Science.gov

Sample records for asphalt concrete mixes

  1. Phosphogypsum slag aggregate-based asphaltic concrete mixes

    SciTech Connect

    Foxworthy, P.T.; Nadimpalli, R.S.; Seals, R.K.

    1996-07-01

    Phosphogypsum is a by-product from the production of phosphoric acid used in the fertilizer and chemical industries. Large production rates and problems associated with its stockpiling have led researchers to seek alternative uses for phosphogypsum, primarily as a construction material. One such use is the extraction of sulfur dioxide for the production of sulfuric acid, a process that also generates a by-product slag aggregate. This study investigated the feasibility of using this slag aggregate in asphaltic concrete binder course mixes. The physical properties of the slag aggregate, such as gradation, specific gravity, absorption, unit weight, and void content, were determined, as well as its durability and environmental characteristics. The Marshall mix design method was used to obtain the optimum asphalt content for this aggregate, while moisture susceptibility was examined using the boiling and modified Lottman tests. Indirect tensile, resilient modulus, and dynamic creep tests were performed on the mix to evaluate its performance potential. The results of the study indicate that phosphogypsum-based slag aggregate can be successfully employed in asphaltic concrete binder course mixtures.

  2. Production variability analysis of hot-mixed asphalt concrete containing reclaimed asphalt pavement. Final research report

    SciTech Connect

    Solaimanian, M.; Kennedy, T.W.

    1995-02-01

    A research project was undertaken to evaluate the production and construction variability of Hot Mix Asphalt Concrete (HMAC) containing high quantities of reclaimed asphalt pavement (RAP) material. Four construction projects were selected for this purpose. Two of the projects used 35 percent RAP material (both type-C mixes), while the other two used 40 percent (a type-B mix) and 50 percent (a type-D mix) of the RAP material, respectively. The projects differed in sizes, with total construction tonnage ranging from 10.9 million kg to 27.2 million kg (12,000 to 30,000 tons). In all cases, dedicated stockpiles of RAP material were used. Analysis was performed on the results obtained from the tests. The gradation and asphalt content deviations, air voids, penetration and viscosities, and stabilities, were included in the analysis. Pay adjustment factors were determined for gradation and asphalt content deviation, as well as for air voids (based on TxDOT Specification 3007). In general, these high-percent RAP projects indicated a variability higher than that of a typical HMAC without RAP. The pay adjustment factors for gradation and asphalt content deviation were lower than typical values. The construction gradations were finer than the job-mix formula target gradations, possibly a result of aggregate crushing during the milling operation.

  3. User's guide: Cold-mix recycling of asphalt concrete pavements. Final report

    SciTech Connect

    Shoenberger, J.E.

    1992-09-01

    This guide provides the technical information required to implement the application of cold-mix recycling of asphalt concrete pavements. Included are details on areas on application, benefits/advantages, limitations/disadvantages, and costs associated with this technology. Information is provided on two demonstration sites at Fort Gillem, Georgia, and Fort Leavenworth, Kansas. Also provided is information concerning funding, procurement, maintenance, and performance monitoring. A fact sheet on recycling, contract specification example, and references are provided in the appendixes.... Asphalt pavement recycling, Emulsified asphalt cement, Cold milling, In-place cold-mix asphalt recycling, Cold-mix asphalt recycling, Recycling of asphalt.

  4. Evaluation of properties of recycled asphalt concrete hot mix

    SciTech Connect

    Brown, E.R.

    1983-01-01

    This study was undertaken to evaluate the laboratory performance of recycled asphalt concrete mixtures and to compare these results to those measured for conventional asphalt concrete mixtures. To make these comparisons, samples of aged asphalt concrete were obtained from three locations where recycling was planned. These samples were blended with new aggregate and new asphalt materials to produce six different recycled mixtures. Two aggregate types, a crushed gravel and a crushed limestone, were used to produce two conventional mixtures and to blend with the reclaimed asphalt pavement to produce the six recycled mixtures. Three asphalt materials which were obtained to produce the various mixtures being evaluated consisted of AC-20 for preparing the conventional mixtures and AC-5 and a recycling agent for preparing the recycled mixtures. The Shell BISAR computer program was used to predict the stesses and strains for two typical pavement sections under a given loading conditions. The computed stresses and strains were then analyzed along with the laboratory fatigue tests to predict the fatigue performance of the various mixtures. The results of this study indicated a satisfactory comparison between laboratory performance of recycled mixtures and conventional mixtures. Fatigue analysis indicated that the conventional mixtures would provide the greatest fatigue resistance in thick asphalt concrete layers at lower temperatures while the recycled mixtures would provide the greatest fatigue resistance in thin asphalt layers at higher temperatures.

  5. Specifications and Construction Methods for Asphalt Concrete and Other Plant-Mix Types, 3rd Edition.

    ERIC Educational Resources Information Center

    Asphalt Inst., College Park, MD.

    The purpose of this publication is to assist engineers in the analysis, design and control of paving projects that use asphalt concrete and other asphalt plant-mixes. The scope of this new third edition has been enlarged, and changes necessitated by advances in asphalt technology have been incorporated. Chapters I and II and Appendices A and B…

  6. Performance evaluation of high modulus asphalt concrete mixes

    NASA Astrophysics Data System (ADS)

    Haritonovs, V.; Tihonovs, J.; Zaumanis, M.

    2016-04-01

    Dolomite is one of the most available sedimentary rocks in the territory of Latvia. Dolomite quarries contain about 1000 million tons of this material. However, according to Latvian Road Specifications, this dolomite cannot be used for average and high intensity roads because of its low quality (mainly, LA index). Therefore, mostly imported magmatic rocks (granite, diabase, gabbro, basalt) or imported dolomite are used which makes asphalt expensive. However, practical experience shows that even with these high quality materials roads exhibit rutting, fatigue and thermal cracks. The aim of the research is to develop a high performance asphalt concrete for base and binder courses using only locally available aggregates. In order to achieve resistance against deformations at a high ambient temperature, a hard grade binder was used. Workability, fatigue and thermal cracking resistance, as well as sufficient water resistance is achieved by low porosity (3-5%) and higher binder content compared to traditional asphalt mixtures. The design of the asphalt includes a combination of empirical and performance based tests, which in laboratory circumstances allow simulating traffic and environmental loads. High performance AC 16 base asphalt concrete was created using local dolomite aggregate with polymer modified (PMB 10/40-65) and hard grade (B20/30) bitumen. The mixtures were specified based on fundamental properties in accordance to EN 13108-1 standard.

  7. Evaluation of recycled hot-mix asphaltic concrete in Pennsylvania. Final report, Mar 83-Feb 91

    SciTech Connect

    Beam, J.L.; Maurer, D.

    1991-02-01

    The report includes a construction overview and analyzes the benefits of recycling hot mix asphaltic concrete. The Department has been working with hot mix recycling since 1981 with good results. Since 1985, it has been the Department policy to allow hot mix recycling as an alternative on all hot mix paving contracts. Hot mix recycling conserves natural resources of petroleum products and virgin aggregates. The conservation of resources can result in monetary savings as well. The Department should continue to promote and encourage more extensive use of hot mix asphalt concrete recycling through specification revisions, policy letters and directives. Proposed revisions to Section 403 of the 408 Specifications are provided.

  8. Utilization of recycled asphalt concrete with warm mix asphalt and cost-benefit analysis.

    PubMed

    Oner, Julide; Sengoz, Burak

    2015-01-01

    The asphalt paving industries are faced with two major problems. These two important challenges are generated with an increase in demand for environmentally friendly paving mixtures and the problem of rapidly rising raw materials. Recycling of reclaimed asphalt pavement (RAP) is a critical necessity to save precious aggregates and reduce the use of costly bitumen. Warm Mix Asphalt (WMA) technology provides not only the option of recycling asphalt pavement at a lower temperature than the temperature maintained in hot mixtures but also encourages the utilization of RAP and therefore saves energy and money. This paper describes the feasibility of utilizing three different WMA additives (organic, chemical and water containing) at recommended contents with different percentages of RAP. The mechanical properties and cost-benefit analysis of WMA containing RAP have been performed and compared with WMA without RAP. The results indicated that, 30%, 10% and 20% can be accepted as an optimum RAP addition related to organic, chemical and water containing additives respectively and organic additive with 30% RAP content has an appreciable increase in tensile strength over the control mix. It was also concluded that the RAP with WMA technology is the ability to reduce final cost compared to HMA and WMA mixtures. PMID:25574851

  9. Utilization of recycled asphalt concrete with warm mix asphalt and cost-benefit analysis.

    PubMed

    Oner, Julide; Sengoz, Burak

    2015-01-01

    The asphalt paving industries are faced with two major problems. These two important challenges are generated with an increase in demand for environmentally friendly paving mixtures and the problem of rapidly rising raw materials. Recycling of reclaimed asphalt pavement (RAP) is a critical necessity to save precious aggregates and reduce the use of costly bitumen. Warm Mix Asphalt (WMA) technology provides not only the option of recycling asphalt pavement at a lower temperature than the temperature maintained in hot mixtures but also encourages the utilization of RAP and therefore saves energy and money. This paper describes the feasibility of utilizing three different WMA additives (organic, chemical and water containing) at recommended contents with different percentages of RAP. The mechanical properties and cost-benefit analysis of WMA containing RAP have been performed and compared with WMA without RAP. The results indicated that, 30%, 10% and 20% can be accepted as an optimum RAP addition related to organic, chemical and water containing additives respectively and organic additive with 30% RAP content has an appreciable increase in tensile strength over the control mix. It was also concluded that the RAP with WMA technology is the ability to reduce final cost compared to HMA and WMA mixtures.

  10. Utilization of Recycled Asphalt Concrete with Warm Mix Asphalt and Cost-Benefit Analysis

    PubMed Central

    Oner, Julide; Sengoz, Burak

    2015-01-01

    The asphalt paving industries are faced with two major problems. These two important challenges are generated with an increase in demand for environmentally friendly paving mixtures and the problem of rapidly rising raw materials. Recycling of reclaimed asphalt pavement (RAP) is a critical necessity to save precious aggregates and reduce the use of costly bitumen. Warm Mix Asphalt (WMA) technology provides not only the option of recycling asphalt pavement at a lower temperature than the temperature maintained in hot mixtures but also encourages the utilization of RAP and therefore saves energy and money. This paper describes the feasibility of utilizing three different WMA additives (organic, chemical and water containing) at recommended contents with different percentages of RAP. The mechanical properties and cost-benefit analysis of WMA containing RAP have been performed and compared with WMA without RAP. The results indicated that, 30%, 10% and 20% can be accepted as an optimum RAP addition related to organic, chemical and water containing additives respectively and organic additive with 30% RAP content has an appreciable increase in tensile strength over the control mix. It was also concluded that the RAP with WMA technology is the ability to reduce final cost compared to HMA and WMA mixtures. PMID:25574851

  11. Value-added utilisation of recycled concrete in hot-mix asphalt.

    PubMed

    Wong, Yiik Diew; Sun, Darren Delai; Lai, Dickson

    2007-01-01

    The feasibility of partial substitution of granite aggregate in hot-mix asphalt (HMA) with waste concrete aggregate was investigated. Three hybrid HMA mixes incorporating substitutions of granite fillers/fines with 6%, 45% untreated, and 45% heat-treated concrete were evaluated by the Marshall mix design method; the optimum binder contents were found to be 5.3%, 6.5% and 7.0% of grade Pen 60/70 bitumen, respectively. All three hybrid mixes satisfied the Marshall criteria of the Singapore Land Transport Authority (LTA) W3B wearing course specification. The hybrid mix with 6% concrete fillers gave comparable resilient modulus and creep resistance as the conventional W3B mix, while hybrid mixes with higher concrete substitutions achieved better performance. X-ray diffraction (XRD) showed the distinct presence of free lime in the heat-treated concrete, while the scanning electron microscope (SEM) provided an in-depth perspective of the concrete grains in the HMA matrix. The results suggest feasible use of waste concrete as partial aggregate substitution in HMA.

  12. Value-added utilisation of recycled concrete in hot-mix asphalt

    SciTech Connect

    Wong, Yiik Diew; Sun, Darren Delai . E-mail: ddsun@ntu.edu.sg; Lai, Dickson

    2007-07-01

    The feasibility of partial substitution of granite aggregate in hot-mix asphalt (HMA) with waste concrete aggregate was investigated. Three hybrid HMA mixes incorporating substitutions of granite fillers/fines with 6%, 45% untreated, and 45% heat-treated concrete were evaluated by the Marshall mix design method; the optimum binder contents were found to be 5.3%, 6.5% and 7.0% of grade Pen 60/70 bitumen, respectively. All three hybrid mixes satisfied the Marshall criteria of the Singapore Land Transport Authority (LTA) W3B wearing course specification. The hybrid mix with 6% concrete fillers gave comparable resilient modulus and creep resistance as the conventional W3B mix, while hybrid mixes with higher concrete substitutions achieved better performance. X-ray diffraction (XRD) showed the distinct presence of free lime in the heat-treated concrete, while the scanning electron microscope (SEM) provided an in-depth perspective of the concrete grains in the HMA matrix. The results suggest feasible use of waste concrete as partial aggregate substitution in HMA.

  13. Multiscale imaging and characterization of the effect of mixing temperature on asphalt concrete containing recycled components.

    PubMed

    Cavalli, M C; Griffa, M; Bressi, S; Partl, M N; Tebaldi, G; Poulikakos, L D

    2016-10-01

    When producing asphalt concrete mixture with high amounts of reclaimed asphalt pavement (RAP), the mixing temperature plays a significant role in the resulting spatial distribution of the components as well as on the quality of the resulting mixture, in terms of workability during mixing and compaction as well as in service mechanical properties. Asphalt concrete containing 50% RAP was investigated at mixing temperatures of 140, 160 and 180°C, using a multiscale approach. At the microscale, using energy dispersive X-ray spectroscopy the RAP binder film thickness was visualized and measured. It was shown that at higher mixing temperatures this film thickness was reduced. The reduction in film thickness can be attributed to the loss of volatiles as well as the mixing of RAP binder with virgin binder at higher temperatures. X-ray computer tomography was used to characterize statistically the distribution of the RAP and virgin aggregates geometric features: volume, width and shape anisotropy. In addition using X-ray computer tomography, the packing and spatial distribution of the RAP and virgin aggregates was characterized using the nearest neighbour metric. It was shown that mixing temperature may have a positive effect on the spatial distribution of the aggregates but did not affect the packing. The study shows a tendency for the RAP aggregates to be more likely distributed in clusters at lower mixing temperatures. At higher temperatures, they were more homogeneously distributed. This indicates a higher degree of blending both at microscale (binder film) and macroscale (spatial distribution) between RAP and virgin aggregates as a result of increasing mixing temperatures and the ability to quantify this using various imaging techniques. PMID:27148703

  14. Multiscale imaging and characterization of the effect of mixing temperature on asphalt concrete containing recycled components.

    PubMed

    Cavalli, M C; Griffa, M; Bressi, S; Partl, M N; Tebaldi, G; Poulikakos, L D

    2016-10-01

    When producing asphalt concrete mixture with high amounts of reclaimed asphalt pavement (RAP), the mixing temperature plays a significant role in the resulting spatial distribution of the components as well as on the quality of the resulting mixture, in terms of workability during mixing and compaction as well as in service mechanical properties. Asphalt concrete containing 50% RAP was investigated at mixing temperatures of 140, 160 and 180°C, using a multiscale approach. At the microscale, using energy dispersive X-ray spectroscopy the RAP binder film thickness was visualized and measured. It was shown that at higher mixing temperatures this film thickness was reduced. The reduction in film thickness can be attributed to the loss of volatiles as well as the mixing of RAP binder with virgin binder at higher temperatures. X-ray computer tomography was used to characterize statistically the distribution of the RAP and virgin aggregates geometric features: volume, width and shape anisotropy. In addition using X-ray computer tomography, the packing and spatial distribution of the RAP and virgin aggregates was characterized using the nearest neighbour metric. It was shown that mixing temperature may have a positive effect on the spatial distribution of the aggregates but did not affect the packing. The study shows a tendency for the RAP aggregates to be more likely distributed in clusters at lower mixing temperatures. At higher temperatures, they were more homogeneously distributed. This indicates a higher degree of blending both at microscale (binder film) and macroscale (spatial distribution) between RAP and virgin aggregates as a result of increasing mixing temperatures and the ability to quantify this using various imaging techniques.

  15. Assessment of the aging level of rejuvenated hot mixed asphalt concrete pavements

    NASA Astrophysics Data System (ADS)

    McGovern, Megan; Buttlar, William G.; Reis, Henrique

    2016-04-01

    The efficacy of asphalt rejuvenator on restoring the properties of oxidatively aged asphalt was tested via a non-collinear ultrasonic subsurface wave mixing technique modified for field use. Longitudinal transducers were mounted on angle wedges to generate subsurface dilatational waves to allow for pavement evaluation when there is only access to one side. Because in the field the asphalt concrete (AC) pavement properties (i.e., ultrasonic velocities and attenuations) are unknown, a pre-determined fixed incident angle (based on the AC mixture type) was used, which allows for practical implementation in the field. Oxidative aged AC specimens were coated with rejuvenator (10% by weight of the binder) and left to dwell for varying amounts of time. Once the dwell time reached the desired amount, the specimen was immediately ultrasonically tested. The frequency ratio, f2/f1, at which the interaction took place and the normalized nonlinear wave generation parameter, β/β0, were recorded and compared against a reference plot. It was observed that the rejuvenator had the effect of restoring the nonlinear properties to those corresponding to a virgin sample after a sufficient amount of dwell time. The ability of the rejuvenator to fully penetrate and act on the binder was observed to be dependent on the porosity and aggregate structure, and thus varied for each specimen. As a result, some portions of the binder were restored to a greater extent than others. This non-uniform nature was captured via the nonlinear ultrasonic technique.

  16. Investigation of modified asphalt concrete

    NASA Astrophysics Data System (ADS)

    Zimich, Vita

    2016-01-01

    Currently the problem of improving the asphalt quality is very urgent. It is used primarily as topcoats exposed to the greatest relative to the other layers of the road, dynamic load - impact and shear. The number of cars on the road, the speed of their movement, as well as the traffic intensity increase day by day. We have to upgrade motor roads, which entails a huge cost. World experience shows that the issue is urgent not only in Russia, but also in many countries in Europe, USA and Asia. Thus, the subject of research is the resistance of asphalt concrete to water and its influence on the strength of the material at different temperatures, and resistance of pavement to deformation. It is appropriate to search for new modifiers for asphaltic binder and mineral additives for asphalt mix to form in complex the skeleton of the future asphalt concrete, resistant to atmospheric condensation, soil characteristics of the road construction area, as well as the growing road transport load. The important task of the work is searching special modifying additives for bitumen binder and asphalt mixture as a whole, which will improve the quality of highways, increasing the period between repairs. The methods described in the normative-technical documentation were used for the research. The conducted research allowed reducing the frequency of road maintenance for 7 years, increasing it from 17 to 25 years.

  17. Assessment of the potential suitability of southwest Brooklyn incinerator residue in asphaltic-concrete mixes. Final report

    SciTech Connect

    Chesner, W.H.; Collins, R.J.; Fung, T.

    1988-02-01

    The results of a one-year incinerator residue sampling program at the Southwest Brooklyn Incinerator in New York City are reported. The program was designed to characterize the physical properties of incinerator residue. Asphalt mixes were prepared using blends of sampled incinerator residue with conventional aggregate, to determine the suitability of using incinerator residue in asphaltic concrete for road paving applications. The results of the investigation are compared with those of previous studies. Engineering and processing requirements are presented for converting residue into a usable aggregate material. Capital costs, operating costs, potential revenues and net annual costs are provided for a full-scale residue processing facility at the Southwest Brooklyn Incinerator. Environmental issues associated with residue recycling are identified and discussed. Recommendations are provided for additional laboratory work and field applications needed to demonstrate the use of residue in asphalt mixes.

  18. Multiscale Constitutive Modeling of Asphalt Concrete

    NASA Astrophysics Data System (ADS)

    Underwood, Benjamin Shane

    Multiscale modeling of asphalt concrete has become a popular technique for gaining improved insight into the physical mechanisms that affect the material's behavior and ultimately its performance. This type of modeling considers asphalt concrete, not as a homogeneous mass, but rather as an assemblage of materials at different characteristic length scales. For proper modeling these characteristic scales should be functionally definable and should have known properties. Thus far, research in this area has not focused significant attention on functionally defining what the characteristic scales within asphalt concrete should be. Instead, many have made assumptions on the characteristic scales and even the characteristic behaviors of these scales with little to no support. This research addresses these shortcomings by directly evaluating the microstructure of the material and uses these results to create materials of different characteristic length scales as they exist within the asphalt concrete mixture. The objectives of this work are to; 1) develop mechanistic models for the linear viscoelastic (LVE) and damage behaviors in asphalt concrete at different length scales and 2) develop a mechanistic, mechanistic/empirical, or phenomenological formulation to link the different length scales into a model capable of predicting the effects of microstructural changes on the linear viscoelastic behaviors of asphalt concrete mixture, e.g., a microstructure association model for asphalt concrete mixture. Through the microstructural study it is found that asphalt concrete mixture can be considered as a build-up of three different phases; asphalt mastic, fine aggregate matrix (FAM), and finally the coarse aggregate particles. The asphalt mastic is found to exist as a homogenous material throughout the mixture and FAM, and the filler content within this material is consistent with the volumetric averaged concentration, which can be calculated from the job mix formula. It is also

  19. Development of a rapid test method for asphalt concrete content determination in hot-mix paving mixtures

    NASA Astrophysics Data System (ADS)

    Chavez, J. J. M.

    1984-01-01

    A rapid test method was developed for the determination of asphalt cement content in hot-mix bituminous paving mixtures. It is based on the extraction of asphalt cement from mixtures with trichloroethylene and subsequent measurement of the transmittance of light through the extracted solution. A good correlation was found between the results obtained using the rapid test and those obtained using the standard test (ASTM D-2172, Method E1) for samples tested in the field at asphalt mix plants. The test uses a portable spectrophotometer and a metal can for extraction. The asphalt content can be determined in less than ten minutes. The possibility of using the rapid test on materials containing emulsified asphalt, slag aggregate, unusually high amounts of fine material and recycled material was also studied.

  20. Moisture damage in asphalt concrete. Final report

    SciTech Connect

    Not Available

    1991-10-01

    Information is provided on physical and chemical explanations for moisture damage in asphalt concrete, along with a discussion of current practices and test methods for determining or reducing the susceptibility of various asphalt concrete components and mixtures to such damage. Moisture damage in asphalt concrete is a nationwide problem which often necessitates premature replacement of highway pavement surfaces. The report of the Transportation Research Board describes the underlying physical and chemical phenomena responsible for such damage. Current test methods used to determine the susceptibility of asphalt concretes, or their constituents, to moisture damage are described and evaluated. Additionally, current practices for minimizing the potential for moisture damage are examined.

  1. Influence of roofing shingles on asphalt concrete mixture properties. Final report, 1992-1993

    SciTech Connect

    Newcomb, D.; Stroup-Gardiner, M.; Weikle, B.; Drescher, A.

    1993-06-01

    The objective of the study was to evaluate the use of waste shingles from manufacturing and roof reconstruction projects in hot mix asphalt concrete mixtures. In dense-graded asphalt mixtures, it was hypothesized that the waste material might serve as an extender for the new asphalt in the mix as well as a fiber reinforcement. In the stone mastic asphalt (SMA), it could serve as the binder stiffener typically used to prevent the asphalt from draining out of these types of mixtures.

  2. Petroleum contaminated soil in Oman: evaluation of bioremediation treatment and potential for reuse in hot asphalt mix concrete.

    PubMed

    Jamrah, Ahmad; Al-Futaisi, Ahmed; Hassan, Hossam; Al-Oraimi, Salem

    2007-01-01

    This paper presents a study that aims at evaluating the leaching characteristics of petroleum contaminated soils as well as their application in hot mix asphalt concrete. Soil samples are environmentally characterized in terms of their total heavy metals and hydrocarbon compounds and leachability. The total petroleum hydrocarbon (TPH) present in the PCS before and after treatment was determined to be 6.8% and 5.3% by dry weight, indicating a reduction of 1% in the TPH of PCS due to the current treatment employed. Results of the total heavy metal analysis on soils indicate that the concentrations of heavy metals are lower when extraction of the soil samples is carried out using hexane in comparison to TCE. The results show that the clean soils present in the vicinity of contaminated sites contain heavy metals in the following decreasing order: nickel (Ni), followed by chromium (Cr), zinc (Zn), copper (Cu), lead (Pb), and vanadium (V). The current treatment practice employed for remediation of the contaminated soil reduces the concentrations of nickel and chromium, but increases the concentrations of all remaining heavy metals. PMID:16957858

  3. Use of recycled chunk rubber asphalt concrete (CRAC) on low volume roads and use of recycled crumb rubber modifier in asphalt pavements. Final report, June 1993-June 1995

    SciTech Connect

    Hossain, M.; Funk, L.P.; Sadeq, M.A.; Marucci, G.

    1995-06-01

    The major objective of this project was to formulate a Chunk Rubber Asphalt Concrete (CRAC) mix for use on low volume roads. CRAC is a rubber modified asphalt concrete product produced by the `dry process` where rubber chunks of 1/2 inch size are used as aggregate in a cold mix with a type C fly ash. The second objective of this project was to develop guidelines concerning the use of rubber modified asphalt concrete hot mix to include: (1) Design methods for use of asphalt-rubber mix for new construction and overlay, (2) Mix design method for asphalt-rubber, and (3) Test method for determining the amount of rubber in an asphalt-rubber concrete for quality control purposes.

  4. Modified Asphalt Binder with Natural Zeolite for Warm Mix Asphalt

    NASA Astrophysics Data System (ADS)

    Dubravský, Marián; Mandula, Ján

    2015-11-01

    In recent years, warm mix asphalt (WMA) is becoming more and more used in the asphalt industry. WMA provide a whole range of benefits, whether economic, environmental and ecological. Lower energy consumption and less pollution is the most advantages of this asphalt mixture. The paper deals with the addition of natural zeolite into the sub base asphalt layers, which is the essential constituent in the construction of the road. Measurement is focused on basic physic - mechanical properties declared according to the catalog data sheets. The aim of this article is to demonstrate the ability of addition the natural zeolite into the all asphalt layers of asphalt pavement. All asphalt mixtures were compared with reference asphalt mixture, which was prepared in reference temperature.

  5. Crumb rubber modified asphalt concrete in Oregon. Summary report. Report for 1985-94

    SciTech Connect

    Hunt, E.; Peters, W.

    1995-07-01

    Over the last nine years, the Oregon Department of Transportation (ODOT) has constructed 13 projects using crumb rubber modifiers (CRM) in asphalt concrete pavements using both the wet and dry process. State and federal legislation may require the use of recycled rubber in asphalt concrete, therefore, the Oregon Department of Transportation is interested in determining the most cost -effective crumb rubber modified asphalt concrete. The report includes a literature review on the use of crumb rubber modifiers in asphalt concrete pavement; a review on non-ODOT CRM paving projects constructed by Oregon counties and cities; and the Washington Department of Transportation. In additon, the report summarizes the data collected on all CRM hot mix asphalt concrete pavement projects constructed by ODOT. The ODOT information includes background constitution, cost, and performance data for each of the test and control sections. Finally, the future activities of the project are reviewed.

  6. 7 CFR 2902.36 - Concrete and asphalt release fluids.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Concrete and asphalt release fluids. 2902.36 Section... PROCUREMENT Designated Items § 2902.36 Concrete and asphalt release fluids. (a) Definition. Products that are designed to provide a lubricating barrier between the composite surface materials (e.g., concrete...

  7. 7 CFR 3201.36 - Concrete and asphalt release fluids.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false Concrete and asphalt release fluids. 3201.36 Section... PROCUREMENT Designated Items § 3201.36 Concrete and asphalt release fluids. (a) Definition. Products that are designed to provide a lubricating barrier between the composite surface materials (e.g., concrete...

  8. 7 CFR 3201.65 - Concrete and asphalt cleaners.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false Concrete and asphalt cleaners. 3201.65 Section 3201... PROCUREMENT Designated Items § 3201.65 Concrete and asphalt cleaners. (a) Definition. Chemicals used in concrete etching as well as to remove petroleum-based soils, lubricants, paints, mastics, organic...

  9. 7 CFR 3201.65 - Concrete and asphalt cleaners.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 15 2012-01-01 2012-01-01 false Concrete and asphalt cleaners. 3201.65 Section 3201... PROCUREMENT Designated Items § 3201.65 Concrete and asphalt cleaners. (a) Definition. Chemicals used in concrete etching as well as to remove petroleum-based soils, lubricants, paints, mastics, organic...

  10. 7 CFR 3201.36 - Concrete and asphalt release fluids.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 15 2012-01-01 2012-01-01 false Concrete and asphalt release fluids. 3201.36 Section... PROCUREMENT Designated Items § 3201.36 Concrete and asphalt release fluids. (a) Definition. Products that are designed to provide a lubricating barrier between the composite surface materials (e.g., concrete...

  11. 7 CFR 3201.65 - Concrete and asphalt cleaners.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 15 2013-01-01 2013-01-01 false Concrete and asphalt cleaners. 3201.65 Section 3201... PROCUREMENT Designated Items § 3201.65 Concrete and asphalt cleaners. (a) Definition. Chemicals used in concrete etching as well as to remove petroleum-based soils, lubricants, paints, mastics, organic...

  12. 7 CFR 2902.36 - Concrete and asphalt release fluids.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 15 2011-01-01 2011-01-01 false Concrete and asphalt release fluids. 2902.36 Section... PROCUREMENT Designated Items § 2902.36 Concrete and asphalt release fluids. (a) Definition. Products that are designed to provide a lubricating barrier between the composite surface materials (e.g., concrete...

  13. 7 CFR 3201.36 - Concrete and asphalt release fluids.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 15 2013-01-01 2013-01-01 false Concrete and asphalt release fluids. 3201.36 Section... PROCUREMENT Designated Items § 3201.36 Concrete and asphalt release fluids. (a) Definition. Products that are designed to provide a lubricating barrier between the composite surface materials (e.g., concrete...

  14. Applicability of the DMSO (dimethyl sulfoxide) aggregate degradation test to determine moisture-induced distress in asphalt-concrete mixes. Final report, June 1986-June 1987

    SciTech Connect

    Heinicke, J.J.; Vinson, T.S.; Wilson, J.E.

    1987-06-01

    A laboratory investigation was conducted to evaluate the effectiveness of the dimethyl sulfoxide accelerated weathering test (DMSO test) to predict moisture-induced distress in asphalt-concrete mixtures. Asphalt-concrete specimens were fabricated using aggregates from three quarries. The specimens were conditioned using vacuum saturation and a series of five freeze/thaw cycles. The resilient modulus (M{sub r}) was obtained before and after each conditioning cycle and the Index of Retained Resilient Modulus (IRM{sub r}) was determined. The results indicate the DMSO test may be used to identify the potential for moisture-induced distress in asphalt-concrete mixtures. However, no correlation was determined between the DMSO test results and the IRM{sub r} or fatigue life test results. The strain and temperature dependencies of the M{sub r} were determined for a dense-graded asphalt-concrete mixture. It was concluded that constant stress testing may result in a misinterpretation of the IRM{sub r} and tests conducted within the currently accepted temperature range may result in a plus or minus 20% deviation in the IRM{sub r}. In an accompanying analytical program, the effect of diametral test boundary conditions on the measured value of M{sub r} was evaluated using two- and three-dimensional finite element models. The results indicate that the resilient modulus diametral test is adequately represented by elastic theory and an assumed plane stress condition.

  15. Evaluation of the benefits of adding waste fiberglass roofing shingles to Hot-Mix asphalt. Final report

    SciTech Connect

    Abdulshafi, O.; Kedzierski, B.; Fitch, M.G.; Mukhtar, H.

    1997-07-03

    The decreased availability of landfills, growing concern over waste disposal, and rising cost of asphalt cement, resulted in an increased interest in incorporating waste asphalt roofing shingles in the production of asphalt concrete mixes. This project addressed Hot-Mix, surface course asphalt concrete mixes produced with an addition of waste fiberglass asphalt roofing shingles that were obtained from the shingle manufacturing process. A total of twenty-six asphalt concrete mixes were studied. The variables included: aggregate type, shingle producers, level of shingle addition (0, 5, 10, and 15%), and type of shingle size reduction. Properties of the produced asphalt concrete mixes were evaluated based on the results of applicable tests that were performed.

  16. A study on engineering characteristics of asphalt concrete using filler with recycled waste lime.

    PubMed

    Sung Do, Hwang; Hee Mun, Park; Suk keun, Rhee

    2008-01-01

    This study focuses on determining the engineering characteristics of asphalt concrete using mineral fillers with recycled waste lime, which is a by-product of the production of soda ash (Na(2)CO(3)). The materials tested in this study were made using a 25%, 50%, 75%, and 100% mixing ratio based on the conventional mineral filler ratio to analyze the possibility of using recycled waste lime. The asphalt concretes, made of recycled waste lime, hydrated lime, and conventional asphalt concrete, were evaluated through their fundamental engineering properties such as Marshall stability, indirect tensile strength, resilient modulus, permanent deformation characteristics, moisture susceptibility, and fatigue resistance. The results indicate that the application of recycled waste lime as mineral filler improves the permanent deformation characteristics, stiffness and fatigue endurance of asphalt concrete at the wide range of temperatures. It was also determined that the mixtures with recycled waste lime showed higher resistance against stripping than conventional asphalt concrete. It was concluded from various test results that a waste lime can be used as mineral filler and, especially, can greatly improve the resistance of asphalt concrete to permanent deformation at high temperatures. PMID:17408942

  17. A study on engineering characteristics of asphalt concrete using filler with recycled waste lime.

    PubMed

    Sung Do, Hwang; Hee Mun, Park; Suk keun, Rhee

    2008-01-01

    This study focuses on determining the engineering characteristics of asphalt concrete using mineral fillers with recycled waste lime, which is a by-product of the production of soda ash (Na(2)CO(3)). The materials tested in this study were made using a 25%, 50%, 75%, and 100% mixing ratio based on the conventional mineral filler ratio to analyze the possibility of using recycled waste lime. The asphalt concretes, made of recycled waste lime, hydrated lime, and conventional asphalt concrete, were evaluated through their fundamental engineering properties such as Marshall stability, indirect tensile strength, resilient modulus, permanent deformation characteristics, moisture susceptibility, and fatigue resistance. The results indicate that the application of recycled waste lime as mineral filler improves the permanent deformation characteristics, stiffness and fatigue endurance of asphalt concrete at the wide range of temperatures. It was also determined that the mixtures with recycled waste lime showed higher resistance against stripping than conventional asphalt concrete. It was concluded from various test results that a waste lime can be used as mineral filler and, especially, can greatly improve the resistance of asphalt concrete to permanent deformation at high temperatures.

  18. 40 CFR 443.20 - Applicability; description of the asphalt concrete subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... asphalt concrete subcategory. 443.20 Section 443.20 Protection of Environment ENVIRONMENTAL PROTECTION... ROOFING MATERIALS (TARS AND ASPHALT) POINT SOURCE CATEGORY Asphalt Concrete Subcategory § 443.20 Applicability; description of the asphalt concrete subcategory. The provisions of this subpart are applicable...

  19. 40 CFR 443.20 - Applicability; description of the asphalt concrete subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... asphalt concrete subcategory. 443.20 Section 443.20 Protection of Environment ENVIRONMENTAL PROTECTION... MATERIALS (TARS AND ASPHALT) POINT SOURCE CATEGORY Asphalt Concrete Subcategory § 443.20 Applicability; description of the asphalt concrete subcategory. The provisions of this subpart are applicable to...

  20. 40 CFR 443.20 - Applicability; description of the asphalt concrete subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... asphalt concrete subcategory. 443.20 Section 443.20 Protection of Environment ENVIRONMENTAL PROTECTION... ROOFING MATERIALS (TARS AND ASPHALT) POINT SOURCE CATEGORY Asphalt Concrete Subcategory § 443.20 Applicability; description of the asphalt concrete subcategory. The provisions of this subpart are applicable...

  1. 40 CFR 443.20 - Applicability; description of the asphalt concrete subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... asphalt concrete subcategory. 443.20 Section 443.20 Protection of Environment ENVIRONMENTAL PROTECTION... ROOFING MATERIALS (TARS AND ASPHALT) POINT SOURCE CATEGORY Asphalt Concrete Subcategory § 443.20 Applicability; description of the asphalt concrete subcategory. The provisions of this subpart are applicable...

  2. 40 CFR 443.20 - Applicability; description of the asphalt concrete subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... asphalt concrete subcategory. 443.20 Section 443.20 Protection of Environment ENVIRONMENTAL PROTECTION... MATERIALS (TARS AND ASPHALT) POINT SOURCE CATEGORY Asphalt Concrete Subcategory § 443.20 Applicability; description of the asphalt concrete subcategory. The provisions of this subpart are applicable to...

  3. The use of waste materials in asphalt concrete mixtures.

    PubMed

    Tuncan, Mustafa; Tuncan, Ahmet; Cetin, Altan

    2003-04-01

    The purpose of this study was to investigate (a) the effects of rubber and plastic concentrations and rubber particle sizes on properties of asphalt cement, (b) on properties of asphalt concrete specimens and (c) the effects of fly ash, marble powder, rubber powder and petroleum contaminated soil as filler materials instead of stone powder in the asphalt concrete specimens. One type of limestone aggregate and one penetration-graded asphalt cement (75-100) were used. Three concentrations of rubber and plastic (i.e. 5%, 10% and 20% of the total weight of asphalt cement), three rubber particle sizes (i.e. No. 4 [4.75mm] - 20 [0.85 mm], No. 20 [0.85mm] - 200 [0.075mm] and No. 4 [4.75mm] - 200 [0.075mm]) and one plastic particle size (i.e. No. 4 [4.75mm] - 10 [2.00mm]) were also used. It was found that while the addition of plastic significantly increased the strength of specimens, the addition of rubber decreased it. No. 4 [4.75mm] - 200 [0.075mm] rubber particles showed the best results with respect to the indirect tensile test. The Marshall stability and indirect tensile strength properties of plastic modified specimens increased. Marble powder and fly ash could be used as filler materials instead of stone powder in the asphalt concrete pavement specimens.

  4. An investigation of waste foundry sand in asphalt concrete mixtures.

    PubMed

    Bakis, Recep; Koyuncu, Hakan; Demirbas, Ayhan

    2006-06-01

    A laboratory study regarding the reuse of waste foundry sand in asphalt concrete production by replacing a certain portion of aggregate with WFS was undertaken. The results showed that replacement of 10% aggregates with waste foundry sand was found to be the most suitable for asphalt concrete mixtures. Furthermore, the chemical and physical properties of waste foundry sand were analysed in the laboratory to determine the potential effect on the environment. The results indicated that the investigated waste foundry sand did not significantly affect the environment around the deposition PMID:16784170

  5. Asphaltic concrete overlays of rigid and flexible pavements

    NASA Astrophysics Data System (ADS)

    Kinchen, R. W.; Temple, W. H.

    1980-10-01

    The development of a mechanistic approach to overlay thickness selection is described. The procedure utilizes a deflection analysis to determine pavement rehabilitation needs. Design guides for selecting the overlay thickness are presented. Tolerable deflection-traffic load relationships and the deflection attenuation properties of asphaltic concrete were developed, representing the subgrade support conditions and properties of materials used in Louisiana. All deflection measurements on asphaltic concrete were corrected for the effect of temperature. Deflection measurements taken before and after overlay were also adjusted to minimize the effects of seasonal subgrade moisture variation.

  6. Asphalt and asphalt additives. Transportation research record

    SciTech Connect

    Not Available

    1992-01-01

    Contents: use of asphalt emulsions for in-place recycling: oregon experience; gap-graded cold asphalt concrete: benefits of polymer-modified asphalt cement and fibers; cold in-place recycling for rehabilitation and widening of low-volume flexible pavements in indiana; in situ cold recycling of bituminous pavements with polymer-modified high float emulsions; evaluation of new generation of antistripping additives; correlation between performance-related characteristics of asphalt cement and its physicochemical parameters using corbett's fractions and hpgc; reaction rates and hardening susceptibilities as determined from pressure oxygen vessel aging of asphalts; evaluation of aging characteristics of asphalts by using tfot and rtfot at different temperature levels; summary of asphalt additive performance at selected sites; relating asphalt absorption to properties of asphalt cement and aggregate; study of the effectiveness of styrene-butadiene rubber latex in hot mix asphalt mixes; stability of straight and polymer-modified asphalts.

  7. Test of LOX compatibility for asphalt and concrete runway materials

    NASA Technical Reports Server (NTRS)

    Moyers, C. V.; Bryan, C. J.; Lockhart, B. J.

    1973-01-01

    A literature survey and a telephone canvass of producers and users of LOX is reported which yielded one report of an accident resulting from a LOX spill on asphalt, one discussion of hazardous conditions, and an unreferenced mention of an incident. Laboratory tests using standard LOX impact apparatus yielded reactions with both old and new alphalt, but none with concrete. In the final test, using a larger sample of asphalt, the reaction caused extensive damage to equipment. Initial field experiments using 2-meter square asphalt slabs covered with LOX, conducted during rainy weather, achieved no reaction with plummets, and limited reaction with a blasting cap as a reaction initiator. In a final plummet-initiated test on a dry slab, a violent reaction, which appeared to have propagated over the entire slab surface, destroyed the plummet fixture and threw fragments as far as 48 meters.

  8. Research on Surfactant Warm Mix Asphalt Construction Technology

    NASA Astrophysics Data System (ADS)

    Li, Guoliang; Sun, Jingxin; Guo, Xiufeng

    Discharging temperature of hot asphalt mixture is about 150°C-185°C, volatilization of asphalt fume harms people's health and fuel cost is high. Jinan Urban Construction Group applies PTL/01 asphalt warm mix agent to produce warm mix asphalt to construction of urban roads' asphalt bituminous pavement. After comparing it with performance of traditional hot asphalt mixture, mixing temperature may be reduced by 30°C-60°C, emission of poisonous gas is reduced, energy conservation and environmental protection are satisfied, construction quality reaches requirements of construction specifications and economic, social and environmental benefits are significant. Thus, it can be used for reference for green construction of urban roads.

  9. Use of plastic waste (poly-ethylene terephthalate) in asphalt concrete mixture as aggregate replacement.

    PubMed

    Hassani, Abolfazl; Ganjidoust, Hossein; Maghanaki, Amir Abedin

    2005-08-01

    One of the environmental issues in most regions of Iran is the large number of bottles made from poly-ethylene terephthalate (PET) deposited in domestic wastes and landfills. Due to the high volume of these bottles, more than 1 million m3 landfill space is needed for disposal every year. The purpose of this experimental study was to investigate the possibility of using PET waste in asphalt concrete mixes as aggregate replacement (Plastiphalt) to reduce the environmental effects of PET disposal. For this purpose the mechanical properties of plastiphalt mixes were compared with control samples. This study focused on the parameters of Marshall stability, flow, Marshall quotient (stability-to-flow ratio) and density. The waste PET used in this study was in the form of granules of about 3 mm diameter which would replace (by volume) a portion of the mineral coarse aggregates of an equal size (2.36-4.75 mm). In all prepared mixes the determined 6.6% optimum bitumen content was used. In this investigation, five different percentages of coarse aggregate replacement were used. The results showed that the aggregate replacement of 20% by volume with PET granules would result in a reduction of 2.8% in bulk compacted mix density. The value of flow in the plastiphalt mix was lower than that of the control samples. The results also showed that when PET was used as partial aggregate replacement, the corresponding Marshall stability and Marshall quotient were almost the same as for the control samples. According to most of specification requirement, these results introduce an asphalt mix that has properties that makes it suitable for practical use and furthermore, the recycling of PET for asphalt concrete roads helps alleviate an environmental problem and saves energy. PMID:16200982

  10. Evaluation of Warm Mix Asphalt Additives for Use in Modified Asphalt Mixtures

    NASA Astrophysics Data System (ADS)

    Chamoun, Zahi

    The objective of this research effort is to evaluate the use of warm-mix additives with polymer modified and terminal blend tire rubber asphalt mixtures from Nevada and California. The research completed over two stages: first stage evaluated two different WMA technologies; Sasobit and Advera, and second stage evaluated one additional WMA technology; Evotherm. The experimental program covered the evaluation of resistance of the mixtures to moisture damage, the performance characteristics of the mixtures, and mechanistic analysis of mixtures in simulated pavements. In the both stages, the mixture resistance to moisture damage was evaluated using the indirect tensile test and the dynamic modulus at multiple freeze-thaw cycles, and the resistance of the various asphalt mixtures to permanent deformation using the Asphalt Mixture Performance Tester (AMPT). Resistance of the untreated mixes to fatigue cracking using the flexural beam fatigue was only completed for the first stage. One source of aggregates was sampled in, two different batches, three warm mix asphalt technologies (Advera, Sasobit and Evotherm) and three asphalt binder types (neat, polymer-modified, and terminal blend tire rubber modified asphalt binders) typically used in Nevada and California were evaluated in this study. This thesis presents the resistance of the first stage mixtures to permanent deformation and fatigue cracking using two warm-mix additives; Advera and Sasobit, and the resistance to moisture damage and permanent deformation of the second stage mixtures with only one warm-mix additive; Evotherm.

  11. Effect of Crumb Rubber and Warm Mix Additives on Asphalt Aging, Rheological, and Failure Properties

    NASA Astrophysics Data System (ADS)

    Agrawal, Prashant

    Asphalt-rubber mixtures have been shown to have useful properties with respect to distresses observed in asphalt concrete pavements. The most notable change in properties is a large increase in viscosity and improved low-temperature cracking resistance. Warm mix additives can lower production and compaction temperatures. Lower temperatures reduce harmful emissions and lower energy consumption, and thus provide environmental benefits and cut costs. In this study, the effects of crumb rubber modification on various asphalts such as California Valley, Boscan, Alaska North Slope, Laguna and Cold Lake were also studied. The materials used for warm mix modification were obtained from various commercial sources. The RAF binder was produced by Imperial Oil in their Nanticoke, Ontario, refinery on Lake Erie. A second commercial PG 52-34 (hereafter denoted as NER) was obtained/sampled during the construction of a northern Ontario MTO contract. Some regular tests such as Dynamic Shear Rheometer (DSR) and Bending Beam Rheometer (BBR), Multiple Stress Creep Recovery (MSCR) and some modified new protocols such as the extended BBR test (LS-308) and the Double-Edge Notched Tension (DENT) test (LS-299) are used to study, the effect of warm mix and a host of other additives on rheological, aging and failure properties. A comparison in the properties of RAF and NER asphalts has also been made as RAF is good quality asphalt and NER is bad quality asphalt. From the studies the effect of additives on chemical and physical hardening tendencies was found to be significant. The asphalt samples tested in this study showed a range of tendencies for chemical and physical hardening.

  12. Reinforcement of asphalt concrete pavement by segments of exhausted fiber used for sorption of oil spill

    NASA Astrophysics Data System (ADS)

    Lukashevich, V. N.; Efanov, I. N.

    2015-01-01

    The paper is aimed at construction of the experimental road pavement made of dispersed reinforced asphalt concrete. Electronic paramagnetic resonance, infrared spectroscopy and fluorescent bitumen studies were used to prove that disperse reinforcement of asphalt concrete mixtures with fibers of exhausted sorbents reduce the selective filtration of low polymeric fractions of petroleum bitumen and improve its properties in the adsorption layer. Sesquioxides are neutralized as catalysts aging asphalt binder. This leads to improvement in the elasticity of bitumen films at low temperatures and provide better crack resistance of coatings to reduce the intensity of the aging of asphalt binder, and, therefore, to increase the durability of road pavements. The experimental road pavement made of dispersed reinforced asphalt concrete operated during 4 years and demonstrated better transport- performance properties in comparison with the analogue pavements.

  13. Damage detection and artificial healing of asphalt concrete after trafficking with a load simulator

    NASA Astrophysics Data System (ADS)

    Bueno, M.; Arraigada, M.; Partl, M. N.

    2016-08-01

    Artificial healing of asphalt concrete by induction heating requires the addition of electrically conductive and/or magnetic materials into the asphalt mixture. Hence, bitumen can be heated up by an alternating electromagnetic field, decreasing therefore its viscosity and allowing it to flow for closing cracks and recover bonding among the mineral aggregates.

  14. A multiscale model for predicting the viscoelastic properties of asphalt concrete

    NASA Astrophysics Data System (ADS)

    Garcia Cucalon, Lorena; Rahmani, Eisa; Little, Dallas N.; Allen, David H.

    2016-08-01

    It is well known that the accurate prediction of long term performance of asphalt concrete pavement requires modeling to account for viscoelasticity within the mastic. However, accounting for viscoelasticity can be costly when the material properties are measured at the scale of asphalt concrete. This is due to the fact that the material testing protocols must be performed recursively for each mixture considered for use in the final design.

  15. Evaluation of Warm Mix Asphalt Technologies and Recycled Asphalt Pavements in Truckee Meadows, Nevada

    NASA Astrophysics Data System (ADS)

    Diaz Montecino, Cristian

    This study evaluated the properties and laboratory-performance of Hot Mix Asphalt (HMA) and Warm Mix Asphalt (WMA) mixtures with different levels of Recycled Asphalt Pavements (RAP) content: none for control mixtures, around 15% by dry weight of aggregates, and more than 30% by dry weight of aggregates. The rheological properties were evaluated for virgin and recovered RAP asphalt binders. The target amount of RAP in the mixtures was determined by using Blending Charts and Mortar Experiments. The mixtures are design through the guidelines established in Marshall Mix Design Method considering additional modifications for RAP and WMA from Superpave Mix Design. The mixtures are evaluated for their resistance to moisture damage by means of measuring the Dynamic Modulus |E*| after three freeze/thaw cycles and the indirect tensile strength after one and three freeze/thaw cycles. The resistance of the mixtures to permanent deformation was also evaluated by using the Asphalt Mixture Performance Tester (AMPT) to measure the flow number (FN). For this study, it was determined that the resistance to moisture damage decreases as the number of freeze/thaw cycles increases for most of the evaluated mixtures. Mixtures exhibited an increase in dynamic modulus as the RAP percentage increased. A decrease in the resistance to moisture damage was detected with the increase in RAP content for most of the mixtures. HMA mixtures exhibited a better performance in rutting than the WMA mixtures. An increase in rutting resistance was observed with the increase in RAP percentage for HMA mixtures whereas an inconsistent trend was observed for WMA mixtures. Further study is needed to validate the use of the high percentage of RAP in Washoe County.

  16. Effects of reclaimed asphalt pavement on indirect tensile strength test of foamed asphalt mix tested in dry condition

    NASA Astrophysics Data System (ADS)

    Yati Katman, Herda; Rasdan Ibrahim, Mohd; Yazip Matori, Mohd; Norhisham, Shuhairy; Ismail, Norlela

    2013-06-01

    Indirect tensile strength (ITS) test was conducted to analyse strength of the foamed asphalt mixes incorporating reclaimed asphalt pavement. Samples were tested for ITS after cured in the oven at 40°C for 72 hours. This testing condition known as dry condition or unconditioned. Laboratory results show that reclaimed asphalt pavement (RAP) contents insignificantly affect the ITS results. ITS results significantly affected by foamed bitumen contents.

  17. Experimental evaluation of high performance base course and road base asphalt concrete with electric arc furnace steel slags.

    PubMed

    Pasetto, Marco; Baldo, Nicola

    2010-09-15

    The paper presents the results of a laboratory study aimed at verifying the use of two types of electric arc furnace (EAF) steel slags as substitutes for natural aggregates, in the composition of base course and road base asphalt concrete (BBAC) for flexible pavements. The trial was composed of a preliminary study of the chemical, physical, mechanical and leaching properties of the EAF steel slags, followed by the mix design and performance characterization of the bituminous mixes, through gyratory compaction tests, permanent deformation tests, stiffness modulus tests at various temperatures, fatigue tests and indirect tensile strength tests. All the mixtures with EAF slags presented better mechanical characteristics than those of the corresponding asphalts with natural aggregate and satisfied the requisites for acceptance in the Italian road sector technical standards, thus resulting as suitable for use in road construction.

  18. Experimental testing of hot mix asphalt mixture made of recycled aggregates.

    PubMed

    Rafi, Muhammad Masood; Qadir, Adnan; Siddiqui, Salman Hameed

    2011-12-01

    The migration of population towards big cities generates rapid construction activities. These activities not only put pressure on natural resources but also produce construction, renovation and demolition waste. There is an urgent need to find out ways to handle this waste owing to growing environmental concerns. This can reduce pressure on natural resources as well. This paper presents the results of experimental studies which were carried out on hot mix asphalt mixture samples. These samples were manufactured by adding recycled aggregates (RA) with natural crushed stone aggregates (CSA). Three levels of addition of RA were considered in the presented studies. RA were obtained from both the concrete waste of construction, renovation and demolition activities and reclaimed asphalt pavement. Separate samples were manufactured with the coarse and fine aggregate fractions of both types of RA. Samples made with CSA were used as control specimens. The samples were prepared and tested using the Marshall method. The performance of the samples was investigated in terms of density-void and stability/flow analysis and was compared with the performance criteria as given by National Highway Authority for wearing course material in Pakistan. Based on this data optimum asphalt contents were determined. All the samples made by adding up to 50% RA conform to the specification requirements of wearing course material as given by National Highway Authority in terms of optimum asphalt contents, voids in mineral aggregates and stability/flow. A statistical analysis of variation of these samples confirmed that addition is also possible statistically. PMID:20483876

  19. Experimental testing of hot mix asphalt mixture made of recycled aggregates.

    PubMed

    Rafi, Muhammad Masood; Qadir, Adnan; Siddiqui, Salman Hameed

    2011-12-01

    The migration of population towards big cities generates rapid construction activities. These activities not only put pressure on natural resources but also produce construction, renovation and demolition waste. There is an urgent need to find out ways to handle this waste owing to growing environmental concerns. This can reduce pressure on natural resources as well. This paper presents the results of experimental studies which were carried out on hot mix asphalt mixture samples. These samples were manufactured by adding recycled aggregates (RA) with natural crushed stone aggregates (CSA). Three levels of addition of RA were considered in the presented studies. RA were obtained from both the concrete waste of construction, renovation and demolition activities and reclaimed asphalt pavement. Separate samples were manufactured with the coarse and fine aggregate fractions of both types of RA. Samples made with CSA were used as control specimens. The samples were prepared and tested using the Marshall method. The performance of the samples was investigated in terms of density-void and stability/flow analysis and was compared with the performance criteria as given by National Highway Authority for wearing course material in Pakistan. Based on this data optimum asphalt contents were determined. All the samples made by adding up to 50% RA conform to the specification requirements of wearing course material as given by National Highway Authority in terms of optimum asphalt contents, voids in mineral aggregates and stability/flow. A statistical analysis of variation of these samples confirmed that addition is also possible statistically.

  20. The shakeout scenario: Meeting the needs for construction aggregates, asphalt, and concrete

    USGS Publications Warehouse

    Langer, W.H.

    2011-01-01

    An Mw 7.8 earthquake as described in the ShakeOut Scenario would cause significantdamage to buildings and infrastructure. Over 6 million tons of newly mined aggregate would be used for emergency repairs and for reconstruction in the five years following the event. This aggregate would be applied mostly in the form of concrete for buildings and bridges, asphalt or concrete for pavement, and unbound gravel for applications such as base course that goes under highway pavement and backfilling for foundations and pipelines. There are over 450 aggregate, concrete, and asphalt plants in the affected area, some of which would be heavily damaged. Meeting the increased demand for construction materials would require readily available permitted reserves, functioning production facilities, a supply of cement and asphalt, a source of water, gas, and electricity, and a trained workforce. Prudent advance preparations would facilitate a timely emergency response and reconstruction following such an earthquake. ?? 2011, Earthquake Engineering Research Institute.

  1. Investigation of Primary Causes of Load-Related Cracking in Asphalt Concrete Pavement in North Carolina

    NASA Astrophysics Data System (ADS)

    Park, Hong Joon

    This dissertation presents causes of cracking in asphalt concrete pavement in North Carolina through field investigation and laboratory experiments with field extracted material. North Carolina is experiencing higher than anticipated rates of fatigue cracking compared to other state. These higher than expected rates could be reflective of the national trends in mix design practice or could be caused by structural pavement failures. The problems associated with premature cracking in North Carolina pavements point to the need to evaluate the North Carolina Department of Transportation (NCDOT) mixes, processes, and measures to ensure that these factors properly balance the goals of preventing cracking and minimizing permanent deformation. Without solid data from in-service pavements, any conclusions regarding the causes of these failures might be pure conjecture. Accordingly, this research examines material properties through laboratory experiments using field-extracted materials and investigates in situ pavements and pavement structure. In order to assess condition of existing pavement, alligator cracking index (ACI) was developed. The asphalt content in the top layer that exhibits top-down cracking or bottom-up cracking has a proportional relationship to ACI values. The air void content in a bottom layer that exhibits top-down cracking or bottom-up cracking shows an inverse proportional relationship to ACI values. These observations reflect reasonable results. A comparison between ACI and asphalt film thickness values does not produce noteworthy findings, but somewhat reasonable results are evident once the range of comparison is narrowed down. Thicker film thicknesses show higher ACI values. From field core visual observations, road widening is identified as a major cause of longitudinal cracking. Regions with observed layer interface separation tend to have low ACI values. Through tensile strain simulation based on actual field conditions, it is observed that

  2. 26. Evening view of concrete mixing plant, concrete placement tower, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. Evening view of concrete mixing plant, concrete placement tower, cableway tower, power line and derrick. Photographer unknown, 1927. Source: MWD. - Waddell Dam, On Agua Fria River, 35 miles northwest of Phoenix, Phoenix, Maricopa County, AZ

  3. Hot in-place recycling of asphalt concrete. Final report

    SciTech Connect

    Button, J.W.; Little, D.N.; Estakhri, C.K.; Mason, L.S.

    1994-01-01

    ;Contents: Hot in place recycling processes and equipment; HIPR as a tool for asphalt pavement rehabilitation; Mixture design for HIPR processes; Relative performance of HIPR pavements; Guidelines for effective use of HIPR; and Conclusions and recommendations.

  4. Asphalt pavement surfaces and asphalt mixtures. Transportation research record

    SciTech Connect

    1996-12-31

    The papers in this volume, which deal with asphalt pavement surfaces and asphalt mixtures, should be of interest to state and local construction, design, materials, and research engineers as well as contractors and material producers. The papers in Part 1 include discussions of pavement smoothness specifications and skidding characteristics. The first four papers in Part 2 were submitted in response to a call for papers for a session at the 75th Annual Meeting of the Transportation Research Board on low-temperature properties of hot-mix asphalt. The next eight are on the influence of volumetric and strength properties on the performance of hot-mix asphalt. In the following three papers, the topics covered are the complex modulus of asphalt concrete, cold in-place asphalt recycling, and polymer modification of asphalt pavements in Ontario. The last two papers were presented in a session on relationship of materials characterization to accelerated pavement performance testing.

  5. Evaluation of the effects of crumb rubber and SBR on rutting resistance of asphalt concrete

    SciTech Connect

    Shih, Chuang-Tsair; Tia, Mang; Ruth, B.E.

    1996-12-31

    This paper presents the results of a study to evaluate the effects of addition of crumb rubber (CR) and styrene-butadiene rubber (SBR) on the rutting resistance of asphalt concrete. These two additives were blended with an AC-20 and an AC-30 grade asphalt cements at different levels of concentrations. These modified and unmodified asphalt blends were tested at intermediate and high temperatures to evaluate their rutting resistance characteristics. They were also used to make Florida type S-I structural surface mixtures. These mixtures were made into Marshall-size specimens by using Gyratory Testing Machine (GTM) equipped with air-roller to compact and density to three compaction levels which simulate three different conditions in the pavement. The FDOT`s (Florida Department of Transportation) Loaded Wheel Tester was also used to evaluate the rutting resistance of these asphalt mixtures. The test results indicate that the modified asphalt mixtures show relatively better rutting resistance and shear resistance as compared with the unmodified asphalt mixtures.

  6. Rheology of crumb-rubber modified asphalt binders and mixes

    NASA Astrophysics Data System (ADS)

    Sheth, Vikas Rameshchandra

    Laboratory test procedures are presented to determine the rheological properties of crumb rubber modified asphalt (CRMA) binders and mixes. These tests provide simple, fast, and cost-effective alternatives to evaluate the performance (rutting and cracking potential) of binders and mixes used for pavement construction. Viscoelastic properties of CRMA binders are measured using dynamic shear analysis. Master curves were generated using the principle of time-temperature superposition to evaluate the effects of aging, rubber concentration, and curing conditions on the rheology of the modified binder. Results indicate that the rheology of CRMA binders can be divided into three regions of viscoelasticity: glassy region at high frequencies, transition/viscoelastic region at intermediate frequencies, and viscous region at low frequencies. Modification of the asphalt by addition of rubber leads to an improvement in both the high and low temperature properties, as reflected by changes in Gsp' and Gsp{''}, which causes the binder to have a greater resistance to specific pavement failure mechanisms. Both transient and dynamic properties of CRMA mixes were measured in the laboratory using the creep and recovery, direct tension, and frequency sweep tests. Rheological properties of the mix generated from the test data were compared to those of the binder to evaluate the effect of aging, rubber concentration, and curing conditions on mix performance. Several rheological parameters have been identified to characterize the rutting and cracking potential of mixes. A power law equation was found to give good correlations between several mix rheological parameters. Analysis of binder and mix failure energies show that work of cohesion of the binder is negligible compared to the failure energies. A unique relationship between Paris law material parameters has been confirmed. It is also shown that mix failure properties bear a one-to-one correlation with binder failure properties. Based

  7. Predicting the behavior of asphalt concrete pavements in seasonal frost areas using nondestructive techniques

    NASA Astrophysics Data System (ADS)

    Janoo, Vincent C.; Berg, Richard L.

    1990-11-01

    Four different pavement test sections were subjected to freeze-thaw cycling in the Frost Effects Research Facility (FERF). The test sections, each 610 cm in length, consisted of 15.2 cm of asphalt concrete pavement over a clay subgrade; 15.2 cm of asphalt concrete over 10.2 cm of crushed gravel over a clay subgrade; 5.1 cm of asphalt over 17.8 cm of crushed gravel over 20.3 cm of clean sand over a clay subgrade; and 5.1 cm of asphalt concrete over 25.4 cm of crushed gravel over 12.7 cm of clean sand over clay subgrade. Thermocouples were imbedded throughout the pavement structure and subgrade. During the thawing periods, deflection measurements were made at four locations in each test section using a Dynatest Falling Weight Deflectometer (FWD). The results of the deflection measurement are presented here. An analysis was done to qualify the subgrade strength based solely on FDW measurements. It was also shown that a relationship existed between thaw depth and FWD measurement in the subgrade.

  8. Concrete Mixing Methods and Concrete Mixers: State of the Art.

    PubMed

    Ferraris, C F

    2001-01-01

    As for all materials, the performance of concrete is determined by its microstructure. Its microstructure is determined by its composition, its curing conditions, and also by the mixing method and mixer conditions used to process the concrete. This paper gives an overview of the various types of mixing methods and concrete mixers commercially available used by the concrete industry. There are two main types of mixers used: batch mixers and continuous mixers. Batch mixers are the most common. To determine the mixing method best suited for a specific application, factors to be considered include: location of the construction site (distance from the batching plant), the amount of concrete needed, the construction schedule (volume of concrete needed per hour), and the cost. Ultimately, the quality of the concrete produced determines its performance after placement. An important measure of the quality is the homogeneity of the material after mixing. This paper will review mixing methods in regards to the quality of the concrete produced. Some procedures used to determine the effectiveness of the mixing will be examined.

  9. Concrete Mixing Methods and Concrete Mixers: State of the Art

    PubMed Central

    Ferraris, Chiara F.

    2001-01-01

    As for all materials, the performance of concrete is determined by its microstructure. Its microstructure is determined by its composition, its curing conditions, and also by the mixing method and mixer conditions used to process the concrete. This paper gives an overview of the various types of mixing methods and concrete mixers commercially available used by the concrete industry. There are two main types of mixers used: batch mixers and continuous mixers. Batch mixers are the most common. To determine the mixing method best suited for a specific application, factors to be considered include: location of the construction site (distance from the batching plant), the amount of concrete needed, the construction schedule (volume of concrete needed per hour), and the cost. Ultimately, the quality of the concrete produced determines its performance after placement. An important measure of the quality is the homogeneity of the material after mixing. This paper will review mixing methods in regards to the quality of the concrete produced. Some procedures used to determine the effectiveness of the mixing will be examined. PMID:27500029

  10. Review of crumb-rubber modified asphalt concrete technology. Final research report

    SciTech Connect

    Papagiannakis, A.T.; Lougheed, T.J.

    1995-11-01

    This study presents an analysis of the characteristics of crumb-rubber modified (CRM) asphalt pavements. It is comprised of a state-of-the-art literature review and laboratory testing conducted with a Brookfield viscometer. The reaction that occurs between the rubber and asphalt is not a chemical reaction, but rather a diffusion process that includes the physical absorption of aromatic oils from the asphalt into the polymer chain of the rubber. The presence of CRM in asphalt produces a thicker binder, which increases aging and oxidation resistance. The presence of carbon black in CRM improves binder durability. The temperature susceptibility of the mix is reduced, causing more uniform fatigue characteristics. CRM applications have been met with various degrees of success because existing quality control and quality assurance methods have not been developed enough to ensure desired binder properties in the field.

  11. Attenuation of foot pressure during running on four different surfaces: asphalt, concrete, rubber, and natural grass.

    PubMed

    Tessutti, Vitor; Ribeiro, Ana Paula; Trombini-Souza, Francis; Sacco, Isabel C N

    2012-01-01

    The practice of running has consistently increased worldwide, and with it, related lower limb injuries. The type of running surface has been associated with running injury etiology, in addition other factors, such as the relationship between the amount and intensity of training. There is still controversy in the literature regarding the biomechanical effects of different types of running surfaces on foot-floor interaction. The aim of this study was to investigate the influence of running on asphalt, concrete, natural grass, and rubber on in-shoe pressure patterns in adult recreational runners. Forty-seven adult recreational runners ran twice for 40 m on all four different surfaces at 12 ± 5% km · h(-1). Peak pressure, pressure-time integral, and contact time were recorded by Pedar X insoles. Asphalt and concrete were similar for all plantar variables and pressure zones. Running on grass produced peak pressures 9.3% to 16.6% lower (P < 0.001) than the other surfaces in the rearfoot and 4.7% to 12.3% (P < 0.05) lower in the forefoot. The contact time on rubber was greater than on concrete for the rearfoot and midfoot. The behaviour of rubber was similar to that obtained for the rigid surfaces - concrete and asphalt - possibly because of its time of usage (five years). Running on natural grass attenuates in-shoe plantar pressures in recreational runners. If a runner controls the amount and intensity of practice, running on grass may reduce the total stress on the musculoskeletal system compared with the total musculoskeletal stress when running on more rigid surfaces, such as asphalt and concrete.

  12. Environmental performance and mechanical analysis of concrete containing recycled asphalt pavement (RAP) and waste precast concrete as aggregate.

    PubMed

    Erdem, Savaş; Blankson, Marva Angela

    2014-01-15

    The overall objective of this research project was to investigate the feasibility of incorporating 100% recycled aggregates, either waste precast concrete or waste asphalt planning, as replacements for virgin aggregates in structural concrete and to determine the mechanical and environmental performance of concrete containing these aggregates. Four different types of concrete mixtures were designed with the same total water cement ratio (w/c=0.74) either by using natural aggregate as reference or by totally replacing the natural aggregate with recycled material. Ground granulated blast furnace slag (GGBS) was used as a mineral addition (35%) in all mixtures. The test results showed that it is possible to obtain satisfactory performance for strength characteristics of concrete containing recycled aggregates, if these aggregates are sourced from old precast concrete. However, from the perspective of the mechanical properties, the test results indicated that concrete with RAP aggregate cannot be used for structural applications. In terms of leaching, the results also showed that the environmental behaviour of the recycled aggregate concrete is similar to that of the natural aggregate concrete. PMID:24316812

  13. Environmental performance and mechanical analysis of concrete containing recycled asphalt pavement (RAP) and waste precast concrete as aggregate.

    PubMed

    Erdem, Savaş; Blankson, Marva Angela

    2014-01-15

    The overall objective of this research project was to investigate the feasibility of incorporating 100% recycled aggregates, either waste precast concrete or waste asphalt planning, as replacements for virgin aggregates in structural concrete and to determine the mechanical and environmental performance of concrete containing these aggregates. Four different types of concrete mixtures were designed with the same total water cement ratio (w/c=0.74) either by using natural aggregate as reference or by totally replacing the natural aggregate with recycled material. Ground granulated blast furnace slag (GGBS) was used as a mineral addition (35%) in all mixtures. The test results showed that it is possible to obtain satisfactory performance for strength characteristics of concrete containing recycled aggregates, if these aggregates are sourced from old precast concrete. However, from the perspective of the mechanical properties, the test results indicated that concrete with RAP aggregate cannot be used for structural applications. In terms of leaching, the results also showed that the environmental behaviour of the recycled aggregate concrete is similar to that of the natural aggregate concrete.

  14. Early-life study of the FA409 full-depth asphalt-concrete pavement sections

    SciTech Connect

    Hill, H.J.

    1988-01-01

    The Illinois Department of Transportation (IDOT) is currently implementing a mechanistic thickness-design procedure for full-depth asphalt-concrete pavements. This thesis is an early design-life investigation of full-depth asphalt-concrete pavements, constructed on FA409 near Carlyle, Illinois in 1986. Included in the study are: sampling and testing of paving and subgrade materials; extensive non-destructive testing (NDT) using the Falling Weight Deflectometer (FWD); development of techniques for interpreting NDT data; determination of as-built structural characteristics of the various pavement sections; evaluation of subsurface drainage and lime-treated soil behavior; and examination of the validity of the ILLI-PAVE computer model. The simplicity of a full-depth asphalt-concrete pavement allows useful information regarding pavement structure to be determined from FWD surface-deflection data. The ILLI-PAVE model was used in conjunction with statistical methods to quantify, in the form of regression equations or algorithms, the relationship between pavement structure (Tac, Eac, and Eri) and pavement response to FWD loading. Testing of pavement and subgrade material samples as used to validate these algorithms.

  15. Reclaimed manufacturer asphalt roofing shingles in asphalt mixtures. Final research report

    SciTech Connect

    Reed, A.B.

    1999-04-23

    The purpose of this project was to pave a test section using hot mix asphalt with roofing shingle pieces in the wearing and binder courses and to evaluate. The test project near Allentown, PA plus two other test projects in 1998 provide evidence of very good pavement performance. The bituminous concrete mix was modified with shredded shingles with a maximum size of 1/2 inch which added 1% of the asphalt content. The Department issued a statewide Provisional Specification titled Reclaimed Manufacturer Asphalt Roofing Shingles in Plant-Mixed Bituminous Concrete Courses'' on March 15, 1999. New manufacturer asphalt roofing shingle scrap including tab punch-outs can be successfully incorporated in bituminous concrete pavements if the shingles are shredded to 100% passing the 3/4 inch sieve. To take full advantage of the potential to replace a portion of the asphalt and therefore, reduce mix costs, shingles should be shredded to 100% passing minus 1/2 inch sieve.

  16. Laboratory and field evaluation of hot mix asphalt with high contents of reclaimed asphalt pavement

    NASA Astrophysics Data System (ADS)

    Van Winkle, Clinton Isaac

    Currently in Iowa, the amount of RAP materials allowed for the surface layer is limited to 15% by weight. The objective of this project was to develop quality standards for inclusion of RAP content higher than 15% in asphalt mixtures. To meet Superpave mix design requirements, it was necessary to fractionate the RAP materials. Based on the extensive sieve-by-sieve analysis of RAP materials, the optimum sieve size to fractionate RAP materials was identified. To determine if the higher percentage of RAP materials than 15% can be used in Iowa's state highway, three test sections with 30.0%, 35.5% and 39.2% of RAP materials were constructed on Highway 6 in Iowa City. The construction of the field test sections was monitored and the cores were obtained to measure field densities of test sections. Field mixtures collected from test sections were compacted in the laboratory in order to test the moisture sensitivity using a Hamburg Wheel Tracking Device. The binder was extracted from the field mixtures with varying amounts of RAP materials and tested to determine the effects of RAP materials on the PG grade of a virgin binder. Field cores were taken from the various mix designs to determine the percent density of each test section. A condition survey of the test sections was then performed to evaluate the short-term performance.

  17. Effects of reclaimed asphalt pavement on indirect tensile strength test of conditioned foamed asphalt mix

    NASA Astrophysics Data System (ADS)

    Yati Katman, Herda; Rasdan Ibrahim, Mohd; Yazip Matori, Mohd; Norhisham, Shuhairy; Ismail, Norlela

    2013-06-01

    This paper presents the results of Indirect Tensile Strength (ITS) Test for samples prepared with reclaimed asphalt pavement (RAP). Samples were conditioned in water at 25°C for 24 hours prior to testing. Results show that recycled aggregate from reclaimed asphalt pavement performs as well as virgin aggregate.

  18. A review of changes in composition of hot mix asphalt in the United States.

    PubMed

    Mundt, Diane J; Marano, Kristin M; Nunes, Anthony P; Adams, Robert C

    2009-11-01

    This review researched the materials, methods, and practices in the hot mix asphalt industry that might impact future exposure assessments and epidemiologic research on road paving workers. Since World War II, the U.S. interstate highway system, increased traffic volume, transportation speeds, and vehicle axle loads have necessitated an increase in demand for hot mix asphalt for road construction and maintenance, while requiring a consistent road paving product that meets state-specific physical performance specifications. We reviewed typical practices in hot mix asphalt paving in the United States to understand the extent to which materials are and have been added to hot mix asphalt to meet specifications and how changes in practices and technology could affect evaluation of worker exposures for future research. Historical documents were reviewed, and industry experts from 16 states were interviewed to obtain relevant information on industry practices. Participants from all states reported additive use, with most being less than 2% by weight. Crumb rubber and recycled asphalt pavement were added in concentrations approximately 10% per unit weight of the mix. The most frequently added materials included polymers and anti-stripping agents. Crumb rubber, sulfur, asbestos, roofing shingles, slag, or fly ash have been used in limited amounts for short periods of time or in limited geographic areas. No state reported using coal tar as an additive to hot mix asphalt or as a binder alternative in hot mix pavements for high-volume road construction. Coal tar may be present in recycled asphalt pavement from historical use, which would need to be considered in future exposure assessments of pavers. Changes in hot mix asphalt production and laydown emission control equipment have been universally implemented over time as the technology has become available to reduce potential worker exposures. This work is a companion review to a study undertaken in the petroleum refining

  19. Investigation of Self Consolidating Concrete Containing High Volume of Supplementary Cementitious Materials and Recycled Asphalt Pavement Aggregates

    NASA Astrophysics Data System (ADS)

    Patibandla, Varun chowdary

    The use of sustainable technologies such as supplementary cementitiuous materials (SCMs), and/or recycled materials is expected to positively affect the performance of concrete mixtures. However, it is important to study and qualify such mixtures and check if the required specifications of their intended application are met before they can be implemented in practice. This study presents the results of a laboratory investigation of Self Consolidating concrete (SCC) containing sustainable technologies. A total of twelve concrete mixtures were prepared with various combinations of fly ash, slag, and recycled asphalt pavement (RAP). The mixtures were divided into three groups with constant water to cementitiuous materials ratio of 0.37, and based on the RAP content; 0, 25, and 50% of coarse aggregate replaced by RAP. All mixtures were prepared to achieve a target slump flow equal to or higher than 500 mm (24in). A control mixture for each group was prepared with 100% Portland cement whereas all other mixtures were designed to have up to 70% of portland cement replaced by a combination of supplementary cementitiuous materials (SCMs) such as class C fly ash and granulated blast furnace slag. The properties of fresh concrete investigated in this study include flowability, deformability; filling capacity, and resistance to segregation. In addition, the compressive strength at 3, 14, and 28 days, the tensile strength, and the unrestrained shrinkage up to 80 days was also investigated. As expected the inclusion of the sustainable technologies affected both fresh and hardened concrete properties. Analysis of the experimental data indicated that inclusion of RAP not only reduces the ultimate strength, but it also affected the compressive strength development rate. Moreover, several mixes satisfied compressive strength requirements for pavements and bridges; those mixes included relatively high percentages of SCMs and RAP. Based on the results obtained in this study, it is not

  20. Generation of urban road dust from anti-skid and asphalt concrete aggregates.

    PubMed

    Tervahattu, Heikki; Kupiainen, Kaarle J; Räisänen, Mika; Mäkelä, Timo; Hillamo, Risto

    2006-04-30

    Road dust forms an important component of airborne particulate matter in urban areas. In many winter cities the use of anti-skid aggregates and studded tires enhance the generation of mineral particles. The abrasion particles dominate the PM10 during springtime when the material deposited in snow is resuspended. This paper summarizes the results from three test series performed in a test facility to assess the factors that affect the generation of abrasion components of road dust. Concentrations, mass size distribution and composition of the particles were studied. Over 90% of the particles were aluminosilicates from either anti-skid or asphalt concrete aggregates. Mineral particles were observed mainly in the PM10 fraction, the fine fraction being 12% and submicron size being 6% of PM10 mass. The PM10 concentrations increased as a function of the amount of anti-skid aggregate dispersed. The use of anti-skid aggregate increased substantially the amount of PM10 originated from the asphalt concrete. It was concluded that anti-skid aggregate grains contribute to pavement wear. The particle size distribution of the anti-skid aggregates had great impact on PM10 emissions which were additionally enhanced by studded tires, modal composition, and texture of anti-skid aggregates. The results emphasize the interaction of tires, anti-skid aggregate, and asphalt concrete pavement in the production of dust emissions. They all must be taken into account when measures to reduce road dust are considered. The winter maintenance and springtime cleaning must be performed properly with methods which are efficient in reducing PM10 dust. PMID:16426748

  1. Generation of urban road dust from anti-skid and asphalt concrete aggregates.

    PubMed

    Tervahattu, Heikki; Kupiainen, Kaarle J; Räisänen, Mika; Mäkelä, Timo; Hillamo, Risto

    2006-04-30

    Road dust forms an important component of airborne particulate matter in urban areas. In many winter cities the use of anti-skid aggregates and studded tires enhance the generation of mineral particles. The abrasion particles dominate the PM10 during springtime when the material deposited in snow is resuspended. This paper summarizes the results from three test series performed in a test facility to assess the factors that affect the generation of abrasion components of road dust. Concentrations, mass size distribution and composition of the particles were studied. Over 90% of the particles were aluminosilicates from either anti-skid or asphalt concrete aggregates. Mineral particles were observed mainly in the PM10 fraction, the fine fraction being 12% and submicron size being 6% of PM10 mass. The PM10 concentrations increased as a function of the amount of anti-skid aggregate dispersed. The use of anti-skid aggregate increased substantially the amount of PM10 originated from the asphalt concrete. It was concluded that anti-skid aggregate grains contribute to pavement wear. The particle size distribution of the anti-skid aggregates had great impact on PM10 emissions which were additionally enhanced by studded tires, modal composition, and texture of anti-skid aggregates. The results emphasize the interaction of tires, anti-skid aggregate, and asphalt concrete pavement in the production of dust emissions. They all must be taken into account when measures to reduce road dust are considered. The winter maintenance and springtime cleaning must be performed properly with methods which are efficient in reducing PM10 dust.

  2. Chemical aspects of incorporating contaminated soil into cold-mix asphalt

    SciTech Connect

    Testa, S.M.

    1994-12-31

    The chemical aspects associated with the incorporation of petroleum hydrocarbons- and metals-affected soil has been extensively studied in regards to pavement properties, leaching behavior, sensitivities to moisture-damage and function group analysis. These studies provide information that can be used to evaluate the stability of these constituents in soil that have been incorporated as an ingredient in asphalt. These studies also indicate that cold-mix asphalt incorporating contaminated soil will be highly stable and perform adequately as an end product. Maximum chemical performance is achieved when the asphalt is comprised of high contents of pyridinic, phenolic and ketone groups, which can be achieved by selectively choosing the source material. If the situation requires special stability or redundancy, small amounts of shale oil and lime can be used as additives. Situations and conditions which favor the presence of inorganic sulfur, monovalent salts and high strength solutions in the asphalt should be avoided since these conditions decrease the chemical stability of the asphalt cement by disruption of the functional group-aggregate bonds and by increasing the overall permeability. However, these conditions are not typically expected in the anticipated uses of asphalt cement to stabilize contaminants in soil using Environmentally Processed Asphalt{trademark} (EPA{trademark}) or Asphaltic Metals Stabilization{trademark} (AMS{trademark}) remedial technologies.

  3. Environmental impacts of asphalt mixes with electric arc furnace steel slag.

    PubMed

    Milačič, Radmila; Zuliani, Tea; Oblak, Tina; Mladenovič, Ana; Ančar, Janez Šč

    2011-01-01

    Electric arc furnace (EAF) steel slag can be used as an alternative high-quality material in road construction. Although asphalts with slag aggregates have been recognized as environmentally acceptable, there is a lack of data concerning the potential leaching of toxic Cr(VI) due to the highly alkaline media of EAF slag. Leaching of selected water extractable metals from slag indicated elevated concentrations of total chromium and Cr(VI). To estimate the environmental impacts of asphalt mixes with slag, leachability tests based on diffusion were performed using pure water and salt water as leaching agents. Compact and ground asphalt composites with natural aggregates, and asphalt composites in which the natural aggregates were completely replaced by slag were prepared. The concentrations of total chromium and Cr(VI) were determined in leachates over a time period of 6 mo. After 1 and 6 mo, the concentrations of some other metals were also determined in the leachates. The results indicated that chromium in leachates from asphalt composites with the addition of slag was present almost solely in its hexavalent form. However, the concentrations were very low (below 25 μg L) and did not represent an environmental burden. The leaching of other metals from asphalt composites with the addition of slag was negligible. Therefore, the investigated EAF slag can be considered as environmentally safe substitute for natural aggregates in asphalt mixes.

  4. Black curves and creep behaviour of crumb rubber modified binders containing warm mix asphalt additives

    NASA Astrophysics Data System (ADS)

    Gallego, Juan; Rodríguez-Alloza, Ana María; Giuliani, Felice

    2016-08-01

    Warm mix asphalt (WMA) is a new research topic in the field of road pavement materials. This technology allows lower energy consumption and greenhouse gas (GHG) emissions by reducing compaction and placement temperatures of the asphalt mixtures. However, this technology is still under study, and the influence of the WMA additives has yet to be investigated thoroughly and clearly identified, especially in the case of crumb rubber modified (CRM) binders.

  5. Dielectric characterization of hot-mix asphalt at the smart road using GPR

    NASA Astrophysics Data System (ADS)

    Al-Qadi, Imad L.; Loulizi, A.; Lahouar, S.

    2000-04-01

    To better interpret collected ground penetrating radar (GPR) data, a project is currently underway at the Virginia Smart Road. Twelve different flexible pavement sections and a continuously reinforced concrete rigid pavement section are incorporated in the road design. Thirty-five copper plates were placed at different layer interfaces throughout the pavement sections. The copper plates serve as a reflecting material and thus allow the determination of layers' dielectric constant over the GPR frequency range. An initial development of a method to calculate the complex dielectric constant of hot-mix asphalt over the frequency range of 750 to 1750 MHz using an air-coupled GPR system is presented. Utilizing GPR data, this method will be used to predict changes of the dielectric properties of the different SuperPaveTM mixes used at the Smart Road over time. The method is based on equating the overall reflection coefficient as obtained from the radar measurements with the calculated reflection coefficient using electromagnetic theory. The measured overall reflection coefficient is obtained by dividing the reflected frequency spectrum over the incident one. The theoretical overall reflection coefficient is obtained using the multiple reflection model. A Gauss-Newton method is then used to solve for the complex dielectric constant.

  6. Linear viscoelastic limits of asphalt concrete at low and intermediate temperatures

    NASA Astrophysics Data System (ADS)

    Mehta, Yusuf A.

    The purpose of this dissertation is to demonstrate the hypothesis that a region at which the behavior of asphalt concrete can be represented as a linear viscoelastic material can be determined at low and intermediate temperatures considering the stresses and strains typically developed in the pavements under traffic loading. Six mixtures containing different aggregate gradations and nominal maximum aggregate sizes varying from 12.5 to 37.5 mm were used in this study. The asphalt binder grade was the same for all mixtures. The mixtures were compacted to 7 +/- 1% air voids, using the Superpave Gyratory Compactor. Tests were conducted at low temperatures (-20°C and -10°C), using the indirect tensile test machine, and at intermediate temperatures (4°C and 20°C), using the Superpave shear machine. To determine the linear viscoelastic range of asphalt concrete, a relaxation test for 150 s, followed by a creep test for another 150 s, was conducted at 150 and 200 microstrains (1 microstrain = 1 x 10-6), at -20°C, and at 150 and 300 microstrains, at -10°C. A creep test for 200 s, followed by a recovery test for another 200 s, was conducted at stress levels up to 800 kPa at 4°C and up to 500 kPa at 20°C. At -20°C and -10°C, the behavior of the mixtures was linear viscoelastic at 200 and 300 microstrains, respectively. At intermediate temperatures (4°C and 20°C), an envelope defining the linear and nonlinear region in terms of stress as a function of shear creep compliance was constructed for all the mixtures. For creep tests conducted at 20°C, it was discovered that the commonly used protocol to verify the proportionality condition of linear viscoelastic behavior was unable to detect the appearance of nonlinear behavior at certain imposed shear stress levels. Said nonlinear behavior was easily detected, however, when checking the satisfaction of the superposition condition. The envelope constructed for determining when the material becomes nonlinear should be

  7. 77 FR 50651 - Approval and Promulgation of Air Quality Implementation Plans; New Hampshire; Hot Mix Asphalt Plants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-22

    ... AGENCY 40 CFR Part 52 Approval and Promulgation of Air Quality Implementation Plans; New Hampshire; Hot... Hampshire Hot Mix Asphalt Plant Rule at Env-A 2703.02(a). This rule establishes and requires limitations on visible emissions from all hot mix asphalt plants. This revision is consistent with the maintenance of...

  8. Use of pyrolyzed carbon black as additive in hot mix asphalt

    SciTech Connect

    Park, T.; Lee, K.; Salgado, R.; Lovell, C.W.; Coree, B.J.

    1997-11-01

    This paper deals with the performance of mixtures of asphalt, pyrolyzed carbon black (CB{sub p}), and two aggregates (limestone and slag). Marshall mix design was performed to determine the optimum binder content at 5% of air voids. The range of the optimum binder content was 4.2%--5.5% for limestone mixtures and 6.3%--7.8% for slag mixtures, respectively. Dynamic confined creep tests, gyratory tests, resilient modulus tests, indirect tensile tests, and Hamburg wheel tracking tests were carried out using mixtures at the optimum binder content. The test results indicate that the use of CB{sub p} in asphalt pavements increases Marshall stability, decreases permanent strain, decreases the mix strain rate at 50 C and 138 kPa confinement, increases resilient modulus and tensile strength, and increases the stripping inflection point. These results suggest that CB{sub p} improves asphalt pavement performance.

  9. Development of a simplified asphalt mix stability procedure for use in Superpave volumetric mix design

    NASA Astrophysics Data System (ADS)

    Hafez, Ihab Hussein Fahmy

    Over the last five decades, two common test methods (Marshall and Hveem) have evolved for the design of asphaltic mixes. These design methods have been historically found to be generally reliable and reasonable for most application in design. However, premature distress in many flexible pavements suggests that these empirical methods of design do not guarantee a stable mix. Recently, many studies have been carried out in order to develop a rational mix design procedure that accounts for both the mix volumetric properties as well as fundamental engineering properties. Among those is the Superpave design procedure, which was originally divided into three, hierarchical levels termed the volumetric mix design (level I), the abbreviated mix design (level II), and the full mix design (level III). In the volumetric design, the entire mix design process is based upon the volumetric properties and does not include a test method to evaluate the stability/strength of the mix. Although both the abbreviated level and the full level of design included test methods that considered the engineering properties in a complete and a comprehensive manner; they required the purchase of very expensive equipment and a large number of samples to be tested. The objective of this research was to develop a new rational "fundamental" mix strength (stability) test for the design of dense graded mixes to overcome the limitations of the Hveem and Marshall empirical methods and to fill the gaps and major deficiencies in the current Superpave volumetric mix design. The new procedure is based upon the Superpave volumetric design (level I) but is augmented by the simple, but fundamental mix strength (stability) test. Such a test is now currently absent in the existing Superpave approach. The new procedure introduces the flow time as a fundamental engineering design criterion in the mix design. This parameter is defined as the time (in seconds) at which plastic flow in a mix occurs under creep loading

  10. Effects of asphalt rejuvenator on thermal and mechanical properties on oxidized hot mixed asphalt pavements

    NASA Astrophysics Data System (ADS)

    Farace, Nicholas A.; Buttlar, William G.; Reis, Henrique

    2016-04-01

    The utilization of asphalt rejuvenator, and its effectiveness for restoring thermal and mechanical properties was investigated via Disk-shaped Compact Tension (DC(T)) and acoustic emission (AE) testing for determining mechanical properties and embrittlement temperatures of the mixtures. During the DC(T) testing the fracture energies and peak loads were used to measure the resistance of the rejuvenated asphalt to low temperature cracking. The AE testing monitored the acoustic emission activity while the specimens were cooled from room temperature to -40 °C to estimate the temperature at which thermal cracking began (i.e. the embrittlement temperature). First, a baseline response was obtained by obtaining the mechanical and thermal response of virgin HMA samples and HMA samples that had been exposed to oxidative aging for 36 hours at 135°C. The results showed the virgin samples had much higher peak loads and fracture energies than the 36 hours aged samples. Acoustic Emission showed similar results with the virgin samples having embrittlement temperatures 10 °C cooler than the 36 hours aged specimens. Then, overaged for 36 hours specimens were treated different amounts of rejuvenator (10%, 15%, and 20% by weight of binder content) and left to dwell for increased amount of time periods varying from one to eight weeks. It was observed that the AE results showed an improvement of embrittlement temperature with increasing with the dwell times. The 8 weeks specimens had cooler embrittlement temperatures than the virgin specimens. Finally, the low temperature effects on fracture energy and peak load of the rejuvenated asphalt was investigated. Rejuvenator was applied (10% by weight of binder) to specimens aged 36 hours at 135 °C, and the dwell time was varied from 1 to 4 weeks. The results showed that the peak loads were restored to levels of the virgin specimens, and the fracture energies improved to levels beyond that of the virgin specimens. The results also showed a

  11. On the representative volume element of asphalt concrete at low temperature

    NASA Astrophysics Data System (ADS)

    Marasteanu, Mihai; Cannone Falchetto, Augusto; Velasquez, Raul; Le, Jia-Liang

    2016-08-01

    The feasibility of characterizing asphalt mixtures' rheological and failure properties at low temperatures by means of the Bending Beam Rheometer (BBR) is investigated in this paper. The main issue is the use of thin beams of asphalt mixture in experimental procedures that may not capture the true behavior of the material used to construct an asphalt pavement.

  12. A novel technique for the production of cool colored concrete tile and asphalt shingle roofing products

    SciTech Connect

    Levinson, Ronnen; Akbari, Hashem; Berdahl, Paul; Wood, Kurt; Skilton, Wayne; Petersheim, Jerry

    2009-11-20

    The widespread use of solar-reflective roofing materials can save energy, mitigate urban heat islands and slow global warming by cooling the roughly 20% of the urban surface that is roofed. In this study we created prototype solar-reflective nonwhite concrete tile and asphalt shingle roofing materials using a two-layer spray coating process intended to maximize both solar reflectance and factory-line throughput. Each layer is a thin, quick-drying, pigmented latex paint based on either acrylic or a poly(vinylidene fluoride)/acrylic blend. The first layer is a titanium dioxide rutile white basecoat that increases the solar reflectance of a gray-cement concrete tile from 0.18 to 0.79, and that of a shingle surfaced with bare granules from 0.06 to 0.62. The second layer is a 'cool' color topcoat with weak near-infrared (NIR) absorption and/or strong NIR backscattering. Each layer dries within seconds, potentially allowing a factory line to pass first under the white spray, then under the color spray. We combined a white basecoat with monocolor topcoats in various shades of red, brown, green and blue to prepare 24 cool color prototype tiles and 24 cool color prototypes shingles. The solar reflectances of the tiles ranged from 0.26 (dark brown; CIELAB lightness value L* = 29) to 0.57 (light green; L* = 76); those of the shingles ranged from 0.18 (dark brown; L* = 26) to 0.34 (light green; L* = 68). Over half of the tiles had a solar reflectance of at least 0.40, and over half of the shingles had a solar reflectance of at least 0.25.

  13. Seismic joint analysis for non-destructive testing of asphalt and concrete slabs

    USGS Publications Warehouse

    Ryden, N.; Park, C.B.

    2005-01-01

    A seismic approach is used to estimate the thickness and elastic stiffness constants of asphalt or concrete slabs. The overall concept of the approach utilizes the robustness of the multichannel seismic method. A multichannel-equivalent data set is compiled from multiple time series recorded from multiple hammer impacts at progressively different offsets from a fixed receiver. This multichannel simulation with one receiver (MSOR) replaces the true multichannel recording in a cost-effective and convenient manner. A recorded data set is first processed to evaluate the shear wave velocity through a wave field transformation, normally used in the multichannel analysis of surface waves (MASW) method, followed by a Lambwave inversion. Then, the same data set is used to evaluate compression wave velocity from a combined processing of the first-arrival picking and a linear regression. Finally, the amplitude spectra of the time series are used to evaluate the thickness by following the concepts utilized in the Impact Echo (IE) method. Due to the powerful signal extraction capabilities ensured by the multichannel processing schemes used, the entire procedure for all three evaluations can be fully automated and results can be obtained directly in the field. A field data set is used to demonstrate the proposed approach.

  14. Construction and testing of crumb rubber modified hot mix asphalt pavement. Interim report

    SciTech Connect

    Albritton, G.E.; Gatlin, G.R.

    1996-08-01

    This study was structured towards addressing that portion of ISTEA which directs the individual states to conduct studies on the recyclability of crumb rubber modified hot mix asphalt (CRMHMA), and the technical performance of CRMHMA pavement by monitoring the construction and evaluating the performance of highway test sections in which CRMHA is removed by cold milling and recycled into new HMA through a hot mix asphalt plant. This project is to be constructed in two phases, the CRMHMA will be built in the first phase and approximately one year later it will be recycled. This report deals with the first phase in which the objective was to further document the construction, engineering characteristics, and performace of CRMHMA.

  15. Life Cycle Cost Analysis of Ready Mix Concrete Plant

    NASA Astrophysics Data System (ADS)

    Topkar, V. M.; Duggar, A. R.; Kumar, A.; Bonde, P. P.; Girwalkar, R. S.; Gade, S. B.

    2013-11-01

    India, being a developing nation is experiencing major growth in its infrastructural sector. Concrete is the major component in construction. The requirement of good quality of concrete in large quantities can be fulfilled by ready mix concrete batching and mixing plants. The paper presents a technique of applying the value engineering tool life cycle cost analysis to a ready mix concrete plant. This will help an investor or an organization to take investment decisions regarding a ready mix concrete facility. No economic alternatives are compared in this study. A cost breakdown structure is prepared for the ready mix concrete plant. A market survey has been conducted to collect realistic costs for the ready mix concrete facility. The study establishes the cash flow for the ready mix concrete facility helpful in investment and capital generation related decisions. Transit mixers form an important component of the facility and are included in the calculations. A fleet size for transit mixers has been assumed for this purpose. The life cycle cost has been calculated for the system of the ready mix concrete plant and transit mixers.

  16. Evaluation of ASTM test method D 4867, effect of moisture on asphalt concrete paving mixtures. Final report, May 1995--May 1997

    SciTech Connect

    Stuart, K.D.

    1998-09-01

    The moisture sensitivities of 21 dense-graded asphalt pavements were predicted in 1987 using American Society for Testing and Materials (ASTM) Test Method D 4867, Effect of Moisture on Asphalt Concrete Paving Mixtures. Tests were performed on cores taken from the pavements. The air-void levels of the cores varied from pavement to pavement. In 1995 and 1996, cores were again taken from the pavements to ascertain whether the test method correctly predicted performance. Pavement distress surveys were also performed.

  17. Clogging evaluation of porous asphalt concrete cores in conjunction with medical x-ray computed tomography

    NASA Astrophysics Data System (ADS)

    Su, Yu-Min; Hsu, Chen-Yu; Lin, Jyh-Dong

    2014-03-01

    This study was to assess the porosity of Porous Asphalt Concrete (PAC) in conjunction with a medical X-ray computed tomography (CT) facility. The PAC was designed as the surface course to achieve the target porosity 18%. There were graded aggregates, soils blended with 50% of coarse sand, and crushed gravel wrapped with geotextile compacted and served as the base, subbase, and infiltration layers underneath the PAC. The test site constructed in 2004 is located in Northern of Taiwan in which the daily traffic has been light and limited. The porosity of the test track was investigated. The permeability coefficient of PAC was found severely degraded from 2.2×10-1 to 1.2×10-3 -cm/sec, after nine-year service, while the permeability below the surface course remained intact. Several field PAC cores were drilled and brought to evaluate the distribution of air voids by a medical X-ray CT nondestructively. The helical mode was set to administrate the X-ray CT scan and two cross-sectional virtual slices were exported in seconds for analyzing air voids distribution. It shows that the clogging of voids occurred merely 20mm below the surface and the porosity can reduce as much about 3%. It was also found that the roller compaction can decrease the porosity by 4%. The permeability reduction in this test site can attribute to the voids of PAC that were compacted by roller during the construction and filled by the dusts on the surface during the service.

  18. Biodesulfurization of model compounds and de-asphalted bunker oil by mixed culture.

    PubMed

    Jiang, Xia; Yang, Senlin; Li, Wangling

    2014-01-01

    In this study, complicated model sulfur compounds in bunker oil and de-asphalted bunker oil were biodesulfurized in a batch process by microbial consortium enriched from oil sludge. Dibenzothiophene (DBT) and benzo[b]naphtho[1,2-d]thiophene (BNT1) were selected as model sulfur compounds. The results show that the mixed culture was able to grow by utilizing DBT and BNT1 as the sole sulfur source, while the cell density was higher using DBT than BNT1 as the sulfur source. GC-MS analysis of their desulfurized metabolites indicates that both DBT and BNT1 could be desulfurized through the sulfur-specific degradation pathway with the selective cleavage of carbon-sulfur bonds. When DBT and BNT1 coexisted, the biodesulfurization efficiency of BNT1 decreased significantly as the DBT concentrations increased (>0.1 mmol/L). BNT1 desulfurization efficiency also decreased along with the increase of 2-hydroxybiphenyl as the end product of DBT desulfurization. For real bunker oil, only 2.8 % of sulfur was removed without de-asphalting after 7 days of biotreatment. After de-asphalting, the biodesulfurization efficiency was significantly improved (26.2-36.5 %), which is mainly attributed to fully mixing of the oil and water due to the decreased viscosity of bunker oil. PMID:24046256

  19. Evaluation of low temperature cracking in asphalt pavement mixes. Technical report

    SciTech Connect

    Ksaibati, K.; Erickson, R.

    1998-10-01

    This report examines the feasibility of using the thermal stress restrained specimen test to evaluate low temperature cracking in asphalt pavement mixes. Data were collected from laboratory and field evaluations. Various mixing, aging, and compaction methods were used to prepare test samples with materials obtained from two WYDOT highway projects. Field data were obtained from two recently built test sections to compare with laboratory test results. Pavement condition surveys quantified low temperature cracking of both test sections after one winter. Temperature data for these projects sites were also collected. Pavement condition and temperature data were compared to results from the thermal stress restrained specimen test.

  20. Long-term evaluation of the fate of sulfur mustard on dry and humid soils, asphalt, and concrete.

    PubMed

    Mizrahi, Dana M; Goldvaser, Michael; Columbus, Ishay

    2011-04-15

    The long-term fate of the blister agent sulfur mustard (HD, bis(2-chloroethyl)sulfide) was determined in a variety of commercial and natural matrices. HD was found to be extremely stable in dry matrices for over a year. The addition of 5% water to the matrices induced slow degradation of HD, which lasted several months. The major degradation product in sands and asphalt was found to be a sulfonium salt, S[CH(2)CH(2)S(+)(CH(2)CH(2)OH)(2)](2) (H-2TG). Red loam soil, which has not been examined before, exhibited strong interaction with HD, both in dry form and in the presence of water. Humid red loam soil gave rise to unique oxidative degradation products. On humid concrete HD degraded to a complex mixture of products, including vinyls. This may be attributed to the basic sites incorporated in concrete.

  1. Long-term evaluation of the fate of sulfur mustard on dry and humid soils, asphalt, and concrete.

    PubMed

    Mizrahi, Dana M; Goldvaser, Michael; Columbus, Ishay

    2011-04-15

    The long-term fate of the blister agent sulfur mustard (HD, bis(2-chloroethyl)sulfide) was determined in a variety of commercial and natural matrices. HD was found to be extremely stable in dry matrices for over a year. The addition of 5% water to the matrices induced slow degradation of HD, which lasted several months. The major degradation product in sands and asphalt was found to be a sulfonium salt, S[CH(2)CH(2)S(+)(CH(2)CH(2)OH)(2)](2) (H-2TG). Red loam soil, which has not been examined before, exhibited strong interaction with HD, both in dry form and in the presence of water. Humid red loam soil gave rise to unique oxidative degradation products. On humid concrete HD degraded to a complex mixture of products, including vinyls. This may be attributed to the basic sites incorporated in concrete. PMID:21438603

  2. Prediction of Frequency for Simulation of Asphalt Mix Fatigue Tests Using MARS and ANN

    PubMed Central

    Fakhri, Mansour

    2014-01-01

    Fatigue life of asphalt mixes in laboratory tests is commonly determined by applying a sinusoidal or haversine waveform with specific frequency. The pavement structure and loading conditions affect the shape and the frequency of tensile response pulses at the bottom of asphalt layer. This paper introduces two methods for predicting the loading frequency in laboratory asphalt fatigue tests for better simulation of field conditions. Five thousand (5000) four-layered pavement sections were analyzed and stress and strain response pulses in both longitudinal and transverse directions was determined. After fitting the haversine function to the response pulses by the concept of equal-energy pulse, the effective length of the response pulses were determined. Two methods including Multivariate Adaptive Regression Splines (MARS) and Artificial Neural Network (ANN) methods were then employed to predict the effective length (i.e., frequency) of tensile stress and strain pulses in longitudinal and transverse directions based on haversine waveform. It is indicated that, under controlled stress and strain modes, both methods (MARS and ANN) are capable of predicting the frequency of loading in HMA fatigue tests with very good accuracy. The accuracy of ANN method is, however, more than MARS method. It is furthermore shown that the results of the present study can be generalized to sinusoidal waveform by a simple equation. PMID:24688400

  3. Plastometry for the Self-Compacting Concrete Mixes

    NASA Astrophysics Data System (ADS)

    Lapsa, V. Ā.; Krasnikovs, A.; Lusis, V.; Lukasenoks, A.

    2015-11-01

    Operative determination of consistence of self-compacting concrete mixes at plant or in construction conditions is an important problem in building practice. The Abram's cone, the Vebe's device, the U-box siphon, L-box or funnel tests are used in solving this problem. However, these field methods are targeted at determination of some indirect parameters of such very complicated paste-like material like concrete mix. They are not physical characteristics suitable for the rheological calculations of the coherence between the stress and strains, flow characteristics and the reaction of the concrete mix in different technological processes. A conical plastometer having higher precision and less sensitive to the inaccuracy of the tests in construction condition has been elaborated at the Concrete Mechanics Laboratory of RTU. In addition, a new method was elaborated for the calculation of plasticity limit τ0 taking into account the buoyancy force of the liquid or non-liquid concrete mix. In the present investigation rheological test of the concrete mix by use the plastometer and the method mentioned earlier was conducted for different self-compacting and not self-compacting concrete mixes.

  4. Characterization of asphalt and asphalt recyclability

    SciTech Connect

    Painter, P.C.

    1993-10-01

    The goal of the research program was to construct a simple model and computer programs that will allow at least a qualitative understand of the phase behavior of asphalt (i.e., how asphalt components mix with one another), mixtures of different types of asphalt (i.e., in recycling) and mixtures of asphalt with other materials, such as synthetic polymers. The authors have constructed such a model and computer programs (for Macintosh computers) that allow such calculations to be performed easily.

  5. Asphalt coking method

    SciTech Connect

    Bonilla, J.A.; Elliott, J.D.

    1987-08-11

    A process is described for treating a heavy hydrocarbon fluid containing asphaltenes comprising: contacting the heavy hydrocarbon fluid with a solvent, wherein the solvent is light naphtha, C/sub 4/ hydrocarbons, C/sub 5/ hydrocarbons, C/sub 6/ hydrocarbons, or a mixture of any of light naphtha and C/sub 4/, C/sub 5/ and C/sub 6/ hydrocarbons, to obtain an asphalt mix, containing asphalt and the solvent, and deasphalted oil mix, containing deasphalted oil and the solvent; feeding the asphalt mix to a delayed coking process to form coke, wherein the asphalt mix is heated by passing the asphalt mix through conduit means in a heater in the delayed coking process. The flow of the asphalt mix through the conduit means is assisted by vaporization in the heater of the solvent in the asphalt mix, and the asphalt mix includes sufficient solvent to provide a residence time of the asphalt mix in the heater adequate for heating the asphalt mix for coking while reducing the formation of coke in the heater; separating the solvent in the deasphalted oil mix from the deasphalted oil mix to yield deasphalted oil; and recovering the deasphalted oil, bypassing the delayed coking process.

  6. Photoactive roadways: Determination of CO, NO and VOC uptake coefficients and photolabile side product yields on TiO2 treated asphalt and concrete

    NASA Astrophysics Data System (ADS)

    Toro, C.; Jobson, B. T.; Haselbach, L.; Shen, S.; Chung, S. H.

    2016-08-01

    This work reports uptake coefficients and by-product yields of ozone precursors onto two photocatalytic paving materials (asphalt and concrete) treated with a commercial TiO2 surface application product. The experimental approach used a continuously stirred tank reactor (CSTR) and allowed for testing large samples with the same surface morphology encountered with real urban surfaces. The measured uptake coefficient (γgeo) and surface resistances are useful for parametrizing dry deposition velocities in air quality model evaluation of the impact of photoactive surfaces on urban air chemistry. At 46% relative humidity, the surface resistance to NO uptake was ∼1 s cm-1 for concrete and ∼2 s cm-1 for a freshly coated older roadway asphalt sample. HONO and NO2 were detected as side products from NO uptake to asphalt, with NO2 molar yields on the order of 20% and HONO molar yields ranging between 14 and 33%. For concrete samples, the NO2 molar yields increased with the increase of water vapor, ranging from 1% to 35% and HONO was not detected as a by-product. Uptake of monoaromatic VOCs to the asphalt sample set displayed a dependence on the compound vapor pressure, and was influenced by competitive adsorption from less volatile VOCs. Formaldehyde and acetaldehyde were detected as byproducts, with molar yields ranging from 5 to 32%.

  7. Analysis of Adhesive Characteristics of Asphalt Based on Atomic Force Microscopy and Molecular Dynamics Simulation.

    PubMed

    Xu, Meng; Yi, Junyan; Feng, Decheng; Huang, Yudong; Wang, Dongsheng

    2016-05-18

    Asphalt binder is a very important building material in infrastructure construction; it is commonly mixed with mineral aggregate and used to produce asphalt concrete. Owing to the large differences in physical and chemical properties between asphalt and aggregate, adhesive bonds play an important role in determining the performance of asphalt concrete. Although many types of adhesive bonding mechanisms have been proposed to explain the interaction forces between asphalt binder and mineral aggregate, few have been confirmed and characterized. In comparison with chemical interactions, physical adsorption has been considered to play a more important role in adhesive bonding between asphalt and mineral aggregate. In this study, the silicon tip of an atomic force microscope was used to represent silicate minerals in aggregate, and a nanoscale analysis of the characteristics of adhesive bonding between asphalt binder and the silicon tip was conducted via an atomic force microscopy (AFM) test and molecular dynamics (MD) simulations. The results of the measurements and simulations could help in better understanding of the bonding and debonding procedures in asphalt-aggregate mixtures during hot mixing and under traffic loading. MD simulations on a single molecule of a component of asphalt and monocrystalline silicon demonstrate that molecules with a higher atomic density and planar structure, such as three types of asphaltene molecules, can provide greater adhesive strength. However, regarding the real components of asphalt binder, both the MD simulations and AFM test indicate that the colloidal structural behavior of asphalt also has a large influence on the adhesion behavior between asphalt and silicon. A schematic model of the interaction between asphalt and silicon is presented, which can explain the effect of aging on the adhesion behavior of asphalt. PMID:27115043

  8. Analysis of Adhesive Characteristics of Asphalt Based on Atomic Force Microscopy and Molecular Dynamics Simulation.

    PubMed

    Xu, Meng; Yi, Junyan; Feng, Decheng; Huang, Yudong; Wang, Dongsheng

    2016-05-18

    Asphalt binder is a very important building material in infrastructure construction; it is commonly mixed with mineral aggregate and used to produce asphalt concrete. Owing to the large differences in physical and chemical properties between asphalt and aggregate, adhesive bonds play an important role in determining the performance of asphalt concrete. Although many types of adhesive bonding mechanisms have been proposed to explain the interaction forces between asphalt binder and mineral aggregate, few have been confirmed and characterized. In comparison with chemical interactions, physical adsorption has been considered to play a more important role in adhesive bonding between asphalt and mineral aggregate. In this study, the silicon tip of an atomic force microscope was used to represent silicate minerals in aggregate, and a nanoscale analysis of the characteristics of adhesive bonding between asphalt binder and the silicon tip was conducted via an atomic force microscopy (AFM) test and molecular dynamics (MD) simulations. The results of the measurements and simulations could help in better understanding of the bonding and debonding procedures in asphalt-aggregate mixtures during hot mixing and under traffic loading. MD simulations on a single molecule of a component of asphalt and monocrystalline silicon demonstrate that molecules with a higher atomic density and planar structure, such as three types of asphaltene molecules, can provide greater adhesive strength. However, regarding the real components of asphalt binder, both the MD simulations and AFM test indicate that the colloidal structural behavior of asphalt also has a large influence on the adhesion behavior between asphalt and silicon. A schematic model of the interaction between asphalt and silicon is presented, which can explain the effect of aging on the adhesion behavior of asphalt.

  9. Use of ready-mixed concrete plant sludge water in concrete containing an additive or admixture.

    PubMed

    Chatveera, B; Lertwattanaruk, P

    2009-04-01

    In this study, we investigated the feasibility of using sludge water from a ready-mixed concrete plant as mixing water in concrete containing either fly ash as an additive or a superplasticizer admixture based on sulfonated naphthalene-formaldehyde condensates (SNF). The chemical and physical properties of the sludge water and the dry sludge were investigated. Cement pastes were mixed using sludge water containing various levels of total solids content (0.5, 2.5, 5, 7.5, 10, 12.5, and 15%) in order to determine the optimum content in the sludge water. Increasing the total solids content beyond 5-6% tended to reduce the compressive strength and shorten the setting time. Concrete mixes were then prepared using sludge water containing 5-6% total solids content. The concrete samples were evaluated with regard to water required, setting time, slump, compressive strength, permeability, and resistance to acid attack. The use of sludge water in the concrete mix tended to reduce the effect of both fly ash and superplasticizer. Sludge water with a total solids content of less than 6% is suitable for use in the production of concrete with acceptable strength and durability.

  10. Evaluation and verification of two systems for mechanistic structural design of asphalt concrete pavements in Nebraska

    NASA Astrophysics Data System (ADS)

    Sneddon, R. V.

    1982-07-01

    The VESY-3-A mechanistic design system for asphalt pavements was field verified for three pavement sections at two test sites in Nebraska. PSI predictions from VESYS were in good agreement with field measurements for a 20 year old 3 layer pavement located near Elmwood, Nebraska. Field measured PSI values for an 8 in. full depth pavement also agreed with VESYS predictions for the study period. Rut depth estimates from the model were small and were in general agreement with field measurements. Cracking estimates were poor and tended to underestimate the time required to develop observable fatigue cracking in the field. Asphalt, base course and subgrade materials were tested in a 4.0 in. diameter modified triaxial cell. Test procedures used dynamic conditioning and rest periods to simulate service conditions.

  11. Preparation of capsules containing rejuvenators for their use in asphalt concrete.

    PubMed

    García, Alvaro; Schlangen, Erik; van de Ven, Martin; Sierra-Beltrán, Guadalupe

    2010-12-15

    Every year, there is a demand of more than 110 million metric tons of asphalt all around the world. This represents a huge amount of money and energy, from which a good part is for the preservation and renovation of the existing pavements. The problem of asphalt is that it oxidizes with time and therefore its beneficial properties disappear. Traditionally, rejuvenators spread in the road surface, are used to restore the original properties of the pavement. The problem is that, for a rejuvenator to be successful, it must penetrate the pavement surface. Furthermore, application of a rejuvenator will reduce the skid resistance of the pavement and, besides, rejuvenators have many aromatic compounds that can be harmful for the environment. To solve these problems this paper introduces a new concept in road construction: encapsulated rejuvenators. The basic principle is that when the stress in capsules embedded in the asphalt reaches a certain threshold value, the capsules break and some rejuvenator is released, restoring the original properties of the pavement. This paper will show how to prepare such capsules and how to determine their characteristics. This is one of the first steps towards intelligent pavements. PMID:20855160

  12. 2D and 3D Ground Penetrating Radar monitoring of a reinforced concrete asphalt plate affected by mechanical deformation.

    NASA Astrophysics Data System (ADS)

    Bavusi, M.; Dumoulin, J.; Loperte, A.; Rizzo, E.; Soldovieri, F.

    2012-04-01

    The main facility of Hydrogeosite Laboratory of the Italian National Research Council (Marsico Nuovo, CNR) is a 3m x 7m x 10m reinforced concrete pool filled by siliceous sand designed for hydrologic experiments. One of its peculiarities is the possibility to vary the water table depth by using a proper hydraulic system [1]. In the framework of the FP7 ISTIMES project (Integrated System for Transport Infrastructure surveillance and Monitoring by Electromagnetic Sensing), a 3m x 3m layered structure has been purposely built and placed in the pool of the Hydrogeosite Laboratory with the aim to carry out a long term monitoring, by using jointly several electromagnetic sensing technologies, during two different phases simulating the rising of the water table and a mechanical solicitation. Several layers composed the structure from the top to the bottom, such as: 5 cm of asphalt; 5-10 cm of reinforced concrete; 20-25 cm of conglomerate, 55 cm of sand. Moreover, in the sand layer, three (metallic and plastic) pipes of different size were buried to simulate utilities. Ground Penetrating Radar (GPR) surveys were performed by using a the GSSI SIR 3000 system equipped with 400 MHz and 1500 MHz central frequency antennas. Surveys carried out by means of 400 MHz antenna allowed to detect and localize the three pipes (one in plastic and two in metal) and to investigate the effects of the sand water content on their radar signature. Surveys carried out by using 1500 MHz antenna were focused to characterize the shallower layers of the structure. The Hydrogeosite experiment consisted in following stages: • Arising of a water table by infiltration from the bottom; • Water gravity infiltration condescendingly; • Infiltration by peristaltic pump in the very shallow layers of the structure; • Water table drawdown; • Mechanical structure deformation; • Asphalt plate restoration after mechanical solicitation. After each stage a series of GPR surveys was performed. Moreover

  13. Use of selected waste materials in concrete mixes

    SciTech Connect

    Batayneh, Malek Marie, Iqbal; Asi, Ibrahim

    2007-07-01

    A modern lifestyle, alongside the advancement of technology has led to an increase in the amount and type of waste being generated, leading to a waste disposal crisis. This study tackles the problem of the waste that is generated from construction fields, such as demolished concrete, glass, and plastic. In order to dispose of or at least reduce the accumulation of certain kinds of waste, it has been suggested to reuse some of these waste materials to substitute a percentage of the primary materials used in the ordinary portland cement concrete (OPC). The waste materials considered to be recycled in this study consist of glass, plastics, and demolished concrete. Such recycling not only helps conserve natural resources, but also helps solve a growing waste disposal crisis. Ground plastics and glass were used to replace up to 20% of fine aggregates in concrete mixes, while crushed concrete was used to replace up to 20% of coarse aggregates. To evaluate these replacements on the properties of the OPC mixes, a number of laboratory tests were carried out. These tests included workability, unit weight, compressive strength, flexural strength, and indirect tensile strength (splitting). The main findings of this investigation revealed that the three types of waste materials could be reused successfully as partial substitutes for sand or coarse aggregates in concrete mixtures.

  14. Measurement of Workability of Fresh Concrete Using a Mixing Truck.

    PubMed

    Amziane, Sofiane; Ferraris, Chiara F; Koehler, Eric P

    2005-01-01

    The main objective of this study is to evaluate the workability of fresh portland cement concrete while it is still in the mixing truck by determining fundamental rheological parameters (plastic viscosity and yield stress). Nine concrete mixtures with different values of yield stress and plastic viscosity were tested in a concrete truck. The measurements made with the truck were based on the typical method of determining the flow behavior in a traditional fluid rheometer; that is, the shear rate in the mixing truck was swept from high to low by varying the rotation speed of the drum. The results of these experiments are discussed and compared with data provided by the ICAR rheometer, a portable rheometer designed for measuring concrete rheology. The test results indicate that the mixing truck equipment is sufficiently sensitive to detect differences in yield stress, slump, and plastic viscosity. However, the plastic viscosity determined by the truck measurement did not correlate with plastic viscosity as measured by the ICAR rheometer, while the yield stress determined by the truck measurement did correlate well with the measured slump and the ICAR rheometer results Suggestions are given on how to improve the mixing truck for better use as a rheometer.

  15. Measurement of Workability of Fresh Concrete Using a Mixing Truck

    PubMed Central

    Amziane, Sofiane; Ferraris, Chiara F.; Koehler, Eric P.

    2005-01-01

    The main objective of this study is to evaluate the workability of fresh portland cement concrete while it is still in the mixing truck by determining fundamental rheological parameters (plastic viscosity and yield stress). Nine concrete mixtures with different values of yield stress and plastic viscosity were tested in a concrete truck. The measurements made with the truck were based on the typical method of determining the flow behavior in a traditional fluid rheometer; that is, the shear rate in the mixing truck was swept from high to low by varying the rotation speed of the drum. The results of these experiments are discussed and compared with data provided by the ICAR rheometer, a portable rheometer designed for measuring concrete rheology. The test results indicate that the mixing truck equipment is sufficiently sensitive to detect differences in yield stress, slump, and plastic viscosity. However, the plastic viscosity determined by the truck measurement did not correlate with plastic viscosity as measured by the ICAR rheometer, while the yield stress determined by the truck measurement did correlate well with the measured slump and the ICAR rheometer results Suggestions are given on how to improve the mixing truck for better use as a rheometer. PMID:27308103

  16. 11. Buttress rising above stream bed elevation. Concrete mixing plant ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. Buttress rising above stream bed elevation. Concrete mixing plant is at right, west tower and placement tower boom are visible. Photographer unknown, November 24, 1926. Source: Ralph Pleasant. - Waddell Dam, On Agua Fria River, 35 miles northwest of Phoenix, Phoenix, Maricopa County, AZ

  17. Emissions of polycyclic aromatic hydrocarbons from batch hot mix asphalt plants.

    PubMed

    Lee, Wen-Jhy; Chao, Wen-Hui; Shih, Minliang; Tsai, Cheng-Hsien; Chen, Thomas Jeng-Ho; Tsai, Perng-Jy

    2004-10-15

    This study was set out to assess the characteristics of polycyclic aromatic hydrocarbon (PAH) emissions from batch hot mix asphalt (HMA) plants and PAH removal efficiencies associated with their installed air pollution control devices. Field samplings were conducted on six randomly selected batch HMA plants. For each selected plant, stack flue gas samples were collected from both stacks of the batch mixer (n = 5) and the preheating boiler (n = 5), respectively. PAH samples were also collected from the field to assess PAHs that were directly emitted from the discharging chute (n = 3). To assess PAH removal efficiencies of the installed air pollution control devices, PAH contents in both cyclone fly ash (n=3) and bag filter fly ash (n = 3) were analyzed. Results show that the total PAH concentration (mean; RSD) in the stack flue gas of the batch mixer (354 microg/Nm3; 78.5%) was higher than that emitted from the discharging chute (107 microg/Nm3; 70.1%) and that in the stack flue gas of the preheating boiler (83.7 microg/Nm3; 77.6%). But the total BaPeq concentration of that emitted from the discharging chute (0.950 microg/Nm3; 84.4%) was higher than contained in the stack flue gas of the batch mixer (0.629 microg/Nm3; 86.8%) and the stack flue gas of the preheating boiler (= 0.112 microg/Nm3; 80.3%). The mean total PAH emission factor for all selected batch mix plants (= 139 mg/ton x product) was much higher than that reported by U.S. EPA for the drum mix asphalt plant (range = 11.8-79.0 mg/ton x product). We found the overall removal efficiency of the installed air pollution control devices (i.e., cyclone + bag filter) on total PAHs and total BaPeq were 22.1% and 93.7%, respectively. This implies that the installed air pollution control devices, although they have a very limited effect on the removal of total PAHs, do significantly reduce the carcinogenic potencies associated with PAH emissions from batch HMA plants.

  18. Evaluation of concrete recycling system efficiency for ready-mix concrete plants.

    PubMed

    Vieira, Luiz de Brito Prado; Figueiredo, Antonio Domingues de

    2016-10-01

    The volume of waste generated annually in concrete plants is quite large and has important environmental and economic consequences. The use of fresh concrete recyclers is an interesting way for the reuse of aggregates and water in new concrete production. This paper presents a study carried out for over one year by one of the largest ready-mix concrete producers in Brazil. This study focused on the evaluation of two recyclers with distinct material separation systems, herein referred to as drum-type and rotary sieve-type equipment. They were evaluated through characterization and monitoring test programs to verify the behaviour of recovered materials (aggregates, water, and slurry). The applicability of the recovered materials (water and aggregates) was also evaluated in the laboratory and at an industrial scale. The results obtained with the two types of recyclers used were equivalent and showed no significant differences. The only exception was in terms of workability. The drum-type recycler generated fewer cases that required increased pumping pressure. The analysis concluded that the use of untreated slurry is unfeasible because of its intense negative effects on the strength and workability of concrete. The reclaimed water, pre-treated to ensure that its density is less than 1.03g/cm(3), can be used on an industrial scale without causing any harm to the concrete. The use of recovered aggregates consequently induces an increase in water demand and cement consumption to ensure the workability conditions of concrete that is proportional to the concrete strength level. Therefore, the viability of their use is restricted to concretes with characteristic strengths lower than 25MPa.

  19. Evaluation of concrete recycling system efficiency for ready-mix concrete plants.

    PubMed

    Vieira, Luiz de Brito Prado; Figueiredo, Antonio Domingues de

    2016-10-01

    The volume of waste generated annually in concrete plants is quite large and has important environmental and economic consequences. The use of fresh concrete recyclers is an interesting way for the reuse of aggregates and water in new concrete production. This paper presents a study carried out for over one year by one of the largest ready-mix concrete producers in Brazil. This study focused on the evaluation of two recyclers with distinct material separation systems, herein referred to as drum-type and rotary sieve-type equipment. They were evaluated through characterization and monitoring test programs to verify the behaviour of recovered materials (aggregates, water, and slurry). The applicability of the recovered materials (water and aggregates) was also evaluated in the laboratory and at an industrial scale. The results obtained with the two types of recyclers used were equivalent and showed no significant differences. The only exception was in terms of workability. The drum-type recycler generated fewer cases that required increased pumping pressure. The analysis concluded that the use of untreated slurry is unfeasible because of its intense negative effects on the strength and workability of concrete. The reclaimed water, pre-treated to ensure that its density is less than 1.03g/cm(3), can be used on an industrial scale without causing any harm to the concrete. The use of recovered aggregates consequently induces an increase in water demand and cement consumption to ensure the workability conditions of concrete that is proportional to the concrete strength level. Therefore, the viability of their use is restricted to concretes with characteristic strengths lower than 25MPa. PMID:27478022

  20. Recycled materials in asphalt pavements. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect

    Not Available

    1994-05-01

    The bibliography contains citations concerning the recycling of asphalt pavement materials, and the use of other recycled materials to manufacture asphalt pavement. Articles discuss methods used for recycling bituminous pavement including hot-mix and cold-mix. Materials used to improve recycled pavement, and recycled materials used in asphalt pavement include latexes, rubber scrap such as tires, glass shards, concretes, dusts, waste oils, roofing wastes, sulfur, and metal refining sludges. Testing and evaluation of recycled pavements both in laboratories and in test cases are considered. (Contains a minimum of 160 citations and includes a subject term index and title list.)

  1. Quality and seasonal variation of rainwater harvested from concrete, asphalt, ceramic tile and green roofs in Chongqing, China.

    PubMed

    Zhang, Qianqian; Wang, Xiaoke; Hou, Peiqiang; Wan, Wuxing; Li, Ruida; Ren, Yufen; Ouyang, Zhiyun

    2014-01-01

    There is an urgent requirement to examine the quality of harvested rainwater for potable and non-potable purposes, based on the type of roofing material. In this study, we examined the effect on the quality of harvested rainwater of conventional roofing materials (concrete, asphalt and ceramic tile roofs) compared with alternative roofing materials (green roof). The results showed that the ceramic tile roof was the most suitable for rainwater-harvesting applications because of the lower concentrations of leachable pollutants. However, in this study, the green roof was not suitable for rainwater harvesting applications. In addition, seasonal trends in water quality parameters showed that pollutants in roof runoff in summer and autumn were lower than those in winter and spring. This study revealed that the quality of harvested rainwater was significantly affected by the roofing material; therefore, local government and urban planners should develop stricter testing programs and produce more weathering resistant roofing materials to allow the harvesting of rainwater for domestic and public uses. PMID:24316751

  2. Quality and seasonal variation of rainwater harvested from concrete, asphalt, ceramic tile and green roofs in Chongqing, China.

    PubMed

    Zhang, Qianqian; Wang, Xiaoke; Hou, Peiqiang; Wan, Wuxing; Li, Ruida; Ren, Yufen; Ouyang, Zhiyun

    2014-01-01

    There is an urgent requirement to examine the quality of harvested rainwater for potable and non-potable purposes, based on the type of roofing material. In this study, we examined the effect on the quality of harvested rainwater of conventional roofing materials (concrete, asphalt and ceramic tile roofs) compared with alternative roofing materials (green roof). The results showed that the ceramic tile roof was the most suitable for rainwater-harvesting applications because of the lower concentrations of leachable pollutants. However, in this study, the green roof was not suitable for rainwater harvesting applications. In addition, seasonal trends in water quality parameters showed that pollutants in roof runoff in summer and autumn were lower than those in winter and spring. This study revealed that the quality of harvested rainwater was significantly affected by the roofing material; therefore, local government and urban planners should develop stricter testing programs and produce more weathering resistant roofing materials to allow the harvesting of rainwater for domestic and public uses.

  3. Excess Foundry Sand Characterization and Experimental Investigation in Controlled Low-Strength Material and Hot-Mixing Asphalt

    SciTech Connect

    Pauul J. Tikalsky

    2004-10-31

    This report provides technical data regarding the reuse of excess foundry sand. The report addresses three topics: (1) a statistically sound evaluation of the characterization of foundry sand, (2) a laboratory investigation to qualify excess foundry sand as a major component in controlled low-strength material (CLSM), and (3) the identification of the best methods for using foundry sand as a replacement for natural aggregates for construction purposes, specifically in asphalt paving materials. The survival analysis statistical technique was used to characterize foundry sand over a full spectrum of general chemical parameters, metallic elements, and organic compounds regarding bulk analysis and leachate characterization. Not limited to characterization and environmental impact, foundry sand was evaluated by factor analyses, which contributes to proper selection of factor and maximization of the reuse marketplace for foundry sand. Regarding the integration of foundry sand into CLSM, excavatable CLSM and structural CLSM containing different types of excess foundry sands were investigated through laboratory experiments. Foundry sand was approved to constitute a major component in CLSM. Regarding the integration of foundry sand into asphalt paving materials, the optimum asphalt content was determined for each mixture, as well as the bulk density, maximum density, asphalt absorption, and air voids at N{sub ini}, N{sub des}, and N{sub max}. It was found that foundry sands can be used as an aggregate in hot-mix asphalt production, but each sand should be evaluated individually. Foundry sands tend to lower the strength of mixtures and also may make them more susceptible to moisture damage. Finally, traditional anti-stripping additives may decrease the moisture sensitivity of a mixture containing foundry sand, but not to the level allowed by most highway agencies.

  4. Excess Foundry Sand Characterization and Experimental Investigation in Controlled Low-Strength Material and Hot-Mixing Asphalt

    SciTech Connect

    Tikalsky, Paul J.; Bahia, Hussain U.; Deng, An; Snyder, Thomas

    2004-10-15

    This report provides technical data regarding the reuse of excess foundry sand. The report addresses three topics: a statistically sound evaluation of the characterization of foundry sand, a laboratory investigation to qualify excess foundry sand as a major component in controlled low-strength material (CLSM), and the identification of the best methods for using foundry sand as a replacement for natural aggregates for construction purposes, specifically in asphalt paving materials. The survival analysis statistical technique was used to characterize foundry sand over a full spectrum of general chemical parameters, metallic elements, and organic compounds regarding bulk analysis and leachate characterization. Not limited to characterization and environmental impact, foundry sand was evaluated by factor analyses, which contributes to proper selection of factor and maximization of the reuse marketplace for foundry sand. Regarding the integration of foundry sand into CLSM, excavatable CLSM and structural CLSM containing different types of excess foundry sands were investigated through laboratory experiments. Foundry sand was approved to constitute a major component in CLSM. Regarding the integration of foundry sand into asphalt paving materials, the optimum asphalt content was determined for each mixture, as well as the bulk density, maximum density, asphalt absorption, and air voids at Nini, Ndes, and Nmax. It was found that foundry sands can be used as an aggregate in hot-mix asphalt production, but each sand should be evaluated individually. Foundry sands tend to lower the strength of mixtures and also may make them more susceptible to moisture damage. Finally, traditional anti-stripping additives may decrease the moisture sensitivity of a mixture containing foundry sand, but not to the level allowed by most highway agencies.

  5. Oxidation and photooxidation of asphalts

    SciTech Connect

    Mill, T.; Tse, D. )

    1990-07-01

    Oxidation of asphalt is a major cause of pavement failure owing to hardening of the asphalt binder with accompanying changes in viscosity, separation of components, embrittlement and loss of cohesion and adhesion of the asphalt in the mix. However oxidation of asphalt-aggregate mixes at high temperature is deliberately done to partly harden the mix prior to laydown; hardening then continues during cooling. Excessive hardening at this point is undesirable because of embrittlement and cracking. Slow oxidation of asphalt continues during the service life of the roadbed at a rate that appears to be partly determined by the void volume of the roadbed, as well as the properties of the asphalt and (possibly) the properties of the aggregate. The authors focused their efforts on understanding the mechanistic basis for slow oxidation of asphalt under service conditions in order to predict how rapidly an asphalt will oxidize, based on its composition, and to find better ways to inhibit the process under service conditions.

  6. State of the practice: Design and construction of asphalt paving materials with crumb-rubber modifier. Final report

    SciTech Connect

    Heitzman, M.A.

    1992-05-01

    The document is a comprehensive overview of the terminology, processes, products, and applications of crumb rubber modifier (CRM) technology. The technology includes any use of scrap tire rubber in asphalt paving materials. In general, CRM technology can be divided into two categories--the wet process and the dry process. When CRM is incorporated into an asphalt paving material, it will modify the properties of the binder (asphalt rubber) and/or act as a rubber aggregate (rubber modified hot mix asphalt). The five concepts for using CRM discussed in the report are McDonald, PlusRide, generic dry, chunk rubber asphalt concrete, and continuous blending asphalt rubber. There are two principal unresolved engineering issues related to the use of CRM in asphalt paving materials. On the national level, the ability to recycle asphalt paving mixes containing CRM has not been demonstrated. At the State and local levels, these modified asphalt mixes must be field evaluated to establish expected levels of performance. The appendices provide guidelines for material specifications, mix design, and construction specifications. An experimental work plan for monitoring performance and a stack emission testing program are also included.

  7. Personal Breathing Zone Exposures among Hot-Mix Asphalt Paving Workers; Preliminary Analysis for Trends and Analysis of Work Practices That Resulted in the Highest Exposure Concentrations

    PubMed Central

    Osborn, Linda V.; Snawder, John E.; Kriech, Anthony J.; Cavallari, Jennifer M.; McClean, Michael D.; Herrick, Robert F.; Blackburn, Gary R.; Olsen, Larry D.

    2015-01-01

    An exposure assessment of hot-mix asphalt (HMA) paving workers was conducted to determine which of four exposure scenarios impacted worker exposure and dose. Goals of this report are to present the personal-breathing zone (PBZ) data, discuss the impact of substituting the releasing/cleaning agent, and discuss work practices that resulted in the highest exposure concentration for each analyte. One-hundred-seven PBZ samples were collected from HMA paving workers on days when diesel oil was used as a releasing/cleaning agent. An additional 36 PBZ samples were collected on days when B-100 (100% biodiesel, containing no petroleum-derived products) was used as a substitute releasing/cleaning agent. Twenty-four PBZ samples were collected from a reference group of concrete workers, who also worked in outdoor construction but had no exposure to asphalt emissions. Background and field blank samples were also collected daily. Total particulates and the benzene soluble fraction were determined gravimetrically. Total organic matter was determined using gas chromatography (GC) with flame ionization detection and provided qualitative information about other exposure sources contributing to worker exposure besides asphalt emissions. Thirty-three individual polycyclic aromatic compounds (PACs) were determined using GC with time-offlight mass spectrometry; results were presented as either the concentration of an individual PAC or a summation of the individual PACs containing either 2- to 3-rings or 4- to 6-rings. Samples were also screened for PACs containing 4- to 6-rings using fluorescence spectroscopy. Arithmetic means, medians, and box plots of the PBZ data were used to evaluate trends in the data. Box plots illustrating the diesel oil results were more variable than the B-100. Also, the highest diesel oil results were much higher in concentration than the highest B-100 results. An analysis of the highest exposure results and field notes revealed a probable association between

  8. Innovative reuse of concrete slurry waste from ready-mixed concrete plants in construction products.

    PubMed

    Xuan, Dongxing; Zhan, Baojian; Poon, Chi Sun; Zheng, Wei

    2016-07-15

    Concrete slurry waste (CSW) is generated from ready-mixed concrete plants during concrete production and is classified as a corrosive hazardous material. If it is disposed of at landfills, it would cause detrimental effects for our surrounding environment and ecosystems due to its high pH value as well as heavy metal contamination and accumulation. A new method in this study has been introduced to effectively reuse CSW in new construction products. In this method, the calcium-silicate rich CSW in the fresh state was considered as a cementitious paste as well as a CO2 capture medium. The experimental results showed that the pH values of the collected CSWs stored for 28 days ranged from 12.5 to 13.0 and a drastic decrease of pH value was detected after accelerated mineral carbonation. The theoretically calculated CO2 sequestration extent of CSWs was from 27.05% to 31.23%. The practical water to solid ratio in the fresh CSW varied from 0.76 to 1.12, which had a significant impact on the compressive strength of the mixture with CSWs. After subjecting to accelerated mineral carbonation, rapid initial strength development and lower drying shrinkage for the prepared concrete mixture were achieved. PMID:27016667

  9. Innovative reuse of concrete slurry waste from ready-mixed concrete plants in construction products.

    PubMed

    Xuan, Dongxing; Zhan, Baojian; Poon, Chi Sun; Zheng, Wei

    2016-07-15

    Concrete slurry waste (CSW) is generated from ready-mixed concrete plants during concrete production and is classified as a corrosive hazardous material. If it is disposed of at landfills, it would cause detrimental effects for our surrounding environment and ecosystems due to its high pH value as well as heavy metal contamination and accumulation. A new method in this study has been introduced to effectively reuse CSW in new construction products. In this method, the calcium-silicate rich CSW in the fresh state was considered as a cementitious paste as well as a CO2 capture medium. The experimental results showed that the pH values of the collected CSWs stored for 28 days ranged from 12.5 to 13.0 and a drastic decrease of pH value was detected after accelerated mineral carbonation. The theoretically calculated CO2 sequestration extent of CSWs was from 27.05% to 31.23%. The practical water to solid ratio in the fresh CSW varied from 0.76 to 1.12, which had a significant impact on the compressive strength of the mixture with CSWs. After subjecting to accelerated mineral carbonation, rapid initial strength development and lower drying shrinkage for the prepared concrete mixture were achieved.

  10. Chemical modification of asphalt

    SciTech Connect

    Ju, Ruei Fu.

    1989-01-01

    Desirable properties of asphalt pavements include high stability, flexibility, and durability. In order to achieve these properties, the asphalt should bind well with mineral aggregates and the properties of the resulting asphalt concrete should change as slowly as possible during service life. The interaction of water and asphaltic concrete under particular circumstances may cause stripping or loss of adhesion and consequential detachment of the asphalt from the aggregate. Use of aggregates treated with these polymer emulsions resulted in a much stronger bond at the asphalt-aggregate interface. Scanning electron microscope studies showed that a thin polymer film covers the aggregate surface. Ethylene-vinyl acetate copolymer resin 460, ethylene-vinyl acetate copolymer resin 240, styrene butadiene copolymer, cis-1,4-polybutadiene copolymer, and polyethylene were tested as additives. The effect of these on the resistance to permanent deformation and dynamic stiffness is described in this study. The chemical changes that occurred during weathering were also addressed. The effect of oxidation on aged asphalt was determined by measuring the change in infrared absorption with time of exposure. Antioxidants which are capable of decomposing peroxides were found to extend the durability of the asphalt. By observing the concentration of peroxy radicals during the course of a chemical process as indicated by electron spin resonance peak intensity, it was possible to obtain quantitative information on the interaction of antioxidants with peroxy radicals. Indications were obtained that antioxidants are not effective in reducing the brittleness of asphalt upon aging. The effect of six plasticizers on thermal and mechanical properties of asphalt was studied. In general, use of plasticizers resulted in lowered rigidity, increased ductility and increased toughness. Tricresyl phosphate was the most effective.

  11. Recycled materials in asphalt pavements, January 1980-June 1991 (citations from the NTIS database). Rept. for Jan 80-Jun 91

    SciTech Connect

    Not Available

    1991-06-01

    The bibliography contains citations concerning the recycling of asphalt pavement materials, and the use of other recycled materials to manufacture asphalt pavement. Articles discuss methods used for recycling bituminous pavement including hot-mix and cold-mix. Materials used to improve recycled pavement, and recycled materials used in asphalt pavement include latexes, rubber scrap such as tires, glass shards, concretes, dusts, waste oils, roofing wastes, sulfur, and metal refining sludges. Testing and evaluation of recycled pavements both in laboratories and in test cases are considered. (The bibliography contains 75 citations.) (Also includes title list and subject index.)

  12. Beneficial uses of recycled asphalt-stabilized products as landfill cover and capping systems

    SciTech Connect

    Camougis, G.

    1996-12-31

    The American Reclamation Corporation (AMREC{reg_sign}) has played a major role in the development of new programs for the recycling of discarded materials from construction, demolition, remediation and manufacturing operations. Excavated petroleum-contaminated soils (oily soils), asphalt paving, concrete rubble, and discarded asphalt roofing shingles have been processed and recycled into beneficially useful construction products. AMREC uses a cold-mix, asphalt-emulsion technology to process many of the recyclables received at its recycling facility in Charlton, MA. Recyclable materials are processed and blended to produce recycled, asphalt-stabilized products. In addition, recycled, asphalt-stabilized products are being investigated and tested for other beneficial uses. This includes their uses as capping materials and as containment materials.

  13. 7 CFR 3201.77 - Asphalt restorers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false Asphalt restorers. 3201.77 Section 3201.77... Designated Items § 3201.77 Asphalt restorers. (a) Definition. Products designed to seal, protect, or restore poured asphalt and concrete surfaces. (b) Minimum biobased content. The Federal preferred...

  14. 7 CFR 3201.77 - Asphalt restorers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 15 2013-01-01 2013-01-01 false Asphalt restorers. 3201.77 Section 3201.77... Designated Items § 3201.77 Asphalt restorers. (a) Definition. Products designed to seal, protect, or restore poured asphalt and concrete surfaces. (b) Minimum biobased content. The Federal preferred...

  15. Effect of soil pollution on water for mixing of concrete

    NASA Astrophysics Data System (ADS)

    Muñoz, M. Cecilia Soto; Tapia Alvarez, Carolina; Decinti Weiss, Alejandra; Zamorano Vargas, Macarena; Corail Sanchez, Camila; Hurtado Nuñez, Camilo; Guzman Hermosilla, Matías; Pardo Fabregat, Francisco; Vidal, Manuel Miguel Jordan; Borras, Jaume Bech; Roca, Nuria

    2016-04-01

    ISO 12439, in addition to chemical and physical requirements, establishes maximum levels for harmful substances that may be present in the mixing water of concrete, when they come from natural sources from contaminated soils. These harmful substances considered in the ISO are sugars, phosphates (P2O5), nitrate (NO3-), lead (P2+) and zinc (Zn2+). As an alternative to the maximum values, ISO verifies the effect of these substances in water from contaminated soils. This measurement is made on the effect on the mechanical strength of the concrete (compression at 7 and 28 days) and the setting times (start and end setting). This paper presents the results obtained on samples of concrete made with smaller, similar and more content to the maximum levels set by ISO 12439 are presented. The results establish that in the case of nitrate, a substance present in many contaminated soils margins resistance variation or setting times allowed by ISO 12439 are not met. Finally, it is concluded that in case of presence of these pollutants should be performed strength tests and setting times before authorizing the use of water. Keywords: Harmful substances, contaminated soils, water pollution.

  16. Bacteria and asphalt stripping. Final report, December 1983-August 1987

    SciTech Connect

    Ramamurti, K.; Jayaprakash, G.P.

    1987-08-01

    Major types of bituminous pavement distress were rutting, cracking (longitudinal, transverse, and alligator) and stripping. The rubble and loosely bound material contained bacteria. The deterioration lessened upward from the pavement-soil interface. The soil appears to be the prime source of the bacteria. Most of the bacterial cells were sausage shaped with polar flagellation. They appeared to belong to the genus Pseudomonas, which is a known user of asphaltic hydrocarbons. Cocci-type bacteria and a virus were also noted. Increasing the density of some asphaltic concrete and strengthening the bond between aggregate and asphalt are considered as the preferred alternatives to using chemical biocides. Anything to reduce pavement cracking would help. Adding lime to asphalt mixes may be one effective means of improving aggregate-asphalt bond and controlling biodeterioration. Lime stabilization of soils under asphalt pavements may provide an added protection against bacterial attack by rendering the soil more hostile to bacterial habitat. Full-depth hot-mix recycling would be more effective than partial-depth recycling in retarding bacterial decay at cracks.

  17. Non-destructive assessment of Hot Mix Asphalt density with a Step Frequency Radar - Case study

    NASA Astrophysics Data System (ADS)

    Fauchard, Cyrille; Beaucamp, Bruno

    2013-04-01

    The density of Hot Mix Asphalt (HMA) layers is a key parameter for assessing newly paved roads. It allows the quality control and ensures the time performance of the road layers. The standard methods for measuring the in-place HMA density are destructive and based on cores testing. Knowing the specific gravity of the HMA (data provided by builder), the bulk density can be determined in the laboratory either by weighting cores methods or by measuring the absorption ratio of gamma rays through road samples. Non destructive (ND) methods are highly needed in order to gain time and to avoid the strong constraints due to the nuclear gauges use. The Step Frequency Radar (SFR) is an electromagnetic method based on wave propagation in matter, similar in its principle to the Ground Penetrating Radar (GPR). It can use wide band and higher frequencies than GPR, allowing a thinner spatial resolution, but with a lower speed of acquisition. It is used in the present work as a tool providing the dielectric constant of HMA. Recent results in the laboratory have shown that the density can be relied on HMA dielectric constant with the use of a dielectric model (Complex Refractive Index model, or CRI model) taking into account the volume concentration and the dielectric constant of each HMA component. In this approach, the knowledge of the rock dielectric constant that composes the main part of HMA is required. If not, the in-place measurements can be calibrated according to one or more core drillings and the previous approach is still available. The main objective of this paper is to apply the methodology developed in the laboratory on a new HMA layer (case study located on A13 highway, nearby the city of Cagny, Normandie, France) for assessing the HMA density. The SFR system is composed of a vector network analyser sweeping a large frequency band [1.4 GHz - 20 GHz] and an ultra wide band antenna placed above the HMA surface. The whole system is pc-controlled and embedded in a

  18. Stripping in hot mix asphalt produced by aggregates from construction and demolition waste.

    PubMed

    Pérez, I; Pasandín, A R; Gallego, J

    2012-01-01

    This paper analyses the effect of water on the durability of hot asphalt mixtures made with recycled aggregates from construction and demolition debris. Indirect tensile stress tests were carried out to evaluate stripping behaviour. The mixtures tested were fabricated with 0, 20, 40 and 60% recycled aggregates. Two types of natural aggregates were used: schist and calcite dolomite. An increase in the percentage of recycled aggregates was found to produce a decrease in the tensile stress ratio of the hot asphalt mixtures. To study this phenomenon, two and three factor analyses of variance (ANOVA) were performed with indirect tensile stress being used as the dependent variable. The factors studied were the percentage of recycled aggregates (0, 20, 40 and 60%), the moisture state (dry, wet) and the type of natural aggregate (schist, calcite). On the basis of the ANOVA results, it was found that the most important factor affecting resistance was the moisture state (dry, wet) of the specimens. The percentage of recycled aggregate also affected indirect tensile stress, especially in the dry state. The type of natural aggregate did not have a significant effect on indirect tensile stress. The hot asphalt mixture specimens made with different percentages of recycled aggregates from construction and demolition debris and of natural quarry aggregates showed poor stripping behaviour. This stripping behaviour can be related to both the poor adhesion of the recycled aggregates and the high absorption of the mortar of cement adhered to them. PMID:20627995

  19. Stripping in hot mix asphalt produced by aggregates from construction and demolition waste.

    PubMed

    Pérez, I; Pasandín, A R; Gallego, J

    2012-01-01

    This paper analyses the effect of water on the durability of hot asphalt mixtures made with recycled aggregates from construction and demolition debris. Indirect tensile stress tests were carried out to evaluate stripping behaviour. The mixtures tested were fabricated with 0, 20, 40 and 60% recycled aggregates. Two types of natural aggregates were used: schist and calcite dolomite. An increase in the percentage of recycled aggregates was found to produce a decrease in the tensile stress ratio of the hot asphalt mixtures. To study this phenomenon, two and three factor analyses of variance (ANOVA) were performed with indirect tensile stress being used as the dependent variable. The factors studied were the percentage of recycled aggregates (0, 20, 40 and 60%), the moisture state (dry, wet) and the type of natural aggregate (schist, calcite). On the basis of the ANOVA results, it was found that the most important factor affecting resistance was the moisture state (dry, wet) of the specimens. The percentage of recycled aggregate also affected indirect tensile stress, especially in the dry state. The type of natural aggregate did not have a significant effect on indirect tensile stress. The hot asphalt mixture specimens made with different percentages of recycled aggregates from construction and demolition debris and of natural quarry aggregates showed poor stripping behaviour. This stripping behaviour can be related to both the poor adhesion of the recycled aggregates and the high absorption of the mortar of cement adhered to them.

  20. Inferring strength and deformation properties of hot mix asphalt layers from the GPR signal: recent advances

    NASA Astrophysics Data System (ADS)

    Tosti, Fabio; Benedetto, Andrea; Bianchini Ciampoli, Luca; Adabi, Saba; Pajewski, Lara

    2015-04-01

    , of both the different strength provision of each layer composing the hot mix asphalt pavement structure, and of the attenuation occurring to electromagnetic waves during their in-depth propagation. Promising results are achieved by matching modelled and measured elastic modulus data. This continuous statistically-based model enables to consider the whole set of information related to each single depth, in order to provide a more comprehensive prediction of the strength and deformation behavior of such a complex multi-layered medium. Amongst some further developments to be tackled in the near future, a model improvement could be reached through laboratory activities under controlled conditions and by adopting several frequency bandwidths suited for purposes. In addition, the perspective to compare electromagnetic data with mechanical measurements retrieved continuously, i.e., by means of specifically equipped lorries, could pave the way to considerable enhancements in this field of research. Acknowledgements - This work has benefited from networking activities carried out within the EU funded COST Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar".

  1. Effect of Cement on Properties of Over-Burnt Brick Bituminous Concrete Mixes

    NASA Astrophysics Data System (ADS)

    Sarkar, Dipankar; Pal, Manish

    2016-06-01

    The present investigation is carried out to propose the use of cement coated over burnt brick aggregate in the preparation of bituminous concrete mix. The effect of cement on various mechanical properties such as Marshall stability, flow, Marshall quotient (stability to flow ratio), indirect tensile strength, stripping, rutting and fatigue life of bituminous concrete overlay has been evaluated. In this study, different cement percentages such as 2, 3, 4 and 5 % by weight of aggregate have been mixed with Over Burnt Brick Aggregate (OBBA). The laboratory results indicate that bituminous concrete prepared by 4 % cement coated OBBA gives the highest Marshall stability. The bituminous concrete mix with 4 % cement shows considerable improvement in various mechanical properties of the mix compared to the plain OBBA concrete mix.

  2. Recycled materials in asphalt pavements. October 1973-November 1989 (Citations from the NTIS data base). Report for October 1973-November 1989

    SciTech Connect

    Not Available

    1989-12-01

    This bibliography contains citations concerning the recycling of asphalt-pavement materials, and the use of other recycled materials to manufacture asphalt pavement. Articles discuss methods used for recycling bituminous pavement including hot-mix and cold-mix. Materials used to improve recycled pavement, and recycled materials used in asphalt pavement include latexes, rubber scrap such as tires, glass shards, concretes, dusts, waste oils, roofing wastes, sulfur, and metal refining sludges. Testing and evaluation of recycled pavements both in laboratories and in test cases are considered. (Contains 110 citations fully indexed and including a title list.)

  3. Investigation of factors affecting asphalt pavement recycling and asphalt compatibility

    SciTech Connect

    Venable, R.L.; Petersen, J.C.; Robertson, R.E.; Plancher, H.

    1983-03-01

    Both economic and environmental factors dictate that asphalt pavement be recycled. Many recycling projects have been completed using a variety of recycling additives, but little work has been done on the physiochemical aspects of pavement recycling. The present exploratory study was undertaken to better define the physiochemical variables of recycling. Objectives of the present study include: (1) to determine if molecular structuring in the asphalt binder could be observed in oxidized (air-aged) asphalt-aggregate briquets, and if so, how was structuring affected during briquits, and if so, how was structuring affected during briquet recycling and (2) to determine if recycling agents penetrate the strongly adsorbed asphalt layer on the aggregate surface. Differences were seen in asphalt component compatibility as judged by the state of peptization parameters. In extreme cases the values of the parameters correlated with properties of asphalts of known compatibility; however, a relationship between the parameters determined on a series of asphalts in pavements was not established. The parameters might be useful in evaluating additives for pavement recycling; however, more systems need to be studied to fully assess their potential usefulness. Finally, the parameters need to be correlated with performance-related measurements such as asphalt rheological and mix properties. Examination of the parameters and their changes on asphalt oxidative aging may also be informative with regard to asphalt durability inasmuch as oxidation-induced changes are a major cause of asphalt pavement failure.

  4. Using pyrolized carbon black from waste tires in asphalt pavement. Part 1. Limestone aggregate. Final report, September 1993-May 1995

    SciTech Connect

    Park, T.; Lovell, C.W.

    1996-02-20

    The study presents the viability of using pyrolyzed carbon black (PCB) as an additive in hot mix asphalt concrete. Different ratios of PCB (5%, 10%, 15%, 20% by weight of asphalt) were blended with two grades of asphalt (AC-10 and AC-20). The complete behaviors of the PCB modified asphalt concrete were investigated by comprehensive laboratory testing and evaluation. The Marshall method was used to determine the optimum binder content, and the mechanical properties and void relationships were investigated by this method. The Gyratory Testing Machine was used to define the stress-strain relationships of the PCB mixtures. The rutting potential of PCB mixtures was investigated using the Dynamic Creep Testing. The performance of the PCB mixtures at low temperature (5 degrees C) was determined by the Indirect Tensile Testing. The strength performance of the PCB mixtures at intermediate temperatures (5 degrees C and 25 degrees C) was examined by the Resilient Modulus Test. The Hamburg Wheel Tracking Device was employed to ascertain the stripping potential of the PCB mixtures. The findings of the study show beneficial effects of added PCB for asphalt mixture. Specifically, test results show that PCB contents of 10% to 15% by weigh of asphalt produce a number of significant 0mprovements. The rutting potential, the temperature susceptibility and the stripping potential can be reduced by the inclusion of PCB in the asphalt mixture. Added material costs of about 6% may well be justified by expected improvements in performance.

  5. Recycling process water in ready-mixed concrete operations. Final report, 1 September 1997--31 December 1998

    SciTech Connect

    Chini, A.R.; Muszynski, L.C.; Ellis, B.S.

    1999-02-22

    The objective of this study was to investigate water quality standards and the possibility of reusing concrete wastewater as aggregated irrigation and/or batch mixing water in the production of fresh concrete.

  6. Nature of the chemical reaction for furfural modified asphalt

    SciTech Connect

    Memon, G.M.; Chollar, B.H.

    1994-12-31

    Three of the most serious problems of asphalt pavements today are rutting, cracking, and susceptibility to moisture damage (stripping). Asphalt manufacturers have been mixing asphalts with polymers to produce polymer-modified asphalts with improved rheological properties. However, the costs for these improved polymer-modified asphalts are almost double that of regular asphalts. FHWA researchers have found that asphalt modified by the chemical, furfural (which is prepared by simple elimination reaction of aldopentoses obtained from oat hulls), exhibited better stripping properties and was less temperature susceptible than the virgin asphalt while costing less than polymer-modified asphalts. This paper discusses the possible structure of the furfural-modified asphalt, data for the virgin and furfural-modified asphalts and their Corbett fractions, data from a model reaction between phenol and furfural, and a possible explanation of this structure based on these data.

  7. Use of Residual Solids from Pulp and Paper Mills for Enhancing Strength and Durability of Ready-Mixed Concrete

    SciTech Connect

    Tarun R. Naik; Yoon-moon Chun; Rudolph N. Kraus

    2003-09-18

    This research was conducted to establish mixture proportioning and production technologies for ready-mixed concrete containing pulp and paper mill residual solids and to study technical, economical, and performance benefits of using the residual solids in the concrete. Fibrous residuals generated from pulp and paper mills were used, and concrete mixture proportions and productions technologies were first optimized under controlled laboratory conditions. Based on the mixture proportions established in the laboratory, prototype field concrete mixtures were manufactured at a ready-mixed concrete plant. Afterward, a field construction demonstration was held to demonstrate the production and placement of structural-grade cold-weather-resistant concrete containing residual solids.

  8. Evaluation and improvement of micro-surfacing mix design method and modelling of asphalt emulsion mastic in terms of filler-emulsion interaction

    NASA Astrophysics Data System (ADS)

    Robati, Masoud

    This Doctorate program focuses on the evaluation and improving the rutting resistance of micro-surfacing mixtures. There are many research problems related to the rutting resistance of micro-surfacing mixtures that still require further research to be solved. The main objective of this Ph.D. program is to experimentally and analytically study and improve rutting resistance of micro-surfacing mixtures. During this Ph.D. program major aspects related to the rutting resistance of micro-surfacing mixtures are investigated and presented as follow: 1) evaluation of a modification of current micro-surfacing mix design procedures: On the basis of this effort, a new mix design procedure is proposed for type III micro-surfacing mixtures as rut-fill materials on the road surface. Unlike the current mix design guidelines and specification, the new mix design is capable of selecting the optimum mix proportions for micro-surfacing mixtures; 2) evaluation of test methods and selection of aggregate grading for type III application of micro-surfacing: Within the term of this study, a new specification for selection of aggregate grading for type III application of micro-surfacing is proposed; 3) evaluation of repeatability and reproducibility of micro-surfacing mixture design tests: In this study, limits for repeatability and reproducibility of micro-surfacing mix design tests are presented; 4) a new conceptual model for filler stiffening effect on asphalt mastic of micro-surfacing: A new model is proposed, which is able to establish limits for minimum and maximum filler concentrations in the micro-surfacing mixture base on only the filler important physical and chemical properties; 5) incorporation of reclaimed asphalt pavement and post-fabrication asphalt shingles in micro-surfacing mixture: The effectiveness of newly developed mix design procedure for micro-surfacing mixtures is further validated using recycled materials. The results present the limits for the use of RAP and RAS

  9. Performance of volcanic ash and pumice based blended cement concrete in mixed sulfate environment

    SciTech Connect

    Hossain, K.M.A. . E-mail: ahossain@ryerson.ca; Lachemi, M.

    2006-06-15

    The deterioration of concrete structures due to the presence of mixed sulfate in soils, groundwater and marine environments is a well-known phenomenon. The use of blended cements incorporating supplementary cementing materials and cements with low C{sub 3}A content is becoming common in such aggressive environments. This paper presents the results of an investigation on the performance of 12 volcanic ash (VA) and finely ground volcanic pumice (VP) based ASTM Type I and Type V (low C{sub 3}A) blended cement concrete mixtures with varying immersion period of up to 48 months in environments characterized by the presence of mixed magnesium-sodium sulfates. The concrete mixtures comprise a combination of two Portland cements (Type I and Type V) and four VA/VP based blended cements with two water-to-binder ratio of 0.35 and 0.45. Background experiments (in addition to strength and fresh properties) including X-ray diffraction (XRD), Differential scanning calorimetry (DSC), mercury intrusion porosimetry (MIP) and rapid chloride permeability (RCP) were conducted on all concrete mixtures to determine phase composition, pozzolanic activity, porosity and chloride ion resistance. Deterioration of concrete due to mixed sulfate attack and corrosion of reinforcing steel were evaluated by assessing concrete weight loss and measuring corrosion potentials and polarization resistance at periodic intervals throughout the immersion period of 48 months. Plain (Type I/V) cement concretes, irrespective of their C{sub 3}A content performed better in terms of deterioration and corrosion resistance compared to Type I/V VA/VP based blended cement concrete mixtures in mixed sulfate environment.

  10. Mixed Consolidation Solution for a Reinforced Concrete Structure

    NASA Astrophysics Data System (ADS)

    Lute, M.

    2016-06-01

    During the last years, reinforced concrete structures become subject for rehabilitation due to two factors: their long life span and large change in norms that leaded to a large increase of seismic loads in Eastern Europe. These lead to a necessity for rehabilitation of existing building stock in order to use them during their entire life span at the maximum potential. The present paper proposes a solution for rehabilitation for three reinforced concrete building of a hospital, that consumed a half of their life span and do not correspond anymore to present norms. The chosen solution is a combination between CFRP rehabilitation and increase of structural elements cross section in order to achieve the stiffness balance in the structure nodes that is required by present norms. As a further matter, correction in stiffness of local elements diminished the lateral drifts of the structure and improved the global seismic response of the building.

  11. Recycled rubber, aggregate, and filler in asphalt paving mixtures. Transportation research record

    SciTech Connect

    1996-12-31

    ;Contents(Partial): Evaluation Systems for Crumb Rubber Modified Binders and Mixtures; Hot Mix Asphalt Rubber Applications in Virginia; Evaluation of Pyrolized Carbon Black from Scrap Tires as Additive in Hot Mix Asphalt; Use of Scrap Tire Chips in Asphaltic Membrane; Effects of Mineral Fillers on Properties of Stone Matrix Asphalt Mixtures; and Quantitative Analysis of Aggregate Based on Hough Transform.

  12. 77 FR 50608 - Approval and Promulgation of Air Quality Implementation Plans; New Hampshire; Hot Mix Asphalt Plants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-22

    ... Pollution,'' Part Env-A 1207 ``Asphalt Plants'' into the New Hampshire State Implementation Plan (67 FR... Management and Budget under Executive Order 12866 (58 FR 51735, October 4, 1993); Does not impose an...); Does not have Federalism implications as specified in Executive Order 13132 (64 FR 43255, August...

  13. The Concrete and Pavement Challenge

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2012-01-01

    The modern world is characterized by the extensive use of concrete and asphalt pavement. Periodically, these materials are replaced and the old materials disposed of. In this challenge, students will be asked to develop ways to reuse the old materials. It is important for students to understand how concrete and asphalt are made and applied, as…

  14. Sustainable asphalt pavement: Application of slaughterhouse waste oil and fly ash in asphalt binder

    NASA Astrophysics Data System (ADS)

    Sanchez Ramos, Jorge Luis

    Increasing energy costs, lack of sufficient natural resources and the overwhelming demand for petroleum has stimulated the development of alternative binders to modify or replace petroleum-based asphalt binders. In the United States, the petroleum-based asphalt binder is mainly used to produce the Hot Mix Asphalt (HMA). There are approximately 4000 asphalt plants that make 500 million tons of asphalt binder valued at roughly 3 billion/year. The instability of the world's oil market has pushed oil prices to more than 80 per barrel in 2012, which increased the cost of asphalt binder up to $570 per ton. Therefore, there is a timely need to find alternative sustainable resources to the asphalt binder. This paper investigates the possibility of the partial replacement of the asphalt binder with slaughterhouse waste and/or fly ash. In order to achieve this objective, the asphalt binder is mixed with different percentages of waste oil and/or fly ash. In order to investigate the effect of these additives to the performance of the asphalt binder, a complete performance grade test performed on multiple samples. The results of the performance grade tests are compared with a control sample to observe how the addition of the waste oil and/or fly ash affects the sample. Considering the increasing cost and demand of asphalt, the use of slaughterhouse waste oil and/or fly ash as a partial replacement may result in environmental and monetary improvements in the transportation sector.

  15. Development of high-strength concrete mix designs in support of the prestressed concrete reactor vessel design for a HTGR steam cycle/cogeneration plant

    SciTech Connect

    Naus, D.J.; Oland, C.B.

    1985-01-01

    Design optimization studies indicate that a significant reduction in the size of the PCRV for a 2240 MW(t) HTGR plant can be effected through utilization of high-strength concrete in conjunction with large capacity prestressing systems. A three-phase test program to develop and evaluate high-strength concretes (>63.4 MPa) is described. Results obtained under Phase I of the investigation related to materials selection-evaluation and mix design development are presented. 3 refs., 4 figs.

  16. The Asphalt Handbook.

    ERIC Educational Resources Information Center

    Asphalt Inst., College Park, MD.

    The new and completely revised edition of the Asphalt Handbook, a standard reference work in the field of asphalt technology and construction, summarizes with reference the information contained in other Asphalt Institute technical manuals. Major areas discussed include the following--(1) uses of asphalt, (2) terms relating to asphalt and its…

  17. Mix design and pollution control potential of pervious concrete with non-compliant waste fly ash.

    PubMed

    Soto-Pérez, Linoshka; Hwang, Sangchul

    2016-07-01

    Pervious concrete mix was optimized for the maximum compressive strength and the desired permeability at 7 mm/s with varying percentages of water-to-binder (W/B), fly ash-to-binder (FA/B), nano-iron oxide-to-binder (NI/B) and water reducer-to-binder (WR/B). The mass ratio of coarse aggregates in sizes of 4.75-9.5 mm to the binder was fixed at 4:1. Waste FA used in the study was not compliant with a standard specification for use as a mineral admixture in concrete. One optimum pervious concrete (Opt A) targeting high volume FA utilization had a 28-day compressive strength of 22.8 MPa and a permeability of 5.6 mm/s with a mix design at 36% W/B, 35% FA/B, 6% NI/B and 1.2% WR/B. The other (Opt B) targeting a less use of admixtures had a 28-day compressive strength and a permeability of 21.4 MPa and 7.6 mm/s, respectively, at 32% W/B, 10% FA/B, 0.5% NI/B and 0.8% WR/B. During 10 loads at a 2-h contact time each, the Opt A and Opt B achieved the average fecal coliform removals of 72.4% and 77.9% and phosphorus removals of 49.8% and 40.5%, respectively. Therefore, non-compliant waste FA could be utilized for a cleaner production of pervious concrete possessing a greater structural strength and compatible hydrological property and pollution control potential, compared to the ordinary pervious concrete.

  18. Characterization of steel fiber and/or polymer concrete mixes and applications to slender rectangular and I-beams

    NASA Astrophysics Data System (ADS)

    Ahmed, Ashraf Ibrahim

    This dissertation presents results from experimental studies related to polymer modified concrete, steel fiber reinforced concrete, and steel fiber/polymer modified concrete. As a first stage of this research, the properties of different concrete mixes were characterized. These mixes were: plain concrete, steel fiber concrete with fiber volume fraction of 1%, polymer modified concrete with 1% to 7.5% solids of polymer, and steel fiber/polymer modified concrete with 1% to 7.5% polymer solids and I% steel fiber fraction. Concrete cylinders and 4 x 4 inches beams were tested under compressive, tensile, flexural, and bar pull-out loadings. In the second phase of this research, slender beams with a depth to width ratio of three were tested under four point loading for shear and flexure. Half I-beams, with gross aspect ratio of four and web aspect ratio of three were tested under the combined loading of bending, shear, and torsion. Lateral eccentric loads were applied transversely in the shallow direction to the 3 x 9 inches beams and the half I-beams. Dog bone shaped reinforced and un-reinforced specimens with 3 x 3 inches square sections were tested under pure torsional loading. The addition of 1% steel fibers alone or with 5% solids of polymers to concrete mixes improved their toughness and ductility. The contribution of steel fibers to bending, shear, and torsion in slender and half I-beams is presented. The ACI code methods for calculating the torsional, shear, and flexural resistance of beams are compared to the experimental results. Post crack analysis performed on the slender beams and half I-beams indicated that the tested specimens could carry 70% of the maximum applied loads after initial concrete cracking and failure. The reduction in the tensile stresses of stirrups and longitudinal reinforcing bars, due to the steel fibers and polymer, are presented. Fibers and polymers increase bending and toughness in concrete.

  19. Laboratory simulation of oxidative aging of asphalt

    SciTech Connect

    Memon, G.M.; Chollar, B.H.

    1997-12-31

    The objective of this study was to determine the aging characteristics of asphalt mixes, which were mixed and conditioned at times corresponding to times experienced during field mixing. This objective was accomplished by measuring functional group changes of carbonyl and sulfoxide peak areas through infrared spectroscopy techniques of asphalts extracted from mixes subjected to various laboratory and climatic conditioning procedures. Correlations were attempted between these infrared functional group changes of asphalt samples from laboratory aged mixes and that from a pavement mix obtained through drum dryer plant production. Ratios were taken of these unknown peak areas by dividing them by the area of a peak unchanged by oxidation, i.e., the methyl peak. These ratios were evaluated for asphalt mix samples that had undergone a wide range of treatments (oven heating for 0, 1, 2, 3, and 4 hours). It was observed through the carbonyl group changes of the asphalts that an oven aged period of 2 hours for asphalt mixes was needed to simulate the degree of aging occurring during plant mix production.

  20. Mixed formulation for seismic analysis of composite steel-concrete frame structures

    NASA Astrophysics Data System (ADS)

    Ayoub, Ashraf Salah Eldin

    This study presents a new finite element model for the nonlinear analysis of structures made up of steel and concrete under monotonic and cyclic loads. The new formulation is based on a two-field mixed formulation. In the formulation, both forces and deformations are simultaneously approximated within the element through independent interpolation functions. The main advantages of the model is the accuracy in global and local response with very few elements while maintaining rapid numerical convergence and robustness even under severe cyclic loading. Overall four elements were developed based on the new formulation: an element that describes the behavior of anchored reinforcing bars, an element that describes the behavior of composite steel-concrete beams with deformable shear connectors, an element that describes the behavior of reinforced concrete beam-columns with bond-slip, and an element that describes the behavior of pretensioned or posttensioned, bonded or unbonded prestressed concrete structures. The models use fiber discretization of beam sections to describe nonlinear material response. The transfer of forces between steel and concrete is described with bond elements. Bond elements are modeled with distributed spring elements. The non-linear behavior of the composite element derives entirely from the constitutive laws of the steel, concrete and bond elements. Two additional elements are used for the prestressed concrete models, a friction element that models the effect of friction between the tendon and the duct during the posttensioning operation, and an anchorage element that describes the behavior of the prestressing tendon anchorage in posttensioned structures. Two algorithms for the numerical implementation of the new proposed model are presented; an algorithm that enforces stress continuity at element boundaries, and an algorithm in which stress continuity is relaxed locally inside the element. Stability of both algorithms is discussed. Comparison

  1. Use of POTW biosolids in bituminous concrete

    SciTech Connect

    Smith, R.C.; Angelbeck, D.I.

    1995-11-01

    Although wastewater treatment helps alleviate water pollution, it creates residual by-products that can pose a disposal dilemma. Four main practices are presently employed to dispose of wastewater treatment plant sludge: land application, composting, incineration, and landfilling. A fifth disposal method that may help to alleviate the sludge disposal problem in future years is the incorporation of sludge into useful end products such as fertilizer or construction materials. This research was designed to evaluate the properties of bituminous concrete mixes that had anaerobically digested sewage sludge incorporated into their design. In doing so, it was desired to verify the work of Wells concerning sludge incorporation into bituminous concrete mixes using today`s asphalts. Hot mix and cold mix designs were studied.

  2. The exposure to coarse, fine and ultrafine particle emissions from concrete mixing, drilling and cutting activities.

    PubMed

    Azarmi, Farhad; Kumar, Prashant; Mulheron, Mike

    2014-08-30

    Building activities generate coarse (PM10≤10μm), fine (PM2.5≤2.5μm) and ultrafine particles (<100nm) making it necessary to understand both the exposure levels of operatives on site and the dispersion of ultrafine particles into the surrounding environment. This study investigates the release of particulate matter, including ultrafine particles, during the mixing of fresh concrete (incorporating Portland cement with Ground Granulated Blastfurnace Slag, GGBS or Pulverised Fuel Ash, PFA) and the subsequent drilling and cutting of hardened concrete. Particles were measured in the 5-10,000nm size range using a GRIMM particle spectrometer and a fast response differential mobility spectrometer (DMS50). The mass concentrations of PM2.5-10 fraction contributed ∼52-64% of total mass released. The ultrafine particles dominated the total particle number concentrations (PNCs); being 74, 82, 95 and 97% for mixing with GGBS, mixing with PFA, drilling and cutting, respectively. Peak values measured during the drilling and cutting activities were 4 and 14 times the background. Equivalent emission factors were calculated and the total respiratory deposition dose rates for PNCs for drilling and cutting were 32.97±9.41×10(8)min(-1) and 88.25±58.82×10(8)min(-1). These are a step towards establishing number and mass emission inventories for particle exposure during construction activities.

  3. Linking asphalt binder fatigue to asphalt mixture fatigue performance using viscoelastic continuum damage modeling

    NASA Astrophysics Data System (ADS)

    Safaei, Farinaz; Castorena, Cassie; Kim, Y. Richard

    2016-08-01

    Fatigue cracking is a major form of distress in asphalt pavements. Asphalt binder is the weakest asphalt concrete constituent and, thus, plays a critical role in determining the fatigue resistance of pavements. Therefore, the ability to characterize and model the inherent fatigue performance of an asphalt binder is a necessary first step to design mixtures and pavements that are not susceptible to premature fatigue failure. The simplified viscoelastic continuum damage (S-VECD) model has been used successfully by researchers to predict the damage evolution in asphalt mixtures for various traffic and climatic conditions using limited uniaxial test data. In this study, the S-VECD model, developed for asphalt mixtures, is adapted for asphalt binders tested under cyclic torsion in a dynamic shear rheometer. Derivation of the model framework is presented. The model is verified by producing damage characteristic curves that are both temperature- and loading history-independent based on time sweep tests, given that the effects of plasticity and adhesion loss on the material behavior are minimal. The applicability of the S-VECD model to the accelerated loading that is inherent of the linear amplitude sweep test is demonstrated, which reveals reasonable performance predictions, but with some loss in accuracy compared to time sweep tests due to the confounding effects of nonlinearity imposed by the high strain amplitudes included in the test. The asphalt binder S-VECD model is validated through comparisons to asphalt mixture S-VECD model results derived from cyclic direct tension tests and Accelerated Loading Facility performance tests. The results demonstrate good agreement between the asphalt binder and mixture test results and pavement performance, indicating that the developed model framework is able to capture the asphalt binder's contribution to mixture fatigue and pavement fatigue cracking performance.

  4. Evaluation of energies of interaction correlated with observed stabilities and rheological properties of asphalt-aggregate mixtures of western shale-oil residue as a modifier to petroleum asphalt

    SciTech Connect

    Tauer, J.E.; Ensley, E.K.; Harnsberger, P.M.; Robertson, R.E.

    1993-02-01

    The objective of this study was to perform a preliminary evaluation of improving bonding and aging characteristics using a distillation residue from the Green River Formation (western) shale oil as a modifier to a petroleum asphalt for use as a crack and joint filler material in portland cement concrete and asphaltic pavements. This study was to examine the differences in moisture damage resistance and adhesion properties, as measured by bonding energy, of shale-oil modified asphalts compared with non-modified asphalts. The shale-oil modified asphalts mechanical properties were not expected to match those of the rubberized asphalt. A commercially available rubberized asphalt crack and joint filler material was also tested only for comparison of mechanical properties. Portland cement concrete briquets prepared with an asphalt material sandwiched between two concrete wafers were tested in a stress-relaxation type of experiment to evaluate the relaxation and recovery properties of the sealant materials. Energy of interaction (bonding energy) measurements were performed on asphalt materials with portland cement concrete, two silicate aggregates, and a limestone aggregate to evaluate the compatibility of the asphalt materials with various aggregates. The results show that the shale-oil modified petroleum asphalt improved the relaxation time, percent recovery, and bonding energy compared with the petroleum asphalt.

  5. Road pavers' occupational exposure to asphalt containing waste plastic and tall oil pitch.

    PubMed

    Väänänen, Virpi; Elovaara, Eivor; Nykyri, Erkki; Santonen, Tiina; Heikkilä, Pirjo

    2006-01-01

    Waste plastic (WP) and tall oil pitch (T), which are organic recycled industrial by-products, have been used as a binder with bitumen in stone mastic asphalt (SMA) and asphalt concrete (AC). We compared the exposure over one workday in 16 road pavers participating in a survey at four paving sites, using mixes of conventional asphalt (SMA, AC) or mixes containing waste material (SMA-WPT, AC-WPT). The concentrations of 11 aldehydes in air were 515 and 902 microg m(-3) at the SMA-WPT and AC-WPT worksites, being 3 and 13 times greater than at the corresponding worksites laying conventional asphalt. Resin acids (2-42 microg m(-3)), which are known sensitizers, were detected only during laying of AC-WPT. The emission levels (microg m(-3)) of total particulates (300-500), bitumen fumes (60-160), bitumen vapour (80-1120), naphthalene (0.59-1.2), phenanthrene (0.21-0.32), pyrene (<0.015-0.20), benzo(a)pyrene (<0.01) and the sum of 16 PAHs (polycyclic aromatic hydrocarbons, 1.28-2.00) were similar for conventional and WPT asphalts. The dermal deposition of 16 PAHs on exposure pads (on workers' wrist) was low in all pavers (0.7-3.5 ng cm(-2)). Eight OH-PAH biomarkers of naphthalene, phenanthrene and pyrene exposures were quantified in pre- and post-shift urine specimens. The post-shift concentrations (mean +/- SD, micromol mol(-1) creatinine) of 1- plus 2-naphthol; 1-,2-,3-,4- plus 9-phenanthrol; and 1-hydroxypyrene were, respectively, for asphalt workers: 18.1+/- 8.0, 2.41 +/- 0.71 and 0.66+/- 0.58 (smokers); 6.0+/- 2.3, 1.70+/- 0.72 and 0.27+/- 0.15 (non-smokers); WPT asphalt workers: 22.0+/- 9.2, 2.82+/- 1.11 and 0.76+/- 0.18 (smokers); 6.8+/- 2.6, 2.35+/- 0.69 and 0.46+/- 0.13 (non-smokers). The work-related uptake of PAHs was low in all pavers, although it was significantly greater in smokers than in non-smokers. The WPT asphalt workers complained of eye irritation and sore throat more than the pavers who had a much lower exposure to aldehydes and resin acids.

  6. Rubberized asphalt emulsion

    SciTech Connect

    Wilkes, E.

    1986-09-02

    A method is described of making a rubberized asphalt composition which comprises the steps of: (a) combining asphalt with a hydrocarbon oil having a flash point of 300/sup 0/F. or more to provide a homogenous asphalt-oil mixture or solution, (b) then combining the asphalt-oil mixture with a particulate rubber at a temperature sufficient to provide a homogenous asphalt-rubber-oil gel, and (c) emulsifying the asphalt-rubber-oil gel by passing the gel, water, and an emulsifying agent through a colloid mill to provide an emulsion.

  7. Greenhouse gas emissions from concrete can be reduced by using mix proportions, geometric aspects, and age as design factors

    NASA Astrophysics Data System (ADS)

    Miller, Sabbie A.; Horvath, Arpad; Monteiro, Paulo J. M.; Ostertag, Claudia P.

    2015-11-01

    With increased awareness of the emissions of greenhouse gases (GHGs) and the significant contribution from the cement industry, research efforts are being advanced to reduce the impacts associated with concrete production and consumption. A variety of methods have been proposed, one of the most common being the replacement of cement as a binder in concrete with supplementary cementitious materials, such as fly ash (FA), which can have lower environmental effects. The use of FA can change the kinetics of the hydration reactions and, consequently, modify the evolution of the concrete strength over time. Yet the influence of designing structural elements to obtain the required strength at later ages has not been examined in terms of their influence on global warming potential (GWP) of concrete. This research investigates the influence of design age, in addition to mix proportions and geometric aspects, on the GWP associated with making beams, columns, and a concrete building frame. Findings suggest that while the GWP for beams is not highly dependent on concrete mixture strength, the GWP for columns is dependent on strength, thus the influence of required strength at later ages influences GWP of making columns more so than beams. For the concrete frame analyzed, a potential 45% reduction in GWP, depending on mix proportions and design age, was found. Using the findings from this research, the GWP associated with production of concrete in California could be reduced by approximately 1.8 million metric tons of CO2-eq emissions, equivalent to approximately 2% of all industrial GHG emissions in California.

  8. Polypropylene - asphalt mixtures for waterproofing membranes

    SciTech Connect

    Italia, P.; Brandolese, E.

    1996-12-31

    In any field of polymer-asphalt mixtures application is extremely important to achieve a very good compatibility between the components in order to improve as much as possible the performances due to the polymer content. In the case of waterproofing membranes application this compatibility reduce, moreover, the amount of polymer required to obtain the best performances. Using the Colloidal Instability Index Ic, as measured by the Iatroscan device, we propose a correlation between asphalt`s chemical characteristics and the polymer minimum amount sufficient to disperse in a stable way the asphalt itself in the polymeric matrix. As a result, through the proposed correlation, with a simple asphalt composition analysis it is possible to predict its performance when mixed with polypropilene. In the paper, beside the description of the Iatroscan analytical technique, we also present a method for determining phase inversion based on optical fluorescence microscopy performed on about 30 different samples of asphalt. We also present the experimental correlation laws between the polymer amount at phase inversion and the asphalt single components content.

  9. Dependence of expansion of a salt-saturated concrete on temperature and mixing and handling procedures. Final report

    SciTech Connect

    Wakeley, L.D.

    1987-07-01

    In experiments with an expansive salt-saturated concrete (ESC), time of setting was controlled by amount of sodium citrate used. The rheological and physical properties required of ESC were determined by its intended use, in an underground repository for radioactive wastes in bedded rock salt. These properties, including a long working time and low air content, could not be achieved using conventional high-range water-reducing admixtures, such as melamine or naphthalene formaldehyde condensates. Within a fixed range of citrate percentages, expansivity of the concrete was proportional to the amount of citrate used. The desired level of expansion resulted from delaying formation of ettringite until after formation of a rigid structure in the paste. Expansive potential was diminished by warmer temperatures of mixing curing, and by repeated episodes of mixing or disturbance during the extended period of workability (up to 4 hr). These variables should be considered in plans for field placement of this or any expansive concrete. The potential for durability of this concrete in the environment for which it was formulated cannot be gauged by those properties commonly used as indicators of durability for conventional concrete in surface environments. Low permeability and minimal reaction to brine are interrelated factors which may better indicate durability than do traditionally cited properties such as compressive strength or resistance to cyclic phenomena.

  10. Rehabilitating asphalt highways

    SciTech Connect

    Butalia, T.S.

    2007-07-01

    Coal fly ash has been used on two Ohio full-depth reclamation projects in Delaware and Warren. The object of the project carried out with the Department of Civil and Environmental Engineering and Geodetic Science at Ohio State University is to demonstrate the effective use of Class fly ash in combination with lime or lime kiln dust in the full depth reclamation of asphalt pavements. The article describes the mixes used for the highway reconstruction of part of Section Line Road Delaware County and of a road in Warren County. During construction the pavement sections were instrumented with several structural and environmental monitoring devices and data is being collected on a quarterly basis. Falling Weight Deflectometer (FWD) tests to measure load defection behaviour, resilient of pavement layers and soil and base structural layer coefficient are being carried out twice a year. It was shown that use of fly ash increased the elastic modulus of base layers. This article first appeared in the Feb/May 2007 issue of Asphalt Contractor. 4 photos.

  11. A study on the rheological properties of recycled rubber-modified asphalt mixtures.

    PubMed

    Karacasu, Murat; Okur, Volkan; Er, Arzu

    2015-01-01

    Using waste rubber in asphalt mixes has become a common practice in road construction. This paper presents the results of a study on the rheological characteristics of rubber-modified asphalt (RMA) concrete under static and dynamic loading conditions. A number of static and dynamic creep tests were conducted on RMA mix specimens with different rubber sizes and contents, and a series of resonant column tests were conducted to evaluate the shear modulus and damping values. To simulate the stress-strain response of traffic-induced loading, the measurements were taken for different confining pressures and strain levels. The results of the study indicated that rubber modification increases stiffness and damping ratio, making it a very attractive material for use in road construction. However the grain size of the rubber is very important. Although RMA may cost up to 100% more than regular asphalt, the advantages it brings, such as an increased service life of the road and proper waste utilization contributing to a more sustainable infrastructure, may justify the added cost. PMID:25695096

  12. A Study on the Rheological Properties of Recycled Rubber-Modified Asphalt Mixtures

    PubMed Central

    Karacasu, Murat; Er, Arzu

    2015-01-01

    Using waste rubber in asphalt mixes has become a common practice in road construction. This paper presents the results of a study on the rheological characteristics of rubber-modified asphalt (RMA) concrete under static and dynamic loading conditions. A number of static and dynamic creep tests were conducted on RMA mix specimens with different rubber sizes and contents, and a series of resonant column tests were conducted to evaluate the shear modulus and damping values. To simulate the stress-strain response of traffic-induced loading, the measurements were taken for different confining pressures and strain levels. The results of the study indicated that rubber modification increases stiffness and damping ratio, making it a very attractive material for use in road construction. However the grain size of the rubber is very important. Although RMA may cost up to 100% more than regular asphalt, the advantages it brings, such as an increased service life of the road and proper waste utilization contributing to a more sustainable infrastructure, may justify the added cost. PMID:25695096

  13. Effects of conductive fillers on temperature distribution of asphalt pavements

    NASA Astrophysics Data System (ADS)

    Mingyu, Chen; Shaopeng, Wu; Yuan, Zhang; Hong, Wang

    2010-05-01

    The sun provides a cheap and abundant source of clean and renewable energy. Solar cells have been used to capture this energy and generate electricity. A more useful form of the solar cell would be asphalt pavements, which get heated up by solar radiation. Graphite powders are utilized as thermal conductive fillers to make an asphalt collector conductive so as to improve the efficiency of the asphalt collector. Accounting for the important application conditions and evaluating the effects of the heat conductive materials and the solar energy absorbability of the conductive asphalt collector, a finite element model has been developed to predict temperature distributions in the conductive asphalt solar collector. In this study, an experimental validation exercise was conducted using the measured data taken from full-depth asphalt slabs. Validation results showed that the model can satisfactorily predict the temperature distributions in asphalt concrete slabs. The optimal depth is 25-50 mm for placing pipes that serve as the heat exchanger. Meanwhile, the effect of the surroundings on the solar energy potential of the asphalt collector was noticeable.

  14. Elimination chemistry in asphalt

    SciTech Connect

    Boucher, J.L.; Ihsiung Wang; Martinez, D.F. )

    1990-07-01

    Elimination chemistry provides important information, not only about the chemical properties of asphalt, but also the chemical modification method of asphalt. The chemical reactions which use the natural abundance of radicals are important for free-radical halogenation reaction. Spectral data demonstrates the formation of halogenated asphalt. The utility of dehydrohalogenation modified asphalt is limited. However, the resulting dehydrohalogenation modified asphalt does produce a significant unsaturated intermediate, which can incorporate elastomeric polymers (and monomers) via condensation or addition process. The second chemical modification method is the Hofmann elimination reaction, which was performed by reaction of methyl iodide with asphalt, followed by treatment of base. Spectroscopic data shows that a methyl group attached to nitrogen or sulfur in asphalt after Hofmann elimination reaction. Physical data shows that the Hofmann elimination modification improved the quality of asphalt, such as low temperature susceptibility measured by PVN. The modified asphalt also studied by HP-GPC in order to correlate their physical properties. The result shows that the molecular size distribution has changed and reduced the amount of LMS. The amount of decreasing LMS is also dependent on the content of nitrogen and sulfur in asphalts.

  15. Asphalt Pavement Aging and Temperature Dependent Properties Using Functionally Graded Viscoelastic Model

    ERIC Educational Resources Information Center

    Dave, Eshan V.

    2009-01-01

    Asphalt concrete pavements are inherently graded viscoelastic structures. Oxidative aging of asphalt binder and temperature cycling due to climatic conditions being the major cause of non-homogeneity. Current pavement analysis and simulation procedures dwell on the use of layered approach to account for these non-homogeneities. The conventional…

  16. Recycled materials in asphalt pavements. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect

    1995-03-01

    The bibliography contains citations concerning the recycling of asphalt pavement materials for road construction. Citations discuss asphalt concrete mixtures and recycling, recycled materials testing and evaluation, and pavement bases. Engineering and environmental aspects of recycled materials are examined. (Contains a minimum of 78 citations and includes a subject term index and title list.)

  17. Breaking/cracking and seating concrete pavements. Final report

    SciTech Connect

    Thompson, M.R.

    1989-03-01

    This synthesis will be of interest to pavement designers, maintenance engineers, and others interested in reducing reflection cracking of asphalt overlays on portland cement concrete (PCC) pavement. Information is presented on the technique of breaking or cracking of the concrete pavement into small segments before overlaying with asphalt concrete. Asphalt concrete overlays on existing PCC pavements are subject to reflection cracking induced by thermal movements of PCC pavement. The report of the Transportation Research Board discusses the technique of breaking/cracking and seating of the existing PCC before an overlay as a means to reduce or eliminate reflection cracking.

  18. Characterization of asphalt materials containing bio oil from michigan wood

    NASA Astrophysics Data System (ADS)

    Mills-Beale, Julian

    The objective of this research is to develop sustainable wood-blend bioasphalt and characterize the atomic, molecular and bulk-scale behavior necessary to produce advanced asphalt paving mixtures. Bioasphalt was manufactured from Aspen, Basswood, Red Maple, Balsam, Maple, Pine, Beech and Magnolia wood via a 25 KWt fast-pyrolysis plant at 500 °C and refined into two distinct end forms - non-treated (5.54% moisture) and treated bioasphalt (1% moisture). Michigan petroleum-based asphalt, Performance Grade (PG) 58-28 was modified with 2, 5 and 10% of the bioasphalt by weight of base asphalt and characterized with the gas chromatography-mass spectroscopy (GC-MS), Fourier Transform Infra-red (FTIR) spectroscopy and the automated flocculation titrimetry techniques. The GC-MS method was used to characterize the Carbon-Hydrogen-Nitrogen (CHN) elemental ratio whiles the FTIR and the AFT were used to characterize the oxidative aging performance and the solubility parameters, respectively. For rheological characterization, the rotational viscosity, dynamic shear modulus and flexural bending methods are used in evaluating the low, intermediate and high temperature performance of the bio-modified asphalt materials. 54 5E3 (maximum of 3 million expected equivalent standard axle traffic loads) asphalt paving mixes were then prepared and characterized to investigate their laboratory permanent deformation, dynamic mix stiffness, moisture susceptibility, workability and constructability performance. From the research investigations, it was concluded that: 1) levo, 2, 6 dimethoxyphenol, 2 methoxy 4 vinylphenol, 2 methyl 1-2 cyclopentandione and 4-allyl-2, 6 dimetoxyphenol are the dominant chemical functional groups; 2) bioasphalt increases the viscosity and dynamic shear modulus of traditional asphalt binders; 3) Bio-modified petroleum asphalt can provide low-temperature cracking resistance benefits at -18 °C but is susceptible to cracking at -24 °C; 3) Carbonyl and sulphoxide

  19. Asphalt in Pavement Maintenance.

    ERIC Educational Resources Information Center

    Asphalt Inst., College Park, MD.

    Maintenance methods that can be used equally well in all regions of the country have been developed for the use of asphalt in pavement maintenance. Specific information covering methods, equipment and terminology that applies to the use of asphalt in the maintenance of all types of pavement structures, including shoulders, is provided. In many…

  20. Bone Glue Modified Asphalt: A Step towards Energy Conservation and Environment Friendly Modified Asphalts.

    PubMed

    Rizvi, Hashim Raza; Khattak, Mohammad Jamal; Gallo, August A

    2014-01-01

    Asphalt has been modified for the past several decades using various additives, including synthetic polymers. Polymer modification improves structural and engineering characteristics of the binder, which is a result of improvement in rheological characteristics of binder as well as its adhesion capability with the aggregate. Such enhancement inevitably enhances the performance characteristics of hot mix asphalts (HMA) such as fatigue life, resistance to rutting, and thermal cracking. Even though polymer-modified HMA is popular in North America and European countries, its use is still limited in developing countries of Southeast Asia due to high costs associated with its manufacturing, processing, and energy consumption. In this study, a new kind of asphalt modifier derived from animal wastes, such as bones, hides, and flesh commonly known as Bone Glue, is studied. This biomaterial which is a by-product of food and cattle industries is cheap, conveniently available, and produced locally in developing countries. The results of the research study showed that the bone glue can easily be mixed with asphalt without significantly altering the asphalt binder's viscosity and mixing and compaction temperatures of HMA. Additionally, improvements in complex shear modulus for a range of temperatures were also determined and it was found that complex shear modulus was improved by bone glue modification.

  1. Bone Glue Modified Asphalt: A Step towards Energy Conservation and Environment Friendly Modified Asphalts

    PubMed Central

    Rizvi, Hashim Raza; Gallo, August A.

    2014-01-01

    Asphalt has been modified for the past several decades using various additives, including synthetic polymers. Polymer modification improves structural and engineering characteristics of the binder, which is a result of improvement in rheological characteristics of binder as well as its adhesion capability with the aggregate. Such enhancement inevitably enhances the performance characteristics of hot mix asphalts (HMA) such as fatigue life, resistance to rutting, and thermal cracking. Even though polymer-modified HMA is popular in North America and European countries, its use is still limited in developing countries of Southeast Asia due to high costs associated with its manufacturing, processing, and energy consumption. In this study, a new kind of asphalt modifier derived from animal wastes, such as bones, hides, and flesh commonly known as Bone Glue, is studied. This biomaterial which is a by-product of food and cattle industries is cheap, conveniently available, and produced locally in developing countries. The results of the research study showed that the bone glue can easily be mixed with asphalt without significantly altering the asphalt binder's viscosity and mixing and compaction temperatures of HMA. Additionally, improvements in complex shear modulus for a range of temperatures were also determined and it was found that complex shear modulus was improved by bone glue modification. PMID:27437456

  2. Development of lightweight concrete mixes for construction industry at the state of Arkansas

    NASA Astrophysics Data System (ADS)

    Almansouri, Mohammed Abdulwahab

    As the construction industry evolved, the need for more durable, long lasting infrastructure increased. Therefore, more efforts have been put to find new methods to improve the properties of the concrete to prolong the service life of the structural elements. One of these methods is the use of lightweight aggregate as an internal curing agent to help reducing self-desiccation and shrinkage. This research studied the effects of using locally available lightweight aggregate (expanded clay), as a partial replacement of normal weight aggregate in the concrete matrix. The concrete mixtures contained lightweight aggregate with a replacement percentage of 12.5, 25, 37.5, and 50 percent by volume. Fresh properties as well as compressive strength, modulus of rupture, and drying shrinkage were measured. While was effective in reducing drying shrinkage, the use of lightweight aggregate resulted in slightly reducing both the compressive strength and modulus of rupture.

  3. Evaluation of western shale-oil residue as an additive to petroleum asphalt for use as a pavement crack and joint sealant material

    SciTech Connect

    Harnsberger, P.M.; Wolf, J.M.; Robertson, R.E.

    1992-11-01

    The objective of this study was to perform a preliminary evaluation of using a distillation residue from Green River Formation (western) shale oil as an additive to a petroleum asphalt for use as a crack and joint filler material in portland cement concrete and asphaltic pavements. A commercially available rubberized asphalt crack and joint filler material was also tested for comparison. ASTM specification tests for sealant materials used in concrete and asphalt pavements were performed on the sealant materials. Portland cement concrete briquets prepared with an asphalt material sandwiched between two concrete wafers were tested in a stress-relaxation experiment to evaluate the relaxation and recovery properties of the sealant materials. The results show that the shale-oil modified petroleum asphalts and the neat petroleum asphalt do not pass the extension portion of the ASTM test; however, there is indication of improvement in the adhesive properties of the shale-oil modified asphalts. There is also evidence that the addition of shale-oil residue to the petroleum asphalt, especially at the 20% level, improves the relaxation and recovery properties compared with the petroleum asphalt.

  4. A planning model with a solution algorithm for ready mixed concrete production and truck dispatching under stochastic travel times

    NASA Astrophysics Data System (ADS)

    Yan, S.; Lin, H. C.; Jiang, X. Y.

    2012-04-01

    In this study the authors employ network flow techniques to construct a systematic model that helps ready mixed concrete carriers effectively plan production and truck dispatching schedules under stochastic travel times. The model is formulated as a mixed integer network flow problem with side constraints. Problem decomposition and relaxation techniques, coupled with the CPLEX mathematical programming solver, are employed to develop an algorithm that is capable of efficiently solving the problems. A simulation-based evaluation method is also proposed to evaluate the model, coupled with a deterministic model, and the method currently used in actual operations. Finally, a case study is performed using real operating data from a Taiwan RMC firm. The test results show that the system operating cost obtained using the stochastic model is a significant improvement over that obtained using the deterministic model or the manual approach. Consequently, the model and the solution algorithm could be useful for actual operations.

  5. Application of Common Mid-Point Method to Estimate Asphalt

    NASA Astrophysics Data System (ADS)

    Zhao, Shan; Al-Aadi, Imad

    2015-04-01

    3-D radar is a multi-array stepped-frequency ground penetration radar (GPR) that can measure at a very close sampling interval in both in-line and cross-line directions. Constructing asphalt layers in accordance with specified thicknesses is crucial for pavement structure capacity and pavement performance. Common mid-point method (CMP) is a multi-offset measurement method that can improve the accuracy of the asphalt layer thickness estimation. In this study, the viability of using 3-D radar to predict asphalt concrete pavement thickness with an extended CMP method was investigated. GPR signals were collected on asphalt pavements with various thicknesses. Time domain resolution of the 3-D radar was improved by applying zero-padding technique in the frequency domain. The performance of the 3-D radar was then compared to that of the air-coupled horn antenna. The study concluded that 3-D radar can be used to predict asphalt layer thickness using CMP method accurately when the layer thickness is larger than 0.13m. The lack of time domain resolution of 3-D radar can be solved by frequency zero-padding. Keywords: asphalt pavement thickness, 3-D Radar, stepped-frequency, common mid-point method, zero padding.

  6. Supercritical refining of asphalt to produce asphalt recycling agents

    SciTech Connect

    Chaffin, J.M.; Davison, R.R.; Glover, C.J.; Bullin, J.A.

    1995-12-31

    Several asphalts were fractionated using supercritical pentane. These fractions were analyzed and Gel Permeation Chromatography and High Performance Liquid Chromatography and their viscosities were measured. The properties of these fractions vary not only among the fractions of a given asphalt, but also for the same fraction produced from different asphalts. These widely varied fractions previously have been shown to have potential for reblending to produce superior asphalts. This study investigates the potential for using some of the fractions as asphalt recycling agents. A modified SHRP PAV test was conducted on nine recycled asphalts. The aging indices of eight of the recycled asphalts are superior to the aging index of the original asphalt. In addition, two of the blends using industrial supercritical fractions and the three blends using laboratory supercritical fractions have lower aging indices than blends using commercial recycling agents.

  7. Feasibility of using 100% Recycled Asphalt Pavement mixtures for road construction

    NASA Astrophysics Data System (ADS)

    Carlson, Russell Edgar, IV

    Recycled Asphalt Pavement (RAP) is the largest recycled good in the United States and 80 million tons are recycled yearly, saving taxpayers about $1.5 billion dollars. This paper explores the possibility of utilizing 100% RAP materials in asphalt pavement. Asphalt mixtures are produced at 135°C in a typical asphalt plant. However, at 135°C, not all binder from RAP materials may not become effective for coating aggregates. The main objective of the study is to determine the amount of effective binder available from RAP in the asphalt plant. The 100% RAP mixes have aged binder that can alter mix designs and interaction with virgin binder. In this study, to determine low temperature cracking resistance and fatigue performance, samples were prepared using a 100% RAP mix with no virgin binder and a 100% RAP mix with virgin asphalt binder to achieve the optimum binder content of the mix. Second, to determine the effectiveness of binder from RAP materials, compaction tests were performed by heating RAP materials at various temperatures. It was found that 100% RAP mixes cannot be feasible for field use if additional virgin binder is added to reach the optimum asphalt content. Based on limited test results, the low temperature grade was not within proper limits but the beam fatigue testing results were acceptable. Based on compaction test results, additional heating is needed to increase the effectiveness of asphalt binder from RAP materials.

  8. Petroleum bitumens in asphalt concrete (review)

    SciTech Connect

    Rozental, D.A.

    1995-12-20

    Modern views on the chemical structure of the main components of heavy petroleum residues and principles of formation of the bitumen disperse systems are presented. Changes in the bitumen disperse structure upon contact with mineral fillers at 160-200{degrees}C for 1-5 h and the role of adsorption of bitumen surfactants on filler grains in these changes are discussed in terms of these views.

  9. The reinforcement and healing of asphalt mastic mixtures by rejuvenator encapsulation in alginate compartmented fibres

    NASA Astrophysics Data System (ADS)

    Tabaković, A.; Post, W.; Cantero, D.; Copuroglu, O.; Garcia, S. J.; Schlangen, E.

    2016-08-01

    This paper explores the potential use of compartmented alginate fibres as a new method of incorporating rejuvenators into asphalt pavement mixtures. The compartmented fibres are employed to locally distribute the rejuvenator and to overcome the problems associated with spherical capsules and hollow fibres. The work presents proof of concept of the encapsulation process which involved embedding the fibres into the asphalt mastic mixture and the survival rate of fibres in the asphalt mixture. To prove the effectiveness of the alginate as a rejuvenator encapsulating material and to demonstrate its ability survive asphalt production process, the fibres containing the rejuvenator were prepared and subjected to thermogravimetric analysis and uniaxial tensile test. The test results demonstrated that fibres have suitable thermal and mechanical strength to survive the asphalt mixing and compaction process. The CT scan of an asphalt mortar mix containing fibres demonstrated that fibres are present in the mix in their full length, undamaged, providing confirmation that the fibres survived the asphalt production process. In order to investigate the fibres physiological properties and ability to release the rejuvenator into cracks in the asphalt mastic, the environmental scanning electron microscope and optical microscope analysis were employed. To prove its success as an asphalt healing system, compartmented alginate fibres containing rejuvenator were embedded in asphalt mastic mix. The three point bend tests were performed on the asphalt mastic test samples and the degree to which the samples began to self-heal in response was measured and quantified. The research findings indicate that alginate fibres present a promising new approach for the development of self-healing asphalt pavement systems.

  10. Properties of concrete with tire derived aggregate and crumb rubber as a lighthweight substitute for mineral aggregates in the concrete mix

    NASA Astrophysics Data System (ADS)

    Siringi, Gideon Momanyi

    Scrap tires continue to be a nuisance to the environment and this research proposes one way of recycling them as a lightweight aggregate which can substitute for mineral aggregates in concrete. Aggregates derived from scrap tires are often referred to as Tire Derived Aggregate (TDA). First, the focus is how much mineral aggregate can be replaced by these waste tires and how the properties of concrete are affected with the introduction of rubber. This is being mindful of the fact that for a new material to be acceptable as an engineering material, its properties and behavior has to be well understood, the materials must perform properly and be acceptable to the regulating agencies. The role played by the quantity of TDA and Crumb Rubber replacing coarse aggregate and fine aggregate respectively as well as different treatment and additives in concrete on its properties are examined. Conventional concrete (without TDA) and concrete containing TDA are compared by examining their compressive strength based on ASTM C39, workability based on ASTM C143, Splitting Tensile Strength based on ASTM C496, Modulus of Rupture (flexural strength) based on ASTM C78 and Bond strength of concrete developed with reinforcing steel based on ASTM C234.Through stress-strain plots, the rubberized concrete is compared in terms of change in ductility, toughness and Elastic Modulus. Results indicate that while replacement of mineral aggregates with TDA results in reduction in compressive strength, this may be mitigated by addition of silica fume or using a smaller size of TDA to obtain the desired strength. The greatest benefit of using TDA is in the development of a higher ductile product with lower density while utilizing recycled TDA. From the results, it is observed that 7-10% of weight of mineral aggregates can be replaced by an equal volume of TDA to produce concrete with compressive strength of up to 4000 psi (27.5 MPa). Rubberized concrete would have higher ductility and toughness with

  11. Microbial Degradation of Asphalt1

    PubMed Central

    Phillips, U. A.; Traxler, R. W.

    1963-01-01

    Organisms of the genera Pseudomonas, Chromobacterium, and Bacillus capable of degrading asphalt were isolated by enrichment cultures. The asphalt degradation by these organisms varied from 3 to 25% after incubation for 1 week. The effects of temperature, pH, and atmosphere of incubation on asphalt degradation were investigated and were shown to vary with different organisms on the same substrate. PMID:16349633

  12. Phase 1 sampling and analysis plan for the 304 Concretion Facility closure activities

    SciTech Connect

    Adler, J.G.

    1994-09-14

    This document provides guidance for the initial (Phase 1) sampling and analysis activities associated with the proposed Resource Conservation and Recovery Act of 1976 (RCRA) clean closure of the 304 Concretion Facility. Over its service life, the 304 Concretion Facility housed the pilot plants associated with cladding uranium cores, was used to store engineering equipment and product chemicals, was used to treat low-level radioactive mixed waste, recyclable scrap uranium generated during nuclear fuel fabrication, and uranium-titanium alloy chips, and was used for the repackaging of spent halogenated solvents from the nuclear fuels manufacturing process. The strategy for clean closure of the 304 Concretion Facility is to decontaminate, sample (Phase 1 sampling), and evaluate results. If the evaluation indicates that a limited area requires additional decontamination for clean closure, the limited area will be decontaminated, resampled (Phase 2 sampling), and the result evaluated. If the evaluation indicates that the constituents of concern are below action levels, the facility will be clean closed. Or, if the evaluation indicates that the constituents of concern are present above action levels, the condition of the facility will be evaluated and appropriate action taken. There are a total of 37 sampling locations comprising 12 concrete core, 1 concrete chip, 9 soil, 11 wipe, and 4 asphalt core sampling locations. Analysis for inorganics and volatile organics will be performed on the concrete core and soil samples. Separate concrete core samples will be required for the inorganic and volatile organic analysis (VOA). Analysis for inorganics only will be performed on the concrete chip, wipe, and asphalt samples.

  13. HP-GPC characterization of asphalt and modified asphalts from gulf countries and their relation to performance based properties

    SciTech Connect

    Wahhab, H.I.A.; Ali, M.F.; Asi, I.M.; Dubabe, I.A.

    1996-12-31

    Asphalt producing refineries in the Gulf countries include Ras Tanura and Riyadh (Saudi Arabia), Al-Ahmadi (Kuwait), and BAPCO (Bahrain). Riyadh and Ras Tanura refineries are located in the central and eastern Saudi Arabia respectively. Arabian light crude oil is used to produce 2000 to 3000 tons of asphalt per day using vacuum distillation, air blowing and grade blending techniques to produce 60/70 penetration grade asphalts in each of these two Saudi refineries. All of the asphalt cement used in Saudi Arabia, Qatar and parts of the United Arab Emirates is supplied by Riyadh and Ras Tanura refineries. Al-Ahmadi refinery supplies all of the asphalt cement needed for construction in the state of Kuwait. Ratwi-Burgan crude off mix is used to produce 750 to 1000 tons of asphalt per day using vacuum distillation and air blowing processes. This study was initiated to evaluate different locally available polymers in order to identify potential polymers to modify asphalts to satisfy the performance requirements in the Gulf countries environmental conditions.

  14. Delamination detection in reinforced concrete using thermal inertia

    SciTech Connect

    Del Grande, N K; Durbin, P F

    1998-11-30

    We investigated the feasibility of thermal inertia mapping for bridge deck inspections. Using pulsed thermal imaging, we heat-stimulated surrogate delaminations in reinforced concrete and asphalt-concrete slabs. Using a dual-band infrared camera system, we measured thermal inertia responses of Styrofoam implants under 5 cm of asphalt, 5 cm of concrete, and 10 cm of asphalt and concrete. We compared thermal maps from solar-heated concrete and asphalt-concrete slabs with thermal inertia maps from flash-heated concrete and asphalt-concrete slabs. Thermal inertia mapping is a tool for visualizing and quantifying subsurface defects. Physically, thermal inertia is a measure of the resistance of the bridge deck to temperature change. Experimentally, it is determined from the inverse slope of the surface temperature versus the inverse square root of time. Mathematically, thermal inertia is the square root of the product of thermal conductivity, density, and heat capacity. Thermal inertia mapping distinguishes delaminated decks which have below-average thermal inertias from normal or shaded decks. Key Words: Pulsed Thermal Imaging, Thermal Inertia, Detection Of Concrete Bridgedeck Delaminations

  15. Microbial Life in a Liquid Asphalt Desert

    NASA Astrophysics Data System (ADS)

    Schulze-Makuch, Dirk; Haque, Shirin; de Sousa Antonio, Marina Resendes; Ali, Denzil; Hosein, Riad; Song, Young C.; Yang, Jinshu; Zaikova, Elena; Beckles, Denise M.; Guinan, Edward; Lehto, Harry J.; Hallam, Steven J.

    2011-04-01

    Pitch Lake in Trinidad and Tobago is a natural asphalt reservoir nourished by pitch seepage, a form of petroleum that consists of mostly asphaltines, from the surrounding oil-rich region. During upward seepage, pitch mixes with mud and gases under high pressure, and the lighter portion evaporates or is volatilized, which produces a liquid asphalt residue characterized by low water activity, recalcitrant carbon substrates, and noxious chemical compounds. An active microbial community of archaea and bacteria, many of them novel strains (particularly from the new Tar ARC groups), totaling a biomass of up to 107 cells per gram, was found to inhabit the liquid hydrocarbon matrix of Pitch Lake. Geochemical and molecular taxonomic approaches revealed diverse, novel, and deeply branching microbial lineages with the potential to mediate anaerobic hydrocarbon degradation processes in different parts of the asphalt column. In addition, we found markers for archaeal methane metabolism and specific gene sequences affiliated with facultative and obligate anaerobic sulfur- and nitrite-oxidizing bacteria. The microbial diversity at Pitch Lake was found to be unique when compared to microbial communities analyzed at other hydrocarbon-rich environments, which included Rancho Le Brea, a natural asphalt environment in California, USA, and an oil well and a mud volcano in Trinidad and Tobago, among other sites. These results open a window into the microbial ecology and biogeochemistry of recalcitrant hydrocarbon matrices and establish the site as a terrestrial analogue for modeling the biotic potential of hydrocarbon lakes such as those found on Saturn's largest moon Titan.

  16. Predicting rheological parameters of reclaimed asphalt cement with wave propagation techniques. Research report, 1 September 1993-31 August 1995

    SciTech Connect

    Nazarian, S.; Pezo, R.; Nori, S.R.G.; Picornell, M.

    1996-07-01

    A methodology to predict the rheological of asphalt cement from elastic modulus or from the indirect tensile (IDT) strength of the mix is presented. Wave propagation techniques were used to determine the modulus of the mix. Numerous specimens, prepared from four different mixtures with different asphalt contents and voids in the total mixes (VTM`s), were-oven aged for different periods. The elastic modulus and IDT strength of each specimen were determined, and its asphalt cement was recovered to evalutate its rheological properties. The effects of different parameters, such as asphalt content and VTM, on relationships between elastic modulus or IDT strength with rheological properties were determined.

  17. 23. Surrender interview site, showing Pemberton Avenue concrete slab road ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. Surrender interview site, showing Pemberton Avenue concrete slab road type with gutter (asphalt construction typical on Union and Confederate Avenues), view to the sw. - Vicksburg National Military Park Roads & Bridges, Vicksburg, Warren County, MS

  18. APPLICATION OF LOW TEMPERATU RE PROPERTIES IMPROVEMENT ASPHALT TO REPAIRE WORK OF RO CK FILL DAM WITH ASPHALT FACING

    NASA Astrophysics Data System (ADS)

    Shimazaki, Masaru; Tsunoo, Takashi; Kasahara, Atsushi

    The low temperature properties improvement asphalt that is no decreasing the transformation follow and the stress relaxation properties at the low temperature was developed. It aimed at properties of PG64-28 (lowest temperature 28 degree C and maximum temperature 64 degree C that was able to be used) from PG (Performance Grade) of mix design method SUPERPAVE (Superior Performance Pavement) of new road-building plan SHRP (Strategic Highway Research Program) in the United States when developing. When the repair work of the rock fill dam with asphalt facing located in Kyogoku-cho Abuta-gun Hokkaido was planned, the applicability of the developed asphalt was verified. As for the verification outcome and the developed asphalt, it was proven that it was applied to the repair construction, and there was no problem in manufacturing and construction.

  19. Slow mechanical relaxation in asphalt

    SciTech Connect

    Stastna, J.; Zanzotto, L.

    1996-12-31

    Asphalt (or bitumen) is one of the earliest construction materials used by mankind. However, despite the long history of its use and the important role it plays at the present time, in the construction of pavements, the composition and especially the structure of asphalt is still not fully understood. It is generally believed that asphalt is a multiphase system in which the large and polar molecules called asphaltenes, or their agglomerates are dispersed in the medium consisting of the smaller molecules with low or no polarity. Opinions on how the asphalt structure is arranged vary. The study of asphalt structure is made extremely difficult by the nature of this material. Non-invasive methods such as dynamic mechanical or electric testing, which investigate the asphalt in its original state may greatly contribute to our knowledge of the asphalt internal structure.

  20. Sulfur extended asphalt pavement evaluation in the State of Washington: SR 270 highway pavement performance report

    NASA Astrophysics Data System (ADS)

    Mahoney, J. P.; Terrel, R. L.; Cook, J. C.

    1982-11-01

    The placement and performance of sulfur extended asphalt (SEA) paving mixtures at a highway test site (SR 270) near Pullman, Washington is summarized. The mixture and structural designs and construction details are included. This is followed by a discussion of the data collection and analysis accomplished over a three year evaluation period (1979-1982). A major experimental feature of the study was the use of 0.100 (conventional asphalt concrete), 30/70 and 40/60 SEA binder ratios (sulfur/asphalt ratios are expressed as weight percents in the experimental paving mixtures.

  1. Delamination detection in reinforced concrete using thermal inertia

    NASA Astrophysics Data System (ADS)

    DelGrande, Nancy; Durbin, Philip F.

    1999-02-01

    We investigated the feasibility of thermal inertia mapping for bridge deck inspections. Using pulsed thermal imaging, we heat-stimulated surrogate delaminations in reinforced concrete and asphalt-concrete slabs. Using a dual-band infrared camera system, we measured thermal inertia responses of Styrofoam implants under 5 cm of asphalt, 5 cm of concrete, and 10 cm of asphalt and concrete. We compared thermal maps from solar-heated concrete and asphalt-concrete slabs with thermal inertia maps from flash-heated concrete and asphalt-concrete slabs. Thermal inertia mapping is a tool for visualizing and quantifying subsurface defects. Physically, thermal inertia is a measure of the resistance of the bridge deck to temperature change. Experimentally, it is determined from the inverse slope of the surface temperature versus the inverse square root of time. Mathematically, thermal inertia is the square root of the product of thermal conductivity, density, and heat capacity. Thermal inertia mapping distinguishes delaminated decks which have below-average thermal inertias from normal or shaded decks.

  2. A review of the fundamentals of polymer-modified asphalts: Asphalt/polymer interactions and principles of compatibility.

    PubMed

    Polacco, Giovanni; Filippi, Sara; Merusi, Filippo; Stastna, George

    2015-10-01

    During the last decades, the number of vehicles per citizen as well as the traffic speed and load has dramatically increased. This sudden and somehow unplanned overloading has strongly shortened the life of pavements and increased its cost of maintenance and risks to users. In order to limit the deterioration of road networks, it is necessary to improve the quality and performance of pavements, which was achieved through the addition of a polymer to the bituminous binder. Since their introduction, polymer-modified asphalts have gained in importance during the second half of the twentieth century, and they now play a fundamental role in the field of road paving. With high-temperature and high-shear mixing with asphalt, the polymer incorporates asphalt molecules, thereby forming a swallowed network that involves the entire binder and results in a significant improvement of the viscoelastic properties in comparison with those of the unmodified binder. Such a process encounters the well-known difficulties related to the poor solubility of polymers, which limits the number of macromolecules able to not only form such a structure but also maintain it during high-temperature storage in static conditions, which may be necessary before laying the binder. Therefore, polymer-modified asphalts have been the subject of numerous studies aimed to understand and optimize their structure and storage stability, which gradually attracted polymer scientists into this field that was initially explored by civil engineers. The analytical techniques of polymer science have been applied to polymer-modified asphalts, which resulted in a good understanding of their internal structure. Nevertheless, the complexity and variability of asphalt composition rendered it nearly impossible to generalize the results and univocally predict the properties of a given polymer/asphalt pair. The aim of this paper is to review these aspects of polymer-modified asphalts. Together with a brief description of

  3. A review of the fundamentals of polymer-modified asphalts: Asphalt/polymer interactions and principles of compatibility.

    PubMed

    Polacco, Giovanni; Filippi, Sara; Merusi, Filippo; Stastna, George

    2015-10-01

    During the last decades, the number of vehicles per citizen as well as the traffic speed and load has dramatically increased. This sudden and somehow unplanned overloading has strongly shortened the life of pavements and increased its cost of maintenance and risks to users. In order to limit the deterioration of road networks, it is necessary to improve the quality and performance of pavements, which was achieved through the addition of a polymer to the bituminous binder. Since their introduction, polymer-modified asphalts have gained in importance during the second half of the twentieth century, and they now play a fundamental role in the field of road paving. With high-temperature and high-shear mixing with asphalt, the polymer incorporates asphalt molecules, thereby forming a swallowed network that involves the entire binder and results in a significant improvement of the viscoelastic properties in comparison with those of the unmodified binder. Such a process encounters the well-known difficulties related to the poor solubility of polymers, which limits the number of macromolecules able to not only form such a structure but also maintain it during high-temperature storage in static conditions, which may be necessary before laying the binder. Therefore, polymer-modified asphalts have been the subject of numerous studies aimed to understand and optimize their structure and storage stability, which gradually attracted polymer scientists into this field that was initially explored by civil engineers. The analytical techniques of polymer science have been applied to polymer-modified asphalts, which resulted in a good understanding of their internal structure. Nevertheless, the complexity and variability of asphalt composition rendered it nearly impossible to generalize the results and univocally predict the properties of a given polymer/asphalt pair. The aim of this paper is to review these aspects of polymer-modified asphalts. Together with a brief description of

  4. State-of-the art guideline manual for design, quality control and construction of Sulfur-Extended-Asphalt (SEA) pavements

    NASA Astrophysics Data System (ADS)

    McBee, W. C.; Sullivan, T. A.; Izatt, J. O.

    1980-08-01

    Sulfur-Extended-Asphalt (SEA) binders save asphalt, a potential energy source, by replacing some asphalt in conventional flexible pavement mixes with sulfur. These new binders appear to possess properties comparable to asphalt. The guideline manual discussed provides the highway community in both public and private organizations with the most definitive state-of-the-art guidelines extant for using these binders. Information on design, construction, quality control, equipment, mixing plants, specifications, and safety is included. Administrators and professionals in pavement construction, design, maintenance, and materials testing will be the personnel who are most interested in the manual.

  5. Laboratory evaluation of selected tar sand asphalts

    SciTech Connect

    Button, J.W.; Epps, J.A.; Gallaway, B.M.

    1980-12-01

    Three tar sand asphalts of similar grades prepared from one syncrude by three different refining methods were characterized by tests commonly used to specify paving asphalts together with certain special tests. Asphalt-aggregate mixtures were prepared using these asphalts and tested in the laboratory to determine strength stiffness stability, tensile properties, temperature effects and water susceptibility. Comparison of the tar sand asphalt properties to conventional petroleum asphalt properties reveal no striking differences.

  6. Integrated model for assessing the cost and CO2 emission (IMACC) for sustainable structural design in ready-mix concrete.

    PubMed

    Hong, Taehoon; Ji, Changyoon; Park, Hyoseon

    2012-07-30

    Cost has traditionally been considered the most important factor in the decision-making process. Recently, along with the consistent interest in environmental problems, environmental impact has also become a key factor. Accordingly, there is a need to develop a method that simultaneously reflects the cost and environmental impact in the decision-making process. This study proposed an integrated model for assessing the cost and CO(2) emission (IMACC) at the same time. IMACC is a model that assesses the cost and CO(2) emission of the various structural-design alternatives proposed in the structural-design process. To develop the IMACC, a standard on assessing the cost and CO(2) emission generated in the construction stage was proposed, along with the CO(2) emission factors in the structural materials, based on such materials' strengths. Moreover, using the economic and environmental scores that signify the cost and CO(2) emission reduction ratios, respectively, a method of selecting the best design alternative was proposed. To verify the applicability of IMACC, practical application was carried out. Structural designs were assessed, each of which used 21, 24, 27, and 30 MPa ready-mix concrete (RMC). The use of IMACC makes it easy to verify what the best design is. Results show the one that used 27 MPa RMC was the best design. Therefore, the proposed IMACC can be used as a tool for supporting the decision-making process in selecting the best design alternative. PMID:22436837

  7. Asphalt recycle plant and method

    SciTech Connect

    Brashears, D. F.; Butler, T. G.; Elliott, E. J.

    1984-10-16

    An asphalt recycling system and process are incorporated into an existing batch type asphalt plant. The existing asphalt plant has an aggregate dryer and air discharge ducts connected to a filtering system. A recycling dryer has input ducts connected to the existing aggregate dryer discharge ducts and output ducts connected from the recycling dryer back to the existing ducts to the filtering system. A recycle feeder bin for feeding reclaimed asphalt pavement to the recycle dryer is connected to the recycle dryer. A recycle booster burner is operatively connected to the recycle dryer through the input duct to the dryer for providing additional heat to the recycle dryer so that the waste heat from the existing aggregate dryer and the booster burner provide a predetermined heat to the recycle dryer for heating the asphalt material. A recycling storage bin or silo is connected to receive the heated recycled asphalt from the recycle dryer. A hammermill or other means may be provided for breaking up the old asphaltic materials, such as old paving materials prior to entry of the material into the recycle dryer. Dampers are provided for directing heated gases from the existing batch type asphalt plant to the recycling system, as needed, and temperature controls are utilized to control the recycled booster burner to provide the right combination of existing waste and added heat for the recycled dryer. The stored recycled asphalt materials may be fed to an existing plant batching tower for batching and loading into vehicles.

  8. Asphalt Roofing Shingles Into Energy Project Summary Report

    SciTech Connect

    Jameson, Rex, PE

    2008-04-28

    Based on a widely cited September, 1999 report by the Vermont Agency of Natural Resources, nearly 11 million tons of asphalt roofing shingle wastes are produced in the United States each year. Recent data suggests that the total is made up of about 9.4 million tons from roofing tear-offs and about 1.6 million tons from manufacturing scrap. Developing beneficial uses for these materials would conserve natural resources, promote protection of the environment and strengthen the economy. This project explored the feasibility of using chipped asphalt shingle materials in cement manufacturing kilns and circulating fluidized bed (CFB) boilers. A method of enhancing the value of chipped shingle materials for use as fuel by removing certain fractions for use as substitute raw materials for the manufacture of new shingles was also explored. Procedures were developed to prevent asbestos containing materials from being processed at the chipping facilities, and the frequency of the occurrence of asbestos in residential roofing tear-off materials was evaluated. The economic feasibility of each potential use was evaluated based on experience gained during the project and on a review of the well established use of shingle materials in hot mix asphalt. This project demonstrated that chipped asphalt shingle materials can be suitable for use as fuel in circulating fluidized boilers and cement kilns. More experience would be necessary to determine the full benefits that could be derived and to discover long term effects, but no technical barriers to full scale commercial use of chipped asphalt shingle materials in these applications were discovered. While the technical feasibility of various options was demonstrated, only the use of asphalt shingle materials in hot mix asphalt applications is currently viable economically.

  9. Hierarchical Order of Influence of Mix Variables Affecting Compressive Strength of Sustainable Concrete Containing Fly Ash, Copper Slag, Silica Fume, and Fibres

    PubMed Central

    Natarajan, Sakthieswaran; Karuppiah, Ganesan

    2014-01-01

    Experiments have been conducted to study the effect of addition of fly ash, copper slag, and steel and polypropylene fibres on compressive strength of concrete and to determine the hierarchical order of influence of the mix variables in affecting the strength using cluster analysis experimentally. While fly ash and copper slag are used for partial replacement of cement and fine aggregate, respectively, defined quantities of steel and polypropylene fibres were added to the mixes. It is found from the experimental study that, in general, irrespective of the presence or absence of fibres, (i) for a given copper slag-fine aggregate ratio, increase in fly ash-cement ratio the concrete strength decreases and with the increase in copper slag-sand ratio also the rate of strength decrease and (ii) for a given fly ash-cement ratio, increase in copper slag-fine aggregate ratio increases the strength of the concrete. From the cluster analysis, it is found that the quantities of coarse and fine aggregate present have high influence in affecting the strength. It is also observed that the quantities of fly ash and copper slag used as substitutes have equal “influence” in affecting the strength. Marginal effect of addition of fibres in the compression strength of concrete is also revealed by the cluster analysis. PMID:24707213

  10. Hierarchical order of influence of mix variables affecting compressive strength of sustainable concrete containing fly ash, copper slag, silica fume, and fibres.

    PubMed

    Natarajan, Sakthieswaran; Karuppiah, Ganesan

    2014-01-01

    Experiments have been conducted to study the effect of addition of fly ash, copper slag, and steel and polypropylene fibres on compressive strength of concrete and to determine the hierarchical order of influence of the mix variables in affecting the strength using cluster analysis experimentally. While fly ash and copper slag are used for partial replacement of cement and fine aggregate, respectively, defined quantities of steel and polypropylene fibres were added to the mixes. It is found from the experimental study that, in general, irrespective of the presence or absence of fibres, (i) for a given copper slag-fine aggregate ratio, increase in fly ash-cement ratio the concrete strength decreases and with the increase in copper slag-sand ratio also the rate of strength decrease and (ii) for a given fly ash-cement ratio, increase in copper slag-fine aggregate ratio increases the strength of the concrete. From the cluster analysis, it is found that the quantities of coarse and fine aggregate present have high influence in affecting the strength. It is also observed that the quantities of fly ash and copper slag used as substitutes have equal "influence" in affecting the strength. Marginal effect of addition of fibres in the compression strength of concrete is also revealed by the cluster analysis.

  11. Nuclear method for determination of asphalt content corrected for moisture in bituminous mixture. Final report, March 1988-February 1989

    SciTech Connect

    Christensen, D.W.; Tarris, J.P.

    1989-05-01

    This report presents results of research on the development of a method for determination of asphalt content corrected for moisture using the nuclear-gauge method. The researchers selected an approach that involved rapid drying of the asphalt concrete samples in a microwave oven prior to the determination of asphalt content using a Troxler Model 3241-C nuclear asphalt-content gauge. As a reference, asphalt contents were also measured using quantitative extraction. In general, good agreement was found between asphalt contents measured by the Troxler Model 3241-C nuclear gauge and asphalt contents measured by quantitative extraction. In extended sampling for Plant 1, no significant increase in nuclear gauge error was seen over a 10-day sampling period, which indicates that daily calibration of the nuclear gauge is probably unnecessary to maintain satisfactory performance. The field demonstration of the procedure of drying the bituminous mixture in a microwave oven and then determining its asphalt content by the nuclear method indicated asphalt-content results were obtained approximately 1 hour faster than results obtained by quantitative extraction.

  12. Bacterial concrete

    NASA Astrophysics Data System (ADS)

    Ramakrishnan, Venkataswamy; Ramesh, K. P.; Bang, S. S.

    2001-04-01

    Cracks in concrete are inevitable and are one of the inherent weaknesses of concrete. Water and other salts seep through these cracks, corrosion initiates, and thus reduces the life of concrete. So there was a need to develop an inherent biomaterial, a self-repairing material which can remediate the cracks and fissures in concrete. Bacterial concrete is a material, which can successfully remediate cracks in concrete. This technique is highly desirable because the mineral precipitation induced as a result of microbial activities is pollution free and natural. As the cell wall of bacteria is anionic, metal accumulation (calcite) on the surface of the wall is substantial, thus the entire cell becomes crystalline and they eventually plug the pores and cracks in concrete. This paper discusses the plugging of artificially cracked cement mortar using Bacillus Pasteurii and Sporosarcina bacteria combined with sand as a filling material in artificially made cuts in cement mortar which was cured in urea and CaCl2 medium. The effect on the compressive strength and stiffness of the cement mortar cubes due to the mixing of bacteria is also discussed in this paper. It was found that use of bacteria improves the stiffness and compressive strength of concrete. Scanning electron microscope (SEM) is used to document the role of bacteria in microbiologically induced mineral precipitation. Rod like impressions were found on the face of calcite crystals indicating the presence of bacteria in those places. Energy- dispersive X-ray (EDX) spectra of the microbial precipitation on the surface of the crack indicated the abundance of calcium and the precipitation was inferred to be calcite (CaCO3).

  13. Microbial life in a liquid asphalt desert.

    PubMed

    Schulze-Makuch, Dirk; Haque, Shirin; de Sousa Antonio, Marina Resendes; Ali, Denzil; Hosein, Riad; Song, Young C; Yang, Jinshu; Zaikova, Elena; Beckles, Denise M; Guinan, Edward; Lehto, Harry J; Hallam, Steven J

    2011-04-01

    Pitch Lake in Trinidad and Tobago is a natural asphalt reservoir nourished by pitch seepage, a form of petroleum that consists of mostly asphaltines, from the surrounding oil-rich region. During upward seepage, pitch mixes with mud and gases under high pressure, and the lighter portion evaporates or is volatilized, which produces a liquid asphalt residue characterized by low water activity, recalcitrant carbon substrates, and noxious chemical compounds. An active microbial community of archaea and bacteria, many of them novel strains (particularly from the new Tar ARC groups), totaling a biomass of up to 10(7) cells per gram, was found to inhabit the liquid hydrocarbon matrix of Pitch Lake. Geochemical and molecular taxonomic approaches revealed diverse, novel, and deeply branching microbial lineages with the potential to mediate anaerobic hydrocarbon degradation processes in different parts of the asphalt column. In addition, we found markers for archaeal methane metabolism and specific gene sequences affiliated with facultative and obligate anaerobic sulfur- and nitrite-oxidizing bacteria. The microbial diversity at Pitch Lake was found to be unique when compared to microbial communities analyzed at other hydrocarbon-rich environments, which included Rancho Le Brea, a natural asphalt environment in California, USA, and an oil well and a mud volcano in Trinidad and Tobago, among other sites. These results open a window into the microbial ecology and biogeochemistry of recalcitrant hydrocarbon matrices and establish the site as a terrestrial analogue for modeling the biotic potential of hydrocarbon lakes such as those found on Saturn's largest moon Titan. PMID:21480792

  14. Polyurethane synthesis reactions in asphalts

    SciTech Connect

    Bukowski, A.; Gretkiewicz, J.

    1982-04-01

    A series of asphalt-polyurethane composites was prepared by means of polyurethane synthesis in asphalt and carried out in melt. The applied materials were asphalts of differentiated group components content, polyester polyols of chain structure from linear to strongly branched, 2,4-tolylene diisocyanate, 4,4-methylenebis(phenyl isocyanate), and tinorganic catalyst. The asphalt components react with isocyanates to a minimal degree. The influence of the applied substrates, temperature, and polyurethane content in the system on the basic kinetic relations characterizing the process is presented. Polyurethane synthesis in asphalts does not differ in a fundamental way from the obtaining of polyurethanes, especially when their content in the composition is significant, 20 wt% and more.

  15. Automated titration method for use on blended asphalts

    DOEpatents

    Pauli, Adam T.; Robertson, Raymond E.; Branthaver, Jan F.; Schabron, John F.

    2012-08-07

    A system for determining parameters and compatibility of a substance such as an asphalt or other petroleum substance uses titration to highly accurately determine one or more flocculation occurrences and is especially applicable to the determination or use of Heithaus parameters and optimal mixing of various asphalt stocks. In a preferred embodiment, automated titration in an oxygen gas exclusive system and further using spectrophotometric analysis (2-8) of solution turbidity is presented. A reversible titration technique enabling in-situ titration measurement of various solution concentrations is also presented.

  16. Energy conservation through recycling of factory asphalt roofing waste

    SciTech Connect

    Shepherd, P.B.; Powers, T.J. . Manville Technical Center); Hardy, J.; Maloof, R.; Patenaude, C.; Zilfi, J. )

    1989-12-31

    Prior DOE laboratory research showed that it was possible to recover the energy resource represented in factory shingle waste. This waste could be processed and recycled into the asphalt composition used to make new shingles. This bench-scale research concluded that factory experiments were all that were needed to provide a basis for commercial implementation. The project reported here completed that full scale research. Factory fiber glass shingle waste was processed to a form suitable for recycling. The processed waste was then mixed into the asphalt used to make new shingles. Process parameters and shingle quality were measured to provide a basis for commercial implementation.

  17. Performance-based asphalt mixture design methodology

    NASA Astrophysics Data System (ADS)

    Ali, Al-Hosain Mansour

    Today, several State D.O.T.s are being investigating the use of tire rubber with local conventional materials. Several of the ongoing investigations identified potential benefits from the use of these materials, including improvements in material properties and performance. One of the major problems is being associated with the transferability of asphalt rubber technology without appropriately considering the effects of the variety of conventional materials on mixture behavior and performance. Typically, the design of these mixtures is being adapted to the physical properties of the conventional materials by using the empirical Marshall mixture design and without considering fundamental mixture behavior and performance. Use of design criteria related to the most common modes of failure for asphalt mixtures, such as rutting, fatigue cracking, and low temperature thermal cracking have to be developed and used for identifying the "best mixture," in term of performance, for the specific local materials and loading conditions. The main objective of this study was the development of a mixture design methodology that considers mixture behavior and performance. In order to achieve this objective a laboratory investigation able to evaluate mixture properties that can be related to mixture performance, (in terms of rutting, low temperature cracking, moisture damage and fatigue), and simulating the actual field loading conditions that the material is being exposed to, was conducted. The results proved that the inclusion of rubber into asphalt mixtures improved physical characteristics such as elasticity, flexibility, rebound, aging properties, increased fatigue resistance, and reduced rutting potential. The possibility of coupling the traditional Marshall mix design method with parameters related to mixture behavior and performance was investigated. Also, the SHRP SUPERPAVE mix design methodology was reviewed and considered in this study for the development of an integrated

  18. Asphalt emulsion sealing of uranium mill tailings. 1980 annual report

    SciTech Connect

    Hartley, J.N.; Koehmstedt, P.L; Esterl, D.J.; Freeman, H.D.; Buelt, J.L.; Nelson, D.A.; Elmore, M.R.

    1981-05-01

    Studies of asphalt emulsion sealants conducted by the Pacific Northwest Laboratory have demonstrated that the sealants are effective in containing radon and other potentially hazardous material within uranium tailings. The laboratory and field studies have further demonstrated that radon exhalation from uranium tailings piles can be reduced by greater than 99% to near background levels. Field tests at the tailings pile in Grand Junction, Colorado, confirmed that an 8-cm admix seal containing 22 wt% asphalt could be effectively applied with a cold-mix paver. Other techniques were successfully tested, including a soil stabilizer and a hot, rubberized asphalt seal that was applied with a distributor truck. After the seals were applied and compacted, overburden was applied over the seal to protect the seal from ultraviolet degradation.

  19. Asphalt emulsion sealing of uranium mill tailings. 1979 annual report

    SciTech Connect

    Hartley, J.N.; Koehmstedt, P.L.; Esterl, D.J.; Freeman, H.D.

    1980-06-01

    Uranium mill tailings are a source of low-level radiation and radioactive materials that may be released into the environment. Stabilization or disposal of these tailings in a safe and environmentally sound way is necessary to minimize radon exhalation and other radioactive releases. One of the most promising concepts for stabilizing uranium tailings is being investigated at the Pacific Northwest Laboratory: the use of asphalt emulsion to contain radon and other potentially hazardous materials in uranium tailings. Results of these studies indicate that radon flux from uranium tailings can be reduced by greater than 99% by covering the tailings with an asphalt emulsion that is poured on or sprayed on (3.0 to 7.0 mm thick), or mixed with some of the tailings and compacted to form an admixture seal (2.5 to 15.2 cm) containing 18 wt % residual asphalt.

  20. Evaluation of asphalt-rubber interlayers. (Revised). Final research report, September 1986-September 1992

    SciTech Connect

    Estakhri, C.K.; Pendleton, O.; Lytton, R.L.

    1994-02-01

    The report presents the field performance results of three asphalt-rubber interlayer test roads in terms of the effectiveness of the interlayer at reducing the rate of reflection cracking. Several variables were included in the field experiments: concentration of rubber, binder application rate, type or source of rubber, and digestion (or mixing) time of asphalt and rubber. Control sections were made up of no interlayer and interlayer binders of polymer-modified asphalt and conventional asphalt cement. Results of the statistical analyses of the data indicated that, in general, asphalt-rubber interlayers are more effective at reducing reflection cracking than no interlayer at all. Asphalt-rubber also peerformed better than control sections composed of asphalt cement interlayers and polymer-modified interlayers except in one case where the interlyaer was composed of a double application of asphalt cement/aggregate. The data also indicated that higher binder application rates lead to imnproved cracking resistance; however, on many test sections, excessively high binder application rates caused flushing at the pavement surface.

  1. Elastic properties of fly ash-stabilized mixes.

    PubMed

    Dimter, Sanja; Rukavina, Tatjana; Minažek, Krunoslav

    2015-12-01

    Stabilized mixes are used in the construction of bearing layers in asphalt and concrete pavement structures. Two nondestructive methods: resonant frequency method and ultrasonic pulse velocity method, were used for estimation of elastic properties of fly ash-stabilized mixes. Stabilized mixes were designed containing sand from the river Drava and binder composed of different share of cement and fly ash. The aim of the research was to analyze the relationship between the dynamic modulus of elasticity determined by different nondestructive methods. Data showed that average value of elasticity modulus obtained by the ultrasound velocity method is lower than the values of elasticity modulus obtained by resonant frequency method. For further analysis and enhanced discussion of elastic properties of fly ash stabilized mixes, see Dimter et al. [1]. PMID:26702415

  2. Greenhouse Gas Emissions from Asphalt Pavement Construction: A Case Study in China.

    PubMed

    Ma, Feng; Sha, Aimin; Lin, Ruiyu; Huang, Yue; Wang, Chao

    2016-03-01

    In China, the construction of asphalt pavement has a significant impact on the environment, and energy use and greenhouse gas (GHG) emissions from asphalt pavement construction have been receiving increasing attention in recent years. At present, there is no universal criterion for the evaluation of GHG emissions in asphalt pavement construction. This paper proposes to define the system boundaries for GHG emissions from asphalt pavement by using a process-based life cycle assessment method. A method for evaluating GHG emissions from asphalt pavement construction is suggested. The paper reports a case study of GHG emissions from a typical asphalt pavement construction project in China. The results show that the greenhouse gas emissions from the mixture mixing phase are the highest, and account for about 54% of the total amount. The second highest GHG emission phase is the production of raw materials. For GHG emissions of cement stabilized base/subbase, the production of raw materials emits the most, about 98%. The GHG emission for cement production alone is about 92%. The results indicate that any measures to reduce GHG emissions from asphalt pavement construction should be focused on the raw materials manufacturing stage. If the raw materials production phase is excluded, the measures to reduce GHG emissions should be aimed at the mixture mixing phase. PMID:27011196

  3. Greenhouse Gas Emissions from Asphalt Pavement Construction: A Case Study in China.

    PubMed

    Ma, Feng; Sha, Aimin; Lin, Ruiyu; Huang, Yue; Wang, Chao

    2016-03-22

    In China, the construction of asphalt pavement has a significant impact on the environment, and energy use and greenhouse gas (GHG) emissions from asphalt pavement construction have been receiving increasing attention in recent years. At present, there is no universal criterion for the evaluation of GHG emissions in asphalt pavement construction. This paper proposes to define the system boundaries for GHG emissions from asphalt pavement by using a process-based life cycle assessment method. A method for evaluating GHG emissions from asphalt pavement construction is suggested. The paper reports a case study of GHG emissions from a typical asphalt pavement construction project in China. The results show that the greenhouse gas emissions from the mixture mixing phase are the highest, and account for about 54% of the total amount. The second highest GHG emission phase is the production of raw materials. For GHG emissions of cement stabilized base/subbase, the production of raw materials emits the most, about 98%. The GHG emission for cement production alone is about 92%. The results indicate that any measures to reduce GHG emissions from asphalt pavement construction should be focused on the raw materials manufacturing stage. If the raw materials production phase is excluded, the measures to reduce GHG emissions should be aimed at the mixture mixing phase.

  4. The Potential of Heat Collection from Solar Radiation in Asphalt Solar Collectors in Malaysia

    NASA Astrophysics Data System (ADS)

    Beddu, Salmia; Talib, Siti Hidayah Abdul; Itam, Zarina

    2016-03-01

    The implementation of asphalt solar collectors as a means of an energy source is being widely studied in recent years. Asphalt pavements are exposed to daily solar radiation, and are capable of reaching up to 70°C in temperature. The potential of harvesting energy from solar pavements as an alternative energy source in replace of non-renewable energy sources prone to depletion such as fuel is promising. In Malaysia, the sun intensity is quite high and for this reason, absorbing the heat from sun radiation, and then utilizing it in many other applications such as generating electricity could definitely be impressive. Previous researches on the different methods of studying the effect of heat absorption caused by solar radiation prove to be quite old and inaffective. More recent findings, on the otherhand, prove to be more informative. This paper focuses on determining the potential of heat collection from solar radiation in asphalt solar collectors using steel piping. The asphalt solar collector model constructed for this research was prepared in the civil engineering laboratory. The hot mixed asphalt (HMA) contains 10% bitumen mixed with 90% aggregates of the total size of asphalt. Three stainless steel pipes were embedded into the interior region of the model according to the design criteria, and then put to test. Results show that harvesting energy from asphalt solar collectors proves highly potential in Malaysia due its the hot climate.

  5. Greenhouse Gas Emissions from Asphalt Pavement Construction: A Case Study in China

    PubMed Central

    Ma, Feng; Sha, Aimin; Lin, Ruiyu; Huang, Yue; Wang, Chao

    2016-01-01

    In China, the construction of asphalt pavement has a significant impact on the environment, and energy use and greenhouse gas (GHG) emissions from asphalt pavement construction have been receiving increasing attention in recent years. At present, there is no universal criterion for the evaluation of GHG emissions in asphalt pavement construction. This paper proposes to define the system boundaries for GHG emissions from asphalt pavement by using a process-based life cycle assessment method. A method for evaluating GHG emissions from asphalt pavement construction is suggested. The paper reports a case study of GHG emissions from a typical asphalt pavement construction project in China. The results show that the greenhouse gas emissions from the mixture mixing phase are the highest, and account for about 54% of the total amount. The second highest GHG emission phase is the production of raw materials. For GHG emissions of cement stabilized base/subbase, the production of raw materials emits the most, about 98%. The GHG emission for cement production alone is about 92%. The results indicate that any measures to reduce GHG emissions from asphalt pavement construction should be focused on the raw materials manufacturing stage. If the raw materials production phase is excluded, the measures to reduce GHG emissions should be aimed at the mixture mixing phase. PMID:27011196

  6. Mixing and compaction temperatures for Superpave mixes

    NASA Astrophysics Data System (ADS)

    Yildirim, Yetkin

    According to Superpave mixture design, gyratory specimens are mixed and compacted at equiviscous binder temperatures corresponding to viscosities of 0.17 and 0.28 Pa.s. respectively. These were the values previously used in the Marshal mix design method to determine optimal mixing and compaction temperatures. In order to estimate the appropriate mixing and compaction temperatures for Superpave mixture design, a temperature-viscosity relationship for the binder needs to be developed (ASTM D 2493, Calculation of Mixing and Compaction Temperatures). The current approach is simple and provides reasonable temperatures for unmodified binders. However, some modified binders have exhibited unreasonably high temperatures for mixing and compaction using this technique. These high temperatures can result in construction problems, damage of asphalt, and production of fumes. Heating asphalt binder to very high temperatures during construction oxidizes the binder and separates the polymer from asphalt binder. It is known that polymer modified asphalt binders have many benefits to the roads, such as; increasing rutting resistance, enhancing low temperature cracking resistance, improving traction, better adhesion and cohesion, elevating tensile strength which are directly related to the service life of the pavement. Therefore, oxidation and separation of the polymer from the asphalt binder results in reduction of the service life. ASTM D 2493 was established for unmodified asphalt binders which are Newtonian fluids at high temperatures. For these materials, viscosity does not depend on shear rate. However, most of the modified asphalt binders exhibit a phenomenon known as pseudoplasticity, where viscosity does depend on shear rate. Thus, at the high shear rates occurring during mixing and compaction, it is not necessary to go to very high temperatures. This research was undertaken to determine the shear rate during compaction such that the effect of this parameter could be

  7. How Concrete Is Concrete?

    ERIC Educational Resources Information Center

    Gravemeijer, Koeno

    2011-01-01

    If we want to make something concrete in mathematics education, we are inclined introduce, what we call, "manipulatives", in the form of tactile objects or visual representations. If we want to make something concrete in a everyday-life conversation, we look for an example. In the former, we try to make a concrete model of our own,…

  8. Application of the endochronic theory of viscoplasticity to solid propellants and sandasphalt concrete

    NASA Technical Reports Server (NTRS)

    Peng, S. T. J.; Valanis, K. C.

    1977-01-01

    Solid propellants, sand-asphalt concrete and hard plastics showed rate sensitive mechanical behavior which, in addition, indicated that these materials have a permanent memory of the strain (or loading) path by which their present state was attained. A constitutive equation was formulated in general three dimensional tensorial form by means of irreversible thermodynamics. By using a very simple analytical form, it was shown that the mechanical behavior of solid propellants and sand-asphalt concrete can be readily described.

  9. Corrosion-resistant sulfur concretes

    NASA Astrophysics Data System (ADS)

    McBee, W. C.; Sullivan, T. A.; Jong, B. W.

    1983-04-01

    Sulfur concretes have been developed by the Bureau of Mines as construction materials with physical and mechanical properties that suit them for use in acid and salt corrosive environments where conventional concretes fail. Mixture design methods were established for preparing sulfur concretes using different types of aggregates and recently developed mixed-modified sulfur cements. Bench-scale testing of the sulfur concretes has shown their potential value. Corrosion resistance, strength, and durability of sulfur concrete are superior to those of conventional materials. Field in situ evaluation tests of the sulfur concretes as replacement for conventional concrete materials are in progress in corrosive areas of 24 commercial chemical, fertilizer, and metallurgical plants.

  10. Airborne Exposures to Polycyclic Aromatic Compounds Among Workers in Asphalt Roofing Manufacturing Facilities.

    PubMed

    Trumbore, David C; Osborn, Linda V; Johnson, Kathleen A; Fayerweather, William E

    2015-01-01

    We studied exposure of 151 workers to polycyclic aromatic compounds and asphalt emissions during the manufacturing of asphalt roofing products-including 64 workers from 10 asphalt plants producing oxidized, straight-run, cutback, and wax- or polymer-modified asphalts, and 87 workers from 11 roofing plants producing asphalt shingles and granulated roll roofing. The facilities were located throughout the United States and used asphalt from many refiners and crude oils. This article helps fill a gap in exposure data for asphalt roofing manufacturing workers by using a fluorescence technique that targets biologically active 4-6 ring polycyclic aromatic compounds and is strongly correlated with carcinogenic activity in animal studies. Worker exposures to polycyclic aromatic compounds were compared between manufacturing plants, at different temperatures and using different raw materials, and to important external benchmarks. High levels of fine limestone particulate in the plant air during roofing manufacturing increased polycyclic aromatic compound exposure, resulting in the hypothesis that the particulate brought adsorbed polycyclic aromatic compounds to the worker breathing zone. Elevated asphalt temperatures increased exposures during the pouring of asphalt. Co-exposures in these workplaces which act as confounders for both the measurement of total organic matter and fluorescence were detected and their influence discussed. Exposures to polycyclic aromatic compounds in asphalt roofing manufacturing facilities were lower than or similar to those reported in hot-mix paving application studies, and much below those reported in studies of hot application of built-up roofing asphalt. These relatively low exposures in manufacturing are primarily attributed to air emission controls in the facilities, and the relatively moderate temperatures, compared to built-up roofing, used in these facilities for oxidized asphalt. The exposure to polycyclic aromatic compounds was a very

  11. Building a Concrete Foundation: A Mixed-Method Study of Teaching Styles and the Use of Concrete, Representational, and Abstract Mathematics Instruction

    ERIC Educational Resources Information Center

    Thigpen, L. Christine

    2012-01-01

    The purpose of this study was to explore teaching styles and how frequently teachers with a variety of teaching styles incorporate multiple representations, such as manipulatives, drawings, counters, etc., in the middle school mathematics classroom. Through this explanatory mixed methods study it was possible to collect the quantitative data in…

  12. Evaluation of emulsified asphalt for use in Saudi Arabia

    SciTech Connect

    Al-Abdulwahhab, H.I.

    1985-01-01

    Saudi Arabia currently contains 31,000 km (18,600 mi) of paved roads and 42,000 km (25,200 mi) of agricultural roads, with the prospect of more roads to be constructed. The low population (6 million) compared to the large area of the country (2,253,300 kmS, 900,000 miS) coupled with the high cost of crushed aggregate makes maintenance and road building costs very high. Local emulsified-asphalt economics, plants, and uses were investigated in this study. Emulsified asphalt proved to be attractive when used for local road maintenance and road bases and low-volume road construction, especially when used with dune sand and marl. Emulsified asphalts were evaluated for use with dune sand and marl and at two portland cement contents. Three types of emulsified asphalts were used which included locally produced, laboratory prepared, and Chevron USA emulsions. Emulsion treated mixes were tested for tensile strength, Poisson's ratio, resilient modulus, fatigue life, and rutting characteristics. Both diametral and beam fatigue tests were used and tests were conducted at 10, 25, 40, and 55C (50, 77, 104, and 131F). The open-graded mix was tested for fatigue characteristics using beam flexure with a confining membrane.

  13. Using emissivity-corrected thermal maps to locate deep structural defects in concrete bridge decks

    SciTech Connect

    Del Grande, N.K.; Durbin, P.F.

    1995-04-05

    Dual-band infrared (DBIR) thermal imaging is a promising, non-contact, nondestructive evaluation tool to evaluate the amount of deteriorated concrete on asphalt-covered bridge decks. We conducted proof-of-principle demonstrations to characterize defects in concrete structures which could be detected with DBIR thermal imaging. We constructed two identical concrete slabs with synthetic delaminations, e.g., 1/8-in. thick styrofoam squares, implanted just above the 2-in.-deep steel reinforcement bars. We covered one of the slabs with a 2-in. layer of asphalt. We mounted the DBIR cameras on a tower platform, to simulate the optics needed to conduct bridge-deck inspections from a moving vehicle. We detected 4-in. implants embedded in concrete and 9-in. implants embedded in asphalt-covered concrete. The midday (above-ambient) and predawn (below-ambient) delamination-site temperatures correlated with the implant sizes. Using DBIR image ratios, we enhanced thermal-contrast and removed emissivity-noise, e.g., from concrete compositional variations and clutter. Using the LLNL/VIEW code, we removed the asphalt thermal-gradient mask, to depict the 4-in. deep, 9-in. square, concrete implant size. We plan to image bridge deck defects, from a moving vehicle, for accurate estimations of the amount of deteriorated concrete impairing the deck integrity. Potential longterm benefits are affordable and reliable rehabilitation for asphalt-covered decks.

  14. Using emissivity-corrected thermal maps to locate deep structural defects in concrete bridge decks

    NASA Astrophysics Data System (ADS)

    DelGrande, Nancy; Durbin, Philip F.

    1995-05-01

    Dual-band infrared (DBIR) thermal imaging is a promising, noncontact, nondestructive evaluation tool to evaluate the amount of deteriorated concrete on asphalt-covered bridge decks. We conducted proof-of-principle demonstrations to characterize defects in concrete structures which could be detected with DBIR thermal imaging. We constructed two identical concrete slabs with synthetic delaminations, e.g., 1.8-in. thick styrofoam squares, implanted just above the 2-in. deep steel reinforcement bars. We covered one of the slabs with a 2-in. layer of asphalt. We mounted the DBIR cameras on a tower platform, to simulate the optics needed to conduct bridge-deck inspections from a moving vehicle. We detected 4-in. implants embedded in concrete and 9-in. implants embedded in asphalt-cevered concrete. The midday (above ambient) and predawn (below ambient) delamination-site temperatures correlated with the implant sizes. Using DBIR image ratios, we enhanced thermal-constrast and removed emissivity-noise, e.g., from concrete compositional variations and clutter. Using the LLNL/VIEW code, we removed the asphalt thermal-gradient mask to depict the 4-in. deep, 9- in. square, concrete implant site. We plan to image bridge deck defects from a moving vehicle for accurate estimations of the amount of deteriorated concrete impairing the deck integrity. Potential longterm benefits are affordable and reliable rehabilitation for asphalt-covered decks.

  15. Evaluation of a biomass-derived oil for use as additive in paving asphalt

    SciTech Connect

    Houde, J. Jr.; Clelland, I.; Sawatzky, H.

    1995-12-31

    A biomass derived oil referred to as sludge derived oil (SDO) has been evaluated to determine its potential use as an asphalt cement additive. The oil is derived from a relatively low temperature (450{degrees}C) atmospheric pressure thermoconversion process called Enersludge. The Enersludge process converts dried sewage sludge to a liquid hydrocarbon fraction. Relatively high concentrations of polar groups were identified in extensive characterization tests which indicated SDO could be utilized as an additive for asphalt. The oil`s unique properties make it a antistripping additive. Also, its strong affinity for heavy asphaltic material makes it an ideal rejuvenating agent for recycled asphalt. The SDO performed as well as the commercial antistripping asphalt additives tested in static immersion stripping tests. Laboratory-scale tests have shown that the strength of asphalt concrete produced using SDO is similar to that produced using commercial additives. In September 1994 SDO was used to pave a test strip in Quebec, Canada. This paper describes the work done at ERL/CANMET to develop SDO for antistripping applications.

  16. Comparison of the performances of several modified bituminous mix formulas

    NASA Astrophysics Data System (ADS)

    Saoula, Samia; Haddadi, Smail; Mokhtar, Khedidja Ait

    2012-09-01

    The mechanical behaviour of several formulas of bituminous concrete containing polymer (HDPE), polymer-bitumens (EVA) and waste of sole of shoes (containing copolymer butadiene-styrene-SBR noted DSBR and ethylene and vinyl acetate-EVA noted DEVA) were studied. The aim of this work is to improvement of the poor mechanicals performances of a bituminous concrete formula (0/14) which isn't conforming to the Algerian standards. Also, the mechanical tests showed that the permanent deformations and the indirect tensile strength at the temperatures of service resistances are improved. At high-temperature service, formulas of asphalt bitumen-EVA most resistant against the average temperature in service, it mixes made with waste are best resistant. All the formulas have a good behaviour with water.

  17. Stormwater quality of spring-summer-fall effluent from three partial-infiltration permeable pavement systems and conventional asphalt pavement.

    PubMed

    Drake, Jennifer; Bradford, Andrea; Van Seters, Tim

    2014-06-15

    This study examined the spring, summer and fall water quality performance of three partial-infiltration permeable pavement (PP) systems and a conventional asphalt pavement in Ontario. The study, conducted between 2010 and 2012, compared the water quality of effluent from two Interlocking Permeable Concrete Pavements (AquaPave(®) and Eco-Optiloc(®)) and a Hydromedia(®) Pervious Concrete pavement with runoff from an Asphalt control pavement. The usage of permeable pavements can mitigate the impact of urbanization on receiving surface water systems through quantity control and stormwater treatment. The PP systems provided excellent stormwater treatment for petroleum hydrocarbons, total suspended solids, metals (copper, iron, manganese and zinc) and nutrients (total-nitrogen and total-phosphorus) by reducing event mean concentrations (EMC) as well as total pollutant loadings. The PPs significantly reduced the concentration and loading of ammonia (NH4(+)+NH3), nitrite (NO2(-)) and organic-nitrogen (Org-N) but increased the concentration and loading of nitrate (NO3(-)). The PP systems had mixed performances for the treatment of phosphate (PO4(3-)). The PP systems increased the concentration of sodium (Na) and chloride (Cl) but EMCs remained well below recommended levels for drinking water quality. Relative to the observed runoff, winter road salt was released more slowly from the PP systems resulting in elevated spring and early-summer Cl and Na concentrations in effluent. PP materials were found to introduce dissolved solids into the infiltrating stormwater. The release of these pollutants was verified by additional laboratory scale testing of the individual pavement and aggregate materials at the University of Guelph. Pollutant concentrations were greatest during the first few months after construction and declined rapidly over the course of the study.

  18. Incorporation de particules de bardeaux d'asphalte de postconsommation dans les enrobes bitumineux

    NASA Astrophysics Data System (ADS)

    Malo, Jean-Michel

    Every year, more than 200 000 tons of used residential roofing asphalt shingles are sent to landfills in Quebec. In order to reduce this amount, a research project funded by the 3RMCDQ and RECYC-QUÉBEC is ongoing at the LCMB at École de technologie supérieure (ÉTS) in Montreal. This project studies the feasibility of incorporating tear-off shingles particles in hot mix asphalt which could be used on Quebec roads. Currently, in Quebec, the ministry of Transportation (MTQ), allows the use of 5% of new asphalt shingles (factory reject) in the base course and 3% in the surface course, and tear-off shingles are not allowed. Incorporating new shingles particles is valued notably by the MTQ standardization for a reduction of binder in these mixes. As of now, the MTQ does not have a standard on the use of tear-off shingles, but the subject of experimental boards. The research done at ETS aim to characterize a standard base mix, GB20, and a standard surface mix, ESG-10, that contains tear-off shingles. Mixes containing different percentage of virgin binder were fabricated then tested on compaction capacity, on rutting resistance, on thermal cracking resistance (TSRST) and on complex modulus (E*). The amount of Virgin binder is calculated according to different percentage of effective binder from the shingles. This study has permitted to identify an optimal formula for both types of hot mix asphalt that were tested. Results show that for the standard ESG-10 surface mix, the possible contribution of tear-off asphalt shingles would be about 20%. For the standard GB-20 base mix, no reduction in the virgin binder may be considered for now when 5% of tear-off asphalt shingles are incorporated in the formula mix. In this case, further testing on complex modulus are recommended to obtain meaningful results that will determine if a reduction of the virgin binder would not be favorable.

  19. Construction of an experimental sulfur-extended-asphalt pavement

    NASA Astrophysics Data System (ADS)

    Dodge, K. S.

    1982-07-01

    The design, placement and collection of initial data from a sulfur extended asphalt (SEA) pavement and a conventional pavement used as a control is documented. The SEA pavement used 30 percent sulfur by total weight of the binder. Mix temperatures, hot bin gradations, and toxic emissions were monitored at the plant and the site throughout placement. Aggregates were collected from the hot bin during production of the control and SEA mixes for use in a Marshall mix design. Cores were extracted from both SEA and control pavements 1 month after placement for laboratory testing. Pavement surface properties were also examined after 1 month of service.

  20. A review on using crumb rubber in reinforcement of asphalt pavement.

    PubMed

    Mashaan, Nuha Salim; Ali, Asim Hassan; Karim, Mohamed Rehan; Abdelaziz, Mahrez

    2014-01-01

    An immense problem affecting environmental pollution is the increase of waste tyre vehicles. In an attempt to decrease the magnitude of this issue, crumb rubber modifier (CRM) obtained from waste tyre rubber has gained interest in asphalt reinforcement. The use of crumb rubber in the reinforcement of asphalt is considered as a smart solution for sustainable development by reusing waste materials, and it is believed that crumb rubber modifier (CRM) could be an alternative polymer material in improving hot mix asphalt performance properties. In this paper, a critical review on the use of crumb rubber in reinforcement of asphalt pavement will be presented and discussed. It will also include a review on the effects of CRM on the stiffness, rutting, and fatigue resistance of road pavement construction.

  1. A Review on Using Crumb Rubber in Reinforcement of Asphalt Pavement

    PubMed Central

    Mashaan, Nuha Salim; Ali, Asim Hassan; Karim, Mohamed Rehan; Abdelaziz, Mahrez

    2014-01-01

    An immense problem affecting environmental pollution is the increase of waste tyre vehicles. In an attempt to decrease the magnitude of this issue, crumb rubber modifier (CRM) obtained from waste tyre rubber has gained interest in asphalt reinforcement. The use of crumb rubber in the reinforcement of asphalt is considered as a smart solution for sustainable development by reusing waste materials, and it is believed that crumb rubber modifier (CRM) could be an alternative polymer material in improving hot mix asphalt performance properties. In this paper, a critical review on the use of crumb rubber in reinforcement of asphalt pavement will be presented and discussed. It will also include a review on the effects of CRM on the stiffness, rutting, and fatigue resistance of road pavement construction. PMID:24688369

  2. Field Performance of Asphalt Pavements with New Technologies in Northern Nevada

    NASA Astrophysics Data System (ADS)

    Faeth, Benjamin Michael

    The Regional Transportation Commission (RTC) of the Washoe Valley Area has been tasked to determine if three advanced asphalt pavement technologies and one modified aggregate gradation are suitable for implementation within Reno, Stead, and Sparks Nevada. This was accomplished through research and test roads and Intersections to determine if Recycled Asphalt Pavement (RAP), Warm Mix Asphalt (WMA), Polymer-Modified Asphalt Binder, and the Type 2-R aggregate gradation were succeeding in their design plans. Over the course of several years the streets being used by RTC to test the technologies are succeeding within their design lifespans, and the Intersections being used to test the Type 2-R aggregate gradation are showing significant resistance to rutting. Due to the roads and Intersections not being more than 10 years old, these conclusions are subject to change over time.

  3. Development of superior asphalt recycling agency: Phase 1, Technical feasibility. Technical progress report

    SciTech Connect

    Bullin, J.A.; Glover, C.J.; Davison, R.R.; Lin, Moon-Sun; Chaffin, J.; Liu, Meng; Eckhardt, C.

    1996-04-01

    About every 12 years, asphalt roads must be reworked, and this is usually done by placing thick layers (hot-mix overlays) of new material on top of failed material, resulting in considerable waste of material and use of new asphalt binder. A good recycling agent is needed, not only to reduce the viscosity of the aged material but also to restore compatibility. Objective is to establish the technical feasibility (Phase I) of determining the specifications and operating parameters for producing high quality recycling agents which will allow most/all the old asphalt-based road material to be recycled. It is expected that supercritical fractionation can be used. The advanced road aging simulation procedure will be used to study aging of blends of old asphalt and recycling agents.

  4. Contributions of performance-graded asphalt to low temperature cracking resistance of pavements. Final report

    SciTech Connect

    Loh, S.W.; Olek, J.

    1999-05-01

    The purpose of this research was to study and evaluate the role that asphalt cracking. As part of the Strategic Highway Research Program (SHRP) new specifications for asphalt binders were developed that are based on the performance of the material. The asphalt binder graded and specified according to these new performance-based specifications is called PG binder. These new specifications are commonly referred to as Superpave (Superior Performing Asphalt Pavement) binder specifications. A section of Interstate 64 in southern Indiana was experiencing severe low temperature cracking before it was reconstructed over the summers of 1995 and 1996. The binder used in the new pavement mixes was PG material. Dynamic Shear Rheometer (DSR) tests, Bending Beam Rheometer (BBR) tests, and viscosity tests were performed on this binder. Comparisons were made between test results obtained from the binders in the old pavement and the new pavement. All tests and comparisons were based on the Superpave binder specifications.

  5. Development of asphalts and pavements using recycled tire rubber. Phase 1, Technical feasibility. Technical progress report, September 1, 1994--August 31, 1995

    SciTech Connect

    Bullin, J.A.; Davison, R.R.; Glover, C.J.

    1996-06-01

    About 285 million tires are discarded every year; less than 100 million are currently being recycled, with the rest being placed in landfills and other waste sites. A solution to reduce the littering of the environment is to use ground tire rubber in road construction. Currently, about 27 million tons of asphalt are used each year in road construction and maintenance of the country`s 2 million miles of roads. If all of the waste tire rubber could be combined with asphalt in road construction, it would displace less than 6% of the total asphalt used each year, yet could save about 60 trillion Btus annually. Purpose of this project is to provide data needed to optimize the performance of rubber-asphalt concretes. The first phase is to develop asphalts and recycling agents tailored for compatibility with ground tire rubber. Chapter 2 presents results on Laboratory Testing and Evaluation: fractionate asphalt material, reblending for aromatic asphalts, verifying optimal curing parameters, aging of blends, and measuring ductilities of asphalt-rubber binders. Chapter 3 focuses on Evaluating Mixture Characteristics (modified binders). Chapter 4 covers Adhesion Test Development (water susceptibility is also covered). The final chapter focuses on the Performance/Economic Update and Commercialization Plan.

  6. Flame retarded asphalt blend composition

    SciTech Connect

    Walters, R.B.

    1987-04-21

    This patent describes a flame retarded asphalt composition consisting essentially of a blend of: (a) thermoplastic elastomer modified bitumen; (b) 20-30 wt % inert filler; (c) 1-20 wt % of at least one halogenated flame retardant; and (d) 1-5 wt % of at least one inorganic phosphorus containing compound selected from the group consisting of ammonium phosphate compounds and red phosphorus.

  7. A feasibility study to use coal tar contaminated soil in asphalt cement mixture production

    SciTech Connect

    Dulam, C.S.; Hoag, G.E.; Dahmani, A.; Nadim, F.

    1996-11-01

    Coal tars are the residues produced during the gasification of coal. Traditionally, coal tars were buried onsite at the power plants or left as residuals in the bottom of gas holders. Currently, there are more than 1,500 such historic sites which will undergo site assessment in the near future. The use of coal tar residuals in asphalt-based products could result in greatly reduced disposal costs, in comparison to current methods of disposal. Present disposal practice of coal tar contaminated residuals includes disposal in hazardous waste landfills or incineration. Treatment and disposal costs are reported to be as much as $1,000/ton for current coal tar contaminated residuals disposal options. This feasibility study was performed to determine the use of coal tar contaminated soil (CTCS) in bituminous materials to produce hot asphalt mix. Mixtures of varying composition of CTCS and bituminous material were produced to perform TCLP. The air emissions during the mixing process were captured and analyzed. In this study, a bench scale investigation was performed to identify and quantify the emissions from heating the CTCS at the mixer temperature. The pilot scale investigations were performed by replacing reclaimable asphalt pavement (RAP) with CTCS during the hot asphalt mix production. The investigations were performed on two types of mixtures; using CTCS as the direct additive in the first type, and using SS-1 (slow setting asphalt emulsion) stabilized CTCS as an additive in the second type.

  8. Recycling asphalt pavements. January 1975-January 1990 (a Bibliography from the COMPENDEX data base). Report for January 1975-January 1990

    SciTech Connect

    Not Available

    1990-03-01

    This bibliography contains citations concerning the recycling of asphalt-containing pavement materials. Articles include examples of recycling asphalt pavements; performance testing of recycled paving; methods including cold in-place, cold off-site, and hot-mix recycling; additives in recycled pavement for better performance; use of scrap roofing asphalt in conjunction with recycled paving; economics of recycling; process design; and process variables. Recycling of other materials is considered in related bibliographies. (Contains 130 citations fully indexed and including a title list.)

  9. Investigation of Low Heat Accumulation Asphalt Mixture and Its Impact on Urban Heat Environment.

    PubMed

    Xie, Jianguang; Yang, Zhaoxu; Liang, Leilei

    2015-01-01

    This study is focused on investigating the effectiveness of low heat accumulation asphalt mixture and its impact on the urban heat environment. Infrared radiation experiments showed that the temperature of the asphalt mixture decreased with the increase in far-infrared radiant material. The results also revealed that, compared to asphalt with 0% far-infrared radiant content, the asphalt material with a certain ratio of far-infrared radiation material had higher stability at high and low temperatures as well as good water absorption capacity. The Marshall stability of the specimen mixed with 6% far-infrared radiant was higher by 12.2% and had a residual stability of up to 98.9%. Moreover, the low-temperature splitting tensile strength of the asphalt mixture with 6% far-infrared radiation material increased by 21.3%. The friction coefficient of the asphalt mixtures with 6% and 12% far-infrared radiation material increased by 17.7% and 26.9%, respectively. PMID:26222762

  10. Investigation of Low Heat Accumulation Asphalt Mixture and Its Impact on Urban Heat Environment

    PubMed Central

    Xie, Jianguang; Yang, Zhaoxu; Liang, Leilei

    2015-01-01

    This study is focused on investigating the effectiveness of low heat accumulation asphalt mixture and its impact on the urban heat environment. Infrared radiation experiments showed that the temperature of the asphalt mixture decreased with the increase in far-infrared radiant material. The results also revealed that, compared to asphalt with 0% far-infrared radiant content, the asphalt material with a certain ratio of far-infrared radiation material had higher stability at high and low temperatures as well as good water absorption capacity. The Marshall stability of the specimen mixed with 6% far-infrared radiant was higher by 12.2% and had a residual stability of up to 98.9%. Moreover, the low-temperature splitting tensile strength of the asphalt mixture with 6% far-infrared radiation material increased by 21.3%. The friction coefficient of the asphalt mixtures with 6% and 12% far-infrared radiation material increased by 17.7% and 26.9%, respectively. PMID:26222762

  11. Impact of variation in materials properties on asphalt pavement life. Evaluation of a questionnaire

    NASA Astrophysics Data System (ADS)

    Moore, R. M.; Wilson, J. E.; Mahoney, J. P.; Hicks, R. G.

    1981-05-01

    In an effort to collect information on the status of quality control procedures and the use of pay adjustment factors, a questionnaire was distributed to all state agencies, the District of Columbia, and the Federal Highway Administration. Each agency was asked to respond to questions describing their current method for acceptance or rejection of asphalt concrete paving materials and related pay adjustment factors. The results of the questionnaire are summarized. Analysis of results indicate that most state agencies will accept one or more property characteristics of asphalt concrete that are outside specification tolerances. Most state agencies apply a pay adjustment factor to accepted materials which are outside specification tolerances. Only 26 percent of the state agencies consider their pay factors to be proportional to reduced pavement serviceability. Approximately one-half of the agencies consider the use of pay factor plans as effective in encouraging compliance with specifications. There is a wide disparity in the pay adjustment factors used by the different agencies.

  12. Thermal stability analysis under embankment with asphalt pavement and cement pavement in permafrost regions.

    PubMed

    Junwei, Zhang; Jinping, Li; Xiaojuan, Quan

    2013-01-01

    The permafrost degradation is the fundamental cause generating embankment diseases and pavement diseases in permafrost region while the permafrost degradation is related with temperature. Based on the field monitoring results of ground temperature along G214 Highway in high temperature permafrost regions, both the ground temperatures in superficial layer and the annual average temperatures under the embankment were discussed, respectively, for concrete pavements and asphalt pavements. The maximum depth of temperature field under the embankment for concrete pavements and asphalt pavements was also studied by using the finite element method. The results of numerical analysis indicate that there were remarkable seasonal differences of the ground temperatures in superficial layer between asphalt pavement and concrete pavement. The maximum influencing depth of temperature field under the permafrost embankment for every pavement was under the depth of 8 m. The thawed cores under both embankments have close relation with the maximum thawed depth, the embankment height, and the service time. The effective measurements will be proposed to keep the thermal stabilities of highway embankment by the results. PMID:24027444

  13. Thermal stability analysis under embankment with asphalt pavement and cement pavement in permafrost regions.

    PubMed

    Junwei, Zhang; Jinping, Li; Xiaojuan, Quan

    2013-01-01

    The permafrost degradation is the fundamental cause generating embankment diseases and pavement diseases in permafrost region while the permafrost degradation is related with temperature. Based on the field monitoring results of ground temperature along G214 Highway in high temperature permafrost regions, both the ground temperatures in superficial layer and the annual average temperatures under the embankment were discussed, respectively, for concrete pavements and asphalt pavements. The maximum depth of temperature field under the embankment for concrete pavements and asphalt pavements was also studied by using the finite element method. The results of numerical analysis indicate that there were remarkable seasonal differences of the ground temperatures in superficial layer between asphalt pavement and concrete pavement. The maximum influencing depth of temperature field under the permafrost embankment for every pavement was under the depth of 8 m. The thawed cores under both embankments have close relation with the maximum thawed depth, the embankment height, and the service time. The effective measurements will be proposed to keep the thermal stabilities of highway embankment by the results.

  14. Thermal Stability Analysis under Embankment with Asphalt Pavement and Cement Pavement in Permafrost Regions

    PubMed Central

    Jinping, Li; Xiaojuan, Quan

    2013-01-01

    The permafrost degradation is the fundamental cause generating embankment diseases and pavement diseases in permafrost region while the permafrost degradation is related with temperature. Based on the field monitoring results of ground temperature along G214 Highway in high temperature permafrost regions, both the ground temperatures in superficial layer and the annual average temperatures under the embankment were discussed, respectively, for concrete pavements and asphalt pavements. The maximum depth of temperature field under the embankment for concrete pavements and asphalt pavements was also studied by using the finite element method. The results of numerical analysis indicate that there were remarkable seasonal differences of the ground temperatures in superficial layer between asphalt pavement and concrete pavement. The maximum influencing depth of temperature field under the permafrost embankment for every pavement was under the depth of 8 m. The thawed cores under both embankments have close relation with the maximum thawed depth, the embankment height, and the service time. The effective measurements will be proposed to keep the thermal stabilities of highway embankment by the results. PMID:24027444

  15. Effects of fertilizer and pesticides on concrete

    SciTech Connect

    Broder, M.F.; Nguyen, D.T.; Harner, A.L.

    1994-12-31

    Concrete is the most common material of construction for secondary containment of fertilizers and pesticides because of its relative low cost and structural properties. Concrete, however, is porous to some products it is designed to contain and is subject to corrosion. In this paper, concrete deterioration mechanisms and corrosion resistant concrete formulation are discussed, as well as exposure tests of various concrete mixes to some common liquid fertilizers and herbicides.

  16. Method and apparatus for fragmenting asphalt

    SciTech Connect

    Eftefield, L. G.; Simmons, G. P.; Stone, G. L.

    1985-12-24

    A method and apparatus for laterally severing an asphalt layer to form a ribbon, separating the asphalt ribbon from an underlying base, elevating the separated asphalt ribbon, and fracturing the elevated asphalt ribbon by bending same. A cutting member having a leading edge which is insertable between the asphalt ribbon and base provides separation thereof along a lateral line. A ramp and elevating structure elevatingly guide the separated asphalt ribbon into a pair of breaker drums which are rotatable in opposite circumferential directions. Each breaker drum has protruding teeth which are arranged in laterally separated circumferential rows with the teeth in adjacent circumferential rows being preferably arcuately offset. Corresponding circumferential rows on the opposed breaker drums are laterally aligned and the teeth in those rows engage opposite surfaces of the asphalt ribbon during rotation of the breaker drums. The teeth in corresponding rows on the respective breaker drums alternately engage opposite surfaces of the asphalt ribbon at longitudinally spaced locations to bend and fracture the asphalt ribbon by displacing it in generally opposite transverse directions at the engaged locations.

  17. Performance of Waterless Concrete

    NASA Technical Reports Server (NTRS)

    Toutanji, Houssam; Evans, Steve; Grugel, Richard N.

    2010-01-01

    The development of permanent lunar bases is constrained by performance of construction materials and availability of in-situ resources. Concrete seems a suitable construction material for the lunar environment, but water, one of its major components, is an extremely scarce resource on the Moon. This study explores an alternative to hydraulic concrete by replacing the binding mix of concrete (cement and water) with sulfur. Sulfur is a volatile element on the lunar surface that can be extracted from lunar soils by heating. Sulfur concrete mixes were prepared to investigate the effect of extreme environmental conditions on the properties of sulfur concrete. A hypervelocity impact test was conducted, having as its target a 5-cm cubic sample of sulfur concrete. This item consisted of JSC-1 lunar regolith simulant (65%) and sulfur (35%). The sample was placed in the MSFC Impact Test Facility s Micro Light Gas Gun target chamber, and was struck by a 1-mm diameter (1.4e-03 g) aluminum projectile at 5.85 km/s. In addition, HZTERN code, provided by NASA was used to study the effectiveness of sulfur concrete when subjected to space radiation.

  18. Supercritical fractions as asphalt recycling agents and preliminary aging studies on recycled asphalts

    SciTech Connect

    Chaffin, J.M.; Liu, M.; Davison, R.R.; Glover, C.J.; Bullin, J.A.

    1997-03-01

    Several asphalts were fractionated using supercritical pentane. These fractions were analyzed by gel permeation chromatography and high-performance liquid chromatography, and their viscosities were measured. The properties of these fractions vary not only among the fractions of a given asphalt but also for the same fraction produced from different asphalts. These widely varied fractions previously have been shown to have potential for reblending to produce superior asphalts. This study investigates the potential for using some of the fractions as asphalt recycling agents. A modified strategic highway research program (SHRP) pressure aging vessel (PAV) test and kinetics studies were conducted on nine recycled asphalts and the original asphalt. The aging indexes of eight of the recycled asphalts are superior to the aging index of the original asphalt. Two of the blends using industrial supercritical fractions and the three blends using laboratory supercritical fractions have lower aging indexes than blends using commercial recycling agents. The kinetics investigation also indicates that at road conditions the recycled asphalts will harden more slowly than the original asphalt. The degree of hardening for a given amount of oxidation in the recycled binders was found to be a strong function of the total saturate content in the recycled binder.

  19. Mixture design and performance prediction of rubber-modified asphalt in Ohio. Final report

    SciTech Connect

    Liang, R.Y.

    1997-08-01

    Appropriate disposal of scrap tires has been a major environmental concern over the years, mainly due to potential fire and health hazards associated with uncontrolled stockpiling. Primarily driven by this environmental concern, the Intermodal Surface Transportation Efficiency Act (ISTEA) of 1991 has required each State to begin incorporating scrap tire rubber into its asphalt paving materials. Although in the revision of the original ISTEA, the mandate has been eliminated, there remains a language of encouraging the use of crumb rubbers in asphalt paving materials. Ohio Department of Transportation (ODOT) desires to develop the mix design procedure, construction practice, and performance specifications for crumb rubber modified asphalt paving materials. This research was conducted to develop the needed design and construction guidance for meeting the ODOT anticipated needs. Specifically, the objectives of this research encompass the following scope: (1) investigation of the rheological properties of asphalt-rubber binder to determine optimum content of crumb rubber, (2) development of optimum mix design for various applications, including both wet and dry mix processes, (3) characterization of mechanical properties of recommended paving mixtures, including resilient modulus, fatigue cracking behavior, low-temperature thermal cracking resistance, water sensitivity test, incremental creep test and loaded wheel track test, and (4) comparison of performance of selected paving mixes.

  20. Asphalt Raking. Instructor Manual. Trainee Manual.

    ERIC Educational Resources Information Center

    Laborers-AGC Education and Training Fund, Pomfret Center, CT.

    This packet consists of the instructor and trainee manuals for an asphalt raking course. The instructor manual contains a course schedule for 4 days of instruction, content outline, and instructor outline. The trainee manual is divided into five sections: safety, asphalt basics, placing methods, repair and patching, and clean-up and maintenance.…

  1. EVALUATION OF EMISSIONS FROM PAVING ASPHALTS

    EPA Science Inventory

    The report provides data from pilot-scale measurements of the emissions of specific air pollutants from paving asphalt both with and without recycled crumb rubber additives. The methods used in this work measured emissions from a static layer of asphalt maintained for several hou...

  2. MATCON MODIFIED ASPHALT COVER CONTAINMENT SYSTEM DEMONSTRATION

    EPA Science Inventory

    In order to make improvements to conventional paving asphalt to make it more suitable for containment applications, Wilder Construction Co. of Everett, WA offers MatCon, a polymer modified asphalt system comprised of proprietary binder, when coupled with a selected aggregate type...

  3. Compatibilizer for crumb rubber modified asphalt

    SciTech Connect

    Labib, M.E.; Memon, G.M.; Chollar, B.H.

    1996-12-31

    The United States of America discards more than 300 million tires each year, and out of that a large fraction of the tires is dumped into stock piles. This large quantity of tires creates an environmental problem. The use of scrap tires is limited. There is a usage potential in such fields as fuel for combustion and Crumb Rubber-Modified Asphalt binder (CRMA). The use of crumb rubber in modifying asphalt is not a new technique; it is been used since early 1960 by pavement engineers. Crumb rubber is a composite of different blends of natural and synthetic rubber (natural rubber, processing oils, polybutadiene, polystyrene butadiene, and filler). Prior research had concluded that the performance of crumb rubber modified asphalt is asphalt dependent. In some cases it improves the Theological properties and in some cases it degrades the properties of modified asphalt.

  4. Softening agents for recycling asphalt pavement

    SciTech Connect

    Sawatzky, H.; Clelland, F.I.; Farnand, B.A.; Houde, J. Jr.

    1993-08-10

    An asphaltic composition is described consisting essentially of: comminuted aged asphaltic pavement material; an effective amount, from about 2% to about 15 % by weight of a blend of an agent selected from the group consisting of a soft asphalt cement, a conventional asphalt cement, and a cutback asphalt, with a nitrogen-containing, adhesion-improving, anti-stripping agent comprising a sewage sludge-derived oil, or a fraction thereof, said sewage sludge-derived oil comprising a mixture of saturated aliphatic hydrocarbons, monoaromatic hydrocarbons, diaromatic hydrocarbons, polyaromatic hydrocarbons, polar compounds and basic, pyridene-soluble compounds, having the following elemental chemical composition: nitrogen, about 3.4% to about 5% by weight; oxygen, about 5.8% to about 6.9% by weight; sulfur, about 0.3% to about 0.8% by weight; hydrogen, about 9.7% to about 10.4%, and carbon, about 76.9% to about 79.8%.

  5. Strain transfer analysis of optical fiber based sensors embedded in an asphalt pavement structure

    NASA Astrophysics Data System (ADS)

    Wang, Huaping; Xiang, Ping

    2016-07-01

    Asphalt pavement is vulnerable to random damage, such as cracking and rutting, which can be proactively identified by distributed optical fiber sensing technology. However, due to the material nature of optical fibers, a bare fiber is apt to be damaged during the construction process of pavements. Thus, a protective layer is needed for this application. Unfortunately, part of the strain of the host material is absorbed by the protective layer when transferring the strain to the sensing fiber. To account for the strain transfer error, in this paper a theoretical analysis of the strain transfer of a three-layered general model has been carried out by introducing Goodman’s hypothesis to describe the interfacial shear stress relationship. The model considers the viscoelastic behavior of the host material and protective layer. The effects of one crack in the host material and the sensing length on strain transfer relationship are been discussed. To validate the effectiveness of the strain transfer analysis, a flexible asphalt-mastic packaged distributed optical fiber sensor was designed and tested in a laboratory environment to monitor the distributed strain and appearance of cracks in an asphalt concrete beam at two different temperatures. The experimental results indicated that the developed strain transfer formula can significantly reduce the strain transfer error, and that the asphalt-mastic packaged optical fiber sensor can successfully monitor the distributed strain and identify local cracks.

  6. Use of asphalt emulsion sealants in disposal of uranium mill tailings

    SciTech Connect

    Hartley, J.N.; Freeman, H.D.; Elmore, M.R.

    1981-07-01

    Studies of asphalt emulsion sealants conducted by the Pacific Northwest Laboratory have demonstrated that the sealants are effective in containing radon within uranium tailings. The laboratory and field studies have further demonstrated that radon exhalation from uranium tailings piles can be reduced by greater than 99% to near background levels. Field tests at the tailings pile in Grand Junction, Colorado confirmed that an 8-cm admix seal containing 22 wt % asphalt could be effectively applied with a cold-mix paver. Other techniques were successfully tested, including a soil stabilizer and a hot, rubberized asphalt seal that was applied with a distributor truck. After the seals were applied and compacted, overburden was applied over the seal to protect the seal from ultraviolet degradation.

  7. Recycled tire rubber and other waste materials in asphalt mixtures. Transportation research record

    SciTech Connect

    1995-12-31

    The papers in this volume, dealing with various facets of recycled tire rubber and other waste materials in asphalt mixtures, should be of interest to state and local construction, design, materials, and research engineers as well as contractors and material producers. In the first papers, Rebala and Estakhri, Malpass and Khosla, and Baker and Connolly describe research related to crumb rubber modified mixtures that was done for the Texas, North Carolina, and New Jersey State Departments of Transportation. Ali et al. report on their research in Canada to determine the feasibility of sing reclaimed roofing materials in hot mix asphalt pavement. Emery discusses the evaluation of 11 Ontario rubber modified demonstration projects in terms of pavement performance, environmental impacts, and recyclability. In the last paper, Fwa and Aziz report on their work in Singapore related to the use of incinerator residue in asphalt mixtures.

  8. Application of pyrolized carbon black from scrap tires in asphalt pavement design and construction

    SciTech Connect

    Park, T.; Coree, B.J.; Lovell, C.W.

    1995-12-31

    According to EPA reports (1991) of the over 242 million waste generated each year in the United State, 5% are exported, 6% recycled, 11% incinerated, and 78% are landfilled, stockpiled, or illegally dumped. A variety of uses for these tires are being studied. Among these is pyrolysis which produces 5 5% of oil, 25% of carbon black, 9% of steel, 5% of fiber and 6% of gas. Pyrolized carbon black contains 9 % of ash, 4% of sulfur, 12% of butadine copolymer and 75% of carbon black. The objective of this research is to investigate the viability of using PCB as an additive in hot mix asphalt. The use of PCB in asphalt pavement is expected not only to improve the performance of conventional asphalt, but also to provide a means for the mass disposal of waste fires.

  9. Evaluation of the treatment of chromite ore processing residue by ferrous sulfate and asphalt.

    PubMed

    Moon, Deok Hyun; Wazne, Mahmoud; Koutsospyros, Agamemnon; Christodoulatos, Christos; Gevgilili, Halil; Malik, Moinuddin; Kalyon, Dilhan M

    2009-07-15

    The effectiveness of the treatment of chromite ore processing residue (COPR) with ferrous sulfate and encapsulation into asphalt were explored separately and in combination. The asphalt treatment was conducted by mixing COPR or ferrous sulfate pretreated COPR with varying amounts of asphalt. To assess the efficacy of the treatment, the leachability of toxicity characteristic leaching procedure (TCLP) total chromium (Cr) from all treated samples was determined for curing periods up to 16 months. X-ray absorption near edge structure (XANES) analyses were also performed to evaluate the Cr(6+) concentration in the selected samples. The combination treatment of ferrous sulfate and the encapsulation of the treated COPR into asphalt reduced the TCLP total Cr concentration to lower than the regulatory limit of 5mg/L for Cr contaminated soils, after 16 months. However, the Cr concentrations were still higher than the universal treatment standards (UTS) of 0.6 mg/L for hazardous waste. On the other hand, treatment with ferrous sulfate alone or the encapsulation of the COPR in asphalt failed to meet the TCLP total Cr concentration of 5mg/L, after 16 months. XANES analyses results showed that more than 75% Cr(6+) reduction was achieved upon pretreatment with ferrous sulfate.

  10. A review of air quality issues and compliance for the asphalt paving industry in Maryland

    SciTech Connect

    Courtright, B.F.; Caughlin, M.J.

    1999-07-01

    The Maryland Air and Radiation Management Administration (ARMA) conducted a Sector Initiative in order to achieve a compliance audit of the asphalt paving industry sector in Maryland. This sector is commonly referred to as the hot-mix asphalt (HMA) industry. There are 59 HMA production plants in Maryland. Each asphalt production facility was reviewed to determine their compliance status with federal NSPS requirements (stack particulate and visible emission requirements), as well as with Maryland's more comprehensive and generally more restrictive requirements including visible emission, particulate matter, air toxics, dust, nuisance, odor, and other criteria pollutant requirements. The study included reviewing past data (stack test reports, inspections, VE observations, complaint histories) and conducting new inspections and observations at all 59 of the plants. The study also included conducting new particulate stack tests (Summer of 1998) at nine HMA plants. The historic data demonstrated general compliance with stack-tested particulate emission rates. The new stack tests all demonstrated compliance with applicable particulate limits. Visible emissions observations revealed a lesser degree of compliance. Asphalt plants, if not carefully controlled, can be a major source of nuisance complaints. Complaint histories were also reviewed. This paper presents detailed results of ARMA's compliance review of the asphalt industry in Maryland. This includes test results, compliance determinations, and compliance rates. Other issues including impacts on surrounding communities, changing Department of Transportation requirements, and air toxics requirements are also reviewed.

  11. 9 CFR 91.26 - Concrete flooring.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Concrete flooring. 91.26 Section 91.26... LIVESTOCK FOR EXPORTATION Inspection of Vessels and Accommodations § 91.26 Concrete flooring. (a) Pens aboard an ocean vessel shall have a 3 inch concrete pavement, proportioned and mixed to give 2000...

  12. 9 CFR 91.26 - Concrete flooring.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Concrete flooring. 91.26 Section 91.26... LIVESTOCK FOR EXPORTATION Inspection of Vessels and Accommodations § 91.26 Concrete flooring. (a) Pens aboard an ocean vessel shall have a 3 inch concrete pavement, proportioned and mixed to give 2000...

  13. A historical review of additives and modifiers used in paving asphalt refining processes in the United States.

    PubMed

    Mundt, Diane J; Adams, Robert C; Marano, Kristin M

    2009-11-01

    The U.S. asphalt paving industry has evolved over time to meet various performance specifications for liquid petroleum asphalt binder (known as bitumen outside the United States). Additives to liquid petroleum asphalt produced in the refinery may affect exposures to workers in the hot mix paving industry. This investigation documented the changes in the composition and distribution of the liquid petroleum asphalt products produced from petroleum refining in the United States since World War II. This assessment was accomplished by reviewing documents and interviewing individual experts in the industry to identify current and historical practices. Individuals from 18 facilities were surveyed; the number of facilities reporting use of any material within a particular class ranged from none to more than half the respondents. Materials such as products of the process stream, polymers, elastomers, and anti-strip compounds have been added to liquid petroleum asphalt in the United States over the past 50 years, but modification has not been generally consistent by geography or time. Modifications made to liquid petroleum asphalt were made generally to improve performance and were dictated by state specifications.

  14. Assessments of low emission asphalt mixtures produced using combinations of foaming agents

    NASA Astrophysics Data System (ADS)

    Mohd Hasan, Mohd Rosli

    The asphalt foaming techniques have been used over the last couple of decades as an alternative to the traditional method of preparing asphalt mixtures. Based on positive feedback from the industry, this study was initiated to explore and evaluate the performance of the Warm Mix Asphalt (WMA) mixture produced through a foaming process using physical and chemical foaming agents, which are ethanol and sodium bicarbonate (NaHCO3), respectively. The success of this project may lead to new theories and provide an environmentally friendly technique to produce asphalt mixtures. This may advance the understanding of the foaming process and improve the performance of WMA to support sustainable development. Theoretically, ethanol can function in the same manner as water but requires less energy to foam due to its lower boiling point, 78°C. During the asphalt foaming process, numerous bubbles were generated by the vaporized ethanol, which significantly increased the volume of the asphalt binder, hence the coating potential of aggregates improves. The sodium bicarbonate was incorporated to enhance the quantity of bubbles and its stability. Therefore, understanding foaming agents, their solubility, chemical reactions, chemical function groups and rheological properties of the foamed binder are essential to help control the foam structure and final properties of the foamed WMA mixture. In order to understand the overall performance of newly developed foaming WMA, this material was evaluated for moisture susceptibility, rutting potential, and resistance to fracture and thermal cracking. The coatability, workability and compactability of foamed asphalt mixtures during production were also evaluated. Based on the results, it was found that the newly proposed foaming WMA has high potential to promote sustainable development by lowering the energy consumption and impacts on the environment. The ethanol is efficient in lowering the viscosity of asphalt binders, enhancing the

  15. Characterization of asphalt additive produced from hydroretorted Alabama shale

    SciTech Connect

    Rue, D.M.; Roberts, M.J.

    1992-12-31

    Shale oil, produced from beneficiated Alabama shale by pressurized fluidized-bed hydroretorting, was fractionated to produce shale oil asphalt additives (SOA). Three shale oil fractions boiling above 305{degrees}C were added to standard AC-20 asphalt to improve pavement properties. The physical properties and aging characteristics of AC-20 asphalt binder (cement) containing SOA are similar to those of unmodified AC-20 asphalt binder. Asphalt pavement briquettes made with AC-20 asphalt binder containing 5 to 10 percent SOA have superior resistance to freeze-thaw cracking and a greater retention of tensile strength when wet compared to pavement briquettes containing AC-20 binder alone.

  16. How good are linear viscoelastic properties of asphalt binder to predict rutting and fatigue cracking

    SciTech Connect

    Chen, J.S.; Tsai, C.J. . Dept. of Civil Engineering)

    1999-08-01

    This article evaluates the effects of linear viscoelastic properties of asphalt on pavement rutting and fatigue cracking. The parameters in the binder specification recently developed by the Strategic Highway Research Program (SHRP) were also compared for pavement performance. Two studies were conducted for asphalt-aggregate mixes. The first study was the wheel tracking test to evaluate the rutting of mixes containing three asphalts. The second study was a detailed field study of the effects of binder properties on the pavement performance of eight different sections. Results of both investigations indicated that SHRP parameters were not sufficient indicators for predicting the rutting and fatigue cracking of pavements. The discrepancies between performance data and existing parameters of the binder mainly resulted from the inherited assumptions made during the specification development, that is, stress- or strain-controlled mode and traffic loading frequency. In order to directly relate the linear viscoelastic properties of asphalt binders to pavement performance, calculating the dissipated energy per traffic cycle, W[sub d], became imperative. Fundamental derivation of W[sub d] was developed in this study. Results indicated that W[sub d] could predict the rutting and fatigue cracking of pavements reasonably well, This study, proposed the dissipated energy, W[sub d], as the single parameter for evaluating pavement rutting and fatigue cracking.

  17. Rapid determination of actinides in asphalt samples

    DOE PAGES

    Maxwell, Sherrod L.; Culligan, Brian K.; Hutchison, Jay B.

    2014-01-12

    A new rapid method for the determination of actinides in asphalt samples has been developed that can be used in emergency response situations or for routine analysis If a radiological dispersive device (RDD), Improvised Nuclear Device (IND) or a nuclear accident such as the accident at the Fukushima Nuclear Power Plant in March, 2011 occurs, there will be an urgent need for rapid analyses of many different environmental matrices, including asphalt materials, to support dose mitigation and environmental clean up. The new method for the determination of actinides in asphalt utilizes a rapid furnace step to destroy bitumen and organicsmore » present in the asphalt and sodium hydroxide fusion to digest the remaining sample. Sample preconcentration steps are used to collect the actinides and a new stacked TRU Resin + DGA Resin column method is employed to separate the actinide isotopes in the asphalt samples. The TRU Resin plus DGA Resin separation approach, which allows sequential separation of plutonium, uranium, americium and curium isotopes in asphalt samples, can be applied to soil samples as well.« less

  18. Rapid determination of actinides in asphalt samples

    SciTech Connect

    Maxwell, Sherrod L.; Culligan, Brian K.; Hutchison, Jay B.

    2014-01-12

    A new rapid method for the determination of actinides in asphalt samples has been developed that can be used in emergency response situations or for routine analysis If a radiological dispersive device (RDD), Improvised Nuclear Device (IND) or a nuclear accident such as the accident at the Fukushima Nuclear Power Plant in March, 2011 occurs, there will be an urgent need for rapid analyses of many different environmental matrices, including asphalt materials, to support dose mitigation and environmental clean up. The new method for the determination of actinides in asphalt utilizes a rapid furnace step to destroy bitumen and organics present in the asphalt and sodium hydroxide fusion to digest the remaining sample. Sample preconcentration steps are used to collect the actinides and a new stacked TRU Resin + DGA Resin column method is employed to separate the actinide isotopes in the asphalt samples. The TRU Resin plus DGA Resin separation approach, which allows sequential separation of plutonium, uranium, americium and curium isotopes in asphalt samples, can be applied to soil samples as well.

  19. Rheological properties of asphalts with particulate additives

    SciTech Connect

    Shashidhar, N.; Chollar, B.H.

    1996-12-31

    The Superpave asphalt binder specifications are performance-based specifications for purchasing asphalt binders for the construction of roads. This means that the asphalt is characterized by fundamental material (rheological) properties that relate to the distress modes of the pavements. The distress modes addressed are primarily rutting, fatigue cracking and low temperature cracking. For example, G*/sin({delta}) is designed to predict the rutting potential of pavements, where G* is the magnitude of the complex shear modulus and 6 is the phase angle. The binder for a road that is situated in a certain climatic zone requires the binder to have a minimum G*/sin({delta}) of 2200 Pa at the highest consecutive 7-day average pavement temperature the road had experienced. Implicit in such a performance based specification is that the fundamental property, G*/sin({delta}), of the binder correlates with rutting potential of the pavement regardless of the nature of the binder. In other words, the specification is transparent to the fact that the binder can simply be an asphalt, or an asphalt modified by polymers, particulates and other materials that can form a two-phase mixture. This paper discusses the asphalt-particulate system.

  20. Development of superior asphalt recycling agents. Phase 1, Technical feasibility. Technical progress report

    SciTech Connect

    Bullin, J.A.; Glover, C.J.; Davison, R.R.; Chaffin, J.; Lin, Moon-Sun

    1995-07-01

    About 27 million tons of asphalt and nearly twenty times this much aggregate are consumed each year to build and maintain over two million miles of roads in this country. Over a cycle of about 12 years on the average, these roads must be reworked and much of these millions of tons of rock and asphalt cannot be reused with present recycling technology. Instead, much of the maintenance is accomplished by placing thick layers (hot-mix overlays) of new material on top of the failed material. This results in considerable waste of material, both in terms of quality aggregate and in terms of asphalt binder. In addition, the new asphalt binder represents a significant source of potential energy. The main impediment to recycling asphalt binder is the poorly developed science of recycling agent composition and, as a result, optimum recycling agents are not available. An excellent recycling agent should not only be able to reduce the viscosity of the aged material, but it must also be able to restore compatibility. The properties of the old material and recycling agent must be compatible to give both good initial properties and aging characteristics, and this must be understood. The agent must also be inexpensive and easily manufactured. A large quantity of potential feedstock for the production of recycling agents is available and much of it is now fed to cokers. This material could be recovered by supercritical extraction which is an existing refinery technology. A supercritical pilot plant is available at Texas A&M and has been used to produce fractions for study. The objective of this research is to establish the technical feasibility of determining the specifications and operating parameters necessary to produce high quality recycling agents which will allow most old asphalt-based road material to be recycled.

  1. Chemical and mutagenic properties of asphalt fume condensates generated under laboratory and field conditions.

    PubMed

    Reinke, G; Swanson, M; Paustenbach, D; Beach, J

    2000-08-21

    Exposure to asphalt fumes is widely recognized as a potential occupational health concern for paving and roofing workers. Two studies suggest that asphalt fumes generated in the laboratory are carcinogenic to mice. In this study, asphalt fume condensate (AFC) was collected from the head space of an operating hot mix asphalt storage tank and from a laboratory fume-generating apparatus operating at approximately 149 degrees C and 316 degrees C. Salmonella assays for mutagenesis, in vitro chromosomal aberration assays using Chinese hamster ovary (CHO) cells, chemical analyses, and simulated distillations were performed using gas chromatography to characterize the toxicological and chemical properties of AFCs generated by these two methods. The 316 degrees C lab AFC sample was more mutagenic in the Salmonella assay than the 149 degrees C lab AFC sample, with mutagenicity indices (MIs) of 8.3 and 5.3, respectively. AFCs collected from the storage tank were not mutagenic. Chromosomal aberration assays of all AFCs were negative. Chemical analyses and simulated distillations showed substantial differences in the chemical composition of the AFC samples. The 316 degrees C lab AFC sample contained more higher-boiling-point (three- and four-ring) polycyclic aromatic sulfur heterocycle compounds than the 149 degrees C lab AFC sample, and both lab AFC samples contained 5 to 100 times more of these compounds than AFC samples collected from the asphalt storage tank. These results are consistent with other data reported in the scientific literature describing the carcinogenicity of higher-boiling-point sulfur heterocycle compounds. In contrast to other recent studies, the results of this study indicate that the chemical composition and toxicological properties of laboratory-generated asphalt fumes are not representative of those properties of fumes to which workers and the public might be exposed. PMID:10946241

  2. Hei-way general purpose recycled asphalt material (RHM). Final report

    SciTech Connect

    Dash, U.

    1993-02-01

    Utilization of Reclaimed Asphalt Pavement (RAP) in paving projects is a popular concept. It conserves material and can often provide an economical alternative to using virgin materials. The research summarizes the utilization of about 8000 tons of RAP in a project in Armstrong County (SR 3011 and SR 3013) using a proprietary process by Heilman Pavement Specialities. The mix is called Recycled Heilman Mix (RHM), which is prepared using a proprietary blend of asphalt cement (AC-5) and a rejuvenator mixed with equal weights of RAP and virgin aggregates in a batch-type pugmill. A control mix was produced by using 9.6 gallons per ton of E-5 emulsion and a blend of equal weights of RAP and coarse aggregates. The construction of the two sites were completed in September 1988 without any significant problems. A three-wheeled roller, ballasted rubber-tired roller and a second 1-ton tandem roller was used for compaction. There were no significant construction problems. RHM performed well on this project. The method of recycling asphalt pavements appears to be viable. RHM is stockpileable. Although RHM was 40 to 50 percent more expensive on the project, the life cycle costs on larger projects can be more competitive, especially when the cost of a seal coat is either avoided or delayed on RHM jobs when compared to E-5 mixes as control.

  3. Dermal exposure and urinary 1-hydroxypyrene among asphalt roofing workers

    SciTech Connect

    McClean, M.D.; Rinehart, R.D.; Sapkota, A.; Cavallari, J.M.; Herrick, R.F.

    2007-07-01

    The primary objective of this study was to identify significant determinants of dermal exposure to polycyclic aromatic compounds (PACs) among asphalt roofing workers and use urinary 1-hydroxyprene (1-OHP) measurements to evaluate the effect of dermal exposure on total absorbed dose. The study population included 26 asphalt roofing workers who performed three primary tasks: tearing off old roofs, putting down new roofs, and operating the kettle at ground level. During multiple consecutive work shifts, dermal patch samples were collected from the underside of each worker's wrists and were analyzed for PACs, pyrene, and benzo(a)pyrene (BAP). During the same work week, urine samples were collected at pre-shift, post-shift, and bedtime each day and were analyzed for 1-OHP (205 urine samples). Linear mixed effects models were used to evaluate the dermal measurements for the purpose of identifying important determinants of exposure, and to evaluate urinary 1-OHP measurements for the purpose of identifying important determinants of total absorbed dose. Dermal exposures to PAC, pyrene, and BAP were found to vary significantly by roofing task and by the presence of an old coal tar pitch roof. For each of the three analytes, the adjusted mean dermal exposures associated with tear-off were approximately four times higher than exposures associated with operating the kettle. Exposure to coal tar pitch was associated with a 6-fold increase in PAC exposure, an 8-fold increase in pyrene exposure and a 35-fold increase in BAP exposure. The presence of coal tar pitch was the primary determinant of dermal exposure, particularly for exposure to BAP. However, the task-based differences that were observed while controlling for pitch suggest that exposure to asphalt also contributes to dermal exposures.

  4. SITE DEMONSTRATION CAPSULE --MATCON MODIFIED ASPHALT FOR WASTE CONTAINMENT

    EPA Science Inventory

    MatCon is a polymer modified asphalt material designed specifically for waste contaminment applications. The modifications to the material differentiate it from conventional paving asphalt by minimizing the damaging effects of environmental exposure that could detract from the d...

  5. Analysis of asphalt-based roof systems using thermal analysis

    SciTech Connect

    Paroli, R.M.; Delgado, A.H.

    1996-12-31

    Asphalt has been used in the construction of roads and houses for thousands of years. The properties of asphalt has rendered it quite useful in roofing and waterproofing applications. The most popular use of asphalt in industrial roofing is in the form of a built-up roof or modified-bituminous sheet. This type of roof consists of asphalt, reinforcement and aggregate which is used to protect the asphalt from ultraviolet rays. All materials have their weaknesses and asphalt is no exception. A good asphalt (e.g., low asphaltene content) must be used to ensure the quality and low-temperature performance of roofing asphalts. Polymer additives can be added. The objective of this work was to demonstrate the utility of termogravimetry and dynamic mechanical analysis in establishing the durability of modified bituminous membranes.

  6. Effects of preparation process on performance of rubber modified asphalt

    NASA Astrophysics Data System (ADS)

    Liu, Hanbing; Luo, Guobao; Wang, Xianqiang; Jiao, Yubo

    2015-06-01

    The rational utilization of waste rubber tire is essential for the environmental protection. Utilizing rubber particles to modify asphalt can not only improve asphalt performance, but also help the recycling of waste materials. Considering the effect of different preparation process parameters on the performance of rubber modified asphalt, this paper analyzes the effects of the shear temperature, shear time and shear rate on the performance of rubber modified asphalt, and provided a reference for its preparation.

  7. 40 CFR 52.2054 - Control of asphalt paving material.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 5 2012-07-01 2012-07-01 false Control of asphalt paving material. 52... asphalt paving material. (a) Notwithstanding any provisions to the contrary in the Pennsylvania Implementation Plan, the Pennsylvania Department of Transportation shall restrict the annual usage of asphalts...

  8. 40 CFR 52.2054 - Control of asphalt paving material.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 5 2014-07-01 2014-07-01 false Control of asphalt paving material. 52... asphalt paving material. (a) Notwithstanding any provisions to the contrary in the Pennsylvania Implementation Plan, the Pennsylvania Department of Transportation shall restrict the annual usage of asphalts...

  9. 40 CFR 52.2054 - Control of asphalt paving material.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 5 2013-07-01 2013-07-01 false Control of asphalt paving material. 52... asphalt paving material. (a) Notwithstanding any provisions to the contrary in the Pennsylvania Implementation Plan, the Pennsylvania Department of Transportation shall restrict the annual usage of asphalts...

  10. Full-Depth Asphalt Pavements for Parking Lots and Driveways.

    ERIC Educational Resources Information Center

    Asphalt Inst., College Park, MD.

    The latest information for designing full-depth asphalt pavements for parking lots and driveways is covered in relationship to the continued increase in vehicle registration. It is based on The Asphalt Institute's Thickness Design Manual, Series No. 1 (MS-1), Seventh Edition, which covers all aspects of asphalt pavement thickness design in detail,…

  11. Current practices for modification of paving asphalts

    SciTech Connect

    Bahia, H.U.; Perdomo, D.

    1996-12-31

    The Superpave binder specification, AASHTO MP1, has introduced new concepts for selecting paving asphalt binders. The specification, in addition to using rheological and failure measurements that are more related to performance, is based on the idea that the criteria to maintain a satisfactory contribution of asphalt binders to the resistance of pavement failures remains the same but have to be satisfied at critical application temperatures. The test procedures require that the material be characterized within certain ranges of strains or stresses to ensure that material and geometric non-linearities are not confounded in the measurements. These new specification concepts have resulted in re-evaluation of asphalt modification by the majority of modified asphalt suppliers. The philosophy of asphalt modification is expected to change, following these new concepts, from a general improvement of quality to more focus on using modifiers based on the most critical need as defined by two factors: (1) The application temperature domain and (2) the type of distress to be remedied. The new specification requirements should result in a more effective use of modifiers as the amount and type of modifier will be directly related to the application environment and the engineering requirements.

  12. Asphalt and risk of cancer in man.

    PubMed Central

    Chiazze, L; Watkins, D K; Amsel, J

    1991-01-01

    Epidemiological publications regarding the carcinogenic potential of asphalt (bitumen) are reviewed. In 1984 the International Agency for Research on Cancer (IARC) stated that there is "inadequate evidence that bitumens alone are carcinogenic to humans." They did, however, conclude that animal data provided sufficient evidence for the carcinogenicity of certain extracts of steam refined and air refined bitumens. In the absence of data on man, IARC considered it reasonable to regard chemicals with sufficient evidence of carcinogenicity in animals as if they presented a carcinogenic risk to man. Epidemiological data for man accumulated since the IARC report do not fulfil the criteria for showing a causal association between exposure to asphalt and development of cancer. The studies cited all suffer from a lack of data on exposure or potential confounders, which are necessary to establish whether or not such an association may or may not exist. In view of the evidence (or lack thereof) regarding asphalt today, an appropriate public health attitude suggests at least that action be taken to protect those working with asphalt by monitoring the workplace, taking whatever steps are possible to minimise exposures and to inform workers of potential hazards. At the same time, a need exists for well designed analytical epidemiological studies to determine whether a risk of cancer in man exists from exposure to asphalt. PMID:1878310

  13. Technical, financial, and geographic challenges in recycling asphalt composition roof shingles

    SciTech Connect

    Reith, C.C.; Carpenter, M.; Robertson, D.T.

    1999-07-01

    Eleven million tons of asphalt composition shingles are disposed of annually in US landfills. The wastes from roof removal or repair operations are a promising, but under-harvested feedstock for recycling. This waste stream generally arrives by truck at local landfills, where it is relatively unmixed and ready for recycling. However, in most cases the shingles are landfilled at the local tipping fee. The authors analyzed impediments and opportunities in recycling asphalt shingles and elected to commence operations in the east San Francisco Bay area, where tipping fees as high as $50 per ton provide an economic incentive to intercept and recycle this waste stream. Their approach has been to use a 60 inch x 38 inch rotating-head grinder propelled by a 400 horsepower diesel engine. Roofing waste is introduced to the grinder, which processes up to 50 tons per hour. The product is half-inch minus granular asphalt with co-mingled sand that may be used as a feedstock (approximately 5%) in the production of hot-mix asphalt, as used for road construction. A potentially more profitable reuse of recycled product is in the production of a cold patch for road repair which, when fully commercialized, will further improve the economics of shingles recycling. Other reuse scenarios are being explored. The authors are carefully chronicling and optimizing the Bay Area recycling campaign with the intent of promoting similar activities nationwide as soon as the economics become favorable.

  14. Sorptivity of fly ash concretes

    SciTech Connect

    Gopalan, M.K.

    1996-08-01

    A factorial experiment was designed to measure the sorptivity of cement and fly ash concretes in order to compare the durability of fly ash concrete against the cement concrete. Sorptivity measurements based on the capillary movement of water was made on three grades of cement concrete and six grades of fly ash mixes. The effect of curing was also studied by treating the samples in two curving conditions. A functional relationship of sorptivity against the strength, curing condition and fly ash content has been presented. The results were useful to analyze the factors influencing the durability of cement and fly ash concretes and to explain why some of the previously reported findings were contradictory. Curing conditions have been found to be the most important factor that affected the durability properties of fly ash concrete. When proper curing was provided, a mix with 40% fly ash was found to reduce the sorptivity by 37%. Under inadequate curing the sorptivity was found to increase by 60%. The influence of curing on cement concrete was found to be of much less importance.

  15. Genotoxic effects of fumes from asphalt modified with waste plastic and tall oil pitch.

    PubMed

    Lindberg, Hanna K; Väänänen, Virpi; Järventaus, Hilkka; Suhonen, Satu; Nygren, Jonas; Hämeilä, Mervi; Valtonen, Jarkko; Heikkilä, Pirjo; Norppa, Hannu

    2008-05-31

    As the use of recycled materials and industrial by-products in asphalt mixtures is increasing, we investigated if recycled additives modify the genotoxicity of fumes emitted from asphalt. Fumes were generated in the laboratory at paving temperature from stone-mastic asphalt (SMA) and from SMA modified with waste plastic (90% polyethylene, 10% polypropylene) and tall oil pitch (SMA-WPT). In addition, fumes from SMA, SMA-WPT, asphalt concrete (AC), and AC modified with waste plastic and tall oil pitch (AC-WPT) were collected at paving sites. The genotoxicity of the fumes was studied by analysis of DNA damage (measured in the comet assay) and micronucleus formation in human bronchial epithelial BEAS 2B cells in vitro and by counting mutations in Salmonella typhimurium strains TA98 and YG1024. DNA damage was also assessed in buccal leukocytes from road pavers before and after working with SMA, SMA-WPT, AC, and AC-WPT. The chemical composition of the emissions was analysed by gas chromatography/mass spectrometry. The SMA-WPT fume generated in the laboratory induced a clear increase in DNA damage in BEAS 2B cells without metabolic activation. The laboratory-generated SMA fume increased the frequency of micronucleated BEAS 2B cells without metabolic activation. None of the asphalt fumes collected at the paving sites produced DNA damage with or without metabolic activation. Fumes from SMA and SMA-WPT from the paving sites increased micronucleus frequency without metabolic activation. None of the asphalt fumes studied showed mutagenic activity in Salmonella. No statistically significant differences in DNA damage in buccal leukocytes were detected between the pre- and post-shift samples collected from the road pavers. However, a positive correlation was found between DNA damage and the urinary metabolites of polycyclic aromatic hydrocarbons (PAHs) after work shift, which suggested an association between occupational exposures during road paving and genotoxic effects. Our

  16. Gas permeability measurements on asphalts using the electrodynamic balance

    SciTech Connect

    Periasamy, R.; Newsome, J.R.; Andrady, A.L.; Ensor, D.S. )

    1990-07-01

    Volatilization, oxide degradation, and steric hardening are the degradation processes believed to be responsible for the weathering of asphalts. The fundamental mechanisms that govern the rates at which these degradation processes occur are not understood, but the transport of oxygen through the asphalt matrix is an important aspect of the weathering of asphalts under field conditions. Therefore, the measurement of diffusion, solubility, and permeability constants for oxygen in asphalts is crucial to better understand the long-term weathering of the asphalt materials. A novel and precise gravimetric technique, hitherto not applied in asphalt research is described here: an electrodynamic balance is used in this technique for the measurement of key transport properties for oxygen in micrometer-size asphalt particle samples.

  17. Use of ground-penetrating radar for asphalt thickness determination

    NASA Astrophysics Data System (ADS)

    Choubane, Bouzid; Fernando, Emmanuel; Ross, Stephen C.; Dietrich, Bruce T.

    2003-07-01

    A computer program, called TERRA (Thickness Evaluation of Roads by RAdar) was recently developed for estimating pavement layer thicknesses from ground penetrating radar (GPR) data. This program incorporates decision criteria for automated detection of layer interfaces, computation of layer thicknesses and a segmentation algorithm for delineating segments based on layer thicknesses. The Florida Department of Transportation (FDOT) initiated the present field study for an initial assessment of TERRA. Radar and core data were collected from several flexible pavement sections of Florida's roadway system. These sites were selected to represent the present Florida in-place mixes (Superpave and Marshall mixtures) and different asphalt layer thicknesses, which varied from approximately 50 to 300 mm (2 to 12 in). Radar data were collected at both highway speeds and in stationary mode. This paper presents a description of the data collection effort as well as the subsequent analysis and findings.

  18. Lignite slime as activator in production of oxidized asphalts

    SciTech Connect

    Gureev, A.A.; Gorlov, E.G.; Leont'eva, O.B.; Zotova, O.V.

    1988-03-01

    The possibility of activation of the oxidation of straight-run resids to asphalts by the addition of lignite slimes obtained in the liquefaction of coals of the Kansk-Achinsk basin was studied on the basis of a hypothesis formulated with due regard for the principles of physicochemical mechanics of petroleum disperse systems. A reduction of the air bubble size in the oxidizing vessel should lead to an increase in the total surface of oxidation and hence to a shortening of the time required for oxidation of the feed. A straight-run vacuum resid from mixed West Siberian and Ukhta crudes was used. The resid was oxidized with and without the addition of slime.

  19. Petroleum degradation and associated microbial signatures at the Chapopote asphalt volcano, Southern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Schubotz, Florence; Lipp, Julius S.; Elvert, Marcus; Kasten, Sabine; Mollar, Xavier Prieto; Zabel, Matthias; Bohrmann, Gerhard; Hinrichs, Kai-Uwe

    2011-08-01

    At the Chapopote Knoll in the Southern Gulf of Mexico, deposits of asphalt provide the substrate for a prolific cold seep ecosystem extensively colonized by chemosynthetic communities. This study investigates microbial life and associated biological processes within the asphalts and surrounding oil-impregnated sediments by analysis of intact polar membrane lipids (IPLs), petroleum hydrocarbons and stable carbon isotopic compositions (δ 13C) of hydrocarbon gases. Asphalt samples are lightly to heavily biodegraded suggesting that petroleum-derived hydrocarbons serve as substrates for the chemosynthetic communities. Accordingly, detection of bacterial diester and diether phospholipids in asphalt samples containing finely dispersed gas hydrate suggests the presence of hydrocarbon-degrading bacteria. Biological methanogenesis contributes a substantial fraction to the methane captured as hydrate in the shallow asphalt deposits evidenced by significant depletion in 13C relative to background thermogenic methane. In sediments, petroleum migrating from the subsurface stimulates both methanogenesis and methanotrophy at a sulfate-methane transition zone 6-7 m below the seafloor. In this zone, microbial IPLs are dominated by archaeal phosphohydroxyarchaeols and archaeal diglycosidic diethers and tetraethers. Bacterial IPLs dominate surface sediments that are impregnated by severely biodegraded oil. In the sulfate-reduction zone, diagnostic IPLs indicate that sulfate-reducing bacteria (SRB) play an important role in petroleum degradation. A diverse mixture of phosphohydroxyarchaeols and mixed phospho- and diglycosidic archaeal tetraethers in shallow oil-impregnated sediments point to the presence of anaerobic methane-oxidizing ANME-2 and ANME-1 archaea, respectively, or methanogens. Archaeal IPLs increase in relative abundance with increasing sediment depth and decreasing sulfate concentrations, accompanied by a shift of archaeol-based to tetraether-based archaeal IPLs. The

  20. Sulfur extended asphalt pavement evaluation: Executive summary

    NASA Astrophysics Data System (ADS)

    Mahoney, J. P.

    1982-09-01

    This summary report overviews two previously issued study reports. One report assesses The availability and pricing of sulfur with respect to sulfur extended asphalt (SEA) paving mixture is assessed. A laboratory oriented testing program which was principally used to examine the durability and aging characteristics of SEA paving mixtures is reported.

  1. Examination of Behavior of Fresh Concrete Under Pressure

    NASA Astrophysics Data System (ADS)

    Yücel, K. T.

    2012-05-01

    Transporting fresh concrete constitutes a significant part of the production process. Transferring ready-mixed concrete on-site is done using concrete pumps. Recent developments in concrete technology, and in mineral and chemical additives, have resulted in new developments in pumping techniques and the use of different concrete mixtures and equipment. These developments required further knowledge of the behavior of fresh concrete under pressure. Two criteria were determined for the pumpability of concrete: the power required to move the concrete or of the repulsive force; and the cohesion of the fresh concrete. It would be insufficient to relate pumpability to these two criteria; the values of segregation pressure, diffusion ability, water retention capacity, and side friction of the mixture are significant parameters in ensuring that concrete is pumped freely along the pipe. To solve the pumpability problem, friction stresses should be determined as a function of the linear pressure gradient, the pressure leading to segregation of the fresh concrete should be determined, and tests for the bleeding of concrete under pressure should be examined. The scope of the research is the examination of the behavior of fresh concrete under pressure. To determine the segregation pressures, a test apparatus was designed for the bleeding of concrete under pressure. The main purpose of the study is to determine whether the concrete can be pumped easily and whether it will lose its cohesion during the pumping, based on tests of concrete workability and bleeding of concrete under pressure.

  2. Quick-setting concrete and a method for making quick-setting concrete

    DOEpatents

    Wagh, A.S.; Singh, D.; Pullockaran, J.D.; Knox, L.

    1997-04-29

    A method for producing quick setting concrete is provided comprising mixing a concrete dry mixture with carbonate solution to create a slurry, and allowing the slurry to cure. The invention also provides for a quick setting concrete having a predetermined proportion of CaCO{sub 3} of between 5 and 23 weight percent of the entire concrete mixture, and whereby the concrete has a compression strength of approximately 4,000 pounds per square inch (psi) within 24 hours after pouring. 2 figs.

  3. COIN Project: Towards a zero-waste technology for concrete aggregate production in Norway

    NASA Astrophysics Data System (ADS)

    Cepuritis, Rolands; Willy Danielsen, Svein

    2014-05-01

    COIN Project: Towards a zero-waste technology for concrete aggregate production in Norway Rolands Cepuritis, Norcem/NTNU and Svein Willy Danielsen, SINTEF Aggregate production is a mining operation where no purification of the "ore" is necessary. Still it is extremely rare that an aggregate production plant is operating on the basis of zero-waste concept. This is since historically the fine crushed aggregate (particles with a size of less than 2, 4 or sometimes 8 mm) has been regarded as a by-product or waste of the more valuable coarse aggregate production. The reason is that the crushed coarse aggregates can easily replace coarse rounded natural stones in almost any concrete composition; while, the situation with the sand is different. The production of coarse aggregate normally yields fine fractions with rough surface texture, flaky or elongated particles an inadequate gradation. When such a material replaces smooth and rounded natural sand grains in a concrete mix, the result is usually poor and much more water and cement has to be used to achieve adequate concrete flow. The consequences are huge stockpiles of the crushed fine fractions that can't be sold (mass balance problems) for the aggregate producers, sustainability problems for the whole industry and environmental issues for society due to dumping and storing of the fine co-generated material. There have been attempts of utilising the material in concrete before; however, they have mostly ended up in failure. There have been attempts to adjust the crushed sand to the properties of the natural sand, which would still give a lot of waste, especially if the grading would have to be adjusted and the high amounts of fines abundantly present in the crushed sand would have to be removed. Another fundamental reason for failure has been that historically such attempts have mainly ended up in a research carried out by people (both industrial and academic) with aggregate background (= parties willing to find market

  4. Analysis of asphalt-based roof systems using thermal analysis

    SciTech Connect

    Paroli, R.M.; Delgado, A.H.

    1996-10-01

    Asphalt is used extensively in roofing applications. Traditionally, it is used in a built-up roof system, where four or five plies are applied in conjunction with asphalt. This is labour intensive and requires good quality assurance on the roof top. Alternatively, asphalt can be used in a polymer-modified sheet where styrene-butadiene-styrene (SBS) or atactic polypropylene (APP) are added to the asphalt shipped in a roll where reinforcement (e.g., glass fibre mat) has been added. Regardless of the system used, the roof must be able to withstand the environmental loads such UV, heat, etc. Thermoanalytical techniques such as DSC, DMA, TMA and TG/DTA are ideally suited to monitor the weathering of asphalt. This paper presents data obtained using these techniques and shows how the performance of asphalt-based roof systems can be followed by thermal analysis.

  5. 8. Photocopied August 1978. BREAKING CONCRETE BARS, JULY 1898. TESTING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Photocopied August 1978. BREAKING CONCRETE BARS, JULY 1898. TESTING MACHINE USED BY VON SCHON IN EXPERIMENTS ON METHODS OF MIXING CONCRETE AND ON CONCRETE AGGREGATES WHICH USED LOCAL MATERIALS. (4) - Michigan Lake Superior Power Company, Portage Street, Sault Ste. Marie, Chippewa County, MI

  6. Seal coats and asphalt recycling. Transportation research record

    SciTech Connect

    1995-12-31

    The papers in this volume deal with various facets of seal coats and asphalt recycling; they should be of interest to state and local construction, design, materials, maintenance, and research engineers as well as contractors and material producers. Authors describe their work related to the design, construction, and performance of seal coats. The relationship between asphalt mixture characteristics and design and the frictional resistance of bituminous wearing course mixtures is reported, and research efforts related to asphalt recycling are explained.

  7. Field testing of asphalt-emulsion radon-barrier system

    SciTech Connect

    Hartley, J.N.; Freeman, H.D.; Baker, E.G.; Elmore, M.R.; Nelson, D.A.; Voss, C.F.; Koehmstedt, P.L.

    1981-09-01

    Three years of laboratory and field testing have demonstrated that asphalt emulsion seals are effective radon diffusion barriers. Both laboratory and field tests in 1979, 1980 and 1981 have shown that an asphalt emulsion seal can reduce radon fluxes by greater than 99.9%. The effective diffusion coefficient for the various asphalt emulsion admix seals averages about 10/sup -6/ cm/sup 2//s. The 1981 joint field test is a culmination of all the technology developed to date for asphalt emulsion radon barrier systems. Preliminary results of this field test and the results of the 1980 field test are presented. 18 figures, 6 tables.

  8. Hanford Permanent Isolation Barrier Program: Asphalt technology development

    SciTech Connect

    Freeman, H.D.; Romine, R.A.

    1994-11-01

    An important component of the Hanford Permanent Isolation Barrier is the use of a two-layer composite asphalt system, which provides backup water diversion capabilities if the primary capillary barrier fails to meet infiltration goals. Because of asphalt`s potential to perform to specification over the 1000-year design life criterion, a composite asphalt barrier (HMAC/fluid-applied polymer-modified asphalt) is being considered as an alternative to the bentonite clay/high density poly(ethylene) barriers for the low-permeability component of the Hanford Permanent Isolation Barrier. The feasibility of using asphalt as a long-term barrier is currently being studied. Information that must be known is the ability of asphalt to retain desirable physical properties over a period of 1000 years. This paper presents the approach for performing accelerated aging tests and evaluating the performance of samples under accelerated conditions. The results of these tests will be compared with asphalt artifact analogs and the results of modeling the degradation of the selected asphalt composite to make life-cycle predictions.

  9. Asphalt compatibility testing using the automated Heithaus titration test

    SciTech Connect

    Pauli, A.T.

    1996-12-31

    The Heithaus titration test or variations of the test have been used for over 35 years to predict compatibilities of blends of asphalts from different crude sources. Asphalt compatibility is determined from three calculated parameters that measure the state of peptization of an asphalt or asphalt blend. The parameter p{sub a} is a measure of the peptizability of the asphaltenes. The parameter p{sub a} is a measure of the peptizing power of the maltenes, and the parameter P, derived from p{sub a} and p{sub o} values, is a measure of the overall state of peptization of the asphalt or asphalt blend. In Heithaus original procedure, samples of asphalt were dissolved in toluene and titrated with n-heptane in order to initiate flocculation. The onset of flocculation was detected either by photography or by spotting a filter paper with a small amount of the titrated solution. Recently, an {open_quotes}automated{close_quotes} procedure, after Hotier and Robin, has been developed for use with asphalt. In the automated method UV-visible spectrophotometric detection measures the onset of flocculation as a peak with the percent transmittance plotted as a function of the volume of titrating solvent added to a solution of asphalt. The automated procedure has proven to be less operator dependent and much faster than the original Heithaus procedure. Results from the automated procedure show the data to be consistent with results from the original, {open_quotes}classical{close_quotes} Heithaus procedure.

  10. Dynamic linear viscoelastic properties and extensional failure of asphalt binders

    NASA Astrophysics Data System (ADS)

    Ruan, Yonghong

    Billions of dollars are spent annually in USA to maintain old pavements that are badly cracked. In order to reduce this expenditure, it is desirable to have criteria for selecting asphalts with superior cracking resistance that will provide pavements with longer durability. Literature reports indicate that the ductility of binders recovered from asphalt pavements correlates with cracking failure. However, ductility measurement is a time and material consuming process, and subject to reproducibility difficulties, as are all failure tests. In addition, ductility measurement does not belong to the currently used Superpave(TM) specification. Correlations between ductility and dynamic viscoelastic properties (measured with the dynamic shear rheometer, DSR), which are much easier and faster to perform and may be included into the Superpave(TM) system, are studied for both straight and modified binders. Ductility correlates quite well with G'/(eta '/G') for conventional asphalt binders aged at different conditions, especially when ductility is below 10 cm. However, for modified asphalts, there is no universal correlation between ductility and G'/(eta'/G'), even in the low ductility region. As far as the asphalt binder in pavement is concerned, the loss due to oxidative aging of its ductility is an important reason for pavement cracking. Polymer modification modifies the rheological and oxidative hardening properties of asphalt binders. The effect of polymeric modifiers on various properties of asphalt binders was investigated. Modifiers studied were diblock poly (styrene-b-butadiene) rubber (SBR), triblock poly (styrene-b-butadiene-b-styrene) (SBS), and tire rubber. Polymer modified binders have a lower hardening and oxidation rate than their corresponding base asphalts. In addition, modified binders have lower hardening susceptibility compared with their base materials and in some cases the results can be dramatic. Polymer modification improves asphalt binders' shear

  11. Microbial Diversity in Natural Asphalts of the Rancho La Brea Tar Pits▿

    PubMed Central

    Kim, Jong-Shik; Crowley, David E.

    2007-01-01

    Bacteria commonly inhabit subsurface oil reservoirs, but almost nothing is known yet about microorganisms that live in naturally occurring terrestrial oil seeps and natural asphalts that are comprised of highly recalcitrant petroleum hydrocarbons. Here we report the first survey of microbial diversity in ca. 28,000-year-old samples of natural asphalts from the Rancho La Brea Tar Pits in Los Angeles, CA. Microbiological studies included analyses of 16S rRNA gene sequences and DNA encoding aromatic ring-hydroxylating dioxygenases from two tar pits differing in chemical composition. Our results revealed a wide range of phylogenetic groups within the Archaea and Bacteria domains, in which individual taxonomic clusters were comprised of sets of closely related species within novel genera and families. Fluorescent staining of asphalt-soil particles using phylogenetic probes for Archaea, Bacteria, and Pseudomonas showed coexistence of mixed microbial communities at high cell densities. Genes encoding dioxygenases included three novel clusters of enzymes. The discovery of life in the tar pits provides an avenue for further studies of the evolution of enzymes and catabolic pathways for bacteria that have been exposed to complex hydrocarbons for millennia. These bacteria also should have application for industrial microbiology and bioremediation. PMID:17416692

  12. Characteristics of dynamic triaxial testing of asphalt mixtures

    NASA Astrophysics Data System (ADS)

    Ulloa Calderon, Alvaro

    Due to the increasing traffic loads and tire pressures, a serious detrimental impact has occurred on flexible pavements in the form of excessive permanent deformation once the critical combination of loading and environmental conditions are reached. This distress, also known as rutting, leads to an increase in road roughness and ultimately jeopardizes the road users' safety. The flow number (FN) simple performance test for asphalt mixtures was one of the final three tests selected for further evaluation from the twenty-four test/material properties initially examined under the NCHRP 9-19 project. Currently, no standard triaxial testing conditions in terms of the magnitude of the deviator and confining stresses have been specified. In addition, a repeated haversine axial compressive load pulse of 0.1 second and a rest period of 0.9 second are commonly used as part of the triaxial testing conditions. The overall objective of this research was to define the loading conditions that created by a moving truck load in the hot mixed asphalt (HMA) layer. The loading conditions were defined in terms of the triaxial stress levels and the corresponding loading time. Dynamic mechanistic analysis with circular stress distribution was used to closely simulate field loading conditions. Extensive mechanistic analyses of three different asphalt pavement structures subjected to moving traffic loads at various speeds and under braking and non-braking conditions were conducted using the 3D-Move model. Prediction equations for estimating the anticipated deviator and confining stresses along with the equivalent deviator stress pulse duration as a function of pavement temperature, vehicle speed, and asphalt mixture's stiffness have been developed. The magnitude of deviator stress, sigmad and confining stress, sigmac, were determined by converting the stress tensor computed in the HMA layer at 2" below pavement surface under a moving 18-wheel truck using the octahedral normal and shear

  13. Concrete material characterization reinforced concrete tank structure Multi-Function Waste Tank Facility

    NASA Astrophysics Data System (ADS)

    Winkel, B. V.

    1995-03-01

    The purpose of this report is to document the Multi-Function Waste Tank Facility (MWTF) Project position on the concrete mechanical properties needed to perform design/analysis calculations for the MWTF secondary concrete structure. This report provides a position on MWTF concrete properties for the Title 1 and Title 2 calculations. The scope of the report is limited to mechanical properties and does not include the thermophysical properties of concrete needed to perform heat transfer calculations. In the 1970's, a comprehensive series of tests were performed at Construction Technology Laboratories (CTL) on two different Hanford concrete mix designs. Statistical correlations of the CTL data were later generated by Pacific Northwest Laboratories (PNL). These test results and property correlations have been utilized in various design/analysis efforts of Hanford waste tanks. However, due to changes in the concrete design mix and the lower range of MWTF operating temperatures, plus uncertainties in the CTL data and PNL correlations, it was prudent to evaluate the CTL data base and PNL correlations, relative to the MWTF application, and develop a defendable position. The CTL test program for Hanford concrete involved two different mix designs: a 3 kip/sq in mix and a 4.5 kip/sq in mix. The proposed 28-day design strength for the MWTF tanks is 5 kip/sq in. In addition to this design strength difference, there are also differences between the CTL and MWTF mix design details. Also of interest, are the appropriate application of the MWTF concrete properties in performing calculations demonstrating ACI Code compliance. Mix design details and ACI Code issues are addressed in Sections 3.0 and 5.0, respectively. The CTL test program and PNL data correlations focused on a temperature range of 250 to 450 F. The temperature range of interest for the MWTF tank concrete application is 70 to 200 F.

  14. Concrete material characterization reinforced concrete tank structure Multi-Function Waste Tank Facility

    SciTech Connect

    Winkel, B.V.

    1995-03-03

    The purpose of this report is to document the Multi-Function Waste Tank Facility (MWTF) Project position on the concrete mechanical properties needed to perform design/analysis calculations for the MWTF secondary concrete structure. This report provides a position on MWTF concrete properties for the Title 1 and Title 2 calculations. The scope of the report is limited to mechanical properties and does not include the thermophysical properties of concrete needed to perform heat transfer calculations. In the 1970`s, a comprehensive series of tests were performed at Construction Technology Laboratories (CTL) on two different Hanford concrete mix designs. Statistical correlations of the CTL data were later generated by Pacific Northwest Laboratories (PNL). These test results and property correlations have been utilized in various design/analysis efforts of Hanford waste tanks. However, due to changes in the concrete design mix and the lower range of MWTF operating temperatures, plus uncertainties in the CTL data and PNL correlations, it was prudent to evaluate the CTL data base and PNL correlations, relative to the MWTF application, and develop a defendable position. The CTL test program for Hanford concrete involved two different mix designs: a 3 kip/in{sup 2} mix and a 4.5 kip/in{sup 2} mix. The proposed 28-day design strength for the MWTF tanks is 5 kip/in{sup 2}. In addition to this design strength difference, there are also differences between the CTL and MWTF mix design details. Also of interest, are the appropriate application of the MWTF concrete properties in performing calculations demonstrating ACI Code compliance. Mix design details and ACI Code issues are addressed in Sections 3.0 and 5.0, respectively. The CTL test program and PNL data correlations focused on a temperature range of 250 to 450 F. The temperature range of interest for the MWTF tank concrete application is 70 to 200 F.

  15. Good news from the bottom: US asphalt market 1993

    SciTech Connect

    Not Available

    1993-09-22

    For US refiners faced with numerous tough challenges in 1993, the US asphalt market recovery may have provided some welcome news for those watching the bottom line. Higher prices and increased sales made the asphalt market a summertime profit center for many US refiners and marketers -- for the first time in years.

  16. Improving the quality of asphalt coating with carbon nanomodifiers

    NASA Astrophysics Data System (ADS)

    Larisa, Urkhanova; Nikolay, Shestakov; Aleksandr, Semenov; Natalya, Smirnyagina; Irina, Semenova

    2015-07-01

    This article deals with the possibility of modifying the binder by adding carbon nanomodifier to bitumen to improve the quality of asphalt. Addition of 0.05%-0.5% of nanomodifier significantly changes the properties of bitumen. Asphalt with this astringent has increased strength, heat resistance and shear resistance.

  17. Properties of concrete containing scrap-tire rubber--an overview.

    PubMed

    Siddique, Rafat; Naik, Tarun R

    2004-01-01

    Solid waste management is one of the major environmental concerns in the United States. Over 5 billion tons of non-hazardous solid waste materials are generated in USA each year. Of these, more than 270 million scrap-tires (approximately 3.6 million tons) are generated each year. In addition to this, about 300 million scrap-tires have been stockpiled. Several studies have been carried out to reuse scrap-tires in a variety of rubber and plastic products, incineration for production of electricity, or as fuel for cement kilns, as well as in asphalt concrete. Studies show that workable rubberized concrete mixtures can be made with scrap-tire rubber. This paper presents an overview of some of the research published regarding the use of scrap-tires in portland cement concrete. The benefits of using magnesium oxychloride cement as a binder for rubberized concrete mixtures are also presented. The paper details the likely uses of rubberized concrete.

  18. 40 CFR 443.40 - Applicability; description of the linoleum and printed asphalt felt subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... linoleum and printed asphalt felt subcategory. 443.40 Section 443.40 Protection of Environment... THE PAVING AND ROOFING MATERIALS (TARS AND ASPHALT) POINT SOURCE CATEGORY Linoleum and Printed Asphalt Felt Subcategory § 443.40 Applicability; description of the linoleum and printed asphalt...

  19. 40 CFR Table 1 of Subpart Aaaaaaa... - Emission Limits for Asphalt Processing (Refining) Operations

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 15 2012-07-01 2012-07-01 false Emission Limits for Asphalt Processing... Area Sources: Asphalt Processing and Asphalt Roofing Manufacturing Other Requirements and Information... of Part 63—Emission Limits for Asphalt Processing (Refining) Operations For * * * You must meet...

  20. 40 CFR 443.10 - Applicability; description of the asphalt emulsion subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... asphalt emulsion subcategory. 443.10 Section 443.10 Protection of Environment ENVIRONMENTAL PROTECTION... ROOFING MATERIALS (TARS AND ASPHALT) POINT SOURCE CATEGORY Asphalt Emulsion Subcategory § 443.10 Applicability; description of the asphalt emulsion subcategory. The provisions of this subpart are applicable...

  1. 40 CFR Table 1 of Subpart Aaaaaaa... - Emission Limits for Asphalt Processing (Refining) Operations

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 14 2010-07-01 2010-07-01 false Emission Limits for Asphalt Processing... Area Sources: Asphalt Processing and Asphalt Roofing Manufacturing Other Requirements and Information... of Part 63—Emission Limits for Asphalt Processing (Refining) Operations For * * * You must meet...

  2. 40 CFR Table 1 of Subpart Aaaaaaa... - Emission Limits for Asphalt Processing (Refining) Operations

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 15 2013-07-01 2013-07-01 false Emission Limits for Asphalt Processing... Area Sources: Asphalt Processing and Asphalt Roofing Manufacturing Other Requirements and Information... of Part 63—Emission Limits for Asphalt Processing (Refining) Operations For * * * You must meet...

  3. 40 CFR 443.40 - Applicability; description of the linoleum and printed asphalt felt subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... linoleum and printed asphalt felt subcategory. 443.40 Section 443.40 Protection of Environment... PAVING AND ROOFING MATERIALS (TARS AND ASPHALT) POINT SOURCE CATEGORY Linoleum and Printed Asphalt Felt Subcategory § 443.40 Applicability; description of the linoleum and printed asphalt felt subcategory....

  4. 40 CFR Table 1 of Subpart Aaaaaaa... - Emission Limits for Asphalt Processing (Refining) Operations

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 14 2011-07-01 2011-07-01 false Emission Limits for Asphalt Processing... Area Sources: Asphalt Processing and Asphalt Roofing Manufacturing Other Requirements and Information... of Part 63—Emission Limits for Asphalt Processing (Refining) Operations For * * * You must meet...

  5. 40 CFR 443.30 - Applicability; description of the asphalt roofing subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... asphalt roofing subcategory. 443.30 Section 443.30 Protection of Environment ENVIRONMENTAL PROTECTION... ROOFING MATERIALS (TARS AND ASPHALT) POINT SOURCE CATEGORY Asphalt Roofing Subcategory § 443.30 Applicability; description of the asphalt roofing subcategory. The provisions of this subpart are applicable...

  6. 40 CFR 443.30 - Applicability; description of the asphalt roofing subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... asphalt roofing subcategory. 443.30 Section 443.30 Protection of Environment ENVIRONMENTAL PROTECTION... MATERIALS (TARS AND ASPHALT) POINT SOURCE CATEGORY Asphalt Roofing Subcategory § 443.30 Applicability; description of the asphalt roofing subcategory. The provisions of this subpart are applicable to...

  7. 40 CFR 443.40 - Applicability; description of the linoleum and printed asphalt felt subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... linoleum and printed asphalt felt subcategory. 443.40 Section 443.40 Protection of Environment... THE PAVING AND ROOFING MATERIALS (TARS AND ASPHALT) POINT SOURCE CATEGORY Linoleum and Printed Asphalt Felt Subcategory § 443.40 Applicability; description of the linoleum and printed asphalt...

  8. 40 CFR 443.30 - Applicability; description of the asphalt roofing subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... asphalt roofing subcategory. 443.30 Section 443.30 Protection of Environment ENVIRONMENTAL PROTECTION... ROOFING MATERIALS (TARS AND ASPHALT) POINT SOURCE CATEGORY Asphalt Roofing Subcategory § 443.30 Applicability; description of the asphalt roofing subcategory. The provisions of this subpart are applicable...

  9. 40 CFR 443.10 - Applicability; description of the asphalt emulsion subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... asphalt emulsion subcategory. 443.10 Section 443.10 Protection of Environment ENVIRONMENTAL PROTECTION... ROOFING MATERIALS (TARS AND ASPHALT) POINT SOURCE CATEGORY Asphalt Emulsion Subcategory § 443.10 Applicability; description of the asphalt emulsion subcategory. The provisions of this subpart are applicable...

  10. 40 CFR Table 2 of Subpart Aaaaaaa... - Emission Limits for Asphalt Roofing Manufacturing (Coating) Operations

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 15 2014-07-01 2014-07-01 false Emission Limits for Asphalt Roofing... Pollutants for Area Sources: Asphalt Processing and Asphalt Roofing Manufacturing Other Requirements and... AAAAAAA of Part 63—Emission Limits for Asphalt Roofing Manufacturing (Coating) Operations For * * *...

  11. 40 CFR 443.40 - Applicability; description of the linoleum and printed asphalt felt subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... linoleum and printed asphalt felt subcategory. 443.40 Section 443.40 Protection of Environment... THE PAVING AND ROOFING MATERIALS (TARS AND ASPHALT) POINT SOURCE CATEGORY Linoleum and Printed Asphalt Felt Subcategory § 443.40 Applicability; description of the linoleum and printed asphalt...

  12. 40 CFR Table 2 of Subpart Aaaaaaa... - Emission Limits for Asphalt Roofing Manufacturing (Coating) Operations

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 14 2011-07-01 2011-07-01 false Emission Limits for Asphalt Roofing... Pollutants for Area Sources: Asphalt Processing and Asphalt Roofing Manufacturing Other Requirements and... AAAAAAA of Part 63—Emission Limits for Asphalt Roofing Manufacturing (Coating) Operations For * * *...

  13. 40 CFR 443.10 - Applicability; description of the asphalt emulsion subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... asphalt emulsion subcategory. 443.10 Section 443.10 Protection of Environment ENVIRONMENTAL PROTECTION... ROOFING MATERIALS (TARS AND ASPHALT) POINT SOURCE CATEGORY Asphalt Emulsion Subcategory § 443.10 Applicability; description of the asphalt emulsion subcategory. The provisions of this subpart are applicable...

  14. 40 CFR 443.30 - Applicability; description of the asphalt roofing subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... asphalt roofing subcategory. 443.30 Section 443.30 Protection of Environment ENVIRONMENTAL PROTECTION... MATERIALS (TARS AND ASPHALT) POINT SOURCE CATEGORY Asphalt Roofing Subcategory § 443.30 Applicability; description of the asphalt roofing subcategory. The provisions of this subpart are applicable to...

  15. 40 CFR Table 1 of Subpart Aaaaaaa... - Emission Limits for Asphalt Processing (Refining) Operations

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 15 2014-07-01 2014-07-01 false Emission Limits for Asphalt Processing... Area Sources: Asphalt Processing and Asphalt Roofing Manufacturing Other Requirements and Information... of Part 63—Emission Limits for Asphalt Processing (Refining) Operations For * * * You must meet...

  16. 40 CFR 443.40 - Applicability; description of the linoleum and printed asphalt felt subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... linoleum and printed asphalt felt subcategory. 443.40 Section 443.40 Protection of Environment... PAVING AND ROOFING MATERIALS (TARS AND ASPHALT) POINT SOURCE CATEGORY Linoleum and Printed Asphalt Felt Subcategory § 443.40 Applicability; description of the linoleum and printed asphalt felt subcategory....

  17. 40 CFR 443.30 - Applicability; description of the asphalt roofing subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... asphalt roofing subcategory. 443.30 Section 443.30 Protection of Environment ENVIRONMENTAL PROTECTION... ROOFING MATERIALS (TARS AND ASPHALT) POINT SOURCE CATEGORY Asphalt Roofing Subcategory § 443.30 Applicability; description of the asphalt roofing subcategory. The provisions of this subpart are applicable...

  18. 40 CFR 443.10 - Applicability; description of the asphalt emulsion subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... asphalt emulsion subcategory. 443.10 Section 443.10 Protection of Environment ENVIRONMENTAL PROTECTION... MATERIALS (TARS AND ASPHALT) POINT SOURCE CATEGORY Asphalt Emulsion Subcategory § 443.10 Applicability; description of the asphalt emulsion subcategory. The provisions of this subpart are applicable to...

  19. 40 CFR 443.10 - Applicability; description of the asphalt emulsion subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... asphalt emulsion subcategory. 443.10 Section 443.10 Protection of Environment ENVIRONMENTAL PROTECTION... MATERIALS (TARS AND ASPHALT) POINT SOURCE CATEGORY Asphalt Emulsion Subcategory § 443.10 Applicability; description of the asphalt emulsion subcategory. The provisions of this subpart are applicable to...

  20. Development of indirect ring tension test for fracture characterization of asphalt mixtures

    NASA Astrophysics Data System (ADS)

    Zeinali Siavashani, Alireza

    Low temperature cracking is a major distress in asphalt pavements. Several test configurations have been introduced to characterize the fracture properties of hot mix (HMA); however, most are considered to be research tools due to the complexity of the test methods or equipment. This dissertation describes the development of the indirect ring tension (IRT) fracture test for HMA, which was designed to be an effective and user-friendly test that could be deployed at the Department of Transportation level. The primary advantages of this innovative and yet practical test include: relatively large fracture surface test zone, simplicity of the specimen geometry, widespread availability of the required test equipment, and ability to test laboratory compacted specimens as well as field cores. Numerical modeling was utilized to calibrate the stress intensity factor formula of the IRT fracture test for various specimen dimensions. The results of this extensive analysis were encapsulated in a single equation. To develop the test procedure, a laboratory study was conducted to determine the optimal test parameters for HMA material. An experimental plan was then developed to evaluate the capability of the test in capturing the variations in the mix properties, asphalt pavement density, asphalt material aging, and test temperature. Five plant-produced HMA mixtures were used in this extensive study, and the results revealed that the IRT fracture test is highly repeatable, and capable of capturing the variations in the fracture properties of HMA. Furthermore, an analytical model was developed based on the viscoelastic properties of HMA to estimate the maximum allowable crack size for the pavements in the experimental study. This analysis indicated that the low-temperature cracking potential of the asphalt mixtures is highly sensitive to the fracture toughness and brittleness of the HMA material. Additionally, the IRT fracture test data seemed to correlate well with the data from

  1. Monitoring asphalt pavement damages using remote sensing techniques

    NASA Astrophysics Data System (ADS)

    Mettas, Christodoulos; Themistocleous, Kyriacos; Neocleous, Kyriacos; Christofe, Andreas; Pilakoutas, Kypros; Hadjimitsis, Diofantos

    2015-06-01

    One of the main issues in the maintenance plans of road agencies or governmental organizations is the early detection of damaged asphalt pavements. The development of a smart and non-destructive systematic technique for monitoring damaged asphalt pavements is considered a main priority to fill this gap. During the 1970's, remote sensing was used to map road surface distress, while during the last decade, remote sensing became more advanced, thereby assisting in the evolution of the identification and mapping of roads. Various techniques were used in order to explore condition, age, weaknesses and imperfections of asphalted pavements. These methods were fairly successful in the classification of asphalted surfaces and in the detection of some of their characteristics. This paper explores the state of the art of using remote sensing techniques for monitoring damaged pavements and some typical spectral profiles of various asphalt pavements in Cyprus area acquired using the SVC1024 field spectroradiometer.

  2. Field site leaching from recycled concrete aggregates applied as sub-base material in road construction.

    PubMed

    Engelsen, Christian J; Wibetoe, Grethe; van der Sloot, Hans A; Lund, Walter; Petkovic, Gordana

    2012-06-15

    The release of major and trace elements from recycled concrete aggregates used in an asphalt covered road sub-base has been monitored for more than 4 years. A similar test field without an asphalt cover, directly exposed to air and rain, and an asphalt covered reference field with natural aggregates in the sub-base were also included in the study. It was found that the pH of the infiltration water from the road sub-base with asphalt covered concrete aggregates decreased from 12.6 to below pH 10 after 2.5 years of exposure, whereas this pH was reached within only one year for the uncovered field. Vertical temperature profiles established for the sub-base, could explain the measured infiltration during parts of the winter season. When the release of major and trace elements as function of field pH was compared with pH dependent release data measured in the laboratory, some similar pH trends were found. The field concentrations of Cd, Ni, Pb and Zn were found to be low throughout the monitoring period. During two of the winter seasons, a concentration increase of Cr and Mo was observed, possibly due to the use of de-icing salt. The concentrations of the trace constituents did not exceed Norwegian acceptance criteria for ground water and surface water Class II. PMID:22554532

  3. Field site leaching from recycled concrete aggregates applied as sub-base material in road construction.

    PubMed

    Engelsen, Christian J; Wibetoe, Grethe; van der Sloot, Hans A; Lund, Walter; Petkovic, Gordana

    2012-06-15

    The release of major and trace elements from recycled concrete aggregates used in an asphalt covered road sub-base has been monitored for more than 4 years. A similar test field without an asphalt cover, directly exposed to air and rain, and an asphalt covered reference field with natural aggregates in the sub-base were also included in the study. It was found that the pH of the infiltration water from the road sub-base with asphalt covered concrete aggregates decreased from 12.6 to below pH 10 after 2.5 years of exposure, whereas this pH was reached within only one year for the uncovered field. Vertical temperature profiles established for the sub-base, could explain the measured infiltration during parts of the winter season. When the release of major and trace elements as function of field pH was compared with pH dependent release data measured in the laboratory, some similar pH trends were found. The field concentrations of Cd, Ni, Pb and Zn were found to be low throughout the monitoring period. During two of the winter seasons, a concentration increase of Cr and Mo was observed, possibly due to the use of de-icing salt. The concentrations of the trace constituents did not exceed Norwegian acceptance criteria for ground water and surface water Class II.

  4. Strength of masonry blocks made with recycled concrete aggregates

    NASA Astrophysics Data System (ADS)

    Matar, Pierre; Dalati, Rouba El

    The idea of recycling concrete of demolished buildings aims at preserving the environment. Indeed, the reuse of concrete as aggregate in new concrete mixes helped to reduce the expenses related to construction and demolition (C&D) waste management and, especially, to protect the environment by reducing the development rate of new quarries. This paper presents the results of an experimental study conducted on masonry blocks containing aggregates resulting from concrete recycling. The purpose of this study is to investigate the effect of recycled aggregates on compressive strength of concrete blocks. Tests were performed on series of concrete blocks: five series each made of different proportions of recycled aggregates, and one series of reference blocks exclusively composed of natural aggregates. Tests showed that using recycled aggregates with addition of cement allows the production of concrete blocks with compressive strengths comparable to those obtained on concrete blocks made exclusively of natural aggregates.

  5. Mechanical and physical properties of polyester polymer concrete using recycled aggregates from concrete sleepers.

    PubMed

    Carrión, Francisco; Montalbán, Laura; Real, Julia I; Real, Teresa

    2014-01-01

    Currently, reuse of solid waste from disused infrastructures is an important environmental issue to study. In this research, polymer concrete was developed by mixing orthophthalic unsaturated polyester resin, artificial microfillers (calcium carbonate), and waste aggregates (basalt and limestone) coming from the recycling process of concrete sleepers. The variation of the mechanical and physical properties of the polymer concrete (compressive strength, flexural strength, modulus of elasticity, density, and water absorption) was analyzed based on the modification of different variables: nature of the recycled aggregates, resin contents (11 wt%, 12 wt%, and 13 wt%), and particle-size distributions of microfillers used. The results show the influence of these variables on mechanical performance of polymer concrete. Compressive and flexural strength of recycled polymer concrete were improved by increasing amount of polyester resin and by optimizing the particle-size distribution of the microfillers. Besides, the results show the feasibility of developing a polymer concrete with excellent mechanical behavior. PMID:25243213

  6. Mechanical and physical properties of polyester polymer concrete using recycled aggregates from concrete sleepers.

    PubMed

    Carrión, Francisco; Montalbán, Laura; Real, Julia I; Real, Teresa

    2014-01-01

    Currently, reuse of solid waste from disused infrastructures is an important environmental issue to study. In this research, polymer concrete was developed by mixing orthophthalic unsaturated polyester resin, artificial microfillers (calcium carbonate), and waste aggregates (basalt and limestone) coming from the recycling process of concrete sleepers. The variation of the mechanical and physical properties of the polymer concrete (compressive strength, flexural strength, modulus of elasticity, density, and water absorption) was analyzed based on the modification of different variables: nature of the recycled aggregates, resin contents (11 wt%, 12 wt%, and 13 wt%), and particle-size distributions of microfillers used. The results show the influence of these variables on mechanical performance of polymer concrete. Compressive and flexural strength of recycled polymer concrete were improved by increasing amount of polyester resin and by optimizing the particle-size distribution of the microfillers. Besides, the results show the feasibility of developing a polymer concrete with excellent mechanical behavior.

  7. Mechanical and Physical Properties of Polyester Polymer Concrete Using Recycled Aggregates from Concrete Sleepers

    PubMed Central

    Carrión, Francisco; Montalbán, Laura; Real, Julia I.

    2014-01-01

    Currently, reuse of solid waste from disused infrastructures is an important environmental issue to study. In this research, polymer concrete was developed by mixing orthophthalic unsaturated polyester resin, artificial microfillers (calcium carbonate), and waste aggregates (basalt and limestone) coming from the recycling process of concrete sleepers. The variation of the mechanical and physical properties of the polymer concrete (compressive strength, flexural strength, modulus of elasticity, density, and water absorption) was analyzed based on the modification of different variables: nature of the recycled aggregates, resin contents (11 wt%, 12 wt%, and 13 wt%), and particle-size distributions of microfillers used. The results show the influence of these variables on mechanical performance of polymer concrete. Compressive and flexural strength of recycled polymer concrete were improved by increasing amount of polyester resin and by optimizing the particle-size distribution of the microfillers. Besides, the results show the feasibility of developing a polymer concrete with excellent mechanical behavior. PMID:25243213

  8. Nanogranular origin of concrete creep.

    PubMed

    Vandamme, Matthieu; Ulm, Franz-Josef

    2009-06-30

    Concrete, the solid that forms at room temperature from mixing Portland cement with water, sand, and aggregates, suffers from time-dependent deformation under load. This creep occurs at a rate that deteriorates the durability and truncates the lifespan of concrete structures. However, despite decades of research, the origin of concrete creep remains unknown. Here, we measure the in situ creep behavior of calcium-silicate-hydrates (C-S-H), the nano-meter sized particles that form the fundamental building block of Portland cement concrete. We show that C-S-H exhibits a logarithmic creep that depends only on the packing of 3 structurally distinct but compositionally similar C-S-H forms: low density, high density, ultra-high density. We demonstrate that the creep rate ( approximately 1/t) is likely due to the rearrangement of nanoscale particles around limit packing densities following the free-volume dynamics theory of granular physics. These findings could lead to a new basis for nanoengineering concrete materials and structures with minimal creep rates monitored by packing density distributions of nanoscale particles, and predicted by nanoscale creep measurements in some minute time, which are as exact as macroscopic creep tests carried out over years.

  9. Nanogranular origin of concrete creep

    PubMed Central

    Vandamme, Matthieu; Ulm, Franz-Josef

    2009-01-01

    Concrete, the solid that forms at room temperature from mixing Portland cement with water, sand, and aggregates, suffers from time-dependent deformation under load. This creep occurs at a rate that deteriorates the durability and truncates the lifespan of concrete structures. However, despite decades of research, the origin of concrete creep remains unknown. Here, we measure the in situ creep behavior of calcium–silicate–hydrates (C–S–H), the nano-meter sized particles that form the fundamental building block of Portland cement concrete. We show that C–S–H exhibits a logarithmic creep that depends only on the packing of 3 structurally distinct but compositionally similar C–S–H forms: low density, high density, ultra-high density. We demonstrate that the creep rate (≈1/t) is likely due to the rearrangement of nanoscale particles around limit packing densities following the free-volume dynamics theory of granular physics. These findings could lead to a new basis for nanoengineering concrete materials and structures with minimal creep rates monitored by packing density distributions of nanoscale particles, and predicted by nanoscale creep measurements in some minute time, which are as exact as macroscopic creep tests carried out over years. PMID:19541652

  10. The effects of free and bonded sulfur both in the presence and absence of vulcanization accelerators on the rheological, technological, aging, and thermal stability of asphalts

    SciTech Connect

    Onabajo, A.; Kopsch, H.

    1987-01-01

    Rheological and technological experiments have been carried out on sulfur-modified asphalts in the temperature range of 353 K to 453 K over a wide range of shear rates (0-4800 sec/sup -1/). The results indicated that the activation energy of the viscous flow increased with increasing amount of bonded sulfur. The irreversible shear degradation observed in sulfur-modified asphalts is caused by the high shear forces which rupture the aggregated molecules. Thermogravimetric analysis and aging experiments on asphalts and their sulfurized products, containing varying amounts of free sulfur (0-5.5 wt.-%) and vulcanization accelerators (0.5-2.5 wt.-%), have shown that mixes containing vulcanization accelerators have higher thermal stabilities and are more resistant to thermal and non-thermal aging than the unaccelerated asphalt-sulfur mixed prepared at the same or higher temperatures. The changes in the rheological and physical properties of the mixes with time is not only explained by the changes in the physical state of unreacted free sulfur, that is, from plastic to crystalline state (physical process), but also attributable to the effect of chemical reactions.

  11. Refractory concretes

    DOEpatents

    Holcombe, Jr., Cressie E.

    1979-01-01

    Novel concrete compositions comprise particles of aggregate material embedded in a cement matrix, said cement matrix produced by contacting an oxide selected from the group of Y.sub.2 O.sub.3, La.sub.2 O.sub.3, Nd.sub.2 O.sub.3, Sm.sub.2 O.sub.3, Eu.sub.2 O.sub.3 and Gd.sub.2 O.sub.3 with an aqueous solution of a salt selected from the group of NH.sub.4 NO.sub.3, NH.sub.4 Cl, YCl.sub.3 and Mg(NO.sub.3).sub.2 to form a fluid mixture; and allowing the fluid mixture to harden.

  12. Studies on recycled aggregates-based concrete.

    PubMed

    Rakshvir, Major; Barai, Sudhirkumar V

    2006-06-01

    Reduced extraction of raw materials, reduced transportation cost, improved profits, reduced environmental impact and fast-depleting reserves of conventional natural aggregates has necessitated the use of recycling, in order to be able to conserve conventional natural aggregate. In this study various physical and mechanical properties of recycled concrete aggregates were examined. Recycled concrete aggregates are different from natural aggregates and concrete made from them has specific properties. The percentages of recycled concrete aggregates were varied and it was observed that properties such as compressive strength showed a decrease of up to 10% as the percentage of recycled concrete aggregates increased. Water absorption of recycled aggregates was found to be greater than natural aggregates, and this needs to be compensated during mix design.

  13. Observation of a network structure in asphalt cements

    SciTech Connect

    Rozeveld, J.; Shin, E.E.; Bhurke, A.; Drzal, L.T.

    1996-12-31

    Paving asphalts are often judged and selected based on their rheological behavior at prescribed temperatures or aging response. Asphalts are considered as a colloidal mixture, where clusters of polar, aromatic molecules are dispersed in a less polar solvent. Thus, the extent to which the solvent phase disperses the associating molecules will determine many of the fundamental asphalt properties. Asphalts are typically divided into four major groups, namely: asphaltenes, resins, aromatics, ans saturates. Asphaltenes are the highest molecular weight group and constitute {approximately}25% of the total asphalt. Resins are very polar in nature and act as a dispersing agent or peptisers for the asphaltenes. The solvent or oily phase (aromatics and saturates) are the lightest molecular weight group and are the bulk of the total asphalt (40-50%). The dispersion of the asphaltenes within the oily solvent is an important property and has been studied by separation and titration methods. In this study, asphalt cements were examined using an Environmental Scanning Electron Microscopy (ESEM) (ElectroScan 2020), and confocal Laser Scanning Microscope (LSM) (Zeiss 10).

  14. Foam concrete with porous mineral and organic additives

    NASA Astrophysics Data System (ADS)

    Kudiakov, A.; Prischepa, I.; Tolchennickov, M.

    2015-01-01

    The article presents results of studies of structural heat insulating foam concrete with porous mineral and organic additives. By mixing additives with the concrete the speed of the initial structure formation increases. The additives of ash loss and thermal-modified peat TMT 600 provide a stable increase of strength by compression and bending of foam concrete. In the dried foam concrete with the addition of TMT and ash loss thermal conductivity decreases by 20% and 7% respectively. The regularities of changes in the thermal conductivity at various moisture of foam concrete have been investigated.

  15. Flow conditions of fresh mortar and concrete in different pipes

    SciTech Connect

    Jacobsen, Stefan; Haugan, Lars; Hammer, Tor Arne; Kalogiannidis, Evangelos

    2009-11-15

    The variation in fresh concrete flow rate over the pipe cross section was investigated on differently coloured and highly flowable concrete mixes flowing through pipes of different materials (rubber, steel, acryl). First, uncoloured (gray) concrete was poured through the pipe and the pipe blocked. Similar but coloured (black) concrete was then poured into the pipe filled with gray concrete, flowing after the gray concrete for a while before being blocked and hardened. The advance of the colouring along the pipe wall (showing boundary flow rate) was observed on the moulded concrete surface appearing after removing the pipe from the hardened concrete. The shapes of the interfaces between uncoloured and coloured concrete (showing variation of flow rate over the pipe cross section) were observed on sawn surfaces of concrete half cylinders cut along the length axes of the concrete-filled pipe. Flow profiles over the pipe cross section were clearly seen with maximum flow rates near the centre of the pipe and low flow rate at the pipe wall (typically rubber pipe with reference concrete without silica fume and/or stabilizers). More plug-shaped profiles, with long slip layers and less variation of flow rate over the cross section, were also seen (typically in smooth acrylic pipes). Flow rate, amount of concrete sticking to the wall after flow and SEM-images of pipe surface roughness were observed, illustrating the problem of testing full scale pumping.

  16. Steep-Slope Assembly Testing of Clay and Concrete Tile With and Without Cool Pigmented Colors

    SciTech Connect

    Miller, William A

    2005-11-01

    Cool color pigments and sub-tile venting of clay and concrete tile roofs significantly impact the heat flow crossing the roof deck of a steep-slope roof. Field measures for the tile roofs revealed a 70% drop in the peak heat flow crossing the deck as compared to a direct-nailed asphalt shingle roof. The Tile Roofing Institute (TRI) and its affiliate members are keenly interested in documenting the magnitude of the drop for obtaining solar reflectance credits with state and federal "cool roof" building efficiency standards. Tile roofs are direct-nailed or are attached to a deck with batten or batten and counter-batten construction. S-Misson clay and concrete tile roofs, a medium-profile concrete tile roof, and a flat slate tile roof were installed on fully nstrumented attic test assemblies. Temperature measures of the roof, deck, attic, and ceiling, heat flows, solar reflectance, thermal emittance, and the ambient weather were recorded for each of the tile roofs and also on an adjacent attic cavity covered with a conventional pigmented and directnailed asphalt shingle roof. ORNL measured the tile's underside temperature and the bulk air temperature and heat flows just underneath the tile for batten and counter-batten tile systems and compared the results to the conventional asphalt shingle.

  17. SUSTAINABLE CONCRETE FOR WIND TURBINE FOUNDATIONS.

    SciTech Connect

    BERNDT,M.L.

    2004-06-01

    The use of wind power to generate electricity continues to grow, especially given commitments by various countries throughout the world to ensure that a significant percentage of energy comes from renewable sources. In order to meet such objectives, increasingly larger turbines with higher capacity are being developed. The engineering aspects of larger turbine development tend to focus on design and materials for blades and towers. However, foundations are also a critical component of large wind turbines and represent a significant cost of wind energy projects. Ongoing wind research at BNL is examining two areas: (a) structural response analysis of wind turbine-tower-foundation systems and (b) materials engineering of foundations. This work is investigating the dynamic interactions in wind turbine systems, which in turn assists the wind industry in achieving improved reliability and more cost efficient foundation designs. The results reported herein cover initial studies of concrete mix designs for large wind turbine foundations and how these may be tailored to reduce cost and incorporate sustainability and life cycle concepts. The approach taken was to investigate material substitutions so that the environmental, energy and CO{sub 2}-impact of concrete could be reduced. The use of high volumes of ''waste'' materials in concrete was examined. These materials included fly ash, blast furnace slag and recycled concrete aggregate. In addition, the use of steel fiber reinforcement as a means to improve mechanical properties and potentially reduce the amount of bar reinforcement in concrete foundations was studied. Four basic mixes were considered. These were: (1) conventional mix with no material substitutions, (2) 50% replacement of cement with fly ash, (3) 50% replacement of cement with blast furnace slag and (4) 25% replacement of cement with fly ash and 25% replacement with blast furnace slag. Variations on these mixes included the addition of 1% by volume steel

  18. Recovery and reuse of asphalt roofing waste burning of asphalt roofing waste

    SciTech Connect

    Zolnick, E.L.; Markus, A.R.; Seigfried, J.N.; Powers, T.J.; Shepherd, P.B.; Graziano, G.J.; Battles, R.L.

    1986-09-15

    The research described in this report was designed to determine the general feasibility and specific requirements for burning asphalt roofing waste and recovering the energy resource as steam. The study combined technical market research with test burning in a three-task program to identify how to use burning as a means for reocvering the 7 x 10/sup 13/ Btu in roofing waste landfilled annually.

  19. 12. VIEW NORTH, ACROSS DECK CENTER AREA SHOWING ASPHALT AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. VIEW NORTH, ACROSS DECK CENTER AREA SHOWING ASPHALT AND NORTH SIDE GUARD WALL - Route 1 Extension, South Street Viaduct, Spanning Conrail & Wheeler Point Road at South Street, Newark, Essex County, NJ

  20. 4. LOOKING SOUTHWEST AT LATTICED GUARDRAIL, DIAGONALS, ASPHALT DECK AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. LOOKING SOUTHWEST AT LATTICED GUARDRAIL, DIAGONALS, ASPHALT DECK AND LACED ANGLES ON VERTICALS - Wayne County Bridge No. 122, Spanning West Fork Whitewater River at Main Street, Milton, Wayne County, IN

  1. 5. VIEW OF SECOND ELEVATOR WITH WOODFRAME HEADHOUSE AND ASPHALTIC ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. VIEW OF SECOND ELEVATOR WITH WOOD-FRAME HEADHOUSE AND ASPHALTIC SIDING, LOOKING WEST. - Lockport DuPage Farmer's Elevator Company Grain Elevator, South of Romeoville Road, Lockport, Will County, IL

  2. Effect of moisture on the aging behavior of asphalt binder

    NASA Astrophysics Data System (ADS)

    Ma, Tao; Huang, Xiao-Ming; Mahmoud, Enad; Garibaldy, Emil

    2011-08-01

    The moisture aging effect and mechanism of asphalt binder during the in-service life of pavement were investigated by laboratory simulating tests. Pressure aging vessel (PAV) test simulating the long-term aging of binder during the in-service life of pavement was modified to capture the long-term moisture aging effect of binder. Penetration grade tests including penetration test, soften point test, and ductility test as well as Superpave™ performance grade tests including viscosity test, dynamic shear rheometer test, and bending beam rheometer test were conducted to fully evaluate the moisture aging effect of binder. Fourier transform infrared spectroscopy test and Gel-permeation chromatography test were applied to provide a fundamental understanding of the moisture aging mechanism of binder. The results indicate that moisture condition can accelerate the aging of asphalt binder and shorten the service life of asphalt binder. The modified PAV test with moisture condition can well characterize the moisture aging properties of asphalt binder.

  3. Laboratory evaluation of microwave-heated asphalt pavement materials

    SciTech Connect

    Al-Ohaly, A.A.

    1987-01-01

    The potential use of microwave energy to heat asphalt mixtures and pavements has begun attracting attention. Microwave heating is rapid, deep and uniform. With microwaves, heat is generated by the treated material under the excitation of an alternating electromagnetic field caused by the passing microwaves. Some materials such as water heat very well with microwaves, while others such as Teflon do not. Asphalt cement is similar to Teflon, but many aggregates seem to possess favorable microwave heating properties. This thesis focuses on pavement materials and their interaction with microwave energy as a heating method. The interaction between asphalt-pavement materials and the applied microwave energy was evaluated in two phases. First, the effect of microwaves on some properties of virgin and recycled mixtures was investigated. Potential benefits to adhesion and water-stripping resistance of asphalt film to aggregate are promising but need further investigation. Secondly, the effect of several mixture variables on microwave heating efficiency was also studied.

  4. Comprehensive research program: Wind resistance of asphalt shingles

    SciTech Connect

    Jones, J.E.; Metz, R.E.

    1999-07-01

    This paper describes the Asphalt Roofing Manufacturers Association's comprehensive research program which has resulted in a validated wind load model that can be used to calculate the uplift pressure on asphalt shingles as a function of approach wind velocities and other wind and building conditions. Also, a tab uplift resistance test method has been developed to measure the ability of asphalt shingles to withstand the imposed pressures due to the wind. In combination, the results of these two efforts provide the shingle manufacturers with the methodology to evaluate and improve their products. The results are not only of interest to the roofing manufacturers, but also to contractors, code officials, insurance companies, roofing specifiers and other professionals in the roofing industry. The results of this work should provide building owners and homeowners with high performance asphalt shingles for extreme wind conditions.

  5. Synthesis and characterization of activated carbon from asphalt

    NASA Astrophysics Data System (ADS)

    Kandah, Munther Issa; Shawabkeh, Reyad; Al-Zboon, Mahmoud Ar'ef

    2006-11-01

    Asphalt (cheap and available in huge amount in Jordan) was converted into activated carbon powder by chemical treatment with sulphuric and nitric acids at 450 °C. The final product was characterized and found effective as adsorbent material. Its cation exchange capacity reaches 191.2 meq/100-g carbons when treated with 30 wt% acid/asphalt ratio without airflow rate injection and 208 meq/100-g carbons when 6.5 ml air/min was injected into the surface of the asphalt during activation at the same acid/asphalt weight ratio of 30 and temperature 450 °C. The zero point of charge for this product was found to be stable at pH value around 3 in the range of initial pH between 3 and 10.

  6. The wind resistance of asphalt roofing shingles

    NASA Astrophysics Data System (ADS)

    Dixon, Craig Robert

    Asphalt shingle roofing is the leading cause of hurricane wind-related insured losses in residential buildings. Damage statistics generated from recent hurricanes indicate shingle roofs sustain damage in wind velocities below design-level with damage frequency increasing with shingle roof age. The objective of this dissertation is the identification of primary mechanisms triggering the failure of shingle roof systems in wind. The research goal is to reduce future shingle roof wind damage and improve our ability to predict asphalt shingle wind resistance. Five studies comprising this dissertation addressed the adhesive consistency and strength of aged asphalt shingles, system-level wind resistance, and the load model underpinning the ASTM D7158 wind test standard. The most significant and unexpected finding was partially unsealed shingles on field, hip, and ridge locations on Florida and Texas homes. Location on the shingle's sealant strip where unsealed and failure mode were consistent at each location. Total quantity of partially unsealed shingles in the field of the roof significantly increased with age, aligning with damage statistics. Full-scale wind tunnel tests demonstrate partially unsealed shingles are more vulnerable than fully sealed due to increased distributed force on sealant strip and concentrated force at the adhered and non-adhered interface. Uplift resistance was measured in artificially and naturally aged shingles. For artificially aged shingles, one of three products evaluated had statistically significant decreases in mean uplift resistance as exposure time increased. However, resistance was above design-level at all exposure test intervals. Naturally aged shingles also had resistance above design-level. Combined results demonstrate that reduced uplift capacity can occur, but high initial bond strength promotes long-term uplift resistance. Wind loads exerted on the shingles sealant strip load path were directly measured on fully sealed and

  7. BEHAVIOR OF MODEL ASPHALT PAVEMENT CONTAINING A HYDRAULIC, GRADED IRON AND STEEL SLAG BASE-COURSE UNDER REPEATED PLATE-LOADING

    NASA Astrophysics Data System (ADS)

    Yoshida, Nobuyuki; Sugisako, Yasunari

    In this paper, the dynamic response of asphalt pave ment containing a hydraulic, graded iron and steel slag (hereafter called HMS) base-course under repeated plate-loading was investigated using a model asphalt pavement and the influence of hydraulicity on th e pavement behavior was discussed. The model pavement constructed was a 4-layer system consis ting of a dense-graded asphalt mix surface layer, a dense-graded asphalt mix binder-course, a HMS base-course and a Masado (heavily-weathered granitic sand) subgrade. A repeated plate-loading test was carri ed out so as to achieve a resilient state. It is shown that surface resilient deflection decreases as curing progresses and after 90 days, the deflection becomes almost half of the initial. Large horizontal tensile strains develop at the bottoms of binder- and base-course, which decrease significantly with curing. It is indicative that HMS base-course behaves like a stiffer plate resulting in a hard-to-deflect state due to the development of hydraulicity.

  8. Reusing recycled aggregates in structural concrete

    NASA Astrophysics Data System (ADS)

    Kou, Shicong

    The utilization of recycled aggregates in concrete can minimize environmental impact and reduce the consumption of natural resources in concrete applications. The aim of this thesis is to provide a scientific basis for the possible use of recycled aggregates in structure concrete by conducting a comprehensive programme of laboratory study to gain a better understanding of the mechanical, microstructure and durability properties of concrete produced with recycled aggregates. The study also explored possible techniques to of improve the properties of recycled aggregate concrete that is produced with high percentages (≧ 50%) of recycled aggregates. These techniques included: (a) using lower water-to-cement ratios in the concrete mix design; (b) using fly ash as a cement replacement or as an additional mineral admixture in the concrete mixes, and (c) precasting recycled aggregate concrete with steam curing regimes. The characteristics of the recycled aggregates produced both from laboratory and a commercially operated pilot construction and demolition (C&D) waste recycling plant were first studied. A mix proportioning procedure was then established to produce six series of concrete mixtures using different percentages of recycled coarse aggregates with and without the use of fly ash. The water-to-cement (binder) ratios of 0.55, 0.50, 0.45 and 0.40 were used. The fresh properties (including slump and bleeding) of recycled aggregate concrete (RAC) were then quantified. The effects of fly ash on the fresh and hardened properties of RAC were then studied and compared with those RAC prepared with no fly ash addition. Furthermore, the effects of steam curing on the hardened properties of RAC were investigated. For micro-structural properties, the interfacial transition zones of the aggregates and the mortar/cement paste were analyzed by SEM and EDX-mapping. Moreover, a detailed set of results on the fracture properties for RAC were obtained. Based on the experimental

  9. Computational microstructure modeling of asphalt mixtures subjected to rate-dependent fracture

    NASA Astrophysics Data System (ADS)

    Aragao, Francisco Thiago Sacramento

    2011-12-01

    Computational microstructure models have been actively pursued by the pavement mechanics community as a promising and advantageous alternative to limited analytical and semi-empirical modeling approaches. The primary goal of this research is to develop a computational microstructure modeling framework that will eventually allow researchers and practitioners of the pavement mechanics community to evaluate the effects of constituents and mix design characteristics (some of the key factors directly affecting the quality of the pavement structures) on the mechanical responses of asphalt mixtures. To that end, the mixtures are modeled as heterogeneous materials with inelastic mechanical behavior. To account for the complex geometric characteristics of the heterogeneous mixtures, an image treatment process is used to generate finite element meshes that closely reproduce the geometric characteristics of aggregate particles (size, shape, and volume fraction) that are distributed within a fine aggregate asphaltic matrix (FAM). These two mixture components, i.e., aggregate particles and FAM, are modeled, respectively, as isotropic linear elastic and isotropic linear viscoelastic materials and the material properties required as inputs for the computational model are obtained from simple and expedited laboratory tests. In addition to the consideration of the complex geometric characteristics and inelastic behavior of the mixtures, this study uses the cohesive zone model to simulate fracture as a gradual and rate-dependent phenomenon in which the initiation and propagation of discrete cracks take place in different locations of the mixture microstructure. Rate-dependent cohesive zone fracture properties are obtained using a procedure that combines laboratory tests of semi-circular bending specimens of the FAM and their numerical simulations. To address the rate-dependent fracture characteristics of the FAM phase, a rate-dependent cohesive zone model is developed and

  10. Shear transfer in concrete reinforced with carbon fibers

    NASA Astrophysics Data System (ADS)

    El-Mokadem, Khaled Mounir

    2001-10-01

    Scope and method of study. The research started with preliminary tests and studies on the behavior and effect of carbon fibers in different water solutions and mortar/concrete mixes. The research work investigated the use of CF in the production of concrete pipes and prestressed concrete double-tee sections. The research then focused on studying the effect of using carbon fibers on the direct shear transfer of sand-lightweight reinforced concrete push-off specimens. Findings and conclusions. In general, adding carbon fibers to concrete improved its tensile characteristics but decreased its compressive strength. The decrease in compressive strength was due to the decrease in concrete density as fibers act as three-dimensional mesh that entrapped air. The decrease in compressive strength was also due to the increase in the total surface area of non-cementitious material in the concrete. Sand-lightweight reinforced concrete push-off specimens with carbon fibers had lower shear carrying capacity than those without carbon fibers for the same cement content in the concrete. Current building codes and specifications estimate the shear strength of concrete as a ratio of the compressive strength. If applying the same principals then the ratio of shear strength to compressive strength for concrete reinforced with carbon fibers is higher than that for concrete without carbon fibers.

  11. X-ray phase determination of solid paraffins in asphalts

    SciTech Connect

    Biktimirova, T.G.; Aleksandrova, S.L.; Fryazinov, V.V.

    1984-03-01

    This article discusses the attempt to increase the sensitivity of the x-ray phase analysis and to broaden the field of its application in determining the content of paraffins in petroleum asphalts and residual stocks from various raw materials. Samples were prepared by blending technical-grade paraffin wax with a paraffin-free asphalt. The influence of the cooling time on the intensity of the paraffin lines was determined for the various asphalt samples. In order to improve the reproducibility of the line intensity, 1% microcrystalline wax with a known content of paraffins was added to each reference sample. Artificial mixtures of paraffins with model asphalts having various group compositions were prepared in order to determine the influence of the composition of the various asphalts on the intensity of the paraffin reflections under the preparation conditions (heating and cooling). It is established that with increasing takeoff of distillate in the vacuum distillation of atmospheric resids, or in the course of oxidation of residual stocks to produce asphalts, the paraffin content drops. Includes 2 tables.

  12. Replacement of asphalt in glass-mat roofing shingles. Final report, March 1980-March 1982

    SciTech Connect

    Bastian, E.J. Jr.; McCandlish, E.F.K.; Sieling, F.W.

    1982-05-01

    Up to 50% of the asphalt now used in glass-mat shingles may be replaceable by increasing the mineral filler content and/or extending the asphalt with elemental sulfur. Highly filled, lab-made shingles containing asphalt flux perform acceptably in fire tests, slide tests, blister tests, granule adhesion, and freeze-thaw cracking tests. They have high stain and scuff potential and are too limp for convenient application around 110/sup 0/F. Lab-made shingles containing asphalt saturant are satisfactory in most respects, but they are still too limp for high temperature application. Various methods to stiffen highly filled shingles were tried. The most promising method is the use of two lightweight glass mats, laminated together with asphalt. Shingles made in this way have handling properties superior to conventional shingles and are economically feasible. In the area of replacement of asphalt with sulfur, five small-scale plant trials produced shingles which, after a year of outdoor exposure, are satisfactory. On the basis of preliminary measurements, no important difference in tensile or flexural properties between asphalt and sulfur/asphalt shingles is expected. In Weather-Ometer tests, sulfur/asphalt tends to have lower durability than conventional coating. This is confirmed by outside weathering of sulfur/asphalt films. By choosing the correct asphalt softening point and correct filler level, sulfur/asphalt/filler can have equal durability to conventional asphalt/filler combinations.

  13. Sulfur-extended asphalt pavement: a three-year progress report. Final report

    SciTech Connect

    Van Bramer, T.F.

    1986-10-01

    This report documents post-construction performance of a sulfur-extended asphalt (SEA) pavement and a conventional pavement used as a control, monitored over a 3-year period. The SEA pavement used 30% sulfur by total weight of the binder. Both pavements were placed under New York State specifications during the summer of 1980 on Rtes 118 and 202 in Westchester County, New York. After 3 years, overall condition of both the SEA and control pavements was satisfactory. The two did not differ significantly in deflection, rutting, friction, or aggregate degradation. Data obtained from analysis of pavement cores showed that the stability of the SEA mix was equal to or higher than that of the control at all ages. Similarly, its resilient modulus was greater at all ages and temperatures. Although tensile-strength ratios measured for both mixes indicated a potential for stripping, virtually none was observed in any of the field cores for either pavement at any age.

  14. Method for incorporating radioactive phosphoric acid solutions in concrete

    DOEpatents

    Wolf, Gary A [Kennewick, WA; Smith, Jeffrey W [Lancaster, OH; Ihle, Nathan C [Walla Walla, WA

    1984-01-01

    A method for incorporating radioactive phosphoric acid solutions in concrete is described wherein the phosphoric acid is reacted with Ca(OH).sub.2 to form a precipitate of hydroxyapatite and the hydroxyapatite is mixed with portland cement to form concrete.

  15. Method for incorporating radioactive phosphoric acid solutions in concrete

    DOEpatents

    Wolf, G.A.; Smith, J.W.; Ihle, N.C.

    1982-07-08

    A method for incorporating radioactive phosphoric acid solutions in concrete is described wherein the phosphoric acid is reacted with Ca(OH)/sub 2/ to form a precipitate of hydroxyapatite and the hydroxyapatite is mixed with Portland cement to form concrete.

  16. 40 CFR 436.60 - Applicability; description of the asphaltic mineral subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... asphaltic mineral subcategory. 436.60 Section 436.60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) MINERAL MINING AND PROCESSING POINT SOURCE CATEGORY Asphaltic Mineral Subcategory § 436.60 Applicability; description of the...

  17. 40 CFR 436.60 - Applicability; description of the asphaltic mineral subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... asphaltic mineral subcategory. 436.60 Section 436.60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) MINERAL MINING AND PROCESSING POINT SOURCE CATEGORY Asphaltic Mineral Subcategory § 436.60 Applicability; description of the...

  18. 40 CFR 436.60 - Applicability; description of the asphaltic mineral subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... asphaltic mineral subcategory. 436.60 Section 436.60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) MINERAL MINING AND PROCESSING POINT SOURCE CATEGORY Asphaltic Mineral Subcategory § 436.60 Applicability; description of the...

  19. Laboratory constitutive characterization of cellular concrete.

    SciTech Connect

    Hardy, Robert Douglas; Lee, Moo Yul; Bronowski, David R.

    2004-03-01

    To establish mechanical material properties of cellular concrete mixes, a series of quasi-static, compression and tension tests have been completed. This report summarizes the test methods, set-up, relevant observations, and results from the constitutive experimental efforts. Results from the uniaxial and triaxial compression tests established failure criteria for the cellular concrete in terms of stress invariants I{sub 1} and J{sub 2}. {radical}J{sub 2} (MPa) = 297.2 - 278.7 exp{sup -0.000455 I}{sub 1}{sup (MPa)} for the 90-pcf concrete {radical}J{sub 2} (MPa) = 211.4 - 204.2 exp {sup -0.000628 I}{sub 1}{sup (MPa)} for the 60-pcf concrete

  20. Lunar concrete for construction

    NASA Technical Reports Server (NTRS)

    Cullingford, Hatice S.; Keller, M. Dean

    1992-01-01

    Feasibility of using concrete for lunar base construction was discussed recently without relevant data for the effects of vacuum on concrete. Our experimental studies performed earlier at Los Alamos have shown that concrete is stable in vacuum with no deterioration of its quality as measured by the compressive strength. Various considerations of using concrete successfully on the Moon are provided in this paper, along with specific conclusions from the existing database.

  1. Lunar concrete for construction

    NASA Technical Reports Server (NTRS)

    Cullingford, Hatice S.; Keller, M. Dean

    1988-01-01

    Feasibility of using concrete for lunar-base construction has been discussed recently without relevant data for the effects of vacuum on concrete. Experimental studies performed earlier at Los Alamos have shown that concrete is stable in vacuum with no deterioration of its quality as measured by the compressive strength. Various considerations of using concrete successfully on the moon are provided in this paper along with specific conclusions from the existing data base.

  2. HTGR Base Technology Program. Task 2: concrete properties in nuclear environment. A review of concrete material systems for application to prestressed concrete pressure vessels

    SciTech Connect

    Naus, D.J.

    1981-05-01

    Prestressed concrete pressure vessels (PCPVs) are designed to serve as primary pressure containment structures. The safety of these structures depends on a correct assessment of the loadings and proper design of the vessels to accept these loadings. Proper vessel design requires a knowledge of the component (material) properties. Because concrete is one of the primary constituents of PCPVs, knowledge of its behavior is required to produce optimum PCPV designs. Concrete material systems are reviewed with respect to constituents, mix design, placing, curing, and strength evaluations, and typical concrete property data are presented. Effects of extreme loadings (elevated temperature, multiaxial, irradiation) on concrete behavior are described. Finally, specialty concrete material systems (high strength, fibrous, polymer, lightweight, refractory) are reviewed. 235 references.

  3. Design of open graded friction courses with sulfur extended asphalt binders

    NASA Astrophysics Data System (ADS)

    Saylak, D.; Ho, K. K.; Gallaway, B. M.; Little, D. N.

    1982-09-01

    The combination of the anticipated shortage of asphalt cement and the projected abundance of sulfur has led to the investigation of the potential for substituting this element for the former in the paving industry. Sulfur was incorporated with asphalt to form sulfur-extended asphalt (SEA) binders for use in open graded friction course mixtures. The experimental design variable included aggregated type, asphalt cement, level of sulfur contents in the binder and method of preparing SEA binders.

  4. Concrete radiation shielding

    SciTech Connect

    Kaplan, M.F.

    1989-01-01

    This book presents an introduction to the aspects of nuclear physics relevant to concrete technology. It covers a variety of materials that may be used to produce concrete for radiation shielding. Details of the physical, mechanical, and nuclear properties of these concretes are provided, and their applications in nuclear waste storage, shelter design, and reactor shielding are described. Radiation shield design considerations are addressed.

  5. 17. VIEW SHOWING THE PLACEMENT OF READYMIX CONCRETE FOR BOTTOM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. VIEW SHOWING THE PLACEMENT OF READY-MIX CONCRETE FOR BOTTOM OF ARIZONA CANAL. CAMELBACK MOUNTAIN IN THE BACKGROUND Photographer: unknown. December 1943 - Arizona Canal, North of Salt River, Phoenix, Maricopa County, AZ

  6. Variability in properties of Salado Mass Concrete

    SciTech Connect

    Wakeley, L.D.; Harrington, P.T.; Hansen, F.D.

    1995-08-01

    Salado Mass Concrete (SMC) has been developed for use as a seal component in the Waste Isolation Pilot Plant. This concrete is intended to be mixed from pre-bagged materials, have an initial slump of 10 in., and remain pumpable and placeable for two hours after mixing. It is a mass concrete because it will be placed in monoliths large enough that the heat generated during cement hydration has the potential to cause thermal expansion and subsequent cracking, a phenomenon to avoid in the seal system. This report describes effects on concrete properties of changes in ratio of water to cement, batch size, and variations in characteristics of different lots of individual components of the concrete. The research demonstrates that the concrete can be prepared from laboratory-batched or pre-bagged dry materials in batches from 1.5 ft{sup 3} to 5.0 yd{sup 3}, with no chemical admixtures other than the sodium chloride added to improve bonding with the host rock, at a water-to-cement ratio ranging from 0.36 to 0.42. All batches prepared according to established procedures had adequate workability for at least 1.5 hours, and achieved or exceeded the target compressive strength of 4500 psi at 180 days after casting. Portland cement and fly ash from different lots or sources did not have a measurable effect on concrete properties, but variations in a shrinkage-compensating cement used as a component of the concrete did appear to affect workability. A low initial temperature and the water-reducing and set-retarding functions of the salt are critical to meeting target properties.

  7. Material and Flexural Properties of Fiber-reinforced Rubber Concrete

    NASA Astrophysics Data System (ADS)

    Helminger, Nicholas P.

    The purpose of this research is to determine the material properties of rubber concrete with the addition of fibers, and to determine optimal mixture dosages of rubber and fiber in concrete for structural applications. Fiber-reinforced concrete and rubberized concrete have been researched separately extensively, but this research intends to combine both rubber and fiber in a concrete matrix in order to create a composite material, fiber-reinforced rubber concrete (FRRC). Sustainability has long been important in engineering design, but much of the previous research performed on sustainable concrete does not result in a material that can be used for practical purposes. While still achieving a material that can be used for structural applications, economical considerations were given when choosing the proportions and types of constituents in the concrete mix. Concrete mixtures were designed, placed, and tested in accordance with common procedures and standards, with an emphasis on practicality. Properties that were investigated include compressive strength, tensile strength, modulus of elasticity, toughness, and ductility. The basis for determining the optimal concrete mixture is one that is economical, practical, and exhibits ductile properties with a significant strength. Results show that increasing percentages of rubber tend to decrease workability, unit weight, compressive strength, split tensile strength, and modulus of elasticity while the toughness is increased. The addition of steel needle fibers to rubber concrete increases unit weight, compressive strength, split tensile strength, modulus of elasticity, toughness, and ductility of the composite material.

  8. ASPHALT FOR OFF-STREET PAVING AND PLAY AREAS, 3RD EDITION.

    ERIC Educational Resources Information Center

    Asphalt Inst., College Park, MD.

    THIS PAMPHLET DISCUSSES THE ALTERNATIVE METHODS, APPLICATIONS, AND TECHNICAL CONSIDERATIONS FOR OFF-STREET PAVING AND PLAY AREAS. OFF-STREET PAVING INCLUDES--(1) ASPHALT-PAVED PARKING AREAS, (2) ROOF DECK PARKING AREAS, (3) ASPHALT-PAVED DRIVEWAYS, (4) ASPHALT-PAVED SERVICE STATION LOTS, AND (5) SIDEWALKS. THE DISCUSSION OF PLAY AREAS…

  9. 40 CFR Table 2 of Subpart Aaaaaaa... - Emission Limits for Asphalt Roofing Manufacturing (Coating) Operations

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Manufacturing (Coating) Operations 2 Table 2 of Subpart AAAAAAA of Part 63 Protection of Environment... Pollutants for Area Sources: Asphalt Processing and Asphalt Roofing Manufacturing Other Requirements and... AAAAAAA of Part 63—Emission Limits for Asphalt Roofing Manufacturing (Coating) Operations For * * *...

  10. 40 CFR Table 2 of Subpart Aaaaaaa... - Emission Limits for Asphalt Roofing Manufacturing (Coating) Operations

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Manufacturing (Coating) Operations 2 Table 2 of Subpart AAAAAAA of Part 63 Protection of Environment... Pollutants for Area Sources: Asphalt Processing and Asphalt Roofing Manufacturing Other Requirements and... AAAAAAA of Part 63—Emission Limits for Asphalt Roofing Manufacturing (Coating) Operations For * * *...

  11. 40 CFR Table 2 of Subpart Aaaaaaa... - Emission Limits for Asphalt Roofing Manufacturing (Coating) Operations

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Manufacturing (Coating) Operations 2 Table 2 of Subpart AAAAAAA of Part 63 Protection of Environment... Pollutants for Area Sources: Asphalt Processing and Asphalt Roofing Manufacturing Other Requirements and... AAAAAAA of Part 63—Emission Limits for Asphalt Roofing Manufacturing (Coating) Operations For * * *...

  12. Using the poker-chip test for determining the bulk modulus of asphalt binders

    NASA Astrophysics Data System (ADS)

    Motamed, Arash; Bhasin, Amit; Liechti, Kenneth M.

    2014-02-01

    The properties of asphalt binders strongly influence the overall mechanical response of asphalt mixture composites. A thorough understanding of the mechanistic behavior of asphalt binders is important in order to fully and accurately characterize the behavior of the asphalt mixture. The mechanical properties of the asphalt binder, the matrix in the asphalt mixture composite, are time and temperature dependent and have a lower stiffness compared to the inclusions (aggregate particles). However, computational methods used to model the micromechanics of asphalt mixtures typically assume a constant bulk modulus or Poisson's ratio for asphalt binders. This research investigates the time-dependence of the bulk modulus of asphalt binders. Several approaches for measuring the bulk modulus were explored and the poker-chip geometry was found to be the most suitable one. The boundary value problem for the poker-chip geometry was solved to determine the bulk modulus and Poisson's ratio of asphalt binders as a function of time. The findings from this research improve our understanding of the viscoelastic behavior of asphaltic materials, and also guide important assumptions that are typically made during computational modeling of asphaltic materials.

  13. 40 CFR 436.60 - Applicability; description of the asphaltic mineral subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... asphaltic mineral subcategory. 436.60 Section 436.60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS MINERAL MINING AND PROCESSING POINT SOURCE CATEGORY Asphaltic Mineral Subcategory § 436.60 Applicability; description of the asphaltic mineral subcategory....

  14. 40 CFR 436.60 - Applicability; description of the asphaltic mineral subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... asphaltic mineral subcategory. 436.60 Section 436.60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS MINERAL MINING AND PROCESSING POINT SOURCE CATEGORY Asphaltic Mineral Subcategory § 436.60 Applicability; description of the asphaltic mineral subcategory....

  15. Asphalt mounds and associated biota on the Angolan margin

    NASA Astrophysics Data System (ADS)

    Jones, Daniel O. B.; Walls, Anne; Clare, Michael; Fiske, Mike S.; Weiland, Richard J.; O'Brien, Robert; Touzel, Daniel F.

    2014-12-01

    Release of hydrocarbons from sediments is important in increasing habitat heterogeneity on deep ocean margins. Heterogeneity arises from variation in abiotic and biotic conditions, including changes in substratum, geochemistry, fluid flow, biological communities and ecological interactions. The seepage of heavy hydrocarbons to the seafloor is less well studied than most other cold seep systems and may lead to the formation of asphalt mounds. These have been described from several regions, particularly the Gulf of Mexico. Here, we describe the structure, potential formation and biology of a large asphalt mound province in Block 31SE Angola. A total of 2254 distinct mound features was identified by side-scan sonar, covering a total area of 3.7 km2 of seafloor. The asphalt mounds took a number of forms from small (<0.5 m diameter; 13% observations) mounds to large extensive (<50 m diameter) structures. Some of the observed mounds were associated with authigenic carbonate and active seepage (living chemosynthetic fauna present in addition to the asphalt). The asphalt mounds are seabed accumulations of heavy hydrocarbons formed from subsurface migration and fractionation of reservoir hydrocarbons primarily through a network of faults. In Angola these processes are controlled by subsurface movement of salt structures. The asphalt mounds were typically densely covered with epifauna (74.5% of mounds imaged had visible epifauna) although individual mounds varied considerably in epifaunal coverage. Of the 49 non-chemosynthetic megafaunal taxa observed, 19 taxa were only found on hard substrata (including asphalt mounds), 2 fish species inhabited the asphalt mounds preferentially and 27 taxa were apparently normal soft-sediment fauna. Antipatharians (3.6±2.3% s.e.) and poriferans (2.6±1.9% s.e.) accounted for the highest mean percentage of the observed cover, with actinarians (0.9±0.4% s.e.) and alcyonaceans (0.4±0.2% s.e.) covering smaller proportions of the area

  16. Protecting steel in concrete in the Persian Gulf

    SciTech Connect

    Matta, Z.G. )

    1994-06-01

    The climate and geomorphology of the Persian Gulf make it one of the world's most severe environments for reinforced concrete. The concrete mix ingredients are usually contaminated with chloride, and the environment around reinforced concrete structures also contains salts, both under- and above-ground. Prevailing high temperatures also promote rapid rates of corrosion. Fusion-bonded epoxy-coated rebar, polyvinyl butyral-based coated rebar, calcium nitrile corrosion-inhibiting admixture, and microsilica are reviewed as corrosion prevention measures for steel in concrete for Persian Gulf service. Detrimental effects and user-friendliness are discussed.

  17. Frequency analysis of stress relaxation dynamics in model asphalts

    NASA Astrophysics Data System (ADS)

    Masoori, Mohammad; Greenfield, Michael L.

    2014-09-01

    Asphalt is an amorphous or semi-crystalline material whose mechanical performance relies on viscoelastic responses to applied strain or stress. Chemical composition and its effect on the viscoelastic properties of model asphalts have been investigated here by computing complex modulus from molecular dynamics simulation results for two different model asphalts whose compositions each resemble the Strategic Highway Research Program AAA-1 asphalt in different ways. For a model system that contains smaller molecules, simulation results for storage and loss modulus at 443 K reach both the low and high frequency scaling limits of the Maxwell model. Results for a model system composed of larger molecules (molecular weights 300-900 g/mol) with longer branches show a quantitatively higher complex modulus that decreases significantly as temperature increases over 400-533 K. Simulation results for its loss modulus approach the low frequency scaling limit of the Maxwell model at only the highest temperature simulated. A Black plot or van Gurp-Palman plot of complex modulus vs. phase angle for the system of larger molecules suggests some overlap among results at different temperatures for less high frequencies, with an interdependence consistent with the empirical Christensen-Anderson-Marasteanu model. Both model asphalts are thermorheologically complex at very high frequencies, where they show a loss peak that appears to be independent of temperature and density.

  18. An Approach for Nonlinear Fatigue Damage Evaluation in Asphalt Pavements

    NASA Astrophysics Data System (ADS)

    Rajbongshi, Pabitra; Thongram, Sonika

    2016-08-01

    Fatigue due to vehicular loads is one of the primary distress mechanisms in asphalt pavements. It happens primarily due to deterioration in asphalt material with load repetitions. Degradation of asphalt material may be evaluated using different parameters. In view of degradation, the incremental damage in a given pavement section would be different for different repetitions, even with same loadings. Therefore, the damage progression becomes nonlinear with repetitions. Accounting such nonlinearity in damage accumulation, and based on different damage evaluation parameters, this paper presents an equivalent approach for fatigue damage evaluation in asphalt pavements. Traditional fatigue equation adopted in mechanistic-empirical pavement design has been used in the present work. Four different criteria, namely number of load repetitions, asphalt stiffness reduction, strain enhancement and fatigue life reduction with repetitions are considered for damage estimation. The proposed approach could estimate same value of nonlinear damage, irrespective of the criteria used. The simplest form of criterion i.e. the number of load repetitions can be used for fatigue performance evaluation. Probabilistically, the damage propagation is also correlated and assessed with the failure probability.

  19. Recovery and reuse of asphalt roofing waste. Final report

    SciTech Connect

    Desai, S.; Graziano, G.; Shepherd, P.

    1984-02-02

    Burning of asphalt roofing waste as a fuel and incorporating asphalt roofing waste in bituminous paving were identified as the two outstanding resource recovery concepts out of ten studied. Four additional concepts might be worth considering under different market or technical circumstances. Another four concepts were rated as worth no further consideration at this time. This study of the recovery of the resource represented in asphalt roofing waste has identified the sources and quantities of roofing waste. About six million cubic yards of scrap roofing are generated annually in the United States, about 94% from removal of old roofing at the job site and the remainder from roofing material production at factories. Waste disposal is a growing problem for manufacturers and contractors. Nearly all roofing waste is hauled to landfills at a considerable expense to roofing contractors and manufacturers. Recovery of the roofing waste resource should require only a modest economic incentive. The asphalt contained in roofing waste represents an energy resource of more than 7 x 10/sup 13/ Btu/year. Another 1 x 10/sup 13/ Btu/year may be contained in field-applied asphalt on commercial building roofs. The two concepts recommended by this study appear to offer the broadest applicability, the most favorable economics, and the highest potential for near-term implementation to reuse this resource.

  20. Aging test results of an asphalt membrane liner

    SciTech Connect

    Buelt, J.L.; Barnes, S.M.

    1983-07-01

    The objective of the asphalt aging study described in this report was to determine the expected performance lifetime of a catalytically airblown asphalt membrane as a seepage barrier for inactive uranium mill tailings. The study, conducted by Pacific Northwest Laboratory for the Department of Energy's Uranium Mill Tailings Remedial Action Program, showed through chemical compatibility tests that the asphalt membrane is well suited for this purpose. The chemical compatibility tests were designed to accelerate the aging reactions in the asphalt and to determine the accelerated aging effect. Higher temperatures and oxygen concentrations proved to be effective acceleration parameters. By infrared spectral analysis, the asphalt was determined to have undergone 7 years of equivalent aging in a 3-month period when exposed to 40/sup 0/C and 1.7 atm oxygen pressure. However, the extent of aging was limited to a maximum penetration of 0.5% of the total liner thickness. It was concluded that the liner could be expected to be effective as a seepage barrier for at least 1000 years before the entire thickness of the liner would be degraded.

  1. 43 CFR 3503.14 - For what areas may I get a permit or lease for asphalt?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... for asphalt? 3503.14 Section 3503.14 Public Lands: Interior Regulations Relating to Public Lands... § 3503.14 For what areas may I get a permit or lease for asphalt? You may get leases for asphalt only on... may not obtain prospecting permits for asphalt....

  2. 43 CFR 3503.14 - For what areas may I get a permit or lease for asphalt?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... for asphalt? 3503.14 Section 3503.14 Public Lands: Interior Regulations Relating to Public Lands... § 3503.14 For what areas may I get a permit or lease for asphalt? You may get leases for asphalt only on... may not obtain prospecting permits for asphalt....

  3. 43 CFR 3503.14 - For what areas may I get a permit or lease for asphalt?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... for asphalt? 3503.14 Section 3503.14 Public Lands: Interior Regulations Relating to Public Lands... § 3503.14 For what areas may I get a permit or lease for asphalt? You may get leases for asphalt only on... may not obtain prospecting permits for asphalt....

  4. 43 CFR 3503.14 - For what areas may I get a permit or lease for asphalt?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... for asphalt? 3503.14 Section 3503.14 Public Lands: Interior Regulations Relating to Public Lands... § 3503.14 For what areas may I get a permit or lease for asphalt? You may get leases for asphalt only on... may not obtain prospecting permits for asphalt....

  5. Effect of pyrolyzed carbon black on asphalt cement. Part 2. Asphalt binder. Final report, September 1993-May 1995

    SciTech Connect

    Zeng, Y.; Lovell, C.W.

    1996-02-20

    Scrap tires derived from automobiles have become a large environmental problem in the United States. In the study, research is carried out to investigate the potential use of tire-derived pyrolyzed carbon black from scrap tires as an asphalt cement modifier. The asphlat cements used in the research were AC10 and AC20. Penetration and softening point tests were performed to obtain the consistency of the asphalt cements. The pyrolyzed carbon black, as provided by Wolf Industries, was combined with the asphalt cement in the following percentages: 5%, 10%, 15% and 20%. Penetration, softening point and ductility tests were performed to determine the temperature susceptibility of the modified binder as altered by the pyrolyzed carbon black. In order that the results are comparable to previous testing, commercial carbon black purchased from CABOT Industry was also used as a modifier in the tests. The same test procedures were applied to the asphalt cements modified by commercial carbon black. The test results contained in the report illustrate the viability of the pyrolyzed carbon black as an asphalt modifier. Recommendations are provided to facilitate further research on this particular project. A preliminary assessment of a test road using the pyrolyzed carbon is appended.

  6. Evaluation of products recovered from scrap tires for use as asphalt modifiers

    SciTech Connect

    McKay, J.

    1992-05-01

    Western Research Institute performed rheological tests and water sensitivity tests on asphalt cements that had been modified with carbonous residues obtained from the pyrolysis of scrap tires and waste motor oil. These tests are part of an ongoing program at the University of Wyoming Chemical Engineering Department to evaluate, as asphalt additives, solid carbonous products recovered from the scrap tire and waste motor oil pyrolysis experiments conducted at the University. The tests showed that carbonous residues increased the viscosity and decreased the elasticity of AC-10 and AC-20 asphalts. The tests also indicatedthat asphalt cements modified with carbonous residues were less sensitive to water damage and age embrittlement than unmodified asphalt cements.

  7. Hanford Permanent Isolation Barrier Program: Asphalt technology test plan

    SciTech Connect

    Freeman, H.D.; Romine, R.A.

    1994-05-01

    The Hanford Permanent Isolation Barriers use engineered layers of natural materials to create an integrated structure with backup protective features. The objective of current designs is to develop a maintenance-free permanent barrier that isolates wastes for a minimum of 1000 years by limiting water drainage to near-zero amounts. Asphalt is being used as an impermeable water diversion layer to provide a redundant layer within the overall barrier design. Data on asphalt barrier properties in a buried environment are not available for the required 100-year time frame. The purpose of this test plan is to outline the activities planned to obtain data with which to estimate performance of the asphalt layers.

  8. Investigation of Asphalt Mixture Creep Behavior Using Thin Beam Specimens

    NASA Astrophysics Data System (ADS)

    Zofka, Adam; Marasteanu, Mihai; Turos, Mugur

    2008-02-01

    The asphalt pavement layer consists of two or more lifts of compacted asphalt mixture; the top of the layer is also exposed to aging, a factor that significantly affects the mixture properties. The current testing specifications use rather thick specimens that cannot be used to investigate the gradual change in properties with pavement depth. This paper investigates the feasibility of using the 3-point bending test with thin asphalt mixture beams (127×12.7×6.35 mm) to determine the low-temperature creep compliance of the mixtures. Several theoretical and semi-empirical models, from the theory of composites, are reviewed and evaluated using numerical and experimental data. Preliminary results show that this method can be used for low-temperature mixture characterization but several crucial factors need further inspection and interpretation.

  9. Investigation of Asphalt Mixture Creep Behavior Using Thin Beam Specimens

    SciTech Connect

    Zofka, Adam; Marasteanu, Mihai; Turos, Mugur

    2008-02-15

    The asphalt pavement layer consists of two or more lifts of compacted asphalt mixture; the top of the layer is also exposed to aging, a factor that significantly affects the mixture properties. The current testing specifications use rather thick specimens that cannot be used to investigate the gradual change in properties with pavement depth. This paper investigates the feasibility of using the 3-point bending test with thin asphalt mixture beams (127x12.7x6.35 mm) to determine the low-temperature creep compliance of the mixtures. Several theoretical and semi-empirical models, from the theory of composites, are reviewed and evaluated using numerical and experimental data. Preliminary results show that this method can be used for low-temperature mixture characterization but several crucial factors need further inspection and interpretation.

  10. Lunar concrete: Prospects and challenges

    NASA Astrophysics Data System (ADS)

    Khitab, Anwar; Anwar, Waqas; Mehmood, Imran; Kazmi, Syed Minhaj Saleem; Munir, Muhammad Junaid

    2016-02-01

    The possibility of using concrete as a construction material at the Moon surface is considered. Dissimilarities between the Earth and the Moon and their possible effects on concrete are also emphasized. Availability of constituent materials for concrete at lunar surface is addressed. An emphasis is given to two types of materials, namely, hydraulic concrete and sulfur concrete. Hydraulic concrete necessitates the use of water and sulfur concrete makes use of molten sulfur in lieu of cement and water.

  11. Long-term degradation (or improvement?) of cementitious grout/concrete for waste disposal at Hanford

    SciTech Connect

    Piepho, M.G.

    1997-12-31

    If grout and/or concrete barriers and containments are considered for long-term (500 yrs to 100,000 ) waste disposal, then long-term degradation of grout/cement materials (and others) need to be studied. Long-term degradations of a cementitious grout monolith (15.4mW x 10.4mH x 37.6mL) and its containment concrete shell and asphalt shell (each 1-m thick) were analyzed. The main degradation process of the concrete shell was believed to be fractures due to construction joints, shrinkage, thermal stress, settlement, and seismic events. A scenario with fractures was modeled (flow and transport model) for long-term risk performance (out to a million yrs). Even though the concrete/grout is expected to fracture, the concrete/grout chemistry, which has high Ph value, is very beneficial in causing calcite deposits from calcium in the water precipitating in the fractures. These calcite deposits will tend to plug the fracture and keep water from entering. The effectiveness of such plugging needs to be studied more. It`s possible that the plugged fractures are more impermeable than the original concrete/grout. The long-term performance of concrete/grout barriers will be determined by its chemistry, not its mechanical properties.

  12. Retempering of Concrete made by using Manufactured Sand

    NASA Astrophysics Data System (ADS)

    Pethkar, A. R.; Deshmukh, G.

    2014-06-01

    Retempering is defined as, " Addition of water and remixing of concrete or mortar which has lost enough workability to become unplaceable". Retempering inevitably results in some loss of strength compared with the original concrete [1]. Adding water to a plastic mix to increase slump is an extremely common practice, even though it is not recommended because it increases the porosity of concrete. Concrete often arrives on site more than half an hour after initial mixing. Placement operations can take anywhere from 10 to 60 min, depending on the field conditions and the size of the load. When the slump decreases to an unacceptable level during the operations, water is added to the mix [1]. In this work, an attempt is made to study the strength characteristics of retempered concrete made by using manufactured sand. Usually the retempering process is there with normal and ready mixed concrete; hence an attempt is made to check the compressive and flexural strength of normal retempered concrete with an addition of retarder 0.2, 0.4 and 0.6 % at retempering time from 15 to 90 min. There is scarcity of natural sand due to various factors, which is replaced by the manufactured sand. The concept of manufactured sand is nothing but breaking stone into smaller and smaller particles in such way that the gradation of particle will match with zone-II of I.S.

  13. Use of recycled plastic in concrete: a review.

    PubMed

    Siddique, Rafat; Khatib, Jamal; Kaur, Inderpreet

    2008-01-01

    Numerous waste materials are generated from manufacturing processes, service industries and municipal solid wastes. The increasing awareness about the environment has tremendously contributed to the concerns related with disposal of the generated wastes. Solid waste management is one of the major environmental concerns in the world. With the scarcity of space for landfilling and due to its ever increasing cost, waste utilization has become an attractive alternative to disposal. Research is being carried out on the utilization of waste products in concrete. Such waste products include discarded tires, plastic, glass, steel, burnt foundry sand, and coal combustion by-products (CCBs). Each of these waste products has provided a specific effect on the properties of fresh and hardened concrete. The use of waste products in concrete not only makes it economical, but also helps in reducing disposal problems. Reuse of bulky wastes is considered the best environmental alternative for solving the problem of disposal. One such waste is plastic, which could be used in various applications. However, efforts have also been made to explore its use in concrete/asphalt concrete. The development of new construction materials using recycled plastics is important to both the construction and the plastic recycling industries. This paper presents a detailed review about waste and recycled plastics, waste management options, and research published on the effect of recycled plastic on the fresh and hardened properties of concrete. The effect of recycled and waste plastic on bulk density, air content, workability, compressive strength, splitting tensile strength, modulus of elasticity, impact resistance, permeability, and abrasion resistance is discussed in this paper. PMID:17981022

  14. Use of recycled plastic in concrete: A review

    SciTech Connect

    Siddique, Rafat Khatib, Jamal; Kaur, Inderpreet

    2008-07-01

    Numerous waste materials are generated from manufacturing processes, service industries and municipal solid wastes. The increasing awareness about the environment has tremendously contributed to the concerns related with disposal of the generated wastes. Solid waste management is one of the major environmental concerns in the world. With the scarcity of space for landfilling and due to its ever increasing cost, waste utilization has become an attractive alternative to disposal. Research is being carried out on the utilization of waste products in concrete. Such waste products include discarded tires, plastic, glass, steel, burnt foundry sand, and coal combustion by-products (CCBs). Each of these waste products has provided a specific effect on the properties of fresh and hardened concrete. The use of waste products in concrete not only makes it economical, but also helps in reducing disposal problems. Reuse of bulky wastes is considered the best environmental alternative for solving the problem of disposal. One such waste is plastic, which could be used in various applications. However, efforts have also been made to explore its use in concrete/asphalt concrete. The development of new construction materials using recycled plastics is important to both the construction and the plastic recycling industries. This paper presents a detailed review about waste and recycled plastics, waste management options, and research published on the effect of recycled plastic on the fresh and hardened properties of concrete. The effect of recycled and waste plastic on bulk density, air content, workability, compressive strength, splitting tensile strength, modulus of elasticity, impact resistance, permeability, and abrasion resistance is discussed in this paper.

  15. Use of recycled plastic in concrete: a review.

    PubMed

    Siddique, Rafat; Khatib, Jamal; Kaur, Inderpreet

    2008-01-01

    Numerous waste materials are generated from manufacturing processes, service industries and municipal solid wastes. The increasing awareness about the environment has tremendously contributed to the concerns related with disposal of the generated wastes. Solid waste management is one of the major environmental concerns in the world. With the scarcity of space for landfilling and due to its ever increasing cost, waste utilization has become an attractive alternative to disposal. Research is being carried out on the utilization of waste products in concrete. Such waste products include discarded tires, plastic, glass, steel, burnt foundry sand, and coal combustion by-products (CCBs). Each of these waste products has provided a specific effect on the properties of fresh and hardened concrete. The use of waste products in concrete not only makes it economical, but also helps in reducing disposal problems. Reuse of bulky wastes is considered the best environmental alternative for solving the problem of disposal. One such waste is plastic, which could be used in various applications. However, efforts have also been made to explore its use in concrete/asphalt concrete. The development of new construction materials using recycled plastics is important to both the construction and the plastic recycling industries. This paper presents a detailed review about waste and recycled plastics, waste management options, and research published on the effect of recycled plastic on the fresh and hardened properties of concrete. The effect of recycled and waste plastic on bulk density, air content, workability, compressive strength, splitting tensile strength, modulus of elasticity, impact resistance, permeability, and abrasion resistance is discussed in this paper.

  16. Environmental evaluation of green concretes versus conventional concrete by means of LCA.

    PubMed

    Turk, Janez; Cotič, Zvonko; Mladenovič, Ana; Šajna, Aljoša

    2015-11-01

    A number of green concrete mixes having similar basic properties were evaluated from the environmental point of view by means of the Life Cycle Assessment method, and compared with a corresponding conventional concrete mix. The investigated green concrete mixes were prepared from three different types of industrial by-products, i.e. (1) foundry sand, and (2) steel slag, both of which were used as manufactured aggregates, and (3) fly ash, which was used as a mineral admixture. Some green concrete mixes were also prepared from a recycled aggregate, which was obtained from reinforced concrete waste. In some of the green concrete mixes the recycled aggregate was used in combination with the above-mentioned types of manufactured aggregate and fly ash. All of these materials are able, to some extent, to replace natural aggregate or Portland cement in concrete mixes, thus providing an environmental benefit from the point of view of the saving of natural resources. Taking into account consequential modelling, the credit related to the avoidance of the need to dispose of the waste materials is considered as a benefit. In case of the recycling of waste concrete into aggregate, credit is attributed to the recovery of scrap iron from the steel reinforcement. In the case of the use of steel slag, credit is attributed to the recovery of metals, which are extracted from the slag before being used as an alternative material. The disadvantage of using alternative materials and recycled aggregates can sometimes be their relatively long delivery distance. For this reason, a transport sensitivity analysis was carried out. The results indicate that the use of the discussed alternative and recycled materials is beneficial in the concrete production industry. Preference is given to the fly ash and foundry sand scenarios, and especially to those scenarios which are based on the combined use of recycled aggregate with these two alternative materials. It was found that longer delivery

  17. Environmental evaluation of green concretes versus conventional concrete by means of LCA.

    PubMed

    Turk, Janez; Cotič, Zvonko; Mladenovič, Ana; Šajna, Aljoša

    2015-11-01

    A number of green concrete mixes having similar basic properties were evaluated from the environmental point of view by means of the Life Cycle Assessment method, and compared with a corresponding conventional concrete mix. The investigated green concrete mixes were prepared from three different types of industrial by-products, i.e. (1) foundry sand, and (2) steel slag, both of which were used as manufactured aggregates, and (3) fly ash, which was used as a mineral admixture. Some green concrete mixes were also prepared from a recycled aggregate, which was obtained from reinforced concrete waste. In some of the green concrete mixes the recycled aggregate was used in combination with the above-mentioned types of manufactured aggregate and fly ash. All of these materials are able, to some extent, to replace natural aggregate or Portland cement in concrete mixes, thus providing an environmental benefit from the point of view of the saving of natural resources. Taking into account consequential modelling, the credit related to the avoidance of the need to dispose of the waste materials is considered as a benefit. In case of the recycling of waste concrete into aggregate, credit is attributed to the recovery of scrap iron from the steel reinforcement. In the case of the use of steel slag, credit is attributed to the recovery of metals, which are extracted from the slag before being used as an alternative material. The disadvantage of using alternative materials and recycled aggregates can sometimes be their relatively long delivery distance. For this reason, a transport sensitivity analysis was carried out. The results indicate that the use of the discussed alternative and recycled materials is beneficial in the concrete production industry. Preference is given to the fly ash and foundry sand scenarios, and especially to those scenarios which are based on the combined use of recycled aggregate with these two alternative materials. It was found that longer delivery

  18. Final environmental and regulatory assessment of using asphalt as a sealant in mine shafts

    SciTech Connect

    Not Available

    1987-01-01

    This report discusses the properties of asphalt, the current regulatory status governing asphalt and future regulatory implications which may be pertinent in using asphalt as a waterproof shaft sealant. An understanding of the inherent organic composition of asphalt, an increase in the number of health and environmental research publications conducted on asphalt and an examination of the apparent trend of regulatory agencies toward more stringent environmental regulation governing the use of organic materials suggests asphalt could become regulated at a future time. This would only occur, however, if asphalt was found to conform to the present regulatory definitions of pollutants, contaminants or hazardous substances or if asphalt was included on a regulated substance list. In this regard, the study points out that asphalt contains very low levels of hazardous poly-nuclear aromatics (PNA's). These levels are significantly lower than the levels present in coal tars, a substance known to contain high levels of hazardous PNA's. Asphalt, however, has the inherent potential of producing higher concentrations of PNA's if the adverse condition of cracking should occur during the refinery production stage or on-site preparation of the asphalt. Also, unless existing control technology is applied, emission levels of sulfur dioxide, carbon monoxide, particulates and volatile organic carbons from the on-site preparation facilities could approach the permissible health standard levels of EPA. The study indicates, however, that available literature is limited on these issues.

  19. Asphalt roofing industry Fourier transform infrared spectroscopy modified bitumen

    SciTech Connect

    1999-07-01

    A Request for Emissions Testing at Four Asphalt Roofing and Processing Facilities was submitted by the US EPA Emission Standards Division (ESD), Minerals and Inorganic Chemicals Group (MICG) to the Emission Measurement Center (EMC). The Emission Measurement Center directed Midwest Research Institute (MRI) to conduct emissions testing at asphalt roofing plants. This report presents results of MRI`s FTIR and Method 25A testing conducted at US Intec in Port Arthur, Texas. The field measurements were performed in September 1997 under several test conditions for both controlled and uncontrolled emissions.

  20. Numerical simulation on the thermal response of heat-conducting asphalt pavements

    NASA Astrophysics Data System (ADS)

    Wang, Hong; Wu, Shaopeng; Chen, Mingyu; Zhang, Yuan

    2010-05-01

    Using asphalt pavements as a solar collector is a subject of current interest all over the world because the sun provides a cheap and abundant source of clean and renewable energy, which can be captured by black asphalt pavements. A heat-conducting device is designed to absorb energy from the sun. In order to validate what parameters are critical in the asphalt collector, a finite element model is developed to predict the thermal response of the heat-conducting device compared to the conventional asphalt mixture. Some factors that may affect the asphalt pavement collector are considered, including the coefficient of heat conductivity of the asphalt pavement, the distance between pipes with the medium, water, and the pipe's diameter. Ultimately, the finite element model can provide pavement engineers with an efficient computational tool that can be a guide to the conductive asphalt solar collector's experiment in the laboratory.

  1. Abstract and concrete sentences, embodiment, and languages.

    PubMed

    Scorolli, Claudia; Binkofski, Ferdinand; Buccino, Giovanni; Nicoletti, Roberto; Riggio, Lucia; Borghi, Anna Maria

    2011-01-01

    One of the main challenges of embodied theories is accounting for meanings of abstract words. The most common explanation is that abstract words, like concrete ones, are grounded in perception and action systems. According to other explanations, abstract words, differently from concrete ones, would activate situations and introspection; alternatively, they would be represented through metaphoric mapping. However, evidence provided so far pertains to specific domains. To be able to account for abstract words in their variety we argue it is necessary to take into account not only the fact that language is grounded in the sensorimotor system, but also that language represents a linguistic-social experience. To study abstractness as a continuum we combined a concrete (C) verb with both a concrete and an abstract (A) noun; and an abstract verb with the same nouns previously used (grasp vs. describe a flower vs. a concept). To disambiguate between the semantic meaning and the grammatical class of the words, we focused on two syntactically different languages: German and Italian. Compatible combinations (CC, AA) were processed faster than mixed ones (CA, AC). This is in line with the idea that abstract and concrete words are processed preferentially in parallel systems - abstract in the language system and concrete more in the motor system, thus costs of processing within one system are the lowest. This parallel processing takes place most probably within different anatomically predefined routes. With mixed combinations, when the concrete word preceded the abstract one (CA), participants were faster, regardless of the grammatical class and the spoken language. This is probably due to the peculiar mode of acquisition of abstract words, as they are acquired more linguistically than perceptually. Results confirm embodied theories which assign a crucial role to both perception-action and linguistic experience for abstract words. PMID:21954387

  2. Asphalt overlay design methods for rigid pavements considering rutting, reflection cracking, and fatigue cracking. Research report September 1996--August 1997

    SciTech Connect

    Cho, Y.H.; Liu, C.; Dossey, T.; McCullough, B.F.

    1998-10-01

    An asphalt concrete pavement (ACP) overlay over a rigid pavement represents a viable rehabilitation strategy. It can provide good serviceability at an initial construction cost that is substantially less than that of a rigid overlay rehabilitation. In addition, ACP overlays require less construction time, which can reduce user costs during construction. However, it may not be the most economical solution for long-term rehabilitation. Because of their relatively short service life, ACP overlays may require maintenance sooner than rigid overlays. And one of the more critical distresses that effectively determine the life span of the structure is reflection cracking. This report investigates alternative strategies that seek to prevent reflection cracking on ACP overlays.

  3. Background of superpave asphalt mixture design and analysis. National asphalt training center demonstration project 101. Final report, December 1992-November 1994

    SciTech Connect

    McGennis, R.B.; Anderson, R.M.; Kennedy, T.W.; Solaimanian, M.

    1995-02-01

    The manual represents the first formal training document that embodies the complete series of SUPERPAVE asphalt mixture design and analysis test equipment and procedures. These tests and procedures represent the results of the SHRP 5-year research effort to investigate and improve asphalt cement technology. This manual was developed under the FHWA`s National Asphalt Training Center. Students attending the center utilize this manual to obtain a better understanding of the underlying theory behind asphalt mixture design and analysis, as well as how to perform each of the new procedures.

  4. Pedogenic Carbonate Concretions in the Russian Chernozem

    SciTech Connect

    Mikhailova, E. A.; Post, C. J.; Magrini-Bair, K.; Castle, J. W.

    2006-12-01

    Pedogenic carbonate concretions are commonly found in grassland soils, but their origin is not fully understood. This study was conducted to determine the radiocarbon age, the stable isotope geochemistry, and chemical composition of carbonate concretions in the Russian Chernozem, one of the typical soils in grasslands. Three sites were sampled: a native grassland field (not cultivated for at least 300 years), an adjacent 50-year continuous fallow field in the V. V. Alekhin Central-Chernozem Biosphere State Reserve in the Kursk region of Russia, and a continuously cropped field in the Experimental Station of the Kursk Institute of Agronomy and Soil Erosion Control. All sampled soils were classified as fine-silty, mixed, frigid Pachic Hapludolls. The mineralogical composition of concretions varies from low-magnesium calcite to pure calcite. The concretion contains 0.05% N, 6.4% C, and has [delta]13C and [delta]18O values of -10.9[per mille sign] (the per mill symbol, parts per thousand) and -7.8[per mille sign], respectively. The outside part of the carbonate concretion is 1909 +/- 40 14C age Before Present (B.P.) compared with 1693 +/- 40 14C age B.P. for the inside part of the same concretion, even though the concretion is found in the C horizon of much older age (10,902 +/- 63 14C age B.P.). Remnants of soil organic matter in concretions are closely associated with the cropped and fallow/plowed soils by pyrolysis molecular beam mass spectrometry.

  5. Engineering properties of inorganic polymer concretes (IPCs)

    SciTech Connect

    Sofi, M.; Deventer, J.S.J. van . E-mail: jannie@unimelb.edu.au; Mendis, P.A. . E-mail: pamendis@unimelb.edu.au; Lukey, G.C.

    2007-02-15

    This paper presents the engineering properties of inorganic polymer concretes (IPCs) with a compressive strength of 50 MPa. The study includes a determination of the modulus of elasticity, Poisson's ratio, compressive strength, and the splitting tensile strength and flexural strength of IPCs, formulated using three different sources of Class-F fly ash. Six IPC mix designs were adopted to evaluate the effects of the inclusion of coarse aggregates and granulated blast furnace slag into the mixes. A total of 90 cylindrical and 24 small beam specimens were investigated, and all tests were carried out pursuant to the relevant Australian Standards. Although some variability between the mixes was observed, the results show that, in most cases, the engineering properties of IPCs compare favorably to those predicted by the relevant Australian Standards for concrete mixtures.

  6. Fly ash sulfur concrete

    SciTech Connect

    Head, W.J.; Liao, M.

    1981-05-01

    Two waste products, flyash and elemental sulfur, can be combined with a modifying agent to produce a potentially useful construction material, flyash sulfur concrete. Manufacturing processes and characteristics of this concrete are described. Compared with a conventional crushed stone aggregate, flyash sulfur concrete is a viable highway pavement base course material. The material's strength characteristics are analyzed. (1 diagram, 4 graphs, 2 photos, 9 references, 5 tables)

  7. The optimization of concrete mixtures for use in highway applications

    NASA Astrophysics Data System (ADS)

    Moini, Mohamadreza

    . Conducted research enabled further reduction of cement contents to 250 kg/m3 (420 lb/yd3) as required for the design of sustainable concrete pavements. This research demonstrated that aggregate packing can be used in multiple ways as a tool to optimize the aggregates assemblies and achieve the optimal particle size distribution of aggregate blends. The SCMs, and air-entraining admixtures were selected to comply with existing WisDOT performance requirements and chemical admixtures were selected using the separate optimization study excluded from this thesis. The performance of different concrete mixtures was evaluated for fresh properties, strength development, and compressive and flexural strength ranging from 1 to 360 days. The methods and tools discussed in this research are applicable, but not limited to concrete pavement applications. The current concrete proportioning standards such as ACI 211 or current WisDOT roadway standard specifications (Part 5: Structures, Section 501: Concrete) for concrete have limited or no recommendations, methods or guidelines on aggregate optimization, the use of ternary aggregate blends (e.g., such as those used in asphalt industry), the optimization of SCMs (e.g., class F and C fly ash, slag, metakaolin, silica fume), modern superplasticizers (such as polycarboxylate ether, PCE) and air-entraining admixtures. This research has demonstrated that the optimization of concrete mixture proportions can be achieved by the use and proper selection of optimal aggregate blends and result in 12% to 35% reduction of cement content and also more than 50% enhancement of performance. To prove the proposed concrete proportioning method the following steps were performed: • The experimental aggregate packing was investigated using northern and southern source of aggregates from Wisconsin; • The theoretical aggregate packing models were utilized and results were compared with experiments; • Multiple aggregate optimization methods (e.g., optimal

  8. The Asphalt Identikit: Old Age and the Driver's License.

    ERIC Educational Resources Information Center

    Eisenhandler, Susan A.

    1990-01-01

    Used a recent study of older adults (N=50) from a small community to explore use of the "asphalt identikit" (possession of a valid driver's license and driving) to maintain non-age-related and hence unstigmatized identity. Found resistance to giving up driving was strong even as self-imposed limits curtailed driving. (Author/TE)

  9. Investigation of the curing variables of asphalt-rubber binder

    SciTech Connect

    Billiter, T.C.; Chun, J.S.; Davison, R.R.

    1996-12-31

    Currently, the paving industry utilizes a curing time of 1 hour at 177{degrees}C (350{degrees}F) for producing asphalt-rubber binder. Billiter et al. showed that at these curing conditions, 1 hour at 177{degrees}C (350{degrees}F), adding rubber to asphalt was beneficial, with the rubber improving the low-temperature creep stiffness at (-15{degrees}C (5{degrees}F)), the temperature susceptibility in the 0{degrees}C-90{degrees}C (32{degrees}F-194{degrees}F) temperature region, increasing G* and {eta}* at 60{degrees}C (140{degrees}F) and 1.0 rad/sec, and decreasing 8 at 60{degrees}C (140{degrees}F) and 1.0 rad/sec. On the other hand, Billiter et al. (2) showed that the addition of rubber was also detrimental, in that the viscosity increased significantly in the compaction temperature region of 149{degrees}C-193{degrees}C (300{degrees}F-380{degrees}F). This increased viscosity can cause compaction problems, with Allison reporting that engineers blamed the compaction problems of asphalt-rubber on undissolved crumb rubber, which they believed had no beneficial effect. Additionally, the engineers reported that improper compaction led to early road failure. This work investigates the variables of binders, curing tenperature and time, and amount of mechancial energy on asphalt properties.

  10. Coal tar-containing asphalt - resource or hazardous waste?

    SciTech Connect

    Andersson-Skold, Y.; Andersson, K.; Lind, B.; Claesson, A.; Larsson, L.; Suer, P.; Jacobson, T.

    2007-09-30

    Coal tar was used in Sweden for the production of asphalt and for the drenching of stabilization gravel until 1973. The tar has high concentrations of polycyclic aromatic hydrocarbons (PAH), some of which may be strongly carcinogenic. Approximately 20 million tonnes of tar-containing asphalt is present in the public roads in Sweden. Used asphalt from rebuilding can be classified as hazardous waste according to the Swedish Waste Act. The cost of treating the material removed as hazardous waste can be very high due to the large amount that has to be treated, and the total environmental benefit is unclear. The transport of used asphalt to landfill or combustion will affect other environmental targets. The present project, based on three case studies of road projects in Sweden, evaluates the consequences of four scenarios for handling the material: reuse, landfill, biological treatment, and incineration. The results show that reuse of the coal tar-containing materials in new road construction is the most favorable alternative in terms of cost, material use, land use, energy consumption, and air emissions.

  11. Assessment of Water Quality of Runoff from Sealed Asphalt Surfaces

    EPA Science Inventory

    This report discusses the results of runoff tests from recently-sealed asphalt surfaces conducted at EPA's Urban Watershed Research Facility (UWRF) in Edison, New Jersey. Both bench-scale panels and full-scale test plots were evaluated. Full-scale tests were performed on an asp...

  12. Asphalt and Wood Shingling. Roofing Workbook and Tests.

    ERIC Educational Resources Information Center

    Brown, Arthur

    This combination workbook and set of tests contains materials on asphalt and wood shingling that have been designed to be used by those studying to enter the roofing and waterproofing trade. It consists of seven instructional units and seven accompanying objective tests. Covered in the individual units are the following topics: shingling…

  13. Paleomagnetism of paleozoic asphaltic deposits in southern Oklahoma, USA

    NASA Astrophysics Data System (ADS)

    Ellwood, Brooks B.; Crick, Rex E.

    1988-05-01

    Paleomagnetic measurements on asphaltic samples from two formations in southern Oklahoma have been performed. A bioclastic unit from the Boggy Formation, known as the Buckhorn asphalt, exhibited a stable, characteristic remanent moment (RM) after A.F. demagnetization between 5-20 mT. We infer from our data that very fine, possibly authigenic magnetite, like that shown to have a genetic relationship with the migration through rocks of hydrocarbons [Elmore et al., 1987], is the primary RM carrier in these samples. The tilt corrected paleopole for the Buckhorn asphalt (121.9 E; 43.5N; δp=1.3 δm=2.3) falls on the Early Permian Apparent Polar Wander Path for North America of Irving and Irving [1982], using a 30 Ma window (270-280 Ma). Because the Boggy Form-ation, containing the Buckhorn asphalt, was depos-ited during the Late Pennsylvanian (Desmoinesian), we interpret the data to indicate magnetization during minor uplift in the Early Permian of the Arbuckle Mountain region. The RM appears to have been acquired at this time, probably as the result of magnetite production facilitated by the introduction time of sulfate reducing bacteria.

  14. Durability of an inorganic polymer concrete coating

    NASA Astrophysics Data System (ADS)

    Wasserman, Kenneth

    The objective of the research program reported in this thesis is to evaluate the durability of an inorganic polymer composite coating exposed to freeze/thaw cycling and wet-dry cycling. Freeze/thaw cycling is performed following ASTM D6944-09 Standard Practice for Resistance of Cured Coatings to Thermal Cycling and wet/dry cycling is performed following guidelines set forth in a thesis written by Ronald Garon at Rutgers University. For both sets of experiments, four coating mixture proportions were evaluated. The variables were: silica/alumina ratio, mixing protocol using high shear and normal shear mixing, curing temperatures of 70 and 120 degrees Fahrenheit and use of nano size constituent materials. The mix with highest silica/alumina ratio was designated as Mix 1 and mixes with lower ratios were designated as Mix 2 and Mix 3. Mix 4 had nano silica particles. Four prisms were used for each variable including control that had no coating. The performance of the coating was evaluated using adhesion strength measured using: ASTM D7234 Test Method for Pull-Off Strength of Coatings on Concrete Using Portable Adhesion Testers. Tests were performed after every five consecutive cycles of thermal conditioning and six consecutive cycles of wet-dry exposure. Results from the thermal cycling and wet-dry testing demonstrate that all coating formulations are durable. The minimum adhesion strength was 300 psi even though a relatively weak base concrete surface was chosen for the study. The weak surface was chosen to simulate aged concrete surfaces present in actual field conditions. Due to the inherent nature of the test procedure the variation in test results is high. However, based on the test results, high shear mixer and high temperature curing are not recommended. As expected nano size constituent materials provide better performance.

  15. Antifouling marine concrete

    NASA Astrophysics Data System (ADS)

    Mathews, C. W.

    1980-03-01

    Various toxic agents were investigated for their ability to prevent the attachment and growth of marine fouling organisms on concrete. Three methods of incorporating antifoulants into concrete were also studied. Porous aggregate was impregnated with creosote and bis-(tri-n-butyltin) oxide (TBTO) and then used in making the concrete. Cuprous oxide, triphenyltin hydroxide (TPTH), and 2-2-bis-(p-methoxyphenyl)-1,1,1-trichloroethane (methoxychlor) were used as dry additives. Two proprietary formulations were applied as coatings on untreated concrete. Test specimens were exposed at Port Hueneme, Calif. and Key Biscayne, Fla. Efficacy of toxicants was determined by periodically weighing the specimens and the fouling organisms that became attached. Concrete prepared with an aggregate impregnated with a TBTO/creosote mixture demonstrated the best antifouling performance of those specimens exposed for more than 1 year. The two proprietary coatings and the concrete containing methoxychlor, TPTH, and cuprous oxide as dry additives have exhibited good antifouling properties but have been exposed for a shorter time. Also, the strength of concrete prepared using the toxicants was acceptable and the corrosion rate of reinforcing rods did not increase. The concentration of organotin compounds was essentially unchanged in a concrete specimen exposed 6-1/2 years in seawater.

  16. Physio-chemical reactions in recycle aggregate concrete.

    PubMed

    Tam, Vivian W Y; Gao, X F; Tam, C M; Ng, K M

    2009-04-30

    Concrete waste constitutes the major proportion of construction waste at about 50% of the total waste generated. An effective way to reduce concrete waste is to reuse it as recycled aggregate (RA) for the production of recycled aggregate concrete (RAC). This paper studies the physio-chemical reactions of cement paste around aggregate for normal aggregate concrete (NAC) and RAC mixed with normal mixing approach (NMA) and two-stage mixing approach (TSMA) by differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). Four kinds of physio-chemical reactions have been recorded from the concrete samples, including the dehydration of C(3)S(2)H(3), iron-substituted ettringite, dehydroxylation of CH and development of C(6)S(3)H at about 90 degrees C, 135 degrees C, 441 degrees C and 570 degrees C, respectively. From the DSC results, it is confirmed that the concrete samples with RA substitution have generated less amount of strength enhancement chemical products when compared to those without RA substitution. However, the results from the TSMA are found improving the RAC quality. The pre-mix procedure of the TSMA can effectively develop some strength enhancing chemical products including, C(3)S(2)H(3), ettringite, CH and C(6)S(3)H, which shows that RAC made from the TSMA can improve the hydration processes.

  17. Reuse of thermosetting plastic waste for lightweight concrete.

    PubMed

    Panyakapo, Phaiboon; Panyakapo, Mallika

    2008-01-01

    This paper presents the utilization of thermosetting plastic as an admixture in the mix proportion of lightweight concrete. Since this type of plastic cannot be melted in the recycling process, its waste is expected to be more valuable by using as an admixture for the production of non-structural lightweight concrete. Experimental tests for the variation of mix proportion were carried out to determine the suitable proportion to achieve the required properties of lightweight concrete, which are: low dry density and acceptable compressive strength. The mix design in this research is the proportion of plastic, sand, water-cement ratio, aluminum powder, and lignite fly ash. The experimental results show that the plastic not only leads to a low dry density concrete, but also a low strength. It was found that the ratio of cement, sand, fly ash, and plastic equal to 1.0:0.8:0.3:0.9 is an appropriate mix proportion. The results of compressive strength and dry density are 4.14N/mm2 and 1395 kg/m3, respectively. This type of concrete meets most of the requirements for non-load-bearing lightweight concrete according to ASTM C129 Type II standard. PMID:17910913

  18. Crumb rubber modifier (CRM) in asphalt pavement: Summary of practices in Arizona, California, and Florida. Interim report, 1 February-30 June 1995

    SciTech Connect

    Hicks, R.G.; Lundy, J.R.; Leahy, R.B.; Hanson, D.; Epps, J.

    1995-09-01

    Highway agencies have been evaluating crumb rubber modifier (CRM) in hot mix asphalt (HMA) since the 1970`s. Three agencies, Arizona, California, and Florida, currently use CRM in HMA at levels that would approach or exceed the mandate in Section 1038 of the Intermodal Surface Transportation Efficiency Act of 1991. This report documents the use of CRM in HMA in these three States. In particular, it addresses issues including thickness design, materials and mix design, construction procedure, including control, and pavement performance. The report also addresses the following questions: (1) What processes are used, (2) Why are they used, (3) How are they performing.

  19. Studies of detailed biofilm characterization on fly ash concrete in comparison with normal and superplasticizer concrete in seawater environments.

    PubMed

    Vishwakarmaa, Vinita; George, R P; Ramachandran, D; Anandkumar, B; Mudalib, U Kamachi

    2014-01-01

    In cooling water systems, many concrete structures in the form of tanks, pillars and reservoirs that come in contact with aggressive seawater are being deteriorated by chemical and biological factors. The nuclear industry has decided to partially replace the Portland cement with appropriate pozzolans such as fly ash, which could densify the matrix and make the concrete impermeable. Three types of concrete mixes, viz., normal concrete (NC), concrete with fly ash and superplasticizer (FA) and concrete with only superplasticizer (SP) were fabricated for short- and long-term exposure studies and for screening out the better concrete in seawater environments. Biofilm characterization studies and microscopic studies showed excellent performance of FA concrete compared to the other two. Laboratory exposure studies in pure cultures of Thiobacillus thiooxidans and Fusarium oxysporum were demonstrated for the inhibition of microbial growth on fly ash. Epifluorescence and scanning electron microscopic studies supported the better performance of the FA specimen. Thus, the present study clearly showed that FA concrete is less prone to biofilm formation and biodeterioration. PMID:24600839

  20. Studies of detailed biofilm characterization on fly ash concrete in comparison with normal and superplasticizer concrete in seawater environments.

    PubMed

    Vishwakarmaa, Vinita; George, R P; Ramachandran, D; Anandkumar, B; Mudalib, U Kamachi

    2014-01-01

    In cooling water systems, many concrete structures in the form of tanks, pillars and reservoirs that come in contact with aggressive seawater are being deteriorated by chemical and biological factors. The nuclear industry has decided to partially replace the Portland cement with appropriate pozzolans such as fly ash, which could densify the matrix and make the concrete impermeable. Three types of concrete mixes, viz., normal concrete (NC), concrete with fly ash and superplasticizer (FA) and concrete with only superplasticizer (SP) were fabricated for short- and long-term exposure studies and for screening out the better concrete in seawater environments. Biofilm characterization studies and microscopic studies showed excellent performance of FA concrete compared to the other two. Laboratory exposure studies in pure cultures of Thiobacillus thiooxidans and Fusarium oxysporum were demonstrated for the inhibition of microbial growth on fly ash. Epifluorescence and scanning electron microscopic studies supported the better performance of the FA specimen. Thus, the present study clearly showed that FA concrete is less prone to biofilm formation and biodeterioration.

  1. Binary Effect of Fly Ash and Palm Oil Fuel Ash on Heat of Hydration Aerated Concrete

    PubMed Central

    Mehmannavaz, Taha; Ismail, Mohammad; Radin Sumadi, Salihuddin; Rafique Bhutta, Muhammad Aamer; Samadi, Mostafa

    2014-01-01

    The binary effect of pulverized fuel ash (PFA) and palm oil fuel ash (POFA) on heat of hydration of aerated concrete was studied. Three aerated concrete mixes were prepared, namely, concrete containing 100% ordinary Portland cement (control sample or Type I), binary concrete made from 50% POFA (Type II), and ternary concrete containing 30% POFA and 20% PFA (Type III). It is found that the temperature increases due to heat of hydration through all the concrete specimens especially in the control sample. However, the total temperature rises caused by the heat of hydration through both of the new binary and ternary concrete were significantly lower than the control sample. The obtained results reveal that the replacement of Portland cement with binary and ternary materials is beneficial, particularly for mass concrete where thermal cracking due to extreme heat rise is of great concern. PMID:24696646

  2. Binary effect of fly ash and palm oil fuel ash on heat of hydration aerated concrete.

    PubMed

    Mehmannavaz, Taha; Ismail, Mohammad; Radin Sumadi, Salihuddin; Rafique Bhutta, Muhammad Aamer; Samadi, Mostafa; Sajjadi, Seyed Mahdi

    2014-01-01

    The binary effect of pulverized fuel ash (PFA) and palm oil fuel ash (POFA) on heat of hydration of aerated concrete was studied. Three aerated concrete mixes were prepared, namely, concrete containing 100% ordinary Portland cement (control sample or Type I), binary concrete made from 50% POFA (Type II), and ternary concrete containing 30% POFA and 20% PFA (Type III). It is found that the temperature increases due to heat of hydration through all the concrete specimens especially in the control sample. However, the total temperature rises caused by the heat of hydration through both of the new binary and ternary concrete were significantly lower than the control sample. The obtained results reveal that the replacement of Portland cement with binary and ternary materials is beneficial, particularly for mass concrete where thermal cracking due to extreme heat rise is of great concern.

  3. Reactive powder based concretes: Mechanical properties, durability and hybrid use with OPC

    SciTech Connect

    Cwirzen, A. Penttala, V.; Vornanen, C.

    2008-10-15

    The basic mechanical properties, frost durability and the bond strength with normal strength concretes of the ultra high strength (UHS) mortars and concretes were studied. The produced mixes had plastic or fluid-like consistency. The 28-day compressive strength varied between 170 and 202 MPa for the heat-treated specimens and between 130 and 150 MPa for the non-heat-treated specimens. The shrinkage values were two times higher for the UHS mortars in comparison with the UHS concretes. After the initial shrinkage, swelling was noticed in the UHS mortars. The lowest creep values were measured for the non-heat-treated UHS concretes. The frost-deicing salts durability of the UHS mortars and concretes appeared to be very good even despite the increased water uptake of the UHS concretes. The study of the hybrid concrete beams indicated the formation of low strength transition zone between the UHS mortar and normal strength concrete.

  4. Binary effect of fly ash and palm oil fuel ash on heat of hydration aerated concrete.

    PubMed

    Mehmannavaz, Taha; Ismail, Mohammad; Radin Sumadi, Salihuddin; Rafique Bhutta, Muhammad Aamer; Samadi, Mostafa; Sajjadi, Seyed Mahdi

    2014-01-01

    The binary effect of pulverized fuel ash (PFA) and palm oil fuel ash (POFA) on heat of hydration of aerated concrete was studied. Three aerated concrete mixes were prepared, namely, concrete containing 100% ordinary Portland cement (control sample or Type I), binary concrete made from 50% POFA (Type II), and ternary concrete containing 30% POFA and 20% PFA (Type III). It is found that the temperature increases due to heat of hydration through all the concrete specimens especially in the control sample. However, the total temperature rises caused by the heat of hydration through both of the new binary and ternary concrete were significantly lower than the control sample. The obtained results reveal that the replacement of Portland cement with binary and ternary materials is beneficial, particularly for mass concrete where thermal cracking due to extreme heat rise is of great concern. PMID:24696646

  5. Moisture Transport Through Sprayed Concrete Tunnel Linings

    NASA Astrophysics Data System (ADS)

    Holter, Karl Gunnar; Geving, Stig

    2016-01-01

    Waterproofing of permanent sprayed concrete tunnel linings with sprayed membranes in a continuous sandwich structure has been attempted since 2000 and has seen increased use in some countries. The main function of a sprayed membrane from a waterproofing perspective is to provide crack bridging and hence prevent flow of liquid water into the tunnel through cracks and imperfections in the concrete material. However, moisture can migrate through the concrete and EVA-based membrane materials by capillary and vapor diffusion mechanisms. These moisture transport mechanisms can have an influence on the degree of saturation, and may influence the pore pressures in the concrete material as well as risk of freeze-thaw damage of the concrete and membrane. The paper describes a detailed study of moisture transport material parameters, moisture condition in tunnel linings and climatic conditions tunnels in hard rock in Norway. These data have been included in a hygrothermal simulation model in the software WUFI for moisture transport to substantiate moisture transport and long-term effects on saturation of the concrete and membrane material. The findings suggest that EVA-based membranes exhibit significant water absorption and vapor transport properties although they are impermeable to liquid water flow. State-of-the-art sprayed concrete material applied with the wet mix method exhibits very low hydraulic conductivities, lower than 10-14 m/s, thus saturated conductive water flow is a very unlikely dominant transport mechanism. Moisture transport through the lining structure by capillary flow and vapor diffusion are calculated to approximately 3 cm3/m2 per day for lining thicknesses in the range of 25-35 cm and seasonal Nordic climate variations. The calculated moisture contents in the tunnel linings from the hygrothermal simulations are largely in agreement with the measured moisture contents in the tunnel linings. The findings also indicate that the concrete material exhibits

  6. Characterization and treatment of runoff from highways in the Netherlands paved with impervious and pervious asphalt

    SciTech Connect

    Berbee, R.; Rijs, G.; Brouwer, R. de; Velzen, L. van

    1999-03-01

    This paper presents the results of a study to assess the effects of impervious and pervious (or porous) asphalt on the quality of runoff from highways in the Netherlands. Furthermore, the effects of settling and filtration on the quality of runoff of both types of asphalt have been elaborated. This study has been performed to support decisionmaking on how to deal with polluted runoff from highways in the Netherlands. The results show that runoff from well-maintained pervious asphalt contains a relatively low concentration of pollutants such as heavy metals, mineral oil, polynuclear aromatic hydrocarbons, and suspended solids compared to runoff from impervious asphalt. In runoff from both types of asphalt, copper, lead, and zinc are the prevailing heavy metals. The impression exists that especially the hard shoulders along highways provided with pervious asphalt act as a sink for suspended solids, soil particles, and other pollutants. To maintain its permeability and filter action, the hard shoulders should be regularly cleaned.

  7. SGC tests for influence of material composition on compaction characteristic of asphalt mixtures.

    PubMed

    Chen, Qun; Li, Yuzhi

    2013-01-01

    Compaction characteristic of the surface layer asphalt mixture (13-type gradation mixture) was studied using Superpave gyratory compactor (SGC) simulative compaction tests. Based on analysis of densification curve of gyratory compaction, influence rules of the contents of mineral aggregates of all sizes and asphalt on compaction characteristic of asphalt mixtures were obtained. SGC Tests show that, for the mixture with a bigger content of asphalt, its density increases faster, that there is an optimal amount of fine aggregates for optimal compaction and that an appropriate amount of mineral powder will improve workability of mixtures, but overmuch mineral powder will make mixtures dry and hard. Conclusions based on SGC tests can provide basis for how to adjust material composition for improving compaction performance of asphalt mixtures, and for the designed asphalt mixture, its compaction performance can be predicted through these conclusions, which also contributes to the choice of compaction schemes. PMID:23818830

  8. SGC Tests for Influence of Material Composition on Compaction Characteristic of Asphalt Mixtures

    PubMed Central

    Chen, Qun

    2013-01-01

    Compaction characteristic of the surface layer asphalt mixture (13-type gradation mixture) was studied using Superpave gyratory compactor (SGC) simulative compaction tests. Based on analysis of densification curve of gyratory compaction, influence rules of the contents of mineral aggregates of all sizes and asphalt on compaction characteristic of asphalt mixtures were obtained. SGC Tests show that, for the mixture with a bigger content of asphalt, its density increases faster, that there is an optimal amount of fine aggregates for optimal compaction and that an appropriate amount of mineral powder will improve workability of mixtures, but overmuch mineral powder will make mixtures dry and hard. Conclusions based on SGC tests can provide basis for how to adjust material composition for improving compaction performance of asphalt mixtures, and for the designed asphalt mixture, its compaction performance can be predicted through these conclusions, which also contributes to the choice of compaction schemes. PMID:23818830

  9. Relating tensile, bending, and shear test data of asphalt binders to pavement performance

    SciTech Connect

    Chen, J.S.; Tsai, C.J.

    1998-12-01

    Eight different asphalt binders representing a wide range of applications for pavement construction were tested in uniaxial tension, bending, and shear stresses. Theoretical analyses were performed in this study to covert the data from the three engineering tests to stiffness moduli for predicting pavement performance. At low temperatures, high asphalt stiffness may induce pavement thermal cracking; thus, the allowable maximum stiffness was set at 1,000 MPa. At high temperatures, low asphalt stiffness may lead to pavement rutting (ruts in the road); master curves were constructed to rank the potential for rutting in the asphalts. All three viscoelastic functions were shown to be interchangeable within the linear viscoelastic region. When subjected to large deformation in the direct tension test, asphalt binders behaved nonlinear viscoelastic in which the data under bending, shear and tension modes were not comparable. The asphalts were, however, found toe exhibit linear viscoelasticity up to the failure point in the steady-state strain region.

  10. Concrete sample point: 304 Concretion Facility

    SciTech Connect

    Rollison, M.D.

    1995-03-10

    This report contains information concerning the analysis of concretes for volatile organic compounds. Included are the raw data for these analysis and the quality control data, the standards data, and all of the accompanying chains-of-custody records and requests for special analysis.

  11. Evaluation of Sustainability of Multistory Reinforced Concrete Structure

    NASA Astrophysics Data System (ADS)

    Al-Tamimi, A. K.; Ibrahim, A.; Al-Sughaiyer, N.

    Three different types of concrete mixes of design strengths 100 MPa, 50 MPa, and 50 MPa lightweight were designed, produced, and analyzed in the effort to quantify their effects on sustainability and economics. An overall comparison taking into consideration the structural, environmental, and economical effectiveness was conducted to find the most beneficial and reliable material to be used in sustainable structures. Different concrete types were used in the design of typical multi story buildings of the same loadings and dimensions. The only input variables in this research are the different mixes of concrete. By fixing the applied loadings and the buildings' dimensions, the three different materials were studied in terms of their effects on the structural design of members, carbon footprint and sustainability, and economics. High strength concrete using microsilica was concluded to be the most effective material to be used in construction with the best effects on sustainability and economics.

  12. Superplasticized concretes for rehabilitation of bridge decks and highway pavements

    NASA Astrophysics Data System (ADS)

    Ramakrishnan, V.; Coyle, W. V.

    1981-01-01

    Two mixes, one with medium workability and high cement content suitable for bridge deck replacement and another with high workability suitable for structural and pavement concrete were selected for intensive study. For these mixes, properties of the fresh concrete (slump, vebe time, flow table spread, air content, initial and final setting times) are reported. The effects of retempering are described. The influence of three types of cements on the properties of plastic and hardened concrete is explained. Complete results of the following tests are presented: compressive strength, tensile strength, flexural strength, static modulus of elasticity, dynamic modulus of elasticity, pulse velocity and dry unit weight at 1, 3, 28 and 90 days curing. The selected concretes had high durability and satisfactory resistance against deicer scaling.

  13. Electrokinetic decontamination of concrete

    SciTech Connect

    Lomasney, H.L.; SenGupta, A.K.; Yachmenev, V.

    1996-12-31

    ELECTROSORB Electrokinetic Extraction Technology, developed by ISOTRON Corp., offers a cost-effective approach to treating contaminated concrete. Heavy metals/radionuclides trapped in concrete can be extracted using this process if they are chemically solubilized; solubilizers used are citric acid alone and a mixture of citric and nitric acids. A DC electric field is applied across the contaminated concrete to electrokinetically transport the solubilized contaminants from the concrete pores to a collector on the concrete surface. The collector is an extraction pad laid on the surface. The pad provides confinement for a planar electrode and solubilizer solution; it is operated under a vacuum to hold the pad against the concrete surface. Operation requires little attendance, reducing the workers` health hazards. The process incorporates a mechanism for recycling the solubilizer solution. A field demonstration of the process took place in Building 21 of DOE`s Mound facility in Miamisburg, OH, over 12 days in June 1996. The thorium species present in this building`s concrete floors included ThO{sub 2} and thorium oxalate. The nitric acid was found to facilitate Th extraction.

  14. Antifouling marine concrete

    SciTech Connect

    Vind, H P; Mathews, C W

    1980-07-01

    Various toxic agents were evaluated as the their capability to prevent or inhibit the attachment of marine fouling organisms to concrete. Creosote and bis-(tri-n-butyltin) oxide (TBTO) were impregnated into porous aggregate which was used in making concrete. Cuprous oxide, triphenyltin hydroxide (TPTH), and 2-2-bis-(p-methoxyphenyl)-1,1,1-trichloroethane (methoxychlor) were used as dry additives. Two proprietary formulations were applied as coatings on untreated concrete. Test specimens were exposed at Port Hueneme, CA, and Key Biscayne, FL. The efficacy of toxicants was determined by periodically weighing the adhering fouling organisms. Concrete prepared with an aggregate impregnated with a TBTO/creosote mixture has demonstrated the best antifouling performance of those specimens exposed for more than one year. The two proprietary coatings and the concrete containing methoxychlor, TPTH, and cuprous oxide as dry additives have exhibited good antifouling properties, but they have been exposed for a shorter time. The strength of concrete containing the toxicants was acceptable, and the toxicants did not increase the corrosion rate of reinforcing rods. Organotin compounds were essentially unchanged in concrete specimens exposed 6 1/2 years in seawater.

  15. Antifouling marine concrete

    SciTech Connect

    Vind, H P; Mathews, C W

    1980-07-01

    Various toxic agents were evaluated as to their capability to prevent or inhibit the attachment of marine fouling organisms to concrete for OTEC plants. Creosote and bis-(tri-n-butyltin) oxide (TBTO) were impregnated into porous aggregate which was used in making concrete. Cuprous oxide, triphenyltin hydroxide (TPTH), and 2-2-bis-(p-methoxyphenyl)-1,1,1-trichloroethane (methoxychlor) were used as dry additives. Two proprietary formulations were applied as coatings on untreated concrete. Test specimens were exposed at Port Hueneme, CA, and Key Biscayne, FL. The efficacy of toxicants was determined by periodically weighing the adhering fouling organisms. Concrete prepared with an aggregate impregnated with a TBTO/creosote mixture has demonstrated the best antifouling performance of those specimens exposed for more than one year. The two proprietary coatings and the concrete containing methoxychlor, TPTH, and cuprous oxide as dry additives have exhibited good antifouling properties, but they have been exposed for a shorter time. The strength of concrete containing the toxicants was acceptable, and the toxicants did not increase the corrosion rate of reinforcing rods. Organotin compounds were essentially unchanged in concrete specimens exposed 6-1/2 years in seawater.

  16. Tertiary nitrogen heterocyclic material to reduce moisture-induced damage in asphalt-aggregate mixtures

    DOEpatents

    Plancher, Henry; Petersen, Joseph C.

    1982-01-01

    Asphalt-aggregate roads crack when subjected to freezing and thawing cycles. Herein, the useful life of asphalts are substantially improved by a minor amount of a moisture damage inhibiting agent selected from compounds having a pyridine moiety, including acid salts of such compounds. A shale oil fraction may serve as the source of the improving agent and may simply be blended with conventional petroleum asphalts.

  17. Tertiary nitrogen heterocyclic material to reduce moisture-induced damage in asphalt-aggregate mixtures

    SciTech Connect

    Petersen, J.C.; Plancher, H.

    1982-04-20

    Asphalt-aggregate roads crack when subjected to freezing and thawing cycles. Herein, the useful life of asphalts are substantially improved by a minor amount of a moisture damage inhibiting agent selected from compounds having a pyridine moiety , including acid salts of such compounds. A shale oil fraction may serve as the source of the improving agent and may simply be blended with conventional petroleum asphalts.

  18. Investigation of gamma-ray shielding properties of concrete containing different percentages of lead.

    PubMed

    Rezaei-Ochbelagh, D; Azimkhani, S

    2012-10-01

    In this work, concrete mixed with different percentages of lead is used to study gamma-ray shielding properties. The transmitted fluxes of gamma-rays that were emitted from (137)Cs and (60)Co sources were detected by a NaI(Tl) detector and analyzed by a MCA analyzer. Then, linear attenuation coefficients (LAC) and compressive strength of concrete specimens were experimentally investigated. By comparing the obtained data from concrete specimens with and without lead, it was observed that, if the powder of lead to cement ratio of 90% by weight is added in the concrete mixture, the concrete can be used as a suitable shield against gamma rays. PMID:22854173

  19. Biodecontamination of concrete

    SciTech Connect

    Hamilton, M.A.; Rogers, R.D.; Benson, J.

    1996-12-31

    A novel technology for biologically decontaminating concrete is being jointly developed by scientists at the Idaho National Engineering Laboratory (INEL) and British Nuclear Fuels plc (BNFL). The technology exploits a naturally occurring phenomenon referred to as microbially influenced degradation (MID) in which bacteria produce acids that dissolve the cement matrix of concrete. Most radionuclide contamination of concrete is fixed in the outer few mm of the concrete surface. By capturing and controlling this natural process, a biological method of removing the surface of concrete to depths up to several mm is being developed. Three types of bacteria are known to be important in MID of concrete: nitrifying bacteria that produce nitric acid, sulfur oxidizing bacteria that produce sulfuric acid, and certain heterotrophic bacteria that produce organic acids. An investigation of natural environments demonstrated with scanning electron microscopy the presence of bacteria on concrete surfaces of a variety of structures, such as bridges and dams, where corrosion is evident. Enumeration of sulfur oxidizing and nitrifying bacteria revealed their presence and activity on structures to varying degrees in different environments. Under ideal conditions, Thiobacillus thiooxidans, a sulfur oxidizing bacteria, attached to and colonized the surface of concrete specimens. Over 1mm depth of material from a 10 cm x 10 cm square surface was removed in 68 days in the Thiobacillus treated specimen compared to a sterile control. Laboratory and field demonstrations are currently being conducted using experimental chambers designed to be mounted directly to concrete surfaces where radionuclide contamination exists. Data is being obtained in order to determine actual rates of surface removal and limitations to the system. This information will be used to develop a full scale decontamination technology.

  20. Effect of ageing on rheological properties of storage-stable SBS/sulfur-modified asphalts.

    PubMed

    Zhang, Feng; Yu, Jianying; Wu, Shaopeng

    2010-10-15

    Oxidative ageing as an inevitable process in practical road paving has a great effect on the properties of polymer-modified asphalts (PMAs). In this article, the effect of short-term and long-term oxidative ageing on the rheological, physical properties and the morphology of the styrene-butadiene-styrene (SBS)- and storage-stable SBS/sulfur-modified asphalts was studied, respectively. The analysis on the rheological and physical properties of the PMAs before and after ageing showed the two major effects of ageing. On one hand, ageing prompted the degradation of polymer and increased the viscous behaviour of the modified binders, on the other, ageing changed the asphalt compositions and improved the elastic behaviour of the modified binders. The final performance of the aged binders depended on the combined effect. After ageing, the storage-stable SBS/sulfur-modified asphalts showed an obvious viscous behaviour compare with the SBS-modified asphalts and this led to an improved low-temperature creep property. The rutting resistance of the SBS-modified asphalts declined by the addition of sulfur due to the structural instability of the SBS/sulfur-modified asphalts. The rheological properties of the modified binders before and after ageing also depended strongly on the structural characteristics of SBS. The observation by using optical microscopy showed the compatibility between asphalt and SBS was improved with further ageing, especially for the storage-stable SBS/sulfur-modified asphalts.

  1. Effect of ageing on rheological properties of storage-stable SBS/sulfur-modified asphalts.

    PubMed

    Zhang, Feng; Yu, Jianying; Wu, Shaopeng

    2010-10-15

    Oxidative ageing as an inevitable process in practical road paving has a great effect on the properties of polymer-modified asphalts (PMAs). In this article, the effect of short-term and long-term oxidative ageing on the rheological, physical properties and the morphology of the styrene-butadiene-styrene (SBS)- and storage-stable SBS/sulfur-modified asphalts was studied, respectively. The analysis on the rheological and physical properties of the PMAs before and after ageing showed the two major effects of ageing. On one hand, ageing prompted the degradation of polymer and increased the viscous behaviour of the modified binders, on the other, ageing changed the asphalt compositions and improved the elastic behaviour of the modified binders. The final performance of the aged binders depended on the combined effect. After ageing, the storage-stable SBS/sulfur-modified asphalts showed an obvious viscous behaviour compare with the SBS-modified asphalts and this led to an improved low-temperature creep property. The rutting resistance of the SBS-modified asphalts declined by the addition of sulfur due to the structural instability of the SBS/sulfur-modified asphalts. The rheological properties of the modified binders before and after ageing also depended strongly on the structural characteristics of SBS. The observation by using optical microscopy showed the compatibility between asphalt and SBS was improved with further ageing, especially for the storage-stable SBS/sulfur-modified asphalts. PMID:20637542

  2. Early-age volume changes of extrudable reactive powder concrete

    NASA Astrophysics Data System (ADS)

    Cherkaoui, K.; Courtial, M.; Dunstetter, F.; Khelidj, A.; Mounanga, P.; de Noirfontaine, M. N.

    2010-06-01

    This article presents a study on the early-age autogenous deformations of Extrudable Reactive Powder Concretes (ERPCs), especially designed for the making of concrete pipes by extrusion. Different ERPC mixtures, with variable amounts of polycarboxylate superplasticizer (SP), have been investigated. Results on 28-day mechanical properties, early-age hydration rate, autogenous shrinkage and premature cracking risk are analyzed and discussed in relation with the ERPC mix parameters.

  3. Electrokenitic Corrosion Treatment of Concrete

    NASA Technical Reports Server (NTRS)

    Cardenas, Henry E (Inventor)

    2015-01-01

    A method and apparatus for strengthening cementitious concrete by placing a nanoparticle carrier liquid in contact with a first surface of a concrete section and inducing a current across the concrete section at sufficient magnitude and for sufficient time that nanoparticles in the nanoparticle carrier liquid migrate through a significant depth of the concrete section.

  4. Ceramic ware waste as coarse aggregate for structural concrete production.

    PubMed

    García-González, Julia; Rodríguez-Robles, Desirée; Juan-Valdés, Andrés; Morán-Del Pozo, Julia M; Guerra-Romero, M Ignacio

    2015-01-01

    The manufacture of any kind of product inevitably entails the production of waste. The quantity of waste generated by the ceramic industry, a very important sector in Spain, is between 5% and 8% of the final output and it is therefore necessary to find an effective waste recovery method. The aim of the study reported in the present article was to seek a sustainable means of managing waste from the ceramic industry through the incorporation of this type of waste in the total replacement of conventional aggregate (gravel) used in structural concrete. Having verified that the recycled ceramic aggregates met all the technical requirements imposed by current Spanish legislation, established in the Code on Structural Concrete (EHE-08), then it is prepared a control concrete mix and the recycled concrete mix using 100% recycled ceramic aggregate instead of coarse natural aggregate. The concretes obtained were subjected to the appropriate tests in order to conduct a comparison of their mechanical properties. The results show that the concretes made using ceramic sanitary ware aggregate possessed the same mechanical properties as those made with conventional aggregate. It is therefore possible to conclude that the reuse of recycled ceramic aggregate to produce recycled concrete is a feasible alternative for the sustainable management of this waste. PMID:25188783

  5. Ceramic ware waste as coarse aggregate for structural concrete production.

    PubMed

    García-González, Julia; Rodríguez-Robles, Desirée; Juan-Valdés, Andrés; Morán-Del Pozo, Julia M; Guerra-Romero, M Ignacio

    2015-01-01

    The manufacture of any kind of product inevitably entails the production of waste. The quantity of waste generated by the ceramic industry, a very important sector in Spain, is between 5% and 8% of the final output and it is therefore necessary to find an effective waste recovery method. The aim of the study reported in the present article was to seek a sustainable means of managing waste from the ceramic industry through the incorporation of this type of waste in the total replacement of conventional aggregate (gravel) used in structural concrete. Having verified that the recycled ceramic aggregates met all the technical requirements imposed by current Spanish legislation, established in the Code on Structural Concrete (EHE-08), then it is prepared a control concrete mix and the recycled concrete mix using 100% recycled ceramic aggregate instead of coarse natural aggregate. The concretes obtained were subjected to the appropriate tests in order to conduct a comparison of their mechanical properties. The results show that the concretes made using ceramic sanitary ware aggregate possessed the same mechanical properties as those made with conventional aggregate. It is therefore possible to conclude that the reuse of recycled ceramic aggregate to produce recycled concrete is a feasible alternative for the sustainable management of this waste.

  6. Integrated coke, asphalt and jet fuel production process and apparatus

    DOEpatents

    Shang, Jer Y.

    1991-01-01

    A process and apparatus for the production of coke, asphalt and jet fuel m a feed of fossil fuels containing volatile carbon compounds therein is disclosed. The process includes the steps of pyrolyzing the feed in an entrained bed pyrolyzing means, separating the volatile pyrolysis products from the solid pyrolysis products removing at least one coke from the solid pyrolysis products, fractionating the volatile pyrolysis products to produce an overhead stream and a bottom stream which is useful as asphalt for road pavement, condensing the overhead stream to produce a condensed liquid fraction and a noncondensable, gaseous fraction, and removing water from the condensed liquid fraction to produce a jet fuel-containing product. The disclosed apparatus is useful for practicing the foregoing process. the process provides a useful method of mass producing and jet fuels from materials such as coal, oil shale and tar sands.

  7. Precast concrete pavements

    NASA Astrophysics Data System (ADS)

    Rollings, R. S.; Chou, Y. T.

    1981-11-01

    This report reviewed published literature on precast concrete pavements and found that precast concrete pavements have had some limited application in airfields, roads, and storage areas. This review of past experience and an analytical study of precast slabs concluded that existing design and construction techniques can be adapted for use with precast concrete pavements, but more work is needed to develop effective and easily constructed load transfer designs for slab joints. Precast concrete does not offer any advantage for conventional pavements due to its high cost and surface roughness, but it may find applications for special problems such as construction in adverse weather, subgrade settlement, temporary pavements that need to be relocated, and military operations.

  8. Strengthening lightweight concrete

    NASA Technical Reports Server (NTRS)

    Auskern, A.

    1972-01-01

    Polymer absorption by lightweight concretes to improve bonding between cement and aggregate and to increase strength of cement is discussed. Compressive strength of treated cement is compared with strength of untreated product. Process for producing polymers is described.

  9. Use of waste ash from palm oil industry in concrete.

    PubMed

    Tangchirapat, Weerachart; Saeting, Tirasit; Jaturapitakkul, Chai; Kiattikomol, Kraiwood; Siripanichgorn, Anek

    2007-01-01

    Palm oil fuel ash (POFA), a by-product from the palm oil industry, is disposed of as waste in landfills. In this study, POFA was utilized as a pozzolan in concrete. The original size POFA (termed OP) was ground until the median particle sizes were 15.9 microm (termed MP) and 7.4 microm (termed SP). Portland cement Type I was replaced by OP, MP, and SP of 10%, 20%, 30%, and 40% by weight of binder. The properties of concrete, such as setting time, compressive strength, and expansion due to magnesium sulfate attack were investigated. The results revealed that the use of POFA in concretes caused delay in both initial and final setting times, depending on the fineness and degree of replacement of POFA. The compressive strength of concrete containing OP was much lower than that of Portland cement Type I concrete. Thus, OP is not suitable to be used as a pozzolanic material in concrete. However, the replacement of Portland cement Type I by 10% of MP and 20% of SP gave the compressive strengths of concrete at 90 days higher than that of concrete made from Portland cement Type I. After being immersed in 5% of magnesium sulfate solution for 364 days, the concrete bar mixed with 30% of SP had the same expansion level as that of the concrete bar made from Portland cement Type V. The above results suggest that ground POFA is an excellent pozzolanic material and can be used as a cement replacement in concrete. It is recommended that the optimum replacement levels of Portland cement Type I by MP and SP are 20% and 30%, respectively.

  10. The effect on slurry water as a fresh water replacement in concrete properties

    NASA Astrophysics Data System (ADS)

    Kadir, Aeslina Abdul; Shahidan, Shahiron; Hai Yee, Lau; Ikhmal Haqeem Hassan, Mohd; Bakri Abdullah, Mohd Mustafa Al

    2016-06-01

    Concrete is the most widely used engineering material in the world and one of the largest water consuming industries. Consequently, the concrete manufacturer, ready mixed concrete plant is increased dramatically due to high demand from urban development project. At the same time, slurry water was generated and leading to environmental problems. Thus, this paper is to investigate the effect of using slurry water on concrete properties in term of mechanical properties. The basic wastewater characterization was investigated according to USEPA (Method 150.1 & 300.0) while the mechanical property of concrete with slurry water was compared according to ASTM C1602 and BS EN 1008 standards. In this research, the compressive strength, modulus of elasticity and tensile strength were studied. The percentage of wastewater replaced in concrete mixing was ranging from 0% up to 50%. In addition, the resulted also suggested that the concrete with 20% replacement of slurry water was achieved the highest compressive strength and modulus of elasticity compared to other percentages. Moreover, the results also recommended that concrete with slurry water mix have better compressive strength compared to control mix concrete.

  11. Evaluating damage potential of cryogenic concrete using acoustic emission sensors and permeability testing

    NASA Astrophysics Data System (ADS)

    Kogbara, Reginald B.; Parsaei, Boback; Iyengar, Srinath R.; Grasley, Zachary C.; Masad, Eyad A.; Zollinger, Dan G.

    2014-04-01

    This study evaluates the damage potential of concrete of different mix designs subjected to cryogenic temperatures, using acoustic emission (AE) and permeability testing. The aim is to investigate design methodologies that might be employed to produce concrete that resists damage when cooled to cryogenic temperatures. Such concrete would be suitable for primary containment of liquefied natural gas (LNG) and could replace currently used 9% Ni steel, thereby leading to huge cost savings. In the experiments described, concrete cubes, 150 mm x 150 mm x 150 mm, were cast using four different mix designs. The four mixes employed siliceous river sand as fine aggregate. Moreover, limestone, sandstone, trap rock and lightweight aggregate were individually used as coarse aggregates in the mixes. The concrete samples were then cooled from room temperature (20°C) to cryogenic temperature (-165°C) in a temperature chamber. AE sensors were placed on the concrete cubes during the cryogenic freezing process. The damage potential was evaluated in terms of the growth of damage as determined from AE, as a function of temperature and concrete mixture design. The damage potential observed was validated with water permeability testing. Initial results demonstrate the effects of the coefficient of thermal expansion (CTE) of the aggregates on damage growth. Concrete damage (cracking) resistance generally decreased with increasing coarse aggregate CTE, and was in the order, limestone ≥ trap rock << lightweight aggregate ≥ sandstone. Work is in progress to fully understand thermal dilation and damage growth in concrete due to differential CTE of its components.

  12. Assessment of asphalt mixtures characteristics through GPR testing

    NASA Astrophysics Data System (ADS)

    Pais, Jorge; Fernandes, Francisco

    2014-05-01

    Road pavements are composed by granular and asphalt layers, placed over the pavement subgrade, which are designed to resist to traffic and climatic effects. Pavement distresses include permanent deformation mainly due to the contribution of the subgrade and fatigue cracking in the asphalt layers. Fatigue cracking is the main pavement distress and is responsible for the main rehabilitations carried out in road pavements which leads, in most cases, to the pavement reconstruction due to the severity of the cracking observed in many roads. For a given aggregate gradation, the fatigue cracking resistance is related to the proportions of the components in the asphalt mixtures, namely the void content and the binder content. Also the presence of water, or moisture, has an important influence in the fatigue resistance, and its effect is characterized by a reduction in the fatigue cracking resistance. The characteristics of the asphalt mixtures applied in road pavements can be assessed in laboratory through the testing of cores extracted from the pavement. These cores are extracted some representative section of the pavement, usually equally spaced in the road. Due to the construction process, the representative sections of the pavement don't allow to identify the quality of the whole pavement. Thus, the use of continuous measurement is essential to ensure the perfect assessment of the pavement quality and the use of the GPR assumes a paramount importance. Thus, this communication presents several GPR tests carried out on pavement slabs produced in laboratory with different void content, binder content and moisture content in order to establish different classifiers that will allow the identification of this condition during regular inspections. Furthermore, tests carried on specimens before and after fatigue tests will allow to calculate similar parameters to estimate the state of conservation of pavements in terms of stiffness and the presence of cracks. This work is a

  13. Factory performance evaluations of engineering controls for asphalt paving equipment.

    PubMed

    Mead, K R; Mickelsen, R L; Brumagin, T E

    1999-08-01

    This article describes a unique analytical tool to assist the development and implementation of engineering controls for the asphalt paving industry. Through an agreement with the U.S. Department of Transportation, the National Asphalt Pavement Association (NAPA) requested that the National Institute for Occupational Safety and Health (NIOSH) assist U.S. manufacturers of asphalt paving equipment with the development and evaluation of engineering controls. The intended function of the controls was to capture and remove asphalt emissions generated during the paving process. NIOSH engineers developed a protocol to evaluate prototype engineering controls using qualitative smoke and quantitative tracer gas methods. Video recordings documented each prototype's ability to capture theatrical smoke under "managed" indoor conditions. Sulfur hexafluoride (SF6), released as a tracer gas, enabled quantification of the capture efficiency and exhaust flow rate for each prototype. During indoor evaluations, individual prototypes' capture efficiencies averaged from 7 percent to 100 percent. Outdoor evaluations resulted in average capture efficiencies ranging from 81 percent down to 1 percent as wind gusts disrupted the ability of the controls to capture the SF6. The tracer gas testing protocol successfully revealed deficiencies in prototype designs which otherwise may have gone undetected. It also showed that the combination of a good enclosure and higher exhaust ventilation rate provided the highest capture efficiency. Some manufacturers used the stationary evaluation results to compare performances among multiple hood designs. All the manufacturers identified areas where their prototype designs were susceptible to cross-draft interferences. These stationary performance evaluations proved to be a valuable method to identify strengths and weaknesses in individual designs and subsequently optimize those designs prior to expensive analytical field studies. PMID:10462852

  14. Use of recycled plastics in concrete: A critical review.

    PubMed

    Gu, Lei; Ozbakkaloglu, Togay

    2016-05-01

    Plastics have become an essential part of our modern lifestyle, and the global plastic production has increased immensely during the past 50years. This has contributed greatly to the production of plastic-related waste. Reuse of waste and recycled plastic materials in concrete mix as an environmental friendly construction material has drawn attention of researchers in recent times, and a large number of studies reporting the behavior of concrete containing waste and recycled plastic materials have been published. This paper summarizes the current published literature until 2015, discussing the material properties and recycling methods of plastic and the influence of plastic materials on the properties of concrete. To provide a comprehensive review, a total of 84 studies were considered, and they were classified into sub categories based on whether they dealt with concrete containing plastic aggregates or plastic fibers. Furthermore, the morphology of concrete containing plastic materials is described in this paper to explain the influence of plastic aggregates and plastic fibers on the properties of concrete. The properties of concretes containing virgin plastic materials were also reviewed to establish their similarities and differences with concrete containing recycled plastics. PMID:26970843

  15. Self-assembling particle-siloxane coatings for superhydrophobic concrete.

    PubMed

    Flores-Vivian, Ismael; Hejazi, Vahid; Kozhukhova, Marina I; Nosonovsky, Michael; Sobolev, Konstantin

    2013-12-26

    We report here, for the first time in the literature, a method to synthesize hydrophobic and superhydrophobic concrete. Concrete is normally a hydrophilic material, which significantly reduces the durability of concrete structures and pavements. To synthesize water-repellent concrete, hydrophobic emulsions were fabricated and applied on portland cement mortar tiles. The emulsion was enriched with the polymethyl-hydrogen siloxane oil hydrophobic agent as well as metakaolin (MK) or silica fume (SF) to induce the microroughness and polyvinyl alcohol (PVA) fibers to create hierarchical surfaces. Various emulsion types were investigated by using different mixing procedures, and single- and double-layer hydrophobic coatings were applied. The emulsions and coatings were characterized with optical microscope and scanning electron microscope (SEM), and their wetting properties, including the water contact angle (CA) and roll-off angle, were measured. A theoretical model for coated and non-coated concrete, which can be generalized for other types of materials, was developed to predict the effect of surface roughness and composition on the CA. An optimized distance between the aggregates was found where the CA has the highest value. The maximal CA measured was 156° for the specimen with PVA fibers treated with MK based emulsion. Since water penetration is the main factor leading to concrete deterioration, hydrophobic water-repellent concretes have much longer durability then regular concretes and can have a broad range of applications in civil and materials engineering.

  16. Use of recycled plastics in concrete: A critical review.

    PubMed

    Gu, Lei; Ozbakkaloglu, Togay

    2016-05-01

    Plastics have become an essential part of our modern lifestyle, and the global plastic production has increased immensely during the past 50years. This has contributed greatly to the production of plastic-related waste. Reuse of waste and recycled plastic materials in concrete mix as an environmental friendly construction material has drawn attention of researchers in recent times, and a large number of studies reporting the behavior of concrete containing waste and recycled plastic materials have been published. This paper summarizes the current published literature until 2015, discussing the material properties and recycling methods of plastic and the influence of plastic materials on the properties of concrete. To provide a comprehensive review, a total of 84 studies were considered, and they were classified into sub categories based on whether they dealt with concrete containing plastic aggregates or plastic fibers. Furthermore, the morphology of concrete containing plastic materials is described in this paper to explain the influence of plastic aggregates and plastic fibers on the properties of concrete. The properties of concretes containing virgin plastic materials were also reviewed to establish their similarities and differences with concrete containing recycled plastics.

  17. Shear Resistance between Concrete-Concrete Surfaces

    NASA Astrophysics Data System (ADS)

    Kovačovic, Marek

    2013-12-01

    The application of precast beams and cast-in-situ structural members cast at different times has been typical of bridges and buildings for many years. A load-bearing frame consists of a set of prestressed precast beams supported by columns and diaphragms joined with an additionally cast slab deck. This article is focused on the theoretical and experimental analyses of the shear resistance at an interface. The first part of the paper deals with the state-of-art knowledge of the composite behaviour of concrete-concrete structures and a comparison of the numerical methods introduced in the relevant standards. In the experimental part, a set of specimens with different interface treatments was tested until failure in order to predict the composite behaviour of coupled beams. The experimental part was compared to the numerical analysis performed by means of FEM basis nonlinear software.

  18. Performance of "Waterless Concrete"

    NASA Technical Reports Server (NTRS)

    Toutanji, H. A.; Grugel, R. N.

    2009-01-01

    Waterless concrete consists of molten elementary sulfur and aggregate. The aggregates in a lunar environment will be lunar rocks and soil. Sulfur is present on the Moon in Troilite soil (FeS) and, by oxidation of the soil, iron and sulfur can be produced. Sulfur concrete specimens were cycled between liquid nitrogen (approx.]91 C) and room temperature (^21 C) to simulate exposure to a lunar environment. Cycled and control specimens were subsequently tested in compression at room temperatures (^21 C) and ^-101 C. Test results showed that due to temperature cycling, the compressive strength of cycled specimens was 20% of those non-cycled. This reduction in strength can be attributed to the large differences in thermal coefficients of expansion of the materials constituting the concrete which promoted cracking. Similar sulfur concrete mixtures were strengthened with short and long glass fibres. The lunar regolith simulant was melted in a 25 cc Pt- Rh crucible in a Sybron Thermoline high temperature MoSi2 furnace at melting temperatures of 1450 to 1600 C for times of 30 min to i hour. Glass fibres and small rods were pulled from the melt. The glass fibres were used to reinforce sulfur concrete plated to improve the flexural strength of the sulfur concrete. Beams strengthened with glass fibres showed to exhibit an increase in the flexural strength by as much as 45%.

  19. Lunar cement and lunar concrete

    NASA Technical Reports Server (NTRS)

    Lin, T. D.

    1991-01-01

    Results of a study to investigate methods of producing cements from lunar materials are presented. A chemical process and a differential volatilization process to enrich lime content in selected lunar materials were identified. One new cement made from lime and anorthite developed compressive strengths of 39 Mpa (5500 psi) for 1 inch paste cubes. The second, a hypothetical composition based on differential volatilization of basalt, formed a mineral glass which was activated with an alkaline additive. The 1 inch paste cubes, cured at 100C and 100 percent humidity, developed compressive strengths in excess of 49 Mpa (7100 psi). Also discussed are tests made with Apollo 16 lunar soil and an ongoing investigation of a proposed dry mix/steam injection procedure for casting concrete on the Moon.

  20. Production of Lunar Concrete Using Molten Sulfur

    NASA Technical Reports Server (NTRS)

    Omar, Husam A.

    1993-01-01

    The United States has made a commitment to go back to the moon to stay in the early part of the next century. In order to achieve this objective it became evident to NASA that a Lunar Outpost will be needed to house scientists and astronauts who will be living on the moon for extended periods of time. A study has been undertaken by the authors and supported by NASA to study the feasibility of using lunar regolith with different binders such as molten sulfur, epoxy or hydraulic cement as a construction material for different lunar structures. The basic premise of this study is that it will be more logical and cost effective to manufacture lunar construction materials utilizing indigenous resources rather than transporting needed materials from earth. Lunar concrete (made from Hydraulic Cement and lunar soil) has been studied and suggested as the construction material of choice for some of the lunar projects. Unfortunately, its hydration requires water which is going to be a precious commodity on the moon. Therefore this study explores the feasibility of using binders other than hydraulic cement such as sulfur or epoxy with lunar regolith as a construction material. This report describes findings of this study which deals specifically with using molten sulfur as a binder for Lunar concrete. It describes laboratory experiments in which the sulfur to lunar soil simulant ratios by weight were varied to study the minimum amount of sulfur required to produce a particular strength. The compressive and tensile strengths of these mixes were evaluated. Metal and fiber glass fibers were added to some of the mixes to study their effects on the compressive and tensile strengths. This report also describes experiments where the sulfur is melted and mixed with the lunar regolith in a specially designed vacuum chamber. The properties of the produced concrete were compared to those of concrete produced under normal pressure.

  1. Acute effects and exposure to organic compounds in road maintenance workers exposed to asphalt

    SciTech Connect

    Norseth, T.; Waage, J.; Dale, I. )

    1991-01-01

    Subjective symptoms and exposure to organic compounds were recorded in road repair and construction workers. Abnormal fatigue, reduced appetite, laryngeal/pharyngeal irritation, and eye irritation were recorded more often in such workers handling asphalt than in a corresponding reference group without asphalt exposure. Mean daily exposure to volatile compounds was only occasionally above 1 ppm. Mean exposure to asphalt fume was 0.358 mg/m3. There was no correlation between symptoms and total amount of volatile compounds, but a significant positive correlation was demonstrated between symptoms and some substances. The highest correlation was found for 1, 2, 4 trimethyl benzene. Symptoms increased with increasing asphalt temperature and with increasing concentrations of asphalt fumes. Amine addition did not increase the sum of symptoms, but soft asphalt seems to result in fewer symptoms than the harder types. Symptoms were not related to external factors like weather, traffic density, or specific working operations. As preventive measures, asphalt temperature should be kept below 150 degrees C, fume concentrations below 0.40 mg/m3, and if possible, the use of harder asphalt types which also require high temperatures should be avoided.

  2. Remedial investigation/feasibility study analysis asphalt storage area, Elmendorf AFB, Alaska. Master's thesis

    SciTech Connect

    Miller, N.S.

    1993-01-01

    This report is focused on an abandoned material storage area located on Elmendorf Air Force Base (EAFB), Alaska. The site is located approximately 2000 feet from the east end of the east/west runway and includes approximately 25 acres. The site was used for asphalt storage and preparation activities during the 1940s and 1950s. Approximately 4,500 drums of asphalt and 29 drums of unknown materials have been abandoned at the site. The drums are located in 32 areas throughout the 25-acre site. Following several decades of exposure to the elements, many of the drums have corroded and leaked to the ground surface. Several acres of soil are inundated with liquid asphalt that has leaked from the drums. Depths of the asphalt range from 6 to 10 inches in areas where surface anomalies have created depressions, and thus a collection point for the asphalt. A 14-x 18-x 4 foot wood frame pit used to support previous asphalt operations is located at the north end of the site. The pit contains approximately 2300 gallons of asphalt. There are also locations where the soil appears to be contaminated by petroleum products other than asphalt.

  3. 75 FR 12988 - National Emission Standards for Hazardous Air Pollutants for Area Sources: Asphalt Processing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-18

    ... the asphalt processing and asphalt roofing manufacturing area source category (74 FR 63236). Following... specified in Executive Order 13132, Federalism (64 FR 43255, August 10, 1999). This action does not..., Consultation and Coordination with Indian Tribal Governments (65 FR 67249, November 9, 2000). This...

  4. Furfural modified asphalt obtained by using a Lewis acid as a catalyst

    SciTech Connect

    Memon, G.M.

    1996-12-31

    Asphalt is solid or semi-solid at room temperature, becomes soft and starts flowing upon heating, and becomes hard and brittle at very low temperatures. States have been facing problems such as cracking, rutting, and asphalt adhesion to aggregates in their asphaltic pavements for years. Many polymer additives have been used in asphalt to reduce these problems, but little work has been done using chemically modified products of asphalt to attempt to solve these serious problems of asphalt pavements. The above mentioned problems decrease the life of the pavements, resulting in an increase of maintenance and/or replacement costs. There are two types of cracking which can occur in asphalt pavement; one related to load, and the other related to thermal stress. The load-related cracking is known as fatigue cracking and is defined as fracture under repeated or cyclic stress having a maximum value of less than the tensile strength of the material. The thermal cracking occurs due to pavement shrinkage at low temperature causing the shrinkage stresses to exceed the tensile strength. FHWA researchers have found furfural to be a suitable candidate for functional group modification of asphalt. The modified product shows improved performance as well as improved rheological properties.

  5. Sulfur "Concrete" for Lunar Applications - Sublimation Concerns

    NASA Technical Reports Server (NTRS)

    Grugel, Richard N.; Toutanji, Houssam

    2006-01-01

    Melting sulfur and mixing it with an aggregate to form "concrete" is commercially well established and constitutes a material that is particularly well-suited for use in corrosive environments. Discovery of the mineral troilite (FeS) on the moon poses the question of extracting the sulfur for use as a lunar construction material. This would be an attractive alternative to conventional concrete as it does not require water. However, the viability of sulfur concrete in a lunar environment, which is characterized by lack of an atmosphere and extreme temperatures, is not well understood. Here it is assumed that the lunar ore can be mined, refined, and the raw sulfur melded with appropriate lunar regolith to form, for example, bricks. This study evaluates pure sulfur and two sets of small sulfur concrete samples that have been prepared using JSC-1 lunar stimulant and SiO2 powder as aggregate additions. Each set was subjected to extended periods in a vacuum environment to evaluate sublimation issues. Results from these experiments are presented and discussed within the context of the lunar environment.

  6. The optimization of concrete mixtures for use in highway applications

    NASA Astrophysics Data System (ADS)

    Moini, Mohamadreza

    . Conducted research enabled further reduction of cement contents to 250 kg/m3 (420 lb/yd3) as required for the design of sustainable concrete pavements. This research demonstrated that aggregate packing can be used in multiple ways as a tool to optimize the aggregates assemblies and achieve the optimal particle size distribution of aggregate blends. The SCMs, and air-entraining admixtures were selected to comply with existing WisDOT performance requirements and chemical admixtures were selected using the separate optimization study excluded from this thesis. The performance of different concrete mixtures was evaluated for fresh properties, strength development, and compressive and flexural strength ranging from 1 to 360 days. The methods and tools discussed in this research are applicable, but not limited to concrete pavement applications. The current concrete proportioning standards such as ACI 211 or current WisDOT roadway standard specifications (Part 5: Structures, Section 501: Concrete) for concrete have limited or no recommendations, methods or guidelines on aggregate optimization, the use of ternary aggregate blends (e.g., such as those used in asphalt industry), the optimization of SCMs (e.g., class F and C fly ash, slag, metakaolin, silica fume), modern superplasticizers (such as polycarboxylate ether, PCE) and air-entraining admixtures. This research has demonstrated that the optimization of concrete mixture proportions can be achieved by the use and proper selection of optimal aggregate blends and result in 12% to 35% reduction of cement content and also more than 50% enhancement of performance. To prove the proposed concrete proportioning method the following steps were performed: • The experimental aggregate packing was investigated using northern and southern source of aggregates from Wisconsin; • The theoretical aggregate packing models were utilized and results were compared with experiments; • Multiple aggregate optimization methods (e.g., optimal

  7. Characterization of asphalt cements modified with crumbed rubber from discarded tires. Final report

    SciTech Connect

    Daly, W.H.; Negulescu, I.I.

    1994-11-01

    The potential legislative requirement for incorporation of scrap rubber into asphalt blends mandated a thorough evaluation of the influence of scrap rubber additives on the physical properties and aging characteristics of rubber/asphalt blends. Blends with up to 20 percent ground vulcanized rubber (both crumb and 200 mesh powder particles) from recycled tires were prepared with asphalt cements of various grades (AC5 - AC30) and evaluated using DMA. Blends produced from powdered rubber particles exhibited Newtonian behavior at high temperatures; similar behavior was not observed with crumb rubber blends. The mechanical properties of asphalt-rubber blends depend upon the concentration of rubber additives, the particle dimensions, and the chemical composition of the asphalt.

  8. 10. CONCRETE BRIDGE, REINFORCED BEAM TYPE ON CONCRETE, SOUTH CAROLINA ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. CONCRETE BRIDGE, REINFORCED BEAM TYPE ON CONCRETE, SOUTH CAROLINA STATE HIGHWAY DEPARTMENT, COLUMBIA, SOUTH CAROLINA (photocopy of drawing) - Salkehatchie Bridge, State Route No. 64 spanning Salkehatchie River, Barnwell, Barnwell County, SC

  9. Evaluation of an eastern shale oil residue as an asphalt additive

    SciTech Connect

    Thomas, K.P.; Harnsberger, P.M.

    1995-09-01

    An evaluation of eastern shale oil (ESO) residue as an asphalt additive to reduce oxidative age hardening and moisture susceptibility was conducted by Western Research Institute (WRI). The ESO residue, have a viscosity of 23.9 Pa{lg_bullet}s at 60{degree}C (140{degree}F), was blended with three different petroleum-derived asphalts, ASD-1, AAK-1, and AAM-1, which are known to be very susceptible to oxidative aging. Rheological and infrared analyses of the unaged and aged asphalts and the blends were then conducted to evaluate oxidative age hardening. In addition, the petroleum-derived asphalts and the blends were coated onto three different aggregates, Lithonia granite (RA), a low-absorption limestone (RD), and a siliceous Gulf Coast gravel (RL), and compacted into briquettes. Successive freeze-thaw cycling was then conducted to evaluate the moisture susceptibility of the prepared briquettes. The rheological analyses of the unaged petroleum-derived asphalts and their respective blends indicate that the samples satisfy the rutting requirement. However, the aging indexes for the rolling thin film oven (RTFO)-aged and RTFO/pressure aging vessel (PAV)-aged samples indicate that the blends are stiffer than the petroleum-derived asphalts. This means that when in service the blends will be more prone to pavement embrittlement and fatigue cracking than the petroleum-derived asphalts. Infrared analyses were also conducted on the three petroleum-derived asphalts and the blends before and after RTFO/PAV aging. In general, upon RTFO/PAV aging, the amounts of carbonyls and sulfoxides in the samples increase, indicating that the addition of the ESO residue does not mitigate the chemical aging (oxidation) of the petroleum-derived asphalts. This information correlates with the rheological data and the aging indexes that were calculated for the petroleum-derived asphalts and the blends.

  10. Hanford Permanent Isolation Barrier Program: Asphalt technology data and status report - FY 1994

    SciTech Connect

    Freeman, H.D.; Romine, R.A.; Zacher, A.H.

    1994-09-01

    The asphalt layer within the Hanford Permanent Isolation Barrier (HPIB) is an important component of the overall design. This layer provides a RCRA equivalent backup to the overlying earthen layers in the unlikely event that these layers are not able to reduce the infiltration rate to less than 0.05 cm/yr. There is only limited amount of information on using asphalt for a moisture infiltration barrier over the long times required by the HPIB. Therefore, a number of activities are under way, as part of the Barrier Development Program, to obtain data on the performance of asphalt as a moisture barrier in a buried environment over a 1000-year period. These activities include (1) determining RCRA equivalency, (2) measurement of physical properties, (3) measurement of aging characteristics, and (4) relationship to ancient asphalt analogs. During FY 1994 progress was made on all of these activities. Studies were conducted both in the laboratory and on the prototype barrier constructed over the 216-B-57 crib in the 200 East Area on the Hanford Site. This report presents results obtained from the asphalt technology tasks during FY 1994. Also included are updates to planned activities for asphalt analogs and monitoring the asphalt test pad near the prototype barrier. Measurements of hydraulic conductivity on the HMAC portion of the prototype barrier show that the asphalt layers easily meet the RCRA standard of 1 {times} 10{sup -7} cm/s. In-place measurements using a new field falling head technique show an average of 3.66 {times} 10{sup -8} cm/s, while cores taken from the north end of the prototype and measured in a laboratory setup averaged 1.29 {times} 10{sup -9} cm/s. Measurements made on the fluid applied asphalt membrane (polymer-modified asphalt) show an extremely low permeability of less than 1 {times} 10{sup -11} cm/s.

  11. Fatigue behavior of high-strength concrete under marine conditions

    SciTech Connect

    Mor, A.

    1987-01-01

    In this study, 24 high-strength reinforced concrete beams were tested in fatigue under simulated marine conditions. Low-cycle, high-magnitude loading was imposed on beams, some of which were exposed to air, and others which were submerged in water. The beams were cycled at 1 Hz, to 80% of their yield capacity in negative and positive flexure. Four concrete mixes were compared. Half of the specimens were made with lightweight aggregate (LWA), and half were made with river gravel (NWA). Half of each group contained silica-fume as partial replacement of cement (13%). By manipulating the water/cement ratio, the 28-day compressive strength of all concretes was 9500 {plus minus} 300 psi. The previously reported phenomenon of water pumping through the cracks was observed, but did not appear to be directly related to the subsequent failure. When silica fume is added to the concrete mix, the adhesion is greatly improved. LWA concrete utilizes this additional adhesion effectively. NWA concrete with silica-fume, on the other hand, is not able to utilize the increased adhesion due to microcracking. Main findings of both the fatigue and pull-out bond tests are listed.

  12. Electrokinetic decontamination of concrete

    SciTech Connect

    Lomasney, H.

    1995-10-01

    The U.S. Department of Energy has assigned a priority to the advancement of technology for decontaminating concrete surfaces which have become contaminated with radionuclides, heavy metals, and toxic organics. This agency is responsible for decontamination and decommissioning of thousands of buildings. Electrokinetic extraction is one of the several innovative technologies which emerged in response to this initiative. This technique utilizes an electropotential gradient and the subsequent electrical transport mechanism to cause the controlled movement of ionics species, whereby the contaminants exit the recesses deep within the concrete. This report discusses the technology and use at the Oak Ridge k-25 plant.

  13. Sustainable construction: Composite use of tyres and ash in concrete

    SciTech Connect

    Snelson, D.G.; Kinuthia, J.M.; Davies, P.A.; Chang, S.R.

    2009-01-15

    An investigation was carried out to establish the physical, mechanical and chemical characteristics of a non-standard (unprocessed) pulverised fuel ash (PFA) and waste tyres from a former landfill site at the Power Station Hill near Church Village, South Wales, United Kingdom. Investigations are on-going to establish the suitability of the fly ash and/or tyres in road construction (embankment and pavement) and also in concrete to be used in the construction of the proposed highway. This paper reports on concrete-based construction where concrete blends (using various levels of PFA as partial replacement for Portland cement (PC), and shredded waste tyres (chips 15-20 mm) as aggregate replacement) were subjected to unconfined compressive strength tests to establish performance, hence, optimising mix designs. Strength development up to 180 days for the concrete made with PC-PFA blends as binders (PC-PFA concrete), with and without aggregate replacement with tyre chips, is reported. The binary PC-PFA concrete does not have good early strength but tends to improve at longer curing periods. The low early strength observed means that PC-PFA concrete cannot be used for structures, hence, only as low to medium strength applications such as blinding, low-strength foundations, crash barriers, noise reduction barriers, cycle paths, footpaths and material for pipe bedding.

  14. Used cooking oil as a green chemical admixture in concrete

    NASA Astrophysics Data System (ADS)

    Salmia, B.; Che Muda, Zakaria; Ashraful Alam, Md; Sidek, L. M.; Hidayah, B.

    2013-06-01

    According to National Statistics Approximately 1.35 billion gallons of used oil are generated yearly. With the increasing of the concrete usage, a more cost effective and economic new type of admixtures may give positive impacts on the Malaysian construction building as well as worldwide concrete usage. To objective of this is study is to investigate the effect of used cooking oil in terms of slump test, compressive strength test and rebound hammer. By adding the used cooking oil to the concrete, it increases the slump value from 4% to 72%. And the compressive strength have an increment from 1% to 16.8%. The used cooking oil obtains the optimum contribution to the concrete mix proportion of containing used cooking oil of 1.50% from the cement content. The result of used cooking oil from experimental program of slump value and compressive strength proved that used cooking oil have positive effects on replacement of commercially available superplasticizer.

  15. Assessment of porous asphalt pavement performance: hydraulics and water quality

    NASA Astrophysics Data System (ADS)

    Briggs, J. F.; Ballestero, T. P.; Roseen, R. M.; Houle, J. J.

    2005-05-01

    The objective of this study is to focus on the water quality treatment and hydraulic performance of a porous asphalt pavement parking lot in Durham, New Hampshire. The site was constructed in October 2004 to assess the suitability of porous asphalt pavement for stormwater management in cold climates. The facility consists of a 4-inch asphalt open-graded friction course layer overlying a high porosity sand and gravel base. This base serves as a storage reservoir in-between storms that can slowly infiltrate groundwater. Details on the design, construction, and cost of the facility will be presented. The porous asphalt pavements is qualitatively monitored for signs of distress, especially those due to cold climate stresses like plowing, sanding, salting, and freeze-thaw cycles. Life cycle predictions are discussed. Surface infiltration rates are measured with a constant head device built specifically to test high infiltration capacity pavements. The test measures infiltration rates in a single 4-inch diameter column temporarily sealed to the pavement at its base. A surface inundation test, as described by Bean, is also conducted as a basis for comparison of results (Bean, 2004). These tests assess infiltration rates soon after installation, throughout the winter, during snowmelt, after a winter of salting, sanding, and plowing, and after vacuuming in the spring. Frost penetration into the subsurface reservoir is monitored with a frost gauge. Hydrologic effects of the system are evaluated. Water levels are monitored in the facility and in surrounding wells with continuously logging pressure transducers. The 6-inch underdrain pipe that conveys excess water in the subsurface reservoir to a riprap pad is also continuously monitored for flow. Since porous asphalt pavement systems infiltrate surface water into the subsurface, it is important to assess whether water quality treatment performance in the subsurface reservoir is adequate. The assumed influent water quality is

  16. Mortar constituent of concrete under cyclic compression

    NASA Astrophysics Data System (ADS)

    Maher, A.; Darwin, D.

    1980-10-01

    The behavior of the mortar constituent of concrete under cyclic compression was studied and a simple analytic model was developed to represent its cyclic behavior. Experimental work consisted of monotonic and cyclic compressive loading of mortar. Two mixes were used, with proportions corresponding to concretes having water cement ratios of 0.5 and 0.6. Forty-four groups of specimens were tested at ages ranging from 5 to 70 days. complete monotonic and cyclic stress strain envelopes were obtained. A number of loading regimes were investigated, including cycles to a constant maximum strain. Major emphasis was placed on tests using relatively high stress cycles. Degradation was shown to be a continuous process and a function of both total strain and load history. No stability or fatigue limit was apparent.

  17. Evaluation of X-ray spectra transmitted by different concrete compositions

    NASA Astrophysics Data System (ADS)

    Costa, P. R.; Vieira, D. V.; Naccache, V. K.; Ferreira, K. R.; Priszkulnik, S.

    2015-11-01

    Additional shielding material must frequently be incorporated to medical facilities in order to comply with radiation protection requirements when using radiation sources. Typical materials for shielding walls, floor and ceiling are the lead, concrete and barite. In the present work, a group of four concrete compositions was evaluated by using broad beam transmission curves and transmitted spectra in the range of X-ray energies used for diagnostic imaging. The studied concretes were classified as ordinary concrete (Type C), concrete with addition of hematite (Types H1 and H2) and concrete with addition of steel grit (Type S). Concrete with steel grit shows be more efficient as shielding material of the three heavy types concrete studied. The two mixes of concrete and hematite are practically equivalent from the radioprotection point of view. However, the granulation difference between them might be important to other fields, as shielding is not the only function of concrete in the building structure. Although they are not as efficient as concrete with steel grit, they may be a shielding option in a facility with low shielding requirement.

  18. High-performance heavy concrete as a multi-purpose shield.

    PubMed

    Mortazavi, S M J; Mosleh-Shirazi, M A; Roshan-Shomal, P; Raadpey, N; Baradaran-Ghahfarokhi, M

    2010-12-01

    Concrete has long been used as a shield against high-energy photons and neutrons. In this study, colemanite and galena minerals (CoGa) were used for the production of an economical high-performance heavy concrete. To measure the gamma radiation attenuation of the CoGa concrete samples, they were exposed to a narrow beam of gamma rays emitted from a (60)Co radiotherapy unit. An Am-Be neutron source was used for assessing the shielding properties of the samples against neutrons. The compression strengths of both types of concrete mixes (CoGa and reference concrete) were investigated. The range of the densities of the heavy concrete samples was 4100-4650 kg m(-3), whereas it was 2300-2600 kg m(-3) in the ordinary concrete reference samples. The half-value layer of the CoGa concrete samples for (60)Co gamma rays was 2.49 cm; much less than that of ordinary concrete (6.0 cm). Moreover, CoGa concrete samples had a 10 % greater neutron absorption compared with reference concrete.

  19. Heidrun concrete TLP: Update

    SciTech Connect

    Munkejord, T.

    1995-10-01

    This paper gives a summary of the Heidrun substructure including tethers and foundations. The focus will although be on the concrete substructure. The Heidrun Field is located in 345 m water depth in the northern part of the Haltenbanken area, approximately 100N miles from the west coast of mid-Norway. The field is developed by means of a concrete Tension Leg Platform (TLP) by Conoco Norway Inc. The TLP will be moored by 16 steel tethers, arranged in groups of four per corner, which secure the substructure (hull) to the concrete foundations. A general view of the TLP is shown. The Heidrun TLP will be the northern most located platform in the North Sea when installed at Haltenbanken in 1995. Norwegian Contractors a.s (NC) is undertaking the Engineering, Procurement, Construction and Installation (EPCI) contract for the Heidrun TLP substructure. This comprises the complete delivery of the hull with two module support beams (MSB), including all mechanical outfitting. Furthermore, NC will perform all marine operations related to the substructure. For the concrete foundations NC has performed the detailed engineering work and has been responsible for the two to field and installation of the foundations.

  20. High temperature polymer concrete

    DOEpatents

    Fontana, J.J.; Reams, W.

    1984-05-29

    This invention is concerned with a polymer concrete composition, which is a two-component composition useful with many bases including metal. Component A, the aggregate composition, is broadly composed of silica, silica flour, portland cement, and acrylamide, whereas Component B, which is primarily vinyl and acrylyl reactive monomers, is a liquid system.