with similar phenotypes were isolated at all pHs, but their rate of increase in the population was pH dependent, with cultures at low pH (< 4.5) being more morphologically stable than cultures at high (> 4.5) pH. The selective advantage of these mutants was also generally dependent on pH. Both yellow pigment producing mutants and brown sporulation mutants had higher selective advantages over the parental strain at high than at low pH, regardless of the pH at which they were isolated. However, the selective advantage of densely sporulating mutants was independent of pH.

  17. Proteomic Analysis of the Secretory Response of Aspergillus niger to D-Maltose and D-Xylose

    PubMed Central

    Ferreira de Oliveira, José Miguel P.; van Passel, Mark W. J.; Schaap, Peter J.; de Graaff, Leo H.

    2011-01-01

    Fungi utilize polysaccharide substrates through extracellular digestion catalyzed by secreted enzymes. Thus far, protein secretion by the filamentous fungus Aspergillus niger has mainly been studied at the level of individual proteins and by genome and transcriptome analyses. To extend these studies, a complementary proteomics approach was applied with the aim to investigate the changes in secretome and microsomal protein composition resulting from a shift to a high level secretion condition. During growth of A. niger on d-sorbitol, small amounts of d-maltose or d-xylose were used as inducers of the extracellular amylolytic and xylanolytic enzymes. Upon induction, protein compositions in the extracellular broth as well as in enriched secretory organelle (microsomal) fractions were analyzed using a shotgun proteomics approach. In total 102 secreted proteins and 1,126 microsomal proteins were identified in this study. Induction by d-maltose or d-xylose resulted in the increase in specific extracellular enzymes, such as glucoamylase A on d-maltose and β-xylosidase D on d-xylose, as well as of microsomal proteins. This reflects the differential expression of selected genes coding for dedicated extracellular enzymes. As expected, the addition of extra d-sorbitol had no effect on the expression of carbohydrate-active enzymes, compared to addition of d-xylose or d-maltose. Furthermore, d-maltose induction caused an increase in microsomal proteins related to translation (e.g., Rpl15) and vesicular transport (e.g., the endosomal-cargo receptor Erv14). Millimolar amounts of the inducers d-maltose and d-xylose are sufficient to cause a direct response in specific protein expression levels. Also, after induction by d-maltose or d-xylose, the induced enzymes were found in microsomes and extracellular. In agreement with our previous findings for d-xylose induction, d-maltose induction leads to recruitment of proteins involved in proteasome-mediated degradation. PMID:21698107

  18. Proteomic analysis of the secretory response of Aspergillus niger to D-maltose and D-xylose.

    PubMed

    de Oliveira, José Miguel P Ferreira; van Passel, Mark W J; Schaap, Peter J; de Graaff, Leo H

    2011-01-01

    Fungi utilize polysaccharide substrates through extracellular digestion catalyzed by secreted enzymes. Thus far, protein secretion by the filamentous fungus Aspergillus niger has mainly been studied at the level of individual proteins and by genome and transcriptome analyses. To extend these studies, a complementary proteomics approach was applied with the aim to investigate the changes in secretome and microsomal protein composition resulting from a shift to a high level secretion condition. During growth of A. niger on D-sorbitol, small amounts of D-maltose or D-xylose were used as inducers of the extracellular amylolytic and xylanolytic enzymes. Upon induction, protein compositions in the extracellular broth as well as in enriched secretory organelle (microsomal) fractions were analyzed using a shotgun proteomics approach. In total 102 secreted proteins and 1,126 microsomal proteins were identified in this study. Induction by D-maltose or D-xylose resulted in the increase in specific extracellular enzymes, such as glucoamylase A on D-maltose and β-xylosidase D on D-xylose, as well as of microsomal proteins. This reflects the differential expression of selected genes coding for dedicated extracellular enzymes. As expected, the addition of extra D-sorbitol had no effect on the expression of carbohydrate-active enzymes, compared to addition of D-xylose or D-maltose. Furthermore, D-maltose induction caused an increase in microsomal proteins related to translation (e.g., Rpl15) and vesicular transport (e.g., the endosomal-cargo receptor Erv14). Millimolar amounts of the inducers D-maltose and D-xylose are sufficient to cause a direct response in specific protein expression levels. Also, after induction by D-maltose or D-xylose, the induced enzymes were found in microsomes and extracellular. In agreement with our previous findings for D-xylose induction, D-maltose induction leads to recruitment of proteins involved in proteasome-mediated degradation.

  19. Heterologous gene expression and functional analysis of a type III polyketide synthase from Aspergillus niger NRRL 328

    SciTech Connect

    Kirimura, Kohtaro Watanabe, Shotaro; Kobayashi, Keiichi

    2016-05-13

    Type III polyketide synthases (PKSs) catalyze the formation of pyrone- and resorcinol-types aromatic polyketides. The genomic analysis of the filamentous fungus Aspergillus niger NRRL 328 revealed that this strain has a putative gene (chr-8-2: 2978617–2979847) encoding a type III PKS, although its functions are unknown. In this study, for functional analysis of this putative type III PKS designated as An-CsyA, cloning and heterologous expression of the An-CsyA gene (An-csyA) in Escherichia coli were performed. Recombinant His-tagged An-CsyA was successfully expressed in E. coli BL21 (DE3), purified by Ni{sup 2+}-affinity chromatography, and used for in vitro assay. Tests on the substrate specificity of the His-tagged An-CsyA with myriad acyl-CoAs as starter substrates and malonyl-CoA as extender substrate showed that His-tagged An-CsyA accepted fatty acyl-CoAs (C2-C14) and produced triketide pyrones (C2-C14), tetraketide pyrones (C2-C10), and pentaketide resorcinols (C10-C14). Furthermore, acetoacetyl-CoA, malonyl-CoA, isobutyryl-CoA, and benzoyl-CoA were also accepted as starter substrates, and both of triketide pyrones and tetraketide pyrones were produced. It is noteworthy that the His-tagged An-CsyA produced polyketides from malonyl-CoA as starter and extender substrates and produced tetraketide pyrones from short-chain fatty acyl-CoAs as starter substrates. Therefore, this is the first report showing the functional properties of An-CsyA different from those of other fungal type III PKSs. -- Highlights: •Type III PKS from Aspergillus niger NRRL 328, An-CsyA, was cloned and characterized. •An-CsyA produced triketide pyrones, tetraketide pyrones and pentaketide resorcinols. •Functional properties of An-CsyA differs from those of other fungal type III PKSs.

  20. Production and characterization of in planta transiently produced polygalacturanase from Aspergillus niger and its fusions with hydrophobin or ELP tags

    PubMed Central

    2014-01-01

    Background Pectinases play an important role in plant cell wall deconstruction and have potential in diverse industries such as food, wine, animal feed, textile, paper, fuel, and others. The demand for such enzymes is increasing exponentially, as are the efforts to improve their production and to implement their use in several industrial processes. The goal of this study was to examine the potential of producing polygalacturonase I from Aspergillus niger in plants and to investigate the effects of subcellular compartmentalization and protein fusions on its accumulation and activity. Results Polygalacturonase I from Aspergillus niger (AnPGI) was transiently produced in Nicotiana benthamiana by targeting it to five different cellular compartments: apoplast, endoplasmic reticulum (ER), vacuole, chloroplast and cytosol. Accumulation levels of 2.5%, 3.0%, and 1.9% of total soluble protein (TSP) were observed in the apoplast, ER, and vacuole, respectively, and specific activity was significantly higher in vacuole-targeted AnPGI compared to the same enzyme targeted to the ER or apoplast. No accumulation was found for AnPGI when targeted to the chloroplast or cytosol. Analysis of AnPGI fused with elastin-like polypeptide (ELP) revealed a significant increase in the protein accumulation level, especially when targeted to the vacuole where the protein doubles its accumulation to 3.6% of TSP, while the hydrophobin (HFBI) fusion impaired AnPGI accumulation and both tags impaired activity, albeit to different extents. The recombinant protein showed activity against polygalacturonic acid with optimum conditions at pH 5.0 and temperature from 30 to 50°C, depending on its fusion. In vivo analysis of reducing sugar content revealed a higher release of reducing sugars in plant tissue expressing recombinant AnPGI compared to wild type N. benthamiana leaves. Conclusion Our results demonstrate that subcellular compartmentalization of enzymes has an impact on both the target protein

  1. Specific characterization of substrate and inhibitor binding sites of a glycosyl hydrolase family 11 xylanase from Aspergillus niger.

    PubMed

    Tahir, Tariq A; Berrin, Jean-Guy; Flatman, Ruth; Roussel, Alain; Roepstorff, Peter; Williamson, Gary; Juge, Nathalie

    2002-11-15

    The importance of aromatic and charged residues at the surface of the active site of a family 11 xylanase from Aspergillus niger was evaluated using site-directed mutagenesis. Ten mutant proteins were heterologously produced in Pichia pastoris, and their biochemical properties and kinetic parameters were determined. The specific activity of the Y6A, Y10A, Y89A, Y164A, and W172A mutant enzymes was drastically reduced. The low specific activities of Y6A and Y89A were entirely accounted for by a change in k(cat) and K(m), respectively, whereas the lower values of Y10A, Y164A, and W172A were due to a combination of increased K(m) and decreased k(cat). Tyr(6), Tyr(10), Tyr(89), Tyr(164), and Trp(172) are proposed as substrate-binding residues, a finding consistent with structural sequence alignments of family 11 xylanases and with the three-dimensional structure of the A. niger xylanase in complex with the modeled xylobiose. All other variants, D113A, D113N, N117A, E118A, and E118Q, retained full wild-type activity. Only N117A lost its sensitivity to xylanase inhibitor protein I (XIP-I), a protein inhibitor isolated from wheat, and this mutation did not affect the fold of the xylanase as revealed by circular dichroism. The N117A variant showed kinetics, pH stability, hydrolysis products pattern, substrate specificity, and structural properties identical to that of the wild-type xylanase. The loss of inhibition, as measured in activity assays, was due to abolition of the interaction between XIP-I and the mutant enzyme, as demonstrated by surface plasmon resonance and electrophoretic titration. A close inspection of the three-dimensional structure of A. niger xylanase suggests that the binding site of XIP-I is located at the conserved "thumb" hairpin loop of family 11 xylanases.

  2. Effect of Terminalia catappa Fruit Meal Fermented by Aspergillus niger as Replacement of Maize on Growth Performance, Nutrient Digestibility, and Serum Biochemical Profile of Broiler Chickens.

    PubMed

    Apata, David Friday

    2011-01-01

    A feeding experiment was conducted to investigate the effect of fermented Terminalia catappa fruit meal (FTCM) with Aspergillus niger as replacement for maize on broiler growth performance, nutrient digestibility, and serum biochemical constituents. Dietary maize was replaced by FTCM at 0, 20, 40, 60, or 80%. One hundred and eighty one-day-old Shaver broiler chicks were randomly allocated to the five dietary treatments, three replicate groups of twelve chicks each for a 42-day period. There was no significant difference (P > .05) in the feed intake, weight gain, and feed; gain ratio between the broilers fed on 40% FTCM diet and the control group. The apparent digestibilities of nitrogen, crude fibre, and fat decreased significantly in broilers fed higher levels (>40%) of FTCM replacement diets compared with the control or lower FTCM diets. Serum concentrations of total protein, albumin, and globulin were decreased (P < .05) on 80% FTCM fed broilers. Serum cholesterol, creatinine, and glucose were not significantly (P > .05) altered among treatments. The activities of aspartate and alanine aminotransferases and alkaline phosphatase were significantly (P < .05) increased with higher FTCM replacement. The results indicate that FTCM could replace up to 40% of dietary maize in the diets of broiler chickens without adverse effect on growth performance or serum constituents.

  3. Effect of Terminalia catappa Fruit Meal Fermented by Aspergillus niger as Replacement of Maize on Growth Performance, Nutrient Digestibility, and Serum Biochemical Profile of Broiler Chickens

    PubMed Central

    Apata, David Friday

    2011-01-01

    A feeding experiment was conducted to investigate the effect of fermented Terminalia catappa fruit meal (FTCM) with Aspergillus niger as replacement for maize on broiler growth performance, nutrient digestibility, and serum biochemical constituents. Dietary maize was replaced by FTCM at 0, 20, 40, 60, or 80%. One hundred and eighty one-day-old Shaver broiler chicks were randomly allocated to the five dietary treatments, three replicate groups of twelve chicks each for a 42-day period. There was no significant difference (P > .05) in the feed intake, weight gain, and feed; gain ratio between the broilers fed on 40% FTCM diet and the control group. The apparent digestibilities of nitrogen, crude fibre, and fat decreased significantly in broilers fed higher levels (>40%) of FTCM replacement diets compared with the control or lower FTCM diets. Serum concentrations of total protein, albumin, and globulin were decreased (P < .05) on 80% FTCM fed broilers. Serum cholesterol, creatinine, and glucose were not significantly (P > .05) altered among treatments. The activities of aspartate and alanine aminotransferases and alkaline phosphatase were significantly (P < .05) increased with higher FTCM replacement. The results indicate that FTCM could replace up to 40% of dietary maize in the diets of broiler chickens without adverse effect on growth performance or serum constituents. PMID:21350670

  4. Impact of some environmental factors on growth and production of ochratoxin A of/by Aspergillus tubingensis, A. niger, and A. carbonarius isolated from Moroccan grapes.

    PubMed

    Selouane, Atar; Bouya, Driss; Lebrihi, Ahmed; Decock, C; Bouseta, Amina

    2009-08-01

    The effects of temperature, water activity (aw), incubation time, and their combinations on radial growth and ochratoxin A (OTA) production of/by eight Aspergillus niger aggregate strains (six A. tubingensis and two A. niger) and four A. carbonarius isolated from Moroccan grapes were studied. Optimal conditions for the growth of most studied strains were shown to be at 25 degrees C and 0.95 aw. No growth was observed at 10 degrees C regardless of the water activity and isolates. The optimal temperature for OTA production was in the range of 25 degrees C-30 degrees C for A. carbonarius and 30 degrees C-37 degrees C for A. niger aggregate. The optimal aw for toxin production was 0.95-0.99 for A. carbonarius and 0.90-0.95 for A. niger aggregate. Mean OTA concentration produced by all the isolates of A. niger aggregate tested at all sampling times shows that maximum amount of OTA (0.24 microg/g) was produced at 37 degrees C and 0.90 aw. However, for A. carbonarius, mean maximum amounts of OTA (0.22 microg/g) were observed at 25 degrees C and 0.99 aw. Analysis of variance showed that the effects of all single factors (aw, isolate, temperature and incubation time) and their interactions on growth and OTA production were highly significant.

  5. Production of Lytic Enzymes by Trichoderma Isolates during in vitro Antagonism with Aspergillus Niger, The Causal Agent of Collar ROT of Peanut

    PubMed Central

    Gajera, H. P.; Vakharia, D. N.

    2012-01-01

    Twelve isolates of Trichoderma (six of T. harzianum, five of T. viride, one of T. virens), which reduced variably the incidence of collar rot disease caused in peanut by Aspergillus niger Van Tieghem, were evaluated for their potential to produce lytic enzymes during in vitro antagonism. T. viride 60 inhibited highest (86.2%) growth of test fungus followed by T. harzianum 2J (80.4%) at 6 days after inoculation (DAI) on PDA media. The specific activities of chitinase, β-1,3-glucanase and protease were 11, 3.46 and 9 folds higher in T6 antagonist (T. viride 60 and A. niger interactions) followed by 8.72, 2.85 and 9 folds in T8antagonist (T. harzianum 2J and A. niger interactions), respectively, compared to the activity produced by control petri plate T13 (A. niger alone) at 6 DAI. Activity of these lytic enzymes induced in antagonists’ plates comprises the growth of Trichoderma isolates. However, cellulase and poly galacturonase were found least amount in these antagonists treatment. A significant positive correlation (p=0.01) between percentage growth inhibition of test fungus and lytic enzymes – (chitinase, β-1,3-glucanase and protease) in the culture medium of antagonist treatment established a relationship to inhibit growth of fungal pathogen by increasing the levels of these enzymes. Among the Trichoderma isolates, T. viride 60 was found best strain to be used in biological control of plant pathogen A. niger. PMID:24031802

  6. Probing role of key residues in the divergent evolution of Yarrowia lipolytica lipase 2 and Aspergillus niger eruloyl esterase A.

    PubMed

    Wang, Guilong; Liu, Zimin; Xu, Li; Zhang, Houjin; Yan, Yunjun

    2015-09-01

    Yarrowia lipolytica lipase 2 (YLLip2) and Aspergillus niger feruloyl esterase A (AnFaeA) are enzymes of similar structures but with different functions. They are both classified into the same homologous family in Lipase Engineering Database (LED). The major difference between the two enzymes is that YLLip2 exhibits interfacial activity while AnFaeA does not. In order to better understand the interfacial activation mechanisms of YLLip2, structure guided site-directed mutagenesis were performed, mutants were constructed, kinetics parameters and lipase properties were detected. Mutant enzymes showed enhanced catalytic efficiency towards p-nitrophenyl butyrin (pNPB) but their catalytic efficiency decreased towards p-nitrophenyl palmitate (pNPP), their catalysis behavior was more close to feruloyl esterase. Moreover, the mutant enzymes exhibited enhanced thermostability compared with their wild type. These results indicate that I100 and F129 are probably cut-off point of divergent functions between the two enzymes during evolution. Copyright © 2015 Elsevier GmbH. All rights reserved.

  7. Kinetic characterization of Aspergillus niger chitinase CfcI using a HPAEC-PAD method for native chitin oligosaccharides.

    PubMed

    van Munster, Jolanda M; Sanders, Peter; ten Kate, Geralt A; Dijkhuizen, Lubbert; van der Maarel, Marc J E C

    2015-04-30

    The abundant polymer chitin can be degraded by chitinases (EC 3.2.1.14) and β-N-acetyl-hexosaminidases (EC 3.2.1.52) to oligosaccharides and N-acetyl-glucosamine (GlcNAc) monomers. Kinetic characterization of these enzymes requires product quantification by an assay method with a low detection limit, preferably compatible with the use of native, non-labeled substrates. Here we report a quantitative HPAEC-PAD method that allows fast separation of chitin oligosaccharides (COS) ranging from (GlcNac)1-6 at detection limits of 1-3 pmol and a linear range of 5-250 pmol. Quantification under intra- and interday precision conditions was performed with 2.1-5.4% relative standard deviation (RSD) and 1.2-10.3% RSD, respectively. This method was successfully used for the determination of the kinetic parameters of the Aspergillus niger chitinase CfcI with native COS. CfcI was recently shown to release GlcNAc from the reducing end of COS, a new activity for fungal chitinases. A Carbohydrate Binding Module of family 18 (CBM18) is inserted in the CfcI catalytic domain. Site directed mutagenesis was used to assess the functionality of this CfcI-CBM18: four of its key amino acids were replaced by glycine residues, yielding CfcISYNF. Comparison of the kinetic parameters of CfcI and CfcISYNF confirmed that this CBM18 is functionally involved in catalysis.

  8. Uncovering the Genome-Wide Transcriptional Responses of the Filamentous Fungus Aspergillus niger to Lignocellulose Using RNA Sequencing

    PubMed Central

    Gaddipati, Sanyasi; Kokolski, Matthew; Malla, Sunir; Blythe, Martin J.; Ibbett, Roger; Campbell, Maria; Liddell, Susan; Aboobaker, Aziz; Tucker, Gregory A.; Archer, David B.

    2012-01-01

    A key challenge in the production of second generation biofuels is the conversion of lignocellulosic substrates into fermentable sugars. Enzymes, particularly those from fungi, are a central part of this process, and many have been isolated and characterised. However, relatively little is known of how fungi respond to lignocellulose and produce the enzymes necessary for dis-assembly of plant biomass. We studied the physiological response of the fungus Aspergillus niger when exposed to wheat straw as a model lignocellulosic substrate. Using RNA sequencing we showed that, 24 hours after exposure to straw, gene expression of known and presumptive plant cell wall–degrading enzymes represents a huge investment for the cells (about 20% of the total mRNA). Our results also uncovered new esterases and surface interacting proteins that might form part of the fungal arsenal of enzymes for the degradation of plant biomass. Using transcription factor deletion mutants (xlnR and creA) to study the response to both lignocellulosic substrates and low carbon source concentrations, we showed that a subset of genes coding for degradative enzymes is induced by starvation. Our data support a model whereby this subset of enzymes plays a scouting role under starvation conditions, testing for available complex polysaccharides and liberating inducing sugars, that triggers the subsequent induction of the majority of hydrolases. We also showed that antisense transcripts are abundant and that their expression can be regulated by growth conditions. PMID:22912594

  9. A study of organic acid production in contrasts between two phosphate solubilizing fungi: Penicillium oxalicum and Aspergillus niger

    NASA Astrophysics Data System (ADS)

    Li, Zhen; Bai, Tongshuo; Dai, Letian; Wang, Fuwei; Tao, Jinjin; Meng, Shiting; Hu, Yunxiao; Wang, Shimei; Hu, Shuijin

    2016-04-01

    Phosphate solubilizing fungi (PSF) have huge potentials in enhancing release of phosphorus from fertilizer. Two PSF (NJDL-03 and NJDL-12) were isolated and identified as Penicillium oxalicum and Aspergillus niger respectively in this study. The quantification and identification of organic acids were performed by HPLC. Total concentrations of organic acids secreted by NJDL-03 and NJDL-12 are ~4000 and ~10,000 mg/L with pH values of 3.6 and 2.4 respectively after five-days culture. Oxalic acid dominates acidity in the medium due to its high concentration and high acidity constant. The two fungi were also cultured for five days with the initial pH values of the medium varied from 6.5 to 1.5. The biomass reached the maximum when the initial pH values are 4.5 for NJDL-03 and 2.5 for NJDL-12. The organic acids for NJDL-12 reach the maximum at the initial pH = 5.5. However, the acids by NJDL-03 continue to decrease and proliferation of the fungus terminates at pH = 2.5. The citric acid production increases significantly for NJDL-12 at acidic environment, whereas formic and oxalic acids decrease sharply for both two fungi. This study shows that NJDL-12 has higher ability in acid production and has stronger adaptability to acidic environment than NJDL-03.

  10. Hemicellulase production by Aspergillus niger DSM 26641 in hydrothermal palm oil empty fruit bunch hydrolysate and transcriptome analysis.

    PubMed

    Ottenheim, Christoph; Verdejo, Carl; Zimmermann, Wolfgang; Wu, Jin Chuan

    2014-12-01

    Palm oil empty fruit bunches (EFB) is an abundant and cheap lignocellulose material in Southeast Asia. Its use as the sole medium for producing lignocellulose-hydrolyzing enzymes would increase its commercial value. A newly isolated Aspergillus niger DSM 26641 was investigated for its capability of producing hemicellulases in EFB hydrolysate obtained by treatment with pressurized hot water (1-20%, w/v) at 120-180°C in a 1 L Parr reactor for 10-60 min. The optimal hydrolysate for the fungal growth and endoxylanase production was obtained when 10% (w/v) of empty fruit bunch was treated at 120°C or 150°C for 10 min, giving an endoxylanase activity of 24.5 mU ml(-1) on RBB-Xylan and a saccharification activity of 5 U ml(-1) on xylan (DNS assay). When the hydrolysates were produced at higher temperatures, longer treatment times or higher biomass contents, only less than 20% of the above maximal endoxylanase activity was detected, possibly due to the higher carbohydrate concentrations in the medium. Transcriptome analysis showed that 3 endoxylanases (expression levels 59-100%, the highest level was set as 100%), 2 β-xylosidases (4%), 4 side chain-cleaving arabinofuranosidases (1-95%), 1 acetyl xylan esterase (9%) and 2 ferulic acid esterases (0.3-9%) were produced together. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  11. Effect of different cultural conditions for phytase production by Aspergillus niger CFR 335 in submerged and solid-state fermentations.

    PubMed

    Gunashree, B S; Venkateswaran, G

    2008-12-01

    The present article deals with the studies on the effect of media ingredients, such as carbon, nitrogen, inorganic phosphates, surfactants, and metal salts, on phytase enzyme production by Aspergillus niger CFR 335 in submerged (SmF) and solid-state fermentations (SSF). The results obtained showed a 1.5-fold higher enzyme yield in the presence of sucrose in both SmF and SSF, while peptone was found to be a favorable nitrogen source for SmF. Sodium dihydrogen phosphate (NaH(2)PO(4)) favored 34% higher enzyme yield than the control, which was followed by 19% higher activity in potassium dihydrogen phosphate (KH(2)PO(4)) in SSF at 0.015% w/v. The addition of Tween-20 in SmF showed a maximum yield of 12.6 U/mL while, SDS suppressed the growth of the fungus. None of the surfactants favored the enzyme yield in SSF. Calcium chloride (CaCl(2)) was extensively efficient in stimulating more than 55% higher phytase production in SmF at 0.01% v/v. In SSF, none of the metal salts stimulated phytase production.

  12. Immobilization of Aspergillus niger NRC 107 Xylanase and beta-Xylosidase, and Properties of the Immobilzed Enzymes.

    PubMed

    Abdel-Naby, M A

    1993-01-01

    Aspergillus niger NRC 107 xylanase and beta-xylosidase were immobilized on various carriers by different methods of immobilization, including physical absorption, covalent binding, ionic binding, and entrapment. The immobilized enzymes were prepared by physical adsorption on tannin-chitosan, ionic binding onto Dowex-50W, covalent binding on chitosan beads through glutaraldehyde, and entrapment in polyacrylamide had the highest activities. In most cases, the optimum pH of the immobilized enzymes were shifted to lower than those of free enzymes. The optimum reaction temperature of immobilized xylanase was shifted from 50C to 52.5-65C, whereas that of immobilized beta-xylosidase was shifted from 45C to 50-60C. The Km values of immobilized enzymes were higher than those of native enzymes. The operational stability of the immobilized enzymes was evaluated in continuous operation in packed-bead column-type reactors. The enzymes covalently bounded to chitosan showed the highest operational stability. However, the enzymes immobilized by physical absorption or by ionic binding showed a low operational stability. The enzymes entrapped in polyacrylamide exhibited lower activity, but better operational stability.

  13. Gallic Acid Production with Mouldy Polyurethane Particles Obtained from Solid State Culture of Aspergillus niger GH1.

    PubMed

    Mata-Gómez, Marco; Mussatto, Solange I; Rodríguez, Raul; Teixeira, Jose A; Martinez, Jose L; Hernandez, Ayerim; Aguilar, Cristóbal N

    2015-06-01

    Gallic acid production in a batch bioreactor was evaluated using as catalytic material the mouldy polyurethane solids (MPS) obtained from a solid-state fermentation (SSF) bioprocess carried out for tannase production by Aspergillus niger GH1 on polyurethane foam powder (PUF) with 5 % (v/w) of tannic acid as inducer. Fungal biomass, tannic acid consumption and tannase production were kinetically monitored. SSF was stopped when tannase activity reached its maximum level. Effects of washing with distilled water and drying on the tannase activity of MPS were determined. Better results were obtained with dried and washed MPS retaining 84 % of the tannase activity. Maximum tannase activity produced through SSF after 24 h of incubation was equivalent to 130 U/gS with a specific activity of 36 U/mg. The methylgallate was hydrolysed (45 %) in an easy, cheap and fast bioprocess (30 min). Kinetic parameters of tannase self-immobilized on polyurethane particles were calculated to be 5 mM and 04.1 × 10(-2) mM/min for K M and V max, respectively. Results demonstrated that the MPS, with tannase activity, can be successfully used for the production of the antioxidant gallic acid from methyl-gallate substrate. Direct use of PMS to produce gallic acid can be advantageous as no previous extraction of enzyme is required, thus reducing production costs.

  14. Antioxidant defense response induced by Trichoderma viride against Aspergillus niger Van Tieghem causing collar rot in groundnut (Arachis hypogaea L.).

    PubMed

    Gajera, H P; Katakpara, Zinkal A; Patel, S V; Golakiya, B A

    2016-02-01

    The study was conducted to examine the antioxidant enzymes induced by Trichoderma viride JAU60 as initial defense response during invasion of rot pathogen Aspergillus niger Van Tieghem in five groundnut varieties under pot culture. Seed treatment of T. viride JAU60 reduced 51-58% collar rot disease incidence in different groundnut varieties under pathogen infected soil culture. The activities of the antioxidant enzymes, viz., superoxide dismutase (SOD, EC 1.15.1.1), guaiacol peroxidase (GPX, EC 1.11.1.7) and ascorbate peroxidase (APX, EC 1.11.1.11), elevated in response to pathogen infection, in higher rate by tolerant varieties (J-11 and GG-2) compared with susceptible (GAUG-10, GG-13, GG-20) and further induced by T. viride treatment. Trichoderma treatment remarkably increased the 2.3 fold SOD, 5 fold GPX and 2.5 fold APX activities during disease development in tolerant varieties and the same was found about 1.2, 1.5 and 2.0 folds, respectively, in susceptible varieties. Overall, T. viride JAU60 treated seedlings (T3) witnessed higher activities of SOD (1.5 fold), GPX (3.25 fold) and APX (1.25 fold) than pathogen treatment (T2) possibly suggest the induction of antioxidant defense response by Trichoderma bio-controller to combat oxidative burst produced by invading pathogen.

  15. Effect of oxygen enrichment on morphology, growth, and heterologous protein production in chemostat cultures of Aspergillus niger B1-D.

    PubMed

    Wongwicharn, A; McNeil, B; Harvey, L M

    1999-11-20

    The response of steady state chemostat cultures of a recombinant Aspergillus niger (B1-D), secreting both a heterologous enzyme (Hen Egg White Lysozyme [HEWL]) and a native enzyme (Glucoamylase), to varying levels of O2 enrichment of the process gas was evaluated. Formation of both the native and the foreign enzyme increased with increasing O2 supply. Conversely, biomass levels and total extracellular protein levels were generally not increased under O2 enriched conditions. Two distinct micromorphologies were apparent in these cultures, one, typically seen under O2 limiting conditions (i. e. at 0 and 10% enrichment levels), tended to be represented by long, sparsely branched hyphal elements, with low percentages of "active" length (i. e. how much of the hypha is cytoplasm filled); whilst, a second micromorphology, typical of O2 enriched cultures at 30 and 50% O2 enrichment, was represented by shorter hyphal elements, with more branching and a higher % "active" length. At these higher O2 levels, formation of a yellow pigment occurred, and signs of culture autolysis were noted. At 50% enrichment, a "stranded" aggregate morphology was apparent, possibly as a response to a hyperoxidant state. Production of both the native enzyme and HEWL correlated well with a simple morphological measure (tip number) or, with % "active" length. It is proposed the morphological changes noted in the cultures were associated with the increased production of both HEWL and glucoamylase.

  16. The Transcriptomic Signature of RacA Activation and Inactivation Provides New Insights into the Morphogenetic Network of Aspergillus niger

    PubMed Central

    Kwon, Min Jin; Nitsche, Benjamin M.; Arentshorst, Mark; Jørgensen, Thomas R.; Ram, Arthur F. J.; Meyer, Vera

    2013-01-01

    RacA is the main Rho GTPase in Aspergillus niger regulating polarity maintenance via controlling actin dynamics. Both deletion and dominant activation of RacA (RacG18V) provoke an actin localization defect and thereby loss of polarized tip extension, resulting in frequent dichotomous branching in the ΔracA strain and an apolar growing phenotype for RacG18V. In the current study the transcriptomics and physiological consequences of these morphological changes were investigated and compared with the data of the morphogenetic network model for the dichotomous branching mutant ramosa-1. This integrated approach revealed that polar tip growth is most likely orchestrated by the concerted activities of phospholipid signaling, sphingolipid signaling, TORC2 signaling, calcium signaling and CWI signaling pathways. The transcriptomic signatures and the reconstructed network model for all three morphology mutants (ΔracA, RacG18V, ramosa-1) imply that these pathways become integrated to bring about different physiological adaptations including changes in sterol, zinc and amino acid metabolism and changes in ion transport and protein trafficking. Finally, the fate of exocytotic (SncA) and endocytotic (AbpA, SlaB) markers in the dichotomous branching mutant ΔracA was followed, demonstrating that hyperbranching does not per se result in increased protein secretion. PMID:23894378

  17. Cloning and bioinformatic analysis of an acidophilic beta-mannanase gene, Anman5A, from Aspergillus niger LW-1.

    PubMed

    Zhao, S G; Wu, M C; Tang, C D; Gao, S J; Zhang, H M; Li, J F

    2012-01-01

    Using 3' and 5' rapid amplification of cDNA ends (RACE) techniques, the full-length cDNA sequence of the AnmanSA, a gene that encodes an acidophilic beta-mannanase of Aspergillus niger LW-1 (abbreviated to AnMan5A), was identified from the total RNA. The cDNA sequence was 1417 bp in length, harboring 5'- and 3'-untranslated regions, as well as an open reading frame (ORF) which encodes a 21-aa signal peptide, a 17-aa propeptide and a 345-aa mature peptide. Based on the topology of the phylogenetic tree of beta3-mannanases from glycoside hydrolase (GH) family 5, the AnMan5A belongs to the subfamily 7 of the GH family 5. Its 3D structure was modeled by the bitemplate-based method using both MODELLER 9.9 and SALIGN programs, based on the known beta-mannanase crystal structures of Trichoderma reesei (1QNO) and Lycopersicon esculentum (1RH9) from the GH family 5. In addition, the complete DNA sequence of the Anman5A was amplified from the genomic DNA using the pUCm-T vector-mediated PCR and conventional PCR methods. The DNA sequence was 1825 bp in length, containing a 5'-flanking regulatory region, 2 introns and 3 exons when compared with the full-length cDNA.

  18. Enhanced recovery of valuable metals from spent lithium-ion batteries through optimization of organic acids produced by Aspergillus niger.

    PubMed

    Bahaloo-Horeh, Nazanin; Mousavi, Seyyed Mohammad

    2017-02-01

    In the present study, spent medium bioleaching method was performed using organic acids produced by Aspergillus niger to dissolve Ni, Co, Mn, Li, Cu and Al from spent lithium-ion batteries (LIBs). Response surface methodology was used to investigate the effects and interactions between the effective factors of sucrose concentration, initial pH, and inoculum size to optimize organic acid production. Maximum citric acid, malic acid, and gluconic acid concentrations of 26,478, 1832.53 and 8433.76ppm, respectively, and a minimum oxalic acid concentration of 305.558ppm were obtained under optimal conditions of 116.90 (gl(-1)) sucrose concentration, 3.45% (vv(-1)) inoculum size, and a pH value of 5.44. Biogenically-produced organic acids are used for leaching of spent LIBs at different pulp densities. The highest metal recovery of 100% Cu, 100% Li, 77% Mn, and 75% Al occurred at 2% (wv(-1)) pulp density; 64% Co and 54% Ni recovery occurred at 1% (wv(-1)) pulp density. The bioleaching of metals from spent LIBs can decrease the environmental impact of this waste. The results of this study suggest that the process can be used for large scale industrial purposes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. A study of organic acid production in contrasts between two phosphate solubilizing fungi: Penicillium oxalicum and Aspergillus niger

    PubMed Central

    Li, Zhen; Bai, Tongshuo; Dai, Letian; Wang, Fuwei; Tao, Jinjin; Meng, Shiting; Hu, Yunxiao; Wang, Shimei; Hu, Shuijin

    2016-01-01

    Phosphate solubilizing fungi (PSF) have huge potentials in enhancing release of phosphorus from fertilizer. Two PSF (NJDL-03 and NJDL-12) were isolated and identified as Penicillium oxalicum and Aspergillus niger respectively in this study. The quantification and identification of organic acids were performed by HPLC. Total concentrations of organic acids secreted by NJDL-03 and NJDL-12 are ~4000 and ~10,000 mg/L with pH values of 3.6 and 2.4 respectively after five-days culture. Oxalic acid dominates acidity in the medium due to its high concentration and high acidity constant. The two fungi were also cultured for five days with the initial pH values of the medium varied from 6.5 to 1.5. The biomass reached the maximum when the initial pH values are 4.5 for NJDL-03 and 2.5 for NJDL-12. The organic acids for NJDL-12 reach the maximum at the initial pH = 5.5. However, the acids by NJDL-03 continue to decrease and proliferation of the fungus terminates at pH = 2.5. The citric acid production increases significantly for NJDL-12 at acidic environment, whereas formic and oxalic acids decrease sharply for both two fungi. This study shows that NJDL-12 has higher ability in acid production and has stronger adaptability to acidic environment than NJDL-03. PMID:27126606

  20. Phytosterols elevation in bamboo shoot residue through laboratorial scale solid-state fermentation using isolated Aspergillus niger CTBU.

    PubMed

    Zheng, X X; Chen, R S; Shen, Y; Yin, Z Y

    2014-04-01

    Aspergillus niger CTBU isolated from local decayed bamboo shoot residue was employed to solid-state fermentation (SSF) of bamboo shoot residue to elevate the content of phytosterols. Strain acclimatization was carried out under the fermentation condition using bamboo shoot as substrate for fermentation performance improvement. The optimal fermentation temperature and nitrogen level were investigated using acclimatized strain, and SSF was carried out in a 500-ml Erlenmeyer flask feeding 300-mg bamboo shoot residue chips under the optimal condition (33 °C and feeding 4 % urea), and 1,186 mg (100 g)(-1) of total phytosterol was attained after 5-day fermentation, in comparison, only 523 mg (100 g)(-1) of phytosterol was assayed in fresh shoots residue. HPLC analysis of the main composition of total phytosterols displays that the types of phytosterols and composition ratio of main sterols keep steady. This laboratorial scale SSF unit could be scaled up for raw phytosterols production from discarded bamboo shoot residue and could reduce its cost.

  1. Involvement of Physical Parameters in Medium Improvement for Tannase Production by Aspergillus niger FETL FT3 in Submerged Fermentation

    PubMed Central

    Darah, I.; Sumathi, G.; Jain, K.; Hong, Lim Sheh

    2011-01-01

    Aspergillus niger FETL FT3, a local extracellular tannase producer strain that was isolated from one of dumping sites of tannin-rich barks of Rhizophora apiculata in Perak, Malaysia. This fungus was cultivated in 250 mL Erlenmeyer flask under submerged fermentation system. Various physical parameters were studied in order to maximize the tannase production. Maximal yield of tannase production, that is, 2.81 U per mL was obtained on the fourth day of cultivation when the submerged fermentation was carried out using liquid Czapek-Dox medium containing (percent; weight per volume) 0.25% NaNO3, 0.1% KH2PO4, 0.05% MgSO4 ·7H2O, 0.05% KCl, and 1.0% tannic acid. The physical parameters used initial medium pH of 6.0, incubation temperature of 30°C, agitation speed of 200 rpm and inoculums size of 6 × 106 spores/ ml. This research has showed that physical parameters were influenced the tannase production by the fungus with 156.4 percent increment. PMID:21826273

  2. Comprehension of viscous morphology--evaluation of fractal and conventional parameters for rheological characterization of Aspergillus niger culture broth.

    PubMed

    Wucherpfennig, Thomas; Lakowitz, Antonia; Krull, Rainer

    2013-01-20

    The filamentous fungus Aspergillus niger is a widely used host in industrial processes from food, chemical to pharmaceutical industry. The most prominent feature of this filamentous microorganism in submerged cultivation is its complex morphology which comprises dense spherical pellets as well as viscous elongated filaments. Depending on culture conditions, the exhibited morphology has tremendous effect on the overall process, making a precise understanding of fungal growth and morphology indispensable. Morphology, however, is only industrially relevant as long as it can be linked to important cultivation characteristics of filamentous microorganisms such as culture broth flow behavior. In the present study, different conventional and fractal morphological parameters gained from automatic image analysis were tested for their eligibility to predict culture broth rheology from morphologic appearance. The introduced biomass independent rheological parameters K(BDW) and n(BDW) obtained by power law relationship were successfully estimated from morphology related fractal and conventional parameters. For improved characterization of morphologic appearance of filamentous fungi newly introduced fractal quotient and lacunarity were compared to conventional particle shape parameters in form of the earlier established Morphology number (MN). Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Condition stabilization for Aspergillus niger FCBP-198 and its hyperactive mutants to yield high titres of alpha-amylase.

    PubMed

    Shafique, Sobiya; Bajwa, Rukhsana; Shafique, Shazia

    2010-01-01

    A number of substrates were tested for the cultivation of microorganisms to produce a host of enzymes. The effect of different substrates (wheat and rice straw, sugar cane waste, wood waste), incubation temperatures (20-40 degrees C), initial pH levels (3.5-9.0), incubation periods (0-72 hours) and nitrogen sources (ammonium sulfate, urea, peptone, yeast extract, sodium nitrate) on growth and alpha-amylase activity was studied for the native and mutant strains. Maximum enzyme activity was observed at 1.5% wheat straw for Aspergillus niger FCBP-198 and An-Ch-4.7 and at 2% wheat straw for An-UV-5.6, with sodium nitrate as a principle nitrogen source. The optimum temperature for maximum enzyme activity was 30 degrees C for the parental strain, while An-UV-5.6 and An-Ch-4.7 thrived well at 32.5 degrees C. The best conditions of pH and incubation duration were 4.5 and 48 hours, respectively, for all the strains. Mass production under preoptimized growth conditions demonstrated the suitability of wheat straw for swift mycelial colonization and viability.

  4. Alterations in Aspergillus brasiliensis (niger) ATCC 9642 membranes associated to metabolism modifications during application of low-intensity electric current.

    PubMed

    Velasco-Alvarez, Nancy; Gutiérrez-Rojas, Mariano; González, Ignacio

    2017-12-01

    The effects of electric current on membranes associated with metabolism modifications in Aspergillus brasiliensis (niger) ATCC 9642 were studied. A 450-mL electrochemical cell with titanium ruthenium-oxide coated electrodes and packed with 15g of perlite, as inert support, was inoculated with A. brasiliensis spores and incubated in a solid inert-substrate culture (12 d; 30°C). Then, 4.5days after starting the culture, a current of 0.42mAcm(-2) was applied for 24h. The application of low-intensity electric current increased the molecular oxygen consumption rate in the mitochondrial respiratory chain, resulting in high concentrations of reactive oxygen species, promoting high lipoperoxidation levels, according to measured malondialdehyde, and consequent alterations in membrane permeability explained the high n-hexadecane (HXD) degradation rates observed here (4.7-fold higher than cultures without current). Finally, cell differentiation and spore production were strongly stimulated. The study contributes to the understanding of the effect of current on the cell membrane and its association with HXD metabolism. Copyright © 2017. Published by Elsevier B.V.

  5. Immobilization of Aspergillus niger F7-02 Lipase in Polysaccharide Hydrogel Beads of Irvingia gabonensis Matrix

    PubMed Central

    Kareem, Safaradeen Olateju; Adio, Olayinka Quadri; Osho, Michael Bamitale

    2014-01-01

    The potential of polysaccharide Irvingia gabonensis matrix as enzyme immobilization support was investigated. Lipase of Aspergillus niger F7-02 was immobilized by entrapment using glutaraldehyde as the cross-linking agent and stabilized in ethanolic-formaldehyde solution. The pH and temperature stability and activity yield of the immobilized enzyme were determined. Such parameters as enzyme load, bead size, number of beads, and bead reusability were also optimized. Adequate gel strength to form stabilized beads was achieved at 15.52% (w/v) Irvingia gabonensis powder, 15% (v/v) partially purified lipase, 2.5% (v/v) glutaraldehyde, and 3 : 1 (v/v) ethanolic-formaldehyde solution. There was 3.93-fold purification when the crude enzyme was partially purified in two-step purification using Imarsil and activated charcoal. Optimum lipase activity 75.3 Ug−1 was achieved in 50 mL test solution containing 15 beads of 7 mm bead size. Relative activity 80% was retained at eight repeated cycles. The immobilization process gave activity yield of 59.1% with specific activity of 12.3 Umg−1 and stabilized at optimum pH 4.5 and temperature 55°C. Thus the effectiveness and cost-efficiency of I. gabonensis as a polymer matrix for lipase immobilization have been established. PMID:25614829

  6. Immobilization of Aspergillus niger F7-02 Lipase in Polysaccharide Hydrogel Beads of Irvingia gabonensis Matrix.

    PubMed

    Kareem, Safaradeen Olateju; Adio, Olayinka Quadri; Osho, Michael Bamitale

    2014-01-01

    The potential of polysaccharide Irvingia gabonensis matrix as enzyme immobilization support was investigated. Lipase of Aspergillus niger F7-02 was immobilized by entrapment using glutaraldehyde as the cross-linking agent and stabilized in ethanolic-formaldehyde solution. The pH and temperature stability and activity yield of the immobilized enzyme were determined. Such parameters as enzyme load, bead size, number of beads, and bead reusability were also optimized. Adequate gel strength to form stabilized beads was achieved at 15.52% (w/v) Irvingia gabonensis powder, 15% (v/v) partially purified lipase, 2.5% (v/v) glutaraldehyde, and 3 : 1 (v/v) ethanolic-formaldehyde solution. There was 3.93-fold purification when the crude enzyme was partially purified in two-step purification using Imarsil and activated charcoal. Optimum lipase activity 75.3 Ug(-1) was achieved in 50 mL test solution containing 15 beads of 7 mm bead size. Relative activity 80% was retained at eight repeated cycles. The immobilization process gave activity yield of 59.1% with specific activity of 12.3 Umg(-1) and stabilized at optimum pH 4.5 and temperature 55°C. Thus the effectiveness and cost-efficiency of I. gabonensis as a polymer matrix for lipase immobilization have been established.

  7. Scale up of a novel tri-substrate fermentation for enhanced production of Aspergillus niger lipase for tallow hydrolysis.

    PubMed

    Edwinoliver, N G; Thirunavukarasu, K; Naidu, R B; Gowthaman, M K; Kambe, T Nakajima; Kamini, N R

    2010-09-01

    A novel tri-substrate fermentation (TSF) process was developed for the production of lipase from Aspergillus niger MTCC 2594 using agro-industrial residues, wheat bran (WB), coconut oil cake (COC) and an agro-product, wheat rawa (WR). The lipase activity was 628.7+/-13 U/g dry substrate (U/gds) at 30 degrees C and 96 h and growth studies indicated that addition of WR significantly augmented the biomass and lipase production. Scale up of lipase production at 100g and 3 kg (3 x 1 kg) tray-level batch fermentation resulted in 96% and 83.0% of enzyme activities, respectively, at 72 h. Maximum activity of 745.7+/-11U/gds was obtained, when fermented substrate was extracted in buffer containing 1% (w/v) sodium chloride and 0.5% (w/v) Triton X-100. Furthermore, the direct application of fermented substrate for tallow hydrolysis makes the process economical for industrial production of biofuel.

  8. Optimization of Acid Protease Production by Aspergillus niger I1 on Shrimp Peptone Using Statistical Experimental Design

    PubMed Central

    Siala, Rayda; Frikha, Fakher; Mhamdi, Samiha; Nasri, Moncef; Sellami Kamoun, Alya

    2012-01-01

    Medium composition and culture conditions for the acid protease production by Aspergillus niger I1 were optimized by response surface methodology (RSM). A significant influence of temperature, KH2PO4, and initial pH on the protease production was evaluated by Plackett-Burman design (PBD). These factors were further optimized using Box-Behnken design and RSM. Under the proposed optimized conditions, the experimental protease production (183.13 U mL−1) closely matched the yield predicted by the statistical model (172.57 U mL−1) with R 2 = 0.914. Compared with the initial M1 medium on which protease production was 43.13 U mL−1, a successful and significant improvement by 4.25 folds was achieved in the optimized medium containing (g/L): hulled grain of wheat (HGW) 5.0; KH2PO4 1.0; NaCl 0.3; MgSO4(7H2O) 0.5; CaCl2 (7H2O) 0.4; ZnSO4 0.1; Na2HPO4 1.6; shrimp peptone (SP) 1.0. The pH was adjusted at 5 and the temperature at 30°C. More interestingly, the optimization was accomplished using two cheap and local fermentation substrates, HGW and SP, which may result in a significant reduction in the cost of medium constituents. PMID:22593695

  9. Phenotypic characterization of Aspergillus niger and Candida albicans grown under simulated microgravity using a three-dimensional clinostat.

    PubMed

    Yamazaki, Takashi; Yoshimoto, Maki; Nishiyama, Yayoi; Okubo, Yoichiro; Makimura, Koichi

    2012-07-01

    The living and working environments of spacecraft become progressively contaminated by a number of microorganisms. A large number of microorganisms, including pathogenic microorganisms, some of which are fungi, have been found in the cabins of space stations. However, it is not known how the characteristics of microorganisms change in the space environment. To predict how a microgravity environment might affect fungi, and thus how their characteristics could change on board spacecraft, strains of the pathogenic fungi Aspergillus niger and Candida albicans were subjected to on-ground tests in a simulated microgravity environment produced by a three-dimensional (3D) clinostat. These fungi were incubated and cultured in a 3D clinostat in a simulated microgravity environment. No positive or negative differences in morphology, asexual reproductive capability, or susceptibility to antifungal agents were observed in cultures grown under simulated microgravity compared to those grown in normal earth gravity (1 G). These results strongly suggest that a microgravity environment, such as that on board spacecraft, allows growth of potentially pathogenic fungi that can contaminate the living environment for astronauts in spacecraft in the same way as they contaminate residential areas on earth. They also suggest that these organisms pose a similar risk of opportunistic infections or allergies in astronauts as they do in people with compromised immunity on the ground and that treatment of fungal infections in space could be the same as on earth. © 2012 The Societies and Blackwell Publishing Asia Pty Ltd.

  10. Production of cellulases from Aspergillus niger NS-2 in solid state fermentation on agricultural and kitchen waste residues.

    PubMed

    Bansal, Namita; Tewari, Rupinder; Soni, Raman; Soni, Sanjeev Kumar

    2012-07-01

    Various agricultural and kitchen waste residues were assessed for their ability to support the production of a complete cellulase system by Aspergillus niger NS-2 in solid state fermentation. Untreated as well as acid and base-pretreated substrates including corn cobs, carrot peelings, composite, grass, leaves, orange peelings, pineapple peelings, potato peelings, rice husk, sugarcane bagasse, saw dust, wheat bran, wheat straw, simply moistened with water, were found to be well suited for the organism's growth, producing good amounts of cellulases after 96 h without the supplementation of additional nutritional sources. Yields of cellulases were higher in alkali treated substrates as compared to acid treated and untreated substrates except in wheat bran. Of all the substrates tested, wheat bran appeared to be the best suited substrate producing appreciable yields of CMCase, FPase and β-glucosidase at the levels of 310, 17 and 33 U/g dry substrate respectively. An evaluation of various environmental parameters demonstrated that appreciable levels of cellulases could be produced over a wide range of temperatures (20-50 °C) and pH levels (3.0-8.0) with a 1:1.5 to 1:1.75 substrate to moisture ratio.

  11. Production of L-asparaginase, an anticancer agent, from Aspergillus niger using agricultural waste in solid state fermentation.

    PubMed

    Mishra, Abha

    2006-10-01

    This article reports the production of high levels of L-asparaginase from a new isolate of Aspergillus niger in solid state fermentation (SSF) using agro-wastes from three leguminous crops (bran of Cajanus cajan, Phaseolus mungo, and Glycine max). When used as the sole source for growth in SSF, bran of G. max showed maximum enzyme production followed by that of P. mungo and C. cajan. A 96-h fermentation time under aerobic condition with moisture content of 70%, 30 min of cooking time and 1205-1405 micro range of particle size in SSF appeared optimal for enzyme production. Enzyme yield was maximum (40.9 +/- 3.35 U/g of dry substrate) at pH 6.5 and temperature 30 +/- 2 degrees C. The optimum temperature and pH for enzyme activity were 40 degrees C and 6.5, respectively. The study suggests that choosing an appropriate substrate when coupled with process level optimization improves enzyme production markedly. Developing an asparaginase production process based on bran of G. max as a substrate in SSF is economically attractive as it is a cheap and readily available raw material in agriculture-based countries.

  12. The FlbA-regulated predicted transcription factor Fum21 of Aspergillus niger is involved in fumonisin production.

    PubMed

    Aerts, David; Hauer, Esther E; Ohm, Robin A; Arentshorst, Mark; Teertstra, Wieke R; Phippen, Christopher; Ram, Arthur F J; Frisvad, Jens C; Wösten, Han A B

    2017-09-30

    Aspergillus niger secretes proteins throughout the colony except for the zone that forms asexual spores called conidia. Inactivation of flbA that encodes a regulator of G-protein signaling results in colonies that are unable to reproduce asexually and that secrete proteins throughout the mycelium. In addition, the ΔflbA strain shows cell lysis and has thinner cell walls. Expression analysis showed that 38 predicted transcription factor genes are differentially expressed in strain ΔflbA. Here, the most down-regulated predicted transcription factor gene, called fum21, was inactivated. Growth, conidiation, and protein secretion were not affected in strain Δfum21. Whole genome expression analysis revealed that 63 and 11 genes were down- and up-regulated in Δfum21, respectively, when compared to the wild-type strain. Notably, 24 genes predicted to be involved in secondary metabolism were down-regulated in Δfum21, including 10 out of 12 genes of the fumonisin cluster. This was accompanied by absence of fumonisin production in the deletion strain and a 25% reduction in production of pyranonigrin A. Together, these results link FlbA-mediated sporulation-inhibited secretion with mycotoxin production.

  13. Biodegradation of high concentrations of hexadecane by Aspergillus niger in a solid-state system: kinetic analysis.

    PubMed

    Volke-Sepúlveda, Tania; Gutiérrez-Rojas, Mariano; Favela-Torres, Ernesto

    2006-09-01

    Solid-state microcosms were used to assess the influence of constant and variable C/N ratios on the biodegradation efficiency by Aspergillus niger at high hexadecane (HXD) concentrations (180-717 mg g-1). With a constant C/N ratio, 100% biodegradation (33-44% mineralization) was achieved after 15 days, at rates increasing as the HXD concentration increased. Biomass yields (YX/S) remained almost independent (approximately 0.77) of the carbon-source amount, while the specific growth rates (mu) decreased with increasing concentrations of HXD. With C/N ratios ranging from 29 to 115, complete degradation was only attained at 180 mg g-1, corresponding to 46% mineralization. YX/S diminished (approximately 0.50 units) as the C/N ratio increased. The highest values of mu (1.08 day-1) were obtained at low C/N values. Our results demonstrate that, under balanced nutritional conditions, high HXD concentrations can be completely degraded in solid-state microcosms, with a negligible (<10%) formation of by-products.

  14. Study of a High-Yield Cellulase System Created by Heavy-Ion Irradiation-Induced Mutagenesis of Aspergillus niger and Mixed Fermentation with Trichoderma reesei.

    PubMed

    Wang, Shu-Yang; Jiang, Bo-Ling; Zhou, Xiang; Chen, Ji-Hong; Li, Wen-Jian; Liu, Jing; Hu, Wei; Xiao, Guo-Qing; Dong, Miao-Yin; Wang, Yu-Chen

    2015-01-01

    The aim of this study was to evaluate and validate the efficiency of 12C6+ irradiation of Aspergillus niger (A. niger) or mutagenesis via mixed Trichoderma viride (T. viride) culturing as well as a liquid cultivation method for cellulase production via mixed Trichoderma reesei (T. reesei) and A. niger culture fermentation. The first mutagenesis approach was employed to optimize yield from a cellulase-producing strain via heavy-ion mutagenesis and high-throughput screening, and the second was to effectively achieve enzymatic hydrolysis of cellulase from a mixed culture of mutant T. viride and A. niger. We found that 12C6+-ion irradiation induced changes in cellulase biosynthesis in A. niger but had no effect on the time course of the synthesis. It is notable that the exoglucanases (CBH) activities of A. niger strains H11-1 and H differed (6.71 U/mL vs. 6.01 U/mL) and were significantly higher than that of A. niger mutant H3-1. Compared with strain H, the filter paper assay (FPA), endoglucanase (EG) and β-glucosidase (BGL) activities of mutant strain H11-1 were increased by 250.26%, 30.26% and 34.91%, respectively. A mixed culture system was successfully optimized, and the best ratio of T. reesei to A. niger was 5:1 for 96 h with simultaneous inoculation. The BGL activity of the mixed culture increased after 72 h. At 96 h, the FPA and BGL activities of the mixed culture were 689.00 and 797.15 U/mL, respectively, significantly higher than those of monocultures, which were 408.70 and 646.98 U/mL for T. reesei and 447.29 and 658.89 U/mL for A. niger, respectively. The EG activity of the mixed culture was 2342.81 U/mL, a value that was significantly higher than that of monocultures at 2206.57 U/mL for T. reesei and 1727.62 U/mL for A. niger. In summary, cellulose production and hydrolysis yields were significantly enhanced by the proposed combination scheme.

  15. Study of a High-Yield Cellulase System Created by Heavy-Ion Irradiation-Induced Mutagenesis of Aspergillus niger and Mixed Fermentation with Trichoderma reesei

    PubMed Central

    Chen, Ji-Hong; Li, Wen-Jian; Liu, Jing; Hu, Wei; Xiao, Guo-Qing; Dong, Miao-Yin; Wang, Yu-Chen

    2015-01-01

    The aim of this study was to evaluate and validate the efficiency of 12C6+ irradiation of Aspergillus niger (A. niger) or mutagenesis via mixed Trichoderma viride (T. viride) culturing as well as a liquid cultivation method for cellulase production via mixed Trichoderma reesei (T. reesei) and A. niger culture fermentation. The first mutagenesis approach was employed to optimize yield from a cellulase-producing strain via heavy-ion mutagenesis and high-throughput screening, and the second was to effectively achieve enzymatic hydrolysis of cellulase from a mixed culture of mutant T. viride and A. niger. We found that 12C6+-ion irradiation induced changes in cellulase biosynthesis in A. niger but had no effect on the time course of the synthesis. It is notable that the exoglucanases (CBH) activities of A. niger strains H11-1 and H differed (6.71 U/mL vs. 6.01 U/mL) and were significantly higher than that of A. niger mutant H3-1. Compared with strain H, the filter paper assay (FPA), endoglucanase (EG) and β-glucosidase (BGL) activities of mutant strain H11-1 were increased by 250.26%, 30.26% and 34.91%, respectively. A mixed culture system was successfully optimized, and the best ratio of T. reesei to A. niger was 5:1 for 96 h with simultaneous inoculation. The BGL activity of the mixed culture increased after 72 h. At 96 h, the FPA and BGL activities of the mixed culture were 689.00 and 797.15 U/mL, respectively, significantly higher than those of monocultures, which were 408.70 and 646.98 U/mL for T. reesei and 447.29 and 658.89 U/mL for A. niger, respectively. The EG activity of the mixed culture was 2342.81 U/mL, a value that was significantly higher than that of monocultures at 2206.57 U/mL for T. reesei and 1727.62 U/mL for A. niger. In summary, cellulose production and hydrolysis yields were significantly enhanced by the proposed combination scheme. PMID:26656155

  16. The Aspergillus niger faeB gene encodes a second feruloyl esterase involved in pectin and xylan degradation and is specifically induced in the presence of aromatic compounds.

    PubMed Central

    de Vries, Ronald P; vanKuyk, Patricia A; Kester, Harry C M; Visser, Jaap

    2002-01-01

    The faeB gene encoding a second feruloyl esterase from Aspergillus niger has been cloned and characterized. It consists of an open reading frame of 1644 bp containing one intron. The gene encodes a protein of 521 amino acids that has sequence similarity to that of an Aspergillus oryzae tannase. However, the encoded enzyme, feruloyl esterase B (FAEB), does not have tannase activity. Comparison of the physical characteristics and substrate specificity of FAEB with those of a cinnamoyl esterase from A. niger [Kroon, Faulds and Williamson (1996) Biotechnol. Appl. Biochem. 23, 255-262] suggests that they are in fact the same enzyme. The expression of faeB is specifically induced in the presence of certain aromatic compounds, but not in the presence of other constituents present in plant-cell-wall polysaccharides such as arabinoxylan or pectin. The expression profile of faeB in the presence of aromatic compounds was compared with the expression of A. niger faeA, encoding feruloyl esterase A (FAEA), and A. niger bphA, the gene encoding a benzoate-p-hydroxylase. All three genes have different subsets of aromatic compounds that induce their expression, indicating the presence of different transcription activating systems in A. niger that respond to aromatic compounds. Comparison of the activity of FAEA and FAEB on sugar-beet pectin and wheat arabinoxylan demonstrated that they are both involved in the degradation of both polysaccharides, but have opposite preferences for these substrates. FAEA is more active than FAEB towards wheat arabinoxylan, whereas FAEB is more active than FAEA towards sugar-beet pectin. PMID:11931668

  17. Structure and Properties of a Non-processive, Salt-requiring, and Acidophilic Pectin Methylesterase from Aspergillus niger Provide Insights into the Key Determinants of Processivity Control*

    PubMed Central

    Kent, Lisa M.; Loo, Trevor S.; Melton, Laurence D.; Mercadante, Davide; Williams, Martin A. K.; Jameson, Geoffrey B.

    2016-01-01

    Many pectin methylesterases (PMEs) are expressed in plants to modify plant cell-wall pectins for various physiological roles. These pectins are also attacked by PMEs from phytopathogens and phytophagous insects. The de-methylesterification by PMEs of the O6-methyl ester groups of the homogalacturonan component of pectin, exposing galacturonic acids, can occur processively or non-processively, respectively, describing sequential versus single de-methylesterification events occurring before enzyme-substrate dissociation. The high resolution x-ray structures of a PME from Aspergillus niger in deglycosylated and Asn-linked N-acetylglucosamine-stub forms reveal a 10⅔-turn parallel β-helix (similar to but with less extensive loops than bacterial, plant, and insect PMEs). Capillary electrophoresis shows that this PME is non-processive, halophilic, and acidophilic. Molecular dynamics simulations and electrostatic potential calculations reveal very different behavior and properties compared with processive PMEs. Specifically, uncorrelated rotations are observed about the glycosidic bonds of a partially de-methyl-esterified decasaccharide model substrate, in sharp contrast to the correlated rotations of processive PMEs, and the substrate-binding groove is negatively not positively charged. PMID:26567911

  18. Production, purification and biochemical characterization of an exo-polygalacturonase from Aspergillus niger MTCC 478 suitable for clarification of orange juice.

    PubMed

    Anand, Gautam; Yadav, Sangeeta; Yadav, Dinesh

    2017-06-01

    Polygalacturonases (PG) represent an important member of pectinases group of enzymes with immense industrial applications. A fungal strain Aspergillus niger MTCC478 was used for the production of polygalacturonase both under submerged and solid-state fermentation condition. Further its production was optimized under solid-state fermentation condition with media comprising of wheat bran and tea extract. Purification of an exo-PG was achieved by acetone precipitation (60-90%) and CM-cellulose column chromatography revealing 15.28-fold purification with a specific activity of 33.47 U/mg protein and 1.2% yield. A relative molecular mass of purified PG was approximately 124.0 kDa. The pH and temperature optimum was found to be 4 and 50 °C, respectively. The k cat and K m value for degradation of PGA by the purified enzyme was found to be 194 s(-1) and 2.3 mg/mL, respectively. Cu(2+) was found to enhance the PG activity while Ag(+) completely inhibited the enzyme activity. The application of the purified PG in orange juice clarification was elucidated.

  19. [Effect of cyclic compounds on pigment formation in Aspergillus niger cultures].

    PubMed

    Malama, A A; Smirnova, L A

    1975-01-01

    The mycelial pigment os Asp. niger VP has been fractionated into four fractions ehose solubility is similar to melanin pigments obtained from other sources. The addition of pyrocatechol, L-aspartic, benzoic, kojic and salicylic acids to the liquid Capek medium stimulates the fungal growth but diminishes the yield of fractions of the melanin pigment from the mycelium. Cinnamic acid does not influence the growth but also decreases the yield of the pigment. DL-tyrosine stimulates the fungal growth and produces no influence on the total yield of fractions 2, 3 and 4 from the mycelial pigment. All the cyclic compounds enhance the pigmentation of the culture liquid and give rise to the formation of fractions 2 and 3 of the melanin pigment. This latter constitutes a substantial portion of the dry matter of the fungal cell. The pigment content in the mycelium is much higher than that in the culture liquid of the corresponding culture.

  20. Modelling the effect of temperature, water activity and carbon dioxide on the growth of Aspergillus niger and Alternaria alternata isolated from fresh date fruit.

    PubMed

    Belbahi, A; Leguerinel, I; Méot, J-M; Loiseau, G; Madani, K; Bohuon, P

    2016-12-01

    To quantify and model the combined effects of temperature (T) (10-40°C), water activity (aw ) (0·993-0·818) and CO2 concentration (9·4-55·1%, v/v) on the growth rate of Aspergillus niger and Alternaria alternata that cause spoilage during the storage and packaging of dates. The effects of environmental factors were studied using the γ-concept. Cardinal models were used to quantify the effect of studied environmental factors on the growth rates. Firstly, the cardinal parameters were estimated independently from experiments carried out on potato dextrose agar using a monofactorial design. Secondly, model performance evaluation was conducted on pasteurized date paste. The boundary between growth and no-growth was predicted using a deterministic approach. Aspergillus niger displayed a faster growth rate and higher tolerance to low aw than Al. alternata, which in turn proved more resistant to CO2 concentration. Minimal cardinal parameters of T and aw were lower than those reported in the literature. The combination of the aw and CO2 effects significantly affected As. niger and Al. alternata growth. The γ-concept model overestimated growth rates, however, it is optimistic and provides somewhat conservative predictions. The developed model provides a decision support tool for the choice of the date fruit conservation mode (refrigeration, drying, modified atmospheric packaging or their combination) using T, aw and CO2 as environmental factors. © 2016 The Society for Applied Microbiology.

  1. Kinetic characterization of glucose aerodehydrogenase from Aspergillus niger EMS-150-F after optimizing the dose of mutagen for enhanced production of enzyme.

    PubMed

    Umbreen, Huma; Zia, Muhammad Anjum; Rasul, Samreen

    2013-12-01

    In the present study enhanced production of glucose aerodehydrogenase from Aspergillus niger has been achieved after optimizing the dose of chemical mutagen ethyl methane sulfonate (EMS) that has not been reported earlier. Different doses of mutagen were applied and a strain was developed basing upon the best production. The selected strain Aspergillus niger EMS-150-F was optimized for nutrient requirements in order to produce enzyme through fermentation and the results showed the best yield at 2% corn steep liquor (CSL), 36 hours fermentation time, pH 5, 30 °C temperature, 0.3% KH2PO4, 0.3% urea and 0.06% CaCO3. The enzyme was then purified and resulted in 57.88 fold purification with 52.12% recovery. On kinetic characterization, the enzyme showed optimum activity at pH 6 and temperature 30 °C. The Michaelis-Menton constants (K(m), Vmax, Kcat and Kcat/K(m)) were 20 mM, 45.87 U mL(-1), 1118.81 s(-1) and 55.94 s(-1) mM(-1), respectively. The enzyme was found to be thermally stable and the enthalpy and free energy showed an increase with increase in temperature and ΔS* was highly negative proving the enzyme from A. niger EMS-150-F resistant to temperature and showing a very little disorderliness.

  2. Customization of Aspergillus niger morphology through addition of talc micro particles.

    PubMed

    Wucherpfennig, Thomas; Lakowitz, Antonia; Driouch, Habib; Krull, Rainer; Wittmann, Christoph

    2012-03-15

    The filamentous fungus A. niger is a widely used strain in a broad range of industrial processes from food to pharmaceutical industry. One of the most intriguing and often uncontrollable characteristics of this filamentous organism is its complex morphology. It ranges from dense spherical pellets to viscous mycelia. Various process parameters and ingredients are known to influence fungal morphology. Since optimal productivity correlates strongly with a specific morphological form, the fungal morphology often represents the bottleneck of productivity in industrial production. A straight forward and elegant approach to precisely control morphological shape is the addition of inorganic insoluble micro particles (like hydrous magnesium silicate, aluminum oxide or titanium silicate oxide) to the culture medium contributing to increased enzyme production. Since there is an obvious correlation between micro particle dependent morphology and enzyme production it is desirable to mathematically link productivity and morphological appearance. Therefore a quantitative precise and holistic morphological description is targeted. Thus, we present a method to generate and characterize micro particle dependent morphological structures and to correlate fungal morphology with productivity which possibly contributes to a better understanding of the morphogenesis of filamentous microorganisms. The recombinant strain A. niger SKAn1015 is cultivated for 72 h in a 3 L stirred tank bioreactor. By addition of talc micro particles in concentrations of 1 g/L, 3 g/L and 10 g/L prior to inoculation a variety of morphological structures is reproducibly generated. Sterile samples are taken after 24, 48 and 72 hours for determination of growth progress and activity of the produced enzyme. The formed product is the high-value enzyme β-fructofuranosidase, an important biocatalyst for neo-sugar formation in food or pharmaceutical industry, which catalyzes among others the reaction of sucrose to

  3. Customization of Aspergillus niger Morphology Through Addition of Talc Micro Particles

    PubMed Central

    Wucherpfennig, Thomas; Lakowitz, Antonia; Driouch, Habib; Krull, Rainer; Wittmann, Christoph

    2012-01-01

    The filamentous fungus A. niger is a widely used strain in a broad range of industrial processes from food to pharmaceutical industry. One of the most intriguing and often uncontrollable characteristics of this filamentous organism is its complex morphology. It ranges from dense spherical pellets to viscous mycelia (Figure 1). Various process parameters and ingredients are known to influence fungal morphology 1. Since optimal productivity correlates strongly with a specific morphological form, the fungal morphology often represents the bottleneck of productivity in industrial production. A straight forward and elegant approach to precisely control morphological shape is the addition of inorganic insoluble micro particles (like hydrous magnesium silicate, aluminum oxide or titanium silicate oxide) to the culture medium contributing to increased enzyme production 2-6. Since there is an obvious correlation between micro particle dependent morphology and enzyme production it is desirable to mathematically link productivity and morphological appearance. Therefore a quantitative precise and holistic morphological description is targeted. Thus, we present a method to generate and characterize micro particle dependent morphological structures and to correlate fungal morphology with productivity (Figure 1) which possibly contributes to a better understanding of the morphogenesis of filamentous microorganisms. The recombinant strain A. niger SKAn1015 is cultivated for 72 h in a 3 L stirred tank bioreactor. By addition of talc micro particles in concentrations of 1 g/L, 3 g/L and 10 g/L prior to inoculation a variety of morphological structures is reproducibly generated. Sterile samples are taken after 24, 48 and 72 hours for determination of growth progress and activity of the produced enzyme. The formed product is the high-value enzyme β-fructofuranosidase, an important biocatalyst for neo-sugar formation in food or pharmaceutical industry, which catalyzes among others the

  4. Insights into the unfolding pathway and identification of thermally sensitive regions of phytase from Aspergillus niger by molecular dynamics simulations.

    PubMed

    Kumar, Kapil; Patel, Krunal; Agrawal, D C; Khire, J M

    2015-06-01

    Thermal stability is of great importance in the application of commercial phytases. Phytase A (PhyA) is a monomeric protein comprising twelve α-helices and ten β-sheets. Comparative molecular dynamics (MD) simulations (at 310, 350, 400, and 500 K) revealed that the thermal stability of PhyA from Aspergillus niger (A. niger) is associated with its conformational rigidity. The most thermally sensitive regions were identified as loops 8 (residues 83-106), 10 (161-174), 14 (224-230), 17 (306-331), and 24 (442-444), which are present on the surface of the protein. It was observed that solvent-exposed loops denature before or show higher flexibility than buried residues. We observed that PhyA begins to unfold at loops 8 and 14, which further extends to loop 24 at the C-terminus. The intense movement of loop 8 causes the helix H2 and beta-sheet B3 to fluctuate at high temperature. The high flexibility of the H2, H10, and H12 helices at high temperature resulted in complete denaturation. The high mobility of loop 14 easily transfers to the adjacent helices H7, H8, and H9, which fluctuate and partially unfold at high temperature (500 K). It was also observed that the salt bridges Asp110-Lys149, Asp205-Lys277, Asp335-Arg136, Asp416-Arg420, and Glu387-Arg400 are important influences on the structural stability but not the thermostability, as the lengths of these salt bridges did not increase with rising temperature. The salt bridges Glu125-Arg163, Asp299-Arg136, Asp266-Arg219, Asp339-Lys278, Asp335-Arg136, and Asp424-Arg428 are all important for thermostability, as the lengths of these bridges increased dramatically with increasing temperature. Here, for the first time, we have computationally identified the thermolabile regions of PhyA, and this information could be used to engineer novel thermostable phytases. Numerous homologous phytases of fungal as well as bacterial origin are known, and these homologs show high sequence similarity. Our findings could prove useful in

  5. Mapping N-linked Glycosylation Sites in the Secretome and Whole Cells of Aspergillus niger Using Hydrazide Chemistry and Mass Spectrometry

    SciTech Connect

    Wang, Lu; Aryal, Uma K.; Dai, Ziyu; Mason, Alisa C.; Monroe, Matthew E.; Tian, Zhixin; Zhou, Jianying; Su, Dian; Weitz, Karl K.; Liu, Tao; Camp, David G.; Smith, Richard D.; Baker, Scott E.; Qian, Weijun

    2012-01-01

    Protein glycosylation is known to play an essential role in both cellular functions and the secretory pathways; however, little information is available on the dynamics of glycosylated N-linked glycosites of fungi. Herein we present the first extensive mapping of glycosylated N-linked glycosites in industrial strain Aspergillus niger by applying an optimized solid phase enrichment of glycopeptide protocol using hydrazide modified magnetic beads. The enrichment protocol was initially optimized using mouse plasma and A. niger secretome samples, which was then applied to profile N-linked glycosites from both the secretome and whole cell lysates of A. niger. A total of 847 unique N-linked glycosites and 330 N-linked glycoproteins were confidently identified by LC-MS/MS. Based on gene ontology analysis, the identified N-linked glycoproteins in the whole cell lysate were primarily localized in the plasma membrane, endoplasmic reticulum, golgi apparatus, lysosome, and storage vacuoles. The identified N-linked glycoproteins are involved in a wide range of biological processes including gene regulation and signal transduction, protein folding and assembly, protein modification and carbohydrate metabolism. The extensive coverage of glycosylated N-linked glycosites along with identification of partial N-linked glycosylation in those enzymes involving in different biochemical pathways provide useful information for functional studies of N-linked glycosylation and their biotechnological applications in A. niger.

  6. Effect of low shear modeled microgravity on phenotypic and central chitin metabolism in the filamentous fungi Aspergillus niger and Penicillium chrysogenum.

    PubMed

    Sathishkumar, Yesupatham; Velmurugan, Natarajan; Lee, Hyun Mi; Rajagopal, Kalyanaraman; Im, Chan Ki; Lee, Yang Soo

    2014-08-01

    Phenotypic and genotypic changes in Aspergillus niger and Penicillium chrysogenum, spore forming filamentous fungi, with respect to central chitin metabolism were studied under low shear modeled microgravity, normal gravity and static conditions. Low shear modeled microgravity (LSMMG) response showed a similar spore germination rate with normal gravity and static conditions. Interestingly, high ratio of multiple germ tube formation of A. niger in LSMMG condition was observed. Confocal laser scanning microscopy images of calcofluor flurophore stained A. niger and P. chrysogenum showed no significant variations between different conditions tested. Transmission electron microscopy images revealed number of mitochondria increased in P. chrysogenum in low shear modeled microgravity condition but no stress related-woronin bodies in fungal hyphae were observed. To gain additional insight into the cell wall integrity under different conditions, transcription level of a key gene involved in cell wall integrity gfaA, encoding the glutamine: fructose-6-phosphate amidotransferase enzyme, was evaluated using qRT-PCR. The transcription level showed no variation among different conditions. Overall, the results collectively indicate that the LSMMG has shown no significant stress on spore germination, mycelial growth, cell wall integrity of potentially pathogenic fungi, A. niger and P. chrysogenum.

  7. Expression, purification, and characterization of the recombinant calcium-binding equine lysozyme secreted by the filamentous fungus Aspergillus niger: comparisons with the production of hen and human lysozymes.

    PubMed

    Spencer, A; Morozov-Roche, L A; Noppe, W; MacKenzie, D A; Jeenes, D J; Joniau, M; Dobson, C M; Archer, D B

    1999-06-01

    Equine lysozyme (EqL) has been expressed from a synthetic gene and secreted from a heterologous host, the filamentous fungus Aspergillus niger. By including 100 mM Ca2+ in the growth medium, secreted yields of more than 50 mg/liter could be achieved using polyvinylpyrrolidone (PVP) complete medium. In a soya medium yields of up to 150 mg/liter were achieved. The production of recombinant human lysozyme (HuL) from A. niger with yields of over 40 mg/liter was also achieved using PVP medium. Addition of Ca2+ to the growth medium reduced the yield of both HuL and hen egg white lysozyme (HEWL). Sequence differences between the three lysozymes, EqL, HuL, and HEWL, resulted in different susceptibilities to cleavage by A. niger proteases. An improved procedure for the purification of EqL and HuL from A. niger allowed separation of the proteins from pigments produced by the fungus. Detailed spectroscopic analysis, including 2D 1H NMR, for recombinant EqL and recombinant HuL confirm that both proteins possess their native structure and are purified to homogeneity.

  8. Changes in transcript levels of starch hydrolysis genes and raising citric acid production via carbon ion irradiation mutagenesis of Aspergillus niger

    PubMed Central

    Li, Wenjian; Chen, Hao; Liu, Jing; Wang, Shuyang; Chen, Jihong

    2017-01-01

    The filamentous ascomycete Aspergillus niger is well known for its ability to accumulate citric acid for the hydrolysis of starchy materials. To improve citric acid productivity, heavy ion beam mutagenesis was utilized to produce mutant A.niger strains with enhanced production of citric acid in this work. It was demonstrated that a mutant HW2 with high concentration of citric acid was isolated after carbon ion irradiation with the energy of 80Mev/μ, which was obvious increase higher than the original strain from liquefied corn starch as a feedstock. More importantly, with the evidence from the expression profiles of key genes and enzyme activity involved in the starch hydrolysis process between original strain and various phenotype mutants, our results confirmed that different transcript levels of key genes involving in starch hydrolysis process between original strain and mutants could be a significant contributor to different citric acid concentration in A.niger, such as, amyR and glaA, which therefore opened a new avenue for constructing genetically engineered A.niger mutants for high-yield citric acid accumulation in the future. As such, this work demonstrated that heavy ion beam mutagenesis presented an efficient alternative strategy to be developed to generate various phenotype microbe species mutants for functional genes research. PMID:28650980

  9. Displaying Candida antarctica lipase B on the cell surface of Aspergillus niger as a potential food-grade whole-cell catalyst.

    PubMed

    Pan, Zhi-You; Yang, Zhi-Ming; Pan, Li; Zheng, Sui-Ping; Han, Shuang-Yan; Lin, Ying

    2014-04-01

    Aspergillus niger is a recognized workhorse used to produce food processing enzymes because of its extraordinarily high protein-producing capacity. We have developed a new cell surface display system de novo in A. niger using expression elements from generally recognized as safe certified microorganisms. Candida antarctica lipase B (CALB), a widely used hydrolase, was fused to an endogenous cell wall mannoprotein, CwpA, and functionally displayed on the cell surface. Localization of CALB was confirmed by enzymatic assay and immunofluorescence analysis using laser scanning confocal microscopy. After induction by maltose for 45 h, the hydrolytic activity and synthesis activity of A. niger mycelium-surface displayed CALB (AN-CALB) reached 400 and 240 U/g dry cell, respectively. AN-CALB was successfully used as a whole-cell catalyst for the enzymatic production of ethyl esters from a series of fatty acids of different chain lengths and ethanol. In a solvent-free system, AN-CALB showed great synthetic activity and afforded high substrate mole conversions, which amounted to 87 % for ethyl hexanoate after 2 h, 89 % for ethyl laurate after 2 h, and 84 % for ethyl stearate after 3 h. These results suggested that CwpA can act as an efficient anchoring motif for displaying enzyme on A. niger, and AN-CALB is a robust, green, and cost-effective alternative food-grade whole-cell catalyst to commercial lipase.

  10. Overexpression of the Aspergillus niger GatA transporter leads to preferential use of D-galacturonic acid over D-xylose

    PubMed Central

    2014-01-01

    Pectin is a structural heteropolysaccharide of the primary cell walls of plants and as such is a significant fraction of agricultural waste residues that is currently insufficiently used. Its main component, D-galacturonic acid, is an attractive substrate for bioconversion. The complete metabolic pathway is present in the genome of Aspergillus niger, that is used in this study. The objective was to identify the D-galacturonic acid transporter in A. niger and to use this transporter to study D-galacturonic acid metabolism. We have functionally characterized the gene An14g04280 that encodes the D-galacturonic acid transporter in A. niger. In a mixed sugar fermentation it was found that the An14g04280 overexpression strain, in contrast to the parent control strain, has a preference for D-galacturonic acid over D-xylose as substrate. Overexpression of this transporter in A. niger resulted in a strong increase of D-galacturonic acid uptake and induction of the D-galacturonic acid reductase activity, suggesting a metabolite controlled regulation of the endogenous D-galacturonic acid catabolic pathway. PMID:25177540

  11. Bioconversion of oil palm frond by Aspergillus niger to enhances it's fermentable sugar production.

    PubMed

    Lim, Sheh-Hong; Ibrahim, Darah

    2013-09-15

    The aim of this study was to develop an economical bioprocess to produce the fermentable sugars at laboratory scales Using Oil Palm Frond (OPF) as substrate in Solid State Fermentation (SSF). OPF waste generated by oil palm plantations is a major problem in terms of waste management. However, this lignocellulosic waste material is a cheap source of cellulose. We used OPF as substrate to produce fermentable sugars. The high content of cellulose in OPF promises the high fermentable sugars production in SSF. Saccharification of OPF waste by A. niger USMAI1 generates fermentable sugars and was evaluated through a solid state fermentation. Physical parameters, e.g., inoculum size, initial substrate moisture, initial pH, incubation temperature and the size of substrate were optimized to obtain the maximum fermentable sugars from oil palm fronds. Up to 77 mg of fermentable sugars per gram substrate was produced under the optimal physical parameter conditions. Lower productivity of fermentable sugars, 32 mg fermentable sugars per gram substrate was obtained under non optimized conditions. The results indicated that about 140.6% increase in fermentable sugar production after optimization of the physical parameters. Glucose was the major end component amongst the fermentable sugars obtained. This study indicated that under optimum physical parameter conditions, the OPF waste can be utilized to produce fermentable sugars which then convert into other products such as alcohol.

  12. Application of response surface methodology for optimization of polygalacturonase production by Aspergillus niger.

    PubMed

    Yadav, Kaushlesh K; Garg, Neelima; Kumar, Devendra; Kumar, Sanjay; Singh, Achal; Muthukumar, M

    2015-01-01

    Polygalacturonase (PG) degrades pectin into D-galacturonic acid monomers and is used widely in food industry especially for juice clarification. In the present study,. fermentation conditions for polygalacturonase production by Asgergillus niger NAIMCCF-02958, using mango peel as substrate, were optimized using the 2(3) factorial design with central composite rotatable experimental design (CCRD) of response surface methodology (RSM). The maximum PG activity 723.66 U g(-1) was achieved under pH 4.0, temperature 30 degrees C and 2% inoculum by response surface curve. The experimental value of PG activity wkas higher 607.65 U g(-1) than the predicted value 511.75 U g(-1). Under the proposed optimized conditions, the determination coefficient (R2) was equal to 0.66 indicating that the model could explain 66% of the total variation as well as establish the relationship between the variables and the responses. ANOVA analysis and the three dimensional plots also confirmed interactions among the parameters.

  13. A broader role for AmyR in Aspergillus niger: regulation of the utilisation of D-glucose or D-galactose containing oligo- and polysaccharides.

    PubMed

    vanKuyk, Patricia A; Benen, Jaques A E; Wösten, Han A B; Visser, Jaap; de Vries, Ronald P

    2012-01-01

    AmyR is commonly considered a regulator of starch degradation whose activity is induced by the presence of maltose, the disaccharide building block of starch. In this study, we demonstrate that the role of AmyR extends beyond starch degradation. Enzyme activity assays, genes expression analysis and growth profiling on D-glucose- and D-galactose-containing oligo- and polysaccharides showed that AmyR regulates the expression of some of the Aspergillus niger genes encoding α- and β-glucosidases, α- and β- galactosidases, as well as genes encoding α-amlyases and glucoamylases. In addition, we provide evidence that D-glucose or a metabolic product thereof may be the inducer of the AmyR system in A. niger and not maltose, as is commonly assumed.

  14. Alkaline thermostable pectinase enzyme from Aspergillus niger strain MCAS2 isolated from Manaslu Conservation Area, Gorkha, Nepal.

    PubMed

    Khatri, Bhim Prakash; Bhattarai, Tribikram; Shrestha, Sangita; Maharjan, Jyoti

    2015-01-01

    Pectinase enzymes are one of the commercially important enzymes having great potential in various industries especially in food industry. Pectinases accounts for 25 % of global food enzymes produced and their market is increasing day by day. Therefore, the exploration of microorganism with novel characteristics has always been the focus of the research. Microorganism dwelling in unique habitat may possess unique characteristics. As such, a pectinase producing fungus Aspergillus niger strain MCAS2 was isolated from soil of Manaslu Conservation Area (MCA), Gorkha, Nepal. The optimum production of pectinase enzyme was observed at 48 h of fermentation. The pectinase enzyme was partially purified by cold acetone treatment followed by Sephadex G-75 gel filtration chromatography. The partially purified enzyme exhibited maximum activity 60 U/mg which was almost 8.5-fold higher than the crude pectinase. The approximate molecular weight of the enzyme was found to be 66 kDa as observed from SDS-PAGE. The pectinase enzyme was active at broad range of temperature (30-70 °C) and pH (6.2-9.2). Optimum temperature and pH of the pectinase enzyme were 50 °C and 8.2 respectively. The enzyme was stable up to 70 °C and about 82 % of pectinase activity was still observed at 100 °C. The thermostable and alkaline nature of this pectinase can meet the demand of various industrial processes like paper and pulp industry, in textile industry, fruit juice industry, plant tissue maceration and wastewater treatment. In addition, the effect of different metal ions on pectinase activity was also studied.

  15. Optimization of date syrup for enhancement of the production of citric acid using immobilized cells of Aspergillus niger

    PubMed Central

    Mostafa, Yasser S.; Alamri, Saad A.

    2012-01-01

    Date syrup as an economical source of carbohydrates and immobilized Aspergillus niger J4, which was entrapped in calcium alginate pellets, were employed for enhancing the production of citric acid. Maximum production was achieved by pre-treating date syrup with 1.5% tricalcium phosphate to remove heavy metals. The production of citric acid using a pretreated medium was 38.87% higher than an untreated one that consumed sugar. The appropriate presence of nitrogen, phosphate and magnesium appeared to be important in order for citric acid to accumulate. The production of citric acid and the consumed sugar was higher when using 0.1% ammonium nitrate as the best source of nitrogen. The production of citric acid increased significantly when 0.1 g/l of KH2PO4 was added to the medium of date syrup. The addition of magnesium sulfate at the rate of 0.20 g/l had a stimulating effect on the production of citric acid. Maximum production of citric acid was obtained when calcium chloride was absent. One of the most important benefits of immobilized cells is their ability and stability to produce citric acid under a repeated batch culture. Over four repeated batches, the production of citric acid production was maintained for 24 days when each cycle continued for 144 h. The results obtained in the repeated batch cultivation using date syrup confirmed that date syrup could be used as a medium for the industrial production of citric acid. PMID:23961184

  16. Optimization of date syrup for enhancement of the production of citric acid using immobilized cells of Aspergillus niger.

    PubMed

    Mostafa, Yasser S; Alamri, Saad A

    2012-04-01

    Date syrup as an economical source of carbohydrates and immobilized Aspergillus niger J4, which was entrapped in calcium alginate pellets, were employed for enhancing the production of citric acid. Maximum production was achieved by pre-treating date syrup with 1.5% tricalcium phosphate to remove heavy metals. The production of citric acid using a pretreated medium was 38.87% higher than an untreated one that consumed sugar. The appropriate presence of nitrogen, phosphate and magnesium appeared to be important in order for citric acid to accumulate. The production of citric acid and the consumed sugar was higher when using 0.1% ammonium nitrate as the best source of nitrogen. The production of citric acid increased significantly when 0.1 g/l of KH2PO4 was added to the medium of date syrup. The addition of magnesium sulfate at the rate of 0.20 g/l had a stimulating effect on the production of citric acid. Maximum production of citric acid was obtained when calcium chloride was absent. One of the most important benefits of immobilized cells is their ability and stability to produce citric acid under a repeated batch culture. Over four repeated batches, the production of citric acid production was maintained for 24 days when each cycle continued for 144 h. The results obtained in the repeated batch cultivation using date syrup confirmed that date syrup could be used as a medium for the industrial production of citric acid.

  17. Screening of agro-industrial wastes for citric acid bioproduction by Aspergillus niger NRRL 2001 through solid state fermentation.

    PubMed

    Dhillon, Gurpreet S; Brar, Satinder K; Kaur, Surinder; Verma, Mausam

    2013-05-01

    The citric acid (CA) industry is currently struggling to develop a sustainable and economical process owing to high substrate and energy costs. Increasing interest in the replacement of costly synthetic substrates by renewable waste biomass has fostered research on agro-industrial wastes and screening of raw materials for economical CA production. The food-processing industry generates substantial quantities of waste biomass that could be used as a valuable low-cost fermentation substrate. The present study evaluated the potential of different agro-industrial wastes, namely apple pomace (AP), brewer's spent grain, citrus waste and sphagnum peat moss, as substrates for solid state CA production using Aspergillus niger NRRL 2001. Among the four substrates, AP resulted in highest CA production of 61.06 ± 1.9 g kg(-1) dry substrate (DS) after a 72 h incubation period. Based on the screening studies, AP was selected for optimisation studies through response surface methodology (RSM). Maximum CA production of 312.32 g kg(-1) DS was achieved at 75% (v/w) moisture and 3% (v/w) methanol after a 144 h incubation period. The validation of RSM-optimised parameters in plastic trays resulted in maximum CA production of 364.4 ± 4.50 g kg(-1) DS after a 120 h incubation period. The study demonstrated the potential of AP as a cheap substrate for higher CA production. This study contributes to knowledge about the future application of carbon rich agro-industrial wastes for their value addition to CA. It also offers economic and environmental benefits over traditional ways used to dispose off agro-industrial wastes. © 2012 Society of Chemical Industry.

  18. Submerged conidiation and product formation by Aspergillus niger at low specific growth rates are affected in aerial developmental mutants.

    PubMed

    Jørgensen, Thomas R; Nielsen, Kristian F; Arentshorst, Mark; Park, Joohae; van den Hondel, Cees A; Frisvad, Jens C; Ram, Arthur F

    2011-08-01

    Exposure to an aerial environment or severe nutrient limitation induces asexual differentiation in filamentous fungi. Submerged cultivation of Aspergillus niger in carbon- and energy-limited retentostat cultures both induces and fuels conidiation. Physiological and transcriptomic analyses have revealed that this differentiation strongly affects product formation. Since conidiation is inherent in the aerial environment, we hypothesized that product formation near zero growth can be influenced by affecting differentiation or development of aerial hyphae in general. To investigate this idea, three developmental mutants (ΔfwnA, scl-1, and scl-2 mutants) that have no apparent vegetative growth defects were cultured in maltose-limited retentostat cultures. The secondary-metabolite profile of the wild-type strain defined flavasperone, aurasperone B, tensidol B, and two so far uncharacterized compounds as associated with conidium formation, while fumonisins B(2), B(4), and B(6) were characteristic of early response to nutrient limitation by the vegetative mycelium. The developmental mutants responded differently to the severe substrate limitation, which resulted in distinct profiles of growth and product formation. fwnA encodes the polyketide synthase responsible for melanin biosynthesis during aerial differentiation, and we show that conidial melanin synthesis in submerged retentostat cultures and aurasperone B production are fwnA dependent. The scl-1 and scl-2 strains are two UV mutants generated in the ΔfwnA background that displayed reduced asexual conidiation and formed sclerotium-like structures on agar plates. The reduced conidiation phenotypes of the scl-1 and scl-2 strains are reflected in the retentostat cultivation and are accompanied by elimination or severely reduced accumulation of secondary metabolites and distinctly enhanced accumulation of extracellular protein. This investigation shows that submerged conidiation and product formation of a mitosporic

  19. Molecular cloning, sequence analysis and expression of a GHF 43 xylanase from Aspergillus niger in Escherichia coli.

    PubMed

    Zhou, Chen-Yan; Wang, Yong-Tao; Zhu, Tie-Chui; Fu, Guan-Hua; Wang, Dan-Dan

    2014-01-01

    A new xylanase gene (xyn43A) from Aspergillus niger XZ-3S was cloned and expressed in Escherichia coli BL21-CodonPlus (DE3)-RIL. The coding region of the gene was separated by only one intron 86 bp in length. It encoded 318 amino acid residues of a protein with a calculated molecular weight (MW) of 33.47 kDa plus a signal peptide of 19 amino acids. The amino acid sequence of the xyn43A gene showed 77.56% amino acid identity to A. nidulans xylanase, and the phylogenetic tree analysis revealed that xyn43A had close relationships with those of family 43 of glycosyl hydrolases reported from other microorganisms. Three-dimensional structure modeling showed that Xyn43A had a typical five-blade β-propeller fold. The mature peptide encoding cDNA was subcloned into pET-28a (+) expression vector. The resultant recombinant plasmid pET-28a-xyn43A was transformed into Escherichia coli BL21-CodonPlus (DE3)-RIL, and xylanase activity was measured. A maximum activity of 61.43 U/mg was obtained from the cellular extract of E. coli BL21-CodonPlus (DE3)-RIL harboring pET-28a-xyn43A. The recombinant xylanase had optimal activity at pH5.0 and 45°C. Fe(3+), Cu(2+) and EDTA had an obvious active effect on the enzyme.

  20. Enzymatic activity of Glucose Oxidase from Aspergillus niger IPBCC.08.610 On Modified Carbon Paste Electrode as Glucose Biosensor

    NASA Astrophysics Data System (ADS)

    Rohmayanti, T.; Ambarsari, L.; Maddu, A.

    2017-03-01

    Glucose oxidase (GOx) has been developed as glucose sensor for measuring blood glucose level because of its specificity to glucose oxidation. This research aimed to determine kinetic parameters of GOx activity voltametrically and further test its potential as a glucose biosensor. GOx, in this research, was produced by local fungi Aspergillus niger IPBCC.08.610 which was isolated from local vine in Tarakan, East Borneo, Indonesia. GOx was immobilized with glutaraldehyde, which cross-linked onto modified carbon paste electrode (MCPE) nanofiber polyaniline. Intracellular GOx activity was higher than extracellular ones. Immobilized GOx used glutaraldehyde 2.5% and dripped on the surface of MCPE nanofiber polyaniline. MCPE have a high conductance in copper with the diameter of 3 mm. The concentration of glucose in the lowest concentration of 0.2 mM generated a current value of 0.413 mA while 2 mM of glucose induced a current of 3,869 mA value. Km and Imax of GOx in MCPE activities polyaniline nanofiber were 2.88 mM and 3.869 mA,respectively, with turnover (Kcat) of 13 s-1. Sensitivity was 1.09 mA/mM and response time to produce a maximum peak current was 25 seconds. Km value was then converted into units of mg/dL and obtained 56.4 mg/dL. GOximmo-IPB|MCPE electrode is potential to be able to detect blood glucose level in a normal condition and hypoglycemia conditions

  1. Irreversible thermal denaturation of glucose oxidase from Aspergillus niger is the transition to the denatured state with residual structure.

    PubMed

    Zoldák, Gabriel; Zubrik, Anton; Musatov, Andrej; Stupák, Marek; Sedlák, Erik

    2004-11-12

    Glucose oxidase (GOX; beta-d-glucose:oxygen oxidoreductase) from Aspergillus niger is a dimeric flavoprotein with a molecular mass of 80 kDa/monomer. Thermal denaturation of glucose oxidase has been studied by absorbance, circular dichroism spectroscopy, viscosimetry, and differential scanning calorimetry. Thermal transition of this homodimeric enzyme is irreversible and, surprisingly, independent of GOX concentration (0.2-5.1 mg/ml). It has an apparent transition temperature of 55.8 +/- 1.2 degrees C and an activation energy of approximately 280 kJ/mol, calculated from the Lumry-Eyring model. The thermally denatured state of GOX after recooling has the following characteristics. (i) It retains approximately 70% of the native secondary structure ellipticity; (ii) it has a relatively low intrinsic viscosity, 7.5 ml/g; (iii) it binds ANS; (iv) it has a low Stern-Volmer constant of tryptophan quenching; and (v) it forms defined oligomeric (dimers, trimers, tetramers) structures. It is significantly different from chemically denatured (6.67 m GdmHCl) GOX. Both the thermal and the chemical denaturation of GOX cause dissociation of the flavin cofactor; however, only the chemical denaturation is accompanied by dissociation of the homodimeric GOX into monomers. The transition temperature is independent of the protein concentration, and the properties of the thermally denatured protein indicate that thermally denatured GOX is a compact structure, a form of molten globule-like apoenzyme. GOX is thus an exceptional example of a relatively unstable mesophilic dimeric enzyme with residual structure in its thermally denatured state.

  2. Strain improvement and up scaling of phytase production by Aspergillus niger NCIM 563 under submerged fermentation conditions.

    PubMed

    Shah, P; Bhavsar, K; Soni, S K; Khire, Jayant Malhar

    2009-03-01

    Combination of physical and chemical mutagenesis was used to isolate hyper secretory strains of Aspergillus niger NCIM 563 for phytase production. Phytase activity of mutant N-1 and N-79 was about 17 and 47% higher than the parent strain. In shake flask the productivity of phytase in parent, mutant N-1 and N-79 was 6,181, 7,619 and 9,523 IU/L per day, respectively. Up scaling of the fermentation from shake flask to 3 and 14 L New Brunswick fermenter was studied. After optimizing various fermentation parameters like aeration, agitation and carbon source in fermentation medium the fermentation time to achieve highest phytase activity was reduced considerably from 14 days in shake flask to 8 days in 14 L fermenter. Highest phytase activity of 80 IU/ml was obtained in 1% rice bran-3.5% glucose containing medium with aeration 0.2 vvm and agitation 550 rpm at room temperature on 8th day of fermentation. Addition of either bavistin (0.1%), penicillin (0.1%), formalin (0.2%) and sodium chloride (10%) in fermented broth were effective in retaining 100% phytase activity for 8 days at room temperature while these reagents along with methanol (50%) and ethanol (50%) confer 100% stability of phytase activity at 4 degrees C till 20 days. Among various carriers used for application of phytase in feed, wheat bran and rice bran were superior to silica and calcium carbonate. Thermo stabilization studies indicate 100% protection of phytase activity in presence of 12% skim milk at 70 degrees C, which will be useful for its spray drying.

  3. The role of carbon starvation in the induction of enzymes that degrade plant-derived carbohydrates in Aspergillus niger

    PubMed Central

    van Munster, Jolanda M.; Daly, Paul; Delmas, Stéphane; Pullan, Steven T.; Blythe, Martin J.; Malla, Sunir; Kokolski, Matthew; Noltorp, Emelie C.M.; Wennberg, Kristin; Fetherston, Richard; Beniston, Richard; Yu, Xiaolan; Dupree, Paul; Archer, David B.

    2014-01-01

    Fungi are an important source of enzymes for saccharification of plant polysaccharides and production of biofuels. Understanding of the regulation and induction of expression of genes encoding these enzymes is still incomplete. To explore the induction mechanism, we analysed the response of the industrially important fungus Aspergillus niger to wheat straw, with a focus on events occurring shortly after exposure to the substrate. RNA sequencing showed that the transcriptional response after 6 h of exposure to wheat straw was very different from the response at 24 h of exposure to the same substrate. For example, less than half of the genes encoding carbohydrate active enzymes that were induced after 24 h of exposure to wheat straw, were also induced after 6 h exposure. Importantly, over a third of the genes induced after 6 h of exposure to wheat straw were also induced during 6 h of carbon starvation, indicating that carbon starvation is probably an important factor in the early response to wheat straw. The up-regulation of the expression of a high number of genes encoding CAZymes that are active on plant-derived carbohydrates during early carbon starvation suggests that these enzymes could be involved in a scouting role during starvation, releasing inducing sugars from complex plant polysaccharides. We show, using proteomics, that carbon-starved cultures indeed release CAZymes with predicted activity on plant polysaccharides. Analysis of the enzymatic activity and the reaction products, indicates that these proteins are enzymes that can degrade various plant polysaccharides to generate both known, as well as potentially new, inducers of CAZymes. PMID:24792495

  4. Overexpression and functional characterization of an Aspergillus niger phytase in the fat body of transgenic silkworm, Bombyx mori.

    PubMed

    Xu, Hanfu; Liu, Yaowen; Wang, Feng; Yuan, Lin; Wang, Yuancheng; Ma, Sanyuan; Beneš, Helen; Xia, QingYou

    2014-08-01

    In a previous study, we isolated 1,119 bp of upstream promoter sequence from Bmlp3, a gene encoding a member of the silkworm 30 K storage protein family, and demonstrated that it was sufficient to direct fat body-specific expression of a reporter gene in a transgenic silkworm, thus highlighting the potential use of this promoter for both functional genomics research and biotechnology applications. To test whether the Bmlp3 promoter can be used to produce recombinant proteins in the fat body of silkworm pupae, we generated a transgenic line of Bombyx mori which harbors a codon-optimized Aspergillus niger phytase gene (phyA) under the control of the Bmlp3 promoter. Here we show that the Bmlp3 promoter drives high levels of phyA expression in the fat body, and that the recombinant phyA protein is highly active (99.05 and 54.80 U/g in fat body extracts and fresh pupa, respectively). We also show that the recombinant phyA has two optimum pH ranges (1.5-2.0 and 5.5-6.0), and two optimum temperatures (55 and 37 °C). The activity of recombinant phyA was lost after high-temperature drying, but treating with boiling water was less harmful, its residual activity was approximately 84% of the level observed in untreated samples. These results offer an opportunity not only for better utilization of large amounts of silkworm pupae generated during silk production, but also provide a novel method for mass production of low-cost recombinant phytase using transgenic silkworms.

  5. The Transcriptional Repressor TupA in Aspergillus niger Is Involved in Controlling Gene Expression Related to Cell Wall Biosynthesis, Development, and Nitrogen Source Availability

    PubMed Central

    Schachtschabel, Doreen; Arentshorst, Mark; Nitsche, Benjamin M.; Morris, Sam; Nielsen, Kristian F.; van den Hondel, Cees A. M. J. J.; Klis, Frans M.; Ram, Arthur F. J.

    2013-01-01

    The Tup1-Cyc8 (Ssn6) complex is a well characterized and conserved genera