Science.gov

Sample records for asphalt concrete mixes

  1. Production variability analysis of hot-mixed asphalt concrete containing reclaimed asphalt pavement. Final research report

    SciTech Connect

    Solaimanian, M.; Kennedy, T.W.

    1995-02-01

    A research project was undertaken to evaluate the production and construction variability of Hot Mix Asphalt Concrete (HMAC) containing high quantities of reclaimed asphalt pavement (RAP) material. Four construction projects were selected for this purpose. Two of the projects used 35 percent RAP material (both type-C mixes), while the other two used 40 percent (a type-B mix) and 50 percent (a type-D mix) of the RAP material, respectively. The projects differed in sizes, with total construction tonnage ranging from 10.9 million kg to 27.2 million kg (12,000 to 30,000 tons). In all cases, dedicated stockpiles of RAP material were used. Analysis was performed on the results obtained from the tests. The gradation and asphalt content deviations, air voids, penetration and viscosities, and stabilities, were included in the analysis. Pay adjustment factors were determined for gradation and asphalt content deviation, as well as for air voids (based on TxDOT Specification 3007). In general, these high-percent RAP projects indicated a variability higher than that of a typical HMAC without RAP. The pay adjustment factors for gradation and asphalt content deviation were lower than typical values. The construction gradations were finer than the job-mix formula target gradations, possibly a result of aggregate crushing during the milling operation.

  2. User's guide: Cold-mix recycling of asphalt concrete pavements. Final report

    SciTech Connect

    Shoenberger, J.E.

    1992-09-01

    This guide provides the technical information required to implement the application of cold-mix recycling of asphalt concrete pavements. Included are details on areas on application, benefits/advantages, limitations/disadvantages, and costs associated with this technology. Information is provided on two demonstration sites at Fort Gillem, Georgia, and Fort Leavenworth, Kansas. Also provided is information concerning funding, procurement, maintenance, and performance monitoring. A fact sheet on recycling, contract specification example, and references are provided in the appendixes.... Asphalt pavement recycling, Emulsified asphalt cement, Cold milling, In-place cold-mix asphalt recycling, Cold-mix asphalt recycling, Recycling of asphalt.

  3. Evaluation of properties of recycled asphalt concrete hot mix

    SciTech Connect

    Brown, E.R.

    1983-01-01

    This study was undertaken to evaluate the laboratory performance of recycled asphalt concrete mixtures and to compare these results to those measured for conventional asphalt concrete mixtures. To make these comparisons, samples of aged asphalt concrete were obtained from three locations where recycling was planned. These samples were blended with new aggregate and new asphalt materials to produce six different recycled mixtures. Two aggregate types, a crushed gravel and a crushed limestone, were used to produce two conventional mixtures and to blend with the reclaimed asphalt pavement to produce the six recycled mixtures. Three asphalt materials which were obtained to produce the various mixtures being evaluated consisted of AC-20 for preparing the conventional mixtures and AC-5 and a recycling agent for preparing the recycled mixtures. The Shell BISAR computer program was used to predict the stesses and strains for two typical pavement sections under a given loading conditions. The computed stresses and strains were then analyzed along with the laboratory fatigue tests to predict the fatigue performance of the various mixtures. The results of this study indicated a satisfactory comparison between laboratory performance of recycled mixtures and conventional mixtures. Fatigue analysis indicated that the conventional mixtures would provide the greatest fatigue resistance in thick asphalt concrete layers at lower temperatures while the recycled mixtures would provide the greatest fatigue resistance in thin asphalt layers at higher temperatures.

  4. Specifications and Construction Methods for Asphalt Concrete and Other Plant-Mix Types, 3rd Edition.

    ERIC Educational Resources Information Center

    Asphalt Inst., College Park, MD.

    The purpose of this publication is to assist engineers in the analysis, design and control of paving projects that use asphalt concrete and other asphalt plant-mixes. The scope of this new third edition has been enlarged, and changes necessitated by advances in asphalt technology have been incorporated. Chapters I and II and Appendices A and B…

  5. Performance evaluation of high modulus asphalt concrete mixes

    NASA Astrophysics Data System (ADS)

    Haritonovs, V.; Tihonovs, J.; Zaumanis, M.

    2016-04-01

    Dolomite is one of the most available sedimentary rocks in the territory of Latvia. Dolomite quarries contain about 1000 million tons of this material. However, according to Latvian Road Specifications, this dolomite cannot be used for average and high intensity roads because of its low quality (mainly, LA index). Therefore, mostly imported magmatic rocks (granite, diabase, gabbro, basalt) or imported dolomite are used which makes asphalt expensive. However, practical experience shows that even with these high quality materials roads exhibit rutting, fatigue and thermal cracks. The aim of the research is to develop a high performance asphalt concrete for base and binder courses using only locally available aggregates. In order to achieve resistance against deformations at a high ambient temperature, a hard grade binder was used. Workability, fatigue and thermal cracking resistance, as well as sufficient water resistance is achieved by low porosity (3-5%) and higher binder content compared to traditional asphalt mixtures. The design of the asphalt includes a combination of empirical and performance based tests, which in laboratory circumstances allow simulating traffic and environmental loads. High performance AC 16 base asphalt concrete was created using local dolomite aggregate with polymer modified (PMB 10/40-65) and hard grade (B20/30) bitumen. The mixtures were specified based on fundamental properties in accordance to EN 13108-1 standard.

  6. Performance testing of asphalt concrete containing crumb rubber modifier and warm mix additives

    NASA Astrophysics Data System (ADS)

    Ikpugha, Omo John

    Utilisation of scrap tire has been achieved through the production of crumb rubber modified binders and rubberised asphalt concrete. Terminal and field blended asphalt rubbers have been developed through the wet process to incorporate crumb rubber into the asphalt binder. Warm mix asphalt technologies have been developed to curb the problem associated with the processing and production of such crumb rubber modified binders. Also the lowered production and compaction temperatures associated with warm mix additives suggests the possibility of moisture retention in the mix, which can lead to moisture damage. Conventional moisture sensitivity tests have not effectively discriminated good and poor mixes, due to the difficulty of simulating field moisture damage mechanisms. This study was carried out to investigate performance properties of crumb rubber modified asphalt concrete, using commercial warm mix asphalt technology. Commonly utilised asphalt mixtures in North America such as dense graded and stone mastic asphalt were used in this study. Uniaxial Cyclic Compression Testing (UCCT) was used to measure permanent deformation at high temperatures. Indirect Tensile Testing (IDT) was used to investigate low temperature performance. Moisture Induced Sensitivity Testing (MiST) was proposed to be an effective method for detecting the susceptibility of asphalt mixtures to moisture damage, as it incorporates major field stripping mechanisms. Sonnewarm(TM), Sasobit(TM) and Evotherm(TM) additives improved the resistance to permanent deformation of dense graded mixes at a loading rate of 0.5 percent by weight of the binder. Polymer modified mixtures showed superior resistance to permanent deformation compared to asphalt rubber in all mix types. Rediset(TM) WMX improves low temperature properties of dense graded mixes at 0.5 percent loading on the asphalt cement. Rediset LQ and Rediset WMX showed good anti stripping properties at 0.5 percent loading on the asphalt cement. The

  7. Utilization of recycled asphalt concrete with warm mix asphalt and cost-benefit analysis.

    PubMed

    Oner, Julide; Sengoz, Burak

    2015-01-01

    The asphalt paving industries are faced with two major problems. These two important challenges are generated with an increase in demand for environmentally friendly paving mixtures and the problem of rapidly rising raw materials. Recycling of reclaimed asphalt pavement (RAP) is a critical necessity to save precious aggregates and reduce the use of costly bitumen. Warm Mix Asphalt (WMA) technology provides not only the option of recycling asphalt pavement at a lower temperature than the temperature maintained in hot mixtures but also encourages the utilization of RAP and therefore saves energy and money. This paper describes the feasibility of utilizing three different WMA additives (organic, chemical and water containing) at recommended contents with different percentages of RAP. The mechanical properties and cost-benefit analysis of WMA containing RAP have been performed and compared with WMA without RAP. The results indicated that, 30%, 10% and 20% can be accepted as an optimum RAP addition related to organic, chemical and water containing additives respectively and organic additive with 30% RAP content has an appreciable increase in tensile strength over the control mix. It was also concluded that the RAP with WMA technology is the ability to reduce final cost compared to HMA and WMA mixtures.

  8. Utilization of Recycled Asphalt Concrete with Warm Mix Asphalt and Cost-Benefit Analysis

    PubMed Central

    Oner, Julide; Sengoz, Burak

    2015-01-01

    The asphalt paving industries are faced with two major problems. These two important challenges are generated with an increase in demand for environmentally friendly paving mixtures and the problem of rapidly rising raw materials. Recycling of reclaimed asphalt pavement (RAP) is a critical necessity to save precious aggregates and reduce the use of costly bitumen. Warm Mix Asphalt (WMA) technology provides not only the option of recycling asphalt pavement at a lower temperature than the temperature maintained in hot mixtures but also encourages the utilization of RAP and therefore saves energy and money. This paper describes the feasibility of utilizing three different WMA additives (organic, chemical and water containing) at recommended contents with different percentages of RAP. The mechanical properties and cost-benefit analysis of WMA containing RAP have been performed and compared with WMA without RAP. The results indicated that, 30%, 10% and 20% can be accepted as an optimum RAP addition related to organic, chemical and water containing additives respectively and organic additive with 30% RAP content has an appreciable increase in tensile strength over the control mix. It was also concluded that the RAP with WMA technology is the ability to reduce final cost compared to HMA and WMA mixtures. PMID:25574851

  9. Value-added utilisation of recycled concrete in hot-mix asphalt.

    PubMed

    Wong, Yiik Diew; Sun, Darren Delai; Lai, Dickson

    2007-01-01

    The feasibility of partial substitution of granite aggregate in hot-mix asphalt (HMA) with waste concrete aggregate was investigated. Three hybrid HMA mixes incorporating substitutions of granite fillers/fines with 6%, 45% untreated, and 45% heat-treated concrete were evaluated by the Marshall mix design method; the optimum binder contents were found to be 5.3%, 6.5% and 7.0% of grade Pen 60/70 bitumen, respectively. All three hybrid mixes satisfied the Marshall criteria of the Singapore Land Transport Authority (LTA) W3B wearing course specification. The hybrid mix with 6% concrete fillers gave comparable resilient modulus and creep resistance as the conventional W3B mix, while hybrid mixes with higher concrete substitutions achieved better performance. X-ray diffraction (XRD) showed the distinct presence of free lime in the heat-treated concrete, while the scanning electron microscope (SEM) provided an in-depth perspective of the concrete grains in the HMA matrix. The results suggest feasible use of waste concrete as partial aggregate substitution in HMA.

  10. Value-added utilisation of recycled concrete in hot-mix asphalt

    SciTech Connect

    Wong, Yiik Diew; Sun, Darren Delai . E-mail: ddsun@ntu.edu.sg; Lai, Dickson

    2007-07-01

    The feasibility of partial substitution of granite aggregate in hot-mix asphalt (HMA) with waste concrete aggregate was investigated. Three hybrid HMA mixes incorporating substitutions of granite fillers/fines with 6%, 45% untreated, and 45% heat-treated concrete were evaluated by the Marshall mix design method; the optimum binder contents were found to be 5.3%, 6.5% and 7.0% of grade Pen 60/70 bitumen, respectively. All three hybrid mixes satisfied the Marshall criteria of the Singapore Land Transport Authority (LTA) W3B wearing course specification. The hybrid mix with 6% concrete fillers gave comparable resilient modulus and creep resistance as the conventional W3B mix, while hybrid mixes with higher concrete substitutions achieved better performance. X-ray diffraction (XRD) showed the distinct presence of free lime in the heat-treated concrete, while the scanning electron microscope (SEM) provided an in-depth perspective of the concrete grains in the HMA matrix. The results suggest feasible use of waste concrete as partial aggregate substitution in HMA.

  11. Multiscale imaging and characterization of the effect of mixing temperature on asphalt concrete containing recycled components.

    PubMed

    Cavalli, M C; Griffa, M; Bressi, S; Partl, M N; Tebaldi, G; Poulikakos, L D

    2016-10-01

    When producing asphalt concrete mixture with high amounts of reclaimed asphalt pavement (RAP), the mixing temperature plays a significant role in the resulting spatial distribution of the components as well as on the quality of the resulting mixture, in terms of workability during mixing and compaction as well as in service mechanical properties. Asphalt concrete containing 50% RAP was investigated at mixing temperatures of 140, 160 and 180°C, using a multiscale approach. At the microscale, using energy dispersive X-ray spectroscopy the RAP binder film thickness was visualized and measured. It was shown that at higher mixing temperatures this film thickness was reduced. The reduction in film thickness can be attributed to the loss of volatiles as well as the mixing of RAP binder with virgin binder at higher temperatures. X-ray computer tomography was used to characterize statistically the distribution of the RAP and virgin aggregates geometric features: volume, width and shape anisotropy. In addition using X-ray computer tomography, the packing and spatial distribution of the RAP and virgin aggregates was characterized using the nearest neighbour metric. It was shown that mixing temperature may have a positive effect on the spatial distribution of the aggregates but did not affect the packing. The study shows a tendency for the RAP aggregates to be more likely distributed in clusters at lower mixing temperatures. At higher temperatures, they were more homogeneously distributed. This indicates a higher degree of blending both at microscale (binder film) and macroscale (spatial distribution) between RAP and virgin aggregates as a result of increasing mixing temperatures and the ability to quantify this using various imaging techniques.

  12. Assessment of the aging level of rejuvenated hot mixed asphalt concrete pavements

    NASA Astrophysics Data System (ADS)

    McGovern, Megan; Buttlar, William G.; Reis, Henrique

    2016-04-01

    The efficacy of asphalt rejuvenator on restoring the properties of oxidatively aged asphalt was tested via a non-collinear ultrasonic subsurface wave mixing technique modified for field use. Longitudinal transducers were mounted on angle wedges to generate subsurface dilatational waves to allow for pavement evaluation when there is only access to one side. Because in the field the asphalt concrete (AC) pavement properties (i.e., ultrasonic velocities and attenuations) are unknown, a pre-determined fixed incident angle (based on the AC mixture type) was used, which allows for practical implementation in the field. Oxidative aged AC specimens were coated with rejuvenator (10% by weight of the binder) and left to dwell for varying amounts of time. Once the dwell time reached the desired amount, the specimen was immediately ultrasonically tested. The frequency ratio, f2/f1, at which the interaction took place and the normalized nonlinear wave generation parameter, β/β0, were recorded and compared against a reference plot. It was observed that the rejuvenator had the effect of restoring the nonlinear properties to those corresponding to a virgin sample after a sufficient amount of dwell time. The ability of the rejuvenator to fully penetrate and act on the binder was observed to be dependent on the porosity and aggregate structure, and thus varied for each specimen. As a result, some portions of the binder were restored to a greater extent than others. This non-uniform nature was captured via the nonlinear ultrasonic technique.

  13. Investigation of modified asphalt concrete

    NASA Astrophysics Data System (ADS)

    Zimich, Vita

    2016-01-01

    Currently the problem of improving the asphalt quality is very urgent. It is used primarily as topcoats exposed to the greatest relative to the other layers of the road, dynamic load - impact and shear. The number of cars on the road, the speed of their movement, as well as the traffic intensity increase day by day. We have to upgrade motor roads, which entails a huge cost. World experience shows that the issue is urgent not only in Russia, but also in many countries in Europe, USA and Asia. Thus, the subject of research is the resistance of asphalt concrete to water and its influence on the strength of the material at different temperatures, and resistance of pavement to deformation. It is appropriate to search for new modifiers for asphaltic binder and mineral additives for asphalt mix to form in complex the skeleton of the future asphalt concrete, resistant to atmospheric condensation, soil characteristics of the road construction area, as well as the growing road transport load. The important task of the work is searching special modifying additives for bitumen binder and asphalt mixture as a whole, which will improve the quality of highways, increasing the period between repairs. The methods described in the normative-technical documentation were used for the research. The conducted research allowed reducing the frequency of road maintenance for 7 years, increasing it from 17 to 25 years.

  14. Assessment of the potential suitability of southwest Brooklyn incinerator residue in asphaltic-concrete mixes. Final report

    SciTech Connect

    Chesner, W.H.; Collins, R.J.; Fung, T.

    1988-02-01

    The results of a one-year incinerator residue sampling program at the Southwest Brooklyn Incinerator in New York City are reported. The program was designed to characterize the physical properties of incinerator residue. Asphalt mixes were prepared using blends of sampled incinerator residue with conventional aggregate, to determine the suitability of using incinerator residue in asphaltic concrete for road paving applications. The results of the investigation are compared with those of previous studies. Engineering and processing requirements are presented for converting residue into a usable aggregate material. Capital costs, operating costs, potential revenues and net annual costs are provided for a full-scale residue processing facility at the Southwest Brooklyn Incinerator. Environmental issues associated with residue recycling are identified and discussed. Recommendations are provided for additional laboratory work and field applications needed to demonstrate the use of residue in asphalt mixes.

  15. Evaluation of steel slag coarse aggregate in hot mix asphalt concrete.

    PubMed

    Ahmedzade, Perviz; Sengoz, Burak

    2009-06-15

    This paper presents the influences of the utilization of steel slag as a coarse aggregate on the properties of hot mix asphalt. Four different asphalt mixtures containing two types of asphalt cement (AC-5; AC-10) and coarse aggregate (limestone; steel slag) were used to prepare Marshall specimens and to determine optimum bitumen content. Mechanical characteristics of all mixtures were evaluated by Marshall stability, indirect tensile stiffness modulus, creep stiffness, and indirect tensile strength tests. The electrical sensitivity of the specimens were also investigated in accordance with ASTM D257-91. It was observed that steel slag used as a coarse aggregate improved the mechanical properties of asphalt mixtures. Moreover, volume resistivity values demonstrated that the electrical conductivity of steel slag mixtures were better than that of limestone mixtures.

  16. Multiscale Constitutive Modeling of Asphalt Concrete

    NASA Astrophysics Data System (ADS)

    Underwood, Benjamin Shane

    Multiscale modeling of asphalt concrete has become a popular technique for gaining improved insight into the physical mechanisms that affect the material's behavior and ultimately its performance. This type of modeling considers asphalt concrete, not as a homogeneous mass, but rather as an assemblage of materials at different characteristic length scales. For proper modeling these characteristic scales should be functionally definable and should have known properties. Thus far, research in this area has not focused significant attention on functionally defining what the characteristic scales within asphalt concrete should be. Instead, many have made assumptions on the characteristic scales and even the characteristic behaviors of these scales with little to no support. This research addresses these shortcomings by directly evaluating the microstructure of the material and uses these results to create materials of different characteristic length scales as they exist within the asphalt concrete mixture. The objectives of this work are to; 1) develop mechanistic models for the linear viscoelastic (LVE) and damage behaviors in asphalt concrete at different length scales and 2) develop a mechanistic, mechanistic/empirical, or phenomenological formulation to link the different length scales into a model capable of predicting the effects of microstructural changes on the linear viscoelastic behaviors of asphalt concrete mixture, e.g., a microstructure association model for asphalt concrete mixture. Through the microstructural study it is found that asphalt concrete mixture can be considered as a build-up of three different phases; asphalt mastic, fine aggregate matrix (FAM), and finally the coarse aggregate particles. The asphalt mastic is found to exist as a homogenous material throughout the mixture and FAM, and the filler content within this material is consistent with the volumetric averaged concentration, which can be calculated from the job mix formula. It is also

  17. Current Practices on Nighttime Pavement Construction Asphaltic Concrete.

    DTIC Science & Technology

    1982-07-01

    foot width. This production amounted to approximately 1520 tons per night. 9. Equipment: a. Asphalt Spreader. The Contractor utilized one Blaw Knox ...Diego, CA. to monitor the testing of the Port Authority requirements. 11. Grade Control Requirements. a. Ski. The Blaw Knox paving machine was specified...q 16. Crack Reflection Membrane: None. 17. Hot Mix Asphaltic Concrete Overlay Placing: a. Asphalt Spreaders Operating in Echelon. Only one Blaw - Knox

  18. Development of a crumb rubber modified (CRM) asphalt concrete mix design. Final report, June 1993-May 1995

    SciTech Connect

    Hossain, M.; Swartz, S.E.; Hoque, M.E.; Funk, L.P.

    1995-05-01

    The objective of this project was to develop an asphalt mix design method incorporating crumb rubber and using the `Wet` or `Dry` method of producing Crumb Rubber Modified Asphalt (CRM). Several resurfacing projects have been constructed using both the `Wet` and `Dry` methods. Based on this study, KDOT could use CRM mixes with a binder content between 7.5% and 9.0% depending on the percent air voids, with 19% to 22% rubber content. In this study, it was observed that using 24% rubber produced mixed were too sticky to manage. With a rubber content of less than 18% combined with AC-5 it was difficult to satisfy the minimum requirements. Fracture tests can be used as a basis to determine the optimum binder content for any asphalt-rubber mix.

  19. Petroleum contaminated soil in Oman: evaluation of bioremediation treatment and potential for reuse in hot asphalt mix concrete.

    PubMed

    Jamrah, Ahmad; Al-Futaisi, Ahmed; Hassan, Hossam; Al-Oraimi, Salem

    2007-01-01

    This paper presents a study that aims at evaluating the leaching characteristics of petroleum contaminated soils as well as their application in hot mix asphalt concrete. Soil samples are environmentally characterized in terms of their total heavy metals and hydrocarbon compounds and leachability. The total petroleum hydrocarbon (TPH) present in the PCS before and after treatment was determined to be 6.8% and 5.3% by dry weight, indicating a reduction of 1% in the TPH of PCS due to the current treatment employed. Results of the total heavy metal analysis on soils indicate that the concentrations of heavy metals are lower when extraction of the soil samples is carried out using hexane in comparison to TCE. The results show that the clean soils present in the vicinity of contaminated sites contain heavy metals in the following decreasing order: nickel (Ni), followed by chromium (Cr), zinc (Zn), copper (Cu), lead (Pb), and vanadium (V). The current treatment practice employed for remediation of the contaminated soil reduces the concentrations of nickel and chromium, but increases the concentrations of all remaining heavy metals.

  20. Use of recycled chunk rubber asphalt concrete (CRAC) on low volume roads and use of recycled crumb rubber modifier in asphalt pavements. Final report, June 1993-June 1995

    SciTech Connect

    Hossain, M.; Funk, L.P.; Sadeq, M.A.; Marucci, G.

    1995-06-01

    The major objective of this project was to formulate a Chunk Rubber Asphalt Concrete (CRAC) mix for use on low volume roads. CRAC is a rubber modified asphalt concrete product produced by the `dry process` where rubber chunks of 1/2 inch size are used as aggregate in a cold mix with a type C fly ash. The second objective of this project was to develop guidelines concerning the use of rubber modified asphalt concrete hot mix to include: (1) Design methods for use of asphalt-rubber mix for new construction and overlay, (2) Mix design method for asphalt-rubber, and (3) Test method for determining the amount of rubber in an asphalt-rubber concrete for quality control purposes.

  1. Modified Asphalt Binder with Natural Zeolite for Warm Mix Asphalt

    NASA Astrophysics Data System (ADS)

    Dubravský, Marián; Mandula, Ján

    2015-11-01

    In recent years, warm mix asphalt (WMA) is becoming more and more used in the asphalt industry. WMA provide a whole range of benefits, whether economic, environmental and ecological. Lower energy consumption and less pollution is the most advantages of this asphalt mixture. The paper deals with the addition of natural zeolite into the sub base asphalt layers, which is the essential constituent in the construction of the road. Measurement is focused on basic physic - mechanical properties declared according to the catalog data sheets. The aim of this article is to demonstrate the ability of addition the natural zeolite into the all asphalt layers of asphalt pavement. All asphalt mixtures were compared with reference asphalt mixture, which was prepared in reference temperature.

  2. Crumb rubber modified asphalt concrete in Oregon. Summary report. Report for 1985-94

    SciTech Connect

    Hunt, E.; Peters, W.

    1995-07-01

    Over the last nine years, the Oregon Department of Transportation (ODOT) has constructed 13 projects using crumb rubber modifiers (CRM) in asphalt concrete pavements using both the wet and dry process. State and federal legislation may require the use of recycled rubber in asphalt concrete, therefore, the Oregon Department of Transportation is interested in determining the most cost -effective crumb rubber modified asphalt concrete. The report includes a literature review on the use of crumb rubber modifiers in asphalt concrete pavement; a review on non-ODOT CRM paving projects constructed by Oregon counties and cities; and the Washington Department of Transportation. In additon, the report summarizes the data collected on all CRM hot mix asphalt concrete pavement projects constructed by ODOT. The ODOT information includes background constitution, cost, and performance data for each of the test and control sections. Finally, the future activities of the project are reviewed.

  3. High Modulus Asphalt Concrete with Dolomite Aggregates

    NASA Astrophysics Data System (ADS)

    Haritonovs, V.; Tihonovs, J.; Smirnovs, J.

    2015-11-01

    Dolomite is one of the most widely available sedimentary rocks in the territory of Latvia. Dolomite quarries contain about 1,000 million tons of this material. However, according to Latvian Road Specifications, this dolomite cannot be used for average and high intensity roads because of its low quality, mainly, its LA index (The Los Angeles abrasion test). Therefore, mostly the imported magmatic rocks (granite, diabase, gabbro, basalt) or imported dolomite are used, which makes asphalt expensive. However, practical experience shows that even with these high quality materials roads exhibit rutting, fatigue, and thermal cracks. The aim of the research is to develop a high performance asphalt concrete for base and binder courses using only locally available aggregates. In order to achieve resistance against deformations at a high ambient temperature, a hard grade binder was used. Workability, fatigue and thermal cracking resistance, as well as sufficient water resistance is achieved by low porosity (3-5%) and higher binder content compared to traditional asphalt mixtures. The design of the asphalt includes a combination of empirical and performance based tests, which in laboratory circumstances allow simulating traffic and environmental loads. High performance AC 16 base asphalt concrete was created using local dolomite aggregate with polymer modified (PMB 10/40-65) and hard grade (B20/30) bitumen. The mixtures were specified based on fundamental properties in accordance with EN 13108-1 standard.

  4. 7 CFR 3201.36 - Concrete and asphalt release fluids.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 15 2013-01-01 2013-01-01 false Concrete and asphalt release fluids. 3201.36 Section... PROCUREMENT Designated Items § 3201.36 Concrete and asphalt release fluids. (a) Definition. Products that are designed to provide a lubricating barrier between the composite surface materials (e.g., concrete...

  5. 7 CFR 3201.65 - Concrete and asphalt cleaners.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 15 2012-01-01 2012-01-01 false Concrete and asphalt cleaners. 3201.65 Section 3201... PROCUREMENT Designated Items § 3201.65 Concrete and asphalt cleaners. (a) Definition. Chemicals used in concrete etching as well as to remove petroleum-based soils, lubricants, paints, mastics, organic...

  6. 7 CFR 2902.36 - Concrete and asphalt release fluids.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 15 2011-01-01 2011-01-01 false Concrete and asphalt release fluids. 2902.36 Section... PROCUREMENT Designated Items § 2902.36 Concrete and asphalt release fluids. (a) Definition. Products that are designed to provide a lubricating barrier between the composite surface materials (e.g., concrete...

  7. 7 CFR 3201.36 - Concrete and asphalt release fluids.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false Concrete and asphalt release fluids. 3201.36 Section... PROCUREMENT Designated Items § 3201.36 Concrete and asphalt release fluids. (a) Definition. Products that are designed to provide a lubricating barrier between the composite surface materials (e.g., concrete...

  8. 7 CFR 2902.36 - Concrete and asphalt release fluids.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Concrete and asphalt release fluids. 2902.36 Section... PROCUREMENT Designated Items § 2902.36 Concrete and asphalt release fluids. (a) Definition. Products that are designed to provide a lubricating barrier between the composite surface materials (e.g., concrete...

  9. 7 CFR 3201.65 - Concrete and asphalt cleaners.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false Concrete and asphalt cleaners. 3201.65 Section 3201... PROCUREMENT Designated Items § 3201.65 Concrete and asphalt cleaners. (a) Definition. Chemicals used in concrete etching as well as to remove petroleum-based soils, lubricants, paints, mastics, organic...

  10. 7 CFR 3201.65 - Concrete and asphalt cleaners.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 15 2013-01-01 2013-01-01 false Concrete and asphalt cleaners. 3201.65 Section 3201... PROCUREMENT Designated Items § 3201.65 Concrete and asphalt cleaners. (a) Definition. Chemicals used in concrete etching as well as to remove petroleum-based soils, lubricants, paints, mastics, organic...

  11. 7 CFR 3201.36 - Concrete and asphalt release fluids.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 15 2012-01-01 2012-01-01 false Concrete and asphalt release fluids. 3201.36 Section... PROCUREMENT Designated Items § 3201.36 Concrete and asphalt release fluids. (a) Definition. Products that are designed to provide a lubricating barrier between the composite surface materials (e.g., concrete...

  12. Evaluation of the benefits of adding waste fiberglass roofing shingles to Hot-Mix asphalt. Final report

    SciTech Connect

    Abdulshafi, O.; Kedzierski, B.; Fitch, M.G.; Mukhtar, H.

    1997-07-03

    The decreased availability of landfills, growing concern over waste disposal, and rising cost of asphalt cement, resulted in an increased interest in incorporating waste asphalt roofing shingles in the production of asphalt concrete mixes. This project addressed Hot-Mix, surface course asphalt concrete mixes produced with an addition of waste fiberglass asphalt roofing shingles that were obtained from the shingle manufacturing process. A total of twenty-six asphalt concrete mixes were studied. The variables included: aggregate type, shingle producers, level of shingle addition (0, 5, 10, and 15%), and type of shingle size reduction. Properties of the produced asphalt concrete mixes were evaluated based on the results of applicable tests that were performed.

  13. Use of waste toner in asphaltic concrete. Research report (Final)

    SciTech Connect

    Solaimanian, M.; Kennedy, T.W.; McGennis, R.B.

    1997-02-01

    Every year, a tremendous amount of toner is produced for copiers and printers by toner manufacturing companies throughout the United States. Some of this toner does not meet quality specifications and consequently becomes a waste product of the manufacturing process. This manufacturing waste, along with the spent toner (residue) from copiers and printer cartridges, is dumped into landfills for lack of a better way utilizing the material. A cooperative research project undertaken by the Texas Department of Transportation and The University of Texas at Austin investigated the feasibility and potential benefits of utilizing waste toner in hot-mix asphalt concrete. The research program included procuring a number of different waste and spent toners, blending them with asphalt cement at different ratios, and evaluating the binder and mixtures properties resulting from the waste toner addition.

  14. A study on engineering characteristics of asphalt concrete using filler with recycled waste lime.

    PubMed

    Sung Do, Hwang; Hee Mun, Park; Suk keun, Rhee

    2008-01-01

    This study focuses on determining the engineering characteristics of asphalt concrete using mineral fillers with recycled waste lime, which is a by-product of the production of soda ash (Na(2)CO(3)). The materials tested in this study were made using a 25%, 50%, 75%, and 100% mixing ratio based on the conventional mineral filler ratio to analyze the possibility of using recycled waste lime. The asphalt concretes, made of recycled waste lime, hydrated lime, and conventional asphalt concrete, were evaluated through their fundamental engineering properties such as Marshall stability, indirect tensile strength, resilient modulus, permanent deformation characteristics, moisture susceptibility, and fatigue resistance. The results indicate that the application of recycled waste lime as mineral filler improves the permanent deformation characteristics, stiffness and fatigue endurance of asphalt concrete at the wide range of temperatures. It was also determined that the mixtures with recycled waste lime showed higher resistance against stripping than conventional asphalt concrete. It was concluded from various test results that a waste lime can be used as mineral filler and, especially, can greatly improve the resistance of asphalt concrete to permanent deformation at high temperatures.

  15. Low permeability asphalt concrete gamma ray shielding properties.

    PubMed

    Binney, S E; Sykes, K L

    1997-01-01

    Energy-dependent gamma ray shielding properties were measured as a function of gamma ray energy for a low permeability asphalt concrete that is used as a cap to prevent water infiltration into radioactive waste sites. Experimental data were compared to ISO-PC point kernel shielding calculations. Calculated dose equivalent rates compared well with experimental values, especially considering the poor detector resolution involved. The shielding properties of the asphalt concrete closely resembled those of aluminum. The results presented can be used to determine the asphalt concrete thickness required to reduce dose equivalent rates from several gamma ray emitting radionuclides.

  16. 40 CFR 443.20 - Applicability; description of the asphalt concrete subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... asphalt concrete subcategory. 443.20 Section 443.20 Protection of Environment ENVIRONMENTAL PROTECTION... ROOFING MATERIALS (TARS AND ASPHALT) POINT SOURCE CATEGORY Asphalt Concrete Subcategory § 443.20 Applicability; description of the asphalt concrete subcategory. The provisions of this subpart are applicable...

  17. 40 CFR 443.20 - Applicability; description of the asphalt concrete subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... asphalt concrete subcategory. 443.20 Section 443.20 Protection of Environment ENVIRONMENTAL PROTECTION... MATERIALS (TARS AND ASPHALT) POINT SOURCE CATEGORY Asphalt Concrete Subcategory § 443.20 Applicability; description of the asphalt concrete subcategory. The provisions of this subpart are applicable to...

  18. 40 CFR 443.20 - Applicability; description of the asphalt concrete subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... asphalt concrete subcategory. 443.20 Section 443.20 Protection of Environment ENVIRONMENTAL PROTECTION... MATERIALS (TARS AND ASPHALT) POINT SOURCE CATEGORY Asphalt Concrete Subcategory § 443.20 Applicability; description of the asphalt concrete subcategory. The provisions of this subpart are applicable to...

  19. 40 CFR 443.20 - Applicability; description of the asphalt concrete subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... asphalt concrete subcategory. 443.20 Section 443.20 Protection of Environment ENVIRONMENTAL PROTECTION... ROOFING MATERIALS (TARS AND ASPHALT) POINT SOURCE CATEGORY Asphalt Concrete Subcategory § 443.20 Applicability; description of the asphalt concrete subcategory. The provisions of this subpart are applicable...

  20. 40 CFR 443.20 - Applicability; description of the asphalt concrete subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... asphalt concrete subcategory. 443.20 Section 443.20 Protection of Environment ENVIRONMENTAL PROTECTION... ROOFING MATERIALS (TARS AND ASPHALT) POINT SOURCE CATEGORY Asphalt Concrete Subcategory § 443.20 Applicability; description of the asphalt concrete subcategory. The provisions of this subpart are applicable...

  1. Wavelet-based asphalt concrete texture grading and classification

    NASA Astrophysics Data System (ADS)

    Almuntashri, Ali; Agaian, Sos

    2011-03-01

    In this Paper, we introduce a new method for evaluation, quality control, and automatic grading of texture images representing different textural classes of Asphalt Concrete (AC). Also, we present a new asphalt concrete texture grading, wavelet transform, fractal, and Support Vector Machine (SVM) based automatic classification and recognition system. Experimental results were simulated using different cross-validation techniques and achieved an average classification accuracy of 91.4.0 % in a set of 150 images belonging to five different texture grades.

  2. Criteria for Asphalt-Rubber Concrete in Civil Airport Pavements. Volume 2. Evaluation of Asphalt-Rubber Concrete.

    DTIC Science & Technology

    1987-03-01

    194 ix LIST OF TABLES Table Page 1 1977 FAA Aggregate Grading Band for Bituminous Surface Course with 1/2" (12.5m) Maximum Particle Size* ...... 6 2...Asphalt Concrete and Asphalt-Rubber Concrete. . . . . . . . . . . . . . . . . . . . . . . . . 106 xi LIST OF FthJiJRf1 Figure Page 1 1977 FAA...were blended to meet the 1977 FAA aggregate grading specification for pavements with a bituminous surface course and designed to accommodate aircraft

  3. Thermal behavior of crumb-rubber modified asphalt concrete mixtures

    NASA Astrophysics Data System (ADS)

    Epps, Amy Louise

    Thermal cracking is one of the primary forms of distress in asphalt concrete pavements, resulting from either a single drop in temperature to an extreme low or from multiple temperature cycles above the fracture temperature of the asphalt-aggregate mixture. The first mode described is low temperature cracking; the second is thermal fatigue. The addition of crumb-rubber, manufactured from scrap tires, to the binder in asphalt concrete pavements has been suggested to minimize both types of thermal cracking. Four experiments were designed and completed to evaluate the thermal behavior of crumb-rubber modified (CRM) asphalt-aggregate mixtures. Modified and unmodified mixture response to thermal stresses was measured in four laboratory tests. The Thermal Stress Restrained Specimen Test (TSRST) and the Indirect Tensile Test (IDT) were used to compare mixture resistance to low temperature cracking. Modified mixtures showed improved performance, and cooling rate did not affect mixture resistance according to the statistical analysis. Therefore results from tests with faster rates can predict performance under slower field rates. In comparison, predicted fracture temperatures and stresses (IDT) were generally higher than measured values (TSRST). In addition, predicted fracture temperatures from binder test results demonstrated that binder testing alone is not sufficient to evaluate CRM mixtures. Thermal fatigue was explored in the third experiment using conventional load-induced fatigue tests with conditions selected to simulate daily temperature fluctuations. Test results indicated that thermal fatigue may contribute to transverse cracking in asphalt pavements. Both unmodified and modified mixtures had a finite capacity to withstand daily temperature fluctuations coupled with cold temperatures. Modified mixtures again exhibited improved performance. The fourth experiment examined fracture properties of modified and unmodified mixtures using a common fracture toughness test

  4. Characteristics and applications of high-performance fiber reinforced asphalt concrete

    NASA Astrophysics Data System (ADS)

    Park, Philip

    Steel fiber reinforced asphalt concrete (SFRAC) is suggested in this research as a multifunctional high performance material that can potentially lead to a breakthrough in developing a sustainable transportation system. The innovative use of steel fibers in asphalt concrete is expected to improve mechanical performance and electrical conductivity of asphalt concrete that is used for paving 94% of U. S. roadways. In an effort to understand the fiber reinforcing mechanisms in SFRAC, the interaction between a single straight steel fiber and the surrounding asphalt matrix is investigated through single fiber pull-out tests and detailed numerical simulations. It is shown that pull-out failure modes can be classified into three types: matrix, interface, and mixed failure modes and that there is a critical shear stress, independent of temperature and loading rate, beyond which interfacial debonding will occur. The reinforcing effects of SFRAC with various fiber sizes and shapes are investigated through indirect tension tests at low temperature. Compared to unreinforced specimens, fiber reinforced specimens exhibit up to 62.5% increase in indirect tensile strength and 895% improvements in toughness. The documented improvements are the highest attributed to fiber reinforcement in asphalt concrete to date. The use of steel fibers and other conductive additives provides an opportunity to make asphalt pavement electrically conductive, which opens up the possibility for multifunctional applications. Various asphalt mixtures and mastics are tested and the results indicate that the electrical resistivity of asphaltic materials can be manipulated over a wide range by replacing a part of traditional fillers with a specific type of graphite powder. Another important achievement of this study is development and validation of a three dimensional nonlinear viscoelastic constitutive model that is capable of simulating both linear and nonlinear viscoelasticity of asphaltic materials. The

  5. Impulse radar evaluation of concrete, asphalt and waterproofing membrane

    NASA Astrophysics Data System (ADS)

    Chung, T.; Carter, C. R.; Masliwec, T.; Manning, D. G.

    1994-04-01

    Impulse radar has proved to be effective in the nondestructive testing of bridge decks composed of layers of dielectric materials such as asphalt, waterproofing membrane, and reinforced concrete. In this work, the waveforms reflected from these materials are modeled and analyzed theoretically. The relative dielectric constants are measured using sample blocks, and the reflected radar waveforms are related to the actual physical structures. It is found that asphalt thickness and cover over reinforcement can be accurately determined.

  6. The use of waste materials in asphalt concrete mixtures.

    PubMed

    Tuncan, Mustafa; Tuncan, Ahmet; Cetin, Altan

    2003-04-01

    The purpose of this study was to investigate (a) the effects of rubber and plastic concentrations and rubber particle sizes on properties of asphalt cement, (b) on properties of asphalt concrete specimens and (c) the effects of fly ash, marble powder, rubber powder and petroleum contaminated soil as filler materials instead of stone powder in the asphalt concrete specimens. One type of limestone aggregate and one penetration-graded asphalt cement (75-100) were used. Three concentrations of rubber and plastic (i.e. 5%, 10% and 20% of the total weight of asphalt cement), three rubber particle sizes (i.e. No. 4 [4.75mm] - 20 [0.85 mm], No. 20 [0.85mm] - 200 [0.075mm] and No. 4 [4.75mm] - 200 [0.075mm]) and one plastic particle size (i.e. No. 4 [4.75mm] - 10 [2.00mm]) were also used. It was found that while the addition of plastic significantly increased the strength of specimens, the addition of rubber decreased it. No. 4 [4.75mm] - 200 [0.075mm] rubber particles showed the best results with respect to the indirect tensile test. The Marshall stability and indirect tensile strength properties of plastic modified specimens increased. Marble powder and fly ash could be used as filler materials instead of stone powder in the asphalt concrete pavement specimens.

  7. Research on fracture performance of epoxy asphalt concrete based on double-K fracture criterion

    NASA Astrophysics Data System (ADS)

    Zhang, M.; Qian, Z. D.; Xue, Y. C.

    2017-01-01

    After cracks appear on steel bridge deck epoxy asphalt concrete pavement, cracks propagate fast under vehicle load. This paper studied the fracture performance of epoxy asphalt concrete, utilized single edge notched beam (SEB) three-point bending test, measured the load (P) exerted on epoxy asphalt SEB; utilized digital camera to record the fracture process of epoxy asphalt SEB, extracted the images according to the required sampling frequency and utilized Image-Pro Plus to measure the crack mouth opening displacement (CMOD) of epoxy asphalt SEB on the extracted images; calculated the double-K fracture parameters according to the P-CMOD curve. Results indicate that of epoxy asphalt concrete is 1.11 MPa and of epoxy asphalt concrete is 2.31 MPa at -15°C of epoxy asphalt concrete is 1.02 MPa and of epoxy asphalt concrete is 1.83 MPa at -5°C of epoxy asphalt concrete is 0.77 MPa and of epoxy asphalt concrete is 1.82 MPa at 5°C. The double-K fracture parameters of epoxy asphalt concrete increase slightly when the temperature decreases at the scope of -15°C to 5°C. The relation of and is .

  8. Asphalt and asphalt additives. Transportation research record

    SciTech Connect

    Not Available

    1992-01-01

    Contents: use of asphalt emulsions for in-place recycling: oregon experience; gap-graded cold asphalt concrete: benefits of polymer-modified asphalt cement and fibers; cold in-place recycling for rehabilitation and widening of low-volume flexible pavements in indiana; in situ cold recycling of bituminous pavements with polymer-modified high float emulsions; evaluation of new generation of antistripping additives; correlation between performance-related characteristics of asphalt cement and its physicochemical parameters using corbett's fractions and hpgc; reaction rates and hardening susceptibilities as determined from pressure oxygen vessel aging of asphalts; evaluation of aging characteristics of asphalts by using tfot and rtfot at different temperature levels; summary of asphalt additive performance at selected sites; relating asphalt absorption to properties of asphalt cement and aggregate; study of the effectiveness of styrene-butadiene rubber latex in hot mix asphalt mixes; stability of straight and polymer-modified asphalts.

  9. Test of LOX compatibility for asphalt and concrete runway materials

    NASA Technical Reports Server (NTRS)

    Moyers, C. V.; Bryan, C. J.; Lockhart, B. J.

    1973-01-01

    A literature survey and a telephone canvass of producers and users of LOX is reported which yielded one report of an accident resulting from a LOX spill on asphalt, one discussion of hazardous conditions, and an unreferenced mention of an incident. Laboratory tests using standard LOX impact apparatus yielded reactions with both old and new alphalt, but none with concrete. In the final test, using a larger sample of asphalt, the reaction caused extensive damage to equipment. Initial field experiments using 2-meter square asphalt slabs covered with LOX, conducted during rainy weather, achieved no reaction with plummets, and limited reaction with a blasting cap as a reaction initiator. In a final plummet-initiated test on a dry slab, a violent reaction, which appeared to have propagated over the entire slab surface, destroyed the plummet fixture and threw fragments as far as 48 meters.

  10. Research on Surfactant Warm Mix Asphalt Construction Technology

    NASA Astrophysics Data System (ADS)

    Li, Guoliang; Sun, Jingxin; Guo, Xiufeng

    Discharging temperature of hot asphalt mixture is about 150°C-185°C, volatilization of asphalt fume harms people's health and fuel cost is high. Jinan Urban Construction Group applies PTL/01 asphalt warm mix agent to produce warm mix asphalt to construction of urban roads' asphalt bituminous pavement. After comparing it with performance of traditional hot asphalt mixture, mixing temperature may be reduced by 30°C-60°C, emission of poisonous gas is reduced, energy conservation and environmental protection are satisfied, construction quality reaches requirements of construction specifications and economic, social and environmental benefits are significant. Thus, it can be used for reference for green construction of urban roads.

  11. A Study of Thermal Properties and the Heating Process in Asphaltic Concrete.

    DTIC Science & Technology

    1984-02-01

    PROPERTIES AND THE HEATING FINAL PROCESS IN ASPHALTIC CONCRETE 1 Jul 1982 - 31 Dec. 19R3 6. PERFORMING O1G. REPORT NUMBER 7. AUTHOR(e) 8. CONTRACT OR GRANT...OFFICE NAME AND ADDRESS 12. REPORT DATE AIR FORCE OFFICE OF SCIENTIFIC RESEARCH /NA February 1984 BOLLING AFB, DC 20332 15. NUMBEROFPAGES 157 14...asphalt and asphaltic concrete have been reported in the literature for at least 55 years (14), much of the data is un- documented in that variables

  12. Use of plastic waste (poly-ethylene terephthalate) in asphalt concrete mixture as aggregate replacement.

    PubMed

    Hassani, Abolfazl; Ganjidoust, Hossein; Maghanaki, Amir Abedin

    2005-08-01

    One of the environmental issues in most regions of Iran is the large number of bottles made from poly-ethylene terephthalate (PET) deposited in domestic wastes and landfills. Due to the high volume of these bottles, more than 1 million m3 landfill space is needed for disposal every year. The purpose of this experimental study was to investigate the possibility of using PET waste in asphalt concrete mixes as aggregate replacement (Plastiphalt) to reduce the environmental effects of PET disposal. For this purpose the mechanical properties of plastiphalt mixes were compared with control samples. This study focused on the parameters of Marshall stability, flow, Marshall quotient (stability-to-flow ratio) and density. The waste PET used in this study was in the form of granules of about 3 mm diameter which would replace (by volume) a portion of the mineral coarse aggregates of an equal size (2.36-4.75 mm). In all prepared mixes the determined 6.6% optimum bitumen content was used. In this investigation, five different percentages of coarse aggregate replacement were used. The results showed that the aggregate replacement of 20% by volume with PET granules would result in a reduction of 2.8% in bulk compacted mix density. The value of flow in the plastiphalt mix was lower than that of the control samples. The results also showed that when PET was used as partial aggregate replacement, the corresponding Marshall stability and Marshall quotient were almost the same as for the control samples. According to most of specification requirement, these results introduce an asphalt mix that has properties that makes it suitable for practical use and furthermore, the recycling of PET for asphalt concrete roads helps alleviate an environmental problem and saves energy.

  13. Evaluation of Warm Mix Asphalt Additives for Use in Modified Asphalt Mixtures

    NASA Astrophysics Data System (ADS)

    Chamoun, Zahi

    The objective of this research effort is to evaluate the use of warm-mix additives with polymer modified and terminal blend tire rubber asphalt mixtures from Nevada and California. The research completed over two stages: first stage evaluated two different WMA technologies; Sasobit and Advera, and second stage evaluated one additional WMA technology; Evotherm. The experimental program covered the evaluation of resistance of the mixtures to moisture damage, the performance characteristics of the mixtures, and mechanistic analysis of mixtures in simulated pavements. In the both stages, the mixture resistance to moisture damage was evaluated using the indirect tensile test and the dynamic modulus at multiple freeze-thaw cycles, and the resistance of the various asphalt mixtures to permanent deformation using the Asphalt Mixture Performance Tester (AMPT). Resistance of the untreated mixes to fatigue cracking using the flexural beam fatigue was only completed for the first stage. One source of aggregates was sampled in, two different batches, three warm mix asphalt technologies (Advera, Sasobit and Evotherm) and three asphalt binder types (neat, polymer-modified, and terminal blend tire rubber modified asphalt binders) typically used in Nevada and California were evaluated in this study. This thesis presents the resistance of the first stage mixtures to permanent deformation and fatigue cracking using two warm-mix additives; Advera and Sasobit, and the resistance to moisture damage and permanent deformation of the second stage mixtures with only one warm-mix additive; Evotherm.

  14. Design and Properties of Asphalt Concrete Mixtures Using Renewable Bioasphalt Binder

    NASA Astrophysics Data System (ADS)

    Setyawan, A.; Djumari; Irfansyah, P. A.; Shidiq, A. M.; Wibisono, I. S.; Fauzy, M. N.; Hadi, F. N.

    2017-02-01

    The needs of petroleum asphalt as materials for pavement is very large, while the petroleum classified as natural resources that cannot be renewable. As a result of petroleum dwindling and prices tend to be more expensive. So that requiring other alternative materials as a substitute for conventional asphalt derived from biomass or often called bioasphalt. This study aims to know the volumetric and Marshall characteristics on Asphalt Cement ( AC ) using the Damar asphalt modification to substitute 60/70 penetration asphalt as a binder. The volumetric and Marshall characteristic are porosity, density, flow, stability, and Marshall quotient. The characteristic of asphalt concrete at optimum bitumen content are compared to the conditions from highway agency 1987 and the general specification of asphalt concrete Bina Marga 2010 the third revision. The research uses experimental method in the laboratory with the samples made using the dasphalt modification as binder and incorporating the aggregate gradation no. VII SNI 03-1737-1989. The research is using 15 samples divided into 5 contents of damar asphalt, they are 5%, 5,5%, 6%, 6,5%, dan 7%. Tests carried out using Marshall test equipment to get the value of flow and stability and then be searched the value of optimum damar asphalt content. The result of asphalt concrete analysis using dasphalt modification as binder gives the value of optimum dasphalt content at 5,242%. The most characteristics already met the requirements and specifications.

  15. Reinforcement of asphalt concrete pavement by segments of exhausted fiber used for sorption of oil spill

    NASA Astrophysics Data System (ADS)

    Lukashevich, V. N.; Efanov, I. N.

    2015-01-01

    The paper is aimed at construction of the experimental road pavement made of dispersed reinforced asphalt concrete. Electronic paramagnetic resonance, infrared spectroscopy and fluorescent bitumen studies were used to prove that disperse reinforcement of asphalt concrete mixtures with fibers of exhausted sorbents reduce the selective filtration of low polymeric fractions of petroleum bitumen and improve its properties in the adsorption layer. Sesquioxides are neutralized as catalysts aging asphalt binder. This leads to improvement in the elasticity of bitumen films at low temperatures and provide better crack resistance of coatings to reduce the intensity of the aging of asphalt binder, and, therefore, to increase the durability of road pavements. The experimental road pavement made of dispersed reinforced asphalt concrete operated during 4 years and demonstrated better transport- performance properties in comparison with the analogue pavements.

  16. Effect of Crumb Rubber and Warm Mix Additives on Asphalt Aging, Rheological, and Failure Properties

    NASA Astrophysics Data System (ADS)

    Agrawal, Prashant

    Asphalt-rubber mixtures have been shown to have useful properties with respect to distresses observed in asphalt concrete pavements. The most notable change in properties is a large increase in viscosity and improved low-temperature cracking resistance. Warm mix additives can lower production and compaction temperatures. Lower temperatures reduce harmful emissions and lower energy consumption, and thus provide environmental benefits and cut costs. In this study, the effects of crumb rubber modification on various asphalts such as California Valley, Boscan, Alaska North Slope, Laguna and Cold Lake were also studied. The materials used for warm mix modification were obtained from various commercial sources. The RAF binder was produced by Imperial Oil in their Nanticoke, Ontario, refinery on Lake Erie. A second commercial PG 52-34 (hereafter denoted as NER) was obtained/sampled during the construction of a northern Ontario MTO contract. Some regular tests such as Dynamic Shear Rheometer (DSR) and Bending Beam Rheometer (BBR), Multiple Stress Creep Recovery (MSCR) and some modified new protocols such as the extended BBR test (LS-308) and the Double-Edge Notched Tension (DENT) test (LS-299) are used to study, the effect of warm mix and a host of other additives on rheological, aging and failure properties. A comparison in the properties of RAF and NER asphalts has also been made as RAF is good quality asphalt and NER is bad quality asphalt. From the studies the effect of additives on chemical and physical hardening tendencies was found to be significant. The asphalt samples tested in this study showed a range of tendencies for chemical and physical hardening.

  17. Damage detection and artificial healing of asphalt concrete after trafficking with a load simulator

    NASA Astrophysics Data System (ADS)

    Bueno, M.; Arraigada, M.; Partl, M. N.

    2016-08-01

    Artificial healing of asphalt concrete by induction heating requires the addition of electrically conductive and/or magnetic materials into the asphalt mixture. Hence, bitumen can be heated up by an alternating electromagnetic field, decreasing therefore its viscosity and allowing it to flow for closing cracks and recover bonding among the mineral aggregates.

  18. Size-dependent enrichment of waste slag aggregate fragments abraded from asphalt concrete.

    PubMed

    Takahashi, Fumitake; Shimaoka, Takayuki; Gardner, Kevin; Kida, Akiko

    2011-10-30

    Authors consider the environmental prospects of using melted waste slag as the aggregate for asphalt pavement. In particular, the enrichment of slag-derived fragments in fine abrasion dust particles originated from slag asphalt concrete and its size dependency were concerned. A series of surface abrasion tests for asphalt concrete specimens, containing only natural aggregates as reference or 30 wt% of substituted slag aggregates, were performed. Although two of three slag-asphalt concretes generated 1.5-3.0 times larger amount of abrasion dust than the reference asphalt concrete did, it could not be explained only by abrasion resistance of slag. The enrichment of slag-derived fragments in abrasion dust, estimated on the basis of the peak intensity of quartz and heavy metal concentrations, had size dependency for all slag-asphalt concretes. Slag-derived fragments were enriched in abrasion dust particles with diameters of 150-1000 μm. Enrichment factors were 1.4-2.1. In contrast, there was no enrichment in abrasion dust particles with diameter less than 75 μm. This suggests that prior airborne-size fragmentation of substituted slag aggregates does not need to be considered for tested slag aggregates when environmental risks of abrasion dust of slag-asphalt pavement are assessed.

  19. A multiscale model for predicting the viscoelastic properties of asphalt concrete

    NASA Astrophysics Data System (ADS)

    Garcia Cucalon, Lorena; Rahmani, Eisa; Little, Dallas N.; Allen, David H.

    2016-08-01

    It is well known that the accurate prediction of long term performance of asphalt concrete pavement requires modeling to account for viscoelasticity within the mastic. However, accounting for viscoelasticity can be costly when the material properties are measured at the scale of asphalt concrete. This is due to the fact that the material testing protocols must be performed recursively for each mixture considered for use in the final design.

  20. Study of Asphaltic Concrete Produced in Dryer Drum Mixers for Airport Pavements.

    DTIC Science & Technology

    1976-10-01

    STWDARDS-163- w S 4 -- , ,a, i I Report No-c FAA-RD-76-165 STUDY OF ASPHALTIC CONCRETE PRODUCED IN DRYER DRUM MIXERS FOR AIRPORT PAVEMENTS 0 E. T...PREFACE This study was supported by the Systems Research and Development Service of the Federal Aviation Administration. This is a final report presenting...the asphaltic concrete . In September, 1976 the Alaskan Region of FAA reported that the runway pavement had transverse thermal cracks approximately 200

  1. Ice melting properties of steel slag asphalt concrete with microwave heating

    NASA Astrophysics Data System (ADS)

    Li, Bin; Sun, Yihan; Liu, Quantao; Fang, Hao; Wu, Shaopeng; Tang, Jin; Ye, Qunshan

    2017-03-01

    The ice on the surface of asphalt pavement in winter significantly influences the road transportation safety. This paper aims at the improvement of the ice melting efficiency on the surface of asphalt pavement. The steel slag asphalt concrete was prepared and the high ice melting efficiency was achieved with the microwave heating. A series of experiments were conducted to evaluate the ice melting performance of steel slag asphalt concrete, including the heating test, ice melting test, thermal conductivity test and so on. The results indicated that the microwave heating of steel slag concrete can improve the efficiency of deicing, mainly because the heating rates of steel slag asphalt mixture are much better than traditional limestone asphalt mixture. According to different thickness lever of ice, the final temperatures of each sample were very close to each other at the end of melting test. It is believed the thickness of the ice has a limited impact on the ice melting efficiency. According to the heating tests results, the bonding of ice and asphalt concrete is defined failure at the moment when the surface temperature of the ice reached 3 °C.

  2. Evaluation of Warm Mix Asphalt Technologies and Recycled Asphalt Pavements in Truckee Meadows, Nevada

    NASA Astrophysics Data System (ADS)

    Diaz Montecino, Cristian

    This study evaluated the properties and laboratory-performance of Hot Mix Asphalt (HMA) and Warm Mix Asphalt (WMA) mixtures with different levels of Recycled Asphalt Pavements (RAP) content: none for control mixtures, around 15% by dry weight of aggregates, and more than 30% by dry weight of aggregates. The rheological properties were evaluated for virgin and recovered RAP asphalt binders. The target amount of RAP in the mixtures was determined by using Blending Charts and Mortar Experiments. The mixtures are design through the guidelines established in Marshall Mix Design Method considering additional modifications for RAP and WMA from Superpave Mix Design. The mixtures are evaluated for their resistance to moisture damage by means of measuring the Dynamic Modulus |E*| after three freeze/thaw cycles and the indirect tensile strength after one and three freeze/thaw cycles. The resistance of the mixtures to permanent deformation was also evaluated by using the Asphalt Mixture Performance Tester (AMPT) to measure the flow number (FN). For this study, it was determined that the resistance to moisture damage decreases as the number of freeze/thaw cycles increases for most of the evaluated mixtures. Mixtures exhibited an increase in dynamic modulus as the RAP percentage increased. A decrease in the resistance to moisture damage was detected with the increase in RAP content for most of the mixtures. HMA mixtures exhibited a better performance in rutting than the WMA mixtures. An increase in rutting resistance was observed with the increase in RAP percentage for HMA mixtures whereas an inconsistent trend was observed for WMA mixtures. Further study is needed to validate the use of the high percentage of RAP in Washoe County.

  3. Experimental evaluation of high performance base course and road base asphalt concrete with electric arc furnace steel slags.

    PubMed

    Pasetto, Marco; Baldo, Nicola

    2010-09-15

    The paper presents the results of a laboratory study aimed at verifying the use of two types of electric arc furnace (EAF) steel slags as substitutes for natural aggregates, in the composition of base course and road base asphalt concrete (BBAC) for flexible pavements. The trial was composed of a preliminary study of the chemical, physical, mechanical and leaching properties of the EAF steel slags, followed by the mix design and performance characterization of the bituminous mixes, through gyratory compaction tests, permanent deformation tests, stiffness modulus tests at various temperatures, fatigue tests and indirect tensile strength tests. All the mixtures with EAF slags presented better mechanical characteristics than those of the corresponding asphalts with natural aggregate and satisfied the requisites for acceptance in the Italian road sector technical standards, thus resulting as suitable for use in road construction.

  4. Asphaltic Concrete Performance Under Heavy Fighter Aircraft Loading

    DTIC Science & Technology

    1993-02-01

    compacted to determine the effects of overfilling and underfilling the voids in the aggregate. Density and voids filled with binder are two of the...concrete were also taken at different pass levels to determine the change in air voids with traffic. Damage parameters were defined to provide a...149 I 89 Voids Total Mix Data and Interpolated Values Versus Station .............................................. 150 90 Voids Filled

  5. Furfuryl alcohol polymer concretes for use in all-weather repairs of concrete and asphalt surfaces. Revision

    SciTech Connect

    Kukacka, L.E.; Sugama, T.

    1985-04-01

    A furfuryl alcohol-based polymer concrete (FA-PC) has been developed for use as an all-weather repair material for concrete and asphalt surfaces. A formulation consisting of furfuryl alcohol monomer (FA), ..cap alpha.., ..cap alpha.., ..cap alpha..-trichlorotoluene, pyridine, silane, zinc chloride, silica filler, and coarse aggregate meets requirements. Optimized formulations were established for use with premixed and percolation placement methods. The working time for the FA-PC slurry can be controlled at greater than or equal to 15 min from -20/sup 0/C to 52/sup 0/C by simply varying the ..cap alpha.., ..cap alpha.., ..cap alpha..-trichlorotoluene catalyst concentration while holding all of the other constituents constant. Below -20/sup 0/C, slight increases in FA and ZnCl/sub 2/ concentrations are needed to yield optimum properties. Prototype equipment for the mixing and placement of FA-PC was constructed and used in a series of tests up to a size of 6-m x 6-m x 0.15-m. Field tests were performed under rainfall and dry conditions from -15/sup 0/ to 35/sup 0/C. The mixing and placement equipment performed well and the FA-PC slurries exhibited self-leveling characteristics. Test results from proxy samples and cores taken after simulated aircraft trafficking, indicated that the property requirements at an age of 1 h were attained.

  6. Effects of reclaimed asphalt pavement on indirect tensile strength test of foamed asphalt mix tested in dry condition

    NASA Astrophysics Data System (ADS)

    Yati Katman, Herda; Rasdan Ibrahim, Mohd; Yazip Matori, Mohd; Norhisham, Shuhairy; Ismail, Norlela

    2013-06-01

    Indirect tensile strength (ITS) test was conducted to analyse strength of the foamed asphalt mixes incorporating reclaimed asphalt pavement. Samples were tested for ITS after cured in the oven at 40°C for 72 hours. This testing condition known as dry condition or unconditioned. Laboratory results show that reclaimed asphalt pavement (RAP) contents insignificantly affect the ITS results. ITS results significantly affected by foamed bitumen contents.

  7. Experimental testing of hot mix asphalt mixture made of recycled aggregates.

    PubMed

    Rafi, Muhammad Masood; Qadir, Adnan; Siddiqui, Salman Hameed

    2011-12-01

    The migration of population towards big cities generates rapid construction activities. These activities not only put pressure on natural resources but also produce construction, renovation and demolition waste. There is an urgent need to find out ways to handle this waste owing to growing environmental concerns. This can reduce pressure on natural resources as well. This paper presents the results of experimental studies which were carried out on hot mix asphalt mixture samples. These samples were manufactured by adding recycled aggregates (RA) with natural crushed stone aggregates (CSA). Three levels of addition of RA were considered in the presented studies. RA were obtained from both the concrete waste of construction, renovation and demolition activities and reclaimed asphalt pavement. Separate samples were manufactured with the coarse and fine aggregate fractions of both types of RA. Samples made with CSA were used as control specimens. The samples were prepared and tested using the Marshall method. The performance of the samples was investigated in terms of density-void and stability/flow analysis and was compared with the performance criteria as given by National Highway Authority for wearing course material in Pakistan. Based on this data optimum asphalt contents were determined. All the samples made by adding up to 50% RA conform to the specification requirements of wearing course material as given by National Highway Authority in terms of optimum asphalt contents, voids in mineral aggregates and stability/flow. A statistical analysis of variation of these samples confirmed that addition is also possible statistically.

  8. 26. Evening view of concrete mixing plant, concrete placement tower, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. Evening view of concrete mixing plant, concrete placement tower, cableway tower, power line and derrick. Photographer unknown, 1927. Source: MWD. - Waddell Dam, On Agua Fria River, 35 miles northwest of Phoenix, Phoenix, Maricopa County, AZ

  9. The shakeout scenario: Meeting the needs for construction aggregates, asphalt, and concrete

    USGS Publications Warehouse

    Langer, W.H.

    2011-01-01

    An Mw 7.8 earthquake as described in the ShakeOut Scenario would cause significantdamage to buildings and infrastructure. Over 6 million tons of newly mined aggregate would be used for emergency repairs and for reconstruction in the five years following the event. This aggregate would be applied mostly in the form of concrete for buildings and bridges, asphalt or concrete for pavement, and unbound gravel for applications such as base course that goes under highway pavement and backfilling for foundations and pipelines. There are over 450 aggregate, concrete, and asphalt plants in the affected area, some of which would be heavily damaged. Meeting the increased demand for construction materials would require readily available permitted reserves, functioning production facilities, a supply of cement and asphalt, a source of water, gas, and electricity, and a trained workforce. Prudent advance preparations would facilitate a timely emergency response and reconstruction following such an earthquake. ?? 2011, Earthquake Engineering Research Institute.

  10. Investigation of Primary Causes of Load-Related Cracking in Asphalt Concrete Pavement in North Carolina

    NASA Astrophysics Data System (ADS)

    Park, Hong Joon

    This dissertation presents causes of cracking in asphalt concrete pavement in North Carolina through field investigation and laboratory experiments with field extracted material. North Carolina is experiencing higher than anticipated rates of fatigue cracking compared to other state. These higher than expected rates could be reflective of the national trends in mix design practice or could be caused by structural pavement failures. The problems associated with premature cracking in North Carolina pavements point to the need to evaluate the North Carolina Department of Transportation (NCDOT) mixes, processes, and measures to ensure that these factors properly balance the goals of preventing cracking and minimizing permanent deformation. Without solid data from in-service pavements, any conclusions regarding the causes of these failures might be pure conjecture. Accordingly, this research examines material properties through laboratory experiments using field-extracted materials and investigates in situ pavements and pavement structure. In order to assess condition of existing pavement, alligator cracking index (ACI) was developed. The asphalt content in the top layer that exhibits top-down cracking or bottom-up cracking has a proportional relationship to ACI values. The air void content in a bottom layer that exhibits top-down cracking or bottom-up cracking shows an inverse proportional relationship to ACI values. These observations reflect reasonable results. A comparison between ACI and asphalt film thickness values does not produce noteworthy findings, but somewhat reasonable results are evident once the range of comparison is narrowed down. Thicker film thicknesses show higher ACI values. From field core visual observations, road widening is identified as a major cause of longitudinal cracking. Regions with observed layer interface separation tend to have low ACI values. Through tensile strain simulation based on actual field conditions, it is observed that

  11. Hot in-place recycling of asphalt concrete. Final report

    SciTech Connect

    Button, J.W.; Little, D.N.; Estakhri, C.K.; Mason, L.S.

    1994-01-01

    ;Contents: Hot in place recycling processes and equipment; HIPR as a tool for asphalt pavement rehabilitation; Mixture design for HIPR processes; Relative performance of HIPR pavements; Guidelines for effective use of HIPR; and Conclusions and recommendations.

  12. Use of scrap rubber in asphalt pavement surfaces. Special report

    SciTech Connect

    Eaton, R.A.; Roberts, R.J.; Blackburn, R.R.

    1991-12-01

    Scrap tire rubber was mixed into an asphalt concrete wearing course to study the effect of ice disbonding from the pavement surface under traffic. Rubber contents of 0, 3, 6, and 12% by weight were studied. Initial laboratory ice disbonding test results led to the development of a new paving material, Chunk Rubber Asphalt Concrete (CRAC), that uses larger pieces of rubber in a much denser asphalt concrete mix. Strength values doubled and ice disbonding performance was enhanced.

  13. About the sizes of elastomer particles in the asphalt concrete binder providing the maximum service life of pavements

    NASA Astrophysics Data System (ADS)

    Kaplan, A. M.; Chekunaev, N. I.

    2014-05-01

    It is noted that the durability of asphalt concrete pavements is determined by the time of the trunk cracks formation in the polymer-containing composites - in the modified by elastomers (e.g., by rubber) bitumenous binder of asphalt. Developed by the authors previously the theory of the cracks propagation in heterosystems [1] has allowed to investigate the problem of the cracks propagation in the rubber-bitumen composite. This investigations show that most effectively to prevente the trunk cracks formation in asphalt concrete can ultrafine rubber particles (150-750 nm) in a bitumenos binder of asphalt.

  14. Asphalt pavement surfaces and asphalt mixtures. Transportation research record

    SciTech Connect

    1996-12-31

    The papers in this volume, which deal with asphalt pavement surfaces and asphalt mixtures, should be of interest to state and local construction, design, materials, and research engineers as well as contractors and material producers. The papers in Part 1 include discussions of pavement smoothness specifications and skidding characteristics. The first four papers in Part 2 were submitted in response to a call for papers for a session at the 75th Annual Meeting of the Transportation Research Board on low-temperature properties of hot-mix asphalt. The next eight are on the influence of volumetric and strength properties on the performance of hot-mix asphalt. In the following three papers, the topics covered are the complex modulus of asphalt concrete, cold in-place asphalt recycling, and polymer modification of asphalt pavements in Ontario. The last two papers were presented in a session on relationship of materials characterization to accelerated pavement performance testing.

  15. Effects of two warm-mix additives on aging, rheological and failure properties of asphalt cements

    NASA Astrophysics Data System (ADS)

    Omari, Isaac Obeng

    Sustainable road construction and maintenance could be supported when excellent warm-mix additives are employed in the modification of asphalt. These warm-mix additives provide remedies for today's requirements such as fatigue cracking resistance, durability, thermal cracking resistance, rutting resistance and resistance to moisture damage. Warm-mix additives are based on waxes and surfactants which reduce energy consumption and carbon dioxide emissions significantly during the construction phase of the pavement. In this study, the effects of two warm mix additives, siloxane and oxidised polyethylene wax, on roofing asphalt flux (RAF) and asphalt modified with waste engine oil (655-7) were investigated to evaluate the rheological, aging and failure properties of the asphalt binders. In terms of the properties of these two different asphalts, RAF has proved to be superior quality asphalt whereas 655-7 is poor quality asphalt. The properties of the modified asphalt samples were measured by Superpave(TM) tests such as Dynamic Shear Rheometer (DSR) test and Bending Beam Rheometer (BBR) test as well as modified protocols such as the extended BBR (eBBR) test (LS-308) and the Double- Edge-Notched Tension (DENT) test (LS-299) after laboratory aging. In addition, the Avrami theory was used to gain an insight on the crystallization of asphalt or the waxes within the asphalt binder. This study has however shown that the eBBR and DENT tests are better tools for providing accurate specification tests to curb thermal and fatigue cracking in contemporary asphalt pavements.

  16. Evaluation of the effects of crumb rubber and SBR on rutting resistance of asphalt concrete

    SciTech Connect

    Shih, Chuang-Tsair; Tia, Mang; Ruth, B.E.

    1996-12-31

    This paper presents the results of a study to evaluate the effects of addition of crumb rubber (CR) and styrene-butadiene rubber (SBR) on the rutting resistance of asphalt concrete. These two additives were blended with an AC-20 and an AC-30 grade asphalt cements at different levels of concentrations. These modified and unmodified asphalt blends were tested at intermediate and high temperatures to evaluate their rutting resistance characteristics. They were also used to make Florida type S-I structural surface mixtures. These mixtures were made into Marshall-size specimens by using Gyratory Testing Machine (GTM) equipped with air-roller to compact and density to three compaction levels which simulate three different conditions in the pavement. The FDOT`s (Florida Department of Transportation) Loaded Wheel Tester was also used to evaluate the rutting resistance of these asphalt mixtures. The test results indicate that the modified asphalt mixtures show relatively better rutting resistance and shear resistance as compared with the unmodified asphalt mixtures.

  17. Concrete Mixing Methods and Concrete Mixers: State of the Art

    PubMed Central

    Ferraris, Chiara F.

    2001-01-01

    As for all materials, the performance of concrete is determined by its microstructure. Its microstructure is determined by its composition, its curing conditions, and also by the mixing method and mixer conditions used to process the concrete. This paper gives an overview of the various types of mixing methods and concrete mixers commercially available used by the concrete industry. There are two main types of mixers used: batch mixers and continuous mixers. Batch mixers are the most common. To determine the mixing method best suited for a specific application, factors to be considered include: location of the construction site (distance from the batching plant), the amount of concrete needed, the construction schedule (volume of concrete needed per hour), and the cost. Ultimately, the quality of the concrete produced determines its performance after placement. An important measure of the quality is the homogeneity of the material after mixing. This paper will review mixing methods in regards to the quality of the concrete produced. Some procedures used to determine the effectiveness of the mixing will be examined. PMID:27500029

  18. Predicting the behavior of asphalt concrete pavements in seasonal frost areas using nondestructive techniques

    NASA Astrophysics Data System (ADS)

    Janoo, Vincent C.; Berg, Richard L.

    1990-11-01

    Four different pavement test sections were subjected to freeze-thaw cycling in the Frost Effects Research Facility (FERF). The test sections, each 610 cm in length, consisted of 15.2 cm of asphalt concrete pavement over a clay subgrade; 15.2 cm of asphalt concrete over 10.2 cm of crushed gravel over a clay subgrade; 5.1 cm of asphalt over 17.8 cm of crushed gravel over 20.3 cm of clean sand over a clay subgrade; and 5.1 cm of asphalt concrete over 25.4 cm of crushed gravel over 12.7 cm of clean sand over clay subgrade. Thermocouples were imbedded throughout the pavement structure and subgrade. During the thawing periods, deflection measurements were made at four locations in each test section using a Dynatest Falling Weight Deflectometer (FWD). The results of the deflection measurement are presented here. An analysis was done to qualify the subgrade strength based solely on FDW measurements. It was also shown that a relationship existed between thaw depth and FWD measurement in the subgrade.

  19. Review of crumb-rubber modified asphalt concrete technology. Final research report

    SciTech Connect

    Papagiannakis, A.T.; Lougheed, T.J.

    1995-11-01

    This study presents an analysis of the characteristics of crumb-rubber modified (CRM) asphalt pavements. It is comprised of a state-of-the-art literature review and laboratory testing conducted with a Brookfield viscometer. The reaction that occurs between the rubber and asphalt is not a chemical reaction, but rather a diffusion process that includes the physical absorption of aromatic oils from the asphalt into the polymer chain of the rubber. The presence of CRM in asphalt produces a thicker binder, which increases aging and oxidation resistance. The presence of carbon black in CRM improves binder durability. The temperature susceptibility of the mix is reduced, causing more uniform fatigue characteristics. CRM applications have been met with various degrees of success because existing quality control and quality assurance methods have not been developed enough to ensure desired binder properties in the field.

  20. Assessment of Asphalt Concrete Reinforcement Grid in Flexible Pavements

    DTIC Science & Technology

    2016-05-01

    Pavements” ERDC/CRREL TR-16-7 ii Abstract This report investigated the application of accepted methods of pavement structural evaluation to...consisted of an elastomeric polymer coated fiberglass grid with an open configuration. The reinforcing grid was installed in the asphalt layer during...Method of Test for Pavement De- flection Measurements (AASHTO 2005) or ASTM standards as applicable . 1.4 Technical approach We completed the initial site

  1. Environmental performance and mechanical analysis of concrete containing recycled asphalt pavement (RAP) and waste precast concrete as aggregate.

    PubMed

    Erdem, Savaş; Blankson, Marva Angela

    2014-01-15

    The overall objective of this research project was to investigate the feasibility of incorporating 100% recycled aggregates, either waste precast concrete or waste asphalt planning, as replacements for virgin aggregates in structural concrete and to determine the mechanical and environmental performance of concrete containing these aggregates. Four different types of concrete mixtures were designed with the same total water cement ratio (w/c=0.74) either by using natural aggregate as reference or by totally replacing the natural aggregate with recycled material. Ground granulated blast furnace slag (GGBS) was used as a mineral addition (35%) in all mixtures. The test results showed that it is possible to obtain satisfactory performance for strength characteristics of concrete containing recycled aggregates, if these aggregates are sourced from old precast concrete. However, from the perspective of the mechanical properties, the test results indicated that concrete with RAP aggregate cannot be used for structural applications. In terms of leaching, the results also showed that the environmental behaviour of the recycled aggregate concrete is similar to that of the natural aggregate concrete.

  2. Attenuation of foot pressure during running on four different surfaces: asphalt, concrete, rubber, and natural grass.

    PubMed

    Tessutti, Vitor; Ribeiro, Ana Paula; Trombini-Souza, Francis; Sacco, Isabel C N

    2012-01-01

    The practice of running has consistently increased worldwide, and with it, related lower limb injuries. The type of running surface has been associated with running injury etiology, in addition other factors, such as the relationship between the amount and intensity of training. There is still controversy in the literature regarding the biomechanical effects of different types of running surfaces on foot-floor interaction. The aim of this study was to investigate the influence of running on asphalt, concrete, natural grass, and rubber on in-shoe pressure patterns in adult recreational runners. Forty-seven adult recreational runners ran twice for 40 m on all four different surfaces at 12 ± 5% km · h(-1). Peak pressure, pressure-time integral, and contact time were recorded by Pedar X insoles. Asphalt and concrete were similar for all plantar variables and pressure zones. Running on grass produced peak pressures 9.3% to 16.6% lower (P < 0.001) than the other surfaces in the rearfoot and 4.7% to 12.3% (P < 0.05) lower in the forefoot. The contact time on rubber was greater than on concrete for the rearfoot and midfoot. The behaviour of rubber was similar to that obtained for the rigid surfaces - concrete and asphalt - possibly because of its time of usage (five years). Running on natural grass attenuates in-shoe plantar pressures in recreational runners. If a runner controls the amount and intensity of practice, running on grass may reduce the total stress on the musculoskeletal system compared with the total musculoskeletal stress when running on more rigid surfaces, such as asphalt and concrete.

  3. Engineering characterisation of epoxidized natural rubber-modified hot-mix asphalt

    PubMed Central

    Al-Mansob, Ramez A.; Ismail, Amiruddin; Yusoff, Nur Izzi Md.; Rahmat, Riza Atiq O. K.; Borhan, Muhamad Nazri; Albrka, Shaban Ismael; Azhari, Che Husna; Karim, Mohamed Rehan

    2017-01-01

    Road distress results in high maintenance costs. However, increased understandings of asphalt behaviour and properties coupled with technological developments have allowed paving technologists to examine the benefits of introducing additives and modifiers. As a result, polymers have become extremely popular as modifiers to improve the performance of the asphalt mix. This study investigates the performance characteristics of epoxidized natural rubber (ENR)-modified hot-mix asphalt. Tests were conducted using ENR–asphalt mixes prepared using the wet process. Mechanical testing on the ENR–asphalt mixes showed that the resilient modulus of the mixes was greatly affected by testing temperature and frequency. On the other hand, although rutting performance decreased at high temperatures because of the increased elasticity of the ENR–asphalt mixes, fatigue performance improved at intermediate temperatures as compared to the base mix. However, durability tests indicated that the ENR–asphalt mixes were slightly susceptible to the presence of moisture. In conclusion, the performance of asphalt pavement can be enhanced by incorporating ENR as a modifier to counter major road distress. PMID:28182724

  4. Engineering characterisation of epoxidized natural rubber-modified hot-mix asphalt.

    PubMed

    Al-Mansob, Ramez A; Ismail, Amiruddin; Yusoff, Nur Izzi Md; Rahmat, Riza Atiq O K; Borhan, Muhamad Nazri; Albrka, Shaban Ismael; Azhari, Che Husna; Karim, Mohamed Rehan

    2017-01-01

    Road distress results in high maintenance costs. However, increased understandings of asphalt behaviour and properties coupled with technological developments have allowed paving technologists to examine the benefits of introducing additives and modifiers. As a result, polymers have become extremely popular as modifiers to improve the performance of the asphalt mix. This study investigates the performance characteristics of epoxidized natural rubber (ENR)-modified hot-mix asphalt. Tests were conducted using ENR-asphalt mixes prepared using the wet process. Mechanical testing on the ENR-asphalt mixes showed that the resilient modulus of the mixes was greatly affected by testing temperature and frequency. On the other hand, although rutting performance decreased at high temperatures because of the increased elasticity of the ENR-asphalt mixes, fatigue performance improved at intermediate temperatures as compared to the base mix. However, durability tests indicated that the ENR-asphalt mixes were slightly susceptible to the presence of moisture. In conclusion, the performance of asphalt pavement can be enhanced by incorporating ENR as a modifier to counter major road distress.

  5. Early-life study of the FA409 full-depth asphalt-concrete pavement sections

    SciTech Connect

    Hill, H.J.

    1988-01-01

    The Illinois Department of Transportation (IDOT) is currently implementing a mechanistic thickness-design procedure for full-depth asphalt-concrete pavements. This thesis is an early design-life investigation of full-depth asphalt-concrete pavements, constructed on FA409 near Carlyle, Illinois in 1986. Included in the study are: sampling and testing of paving and subgrade materials; extensive non-destructive testing (NDT) using the Falling Weight Deflectometer (FWD); development of techniques for interpreting NDT data; determination of as-built structural characteristics of the various pavement sections; evaluation of subsurface drainage and lime-treated soil behavior; and examination of the validity of the ILLI-PAVE computer model. The simplicity of a full-depth asphalt-concrete pavement allows useful information regarding pavement structure to be determined from FWD surface-deflection data. The ILLI-PAVE model was used in conjunction with statistical methods to quantify, in the form of regression equations or algorithms, the relationship between pavement structure (Tac, Eac, and Eri) and pavement response to FWD loading. Testing of pavement and subgrade material samples as used to validate these algorithms.

  6. Furfuryl alcohol polymer concretes for use in all-weather repairs of concrete and asphalt surfaces

    SciTech Connect

    Kukacka, L.E.; Sugama, T.

    1985-04-01

    The following criteria were established: high strength at an age of 1 h, placement of the materials must be possible during heavy precipitation over temperatures ranging from -32/sup 0/ to 52/sup 0/C, and the chemical constituents should be low cost and have long-term stability when contained in a maximum of three packages during storage. A formulation consisting of furfuryl alcohol monomer (FA), ..cap alpha..,..cap alpha..,..cap alpha..- trichlorotoluene, pyridine, silane, zinc chloride, silica filler, and coarse aggregate meets these requirements. Optimized formulations were established for use with premixed and percolation placement methods. The premixed formulation is compatible with moisture contents up to 4% by weight of the total mass, which simulates placement in a 2.54 cm/h rainfall. The working time for the FA-PC slurry can be controlled at greater than or equal to 15 min over the entire operating temperature range by simply varying the ..cap alpha..,..cap alpha..,..cap alpha..-trichlorotoluene catalyst concentration while holding all of the other constituents constant. Prototype equipment for the mixing and placement of FA-PC was demonstrated: a concrete transit mix supply of mixed aggregate, a hopper-fed volumetric feed screw which supplied aggregate at a known rate to a mixing screw, and a monomer pump and spray nozzle. The unit mixed and delivered FA-PC at approx.182 kg/min. The practicability of using equipment currently employed for the continuous placement of conventional portland cement concrete was proven. Field tests were performed under rainfall and dry conditions at temperatures ranging from -15/sup 0/ to 35/sup 0/C. The mixing and placement equipment performed well and the FA-PC slurries exhibited self-leveling characteristics. Test results from proxy samples prepared during the placement of the patches and cores taken after simulated aircraft trafficking, indicated that the property requirements at an age of 1 hr were attained.

  7. Reclaimed manufacturer asphalt roofing shingles in asphalt mixtures. Final research report

    SciTech Connect

    Reed, A.B.

    1999-04-23

    The purpose of this project was to pave a test section using hot mix asphalt with roofing shingle pieces in the wearing and binder courses and to evaluate. The test project near Allentown, PA plus two other test projects in 1998 provide evidence of very good pavement performance. The bituminous concrete mix was modified with shredded shingles with a maximum size of 1/2 inch which added 1% of the asphalt content. The Department issued a statewide Provisional Specification titled Reclaimed Manufacturer Asphalt Roofing Shingles in Plant-Mixed Bituminous Concrete Courses'' on March 15, 1999. New manufacturer asphalt roofing shingle scrap including tab punch-outs can be successfully incorporated in bituminous concrete pavements if the shingles are shredded to 100% passing the 3/4 inch sieve. To take full advantage of the potential to replace a portion of the asphalt and therefore, reduce mix costs, shingles should be shredded to 100% passing minus 1/2 inch sieve.

  8. Investigation of Self Consolidating Concrete Containing High Volume of Supplementary Cementitious Materials and Recycled Asphalt Pavement Aggregates

    NASA Astrophysics Data System (ADS)

    Patibandla, Varun chowdary

    The use of sustainable technologies such as supplementary cementitiuous materials (SCMs), and/or recycled materials is expected to positively affect the performance of concrete mixtures. However, it is important to study and qualify such mixtures and check if the required specifications of their intended application are met before they can be implemented in practice. This study presents the results of a laboratory investigation of Self Consolidating concrete (SCC) containing sustainable technologies. A total of twelve concrete mixtures were prepared with various combinations of fly ash, slag, and recycled asphalt pavement (RAP). The mixtures were divided into three groups with constant water to cementitiuous materials ratio of 0.37, and based on the RAP content; 0, 25, and 50% of coarse aggregate replaced by RAP. All mixtures were prepared to achieve a target slump flow equal to or higher than 500 mm (24in). A control mixture for each group was prepared with 100% Portland cement whereas all other mixtures were designed to have up to 70% of portland cement replaced by a combination of supplementary cementitiuous materials (SCMs) such as class C fly ash and granulated blast furnace slag. The properties of fresh concrete investigated in this study include flowability, deformability; filling capacity, and resistance to segregation. In addition, the compressive strength at 3, 14, and 28 days, the tensile strength, and the unrestrained shrinkage up to 80 days was also investigated. As expected the inclusion of the sustainable technologies affected both fresh and hardened concrete properties. Analysis of the experimental data indicated that inclusion of RAP not only reduces the ultimate strength, but it also affected the compressive strength development rate. Moreover, several mixes satisfied compressive strength requirements for pavements and bridges; those mixes included relatively high percentages of SCMs and RAP. Based on the results obtained in this study, it is not

  9. Laboratory and field evaluation of hot mix asphalt with high contents of reclaimed asphalt pavement

    NASA Astrophysics Data System (ADS)

    Van Winkle, Clinton Isaac

    Currently in Iowa, the amount of RAP materials allowed for the surface layer is limited to 15% by weight. The objective of this project was to develop quality standards for inclusion of RAP content higher than 15% in asphalt mixtures. To meet Superpave mix design requirements, it was necessary to fractionate the RAP materials. Based on the extensive sieve-by-sieve analysis of RAP materials, the optimum sieve size to fractionate RAP materials was identified. To determine if the higher percentage of RAP materials than 15% can be used in Iowa's state highway, three test sections with 30.0%, 35.5% and 39.2% of RAP materials were constructed on Highway 6 in Iowa City. The construction of the field test sections was monitored and the cores were obtained to measure field densities of test sections. Field mixtures collected from test sections were compacted in the laboratory in order to test the moisture sensitivity using a Hamburg Wheel Tracking Device. The binder was extracted from the field mixtures with varying amounts of RAP materials and tested to determine the effects of RAP materials on the PG grade of a virgin binder. Field cores were taken from the various mix designs to determine the percent density of each test section. A condition survey of the test sections was then performed to evaluate the short-term performance.

  10. Evaluation of Warm-Mix Asphalt Technologies for Use on Airfield Pavements

    DTIC Science & Technology

    2013-12-01

    Sasobit SonneWarmix Wax Sonneborn Products Terex Warm Mix Asphalt Foaming system Terex Roadbuilding Thipoave Sulfur Shell TLA-X Trinidad Lake...ER D C/ G SL T R -1 2 -3 Evaluation of Warm-Mix Asphalt Technologies for Use on Airfield Pavements G eo te ch n ic al a n d S tr u ct...default. ERDC/GSL TR-12-3 February 2012 (Revised December 2013) Evaluation of Warm-Mix Asphalt Technologies for Use on Airfield Pavements

  11. Effects of reclaimed asphalt pavement on indirect tensile strength test of conditioned foamed asphalt mix

    NASA Astrophysics Data System (ADS)

    Yati Katman, Herda; Rasdan Ibrahim, Mohd; Yazip Matori, Mohd; Norhisham, Shuhairy; Ismail, Norlela

    2013-06-01

    This paper presents the results of Indirect Tensile Strength (ITS) Test for samples prepared with reclaimed asphalt pavement (RAP). Samples were conditioned in water at 25°C for 24 hours prior to testing. Results show that recycled aggregate from reclaimed asphalt pavement performs as well as virgin aggregate.

  12. A review of changes in composition of hot mix asphalt in the United States.

    PubMed

    Mundt, Diane J; Marano, Kristin M; Nunes, Anthony P; Adams, Robert C

    2009-11-01

    This review researched the materials, methods, and practices in the hot mix asphalt industry that might impact future exposure assessments and epidemiologic research on road paving workers. Since World War II, the U.S. interstate highway system, increased traffic volume, transportation speeds, and vehicle axle loads have necessitated an increase in demand for hot mix asphalt for road construction and maintenance, while requiring a consistent road paving product that meets state-specific physical performance specifications. We reviewed typical practices in hot mix asphalt paving in the United States to understand the extent to which materials are and have been added to hot mix asphalt to meet specifications and how changes in practices and technology could affect evaluation of worker exposures for future research. Historical documents were reviewed, and industry experts from 16 states were interviewed to obtain relevant information on industry practices. Participants from all states reported additive use, with most being less than 2% by weight. Crumb rubber and recycled asphalt pavement were added in concentrations approximately 10% per unit weight of the mix. The most frequently added materials included polymers and anti-stripping agents. Crumb rubber, sulfur, asbestos, roofing shingles, slag, or fly ash have been used in limited amounts for short periods of time or in limited geographic areas. No state reported using coal tar as an additive to hot mix asphalt or as a binder alternative in hot mix pavements for high-volume road construction. Coal tar may be present in recycled asphalt pavement from historical use, which would need to be considered in future exposure assessments of pavers. Changes in hot mix asphalt production and laydown emission control equipment have been universally implemented over time as the technology has become available to reduce potential worker exposures. This work is a companion review to a study undertaken in the petroleum refining

  13. Generation of urban road dust from anti-skid and asphalt concrete aggregates.

    PubMed

    Tervahattu, Heikki; Kupiainen, Kaarle J; Räisänen, Mika; Mäkelä, Timo; Hillamo, Risto

    2006-04-30

    Road dust forms an important component of airborne particulate matter in urban areas. In many winter cities the use of anti-skid aggregates and studded tires enhance the generation of mineral particles. The abrasion particles dominate the PM10 during springtime when the material deposited in snow is resuspended. This paper summarizes the results from three test series performed in a test facility to assess the factors that affect the generation of abrasion components of road dust. Concentrations, mass size distribution and composition of the particles were studied. Over 90% of the particles were aluminosilicates from either anti-skid or asphalt concrete aggregates. Mineral particles were observed mainly in the PM10 fraction, the fine fraction being 12% and submicron size being 6% of PM10 mass. The PM10 concentrations increased as a function of the amount of anti-skid aggregate dispersed. The use of anti-skid aggregate increased substantially the amount of PM10 originated from the asphalt concrete. It was concluded that anti-skid aggregate grains contribute to pavement wear. The particle size distribution of the anti-skid aggregates had great impact on PM10 emissions which were additionally enhanced by studded tires, modal composition, and texture of anti-skid aggregates. The results emphasize the interaction of tires, anti-skid aggregate, and asphalt concrete pavement in the production of dust emissions. They all must be taken into account when measures to reduce road dust are considered. The winter maintenance and springtime cleaning must be performed properly with methods which are efficient in reducing PM10 dust.

  14. Chemical aspects of incorporating contaminated soil into cold-mix asphalt

    SciTech Connect

    Testa, S.M.

    1994-12-31

    The chemical aspects associated with the incorporation of petroleum hydrocarbons- and metals-affected soil has been extensively studied in regards to pavement properties, leaching behavior, sensitivities to moisture-damage and function group analysis. These studies provide information that can be used to evaluate the stability of these constituents in soil that have been incorporated as an ingredient in asphalt. These studies also indicate that cold-mix asphalt incorporating contaminated soil will be highly stable and perform adequately as an end product. Maximum chemical performance is achieved when the asphalt is comprised of high contents of pyridinic, phenolic and ketone groups, which can be achieved by selectively choosing the source material. If the situation requires special stability or redundancy, small amounts of shale oil and lime can be used as additives. Situations and conditions which favor the presence of inorganic sulfur, monovalent salts and high strength solutions in the asphalt should be avoided since these conditions decrease the chemical stability of the asphalt cement by disruption of the functional group-aggregate bonds and by increasing the overall permeability. However, these conditions are not typically expected in the anticipated uses of asphalt cement to stabilize contaminants in soil using Environmentally Processed Asphalt{trademark} (EPA{trademark}) or Asphaltic Metals Stabilization{trademark} (AMS{trademark}) remedial technologies.

  15. Environmental impacts of asphalt mixes with electric arc furnace steel slag.

    PubMed

    Milačič, Radmila; Zuliani, Tea; Oblak, Tina; Mladenovič, Ana; Ančar, Janez Šč

    2011-01-01

    Electric arc furnace (EAF) steel slag can be used as an alternative high-quality material in road construction. Although asphalts with slag aggregates have been recognized as environmentally acceptable, there is a lack of data concerning the potential leaching of toxic Cr(VI) due to the highly alkaline media of EAF slag. Leaching of selected water extractable metals from slag indicated elevated concentrations of total chromium and Cr(VI). To estimate the environmental impacts of asphalt mixes with slag, leachability tests based on diffusion were performed using pure water and salt water as leaching agents. Compact and ground asphalt composites with natural aggregates, and asphalt composites in which the natural aggregates were completely replaced by slag were prepared. The concentrations of total chromium and Cr(VI) were determined in leachates over a time period of 6 mo. After 1 and 6 mo, the concentrations of some other metals were also determined in the leachates. The results indicated that chromium in leachates from asphalt composites with the addition of slag was present almost solely in its hexavalent form. However, the concentrations were very low (below 25 μg L) and did not represent an environmental burden. The leaching of other metals from asphalt composites with the addition of slag was negligible. Therefore, the investigated EAF slag can be considered as environmentally safe substitute for natural aggregates in asphalt mixes.

  16. Exposing the nonlinear viscoelastic behavior of asphalt-aggregate mixes

    NASA Astrophysics Data System (ADS)

    Levenberg, Eyal; Uzan, Jacob

    2012-05-01

    In this study asphalt-aggregate mixes are treated as both viscoelastic and viscoplastic. Following a damage mechanics approach, a nonlinear viscoelastic constitutive formulation is generated from a linear formulation by replacing `applied stresses' with `effective viscoelastic stresses'. A non-dimensional scalar entity called `relative viscoelastic stiffness' is introduced; it is defined as the ratio of applied to effective viscoelastic stress and encapsulates different types of nonlinearities. The paper proposes a computational scheme for exposing these nonlinearities by uncovering, through direct analysis of any test data, changes experienced by the `relative viscoelastic stiffness'. In general terms, the method is based on simultaneous application of creep and relaxation formulations while preserving the interrelationship between the corresponding time functions. The proposed scheme is demonstrated by analyzing a uniaxial tension test and a uniaxial compression test (separately). Results are presented and discussed, unveiling and contrasting the character of viscoelastic nonlinearities in both cases. A conceptual viewpoint is offered to explain the observations, illustrating the requirements from any candidate constitutive theory.

  17. Black curves and creep behaviour of crumb rubber modified binders containing warm mix asphalt additives

    NASA Astrophysics Data System (ADS)

    Gallego, Juan; Rodríguez-Alloza, Ana María; Giuliani, Felice

    2016-08-01

    Warm mix asphalt (WMA) is a new research topic in the field of road pavement materials. This technology allows lower energy consumption and greenhouse gas (GHG) emissions by reducing compaction and placement temperatures of the asphalt mixtures. However, this technology is still under study, and the influence of the WMA additives has yet to be investigated thoroughly and clearly identified, especially in the case of crumb rubber modified (CRM) binders.

  18. Development of a stress-mode sensitive viscoelastic constitutive relationship for asphalt concrete: experimental and numerical modeling

    NASA Astrophysics Data System (ADS)

    Karimi, Mohammad M.; Tabatabaee, Nader; Jahanbakhsh, H.; Jahangiri, Behnam

    2016-11-01

    Asphalt binder is responsible for the thermo-viscoelastic mechanical behavior of asphalt concrete. Upon application of pure compressive stress to an asphalt concrete specimen, the stress is transferred by mechanisms such as aggregate interlock and the adhesion/cohesion properties of asphalt mastic. In the pure tensile stress mode, aggregate interlock plays a limited role in stress transfer, and the mastic phase plays the dominant role through its adhesive/cohesive and viscoelastic properties. Under actual combined loading patterns, any coordinate direction may experience different stress modes; therefore, the mechanical behavior is not the same in the different directions and the asphalt specimen behaves as an anisotropic material. The present study developed an anisotropic nonlinear viscoelastic constitutive relationship that is sensitive to the tension/compression stress mode by extending Schapery's nonlinear viscoelastic model. The proposed constitutive relationship was implemented in Abaqus using a user material (UMAT) subroutine in an implicit scheme. Uniaxial compression and indirect tension (IDT) testing were used to characterize the viscoelastic properties of the bituminous materials and to calibrate and validate the proposed constitutive relationship. Compressive and tensile creep compliances were calculated using uniaxial compression, as well as IDT test results, for different creep-recovery loading patterns at intermediate temperature. The results showed that both tensile creep compliance and its rate were greater than those of compression. The calculated deflections based on these IDT test simulations were compared with experimental measurements and were deemed acceptable. This suggests that the proposed viscoelastic constitutive relationship correctly demonstrates the viscoelastic response and is more accurate for analysis of asphalt concrete in the laboratory or in situ.

  19. Characterizing the low strain complex modulus of asphalt concrete specimens through optimization of frequency response functions.

    PubMed

    Gudmarsson, Anders; Ryden, Nils; Birgisson, Björn

    2012-10-01

    Measured and finite element simulated frequency response functions are used to characterize the low strain (~10(-7)) complex moduli of an asphalt concrete specimen. The frequency response functions of the specimen are measured at different temperatures by using an instrumented hammer to apply a load and an accelerometer to measure the dynamic response. Theoretical frequency response functions are determined by modeling the specimen as a three-dimensional (3D) linear isotropic viscoelastic material in a finite element program. The complex moduli are characterized by optimizing the theoretical frequency response functions against the measured ones. The method is shown to provide a good fit between the frequency response functions, giving an estimation of the complex modulus between minimum 500 Hz and maximum 18|000 Hz depending on the temperature. Furthermore, the optimization method is shown to give a good estimation of the complex modulus master curve.

  20. A study of sound absorption by street canyon boundaries and asphalt rubber concrete pavement

    NASA Astrophysics Data System (ADS)

    Drysdale, Graeme Robert

    A sound field model, based on a classical diffusion equation, is extended to account for sound absorption in a diffusion parameter used to model sound energy in a narrow street canyon. The model accounts for a single sound absorption coefficient, separate accommodation coefficients and a combination of separate absorption and accommodation coefficients from parallel canyon walls. The new expressions are compared to the original formula through numerical simulations to reveal the effect of absorption on sound diffusion. The newly established analytical formulae demonstrate satisfactory agreement with their predecessor under perfect reflection. As well, the influence of the extended diffusion parameter on normalized sound pressure levels in a narrow street canyon is in agreement with experimental data. The diffusion parameters are used to model sound energy density in a street canyon as a function of the sound absorption coefficient of the street canyon walls. The acoustic and material properties of conventional and asphalt rubber concrete (ARC) pavement are also studied to assess how the crumb rubber content influences sound absorption in street canyons. The porosity and absolute permeability of compacted specimens of asphalt rubber concrete are measured and compared to their normal and random incidence sound absorption coefficients as a function of crumb rubber content in the modified binder. Nonlinear trends are found between the sound absorption coefficients, porosity and absolute permeability of the compacted specimens and the percentage of crumb rubber in the modified binders. The cross-sectional areas of the air voids on the surfaces of the compacted specimens are measured using digital image processing techniques and a linear relationship is obtained between the average void area and crumb rubber content. The measured material properties are used to construct an empirical formula relating the average porosity, normal incidence noise reduction coefficients and

  1. Assessment of low temperature cracking in asphalt pavement mixes and rheological performance of asphalt binders

    NASA Astrophysics Data System (ADS)

    Sowah-Kuma, David

    Government spends a lot of money on the reconstruction and rehabilitation of road pavements in any given year due to various distresses and eventual failure. Low temperature (thermal) cracking, one of the main types of pavement distress, contributes partly to this economic loss, and comes about as a result of accumulated tensile strains exceeding the threshold tensile strain capacity of the pavement. This pavement distress leads to a drastic reduction of the pavement's service life and performance. In this study, the severity of low temperature (thermal) cracking on road pavements selected across the Province of Ontario and its predicted time to failure was assessed using the AASTHO Mechanistic-Empirical Pavement Design Guide (MEPDG) and AASHTOWARE(TM) software, with inputs such as creep compliance and tensile strength from laboratory test. Highway 400, K1, K2, Y1, Sasobit, Rediset LQ, and Rediset WMX were predicted to have a pavement in-service life above 15 years. Additionally, the rheological performance of the recovered asphalt binders was assessed using Superpave(TM) tests such as the dynamic shear rheometer (DSR) and bending beam rheometer (BBR). Further tests using modified standard protocols such as the extended bending beam rheometer (eBBR) (LS-308) test method and double-edge notched tension (DENT) test (LS-299) were employed to evaluate the failure properties associated with in service performance. The various rheological tests showed K1 to be the least susceptible to low temperature cracking compared to the remaining samples whiles Highway 24 will be highly susceptible to low temperature cracking. X-ray fluorescence (XRF) analysis was performed on the recovered asphalt binders to determine the presence of metals such as zinc (Zn) and molybdenum (Mo) believed to originate from waste engine oil, which is often added to asphalt binders. Finally, the severity of oxidative aging (hardening) of the recovered asphalt binders was also evaluated using the

  2. Ice melting properties of steel fiber modified asphalt mixtures with induction heating

    NASA Astrophysics Data System (ADS)

    Fang, Hao; Sun, Yihan; Liu, Quantao; Li, Bin; Wu, Shaopeng; Tang, Jin

    2017-03-01

    In this paper, the ice melting performance of asphalt concrete with steel fibers was studied. Steel fiber modified asphalt mixtures were prepared, five different fiber amount of steel fiber modified asphalt mixtures were mixed to study their induction heating rate. The samples covered with different thickness of ice were heated with induction heating to study their ice melting efficency. It was proved that the induction heating of steel fiber modified asphalt mixtures could significantly improve their ice melting efficency compared with the natural condition. And it was found that the thickness of the ice had little influence on the induction heating rate of the asphalt concrete.

  3. 77 FR 50651 - Approval and Promulgation of Air Quality Implementation Plans; New Hampshire; Hot Mix Asphalt Plants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-22

    ... AGENCY 40 CFR Part 52 Approval and Promulgation of Air Quality Implementation Plans; New Hampshire; Hot... Hampshire Hot Mix Asphalt Plant Rule at Env-A 2703.02(a). This rule establishes and requires limitations on visible emissions from all hot mix asphalt plants. This revision is consistent with the maintenance of...

  4. 77 FR 50608 - Approval and Promulgation of Air Quality Implementation Plans; New Hampshire; Hot Mix Asphalt Plants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-22

    ... AGENCY 40 CFR Part 52 Approval and Promulgation of Air Quality Implementation Plans; New Hampshire; Hot... 2703.02 for hot mix asphalt plants. This rule establishes and requires limitations on visible emissions from all hot mix asphalt plants. This revision is consistent with the maintenance of all...

  5. On the representative volume element of asphalt concrete at low temperature

    NASA Astrophysics Data System (ADS)

    Marasteanu, Mihai; Cannone Falchetto, Augusto; Velasquez, Raul; Le, Jia-Liang

    2016-08-01

    The feasibility of characterizing asphalt mixtures' rheological and failure properties at low temperatures by means of the Bending Beam Rheometer (BBR) is investigated in this paper. The main issue is the use of thin beams of asphalt mixture in experimental procedures that may not capture the true behavior of the material used to construct an asphalt pavement.

  6. Effects of asphalt rejuvenator on thermal and mechanical properties on oxidized hot mixed asphalt pavements

    NASA Astrophysics Data System (ADS)

    Farace, Nicholas A.; Buttlar, William G.; Reis, Henrique

    2016-04-01

    The utilization of asphalt rejuvenator, and its effectiveness for restoring thermal and mechanical properties was investigated via Disk-shaped Compact Tension (DC(T)) and acoustic emission (AE) testing for determining mechanical properties and embrittlement temperatures of the mixtures. During the DC(T) testing the fracture energies and peak loads were used to measure the resistance of the rejuvenated asphalt to low temperature cracking. The AE testing monitored the acoustic emission activity while the specimens were cooled from room temperature to -40 °C to estimate the temperature at which thermal cracking began (i.e. the embrittlement temperature). First, a baseline response was obtained by obtaining the mechanical and thermal response of virgin HMA samples and HMA samples that had been exposed to oxidative aging for 36 hours at 135°C. The results showed the virgin samples had much higher peak loads and fracture energies than the 36 hours aged samples. Acoustic Emission showed similar results with the virgin samples having embrittlement temperatures 10 °C cooler than the 36 hours aged specimens. Then, overaged for 36 hours specimens were treated different amounts of rejuvenator (10%, 15%, and 20% by weight of binder content) and left to dwell for increased amount of time periods varying from one to eight weeks. It was observed that the AE results showed an improvement of embrittlement temperature with increasing with the dwell times. The 8 weeks specimens had cooler embrittlement temperatures than the virgin specimens. Finally, the low temperature effects on fracture energy and peak load of the rejuvenated asphalt was investigated. Rejuvenator was applied (10% by weight of binder) to specimens aged 36 hours at 135 °C, and the dwell time was varied from 1 to 4 weeks. The results showed that the peak loads were restored to levels of the virgin specimens, and the fracture energies improved to levels beyond that of the virgin specimens. The results also showed a

  7. Evaluation of Properties of Recycled Asphalt Concrete Hot Mix.

    DTIC Science & Technology

    1984-02-01

    asphaltenes (A), !-" .nitrogen bases (N), first acidaffins (A1), second acidaffins (A2), and paraffins (P) to analyze the durability properties of the...depending on the asphaltene content in the bitumen C =coefficient, generally 1.0 for high-quality mixtures V =volume of bitumen, percent B V volume of voids

  8. Emissions Reductions Associated with the Use of Warm-Mix Asphalt as Compared to Hot-Mix Asphalt

    DTIC Science & Technology

    2014-06-01

    processes generating greenhouse gases. The motivation was to meet strict emissions regulations set forth by the Kyoto Protocol (Prowell et al. 2012...estimating emissions during asphalt production, current protocols to measure and control emissions, and case studies where WMA emissions were measured and...Research Program (NCHRP) funded project 9-47a to update the Protocol for Documenting Emissions and Energy Reductions of WMA and Conventional HMA

  9. Recycling of contaminated soils by the AMREC cold-mix, asphalt-emulsion process

    SciTech Connect

    Camougis, G.

    1993-12-31

    This paper describes the management of contaminated soils by recycling with a cold-mix, asphalt-emulsion process developed by the American Reclamation Corporation (AmRec). This is a soil recycling/reuse process in which soils contaminated with petroleum products and other contaminants can be processed into asphalt products with beneficial uses. Most of the discussion will center on soils contaminated with petroleum products. However, the recycling of soils with other contaminants (e.g., heavy metals) will also be discussed. AmRec has produced approximately 500,000 tons of asphalt products with recycled materials. These products have been used beneficially in roadways, access roads, parking areas and landfills throughout the northwest.

  10. Influence of fundamental material properties and air void structure on moisture damage of asphalt mixes

    NASA Astrophysics Data System (ADS)

    Arambula Mercado, Edith

    2007-12-01

    Moisture damage in asphalt mixes refers to the loss of serviceability due to the presence of moisture. The extent of moisture damage, also called moisture susceptibility, depends on internal and external factors. The internal factors relate to the properties of the materials and the microstructure distribution, while the external factors include the environmental conditions, production and construction practices, pavement design, and traffic level. The majority of the research on moisture damage is based on the hypothesis that infiltration of surface water is the main source of moisture. Of the two other principal mechanisms of water transport, permeation of water vapor and capillary rise of subsurface water, the latter has been least explored. A laboratory test and analysis methods based on X-ray computed tomography (CT) were established to assess the capillary rise of water. The amount and size of air voids filled with water were used in the capillary rise equation to estimate the distribution of the contact angles between the water and the mastic. The results were able to show the influence of air void size on capillary rise and contact angles. The relationship between air void structure and moisture susceptibility was evaluated using a fundamental fracture model based on dissipated energy of viscoelastic materials. Detailed description is provided in this dissertation on the deduction of the model equation, the selection of the model parameters, and the required testing protocols. The model parameters were obtained using mechanical tests and surface energy measurements. The microstructure of asphalt mixes prepared in the laboratory having different air void structures was captured using X-ray CT, and image analysis techniques were used to quantify the air void structure and air void connectivity. The air void structure was found to influence the mix resistance to moisture damage. To validate the fracture model, asphalt mixes with known field performance were

  11. A novel technique for the production of cool colored concrete tile and asphalt shingle roofing products

    SciTech Connect

    Levinson, Ronnen; Akbari, Hashem; Berdahl, Paul; Wood, Kurt; Skilton, Wayne; Petersheim, Jerry

    2009-11-20

    The widespread use of solar-reflective roofing materials can save energy, mitigate urban heat islands and slow global warming by cooling the roughly 20% of the urban surface that is roofed. In this study we created prototype solar-reflective nonwhite concrete tile and asphalt shingle roofing materials using a two-layer spray coating process intended to maximize both solar reflectance and factory-line throughput. Each layer is a thin, quick-drying, pigmented latex paint based on either acrylic or a poly(vinylidene fluoride)/acrylic blend. The first layer is a titanium dioxide rutile white basecoat that increases the solar reflectance of a gray-cement concrete tile from 0.18 to 0.79, and that of a shingle surfaced with bare granules from 0.06 to 0.62. The second layer is a 'cool' color topcoat with weak near-infrared (NIR) absorption and/or strong NIR backscattering. Each layer dries within seconds, potentially allowing a factory line to pass first under the white spray, then under the color spray. We combined a white basecoat with monocolor topcoats in various shades of red, brown, green and blue to prepare 24 cool color prototype tiles and 24 cool color prototypes shingles. The solar reflectances of the tiles ranged from 0.26 (dark brown; CIELAB lightness value L* = 29) to 0.57 (light green; L* = 76); those of the shingles ranged from 0.18 (dark brown; L* = 26) to 0.34 (light green; L* = 68). Over half of the tiles had a solar reflectance of at least 0.40, and over half of the shingles had a solar reflectance of at least 0.25.

  12. Seismic joint analysis for non-destructive testing of asphalt and concrete slabs

    USGS Publications Warehouse

    Ryden, N.; Park, C.B.

    2005-01-01

    A seismic approach is used to estimate the thickness and elastic stiffness constants of asphalt or concrete slabs. The overall concept of the approach utilizes the robustness of the multichannel seismic method. A multichannel-equivalent data set is compiled from multiple time series recorded from multiple hammer impacts at progressively different offsets from a fixed receiver. This multichannel simulation with one receiver (MSOR) replaces the true multichannel recording in a cost-effective and convenient manner. A recorded data set is first processed to evaluate the shear wave velocity through a wave field transformation, normally used in the multichannel analysis of surface waves (MASW) method, followed by a Lambwave inversion. Then, the same data set is used to evaluate compression wave velocity from a combined processing of the first-arrival picking and a linear regression. Finally, the amplitude spectra of the time series are used to evaluate the thickness by following the concepts utilized in the Impact Echo (IE) method. Due to the powerful signal extraction capabilities ensured by the multichannel processing schemes used, the entire procedure for all three evaluations can be fully automated and results can be obtained directly in the field. A field data set is used to demonstrate the proposed approach.

  13. Life Cycle Cost Analysis of Ready Mix Concrete Plant

    NASA Astrophysics Data System (ADS)

    Topkar, V. M.; Duggar, A. R.; Kumar, A.; Bonde, P. P.; Girwalkar, R. S.; Gade, S. B.

    2013-11-01

    India, being a developing nation is experiencing major growth in its infrastructural sector. Concrete is the major component in construction. The requirement of good quality of concrete in large quantities can be fulfilled by ready mix concrete batching and mixing plants. The paper presents a technique of applying the value engineering tool life cycle cost analysis to a ready mix concrete plant. This will help an investor or an organization to take investment decisions regarding a ready mix concrete facility. No economic alternatives are compared in this study. A cost breakdown structure is prepared for the ready mix concrete plant. A market survey has been conducted to collect realistic costs for the ready mix concrete facility. The study establishes the cash flow for the ready mix concrete facility helpful in investment and capital generation related decisions. Transit mixers form an important component of the facility and are included in the calculations. A fleet size for transit mixers has been assumed for this purpose. The life cycle cost has been calculated for the system of the ready mix concrete plant and transit mixers.

  14. Part 1. Characterization of roadway asphalts by solubility studies. Part 2. Development of concrete applicant organo-functional silanes

    SciTech Connect

    Lee, W.D.

    1993-01-01

    Part 1. Solubility profiles describe the chemical constitution of asphalt in terms of internal solubility phenomena. In this study the solubility parameter (r) which is related to hydrogen bonding or associative interactions and the volume dependent solubility parameter (V) which is related to London dispersion forces (non-polar interactions) and the dipole-dipole polar interactions. The plot by the solubility coordinates (r, V) of the solvents and the solubility of the asphalt is termed the solubility profile. Solubility profile data can be related to roadway performance. Roadway asphalt aging can be followed visually and mathematically by the detailed analysis of time-lapsed solubility profiles of roadway core asphalts. The profiles can be used to describe the gross chemical changes without the need to identify or isolate pure substances. This report investigates thirty-two roadway projects constructed between February 1983 and August 1987 which have been monitored for condition and followed by a series of solubility profiles for up to 60 months. Part 2. A variety of organosilanes have been used as applicants to roadway surfaces thereby extending the life or service of the roadway. The aim of this research project is to synthesize and characterize several organosilane compounds with potential concrete roadway applications. Alkyltrialkoxysilanes can be used to stop salt from penetrating concrete and resultant rebar corrosion. The first area this project deals with the optimization of the catalytic synthesis of n-octyltrichloro-and n-decyltrichlorosilane and their alkoxy derivatives. The investigation includes a study of the type and amount of catalyst and a study of varying reaction conditions. The second area of research involves the synthesis and characterization of a set of UV-absorbing/VIS-emitting organosiloxanes. These compounds have potential use as roadway delineation or roadway obstruction demarkation product enhancements.

  15. Construction and testing of crumb rubber modified hot mix asphalt pavement. Interim report

    SciTech Connect

    Albritton, G.E.; Gatlin, G.R.

    1996-08-01

    This study was structured towards addressing that portion of ISTEA which directs the individual states to conduct studies on the recyclability of crumb rubber modified hot mix asphalt (CRMHMA), and the technical performance of CRMHMA pavement by monitoring the construction and evaluating the performance of highway test sections in which CRMHA is removed by cold milling and recycled into new HMA through a hot mix asphalt plant. This project is to be constructed in two phases, the CRMHMA will be built in the first phase and approximately one year later it will be recycled. This report deals with the first phase in which the objective was to further document the construction, engineering characteristics, and performace of CRMHMA.

  16. Clogging evaluation of porous asphalt concrete cores in conjunction with medical x-ray computed tomography

    NASA Astrophysics Data System (ADS)

    Su, Yu-Min; Hsu, Chen-Yu; Lin, Jyh-Dong

    2014-03-01

    This study was to assess the porosity of Porous Asphalt Concrete (PAC) in conjunction with a medical X-ray computed tomography (CT) facility. The PAC was designed as the surface course to achieve the target porosity 18%. There were graded aggregates, soils blended with 50% of coarse sand, and crushed gravel wrapped with geotextile compacted and served as the base, subbase, and infiltration layers underneath the PAC. The test site constructed in 2004 is located in Northern of Taiwan in which the daily traffic has been light and limited. The porosity of the test track was investigated. The permeability coefficient of PAC was found severely degraded from 2.2×10-1 to 1.2×10-3 -cm/sec, after nine-year service, while the permeability below the surface course remained intact. Several field PAC cores were drilled and brought to evaluate the distribution of air voids by a medical X-ray CT nondestructively. The helical mode was set to administrate the X-ray CT scan and two cross-sectional virtual slices were exported in seconds for analyzing air voids distribution. It shows that the clogging of voids occurred merely 20mm below the surface and the porosity can reduce as much about 3%. It was also found that the roller compaction can decrease the porosity by 4%. The permeability reduction in this test site can attribute to the voids of PAC that were compacted by roller during the construction and filled by the dusts on the surface during the service.

  17. Time resolved analysis of water drainage in porous asphalt concrete using neutron radiography.

    PubMed

    Poulikakos, L D; Sedighi Gilani, M; Derome, D; Jerjen, I; Vontobel, P

    2013-07-01

    Porous asphalt as a road surface layer controls aquaplaning as rain water can drain through its highly porous structure. The process of water drainage through this permeable layer is studied using neutron radiography. Time-resolved water configuration and distribution within the porous structure are reported. It is shown that radiography depicts the process of liquid water transport within the complex geometry of porous asphalt, capturing water films, filled dead end pores and water islands.

  18. Slow dynamic diagnosis of asphalt concrete specimen to determine level of damage caused by static low temperature conditioning

    NASA Astrophysics Data System (ADS)

    Bekele, Abiy; Birgisson, Björn; Ryden, Nils; Gudmarsson, Anders

    2017-02-01

    The phenomenon of slow dynamics has been observed in a variety of materials which are considered as relatively homogeneous that exhibit nonlinearity due to the presence of defects or cracks within them. Experimental realizations in previous work suggest that slow dynamics can be in response to acoustic drives with relatively larger amplitude as well as rapid change of temperature. Slow dynamics as a nonlinear elastic response of damaged materials is manifested as a sharp drop and then recovery of resonance frequency linearly with logarithmic time. In this work, slow dynamics recovery is intended to be used as a means of identifying and evaluating thermal damage on an asphalt concrete specimen. The experimental protocol for measuring slow dynamics is based on the technique of nonlinear resonance spectroscopy and is set up with non-contact excitation using a loud speaker and the data acquisition tool box of Matlab. Sweeps of frequency with low amplitude are applied in order to probe the specimen at its linear viscoelastic state. The drop and then recovery in fundamental axially symmetric resonance frequency is observed after the specimen is exposed to sudden temperature change. The investigation of the viscoelastic contribution to the change in resonance frequency and slow dynamics can help identify micro-damage in asphalt concrete samples.

  19. Prediction of frequency for simulation of asphalt mix fatigue tests using MARS and ANN.

    PubMed

    Ghanizadeh, Ali Reza; Fakhri, Mansour

    2014-01-01

    Fatigue life of asphalt mixes in laboratory tests is commonly determined by applying a sinusoidal or haversine waveform with specific frequency. The pavement structure and loading conditions affect the shape and the frequency of tensile response pulses at the bottom of asphalt layer. This paper introduces two methods for predicting the loading frequency in laboratory asphalt fatigue tests for better simulation of field conditions. Five thousand (5000) four-layered pavement sections were analyzed and stress and strain response pulses in both longitudinal and transverse directions was determined. After fitting the haversine function to the response pulses by the concept of equal-energy pulse, the effective length of the response pulses were determined. Two methods including Multivariate Adaptive Regression Splines (MARS) and Artificial Neural Network (ANN) methods were then employed to predict the effective length (i.e., frequency) of tensile stress and strain pulses in longitudinal and transverse directions based on haversine waveform. It is indicated that, under controlled stress and strain modes, both methods (MARS and ANN) are capable of predicting the frequency of loading in HMA fatigue tests with very good accuracy. The accuracy of ANN method is, however, more than MARS method. It is furthermore shown that the results of the present study can be generalized to sinusoidal waveform by a simple equation.

  20. Characterization of asphalt and asphalt recyclability

    SciTech Connect

    Painter, P.C.

    1993-10-01

    The goal of the research program was to construct a simple model and computer programs that will allow at least a qualitative understand of the phase behavior of asphalt (i.e., how asphalt components mix with one another), mixtures of different types of asphalt (i.e., in recycling) and mixtures of asphalt with other materials, such as synthetic polymers. The authors have constructed such a model and computer programs (for Macintosh computers) that allow such calculations to be performed easily.

  1. Laboratory Performance Testing of Warm-Mix Asphalt Technologies for Airfield Pavements

    DTIC Science & Technology

    2013-12-01

    Manufacturer WMA Category Dosage Ratea (%) 1 PG 67-22 Ergon --- --- 2 Sasobit® SasolWax organic wax 1.5 3 Evotherm ™ 3G MeadWestvaco chemical...better performing than the HMA (Mix 1), while the Evotherm ™ (Mix 3) and foamed asphalt (Mix 4) WMAs did not perform quite as well as HMA. These...Sasobit®) 1 4.0 0.4301 0.4873 31 52 2 4.0 0.4788 0.4879 24 49 3 4.1 0.4049 0.464 29 60 Avg. 4.0 0.4379 0.4797 28 54 3 ( Evotherm ™) 1 4.0 0.0205 0.5793 20

  2. Photoactive roadways: Determination of CO, NO and VOC uptake coefficients and photolabile side product yields on TiO2 treated asphalt and concrete

    NASA Astrophysics Data System (ADS)

    Toro, C.; Jobson, B. T.; Haselbach, L.; Shen, S.; Chung, S. H.

    2016-08-01

    This work reports uptake coefficients and by-product yields of ozone precursors onto two photocatalytic paving materials (asphalt and concrete) treated with a commercial TiO2 surface application product. The experimental approach used a continuously stirred tank reactor (CSTR) and allowed for testing large samples with the same surface morphology encountered with real urban surfaces. The measured uptake coefficient (γgeo) and surface resistances are useful for parametrizing dry deposition velocities in air quality model evaluation of the impact of photoactive surfaces on urban air chemistry. At 46% relative humidity, the surface resistance to NO uptake was ∼1 s cm-1 for concrete and ∼2 s cm-1 for a freshly coated older roadway asphalt sample. HONO and NO2 were detected as side products from NO uptake to asphalt, with NO2 molar yields on the order of 20% and HONO molar yields ranging between 14 and 33%. For concrete samples, the NO2 molar yields increased with the increase of water vapor, ranging from 1% to 35% and HONO was not detected as a by-product. Uptake of monoaromatic VOCs to the asphalt sample set displayed a dependence on the compound vapor pressure, and was influenced by competitive adsorption from less volatile VOCs. Formaldehyde and acetaldehyde were detected as byproducts, with molar yields ranging from 5 to 32%.

  3. Asphalt coking method

    SciTech Connect

    Bonilla, J.A.; Elliott, J.D.

    1987-08-11

    A process is described for treating a heavy hydrocarbon fluid containing asphaltenes comprising: contacting the heavy hydrocarbon fluid with a solvent, wherein the solvent is light naphtha, C/sub 4/ hydrocarbons, C/sub 5/ hydrocarbons, C/sub 6/ hydrocarbons, or a mixture of any of light naphtha and C/sub 4/, C/sub 5/ and C/sub 6/ hydrocarbons, to obtain an asphalt mix, containing asphalt and the solvent, and deasphalted oil mix, containing deasphalted oil and the solvent; feeding the asphalt mix to a delayed coking process to form coke, wherein the asphalt mix is heated by passing the asphalt mix through conduit means in a heater in the delayed coking process. The flow of the asphalt mix through the conduit means is assisted by vaporization in the heater of the solvent in the asphalt mix, and the asphalt mix includes sufficient solvent to provide a residence time of the asphalt mix in the heater adequate for heating the asphalt mix for coking while reducing the formation of coke in the heater; separating the solvent in the deasphalted oil mix from the deasphalted oil mix to yield deasphalted oil; and recovering the deasphalted oil, bypassing the delayed coking process.

  4. Analysis of Adhesive Characteristics of Asphalt Based on Atomic Force Microscopy and Molecular Dynamics Simulation.

    PubMed

    Xu, Meng; Yi, Junyan; Feng, Decheng; Huang, Yudong; Wang, Dongsheng

    2016-05-18

    Asphalt binder is a very important building material in infrastructure construction; it is commonly mixed with mineral aggregate and used to produce asphalt concrete. Owing to the large differences in physical and chemical properties between asphalt and aggregate, adhesive bonds play an important role in determining the performance of asphalt concrete. Although many types of adhesive bonding mechanisms have been proposed to explain the interaction forces between asphalt binder and mineral aggregate, few have been confirmed and characterized. In comparison with chemical interactions, physical adsorption has been considered to play a more important role in adhesive bonding between asphalt and mineral aggregate. In this study, the silicon tip of an atomic force microscope was used to represent silicate minerals in aggregate, and a nanoscale analysis of the characteristics of adhesive bonding between asphalt binder and the silicon tip was conducted via an atomic force microscopy (AFM) test and molecular dynamics (MD) simulations. The results of the measurements and simulations could help in better understanding of the bonding and debonding procedures in asphalt-aggregate mixtures during hot mixing and under traffic loading. MD simulations on a single molecule of a component of asphalt and monocrystalline silicon demonstrate that molecules with a higher atomic density and planar structure, such as three types of asphaltene molecules, can provide greater adhesive strength. However, regarding the real components of asphalt binder, both the MD simulations and AFM test indicate that the colloidal structural behavior of asphalt also has a large influence on the adhesion behavior between asphalt and silicon. A schematic model of the interaction between asphalt and silicon is presented, which can explain the effect of aging on the adhesion behavior of asphalt.

  5. Preparation of capsules containing rejuvenators for their use in asphalt concrete.

    PubMed

    García, Alvaro; Schlangen, Erik; van de Ven, Martin; Sierra-Beltrán, Guadalupe

    2010-12-15

    Every year, there is a demand of more than 110 million metric tons of asphalt all around the world. This represents a huge amount of money and energy, from which a good part is for the preservation and renovation of the existing pavements. The problem of asphalt is that it oxidizes with time and therefore its beneficial properties disappear. Traditionally, rejuvenators spread in the road surface, are used to restore the original properties of the pavement. The problem is that, for a rejuvenator to be successful, it must penetrate the pavement surface. Furthermore, application of a rejuvenator will reduce the skid resistance of the pavement and, besides, rejuvenators have many aromatic compounds that can be harmful for the environment. To solve these problems this paper introduces a new concept in road construction: encapsulated rejuvenators. The basic principle is that when the stress in capsules embedded in the asphalt reaches a certain threshold value, the capsules break and some rejuvenator is released, restoring the original properties of the pavement. This paper will show how to prepare such capsules and how to determine their characteristics. This is one of the first steps towards intelligent pavements.

  6. 2D and 3D Ground Penetrating Radar monitoring of a reinforced concrete asphalt plate affected by mechanical deformation.

    NASA Astrophysics Data System (ADS)

    Bavusi, M.; Dumoulin, J.; Loperte, A.; Rizzo, E.; Soldovieri, F.

    2012-04-01

    The main facility of Hydrogeosite Laboratory of the Italian National Research Council (Marsico Nuovo, CNR) is a 3m x 7m x 10m reinforced concrete pool filled by siliceous sand designed for hydrologic experiments. One of its peculiarities is the possibility to vary the water table depth by using a proper hydraulic system [1]. In the framework of the FP7 ISTIMES project (Integrated System for Transport Infrastructure surveillance and Monitoring by Electromagnetic Sensing), a 3m x 3m layered structure has been purposely built and placed in the pool of the Hydrogeosite Laboratory with the aim to carry out a long term monitoring, by using jointly several electromagnetic sensing technologies, during two different phases simulating the rising of the water table and a mechanical solicitation. Several layers composed the structure from the top to the bottom, such as: 5 cm of asphalt; 5-10 cm of reinforced concrete; 20-25 cm of conglomerate, 55 cm of sand. Moreover, in the sand layer, three (metallic and plastic) pipes of different size were buried to simulate utilities. Ground Penetrating Radar (GPR) surveys were performed by using a the GSSI SIR 3000 system equipped with 400 MHz and 1500 MHz central frequency antennas. Surveys carried out by means of 400 MHz antenna allowed to detect and localize the three pipes (one in plastic and two in metal) and to investigate the effects of the sand water content on their radar signature. Surveys carried out by using 1500 MHz antenna were focused to characterize the shallower layers of the structure. The Hydrogeosite experiment consisted in following stages: • Arising of a water table by infiltration from the bottom; • Water gravity infiltration condescendingly; • Infiltration by peristaltic pump in the very shallow layers of the structure; • Water table drawdown; • Mechanical structure deformation; • Asphalt plate restoration after mechanical solicitation. After each stage a series of GPR surveys was performed. Moreover

  7. Use of selected waste materials in concrete mixes.

    PubMed

    Batayneh, Malek; Marie, Iqbal; Asi, Ibrahim

    2007-01-01

    A modern lifestyle, alongside the advancement of technology has led to an increase in the amount and type of waste being generated, leading to a waste disposal crisis. This study tackles the problem of the waste that is generated from construction fields, such as demolished concrete, glass, and plastic. In order to dispose of or at least reduce the accumulation of certain kinds of waste, it has been suggested to reuse some of these waste materials to substitute a percentage of the primary materials used in the ordinary portland cement concrete (OPC). The waste materials considered to be recycled in this study consist of glass, plastics, and demolished concrete. Such recycling not only helps conserve natural resources, but also helps solve a growing waste disposal crisis. Ground plastics and glass were used to replace up to 20% of fine aggregates in concrete mixes, while crushed concrete was used to replace up to 20% of coarse aggregates. To evaluate these replacements on the properties of the OPC mixes, a number of laboratory tests were carried out. These tests included workability, unit weight, compressive strength, flexural strength, and indirect tensile strength (splitting). The main findings of this investigation revealed that the three types of waste materials could be reused successfully as partial substitutes for sand or coarse aggregates in concrete mixtures.

  8. Use of selected waste materials in concrete mixes

    SciTech Connect

    Batayneh, Malek Marie, Iqbal; Asi, Ibrahim

    2007-07-01

    A modern lifestyle, alongside the advancement of technology has led to an increase in the amount and type of waste being generated, leading to a waste disposal crisis. This study tackles the problem of the waste that is generated from construction fields, such as demolished concrete, glass, and plastic. In order to dispose of or at least reduce the accumulation of certain kinds of waste, it has been suggested to reuse some of these waste materials to substitute a percentage of the primary materials used in the ordinary portland cement concrete (OPC). The waste materials considered to be recycled in this study consist of glass, plastics, and demolished concrete. Such recycling not only helps conserve natural resources, but also helps solve a growing waste disposal crisis. Ground plastics and glass were used to replace up to 20% of fine aggregates in concrete mixes, while crushed concrete was used to replace up to 20% of coarse aggregates. To evaluate these replacements on the properties of the OPC mixes, a number of laboratory tests were carried out. These tests included workability, unit weight, compressive strength, flexural strength, and indirect tensile strength (splitting). The main findings of this investigation revealed that the three types of waste materials could be reused successfully as partial substitutes for sand or coarse aggregates in concrete mixtures.

  9. 11. Buttress rising above stream bed elevation. Concrete mixing plant ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. Buttress rising above stream bed elevation. Concrete mixing plant is at right, west tower and placement tower boom are visible. Photographer unknown, November 24, 1926. Source: Ralph Pleasant. - Waddell Dam, On Agua Fria River, 35 miles northwest of Phoenix, Phoenix, Maricopa County, AZ

  10. Evaluation of concrete recycling system efficiency for ready-mix concrete plants.

    PubMed

    Vieira, Luiz de Brito Prado; Figueiredo, Antonio Domingues de

    2016-10-01

    The volume of waste generated annually in concrete plants is quite large and has important environmental and economic consequences. The use of fresh concrete recyclers is an interesting way for the reuse of aggregates and water in new concrete production. This paper presents a study carried out for over one year by one of the largest ready-mix concrete producers in Brazil. This study focused on the evaluation of two recyclers with distinct material separation systems, herein referred to as drum-type and rotary sieve-type equipment. They were evaluated through characterization and monitoring test programs to verify the behaviour of recovered materials (aggregates, water, and slurry). The applicability of the recovered materials (water and aggregates) was also evaluated in the laboratory and at an industrial scale. The results obtained with the two types of recyclers used were equivalent and showed no significant differences. The only exception was in terms of workability. The drum-type recycler generated fewer cases that required increased pumping pressure. The analysis concluded that the use of untreated slurry is unfeasible because of its intense negative effects on the strength and workability of concrete. The reclaimed water, pre-treated to ensure that its density is less than 1.03g/cm(3), can be used on an industrial scale without causing any harm to the concrete. The use of recovered aggregates consequently induces an increase in water demand and cement consumption to ensure the workability conditions of concrete that is proportional to the concrete strength level. Therefore, the viability of their use is restricted to concretes with characteristic strengths lower than 25MPa.

  11. Environmental impact of highway construction and repair materials on surface and ground waters. Case study: crumb rubber asphalt concrete.

    PubMed

    Azizian, Mohammad F; Nelson, Peter O; Thayumanavan, Pugazhendhi; Williamson, Kenneth J

    2003-01-01

    The practice of incorporating certain waste products into highway construction and repair materials (CRMs) has become more popular. These practices have prompted the National Academy of Science, National Cooperative Highway Research Program (NCHRP) to research the possible impacts of these CRMs on the quality of surface and ground waters. State department of transportations (DOTs) are currently experimenting with use of ground tire rubber ( crumb rubber) in bituminous construction and as a crack sealer. Crumb rubber asphalt concrete (CR-AC) leachates contain a mixture of organic and metallic contaminants. Benzothiazole and 2(3H)-benzothiazolone (organic compounds used in tire rubber manufacturing) and the metals mercury and aluminum were leached in potentially harmful concentrations (exceeding toxic concentrations for aquatic toxicity tests). CR-AC leachate exhibited moderate to high toxicity for algae ( Selenastrum capriconutum) and moderate toxicity for water fleas ( Daphnia magna). Benzothiazole was readily removed from CR-AC leachate by the environmental processes of soil sorption, volatilization, and biodegradation. Metals, which do not volatilize or photochemically or biologically degrade, were removed from the leachate by soil sorption. Contaminants from CR-AC leachates are thus degraded or retarded in their transport through nearby soils and ground waters.

  12. Quality and seasonal variation of rainwater harvested from concrete, asphalt, ceramic tile and green roofs in Chongqing, China.

    PubMed

    Zhang, Qianqian; Wang, Xiaoke; Hou, Peiqiang; Wan, Wuxing; Li, Ruida; Ren, Yufen; Ouyang, Zhiyun

    2014-01-01

    There is an urgent requirement to examine the quality of harvested rainwater for potable and non-potable purposes, based on the type of roofing material. In this study, we examined the effect on the quality of harvested rainwater of conventional roofing materials (concrete, asphalt and ceramic tile roofs) compared with alternative roofing materials (green roof). The results showed that the ceramic tile roof was the most suitable for rainwater-harvesting applications because of the lower concentrations of leachable pollutants. However, in this study, the green roof was not suitable for rainwater harvesting applications. In addition, seasonal trends in water quality parameters showed that pollutants in roof runoff in summer and autumn were lower than those in winter and spring. This study revealed that the quality of harvested rainwater was significantly affected by the roofing material; therefore, local government and urban planners should develop stricter testing programs and produce more weathering resistant roofing materials to allow the harvesting of rainwater for domestic and public uses.

  13. Characterization of cold recycled asphalt mixtures

    SciTech Connect

    Tia, M.

    1982-01-01

    In this study, the long-term behavior of the cold-recycled asphalt mixtures was investigated through nine experimental designs. The scope of the study covered two types of pavement material, three levels of oxydized condition of the old binder and one type of virgin aggregate. The added softening agents included a high-float asphalt emulsion AE-150, a foamed asphalt, and the rejuvenating agents, Reclamite, Mobilsol and DUTREX 739. The Water Sensitivity Test was used to evaluate the resistance of the recycled mixes to water. The results of the study indicated that most of the rejuvenating action of the added binder on the old binder took place during the compaction process. The binders of the recycled mixes which underwent the initial softening during the compaction process generally increased in stiffness with increasing curing time. The results indicated that the gyratory stability index and the gyratory elasto-plastic index could be used to determine the optimum binder content of a recycled mix. However, they could not be used to estimate the resilient modulus or the Marshall stability of the mix.A higher compactive effort generally produced a higher resilient modulus and Marshall stability of the recycled mix. When the binder content is too high, a higher compactive effort generally produces a lower Hveem R-value.The structural performance of these recycled mixes was compared to that of an asphalt concrete using a linear elastic multilayer analysis.

  14. Recycled materials in asphalt pavements. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect

    Not Available

    1994-05-01

    The bibliography contains citations concerning the recycling of asphalt pavement materials, and the use of other recycled materials to manufacture asphalt pavement. Articles discuss methods used for recycling bituminous pavement including hot-mix and cold-mix. Materials used to improve recycled pavement, and recycled materials used in asphalt pavement include latexes, rubber scrap such as tires, glass shards, concretes, dusts, waste oils, roofing wastes, sulfur, and metal refining sludges. Testing and evaluation of recycled pavements both in laboratories and in test cases are considered. (Contains a minimum of 160 citations and includes a subject term index and title list.)

  15. Excess Foundry Sand Characterization and Experimental Investigation in Controlled Low-Strength Material and Hot-Mixing Asphalt

    SciTech Connect

    Tikalsky, Paul J.; Bahia, Hussain U.; Deng, An; Snyder, Thomas

    2004-10-15

    This report provides technical data regarding the reuse of excess foundry sand. The report addresses three topics: a statistically sound evaluation of the characterization of foundry sand, a laboratory investigation to qualify excess foundry sand as a major component in controlled low-strength material (CLSM), and the identification of the best methods for using foundry sand as a replacement for natural aggregates for construction purposes, specifically in asphalt paving materials. The survival analysis statistical technique was used to characterize foundry sand over a full spectrum of general chemical parameters, metallic elements, and organic compounds regarding bulk analysis and leachate characterization. Not limited to characterization and environmental impact, foundry sand was evaluated by factor analyses, which contributes to proper selection of factor and maximization of the reuse marketplace for foundry sand. Regarding the integration of foundry sand into CLSM, excavatable CLSM and structural CLSM containing different types of excess foundry sands were investigated through laboratory experiments. Foundry sand was approved to constitute a major component in CLSM. Regarding the integration of foundry sand into asphalt paving materials, the optimum asphalt content was determined for each mixture, as well as the bulk density, maximum density, asphalt absorption, and air voids at Nini, Ndes, and Nmax. It was found that foundry sands can be used as an aggregate in hot-mix asphalt production, but each sand should be evaluated individually. Foundry sands tend to lower the strength of mixtures and also may make them more susceptible to moisture damage. Finally, traditional anti-stripping additives may decrease the moisture sensitivity of a mixture containing foundry sand, but not to the level allowed by most highway agencies.

  16. Excess Foundry Sand Characterization and Experimental Investigation in Controlled Low-Strength Material and Hot-Mixing Asphalt

    SciTech Connect

    Pauul J. Tikalsky

    2004-10-31

    This report provides technical data regarding the reuse of excess foundry sand. The report addresses three topics: (1) a statistically sound evaluation of the characterization of foundry sand, (2) a laboratory investigation to qualify excess foundry sand as a major component in controlled low-strength material (CLSM), and (3) the identification of the best methods for using foundry sand as a replacement for natural aggregates for construction purposes, specifically in asphalt paving materials. The survival analysis statistical technique was used to characterize foundry sand over a full spectrum of general chemical parameters, metallic elements, and organic compounds regarding bulk analysis and leachate characterization. Not limited to characterization and environmental impact, foundry sand was evaluated by factor analyses, which contributes to proper selection of factor and maximization of the reuse marketplace for foundry sand. Regarding the integration of foundry sand into CLSM, excavatable CLSM and structural CLSM containing different types of excess foundry sands were investigated through laboratory experiments. Foundry sand was approved to constitute a major component in CLSM. Regarding the integration of foundry sand into asphalt paving materials, the optimum asphalt content was determined for each mixture, as well as the bulk density, maximum density, asphalt absorption, and air voids at N{sub ini}, N{sub des}, and N{sub max}. It was found that foundry sands can be used as an aggregate in hot-mix asphalt production, but each sand should be evaluated individually. Foundry sands tend to lower the strength of mixtures and also may make them more susceptible to moisture damage. Finally, traditional anti-stripping additives may decrease the moisture sensitivity of a mixture containing foundry sand, but not to the level allowed by most highway agencies.

  17. A methodology for use of digital image correlation for hot mix asphalt testing

    NASA Astrophysics Data System (ADS)

    Ramos, Estefany

    Digital Image Correlation (DIC) is a relatively new technology which aids in the measurement of material properties without the need for installation of sensors. DIC is a noncontact measuring technique that requires the specimen to be marked with a random speckled pattern and to be photographed during the test. The photographs are then post-processed based on the location of the pattern throughout the test. DIC can aid in calculating properties that would otherwise be too difficult even with other measuring instruments. The objective of this thesis is to discuss the methodology and validate the use of DIC in different hot mix asphalt (HMA) tests, such as, the Overlay Tester (OT) Test, Indirect Tensile (IDT) Test, and the Semicircular Bending (SCB) Test. The DIC system provides displacements and strains in any visible surface. The properly calibrated 2-D or 3-D DIC data can be used to understand the complex stress and strain distributions and the modes of the initiation and propagation of cracks. The use of this observational method will lead to further understanding of the complex boundary conditions of the different test, and therefore, allowing it to be implemented in the analysis of other materials. The use of digital image correlation will bring insight and knowledge onto what is happening during a test.

  18. 78 FR 51267 - Hours of Service of Drivers: National Ready Mixed Concrete Association; Application for Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-20

    ... Concrete Association; Application for Exemption AGENCY: Federal Motor Carrier Safety Administration (FMCSA... it has received an application from the National Ready Mixed Concrete Association (NRMCA) for an... carriers and CMV drivers operating ready-mixed concrete trucks. Due to the nature of their operation,...

  19. Oxidation and photooxidation of asphalts

    SciTech Connect

    Mill, T.; Tse, D. )

    1990-07-01

    Oxidation of asphalt is a major cause of pavement failure owing to hardening of the asphalt binder with accompanying changes in viscosity, separation of components, embrittlement and loss of cohesion and adhesion of the asphalt in the mix. However oxidation of asphalt-aggregate mixes at high temperature is deliberately done to partly harden the mix prior to laydown; hardening then continues during cooling. Excessive hardening at this point is undesirable because of embrittlement and cracking. Slow oxidation of asphalt continues during the service life of the roadbed at a rate that appears to be partly determined by the void volume of the roadbed, as well as the properties of the asphalt and (possibly) the properties of the aggregate. The authors focused their efforts on understanding the mechanistic basis for slow oxidation of asphalt under service conditions in order to predict how rapidly an asphalt will oxidize, based on its composition, and to find better ways to inhibit the process under service conditions.

  20. State of the practice: Design and construction of asphalt paving materials with crumb-rubber modifier. Final report

    SciTech Connect

    Heitzman, M.A.

    1992-05-01

    The document is a comprehensive overview of the terminology, processes, products, and applications of crumb rubber modifier (CRM) technology. The technology includes any use of scrap tire rubber in asphalt paving materials. In general, CRM technology can be divided into two categories--the wet process and the dry process. When CRM is incorporated into an asphalt paving material, it will modify the properties of the binder (asphalt rubber) and/or act as a rubber aggregate (rubber modified hot mix asphalt). The five concepts for using CRM discussed in the report are McDonald, PlusRide, generic dry, chunk rubber asphalt concrete, and continuous blending asphalt rubber. There are two principal unresolved engineering issues related to the use of CRM in asphalt paving materials. On the national level, the ability to recycle asphalt paving mixes containing CRM has not been demonstrated. At the State and local levels, these modified asphalt mixes must be field evaluated to establish expected levels of performance. The appendices provide guidelines for material specifications, mix design, and construction specifications. An experimental work plan for monitoring performance and a stack emission testing program are also included.

  1. Innovative reuse of concrete slurry waste from ready-mixed concrete plants in construction products.

    PubMed

    Xuan, Dongxing; Zhan, Baojian; Poon, Chi Sun; Zheng, Wei

    2016-07-15

    Concrete slurry waste (CSW) is generated from ready-mixed concrete plants during concrete production and is classified as a corrosive hazardous material. If it is disposed of at landfills, it would cause detrimental effects for our surrounding environment and ecosystems due to its high pH value as well as heavy metal contamination and accumulation. A new method in this study has been introduced to effectively reuse CSW in new construction products. In this method, the calcium-silicate rich CSW in the fresh state was considered as a cementitious paste as well as a CO2 capture medium. The experimental results showed that the pH values of the collected CSWs stored for 28 days ranged from 12.5 to 13.0 and a drastic decrease of pH value was detected after accelerated mineral carbonation. The theoretically calculated CO2 sequestration extent of CSWs was from 27.05% to 31.23%. The practical water to solid ratio in the fresh CSW varied from 0.76 to 1.12, which had a significant impact on the compressive strength of the mixture with CSWs. After subjecting to accelerated mineral carbonation, rapid initial strength development and lower drying shrinkage for the prepared concrete mixture were achieved.

  2. Personal breathing zone exposures among hot-mix asphalt paving workers; preliminary analysis for trends and analysis of work practices that resulted in the highest exposure concentrations.

    PubMed

    Osborn, Linda V; Snawder, John E; Kriech, Anthony J; Cavallari, Jennifer M; McClean, Michael D; Herrick, Robert F; Blackburn, Gary R; Olsen, Larry D

    2013-01-01

    An exposure assessment of hot-mix asphalt (HMA) paving workers was conducted to determine which of four exposure scenarios impacted worker exposure and dose. Goals of this report are to present the personal-breathing zone (PBZ) data, discuss the impact of substituting the releasing/cleaning agent, and discuss work practices that resulted in the highest exposure concentration for each analyte. One-hundred-seven PBZ samples were collected from HMA paving workers on days when diesel oil was used as a releasing/cleaning agent. An additional 36 PBZ samples were collected on days when B-100 (100% biodiesel, containing no petroleum-derived products) was used as a substitute releasing/cleaning agent. Twenty-four PBZ samples were collected from a reference group of concrete workers, who also worked in outdoor construction but had no exposure to asphalt emissions. Background and field blank samples were also collected daily. Total particulates and the benzene soluble fraction were determined gravimetrically. Total organic matter was determined using gas chromatography (GC) with flame ionization detection and provided qualitative information about other exposure sources contributing to worker exposure besides asphalt emissions. Thirty-three individual polycyclic aromatic compounds (PACs) were determined using GC with time-of-flight mass spectrometry; results were presented as either the concentration of an individual PAC or a summation of the individual PACs containing either 2- to 3-rings or 4- to 6-rings. Samples were also screened for PACs containing 4- to 6-rings using fluorescence spectroscopy. Arithmetic means, medians, and box plots of the PBZ data were used to evaluate trends in the data. Box plots illustrating the diesel oil results were more variable than the B-100. Also, the highest diesel oil results were much higher in concentration than the highest B-100 results. An analysis of the highest exposure results and field notes revealed a probable association between

  3. Personal Breathing Zone Exposures among Hot-Mix Asphalt Paving Workers; Preliminary Analysis for Trends and Analysis of Work Practices That Resulted in the Highest Exposure Concentrations

    PubMed Central

    Osborn, Linda V.; Snawder, John E.; Kriech, Anthony J.; Cavallari, Jennifer M.; McClean, Michael D.; Herrick, Robert F.; Blackburn, Gary R.; Olsen, Larry D.

    2015-01-01

    An exposure assessment of hot-mix asphalt (HMA) paving workers was conducted to determine which of four exposure scenarios impacted worker exposure and dose. Goals of this report are to present the personal-breathing zone (PBZ) data, discuss the impact of substituting the releasing/cleaning agent, and discuss work practices that resulted in the highest exposure concentration for each analyte. One-hundred-seven PBZ samples were collected from HMA paving workers on days when diesel oil was used as a releasing/cleaning agent. An additional 36 PBZ samples were collected on days when B-100 (100% biodiesel, containing no petroleum-derived products) was used as a substitute releasing/cleaning agent. Twenty-four PBZ samples were collected from a reference group of concrete workers, who also worked in outdoor construction but had no exposure to asphalt emissions. Background and field blank samples were also collected daily. Total particulates and the benzene soluble fraction were determined gravimetrically. Total organic matter was determined using gas chromatography (GC) with flame ionization detection and provided qualitative information about other exposure sources contributing to worker exposure besides asphalt emissions. Thirty-three individual polycyclic aromatic compounds (PACs) were determined using GC with time-offlight mass spectrometry; results were presented as either the concentration of an individual PAC or a summation of the individual PACs containing either 2- to 3-rings or 4- to 6-rings. Samples were also screened for PACs containing 4- to 6-rings using fluorescence spectroscopy. Arithmetic means, medians, and box plots of the PBZ data were used to evaluate trends in the data. Box plots illustrating the diesel oil results were more variable than the B-100. Also, the highest diesel oil results were much higher in concentration than the highest B-100 results. An analysis of the highest exposure results and field notes revealed a probable association between

  4. Effect of soil pollution on water for mixing of concrete

    NASA Astrophysics Data System (ADS)

    Muñoz, M. Cecilia Soto; Tapia Alvarez, Carolina; Decinti Weiss, Alejandra; Zamorano Vargas, Macarena; Corail Sanchez, Camila; Hurtado Nuñez, Camilo; Guzman Hermosilla, Matías; Pardo Fabregat, Francisco; Vidal, Manuel Miguel Jordan; Borras, Jaume Bech; Roca, Nuria

    2016-04-01

    ISO 12439, in addition to chemical and physical requirements, establishes maximum levels for harmful substances that may be present in the mixing water of concrete, when they come from natural sources from contaminated soils. These harmful substances considered in the ISO are sugars, phosphates (P2O5), nitrate (NO3-), lead (P2+) and zinc (Zn2+). As an alternative to the maximum values, ISO verifies the effect of these substances in water from contaminated soils. This measurement is made on the effect on the mechanical strength of the concrete (compression at 7 and 28 days) and the setting times (start and end setting). This paper presents the results obtained on samples of concrete made with smaller, similar and more content to the maximum levels set by ISO 12439 are presented. The results establish that in the case of nitrate, a substance present in many contaminated soils margins resistance variation or setting times allowed by ISO 12439 are not met. Finally, it is concluded that in case of presence of these pollutants should be performed strength tests and setting times before authorizing the use of water. Keywords: Harmful substances, contaminated soils, water pollution.

  5. Numerical Study on Mixed-mode Fracture in Reinforced Concrete

    SciTech Connect

    Yu, Rena C.; Saucedo, Luis; Ruiz, Gonzalo

    2010-05-21

    The object of this work is to model the propagation of fracture in mixed-mode in lightly reinforced concrete beams. When a notched beam does not have enough shear reinforcement, fracture can initiate and propagate unstably and lead to failure through diagonal tension. In order to study this phenomenon numerically, a model capable of dealing with both static and dynamic crack propagation as well as the natural transition of those two regimes is necessary. We adopt a cohesive model for concrete fracture and an interface model for the deterioration between concrete and steel re-bar, both combined with an insertion algorithm. The static process is solved by dynamic relaxation (DR) method together with a modified technique to enhance convergence rate. The same DR method is used to detect a dynamic process and switch to a dynamic calculation. The numerically obtained load-displacement curves, load-CMOD curves and crack patterns fit reasonably well with their experimental counterparts, having in mind that we fed the calculations only with parameters measured experimentally.

  6. Recycled materials in asphalt pavements, January 1980-June 1991 (citations from the NTIS database). Rept. for Jan 80-Jun 91

    SciTech Connect

    Not Available

    1991-06-01

    The bibliography contains citations concerning the recycling of asphalt pavement materials, and the use of other recycled materials to manufacture asphalt pavement. Articles discuss methods used for recycling bituminous pavement including hot-mix and cold-mix. Materials used to improve recycled pavement, and recycled materials used in asphalt pavement include latexes, rubber scrap such as tires, glass shards, concretes, dusts, waste oils, roofing wastes, sulfur, and metal refining sludges. Testing and evaluation of recycled pavements both in laboratories and in test cases are considered. (The bibliography contains 75 citations.) (Also includes title list and subject index.)

  7. Beneficial uses of recycled asphalt-stabilized products as landfill cover and capping systems

    SciTech Connect

    Camougis, G.

    1996-12-31

    The American Reclamation Corporation (AMREC{reg_sign}) has played a major role in the development of new programs for the recycling of discarded materials from construction, demolition, remediation and manufacturing operations. Excavated petroleum-contaminated soils (oily soils), asphalt paving, concrete rubble, and discarded asphalt roofing shingles have been processed and recycled into beneficially useful construction products. AMREC uses a cold-mix, asphalt-emulsion technology to process many of the recyclables received at its recycling facility in Charlton, MA. Recyclable materials are processed and blended to produce recycled, asphalt-stabilized products. In addition, recycled, asphalt-stabilized products are being investigated and tested for other beneficial uses. This includes their uses as capping materials and as containment materials.

  8. 7 CFR 3201.77 - Asphalt restorers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false Asphalt restorers. 3201.77 Section 3201.77... Designated Items § 3201.77 Asphalt restorers. (a) Definition. Products designed to seal, protect, or restore poured asphalt and concrete surfaces. (b) Minimum biobased content. The Federal preferred...

  9. 7 CFR 3201.77 - Asphalt restorers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 15 2013-01-01 2013-01-01 false Asphalt restorers. 3201.77 Section 3201.77... Designated Items § 3201.77 Asphalt restorers. (a) Definition. Products designed to seal, protect, or restore poured asphalt and concrete surfaces. (b) Minimum biobased content. The Federal preferred...

  10. Bacteria and asphalt stripping. Final report, December 1983-August 1987

    SciTech Connect

    Ramamurti, K.; Jayaprakash, G.P.

    1987-08-01

    Major types of bituminous pavement distress were rutting, cracking (longitudinal, transverse, and alligator) and stripping. The rubble and loosely bound material contained bacteria. The deterioration lessened upward from the pavement-soil interface. The soil appears to be the prime source of the bacteria. Most of the bacterial cells were sausage shaped with polar flagellation. They appeared to belong to the genus Pseudomonas, which is a known user of asphaltic hydrocarbons. Cocci-type bacteria and a virus were also noted. Increasing the density of some asphaltic concrete and strengthening the bond between aggregate and asphalt are considered as the preferred alternatives to using chemical biocides. Anything to reduce pavement cracking would help. Adding lime to asphalt mixes may be one effective means of improving aggregate-asphalt bond and controlling biodeterioration. Lime stabilization of soils under asphalt pavements may provide an added protection against bacterial attack by rendering the soil more hostile to bacterial habitat. Full-depth hot-mix recycling would be more effective than partial-depth recycling in retarding bacterial decay at cracks.

  11. Effect of Cement on Properties of Over-Burnt Brick Bituminous Concrete Mixes

    NASA Astrophysics Data System (ADS)

    Sarkar, Dipankar; Pal, Manish

    2016-06-01

    The present investigation is carried out to propose the use of cement coated over burnt brick aggregate in the preparation of bituminous concrete mix. The effect of cement on various mechanical properties such as Marshall stability, flow, Marshall quotient (stability to flow ratio), indirect tensile strength, stripping, rutting and fatigue life of bituminous concrete overlay has been evaluated. In this study, different cement percentages such as 2, 3, 4 and 5 % by weight of aggregate have been mixed with Over Burnt Brick Aggregate (OBBA). The laboratory results indicate that bituminous concrete prepared by 4 % cement coated OBBA gives the highest Marshall stability. The bituminous concrete mix with 4 % cement shows considerable improvement in various mechanical properties of the mix compared to the plain OBBA concrete mix.

  12. Modifiers for Asphalt Concrete

    DTIC Science & Technology

    1990-11-01

    approximately correct for bituminous mixtures, where the particulate character and granular nature of the material is wc1- r1czsognized. Earlier work on fiber...still exist; however, these correlations could be improved if the appropriate constitutive law is utilized. Advances in the fields of material ...development of constitutive relationships that better replicate material responses such as viscoelasticity and vis- coplasticity (i.e., viscous elastic-plastic

  13. Stripping in hot mix asphalt produced by aggregates from construction and demolition waste.

    PubMed

    Pérez, I; Pasandín, A R; Gallego, J

    2012-01-01

    This paper analyses the effect of water on the durability of hot asphalt mixtures made with recycled aggregates from construction and demolition debris. Indirect tensile stress tests were carried out to evaluate stripping behaviour. The mixtures tested were fabricated with 0, 20, 40 and 60% recycled aggregates. Two types of natural aggregates were used: schist and calcite dolomite. An increase in the percentage of recycled aggregates was found to produce a decrease in the tensile stress ratio of the hot asphalt mixtures. To study this phenomenon, two and three factor analyses of variance (ANOVA) were performed with indirect tensile stress being used as the dependent variable. The factors studied were the percentage of recycled aggregates (0, 20, 40 and 60%), the moisture state (dry, wet) and the type of natural aggregate (schist, calcite). On the basis of the ANOVA results, it was found that the most important factor affecting resistance was the moisture state (dry, wet) of the specimens. The percentage of recycled aggregate also affected indirect tensile stress, especially in the dry state. The type of natural aggregate did not have a significant effect on indirect tensile stress. The hot asphalt mixture specimens made with different percentages of recycled aggregates from construction and demolition debris and of natural quarry aggregates showed poor stripping behaviour. This stripping behaviour can be related to both the poor adhesion of the recycled aggregates and the high absorption of the mortar of cement adhered to them.

  14. Recycled materials in asphalt pavements. October 1973-November 1989 (Citations from the NTIS data base). Report for October 1973-November 1989

    SciTech Connect

    Not Available

    1989-12-01

    This bibliography contains citations concerning the recycling of asphalt-pavement materials, and the use of other recycled materials to manufacture asphalt pavement. Articles discuss methods used for recycling bituminous pavement including hot-mix and cold-mix. Materials used to improve recycled pavement, and recycled materials used in asphalt pavement include latexes, rubber scrap such as tires, glass shards, concretes, dusts, waste oils, roofing wastes, sulfur, and metal refining sludges. Testing and evaluation of recycled pavements both in laboratories and in test cases are considered. (Contains 110 citations fully indexed and including a title list.)

  15. Inferring strength and deformation properties of hot mix asphalt layers from the GPR signal: recent advances

    NASA Astrophysics Data System (ADS)

    Tosti, Fabio; Benedetto, Andrea; Bianchini Ciampoli, Luca; Adabi, Saba; Pajewski, Lara

    2015-04-01

    , of both the different strength provision of each layer composing the hot mix asphalt pavement structure, and of the attenuation occurring to electromagnetic waves during their in-depth propagation. Promising results are achieved by matching modelled and measured elastic modulus data. This continuous statistically-based model enables to consider the whole set of information related to each single depth, in order to provide a more comprehensive prediction of the strength and deformation behavior of such a complex multi-layered medium. Amongst some further developments to be tackled in the near future, a model improvement could be reached through laboratory activities under controlled conditions and by adopting several frequency bandwidths suited for purposes. In addition, the perspective to compare electromagnetic data with mechanical measurements retrieved continuously, i.e., by means of specifically equipped lorries, could pave the way to considerable enhancements in this field of research. Acknowledgements - This work has benefited from networking activities carried out within the EU funded COST Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar".

  16. Full-Scale Accelerated Pavement Testing of Warm-Mix Asphalt (WMA) for Airfield Pavements

    DTIC Science & Technology

    2014-01-01

    software and Pavement Engineering Utility (PSEVEN) were used 50 ft 65 ft 130 ft 24 ft Item 3 Sasobit ® Item 4 Evotherm 3G Item 1 HMA... Evotherm 3G Air Top Mid-depth Bottom Target temperature = 109 ºF ERDC/GSL TR-14-3 25 The target pavement temperature for this study was 109 ºF, and it is...the locations of the I-buttons and their layout in relation to the vents. 90 95 100 105 110 115 120 HMA Foamed Asphalt Sasobit Evotherm 3G Av er ag e

  17. Investigation of factors affecting asphalt pavement recycling and asphalt compatibility

    SciTech Connect

    Venable, R.L.; Petersen, J.C.; Robertson, R.E.; Plancher, H.

    1983-03-01

    Both economic and environmental factors dictate that asphalt pavement be recycled. Many recycling projects have been completed using a variety of recycling additives, but little work has been done on the physiochemical aspects of pavement recycling. The present exploratory study was undertaken to better define the physiochemical variables of recycling. Objectives of the present study include: (1) to determine if molecular structuring in the asphalt binder could be observed in oxidized (air-aged) asphalt-aggregate briquets, and if so, how was structuring affected during briquits, and if so, how was structuring affected during briquet recycling and (2) to determine if recycling agents penetrate the strongly adsorbed asphalt layer on the aggregate surface. Differences were seen in asphalt component compatibility as judged by the state of peptization parameters. In extreme cases the values of the parameters correlated with properties of asphalts of known compatibility; however, a relationship between the parameters determined on a series of asphalts in pavements was not established. The parameters might be useful in evaluating additives for pavement recycling; however, more systems need to be studied to fully assess their potential usefulness. Finally, the parameters need to be correlated with performance-related measurements such as asphalt rheological and mix properties. Examination of the parameters and their changes on asphalt oxidative aging may also be informative with regard to asphalt durability inasmuch as oxidation-induced changes are a major cause of asphalt pavement failure.

  18. Evaluation of the Structural Performance of CTS Rapid Set Concrete Mix

    DTIC Science & Technology

    2016-08-01

    conducted for the U.S. Air Force Civil Engineer Center (AFCEC) under the project “ Structural Performance of Rapid Set Concrete Mix®.” The Technical...ER D C/ G SL T R -1 6 -2 0 Evaluation of the Structural Performance of CTS Rapid Set Concrete Mix® G eo te ch n ic al a n d S tr u ct...20 August 2016 Evaluation of the Structural Performance of Rapid Set Concrete Mix® Lucy P. Priddy, Haley P. Bell, Lulu Edwards, William D

  19. Dependence of Expansion of a Salt-Saturated Concrete on Temperature and Mixing and Handling Procedures.

    DTIC Science & Technology

    1987-07-01

    experiments with an expansive salt -saturated concrete (ESC), time of setting was controlled by amount of sodium citrate used. ’The rheological and physical...A-Alas 6 DEPENDENCE OF EXPANSION OF R SALT -SATURATED CONCRETE ON l1𔃻 TEMPERATURE AND N.. (U) ARMY ENGINEER IIATERWRYS EXPERIMENT STATION VICKSBURG...TECHNICAL REPORT SL-87-20 DEPENDENCE OF EXPANSION OF A -- SALT -SATURATED CONCRETE ON TEMPERATURE AND MIXING AND HANDLING PROCEDURES by cc = Lillian D

  20. Latex improvement of recycled asphalt pavement

    NASA Astrophysics Data System (ADS)

    Drennon, C.

    1982-08-01

    The performance of a single unmodified milled recycled asphalt concrete was compared to milled asphalt concrete modified by addition of three types of rubber latex. Latex was added at 2, 3, 5, and 8 percent latex by weight of asphalt in the asphalt concrete. Lattices used were a styrene butadiene (SBR), a natural rubber (NR), an acrylonitrile butadiene (NBR), and four varieties of out of specification SBR lattices. Marshall tests, while indecisive, showed a modest improvement in properties of SBR and NR added material at 3 and 5 percent latex. Addition of NBR latex caused deterioration in Marshall stability and flow over that of control. Repeated load tests were run using the indirect tensile test, analyzed by the VESYS program, which computes life of pavements. Repeated load tests showed improvement in asphalt concrete life when 3 and 5 percent SBR was added. Improvement was also shown by the out of specification SBR.

  1. Using pyrolized carbon black from waste tires in asphalt pavement. Part 1. Limestone aggregate. Final report, September 1993-May 1995

    SciTech Connect

    Park, T.; Lovell, C.W.

    1996-02-20

    The study presents the viability of using pyrolyzed carbon black (PCB) as an additive in hot mix asphalt concrete. Different ratios of PCB (5%, 10%, 15%, 20% by weight of asphalt) were blended with two grades of asphalt (AC-10 and AC-20). The complete behaviors of the PCB modified asphalt concrete were investigated by comprehensive laboratory testing and evaluation. The Marshall method was used to determine the optimum binder content, and the mechanical properties and void relationships were investigated by this method. The Gyratory Testing Machine was used to define the stress-strain relationships of the PCB mixtures. The rutting potential of PCB mixtures was investigated using the Dynamic Creep Testing. The performance of the PCB mixtures at low temperature (5 degrees C) was determined by the Indirect Tensile Testing. The strength performance of the PCB mixtures at intermediate temperatures (5 degrees C and 25 degrees C) was examined by the Resilient Modulus Test. The Hamburg Wheel Tracking Device was employed to ascertain the stripping potential of the PCB mixtures. The findings of the study show beneficial effects of added PCB for asphalt mixture. Specifically, test results show that PCB contents of 10% to 15% by weigh of asphalt produce a number of significant 0mprovements. The rutting potential, the temperature susceptibility and the stripping potential can be reduced by the inclusion of PCB in the asphalt mixture. Added material costs of about 6% may well be justified by expected improvements in performance.

  2. Recycling asphalt proves economical for paving contractors

    SciTech Connect

    Not Available

    1982-09-01

    Methods of recyclig asphalt to repair roads are described and evaluated. Need for recycling is caused by the escalating price of asphalt (an oil product). The economics and efficiency of the various processes used are evaluated. Methods described are: (1) cold-mix recycling in which the road is crushed, mixed with a new asphalt emulsion and reapplied; (2) hot mix, which involves ripping up pavement, trucking it to an asphalt plant, and mixing the old pavement material with virgin paving materials; and (3) cold planing (when only the top few inches of the road are deteriorated). Mining of asphalt roads, by removing top layers from old roads which are thick from many repair jobs, is described as well as mining of old airstrips. Value of asphalt available has been estimated as high as $50 billion. Recycling processes for asphalt are described briefly. (MJJ)

  3. Use of Residual Solids from Pulp and Paper Mills for Enhancing Strength and Durability of Ready-Mixed Concrete

    SciTech Connect

    Tarun R. Naik; Yoon-moon Chun; Rudolph N. Kraus

    2003-09-18

    This research was conducted to establish mixture proportioning and production technologies for ready-mixed concrete containing pulp and paper mill residual solids and to study technical, economical, and performance benefits of using the residual solids in the concrete. Fibrous residuals generated from pulp and paper mills were used, and concrete mixture proportions and productions technologies were first optimized under controlled laboratory conditions. Based on the mixture proportions established in the laboratory, prototype field concrete mixtures were manufactured at a ready-mixed concrete plant. Afterward, a field construction demonstration was held to demonstrate the production and placement of structural-grade cold-weather-resistant concrete containing residual solids.

  4. Nature of the chemical reaction for furfural modified asphalt

    SciTech Connect

    Memon, G.M.; Chollar, B.H.

    1994-12-31

    Three of the most serious problems of asphalt pavements today are rutting, cracking, and susceptibility to moisture damage (stripping). Asphalt manufacturers have been mixing asphalts with polymers to produce polymer-modified asphalts with improved rheological properties. However, the costs for these improved polymer-modified asphalts are almost double that of regular asphalts. FHWA researchers have found that asphalt modified by the chemical, furfural (which is prepared by simple elimination reaction of aldopentoses obtained from oat hulls), exhibited better stripping properties and was less temperature susceptible than the virgin asphalt while costing less than polymer-modified asphalts. This paper discusses the possible structure of the furfural-modified asphalt, data for the virgin and furfural-modified asphalts and their Corbett fractions, data from a model reaction between phenol and furfural, and a possible explanation of this structure based on these data.

  5. Performance of volcanic ash and pumice based blended cement concrete in mixed sulfate environment

    SciTech Connect

    Hossain, K.M.A. . E-mail: ahossain@ryerson.ca; Lachemi, M.

    2006-06-15

    The deterioration of concrete structures due to the presence of mixed sulfate in soils, groundwater and marine environments is a well-known phenomenon. The use of blended cements incorporating supplementary cementing materials and cements with low C{sub 3}A content is becoming common in such aggressive environments. This paper presents the results of an investigation on the performance of 12 volcanic ash (VA) and finely ground volcanic pumice (VP) based ASTM Type I and Type V (low C{sub 3}A) blended cement concrete mixtures with varying immersion period of up to 48 months in environments characterized by the presence of mixed magnesium-sodium sulfates. The concrete mixtures comprise a combination of two Portland cements (Type I and Type V) and four VA/VP based blended cements with two water-to-binder ratio of 0.35 and 0.45. Background experiments (in addition to strength and fresh properties) including X-ray diffraction (XRD), Differential scanning calorimetry (DSC), mercury intrusion porosimetry (MIP) and rapid chloride permeability (RCP) were conducted on all concrete mixtures to determine phase composition, pozzolanic activity, porosity and chloride ion resistance. Deterioration of concrete due to mixed sulfate attack and corrosion of reinforcing steel were evaluated by assessing concrete weight loss and measuring corrosion potentials and polarization resistance at periodic intervals throughout the immersion period of 48 months. Plain (Type I/V) cement concretes, irrespective of their C{sub 3}A content performed better in terms of deterioration and corrosion resistance compared to Type I/V VA/VP based blended cement concrete mixtures in mixed sulfate environment.

  6. Field and laboratory study of cold-asphalt-mix recycling in Ohio. Final report

    SciTech Connect

    Majidzadeh, K.; Ilves, G.J.; Abdulshafi, A.; Kaloush, K.

    1987-09-01

    The report presents a study initiated in 1984 to develop specification guidelines and mix-design recommendations and to obtain performance data on cold-mix recycling projects in Ohio. Two mainline, low-volume roads and one shoulder pavement were selected for the study. Documentation and evaluation of the projects are discussed generally in two parts. The first part includes the site-selection criteria, pre-construction evaluation, mix designs, construction specifications and construction monitoring. The second part discusses performance evaluation through field inspection, data collection, and laboratory evaluation of material properties.

  7. Mixed Consolidation Solution for a Reinforced Concrete Structure

    NASA Astrophysics Data System (ADS)

    Lute, M.

    2016-06-01

    During the last years, reinforced concrete structures become subject for rehabilitation due to two factors: their long life span and large change in norms that leaded to a large increase of seismic loads in Eastern Europe. These lead to a necessity for rehabilitation of existing building stock in order to use them during their entire life span at the maximum potential. The present paper proposes a solution for rehabilitation for three reinforced concrete building of a hospital, that consumed a half of their life span and do not correspond anymore to present norms. The chosen solution is a combination between CFRP rehabilitation and increase of structural elements cross section in order to achieve the stiffness balance in the structure nodes that is required by present norms. As a further matter, correction in stiffness of local elements diminished the lateral drifts of the structure and improved the global seismic response of the building.

  8. Evaluation and improvement of micro-surfacing mix design method and modelling of asphalt emulsion mastic in terms of filler-emulsion interaction

    NASA Astrophysics Data System (ADS)

    Robati, Masoud

    This Doctorate program focuses on the evaluation and improving the rutting resistance of micro-surfacing mixtures. There are many research problems related to the rutting resistance of micro-surfacing mixtures that still require further research to be solved. The main objective of this Ph.D. program is to experimentally and analytically study and improve rutting resistance of micro-surfacing mixtures. During this Ph.D. program major aspects related to the rutting resistance of micro-surfacing mixtures are investigated and presented as follow: 1) evaluation of a modification of current micro-surfacing mix design procedures: On the basis of this effort, a new mix design procedure is proposed for type III micro-surfacing mixtures as rut-fill materials on the road surface. Unlike the current mix design guidelines and specification, the new mix design is capable of selecting the optimum mix proportions for micro-surfacing mixtures; 2) evaluation of test methods and selection of aggregate grading for type III application of micro-surfacing: Within the term of this study, a new specification for selection of aggregate grading for type III application of micro-surfacing is proposed; 3) evaluation of repeatability and reproducibility of micro-surfacing mixture design tests: In this study, limits for repeatability and reproducibility of micro-surfacing mix design tests are presented; 4) a new conceptual model for filler stiffening effect on asphalt mastic of micro-surfacing: A new model is proposed, which is able to establish limits for minimum and maximum filler concentrations in the micro-surfacing mixture base on only the filler important physical and chemical properties; 5) incorporation of reclaimed asphalt pavement and post-fabrication asphalt shingles in micro-surfacing mixture: The effectiveness of newly developed mix design procedure for micro-surfacing mixtures is further validated using recycled materials. The results present the limits for the use of RAP and RAS

  9. Application of orthogonal test method in mix proportion design of recycled lightweight aggregate concrete

    NASA Astrophysics Data System (ADS)

    Zhao, Zhanshan; An, Le; Zhang, Yijing; Yuan, Jie

    2017-03-01

    Recycled lightweight aggregate concrete was made with construction waste and ceramsite brick mainly including brick. Using the orthogonal test method, the mix proportion of recycled lightweight aggregate concrete was studied, and the Influence regularity and significance of water binder ratio, fly ash, sand ratio, the amount of recycled aggregate proportion on the compressive strength of concrete, the strong influence of mass ratio, slump expansion degree was studied. Through the mean and range analysis of the test results, the results show that the water binder ratio has the greatest influence on the 28d intensity of recycled lightweight aggregate concrete. Secondly, the fly ash content, the recycled aggregate replacement rate and the sand ratio have little influence. For the factors of expansion: the proportion of fly ash = water binder ratio sand >sand rate> recycled aggregate replacement rate. When the content of fly ash is about 30%, the expanded degree of recycled lightweight aggregate concrete is the highest, and the workability of that is better and the strength of concrete with 28d and 56d are the highest. When the content of brickbat is about 40% brick particles, the strength of concrete reaches the highest.

  10. The Concrete and Pavement Challenge

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2012-01-01

    The modern world is characterized by the extensive use of concrete and asphalt pavement. Periodically, these materials are replaced and the old materials disposed of. In this challenge, students will be asked to develop ways to reuse the old materials. It is important for students to understand how concrete and asphalt are made and applied, as…

  11. Recycled rubber, aggregate, and filler in asphalt paving mixtures. Transportation research record

    SciTech Connect

    1996-12-31

    ;Contents(Partial): Evaluation Systems for Crumb Rubber Modified Binders and Mixtures; Hot Mix Asphalt Rubber Applications in Virginia; Evaluation of Pyrolized Carbon Black from Scrap Tires as Additive in Hot Mix Asphalt; Use of Scrap Tire Chips in Asphaltic Membrane; Effects of Mineral Fillers on Properties of Stone Matrix Asphalt Mixtures; and Quantitative Analysis of Aggregate Based on Hough Transform.

  12. Sustainable asphalt pavement: Application of slaughterhouse waste oil and fly ash in asphalt binder

    NASA Astrophysics Data System (ADS)

    Sanchez Ramos, Jorge Luis

    Increasing energy costs, lack of sufficient natural resources and the overwhelming demand for petroleum has stimulated the development of alternative binders to modify or replace petroleum-based asphalt binders. In the United States, the petroleum-based asphalt binder is mainly used to produce the Hot Mix Asphalt (HMA). There are approximately 4000 asphalt plants that make 500 million tons of asphalt binder valued at roughly 3 billion/year. The instability of the world's oil market has pushed oil prices to more than 80 per barrel in 2012, which increased the cost of asphalt binder up to $570 per ton. Therefore, there is a timely need to find alternative sustainable resources to the asphalt binder. This paper investigates the possibility of the partial replacement of the asphalt binder with slaughterhouse waste and/or fly ash. In order to achieve this objective, the asphalt binder is mixed with different percentages of waste oil and/or fly ash. In order to investigate the effect of these additives to the performance of the asphalt binder, a complete performance grade test performed on multiple samples. The results of the performance grade tests are compared with a control sample to observe how the addition of the waste oil and/or fly ash affects the sample. Considering the increasing cost and demand of asphalt, the use of slaughterhouse waste oil and/or fly ash as a partial replacement may result in environmental and monetary improvements in the transportation sector.

  13. Development of high-strength concrete mix designs in support of the prestressed concrete reactor vessel design for a HTGR steam cycle/cogeneration plant

    SciTech Connect

    Naus, D.J.; Oland, C.B.

    1985-01-01

    Design optimization studies indicate that a significant reduction in the size of the PCRV for a 2240 MW(t) HTGR plant can be effected through utilization of high-strength concrete in conjunction with large capacity prestressing systems. A three-phase test program to develop and evaluate high-strength concretes (>63.4 MPa) is described. Results obtained under Phase I of the investigation related to materials selection-evaluation and mix design development are presented. 3 refs., 4 figs.

  14. Mix design and pollution control potential of pervious concrete with non-compliant waste fly ash.

    PubMed

    Soto-Pérez, Linoshka; Hwang, Sangchul

    2016-07-01

    Pervious concrete mix was optimized for the maximum compressive strength and the desired permeability at 7 mm/s with varying percentages of water-to-binder (W/B), fly ash-to-binder (FA/B), nano-iron oxide-to-binder (NI/B) and water reducer-to-binder (WR/B). The mass ratio of coarse aggregates in sizes of 4.75-9.5 mm to the binder was fixed at 4:1. Waste FA used in the study was not compliant with a standard specification for use as a mineral admixture in concrete. One optimum pervious concrete (Opt A) targeting high volume FA utilization had a 28-day compressive strength of 22.8 MPa and a permeability of 5.6 mm/s with a mix design at 36% W/B, 35% FA/B, 6% NI/B and 1.2% WR/B. The other (Opt B) targeting a less use of admixtures had a 28-day compressive strength and a permeability of 21.4 MPa and 7.6 mm/s, respectively, at 32% W/B, 10% FA/B, 0.5% NI/B and 0.8% WR/B. During 10 loads at a 2-h contact time each, the Opt A and Opt B achieved the average fecal coliform removals of 72.4% and 77.9% and phosphorus removals of 49.8% and 40.5%, respectively. Therefore, non-compliant waste FA could be utilized for a cleaner production of pervious concrete possessing a greater structural strength and compatible hydrological property and pollution control potential, compared to the ordinary pervious concrete.

  15. The Asphalt Handbook.

    ERIC Educational Resources Information Center

    Asphalt Inst., College Park, MD.

    The new and completely revised edition of the Asphalt Handbook, a standard reference work in the field of asphalt technology and construction, summarizes with reference the information contained in other Asphalt Institute technical manuals. Major areas discussed include the following--(1) uses of asphalt, (2) terms relating to asphalt and its…

  16. Biodegradation of Asphalt Cement-20 by Aerobic Bacteria

    PubMed Central

    Pendrys, John P.

    1989-01-01

    Seven gram-negative, aerobic bacteria were isolated from a mixed culture enriched for asphalt-degrading bacteria. The predominant genera of these isolates were Pseudomonas, Acinetobacter, Alcaligenes, Flavimonas, and Flavobacterium. The mixed culture preferentially degraded the saturate and naphthene aromatic fractions of asphalt cement-20. A residue remained on the surface which was resistant to biodegradation and protected the underlying asphalt from biodegradation. The most potent asphalt-degrading bacterium, Acinetobacter calcoaceticus NAV2, excretes an emulsifier which is capable of emulsifying the saturate and naphthene aromatic fractions of asphalt cement-20. This emulsifier is not denatured by phenol. PMID:16347928

  17. Asphalt cement poisoning

    MedlinePlus

    ... petroleum material that hardens when it cools. Asphalt cement poisoning occurs when someone swallows asphalt. If hot ... found in: Road paving materials Roofing materials Tile cements Asphalt may also be used for other purposes.

  18. Simulation Model for Scenario Optimization of the Ready-Mix Concrete Delivery Problem

    NASA Astrophysics Data System (ADS)

    Galić, Mario; Kraus, Ivan

    2016-12-01

    This paper introduces a discrete simulation model for solving routing and network material flow problems in construction projects. Before the description of the model a detailed literature review is provided. The model is verified using a case study of solving the ready-mix concrete network flow and routing problem in metropolitan area in Croatia. Within this study real-time input parameters were taken into account. Simulation model is structured in Enterprise Dynamics simulation software and Microsoft Excel linked with Google Maps. The model is dynamic, easily managed and adjustable, but also provides good estimation for minimization of costs and realization time in solving discrete routing and material network flow problems.

  19. Linking asphalt binder fatigue to asphalt mixture fatigue performance using viscoelastic continuum damage modeling

    NASA Astrophysics Data System (ADS)

    Safaei, Farinaz; Castorena, Cassie; Kim, Y. Richard

    2016-08-01

    Fatigue cracking is a major form of distress in asphalt pavements. Asphalt binder is the weakest asphalt concrete constituent and, thus, plays a critical role in determining the fatigue resistance of pavements. Therefore, the ability to characterize and model the inherent fatigue performance of an asphalt binder is a necessary first step to design mixtures and pavements that are not susceptible to premature fatigue failure. The simplified viscoelastic continuum damage (S-VECD) model has been used successfully by researchers to predict the damage evolution in asphalt mixtures for various traffic and climatic conditions using limited uniaxial test data. In this study, the S-VECD model, developed for asphalt mixtures, is adapted for asphalt binders tested under cyclic torsion in a dynamic shear rheometer. Derivation of the model framework is presented. The model is verified by producing damage characteristic curves that are both temperature- and loading history-independent based on time sweep tests, given that the effects of plasticity and adhesion loss on the material behavior are minimal. The applicability of the S-VECD model to the accelerated loading that is inherent of the linear amplitude sweep test is demonstrated, which reveals reasonable performance predictions, but with some loss in accuracy compared to time sweep tests due to the confounding effects of nonlinearity imposed by the high strain amplitudes included in the test. The asphalt binder S-VECD model is validated through comparisons to asphalt mixture S-VECD model results derived from cyclic direct tension tests and Accelerated Loading Facility performance tests. The results demonstrate good agreement between the asphalt binder and mixture test results and pavement performance, indicating that the developed model framework is able to capture the asphalt binder's contribution to mixture fatigue and pavement fatigue cracking performance.

  20. Evaluation of energies of interaction correlated with observed stabilities and rheological properties of asphalt-aggregate mixtures of western shale-oil residue as a modifier to petroleum asphalt

    SciTech Connect

    Tauer, J.E.; Ensley, E.K.; Harnsberger, P.M.; Robertson, R.E.

    1993-02-01

    The objective of this study was to perform a preliminary evaluation of improving bonding and aging characteristics using a distillation residue from the Green River Formation (western) shale oil as a modifier to a petroleum asphalt for use as a crack and joint filler material in portland cement concrete and asphaltic pavements. This study was to examine the differences in moisture damage resistance and adhesion properties, as measured by bonding energy, of shale-oil modified asphalts compared with non-modified asphalts. The shale-oil modified asphalts mechanical properties were not expected to match those of the rubberized asphalt. A commercially available rubberized asphalt crack and joint filler material was also tested only for comparison of mechanical properties. Portland cement concrete briquets prepared with an asphalt material sandwiched between two concrete wafers were tested in a stress-relaxation type of experiment to evaluate the relaxation and recovery properties of the sealant materials. Energy of interaction (bonding energy) measurements were performed on asphalt materials with portland cement concrete, two silicate aggregates, and a limestone aggregate to evaluate the compatibility of the asphalt materials with various aggregates. The results show that the shale-oil modified petroleum asphalt improved the relaxation time, percent recovery, and bonding energy compared with the petroleum asphalt.

  1. Road pavers' occupational exposure to asphalt containing waste plastic and tall oil pitch.

    PubMed

    Väänänen, Virpi; Elovaara, Eivor; Nykyri, Erkki; Santonen, Tiina; Heikkilä, Pirjo

    2006-01-01

    Waste plastic (WP) and tall oil pitch (T), which are organic recycled industrial by-products, have been used as a binder with bitumen in stone mastic asphalt (SMA) and asphalt concrete (AC). We compared the exposure over one workday in 16 road pavers participating in a survey at four paving sites, using mixes of conventional asphalt (SMA, AC) or mixes containing waste material (SMA-WPT, AC-WPT). The concentrations of 11 aldehydes in air were 515 and 902 microg m(-3) at the SMA-WPT and AC-WPT worksites, being 3 and 13 times greater than at the corresponding worksites laying conventional asphalt. Resin acids (2-42 microg m(-3)), which are known sensitizers, were detected only during laying of AC-WPT. The emission levels (microg m(-3)) of total particulates (300-500), bitumen fumes (60-160), bitumen vapour (80-1120), naphthalene (0.59-1.2), phenanthrene (0.21-0.32), pyrene (<0.015-0.20), benzo(a)pyrene (<0.01) and the sum of 16 PAHs (polycyclic aromatic hydrocarbons, 1.28-2.00) were similar for conventional and WPT asphalts. The dermal deposition of 16 PAHs on exposure pads (on workers' wrist) was low in all pavers (0.7-3.5 ng cm(-2)). Eight OH-PAH biomarkers of naphthalene, phenanthrene and pyrene exposures were quantified in pre- and post-shift urine specimens. The post-shift concentrations (mean +/- SD, micromol mol(-1) creatinine) of 1- plus 2-naphthol; 1-,2-,3-,4- plus 9-phenanthrol; and 1-hydroxypyrene were, respectively, for asphalt workers: 18.1+/- 8.0, 2.41 +/- 0.71 and 0.66+/- 0.58 (smokers); 6.0+/- 2.3, 1.70+/- 0.72 and 0.27+/- 0.15 (non-smokers); WPT asphalt workers: 22.0+/- 9.2, 2.82+/- 1.11 and 0.76+/- 0.18 (smokers); 6.8+/- 2.6, 2.35+/- 0.69 and 0.46+/- 0.13 (non-smokers). The work-related uptake of PAHs was low in all pavers, although it was significantly greater in smokers than in non-smokers. The WPT asphalt workers complained of eye irritation and sore throat more than the pavers who had a much lower exposure to aldehydes and resin acids.

  2. Safety in ready mixed concrete industry: descriptive analysis of injuries and development of preventive measures

    PubMed Central

    AKBOĞA, Özge; BARADAN, Selim

    2016-01-01

    Ready mixed concrete (RMC) industry, one of the barebones of construction sector, has its distinctive occupational safety and health (OSH) risks. Employees experience risks that emerge during the fabrication of concrete, as well as its delivery to the construction site. Statistics show that usage and demand of RMC have been increasing along with the number of producers and workers. Unfortunately, adequate OSH measures to meet this rapid growth are not in place even in top RMC producing countries, such as Turkey. Moreover, lack of statistical data and academic research in this sector exacerbates this problem. This study aims to fill this gap by conducting data mining in Turkish Social Security Institution archives and performing univariate frequency and cross tabulation analysis on 71 incidents that RMC truck drivers were involved. Also, investigations and interviews were conducted in seven RMC plants in Turkey and Netherlands with OSH point of view. Based on the results of this research, problem areas were determined such as; cleaning truck mixer/pump is a hazardous activity where operators get injured frequently, and struck by falling objects is a major hazard at RMC industry. Finally, Job Safety Analyses were performed on these areas to suggest mitigation methods. PMID:27524105

  3. Rubberized asphalt emulsion

    SciTech Connect

    Wilkes, E.

    1986-09-02

    A method is described of making a rubberized asphalt composition which comprises the steps of: (a) combining asphalt with a hydrocarbon oil having a flash point of 300/sup 0/F. or more to provide a homogenous asphalt-oil mixture or solution, (b) then combining the asphalt-oil mixture with a particulate rubber at a temperature sufficient to provide a homogenous asphalt-rubber-oil gel, and (c) emulsifying the asphalt-rubber-oil gel by passing the gel, water, and an emulsifying agent through a colloid mill to provide an emulsion.

  4. Polypropylene - asphalt mixtures for waterproofing membranes

    SciTech Connect

    Italia, P.; Brandolese, E.

    1996-12-31

    In any field of polymer-asphalt mixtures application is extremely important to achieve a very good compatibility between the components in order to improve as much as possible the performances due to the polymer content. In the case of waterproofing membranes application this compatibility reduce, moreover, the amount of polymer required to obtain the best performances. Using the Colloidal Instability Index Ic, as measured by the Iatroscan device, we propose a correlation between asphalt`s chemical characteristics and the polymer minimum amount sufficient to disperse in a stable way the asphalt itself in the polymeric matrix. As a result, through the proposed correlation, with a simple asphalt composition analysis it is possible to predict its performance when mixed with polypropilene. In the paper, beside the description of the Iatroscan analytical technique, we also present a method for determining phase inversion based on optical fluorescence microscopy performed on about 30 different samples of asphalt. We also present the experimental correlation laws between the polymer amount at phase inversion and the asphalt single components content.

  5. Rehabilitating asphalt highways

    SciTech Connect

    Butalia, T.S.

    2007-07-01

    Coal fly ash has been used on two Ohio full-depth reclamation projects in Delaware and Warren. The object of the project carried out with the Department of Civil and Environmental Engineering and Geodetic Science at Ohio State University is to demonstrate the effective use of Class fly ash in combination with lime or lime kiln dust in the full depth reclamation of asphalt pavements. The article describes the mixes used for the highway reconstruction of part of Section Line Road Delaware County and of a road in Warren County. During construction the pavement sections were instrumented with several structural and environmental monitoring devices and data is being collected on a quarterly basis. Falling Weight Deflectometer (FWD) tests to measure load defection behaviour, resilient of pavement layers and soil and base structural layer coefficient are being carried out twice a year. It was shown that use of fly ash increased the elastic modulus of base layers. This article first appeared in the Feb/May 2007 issue of Asphalt Contractor. 4 photos.

  6. A Study on the Rheological Properties of Recycled Rubber-Modified Asphalt Mixtures

    PubMed Central

    Karacasu, Murat; Er, Arzu

    2015-01-01

    Using waste rubber in asphalt mixes has become a common practice in road construction. This paper presents the results of a study on the rheological characteristics of rubber-modified asphalt (RMA) concrete under static and dynamic loading conditions. A number of static and dynamic creep tests were conducted on RMA mix specimens with different rubber sizes and contents, and a series of resonant column tests were conducted to evaluate the shear modulus and damping values. To simulate the stress-strain response of traffic-induced loading, the measurements were taken for different confining pressures and strain levels. The results of the study indicated that rubber modification increases stiffness and damping ratio, making it a very attractive material for use in road construction. However the grain size of the rubber is very important. Although RMA may cost up to 100% more than regular asphalt, the advantages it brings, such as an increased service life of the road and proper waste utilization contributing to a more sustainable infrastructure, may justify the added cost. PMID:25695096

  7. A study on the rheological properties of recycled rubber-modified asphalt mixtures.

    PubMed

    Karacasu, Murat; Okur, Volkan; Er, Arzu

    2015-01-01

    Using waste rubber in asphalt mixes has become a common practice in road construction. This paper presents the results of a study on the rheological characteristics of rubber-modified asphalt (RMA) concrete under static and dynamic loading conditions. A number of static and dynamic creep tests were conducted on RMA mix specimens with different rubber sizes and contents, and a series of resonant column tests were conducted to evaluate the shear modulus and damping values. To simulate the stress-strain response of traffic-induced loading, the measurements were taken for different confining pressures and strain levels. The results of the study indicated that rubber modification increases stiffness and damping ratio, making it a very attractive material for use in road construction. However the grain size of the rubber is very important. Although RMA may cost up to 100% more than regular asphalt, the advantages it brings, such as an increased service life of the road and proper waste utilization contributing to a more sustainable infrastructure, may justify the added cost.

  8. Evaluation of Cement, Lime, and Asphalt Amended Municipal Solid Waste Incinerator Residues

    DTIC Science & Technology

    1989-09-01

    waste does not contain sufficient pozzolans for lime solidification, or if organics in the cement residue mixes are excessive, a low 3 strength material...occur due to insufficient coverage of the residue by the asphalt binder . This defeats the asphalt’s primary metal immobilization mechanism...stabilized waste form direct contact with an cidic environment (Cote, 1986). Asphalt Amended Wastes. As with most thermoplastic agent, asphalt binder

  9. Environmental Monitoring and Performance Evaluation of Roller-Compacted Concrete Pavement: Conley Terminal, Boston, Massachusetts

    DTIC Science & Technology

    1991-12-01

    Roller-compacted concrete (RCC) is a construction material that combines the features of the cement-treated aggregate base, portland cement concrete...PCC) and asphalt pavement technologies. RCC is constructed by placing a zero-slump portland cement concrete mixture by means of a heavy asphalt paver

  10. Asphalt Pavement Aging and Temperature Dependent Properties Using Functionally Graded Viscoelastic Model

    ERIC Educational Resources Information Center

    Dave, Eshan V.

    2009-01-01

    Asphalt concrete pavements are inherently graded viscoelastic structures. Oxidative aging of asphalt binder and temperature cycling due to climatic conditions being the major cause of non-homogeneity. Current pavement analysis and simulation procedures dwell on the use of layered approach to account for these non-homogeneities. The conventional…

  11. Recycled materials in asphalt pavements. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect

    1995-03-01

    The bibliography contains citations concerning the recycling of asphalt pavement materials for road construction. Citations discuss asphalt concrete mixtures and recycling, recycled materials testing and evaluation, and pavement bases. Engineering and environmental aspects of recycled materials are examined. (Contains a minimum of 78 citations and includes a subject term index and title list.)

  12. Minimum Thickness Requirements for Asphalt Surface Course and Base Layer in Airfield Pavements

    DTIC Science & Technology

    2011-08-01

    e.g., Donovan and Tutumluer 2008, 2009; Tao et al. 2010), a waterproof surface, protection from foreign object damage (FOD), and a durable surface...mechanisms for premature deterioration, and quantify the service life of thin asphalt concrete pavements. Six sections with different layer...32,500 7,794 The full-scale test data analysis led to a conclusion that the Department of Defense’s (DoD) minimum asphalt concrete thickness

  13. Stabilization/solidification of munition destruction waste by asphalt emulsion.

    PubMed

    Cervinkova, Marketa; Vondruska, Milan; Bednarik, Vratislav; Pazdera, Antonin

    2007-04-02

    Destruction of discarded military munitions in an explosion chamber produces two fractions of hazardous solid waste. The first one is scrap waste that remains in the chamber after explosion; the second one is fine dust waste, which is trapped on filters of gas products that are exhausted from the chamber after explosion. The technique of stabilization/solidification of the scrap waste by asphalt emulsion is described in this paper. The technique consists of simple mixing of the waste with anionic asphalt emulsion, or two-step mixing of the waste with cationic asphalt emulsion. These techniques are easy to use and the stabilized scrap waste proves low leachability of contained heavy metals assessed by TCLP test. Hence, it is possible to landfill the scrap waste stabilized by asphalt emulsion. If the dust waste, which has large specific surface, is stabilized by asphalt emulsion, it is not fully encapsulated; the results of the leaching tests do not meet the regulatory levels. However, the dust waste solidified by asphalt emulsion can be deposited into an asphalted disposal site of the landfill. The asphalt walls of the disposal site represent an efficient secondary barrier against pollutant release.

  14. Characterization of asphalt materials containing bio oil from michigan wood

    NASA Astrophysics Data System (ADS)

    Mills-Beale, Julian

    The objective of this research is to develop sustainable wood-blend bioasphalt and characterize the atomic, molecular and bulk-scale behavior necessary to produce advanced asphalt paving mixtures. Bioasphalt was manufactured from Aspen, Basswood, Red Maple, Balsam, Maple, Pine, Beech and Magnolia wood via a 25 KWt fast-pyrolysis plant at 500 °C and refined into two distinct end forms - non-treated (5.54% moisture) and treated bioasphalt (1% moisture). Michigan petroleum-based asphalt, Performance Grade (PG) 58-28 was modified with 2, 5 and 10% of the bioasphalt by weight of base asphalt and characterized with the gas chromatography-mass spectroscopy (GC-MS), Fourier Transform Infra-red (FTIR) spectroscopy and the automated flocculation titrimetry techniques. The GC-MS method was used to characterize the Carbon-Hydrogen-Nitrogen (CHN) elemental ratio whiles the FTIR and the AFT were used to characterize the oxidative aging performance and the solubility parameters, respectively. For rheological characterization, the rotational viscosity, dynamic shear modulus and flexural bending methods are used in evaluating the low, intermediate and high temperature performance of the bio-modified asphalt materials. 54 5E3 (maximum of 3 million expected equivalent standard axle traffic loads) asphalt paving mixes were then prepared and characterized to investigate their laboratory permanent deformation, dynamic mix stiffness, moisture susceptibility, workability and constructability performance. From the research investigations, it was concluded that: 1) levo, 2, 6 dimethoxyphenol, 2 methoxy 4 vinylphenol, 2 methyl 1-2 cyclopentandione and 4-allyl-2, 6 dimetoxyphenol are the dominant chemical functional groups; 2) bioasphalt increases the viscosity and dynamic shear modulus of traditional asphalt binders; 3) Bio-modified petroleum asphalt can provide low-temperature cracking resistance benefits at -18 °C but is susceptible to cracking at -24 °C; 3) Carbonyl and sulphoxide

  15. Development of lightweight concrete mixes for construction industry at the state of Arkansas

    NASA Astrophysics Data System (ADS)

    Almansouri, Mohammed Abdulwahab

    As the construction industry evolved, the need for more durable, long lasting infrastructure increased. Therefore, more efforts have been put to find new methods to improve the properties of the concrete to prolong the service life of the structural elements. One of these methods is the use of lightweight aggregate as an internal curing agent to help reducing self-desiccation and shrinkage. This research studied the effects of using locally available lightweight aggregate (expanded clay), as a partial replacement of normal weight aggregate in the concrete matrix. The concrete mixtures contained lightweight aggregate with a replacement percentage of 12.5, 25, 37.5, and 50 percent by volume. Fresh properties as well as compressive strength, modulus of rupture, and drying shrinkage were measured. While was effective in reducing drying shrinkage, the use of lightweight aggregate resulted in slightly reducing both the compressive strength and modulus of rupture.

  16. Asphalt in Pavement Maintenance.

    ERIC Educational Resources Information Center

    Asphalt Inst., College Park, MD.

    Maintenance methods that can be used equally well in all regions of the country have been developed for the use of asphalt in pavement maintenance. Specific information covering methods, equipment and terminology that applies to the use of asphalt in the maintenance of all types of pavement structures, including shoulders, is provided. In many…

  17. Recycling of excavated asphalt from gas-pipeline installations to Gas Research Institute. Final report - Phase 1

    SciTech Connect

    Lucido, J.; Tobin, A.

    1988-12-01

    Recent estimates indicate that over 11,500 miles of gas distribution piping is installed under existing asphalt pavement annually. This estimate includes 25% of all new installations and 60% of all replacement work. As gas distribution systems grow to meet demands, more projects will involve restoration of asphalt pavements. Because gas distribution piping installed and/or replaced under asphalt pavement can be significantly more expensive than an installation in unpaved soil--it is cause for major concern to the gas industry. The Phase I study addressed the concept of on-site recycling of excavated asphalt for gas utility trenching applications. Commercialization of this concept will eliminate the need for disposal of existing asphalt concrete and the importing of new asphalt concrete, creating potentially significant advantages to the industry.

  18. Bone Glue Modified Asphalt: A Step towards Energy Conservation and Environment Friendly Modified Asphalts.

    PubMed

    Rizvi, Hashim Raza; Khattak, Mohammad Jamal; Gallo, August A

    2014-01-01

    Asphalt has been modified for the past several decades using various additives, including synthetic polymers. Polymer modification improves structural and engineering characteristics of the binder, which is a result of improvement in rheological characteristics of binder as well as its adhesion capability with the aggregate. Such enhancement inevitably enhances the performance characteristics of hot mix asphalts (HMA) such as fatigue life, resistance to rutting, and thermal cracking. Even though polymer-modified HMA is popular in North America and European countries, its use is still limited in developing countries of Southeast Asia due to high costs associated with its manufacturing, processing, and energy consumption. In this study, a new kind of asphalt modifier derived from animal wastes, such as bones, hides, and flesh commonly known as Bone Glue, is studied. This biomaterial which is a by-product of food and cattle industries is cheap, conveniently available, and produced locally in developing countries. The results of the research study showed that the bone glue can easily be mixed with asphalt without significantly altering the asphalt binder's viscosity and mixing and compaction temperatures of HMA. Additionally, improvements in complex shear modulus for a range of temperatures were also determined and it was found that complex shear modulus was improved by bone glue modification.

  19. Bone Glue Modified Asphalt: A Step towards Energy Conservation and Environment Friendly Modified Asphalts

    PubMed Central

    Rizvi, Hashim Raza; Gallo, August A.

    2014-01-01

    Asphalt has been modified for the past several decades using various additives, including synthetic polymers. Polymer modification improves structural and engineering characteristics of the binder, which is a result of improvement in rheological characteristics of binder as well as its adhesion capability with the aggregate. Such enhancement inevitably enhances the performance characteristics of hot mix asphalts (HMA) such as fatigue life, resistance to rutting, and thermal cracking. Even though polymer-modified HMA is popular in North America and European countries, its use is still limited in developing countries of Southeast Asia due to high costs associated with its manufacturing, processing, and energy consumption. In this study, a new kind of asphalt modifier derived from animal wastes, such as bones, hides, and flesh commonly known as Bone Glue, is studied. This biomaterial which is a by-product of food and cattle industries is cheap, conveniently available, and produced locally in developing countries. The results of the research study showed that the bone glue can easily be mixed with asphalt without significantly altering the asphalt binder's viscosity and mixing and compaction temperatures of HMA. Additionally, improvements in complex shear modulus for a range of temperatures were also determined and it was found that complex shear modulus was improved by bone glue modification. PMID:27437456

  20. Evaluation of western shale-oil residue as an additive to petroleum asphalt for use as a pavement crack and joint sealant material

    SciTech Connect

    Harnsberger, P.M.; Wolf, J.M.; Robertson, R.E.

    1992-11-01

    The objective of this study was to perform a preliminary evaluation of using a distillation residue from Green River Formation (western) shale oil as an additive to a petroleum asphalt for use as a crack and joint filler material in portland cement concrete and asphaltic pavements. A commercially available rubberized asphalt crack and joint filler material was also tested for comparison. ASTM specification tests for sealant materials used in concrete and asphalt pavements were performed on the sealant materials. Portland cement concrete briquets prepared with an asphalt material sandwiched between two concrete wafers were tested in a stress-relaxation experiment to evaluate the relaxation and recovery properties of the sealant materials. The results show that the shale-oil modified petroleum asphalts and the neat petroleum asphalt do not pass the extension portion of the ASTM test; however, there is indication of improvement in the adhesive properties of the shale-oil modified asphalts. There is also evidence that the addition of shale-oil residue to the petroleum asphalt, especially at the 20% level, improves the relaxation and recovery properties compared with the petroleum asphalt.

  1. Potential application of ultra-high performance fiber-reinforced concrete with wet-mix shotcrete system in tunneling

    NASA Astrophysics Data System (ADS)

    Goblet, Valentine Pascale

    In the tunneling industry, shotcrete has been used for several decades. The use of shotcrete or wet-mix spray-on methods allows the application of this method in complex underground profiles and shapes. The need for time efficient spraying methods and constructability for lining coverage opens the door for technologies like steel and synthetic fiber reinforced shotcrete to achieve a uniform and a good quality product. An important advantage of the application of fiber reinforced concrete in shotcrete systems for tunneling is that almost no steel fixing is required. This leads to several other advantages including safer working conditions during excavation, less cost, and higher quality achieved through the use of this new technology. However, there are still some limitations. This research presents an analysis and evaluation of the potential application of a new R&D product, ultra-high-performance fiber-reinforced concrete (UHP-FRC), developed by UTA associate professor Shih-Ho (Simon) Chao. This research will focus on its application to tunnel lining using a wet-mix shotcrete system. The objectives of this study are to evaluate the potential application of UHP-FRC with wet-mix shotcrete equipment. This is the first time UHP-FRC has been used for this purpose; hence, this thesis also presents a preliminary evaluation of the compressive and tensile strength of UHP-FRC after application with shotcrete equipment, and to identify proper shotcrete procedures for mixing and application of UHP-FRC. A test sample was created with the wet-mix shotcrete system for further compressive and tensile strength analysis and a proposed plan was developed on the best way to use the UHP-FRC in lining systems for the tunneling industry. As a result of this study, the viscosity for pumpability was achieved for UHP-FRC. However, the mixer was not fast enough to efficiently mix this material. After 2 days, material strength showed 7,200 psi, however, vertical shotcrete was not achieved

  2. Petroleum bitumens in asphalt concrete (review)

    SciTech Connect

    Rozental, D.A.

    1995-12-20

    Modern views on the chemical structure of the main components of heavy petroleum residues and principles of formation of the bitumen disperse systems are presented. Changes in the bitumen disperse structure upon contact with mineral fillers at 160-200{degrees}C for 1-5 h and the role of adsorption of bitumen surfactants on filler grains in these changes are discussed in terms of these views.

  3. Evaluation of Minimum Asphalt Concrete Thickness Criteria

    DTIC Science & Technology

    2008-10-01

    Construction Materials Materials Characterization Laboratory Testing Field Testing Test Section Construction Hydrometer , Modified Proctor, Specific...and transported to the ERDC’s soils laboratory for a series of testing including hydrometer analysis (grain-size analysis-ASTM D 422-63 (2007...STANDARD SIEVE OPENING IN INCHES U. S. STANDARD SIEVE NUMBERS HYDROMETER GRAIN SIZE IN MILLIMETERS 0.0010.010.1110100 50 5 0.5 0.05 0.005 4 3 2 1 3 4 6

  4. Evaluation Criteria for Aged Asphalt Concrete Surfaces

    DTIC Science & Technology

    2007-06-01

    extraction / recovery process, and Table 3 pre- sents the results for conventional properties of the AC samples. ERDC/GSL TR-07-18 13 Figure 11...Figure 7, cores were extracted on site and the beams were sawn in the laboratory. Once the in situ modulus was obtained with the PSPA and the cores...were extracted , the sample was sawed and removed, and the hole was patched. Portable seismic pavement analyzer tests The PSPA (Figure 10), developed

  5. Properties of concrete with tire derived aggregate and crumb rubber as a lighthweight substitute for mineral aggregates in the concrete mix

    NASA Astrophysics Data System (ADS)

    Siringi, Gideon Momanyi

    Scrap tires continue to be a nuisance to the environment and this research proposes one way of recycling them as a lightweight aggregate which can substitute for mineral aggregates in concrete. Aggregates derived from scrap tires are often referred to as Tire Derived Aggregate (TDA). First, the focus is how much mineral aggregate can be replaced by these waste tires and how the properties of concrete are affected with the introduction of rubber. This is being mindful of the fact that for a new material to be acceptable as an engineering material, its properties and behavior has to be well understood, the materials must perform properly and be acceptable to the regulating agencies. The role played by the quantity of TDA and Crumb Rubber replacing coarse aggregate and fine aggregate respectively as well as different treatment and additives in concrete on its properties are examined. Conventional concrete (without TDA) and concrete containing TDA are compared by examining their compressive strength based on ASTM C39, workability based on ASTM C143, Splitting Tensile Strength based on ASTM C496, Modulus of Rupture (flexural strength) based on ASTM C78 and Bond strength of concrete developed with reinforcing steel based on ASTM C234.Through stress-strain plots, the rubberized concrete is compared in terms of change in ductility, toughness and Elastic Modulus. Results indicate that while replacement of mineral aggregates with TDA results in reduction in compressive strength, this may be mitigated by addition of silica fume or using a smaller size of TDA to obtain the desired strength. The greatest benefit of using TDA is in the development of a higher ductile product with lower density while utilizing recycled TDA. From the results, it is observed that 7-10% of weight of mineral aggregates can be replaced by an equal volume of TDA to produce concrete with compressive strength of up to 4000 psi (27.5 MPa). Rubberized concrete would have higher ductility and toughness with

  6. Delamination detection in reinforced concrete using thermal inertia

    SciTech Connect

    Del Grande, N K; Durbin, P F

    1998-11-30

    We investigated the feasibility of thermal inertia mapping for bridge deck inspections. Using pulsed thermal imaging, we heat-stimulated surrogate delaminations in reinforced concrete and asphalt-concrete slabs. Using a dual-band infrared camera system, we measured thermal inertia responses of Styrofoam implants under 5 cm of asphalt, 5 cm of concrete, and 10 cm of asphalt and concrete. We compared thermal maps from solar-heated concrete and asphalt-concrete slabs with thermal inertia maps from flash-heated concrete and asphalt-concrete slabs. Thermal inertia mapping is a tool for visualizing and quantifying subsurface defects. Physically, thermal inertia is a measure of the resistance of the bridge deck to temperature change. Experimentally, it is determined from the inverse slope of the surface temperature versus the inverse square root of time. Mathematically, thermal inertia is the square root of the product of thermal conductivity, density, and heat capacity. Thermal inertia mapping distinguishes delaminated decks which have below-average thermal inertias from normal or shaded decks. Key Words: Pulsed Thermal Imaging, Thermal Inertia, Detection Of Concrete Bridgedeck Delaminations

  7. Feasibility of using 100% Recycled Asphalt Pavement mixtures for road construction

    NASA Astrophysics Data System (ADS)

    Carlson, Russell Edgar, IV

    Recycled Asphalt Pavement (RAP) is the largest recycled good in the United States and 80 million tons are recycled yearly, saving taxpayers about $1.5 billion dollars. This paper explores the possibility of utilizing 100% RAP materials in asphalt pavement. Asphalt mixtures are produced at 135°C in a typical asphalt plant. However, at 135°C, not all binder from RAP materials may not become effective for coating aggregates. The main objective of the study is to determine the amount of effective binder available from RAP in the asphalt plant. The 100% RAP mixes have aged binder that can alter mix designs and interaction with virgin binder. In this study, to determine low temperature cracking resistance and fatigue performance, samples were prepared using a 100% RAP mix with no virgin binder and a 100% RAP mix with virgin asphalt binder to achieve the optimum binder content of the mix. Second, to determine the effectiveness of binder from RAP materials, compaction tests were performed by heating RAP materials at various temperatures. It was found that 100% RAP mixes cannot be feasible for field use if additional virgin binder is added to reach the optimum asphalt content. Based on limited test results, the low temperature grade was not within proper limits but the beam fatigue testing results were acceptable. Based on compaction test results, additional heating is needed to increase the effectiveness of asphalt binder from RAP materials.

  8. The reinforcement and healing of asphalt mastic mixtures by rejuvenator encapsulation in alginate compartmented fibres

    NASA Astrophysics Data System (ADS)

    Tabaković, A.; Post, W.; Cantero, D.; Copuroglu, O.; Garcia, S. J.; Schlangen, E.

    2016-08-01

    This paper explores the potential use of compartmented alginate fibres as a new method of incorporating rejuvenators into asphalt pavement mixtures. The compartmented fibres are employed to locally distribute the rejuvenator and to overcome the problems associated with spherical capsules and hollow fibres. The work presents proof of concept of the encapsulation process which involved embedding the fibres into the asphalt mastic mixture and the survival rate of fibres in the asphalt mixture. To prove the effectiveness of the alginate as a rejuvenator encapsulating material and to demonstrate its ability survive asphalt production process, the fibres containing the rejuvenator were prepared and subjected to thermogravimetric analysis and uniaxial tensile test. The test results demonstrated that fibres have suitable thermal and mechanical strength to survive the asphalt mixing and compaction process. The CT scan of an asphalt mortar mix containing fibres demonstrated that fibres are present in the mix in their full length, undamaged, providing confirmation that the fibres survived the asphalt production process. In order to investigate the fibres physiological properties and ability to release the rejuvenator into cracks in the asphalt mastic, the environmental scanning electron microscope and optical microscope analysis were employed. To prove its success as an asphalt healing system, compartmented alginate fibres containing rejuvenator were embedded in asphalt mastic mix. The three point bend tests were performed on the asphalt mastic test samples and the degree to which the samples began to self-heal in response was measured and quantified. The research findings indicate that alginate fibres present a promising new approach for the development of self-healing asphalt pavement systems.

  9. 23. Surrender interview site, showing Pemberton Avenue concrete slab road ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. Surrender interview site, showing Pemberton Avenue concrete slab road type with gutter (asphalt construction typical on Union and Confederate Avenues), view to the sw. - Vicksburg National Military Park Roads & Bridges, Vicksburg, Warren County, MS

  10. Microbial Degradation of Asphalt1

    PubMed Central

    Phillips, U. A.; Traxler, R. W.

    1963-01-01

    Organisms of the genera Pseudomonas, Chromobacterium, and Bacillus capable of degrading asphalt were isolated by enrichment cultures. The asphalt degradation by these organisms varied from 3 to 25% after incubation for 1 week. The effects of temperature, pH, and atmosphere of incubation on asphalt degradation were investigated and were shown to vary with different organisms on the same substrate. PMID:16349633

  11. HP-GPC characterization of asphalt and modified asphalts from gulf countries and their relation to performance based properties

    SciTech Connect

    Wahhab, H.I.A.; Ali, M.F.; Asi, I.M.; Dubabe, I.A.

    1996-12-31

    Asphalt producing refineries in the Gulf countries include Ras Tanura and Riyadh (Saudi Arabia), Al-Ahmadi (Kuwait), and BAPCO (Bahrain). Riyadh and Ras Tanura refineries are located in the central and eastern Saudi Arabia respectively. Arabian light crude oil is used to produce 2000 to 3000 tons of asphalt per day using vacuum distillation, air blowing and grade blending techniques to produce 60/70 penetration grade asphalts in each of these two Saudi refineries. All of the asphalt cement used in Saudi Arabia, Qatar and parts of the United Arab Emirates is supplied by Riyadh and Ras Tanura refineries. Al-Ahmadi refinery supplies all of the asphalt cement needed for construction in the state of Kuwait. Ratwi-Burgan crude off mix is used to produce 750 to 1000 tons of asphalt per day using vacuum distillation and air blowing processes. This study was initiated to evaluate different locally available polymers in order to identify potential polymers to modify asphalts to satisfy the performance requirements in the Gulf countries environmental conditions.

  12. Microbial life in a liquid asphalt desert.

    PubMed

    Schulze-Makuch, Dirk; Haque, Shirin; de Sousa Antonio, Marina Resendes; Ali, Denzil; Hosein, Riad; Song, Young C; Yang, Jinshu; Zaikova, Elena; Beckles, Denise M; Guinan, Edward; Lehto, Harry J; Hallam, Steven J

    2011-04-01

    Pitch Lake in Trinidad and Tobago is a natural asphalt reservoir nourished by pitch seepage, a form of petroleum that consists of mostly asphaltines, from the surrounding oil-rich region. During upward seepage, pitch mixes with mud and gases under high pressure, and the lighter portion evaporates or is volatilized, which produces a liquid asphalt residue characterized by low water activity, recalcitrant carbon substrates, and noxious chemical compounds. An active microbial community of archaea and bacteria, many of them novel strains (particularly from the new Tar ARC groups), totaling a biomass of up to 10(7) cells per gram, was found to inhabit the liquid hydrocarbon matrix of Pitch Lake. Geochemical and molecular taxonomic approaches revealed diverse, novel, and deeply branching microbial lineages with the potential to mediate anaerobic hydrocarbon degradation processes in different parts of the asphalt column. In addition, we found markers for archaeal methane metabolism and specific gene sequences affiliated with facultative and obligate anaerobic sulfur- and nitrite-oxidizing bacteria. The microbial diversity at Pitch Lake was found to be unique when compared to microbial communities analyzed at other hydrocarbon-rich environments, which included Rancho Le Brea, a natural asphalt environment in California, USA, and an oil well and a mud volcano in Trinidad and Tobago, among other sites. These results open a window into the microbial ecology and biogeochemistry of recalcitrant hydrocarbon matrices and establish the site as a terrestrial analogue for modeling the biotic potential of hydrocarbon lakes such as those found on Saturn's largest moon Titan.

  13. Microbial Life in a Liquid Asphalt Desert

    NASA Astrophysics Data System (ADS)

    Schulze-Makuch, Dirk; Haque, Shirin; de Sousa Antonio, Marina Resendes; Ali, Denzil; Hosein, Riad; Song, Young C.; Yang, Jinshu; Zaikova, Elena; Beckles, Denise M.; Guinan, Edward; Lehto, Harry J.; Hallam, Steven J.

    2011-04-01

    Pitch Lake in Trinidad and Tobago is a natural asphalt reservoir nourished by pitch seepage, a form of petroleum that consists of mostly asphaltines, from the surrounding oil-rich region. During upward seepage, pitch mixes with mud and gases under high pressure, and the lighter portion evaporates or is volatilized, which produces a liquid asphalt residue characterized by low water activity, recalcitrant carbon substrates, and noxious chemical compounds. An active microbial community of archaea and bacteria, many of them novel strains (particularly from the new Tar ARC groups), totaling a biomass of up to 107 cells per gram, was found to inhabit the liquid hydrocarbon matrix of Pitch Lake. Geochemical and molecular taxonomic approaches revealed diverse, novel, and deeply branching microbial lineages with the potential to mediate anaerobic hydrocarbon degradation processes in different parts of the asphalt column. In addition, we found markers for archaeal methane metabolism and specific gene sequences affiliated with facultative and obligate anaerobic sulfur- and nitrite-oxidizing bacteria. The microbial diversity at Pitch Lake was found to be unique when compared to microbial communities analyzed at other hydrocarbon-rich environments, which included Rancho Le Brea, a natural asphalt environment in California, USA, and an oil well and a mud volcano in Trinidad and Tobago, among other sites. These results open a window into the microbial ecology and biogeochemistry of recalcitrant hydrocarbon matrices and establish the site as a terrestrial analogue for modeling the biotic potential of hydrocarbon lakes such as those found on Saturn's largest moon Titan.

  14. Predicting rheological parameters of reclaimed asphalt cement with wave propagation techniques. Research report, 1 September 1993-31 August 1995

    SciTech Connect

    Nazarian, S.; Pezo, R.; Nori, S.R.G.; Picornell, M.

    1996-07-01

    A methodology to predict the rheological of asphalt cement from elastic modulus or from the indirect tensile (IDT) strength of the mix is presented. Wave propagation techniques were used to determine the modulus of the mix. Numerous specimens, prepared from four different mixtures with different asphalt contents and voids in the total mixes (VTM`s), were-oven aged for different periods. The elastic modulus and IDT strength of each specimen were determined, and its asphalt cement was recovered to evalutate its rheological properties. The effects of different parameters, such as asphalt content and VTM, on relationships between elastic modulus or IDT strength with rheological properties were determined.

  15. Performance modeling of Arabian asphalt using HP-GPC

    NASA Astrophysics Data System (ADS)

    Asi, I. M.; Wahhab, H. I. Al-Abdul; Al-Dubabi, I. A.; Ali, M. F.

    1997-08-01

    In this study, Arabian neat asphalt samples were collected from different asphalt producing refineries in the Gulf countries. Another set of polymer modified samples was also included in this study. In the polymer modification process, 5,10, and 15% crumb rubber (CRT) and 3,6, and 9% styrene-butadiene-styrene (SBS) were used. All asphalt samples were subjected to two aging processes to simulate heating, mixing, compaction, and in-service aging. The asphalt samples at the different aging stages were subjected to performance-based tests that were adapted and/or modified by the Strategic Highway Research Program (SHRP) team. High pressure gel permeation chromatography (HP-GPC) was used to chemically analyze the test samples by generating profiles of their molecular size distribution. Models were built to predict the performance-based properties from the produced HP-GPC profiles.

  16. Abrasive blast material utilization in asphalt roadbed material

    SciTech Connect

    Means, J.L.; Nehring, K.W.; Heath, J.C.

    1996-12-31

    The State of California has promulgated rules on California-only hazardous wastes that offer the potential for some of these wastes to be recycled or reused. Abrasive blast material (ABM) from military and commercial operations such as sandblasting may fall into the category of waste that can be reused. Experiments were conducted on spent sandblasting grit to determine whether the grit could be incorporated into asphalt concrete for use as roadbed material, and a test roadbed was laid to evaluate the long-term stability of the metals found in the grit. Incorporation of the ABM in asphalt helps reduce the mobility of metal contaminants making the material suitable for reuse. The results of the initial characterization, treatability testing, and follow-up measurements of core samples taken from the test roadbed are presented to show that the use of abrasive blast material in asphalt roadbed material is a viable option under the proposed California regulatory standards.

  17. Slow mechanical relaxation in asphalt

    SciTech Connect

    Stastna, J.; Zanzotto, L.

    1996-12-31

    Asphalt (or bitumen) is one of the earliest construction materials used by mankind. However, despite the long history of its use and the important role it plays at the present time, in the construction of pavements, the composition and especially the structure of asphalt is still not fully understood. It is generally believed that asphalt is a multiphase system in which the large and polar molecules called asphaltenes, or their agglomerates are dispersed in the medium consisting of the smaller molecules with low or no polarity. Opinions on how the asphalt structure is arranged vary. The study of asphalt structure is made extremely difficult by the nature of this material. Non-invasive methods such as dynamic mechanical or electric testing, which investigate the asphalt in its original state may greatly contribute to our knowledge of the asphalt internal structure.

  18. Evaluation of western and eastern shale oil residua as asphalt pavement recycling agents

    SciTech Connect

    Harnsberger, P.M.; Robertson, R.E.

    1990-03-01

    The objective of this investigation was to perform a preliminary evaluation of the utility of residual materials prepared from Green River Formation (western) and New Albany Shale (eastern) shale oils as recycling agents for aged asphalt pavement. Four petroleum asphalts were first aged by a thin-film accelerated-aging test, which simulates long service life of asphalt in pavement. The aged asphalts were mixed (recycled) with Green River Formation shale oil distillation residua to restore the original viscosities. Separately, for comparison, a commercial recycling agent was used to recycle the aged asphalts under the same circumstances. The recycled asphalts were reaged and the properties of both binder and asphalt-aggregate mixtures studied. Originally, the same study was intended for an eastern shale residua. However, the eastern shale oil distillation residua with the required flash point specification also had the properties of a viscosity builder; therefore, it was studied as such with asphalts that do not achieve sufficient viscosity during processing to serve as usable binders. Results show that Green River Formation shale oil residuum can be used to restore the original asphalt properties with favorable rheological properties, the shale oil residuum has a beneficial effect on resistance to moisture damage, the low-temperature properties of the shale oil residuum recycled asphalts are not adversely affected, and the low-temperature properties of the shale oil residuum recycled asphalts are dependent upon the chemistry of the mixture. The eastern shale oil residua was blended with soft petroleum asphalts. Results show the products have higher viscosities than the starting materials, the rheological properties of the soft asphalt-eastern shale oil residue blends are acceptable, and the eastern shale oil residue has dispersant properties despite its high viscosity. 11 refs., 3 figs., 9 tabs.

  19. Properties of Sulfur Concrete.

    DTIC Science & Technology

    1979-07-06

    This report summarizes the state of the art of sulfur concrete . Sulfur concrete is created by mixing molten sulfur with aggregate and allowing the...and many organic compounds. It works well as a rapid runway repair material. Sulfur concrete also has unfavorable properties. It has poor durability

  20. Hanford Protective Barriers Program asphalt barrier studies -- FY 1988

    SciTech Connect

    Freeman, H.D.; Gee, G.W.

    1989-05-01

    The Hanford Protective Barrier (HPB) Program is evaluating alternative barriers to provide a means of meeting stringent water infiltration requirements. One type of alternative barrier being considered is an asphalt-based layer, 1.3 to 15 cm thick, which has been shown to be very effective as a barrier for radon gas and, hence, should be equally effective as a barrier for the larger molecules of water. Fiscal Year 1988 studies focused on the selection and formulation of the most promising asphalt materials for further testing in small-tube lysimeters. Results of laboratory-scale formulation and hydraulic conductivity tests led to the selection of a rubberized asphalt material and an admixture of 24 wt% asphalt emulsion and concrete sand as the two barriers for lysimeter testing. Eight lysimeters, four each containing the two asphalt treatments, were installed in the Small Tube Lysimeter Facility on the Hanford Site. The lysimeter tests allow the performance of these barrier formulations to be evaluated under more natural environmental conditions.

  1. A review of the fundamentals of polymer-modified asphalts: Asphalt/polymer interactions and principles of compatibility.

    PubMed

    Polacco, Giovanni; Filippi, Sara; Merusi, Filippo; Stastna, George

    2015-10-01

    During the last decades, the number of vehicles per citizen as well as the traffic speed and load has dramatically increased. This sudden and somehow unplanned overloading has strongly shortened the life of pavements and increased its cost of maintenance and risks to users. In order to limit the deterioration of road networks, it is necessary to improve the quality and performance of pavements, which was achieved through the addition of a polymer to the bituminous binder. Since their introduction, polymer-modified asphalts have gained in importance during the second half of the twentieth century, and they now play a fundamental role in the field of road paving. With high-temperature and high-shear mixing with asphalt, the polymer incorporates asphalt molecules, thereby forming a swallowed network that involves the entire binder and results in a significant improvement of the viscoelastic properties in comparison with those of the unmodified binder. Such a process encounters the well-known difficulties related to the poor solubility of polymers, which limits the number of macromolecules able to not only form such a structure but also maintain it during high-temperature storage in static conditions, which may be necessary before laying the binder. Therefore, polymer-modified asphalts have been the subject of numerous studies aimed to understand and optimize their structure and storage stability, which gradually attracted polymer scientists into this field that was initially explored by civil engineers. The analytical techniques of polymer science have been applied to polymer-modified asphalts, which resulted in a good understanding of their internal structure. Nevertheless, the complexity and variability of asphalt composition rendered it nearly impossible to generalize the results and univocally predict the properties of a given polymer/asphalt pair. The aim of this paper is to review these aspects of polymer-modified asphalts. Together with a brief description of

  2. Integrated model for assessing the cost and CO2 emission (IMACC) for sustainable structural design in ready-mix concrete.

    PubMed

    Hong, Taehoon; Ji, Changyoon; Park, Hyoseon

    2012-07-30

    Cost has traditionally been considered the most important factor in the decision-making process. Recently, along with the consistent interest in environmental problems, environmental impact has also become a key factor. Accordingly, there is a need to develop a method that simultaneously reflects the cost and environmental impact in the decision-making process. This study proposed an integrated model for assessing the cost and CO(2) emission (IMACC) at the same time. IMACC is a model that assesses the cost and CO(2) emission of the various structural-design alternatives proposed in the structural-design process. To develop the IMACC, a standard on assessing the cost and CO(2) emission generated in the construction stage was proposed, along with the CO(2) emission factors in the structural materials, based on such materials' strengths. Moreover, using the economic and environmental scores that signify the cost and CO(2) emission reduction ratios, respectively, a method of selecting the best design alternative was proposed. To verify the applicability of IMACC, practical application was carried out. Structural designs were assessed, each of which used 21, 24, 27, and 30 MPa ready-mix concrete (RMC). The use of IMACC makes it easy to verify what the best design is. Results show the one that used 27 MPa RMC was the best design. Therefore, the proposed IMACC can be used as a tool for supporting the decision-making process in selecting the best design alternative.

  3. Hierarchical order of influence of mix variables affecting compressive strength of sustainable concrete containing fly ash, copper slag, silica fume, and fibres.

    PubMed

    Natarajan, Sakthieswaran; Karuppiah, Ganesan

    2014-01-01

    Experiments have been conducted to study the effect of addition of fly ash, copper slag, and steel and polypropylene fibres on compressive strength of concrete and to determine the hierarchical order of influence of the mix variables in affecting the strength using cluster analysis experimentally. While fly ash and copper slag are used for partial replacement of cement and fine aggregate, respectively, defined quantities of steel and polypropylene fibres were added to the mixes. It is found from the experimental study that, in general, irrespective of the presence or absence of fibres, (i) for a given copper slag-fine aggregate ratio, increase in fly ash-cement ratio the concrete strength decreases and with the increase in copper slag-sand ratio also the rate of strength decrease and (ii) for a given fly ash-cement ratio, increase in copper slag-fine aggregate ratio increases the strength of the concrete. From the cluster analysis, it is found that the quantities of coarse and fine aggregate present have high influence in affecting the strength. It is also observed that the quantities of fly ash and copper slag used as substitutes have equal "influence" in affecting the strength. Marginal effect of addition of fibres in the compression strength of concrete is also revealed by the cluster analysis.

  4. Hierarchical Order of Influence of Mix Variables Affecting Compressive Strength of Sustainable Concrete Containing Fly Ash, Copper Slag, Silica Fume, and Fibres

    PubMed Central

    Natarajan, Sakthieswaran; Karuppiah, Ganesan

    2014-01-01

    Experiments have been conducted to study the effect of addition of fly ash, copper slag, and steel and polypropylene fibres on compressive strength of concrete and to determine the hierarchical order of influence of the mix variables in affecting the strength using cluster analysis experimentally. While fly ash and copper slag are used for partial replacement of cement and fine aggregate, respectively, defined quantities of steel and polypropylene fibres were added to the mixes. It is found from the experimental study that, in general, irrespective of the presence or absence of fibres, (i) for a given copper slag-fine aggregate ratio, increase in fly ash-cement ratio the concrete strength decreases and with the increase in copper slag-sand ratio also the rate of strength decrease and (ii) for a given fly ash-cement ratio, increase in copper slag-fine aggregate ratio increases the strength of the concrete. From the cluster analysis, it is found that the quantities of coarse and fine aggregate present have high influence in affecting the strength. It is also observed that the quantities of fly ash and copper slag used as substitutes have equal “influence” in affecting the strength. Marginal effect of addition of fibres in the compression strength of concrete is also revealed by the cluster analysis. PMID:24707213

  5. Asphalt Roofing Shingles Into Energy Project Summary Report

    SciTech Connect

    Jameson, Rex, PE

    2008-04-28

    Based on a widely cited September, 1999 report by the Vermont Agency of Natural Resources, nearly 11 million tons of asphalt roofing shingle wastes are produced in the United States each year. Recent data suggests that the total is made up of about 9.4 million tons from roofing tear-offs and about 1.6 million tons from manufacturing scrap. Developing beneficial uses for these materials would conserve natural resources, promote protection of the environment and strengthen the economy. This project explored the feasibility of using chipped asphalt shingle materials in cement manufacturing kilns and circulating fluidized bed (CFB) boilers. A method of enhancing the value of chipped shingle materials for use as fuel by removing certain fractions for use as substitute raw materials for the manufacture of new shingles was also explored. Procedures were developed to prevent asbestos containing materials from being processed at the chipping facilities, and the frequency of the occurrence of asbestos in residential roofing tear-off materials was evaluated. The economic feasibility of each potential use was evaluated based on experience gained during the project and on a review of the well established use of shingle materials in hot mix asphalt. This project demonstrated that chipped asphalt shingle materials can be suitable for use as fuel in circulating fluidized boilers and cement kilns. More experience would be necessary to determine the full benefits that could be derived and to discover long term effects, but no technical barriers to full scale commercial use of chipped asphalt shingle materials in these applications were discovered. While the technical feasibility of various options was demonstrated, only the use of asphalt shingle materials in hot mix asphalt applications is currently viable economically.

  6. Nuclear method for determination of asphalt content corrected for moisture in bituminous mixture. Final report, March 1988-February 1989

    SciTech Connect

    Christensen, D.W.; Tarris, J.P.

    1989-05-01

    This report presents results of research on the development of a method for determination of asphalt content corrected for moisture using the nuclear-gauge method. The researchers selected an approach that involved rapid drying of the asphalt concrete samples in a microwave oven prior to the determination of asphalt content using a Troxler Model 3241-C nuclear asphalt-content gauge. As a reference, asphalt contents were also measured using quantitative extraction. In general, good agreement was found between asphalt contents measured by the Troxler Model 3241-C nuclear gauge and asphalt contents measured by quantitative extraction. In extended sampling for Plant 1, no significant increase in nuclear gauge error was seen over a 10-day sampling period, which indicates that daily calibration of the nuclear gauge is probably unnecessary to maintain satisfactory performance. The field demonstration of the procedure of drying the bituminous mixture in a microwave oven and then determining its asphalt content by the nuclear method indicated asphalt-content results were obtained approximately 1 hour faster than results obtained by quantitative extraction.

  7. Macro- and Micro-Mechanics of Mixed-Mode Dynamic Fracture of Concrete. Part 1. Micro-Mechanic Analysis

    DTIC Science & Technology

    1993-02-14

    fracture energy density of concrete were discussed by Hillerborg and Mindess [55-57]. The total external energy needed to quasi-statically fracture a...Composites.: Strzin Rate Effects on Fracture, eds. S. Mindess and S.P Shah, Materials Research Society Symposia Proceeding Vol. 64, 1986 18 S. Mindess ...Nijhoff Publishers, 1985, pp. 617-636. I 1 9 A. Benton, S. Mindess , and N. Benthur, "The Behavior of Concrete Under Impact Loading: Experimental

  8. Polyurethane synthesis reactions in asphalts

    SciTech Connect

    Bukowski, A.; Gretkiewicz, J.

    1982-04-01

    A series of asphalt-polyurethane composites was prepared by means of polyurethane synthesis in asphalt and carried out in melt. The applied materials were asphalts of differentiated group components content, polyester polyols of chain structure from linear to strongly branched, 2,4-tolylene diisocyanate, 4,4-methylenebis(phenyl isocyanate), and tinorganic catalyst. The asphalt components react with isocyanates to a minimal degree. The influence of the applied substrates, temperature, and polyurethane content in the system on the basic kinetic relations characterizing the process is presented. Polyurethane synthesis in asphalts does not differ in a fundamental way from the obtaining of polyurethanes, especially when their content in the composition is significant, 20 wt% and more.

  9. Automated titration method for use on blended asphalts

    DOEpatents

    Pauli, Adam T [Cheyenne, WY; Robertson, Raymond E [Laramie, WY; Branthaver, Jan F [Chatham, IL; Schabron, John F [Laramie, WY

    2012-08-07

    A system for determining parameters and compatibility of a substance such as an asphalt or other petroleum substance uses titration to highly accurately determine one or more flocculation occurrences and is especially applicable to the determination or use of Heithaus parameters and optimal mixing of various asphalt stocks. In a preferred embodiment, automated titration in an oxygen gas exclusive system and further using spectrophotometric analysis (2-8) of solution turbidity is presented. A reversible titration technique enabling in-situ titration measurement of various solution concentrations is also presented.

  10. How Concrete Is Concrete?

    ERIC Educational Resources Information Center

    Gravemeijer, Koeno

    2011-01-01

    If we want to make something concrete in mathematics education, we are inclined introduce, what we call, "manipulatives", in the form of tactile objects or visual representations. If we want to make something concrete in a everyday-life conversation, we look for an example. In the former, we try to make a concrete model of our own,…

  11. Corrosion-resistant sulfur concretes

    NASA Astrophysics Data System (ADS)

    McBee, W. C.; Sullivan, T. A.; Jong, B. W.

    1983-04-01

    Sulfur concretes have been developed by the Bureau of Mines as construction materials with physical and mechanical properties that suit them for use in acid and salt corrosive environments where conventional concretes fail. Mixture design methods were established for preparing sulfur concretes using different types of aggregates and recently developed mixed-modified sulfur cements. Bench-scale testing of the sulfur concretes has shown their potential value. Corrosion resistance, strength, and durability of sulfur concrete are superior to those of conventional materials. Field in situ evaluation tests of the sulfur concretes as replacement for conventional concrete materials are in progress in corrosive areas of 24 commercial chemical, fertilizer, and metallurgical plants.

  12. Application of asphalt emulsion seals to uranium mill tailings

    SciTech Connect

    Hartley, J.N.; Koehmstedt, P.L.; Esterl, D.J.; Freeman, H.D.; Clark, R.L.

    1980-11-01

    Studies of asphalt emulsion sealants have demonstrated that the sealants are effective in containing radon and other potentially hazardous material within uranium tailings. The laboratory and field studies have further demonstrated that radon exhalation from uranium tailings piles can be reduced by greater than 99% to less than background levels. Field tests at the tailings pile in Grand Junction, Colorado confirmed that an 8-cm admix seal containing 22 wt % asphalt could be effectively applied with a cold-mix paver. Other techniques were successfully tested, including a soil stabilizer and a hot, rubberized asphalt seal that was applied with a distributor truck. After the seals were applied and conpacted, overburden was applied over the seal to protect the seal from ultraviolet degradation. 14 figures.

  13. Asphalt emulsion sealing of uranium mill tailings. 1980 annual report

    SciTech Connect

    Hartley, J.N.; Koehmstedt, P.L; Esterl, D.J.; Freeman, H.D.; Buelt, J.L.; Nelson, D.A.; Elmore, M.R.

    1981-05-01

    Studies of asphalt emulsion sealants conducted by the Pacific Northwest Laboratory have demonstrated that the sealants are effective in containing radon and other potentially hazardous material within uranium tailings. The laboratory and field studies have further demonstrated that radon exhalation from uranium tailings piles can be reduced by greater than 99% to near background levels. Field tests at the tailings pile in Grand Junction, Colorado, confirmed that an 8-cm admix seal containing 22 wt% asphalt could be effectively applied with a cold-mix paver. Other techniques were successfully tested, including a soil stabilizer and a hot, rubberized asphalt seal that was applied with a distributor truck. After the seals were applied and compacted, overburden was applied over the seal to protect the seal from ultraviolet degradation.

  14. Asphalt emulsion sealing of uranium mill tailings. 1979 annual report

    SciTech Connect

    Hartley, J.N.; Koehmstedt, P.L.; Esterl, D.J.; Freeman, H.D.

    1980-06-01

    Uranium mill tailings are a source of low-level radiation and radioactive materials that may be released into the environment. Stabilization or disposal of these tailings in a safe and environmentally sound way is necessary to minimize radon exhalation and other radioactive releases. One of the most promising concepts for stabilizing uranium tailings is being investigated at the Pacific Northwest Laboratory: the use of asphalt emulsion to contain radon and other potentially hazardous materials in uranium tailings. Results of these studies indicate that radon flux from uranium tailings can be reduced by greater than 99% by covering the tailings with an asphalt emulsion that is poured on or sprayed on (3.0 to 7.0 mm thick), or mixed with some of the tailings and compacted to form an admixture seal (2.5 to 15.2 cm) containing 18 wt % residual asphalt.

  15. Evaluation of asphalt-rubber interlayers. (Revised). Final research report, September 1986-September 1992

    SciTech Connect

    Estakhri, C.K.; Pendleton, O.; Lytton, R.L.

    1994-02-01

    The report presents the field performance results of three asphalt-rubber interlayer test roads in terms of the effectiveness of the interlayer at reducing the rate of reflection cracking. Several variables were included in the field experiments: concentration of rubber, binder application rate, type or source of rubber, and digestion (or mixing) time of asphalt and rubber. Control sections were made up of no interlayer and interlayer binders of polymer-modified asphalt and conventional asphalt cement. Results of the statistical analyses of the data indicated that, in general, asphalt-rubber interlayers are more effective at reducing reflection cracking than no interlayer at all. Asphalt-rubber also peerformed better than control sections composed of asphalt cement interlayers and polymer-modified interlayers except in one case where the interlyaer was composed of a double application of asphalt cement/aggregate. The data also indicated that higher binder application rates lead to imnproved cracking resistance; however, on many test sections, excessively high binder application rates caused flushing at the pavement surface.

  16. Investigation of the Microstructural Mechanism of Relaxation and Fracture Healing in Asphalt

    DTIC Science & Technology

    1993-04-12

    FOR THE AIR FORCE OFFICE OF SCIENTIFIC RESEARCH FINAL REPORT GRANT NO. AFOSR-89-0520 DTIC * APRIL 12, 1993 uN 2 a 1993 TEXAS TRANSPORTATION INSTITUTE...throuqh Vibration Analysis . 114 APPROACH TO FUTURE RESEARCH ....... ..... .................. 117 MICROSTRUCTURAL FATIGUE RELATIONSHIPS...microdamage healing. This report contains one appendix entitled "Characterization of Damage Growth in Asphalt Concrete ." This appendix supports the

  17. Application of the endochronic theory of viscoplasticity to solid propellants and sandasphalt concrete

    NASA Technical Reports Server (NTRS)

    Peng, S. T. J.; Valanis, K. C.

    1977-01-01

    Solid propellants, sand-asphalt concrete and hard plastics showed rate sensitive mechanical behavior which, in addition, indicated that these materials have a permanent memory of the strain (or loading) path by which their present state was attained. A constitutive equation was formulated in general three dimensional tensorial form by means of irreversible thermodynamics. By using a very simple analytical form, it was shown that the mechanical behavior of solid propellants and sand-asphalt concrete can be readily described.

  18. Interaction nonlinearity in asphalt binders

    NASA Astrophysics Data System (ADS)

    Motamed, Arash; Bhasin, Amit; Liechti, Kenneth M.

    2012-05-01

    Asphalt mixtures are complex composites that comprise aggregate, asphalt binder, and air. Several research studies have shown that the mechanical behavior of the asphalt mixture is strongly influenced by the matrix, i.e. the asphalt binder. Characterization and a thorough understanding of the binder behavior is the first and crucial step towards developing an accurate constitutive model for the composite. Accurate constitutive models for the constituent materials are critical to ensure accurate performance predictions at a material and structural level using micromechanics. This paper presents the findings from a systematic investigation into the nature of the linear and nonlinear response of asphalt binders subjected to different types of loading using the Dynamic Shear Rheometer (DSR). Laboratory test data show that a compressive normal force is generated in an axially constrained specimen subjected to torsional shear. This paper investigates the source of this normal force and demonstrates that the asphalt binder can dilate when subjected to shear loads. This paper also presents the findings from a study conducted to investigate the source of the nonlinearity in the asphalt binder. Test results demonstrate that the application of cyclic shear loads results in the development of a normal force and a concomitant reduction in the dynamic shear modulus. This form of nonlinear response is referred to as an "interaction nonlinearity". A combination of experimental and analytical tools is used to demonstrate and verify the presence of this interaction nonlinearity in asphalt binders. The findings from this study highlight the importance of modeling the mechanical behavior of asphalt binders based on the overall stress state of the material.

  19. Greenhouse Gas Emissions from Asphalt Pavement Construction: A Case Study in China.

    PubMed

    Ma, Feng; Sha, Aimin; Lin, Ruiyu; Huang, Yue; Wang, Chao

    2016-03-22

    In China, the construction of asphalt pavement has a significant impact on the environment, and energy use and greenhouse gas (GHG) emissions from asphalt pavement construction have been receiving increasing attention in recent years. At present, there is no universal criterion for the evaluation of GHG emissions in asphalt pavement construction. This paper proposes to define the system boundaries for GHG emissions from asphalt pavement by using a process-based life cycle assessment method. A method for evaluating GHG emissions from asphalt pavement construction is suggested. The paper reports a case study of GHG emissions from a typical asphalt pavement construction project in China. The results show that the greenhouse gas emissions from the mixture mixing phase are the highest, and account for about 54% of the total amount. The second highest GHG emission phase is the production of raw materials. For GHG emissions of cement stabilized base/subbase, the production of raw materials emits the most, about 98%. The GHG emission for cement production alone is about 92%. The results indicate that any measures to reduce GHG emissions from asphalt pavement construction should be focused on the raw materials manufacturing stage. If the raw materials production phase is excluded, the measures to reduce GHG emissions should be aimed at the mixture mixing phase.

  20. Greenhouse Gas Emissions from Asphalt Pavement Construction: A Case Study in China

    PubMed Central

    Ma, Feng; Sha, Aimin; Lin, Ruiyu; Huang, Yue; Wang, Chao

    2016-01-01

    In China, the construction of asphalt pavement has a significant impact on the environment, and energy use and greenhouse gas (GHG) emissions from asphalt pavement construction have been receiving increasing attention in recent years. At present, there is no universal criterion for the evaluation of GHG emissions in asphalt pavement construction. This paper proposes to define the system boundaries for GHG emissions from asphalt pavement by using a process-based life cycle assessment method. A method for evaluating GHG emissions from asphalt pavement construction is suggested. The paper reports a case study of GHG emissions from a typical asphalt pavement construction project in China. The results show that the greenhouse gas emissions from the mixture mixing phase are the highest, and account for about 54% of the total amount. The second highest GHG emission phase is the production of raw materials. For GHG emissions of cement stabilized base/subbase, the production of raw materials emits the most, about 98%. The GHG emission for cement production alone is about 92%. The results indicate that any measures to reduce GHG emissions from asphalt pavement construction should be focused on the raw materials manufacturing stage. If the raw materials production phase is excluded, the measures to reduce GHG emissions should be aimed at the mixture mixing phase. PMID:27011196

  1. The Potential of Heat Collection from Solar Radiation in Asphalt Solar Collectors in Malaysia

    NASA Astrophysics Data System (ADS)

    Beddu, Salmia; Talib, Siti Hidayah Abdul; Itam, Zarina

    2016-03-01

    The implementation of asphalt solar collectors as a means of an energy source is being widely studied in recent years. Asphalt pavements are exposed to daily solar radiation, and are capable of reaching up to 70°C in temperature. The potential of harvesting energy from solar pavements as an alternative energy source in replace of non-renewable energy sources prone to depletion such as fuel is promising. In Malaysia, the sun intensity is quite high and for this reason, absorbing the heat from sun radiation, and then utilizing it in many other applications such as generating electricity could definitely be impressive. Previous researches on the different methods of studying the effect of heat absorption caused by solar radiation prove to be quite old and inaffective. More recent findings, on the otherhand, prove to be more informative. This paper focuses on determining the potential of heat collection from solar radiation in asphalt solar collectors using steel piping. The asphalt solar collector model constructed for this research was prepared in the civil engineering laboratory. The hot mixed asphalt (HMA) contains 10% bitumen mixed with 90% aggregates of the total size of asphalt. Three stainless steel pipes were embedded into the interior region of the model according to the design criteria, and then put to test. Results show that harvesting energy from asphalt solar collectors proves highly potential in Malaysia due its the hot climate.

  2. Using emissivity-corrected thermal maps to locate deep structural defects in concrete bridge decks

    SciTech Connect

    Del Grande, N.K.; Durbin, P.F.

    1995-04-05

    Dual-band infrared (DBIR) thermal imaging is a promising, non-contact, nondestructive evaluation tool to evaluate the amount of deteriorated concrete on asphalt-covered bridge decks. We conducted proof-of-principle demonstrations to characterize defects in concrete structures which could be detected with DBIR thermal imaging. We constructed two identical concrete slabs with synthetic delaminations, e.g., 1/8-in. thick styrofoam squares, implanted just above the 2-in.-deep steel reinforcement bars. We covered one of the slabs with a 2-in. layer of asphalt. We mounted the DBIR cameras on a tower platform, to simulate the optics needed to conduct bridge-deck inspections from a moving vehicle. We detected 4-in. implants embedded in concrete and 9-in. implants embedded in asphalt-covered concrete. The midday (above-ambient) and predawn (below-ambient) delamination-site temperatures correlated with the implant sizes. Using DBIR image ratios, we enhanced thermal-contrast and removed emissivity-noise, e.g., from concrete compositional variations and clutter. Using the LLNL/VIEW code, we removed the asphalt thermal-gradient mask, to depict the 4-in. deep, 9-in. square, concrete implant size. We plan to image bridge deck defects, from a moving vehicle, for accurate estimations of the amount of deteriorated concrete impairing the deck integrity. Potential longterm benefits are affordable and reliable rehabilitation for asphalt-covered decks.

  3. 75 FR 12988 - National Emission Standards for Hazardous Air Pollutants for Area Sources: Asphalt Processing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-18

    ... Sources: Asphalt Processing and Asphalt Roofing Manufacturing; Technical Correction AGENCY: Environmental... the asphalt processing and asphalt roofing manufacturing area source category (74 FR 63236). Following... the asphalt processing and asphalt roofing manufacturing area source category on December 2, 2009...

  4. Airborne Exposures to Polycyclic Aromatic Compounds Among Workers in Asphalt Roofing Manufacturing Facilities.

    PubMed

    Trumbore, David C; Osborn, Linda V; Johnson, Kathleen A; Fayerweather, William E

    2015-01-01

    We studied exposure of 151 workers to polycyclic aromatic compounds and asphalt emissions during the manufacturing of asphalt roofing products-including 64 workers from 10 asphalt plants producing oxidized, straight-run, cutback, and wax- or polymer-modified asphalts, and 87 workers from 11 roofing plants producing asphalt shingles and granulated roll roofing. The facilities were located throughout the United States and used asphalt from many refiners and crude oils. This article helps fill a gap in exposure data for asphalt roofing manufacturing workers by using a fluorescence technique that targets biologically active 4-6 ring polycyclic aromatic compounds and is strongly correlated with carcinogenic activity in animal studies. Worker exposures to polycyclic aromatic compounds were compared between manufacturing plants, at different temperatures and using different raw materials, and to important external benchmarks. High levels of fine limestone particulate in the plant air during roofing manufacturing increased polycyclic aromatic compound exposure, resulting in the hypothesis that the particulate brought adsorbed polycyclic aromatic compounds to the worker breathing zone. Elevated asphalt temperatures increased exposures during the pouring of asphalt. Co-exposures in these workplaces which act as confounders for both the measurement of total organic matter and fluorescence were detected and their influence discussed. Exposures to polycyclic aromatic compounds in asphalt roofing manufacturing facilities were lower than or similar to those reported in hot-mix paving application studies, and much below those reported in studies of hot application of built-up roofing asphalt. These relatively low exposures in manufacturing are primarily attributed to air emission controls in the facilities, and the relatively moderate temperatures, compared to built-up roofing, used in these facilities for oxidized asphalt. The exposure to polycyclic aromatic compounds was a very

  5. Evaluation of a biomass-derived oil for use as additive in paving asphalt

    SciTech Connect

    Houde, J. Jr.; Clelland, I.; Sawatzky, H.

    1995-12-31

    A biomass derived oil referred to as sludge derived oil (SDO) has been evaluated to determine its potential use as an asphalt cement additive. The oil is derived from a relatively low temperature (450{degrees}C) atmospheric pressure thermoconversion process called Enersludge. The Enersludge process converts dried sewage sludge to a liquid hydrocarbon fraction. Relatively high concentrations of polar groups were identified in extensive characterization tests which indicated SDO could be utilized as an additive for asphalt. The oil`s unique properties make it a antistripping additive. Also, its strong affinity for heavy asphaltic material makes it an ideal rejuvenating agent for recycled asphalt. The SDO performed as well as the commercial antistripping asphalt additives tested in static immersion stripping tests. Laboratory-scale tests have shown that the strength of asphalt concrete produced using SDO is similar to that produced using commercial additives. In September 1994 SDO was used to pave a test strip in Quebec, Canada. This paper describes the work done at ERL/CANMET to develop SDO for antistripping applications.

  6. Stormwater quality of spring-summer-fall effluent from three partial-infiltration permeable pavement systems and conventional asphalt pavement.

    PubMed

    Drake, Jennifer; Bradford, Andrea; Van Seters, Tim

    2014-06-15

    This study examined the spring, summer and fall water quality performance of three partial-infiltration permeable pavement (PP) systems and a conventional asphalt pavement in Ontario. The study, conducted between 2010 and 2012, compared the water quality of effluent from two Interlocking Permeable Concrete Pavements (AquaPave(®) and Eco-Optiloc(®)) and a Hydromedia(®) Pervious Concrete pavement with runoff from an Asphalt control pavement. The usage of permeable pavements can mitigate the impact of urbanization on receiving surface water systems through quantity control and stormwater treatment. The PP systems provided excellent stormwater treatment for petroleum hydrocarbons, total suspended solids, metals (copper, iron, manganese and zinc) and nutrients (total-nitrogen and total-phosphorus) by reducing event mean concentrations (EMC) as well as total pollutant loadings. The PPs significantly reduced the concentration and loading of ammonia (NH4(+)+NH3), nitrite (NO2(-)) and organic-nitrogen (Org-N) but increased the concentration and loading of nitrate (NO3(-)). The PP systems had mixed performances for the treatment of phosphate (PO4(3-)). The PP systems increased the concentration of sodium (Na) and chloride (Cl) but EMCs remained well below recommended levels for drinking water quality. Relative to the observed runoff, winter road salt was released more slowly from the PP systems resulting in elevated spring and early-summer Cl and Na concentrations in effluent. PP materials were found to introduce dissolved solids into the infiltrating stormwater. The release of these pollutants was verified by additional laboratory scale testing of the individual pavement and aggregate materials at the University of Guelph. Pollutant concentrations were greatest during the first few months after construction and declined rapidly over the course of the study.

  7. User’s Guide: Cracking and Seating of Portland Cement Concrete Pavements

    DTIC Science & Technology

    1992-08-01

    Concrete Pavements 6. AUTHOR(S) Randy C. Ahlrich 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER USAE...OF PAGES Asphalt concrete Maintenance 29 Concrete Repair 16. PRICE CODE Cracking Seating OF REPORT OF THIS PAGE d OF ABSTRACT Unclassified Unclassified...Seated Concrete ," Transportation Research Record 1215, Washington, DC. Ahlrich, R. C. and Godwin, L. N. 1991. "Cracking and Seating of PCC Pavements

  8. Viscosity function in polymer-modified asphalts.

    PubMed

    Stastna, J; Zanzotto, L; Vacin, O J

    2003-03-01

    Asphalt is a multidisperse micellar system with rheological behavior resembling that of a low-molecular-weight polymer. Nowadays, asphalt is frequently modified by blending it with various polymers. Such modified asphalt has rheological properties that differ from the properties of the base asphalt. It is quite common to study asphalt in dynamic experiments. Such studies, however useful, cannot reveal all characteristic features of polymer-modified asphalts. Asphalt modification by polymers is strongly manifested in the region of transitions from a viscoelastic fluid to the Newtonian fluid. The viscosity study in this region can reveal behavior characteristic of the used polymer modifier, thus complementing the dynamic studies of these materials. The viscosity of base asphalt modified by styrene-butadiene-styrene and by ethylene-vinyl acetate polymers (in several concentrations) is studied and discussed in this note.

  9. Incorporation de particules de bardeaux d'asphalte de postconsommation dans les enrobes bitumineux

    NASA Astrophysics Data System (ADS)

    Malo, Jean-Michel

    Every year, more than 200 000 tons of used residential roofing asphalt shingles are sent to landfills in Quebec. In order to reduce this amount, a research project funded by the 3RMCDQ and RECYC-QUÉBEC is ongoing at the LCMB at École de technologie supérieure (ÉTS) in Montreal. This project studies the feasibility of incorporating tear-off shingles particles in hot mix asphalt which could be used on Quebec roads. Currently, in Quebec, the ministry of Transportation (MTQ), allows the use of 5% of new asphalt shingles (factory reject) in the base course and 3% in the surface course, and tear-off shingles are not allowed. Incorporating new shingles particles is valued notably by the MTQ standardization for a reduction of binder in these mixes. As of now, the MTQ does not have a standard on the use of tear-off shingles, but the subject of experimental boards. The research done at ETS aim to characterize a standard base mix, GB20, and a standard surface mix, ESG-10, that contains tear-off shingles. Mixes containing different percentage of virgin binder were fabricated then tested on compaction capacity, on rutting resistance, on thermal cracking resistance (TSRST) and on complex modulus (E*). The amount of Virgin binder is calculated according to different percentage of effective binder from the shingles. This study has permitted to identify an optimal formula for both types of hot mix asphalt that were tested. Results show that for the standard ESG-10 surface mix, the possible contribution of tear-off asphalt shingles would be about 20%. For the standard GB-20 base mix, no reduction in the virgin binder may be considered for now when 5% of tear-off asphalt shingles are incorporated in the formula mix. In this case, further testing on complex modulus are recommended to obtain meaningful results that will determine if a reduction of the virgin binder would not be favorable.

  10. Inherent Control - Hot-Mix Asphalt Industry

    EPA Pesticide Factsheets

    This document may be of assistance in applying the New Source Review (NSR) air permitting regulations including the Prevention of Significant Deterioration (PSD) requirements. This document is part of the NSR Policy and Guidance Database. Some documents in the database are a scanned or retyped version of a paper photocopy of the original. Although we have taken considerable effort to quality assure the documents, some may contain typographical errors. Contact the office that issued the document if you need a copy of the original.

  11. PORTLAND CEMENT CONCRETE FOR ANTARCTICA.

    DTIC Science & Technology

    formulation of recommended procedures for batching, mixing, placing, and curing of portland cement concrete in Antarctica. The pertinent features of the mix and design and related procedures are given. (Author)

  12. Field Performance of Asphalt Pavements with New Technologies in Northern Nevada

    NASA Astrophysics Data System (ADS)

    Faeth, Benjamin Michael

    The Regional Transportation Commission (RTC) of the Washoe Valley Area has been tasked to determine if three advanced asphalt pavement technologies and one modified aggregate gradation are suitable for implementation within Reno, Stead, and Sparks Nevada. This was accomplished through research and test roads and Intersections to determine if Recycled Asphalt Pavement (RAP), Warm Mix Asphalt (WMA), Polymer-Modified Asphalt Binder, and the Type 2-R aggregate gradation were succeeding in their design plans. Over the course of several years the streets being used by RTC to test the technologies are succeeding within their design lifespans, and the Intersections being used to test the Type 2-R aggregate gradation are showing significant resistance to rutting. Due to the roads and Intersections not being more than 10 years old, these conclusions are subject to change over time.

  13. Contributions of performance-graded asphalt to low temperature cracking resistance of pavements. Final report

    SciTech Connect

    Loh, S.W.; Olek, J.

    1999-05-01

    The purpose of this research was to study and evaluate the role that asphalt cracking. As part of the Strategic Highway Research Program (SHRP) new specifications for asphalt binders were developed that are based on the performance of the material. The asphalt binder graded and specified according to these new performance-based specifications is called PG binder. These new specifications are commonly referred to as Superpave (Superior Performing Asphalt Pavement) binder specifications. A section of Interstate 64 in southern Indiana was experiencing severe low temperature cracking before it was reconstructed over the summers of 1995 and 1996. The binder used in the new pavement mixes was PG material. Dynamic Shear Rheometer (DSR) tests, Bending Beam Rheometer (BBR) tests, and viscosity tests were performed on this binder. Comparisons were made between test results obtained from the binders in the old pavement and the new pavement. All tests and comparisons were based on the Superpave binder specifications.

  14. Development of superior asphalt recycling agency: Phase 1, Technical feasibility. Technical progress report

    SciTech Connect

    Bullin, J.A.; Glover, C.J.; Davison, R.R.; Lin, Moon-Sun; Chaffin, J.; Liu, Meng; Eckhardt, C.

    1996-04-01

    About every 12 years, asphalt roads must be reworked, and this is usually done by placing thick layers (hot-mix overlays) of new material on top of failed material, resulting in considerable waste of material and use of new asphalt binder. A good recycling agent is needed, not only to reduce the viscosity of the aged material but also to restore compatibility. Objective is to establish the technical feasibility (Phase I) of determining the specifications and operating parameters for producing high quality recycling agents which will allow most/all the old asphalt-based road material to be recycled. It is expected that supercritical fractionation can be used. The advanced road aging simulation procedure will be used to study aging of blends of old asphalt and recycling agents.

  15. A review on using crumb rubber in reinforcement of asphalt pavement.

    PubMed

    Mashaan, Nuha Salim; Ali, Asim Hassan; Karim, Mohamed Rehan; Abdelaziz, Mahrez

    2014-01-01

    An immense problem affecting environmental pollution is the increase of waste tyre vehicles. In an attempt to decrease the magnitude of this issue, crumb rubber modifier (CRM) obtained from waste tyre rubber has gained interest in asphalt reinforcement. The use of crumb rubber in the reinforcement of asphalt is considered as a smart solution for sustainable development by reusing waste materials, and it is believed that crumb rubber modifier (CRM) could be an alternative polymer material in improving hot mix asphalt performance properties. In this paper, a critical review on the use of crumb rubber in reinforcement of asphalt pavement will be presented and discussed. It will also include a review on the effects of CRM on the stiffness, rutting, and fatigue resistance of road pavement construction.

  16. A Review on Using Crumb Rubber in Reinforcement of Asphalt Pavement

    PubMed Central

    Mashaan, Nuha Salim; Ali, Asim Hassan; Karim, Mohamed Rehan; Abdelaziz, Mahrez

    2014-01-01

    An immense problem affecting environmental pollution is the increase of waste tyre vehicles. In an attempt to decrease the magnitude of this issue, crumb rubber modifier (CRM) obtained from waste tyre rubber has gained interest in asphalt reinforcement. The use of crumb rubber in the reinforcement of asphalt is considered as a smart solution for sustainable development by reusing waste materials, and it is believed that crumb rubber modifier (CRM) could be an alternative polymer material in improving hot mix asphalt performance properties. In this paper, a critical review on the use of crumb rubber in reinforcement of asphalt pavement will be presented and discussed. It will also include a review on the effects of CRM on the stiffness, rutting, and fatigue resistance of road pavement construction. PMID:24688369

  17. Physical and environmental properties of asphalt mixtures containing incinerator bottom ash.

    PubMed

    Huang, Chin-Ming; Chiu, Chui-Te; Li, Kung-Cheh; Yang, Wan-Fa

    2006-10-11

    This paper presents parts of the results from a research project sponsored by Taiwan Environmental Protection Administration (TEPA), investigating both the physical and environmental properties of asphalt mixtures using different amount of incinerator bottom ash (IBA) as fine aggregate substitution. The Marshall mix design method was used to determine the design asphalt content and evaluate the potential performance of these IBA-asphalt mixtures. Water sensitivity and wheel track rutting were also performed on these mixtures. Leachates, from both laboratory and outdoor leaching tests, were performed to measure the concentration of selected heavy metals and the level of daphnia toxicity. While with adequate Marshall stability, the IBA-asphalt mixtures were shown to have excessively high Marshall flow and excessively low VMA (voids in the mineral aggregate). The results of the wheel tracking tests also indicated that the IBA-asphalt mixtures had low rutting resistance. The results of the water sensitivity test according to procedure of AASHTO T283 method showed that the IBA-asphalt mixtures had a higher tensile strength ratio (TSR) as compared with the conventional asphalt mixtures. Considering the environmental aspects, outdoor leaching tests showed that IBA had a high level of daphnia toxicity. From an ecological perspective, IBA could be identified as hazardous waste in Taiwan. However, after being mixed with asphalt binder, the concentration of heavy metals and the levels of daphnia toxicity were significantly reduced. The leachates of 10-day flat plate leaching tests on Marshall specimens containing IBA indicated that the heavy metal were undetectable and the daphnia toxicity was ineffective.

  18. Rapid Testing of Fresh Concrete

    DTIC Science & Technology

    1975-05-01

    Cementforenlng, Oslo, 1952). 1.1 Orchard, 0. F., "The Effect of the Vacum Process on Concrete Mix Design ," Symposiwn on Mix Design and Qualify Control...ASTM, Vol 33, Part I (1933), pp 297-307. Orchard, D. F., "The Effect of the Vacuum Process on Concrete Mix Design ," Symposium on Mix Design and... Designed for Use in Determining Constituents of Fresh Concrete," Public floads, Vol 13, No. 9 (1932), p 151. 9 Cook, G. C, "Effect of Time of Haul

  19. Construction Productivity Advancement Research (CPAR) Program

    DTIC Science & Technology

    1992-12-01

    Friction Courses." 14. SUBJECT TERMS 15 NUMBIR OF PAGES Asphalt concrete Pavement cons t rluc ti ion 2: Asphalt modifiers Pavement design 16 PRICE...Binders MIX DESIGN 9 Comparison Of Mix Design Methods For Asphalt-Rubber Concrete Mixtures Asphalt-Rubber Open-Graded Friction Courses 0 DENSE GRADED...Asphalt And Asphalt-Rubber Concrete 16 CONCLUSIONS 17 List of Tables Table 1 Mix Binder Contents 13 List of Figures Figure 1 Absolute and Brookfield

  20. Overlays for plain jointed concrete pavements

    NASA Astrophysics Data System (ADS)

    Gulden, W.; Brown, D.

    1984-09-01

    This report describes the construction and performance of 4 concrete and 16 asphalt overlay test sections after nine years of traffic. The test sections were placed on I-85 which carries a substantial number of heavy trucks to determine what treatments and overlay type and thickness would give acceptable performance. The concrete overlay sections were placed in 1975 and consisted of 3 inch, 4 1/2 inch, and 6 inch CRC and 6 inch jointed PCC with 15 ft. and 30 ft. joint spacing. The asphalt sections were placed in 1976 with the variables being overlay thickness of 2 inches, 4 inches, and 6 inches and the placement of two geotextiles and strips of a waterproofing membrane for each overlay thickness. An Arkansas base test section was also included in the experiment.

  1. Development of asphalts and pavements using recycled tire rubber. Phase 1, Technical feasibility. Technical progress report, September 1, 1994--August 31, 1995

    SciTech Connect

    Bullin, J.A.; Davison, R.R.; Glover, C.J.

    1996-06-01

    About 285 million tires are discarded every year; less than 100 million are currently being recycled, with the rest being placed in landfills and other waste sites. A solution to reduce the littering of the environment is to use ground tire rubber in road construction. Currently, about 27 million tons of asphalt are used each year in road construction and maintenance of the country`s 2 million miles of roads. If all of the waste tire rubber could be combined with asphalt in road construction, it would displace less than 6% of the total asphalt used each year, yet could save about 60 trillion Btus annually. Purpose of this project is to provide data needed to optimize the performance of rubber-asphalt concretes. The first phase is to develop asphalts and recycling agents tailored for compatibility with ground tire rubber. Chapter 2 presents results on Laboratory Testing and Evaluation: fractionate asphalt material, reblending for aromatic asphalts, verifying optimal curing parameters, aging of blends, and measuring ductilities of asphalt-rubber binders. Chapter 3 focuses on Evaluating Mixture Characteristics (modified binders). Chapter 4 covers Adhesion Test Development (water susceptibility is also covered). The final chapter focuses on the Performance/Economic Update and Commercialization Plan.

  2. Flame retarded asphalt blend composition

    SciTech Connect

    Walters, R.B.

    1987-04-21

    This patent describes a flame retarded asphalt composition consisting essentially of a blend of: (a) thermoplastic elastomer modified bitumen; (b) 20-30 wt % inert filler; (c) 1-20 wt % of at least one halogenated flame retardant; and (d) 1-5 wt % of at least one inorganic phosphorus containing compound selected from the group consisting of ammonium phosphate compounds and red phosphorus.

  3. Performance of Waterless Concrete

    NASA Technical Reports Server (NTRS)

    Toutanji, Houssam; Evans, Steve; Grugel, Richard N.

    2010-01-01

    The development of permanent lunar bases is constrained by performance of construction materials and availability of in-situ resources. Concrete seems a suitable construction material for the lunar environment, but water, one of its major components, is an extremely scarce resource on the Moon. This study explores an alternative to hydraulic concrete by replacing the binding mix of concrete (cement and water) with sulfur. Sulfur is a volatile element on the lunar surface that can be extracted from lunar soils by heating. Sulfur concrete mixes were prepared to investigate the effect of extreme environmental conditions on the properties of sulfur concrete. A hypervelocity impact test was conducted, having as its target a 5-cm cubic sample of sulfur concrete. This item consisted of JSC-1 lunar regolith simulant (65%) and sulfur (35%). The sample was placed in the MSFC Impact Test Facility s Micro Light Gas Gun target chamber, and was struck by a 1-mm diameter (1.4e-03 g) aluminum projectile at 5.85 km/s. In addition, HZTERN code, provided by NASA was used to study the effectiveness of sulfur concrete when subjected to space radiation.

  4. Recycling asphalt pavements. January 1975-January 1990 (a Bibliography from the COMPENDEX data base). Report for January 1975-January 1990

    SciTech Connect

    Not Available

    1990-03-01

    This bibliography contains citations concerning the recycling of asphalt-containing pavement materials. Articles include examples of recycling asphalt pavements; performance testing of recycled paving; methods including cold in-place, cold off-site, and hot-mix recycling; additives in recycled pavement for better performance; use of scrap roofing asphalt in conjunction with recycled paving; economics of recycling; process design; and process variables. Recycling of other materials is considered in related bibliographies. (Contains 130 citations fully indexed and including a title list.)

  5. Microstructural and rheological analysis of fillers and asphalt mastics

    NASA Astrophysics Data System (ADS)

    Geber, R.; Simon, A.; Kocserha, I.; Buzimov, A.

    2017-01-01

    Pavements are made of different grades of mineral aggregates and organic binder. The aggregates are sorted in different sizes and different amount which are mixed together with bitumen. The finest mineral fraction (d<0.063 mm) is called filler. This component has an important role in asphalt mixture - it fills the gaps between the aggregates and if mixed with bitumen (which is called asphalt mastics) it sticks the larger particles together. Particle size, microstructure and surface properties of fillers highly affect the cohesion with bitumen, therefore the aim of our research was to investigate the microstructure of mineral fillers (limestone, dolomite) which are used in Hungarian road constructions with the use of different techniques (particle size distribution, scanning electronmicroscopy tests, mercury intrusion porosimetry, BET specific surface tests, determination of hydrophobicity). After the tests of fillers, asphalt mastics were prepared and rheological examinations were obtained. These examinations served to observe the interaction and the effect of fillers. The stiffening effect of fillers and the causes of rutting were also investigated. Based on our results, it can be stated that particle size, hydrophobic properties and the amount of fillers highly affect the rheological properties of mastics.

  6. Investigation of Low Heat Accumulation Asphalt Mixture and Its Impact on Urban Heat Environment.

    PubMed

    Xie, Jianguang; Yang, Zhaoxu; Liang, Leilei

    2015-01-01

    This study is focused on investigating the effectiveness of low heat accumulation asphalt mixture and its impact on the urban heat environment. Infrared radiation experiments showed that the temperature of the asphalt mixture decreased with the increase in far-infrared radiant material. The results also revealed that, compared to asphalt with 0% far-infrared radiant content, the asphalt material with a certain ratio of far-infrared radiation material had higher stability at high and low temperatures as well as good water absorption capacity. The Marshall stability of the specimen mixed with 6% far-infrared radiant was higher by 12.2% and had a residual stability of up to 98.9%. Moreover, the low-temperature splitting tensile strength of the asphalt mixture with 6% far-infrared radiation material increased by 21.3%. The friction coefficient of the asphalt mixtures with 6% and 12% far-infrared radiation material increased by 17.7% and 26.9%, respectively.

  7. Investigation of Low Heat Accumulation Asphalt Mixture and Its Impact on Urban Heat Environment

    PubMed Central

    Xie, Jianguang; Yang, Zhaoxu; Liang, Leilei

    2015-01-01

    This study is focused on investigating the effectiveness of low heat accumulation asphalt mixture and its impact on the urban heat environment. Infrared radiation experiments showed that the temperature of the asphalt mixture decreased with the increase in far-infrared radiant material. The results also revealed that, compared to asphalt with 0% far-infrared radiant content, the asphalt material with a certain ratio of far-infrared radiation material had higher stability at high and low temperatures as well as good water absorption capacity. The Marshall stability of the specimen mixed with 6% far-infrared radiant was higher by 12.2% and had a residual stability of up to 98.9%. Moreover, the low-temperature splitting tensile strength of the asphalt mixture with 6% far-infrared radiation material increased by 21.3%. The friction coefficient of the asphalt mixtures with 6% and 12% far-infrared radiation material increased by 17.7% and 26.9%, respectively. PMID:26222762

  8. Migrating corrosion inhibitor protection of concrete

    SciTech Connect

    Bjegovic, D.; Miksic, B.

    1999-11-01

    Migrating corrosion inhibitors (MCI) were developed to protect steel rebar from corrosion in concrete. They were designed to be incorporated as an admixture during concrete batching or used for surface impregnation of existing concrete structures. Two investigations are summarized. One studied the effectiveness of MCIs as a corrosion inhibitor for steel rebar when used as an admixture in fresh concrete mix. The other is a long-term study of MCI concrete impregnation that chronicles corrosion rates of rebar in concrete specimens. Based on data from each study, it was concluded that migrating corrosion inhibitors are compatible with concrete and effectively delay the onset of corrosion.

  9. Investigation of thermal properties of raw materials of asphalt mixtures

    NASA Astrophysics Data System (ADS)

    Géber, R.; Simon, A.; Kocserha, I.

    2017-02-01

    Asphalt mixtures are composite materials, which are made of different grades of mineral aggregates and bitumen. During the mixing process mineral materials were blended with bitumen at relatively high temperature (∼200 °C). As the binding process come off in these higher temperature range, thermal properties of asphaltic materials are important. The aim of this project is to reveal the thermal properties of raw materials. During our research two types of mineral aggregates were tested (limestone and dolomite) by different methods. Differential thermal analysis, thermal expansion and thermal conductivity were investigated at technologically important temperatures. The results showed that the structure of mineral materials did not change at elevated temperatures, expansion of samples was neglible, while thermal conductivity changed by temperature.

  10. Certification Tests on Cold Patch Asphalt Repair Materials for Use in Airfield Pavements

    DTIC Science & Technology

    2010-06-01

    the amount of bituminous material. The maximum specific gravity is used in calculating the percentage of air voids in compacted samples, in... gravity was calculated. Compaction For this work, a Pine Instruments Company model AFGC125X gyratory compactor with a 4-in.-diam mold was used to...produce cylindrical asphalt concrete specimens. Compaction was performed using a ram pressure of 87 psi and an internal angle of gyration of 1.16 deg

  11. Thermal stability analysis under embankment with asphalt pavement and cement pavement in permafrost regions.

    PubMed

    Junwei, Zhang; Jinping, Li; Xiaojuan, Quan

    2013-01-01

    The permafrost degradation is the fundamental cause generating embankment diseases and pavement diseases in permafrost region while the permafrost degradation is related with temperature. Based on the field monitoring results of ground temperature along G214 Highway in high temperature permafrost regions, both the ground temperatures in superficial layer and the annual average temperatures under the embankment were discussed, respectively, for concrete pavements and asphalt pavements. The maximum depth of temperature field under the embankment for concrete pavements and asphalt pavements was also studied by using the finite element method. The results of numerical analysis indicate that there were remarkable seasonal differences of the ground temperatures in superficial layer between asphalt pavement and concrete pavement. The maximum influencing depth of temperature field under the permafrost embankment for every pavement was under the depth of 8 m. The thawed cores under both embankments have close relation with the maximum thawed depth, the embankment height, and the service time. The effective measurements will be proposed to keep the thermal stabilities of highway embankment by the results.

  12. Thermal Stability Analysis under Embankment with Asphalt Pavement and Cement Pavement in Permafrost Regions

    PubMed Central

    Jinping, Li; Xiaojuan, Quan

    2013-01-01

    The permafrost degradation is the fundamental cause generating embankment diseases and pavement diseases in permafrost region while the permafrost degradation is related with temperature. Based on the field monitoring results of ground temperature along G214 Highway in high temperature permafrost regions, both the ground temperatures in superficial layer and the annual average temperatures under the embankment were discussed, respectively, for concrete pavements and asphalt pavements. The maximum depth of temperature field under the embankment for concrete pavements and asphalt pavements was also studied by using the finite element method. The results of numerical analysis indicate that there were remarkable seasonal differences of the ground temperatures in superficial layer between asphalt pavement and concrete pavement. The maximum influencing depth of temperature field under the permafrost embankment for every pavement was under the depth of 8 m. The thawed cores under both embankments have close relation with the maximum thawed depth, the embankment height, and the service time. The effective measurements will be proposed to keep the thermal stabilities of highway embankment by the results. PMID:24027444

  13. A Rayleigh-Wave Attenuation Method for Crack Depth Determination in Asphalt Beams

    NASA Astrophysics Data System (ADS)

    Gibson, Alex; Gallo, Gonzalo E.

    2004-02-01

    It has been established through research on concrete structures that the attenuation of surface waves is sensitive to the presence of a surface-breaking obstructing its path. This is the basis for a non-destructive crack depth measurement technique to quantitatively establish the extent of damage on a pavement subject to of top-down cracking. A previously developed self-compensating technique was applied to asphalt concrete beams constructed with a variety of crack and notch configurations. In the study different notch geometries and the effect of crack width, by comparing results from saw-cut notches to those of narrow cracks, were examined. Two types of impact sources were used and the results obtained were compared to each other. The frequency-dependent signal transmission coefficient was measured at 30 and 50 mm spacing for both undamaged and cracked beams. A single relationship between signal attenuation and crack depth can be attained by normalizing the crack depth with respect to the wavelength. Although the frequency response of a beam is different to that of a slab, the viability of Rayleigh wave attenuation measurements in asphalt pavement surfaces was proved if certain corrections are considered. The method may provide a non-destructive means to determine the depth of cracks in asphalt, such as it does in concrete, with the future understanding of certain phenomena encountered in this work.

  14. Repair, Evaluation, Maintenance, and Rehabilitation Research Program. Laboratory Techniques for Evaluating Effectiveness of Sealing Voids in Rubble-Mound Breakwaters and Jetties with Grouts and Concretes

    DTIC Science & Technology

    1990-03-01

    chemical sealants, and the Marshall stability test for the asphaltic concrete; and (g) placing specimens in the prototy, -_.vAronment, exposing the...test si- ens were placed at Treat Island , MA; Duck, NC; and Miami, FL. It was determined that sealing of rubble-mound coastal structures requires that...modulus of elasticity for the cementitious and chemical sealants, and the Marshall stability test for the asphaltic concrete. £. Placing specimens in the

  15. Final Rule to Reduce Toxic Air Emissions from Asphalt Processing and Asphalt Roofing Manufacturing Facilities Fact Sheet

    EPA Pesticide Factsheets

    This page contains a February 2003 fact sheet with information regarding the National Emissions Standards for Hazardous Air Pollutants (NESHAP) for Asphalt Processing and Asphalt Roofing Manufacturing.

  16. Supercritical fractions as asphalt recycling agents and preliminary aging studies on recycled asphalts

    SciTech Connect

    Chaffin, J.M.; Liu, M.; Davison, R.R.; Glover, C.J.; Bullin, J.A.

    1997-03-01

    Several asphalts were fractionated using supercritical pentane. These fractions were analyzed by gel permeation chromatography and high-performance liquid chromatography, and their viscosities were measured. The properties of these fractions vary not only among the fractions of a given asphalt but also for the same fraction produced from different asphalts. These widely varied fractions previously have been shown to have potential for reblending to produce superior asphalts. This study investigates the potential for using some of the fractions as asphalt recycling agents. A modified strategic highway research program (SHRP) pressure aging vessel (PAV) test and kinetics studies were conducted on nine recycled asphalts and the original asphalt. The aging indexes of eight of the recycled asphalts are superior to the aging index of the original asphalt. Two of the blends using industrial supercritical fractions and the three blends using laboratory supercritical fractions have lower aging indexes than blends using commercial recycling agents. The kinetics investigation also indicates that at road conditions the recycled asphalts will harden more slowly than the original asphalt. The degree of hardening for a given amount of oxidation in the recycled binders was found to be a strong function of the total saturate content in the recycled binder.

  17. Permeability of Clay Concretes

    NASA Astrophysics Data System (ADS)

    Solomon, F.; Ekolu, S. O.

    2015-11-01

    This paper presents an investigation on the effect of clay addition on water permeability and air permeability of concretes. Clay concrete mixes consisted of 0 to 40% clay content incorporated as cement replacement. Flow methods using triaxial cells and air permeameters were used for measuring the injected water and air flows under pressure. It was found that the higher the clay content in the mixture, the greater the permeability. At higher water-cement ratios (w/c), the paste matrix is less dense and easily allows water to ingress into concrete. But at high clay contents of 30 to 40% clay, the variation in permeability was significantly diminished among different concrete mixtures. It was confirmed that air permeability results were higher than the corresponding water permeability values when all permeability coefficients were converted to intrinsic permeability values.

  18. Experimental investigation of basic oxygen furnace slag used as aggregate in asphalt mixture.

    PubMed

    Xue, Yongjie; Wu, Shaopeng; Hou, Haobo; Zha, Jin

    2006-11-16

    Chinese researchers have commenced a great deal of researches on the development of application fields of basic oxygen steel making furnace slag (BOF slag) for many years. Lots of new applications and properties have been found, but few of them in asphalt mixture of road construction engineering. This paper discussed the feasibility of BOF steel slag used as aggregate in asphalt pavement by two points of view including BOF steel slag's physical and micro-properties as well as steel slag asphalt materials and pavement performances. For the former part, this paper mainly concerned the mechanochemistry and physical changes of the steel slag and studied it by performing XRD, SEM, TG and mercury porosimeter analysis and testing method. In the second part, this paper intended to use BOF steel slag as raw material, and design steel slag SMA mixture. By using traditional rutting test, soak wheel track and modified Lottman test, the high temperature stability and water resistance ability were tested. Single axes compression test and indirect tensile test were performed to evaluate the low temperature crack resistance performance and fatigue characteristic. Simultaneously, by observing steel slag SMA pavement which was paved successfully. A follow-up study to evaluate the performance of the experimental pavement confirmed that the experimental pavement was comparable with conventional asphalt pavement, even superior to the later in some aspects. All of above test results and analysis had only one main purpose that this paper validated the opinion that using BOF slag in asphalt concrete is feasible. So this paper suggested that treated and tested steel slag should be used in a more extensive range, especially in asphalt mixture paving projects in such an abundant steel slag resource region.

  19. Determine Parameters Causing Water Damage to Asphalt Concrete.

    DTIC Science & Technology

    1986-09-01

    asphaltene fraction at the expense of both the saturate and aromatic fraction. The increase observed in the polar fractions in both cases are with WERI’s...maltene fraction was still being held onto the asphaltene fraction. The asphaltenes are highly polar molecules and are capable of hydrogen bonding to the

  20. Evaluation Criteria for Aged Asphalt Concrete Surfaces; Phase II

    DTIC Science & Technology

    2008-05-01

    Airfield ( Fort Polk, LA), Redstone Army Airfield (Huntsville, AL), Simmons Army Airfield ( Fort Bragg , NC), and Forney Army Airfield ( Fort Leonard Wood...Redstone Army Airfield in Huntsville, AL, Simmons Army Airfield in Fort Bragg , NC, and Forney Army Airfield in Fort Leonard Wood, MO, in addition to the...Polk, LA; Redstone Army Airfield in Huntsville, AL; Simmons Army Airfield in Fort Bragg , NC; and Forney Army Airfield in Fort Leonard Wood, MO. The in

  1. Asphalt Rubber Concrete Pavement. User’s Guide

    DTIC Science & Technology

    1994-09-01

    Wor6’ ’ Alexandria, VA 22310-3860 ’%cooir 1 ... for she An Mah~~ n , W &piný Aetmf Aumy &AM Destroy this report when no longer needed. Do not return it...IIOUI𔄀IM5Mo M NCY AMu(S) AID AIS(S) N P/•ONITORINGAGIN"Y REPORIT NUMBRI| U.S. Amy Cm " for Public Works FE.AP.UG-9412 7701 Telhiqi Road AlexAria VA...CODE " CAM• CLASRCI I _10SC]’- CLASFiCATIN t. SECURITY €IA$SIICATI) N 20. LIMITATION OF ABSTRACT OF oM TiF s PA41 OF ABSTRACT UicA1111_"-1- Uwcl

  2. 9 CFR 91.26 - Concrete flooring.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Concrete flooring. 91.26 Section 91.26... LIVESTOCK FOR EXPORTATION Inspection of Vessels and Accommodations § 91.26 Concrete flooring. (a) Pens aboard an ocean vessel shall have a 3 inch concrete pavement, proportioned and mixed to give 2000...

  3. 9 CFR 91.26 - Concrete flooring.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Concrete flooring. 91.26 Section 91.26... LIVESTOCK FOR EXPORTATION Inspection of Vessels and Accommodations § 91.26 Concrete flooring. (a) Pens aboard an ocean vessel shall have a 3 inch concrete pavement, proportioned and mixed to give 2000...

  4. 9 CFR 91.26 - Concrete flooring.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Concrete flooring. 91.26 Section 91.26... LIVESTOCK FOR EXPORTATION Inspection of Vessels and Accommodations § 91.26 Concrete flooring. (a) Pens aboard an ocean vessel shall have a 3 inch concrete pavement, proportioned and mixed to give 2000...

  5. 9 CFR 91.26 - Concrete flooring.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Concrete flooring. 91.26 Section 91.26... LIVESTOCK FOR EXPORTATION Inspection of Vessels and Accommodations § 91.26 Concrete flooring. (a) Pens aboard an ocean vessel shall have a 3 inch concrete pavement, proportioned and mixed to give 2000...

  6. 9 CFR 91.26 - Concrete flooring.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Concrete flooring. 91.26 Section 91.26... LIVESTOCK FOR EXPORTATION Inspection of Vessels and Accommodations § 91.26 Concrete flooring. (a) Pens aboard an ocean vessel shall have a 3 inch concrete pavement, proportioned and mixed to give 2000...

  7. Mixture design and performance prediction of rubber-modified asphalt in Ohio. Final report

    SciTech Connect

    Liang, R.Y.

    1997-08-01

    Appropriate disposal of scrap tires has been a major environmental concern over the years, mainly due to potential fire and health hazards associated with uncontrolled stockpiling. Primarily driven by this environmental concern, the Intermodal Surface Transportation Efficiency Act (ISTEA) of 1991 has required each State to begin incorporating scrap tire rubber into its asphalt paving materials. Although in the revision of the original ISTEA, the mandate has been eliminated, there remains a language of encouraging the use of crumb rubbers in asphalt paving materials. Ohio Department of Transportation (ODOT) desires to develop the mix design procedure, construction practice, and performance specifications for crumb rubber modified asphalt paving materials. This research was conducted to develop the needed design and construction guidance for meeting the ODOT anticipated needs. Specifically, the objectives of this research encompass the following scope: (1) investigation of the rheological properties of asphalt-rubber binder to determine optimum content of crumb rubber, (2) development of optimum mix design for various applications, including both wet and dry mix processes, (3) characterization of mechanical properties of recommended paving mixtures, including resilient modulus, fatigue cracking behavior, low-temperature thermal cracking resistance, water sensitivity test, incremental creep test and loaded wheel track test, and (4) comparison of performance of selected paving mixes.

  8. Asphalt Raking. Instructor Manual. Trainee Manual.

    ERIC Educational Resources Information Center

    Laborers-AGC Education and Training Fund, Pomfret Center, CT.

    This packet consists of the instructor and trainee manuals for an asphalt raking course. The instructor manual contains a course schedule for 4 days of instruction, content outline, and instructor outline. The trainee manual is divided into five sections: safety, asphalt basics, placing methods, repair and patching, and clean-up and maintenance.…

  9. EVALUATION OF EMISSIONS FROM PAVING ASPHALTS

    EPA Science Inventory

    The report provides data from pilot-scale measurements of the emissions of specific air pollutants from paving asphalt both with and without recycled crumb rubber additives. The methods used in this work measured emissions from a static layer of asphalt maintained for several hou...

  10. MATCON MODIFIED ASPHALT COVER CONTAINMENT SYSTEM DEMONSTRATION

    EPA Science Inventory

    In order to make improvements to conventional paving asphalt to make it more suitable for containment applications, Wilder Construction Co. of Everett, WA offers MatCon, a polymer modified asphalt system comprised of proprietary binder, when coupled with a selected aggregate type...

  11. Compatibilizer for crumb rubber modified asphalt

    SciTech Connect

    Labib, M.E.; Memon, G.M.; Chollar, B.H.

    1996-12-31

    The United States of America discards more than 300 million tires each year, and out of that a large fraction of the tires is dumped into stock piles. This large quantity of tires creates an environmental problem. The use of scrap tires is limited. There is a usage potential in such fields as fuel for combustion and Crumb Rubber-Modified Asphalt binder (CRMA). The use of crumb rubber in modifying asphalt is not a new technique; it is been used since early 1960 by pavement engineers. Crumb rubber is a composite of different blends of natural and synthetic rubber (natural rubber, processing oils, polybutadiene, polystyrene butadiene, and filler). Prior research had concluded that the performance of crumb rubber modified asphalt is asphalt dependent. In some cases it improves the Theological properties and in some cases it degrades the properties of modified asphalt.

  12. Effect of Cement on Emulsified Asphalt Mixtures

    NASA Astrophysics Data System (ADS)

    Oruc, Seref; Celik, Fazil; Akpinar, M. Vefa

    2007-10-01

    Emulsified asphalt mixtures have environmental, economical, and logistical advantages over hot mixtures. However, they have attracted little attention as structural layers due to their inadequate performance and susceptibility to early life damage by rainfall. The objective of this article is to provide an improved insight into how the mechanical properties of emulsion mixtures may be improved and to determine the influence of cement on emulsified asphalt mixtures. Laboratory tests on strength, temperature susceptibility, water damage, creep and permanent deformation were implemented to evaluate the mechanical properties of emulsified asphalt mixtures. The test results showed that mechanical properties of emulsified asphalt mixtures have significantly improved with Portland cement addition. This experimental study suggested that cement modified asphalt emulsion mixtures might be an alternate way of a structural layer material in pavement.

  13. Softening agents for recycling asphalt pavement

    SciTech Connect

    Sawatzky, H.; Clelland, F.I.; Farnand, B.A.; Houde, J. Jr.

    1993-08-10

    An asphaltic composition is described consisting essentially of: comminuted aged asphaltic pavement material; an effective amount, from about 2% to about 15 % by weight of a blend of an agent selected from the group consisting of a soft asphalt cement, a conventional asphalt cement, and a cutback asphalt, with a nitrogen-containing, adhesion-improving, anti-stripping agent comprising a sewage sludge-derived oil, or a fraction thereof, said sewage sludge-derived oil comprising a mixture of saturated aliphatic hydrocarbons, monoaromatic hydrocarbons, diaromatic hydrocarbons, polyaromatic hydrocarbons, polar compounds and basic, pyridene-soluble compounds, having the following elemental chemical composition: nitrogen, about 3.4% to about 5% by weight; oxygen, about 5.8% to about 6.9% by weight; sulfur, about 0.3% to about 0.8% by weight; hydrogen, about 9.7% to about 10.4%, and carbon, about 76.9% to about 79.8%.

  14. Strain transfer analysis of optical fiber based sensors embedded in an asphalt pavement structure

    NASA Astrophysics Data System (ADS)

    Wang, Huaping; Xiang, Ping

    2016-07-01

    Asphalt pavement is vulnerable to random damage, such as cracking and rutting, which can be proactively identified by distributed optical fiber sensing technology. However, due to the material nature of optical fibers, a bare fiber is apt to be damaged during the construction process of pavements. Thus, a protective layer is needed for this application. Unfortunately, part of the strain of the host material is absorbed by the protective layer when transferring the strain to the sensing fiber. To account for the strain transfer error, in this paper a theoretical analysis of the strain transfer of a three-layered general model has been carried out by introducing Goodman’s hypothesis to describe the interfacial shear stress relationship. The model considers the viscoelastic behavior of the host material and protective layer. The effects of one crack in the host material and the sensing length on strain transfer relationship are been discussed. To validate the effectiveness of the strain transfer analysis, a flexible asphalt-mastic packaged distributed optical fiber sensor was designed and tested in a laboratory environment to monitor the distributed strain and appearance of cracks in an asphalt concrete beam at two different temperatures. The experimental results indicated that the developed strain transfer formula can significantly reduce the strain transfer error, and that the asphalt-mastic packaged optical fiber sensor can successfully monitor the distributed strain and identify local cracks.

  15. Assessing the durability of North Buton Asphalt seal with Polymer Modified and Rejuvenation in warm mixture design

    NASA Astrophysics Data System (ADS)

    Zalman; Yulianto, B.; Setyawan, A.

    2017-02-01

    Utilization of Buton Asphalt has been expanded with various optimizations through modification of the base material so that it can be used either as an additive in granular form or as modified asphalt. While in North Buton using Asphalt Buton that uses a special material specification Buton Asphalt cold mixture of Butur Seal, a thin layer of Buton Asphalt B 50/30 above the base course or existing asphalt pavement layer, which has been prepared in accordance with the General Specifications. Technically utilization of Butur Seal is still very sensitive to human resource capacity in understanding the physical condition of Asbuton, and severely affects construction to failure. Buton asphalt cold mix in the field also showed some kind of damage caused by difficulties or not fitting rejuvenation materials used. Making the challenge to do research on the characteristic properties of Asphalt Buton B50 / 30 with modifications, to get Asbuton that has higher durability in use in the field. Quality performance of the Asbuton cold mixtures is observed through a series of tests in the laboratory. This test includes testing the stability and the compressive test. Tests conducted in the laboratory are expected to be directly applicable as it is done in the field. This research aimed to investigate the characteristics of Butur Seal in warm mixture that can be used in the construction and maintenance of roads in North Burton and to investigate the characteristics of Butur Seal with the addition of elastomeric polymers and rejuvenation materials in warm mixing temperature of 30, 40, 60 and 80° C.

  16. Use of asphalt emulsion sealants in disposal of uranium mill tailings

    SciTech Connect

    Hartley, J.N.; Freeman, H.D.; Elmore, M.R.

    1981-07-01

    Studies of asphalt emulsion sealants conducted by the Pacific Northwest Laboratory have demonstrated that the sealants are effective in containing radon within uranium tailings. The laboratory and field studies have further demonstrated that radon exhalation from uranium tailings piles can be reduced by greater than 99% to near background levels. Field tests at the tailings pile in Grand Junction, Colorado confirmed that an 8-cm admix seal containing 22 wt % asphalt could be effectively applied with a cold-mix paver. Other techniques were successfully tested, including a soil stabilizer and a hot, rubberized asphalt seal that was applied with a distributor truck. After the seals were applied and compacted, overburden was applied over the seal to protect the seal from ultraviolet degradation.

  17. Application of pyrolized carbon black from scrap tires in asphalt pavement design and construction

    SciTech Connect

    Park, T.; Coree, B.J.; Lovell, C.W.

    1995-12-31

    According to EPA reports (1991) of the over 242 million waste generated each year in the United State, 5% are exported, 6% recycled, 11% incinerated, and 78% are landfilled, stockpiled, or illegally dumped. A variety of uses for these tires are being studied. Among these is pyrolysis which produces 5 5% of oil, 25% of carbon black, 9% of steel, 5% of fiber and 6% of gas. Pyrolized carbon black contains 9 % of ash, 4% of sulfur, 12% of butadine copolymer and 75% of carbon black. The objective of this research is to investigate the viability of using PCB as an additive in hot mix asphalt. The use of PCB in asphalt pavement is expected not only to improve the performance of conventional asphalt, but also to provide a means for the mass disposal of waste fires.

  18. A review of air quality issues and compliance for the asphalt paving industry in Maryland

    SciTech Connect

    Courtright, B.F.; Caughlin, M.J.

    1999-07-01

    The Maryland Air and Radiation Management Administration (ARMA) conducted a Sector Initiative in order to achieve a compliance audit of the asphalt paving industry sector in Maryland. This sector is commonly referred to as the hot-mix asphalt (HMA) industry. There are 59 HMA production plants in Maryland. Each asphalt production facility was reviewed to determine their compliance status with federal NSPS requirements (stack particulate and visible emission requirements), as well as with Maryland's more comprehensive and generally more restrictive requirements including visible emission, particulate matter, air toxics, dust, nuisance, odor, and other criteria pollutant requirements. The study included reviewing past data (stack test reports, inspections, VE observations, complaint histories) and conducting new inspections and observations at all 59 of the plants. The study also included conducting new particulate stack tests (Summer of 1998) at nine HMA plants. The historic data demonstrated general compliance with stack-tested particulate emission rates. The new stack tests all demonstrated compliance with applicable particulate limits. Visible emissions observations revealed a lesser degree of compliance. Asphalt plants, if not carefully controlled, can be a major source of nuisance complaints. Complaint histories were also reviewed. This paper presents detailed results of ARMA's compliance review of the asphalt industry in Maryland. This includes test results, compliance determinations, and compliance rates. Other issues including impacts on surrounding communities, changing Department of Transportation requirements, and air toxics requirements are also reviewed.

  19. Evaluation of the treatment of chromite ore processing residue by ferrous sulfate and asphalt.

    PubMed

    Moon, Deok Hyun; Wazne, Mahmoud; Koutsospyros, Agamemnon; Christodoulatos, Christos; Gevgilili, Halil; Malik, Moinuddin; Kalyon, Dilhan M

    2009-07-15

    The effectiveness of the treatment of chromite ore processing residue (COPR) with ferrous sulfate and encapsulation into asphalt were explored separately and in combination. The asphalt treatment was conducted by mixing COPR or ferrous sulfate pretreated COPR with varying amounts of asphalt. To assess the efficacy of the treatment, the leachability of toxicity characteristic leaching procedure (TCLP) total chromium (Cr) from all treated samples was determined for curing periods up to 16 months. X-ray absorption near edge structure (XANES) analyses were also performed to evaluate the Cr(6+) concentration in the selected samples. The combination treatment of ferrous sulfate and the encapsulation of the treated COPR into asphalt reduced the TCLP total Cr concentration to lower than the regulatory limit of 5mg/L for Cr contaminated soils, after 16 months. However, the Cr concentrations were still higher than the universal treatment standards (UTS) of 0.6 mg/L for hazardous waste. On the other hand, treatment with ferrous sulfate alone or the encapsulation of the COPR in asphalt failed to meet the TCLP total Cr concentration of 5mg/L, after 16 months. XANES analyses results showed that more than 75% Cr(6+) reduction was achieved upon pretreatment with ferrous sulfate.

  20. A historical review of additives and modifiers used in paving asphalt refining processes in the United States.

    PubMed

    Mundt, Diane J; Adams, Robert C; Marano, Kristin M

    2009-11-01

    The U.S. asphalt paving industry has evolved over time to meet various performance specifications for liquid petroleum asphalt binder (known as bitumen outside the United States). Additives to liquid petroleum asphalt produced in the refinery may affect exposures to workers in the hot mix paving industry. This investigation documented the changes in the composition and distribution of the liquid petroleum asphalt products produced from petroleum refining in the United States since World War II. This assessment was accomplished by reviewing documents and interviewing individual experts in the industry to identify current and historical practices. Individuals from 18 facilities were surveyed; the number of facilities reporting use of any material within a particular class ranged from none to more than half the respondents. Materials such as products of the process stream, polymers, elastomers, and anti-strip compounds have been added to liquid petroleum asphalt in the United States over the past 50 years, but modification has not been generally consistent by geography or time. Modifications made to liquid petroleum asphalt were made generally to improve performance and were dictated by state specifications.

  1. Assessments of low emission asphalt mixtures produced using combinations of foaming agents

    NASA Astrophysics Data System (ADS)

    Mohd Hasan, Mohd Rosli

    The asphalt foaming techniques have been used over the last couple of decades as an alternative to the traditional method of preparing asphalt mixtures. Based on positive feedback from the industry, this study was initiated to explore and evaluate the performance of the Warm Mix Asphalt (WMA) mixture produced through a foaming process using physical and chemical foaming agents, which are ethanol and sodium bicarbonate (NaHCO3), respectively. The success of this project may lead to new theories and provide an environmentally friendly technique to produce asphalt mixtures. This may advance the understanding of the foaming process and improve the performance of WMA to support sustainable development. Theoretically, ethanol can function in the same manner as water but requires less energy to foam due to its lower boiling point, 78°C. During the asphalt foaming process, numerous bubbles were generated by the vaporized ethanol, which significantly increased the volume of the asphalt binder, hence the coating potential of aggregates improves. The sodium bicarbonate was incorporated to enhance the quantity of bubbles and its stability. Therefore, understanding foaming agents, their solubility, chemical reactions, chemical function groups and rheological properties of the foamed binder are essential to help control the foam structure and final properties of the foamed WMA mixture. In order to understand the overall performance of newly developed foaming WMA, this material was evaluated for moisture susceptibility, rutting potential, and resistance to fracture and thermal cracking. The coatability, workability and compactability of foamed asphalt mixtures during production were also evaluated. Based on the results, it was found that the newly proposed foaming WMA has high potential to promote sustainable development by lowering the energy consumption and impacts on the environment. The ethanol is efficient in lowering the viscosity of asphalt binders, enhancing the

  2. Characterization of asphalt additive produced from hydroretorted Alabama shale

    SciTech Connect

    Rue, D.M.; Roberts, M.J.

    1992-12-31

    Shale oil, produced from beneficiated Alabama shale by pressurized fluidized-bed hydroretorting, was fractionated to produce shale oil asphalt additives (SOA). Three shale oil fractions boiling above 305{degrees}C were added to standard AC-20 asphalt to improve pavement properties. The physical properties and aging characteristics of AC-20 asphalt binder (cement) containing SOA are similar to those of unmodified AC-20 asphalt binder. Asphalt pavement briquettes made with AC-20 asphalt binder containing 5 to 10 percent SOA have superior resistance to freeze-thaw cracking and a greater retention of tensile strength when wet compared to pavement briquettes containing AC-20 binder alone.

  3. Rheological properties of asphalts with particulate additives

    SciTech Connect

    Shashidhar, N.; Chollar, B.H.

    1996-12-31

    The Superpave asphalt binder specifications are performance-based specifications for purchasing asphalt binders for the construction of roads. This means that the asphalt is characterized by fundamental material (rheological) properties that relate to the distress modes of the pavements. The distress modes addressed are primarily rutting, fatigue cracking and low temperature cracking. For example, G*/sin({delta}) is designed to predict the rutting potential of pavements, where G* is the magnitude of the complex shear modulus and 6 is the phase angle. The binder for a road that is situated in a certain climatic zone requires the binder to have a minimum G*/sin({delta}) of 2200 Pa at the highest consecutive 7-day average pavement temperature the road had experienced. Implicit in such a performance based specification is that the fundamental property, G*/sin({delta}), of the binder correlates with rutting potential of the pavement regardless of the nature of the binder. In other words, the specification is transparent to the fact that the binder can simply be an asphalt, or an asphalt modified by polymers, particulates and other materials that can form a two-phase mixture. This paper discusses the asphalt-particulate system.

  4. Exposure to ultrafine particles in asphalt work.

    PubMed

    Elihn, Karine; Ulvestad, Bente; Hetland, Siri; Wallen, Anna; Randem, Britt Grethe

    2008-12-01

    An epidemiologic study has demonstrated that asphalt workers show increased loss of lung function and an increase of biomarkers of inflammation over the asphalt paving season. The aim of this study was to investigate which possible agent(s) causes the inflammatory reaction, with emphasis on ultrafine particles. The workers' exposure to total dust, polycyclic aromatic hydrocarbons, and NO(2) was determined by personal sampling. Exposure to ultrafine particles was measured by means of particle counters and scanning mobility particle sizer mounted on a van following the paving machine. The fractions of organic and elemental carbon were determined. Asphalt paving workers were exposed to ultrafine particles with medium concentration of about 3.4 x 10(4)/cm(3). Ultrafine particles at the paving site originated mainly from asphalt paving activities and traffic exhaust; most seemed to originate from asphalt fumes. Oil mist exceeded occupational limits on some occasions. Diesel particulate matter was measured as elemental carbon, which was low, around 3 microg/m(3). NO(2) and total dust did not exceed limits. Asphalt pavers were exposed to relatively high concentrations of ultrafine particles throughout their working day, with possible adverse health effects.

  5. Rapid determination of actinides in asphalt samples

    SciTech Connect

    Maxwell, Sherrod L.; Culligan, Brian K.; Hutchison, Jay B.

    2014-01-12

    A new rapid method for the determination of actinides in asphalt samples has been developed that can be used in emergency response situations or for routine analysis If a radiological dispersive device (RDD), Improvised Nuclear Device (IND) or a nuclear accident such as the accident at the Fukushima Nuclear Power Plant in March, 2011 occurs, there will be an urgent need for rapid analyses of many different environmental matrices, including asphalt materials, to support dose mitigation and environmental clean up. The new method for the determination of actinides in asphalt utilizes a rapid furnace step to destroy bitumen and organics present in the asphalt and sodium hydroxide fusion to digest the remaining sample. Sample preconcentration steps are used to collect the actinides and a new stacked TRU Resin + DGA Resin column method is employed to separate the actinide isotopes in the asphalt samples. The TRU Resin plus DGA Resin separation approach, which allows sequential separation of plutonium, uranium, americium and curium isotopes in asphalt samples, can be applied to soil samples as well.

  6. Rapid determination of actinides in asphalt samples

    DOE PAGES

    Maxwell, Sherrod L.; Culligan, Brian K.; Hutchison, Jay B.

    2014-01-12

    A new rapid method for the determination of actinides in asphalt samples has been developed that can be used in emergency response situations or for routine analysis If a radiological dispersive device (RDD), Improvised Nuclear Device (IND) or a nuclear accident such as the accident at the Fukushima Nuclear Power Plant in March, 2011 occurs, there will be an urgent need for rapid analyses of many different environmental matrices, including asphalt materials, to support dose mitigation and environmental clean up. The new method for the determination of actinides in asphalt utilizes a rapid furnace step to destroy bitumen and organicsmore » present in the asphalt and sodium hydroxide fusion to digest the remaining sample. Sample preconcentration steps are used to collect the actinides and a new stacked TRU Resin + DGA Resin column method is employed to separate the actinide isotopes in the asphalt samples. The TRU Resin plus DGA Resin separation approach, which allows sequential separation of plutonium, uranium, americium and curium isotopes in asphalt samples, can be applied to soil samples as well.« less

  7. Hei-way general purpose recycled asphalt material (RHM). Final report

    SciTech Connect

    Dash, U.

    1993-02-01

    Utilization of Reclaimed Asphalt Pavement (RAP) in paving projects is a popular concept. It conserves material and can often provide an economical alternative to using virgin materials. The research summarizes the utilization of about 8000 tons of RAP in a project in Armstrong County (SR 3011 and SR 3013) using a proprietary process by Heilman Pavement Specialities. The mix is called Recycled Heilman Mix (RHM), which is prepared using a proprietary blend of asphalt cement (AC-5) and a rejuvenator mixed with equal weights of RAP and virgin aggregates in a batch-type pugmill. A control mix was produced by using 9.6 gallons per ton of E-5 emulsion and a blend of equal weights of RAP and coarse aggregates. The construction of the two sites were completed in September 1988 without any significant problems. A three-wheeled roller, ballasted rubber-tired roller and a second 1-ton tandem roller was used for compaction. There were no significant construction problems. RHM performed well on this project. The method of recycling asphalt pavements appears to be viable. RHM is stockpileable. Although RHM was 40 to 50 percent more expensive on the project, the life cycle costs on larger projects can be more competitive, especially when the cost of a seal coat is either avoided or delayed on RHM jobs when compared to E-5 mixes as control.

  8. Development of superior asphalt recycling agents. Phase 1, Technical feasibility. Technical progress report

    SciTech Connect

    Bullin, J.A.; Glover, C.J.; Davison, R.R.; Chaffin, J.; Lin, Moon-Sun

    1995-07-01

    About 27 million tons of asphalt and nearly twenty times this much aggregate are consumed each year to build and maintain over two million miles of roads in this country. Over a cycle of about 12 years on the average, these roads must be reworked and much of these millions of tons of rock and asphalt cannot be reused with present recycling technology. Instead, much of the maintenance is accomplished by placing thick layers (hot-mix overlays) of new material on top of the failed material. This results in considerable waste of material, both in terms of quality aggregate and in terms of asphalt binder. In addition, the new asphalt binder represents a significant source of potential energy. The main impediment to recycling asphalt binder is the poorly developed science of recycling agent composition and, as a result, optimum recycling agents are not available. An excellent recycling agent should not only be able to reduce the viscosity of the aged material, but it must also be able to restore compatibility. The properties of the old material and recycling agent must be compatible to give both good initial properties and aging characteristics, and this must be understood. The agent must also be inexpensive and easily manufactured. A large quantity of potential feedstock for the production of recycling agents is available and much of it is now fed to cokers. This material could be recovered by supercritical extraction which is an existing refinery technology. A supercritical pilot plant is available at Texas A&M and has been used to produce fractions for study. The objective of this research is to establish the technical feasibility of determining the specifications and operating parameters necessary to produce high quality recycling agents which will allow most old asphalt-based road material to be recycled.

  9. Development of an Image-based Multi-Scale Finite Element Approach to Predict Fatigue Damage in Asphalt Mixtures

    NASA Astrophysics Data System (ADS)

    Arshadi, Amir

    compared. Indirect tensile fatigue tests were conducted on asphalt mixture samples. A comparison between experimental results and the results from simulation shows that the model developed in this study is capable of predicting the effect of asphalt binder properties and aggregate micro-structure on mechanical behavior of asphalt concrete under loading.

  10. Dermal exposure and urinary 1-hydroxypyrene among asphalt roofing workers

    SciTech Connect

    McClean, M.D.; Rinehart, R.D.; Sapkota, A.; Cavallari, J.M.; Herrick, R.F.

    2007-07-01

    The primary objective of this study was to identify significant determinants of dermal exposure to polycyclic aromatic compounds (PACs) among asphalt roofing workers and use urinary 1-hydroxyprene (1-OHP) measurements to evaluate the effect of dermal exposure on total absorbed dose. The study population included 26 asphalt roofing workers who performed three primary tasks: tearing off old roofs, putting down new roofs, and operating the kettle at ground level. During multiple consecutive work shifts, dermal patch samples were collected from the underside of each worker's wrists and were analyzed for PACs, pyrene, and benzo(a)pyrene (BAP). During the same work week, urine samples were collected at pre-shift, post-shift, and bedtime each day and were analyzed for 1-OHP (205 urine samples). Linear mixed effects models were used to evaluate the dermal measurements for the purpose of identifying important determinants of exposure, and to evaluate urinary 1-OHP measurements for the purpose of identifying important determinants of total absorbed dose. Dermal exposures to PAC, pyrene, and BAP were found to vary significantly by roofing task and by the presence of an old coal tar pitch roof. For each of the three analytes, the adjusted mean dermal exposures associated with tear-off were approximately four times higher than exposures associated with operating the kettle. Exposure to coal tar pitch was associated with a 6-fold increase in PAC exposure, an 8-fold increase in pyrene exposure and a 35-fold increase in BAP exposure. The presence of coal tar pitch was the primary determinant of dermal exposure, particularly for exposure to BAP. However, the task-based differences that were observed while controlling for pitch suggest that exposure to asphalt also contributes to dermal exposures.

  11. Analysis of asphalt-based roof systems using thermal analysis

    SciTech Connect

    Paroli, R.M.; Delgado, A.H.

    1996-12-31

    Asphalt has been used in the construction of roads and houses for thousands of years. The properties of asphalt has rendered it quite useful in roofing and waterproofing applications. The most popular use of asphalt in industrial roofing is in the form of a built-up roof or modified-bituminous sheet. This type of roof consists of asphalt, reinforcement and aggregate which is used to protect the asphalt from ultraviolet rays. All materials have their weaknesses and asphalt is no exception. A good asphalt (e.g., low asphaltene content) must be used to ensure the quality and low-temperature performance of roofing asphalts. Polymer additives can be added. The objective of this work was to demonstrate the utility of termogravimetry and dynamic mechanical analysis in establishing the durability of modified bituminous membranes.

  12. Preparation and rheological behavior of polymer-modified asphalts

    NASA Astrophysics Data System (ADS)

    Yousefi, Ali Akbar

    1999-09-01

    Different materials and methods were used to prepare and stabilize polymer-modified asphalts. Addition of thermoplastic elastomers improved some technically important properties of asphalt. Due to inherent factors like large density difference between asphalt and polyethylene, many physical methods in which the structure of asphalt is unchanged, failed to stabilize this system. The effect of addition of copolymers and a pyrolytic oil residue derived from used tire rubber were also studied and found to be ineffective on the storage stability of the polymer-asphalt emulsions while high and moderate temperature properties of the asphalt were found to be improved. Finally, the technique of catalytic grafting of polymer on the surface of high-density particles (e.g. carbon black) was used to balance the large density difference between asphalt and polymer. The resulting polymer-asphalts were stable at high temperatures and showed enhanced properties at low and high temperatures.

  13. SITE DEMONSTRATION CAPSULE --MATCON MODIFIED ASPHALT FOR WASTE CONTAINMENT

    EPA Science Inventory

    MatCon is a polymer modified asphalt material designed specifically for waste contaminment applications. The modifications to the material differentiate it from conventional paving asphalt by minimizing the damaging effects of environmental exposure that could detract from the d...

  14. 40 CFR 52.2054 - Control of asphalt paving material.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 5 2014-07-01 2014-07-01 false Control of asphalt paving material. 52... asphalt paving material. (a) Notwithstanding any provisions to the contrary in the Pennsylvania Implementation Plan, the Pennsylvania Department of Transportation shall restrict the annual usage of asphalts...

  15. Full-Depth Asphalt Pavements for Parking Lots and Driveways.

    ERIC Educational Resources Information Center

    Asphalt Inst., College Park, MD.

    The latest information for designing full-depth asphalt pavements for parking lots and driveways is covered in relationship to the continued increase in vehicle registration. It is based on The Asphalt Institute's Thickness Design Manual, Series No. 1 (MS-1), Seventh Edition, which covers all aspects of asphalt pavement thickness design in detail,…

  16. 40 CFR 52.2054 - Control of asphalt paving material.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 4 2011-07-01 2011-07-01 false Control of asphalt paving material. 52... asphalt paving material. (a) Notwithstanding any provisions to the contrary in the Pennsylvania Implementation Plan, the Pennsylvania Department of Transportation shall restrict the annual usage of asphalts...

  17. 7 CFR 3201.76 - Asphalt and tar removers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false Asphalt and tar removers. 3201.76 Section 3201.76... Designated Items § 3201.76 Asphalt and tar removers. (a) Definition. Cleaning agents designed to remove asphalt or tar from equipment, roads, or other surfaces. (b) Minimum biobased content. The...

  18. 40 CFR 52.2054 - Control of asphalt paving material.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 5 2013-07-01 2013-07-01 false Control of asphalt paving material. 52... asphalt paving material. (a) Notwithstanding any provisions to the contrary in the Pennsylvania Implementation Plan, the Pennsylvania Department of Transportation shall restrict the annual usage of asphalts...

  19. 40 CFR 52.2054 - Control of asphalt paving material.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 5 2012-07-01 2012-07-01 false Control of asphalt paving material. 52... asphalt paving material. (a) Notwithstanding any provisions to the contrary in the Pennsylvania Implementation Plan, the Pennsylvania Department of Transportation shall restrict the annual usage of asphalts...

  20. 40 CFR 52.2054 - Control of asphalt paving material.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Control of asphalt paving material. 52... asphalt paving material. (a) Notwithstanding any provisions to the contrary in the Pennsylvania Implementation Plan, the Pennsylvania Department of Transportation shall restrict the annual usage of asphalts...

  1. 7 CFR 3201.76 - Asphalt and tar removers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 15 2013-01-01 2013-01-01 false Asphalt and tar removers. 3201.76 Section 3201.76... Designated Items § 3201.76 Asphalt and tar removers. (a) Definition. Cleaning agents designed to remove asphalt or tar from equipment, roads, or other surfaces. (b) Minimum biobased content. The...

  2. Current practices for modification of paving asphalts

    SciTech Connect

    Bahia, H.U.; Perdomo, D.

    1996-12-31

    The Superpave binder specification, AASHTO MP1, has introduced new concepts for selecting paving asphalt binders. The specification, in addition to using rheological and failure measurements that are more related to performance, is based on the idea that the criteria to maintain a satisfactory contribution of asphalt binders to the resistance of pavement failures remains the same but have to be satisfied at critical application temperatures. The test procedures require that the material be characterized within certain ranges of strains or stresses to ensure that material and geometric non-linearities are not confounded in the measurements. These new specification concepts have resulted in re-evaluation of asphalt modification by the majority of modified asphalt suppliers. The philosophy of asphalt modification is expected to change, following these new concepts, from a general improvement of quality to more focus on using modifiers based on the most critical need as defined by two factors: (1) The application temperature domain and (2) the type of distress to be remedied. The new specification requirements should result in a more effective use of modifiers as the amount and type of modifier will be directly related to the application environment and the engineering requirements.

  3. Asphalt and risk of cancer in man.

    PubMed Central

    Chiazze, L; Watkins, D K; Amsel, J

    1991-01-01

    Epidemiological publications regarding the carcinogenic potential of asphalt (bitumen) are reviewed. In 1984 the International Agency for Research on Cancer (IARC) stated that there is "inadequate evidence that bitumens alone are carcinogenic to humans." They did, however, conclude that animal data provided sufficient evidence for the carcinogenicity of certain extracts of steam refined and air refined bitumens. In the absence of data on man, IARC considered it reasonable to regard chemicals with sufficient evidence of carcinogenicity in animals as if they presented a carcinogenic risk to man. Epidemiological data for man accumulated since the IARC report do not fulfil the criteria for showing a causal association between exposure to asphalt and development of cancer. The studies cited all suffer from a lack of data on exposure or potential confounders, which are necessary to establish whether or not such an association may or may not exist. In view of the evidence (or lack thereof) regarding asphalt today, an appropriate public health attitude suggests at least that action be taken to protect those working with asphalt by monitoring the workplace, taking whatever steps are possible to minimise exposures and to inform workers of potential hazards. At the same time, a need exists for well designed analytical epidemiological studies to determine whether a risk of cancer in man exists from exposure to asphalt. PMID:1878310

  4. Technical, financial, and geographic challenges in recycling asphalt composition roof shingles

    SciTech Connect

    Reith, C.C.; Carpenter, M.; Robertson, D.T.

    1999-07-01

    Eleven million tons of asphalt composition shingles are disposed of annually in US landfills. The wastes from roof removal or repair operations are a promising, but under-harvested feedstock for recycling. This waste stream generally arrives by truck at local landfills, where it is relatively unmixed and ready for recycling. However, in most cases the shingles are landfilled at the local tipping fee. The authors analyzed impediments and opportunities in recycling asphalt shingles and elected to commence operations in the east San Francisco Bay area, where tipping fees as high as $50 per ton provide an economic incentive to intercept and recycle this waste stream. Their approach has been to use a 60 inch x 38 inch rotating-head grinder propelled by a 400 horsepower diesel engine. Roofing waste is introduced to the grinder, which processes up to 50 tons per hour. The product is half-inch minus granular asphalt with co-mingled sand that may be used as a feedstock (approximately 5%) in the production of hot-mix asphalt, as used for road construction. A potentially more profitable reuse of recycled product is in the production of a cold patch for road repair which, when fully commercialized, will further improve the economics of shingles recycling. Other reuse scenarios are being explored. The authors are carefully chronicling and optimizing the Bay Area recycling campaign with the intent of promoting similar activities nationwide as soon as the economics become favorable.

  5. Application of ultraviolet spectrophotometry to estimate occupational exposure to airborne polyaromatic compounds in asphalt pavers.

    PubMed

    Buratti, Marina; Campo, Laura; Fustinoni, Silvia; Valla, Carla; Martinotti, Irene; Cirla, Piero E; Cavallo, Domenico; Foà, Vito

    2007-06-01

    An ultraviolet (UV) spectrophotometric procedure was devised for the determination of polycyclic aromatic compound-oriented organic soluble matter in vapors and particulate collected from emissions of hot asphalt mix. Ultrasonic extraction was carried out with acetonitrile, followed by UV measurements at 254 nm. Polycyclic aromatic compounds (PACs) in volatile and particulate fraction were quantified as phenanthrene or benzo[k]fluoranthene equivalents. A comparison between UV and high-pressure liquid chromatography with fluorescence detection showed that PACs were one to three orders of magnitude higher than the sum of 15 priority polycyclic aromatic hydrocarbons (PAHs); still, significant correlations were found between volatile or particulate PACs and, respectively, total volatile or particulate PAHs. Moreover, in the particulate phase, PACs correlated with total particulate matter quantified by gravimetry. The proposed procedure was employed in a field study for monitoring personal exposure to asphalt emissions of workers engaged in road construction. Observed levels of acetonitrile-soluble PACs in air samples were very low (2-20 microg/m3); however, asphalt pavers were exposed to significantly higher concentrations of volatile PACs than construction workers (geometric mean, 5.9 microg/m3 vs. 4.1 microg/m3). This method for estimating the global content of volatile or particulate PACs in air samples satisfies our requirements of simplicity and is suitable for conducting an initial screening to assess exposure to airborne polyaromatic organics in asphalt pavers.

  6. Examination of Behavior of Fresh Concrete Under Pressure

    NASA Astrophysics Data System (ADS)

    Yücel, K. T.

    2012-05-01

    Transporting fresh concrete constitutes a significant part of the production process. Transferring ready-mixed concrete on-site is done using concrete pumps. Recent developments in concrete technology, and in mineral and chemical additives, have resulted in new developments in pumping techniques and the use of different concrete mixtures and equipment. These developments required further knowledge of the behavior of fresh concrete under pressure. Two criteria were determined for the pumpability of concrete: the power required to move the concrete or of the repulsive force; and the cohesion of the fresh concrete. It would be insufficient to relate pumpability to these two criteria; the values of segregation pressure, diffusion ability, water retention capacity, and side friction of the mixture are significant parameters in ensuring that concrete is pumped freely along the pipe. To solve the pumpability problem, friction stresses should be determined as a function of the linear pressure gradient, the pressure leading to segregation of the fresh concrete should be determined, and tests for the bleeding of concrete under pressure should be examined. The scope of the research is the examination of the behavior of fresh concrete under pressure. To determine the segregation pressures, a test apparatus was designed for the bleeding of concrete under pressure. The main purpose of the study is to determine whether the concrete can be pumped easily and whether it will lose its cohesion during the pumping, based on tests of concrete workability and bleeding of concrete under pressure.

  7. Thiol/disulfide homeostasis in asphalt workers.

    PubMed

    Yilmaz, Ömer Hınç; Bal, Ceylan; Neşelioglu, Salim; Büyükşekerci, Murat; Gündüzöz, Meşide; Eren, Funda; Tutkun, Lutfiye; Yilmaz, Fatma Meric

    2016-09-02

    The aim of this study was to investigate thiol/disulfide homeostasis in asphalt workers who are exposed to polycyclic aromatic hydrocarbons occupationally. The study was carried out in 34 nonsmoker asphalt workers. Additionally, 35 healthy nonsmoker volunteers were recruited as control group. Thiol and disulfide concentrations were determined using the novel automated measurement method. Levels of urinary 1-OH-pyrene were analyzed by liquid chromatography. Disulfide/thiol ratio was significantly higher in exposed group (p = .034). Also, a positive correlation was detected between disulfide/thiol ratio and 1-OH-pyrene values (r = .249, p = .036). Thiol/disulfide homeostasis was found to be disturbed in asphalt workers. The novel test used in this study may be useful for evaluating the oxidative status in polycyclic aromatic hydrocarbon (PAH) exposure.

  8. Pneumoproteins and inflammatory biomarkers in asphalt pavers.

    PubMed

    Ellingsen, Dag G; Ulvestad, Bente; Andersson, Lena; Barregard, Lars

    2010-09-01

    Pneumoproteins, biomarkers of systemic inflammation and endothelial activation were studied across a season in 72 asphalt pavers, 32 asphalt plant operators and 19 asphalt engineers. Smokers had lower concentrations of Clara cell protein (CC-16) and surfactant protein A, but higher concentrations of surfactant protein D, interleukin 6, C-reactive protein, fibrinogen and intercellular adhesion molecule (ICAM)-1 than non-smokers. Smokers reporting wheezing had lower mean CC-16 concentration than smokers not reporting wheezing (5.7 vs 8.6 microg l(-1); p = 0.05). Cholesterol, P-selectin and ICAM-1 were lower in pavers and operators at the end compared with the start of the season. This may be related to increased physical activity during the season.

  9. Genotoxic effects of fumes from asphalt modified with waste plastic and tall oil pitch.

    PubMed

    Lindberg, Hanna K; Väänänen, Virpi; Järventaus, Hilkka; Suhonen, Satu; Nygren, Jonas; Hämeilä, Mervi; Valtonen, Jarkko; Heikkilä, Pirjo; Norppa, Hannu

    2008-05-31

    As the use of recycled materials and industrial by-products in asphalt mixtures is increasing, we investigated if recycled additives modify the genotoxicity of fumes emitted from asphalt. Fumes were generated in the laboratory at paving temperature from stone-mastic asphalt (SMA) and from SMA modified with waste plastic (90% polyethylene, 10% polypropylene) and tall oil pitch (SMA-WPT). In addition, fumes from SMA, SMA-WPT, asphalt concrete (AC), and AC modified with waste plastic and tall oil pitch (AC-WPT) were collected at paving sites. The genotoxicity of the fumes was studied by analysis of DNA damage (measured in the comet assay) and micronucleus formation in human bronchial epithelial BEAS 2B cells in vitro and by counting mutations in Salmonella typhimurium strains TA98 and YG1024. DNA damage was also assessed in buccal leukocytes from road pavers before and after working with SMA, SMA-WPT, AC, and AC-WPT. The chemical composition of the emissions was analysed by gas chromatography/mass spectrometry. The SMA-WPT fume generated in the laboratory induced a clear increase in DNA damage in BEAS 2B cells without metabolic activation. The laboratory-generated SMA fume increased the frequency of micronucleated BEAS 2B cells without metabolic activation. None of the asphalt fumes collected at the paving sites produced DNA damage with or without metabolic activation. Fumes from SMA and SMA-WPT from the paving sites increased micronucleus frequency without metabolic activation. None of the asphalt fumes studied showed mutagenic activity in Salmonella. No statistically significant differences in DNA damage in buccal leukocytes were detected between the pre- and post-shift samples collected from the road pavers. However, a positive correlation was found between DNA damage and the urinary metabolites of polycyclic aromatic hydrocarbons (PAHs) after work shift, which suggested an association between occupational exposures during road paving and genotoxic effects. Our

  10. Quick-setting concrete and a method for making quick-setting concrete

    DOEpatents

    Wagh, A.S.; Singh, D.; Pullockaran, J.D.; Knox, L.

    1997-04-29

    A method for producing quick setting concrete is provided comprising mixing a concrete dry mixture with carbonate solution to create a slurry, and allowing the slurry to cure. The invention also provides for a quick setting concrete having a predetermined proportion of CaCO{sub 3} of between 5 and 23 weight percent of the entire concrete mixture, and whereby the concrete has a compression strength of approximately 4,000 pounds per square inch (psi) within 24 hours after pouring. 2 figs.

  11. Microstructural investigations on aerated concrete

    SciTech Connect

    Narayanan, N.; Ramamurthy, K.

    2000-03-01

    Aerated concrete is characterized by the presence of large voids deliberately included in its matrix to reduce the density. This study reports the investigations conducted on the structure of cement-based autoclaved aerated concrete (AAC) and non-AAC with sand or fly ash as the filler. The reasons for changes in compressive strength and drying shrinkage are explained with reference to the changes in the microstructure. Compositional analysis was carried out using XRD. It was observed that fly ash responds poorly to autoclaving. The process of pore refinement in fly ash mixes is discussed with reference to the formation of Hadley grains as well as fly ash hydration. The paste-void interface in aerated concrete investigated in relation to the paste-aggregate interface in normal concrete revealed the existence of an interfacial transition zone.

  12. Evaluation of Fatigue Performance of Asphalt Based on Constant Strain DSR Test

    NASA Astrophysics Data System (ADS)

    Zhu, H. Z.; Yan, E. H.; Lu, Z. T.

    2017-02-01

    Asphalt performance has important effect on the fatigue resistance performance of asphalt mixture. This research based on the DSR time scanning mode, investigated the constant strain performance of 70 # matrix asphalt and SBS modified asphalt. Based on 50% G* 0 to simulate the fatigue performance of two kinds of the asphalt.

  13. Investigation of PAH biomarkers in the urine of workers exposed to hot asphalt.

    PubMed

    Sobus, Jon R; McClean, Michael D; Herrick, Robert F; Waidyanatha, Suramya; Onyemauwa, Frank; Kupper, Lawrence L; Rappaport, Stephen M

    2009-08-01

    Airborne emissions from hot asphalt contain mixtures of polycyclic aromatic hydrocarbons (PAHs), including several carcinogens. We investigated urinary biomarkers of three PAHs, namely naphthalene (Nap), phenanthrene (Phe), and pyrene (Pyr) in 20 road-paving workers exposed to hot asphalt and in 6 road milling workers who were not using hot asphalt (reference group). Our analysis included baseline urine samples as well as postshift, bedtime, and morning samples collected over three consecutive days. We measured unmetabolized Nap (U-Nap) and Phe (U-Phe) as well as the monohydroxylated metabolites of Nap (OH-Nap), Phe (OH-Phe), and Pyr (OH-Pyr) in each urine sample. In baseline samples, no significant differences in biomarker levels were observed between pavers and millers, suggesting similar background exposures. In postshift, bedtime, and morning urine samples, the high pairwise correlations observed between levels of all biomarkers suggest common exposure sources. Among pavers, levels of all biomarkers were significantly elevated in postshift samples, indicating rapid uptake and elimination of PAHs following exposure to hot asphalt (biomarker levels were not elevated among millers). Results from linear mixed-effects models of levels of U-Nap, U-Phe, OH-Phe, and OH-Pyr across pavers showed significant effects of work assignments with roller operators having lower biomarker levels than the other workers. However, no work-related effect was observed for levels of OH-Nap, apparently due to the influence of cigarette smoking. Biological half-lives, estimated from regression coefficients for time among pavers, were 8 h for U-Phe, 10 h for U-Nap, 13 h for OH-Phe and OH-Pyr, and 26 h for OH-Nap. These results support the use of U-Nap, U-Phe, OH-Phe, and OH-Pyr, but probably not OH-Nap, as short-term biomarkers of exposure to PAHs emanating from hot asphalt.

  14. Petroleum degradation and associated microbial signatures at the Chapopote asphalt volcano, Southern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Schubotz, Florence; Lipp, Julius S.; Elvert, Marcus; Kasten, Sabine; Mollar, Xavier Prieto; Zabel, Matthias; Bohrmann, Gerhard; Hinrichs, Kai-Uwe

    2011-08-01

    At the Chapopote Knoll in the Southern Gulf of Mexico, deposits of asphalt provide the substrate for a prolific cold seep ecosystem extensively colonized by chemosynthetic communities. This study investigates microbial life and associated biological processes within the asphalts and surrounding oil-impregnated sediments by analysis of intact polar membrane lipids (IPLs), petroleum hydrocarbons and stable carbon isotopic compositions (δ 13C) of hydrocarbon gases. Asphalt samples are lightly to heavily biodegraded suggesting that petroleum-derived hydrocarbons serve as substrates for the chemosynthetic communities. Accordingly, detection of bacterial diester and diether phospholipids in asphalt samples containing finely dispersed gas hydrate suggests the presence of hydrocarbon-degrading bacteria. Biological methanogenesis contributes a substantial fraction to the methane captured as hydrate in the shallow asphalt deposits evidenced by significant depletion in 13C relative to background thermogenic methane. In sediments, petroleum migrating from the subsurface stimulates both methanogenesis and methanotrophy at a sulfate-methane transition zone 6-7 m below the seafloor. In this zone, microbial IPLs are dominated by archaeal phosphohydroxyarchaeols and archaeal diglycosidic diethers and tetraethers. Bacterial IPLs dominate surface sediments that are impregnated by severely biodegraded oil. In the sulfate-reduction zone, diagnostic IPLs indicate that sulfate-reducing bacteria (SRB) play an important role in petroleum degradation. A diverse mixture of phosphohydroxyarchaeols and mixed phospho- and diglycosidic archaeal tetraethers in shallow oil-impregnated sediments point to the presence of anaerobic methane-oxidizing ANME-2 and ANME-1 archaea, respectively, or methanogens. Archaeal IPLs increase in relative abundance with increasing sediment depth and decreasing sulfate concentrations, accompanied by a shift of archaeol-based to tetraether-based archaeal IPLs. The

  15. Investigation of PAH Biomarkers in the Urine of Workers Exposed to Hot Asphalt

    PubMed Central

    Sobus, Jon R.; Mcclean, Michael D.; Herrick, Robert F.; Waidyanatha, Suramya; Onyemauwa, Frank; Kupper, Lawrence L.; Rappaport, Stephen M.

    2009-01-01

    Airborne emissions from hot asphalt contain mixtures of polycyclic aromatic hydrocarbons (PAHs), including several carcinogens. We investigated urinary biomarkers of three PAHs, namely naphthalene (Nap), phenanthrene (Phe), and pyrene (Pyr) in 20 road-paving workers exposed to hot asphalt and in 6 road milling workers who were not using hot asphalt (reference group). Our analysis included baseline urine samples as well as postshift, bedtime, and morning samples collected over three consecutive days. We measured unmetabolized Nap (U-Nap) and Phe (U-Phe) as well as the monohydroxylated metabolites of Nap (OH-Nap), Phe (OH-Phe), and Pyr (OH-Pyr) in each urine sample. In baseline samples, no significant differences in biomarker levels were observed between pavers and millers, suggesting similar background exposures. In postshift, bedtime, and morning urine samples, the high pairwise correlations observed between levels of all biomarkers suggest common exposure sources. Among pavers, levels of all biomarkers were significantly elevated in postshift samples, indicating rapid uptake and elimination of PAHs following exposure to hot asphalt (biomarker levels were not elevated among millers). Results from linear mixed-effects models of levels of U-Nap, U-Phe, OH-Phe, and OH-Pyr across pavers showed significant effects of work assignments with roller operators having lower biomarker levels than the other workers. However, no work-related effect was observed for levels of OH-Nap, apparently due to the influence of cigarette smoking. Biological half-lives, estimated from regression coefficients for time among pavers, were 8 h for U-Phe, 10 h for U-Nap, 13 h for OH-Phe and OH-Pyr, and 26 h for OH-Nap. These results support the use of U-Nap, U-Phe, OH-Phe, and OH-Pyr, but probably not OH-Nap, as short-term biomarkers of exposure to PAHs emanating from hot asphalt. PMID:19602500

  16. COIN Project: Towards a zero-waste technology for concrete aggregate production in Norway

    NASA Astrophysics Data System (ADS)

    Cepuritis, Rolands; Willy Danielsen, Svein

    2014-05-01

    COIN Project: Towards a zero-waste technology for concrete aggregate production in Norway Rolands Cepuritis, Norcem/NTNU and Svein Willy Danielsen, SINTEF Aggregate production is a mining operation where no purification of the "ore" is necessary. Still it is extremely rare that an aggregate production plant is operating on the basis of zero-waste concept. This is since historically the fine crushed aggregate (particles with a size of less than 2, 4 or sometimes 8 mm) has been regarded as a by-product or waste of the more valuable coarse aggregate production. The reason is that the crushed coarse aggregates can easily replace coarse rounded natural stones in almost any concrete composition; while, the situation with the sand is different. The production of coarse aggregate normally yields fine fractions with rough surface texture, flaky or elongated particles an inadequate gradation. When such a material replaces smooth and rounded natural sand grains in a concrete mix, the result is usually poor and much more water and cement has to be used to achieve adequate concrete flow. The consequences are huge stockpiles of the crushed fine fractions that can't be sold (mass balance problems) for the aggregate producers, sustainability problems for the whole industry and environmental issues for society due to dumping and storing of the fine co-generated material. There have been attempts of utilising the material in concrete before; however, they have mostly ended up in failure. There have been attempts to adjust the crushed sand to the properties of the natural sand, which would still give a lot of waste, especially if the grading would have to be adjusted and the high amounts of fines abundantly present in the crushed sand would have to be removed. Another fundamental reason for failure has been that historically such attempts have mainly ended up in a research carried out by people (both industrial and academic) with aggregate background (= parties willing to find market

  17. 8. Photocopied August 1978. BREAKING CONCRETE BARS, JULY 1898. TESTING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Photocopied August 1978. BREAKING CONCRETE BARS, JULY 1898. TESTING MACHINE USED BY VON SCHON IN EXPERIMENTS ON METHODS OF MIXING CONCRETE AND ON CONCRETE AGGREGATES WHICH USED LOCAL MATERIALS. (4) - Michigan Lake Superior Power Company, Portage Street, Sault Ste. Marie, Chippewa County, MI

  18. Cutting concrete with abrasive waterjets. Phase 1: evaluation of relatively low pressure water-jet performance. Final report

    SciTech Connect

    Yie, G.G.

    1986-01-01

    In laboratory testing, a prototype low-pressure abrasive water-jet system proved more effective in cutting concrete and asphalt than the high-pressure systems tested before. Projected operating costs for the hand-carried unit - a fraction of those of conventional concrete saws and carbide cutting wheels - could mean savings between $15,000 and $20,000 per mile of cut.

  19. Eco-efficient concretes: the effects of using recycled ceramic material from sanitary installations on the mechanical properties of concrete.

    PubMed

    Guerra, I; Vivar, I; Llamas, B; Juan, A; Moran, J

    2009-02-01

    The aim of this research was to investigate some of the physical and mechanical properties of concrete mixed under laboratory conditions, where different proportions of coarse aggregate materials were substituted by porcelain from sanitary installations. The results of the tests show that the concrete produced has the same mechanical characteristics as conventional concrete, thus opening a door to selective recycling of sanitary porcelain and its use in the production of concrete.

  20. Analysis of asphalt-based roof systems using thermal analysis

    SciTech Connect

    Paroli, R.M.; Delgado, A.H.

    1996-10-01

    Asphalt is used extensively in roofing applications. Traditionally, it is used in a built-up roof system, where four or five plies are applied in conjunction with asphalt. This is labour intensive and requires good quality assurance on the roof top. Alternatively, asphalt can be used in a polymer-modified sheet where styrene-butadiene-styrene (SBS) or atactic polypropylene (APP) are added to the asphalt shipped in a roll where reinforcement (e.g., glass fibre mat) has been added. Regardless of the system used, the roof must be able to withstand the environmental loads such UV, heat, etc. Thermoanalytical techniques such as DSC, DMA, TMA and TG/DTA are ideally suited to monitor the weathering of asphalt. This paper presents data obtained using these techniques and shows how the performance of asphalt-based roof systems can be followed by thermal analysis.

  1. Mechanical properties of gutta-percha sulfide modified asphalt

    NASA Astrophysics Data System (ADS)

    Zou, X. Y.; Gu, X. Y.; Wang, X. W.

    2017-01-01

    Gutta-percha is the isomer of caoutchouc and can be used to enhance the performance of asphalt. In this paper, the produce proceedings of gutta-percha sulfide and gutta-percha sulfide modified asphalt are introduced. The performance indices of gutta-percha sulfide modified asphalt samples with different proportions are examined based on laboratory tests and the optimum ratio of gutta-percha and sulfur is decided.The micromechanism, temperature sensitivity, high and low temperature properties and viscoelasticity of the polymer modified asphalt are analyzed to discuss the modified mechanism and to decide the optimal polymer content. Low temperature bending tests are carried out to verify the low temperature performance of gutta-percha sulfide modified asphalt mixture. Research results showed that gutta-percha sulfide modified asphalt has good low temperature performance and a promising application prospect in the cold regions.

  2. Manufacture of road paving asphalt using coal tar

    SciTech Connect

    Yan, T.Y.

    1986-09-01

    Coal tar is a ready source of asphaltenes needed in asphalt production. Coal tar pitch itself, however, is unsuitable for making road-paving asphalt, since the resulting material has low ductility, high temperature sensitivity, and low resistance to wear. For this reason, in England, where replacing imported petroleum with local products was important 10 to 20 years ago, it was required that no more than 10 to 20 percent coal tar pitch be incorporated in road pavement. At higher concentrations, the pitch separates from the petroleum-derived asphalt, causing brittleness and cracking. To make a good asphalt from coal tar pitch, chemical modification or blending with additives appears necessary. In this study, the potentials are for producing road-paving asphalt from coal tar and available inexpensive petroleum fractions are explored. The objective of the study is to develop new uses of coal tar for asphalt production and to free the petroleum residue for upgrading to gasoline and diesel fuels.

  3. Rheo-mechanical model for self-healing asphalt pavement

    NASA Astrophysics Data System (ADS)

    Gömze, A. L.; Gömze, L. N.

    2017-01-01

    Examining the rheological properties of different asphalt mixtures at different temperatures, pressures and deformation conditions on the combined rheo-tribometers the authors have found that the generally used Burgers-model doesn’t explain the deformation properties of asphalt mixtures and pavements under loading forces and loading pressures. To understand better the rheological and deformation properties of such complex materials like asphalt mixtures and pavements the authors used Malvern Mastersizer X laser granulometer, Bruker D8 Advance X-ray diffractometer, Hitachi TM 1000 Scanning Elektronmicroscope, Tristar 3000 specific surface tester and the combined rheo-tribometer developed and patented by the authors. After the complex investigation of different asphalt mixtures the authors have found a new, more complex rheological model for the asphalts including self-healing asphalt pavements.

  4. 76 FR 49303 - Approval and Promulgation of Air Quality Implementation Plans; Minnesota; Rules Update

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-10

    ... operation and monitoring. In Minn. R. 7011.0900-0922, MPCA amended the asphalt concrete plant rules by adding performance standards for hot mix asphalt plants. The amendments to the asphalt plant performance standards added operation, record keeping, and monitoring requirements for hot mix asphalt plant...

  5. Seal coats and asphalt recycling. Transportation research record

    SciTech Connect

    1995-12-31

    The papers in this volume deal with various facets of seal coats and asphalt recycling; they should be of interest to state and local construction, design, materials, maintenance, and research engineers as well as contractors and material producers. Authors describe their work related to the design, construction, and performance of seal coats. The relationship between asphalt mixture characteristics and design and the frictional resistance of bituminous wearing course mixtures is reported, and research efforts related to asphalt recycling are explained.

  6. Asphalt compatibility testing using the automated Heithaus titration test

    SciTech Connect

    Pauli, A.T.

    1996-12-31

    The Heithaus titration test or variations of the test have been used for over 35 years to predict compatibilities of blends of asphalts from different crude sources. Asphalt compatibility is determined from three calculated parameters that measure the state of peptization of an asphalt or asphalt blend. The parameter p{sub a} is a measure of the peptizability of the asphaltenes. The parameter p{sub a} is a measure of the peptizing power of the maltenes, and the parameter P, derived from p{sub a} and p{sub o} values, is a measure of the overall state of peptization of the asphalt or asphalt blend. In Heithaus original procedure, samples of asphalt were dissolved in toluene and titrated with n-heptane in order to initiate flocculation. The onset of flocculation was detected either by photography or by spotting a filter paper with a small amount of the titrated solution. Recently, an {open_quotes}automated{close_quotes} procedure, after Hotier and Robin, has been developed for use with asphalt. In the automated method UV-visible spectrophotometric detection measures the onset of flocculation as a peak with the percent transmittance plotted as a function of the volume of titrating solvent added to a solution of asphalt. The automated procedure has proven to be less operator dependent and much faster than the original Heithaus procedure. Results from the automated procedure show the data to be consistent with results from the original, {open_quotes}classical{close_quotes} Heithaus procedure.

  7. Field testing of asphalt-emulsion radon-barrier system

    SciTech Connect

    Hartley, J.N.; Freeman, H.D.; Baker, E.G.; Elmore, M.R.; Nelson, D.A.; Voss, C.F.; Koehmstedt, P.L.

    1981-09-01

    Three years of laboratory and field testing have demonstrated that asphalt emulsion seals are effective radon diffusion barriers. Both laboratory and field tests in 1979, 1980 and 1981 have shown that an asphalt emulsion seal can reduce radon fluxes by greater than 99.9%. The effective diffusion coefficient for the various asphalt emulsion admix seals averages about 10/sup -6/ cm/sup 2//s. The 1981 joint field test is a culmination of all the technology developed to date for asphalt emulsion radon barrier systems. Preliminary results of this field test and the results of the 1980 field test are presented. 18 figures, 6 tables.

  8. Hanford Permanent Isolation Barrier Program: Asphalt technology development

    SciTech Connect

    Freeman, H.D.; Romine, R.A.

    1994-11-01

    An important component of the Hanford Permanent Isolation Barrier is the use of a two-layer composite asphalt system, which provides backup water diversion capabilities if the primary capillary barrier fails to meet infiltration goals. Because of asphalt`s potential to perform to specification over the 1000-year design life criterion, a composite asphalt barrier (HMAC/fluid-applied polymer-modified asphalt) is being considered as an alternative to the bentonite clay/high density poly(ethylene) barriers for the low-permeability component of the Hanford Permanent Isolation Barrier. The feasibility of using asphalt as a long-term barrier is currently being studied. Information that must be known is the ability of asphalt to retain desirable physical properties over a period of 1000 years. This paper presents the approach for performing accelerated aging tests and evaluating the performance of samples under accelerated conditions. The results of these tests will be compared with asphalt artifact analogs and the results of modeling the degradation of the selected asphalt composite to make life-cycle predictions.

  9. Detection of asphalt pavement cracks using remote sensing techniques

    NASA Astrophysics Data System (ADS)

    Mettas, Christodoulos; Agapiou, Athos; Themistocleous, Kyriacos; Neocleous, Kyriacos; Hadjimitsis, Diofantos G.

    2016-10-01

    Deterioration of asphalt road pavements is inevitable throughout its life cycle. There are several types of deterioration that take place on these surfaces, like surface defects and deformations. One of the most common asphalt defects is cracking. Fatigue, transverse, longitudinal, reflective, edge, block and slippage are types of cracking that can be observed anywhere in the world. Monitoring and preventative/periodic maintenance of these types of wears are two very important actions that have to take place to avoid "costly" solutions. This paper aims to introduce the spectral characteristics of uncracked (healthy) and cracked asphalt surfaces which can give a new asphalt crack index. This is performed through remote sensing applications in the area of asphalt pavements. Multispectral images can be elaborated using the index to enhance crack marks on asphalt surfaces. Ground spectral signatures were acquired from both uncracked and cracked asphalted areas of Cyprus (Limassol). Evaluation separability indices can be used to identify the optimum wavelength regions that can distinguish better the uncracked and cracked asphalt surfaces. The results revealed that the spectral sensitivity for the enhancement of cracked asphalt was detected using the Euclidean, Mahalanobis and Cosine Distance Indices in the Vis range (approximately at 450 nm) and in the SWIR 1 range (approximately at 1750 nm).

  10. Concrete material characterization reinforced concrete tank structure Multi-Function Waste Tank Facility

    NASA Astrophysics Data System (ADS)

    Winkel, B. V.

    1995-03-01

    The purpose of this report is to document the Multi-Function Waste Tank Facility (MWTF) Project position on the concrete mechanical properties needed to perform design/analysis calculations for the MWTF secondary concrete structure. This report provides a position on MWTF concrete properties for the Title 1 and Title 2 calculations. The scope of the report is limited to mechanical properties and does not include the thermophysical properties of concrete needed to perform heat transfer calculations. In the 1970's, a comprehensive series of tests were performed at Construction Technology Laboratories (CTL) on two different Hanford concrete mix designs. Statistical correlations of the CTL data were later generated by Pacific Northwest Laboratories (PNL). These test results and property correlations have been utilized in various design/analysis efforts of Hanford waste tanks. However, due to changes in the concrete design mix and the lower range of MWTF operating temperatures, plus uncertainties in the CTL data and PNL correlations, it was prudent to evaluate the CTL data base and PNL correlations, relative to the MWTF application, and develop a defendable position. The CTL test program for Hanford concrete involved two different mix designs: a 3 kip/sq in mix and a 4.5 kip/sq in mix. The proposed 28-day design strength for the MWTF tanks is 5 kip/sq in. In addition to this design strength difference, there are also differences between the CTL and MWTF mix design details. Also of interest, are the appropriate application of the MWTF concrete properties in performing calculations demonstrating ACI Code compliance. Mix design details and ACI Code issues are addressed in Sections 3.0 and 5.0, respectively. The CTL test program and PNL data correlations focused on a temperature range of 250 to 450 F. The temperature range of interest for the MWTF tank concrete application is 70 to 200 F.

  11. Concrete material characterization reinforced concrete tank structure Multi-Function Waste Tank Facility

    SciTech Connect

    Winkel, B.V.

    1995-03-03

    The purpose of this report is to document the Multi-Function Waste Tank Facility (MWTF) Project position on the concrete mechanical properties needed to perform design/analysis calculations for the MWTF secondary concrete structure. This report provides a position on MWTF concrete properties for the Title 1 and Title 2 calculations. The scope of the report is limited to mechanical properties and does not include the thermophysical properties of concrete needed to perform heat transfer calculations. In the 1970`s, a comprehensive series of tests were performed at Construction Technology Laboratories (CTL) on two different Hanford concrete mix designs. Statistical correlations of the CTL data were later generated by Pacific Northwest Laboratories (PNL). These test results and property correlations have been utilized in various design/analysis efforts of Hanford waste tanks. However, due to changes in the concrete design mix and the lower range of MWTF operating temperatures, plus uncertainties in the CTL data and PNL correlations, it was prudent to evaluate the CTL data base and PNL correlations, relative to the MWTF application, and develop a defendable position. The CTL test program for Hanford concrete involved two different mix designs: a 3 kip/in{sup 2} mix and a 4.5 kip/in{sup 2} mix. The proposed 28-day design strength for the MWTF tanks is 5 kip/in{sup 2}. In addition to this design strength difference, there are also differences between the CTL and MWTF mix design details. Also of interest, are the appropriate application of the MWTF concrete properties in performing calculations demonstrating ACI Code compliance. Mix design details and ACI Code issues are addressed in Sections 3.0 and 5.0, respectively. The CTL test program and PNL data correlations focused on a temperature range of 250 to 450 F. The temperature range of interest for the MWTF tank concrete application is 70 to 200 F.

  12. Properties of concrete containing scrap-tire rubber--an overview.

    PubMed

    Siddique, Rafat; Naik, Tarun R

    2004-01-01

    Solid waste management is one of the major environmental concerns in the United States. Over 5 billion tons of non-hazardous solid waste materials are generated in USA each year. Of these, more than 270 million scrap-tires (approximately 3.6 million tons) are generated each year. In addition to this, about 300 million scrap-tires have been stockpiled. Several studies have been carried out to reuse scrap-tires in a variety of rubber and plastic products, incineration for production of electricity, or as fuel for cement kilns, as well as in asphalt concrete. Studies show that workable rubberized concrete mixtures can be made with scrap-tire rubber. This paper presents an overview of some of the research published regarding the use of scrap-tires in portland cement concrete. The benefits of using magnesium oxychloride cement as a binder for rubberized concrete mixtures are also presented. The paper details the likely uses of rubberized concrete.

  13. Asphalt-Aggregate Interactions in Hot Recycling.

    DTIC Science & Technology

    1987-07-01

    showed that recycled systems resisted the action of water better than virgin systems. Bonding energy measurements indicated that asphalt-aggregate mixtures...Mexico Powders and Granular Materials Laboratory for surface area/porosity measurements and discussion of results John Husler and Les Mcfadden at the...FORMUJLA MIXTURE RESULTS.................. 70 22 F VALUES DERIVED FROM THE TWO-WAY ANOVA................. 79 23 BONDING ENERGY MEASUREMENTS FOR - #16 + #50

  14. Pelletized Asphalt for Airfield Damage Repair

    DTIC Science & Technology

    2009-08-01

    HD) design is based on the 75-blow Marshall Hammer and utilizes air voids (Va) and voids filled with asphalt (VFA) as criteria for establishing... flowable ); however, these additives pose their own unique problems. For instance, when sulfur is used to stiffen the binder, it has a tendency to...pellets during the manufacturing process. These fines fill the interstices between the pellets and eliminate the point contact thus creating a

  15. Applicability Determination for PSD- Hot Mix Asphalt Operations

    EPA Pesticide Factsheets

    This document may be of assistance in applying the New Source Review (NSR) air permitting regulations including the Prevention of Significant Deterioration (PSD) requirements. This document is part of the NSR Policy and Guidance Database. Some documents in the database are a scanned or retyped version of a paper photocopy of the original. Although we have taken considerable effort to quality assure the documents, some may contain typographical errors. Contact the office that issued the document if you need a copy of the original.

  16. Field site leaching from recycled concrete aggregates applied as sub-base material in road construction.

    PubMed

    Engelsen, Christian J; Wibetoe, Grethe; van der Sloot, Hans A; Lund, Walter; Petkovic, Gordana

    2012-06-15

    The release of major and trace elements from recycled concrete aggregates used in an asphalt covered road sub-base has been monitored for more than 4 years. A similar test field without an asphalt cover, directly exposed to air and rain, and an asphalt covered reference field with natural aggregates in the sub-base were also included in the study. It was found that the pH of the infiltration water from the road sub-base with asphalt covered concrete aggregates decreased from 12.6 to below pH 10 after 2.5 years of exposure, whereas this pH was reached within only one year for the uncovered field. Vertical temperature profiles established for the sub-base, could explain the measured infiltration during parts of the winter season. When the release of major and trace elements as function of field pH was compared with pH dependent release data measured in the laboratory, some similar pH trends were found. The field concentrations of Cd, Ni, Pb and Zn were found to be low throughout the monitoring period. During two of the winter seasons, a concentration increase of Cr and Mo was observed, possibly due to the use of de-icing salt. The concentrations of the trace constituents did not exceed Norwegian acceptance criteria for ground water and surface water Class II.

  17. Microbial Diversity in Natural Asphalts of the Rancho La Brea Tar Pits▿

    PubMed Central

    Kim, Jong-Shik; Crowley, David E.

    2007-01-01

    Bacteria commonly inhabit subsurface oil reservoirs, but almost nothing is known yet about microorganisms that live in naturally occurring terrestrial oil seeps and natural asphalts that are comprised of highly recalcitrant petroleum hydrocarbons. Here we report the first survey of microbial diversity in ca. 28,000-year-old samples of natural asphalts from the Rancho La Brea Tar Pits in Los Angeles, CA. Microbiological studies included analyses of 16S rRNA gene sequences and DNA encoding aromatic ring-hydroxylating dioxygenases from two tar pits differing in chemical composition. Our results revealed a wide range of phylogenetic groups within the Archaea and Bacteria domains, in which individual taxonomic clusters were comprised of sets of closely related species within novel genera and families. Fluorescent staining of asphalt-soil particles using phylogenetic probes for Archaea, Bacteria, and Pseudomonas showed coexistence of mixed microbial communities at high cell densities. Genes encoding dioxygenases included three novel clusters of enzymes. The discovery of life in the tar pits provides an avenue for further studies of the evolution of enzymes and catabolic pathways for bacteria that have been exposed to complex hydrocarbons for millennia. These bacteria also should have application for industrial microbiology and bioremediation. PMID:17416692

  18. Characteristics of dynamic triaxial testing of asphalt mixtures

    NASA Astrophysics Data System (ADS)

    Ulloa Calderon, Alvaro

    Due to the increasing traffic loads and tire pressures, a serious detrimental impact has occurred on flexible pavements in the form of excessive permanent deformation once the critical combination of loading and environmental conditions are reached. This distress, also known as rutting, leads to an increase in road roughness and ultimately jeopardizes the road users' safety. The flow number (FN) simple performance test for asphalt mixtures was one of the final three tests selected for further evaluation from the twenty-four test/material properties initially examined under the NCHRP 9-19 project. Currently, no standard triaxial testing conditions in terms of the magnitude of the deviator and confining stresses have been specified. In addition, a repeated haversine axial compressive load pulse of 0.1 second and a rest period of 0.9 second are commonly used as part of the triaxial testing conditions. The overall objective of this research was to define the loading conditions that created by a moving truck load in the hot mixed asphalt (HMA) layer. The loading conditions were defined in terms of the triaxial stress levels and the corresponding loading time. Dynamic mechanistic analysis with circular stress distribution was used to closely simulate field loading conditions. Extensive mechanistic analyses of three different asphalt pavement structures subjected to moving traffic loads at various speeds and under braking and non-braking conditions were conducted using the 3D-Move model. Prediction equations for estimating the anticipated deviator and confining stresses along with the equivalent deviator stress pulse duration as a function of pavement temperature, vehicle speed, and asphalt mixture's stiffness have been developed. The magnitude of deviator stress, sigmad and confining stress, sigmac, were determined by converting the stress tensor computed in the HMA layer at 2" below pavement surface under a moving 18-wheel truck using the octahedral normal and shear

  19. Strength of masonry blocks made with recycled concrete aggregates

    NASA Astrophysics Data System (ADS)

    Matar, Pierre; Dalati, Rouba El

    The idea of recycling concrete of demolished buildings aims at preserving the environment. Indeed, the reuse of concrete as aggregate in new concrete mixes helped to reduce the expenses related to construction and demolition (C&D) waste management and, especially, to protect the environment by reducing the development rate of new quarries. This paper presents the results of an experimental study conducted on masonry blocks containing aggregates resulting from concrete recycling. The purpose of this study is to investigate the effect of recycled aggregates on compressive strength of concrete blocks. Tests were performed on series of concrete blocks: five series each made of different proportions of recycled aggregates, and one series of reference blocks exclusively composed of natural aggregates. Tests showed that using recycled aggregates with addition of cement allows the production of concrete blocks with compressive strengths comparable to those obtained on concrete blocks made exclusively of natural aggregates.

  20. Mechanical and Physical Properties of Polyester Polymer Concrete Using Recycled Aggregates from Concrete Sleepers

    PubMed Central

    Carrión, Francisco; Montalbán, Laura; Real, Julia I.

    2014-01-01

    Currently, reuse of solid waste from disused infrastructures is an important environmental issue to study. In this research, polymer concrete was developed by mixing orthophthalic unsaturated polyester resin, artificial microfillers (calcium carbonate), and waste aggregates (basalt and limestone) coming from the recycling process of concrete sleepers. The variation of the mechanical and physical properties of the polymer concrete (compressive strength, flexural strength, modulus of elasticity, density, and water absorption) was analyzed based on the modification of different variables: nature of the recycled aggregates, resin contents (11 wt%, 12 wt%, and 13 wt%), and particle-size distributions of microfillers used. The results show the influence of these variables on mechanical performance of polymer concrete. Compressive and flexural strength of recycled polymer concrete were improved by increasing amount of polyester resin and by optimizing the particle-size distribution of the microfillers. Besides, the results show the feasibility of developing a polymer concrete with excellent mechanical behavior. PMID:25243213

  1. Mechanical and physical properties of polyester polymer concrete using recycled aggregates from concrete sleepers.

    PubMed

    Carrión, Francisco; Montalbán, Laura; Real, Julia I; Real, Teresa

    2014-01-01

    Currently, reuse of solid waste from disused infrastructures is an important environmental issue to study. In this research, polymer concrete was developed by mixing orthophthalic unsaturated polyester resin, artificial microfillers (calcium carbonate), and waste aggregates (basalt and limestone) coming from the recycling process of concrete sleepers. The variation of the mechanical and physical properties of the polymer concrete (compressive strength, flexural strength, modulus of elasticity, density, and water absorption) was analyzed based on the modification of different variables: nature of the recycled aggregates, resin contents (11 wt%, 12 wt%, and 13 wt%), and particle-size distributions of microfillers used. The results show the influence of these variables on mechanical performance of polymer concrete. Compressive and flexural strength of recycled polymer concrete were improved by increasing amount of polyester resin and by optimizing the particle-size distribution of the microfillers. Besides, the results show the feasibility of developing a polymer concrete with excellent mechanical behavior.

  2. Nanogranular origin of concrete creep.

    PubMed

    Vandamme, Matthieu; Ulm, Franz-Josef

    2009-06-30

    Concrete, the solid that forms at room temperature from mixing Portland cement with water, sand, and aggregates, suffers from time-dependent deformation under load. This creep occurs at a rate that deteriorates the durability and truncates the lifespan of concrete structures. However, despite decades of research, the origin of concrete creep remains unknown. Here, we measure the in situ creep behavior of calcium-silicate-hydrates (C-S-H), the nano-meter sized particles that form the fundamental building block of Portland cement concrete. We show that C-S-H exhibits a logarithmic creep that depends only on the packing of 3 structurally distinct but compositionally similar C-S-H forms: low density, high density, ultra-high density. We demonstrate that the creep rate ( approximately 1/t) is likely due to the rearrangement of nanoscale particles around limit packing densities following the free-volume dynamics theory of granular physics. These findings could lead to a new basis for nanoengineering concrete materials and structures with minimal creep rates monitored by packing density distributions of nanoscale particles, and predicted by nanoscale creep measurements in some minute time, which are as exact as macroscopic creep tests carried out over years.

  3. Nanogranular origin of concrete creep

    PubMed Central

    Vandamme, Matthieu; Ulm, Franz-Josef

    2009-01-01

    Concrete, the solid that forms at room temperature from mixing Portland cement with water, sand, and aggregates, suffers from time-dependent deformation under load. This creep occurs at a rate that deteriorates the durability and truncates the lifespan of concrete structures. However, despite decades of research, the origin of concrete creep remains unknown. Here, we measure the in situ creep behavior of calcium–silicate–hydrates (C–S–H), the nano-meter sized particles that form the fundamental building block of Portland cement concrete. We show that C–S–H exhibits a logarithmic creep that depends only on the packing of 3 structurally distinct but compositionally similar C–S–H forms: low density, high density, ultra-high density. We demonstrate that the creep rate (≈1/t) is likely due to the rearrangement of nanoscale particles around limit packing densities following the free-volume dynamics theory of granular physics. These findings could lead to a new basis for nanoengineering concrete materials and structures with minimal creep rates monitored by packing density distributions of nanoscale particles, and predicted by nanoscale creep measurements in some minute time, which are as exact as macroscopic creep tests carried out over years. PMID:19541652

  4. Refractory concretes

    DOEpatents

    Holcombe, Jr., Cressie E.

    1979-01-01

    Novel concrete compositions comprise particles of aggregate material embedded in a cement matrix, said cement matrix produced by contacting an oxide selected from the group of Y.sub.2 O.sub.3, La.sub.2 O.sub.3, Nd.sub.2 O.sub.3, Sm.sub.2 O.sub.3, Eu.sub.2 O.sub.3 and Gd.sub.2 O.sub.3 with an aqueous solution of a salt selected from the group of NH.sub.4 NO.sub.3, NH.sub.4 Cl, YCl.sub.3 and Mg(NO.sub.3).sub.2 to form a fluid mixture; and allowing the fluid mixture to harden.

  5. Hot asphalt burns: a review of injuries and management options.

    PubMed

    Bosse, George M; Wadia, Shernaz A; Padmanabhan, Pradeep

    2014-07-01

    Hot asphalt burns to human tissue can increase the likelihood of infection and potential conversion of partial thickness to full-thickness injuries. Successful intervention for hot asphalt burns requires immediate and effective cooling of the asphalt on the tissue followed by subsequent gradual removal of the cooled asphalt. A review of the literature reveals that multiple substances have been used to remove asphalt, including topical antibiotics, petroleum jelly, a commercial product known as De-Solv-It (ORANGE-SOL, Chandler, AZ), sunflower oil, baby oil, liquid paraffin, butter, mayonnaise, and moist-exposed burn ointment (MEBO). Although many of these products may be effective in the removal of asphalt, they may not be readily available in an emergency department setting. Topical antibiotics are readily available, are more commonly described in the medical literature, and would be expected to be effective in the removal of asphalt. We developed guidelines for on scene (first-aid) management and the initial care of such patients upon presentation to a health care facility. These guidelines emphasize the principles of early cooling, gradual removal of adherent asphalt using topical antibiotics, and avoidance of the use of topical agents, which are likely to result in tissue toxicity.

  6. Good news from the bottom: US asphalt market 1993

    SciTech Connect

    Not Available

    1993-09-22

    For US refiners faced with numerous tough challenges in 1993, the US asphalt market recovery may have provided some welcome news for those watching the bottom line. Higher prices and increased sales made the asphalt market a summertime profit center for many US refiners and marketers -- for the first time in years.

  7. Comparing Production and Placement of Warm-Mix Asphalt to Traditional Hot-Mix Asphalt for Constructing Airfield Pavements

    DTIC Science & Technology

    2013-08-01

    Sasobit® STA 0+35 cross-section layer thicknesses as constructed............................... 36  Figure 50. Evotherm ™ center-line layer thicknesses...as constructed. ................................................ 37  Figure 51. Evotherm ™ STA 0+15 cross-section layer thicknesses as constructed...37  Figure 52. Evotherm ™ STA 0+25 cross-section layer thicknesses as constructed. .......................... 38  Figure 53

  8. Mixing temperature design and properties evaluation for SMA-13 mixture

    NASA Astrophysics Data System (ADS)

    Huang, X. Y.; Li, B. Y.

    2017-01-01

    The mixing temperature of hot asphalt mixture could be reduced by adding WMA additive Sasobit, as well as reducing smoke emissions and energy construction during the mixing construction and paving. The reasonable mixing temperature were investigated in this paper. In addition, high temperature stability, water stability and low-temperature performance of warm asphalt mixture were evaluaterd. The test results indicate that the mixing temperature of SMA-13 with WMA additive Sasobit may reduce 15-20°C at the same energy (compaction times). the dynamic stability were improved after adding WMA additive Sasobit, and the Water stability and low-temperature performance of mixture decreased, while all kinds of asphalt mixture properties can meet the requirements.

  9. Studies on recycled aggregates-based concrete.

    PubMed

    Rakshvir, Major; Barai, Sudhirkumar V

    2006-06-01

    Reduced extraction of raw materials, reduced transportation cost, improved profits, reduced environmental impact and fast-depleting reserves of conventional natural aggregates has necessitated the use of recycling, in order to be able to conserve conventional natural aggregate. In this study various physical and mechanical properties of recycled concrete aggregates were examined. Recycled concrete aggregates are different from natural aggregates and concrete made from them has specific properties. The percentages of recycled concrete aggregates were varied and it was observed that properties such as compressive strength showed a decrease of up to 10% as the percentage of recycled concrete aggregates increased. Water absorption of recycled aggregates was found to be greater than natural aggregates, and this needs to be compensated during mix design.

  10. 40 CFR Table 1 of Subpart Aaaaaaa... - Emission Limits for Asphalt Processing (Refining) Operations

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 15 2012-07-01 2012-07-01 false Emission Limits for Asphalt Processing... Area Sources: Asphalt Processing and Asphalt Roofing Manufacturing Other Requirements and Information... of Part 63—Emission Limits for Asphalt Processing (Refining) Operations For * * * You must meet...

  11. 40 CFR Table 1 of Subpart Aaaaaaa... - Emission Limits for Asphalt Processing (Refining) Operations

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 14 2011-07-01 2011-07-01 false Emission Limits for Asphalt Processing... Area Sources: Asphalt Processing and Asphalt Roofing Manufacturing Other Requirements and Information... of Part 63—Emission Limits for Asphalt Processing (Refining) Operations For * * * You must meet...

  12. 40 CFR 443.30 - Applicability; description of the asphalt roofing subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... asphalt roofing subcategory. 443.30 Section 443.30 Protection of Environment ENVIRONMENTAL PROTECTION... ROOFING MATERIALS (TARS AND ASPHALT) POINT SOURCE CATEGORY Asphalt Roofing Subcategory § 443.30 Applicability; description of the asphalt roofing subcategory. The provisions of this subpart are applicable...

  13. 40 CFR 443.30 - Applicability; description of the asphalt roofing subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... asphalt roofing subcategory. 443.30 Section 443.30 Protection of Environment ENVIRONMENTAL PROTECTION... ROOFING MATERIALS (TARS AND ASPHALT) POINT SOURCE CATEGORY Asphalt Roofing Subcategory § 443.30 Applicability; description of the asphalt roofing subcategory. The provisions of this subpart are applicable...

  14. 40 CFR 443.40 - Applicability; description of the linoleum and printed asphalt felt subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... linoleum and printed asphalt felt subcategory. 443.40 Section 443.40 Protection of Environment... THE PAVING AND ROOFING MATERIALS (TARS AND ASPHALT) POINT SOURCE CATEGORY Linoleum and Printed Asphalt Felt Subcategory § 443.40 Applicability; description of the linoleum and printed asphalt...

  15. 40 CFR 443.40 - Applicability; description of the linoleum and printed asphalt felt subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... linoleum and printed asphalt felt subcategory. 443.40 Section 443.40 Protection of Environment... THE PAVING AND ROOFING MATERIALS (TARS AND ASPHALT) POINT SOURCE CATEGORY Linoleum and Printed Asphalt Felt Subcategory § 443.40 Applicability; description of the linoleum and printed asphalt...

  16. 40 CFR 443.10 - Applicability; description of the asphalt emulsion subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... asphalt emulsion subcategory. 443.10 Section 443.10 Protection of Environment ENVIRONMENTAL PROTECTION... ROOFING MATERIALS (TARS AND ASPHALT) POINT SOURCE CATEGORY Asphalt Emulsion Subcategory § 443.10 Applicability; description of the asphalt emulsion subcategory. The provisions of this subpart are applicable...

  17. 40 CFR 443.10 - Applicability; description of the asphalt emulsion subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... asphalt emulsion subcategory. 443.10 Section 443.10 Protection of Environment ENVIRONMENTAL PROTECTION... ROOFING MATERIALS (TARS AND ASPHALT) POINT SOURCE CATEGORY Asphalt Emulsion Subcategory § 443.10 Applicability; description of the asphalt emulsion subcategory. The provisions of this subpart are applicable...

  18. 40 CFR 443.40 - Applicability; description of the linoleum and printed asphalt felt subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... linoleum and printed asphalt felt subcategory. 443.40 Section 443.40 Protection of Environment... PAVING AND ROOFING MATERIALS (TARS AND ASPHALT) POINT SOURCE CATEGORY Linoleum and Printed Asphalt Felt Subcategory § 443.40 Applicability; description of the linoleum and printed asphalt felt subcategory....

  19. 40 CFR 443.10 - Applicability; description of the asphalt emulsion subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... asphalt emulsion subcategory. 443.10 Section 443.10 Protection of Environment ENVIRONMENTAL PROTECTION... MATERIALS (TARS AND ASPHALT) POINT SOURCE CATEGORY Asphalt Emulsion Subcategory § 443.10 Applicability; description of the asphalt emulsion subcategory. The provisions of this subpart are applicable to...

  20. 40 CFR Table 1 of Subpart Aaaaaaa... - Emission Limits for Asphalt Processing (Refining) Operations

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 15 2014-07-01 2014-07-01 false Emission Limits for Asphalt Processing... Area Sources: Asphalt Processing and Asphalt Roofing Manufacturing Other Requirements and Information... of Part 63—Emission Limits for Asphalt Processing (Refining) Operations For * * * You must meet...

  1. 40 CFR 443.30 - Applicability; description of the asphalt roofing subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... asphalt roofing subcategory. 443.30 Section 443.30 Protection of Environment ENVIRONMENTAL PROTECTION... MATERIALS (TARS AND ASPHALT) POINT SOURCE CATEGORY Asphalt Roofing Subcategory § 443.30 Applicability; description of the asphalt roofing subcategory. The provisions of this subpart are applicable to...

  2. 40 CFR 443.10 - Applicability; description of the asphalt emulsion subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... asphalt emulsion subcategory. 443.10 Section 443.10 Protection of Environment ENVIRONMENTAL PROTECTION... ROOFING MATERIALS (TARS AND ASPHALT) POINT SOURCE CATEGORY Asphalt Emulsion Subcategory § 443.10 Applicability; description of the asphalt emulsion subcategory. The provisions of this subpart are applicable...

  3. 40 CFR Table 1 of Subpart Aaaaaaa... - Emission Limits for Asphalt Processing (Refining) Operations

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 14 2010-07-01 2010-07-01 false Emission Limits for Asphalt Processing... Area Sources: Asphalt Processing and Asphalt Roofing Manufacturing Other Requirements and Information... of Part 63—Emission Limits for Asphalt Processing (Refining) Operations For * * * You must meet...

  4. 40 CFR 443.30 - Applicability; description of the asphalt roofing subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... asphalt roofing subcategory. 443.30 Section 443.30 Protection of Environment ENVIRONMENTAL PROTECTION... MATERIALS (TARS AND ASPHALT) POINT SOURCE CATEGORY Asphalt Roofing Subcategory § 443.30 Applicability; description of the asphalt roofing subcategory. The provisions of this subpart are applicable to...

  5. 40 CFR 443.40 - Applicability; description of the linoleum and printed asphalt felt subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... linoleum and printed asphalt felt subcategory. 443.40 Section 443.40 Protection of Environment... THE PAVING AND ROOFING MATERIALS (TARS AND ASPHALT) POINT SOURCE CATEGORY Linoleum and Printed Asphalt Felt Subcategory § 443.40 Applicability; description of the linoleum and printed asphalt...

  6. 40 CFR Table 1 of Subpart Aaaaaaa... - Emission Limits for Asphalt Processing (Refining) Operations

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 15 2013-07-01 2013-07-01 false Emission Limits for Asphalt Processing... Area Sources: Asphalt Processing and Asphalt Roofing Manufacturing Other Requirements and Information... of Part 63—Emission Limits for Asphalt Processing (Refining) Operations For * * * You must meet...

  7. 40 CFR 443.10 - Applicability; description of the asphalt emulsion subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... asphalt emulsion subcategory. 443.10 Section 443.10 Protection of Environment ENVIRONMENTAL PROTECTION... MATERIALS (TARS AND ASPHALT) POINT SOURCE CATEGORY Asphalt Emulsion Subcategory § 443.10 Applicability; description of the asphalt emulsion subcategory. The provisions of this subpart are applicable to...

  8. 40 CFR 443.30 - Applicability; description of the asphalt roofing subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... asphalt roofing subcategory. 443.30 Section 443.30 Protection of Environment ENVIRONMENTAL PROTECTION... ROOFING MATERIALS (TARS AND ASPHALT) POINT SOURCE CATEGORY Asphalt Roofing Subcategory § 443.30 Applicability; description of the asphalt roofing subcategory. The provisions of this subpart are applicable...

  9. 40 CFR 443.40 - Applicability; description of the linoleum and printed asphalt felt subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... linoleum and printed asphalt felt subcategory. 443.40 Section 443.40 Protection of Environment... PAVING AND ROOFING MATERIALS (TARS AND ASPHALT) POINT SOURCE CATEGORY Linoleum and Printed Asphalt Felt Subcategory § 443.40 Applicability; description of the linoleum and printed asphalt felt subcategory....

  10. Development of indirect ring tension test for fracture characterization of asphalt mixtures

    NASA Astrophysics Data System (ADS)

    Zeinali Siavashani, Alireza

    Low temperature cracking is a major distress in asphalt pavements. Several test configurations have been introduced to characterize the fracture properties of hot mix (HMA); however, most are considered to be research tools due to the complexity of the test methods or equipment. This dissertation describes the development of the indirect ring tension (IRT) fracture test for HMA, which was designed to be an effective and user-friendly test that could be deployed at the Department of Transportation level. The primary advantages of this innovative and yet practical test include: relatively large fracture surface test zone, simplicity of the specimen geometry, widespread availability of the required test equipment, and ability to test laboratory compacted specimens as well as field cores. Numerical modeling was utilized to calibrate the stress intensity factor formula of the IRT fracture test for various specimen dimensions. The results of this extensive analysis were encapsulated in a single equation. To develop the test procedure, a laboratory study was conducted to determine the optimal test parameters for HMA material. An experimental plan was then developed to evaluate the capability of the test in capturing the variations in the mix properties, asphalt pavement density, asphalt material aging, and test temperature. Five plant-produced HMA mixtures were used in this extensive study, and the results revealed that the IRT fracture test is highly repeatable, and capable of capturing the variations in the fracture properties of HMA. Furthermore, an analytical model was developed based on the viscoelastic properties of HMA to estimate the maximum allowable crack size for the pavements in the experimental study. This analysis indicated that the low-temperature cracking potential of the asphalt mixtures is highly sensitive to the fracture toughness and brittleness of the HMA material. Additionally, the IRT fracture test data seemed to correlate well with the data from

  11. Flow conditions of fresh mortar and concrete in different pipes

    SciTech Connect

    Jacobsen, Stefan; Haugan, Lars; Hammer, Tor Arne; Kalogiannidis, Evangelos

    2009-11-15

    The variation in fresh concrete flow rate over the pipe cross section was investigated on differently coloured and highly flowable concrete mixes flowing through pipes of different materials (rubber, steel, acryl). First, uncoloured (gray) concrete was poured through the pipe and the pipe blocked. Similar but coloured (black) concrete was then poured into the pipe filled with gray concrete, flowing after the gray concrete for a while before being blocked and hardened. The advance of the colouring along the pipe wall (showing boundary flow rate) was observed on the moulded concrete surface appearing after removing the pipe from the hardened concrete. The shapes of the interfaces between uncoloured and coloured concrete (showing variation of flow rate over the pipe cross section) were observed on sawn surfaces of concrete half cylinders cut along the length axes of the concrete-filled pipe. Flow profiles over the pipe cross section were clearly seen with maximum flow rates near the centre of the pipe and low flow rate at the pipe wall (typically rubber pipe with reference concrete without silica fume and/or stabilizers). More plug-shaped profiles, with long slip layers and less variation of flow rate over the cross section, were also seen (typically in smooth acrylic pipes). Flow rate, amount of concrete sticking to the wall after flow and SEM-images of pipe surface roughness were observed, illustrating the problem of testing full scale pumping.

  12. Steep-Slope Assembly Testing of Clay and Concrete Tile With and Without Cool Pigmented Colors

    SciTech Connect

    Miller, William A

    2005-11-01

    Cool color pigments and sub-tile venting of clay and concrete tile roofs significantly impact the heat flow crossing the roof deck of a steep-slope roof. Field measures for the tile roofs revealed a 70% drop in the peak heat flow crossing the deck as compared to a direct-nailed asphalt shingle roof. The Tile Roofing Institute (TRI) and its affiliate members are keenly interested in documenting the magnitude of the drop for obtaining solar reflectance credits with state and federal "cool roof" building efficiency standards. Tile roofs are direct-nailed or are attached to a deck with batten or batten and counter-batten construction. S-Misson clay and concrete tile roofs, a medium-profile concrete tile roof, and a flat slate tile roof were installed on fully nstrumented attic test assemblies. Temperature measures of the roof, deck, attic, and ceiling, heat flows, solar reflectance, thermal emittance, and the ambient weather were recorded for each of the tile roofs and also on an adjacent attic cavity covered with a conventional pigmented and directnailed asphalt shingle roof. ORNL measured the tile's underside temperature and the bulk air temperature and heat flows just underneath the tile for batten and counter-batten tile systems and compared the results to the conventional asphalt shingle.

  13. Air sampling methodology for asphalt fume in asphalt production and asphalt roofing manufacturing facilities: total particulate sampler versus inhalable particulate sampler.

    PubMed

    Calzavara, Thomas S; Carter, Charles M; Axten, Charles

    2003-05-01

    In 2000, the American Conference of Governmental Industrial Hygienists (ACGIH(R)) changed its 1971 threshold limit value (TLV) for 8-hour time-weighted average (TWA) exposure to asphalt from 5 mg/m(3) total particulate (generally < or =40 micrometer [microm] diameter) to 0.5 mg/m(3) inhalable particulate (< or =100 microm aerodynamic diameter) as benzene-soluble aerosol. To date, no inhalable particulate sampling method has been standardized and validated for asphalt fume. Furthermore, much of the historical data were collected using total particulate samplers, and the comparability of total versus inhalable size fractions of asphalt fume is not known. Therefore, the present study compared results from two types of asphalt fume samplers: 1) a traditional total particulate sampler with a 37-mm filter in a closed-face cassette with a 4-mm orifice (NIOSH 5042) versus (2) an inhalable particulate sampler designed by the IOM with a 15-mm orifice. A total of 75 simultaneous pairs of samples were collected, including personal and area samples from 19 roofing and asphalt production facilities operated by 7 different manufacturers. Each sample was analyzed for total mass collected and for benzene-soluble mass. Data from the two sampling methods (total versus inhalable) were comparable for asphalt fumes up to an aerosol concentration of 10 mg/m(3). However, we conclude that the traditional total particulate method is preferable, for this reason: The vast majority of asphalt fume particles are <12.5 microm in diameter. The traditional sampler is designed to collect primarily particles < or =40 microm, while the IOM sampler is optimized for collecting particles < or =100 microm. Thus, the traditional sampler is less likely than the IOM sampler to collect the larger-size fraction of airborne particles, most of which are non-asphalt dust.

  14. SUSTAINABLE CONCRETE FOR WIND TURBINE FOUNDATIONS.

    SciTech Connect

    BERNDT,M.L.

    2004-06-01

    The use of wind power to generate electricity continues to grow, especially given commitments by various countries throughout the world to ensure that a significant percentage of energy comes from renewable sources. In order to meet such objectives, increasingly larger turbines with higher capacity are being developed. The engineering aspects of larger turbine development tend to focus on design and materials for blades and towers. However, foundations are also a critical component of large wind turbines and represent a significant cost of wind energy projects. Ongoing wind research at BNL is examining two areas: (a) structural response analysis of wind turbine-tower-foundation systems and (b) materials engineering of foundations. This work is investigating the dynamic interactions in wind turbine systems, which in turn assists the wind industry in achieving improved reliability and more cost efficient foundation designs. The results reported herein cover initial studies of concrete mix designs for large wind turbine foundations and how these may be tailored to reduce cost and incorporate sustainability and life cycle concepts. The approach taken was to investigate material substitutions so that the environmental, energy and CO{sub 2}-impact of concrete could be reduced. The use of high volumes of ''waste'' materials in concrete was examined. These materials included fly ash, blast furnace slag and recycled concrete aggregate. In addition, the use of steel fiber reinforcement as a means to improve mechanical properties and potentially reduce the amount of bar reinforcement in concrete foundations was studied. Four basic mixes were considered. These were: (1) conventional mix with no material substitutions, (2) 50% replacement of cement with fly ash, (3) 50% replacement of cement with blast furnace slag and (4) 25% replacement of cement with fly ash and 25% replacement with blast furnace slag. Variations on these mixes included the addition of 1% by volume steel

  15. The effects of free and bonded sulfur both in the presence and absence of vulcanization accelerators on the rheological, technological, aging, and thermal stability of asphalts

    SciTech Connect

    Onabajo, A.; Kopsch, H.

    1987-01-01

    Rheological and technological experiments have been carried out on sulfur-modified asphalts in the temperature range of 353 K to 453 K over a wide range of shear rates (0-4800 sec/sup -1/). The results indicated that the activation energy of the viscous flow increased with increasing amount of bonded sulfur. The irreversible shear degradation observed in sulfur-modified asphalts is caused by the high shear forces which rupture the aggregated molecules. Thermogravimetric analysis and aging experiments on asphalts and their sulfurized products, containing varying amounts of free sulfur (0-5.5 wt.-%) and vulcanization accelerators (0.5-2.5 wt.-%), have shown that mixes containing vulcanization accelerators have higher thermal stabilities and are more resistant to thermal and non-thermal aging than the unaccelerated asphalt-sulfur mixed prepared at the same or higher temperatures. The changes in the rheological and physical properties of the mixes with time is not only explained by the changes in the physical state of unreacted free sulfur, that is, from plastic to crystalline state (physical process), but also attributable to the effect of chemical reactions.

  16. Observation of a network structure in asphalt cements

    SciTech Connect

    Rozeveld, J.; Shin, E.E.; Bhurke, A.; Drzal, L.T.

    1996-12-31

    Paving asphalts are often judged and selected based on their rheological behavior at prescribed temperatures or aging response. Asphalts are considered as a colloidal mixture, where clusters of polar, aromatic molecules are dispersed in a less polar solvent. Thus, the extent to which the solvent phase disperses the associating molecules will determine many of the fundamental asphalt properties. Asphalts are typically divided into four major groups, namely: asphaltenes, resins, aromatics, ans saturates. Asphaltenes are the highest molecular weight group and constitute {approximately}25% of the total asphalt. Resins are very polar in nature and act as a dispersing agent or peptisers for the asphaltenes. The solvent or oily phase (aromatics and saturates) are the lightest molecular weight group and are the bulk of the total asphalt (40-50%). The dispersion of the asphaltenes within the oily solvent is an important property and has been studied by separation and titration methods. In this study, asphalt cements were examined using an Environmental Scanning Electron Microscopy (ESEM) (ElectroScan 2020), and confocal Laser Scanning Microscope (LSM) (Zeiss 10).

  17. Reusing recycled aggregates in structural concrete

    NASA Astrophysics Data System (ADS)

    Kou, Shicong

    The utilization of recycled aggregates in concrete can minimize environmental impact and reduce the consumption of natural resources in concrete applications. The aim of this thesis is to provide a scientific basis for the possible use of recycled aggregates in structure concrete by conducting a comprehensive programme of laboratory study to gain a better understanding of the mechanical, microstructure and durability properties of concrete produced with recycled aggregates. The study also explored possible techniques to of improve the properties of recycled aggregate concrete that is produced with high percentages (≧ 50%) of recycled aggregates. These techniques included: (a) using lower water-to-cement ratios in the concrete mix design; (b) using fly ash as a cement replacement or as an additional mineral admixture in the concrete mixes, and (c) precasting recycled aggregate concrete with steam curing regimes. The characteristics of the recycled aggregates produced both from laboratory and a commercially operated pilot construction and demolition (C&D) waste recycling plant were first studied. A mix proportioning procedure was then established to produce six series of concrete mixtures using different percentages of recycled coarse aggregates with and without the use of fly ash. The water-to-cement (binder) ratios of 0.55, 0.50, 0.45 and 0.40 were used. The fresh properties (including slump and bleeding) of recycled aggregate concrete (RAC) were then quantified. The effects of fly ash on the fresh and hardened properties of RAC were then studied and compared with those RAC prepared with no fly ash addition. Furthermore, the effects of steam curing on the hardened properties of RAC were investigated. For micro-structural properties, the interfacial transition zones of the aggregates and the mortar/cement paste were analyzed by SEM and EDX-mapping. Moreover, a detailed set of results on the fracture properties for RAC were obtained. Based on the experimental

  18. Monte Carlo simulations for optimization of neutron shielding concrete

    NASA Astrophysics Data System (ADS)

    Piotrowski, Tomasz; Tefelski, Dariusz B.; Polański, Aleksander; Skubalski, Janusz

    2012-06-01

    Concrete is one of the main materials used for gamma and neutron shielding. While in case of gamma rays an increase in density is usually efficient enough, protection against neutrons is more complex. The aim of this paper is to show the possibility of using the Monte Carlo codes for evaluation and optimization of concrete mix to reach better neutron shielding. Two codes (MCNPX and SPOT — written by authors) were used to simulate neutron transport through a wall made of different concretes. It is showed that concrete of higher compressive strength attenuates neutrons more effectively. The advantage of heavyweight concrete (with barite aggregate), usually used for gamma shielding, over the ordinary concrete was not so clear. Neutron shielding depends on many factors e.g. neutron energy, barrier thickness and atomic composition. All this makes a proper design of concrete as a very important issue for nuclear power plant safety assurance.

  19. Strength Characteristics of Groundnut Leaf/Stem Ash (GLSA) Concrete

    NASA Astrophysics Data System (ADS)

    Oseni, O. W.; Audu, M. T.

    2016-09-01

    The compressive strength properties of concrete are substantial factors in the design and construction of concrete structures. Compressive strength directly affects the degree to which the concrete can be able to carry a load over time. These changes are complemented by deflections, cracks etc., in the structural elements of concrete. This research investigated the effect of groundnut leaf/stem ash (GLSA) on the compressive strength of concrete at 0%, 5 %, 10 % and 15 % replacements of cement. The effect of the water-cement ratio on properties such as the compressive strength, slump, flow and workability properties of groundnut leaf/stem ash (GLSA) mixes with OPC were evaluated to determine whether they are acceptable for use in concrete structural elements. A normal concrete mix with cement at 100 % (i.e., GLSA at 0%) with concrete grade C25 that can attain an average strength of 25 N/mm2 at 28 days was used as a control at design water-cement ratios of 0.65 and grading of (0.5-32) mm from fine to coarse aggregates was tested for: (1) compressive strength, and the (2) slump and flow Test. The results and observations showed that the concrete mixes from GLSA at 5 - 15 % ratios exhibit: pozzolanic properties and GLSA could be used as a partial replacement for cement at these percentage mix ratios compared with the control concrete; an increase in the water-cement ratio showed a significant decrease in the compressive strength and an increase in workability. Therefore, it is important that all concrete mixes exude an acceptably designed water-cement ratio for compressive strength characteristics for use in structures, water-cement ratio is a significant factor.

  20. Characterization and design of asphalt mixtures with asphaltites from Boyacá for use in low traffic volume roads

    NASA Astrophysics Data System (ADS)

    Manrique-Espindola, R.

    2013-11-01

    The high availability of asphaltites in Boyacá and their low cost make this material a viable alternative for low traffic road paving; nevertheless, the traditional way in which this material is used generates, in cases, pavements with deficient behavior. This investigation, presents the results of the mixture design using asphaltites from the municipality of Pesca-Boyacá as well as coarse and fine aggregates produced in the region, 70-80 asphalt cement and slow-break asphalt emulsion. Working formulas for dense mixing in hot and cold and particularly MDF-2 and MDC-2 are presented from the characterization information; as benchmarks to define technical viability for use in low- traffic volume roads, according to NT1 regulation from INVIAS. The mixture design was performed according to the procedures defined in the RAMCODES and MARSHALL methodologies.

  1. Recycled brake linings as partial aggregate substitute in asphalt paving. Construction and final report. Report for July 1992-August 1996

    SciTech Connect

    Miller, P.A.; Sukley, R.

    1996-09-01

    The purpose of this project was to evaluate the performance of asphalt containing various percentages of brake lining as an aggregate, and compare its performance to that of normal asphalt containing natural aggregate. This project is an effort to explore alternate ways to use waste product. Four test section of FB-2 Modified mix containing brake lining materials were placed in July 1992 along with one control section on SR 3022 in Mercer county. To date all sections are performing satisfactory, and Brake linings should be recommended as a viable partial replacement of aggregate in bituminous materials. This study only considered the performance of only off-spec brake linings, therefore, any performance data or enviromental effects of placement of used brake material should be addressed.

  2. Respirable concrete dust--silicosis hazard in the construction industry.

    PubMed

    Linch, Kenneth D

    2002-03-01

    Concrete is an extremely important part of the infrastructure of modern life and must be replaced as it ages. Many of the methods of removing, repairing, or altering existing concrete structures have the potential for producing vast quantities of respirable dust. Since crystalline silica in the form of quartz is a major component of concrete, airborne respirable quartz dust may be produced during construction work involving the disturbance of concrete, thereby producing a silicosis hazard for exposed workers. Silicosis is a debilitating and sometimes fatal lung disease resulting from breathing microscopic particles of crystalline silica. Between 1992 and 1998, the National Institute for Occupational Safety and Health (NIOSH) made visits to construction projects where concrete was being mechanically disturbed in order to obtain data concerning respirable crystalline silica dust exposures. The construction activities studied included: abrasive blasting, concrete pavement sawing and drilling, and asphalt/concrete milling. Air samples of respirable dust were obtained using 10-mm nylon cyclone pre-separators, 37-mm polyvinyl chloride (PVC) filters, and constant-flow pumps calibrated at 1.7 L/min. In addition, high-volume respirable dust samples were obtained on 37-mm PVC filters using 1/2" metal cyclones (Sensidyne model 18) and constant-flow pumps calibrated at 9.0 L/min. Air sample analysis included total weight gain by gravimetric analysis according to NIOSH Analytical Method 600 and respirable crystalline silica (quartz and cristobalite) using x-ray diffraction, as per NIOSH Analytical Method 7500. For abrasive blasting of concrete structures, the respirable crystalline silica (quartz) concentration ranged up to 14.0 mg/m3 for a 96-minute sample resulting in an eight-hour time-weighted average (TWA) of 2.8 mg/m3. For drilling concrete highway pavement the respirable quartz concentrations ranged up to 4.4 mg/m3 for a 358-minute sample, resulting in an eight-hour TWA

  3. Method for incorporating radioactive phosphoric acid solutions in concrete

    DOEpatents

    Wolf, G.A.; Smith, J.W.; Ihle, N.C.

    1982-07-08

    A method for incorporating radioactive phosphoric acid solutions in concrete is described wherein the phosphoric acid is reacted with Ca(OH)/sub 2/ to form a precipitate of hydroxyapatite and the hydroxyapatite is mixed with Portland cement to form concrete.

  4. Method for incorporating radioactive phosphoric acid solutions in concrete

    DOEpatents

    Wolf, Gary A [Kennewick, WA; Smith, Jeffrey W [Lancaster, OH; Ihle, Nathan C [Walla Walla, WA

    1984-01-01

    A method for incorporating radioactive phosphoric acid solutions in concrete is described wherein the phosphoric acid is reacted with Ca(OH).sub.2 to form a precipitate of hydroxyapatite and the hydroxyapatite is mixed with portland cement to form concrete.

  5. 5. VIEW OF SECOND ELEVATOR WITH WOODFRAME HEADHOUSE AND ASPHALTIC ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. VIEW OF SECOND ELEVATOR WITH WOOD-FRAME HEADHOUSE AND ASPHALTIC SIDING, LOOKING WEST. - Lockport DuPage Farmer's Elevator Company Grain Elevator, South of Romeoville Road, Lockport, Will County, IL

  6. Comprehensive research program: Wind resistance of asphalt shingles

    SciTech Connect

    Jones, J.E.; Metz, R.E.

    1999-07-01

    This paper describes the Asphalt Roofing Manufacturers Association's comprehensive research program which has resulted in a validated wind load model that can be used to calculate the uplift pressure on asphalt shingles as a function of approach wind velocities and other wind and building conditions. Also, a tab uplift resistance test method has been developed to measure the ability of asphalt shingles to withstand the imposed pressures due to the wind. In combination, the results of these two efforts provide the shingle manufacturers with the methodology to evaluate and improve their products. The results are not only of interest to the roofing manufacturers, but also to contractors, code officials, insurance companies, roofing specifiers and other professionals in the roofing industry. The results of this work should provide building owners and homeowners with high performance asphalt shingles for extreme wind conditions.

  7. 12. VIEW NORTH, ACROSS DECK CENTER AREA SHOWING ASPHALT AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. VIEW NORTH, ACROSS DECK CENTER AREA SHOWING ASPHALT AND NORTH SIDE GUARD WALL - Route 1 Extension, South Street Viaduct, Spanning Conrail & Wheeler Point Road at South Street, Newark, Essex County, NJ

  8. 4. LOOKING SOUTHWEST AT LATTICED GUARDRAIL, DIAGONALS, ASPHALT DECK AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. LOOKING SOUTHWEST AT LATTICED GUARDRAIL, DIAGONALS, ASPHALT DECK AND LACED ANGLES ON VERTICALS - Wayne County Bridge No. 122, Spanning West Fork Whitewater River at Main Street, Milton, Wayne County, IN

  9. Effect of moisture on the aging behavior of asphalt binder

    NASA Astrophysics Data System (ADS)

    Ma, Tao; Huang, Xiao-Ming; Mahmoud, Enad; Garibaldy, Emil

    2011-08-01

    The moisture aging effect and mechanism of asphalt binder during the in-service life of pavement were investigated by laboratory simulating tests. Pressure aging vessel (PAV) test simulating the long-term aging of binder during the in-service life of pavement was modified to capture the long-term moisture aging effect of binder. Penetration grade tests including penetration test, soften point test, and ductility test as well as Superpave™ performance grade tests including viscosity test, dynamic shear rheometer test, and bending beam rheometer test were conducted to fully evaluate the moisture aging effect of binder. Fourier transform infrared spectroscopy test and Gel-permeation chromatography test were applied to provide a fundamental understanding of the moisture aging mechanism of binder. The results indicate that moisture condition can accelerate the aging of asphalt binder and shorten the service life of asphalt binder. The modified PAV test with moisture condition can well characterize the moisture aging properties of asphalt binder.

  10. Microstructure of high-strength foam concrete

    SciTech Connect

    Just, A.; Middendorf, B.

    2009-07-15

    Foam concretes are divided into two groups: on the one hand the physically foamed concrete is mixed in fast rotating pug mill mixers by using foaming agents. This concrete cures under atmospheric conditions. On the other hand the autoclaved aerated concrete is chemically foamed by adding aluminium powder. Afterwards it is cured in a saturated steam atmosphere. New alternatives for the application of foam concretes arise from the combination of chemical foaming and air curing in manufacturing processes. These foam concretes are new and innovative building materials with interesting properties: low mass density and high strength. Responsible for these properties are the macro-, meso- and microporosity. Macropores are created by adding aluminium powder in different volumes and with different particle size distributions. However, the microstructure of the cement matrix is affected by meso- and micropores. In addition, the matrix of the hardened cement paste can be optimized by the specific use of chemical additives for concrete. The influence of aluminium powder and chemical additives on the properties of the microstructure of the hardened cement matrices were investigated by using petrographic microscopy as well as scanning electron microscopy.

  11. Lunar concrete for construction

    NASA Technical Reports Server (NTRS)

    Cullingford, Hatice S.; Keller, M. Dean

    1988-01-01

    Feasibility of using concrete for lunar-base construction has been discussed recently without relevant data for the effects of vacuum on concrete. Experimental studies performed earlier at Los Alamos have shown that concrete is stable in vacuum with no deterioration of its quality as measured by the compressive strength. Various considerations of using concrete successfully on the moon are provided in this paper along with specific conclusions from the existing data base.

  12. Lunar concrete for construction

    NASA Technical Reports Server (NTRS)

    Cullingford, Hatice S.; Keller, M. Dean

    1992-01-01

    Feasibility of using concrete for lunar base construction was discussed recently without relevant data for the effects of vacuum on concrete. Our experimental studies performed earlier at Los Alamos have shown that concrete is stable in vacuum with no deterioration of its quality as measured by the compressive strength. Various considerations of using concrete successfully on the Moon are provided in this paper, along with specific conclusions from the existing database.

  13. Lunar concrete for construction

    SciTech Connect

    Cullingford, H.S.; Keller, M.D.

    1988-01-01

    Feasibility of using concrete for lunar-base construction has been discussed recently without relevant data for the effects of vacuum on concrete. Our experimental studies performed earlier at Los Alamos have shown that concrete is stable in vacuum with no deterioration of its quality as measured by the compressive strength. Various considerations of using concrete successfully on the moon are provided in this paper along with specific conclusions from the existing data base. 10 refs., 3 figs., 2 tabs.

  14. Laboratory constitutive characterization of cellular concrete.

    SciTech Connect

    Hardy, Robert Douglas; Lee, Moo Yul; Bronowski, David R.

    2004-03-01

    To establish mechanical material properties of cellular concrete mixes, a series of quasi-static, compression and tension tests have been completed. This report summarizes the test methods, set-up, relevant observations, and results from the constitutive experimental efforts. Results from the uniaxial and triaxial compression tests established failure criteria for the cellular concrete in terms of stress invariants I{sub 1} and J{sub 2}. {radical}J{sub 2} (MPa) = 297.2 - 278.7 exp{sup -0.000455 I}{sub 1}{sup (MPa)} for the 90-pcf concrete {radical}J{sub 2} (MPa) = 211.4 - 204.2 exp {sup -0.000628 I}{sub 1}{sup (MPa)} for the 60-pcf concrete

  15. BEHAVIOR OF MODEL ASPHALT PAVEMENT CONTAINING A HYDRAULIC, GRADED IRON AND STEEL SLAG BASE-COURSE UNDER REPEATED PLATE-LOADING

    NASA Astrophysics Data System (ADS)

    Yoshida, Nobuyuki; Sugisako, Yasunari

    In this paper, the dynamic response of asphalt pave ment containing a hydraulic, graded iron and steel slag (hereafter called HMS) base-course under repeated plate-loading was investigated using a model asphalt pavement and the influence of hydraulicity on th e pavement behavior was discussed. The model pavement constructed was a 4-layer system consis ting of a dense-graded asphalt mix surface layer, a dense-graded asphalt mix binder-course, a HMS base-course and a Masado (heavily-weathered granitic sand) subgrade. A repeated plate-loading test was carri ed out so as to achieve a resilient state. It is shown that surface resilient deflection decreases as curing progresses and after 90 days, the deflection becomes almost half of the initial. Large horizontal tensile strains develop at the bottoms of binder- and base-course, which decrease significantly with curing. It is indicative that HMS base-course behaves like a stiffer plate resulting in a hard-to-deflect state due to the development of hydraulicity.

  16. HTGR Base Technology Program. Task 2: concrete properties in nuclear environment. A review of concrete material systems for application to prestressed concrete pressure vessels

    SciTech Connect

    Naus, D.J.

    1981-05-01

    Prestressed concrete pressure vessels (PCPVs) are designed to serve as primary pressure containment structures. The safety of these structures depends on a correct assessment of the loadings and proper design of the vessels to accept these loadings. Proper vessel design requires a knowledge of the component (material) properties. Because concrete is one of the primary constituents of PCPVs, knowledge of its behavior is required to produce optimum PCPV designs. Concrete material systems are reviewed with respect to constituents, mix design, placing, curing, and strength evaluations, and typical concrete property data are presented. Effects of extreme loadings (elevated temperature, multiaxial, irradiation) on concrete behavior are described. Finally, specialty concrete material systems (high strength, fibrous, polymer, lightweight, refractory) are reviewed. 235 references.

  17. Material and Flexural Properties of Fiber-reinforced Rubber Concrete

    NASA Astrophysics Data System (ADS)

    Helminger, Nicholas P.

    The purpose of this research is to determine the material properties of rubber concrete with the addition of fibers, and to determine optimal mixture dosages of rubber and fiber in concrete for structural applications. Fiber-reinforced concrete and rubberized concrete have been researched separately extensively, but this research intends to combine both rubber and fiber in a concrete matrix in order to create a composite material, fiber-reinforced rubber concrete (FRRC). Sustainability has long been important in engineering design, but much of the previous research performed on sustainable concrete does not result in a material that can be used for practical purposes. While still achieving a material that can be used for structural applications, economical considerations were given when choosing the proportions and types of constituents in the concrete mix. Concrete mixtures were designed, placed, and tested in accordance with common procedures and standards, with an emphasis on practicality. Properties that were investigated include compressive strength, tensile strength, modulus of elasticity, toughness, and ductility. The basis for determining the optimal concrete mixture is one that is economical, practical, and exhibits ductile properties with a significant strength. Results show that increasing percentages of rubber tend to decrease workability, unit weight, compressive strength, split tensile strength, and modulus of elasticity while the toughness is increased. The addition of steel needle fibers to rubber concrete increases unit weight, compressive strength, split tensile strength, modulus of elasticity, toughness, and ductility of the composite material.

  18. Variability in properties of Salado Mass Concrete

    SciTech Connect

    Wakeley, L.D.; Harrington, P.T.; Hansen, F.D.

    1995-08-01

    Salado Mass Concrete (SMC) has been developed for use as a seal component in the Waste Isolation Pilot Plant. This concrete is intended to be mixed from pre-bagged materials, have an initial slump of 10 in., and remain pumpable and placeable for two hours after mixing. It is a mass concrete because it will be placed in monoliths large enough that the heat generated during cement hydration has the potential to cause thermal expansion and subsequent cracking, a phenomenon to avoid in the seal system. This report describes effects on concrete properties of changes in ratio of water to cement, batch size, and variations in characteristics of different lots of individual components of the concrete. The research demonstrates that the concrete can be prepared from laboratory-batched or pre-bagged dry materials in batches from 1.5 ft{sup 3} to 5.0 yd{sup 3}, with no chemical admixtures other than the sodium chloride added to improve bonding with the host rock, at a water-to-cement ratio ranging from 0.36 to 0.42. All batches prepared according to established procedures had adequate workability for at least 1.5 hours, and achieved or exceeded the target compressive strength of 4500 psi at 180 days after casting. Portland cement and fly ash from different lots or sources did not have a measurable effect on concrete properties, but variations in a shrinkage-compensating cement used as a component of the concrete did appear to affect workability. A low initial temperature and the water-reducing and set-retarding functions of the salt are critical to meeting target properties.

  19. The Use of Natural Pozzolan in Concrete as an Additive or Substitute for Cement

    DTIC Science & Technology

    2011-12-01

    17 Figure 28. Materials used for concrete mix...activity index with different pozzaolanic materials . ................................................ 62 Table 31. ASTM C1260 Aggregate grading...is feasible that a significant portion of cement in a concrete mixture may be replaced by pozzolan. This study ex- plored the properties of concrete

  20. Mixed Mode Crack Propagation in Concrete

    DTIC Science & Technology

    1990-02-01

    0010,15,]5,33,33, 0, 0,26,6*0/, TODMFE93 COION /SOFT/ ISCODE,WWCC,ELWW,GGFF, DDAA ,IRCH TDFE 42 IF (HOOEL.EQ.51 READ(IIN,100)S ISCODE,WWCC,ELWN,GGFr, DDAA ...IRCH "DFE 101 100S FORMAT (1S,4F1.OI 1DFE1219 COMM1ON /SOFT/ ISCODE ,WWCC,ELWW,GGFF UDDAA,IRCtt IATRT214 WRITE (6,2236) ISCODE,WWCC,ELWN,GGFF, DDAA ...SOFT/ ISCODE,HWCC,ELHW,GGFF, DDAA ,IRCI CDMOD SO ICRKSTRI6),STRESS(4),STRAIN(4),C(4,41,NOJS(1 I,TEIIPVI(1 I, CDMOD 53 2 TEMPV2(1),YZ(IP,NODS(11,WA(l

  1. Protecting steel in concrete in the Persian Gulf

    SciTech Connect

    Matta, Z.G. )

    1994-06-01

    The climate and geomorphology of the Persian Gulf make it one of the world's most severe environments for reinforced concrete. The concrete mix ingredients are usually contaminated with chloride, and the environment around reinforced concrete structures also contains salts, both under- and above-ground. Prevailing high temperatures also promote rapid rates of corrosion. Fusion-bonded epoxy-coated rebar, polyvinyl butyral-based coated rebar, calcium nitrile corrosion-inhibiting admixture, and microsilica are reviewed as corrosion prevention measures for steel in concrete for Persian Gulf service. Detrimental effects and user-friendliness are discussed.

  2. Quantitative exposure matrix for asphalt fume, total particulate matter, and respirable crystalline silica among roofing and asphalt manufacturing workers.

    PubMed

    Fayerweather, William E; Trumbore, David C; Johnson, Kathleen A; Niebo, Ronald W; Maxim, L Daniel

    2011-09-01

    This paper summarizes available data on worker exposures to asphalt fume (soluble fraction), total particulate matter, and respirable crystalline silica (quartz) [hereinafter RCS] over a 30-year period in Owens Corning's asphalt production and roofing manufacturing plants. For the period 1977 through 2006, the air-monitoring database contains more than 1,400 personal samples for asphalt fume (soluble fraction), 2,400 personal samples for total particulate, and 1,300 personal samples for RCS. Unique process-job categories were identified for the asphalt production and roofing shingle manufacturing plants. Quantitative exposures were tabulated by agent, process-job, and calendar period to form an exposure matrix for use in subsequent epidemiologic studies of the respiratory health of these workers. Analysis of time trends in exposure data shows substantial and statistically significant exposure reductions for asphalt fume (soluble fraction), total particulate matter, and respirable crystalline silica at Owens Corning plants. Cumulative distribution plots for the most recent sampling period (2001-2006) show that 95% of the asphalt fume (soluble fraction) measurements were less than 0.25 mg/m3; 95% of the total particulate measurements were less than 2.2 mg/m3; and 95% of the RCS measurements were less than 0.05 mg/m3. Several recommendations are offered to improve the design of future monitoring efforts.

  3. Evaluation and Repair of Concrete Structures: Annotated Bibliography 1978 - 1988. Volume 2. (Repair, Evaluation, Maintenance and Rehabilitation Research Program)

    DTIC Science & Technology

    1991-06-01

    concrete pores. C-37 Bretz, T. E., Jr. 1979 -(Jul). "Properties of Sulfur Concrete ," Report AFIT-CI-79-170T, Air Force Institute of Technology, Wright...Patterson-Air Force- Base, OH. This report summarizes the state of the art of sulfur concrete . Sulfur concrete is creatod by mixing molten sulfur with...excellent resistance -to acids, salts, and many organic compounds. It works well as a rapid runway repair material. Sulfur concrete also has unfavorable 21

  4. 40 CFR 436.60 - Applicability; description of the asphaltic mineral subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... asphaltic mineral subcategory. 436.60 Section 436.60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) MINERAL MINING AND PROCESSING POINT SOURCE CATEGORY Asphaltic Mineral Subcategory § 436.60 Applicability; description of the...

  5. 40 CFR 436.60 - Applicability; description of the asphaltic mineral subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... asphaltic mineral subcategory. 436.60 Section 436.60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) MINERAL MINING AND PROCESSING POINT SOURCE CATEGORY Asphaltic Mineral Subcategory § 436.60 Applicability; description of the...

  6. 40 CFR 436.60 - Applicability; description of the asphaltic mineral subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... asphaltic mineral subcategory. 436.60 Section 436.60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) MINERAL MINING AND PROCESSING POINT SOURCE CATEGORY Asphaltic Mineral Subcategory § 436.60 Applicability; description of the...

  7. Design of open graded friction courses with sulfur extended asphalt binders

    NASA Astrophysics Data System (ADS)

    Saylak, D.; Ho, K. K.; Gallaway, B. M.; Little, D. N.

    1982-09-01

    The combination of the anticipated shortage of asphalt cement and the projected abundance of sulfur has led to the investigation of the potential for substituting this element for the former in the paving industry. Sulfur was incorporated with asphalt to form sulfur-extended asphalt (SEA) binders for use in open graded friction course mixtures. The experimental design variable included aggregated type, asphalt cement, level of sulfur contents in the binder and method of preparing SEA binders.

  8. Annotated Bibliography: Polymers in Concrete.

    DTIC Science & Technology

    1982-10-01

    example, the untreated cements let water through the 2 -ton pressure after 7 days aging, while cement containing 33 wt. percent resin No. 89 ( prepared ...100 parts were mixed with 300 parts local zone 2 concreting (14 0 mesh and 45 parts 40 percent II latex ( prepared by aq. emulsion poly - merization...condition for polymer-modified mortars using special super high early strength cement is the combined air and water cure such as 2 -day-20*C-moist, 5-day-20°C

  9. Retempering of Concrete made by using Manufactured Sand

    NASA Astrophysics Data System (ADS)

    Pethkar, A. R.; Deshmukh, G.

    2014-06-01

    Retempering is defined as, " Addition of water and remixing of concrete or mortar which has lost enough workability to become unplaceable". Retempering inevitably results in some loss of strength compared with the original concrete [1]. Adding water to a plastic mix to increase slump is an extremely common practice, even though it is not recommended because it increases the porosity of concrete. Concrete often arrives on site more than half an hour after initial mixing. Placement operations can take anywhere from 10 to 60 min, depending on the field conditions and the size of the load. When the slump decreases to an unacceptable level during the operations, water is added to the mix [1]. In this work, an attempt is made to study the strength characteristics of retempered concrete made by using manufactured sand. Usually the retempering process is there with normal and ready mixed concrete; hence an attempt is made to check the compressive and flexural strength of normal retempered concrete with an addition of retarder 0.2, 0.4 and 0.6 % at retempering time from 15 to 90 min. There is scarcity of natural sand due to various factors, which is replaced by the manufactured sand. The concept of manufactured sand is nothing but breaking stone into smaller and smaller particles in such way that the gradation of particle will match with zone-II of I.S.

  10. Asphalt fume exposure levels in North American asphalt production and roofing manufacturing operations.

    PubMed

    Axten, Charles W; Fayerweather, William E; Trumbore, David C; Mueller, Dennis J; Sampson, Arthur F

    2012-01-01

    This study extends by 8 years (1998-2005) a previous survey of asphalt fume exposures within North American asphalt processing and roofing product manufacturing workers. It focuses on characterizing personal, full-shift samples and seeks to address several limitations of the previous survey. Five major roofing manufacturers with established occupational health programs submitted workplace asphalt fume sampling results to a central repository for review and analysis. A certified industrial hygienist-led quality assurance team oversaw the data collection, consolidation, and analysis efforts. The analysis dataset consisted of 1261 personal exposure samples analyzed for total particulate (TP) and benzene soluble fraction (BSF) using existing NIOSH methods. For BSF, the survey's arithmetic (0.25 mg/m(3), SD = 0.62) and geometric (0.12 mg/m(3), GSD = 2.88) means indicate that the industry has sustained the control levels achieved in the late 1980s, early 1990s. Similar results were found for TP. The survey-wide summary statistics are consistent with other post-1990 multi-company exposure studies. Although these findings indicate that currently available controls are capable of achieving substantial (95%) compliance with the current threshold limit value in asphalt processing and inorganic shingle and roll plants, they also show that the majority of plants are not achieving this level of exposure control, and that exposures are significantly higher in plants making other product lines, particularly organic felt products. The current retrospective survey of existing company exposure data, like its predecessor, has several important limitations. These include lack of data on smaller manufacturers and on several commercially important product lines; insufficient information on the prevalence and effectiveness of engineering controls; no standard criteria by which to define and assess exposures in non-routine operations; and a paucity of exposure data collected as part of a

  11. Environmental evaluation of green concretes versus conventional concrete by means of LCA.

    PubMed

    Turk, Janez; Cotič, Zvonko; Mladenovič, Ana; Šajna, Aljoša

    2015-11-01

    A number of green concrete mixes having similar basic properties were evaluated from the environmental point of view by means of the Life Cycle Assessment method, and compared with a corresponding conventional concrete mix. The investigated green concrete mixes were prepared from three different types of industrial by-products, i.e. (1) foundry sand, and (2) steel slag, both of which were used as manufactured aggregates, and (3) fly ash, which was used as a mineral admixture. Some green concrete mixes were also prepared from a recycled aggregate, which was obtained from reinforced concrete waste. In some of the green concrete mixes the recycled aggregate was used in combination with the above-mentioned types of manufactured aggregate and fly ash. All of these materials are able, to some extent, to replace natural aggregate or Portland cement in concrete mixes, thus providing an environmental benefit from the point of view of the saving of natural resources. Taking into account consequential modelling, the credit related to the avoidance of the need to dispose of the waste materials is considered as a benefit. In case of the recycling of waste concrete into aggregate, credit is attributed to the recovery of scrap iron from the steel reinforcement. In the case of the use of steel slag, credit is attributed to the recovery of metals, which are extracted from the slag before being used as an alternative material. The disadvantage of using alternative materials and recycled aggregates can sometimes be their relatively long delivery distance. For this reason, a transport sensitivity analysis was carried out. The results indicate that the use of the discussed alternative and recycled materials is beneficial in the concrete production industry. Preference is given to the fly ash and foundry sand scenarios, and especially to those scenarios which are based on the combined use of recycled aggregate with these two alternative materials. It was found that longer delivery

  12. Long-term degradation (or improvement?) of cementitious grout/concrete for waste disposal at Hanford

    SciTech Connect

    Piepho, M.G.

    1997-12-31

    If grout and/or concrete barriers and containments are considered for long-term (500 yrs to 100,000 ) waste disposal, then long-term degradation of grout/cement materials (and others) need to be studied. Long-term degradations of a cementitious grout monolith (15.4mW x 10.4mH x 37.6mL) and its containment concrete shell and asphalt shell (each 1-m thick) were analyzed. The main degradation process of the concrete shell was believed to be fractures due to construction joints, shrinkage, thermal stress, settlement, and seismic events. A scenario with fractures was modeled (flow and transport model) for long-term risk performance (out to a million yrs). Even though the concrete/grout is expected to fracture, the concrete/grout chemistry, which has high Ph value, is very beneficial in causing calcite deposits from calcium in the water precipitating in the fractures. These calcite deposits will tend to plug the fracture and keep water from entering. The effectiveness of such plugging needs to be studied more. It`s possible that the plugged fractures are more impermeable than the original concrete/grout. The long-term performance of concrete/grout barriers will be determined by its chemistry, not its mechanical properties.

  13. ASPHALT FOR OFF-STREET PAVING AND PLAY AREAS, 3RD EDITION.

    ERIC Educational Resources Information Center

    Asphalt Inst., College Park, MD.

    THIS PAMPHLET DISCUSSES THE ALTERNATIVE METHODS, APPLICATIONS, AND TECHNICAL CONSIDERATIONS FOR OFF-STREET PAVING AND PLAY AREAS. OFF-STREET PAVING INCLUDES--(1) ASPHALT-PAVED PARKING AREAS, (2) ROOF DECK PARKING AREAS, (3) ASPHALT-PAVED DRIVEWAYS, (4) ASPHALT-PAVED SERVICE STATION LOTS, AND (5) SIDEWALKS. THE DISCUSSION OF PLAY AREAS…

  14. 40 CFR 436.60 - Applicability; description of the asphaltic mineral subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... asphaltic mineral subcategory. 436.60 Section 436.60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS MINERAL MINING AND PROCESSING POINT SOURCE CATEGORY Asphaltic Mineral Subcategory § 436.60 Applicability; description of the asphaltic mineral subcategory....

  15. 40 CFR 436.60 - Applicability; description of the asphaltic mineral subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... asphaltic mineral subcategory. 436.60 Section 436.60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS MINERAL MINING AND PROCESSING POINT SOURCE CATEGORY Asphaltic Mineral Subcategory § 436.60 Applicability; description of the asphaltic mineral subcategory....

  16. 40 CFR Table 2 of Subpart Aaaaaaa... - Emission Limits for Asphalt Roofing Manufacturing (Coating) Operations

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Manufacturing (Coating) Operations 2 Table 2 of Subpart AAAAAAA of Part 63 Protection of Environment... Pollutants for Area Sources: Asphalt Processing and Asphalt Roofing Manufacturing Other Requirements and... AAAAAAA of Part 63—Emission Limits for Asphalt Roofing Manufacturing (Coating) Operations For * * *...

  17. 40 CFR Table 2 of Subpart Aaaaaaa... - Emission Limits for Asphalt Roofing Manufacturing (Coating) Operations

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Manufacturing (Coating) Operations 2 Table 2 of Subpart AAAAAAA of Part 63 Protection of Environment... Pollutants for Area Sources: Asphalt Processing and Asphalt Roofing Manufacturing Other Requirements and... AAAAAAA of Part 63—Emission Limits for Asphalt Roofing Manufacturing (Coating) Operations For * * *...

  18. 40 CFR Table 2 of Subpart Aaaaaaa... - Emission Limits for Asphalt Roofing Manufacturing (Coating) Operations

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Manufacturing (Coating) Operations 2 Table 2 of Subpart AAAAAAA of Part 63 Protection of Environment... Pollutants for Area Sources: Asphalt Processing and Asphalt Roofing Manufacturing Other Requirements and... AAAAAAA of Part 63—Emission Limits for Asphalt Roofing Manufacturing (Coating) Operations For * * *...

  19. 40 CFR Table 2 of Subpart Aaaaaaa... - Emission Limits for Asphalt Roofing Manufacturing (Coating) Operations

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... Coater-only production lines a. Limit PAH emissions to 0.0002 lb/ton of asphalt roofing product...-only production lines a. Limit PAH emissions to 0.0007 lb/ton of asphalt roofing product manufactured... saturator/coater production lines a. Limit PAH emissions to 0.0009 lb/ton of asphalt roofing...

  20. 40 CFR Table 2 of Subpart Aaaaaaa... - Emission Limits for Asphalt Roofing Manufacturing (Coating) Operations

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... Coater-only production lines a. Limit PAH emissions to 0.0002 lb/ton of asphalt roofing product...-only production lines a. Limit PAH emissions to 0.0007 lb/ton of asphalt roofing product manufactured... saturator/coater production lines a. Limit PAH emissions to 0.0009 lb/ton of asphalt roofing...

  1. Use of recycled plastic in concrete: A review

    SciTech Connect

    Siddique, Rafat Khatib, Jamal; Kaur, Inderpreet

    2008-07-01

    Numerous waste materials are generated from manufacturing processes, service industries and municipal solid wastes. The increasing awareness about the environment has tremendously contributed to the concerns related with disposal of the generated wastes. Solid waste management is one of the major environmental concerns in the world. With the scarcity of space for landfilling and due to its ever increasing cost, waste utilization has become an attractive alternative to disposal. Research is being carried out on the utilization of waste products in concrete. Such waste products include discarded tires, plastic, glass, steel, burnt foundry sand, and coal combustion by-products (CCBs). Each of these waste products has provided a specific effect on the properties of fresh and hardened concrete. The use of waste products in concrete not only makes it economical, but also helps in reducing disposal problems. Reuse of bulky wastes is considered the best environmental alternative for solving the problem of disposal. One such waste is plastic, which could be used in various applications. However, efforts have also been made to explore its use in concrete/asphalt concrete. The development of new construction materials using recycled plastics is important to both the construction and the plastic recycling industries. This paper presents a detailed review about waste and recycled plastics, waste management options, and research published on the effect of recycled plastic on the fresh and hardened properties of concrete. The effect of recycled and waste plastic on bulk density, air content, workability, compressive strength, splitting tensile strength, modulus of elasticity, impact resistance, permeability, and abrasion resistance is discussed in this paper.

  2. Use of recycled plastic in concrete: a review.

    PubMed

    Siddique, Rafat; Khatib, Jamal; Kaur, Inderpreet

    2008-01-01

    Numerous waste materials are generated from manufacturing processes, service industries and municipal solid wastes. The increasing awareness about the environment has tremendously contributed to the concerns related with disposal of the generated wastes. Solid waste management is one of the major environmental concerns in the world. With the scarcity of space for landfilling and due to its ever increasing cost, waste utilization has become an attractive alternative to disposal. Research is being carried out on the utilization of waste products in concrete. Such waste products include discarded tires, plastic, glass, steel, burnt foundry sand, and coal combustion by-products (CCBs). Each of these waste products has provided a specific effect on the properties of fresh and hardened concrete. The use of waste products in concrete not only makes it economical, but also helps in reducing disposal problems. Reuse of bulky wastes is considered the best environmental alternative for solving the problem of disposal. One such waste is plastic, which could be used in various applications. However, efforts have also been made to explore its use in concrete/asphalt concrete. The development of new construction materials using recycled plastics is important to both the construction and the plastic recycling industries. This paper presents a detailed review about waste and recycled plastics, waste management options, and research published on the effect of recycled plastic on the fresh and hardened properties of concrete. The effect of recycled and waste plastic on bulk density, air content, workability, compressive strength, splitting tensile strength, modulus of elasticity, impact resistance, permeability, and abrasion resistance is discussed in this paper.

  3. Asphalt mounds and associated biota on the Angolan margin

    NASA Astrophysics Data System (ADS)

    Jones, Daniel O. B.; Walls, Anne; Clare, Michael; Fiske, Mike S.; Weiland, Richard J.; O'Brien, Robert; Touzel, Daniel F.

    2014-12-01

    Release of hydrocarbons from sediments is important in increasing habitat heterogeneity on deep ocean margins. Heterogeneity arises from variation in abiotic and biotic conditions, including changes in substratum, geochemistry, fluid flow, biological communities and ecological interactions. The seepage of heavy hydrocarbons to the seafloor is less well studied than most other cold seep systems and may lead to the formation of asphalt mounds. These have been described from several regions, particularly the Gulf of Mexico. Here, we describe the structure, potential formation and biology of a large asphalt mound province in Block 31SE Angola. A total of 2254 distinct mound features was identified by side-scan sonar, covering a total area of 3.7 km2 of seafloor. The asphalt mounds took a number of forms from small (<0.5 m diameter; 13% observations) mounds to large extensive (<50 m diameter) structures. Some of the observed mounds were associated with authigenic carbonate and active seepage (living chemosynthetic fauna present in addition to the asphalt). The asphalt mounds are seabed accumulations of heavy hydrocarbons formed from subsurface migration and fractionation of reservoir hydrocarbons primarily through a network of faults. In Angola these processes are controlled by subsurface movement of salt structures. The asphalt mounds were typically densely covered with epifauna (74.5% of mounds imaged had visible epifauna) although individual mounds varied considerably in epifaunal coverage. Of the 49 non-chemosynthetic megafaunal taxa observed, 19 taxa were only found on hard substrata (including asphalt mounds), 2 fish species inhabited the asphalt mounds preferentially and 27 taxa were apparently normal soft-sediment fauna. Antipatharians (3.6±2.3% s.e.) and poriferans (2.6±1.9% s.e.) accounted for the highest mean percentage of the observed cover, with actinarians (0.9±0.4% s.e.) and alcyonaceans (0.4±0.2% s.e.) covering smaller proportions of the area

  4. Promoting the use of crumb rubber concrete in developing countries.

    PubMed

    Batayneh, Malek K; Marie, Iqbal; Asi, Ibrahim

    2008-11-01

    The use of accumulated waste materials in third world countries is still in its early phases. It will take courage for contractors and others in the construction industry to recycle selected types of waste materials in the concrete mixes. This paper addresses the recycling of rubber tires accumulated every year in Jordan to be used in concrete mixes. The main objectives of this research were to provide more scientific evidence to support the use of legislation or incentive-based schemes to promote the reuse of accumulated waste tires. This research focused on using crumb tires as a replacement for a percentage of the local fine aggregates used in the concrete mixes in Jordan. Different concrete specimens were prepared and tested in terms of uniaxial compression and splitting tension. The main variable in the mixture was the volumetric percentage of crumb tires used in the mix. The test results showed that even though the compressive strength is reduced when using the crumb tires, it can meet the strength requirements of light weight concrete. In addition, test results and observations indicated that the addition of crumb rubber to the mix has a limited effect toward reducing the workability of the mixtures. The mechanical test results demonstrated that the tested specimens of the crumb rubber concrete remained relatively intact after failure compared to the conventional concrete specimens. It is also concluded that modified concrete would contribute to the disposal of the non-decaying scrap tires, since the amount being accumulated in third world countries is creating a challenge for proper disposal. Thus, obliging authorities to invest in facilitating the use of waste tires in concrete, a fundamental material to the booming construction industry in theses countries, serves two purposes.

  5. Laboratory Measurements of Particulate Matter Concentrations from Asphalt Pavement Abrasion

    NASA Astrophysics Data System (ADS)

    Fullová, Daša; Đurčanská, Daniela

    2016-12-01

    The issue of emissions from road traffic is compounded by the fact that the number of vehicles and driven kilometres increase each year. Road traffic is one of the main sources of particulate matter and traffic volume is still increasing and has unpleasant impact on longevity of the pavements and the environment. Vehicle motions cause mechanical wearing of the asphalt pavement surface - wearing course by vehicle tyres. The contribution deals with abrasion of bituminous wearing courses of pavements. The asphalt mixtures of wearing courses are compared in terms of mechanically separated particulate matter. The samples of asphalt mixtures were rutted in wheel tracking machine. The particulate matter measurements were performed in laboratory conditions. The experimental laboratory measurements make it possible to sample particulates without contamination from exhaust emissions, abraded particles from vehicles, resuspension of road dust and climate affects. The contribution offers partial results of measurements on six trial samples of asphalt mixtures with different composition. It presents particulate matter morphology and the comparison of rutted asphalt samples in terms of PM mass concentrations and chemical composition.

  6. Chapopote Asphalt Volcano may have been generated by supercritical water

    NASA Astrophysics Data System (ADS)

    Hovland, M.; MacDonald, I. R.; Rueslåtten, H.; Johnsen, H. K.; Naehr, T.; Bohrmann, G.

    Asphalt volcanoes and lava-like flows of solidified asphalt on the seafloor (Figure 1) were first discovered and described by MacDonald et al. [2004]. The flows covered more than one square kilometer of a dissected salt dome at abyssal depths (˜3000 m) in the southern Gulf of Mexico. “Chapopote” (93°26‧W, 21°54‧N) was one of two asphalt volcanoes they discovered. MacDonald et al. determined that the apparently fresh asphalt must initially have flowed in a hot state, and subsequently chilled, contracted, and solidified, much in the same way as normal lava does on the surface of the Earth.The two asphalt-volcanoes discovered occur at the apex of salt domes that pierce through the seafloor. These “piercement salt domes,” known as the Campeche Knolls, are pertinent features of the deep Campeche Sedimentary Basin, which has a sediment thickness of about 10 km. According to conventional theory [Vendeville and Jackson, 1992], piercement salt domes represent “salt diapirs” that have risen up, due partly to density contrasts between salt and clay/sand from the “mother salt” located between 7 and 10 km below seafloor. A salt diapir is a vertical body of sub-surface salt, which is most often circular in cross section, is one to several kilometers in diameter, and can be 8-10 km high.

  7. An Approach for Nonlinear Fatigue Damage Evaluation in Asphalt Pavements

    NASA Astrophysics Data System (ADS)

    Rajbongshi, Pabitra; Thongram, Sonika

    2016-09-01

    Fatigue due to vehicular loads is one of the primary distress mechanisms in asphalt pavements. It happens primarily due to deterioration in asphalt material with load repetitions. Degradation of asphalt material may be evaluated using different parameters. In view of degradation, the incremental damage in a given pavement section would be different for different repetitions, even with same loadings. Therefore, the damage progression becomes nonlinear with repetitions. Accounting such nonlinearity in damage accumulation, and based on different damage evaluation parameters, this paper presents an equivalent approach for fatigue damage evaluation in asphalt pavements. Traditional fatigue equation adopted in mechanistic-empirical pavement design has been used in the present work. Four different criteria, namely number of load repetitions, asphalt stiffness reduction, strain enhancement and fatigue life reduction with repetitions are considered for damage estimation. The proposed approach could estimate same value of nonlinear damage, irrespective of the criteria used. The simplest form of criterion i.e. the number of load repetitions can be used for fatigue performance evaluation. Probabilistically, the damage propagation is also correlated and assessed with the failure probability.

  8. Occupational asphalt is not associated with head and neck cancer

    PubMed Central

    Fogleman, E. V.; Eliot, M.; Michaud, D. S.; Nelson, H. H.; McClean, M. D.

    2015-01-01

    Background Epidemiologic studies that evaluate the relationship between occupational asphalt exposure and head and neck cancer have had a limited ability to control for known risk factors such as smoking, alcohol and human papillomavirus (HPV). Aims To better elucidate this relationship by including known risk factors in a large case–control study of head and neck squamous cell carcinoma (HNSCC) from the greater Boston area. Methods We analysed the relationship between occupational asphalt exposure and HNSCC among men in the Greater Boston area of Massachusetts. Analyses were conducted using unconditional multivariable logistic regression, performed with adjustments for age, race, education, smoking, alcohol consumption and HPV serology. Results There were 753 cases and 913 controls. No associations between HNSCC and occupational asphalt exposure (neither among ever-exposed nor by occupational duration) were observed for exposures in any occupation or those restricted to the construction industry. We also observed no associations in subgroup analyses of never-smokers and ever-smokers. Adjusting for known risk factors further reduced the estimated effect of asphalt exposure on HNSCC risk. Conclusions We found no evidence for an association between occupational asphalt exposure and HNSCC. The null findings from this well-controlled analysis could suggest that the risk estimates stemming from occupational cohort studies may be overestimated due to uncontrolled confounding and enhance the literature available for weighing cancer risk from occupational exposure to bitumen. PMID:26272381

  9. Recovery and reuse of asphalt roofing waste. Final report

    SciTech Connect

    Desai, S.; Graziano, G.; Shepherd, P.

    1984-02-02

    Burning of asphalt roofing waste as a fuel and incorporating asphalt roofing waste in bituminous paving were identified as the two outstanding resource recovery concepts out of ten studied. Four additional concepts might be worth considering under different market or technical circumstances. Another four concepts were rated as worth no further consideration at this time. This study of the recovery of the resource represented in asphalt roofing waste has identified the sources and quantities of roofing waste. About six million cubic yards of scrap roofing are generated annually in the United States, about 94% from removal of old roofing at the job site and the remainder from roofing material production at factories. Waste disposal is a growing problem for manufacturers and contractors. Nearly all roofing waste is hauled to landfills at a considerable expense to roofing contractors and manufacturers. Recovery of the roofing waste resource should require only a modest economic incentive. The asphalt contained in roofing waste represents an energy resource of more than 7 x 10/sup 13/ Btu/year. Another 1 x 10/sup 13/ Btu/year may be contained in field-applied asphalt on commercial building roofs. The two concepts recommended by this study appear to offer the broadest applicability, the most favorable economics, and the highest potential for near-term implementation to reuse this resource.

  10. Reinforced Concrete Modeling

    DTIC Science & Technology

    1982-07-01

    AFWL-TR-82-9 AFWL-TR-82-9 REINFORCED CONCRETE MODELING H. L. Schreyer J. W. Jeter, Jr. New Mexico Engineering Reseprch Institute University of New...Subtitle) S. TYPE OF REPORT & PERIOD COVERED REINFORCED CONCRETE MODELING Final Report 6. PERFORMING OtG. REPORT NUMBER NMERI TA8-9 7. AUTHORg) S...loading were identified and used to evaluate current concrete models . Since the endochronic and viscoplastic models provide satisfactory descriptions

  11. Pedogenic Carbonate Concretions in the Russian Chernozem

    SciTech Connect

    Mikhailova, E. A.; Post, C. J.; Magrini-Bair, K.; Castle, J. W.

    2006-12-01

    Pedogenic carbonate concretions are commonly found in grassland soils, but their origin is not fully understood. This study was conducted to determine the radiocarbon age, the stable isotope geochemistry, and chemical composition of carbonate concretions in the Russian Chernozem, one of the typical soils in grasslands. Three sites were sampled: a native grassland field (not cultivated for at least 300 years), an adjacent 50-year continuous fallow field in the V. V. Alekhin Central-Chernozem Biosphere State Reserve in the Kursk region of Russia, and a continuously cropped field in the Experimental Station of the Kursk Institute of Agronomy and Soil Erosion Control. All sampled soils were classified as fine-silty, mixed, frigid Pachic Hapludolls. The mineralogical composition of concretions varies from low-magnesium calcite to pure calcite. The concretion contains 0.05% N, 6.4% C, and has [delta]13C and [delta]18O values of -10.9[per mille sign] (the per mill symbol, parts per thousand) and -7.8[per mille sign], respectively. The outside part of the carbonate concretion is 1909 +/- 40 14C age Before Present (B.P.) compared with 1693 +/- 40 14C age B.P. for the inside part of the same concretion, even though the concretion is found in the C horizon of much older age (10,902 +/- 63 14C age B.P.). Remnants of soil organic matter in concretions are closely associated with the cropped and fallow/plowed soils by pyrolysis molecular beam mass spectrometry.

  12. 43 CFR 3503.14 - For what areas may I get a permit or lease for asphalt?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... for asphalt? 3503.14 Section 3503.14 Public Lands: Interior Regulations Relating to Public Lands... § 3503.14 For what areas may I get a permit or lease for asphalt? You may get leases for asphalt only on... may not obtain prospecting permits for asphalt....

  13. 43 CFR 3503.14 - For what areas may I get a permit or lease for asphalt?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... for asphalt? 3503.14 Section 3503.14 Public Lands: Interior Regulations Relating to Public Lands... § 3503.14 For what areas may I get a permit or lease for asphalt? You may get leases for asphalt only on... may not obtain prospecting permits for asphalt....

  14. 43 CFR 3503.14 - For what areas may I get a permit or lease for asphalt?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... for asphalt? 3503.14 Section 3503.14 Public Lands: Interior Regulations Relating to Public Lands... § 3503.14 For what areas may I get a permit or lease for asphalt? You may get leases for asphalt only on... may not obtain prospecting permits for asphalt....

  15. 43 CFR 3503.14 - For what areas may I get a permit or lease for asphalt?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... for asphalt? 3503.14 Section 3503.14 Public Lands: Interior Regulations Relating to Public Lands... § 3503.14 For what areas may I get a permit or lease for asphalt? You may get leases for asphalt only on... may not obtain prospecting permits for asphalt....

  16. Engineering properties of inorganic polymer concretes (IPCs)

    SciTech Connect

    Sofi, M.; Deventer, J.S.J. van . E-mail: jannie@unimelb.edu.au; Mendis, P.A. . E-mail: pamendis@unimelb.edu.au; Lukey, G.C.

    2007-02-15

    This paper presents the engineering properties of inorganic polymer concretes (IPCs) with a compressive strength of 50 MPa. The study includes a determination of the modulus of elasticity, Poisson's ratio, compressive strength, and the splitting tensile strength and flexural strength of IPCs, formulated using three different sources of Class-F fly ash. Six IPC mix designs were adopted to evaluate the effects of the inclusion of coarse aggregates and granulated blast furnace slag into the mixes. A total of 90 cylindrical and 24 small beam specimens were investigated, and all tests were carried out pursuant to the relevant Australian Standards. Although some variability between the mixes was observed, the results show that, in most cases, the engineering properties of IPCs compare favorably to those predicted by the relevant Australian Standards for concrete mixtures.

  17. CBP [TASK 12] experimental study of the concrete salstone two-layer system

    SciTech Connect

    Samson, Eric; Protiere, Yannick

    2016-11-01

    This report presents the results of a study which intended to study the behavior of concrete samples placed in contact with a wasteform mixture bearing high level of sulfate in its pore solution. A setup was prepared which consisted in a wasteform poured on top of vault concrete mixes (identified as Vault 1/4 and Vault 2 mixes) cured for approximately 6 months.

  18. Asphalt fume dermal carcinogenicity potential: I. dermal carcinogenicity evaluation of asphalt (bitumen) fume condensates.

    PubMed

    Clark, Charles R; Burnett, Donald M; Parker, Craig M; Arp, Earl W; Swanson, Mark S; Minsavage, Gary D; Kriech, Anthony J; Osborn, Linda V; Freeman, James J; Barter, Robert A; Newton, Paul E; Beazley, Shelley L; Stewart, Christopher W

    2011-10-01

    Asphalt (bitumen) fume condensates collected from the headspace above paving and Type III built up roofing asphalt (BURA) tanks were evaluated in two-year dermal carcinogenicity assays in male C3H/HeNCrl mice. A third sample was generated from the BURA using a NIOSH laboratory generation method. Similar to earlier NIOSH studies, the BURA fume condensates were applied dermally in mineral oil twice per week; the paving sample was applied 7 days/week for a total weekly dose of 50 mg/wk in both studies. A single benign papilloma was observed in a group of 80 mice exposed to paving fume condensate at the end of the two-year study and only mild skin irritation was observed. The lab generated BURA fume condensate resulted in statistically significant (P<0.0001) increases in squamous cell carcinomas (35 animals or 55% of animals at risk). The field-matched BURA condensate showed a weaker but significant (P=0.0063) increase (8 carcinomas or 13% of animals) and a longer average latency (90 weeks vs. 76 for the lab fume). Significant irritation was observed in both BURA condensates. It is concluded that the paving fume condensate was not carcinogenic under the test conditions and that the field-matched BURA fume condensate produced a weak tumor response compared to the lab generated sample.

  19. Effect of pyrolyzed carbon black on asphalt cement. Part 2. Asphalt binder. Final report, September 1993-May 1995

    SciTech Connect

    Zeng, Y.; Lovell, C.W.

    1996-02-20

    Scrap tires derived from automobiles have become a large environmental problem in the United States. In the study, research is carried out to investigate the potential use of tire-derived pyrolyzed carbon black from scrap tires as an asphalt cement modifier. The asphlat cements used in the research were AC10 and AC20. Penetration and softening point tests were performed to obtain the consistency of the asphalt cements. The pyrolyzed carbon black, as provided by Wolf Industries, was combined with the asphalt cement in the following percentages: 5%, 10%, 15% and 20%. Penetration, softening point and ductility tests were performed to determine the temperature susceptibility of the modified binder as altered by the pyrolyzed carbon black. In order that the results are comparable to previous testing, commercial carbon black purchased from CABOT Industry was also used as a modifier in the tests. The same test procedures were applied to the asphalt cements modified by commercial carbon black. The test results contained in the report illustrate the viability of the pyrolyzed carbon black as an asphalt modifier. Recommendations are provided to facilitate further research on this particular project. A preliminary assessment of a test road using the pyrolyzed carbon is appended.

  20. Development of thermally stable polymer concrete

    SciTech Connect

    Megahed, T.N.E.D., Kukacka, L.E.; Fontana, J.J.

    1989-10-01

    This work pertains to the development of a polymer concrete type that is thermally stable under working temperatures of 200{degree} to 300{degree}F. This material is highly durable and thermally stable with high flexural strength and ductility. Its consistency, while fresh, is suitable for both casting in place or precasting techniques. Several optimization stages were applied ranging from mixing ratios and type of aggregate to resin formulation itself. An optimized range of mixing ratios is developed along with optimized mix ingredients, relating mechanical performance to elevated temperature at various degrees of workability.

  1. Investigation of Asphalt Mixture Creep Behavior Using Thin Beam Specimens

    SciTech Connect

    Zofka, Adam; Marasteanu, Mihai; Turos, Mugur

    2008-02-15

    The asphalt pavement layer consists of two or more lifts of compacted asphalt mixture; the top of the layer is also exposed to aging, a factor that significantly affects the mixture properties. The current testing specifications use rather thick specimens that cannot be used to investigate the gradual change in properties with pavement depth. This paper investigates the feasibility of using the 3-point bending test with thin asphalt mixture beams (127x12.7x6.35 mm) to determine the low-temperature creep compliance of the mixtures. Several theoretical and semi-empirical models, from the theory of composites, are reviewed and evaluated using numerical and experimental data. Preliminary results show that this method can be used for low-temperature mixture characterization but several crucial factors need further inspection and interpretation.

  2. Hanford Permanent Isolation Barrier Program: Asphalt technology test plan

    SciTech Connect

    Freeman, H.D.; Romine, R.A.

    1994-05-01

    The Hanford Permanent Isolation Barriers use engineered layers of natural materials to create an integrated structure with backup protective features. The objective of current designs is to develop a maintenance-free permanent barrier that isolates wastes for a minimum of 1000 years by limiting water drainage to near-zero amounts. Asphalt is being used as an impermeable water diversion layer to provide a redundant layer within the overall barrier design. Data on asphalt barrier properties in a buried environment are not available for the required 100-year time frame. The purpose of this test plan is to outline the activities planned to obtain data with which to estimate performance of the asphalt layers.

  3. Deformation Parameters and Fatigue of the Recycled Asphalt Mixtures

    NASA Astrophysics Data System (ADS)

    Šrámek, Juraj

    2015-12-01

    The deformational properties of asphalt mixtures measured by dynamic methods and fatigue allow a design the road to suit the expected traffic load. Quality of mixtures is also expressed by the resistance to permanent deformation. Complex modulus of stiffness and fatigue can reliably characterize the proposed mixture of asphalt pavement. The complex modulus (E*) measurement of asphalt mixtures are carried out in laboratory of Department of Construction Management at University of Žilina by two-point bending test method on trapezoid-shaped samples. Today, the fatigue is verified on trapezoid-shaped samples and is assessed by proportional strain at 1 million cycles (ɛ6). The test equipment and software is used to evaluate fatigue and deformation characteristics.

  4. 51. DETAIL VIEW OF VIVIANNA ERA CONCRETE HOUSE WITH CONCRETE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    51. DETAIL VIEW OF VIVIANNA ERA CONCRETE HOUSE WITH CONCRETE PATIO SLAB LOOKING SOUTHWEST. NOTICE MINE WORKINGS BACKGROUND LEFT. - Mariscal Quicksilver Mine & Reduction Works, Terlingua, Brewster County, TX

  5. Open Graded Asphalt Mixture Design for Environmentally Friendly Road

    NASA Astrophysics Data System (ADS)

    Setyawan, A.; Suryoto; Sumarsono, A.; Widyastuti, S.

    2017-02-01

    The road is an important infrastructure to support various economic development. By increasing the population, the constructions of road infrastructure are obviously required and cover more land use area, consequently narrowed the areas for water absorption into the land. Therefore, it is necessary to improve more environmentally friendly of road constructions, in this case is by using open graded asphalt. Open graded asphalt is the mixture of asphalt with low fine aggregate content to produce a high percentage of air voids, which expected to be able to absorb water into the land underneath. This observation uses laboratory experiment method. Materials that are used are natural gravel and the volcanic gravel, 60/70 asphalt penetration and stone dust filler. The tests performed for the samples are Marshall test, falling head water permeability, indirect tensile strength and unconfined compressive strength. The optimum bitumen content for each type of aggregate have been found to be 2.95% for natural gravel and 4.65% for volcanic gravel. Open graded asphalt porosity is 26.52% for natural gravel, whereas the volcanic gravel is 22.31%. The vertical and horizontal permeability for natural gravel are 1.25 cm/second and 0.92 cm/second, respectively. Whereas, for the volcanic gravel is 1.43 cm/second and 1.10 cm/second, respectively. Indirect tensile strength (ITS) value for natural gravel is 59.49 KPa whereas the volcanic gravel is 74.84 KPa. The unconfined compressive strength (UCS) value for natural gravel is 1070.63 KPa, whereas the volcanic gravel is 1120.69 KPa. It is concluded that the open graded porous asphalt is only compatible for low volume traffic road and need improvement to be able to be used as standard road.

  6. Asphalt roofing industry Fourier transform infrared spectroscopy modified bitumen

    SciTech Connect

    1999-07-01

    A Request for Emissions Testing at Four Asphalt Roofing and Processing Facilities was submitted by the US EPA Emission Standards Division (ESD), Minerals and Inorganic Chemicals Group (MICG) to the Emission Measurement Center (EMC). The Emission Measurement Center directed Midwest Research Institute (MRI) to conduct emissions testing at asphalt roofing plants. This report presents results of MRI`s FTIR and Method 25A testing conducted at US Intec in Port Arthur, Texas. The field measurements were performed in September 1997 under several test conditions for both controlled and uncontrolled emissions.

  7. [Biological monitoring of PAH exposure among asphalt workers].

    PubMed

    Campo, Laura; Calisti, Roberto; Polledri, Elisa; Barretta, Francesco; Stopponi, Roberta; Massacesi, Stefania; Bertazzi, Pieralberto; Fustinoni, Silvia

    2011-01-01

    Aim of this work was the assessment of exposure to polycyclic aromatic hydrocarbons (PAHs) by urinary 1-hydroxypyrene (1-OHPyr) in asphalt workers. Median levels of 1-OHPyr resulted higher in asphalt workers than in controls (184 vs. < 20 ng/L, p < 0.001). The determinants of exposure of 1-OHPyr resulted smoking habit, the number of consecutive days at work and the job task; 1-OHPyr was also associated to urinary creatinine. End of work week 1-OHPyr is suggested as an useful indicator of occupational exposure to PAHs in bitumen fumes.

  8. The Spontaneous Combustion of Railway Ties and Asphalt Shingles

    NASA Astrophysics Data System (ADS)

    Leslie, Geoffrey

    Many Low Carbon Fuels (LCFs) present unknown spontaneous combustion risks, which must be quantified before their use as fossil fuel replacements. Wood and coal spontaneous combustion is well understood; however, LCFs weather, and subsequent chemical changes could affect their spontaneous combustion properties. LCF spontaneous combustion could lead to accidental fires with possible loss of life, limb and property. The spontaneous combustion risks of two LCFs, discarded creosote-treated wooden railway ties and roofing asphalt shingles, were investigated with calorimetry and heat transfer experiments. Chemical changes due to weathering were studied with pyrolysis-Gas Chromatography/Mass Spectrometry (py-GC/MS). Creosote-treated wooden railway tie dust, roofing asphalt shingle particles, poplar wood pellets, and petroleum coke self-heating were studied with isothermal calorimetry. Railway tie dust and asphalt shingle heat transfer were characterized with a guarded hot plate. Petroleum coke self-heating was consistent with coal, while both poplar pellets and railway tie dust were found to be more reactive compared to oven test results of similar materials. The observed increase in reactivity was probably a result of significant moisture contenint in the pellet and railway tie dust. Critical conditions for spontaneous combustion were evaluated with the Frank-Kamenetskii parameter, assuming an ambient temperature of 40°C and constant moisture content. Kamenetskii calculations indicate that a 1.6 m cube of railway tie dust, or a 58 m cube of asphalt particles, would be unstable and combust. LCF chemistry may have been affected by weathering, which would cause chemical changes that affect their spontaneous combustion properties. Therefore, railway tie wood and roofing asphalt shingle chemistry were investigated by identifying products of 250° and 550°C pyrolysis with py-GC/MS. Railway tie wood pyrolyzates did not show signs of weathering; in contrast, asphalt pyrolysis

  9. [Anesthetic management in a patient with head and neck burn by asphalt].

    PubMed

    Suzuki, Nao; Niiyama, Yukitoshi; Tokinaga, Yasuyuki; Yamakage, Michiaki

    2013-10-01

    In cases of facial burns caused by molten asphalt, examination for possible airway burns and early removal of the asphalt should be carried out to prevent chemical-induced tissue damage and infection. However, asphalt that has adhered to tissues is difficult to remove. A 35-year-old male with burns caused by molten asphalt was scheduled for emergency debridement. He had 6% body surface area burns on his face and neck. He was not able to open his eyes due to the adherence of asphalt. His respiratory condition was stable and a perioperative fiberoptic view revealed no airway burns. After awake intubation, orange peel oil was used to remove the asphalt from his face and eyes. Since orange peel oil does not contain any harmful substances, it is effective for removing asphalt without causing tissue damage.

  10. Durability of an inorganic polymer concrete coating

    NASA Astrophysics Data System (ADS)

    Wasserman, Kenneth

    The objective of the research program reported in this thesis is to evaluate the durability of an inorganic polymer composite coating exposed to freeze/thaw cycling and wet-dry cycling. Freeze/thaw cycling is performed following ASTM D6944-09 Standard Practice for Resistance of Cured Coatings to Thermal Cycling and wet/dry cycling is performed following guidelines set forth in a thesis written by Ronald Garon at Rutgers University. For both sets of experiments, four coating mixture proportions were evaluated. The variables were: silica/alumina ratio, mixing protocol using high shear and normal shear mixing, curing temperatures of 70 and 120 degrees Fahrenheit and use of nano size constituent materials. The mix with highest silica/alumina ratio was designated as Mix 1 and mixes with lower ratios were designated as Mix 2 and Mix 3. Mix 4 had nano silica particles. Four prisms were used for each variable including control that had no coating. The performance of the coating was evaluated using adhesion strength measured using: ASTM D7234 Test Method for Pull-Off Strength of Coatings on Concrete Using Portable Adhesion Testers. Tests were performed after every five consecutive cycles of thermal conditioning and six consecutive cycles of wet-dry exposure. Results from the thermal cycling and wet-dry testing demonstrate that all coating formulations are durable. The minimum adhesion strength was 300 psi even though a relatively weak base concrete surface was chosen for the study. The weak surface was chosen to simulate aged concrete surfaces present in actual field conditions. Due to the inherent nature of the test procedure the variation in test results is high. However, based on the test results, high shear mixer and high temperature curing are not recommended. As expected nano size constituent materials provide better performance.

  11. HIGH-COMPRESSIVE-STRENGTH CONCRETE.

    DTIC Science & Technology

    CONCRETE , COMPRESSIVE PROPERTIES), PERFORMANCE(ENGINEERING), AGING(MATERIALS), MANUFACTURING, STRUCTURES, THERMAL PROPERTIES, CREEP, DEFORMATION, REINFORCED CONCRETE , MATHEMATICAL ANALYSIS, STRESSES, MIXTURES, TENSILE PROPERTIES

  12. Concrete Slump Classification using GLCM Feature Extraction

    NASA Astrophysics Data System (ADS)

    Andayani, Relly; Madenda, Syarifudin

    2016-05-01

    Digital image processing technologies have been widely applies in analyzing concrete structure because the accuracy and real time result. The aim of this study is to classify concrete slump by using image processing technique. For this purpose, concrete mix design of 30 MPa compression strength designed with slump of 0-10 mm, 10-30 mm, 30-60 mm, and 60-180 mm were analysed. Image acquired by Nikon Camera D-7000 using high resolution was set up. In the first step RGB converted to greyimage than cropped to 1024 x 1024 pixel. With open-source program, cropped images to be analysed to extract GLCM feature. The result shows for the higher slump contrast getting lower, but higher correlation, energy, and homogeneity.

  13. Background of superpave asphalt mixture design and analysis. National asphalt training center demonstration project 101. Final report, December 1992-November 1994

    SciTech Connect

    McGennis, R.B.; Anderson, R.M.; Kennedy, T.W.; Solaimanian, M.

    1995-02-01

    The manual represents the first formal training document that embodies the complete series of SUPERPAVE asphalt mixture design and analysis test equipment and procedures. These tests and procedures represent the results of the SHRP 5-year research effort to investigate and improve asphalt cement technology. This manual was developed under the FHWA`s National Asphalt Training Center. Students attending the center utilize this manual to obtain a better understanding of the underlying theory behind asphalt mixture design and analysis, as well as how to perform each of the new procedures.

  14. Modification in Cay Concrete Properties During Fluid Flow Permeability Measurement

    NASA Astrophysics Data System (ADS)

    Solomon, F.; Ekolu, S. O.

    2015-11-01

    In this paper, two methods consisting of triaxial water permeability and water penetration were used to evaluate the changes occurring in the pores of clay concretes during the tests. Triaxial permeability is generally used for concrete with higher permeability while concretes with very low permeability are suited for the penetration method. Clay concrete specimens of 0 to 40% clay content were used in the study. The concrete mixes had water-to-cement ratios (w/c) of 0.70, 0.75, 0.80, 0.85, and the cementitious content 380 and 450 kg/m3. Results show that concrete gains moisture during wetting at a much faster rate than loses it during subsequent drying. This could be explained by the contribution of suction pressure created upon drying. When water penetration pressure is applied, more water is driven into pore space that could be responsible for changing the network of the voids. Pore structure during drying may certainly be different in size and shape than its form during wetting, leading to a consequent effect on the permeability of the clay concretes. The modification could be one reason why the moisture gain percentage in clay concretes was higher than in normal concretes.

  15. The humoral immune response of mice exposed to simulated road paving-like asphalt fumes.

    PubMed

    Anderson, Stacey E; Munson, Albert E; Tomblyn, Seth; Meade, B Jean; Diotte, Nicole M

    2008-07-01

    Asphalt is a complex mixture of organic molecules, including polycyclic aromatic hydrocarbons (PAH), which have been reported to cause serious adverse health effects in humans. Workers in manufacturing and construction trades exposed to asphalt are potentially at risk for being exposed to asphalt fumes and PAHs. Epidemiological investigations have collected mounting evidence that chemicals found in asphalt fumes present carcinogenic and possibly immunotoxic hazards. Studies evaluating the immunotoxic effects of asphalt fume are limited due to the large number of variables associated with asphalt fume exposures. This work investigates the immuno-toxic effects of road paving-like asphalt fume by analyzing the in vivo IgM response to a T-dependent antigen after exposure to whole, vapor, and particulate phase road paving-like asphalt fumes and asphalt fume condensate. Systemic exposures via intraperitoneal injection of asphalt fume condensate (at 0.625 mg/kg) and the particulate phase (at 5 mg/kg) resulted in significant reductions in the specific spleen IgM response to SRBC. Pharyngeal aspiration of the asphalt fume condensate (at 5 mg/kg) also resulted in significant suppression of the IgM response to SRBC. A significant reduction in the specific spleen IgM activity was observed after inhalation exposure to whole asphalt fumes (35 mg/m(3)) and the vapor components (11 mg/m(3)). Dermal exposures to the asphalt fume condensate resulted in significant reductions in the total (at 50 mg/kg) and specific (at 250 mg/kg) spleen IgM response to SRBC. These results demonstrate that exposure to road paving-like asphalt fumes is immunosuppressive through systemic, respiratory, and dermal routes of exposure in a murine model and raise concerns regarding the potential for adverse immunological effects.

  16. Reuse of thermosetting plastic waste for lightweight concrete.

    PubMed

    Panyakapo, Phaiboon; Panyakapo, Mallika

    2008-01-01

    This paper presents the utilization of thermosetting plastic as an admixture in the mix proportion of lightweight concrete. Since this type of plastic cannot be melted in the recycling process, its waste is expected to be more valuable by using as an admixture for the production of non-structural lightweight concrete. Experimental tests for the variation of mix proportion were carried out to determine the suitable proportion to achieve the required properties of lightweight concrete, which are: low dry density and acceptable compressive strength. The mix design in this research is the proportion of plastic, sand, water-cement ratio, aluminum powder, and lignite fly ash. The experimental results show that the plastic not only leads to a low dry density concrete, but also a low strength. It was found that the ratio of cement, sand, fly ash, and plastic equal to 1.0:0.8:0.3:0.9 is an appropriate mix proportion. The results of compressive strength and dry density are 4.14N/mm2 and 1395 kg/m3, respectively. This type of concrete meets most of the requirements for non-load-bearing lightweight concrete according to ASTM C129 Type II standard.

  17. Physio-chemical reactions in recycle aggregate concrete.

    PubMed

    Tam, Vivian W Y; Gao, X F; Tam, C M; Ng, K M

    2009-04-30

    Concrete waste constitutes the major proportion of construction waste at about 50% of the total waste generated. An effective way to reduce concrete waste is to reuse it as recycled aggregate (RA) for the production of recycled aggregate concrete (RAC). This paper studies the physio-chemical reactions of cement paste around aggregate for normal aggregate concrete (NAC) and RAC mixed with normal mixing approach (NMA) and two-stage mixing approach (TSMA) by differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). Four kinds of physio-chemical reactions have been recorded from the concrete samples, including the dehydration of C(3)S(2)H(3), iron-substituted ettringite, dehydroxylation of CH and development of C(6)S(3)H at about 90 degrees C, 135 degrees C, 441 degrees C and 570 degrees C, respectively. From the DSC results, it is confirmed that the concrete samples with RA substitution have generated less amount of strength enhancement chemical products when compared to those without RA substitution. However, the results from the TSMA are found improving the RAC quality. The pre-mix procedure of the TSMA can effectively develop some strength enhancing chemical products including, C(3)S(2)H(3), ettringite, CH and C(6)S(3)H, which shows that RAC made from the TSMA can improve the hydration processes.

  18. An Exploratory Compressive Strength Of Concrete Containing Modified Artificial Polyethylene Aggregate (MAPEA)

    NASA Astrophysics Data System (ADS)

    Hadipramana, J.; Mokhatar, S. N.; Samad, A. A. A.; Hakim, N. F. A.

    2016-11-01

    Concrete is widely used in the world as building and construction material. However, the constituent materials used in concrete are high cost when associated with the global economic recession. This exploratory aspires to have an alternative source of replacing natural aggregate with plastic wastes. An investigation of the Modified Artificial Polyethylene Aggregate (MAPEA) as natural aggregate replacement in concrete through an experimental work was conducted in this study. The MAPEA was created to improve the bonding ability of Artificial Polyethylene Aggregate (APEA) with the cement paste. The concrete was mixed with 3%, 6%, 9%, and 12% of APEA and MAPEA for 14 and 28 curing days, respectively. Furthermore, the compressive strength test was conducted to find out the optimum composition of MAPEA in concrete and compared to the APEA concrete. Besides, this study observed the influence and behaviour of MAPEA in concrete. Therefore, the Scanning Electron Microscopy was applied to observe the microstructure of MAPEA and APEA concrete. The results showed the use of high composition of an artificial aggregate resulted inferior strength on the concrete and 3% MAPEA in the concrete mix was highest compressive strength than other content. The modification of APEA (MAPEA) concrete increased its strength due to its surface roughness. However, the interfacial zone cracking was still found and decreased the strength of MAPEA concrete especially when it was age 28 days.

  19. The national survey of natural radioactivity in concrete produced in Israel.

    PubMed

    Kovler, Konstantin

    2017-03-01

    The main goal of the current survey was to collect the results of the natural radiation tests of concrete produced in the country, to analyze the results statistically and make recommendations for further regulation on the national scale. Totally 109 concrete mixes produced commercially during the years 2012-2014 by concrete plants in Israel were analyzed. The average concentrations of NORM did not exceed the values recognized in the EU and were close to the values obtained from the Mediterranean countries such as Greece, Spain and Italy. It was also found that although the average value of the radon emanation coefficient of concrete containing coal fly ash (FA) was lower, than that of concrete mixes without FA, there was no significant difference between the indexes of both total radiation (addressing gamma radiation and radon together), and gamma radiation only, of the averages of the two sub-populations of concrete mixes: with and without FA.

  20. Studies of detailed biofilm characterization on fly ash concrete in comparison with normal and superplasticizer concrete in seawater environments.

    PubMed

    Vishwakarmaa, Vinita; George, R P; Ramachandran, D; Anandkumar, B; Mudalib, U Kamachi

    2014-01-01

    In cooling water systems, many concrete structures in the form of tanks, pillars and reservoirs that come in contact with aggressive seawater are being deteriorated by chemical and biological factors. The nuclear industry has decided to partially replace the Portland cement with appropriate pozzolans such as fly ash, which could densify the matrix and make the concrete impermeable. Three types of concrete mixes, viz., normal concrete (NC), concrete with fly ash and superplasticizer (FA) and concrete with only superplasticizer (SP) were fabricated for short- and long-term exposure studies and for screening out the better concrete in seawater environments. Biofilm characterization studies and microscopic studies showed excellent performance of FA concrete compared to the other two. Laboratory exposure studies in pure cultures of Thiobacillus thiooxidans and Fusarium oxysporum were demonstrated for the inhibition of microbial growth on fly ash. Epifluorescence and scanning electron microscopic studies supported the better performance of the FA specimen. Thus, the present study clearly showed that FA concrete is less prone to biofilm formation and biodeterioration.

  1. Compliance Testing of the Eglin AFB Asphalt Concrete Batch Plant, Eglin AFB, Florida

    DTIC Science & Technology

    1989-06-01

    permitted by DER to operate at only 40 tons of dry aggregate per hour. The plant consists of aggregate storage and handling, aggregate rotary dryer , dry...Particulate emissions from the aggregate rotary dryer are ducted to the separator and wet scrubber. Particulate emissions from the screens and hot bins are...impacts. and other costs, operation. dryers and ovens. determines is achievable through applica- (31) "Calciner" - A device used to (41) "Coating

  2. Binary Effect of Fly Ash and Palm Oil Fuel Ash on Heat of Hydration Aerated Concrete

    PubMed Central

    Mehmannavaz, Taha; Ismail, Mohammad; Radin Sumadi, Salihuddin; Rafique Bhutta, Muhammad Aamer; Samadi, Mostafa

    2014-01-01

    The binary effect of pulverized fuel ash (PFA) and palm oil fuel ash (POFA) on heat of hydration of aerated concrete was studied. Three aerated concrete mixes were prepared, namely, concrete containing 100% ordinary Portland cement (control sample or Type I), binary concrete made from 50% POFA (Type II), and ternary concrete containing 30% POFA and 20% PFA (Type III). It is found that the temperature increases due to heat of hydration through all the concrete specimens especially in the control sample. However, the total temperature rises caused by the heat of hydration through both of the new binary and ternary concrete were significantly lower than the control sample. The obtained results reveal that the replacement of Portland cement with binary and ternary materials is beneficial, particularly for mass concrete where thermal cracking due to extreme heat rise is of great concern. PMID:24696646

  3. Binary effect of fly ash and palm oil fuel ash on heat of hydration aerated concrete.

    PubMed

    Mehmannavaz, Taha; Ismail, Mohammad; Radin Sumadi, Salihuddin; Rafique Bhutta, Muhammad Aamer; Samadi, Mostafa; Sajjadi, Seyed Mahdi

    2014-01-01

    The binary effect of pulverized fuel ash (PFA) and palm oil fuel ash (POFA) on heat of hydration of aerated concrete was studied. Three aerated concrete mixes were prepared, namely, concrete containing 100% ordinary Portland cement (control sample or Type I), binary concrete made from 50% POFA (Type II), and ternary concrete containing 30% POFA and 20% PFA (Type III). It is found that the temperature increases due to heat of hydration through all the concrete specimens especially in the control sample. However, the total temperature rises caused by the heat of hydration through both of the new binary and ternary concrete were significantly lower than the control sample. The obtained results reveal that the replacement of Portland cement with binary and ternary materials is beneficial, particularly for mass concrete where thermal cracking due to extreme heat rise is of great concern.

  4. Reactive powder based concretes: Mechanical properties, durability and hybrid use with OPC

    SciTech Connect

    Cwirzen, A. Penttala, V.; Vornanen, C.

    2008-10-15

    The basic mechanical properties, frost durability and the bond strength with normal strength concretes of the ultra high strength (UHS) mortars and concretes were studied. The produced mixes had plastic or fluid-like consistency. The 28-day compressive strength varied between 170 and 202 MPa for the heat-treated specimens and between 130 and 150 MPa for the non-heat-treated specimens. The shrinkage values were two times higher for the UHS mortars in comparison with the UHS concretes. After the initial shrinkage, swelling was noticed in the UHS mortars. The lowest creep values were measured for the non-heat-treated UHS concretes. The frost-deicing salts durability of the UHS mortars and concretes appeared to be very good even despite the increased water uptake of the UHS concretes. The study of the hybrid concrete beams indicated the formation of low strength transition zone between the UHS mortar and normal strength concrete.

  5. Moisture Transport Through Sprayed Concrete Tunnel Linings

    NASA Astrophysics Data System (ADS)

    Holter, Karl Gunnar; Geving, Stig

    2016-01-01

    Waterproofing of permanent sprayed concrete tunnel linings with sprayed membranes in a continuous sandwich structure has been attempted since 2000 and has seen increased use in some countries. The main function of a sprayed membrane from a waterproofing perspective is to provide crack bridging and hence prevent flow of liquid water into the tunnel through cracks and imperfections in the concrete material. However, moisture can migrate through the concrete and EVA-based membrane materials by capillary and vapor diffusion mechanisms. These moisture transport mechanisms can have an influence on the degree of saturation, and may influence the pore pressures in the concrete material as well as risk of freeze-thaw damage of the concrete and membrane. The paper describes a detailed study of moisture transport material parameters, moisture condition in tunnel linings and climatic conditions tunnels in hard rock in Norway. These data have been included in a hygrothermal simulation model in the software WUFI for moisture transport to substantiate moisture transport and long-term effects on saturation of the concrete and membrane material. The findings suggest that EVA-based membranes exhibit significant water absorption and vapor transport properties although they are impermeable to liquid water flow. State-of-the-art sprayed concrete material applied with the wet mix method exhibits very low hydraulic conductivities, lower than 10-14 m/s, thus saturated conductive water flow is a very unlikely dominant transport mechanism. Moisture transport through the lining structure by capillary flow and vapor diffusion are calculated to approximately 3 cm3/m2 per day for lining thicknesses in the range of 25-35 cm and seasonal Nordic climate variations. The calculated moisture contents in the tunnel linings from the hygrothermal simulations are largely in agreement with the measured moisture contents in the tunnel linings. The findings also indicate that the concrete material exhibits

  6. Antifouling marine concrete

    SciTech Connect

    Vind, H P; Mathews, C W

    1980-07-01

    Various toxic agents were evaluated as the their capability to prevent or inhibit the attachment of marine fouling organisms to concrete. Creosote and bis-(tri-n-butyltin) oxide (TBTO) were impregnated into porous aggregate which was used in making concrete. Cuprous oxide, triphenyltin hydroxide (TPTH), and 2-2-bis-(p-methoxyphenyl)-1,1,1-trichloroethane (methoxychlor) were used as dry additives. Two proprietary formulations were applied as coatings on untreated concrete. Test specimens were exposed at Port Hueneme, CA, and Key Biscayne, FL. The efficacy of toxicants was determined by periodically weighing the adhering fouling organisms. Concrete prepared with an aggregate impregnated with a TBTO/creosote mixture has demonstrated the best antifouling performance of those specimens exposed for more than one year. The two proprietary coatings and the concrete containing methoxychlor, TPTH, and cuprous oxide as dry additives have exhibited good antifouling properties, but they have been exposed for a shorter time. The strength of concrete containing the toxicants was acceptable, and the toxicants did not increase the corrosion rate of reinforcing rods. Organotin compounds were essentially unchanged in concrete specimens exposed 6 1/2 years in seawater.

  7. Antifouling marine concrete

    SciTech Connect

    Vind, H P; Mathews, C W

    1980-07-01

    Various toxic agents were evaluated as to their capability to prevent or inhibit the attachment of marine fouling organisms to concrete for OTEC plants. Creosote and bis-(tri-n-butyltin) oxide (TBTO) were impregnated into porous aggregate which was used in making concrete. Cuprous oxide, triphenyltin hydroxide (TPTH), and 2-2-bis-(p-methoxyphenyl)-1,1,1-trichloroethane (methoxychlor) were used as dry additives. Two proprietary formulations were applied as coatings on untreated concrete. Test specimens were exposed at Port Hueneme, CA, and Key Biscayne, FL. The efficacy of toxicants was determined by periodically weighing the adhering fouling organisms. Concrete prepared with an aggregate impregnated with a TBTO/creosote mixture has demonstrated the best antifouling performance of those specimens exposed for more than one year. The two proprietary coatings and the concrete containing methoxychlor, TPTH, and cuprous oxide as dry additives have exhibited good antifouling properties, but they have been exposed for a shorter time. The strength of concrete containing the toxicants was acceptable, and the toxicants did not increase the corrosion rate of reinforcing rods. Organotin compounds were essentially unchanged in concrete specimens exposed 6-1/2 years in seawater.

  8. SLAM: a sodium-limestone concrete ablation model

    SciTech Connect

    Suo-Anttila, A.J.

    1983-12-01

    SLAM is a three-region model, containing a pool (sodium and reaction debris) region, a dry (boundary layer and dehydrated concrete) region, and a wet (hydrated concrete) region. The model includes a solution to the mass, momentum, and energy equations in each region. A chemical kinetics model is included to provide heat sources due to chemical reactions between the sodium and the concrete. Both isolated model as well as integrated whole code evaluations have been made with good results. The chemical kinetics and water migration models were evaluated separately, with good results. Several small and large-scale sodium limestone concrete experiments were simulated with reasonable agreement between SLAM and the experimental results. The SLAM code was applied to investigate the effects of mixing, pool temperature, pool depth and fluidization. All these phenomena were found to be of significance in the predicted response of the sodium concrete interaction. Pool fluidization is predicted to be the most important variable in large scale interactions.

  9. Performance Evaluation of Concrete using Marble Mining Waste

    NASA Astrophysics Data System (ADS)

    Kore, Sudarshan Dattatraya; Vyas, A. K.

    2016-12-01

    A huge amount waste (approximately 60%) is generated during mining and processing in marble industries. Such waste can be best utilized in infrastructure development works. Coarse aggregate 75% by weight was replaced by aggregate obtained from marble mining waste. The impact of marble waste as a partial replacement for conventional coarse aggregate on the properties of concrete mixes such as workability, compressive strength, permeability, abrasion, etc. was evaluated. The test results revealed that the compressive strength was comparable to that of control concrete. Other properties such as workability of concrete increased, water absorption reduced by 17%, and resistance to abrasion was marginally increased by 2% as compared to that of control concrete. Ultrasonic pulse velocity and FTIR results show improvement in quality of concrete with crushed marble waste. From the TGA analysis it was confirmed that, aggregate produced from marble waste shows better performance under elevated temperature than that of conventional aggregates.

  10. Investigation of the curing variables of asphalt-rubber binder

    SciTech Connect

    Billiter, T.C.; Chun, J.S.; Davison, R.R.

    1996-12-31

    Currently, the paving industry utilizes a curing time of 1 hour at 177{degrees}C (350{degrees}F) for producing asphalt-rubber binder. Billiter et al. showed that at these curing conditions, 1 hour at 177{degrees}C (350{degrees}F), adding rubber to asphalt was beneficial, with the rubber improving the low-temperature creep stiffness at (-15{degrees}C (5{degrees}F)), the temperature susceptibility in the 0{degrees}C-90{degrees}C (32{degrees}F-194{degrees}F) temperature region, increasing G* and {eta}* at 60{degrees}C (140{degrees}F) and 1.0 rad/sec, and decreasing 8 at 60{degrees}C (140{degrees}F) and 1.0 rad/sec. On the other hand, Billiter et al. (2) showed that the addition of rubber was also detrimental, in that the viscosity increased significantly in the compaction temperature region of 149{degrees}C-193{degrees}C (300{degrees}F-380{degrees}F). This increased viscosity can cause compaction problems, with Allison reporting that engineers blamed the compaction problems of asphalt-rubber on undissolved crumb rubber, which they believed had no beneficial effect. Additionally, the engineers reported that improper compaction led to early road failure. This work investigates the variables of binders, curing tenperature and time, and amount of mechancial energy on asphalt properties.

  11. Asphalt and Wood Shingling. Roofing Workbook and Tests.

    ERIC Educational Resources Information Center

    Brown, Arthur

    This combination workbook and set of tests contains materials on asphalt and wood shingling that have been designed to be used by those studying to enter the roofing and waterproofing trade. It consists of seven instructional units and seven accompanying objective tests. Covered in the individual units are the following topics: shingling…

  12. Assessment of Water Quality of Runoff from Sealed Asphalt Surfaces

    EPA Science Inventory

    This report discusses the results of runoff tests from recently-sealed asphalt surfaces conducted at EPA's Urban Watershed Research Facility (UWRF) in Edison, New Jersey. Both bench-scale panels and full-scale test plots were evaluated. Full-scale tests were performed on an asp...

  13. Coal tar-containing asphalt - resource or hazardous waste?

    SciTech Connect

    Andersson-Skold, Y.; Andersson, K.; Lind, B.; Claesson, A.; Larsson, L.; Suer, P.; Jacobson, T.

    2007-09-30

    Coal tar was used in Sweden for the production of asphalt and for the drenching of stabilization gravel until 1973. The tar has high concentrations of polycyclic aromatic hydrocarbons (PAH), some of which may be strongly carcinogenic. Approximately 20 million tonnes of tar-containing asphalt is present in the public roads in Sweden. Used asphalt from rebuilding can be classified as hazardous waste according to the Swedish Waste Act. The cost of treating the material removed as hazardous waste can be very high due to the large amount that has to be treated, and the total environmental benefit is unclear. The transport of used asphalt to landfill or combustion will affect other environmental targets. The present project, based on three case studies of road projects in Sweden, evaluates the consequences of four scenarios for handling the material: reuse, landfill, biological treatment, and incineration. The results show that reuse of the coal tar-containing materials in new road construction is the most favorable alternative in terms of cost, material use, land use, energy consumption, and air emissions.

  14. The Asphalt Identikit: Old Age and the Driver's License.

    ERIC Educational Resources Information Center

    Eisenhandler, Susan A.

    1990-01-01

    Used a recent study of older adults (N=50) from a small community to explore use of the "asphalt identikit" (possession of a valid driver's license and driving) to maintain non-age-related and hence unstigmatized identity. Found resistance to giving up driving was strong even as self-imposed limits curtailed driving. (Author/TE)

  15. Effect of silica fume addition on the PGNAA measurement of chlorine in concrete.

    PubMed

    Naqvi, A A; Maslehuddin, M; Garwan, M A; Nagadi, M M; Al-Amoudi, O S B; Raashid, M; Khateeb-ur-Rehman

    2010-03-01

    Pozzolanic materials, such as fly ash (FA), silica fume (SF), and blast furnace slag (BFS) are added to Portland cement in concrete to prevent reinforcement steel corrosion in concrete. Further preventive measure against reinforcement steel corrosion require monitoring of chloride salts concentration in concrete using non-destructive techniques, such as the prompt gamma-ray neutron activation analysis (PGNAA) technique. Due to interferences between gamma-rays from chlorine and calcium in PGNAA technique, detection limit of chlorine in concrete strongly depends upon calcium concentration in concrete. SF mainly contains silica and its addition to cement concrete reduces overall concentration of calcium in concrete. This may result in an improvement in detection limit of chlorine in SF-based concrete in PGNAA studies. Particularly for chlorine detection using 6.11 and 6.62 MeV prompt gamma-rays that strongly interfere with 6.42 MeV prompt gamma-rays from calcium. In this study, SF was added to Portland cement to prevent concrete reinforcement steel from corrosion. The chlorine concentration in SF cement concrete specimens containing 0.2-3.0 wt% chlorine was measured through yield of 1.16, 1.95, 6.11, 6.62, 7.41, 7.79, and 8.58 MeV chlorine gamma-rays using PGNAA technique. An excellent agreement was noted between the experimental yield of the prompt gamma-rays and the gamma-ray yield calculated through the Monte Carlo simulations. Further the minimum detectable concentration (MDC) of chlorine in SF cement concrete was calculated and compared with the MDC values of chlorine in plain concrete and concrete mixed with fly ash cement. The MDC of chlorine in SF-based concrete through 6.11 MeV, and 6.62 MeV chlorine gamma-rays was found to be improved as compared to those in plain concrete and concrete mixed with fly ash cement.

  16. Evaluation of Sustainability of Multistory Reinforced Concrete Structure

    NASA Astrophysics Data System (ADS)

    Al-Tamimi, A. K.; Ibrahim, A.; Al-Sughaiyer, N.

    Three different types of concrete mixes of design strengths 100 MPa, 50 MPa, and 50 MPa lightweight were designed, produced, and analyzed in the effort to quantify their effects on sustainability and economics. An overall comparison taking into consideration the structural, environmental, and economical effectiveness was conducted to find the most beneficial and reliable material to be used in sustainable structures. Different concrete types were used in the design of typical multi story buildings of the same loadings and dimensions. The only input variables in this research are the different mixes of concrete. By fixing the applied loadings and the buildings' dimensions, the three different materials were studied in terms of their effects on the structural design of members, carbon footprint and sustainability, and economics. High strength concrete using microsilica was concluded to be the most effective material to be used in construction with the best effects on sustainability and economics.

  17. Electrokinetic Strength Enhancement of Concrete

    NASA Technical Reports Server (NTRS)

    Cardenas, Henry E. (Inventor)

    2016-01-01

    A method and apparatus for strengthening cementitious concrete by placing a nanoparticle carrier liquid in contact with a first surface of a concrete section and inducing a current across the concrete section at sufficient magnitude and for sufficient time that nanoparticles in the nanoparticle carrier liquid migrate through a significant depth of the concrete section.

  18. Electrokenitic Corrosion Treatment of Concrete

    NASA Technical Reports Server (NTRS)

    Cardenas, Henry E (Inventor)

    2015-01-01

    A method and apparatus for strengthening cementitious concrete by placing a nanoparticle carrier liquid in contact with a first surface of a concrete section and inducing a current across the concrete section at sufficient magnitude and for sufficient time that nanoparticles in the nanoparticle carrier liquid migrate through a significant depth of the concrete section.

  19. Ceramic ware waste as coarse aggregate for structural concrete production.

    PubMed

    García-González, Julia; Rodríguez-Robles, Desirée; Juan-Valdés, Andrés; Morán-Del Pozo, Julia M; Guerra-Romero, M Ignacio

    2015-01-01

    The manufacture of any kind of product inevitably entails the production of waste. The quantity of waste generated by the ceramic industry, a very important sector in Spain, is between 5% and 8% of the final output and it is therefore necessary to find an effective waste recovery method. The aim of the study reported in the present article was to seek a sustainable means of managing waste from the ceramic industry through the incorporation of this type of waste in the total replacement of conventional aggregate (gravel) used in structural concrete. Having verified that the recycled ceramic aggregates met all the technical requirements imposed by current Spanish legislation, established in the Code on Structural Concrete (EHE-08), then it is prepared a control concrete mix and the recycled concrete mix using 100% recycled ceramic aggregate instead of coarse natural aggregate. The concretes obtained were subjected to the appropriate tests in order to conduct a comparison of their mechanical properties. The results show that the concretes made using ceramic sanitary ware aggregate possessed the same mechanical properties as those made with conventional aggregate. It is therefore possible to conclude that the reuse of recycled ceramic aggregate to produce recycled concrete is a feasible alternative for the sustainable management of this waste.

  20. Strengthening lightweight concrete

    NASA Technical Reports Server (NTRS)

    Auskern, A.

    1972-01-01

    Polymer absorption by lightweight concretes to improve bonding between cement and aggregate and to increase strength of cement is discussed. Compressive strength of treated cement is compared with strength of untreated product. Process for producing polymers is described.