Sample records for asphyxia induced brain

  1. Antenatal dexamethasone before asphyxia promotes cystic neural injury in preterm fetal sheep by inducing hyperglycemia.

    PubMed

    Lear, Christopher A; Davidson, Joanne O; Mackay, Georgia R; Drury, Paul P; Galinsky, Robert; Quaedackers, Josine S; Gunn, Alistair J; Bennet, Laura

    2018-04-01

    Antenatal glucocorticoid therapy significantly improves the short-term systemic outcomes of prematurely born infants, but there is limited information available on their impact on neurodevelopmental outcomes in at-risk preterm babies exposed to perinatal asphyxia. Preterm fetal sheep (0.7 of gestation) were exposed to a maternal injection of 12 mg dexamethasone or saline followed 4 h later by asphyxia induced by 25 min of complete umbilical cord occlusion. In a subsequent study, fetuses received titrated glucose infusions followed 4 h later by asphyxia to examine the hypothesis that hyperglycemia mediated the effects of dexamethasone. Post-mortems were performed 7 days after asphyxia for cerebral histology. Maternal dexamethasone before asphyxia was associated with severe, cystic brain injury compared to diffuse injury after saline injection, with increased numbers of seizures, worse recovery of brain activity, and increased arterial glucose levels before, during, and after asphyxia. Glucose infusions before asphyxia replicated these adverse outcomes, with a strong correlation between greater increases in glucose before asphyxia and greater neural injury. These findings strongly suggest that dexamethasone exposure and hyperglycemia can transform diffuse injury into cystic brain injury after asphyxia in preterm fetal sheep.

  2. Fetal asphyxia induces acute and persisting changes in the ceramide metabolism in rat brain[S

    PubMed Central

    Vlassaks, Evi; Mencarelli, Chiara; Nikiforou, Maria; Strackx, Eveline; Ferraz, Maria J.; Aerts, Johannes M.; De Baets, Marc H.; Martinez-Martinez, Pilar; Gavilanes, Antonio W. D.

    2013-01-01

    Fetal asphyctic preconditioning, induced by a brief episode of experimental hypoxia-ischemia, offers neuroprotection to a subsequent more severe asphyctic insult at birth. Extensive cell stress and apoptosis are important contributing factors of damage in the asphyctic neonatal brain. Because ceramide acts as a second messenger for multiple apoptotic stimuli, including hypoxia/ischemia, we sought to investigate the possible involvement of the ceramide pathway in endogenous neuroprotection induced by fetal asphyctic preconditioning. Global fetal asphyxia was induced in rats by clamping both uterine and ovarian vasculature for 30 min. Fetal asphyxia resulted in acute changes in brain ceramide/sphingomyelin metabolic enzymes, ceramide synthase 1, 2, and 5, acid sphingomyelinase, sphingosine-1-phosphate phosphatase, and the ceramide transporter. This observation correlated with an increase in neuronal apoptosis and in astrocyte number. After birth, ceramide and sphingomyelin levels remained high in fetal asphyxia brains, suggesting that a long-term regulation of the ceramide pathway may be involved in the mechanism of tolerance to a subsequent, otherwise lethal, asphyctic event. PMID:23625371

  3. Dual role of astrocytes in perinatal asphyxia injury and neuroprotection.

    PubMed

    Romero, J; Muñiz, J; Logica Tornatore, T; Holubiec, M; González, J; Barreto, G E; Guelman, L; Lillig, C H; Blanco, E; Capani, F

    2014-04-17

    Perinatal asphyxia represents an important cause of severe neurological deficits including delayed mental and motor development, epilepsy, major cognitive deficits and blindness. However, at the moment, most of the therapeutic strategies were not well targeted toward the processes that induced the brain injury during perinatal asphyxia. Traditionally, experimental research focused on neurons, whereas astrocytes have been more related with the damage mechanisms of perinatal asphyxia. In this work, we propose to review possible protective as well as deleterious roles of astrocytes in the asphyctic brain with the aim to stimulate further research in this area of perinatal asphyxia still not well studied. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  4. Could Perinatal Asphyxia Induce a Synaptopathy? New Highlights from an Experimental Model

    PubMed Central

    Herrera, María Inés; Udovin, Lucas Daniel; Kusnier, Carlos; Kölliker-Frers, Rodolfo; de Souza, Wanderley

    2017-01-01

    Birth asphyxia also termed perinatal asphyxia is an obstetric complication that strongly affects brain structure and function. Central nervous system is highly susceptible to oxidative damage caused by perinatal asphyxia while activation and maturity of the proper pathways are relevant to avoiding abnormal neural development. Perinatal asphyxia is associated with high morbimortality in term and preterm neonates. Although several studies have demonstrated a variety of biochemical and molecular pathways involved in perinatal asphyxia physiopathology, little is known about the synaptic alterations induced by perinatal asphyxia. Nearly 25% of the newborns who survive perinatal asphyxia develop neurological disorders such as cerebral palsy and certain neurodevelopmental and learning disabilities where synaptic connectivity disturbances may be involved. Accordingly, here we review and discuss the association of possible synaptic dysfunction with perinatal asphyxia on the basis of updated evidence from an experimental model. PMID:28326198

  5. Acid extrusion via blood–brain barrier causes brain alkalosis and seizures after neonatal asphyxia

    PubMed Central

    Helmy, Mohamed M.; Ruusuvuori, Eva; Watkins, Paul V.; Voipio, Juha; Kanold, Patrick O.; Kaila, Kai

    2012-01-01

    Birth asphyxia is often associated with a high seizure burden that is predictive of poor neurodevelopmental outcome. The mechanisms underlying birth asphyxia seizures are unknown. Using an animal model of birth asphyxia based on 6-day-old rat pups, we have recently shown that the seizure burden is linked to an increase in brain extracellular pH that consists of the recovery from the asphyxia-induced acidosis, and of a subsequent plateau level well above normal extracellular pH. In the present study, two-photon imaging of intracellular pH in neocortical neurons in vivo showed that pH changes also underwent a biphasic acid–alkaline response, resulting in an alkaline plateau level. The mean alkaline overshoot was strongly suppressed by a graded restoration of normocapnia after asphyxia. The parallel post-asphyxia increase in extra- and intracellular pH levels indicated a net loss of acid equivalents from brain tissue that was not attributable to a disruption of the blood–brain barrier, as demonstrated by a lack of increased sodium fluorescein extravasation into the brain, and by the electrophysiological characteristics of the blood–brain barrier. Indeed, electrode recordings of pH in the brain and trunk demonstrated a net efflux of acid equivalents from the brain across the blood–brain barrier, which was abolished by the Na/H exchange inhibitor, N-methyl-isobutyl amiloride. Pharmacological inhibition of Na/H exchange also suppressed the seizure activity associated with the brain-specific alkalosis. Our findings show that the post-asphyxia seizures are attributable to an enhanced Na/H exchange-dependent net extrusion of acid equivalents across the blood–brain barrier and to consequent brain alkalosis. These results suggest targeting of blood–brain barrier-mediated pH regulation as a novel approach in the prevention and therapy of neonatal seizures. PMID:23125183

  6. Understanding the Full Spectrum of Organ Injury Following Intrapartum Asphyxia

    PubMed Central

    LaRosa, Domenic A.; Ellery, Stacey J.; Walker, David W.; Dickinson, Hayley

    2017-01-01

    Birth asphyxia is a significant global health problem, responsible for ~1.2 million neonatal deaths each year worldwide. Those who survive often suffer from a range of health issues including brain damage—manifesting as cerebral palsy (CP)—respiratory insufficiency, cardiovascular collapse, and renal dysfunction, to name a few. Although the majority of research is directed toward reducing the brain injury that results from intrapartum birth asphyxia, the multi-organ injury observed in surviving neonates is of equal importance. Despite the advent of hypothermia therapy for the treatment of hypoxic–ischemic encephalopathy (HIE), treatment options following asphyxia at birth remain limited, particularly in low-resource settings where the incidence of birth asphyxia is highest. Furthermore, although cooling of the neonate results in improved neurological outcomes for a small proportion of treated infants, it does not provide any benefit to the other organ systems affected by asphyxia at birth. The aim of this review is to summarize the current knowledge of the multi-organ effects of intrapartum asphyxia, with particular reference to the findings from our laboratory using the precocial spiny mouse to model birth asphyxia. Furthermore, we reviewed the current treatments available for neonates who have undergone intrapartum asphyxia, and highlight the emergence of maternal dietary creatine supplementation as a preventative therapy, which has been shown to provide multi-organ protection from birth asphyxia-induced injury in our preclinical studies. This cheap and effective nutritional supplement may be the key to reducing birth asphyxia-induced death and disability, particularly in low-resource settings where current treatments are unavailable. PMID:28261573

  7. Effect of maternal administration of allopregnanolone before birth asphyxia on neonatal hippocampal function in the spiny mouse.

    PubMed

    Fleiss, Bobbi; Parkington, Helena C; Coleman, Harold A; Dickinson, Hayley; Yawno, Tamara; Castillo-Melendez, Margie; Hirst, Jon J; Walker, David W

    2012-01-18

    Clinically, treatment options where fetal distress is anticipated or identified are limited. Allopregnanolone is an endogenous steroid, that positively modulates the GABA(A) receptor, and that has anti-apoptotic and anti-excitotoxic actions, reducing brain damage in adult animal models of brain injury. We sought to determine if prophylactic treatment of the pregnant female with a single dose of this steroid could reduce birth asphyxia-induced losses in hippocampal function at 5 days of age (P5) in spiny mouse neonates (Acomys cahirinus). At 37 days gestation (term=39 days) and 1h before inducing birth asphyxia, spiny mice dams were injected subcutaneously (0.2 ml) with either 3mg/kg allopregnanolone or 20% w/v β-cyclodextrin vehicle. One hour later, fetuses were either delivered immediately by caesarean section (control group) or exposed to 7.5 min of in utero asphyxia, causing acidosis and hypoxia. At P5, ex vivo hippocampal plasticity was assessed, or brains collected to determine cell proliferation (proliferating cell nuclear antigen; PCNA) or calcium channel expression (inositol trisphosphate receptor type 1; IP(3)R1) using immunohistochemistry. Allopregnanolone partially prevented the decrease in long term potentiation at P5, and the asphyxia-induced increase in IP(3)R1 expression in CA1 pyramidal neurons. There was no effect of allopregnanolone on the asphyxia induced impairment of the input/output (I/O) curve and paired-pulse facilitation (PPF). In control birth pups, maternal allopregnanolone treatment caused significant changes in short term post-synaptic plasticity and also reduced hippocampal proliferation at P5. These findings show that allopregnanolone can modulate hippocampal development and synaptic function in a normoxic or hypoxic environment, possibly by modifying calcium metabolism. Best practice for treatment dose and timing of treatment will need to be carefully considered. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Blockade of D1 dopaminergic transmission alleviates c-fos induction and cleaved caspase-3 expression in the brains of rat pups exposed to prenatal cocaine or perinatal asphyxia.

    PubMed

    Mitchell, Ellen S; Snyder-Keller, Abigail

    2003-07-01

    Hypoxia due to uterine vasoconstriction may be an important cause of the teratogenic consequences of prenatal cocaine exposure. We used immediate-early gene and cleaved caspase-3 expression patterns to monitor fetal brain regions affected by intrauterine hypoxia and prenatal cocaine and pretreatment with the D1 dopamine receptor antagonist SCH 23390 to determine how much of the induction observed was due to dopamine. Both cocaine binge (3 x 15 mg/kg) and perinatal asphyxia on embryonic day 22 (E22) induced c-fos in the striatum as well as in several other brain regions within 3 h after treatment. Maternal administration of a D1 dopamine antagonist, SCH 23390, before either cocaine or asphyxia exposure dramatically reduced the numbers of Fos-immunoreactive cells in the striatum as well as in many other brain regions. Cells immunoreactive for cleaved caspase-3 expression were more numerous after perinatal asphyxia than after prenatal cocaine exposure in most brain regions 24 h after C-section. SCH 23390 decreased caspase-3 expression after both birth insults, indicating that the increased incidence of apoptosis is related to overactivation of dopaminergic pathways.

  9. Subchronic perinatal asphyxia increased anxiety-and depression-like behaviors in the rat offspring.

    PubMed

    Sedláčková, Natália; Krajčiová, Martina; Koprdová, Romana; Ujházy, Eduard; Brucknerová, Ingrid; Mach, Mojmír

    2014-01-01

    Perinatal asphyxia is one of the major cause of mortality in newborns and cause of neurological disorders in adulthood. Brain damage is of the most concern due to high sensitivity of nervous system to suboptimal intrauterine oxygen condition. The aim of this study was to assess effect of subchronic prenatal asphyxia (SPA) during sensitive stages of brain maturation on behavioral changes in rats, as a method of prenatal programming of anxiety and depression-like behavior. Pregnant Wistar/DV females were exposed to environment containing lower oxygen (10.5% O2) during sensitive stages of brain maturation (day 19-20 of gestation) for 4h a day and anxiety- and depression-like behaviors in offspring were assessed using battery of behavioral tests--Open field (OF), Elevated plus maze (EPM), Light/dark test (L/D), Forced swim test (FST), and Stress induced hyperthermia (SIH). OF did not induced changes of locomotor and exploration activities. The anxiety-like behavior was induced by SPA in EPM and L/D. These results were significant in males SPA group only. The higher response to the stress stimulus in SIH was recorded in both males and females SPA group. The intensity of climbing on the walls of cylinder in FST in males SPA group was significantly decreased indicating depression-like behavior in adulthood. In conclusion, we found out that perinatal asphyxia on 19th and 20th day of gestation caused anxiety- and depression-like behaviors in the rat offspring. Our model of SPA has proved to be useful to study the conditions of asphyxia during pregnancy, and could be suitable model for studies uncovering the mechanisms of prenatal programming of psychiatric diseases.

  10. Effects of birth asphyxia on neonatal hippocampal structure and function in the spiny mouse.

    PubMed

    Fleiss, B; Coleman, H A; Castillo-Melendez, M; Ireland, Z; Walker, D W; Parkington, H C

    2011-11-01

    Studies of human neonates, and in animal experiments, suggest that birth asphyxia results in functional compromise of the hippocampus, even when structural damage is not observable or resolves in early postnatal life. The aim of this study was to determine if changes in hippocampal function occur in a model of birth asphyxia in the precocial spiny mouse where it is reported there is no major lesion or infarct. Further, to assess if, as in human infants, this functional deficit has a sex-dependent component. At 37 days gestation (term=39 days) spiny mice fetuses were either delivered immediately by caesarean section (control group) or exposed to 7.5min of in utero asphyxia causing systemic acidosis and hypoxia. At 5 days of age hippocampal function was assessed ex vivo in brain slices, or brains were collected for examination of structure or protein expression. This model of birth asphyxia did not cause infarct or cystic lesion in the postnatal day 5 (P5) hippocampus, and the number of proliferating or pyknotic cells in the hippocampus was unchanged, although neuronal density in the CA1 and CA3 was increased. Protein expression of synaptophysin, brain-derived neurotrophic factor (BDNF), and the inositol trisphosphate receptor 1 (IP(3)R1) were all significantly increased after birth asphyxia, while long-term potentiation (LTP), paired pulse facilitation (PPF), and post-tetanic potentiation (PTP) were all reduced at P5 by birth asphyxia. In control P5 pups, PPF and synaptic fatigue were greater in female compared to male pups, and after birth asphyxia PPF and synaptic fatigue were reduced to a greater extent in female vs. male pups. In contrast, the asphyxia-induced increase in synaptophysin expression and neuronal density were greater in male pups. Thus, birth asphyxia in this precocial species causes functional deficits without major structural damage, and there is a sex-dependent effect on the hippocampus. This may be a clinically relevant model for assessing treatments delivered either before or after birth to protect this vulnerable region of the developing brain. Copyright © 2011 ISDN. Published by Elsevier Ltd. All rights reserved.

  11. Expression of erythropoietin and its receptor in the brain of late-gestation fetal sheep, and responses to asphyxia caused by umbilical cord occlusion.

    PubMed

    Castillo-Meléndez, Margie; Yan, Edwin; Walker, David W

    2005-01-01

    Asphyxia and hypoxia are common threats faced by the fetus in utero. In late-gestation fetal sheep, asphyxia produced by umbilical cord occlusion (UCO) results in widespread lipid peroxidation and apoptosis. Adaptive mechanisms that might limit fetal brain damage include induction of the hemopoietic cytokine, erythropoietin (EPO). In unanesthetized fetal sheep, we investigated if 1 or 2 bouts of brief asphyxia (UCO for 10 min) induced EPO and EPO type I receptor (EPO-R) expressions, with the second UCO repeated 48 h after the first. Fetal brains were recovered 48 h after either sham, 1 x or 2 x UCO at 129-133 (term approximately 147) days of gestation and prepared for immunocytochemistry. In age-matched control brain, low levels of EPO and EPO-R proteins were present in oligodendrocytes (OLs), periventricular and cortical white matter (WM), with no EPO and very low EPO-R expression in neurons. After 1 x UCO, EPO and EPO-R expressions were increased in astrocytes (periventricular and cortical WM, striatum, corpus callosum), choroid plexus epithelial cells, scattered neurons in cortical layers IV-VI, hippocampal CA1 neurons, and in the molecular and granule layers of the cerebellum. After 2 x UCO, higher levels of EPO and EPO-R occurred in the periventricular and cortical WM, corpus callosum, hippocampal CA1, and in neurons of all cortical layers. Paradoxically, EPO and EPO-R were now lower in hippocampal CA1 neurons and cerebellar molecular and granule cell layers. Few OLs expressed EPO or EPO-R after 1 x or 2 x UCO. Thus, brief asphyxia induces EPO and EPO-R in fetal astrocytes, but only after repeated asphyxial insult in neurons. Whether this is a response to increased injury, or represents an adaptive response that limits further cell death and brain damage awaits further investigation.

  12. Experimental modelling of the consequences of brief late gestation asphyxia on newborn lamb behaviour and brain structure.

    PubMed

    Castillo-Melendez, Margie; Baburamani, Ana A; Cabalag, Carlos; Yawno, Tamara; Witjaksono, Anissa; Miller, Suzie L; Walker, David W

    2013-01-01

    Brief but severe asphyxia in late gestation or at the time of birth may lead to neonatal hypoxic ischemic encephalopathy and is associated with long-term neurodevelopmental impairment. We undertook this study to examine the consequences of transient in utero asphyxia in late gestation fetal sheep, on the newborn lamb after birth. Surgery was undertaken at 125 days gestation for implantation of fetal catheters and placement of a silastic cuff around the umbilical cord. At 132 days gestation (0.89 term), the cuff was inflated to induce umbilical cord occlusion (UCO), or sham (control). Fetal arterial blood samples were collected for assessment of fetal wellbeing and the pregnancy continued until birth. At birth, behavioral milestones for newborn lambs were recorded over 24 h, after which the lambs were euthanased for brain collection and histopathology assessments. After birth, UCO lambs displayed significant latencies to (i) use all four legs, (ii) attain a standing position, (iii) find the udder, and (iv) successfully suckle--compared to control lambs. Brains of UCO lambs showed widespread pathologies including cell death, white matter disruption, intra-parenchymal hemorrhage and inflammation, which were not observed in full term control brains. UCO resulted in some preterm births, but comparison with age-matched preterm non-UCO control lambs showed that prematurity per se was not responsible for the behavioral delays and brain structural abnormalities resulting from the in utero asphyxia. These results demonstrate that a single, brief fetal asphyxic episode in late gestation results in significant grey and white matter disruption in the developing brain, and causes significant behavioral delay in newborn lambs. These data are consistent with clinical observations that antenatal asphyxia is causal in the development of neonatal encephalopathy and provide an experimental model to advance our understanding of neuroprotective therapies.

  13. The effects of dexamethasone on post-asphyxial cerebral oxygenation in the preterm fetal sheep

    PubMed Central

    Lear, Christopher A; Koome, Miriam E; Davidson, Joanne O; Drury, Paul P; Quaedackers, Josine S; Galinsky, Robert; Gunn, Alistair J; Bennet, Laura

    2014-01-01

    Exposure to clinical doses of the glucocorticoid dexamethasone increases brain activity and causes seizures in normoxic preterm fetal sheep without causing brain injury. In contrast, the same treatment after asphyxia increased brain injury. We hypothesised that increased injury was in part mediated by a mismatch between oxygen demand and oxygen supply. In preterm fetal sheep at 0.7 gestation we measured cerebral oxygenation using near-infrared spectroscopy, electroencephalographic (EEG) activity, and carotid blood flow (CaBF) from 24 h before until 72 h after asphyxia induced by 25 min of umbilical cord occlusion. Ewes received dexamethasone intramuscularly (12 mg 3 ml–1) or saline 15 min after the end of asphyxia. Fetuses were studied for 3 days after occlusion. During the first 6 h of recovery after asphyxia, dexamethasone treatment was associated with a significantly greater fall in CaBF (P < 0.05), increased carotid vascular resistance (P < 0.001) and a greater fall in cerebral oxygenation as measured by the difference between oxygenated and deoxygenated haemoglobin (delta haemoglobin; P < 0.05). EEG activity was similarly suppressed in both groups. From 6 to 10 h onward, dexamethasone treatment was associated with a return of CaBF to saline control levels, increased EEG power (P < 0.005), greater epileptiform transient activity (P < 0.001), increased oxidised cytochrome oxidase (P < 0.05) and an attenuated increase in [delta haemoglobin] (P < 0.05). In conclusion, dexamethasone treatment after asphyxia is associated with greater hypoperfusion in the critical latent phase, leading to impaired intracerebral oxygenation that may exacerbate neural injury after asphyxia. PMID:25384775

  14. Perinatal Asphyxia and Brain Development: Mitochondrial Damage Without Anatomical or Cellular Losses.

    PubMed

    Lima, Jean Pierre Mendes; Rayêe, Danielle; Silva-Rodrigues, Thaia; Pereira, Paula Ribeiro Paes; Mendonca, Ana Paula Miranda; Rodrigues-Ferreira, Clara; Szczupak, Diego; Fonseca, Anna; Oliveira, Marcus F; Lima, Flavia Regina Souza; Lent, Roberto; Galina, Antonio; Uziel, Daniela

    2018-03-26

    Perinatal asphyxia remains a significant cause of neonatal mortality and is associated with long-term neurodegenerative disorders. In the present study, we evaluated cellular and subcellular damages to brain development in a model of mild perinatal asphyxia. Survival rate in the experimental group was 67%. One hour after the insult, intraperitoneally injected Evans blue could be detected in the fetuses' brains, indicating disruption of the blood-brain barrier. Although brain mass and absolute cell numbers (neurons and non-neurons) were not reduced after perinatal asphyxia immediately and in late brain development, subcellular alterations were detected. Cortical oxygen consumption increased immediately after asphyxia, and remained high up to 7 days, returning to normal levels after 14 days. We observed an increased resistance to mitochondrial membrane permeability transition, and calcium buffering capacity in asphyxiated animals from birth to 14 days after the insult. In contrast to ex vivo data, mitochondrial oxygen consumption in primary cell cultures of neurons and astrocytes was not altered after 1% hypoxia. Taken together, our results demonstrate that although newborns were viable and apparently healthy, brain development is subcellularly altered by perinatal asphyxia. Our findings place the neonate brain mitochondria as a potential target for therapeutic protective interventions.

  15. Perinatal Asphyxia Reduces Dentate Granule Cells and Exacerbates Methamphetamine-Induced Hyperlocomotion in Adulthood

    PubMed Central

    Wakuda, Tomoyasu; Matsuzaki, Hideo; Suzuki, Katsuaki; Iwata, Yasuhide; Shinmura, Chie; Suda, Shiro; Iwata, Keiko; Yamamoto, Shigeyuki; Sugihara, Genichi; Tsuchiya, Kenji J.; Ueki, Takatoshi; Nakamura, Kazuhiko; Nakahara, Daiichiro; Takei, Nori; Mori, Norio

    2008-01-01

    Background Obstetric complications have been regarded as a risk factor for schizophrenia later in life. One of the mechanisms underlying the association is postulated to be a hypoxic process in the brain in the offspring around the time of birth. Hippocampus is one of the brain regions implicated in the late-onset dopaminergic dysfunction associated with hypoxic obstetric complications. Methodology/Principal Findings We used an animal model of perinatal asphyxia, in which rat pups were exposed to 15 min of intrauterine anoxia during Cesarean section birth. At 6 and 12 weeks after birth, the behavior of the pups was assessed using a methamphetamine-induced locomotion test. In addition, the histopathology of the hippocampus was examined by means of stereology. At 6 weeks, there was no change in the methamphetamine-induced locomotion. However, at 12 weeks of age, we found an elevation in methamphetamine-induced locomotor activity, which was associated with an increase of dopamine release in the nucleus accumbens. At the same age, we also found a reduction of the dentate granule cells of the hippocampus. Conclusions/Significance These results suggest that the dopaminergic dysregulation after perinatal asphyxia is associated with a reduction in hippocampal dentate granule cells, and this may partly contribute to the pathogenesis of schizophrenia. PMID:18985150

  16. Perinatal asphyxia: CNS development and deficits with delayed onset

    PubMed Central

    Herrera-Marschitz, Mario; Neira-Pena, Tanya; Rojas-Mancilla, Edgardo; Espina-Marchant, Pablo; Esmar, Daniela; Perez, Ronald; Muñoz, Valentina; Gutierrez-Hernandez, Manuel; Rivera, Benjamin; Simola, Nicola; Bustamante, Diego; Morales, Paola; Gebicke-Haerter, Peter J.

    2013-01-01

    Perinatal asphyxia constitutes a prototype of obstetric complications occurring when pulmonary oxygenation is delayed or interrupted. The primary insult relates to the duration of the period lacking oxygenation, leading to death if not re-established. Re-oxygenation leads to a secondary insult, related to a cascade of biochemical events required for restoring proper function. Perinatal asphyxia interferes with neonatal development, resulting in long-term deficits associated to mental and neurological diseases with delayed clinical onset, by mechanisms not yet clarified. In the experimental scenario, the effects observed long after perinatal asphyxia have been explained by overexpression of sentinel proteins, such as poly(ADP-ribose) polymerase-1 (PARP-1), competing for NAD+ during re-oxygenation, leading to the idea that sentinel protein inhibition constitutes a suitable therapeutic strategy. Asphyxia induces transcriptional activation of pro-inflammatory factors, in tandem with PARP-1 overactivation, and pharmacologically induced PARP-1 inhibition also down-regulates the expression of proinflammatory cytokines. Nicotinamide has been proposed as a suitable PARP-1 inhibitor. Its effect has been studied in an experimental model of global hypoxia in rats. In that model, the insult is induced by immersing rat fetus into a water bath for various periods of time. Following asphyxia, the pups are delivered, treated, and nursed by surrogate dams, pending further experiments. Nicotinamide rapidly distributes into the brain following systemic administration, reaching steady state concentrations sufficient to inhibit PARP-1 activity for several hours, preventing several of the long-term consequences of perinatal asphyxia, supporting the idea that nicotinamide constitutes a lead for exploring compounds with similar or better pharmacological profiles. PMID:24723845

  17. Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and frequency-domain spectroscopy

    NASA Astrophysics Data System (ADS)

    Fantini, Sergio; Hueber, Dennis; Franceschini, Maria Angela; Gratton, Enrico; Rosenfeld, Warren; Stubblefield, Phillip G.; Maulik, Dev; Stankovic, Miljan R.

    1999-06-01

    We have used continuous-wave (CW) and frequency-domain spectroscopy to investigate the optical properties of the newborn piglet brain in vivo and non-invasively. Three anaesthetized, intubated, ventilated and instrumented newborn piglets were placed into a stereotaxic instrument for optimal experimental stability, reproducible probe-to-scalp optical contact and 3D adjustment of the optical probe. By measuring the absolute values of the brain absorption and reduced scattering coefficients at two wavelengths (758 and 830 nm), frequency-domain spectroscopy provided absolute readings (in contrast to the relative readings of CW spectroscopy) of cerebral haemoglobin concentration and saturation during experimentally induced perturbations in cerebral haemodynamics and oxygenation. Such perturbations included a modulation of the inspired oxygen concentration, transient brain asphyxia, carotid artery occlusion and terminal brain asphyxia. The baseline cerebral haemoglobin saturation and concentration, measured with frequency-domain spectroscopy, were about 60% and 42 µM respectively. The cerebral saturation values ranged from a minimum of 17% (during transient brain asphyxia) to a maximum of 80% (during recovery from transient brain asphyxia). To analyse the CW optical data, we have (a) derived a mathematical relationship between the cerebral optical properties and the differential pathlength factor and (b) introduced a method based on the spatial dependence of the detected intensity (dc slope method). The analysis of the cerebral optical signals associated with the arterial pulse and with respiration demonstrates that motion artefacts can significantly affect the intensity recorded from a single optode pair. Motion artefacts can be strongly reduced by combining data from multiple optodes to provide relative readings in the dc slope method. We also report significant biphasic changes (initial decrease and successive increase) in the reduced scattering coefficient measured in the brain after the piglet had been sacrificed.

  18. Effect of neonatal asphyxia on the impairment of the auditory pathway by recording auditory brainstem responses in newborn piglets: a new experimentation model to study the perinatal hypoxic-ischemic damage on the auditory system.

    PubMed

    Alvarez, Francisco Jose; Revuelta, Miren; Santaolalla, Francisco; Alvarez, Antonia; Lafuente, Hector; Arteaga, Olatz; Alonso-Alconada, Daniel; Sanchez-del-Rey, Ana; Hilario, Enrique; Martinez-Ibargüen, Agustin

    2015-01-01

    Hypoxia-ischemia (HI) is a major perinatal problem that results in severe damage to the brain impairing the normal development of the auditory system. The purpose of the present study is to study the effect of perinatal asphyxia on the auditory pathway by recording auditory brain responses in a novel animal experimentation model in newborn piglets. Hypoxia-ischemia was induced to 1.3 day-old piglets by clamping 30 minutes both carotid arteries by vascular occluders and lowering the fraction of inspired oxygen. We compared the Auditory Brain Responses (ABRs) of newborn piglets exposed to acute hypoxia/ischemia (n = 6) and a control group with no such exposure (n = 10). ABRs were recorded for both ears before the start of the experiment (baseline), after 30 minutes of HI injury, and every 30 minutes during 6 h after the HI injury. Auditory brain responses were altered during the hypoxic-ischemic insult but recovered 30-60 minutes later. Hypoxia/ischemia seemed to induce auditory functional damage by increasing I-V latencies and decreasing wave I, III and V amplitudes, although differences were not significant. The described experimental model of hypoxia-ischemia in newborn piglets may be useful for studying the effect of perinatal asphyxia on the impairment of the auditory pathway.

  19. Experimental Modelling of the Consequences of Brief Late Gestation Asphyxia on Newborn Lamb Behaviour and Brain Structure

    PubMed Central

    Yawno, Tamara; Witjaksono, Anissa; Miller, Suzie L.; Walker, David W.

    2013-01-01

    Brief but severe asphyxia in late gestation or at the time of birth may lead to neonatal hypoxic ischemic encephalopathy and is associated with long-term neurodevelopmental impairment. We undertook this study to examine the consequences of transient in utero asphyxia in late gestation fetal sheep, on the newborn lamb after birth. Surgery was undertaken at 125 days gestation for implantation of fetal catheters and placement of a silastic cuff around the umbilical cord. At 132 days gestation (0.89 term), the cuff was inflated to induce umbilical cord occlusion (UCO), or sham (control). Fetal arterial blood samples were collected for assessment of fetal wellbeing and the pregnancy continued until birth. At birth, behavioral milestones for newborn lambs were recorded over 24 h, after which the lambs were euthanased for brain collection and histopathology assessments. After birth, UCO lambs displayed significant latencies to (i) use all four legs, (ii) attain a standing position, (iii) find the udder, and (iv) successfully suckle - compared to control lambs. Brains of UCO lambs showed widespread pathologies including cell death, white matter disruption, intra-parenchymal hemorrhage and inflammation, which were not observed in full term control brains. UCO resulted in some preterm births, but comparison with age-matched preterm non-UCO control lambs showed that prematurity per se was not responsible for the behavioral delays and brain structural abnormalities resulting from the in utero asphyxia. These results demonstrate that a single, brief fetal asphyxic episode in late gestation results in significant grey and white matter disruption in the developing brain, and causes significant behavioral delay in newborn lambs. These data are consistent with clinical observations that antenatal asphyxia is causal in the development of neonatal encephalopathy and provide an experimental model to advance our understanding of neuroprotective therapies. PMID:24223120

  20. [Hypothermia for intracranial hypertension].

    PubMed

    Bruder, N; Velly, L; Codaccioni, J-L

    2009-04-01

    There is a large body of experimental evidence showing benefits of deliberate mild hypothermia (33-35 degrees C) on the injured brain as well as an improvement of neurological outcome after cardiac arrest in humans. However, the clinical evidence of any benefit of hypothermia following stroke, brain trauma and neonatal asphyxia is still lacking. Controversial results have been published in patients with brain trauma or neonatal asphyxia. Hypothermia can reduce the elevation of intracranial pressure, through mechanisms not completely understood. Hypothermia-induced hypocapnia should have a role on the reduction of intracranial pressure. The temperature target is unknown but no additional benefit was found below 34 degrees C. The duration of deliberate hypothermia for the treatment of elevated intracranial pressure might be at least 48 hours, and the subsequent rewarming period must be very slow to prevent adverse effects.

  1. Localized intestinal perforations as a potential complication of brain hypothermic therapy for perinatal asphyxia.

    PubMed

    Nishizaki, Naoto; Maiguma, Atsuko; Obinata, Kaoru; Okazaki, Tadaharu; Shimizu, Toshiaki

    2016-01-01

    Brain hypothermic therapy (BHT) is becoming a frequently used standard of care for perinatal asphyxia. Although cardiovascular side effects, coagulation disorders, renal impairment, electrolyte abnormalities, impaired liver function, opportunistic infections, and skin lesions are well-known adverse effects of BHT in newborns, little information is available on the clinical features of intestinal perforation-related BHT. We herein report a case of therapeutic brain cooling for perinatal asphyxia complicated by localized intestinal perforation. In practice, the neonatologist should be aware that intestinal perforation in an infant with perinatal asphyxia is possible, particularly following BHT.

  2. Asphyxia-activated corticocardiac signaling accelerates onset of cardiac arrest.

    PubMed

    Li, Duan; Mabrouk, Omar S; Liu, Tiecheng; Tian, Fangyun; Xu, Gang; Rengifo, Santiago; Choi, Sarah J; Mathur, Abhay; Crooks, Charles P; Kennedy, Robert T; Wang, Michael M; Ghanbari, Hamid; Borjigin, Jimo

    2015-04-21

    The mechanism by which the healthy heart and brain die rapidly in the absence of oxygen is not well understood. We performed continuous electrocardiography and electroencephalography in rats undergoing experimental asphyxia and analyzed cortical release of core neurotransmitters, changes in brain and heart electrical activity, and brain-heart connectivity. Asphyxia stimulates a robust and sustained increase of functional and effective cortical connectivity, an immediate increase in cortical release of a large set of neurotransmitters, and a delayed activation of corticocardiac functional and effective connectivity that persists until the onset of ventricular fibrillation. Blocking the brain's autonomic outflow significantly delayed terminal ventricular fibrillation and lengthened the duration of detectable cortical activities despite the continued absence of oxygen. These results demonstrate that asphyxia activates a brainstorm, which accelerates premature death of the heart and the brain.

  3. Glutamate antagonism fails to reverse mitochondrial dysfunction in late phase of experimental neonatal asphyxia in rats.

    PubMed

    Reddy, Nagannathahalli Ranga; Krishnamurthy, Sairam; Chourasia, Tapan Kumar; Kumar, Ashok; Joy, Keerikkattil Paily

    2011-04-01

    Neonatal asphyxia is a primary contributor to neonatal mortality and neuro-developmental disorders. It progresses in two distinct phases, as initial primary process and latter as the secondary process. A dynamic relationship exists between excitotoxicity and mitochondrial dysfunction during the progression of asphyxic injury. Study of status of glutamate and mitochondrial function in tandem during primary and secondary processes may give new leads to the treatment of asphyxia. Neonatal asphyxia was induced in rat pups on the day of birth by subjecting them to two episodes (10min each) of anoxia, 24h apart by passing 100% N(2) into an enclosed chamber. The NMDA antagonist ketamine (20mg/kg/day) was administered either for 1 day or 7 days after anoxic exposure. Tissue glutamate and nitric oxide were estimated in the cerebral cortex, extra-cortex and cerebellum. The mitochondria from the above brain regions were used for the estimation of malondialdehyde, and activities of superoxide dismutase and succinate dehydrogenase. Mitochondrial membrane potential was evaluated by using Rhodamine dye. Anoxia during the primary process increased glutamate and nitric oxide levels; however the mitochondrial function was unaltered in terms of succinate dehydrogenase and membrane potential. Acute ketamine treatment reversed the increase in both glutamate and nitric oxide levels and partially attenuated mitochondrial function in terms of succinate dehydrogenase activity. The elevated glutamate and nitric oxide levels were maintained during the secondary process but however with concomitant loss of mitochondrial function. Repeated ketamine administration reversed glutamate levels only in the cerebral cortex, where as nitric oxide was decreased in all the brain regions. However, repeated ketamine administration was unable to reverse anoxia-induced mitochondrial dysfunction. The failure of glutamate antagonism in the treatment of asphyxia may be due to persistence of mitochondrial dysfunction. Therefore, additionally targeting mitochondrial function may prove to be therapeutically beneficial in the treatment of asphyxia. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Connexin hemichannel blockade is neuroprotective after asphyxia in preterm fetal sheep.

    PubMed

    Davidson, Joanne O; Drury, Paul P; Green, Colin R; Nicholson, Louise F; Bennet, Laura; Gunn, Alistair J

    2014-01-01

    Asphyxia around the time of preterm birth is associated with neurodevelopmental disability. In this study, we tested the hypothesis that blockade of connexin hemichannels would improve recovery of brain activity and reduce cell loss after asphyxia in preterm fetal sheep. Asphyxia was induced by 25 min of complete umbilical cord occlusion in preterm fetal sheep (103-104 d gestational age). Connexin hemichannels were blocked by intracerebroventricular infusion of mimetic peptide starting 90 min after asphyxia at a concentration of 50 µM/h for one hour followed by 50 µM/24 hour for 24 hours (occlusion-peptide group, n = 6) or vehicle infusion for controls (occlusion-vehicle group, n = 7). Peptide infusion was associated with earlier recovery of electroencephalographic power after asphyxia compared to occlusion-vehicle (p<0.05), with reduced neuronal loss in the caudate and putamen (p<0.05), but not in the hippocampus. In the intragyral and periventricular white matter, peptide administration was associated with an increase in total oligodendrocyte numbers (p<0.05) and immature/mature oligodendrocytes compared to occlusion-vehicle (p<0.05), with a significant increase in proliferation (p<0.05). Connexin hemichannel blockade was neuroprotective and reduced oligodendrocyte death and improved recovery of oligodendrocyte maturation in preterm fetuses after asphyxia.

  5. Connexin Hemichannel Blockade Is Neuroprotective after Asphyxia in Preterm Fetal Sheep

    PubMed Central

    Davidson, Joanne O.; Drury, Paul P.; Green, Colin R.; Nicholson, Louise F.; Bennet, Laura; Gunn, Alistair J.

    2014-01-01

    Asphyxia around the time of preterm birth is associated with neurodevelopmental disability. In this study, we tested the hypothesis that blockade of connexin hemichannels would improve recovery of brain activity and reduce cell loss after asphyxia in preterm fetal sheep. Asphyxia was induced by 25 min of complete umbilical cord occlusion in preterm fetal sheep (103–104 d gestational age). Connexin hemichannels were blocked by intracerebroventricular infusion of mimetic peptide starting 90 min after asphyxia at a concentration of 50 µM/h for one hour followed by 50 µM/24 hour for 24 hours (occlusion-peptide group, n = 6) or vehicle infusion for controls (occlusion-vehicle group, n = 7). Peptide infusion was associated with earlier recovery of electroencephalographic power after asphyxia compared to occlusion-vehicle (p<0.05), with reduced neuronal loss in the caudate and putamen (p<0.05), but not in the hippocampus. In the intragyral and periventricular white matter, peptide administration was associated with an increase in total oligodendrocyte numbers (p<0.05) and immature/mature oligodendrocytes compared to occlusion-vehicle (p<0.05), with a significant increase in proliferation (p<0.05). Connexin hemichannel blockade was neuroprotective and reduced oligodendrocyte death and improved recovery of oligodendrocyte maturation in preterm fetuses after asphyxia. PMID:24865217

  6. Maternal creatine supplementation during pregnancy prevents acute and long-term deficits in skeletal muscle after birth asphyxia: a study of structure and function of hind limb muscle in the spiny mouse.

    PubMed

    LaRosa, Domenic A; Ellery, Stacey J; Snow, Rod J; Walker, David W; Dickinson, Hayley

    2016-12-01

    Maternal antenatal creatine supplementation protects the brain, kidney, and diaphragm against the effects of birth asphyxia in the spiny mouse. In this study, we examined creatine's potential to prevent damage to axial skeletal muscles. Pregnant spiny mice were fed a control or creatine-supplemented diet from mid-pregnancy, and 1 d before term (39 d), fetuses were delivered by c-section with or without 7.5 min of birth asphyxia. At 24 h or 33 ± 2 d after birth, gastrocnemius muscles were obtained for ex-vivo study of twitch-tension, muscle fatigue, and structural and histochemical analysis. Birth asphyxia significantly reduced cross-sectional area of all muscle fiber types (P < 0.05), and increased fatigue caused by repeated tetanic contractions at 24 h of age (P < 0.05). There were fewer (P < 0.05) Type I and IIa fibers and more (P < 0.05) Type IIb fibers in male gastrocnemius at 33 d of age. Muscle oxidative capacity was reduced (P < 0.05) in males at 24 h and 33 d and in females at 24 h only. Maternal creatine treatment prevented all asphyxia-induced changes in the gastrocnemius, improved motor performance. This study demonstrates that creatine loading before birth protects the muscle from asphyxia-induced damage at birth.

  7. 25 years of research on global asphyxia in the immature rat brain.

    PubMed

    Barkhuizen, M; van den Hove, D L A; Vles, J S H; Steinbusch, H W M; Kramer, B W; Gavilanes, A W D

    2017-04-01

    Hypoxic-ischemic encephalopathy remains a common cause of brain damage in neonates. Preterm infants have additional complications, as prematurity by itself increases the risk of encephalopathy. Currently, therapy for this subset of asphyxiated infants is limited to supportive care. There is an urgent need for therapies in preterm infants - and for representative animal models for preclinical drug development. In 1991, a novel rodent model of global asphyxia in the preterm infant was developed in Sweden. This method was based on the induction of asphyxia during the birth processes itself by submerging pups, still in the uterine horns, in a water bath followed by C-section. This insult occurs at a time-point when the rodent brain maturity resembles the brain of a 22-32 week old human fetus. This model has developed over the past 25 years as an established model of perinatal global asphyxia in the early preterm brain. Here we summarize the knowledge gained on the short- and long-term neuropathological and behavioral effects of asphyxia on the immature central nervous system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Fatal mechanical asphyxia induces changes in energy utilization in the rat brain: An (18)F-FDG-PET study.

    PubMed

    Ma, Suhua; You, Shengzhong; Hao, Li; Zhang, Dongchuan; Quan, Li

    2015-07-01

    This study was designed to evaluate changes in brain glucose metabolism in rats following ligature strangulation. Thirteen male Wistar rats were used in the present study, divided into control (n=7) and asphyxia groups (n=6, ligature strangulation). Positron emission tomography (PET) with 2-deoxy-2-[(18)F]fluoro-D-glucose ((18)F-FDG) was used to evaluate brain glucose metabolism. Rats were scanned for PET-CT, and image data co-registered with a T2WI MRI template using SPM8 software. Image J was employed to draw regions of interest (ROIs) from the MRI template and acquire ROI activity information from the PET images. In the asphyxia group vs. controls, (18)F-FDG uptake (FU) was decreased in the substantia nigra (25.26%, p<0.001), rhombencephalon (pons/medulla oblongata, 13.92%, p<0.01), hypothalamus (22.06%, p<0.01), ventral tegmentum (10.12%, p<0.05) and amygdala (12.74%, p<0.05); however, FU was increased in motor (18.21%, p<0.05) and visual cortices (19.2%, p<0.05). The glucose metabolism distribution map in the asphyxiated rat brains were substantially changed versus controls. PET with (18)F-FDG can demonstrate excitement and inhibition of different brain areas even in cases of ligature strangulation. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  9. Effects of perinatal asphyxia on cell survival, neuronal phenotype and neurite growth evaluated with organotypic triple cultures.

    PubMed

    Klawitter, V; Morales, P; Johansson, S; Bustamante, D; Goiny, M; Gross, J; Luthman, J; Herrera-Marschitz, M

    2005-03-01

    The effect of perinatal asphyxia on brain development was studied with organotypic cultures from substantia nigra, neostriatum and neocortex. Asphyxia was induced by immersing foetuses-containing uterine horns removed from ready-to-deliver rats into a water bath for 20 min. Following asphyxia, the pups were nursed by a surrogate dam and sacrificed after three days for preparing organotypic cultures. Non-asphyxiated caesarean-delivered pups were used as controls. Morphological features and cell viability were recorded during in vitro development. At day in vitro (DIV) 24, the cultures were treated for immunocytochemistry using antibodies against the N-methyl-D-aspartate receptor subunit 1 (NR1) and tyrosine hydroxylase (TH). While in vitro survival was similar in cultures from both asphyxiated and control animals, differences were observed when the neuronal phenotype was assessed. Compared to controls, the total number of NR1-positive neurons in substantia nigra, as well as the number of secondary to higher level branching of TH-positive neurites from asphyxiated pups were decreased, illustrating the vulnerability of the dopaminergic systems to perinatal asphyxia.

  10. Brain and cognitive-behavioural development after asphyxia at term birth.

    PubMed

    de Haan, Michelle; Wyatt, John S; Roth, Simon; Vargha-Khadem, Faraneh; Gadian, David; Mishkin, Mortimer

    2006-07-01

    Perinatal asphyxia occurs in approximately 1-6 per 1000 live full-term births. Different patterns of brain damage can result, though the relation of these patterns to long-term cognitive-behavioural outcome remains under investigation. The hippocampus is one brain region that can be damaged (typically not in isolation), and this site of damage has been implicated in two different long-term outcomes, cognitive memory impairment and the psychiatric disorder schizophrenia. Factors in addition to the acute episode of asphyxia likely contribute to these specific outcomes, making prediction difficult. Future studies that better document long-term cognitive-behavioural outcome, quantitatively identify patterns of brain injury over development and consider additional variables that may modulate the impact of asphyxia on cognitive and behavioural function will forward the goals of predicting long-term outcome and understanding the mechanisms by which it unfolds.

  11. Application of comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry method to identify potential biomarkers of perinatal asphyxia in a non-human primate model.

    PubMed

    Beckstrom, Andrew C; Humston, Elizabeth M; Snyder, Laura R; Synovec, Robert E; Juul, Sandra E

    2011-04-08

    Perinatal asphyxia is a leading cause of brain injury in infants, occurring in 2-4 per 1000 live births. The clinical response to asphyxia is variable and difficult to predict with current diagnostic tests. Reliable biomarkers are needed to help predict the timing and severity of asphyxia, as well as response to treatment. Two-dimensional gas chromatography-time-of-flight-mass spectrometry (GC×GC-TOFMS) was used herein, in conjunction with chemometric data analysis approaches for metabolomic analysis in order to identify significant metabolites affected by birth asphyxia. Blood was drawn before and after 15 or 18 min of cord occlusion in a Macaca nemestrina model of perinatal asphyxia. Postnatal samples were drawn at 5 min of age (n=20 subjects). Metabolomic profiles of asphyxiated animals were compared to four controls delivered at comparable gestational age. Fifty metabolites with the greatest change pre- to post-asphyxia were identified and quantified. The metabolic profile of post-asphyxia samples showed marked variability compared to the pre-asphyxia samples. Fifteen of the 50 metabolites showed significant elevation in response to asphyxia, ten of which remained significant upon comparison to the control animals. This metabolomic analysis confirmed lactate and creatinine as markers of asphyxia and discovered new metabolites including succinic acid and malate (intermediates in the Krebs cycle) and arachidonic acid (a brain fatty acid and inflammatory marker) as potential biomarkers. GC×GC-TOFMS coupled with chemometric data analysis are useful tools to identify acute biomarkers of brain injury. Further study is needed to correlate these metabolites with severity of disease, and response to treatment. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Application of Comprehensive Two-Dimensional Gas Chromatography with Time-of-Flight Mass Spectrometry Method to Identify Potential Biomarkers of Perinatal Asphyxia in a Non-human Primate Model

    PubMed Central

    Beckstrom, Andrew C.; Humston, Elizabeth M.; Snyder, Laura R.; Synovec, Robert E.; Juul, Sandra E.

    2011-01-01

    Perinatal asphyxia is a leading cause of brain injury in infants, occurring in 2–4 per 1000 live births. The clinical response to asphyxia is variable and difficult to predict with current diagnostic tests. Reliable biomarkers are needed to help predict the timing and severity of asphyxia, as well as response to treatment. Two-dimensional gas chromatography-time-of-flight-mass spectrometry (GC x GC-TOFMS) was used herein, in conjunction with chemometric data analysis approaches for metabolomic analysis in order to identify significant metabolites affected by birth asphyxia. Blood was drawn before and after 15 or 18 minutes of cord occlusion in a Macaca nemestrina model of perinatal asphyxia. Postnatal samples were drawn at 5 minutes of age (n=20 subjects). Metabolomic profiles of asphyxiated animals were compared to four controls delivered at comparable gestational age. Fifty metabolites with the greatest change pre- to post-asphyxia were identified and quantified. The metabolic profile of post-asphyxia samples showed marked variability compared to the pre-asphyxia samples. Fifteen of the 50 metabolites showed significant elevation in response to asphyxia, ten of which remained significant upon comparison to the control animals. This metabolomic analysis confirmed lactate and creatinine as markers of asphyxia and discovered new metabolites including succinic acid and malate (intermediates in the Krebs cycle) and arachidonic acid (a brain fatty acid and inflammatory marker) as potential biomarkers. GC × GC-TOFMS coupled with chemometric data analysis are useful tools to identify acute biomarkers of brain injury. Further study is needed to correlate these metabolites with severity of disease, and response to treatment. PMID:21353677

  13. Phospholipid alterations in the brain and heart in a rat model of asphyxia-induced cardiac arrest and cardiopulmonary bypass resuscitation

    PubMed Central

    Kim, Junhwan; Lampe, Joshua W.; Yin, Tai; Shinozaki, Koichiro; Becker, Lance B.

    2015-01-01

    Cardiac arrest (CA) induces whole-body ischemia, causing damage to multiple organs. Ischemic damage to the brain is mainly responsible for patient mortality. However, the molecular mechanism responsible for brain damage is not understood. Prior studies have provided evidence that degradation of membrane phospholipids plays key roles in ischemia/reperfusion injury. The aim of this study is to correlate organ damage to phospholipid alterations following 30 min asphyxia-induced CA or CA followed by cardiopulmonary bypass (CPB) resuscitation using a rat model. Following 30 min CA and CPB resuscitation, rats showed no brain function, moderately compromised heart function, and died within a few hours; typical outcomes of severe CA. However, we did not find any significant change in the content or composition of phospholipids in either tissue following 30 min CA or CA followed by CPB resuscitation. We found a moderate increase in lysophosphatidylinositol in both tissues, and a small increase in lysophosphatidylethanolamine and lysophosphatidylcholine only in brain tissue following CA. CPB resuscitation significantly decreased lysophosphatidylinositol but did not alter the other lyso species. These results indicate that a decrease in phospholipids is not a cause of brain damage in CA or a characteristic of brain ischemia. However, a significant increase in lysophosphatidylcholine and lysophosphatidylethanolamine found only in the brain with more damage suggests that impaired phospholipid metabolism may be correlated with the severity of ischemia in CA. In addition, the unique response of lysophosphatidylinositol suggests that phosphatidylinositol metabolism is highly sensitive to cellular conditions altered by ischemia and resuscitation. PMID:26160279

  14. Phospholipid alterations in the brain and heart in a rat model of asphyxia-induced cardiac arrest and cardiopulmonary bypass resuscitation.

    PubMed

    Kim, Junhwan; Lampe, Joshua W; Yin, Tai; Shinozaki, Koichiro; Becker, Lance B

    2015-10-01

    Cardiac arrest (CA) induces whole-body ischemia, causing damage to multiple organs. Ischemic damage to the brain is mainly responsible for patient mortality. However, the molecular mechanism responsible for brain damage is not understood. Prior studies have provided evidence that degradation of membrane phospholipids plays key roles in ischemia/reperfusion injury. The aim of this study is to correlate organ damage to phospholipid alterations following 30 min asphyxia-induced CA or CA followed by cardiopulmonary bypass (CPB) resuscitation using a rat model. Following 30 min CA and CPB resuscitation, rats showed no brain function, moderately compromised heart function, and died within a few hours; typical outcomes of severe CA. However, we did not find any significant change in the content or composition of phospholipids in either tissue following 30 min CA or CA followed by CPB resuscitation. We found a substantial increase in lysophosphatidylinositol in both tissues, and a small increase in lysophosphatidylethanolamine and lysophosphatidylcholine only in brain tissue following CA. CPB resuscitation significantly decreased lysophosphatidylinositol but did not alter the other lyso species. These results indicate that a decrease in phospholipids is not a cause of brain damage in CA or a characteristic of brain ischemia. However, a significant increase in lysophosphatidylcholine and lysophosphatidylethanolamine found only in the brain with more damage suggests that impaired phospholipid metabolism may be correlated with the severity of ischemia in CA. In addition, the unique response of lysophosphatidylinositol suggests that phosphatidylinositol metabolism is highly sensitive to cellular conditions altered by ischemia and resuscitation.

  15. The effects of fetal and perinatal asphyxia on neuronal cytokine levels and ceramide metabolism in adulthood.

    PubMed

    Vlassaks, Evi; Gavilanes, Antonio W D; Vles, Johan S H; Deville, Sarah; Kramer, Boris W; Strackx, Eveline; Martinez-Martinez, Pilar

    2013-02-15

    In a rat model of global fetal and perinatal asphyxia, we investigated if asphyxia and long-lasting brain tolerance to asphyxia (preconditioning) are mediated by modifications in inflammatory cytokines and ceramide metabolism genes in prefrontal cortex, hippocampus and caudate-putamen at the age of 8months. Most significant changes were found in prefrontal cortex, with reduced LAG1 homolog ceramide synthase 1 expression after both types of asphyxia. Additionally, sphingosine kinase 1 was upregulated in those animals that experienced the combination of fetal and perinatal asphyxia (preconditioning), suggesting increased cell proliferation. While cytokine levels are normal, levels of ceramide genes were modulated both after fetal and perinatal asphyxia in the adult prefrontal cortex. Moreover, the combination of two subsequent asphyctic insults provides long-lasting neuroprotection in the prefrontal cortex probably by maintaining normal apoptosis and promoting cell proliferation. Better understanding of the effects of asphyxia on ceramide metabolism will help to understand the changes leading to brain tolerance and will open opportunities for the development of new neuroprotective therapies. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Neuroprotection by selective neuronal deletion of Atg7 in neonatal brain injury

    PubMed Central

    Xie, Cuicui; Ginet, Vanessa; Sun, Yanyan; Koike, Masato; Zhou, Kai; Li, Tao; Li, Hongfu; Li, Qian; Wang, Xiaoyang; Uchiyama, Yasuo; Truttmann, Anita C.; Kroemer, Guido; Puyal, Julien; Blomgren, Klas; Zhu, Changlian

    2016-01-01

    ABSTRACT Perinatal asphyxia induces neuronal cell death and brain injury, and is often associated with irreversible neurological deficits in children. There is an urgent need to elucidate the neuronal death mechanisms occurring after neonatal hypoxia-ischemia (HI). We here investigated the selective neuronal deletion of the Atg7 (autophagy related 7) gene on neuronal cell death and brain injury in a mouse model of severe neonatal hypoxia-ischemia. Neuronal deletion of Atg7 prevented HI-induced autophagy, resulted in 42% decrease of tissue loss compared to wild-type mice after the insult, and reduced cell death in multiple brain regions, including apoptosis, as shown by decreased caspase-dependent and -independent cell death. Moreover, we investigated the lentiform nucleus of human newborns who died after severe perinatal asphyxia and found increased neuronal autophagy after severe hypoxic-ischemic encephalopathy compared to control uninjured brains, as indicated by the numbers of MAP1LC3B/LC3B (microtubule-associated protein 1 light chain 3)-, LAMP1 (lysosomal-associated membrane protein 1)-, and CTSD (cathepsin D)-positive cells. These findings reveal that selective neuronal deletion of Atg7 is strongly protective against neuronal death and overall brain injury occurring after HI and suggest that inhibition of HI-enhanced autophagy should be considered as a potential therapeutic target for the treatment of human newborns developing severe hypoxic-ischemic encephalopathy. PMID:26727396

  17. Fetal asphyctic preconditioning modulates the acute cytokine response thereby protecting against perinatal asphyxia in neonatal rats.

    PubMed

    Vlassaks, Evi; Strackx, Eveline; Vles, Johan Sh; Nikiforou, Maria; Martinez-Martinez, Pilar; Kramer, Boris W; Gavilanes, Antonio Wd

    2013-01-26

    Perinatal asphyxia (PA) is a major cause of brain damage and neurodevelopmental impairment in infants. Recent investigations have shown that experimental sublethal fetal asphyxia (FA preconditioning) protects against a subsequent more severe asphyctic insult at birth. The molecular mechanisms of this protection have, however, not been elucidated. Evidence implicates that inflammatory cytokines play a protective role in the induction of ischemic tolerance in the adult brain. Accordingly, we hypothesize that FA preconditioning leads to changes in the fetal cytokine response, thereby protecting the newborn against a subsequent asphyctic insult. In rats, FA preconditioning was induced at embryonic day 17 by clamping the uterine vasculature for 30 min. At term birth, global PA was induced by placing the uterine horns, containing the pups, in a saline bath for 19 min. We assessed, at different time points after FA and PA, mRNA and protein expression of several cytokines and related receptor mRNA levels in total hemispheres of fetal and neonatal brains. Additionally, we measured pSTAT3/STAT3 levels to investigate cellular responses to these cytokines. Prenatally, FA induced acute downregulation in IL-1β, TNF-α and IL-10 mRNA levels. At 96 h post FA, IL-6 mRNA and IL-10 protein expression were increased in FA brains compared with controls. Two hours after birth, all proinflammatory cytokines and pSTAT3/STAT3 levels decreased in pups that experienced FA and/or PA. Interestingly, IL-10 and IL-6 mRNA levels increased after PA. When pups were FA preconditioned, however, IL-10 and IL-6 mRNA levels were comparable to those in controls. FA leads to prenatal changes in the neuroinflammatory response. This modulation of the cytokine response probably results in the protective inflammatory phenotype seen when combining FA and PA and may have significant implications for preventing post-asphyctic perinatal encephalopathy.

  18. Fetal asphyctic preconditioning modulates the acute cytokine response thereby protecting against perinatal asphyxia in neonatal rats

    PubMed Central

    2013-01-01

    Background Perinatal asphyxia (PA) is a major cause of brain damage and neurodevelopmental impairment in infants. Recent investigations have shown that experimental sublethal fetal asphyxia (FA preconditioning) protects against a subsequent more severe asphyctic insult at birth. The molecular mechanisms of this protection have, however, not been elucidated. Evidence implicates that inflammatory cytokines play a protective role in the induction of ischemic tolerance in the adult brain. Accordingly, we hypothesize that FA preconditioning leads to changes in the fetal cytokine response, thereby protecting the newborn against a subsequent asphyctic insult. Methods In rats, FA preconditioning was induced at embryonic day 17 by clamping the uterine vasculature for 30 min. At term birth, global PA was induced by placing the uterine horns, containing the pups, in a saline bath for 19 min. We assessed, at different time points after FA and PA, mRNA and protein expression of several cytokines and related receptor mRNA levels in total hemispheres of fetal and neonatal brains. Additionally, we measured pSTAT3/STAT3 levels to investigate cellular responses to these cytokines. Results Prenatally, FA induced acute downregulation in IL-1β, TNF-α and IL-10 mRNA levels. At 96 h post FA, IL-6 mRNA and IL-10 protein expression were increased in FA brains compared with controls. Two hours after birth, all proinflammatory cytokines and pSTAT3/STAT3 levels decreased in pups that experienced FA and/or PA. Interestingly, IL-10 and IL-6 mRNA levels increased after PA. When pups were FA preconditioned, however, IL-10 and IL-6 mRNA levels were comparable to those in controls. Conclusions FA leads to prenatal changes in the neuroinflammatory response. This modulation of the cytokine response probably results in the protective inflammatory phenotype seen when combining FA and PA and may have significant implications for preventing post-asphyctic perinatal encephalopathy. PMID:23351591

  19. Endotoxemia severely affects circulation during normoxia and asphyxia in immature fetal sheep.

    PubMed

    Garnier, Y; Coumans, A; Berger, R; Jensen, A; Hasaart, T H

    2001-01-01

    The purpose of the present study was to determine whether endotoxins (lipopolysaccharides, LPS) affect the fetal cardiovascular system in a way likely to cause brain damage. Thirteen fetal sheep were chronically instrumented at a mean gestational age of 107 +/- 1 days. After control measurements of organ blood flow (microsphere method), blood gases, and acid base balance were obtained, seven of 13 fetuses received LPS (53 +/- 3 microg/kg fetal weight) intravenously. Sixty minutes later, asphyxia was induced by occlusion of the maternal aorta for 2 minutes. Measurements of organ blood flows were made at -60, -1, +2, +4, +30, and +60 minutes. Unlike in the control group, after LPS infusion there was a significant decrease in arterial oxygen saturation (-46%; P <.001) and pH (P <.001). In LPS-treated fetuses the portion of combined ventricular output directed to the placenta decreased significantly (-76%; P <.001), whereas output to the fetal body (+60%; P <.001), heart (+167%; P <.05), and adrenals (+229%; P <.01) increased. Furthermore, during asphyxia circulatory centralization was impaired considerably in LPS-treated fetuses, and there was clear evidence of circulatory decentralization. This decentralization caused a severe decrease in cerebral oxygen delivery by 70%. Within 30 minutes after induction of asphyxia five of seven LPS-treated fetuses died, whereas all control fetuses recovered completely. Endotoxemia severely impaired fetal cardiovascular control during normoxia and asphyxia, resulting in a considerable decrease in cerebral oxygen delivery. These effects might have important effects in the development of fetal brain damage associated with intrauterine infection.

  20. Complex character analysis of heart rate variability following brain asphyxia.

    PubMed

    Cai, Yuanyuan; Qiu, Yihong; Wei, Lan; Zhang, Wei; Hu, Sijun; Smith, Peter R; Crabtree, Vincent P; Tong, Shanbao; Thakor, Nitish V; Zhu, Yisheng

    2006-05-01

    In the present study Renyi entropy and L-Z complexity were used to characterize heart rate variability (HRV) of rats that were suffered from brain asphyxia and ischemia. Two groups of rats were studied: (a) rats (n=5) injected with NAALADase inhibitor, 2-PMPA, which has been proven neuroprotective in asphyxia injury and (b) control subjects (n=5) without medication. Renyi entropy and L-Z complexity of the R-R intervals (RRI) at different experiment stages were investigated in the two groups. The results show that both measures indicate less injury and better recovery in the drug injection group. The dynamic change of 90 min RRI signal after the asphyxia was investigated. The sudden reduction of the two parameters shows their sensitivity to the asphyxia insult.

  1. Magnesium sulfate reduces EEG activity but is not neuroprotective after asphyxia in preterm fetal sheep.

    PubMed

    Galinsky, Robert; Draghi, Vittoria; Wassink, Guido; Davidson, Joanne O; Drury, Paul P; Lear, Christopher A; Gunn, Alistair J; Bennet, Laura

    2017-04-01

    Magnesium sulfate is now widely recommended for neuroprotection for preterm birth; however, this has been controversial because there is little evidence that magnesium sulfate is neuroprotective. Preterm fetal sheep (104 days gestation; term is 147 days) were randomly assigned to receive sham occlusion (n = 7), i.v. magnesium sulfate (n = 10) or saline (n = 8) starting 24 h before asphyxia until 24 h after asphyxia. Sheep were killed 72 h after asphyxia. Magnesium sulfate infusion reduced electroencephalograph power and fetal movements before asphyxia. Magnesium sulfate infusion did not affect electroencephalograph power during recovery, but was associated with marked reduction of the post-asphyxial seizure burden (mean ± SD: 34 ± 18 min vs. 107 ± 74 min, P < 0.05). Magnesium sulfate infusion did not affect subcortical neuronal loss. In the intragyral and periventricular white matter, magnesium sulfate was associated with reduced numbers of all (Olig-2+ve) oligodendrocytes in the intragyral (125 ± 23 vs. 163 ± 38 cells/field) and periventricular white matter (162 ± 39 vs. 209 ± 44 cells/field) compared to saline-treated controls ( P < 0.05), but no effect on microglial induction or astrogliosis. In conclusion, a clinically comparable dose of magnesium sulfate showed significant anticonvulsant effects after asphyxia in preterm fetal sheep, but did not reduce asphyxia-induced brain injury and exacerbated loss of oligodendrocytes.

  2. Magnesium sulfate reduces EEG activity but is not neuroprotective after asphyxia in preterm fetal sheep

    PubMed Central

    Galinsky, Robert; Draghi, Vittoria; Wassink, Guido; Davidson, Joanne O; Drury, Paul P; Lear, Christopher A; Gunn, Alistair J

    2016-01-01

    Magnesium sulfate is now widely recommended for neuroprotection for preterm birth; however, this has been controversial because there is little evidence that magnesium sulfate is neuroprotective. Preterm fetal sheep (104 days gestation; term is 147 days) were randomly assigned to receive sham occlusion (n = 7), i.v. magnesium sulfate (n = 10) or saline (n = 8) starting 24 h before asphyxia until 24 h after asphyxia. Sheep were killed 72 h after asphyxia. Magnesium sulfate infusion reduced electroencephalograph power and fetal movements before asphyxia. Magnesium sulfate infusion did not affect electroencephalograph power during recovery, but was associated with marked reduction of the post-asphyxial seizure burden (mean ± SD: 34 ± 18 min vs. 107 ± 74 min, P < 0.05). Magnesium sulfate infusion did not affect subcortical neuronal loss. In the intragyral and periventricular white matter, magnesium sulfate was associated with reduced numbers of all (Olig−2+ve) oligodendrocytes in the intragyral (125 ± 23 vs. 163 ± 38 cells/field) and periventricular white matter (162 ± 39 vs. 209 ± 44 cells/field) compared to saline-treated controls (P < 0.05), but no effect on microglial induction or astrogliosis. In conclusion, a clinically comparable dose of magnesium sulfate showed significant anticonvulsant effects after asphyxia in preterm fetal sheep, but did not reduce asphyxia-induced brain injury and exacerbated loss of oligodendrocytes. PMID:27317658

  3. Brain and Cognitive-Behavioural Development after Asphyxia at Term Birth

    ERIC Educational Resources Information Center

    de Haan, Michelle; Wyatt, John S.; Roth, Simon; Vargha-Khadem, Faraneh; Gadian, David; Mishkin, Mortimer

    2006-01-01

    Perinatal asphyxia occurs in approximately 1-6 per 1000 live full-term births. Different patterns of brain damage can result, though the relation of these patterns to long-term cognitive-behavioural outcome remains under investigation. The hippocampus is one brain region that can be damaged (typically not in isolation), and this site of damage has…

  4. Asphyxia-activated corticocardiac signaling accelerates onset of cardiac arrest

    PubMed Central

    Li, Duan; Mabrouk, Omar S.; Liu, Tiecheng; Tian, Fangyun; Xu, Gang; Rengifo, Santiago; Choi, Sarah J.; Mathur, Abhay; Crooks, Charles P.; Kennedy, Robert T.; Wang, Michael M.; Ghanbari, Hamid; Borjigin, Jimo

    2015-01-01

    The mechanism by which the healthy heart and brain die rapidly in the absence of oxygen is not well understood. We performed continuous electrocardiography and electroencephalography in rats undergoing experimental asphyxia and analyzed cortical release of core neurotransmitters, changes in brain and heart electrical activity, and brain–heart connectivity. Asphyxia stimulates a robust and sustained increase of functional and effective cortical connectivity, an immediate increase in cortical release of a large set of neurotransmitters, and a delayed activation of corticocardiac functional and effective connectivity that persists until the onset of ventricular fibrillation. Blocking the brain’s autonomic outflow significantly delayed terminal ventricular fibrillation and lengthened the duration of detectable cortical activities despite the continued absence of oxygen. These results demonstrate that asphyxia activates a brainstorm, which accelerates premature death of the heart and the brain. PMID:25848007

  5. The expression of '150-kDa oxygen regulated protein (ORP-150)' in human brain and its relationship with duration time until death.

    PubMed

    Ikematsu, Kazuya; Tsuda, Ryouichi; Kondo, Toshikazu; Kondo, Hisayoshi; Ozawa, Kentaro; Ogawa, Satoshi; Nakasono, Ichiro

    2004-04-01

    The expression of oxygen regulated protein 150-kDa (ORP-150) was strongly induced in human brain under the hypoxic conditions. We examined the expression of ORP-150 in the brain samples, and discussed its significance in forensic practice. The cerebral cortexes of 31 cases (asphyxia: 9 cases, hypothermia: 4, exsanguinations: 5, CO intoxication (CO): 6, sudden cardiac death (SCD): 7) were used for this study. Each tissue section was incubated with anti-ORP-150 polyclonal antibody and the number of ORP-150 positive cells were counted. In the multiple linear regression method, the estimated regression coefficient of ORP-150 on age was significant (P=0.039) thus, we could find that the ORP-150 expression level depended on age. Using analysis of covariance, we compared the means of ORP-150, LSMEAN, which means hypothetic average value excluding influence of age, for each cause of death. The LSMEAN+/-SE was 84.74+/-9.03 in hypothermia, 57.52+/-6.34 in asphyxia, 46.68+/-6.70 in CO, 24.84+/-8.05 in exsanguinations, and 16.24+/-7.35 in SCD. As a result of the analysis, the LSMEAN of the ORP-150 expression level was related to the cause of death. There might be differences in the duration of brain ischemia before death. For example, SCD is presumed to be instant death, while brain ischemia continues for several minutes in asphyxia, CO and exsanguinations, and for several hours in hypothermia cases. Therefore, the immunohistochemical and morphometrical analysis of ORP-150 in the brain may be very useful to determine the duration of brain ischemia before death in forensic autopsy cases.

  6. Traumatic asphyxia due to blunt chest trauma: a case report and literature review

    PubMed Central

    2012-01-01

    Introduction Crush asphyxia is different from positional asphyxia, as respiratory compromise in the latter is caused by splinting of the chest and/or diaphragm, thus preventing normal chest expansion. There are only a few cases or small case series of crush asphyxia in the literature, reporting usually poor outcomes. Case presentation We present the case of a 44-year-old Caucasian man who developed traumatic asphyxia with severe thoracic injury and mild brain edema after being crushed under heavy auto vehicle mechanical parts. He remained unconscious for an unknown time. The treatment included oropharyngeal intubation and mechanical ventilation, bilateral chest tube thoracostomies, treatment of brain edema and other supportive measures. Our patient’s outcome was good. Traumatic asphyxia is generally under-reported and most authors apply supportive measures, while the final outcome seems to be dependent on the length of time of the chest compression and on the associated injuries. Conclusion Treatment for traumatic asphyxia is mainly supportive with special attention to the re-establishment of adequate oxygenation and perfusion; treatment of the concomitant injuries might also affect the final outcome. PMID:22935547

  7. Partial white and grey matter protection with prolonged infusion of recombinant human erythropoietin after asphyxia in preterm fetal sheep.

    PubMed

    Wassink, Guido; Davidson, Joanne O; Dhillon, Simerdeep K; Fraser, Mhoyra; Galinsky, Robert; Bennet, Laura; Gunn, Alistair J

    2017-03-01

    Perinatal asphyxia in preterm infants remains a significant contributor to abnormal long-term neurodevelopmental outcomes. Recombinant human erythropoietin has potent non-haematopoietic neuroprotective properties, but there is limited evidence for protection in the preterm brain. Preterm (0.7 gestation) fetal sheep received sham asphyxia (sham occlusion) or asphyxia induced by umbilical cord occlusion for 25 min, followed by an intravenous infusion of vehicle (occlusion-vehicle) or recombinant human erythropoietin (occlusion-Epo, 5000 international units by slow push, then 832.5 IU/h), starting 30 min after asphyxia and continued until 72 h. Recombinant human erythropoietin reduced neuronal loss and numbers of caspase-3-positive cells in the striatal caudate nucleus, CA3 and dentate gyrus of the hippocampus, and thalamic medial nucleus ( P < 0.05 vs. occlusion-vehicle). In the white matter tracts, recombinant human erythropoietin increased total, but not immature/mature oligodendrocytes ( P < 0.05 vs. occlusion-vehicle), with increased cell proliferation and reduced induction of activated caspase-3, microglia and astrocytes ( P < 0.05). Finally, occlusion-Epo reduced seizure burden, with more rapid recovery of electroencephalogram power, spectral edge frequency, and carotid blood flow. In summary, prolonged infusion of recombinant human erythropoietin after severe asphyxia in preterm fetal sheep was partially neuroprotective and improved electrophysiological and cerebrovascular recovery, in association with reduced apoptosis and inflammation.

  8. Partial white and grey matter protection with prolonged infusion of recombinant human erythropoietin after asphyxia in preterm fetal sheep

    PubMed Central

    Wassink, Guido; Davidson, Joanne O; Dhillon, Simerdeep K; Fraser, Mhoyra; Galinsky, Robert; Bennet, Laura

    2016-01-01

    Perinatal asphyxia in preterm infants remains a significant contributor to abnormal long-term neurodevelopmental outcomes. Recombinant human erythropoietin has potent non-haematopoietic neuroprotective properties, but there is limited evidence for protection in the preterm brain. Preterm (0.7 gestation) fetal sheep received sham asphyxia (sham occlusion) or asphyxia induced by umbilical cord occlusion for 25 min, followed by an intravenous infusion of vehicle (occlusion-vehicle) or recombinant human erythropoietin (occlusion-Epo, 5000 international units by slow push, then 832.5 IU/h), starting 30 min after asphyxia and continued until 72 h. Recombinant human erythropoietin reduced neuronal loss and numbers of caspase-3-positive cells in the striatal caudate nucleus, CA3 and dentate gyrus of the hippocampus, and thalamic medial nucleus (P < 0.05 vs. occlusion-vehicle). In the white matter tracts, recombinant human erythropoietin increased total, but not immature/mature oligodendrocytes (P < 0.05 vs. occlusion-vehicle), with increased cell proliferation and reduced induction of activated caspase-3, microglia and astrocytes (P < 0.05). Finally, occlusion-Epo reduced seizure burden, with more rapid recovery of electroencephalogram power, spectral edge frequency, and carotid blood flow. In summary, prolonged infusion of recombinant human erythropoietin after severe asphyxia in preterm fetal sheep was partially neuroprotective and improved electrophysiological and cerebrovascular recovery, in association with reduced apoptosis and inflammation. PMID:27207167

  9. Nicotinamide prevents the long-term effects of perinatal asphyxia on basal ganglia monoamine systems in the rat.

    PubMed

    Bustamante, D; Goiny, M; Aström, G; Gross, J; Andersson, K; Herrera-Marschitz, M

    2003-01-01

    Asphyxia during birth can cause gross brain damage, but also subtle perturbations expressed as biochemical or motor deficits with late onset in life. Thus, it has been shown that brain dopamine levels can be increased or decreased depending upon the severity of the insult, and the region where the levels are determined. In this study, perinatal asphyxia was evoked by immersing pup-containing uterus horns removed by hysterectomy in a water bath at 37 degrees C for various periods of time from 0 to 20 min. After the insult, the pups were delivered, given to surrogate mothers, treated with nicotinamide, further observed and finally, 4 weeks later, killed for monoamine biochemistry of tissue samples taken from substantia nigra, neostriatum and nucleus accumbens. The main effect of perinatal asphyxia was a decrease in dopamine and metabolite levels in nucleus accumbens, and a paradoxical increase in the substantia nigra. Nicotinamide (100 mg/kg i.p., once a day for 3 days, beginning 24 h after the perinatal asphyctic insult) prevented the effect of asphyxia in nucleus accumbens. Furthermore, striatal dopamine levels were increased by nicotinamide in asphyctic animals. No apparent changes were observed in substantia nigra. A prominent unexpected effect of perinatal asphyxia alone was on the levels of the metabolite of 5-hydroxytryptamine, 5-hydroxyindoleacetic acid (5-HIAA), which were increased in substantia nigra and decreased in both neostriatum and accumbens. However, nicotinamide increased 5-HIAA levels in all regions, which appeared to be related to the extent of the asphyctic insult. These results suggest that nicotinamide is a useful treatment against the long-term consequences produced by perinatal asphyxia on brain monoamine systems, and that there is a therapeutic window following the insult, providing a therapeutic opportunity to protect the brain.

  10. Antenatal Dexamethasone after Asphyxia Increases Neural Injury in Preterm Fetal Sheep

    PubMed Central

    Koome, Miriam E.; Davidson, Joanne O.; Drury, Paul P.; Mathai, Sam; Booth, Lindsea C.; Gunn, Alistair Jan; Bennet, Laura

    2013-01-01

    Background and Purpose Maternal glucocorticoid treatment for threatened premature delivery dramatically improves neonatal survival and short-term morbidity; however, its effects on neurodevelopmental outcome are variable. We investigated the effect of maternal glucocorticoid exposure after acute asphyxia on injury in the preterm brain. Methods Chronically instrumented singleton fetal sheep at 0.7 of gestation received asphyxia induced by complete umbilical cord occlusion for 25 minutes. 15 minutes after release of occlusion, ewes received a 3 ml i.m. injection of either dexamethasone (12 mg, n = 10) or saline (n = 10). Sheep were killed after 7 days recovery; survival of neurons in the hippocampus and basal ganglia, and oligodendrocytes in periventricular white matter were assessed using an unbiased stereological approach. Results Maternal dexamethasone after asphyxia was associated with more severe loss of neurons in the hippocampus (CA3 regions, 290±76 vs 484±98 neurons/mm2, mean±SEM, P<0.05) and basal ganglia (putamen, 538±112 vs 814±34 neurons/mm2, P<0.05) compared to asphyxia-saline, and with greater loss of both total (913±77 vs 1201±75/mm2, P<0.05) and immature/mature myelinating oligodendrocytes in periventricular white matter (66±8 vs 114±12/mm2, P<0.05, vs sham controls 165±10/mm2, P<0.001). This was associated with transient hyperglycemia (peak 3.5±0.2 vs. 1.4±0.2 mmol/L at 6 h, P<0.05) and reduced suppression of EEG power in the first 24 h after occlusion (maximum −1.5±1.2 dB vs. −5.0±1.4 dB in saline controls, P<0.01), but later onset and fewer overt seizures. Conclusions In preterm fetal sheep, exposure to maternal dexamethasone during recovery from asphyxia exacerbated brain damage. PMID:24204840

  11. Antenatal dexamethasone after asphyxia increases neural injury in preterm fetal sheep.

    PubMed

    Koome, Miriam E; Davidson, Joanne O; Drury, Paul P; Mathai, Sam; Booth, Lindsea C; Gunn, Alistair Jan; Bennet, Laura

    2013-01-01

    Maternal glucocorticoid treatment for threatened premature delivery dramatically improves neonatal survival and short-term morbidity; however, its effects on neurodevelopmental outcome are variable. We investigated the effect of maternal glucocorticoid exposure after acute asphyxia on injury in the preterm brain. Chronically instrumented singleton fetal sheep at 0.7 of gestation received asphyxia induced by complete umbilical cord occlusion for 25 minutes. 15 minutes after release of occlusion, ewes received a 3 ml i.m. injection of either dexamethasone (12 mg, n = 10) or saline (n = 10). Sheep were killed after 7 days recovery; survival of neurons in the hippocampus and basal ganglia, and oligodendrocytes in periventricular white matter were assessed using an unbiased stereological approach. Maternal dexamethasone after asphyxia was associated with more severe loss of neurons in the hippocampus (CA3 regions, 290 ± 76 vs 484 ± 98 neurons/mm(2), mean ± SEM, P<0.05) and basal ganglia (putamen, 538 ± 112 vs 814 ± 34 neurons/mm(2), P<0.05) compared to asphyxia-saline, and with greater loss of both total (913 ± 77 vs 1201 ± 75/mm(2), P<0.05) and immature/mature myelinating oligodendrocytes in periventricular white matter (66 ± 8 vs 114 ± 12/mm(2), P<0.05, vs sham controls 165 ± 10/mm(2), P<0.001). This was associated with transient hyperglycemia (peak 3.5 ± 0.2 vs. 1.4 ± 0.2 mmol/L at 6 h, P<0.05) and reduced suppression of EEG power in the first 24 h after occlusion (maximum -1.5 ± 1.2 dB vs. -5.0 ± 1.4 dB in saline controls, P<0.01), but later onset and fewer overt seizures. In preterm fetal sheep, exposure to maternal dexamethasone during recovery from asphyxia exacerbated brain damage.

  12. Neuroprotective properties of melatonin in a model of birth asphyxia in the spiny mouse (Acomys cahirinus).

    PubMed

    Hutton, Lisa C; Abbass, Mahila; Dickinson, Hayley; Ireland, Zoe; Walker, David W

    2009-01-01

    Birth asphyxia is associated with disturbed development of the neonatal brain. In this study, we determined if low-dose melatonin (0.1 mg/kg/day), administered to the mother over 7 days at the end of pregnancy, could protect against the effects of birth asphyxia in a precocial species - the spiny mouse (Acomys cahirinus). At 37 days of gestation (term is 38-39 days), pups were subjected to birth asphyxia (7.5 min uterine ischemia) and compared to Cesarean section-delivered controls. At 24 h of age, birth asphyxia had increased markers of CNS inflammation (microglia, macrophage infiltration) and apoptosis (activated caspase-3, fractin) in cortical gray matter, which were reduced to control levels by prior maternal melatonin treatment. Melatonin may be an effective prophylactic agent for use in late pregnancy to protect against hypoxic-ischemic brain injury at birth. (c) 2009 S. Karger AG, Basel.

  13. Life-long environmental enrichment counteracts spatial learning, reference and working memory deficits in middle-aged rats subjected to perinatal asphyxia

    PubMed Central

    Galeano, Pablo; Blanco, Eduardo; Logica Tornatore, Tamara M. A.; Romero, Juan I.; Holubiec, Mariana I.; Rodríguez de Fonseca, Fernando; Capani, Francisco

    2015-01-01

    Continuous environmental stimulation induced by exposure to enriched environment (EE) has yielded cognitive benefits in different models of brain injury. Perinatal asphyxia results from a lack of oxygen supply to the fetus and is associated with long-lasting neurological deficits. However, the effects of EE in middle-aged rats suffering perinatal asphyxia are unknown. Therefore, the aim of the present study was to assess whether life-long exposure to EE could counteract the cognitive and behavioral alterations in middle-aged asphyctic rats. Experimental groups consisted of rats born vaginally (CTL), by cesarean section (C+), or by C+ following 19 min of asphyxia at birth (PA). At weaning, rats were assigned to standard (SE) or enriched environment (EE) for 18 months. During the last month of housing, animals were submitted to a behavioral test battery including Elevated Plus Maze, Open Field, Novel Object Recognition and Morris water maze (MWM). Results showed that middle-aged asphyctic rats, reared in SE, exhibited an impaired performance in the spatial reference and working memory versions of the MWM. EE was able to counteract these cognitive impairments. Moreover, EE improved the spatial learning performance of middle-aged CTL and C+ rats. On the other hand, all groups reared in SE did not differ in locomotor activity and anxiety levels, while EE reduced locomotion and anxiety, regardless of birth condition. Recognition memory was altered neither by birth condition nor by housing environment. These results support the importance of environmental stimulation across the lifespan to prevent cognitive deficits induced by perinatal asphyxia. PMID:25601829

  14. [Recurrence plot analysis of HRV for brain ischemia and asphyxia].

    PubMed

    Chen, Xiaoming; Qiu, Yihong; Zhu, Yisheng

    2008-02-01

    Heart rate variability (HRV) is the tiny variability existing in the cycles of the heart beats, which reflects the corresponding balance between sympathetic and vagus nerves. Since the nonlinear characteristic of HRV is confirmed, the Recurrence Plot method, a nonlinear dynamic analysis method based on the complexity, could be used to analyze HRV. The results showed the recurrence plot structures and some quantitative indices (L-Mean, L-Entr) during asphyxia insult vary significantly as compared to those in normal conditions, which offer a new method to monitor brain asphyxia injury.

  15. Fetal asphyctic preconditioning alters the transcriptional response to perinatal asphyxia.

    PubMed

    Cox-Limpens, Kimberly E M; Vles, Johan S H; LA van den Hove, Daniel; Zimmermann, Luc J I; Gavilanes, Antonio W D

    2014-05-29

    Genomic reprogramming is thought to be, at least in part, responsible for the protective effect of brain preconditioning. Unraveling mechanisms of this endogenous neuroprotection, activated by preconditioning, is an important step towards new clinical strategies for treating asphyctic neonates.Therefore, we investigated whole-genome transcriptional changes in the brain of rats which underwent perinatal asphyxia (PA), and rats where PA was preceded by fetal asphyctic preconditioning (FAPA). Offspring were sacrificed 6 h and 96 h after birth, and whole-genome transcription was investigated using the Affymetrix Gene1.0ST chip. Microarray data were analyzed with the Bioconductor Limma package. In addition to univariate analysis, we performed Gene Set Enrichment Analysis (GSEA) in order to derive results with maximum biological relevance. We observed minimal, 25% or less, overlap of differentially regulated transcripts across different experimental groups which leads us to conclude that the transcriptional phenotype of these groups is largely unique. In both the PA and FAPA group we observe an upregulation of transcripts involved in cellular stress. Contrastingly, transcripts with a function in the cell nucleus were mostly downregulated in PA animals, while we see considerable upregulation in the FAPA group. Furthermore, we observed that histone deacetylases (HDACs) are exclusively regulated in FAPA animals. This study is the first to investigate whole-genome transcription in the neonatal brain after PA alone, and after perinatal asphyxia preceded by preconditioning (FAPA). We describe several genes/pathways, such as ubiquitination and proteolysis, which were not previously linked to preconditioning-induced neuroprotection. Furthermore, we observed that the majority of upregulated genes in preconditioned animals have a function in the cell nucleus, including several epigenetic players such as HDACs, which suggests that epigenetic mechanisms are likely to play a role in preconditioning-induced neuroprotection.

  16. Fetal asphyctic preconditioning alters the transcriptional response to perinatal asphyxia

    PubMed Central

    2014-01-01

    Background Genomic reprogramming is thought to be, at least in part, responsible for the protective effect of brain preconditioning. Unraveling mechanisms of this endogenous neuroprotection, activated by preconditioning, is an important step towards new clinical strategies for treating asphyctic neonates. Therefore, we investigated whole-genome transcriptional changes in the brain of rats which underwent perinatal asphyxia (PA), and rats where PA was preceded by fetal asphyctic preconditioning (FAPA). Offspring were sacrificed 6 h and 96 h after birth, and whole-genome transcription was investigated using the Affymetrix Gene1.0ST chip. Microarray data were analyzed with the Bioconductor Limma package. In addition to univariate analysis, we performed Gene Set Enrichment Analysis (GSEA) in order to derive results with maximum biological relevance. Results We observed minimal, 25% or less, overlap of differentially regulated transcripts across different experimental groups which leads us to conclude that the transcriptional phenotype of these groups is largely unique. In both the PA and FAPA group we observe an upregulation of transcripts involved in cellular stress. Contrastingly, transcripts with a function in the cell nucleus were mostly downregulated in PA animals, while we see considerable upregulation in the FAPA group. Furthermore, we observed that histone deacetylases (HDACs) are exclusively regulated in FAPA animals. Conclusions This study is the first to investigate whole-genome transcription in the neonatal brain after PA alone, and after perinatal asphyxia preceded by preconditioning (FAPA). We describe several genes/pathways, such as ubiquitination and proteolysis, which were not previously linked to preconditioning-induced neuroprotection. Furthermore, we observed that the majority of upregulated genes in preconditioned animals have a function in the cell nucleus, including several epigenetic players such as HDACs, which suggests that epigenetic mechanisms are likely to play a role in preconditioning-induced neuroprotection. PMID:24885038

  17. Consequences of excessive plasticity in the hippocampus induced by perinatal asphyxia.

    PubMed

    Saraceno, G E; Caceres, L G; Guelman, L R; Castilla, R; Udovin, L D; Ellisman, M H; Brocco, M A; Capani, F

    2016-12-01

    Perinatal asphyxia (PA) is one of the most frequent risk factors for several neurodevelopmental disorders (NDDs) of presumed multifactorial etiology. Dysfunction of neuronal connectivity is thought to play a central role in the pathophysiology of NDDs. Because underlying causes of some NDDs begin before/during birth, we asked whether this clinical condition might affect accurate establishment of neural circuits in the hippocampus as a consequence of disturbed brain plasticity. We used a murine model that mimics the pathophysiological processes of perinatal asphyxia. Histological analyses of neurons (NeuN), dendrites (MAP-2), neurofilaments (NF-M/Hp) and correlative electron microscopy studies of dendritic spines were performed in Stratum radiatum of the hippocampal CA1 area after postnatal ontogenesis. Protein and mRNA analyses were achieved by Western blot and RT-qPCR. Behavioral tests were also carried out. NeuN abnormal staining and spine density were increased. RT-qPCR assays revealed a β-actin mRNA over-expression, while Western blot analysis showed higher β-actin protein levels in synaptosomal fractions in experimental group. M6a expression, protein involved in filopodium formation and synaptogenesis, was also increased. Furthermore, we found that PI3K/Akt/GSK3 pathway signaling, which is involved in synaptogenesis, was activated. Moreover, asphyctic animals showed habituation memory changes in the open field test. Our results suggest that abnormal synaptogenesis induced by PA as a consequence of excessive brain plasticity during brain development may contribute to the etiology of the NDDs. Consequences of this altered synaptic maturation can underlie some of the later behavioral deficits observed in NDDs. Copyright © 2016. Published by Elsevier Inc.

  18. Does perinatal asphyxia induce apoptosis in the inner ear?

    PubMed

    Schmutzhard, Joachim; Glueckert, Rudolf; Sergi, Consolato; Schwentner, Ilona; Abraham, Irene; Schrott-Fischer, Annelies

    2009-04-01

    Pre- and perinatal asphyxia is known to be an important risk factor in the development of neonatal hearing impairment. This study aims to evaluate the role of apoptosis, which is known to play an essential role in the development of the inner ear structures, in the development of neonatal hearing loss caused by pre- and perinatal asphyxia. Eight temporal bones of six different newborns were included. We performed a morphologic analysis by both light microscopy, and transmission electron microscopy, as well as immunohistochemical staining to detect the cleaved form of caspase 3 as apoptosis marker and Bcl 2 as anti-apoptotic marker. Early and late phases of apoptosis were evidenced by condensation of chromatin (electron-dense, black structure along nuclear membrane) and fragmentation of the nucleus, respectively. Changes in nuclear morphology during apoptosis correlate with cleavage by caspase 3 located downstream of Bcl 2 action. The immunohistochemistry for cleaved caspase 3 showed a particular predilection for the inner and outer hair cells, spiral ganglion cells and the marginal cells of the stria vascularis. The brain of all examined cases did not show signs of apoptosis. In summary, this investigation suggests that apoptosis takes place before brain tissue apoptosis and is probably an earlier event than thought. Apoptosis of the cochlea is known to play an essential role in the development of the inner ear. Additionally, this study shows that apoptosis may play an important role in the development of hearing impairment, caused by pre- and perinatal asphyxia.

  19. Stress-induced behaviour in adult and old rats: effects of neonatal asphyxia, body temperature and chelation of iron.

    PubMed

    Rogalska, J; Caputa, M; Wentowska, K; Nowakowska, A

    2006-11-01

    Perinatal asphyxia in mammals leads to iron accumulation in the brain, which results in delayed neurobehavioural disturbances, including impaired learning and abnormal alertness over their entire life span. The aim of this investigation was to verify our hypothesis that newborn rats, showing reduced normal body temperature, are protected against neurotoxicity of the asphyxia up to senescence. Alertness was studied in adult and old male Wistar rats after exposure to critical neonatal anoxia: (i) at physiological neonatal body temperature of 33 degrees C, (ii) at body temperature elevated to 37 degrees C, or (iii) at body temperature elevated to 39 degrees C (the thermal conditions remained unchanged both during anoxia and for 2 h postanoxia). To elucidate the effect of iron-dependent postanoxic oxidative damage to the brain, half of the group (iii) was injected with deferoxamine, a chelator of iron. Postanoxic behavioural disturbances were recorded in open-field, elevated plus-maze, and sudden silence tests when the rats reached the age of 12 and 24 months. Open-field stress-induced motor activity was reduced in rats subjected to neonatal anoxia under hyperthermic conditions. In contrast, these rats were hyperactive in the plus-maze test. Both the plus-maze and sudden silence tests show reduced alertness of these rats to external stimuli signalling potential dangers. The behavioural disturbances were prevented by body temperature of 33 degrees C and by administration of deferoxamine.

  20. How I Cool Children in Neurocritical Care

    PubMed Central

    Fink, Ericka L.; Kochanek, Patrick M.; Clark, Robert S. B.; Bell, Michael J.

    2010-01-01

    Brain injury is the leading cause of death in our pediatric ICU 1. Clinical care for brain injury remains largely supportive. Therapeutic hypothermia has been shown to be effective in improving neurological outcome after adult ventricular-arrhythmia induced cardiac arrest and neonatal asphyxia, and is under investigation as a neuroprotectant after cardiac arrest and traumatic brain injury in children in our ICU and other centers. We routinely induce hypothermia in children comatose after cardiac arrest targeting 32–34°C using cooling blankets and intravenous iced saline as primary methods for induction, for 24–72 hours duration and vigilant re-warming. The objective of this article is to share our hypothermia protocol for cooling children with acute brain injury. PMID:20146026

  1. Immunohistochemical localization of c-fos in the nuclei of the medulla oblongata in relation to asphyxia.

    PubMed

    Nogami, M; Takatsu, A; Endo, N; Ishiyama, I

    1999-01-01

    The immediately early gene product c-fos is known to be induced in neurons under noxious stimuli. Therefore, the immunohistochemistry of c-fos expression in human brains might offer information on the localization of stimulated neurons. In this study, the immunohistochemical localization of c-fos was studied in the neurons of the hypoglossal nucleus (XII), the dorsal motor nucleus of the vagal nerve (X), the nucleus solitarius (Sol), the accessory cuneate nucleus (Cun), the spinal trigeminal nucleus (V) and the inferior olive (Oli) of the human medulla oblongata from forensic autopsy cases. The neurons in the X nucleus showed the highest percentage of positive reactions for c-fos, followed in descending order by the Cun, V, Oli, XII and Sol. The c-fos immunoreactivity in the Cun and X was statistically significantly higher than in the Sol, XII and Oli. Although neurons in the Sol are known to be involved in respiration, there was no statistically significant difference in the c-fos immunoreactivity in the neurons in the Sol between asphyxia and non-asphyxia cases. On the other hand, the percentage of neurons positive for the c-fos immunoreactivity was statistically significantly higher in the Oli of asphyxia cases than of non-asphyxia cases. Our results indicate the difference in the immunoreactivity of c-fos among the nuclei of the human medulla oblongata and that the c-fos immunoreactivity in the Oli might assist the diagnosis of asphyxia.

  2. Examination of Physiological Function and Biochemical Disorders in a Rat Model of Prolonged Asphyxia-Induced Cardiac Arrest followed by Cardio Pulmonary Bypass Resuscitation

    PubMed Central

    Kim, Junhwan; Yin, Tai; Yin, Ming; Zhang, Wei; Shinozaki, Koichiro; Selak, Mary A.; Pappan, Kirk L.; Lampe, Joshua W.; Becker, Lance B.

    2014-01-01

    Background Cardiac arrest induces whole body ischemia, which causes damage to multiple organs particularly the heart and the brain. There is clinical and preclinical evidence that neurological injury is responsible for high mortality and morbidity of patients even after successful cardiopulmonary resuscitation. A better understanding of the metabolic alterations in the brain during ischemia will enable the development of better targeted resuscitation protocols that repair the ischemic damage and minimize the additional damage caused by reperfusion. Method A validated whole body model of rodent arrest followed by resuscitation was utilized; animals were randomized into three groups: control, 30 minute asphyxial arrest, or 30 minutes asphyxial arrest followed by 60 min cardiopulmonary bypass (CPB) resuscitation. Blood gases and hemodynamics were monitored during the procedures. An untargeted metabolic survey of heart and brain tissues following cardiac arrest and after CPB resuscitation was conducted to better define the alterations associated with each condition. Results After 30 min cardiac arrest and 60 min CPB, the rats exhibited no observable brain function and weakened heart function in a physiological assessment. Heart and brain tissues harvested following 30 min ischemia had significant changes in the concentration of metabolites in lipid and carbohydrate metabolism. In addition, the brain had increased lysophospholipid content. CPB resuscitation significantly normalized metabolite concentrations in the heart tissue, but not in the brain tissue. Conclusion The observation that metabolic alterations are seen primarily during cardiac arrest suggests that the events of ischemia are the major cause of neurological damage in our rat model of asphyxia-CPB resuscitation. Impaired glycolysis and increased lysophospholipids observed only in the brain suggest that altered energy metabolism and phospholipid degradation may be a central mechanism in unresuscitatable brain damage. PMID:25383962

  3. Examination of physiological function and biochemical disorders in a rat model of prolonged asphyxia-induced cardiac arrest followed by cardio pulmonary bypass resuscitation.

    PubMed

    Kim, Junhwan; Yin, Tai; Yin, Ming; Zhang, Wei; Shinozaki, Koichiro; Selak, Mary A; Pappan, Kirk L; Lampe, Joshua W; Becker, Lance B

    2014-01-01

    Cardiac arrest induces whole body ischemia, which causes damage to multiple organs particularly the heart and the brain. There is clinical and preclinical evidence that neurological injury is responsible for high mortality and morbidity of patients even after successful cardiopulmonary resuscitation. A better understanding of the metabolic alterations in the brain during ischemia will enable the development of better targeted resuscitation protocols that repair the ischemic damage and minimize the additional damage caused by reperfusion. A validated whole body model of rodent arrest followed by resuscitation was utilized; animals were randomized into three groups: control, 30 minute asphyxial arrest, or 30 minutes asphyxial arrest followed by 60 min cardiopulmonary bypass (CPB) resuscitation. Blood gases and hemodynamics were monitored during the procedures. An untargeted metabolic survey of heart and brain tissues following cardiac arrest and after CPB resuscitation was conducted to better define the alterations associated with each condition. After 30 min cardiac arrest and 60 min CPB, the rats exhibited no observable brain function and weakened heart function in a physiological assessment. Heart and brain tissues harvested following 30 min ischemia had significant changes in the concentration of metabolites in lipid and carbohydrate metabolism. In addition, the brain had increased lysophospholipid content. CPB resuscitation significantly normalized metabolite concentrations in the heart tissue, but not in the brain tissue. The observation that metabolic alterations are seen primarily during cardiac arrest suggests that the events of ischemia are the major cause of neurological damage in our rat model of asphyxia-CPB resuscitation. Impaired glycolysis and increased lysophospholipids observed only in the brain suggest that altered energy metabolism and phospholipid degradation may be a central mechanism in unresuscitatable brain damage.

  4. Neuropathology and functional deficits in a model of birth asphyxia in the precocial spiny mouse (Acomys cahirinus).

    PubMed

    Hutton, Lisa C; Ratnayake, Udani; Shields, Amy; Walker, David W

    2009-01-01

    Birth asphyxia can result in sensory impairment, learning and memory deficits without gross brain injury and severe motor deficits. We developed a model of birth asphyxia resulting in mild neurological injury and cognitive impairment using a long-gestation species with precocial fetal development. Spiny mice (Acomys cahirinus) underwent caesarean-section delivery or 7.5 min of asphyxia at 37 days gestational age (term is 39 days). Brain histology was examined at 1 and 7 days of age, and behaviour was evaluated to 28 days of age. Asphyxiated offspring showed significant impairment in non-spatial memory and learning tasks, accompanied by central nervous system inflammation and increased apoptotic cell death but without the presence of large necrotic or cystic lesions. Copyright 2009 S. Karger AG, Basel.

  5. Regionally Impaired Redox Homeostasis in the Brain of Rats Subjected to Global Perinatal Asphyxia: Sustained Effect up to 14 Postnatal Days.

    PubMed

    Lespay-Rebolledo, Carolyne; Perez-Lobos, Ronald; Tapia-Bustos, Andrea; Vio, Valentina; Morales, Paola; Herrera-Marschitz, Mario

    2018-06-29

    The present report evaluates the effect of global perinatal asphyxia on several parameters of oxidative stress and cell viability in rat brain tissue sampled at an extended neonatal period up to 14 days, a period characterised by intensive neuritogenesis, synaptogenesis, synaptic consolidation, pruning and delayed cell death. Perinatal asphyxia was induced by immersing foetus-containing uterine horns removed by a caesarean section from on term rat dams into a water bath at 37 °C for 21 min. Asphyxia-exposed and sibling caesarean-delivered foetuses were manually resucitated and nurtured by surrogate dams for 1 to 14 postnatal (P) days. Brain samples (mesencephalon, telencephalon and hippocampus) were assayed for glutathione (reduced and oxidated levels; spectrophotometry), tissue reducing capacity (potassium ferricyanide reducing assay, FRAP), catalase (the key enzyme protecting against oxidative stress and reactive oxygen species, Western blots and ELISA) and cleaved caspase-3 (the key executioner of apoptosis, Western blots) levels. It was found that global PA produced a regionally specific and sustained increase in GSSG/GSH ratio, a regionally specific decrease in tissue reducing capacity and a regionally and time specific decrease of catalase activity and increase of cleaved caspase-3 levels. The present study provides evidence for regionally impaired redox homeostasis in the brain of rats subjected to global PA, an effect observed up to P14, mainly affecting mesencephalon and hippocampus, suggesting a sustained oxidative stress after the posthypoxia period. The oxidative stress observed postnatally can in part be associated to a respiratory apneic-like deficit, since there was a statistically significant decrease in respiration frequency in AS compared to CS neonates, also up to P14, together with the signs of a decreased peripheral blood perfusion (pink-blue skin colour in AS, compared to the pink colour observed in all CS neonates). It is proposed that PA implies a long-term metabolic insult, triggered by the length of hypoxia, the resuscitation/reoxigenation manoevres, but also by the developmental stage of the affected brain regions, and the integrity of cardiovascular and respiratory physiological functions, which are fundamental for warrantying a proper development.

  6. Neuropathology and brain weight in traumatic-crush asphyxia.

    PubMed

    Al-Sarraj, Safa; Laxton, Ross; Swift, Ben; Kolar, Alexander J; Chapman, Rob C; Fegan-Earl, Ashley W; Cary, Nat R B

    2017-11-01

    Traumatic (crush) asphyxia is a rare condition caused by severe compression of the chest and trunk leading to often extreme so-called asphyxial signs, including cyanosis in head and neck regions, multiple petechiae, and subconjunctival haemorrhage as well as neurological manifestations. To investigate the neuropathology and brain weight in traumatic asphyxia caused by different accidents such as industrial accidents and road traffic collision. Post mortem records of 20 cases of traumatic asphyxia (TA) resulting from different causes of which four brains are available for comprehensive neuropathological examination. The expected brain weights for given body height and associated 95% confidence range were calculated according to the following formula: baseline brain weight (BBW) + body height x rate (g/cm). The 95% confidence range was calculated by adding and subtracting the standard error (SE) x 1.96 (7-8). There was a trend for higher brain weight in the TA cohort but it was not significant (1494 g vs 1404 g, p = 0.1). The upper limits of the brain weight of 95% confidence was 1680 g vs 1660 g, p = 0.9. The neuropathological examination of four available brains from the TA cohort showed severe congestion of blood vessels, perivascular haemorrhages and occasional βAPP deposits consistent with early axonal disruption. Brain examination is informative as part of investigation of TA. Developing ischaemic changes and an increase in brain weight are the most likely indicators of a prolonged period of patient's survival. Copyright © 2017 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  7. Asphyxia due to laryngeal spasm as a severe complication of awake deep brain stimulation for Parkinson's disease: a case report.

    PubMed

    von Eckardstein, Kajetan L; Sixel-Döring, Friederike; Kazmaier, Stephan; Trenkwalder, Claudia; Hoover, Jason M; Rohde, Veit

    2016-11-08

    In accordance with German neurosurgical and neurological consensus recommendations, lead placements for deep brain stimulation (DBS) in patients with Parkinson's disease (PD) are usually performed with the patient awake and in "medication off" state. This allows for optimal lead position adjustment according to the clinical response to intraoperative test stimulation. However, exacerbation of Parkinsonian symptoms after withdrawal of dopaminergic medication may endanger the patient by inducing severe "off" state motor phenomena. In particular, this can be a problem in awake craniotomies utilizing intraoperative airway management and resuscitation. We report the case of a PD patient with progressive orofacial and neck muscle dystonia resulting in laryngeal spasm during DBS lead placement. This led to upper airway compromise and asphyxia, requiring resuscitation. Laryngeal spasms may occur as a rare "off" state motor complication in patients with PD. Other potential causes of intraoperative difficulties breathing include bilateral vocal cord palsy, positional asphyxia, and silent aspiration. In our practice, we have adjusted our medication regimen and now allow patients to receive their standard dopaminergic medication until the morning of surgery. Neurologists and neurosurgeons performing lead placement procedures for PD should be aware of this rare but unsafe condition to most optimized treatment.

  8. Xenon and Sevoflurane Provide Analgesia during Labor and Fetal Brain Protection in a Perinatal Rat Model of Hypoxia-Ischemia

    PubMed Central

    Yang, Ting; Zhuang, Lei; Rei Fidalgo, António M.; Petrides, Evgenia; Terrando, Niccolo; Wu, Xinmin; Sanders, Robert D.; Robertson, Nicola J.; Johnson, Mark R.; Maze, Mervyn; Ma, Daqing

    2012-01-01

    It is not possible to identify all pregnancies at risk of neonatal hypoxic-ischemic encephalopathy (HIE). Many women use some form of analgesia during childbirth and some anesthetic agents have been shown to be neuroprotective when used as analgesics at subanesthetic concentrations. In this study we sought to understand the effects of two anesthetic agents with presumptive analgesic activity and known preconditioning-neuroprotective properties (sevoflurane or xenon), in reducing hypoxia-induced brain damage in a model of intrauterine perinatal asphyxia. The analgesic and neuroprotective effects at subanesthetic levels of sevoflurane (0.35%) or xenon (35%) were tested in a rat model of intrauterine perinatal asphyxia. Analgesic effects were measured by assessing maternal behavior and spinal cord dorsal horn neuronal activation using c-Fos. In separate experiments, intrauterine fetal asphyxia was induced four hours after gas exposure; on post-insult day 3 apoptotic cell death was measured by caspase-3 immunostaining in hippocampal neurons and correlated with the number of viable neurons on postnatal day (PND) 7. A separate cohort of pups was nurtured by a surrogate mother for 50 days when cognitive testing with Morris water maze was performed. Both anesthetic agents provided analgesia as reflected by a reduction in the number of stretching movements and decreased c-Fos expression in the dorsal horn of the spinal cord. Both agents also reduced the number of caspase-3 positive (apoptotic) neurons and increased cell viability in the hippocampus at PND7. These acute histological changes were mirrored by improved cognitive function measured remotely after birth on PND 50 compared to control group. Subanesthetic doses of sevoflurane or xenon provided both analgesia and neuroprotection in this model of intrauterine perinatal asphyxia. These data suggest that anesthetic agents with neuroprotective properties may be effective in preventing HIE and should be tested in clinical trials in the future. PMID:22615878

  9. Foetal asphyxia as a strong stimulator of the sympathetic nervous system in the brain. Case Report.

    PubMed

    Brucknerová, Ingrid; Ujházy, Eduard

    2016-12-18

    The aim of the study was to analyse case report of prenatally unknown asphyxia of the foetus (a preterm newborn from the second pregnancy delivered by urgent caesarean section in 31st gestational week; birth weight 850 grams, birth length 41 cm, value of Apgar score 7/8) with signs of respiratory insufficiency immediately after birth with hypotonicity. The authors present the case of postnatal at the 1st day of life assessed cystic malformation in the brain of premature newborn. They emphasize the importance of detailed prenatal investigation as most important in preventing prenatal asphyxia and consequent complications. Central nervous system and especially white matter of the brain of the newborn is most vulnerable area of the brain. Together with oxidative stress after exceeding of antioxidant capacity belong among main factors that play an important role in the pathogenesis of hypoxic-ischemic encephalopathy.

  10. Perinatal asphyxia exerts lifelong effects on neuronal responsiveness to stress in specific brain regions in the rat.

    PubMed

    Salchner, Peter; Engidawork, Ephrem; Hoeger, Harald; Lubec, Barbara; Singewald, Nicolas

    2003-09-01

    Perinatal asphyxia (PA) causes irreversible damage to the brain of newborns and can produce neurologic and behavioral changes later in life. To identify neuronal substrates underlying the effects of PA, we investigated whether and how neuronal responsiveness to an established stress challenge is affected. We used Fos expression as a marker of neuronal activation and examined the pattern of Fos expression in response to acute swim stress in 24-month-old rats exposed to a 20-minute PA insult. Swim stress produced a similar pattern of Fos expression in control and asphyxiated rats in 34 brain areas. Asphyxiated rats displayed a higher number of stress-induced Fos-positive cells in the nucleus of the solitary tract, parabrachial nucleus, periaqueductal gray, paraventricular hypothalamic nucleus, nucleus accumbens, caudate-putamen, and prelimbic cortex. No differences in the Fos response to stress were observed in other regions, including the locus ceruleus, amygdala, hippocampus, or septum. These data provide functional anatomic evidence that PA has lifelong effects on neuronal communication and leads to an abnormal, augmented neuronal responsiveness to stress in specific brain areas, particularly in the main telencephalic target regions of the mesencephalic dopamine projections, as well as in a functionally related set of brain regions associated with autonomic and neuroendocrine regulation.

  11. Propofol administration to the maternal-fetal unit improved fetal EEG and influenced cerebral apoptotic pathway in preterm lambs suffering from severe asphyxia.

    PubMed

    Seehase, Matthias; Jennekens, Ward; Zwanenburg, Alex; Andriessen, Peter; Collins, Jennifer Jp; Kuypers, Elke; Zimmermann, Luc J; Vles, Johan Sh; Gavilanes, Antonio Wd; Kramer, Boris W

    2015-12-01

    Term and near-term infants are at high risk of developing brain injury and life-long disability if they have suffered from severe perinatal asphyxia. We hypothesized that propofol administration to the maternal-fetal unit can diminish cerebral injury in term and near-term infant fetuses in states of progressive severe asphyxia. Forty-four late preterm lambs underwent total umbilical cord occlusion (UCO) or sham treatment in utero. UCO resulted in global asphyxia and cardiac arrest. After emergency cesarean section under either maternal propofol or isoflurane anesthesia, the fetuses were resuscitated and subsequently anesthetized the same way as their mothers. Asphyctic lambs receiving isoflurane showed a significant increase of total and low-frequency spectral power in bursts indicating seizure activity and more burst-suppression with a marked increase of interburst interval length during UCO. Asphyctic lambs receiving propofol showed less EEG changes. Propofol increased levels of anti-apoptotic B-cell lymphoma-extra large (Bcl-xL) and phosphorylated STAT-3 and reduced the release of cytochrome c from the mitochondria and the protein levels of activated cysteinyl aspartate-specific protease (caspase)-3, -9, and N-methyl-d-aspartate (NMDA) receptor. Improvement of fetal EEG during and after severe asphyxia could be achieved by propofol treatment of the ovine maternal-fetal unit. The underlying mechanism is probably the reduction of glutamate-induced cytotoxicity by down-regulation of NMDA receptors and an inhibition of the mitochondrial apoptotic pathway.

  12. Palmitoylethanolamide Ameliorates Hippocampal Damage and Behavioral Dysfunction After Perinatal Asphyxia in the Immature Rat Brain

    PubMed Central

    Herrera, María I.; Udovin, Lucas D.; Toro-Urrego, Nicolás; Kusnier, Carlos F.; Luaces, Juan P.; Capani, Francisco

    2018-01-01

    Perinatal asphyxia (PA) is an obstetric complication associated with an impaired gas exchange. This health problem continues to be a determinant of neonatal mortality and neurodevelopmental disorders. Palmitoylethanolamide (PEA) has exerted neuroprotection in several models of brain injury and neurodegeneration. We aimed at evaluating the potential neuroprotective role of PEA in an experimental model, which induces PA in the immature rat brain. PA was induced by placing Sprague Dawley newborn rats in a water bath at 37°C for 19 min. Once their physiological conditions improved, they were given to surrogate mothers that had delivered normally within the last 24 h. The control group was represented by non-fostered vaginally delivered pups, mimicking the clinical situation. Treatment with PEA (10 mg/kg) was administered within the first hour of life. Modifications in the hippocampus were analyzed with conventional electron microscopy, immunohistochemistry (for NeuN, pNF-H/M, MAP-2, and GFAP) and western blot (for pNF H/M, MAP-2, and GFAP). Behavior was also studied throughout Open Field (OF) Test, Passive Avoidance (PA) Task and Elevated Plus Maze (EPM) Test. After 1 month of the PA insult, we observed neuronal nucleus degeneration in CA1 using electron microscopy. Immunohistochemistry revealed a significant increase in pNF-H/M and decrease in MAP-2 in CA1 reactive area. These changes were also observed when analyzing the level of expression of these markers by western blot. Vertical exploration impairments and anxiety-related behaviors were encountered in the OF and EPM tests. PEA treatment attenuated PA-induced hippocampal damage and its corresponding behavioral alterations. These results contribute to the elucidation of PEA neuroprotective role after PA and the future establishment of therapeutic strategies for the developing brain. PMID:29662433

  13. Environmental Enrichment Decreases Asphyxia-Induced Neurobehavioral Developmental Delay in Neonatal Rats

    PubMed Central

    Kiss, Peter; Vadasz, Gyongyver; Kiss-Illes, Blanka; Horvath, Gabor; Tamas, Andrea; Reglodi, Dora; Koppan, Miklos

    2013-01-01

    Perinatal asphyxia during delivery produces long-term disability and represents a major problem in neonatal and pediatric care. Numerous neuroprotective approaches have been described to decrease the effects of perinatal asphyxia. Enriched environment is a popular strategy to counteract nervous system injuries. The aim of the present study was to investigate whether enriched environment is able to decrease the asphyxia-induced neurobehavioral developmental delay in neonatal rats. Asphyxia was induced in ready-to-deliver mothers by removing the pups by caesarian section after 15 min of asphyxia. Somatic and neurobehavioral development was tested daily and motor coordination weekly. Our results show that rats undergoing perinatal asphyxia had a marked developmental delay and worse performance in motor coordination tests. However, pups kept in enriched environment showed a decrease in the developmental delay observed in control asphyctic pups. Rats growing up in enriched environment did not show decrease in weight gain after the first week and the delay in reflex appearance was not as marked as in control rats. In addition, the development of motor coordination was not as strikingly delayed as in the control group. Short-term neurofunctional outcome are known to correlate with long-term deficits. Our results thus show that enriched environment could be a powerful strategy to decrease the deleterious developmental effects of perinatal asphyxia. PMID:24232451

  14. Environmental enrichment decreases asphyxia-induced neurobehavioral developmental delay in neonatal rats.

    PubMed

    Kiss, Peter; Vadasz, Gyongyver; Kiss-Illes, Blanka; Horvath, Gabor; Tamas, Andrea; Reglodi, Dora; Koppan, Miklos

    2013-11-13

    Perinatal asphyxia during delivery produces long-term disability and represents a major problem in neonatal and pediatric care. Numerous neuroprotective approaches have been described to decrease the effects of perinatal asphyxia. Enriched environment is a popular strategy to counteract nervous system injuries. The aim of the present study was to investigate whether enriched environment is able to decrease the asphyxia-induced neurobehavioral developmental delay in neonatal rats. Asphyxia was induced in ready-to-deliver mothers by removing the pups by caesarian section after 15 min of asphyxia. Somatic and neurobehavioral development was tested daily and motor coordination weekly. Our results show that rats undergoing perinatal asphyxia had a marked developmental delay and worse performance in motor coordination tests. However, pups kept in enriched environment showed a decrease in the developmental delay observed in control asphyctic pups. Rats growing up in enriched environment did not show decrease in weight gain after the first week and the delay in reflex appearance was not as marked as in control rats. In addition, the development of motor coordination was not as strikingly delayed as in the control group. Short-term neurofunctional outcome are known to correlate with long-term deficits. Our results thus show that enriched environment could be a powerful strategy to decrease the deleterious developmental effects of perinatal asphyxia.

  15. DUSP1 and KCNJ2 mRNA upregulation can serve as a biomarker of mechanical asphyxia-induced death in cardiac tissue.

    PubMed

    Zeng, Yan; Tao, Li; Ma, Jianlong; Han, Liujun; Lv, Yehui; Hui, Pan; Zhang, Heng; Ma, Kaijun; Xiao, Bi; Shi, Qun; Xu, Hongmei; Chen, Long

    2018-05-01

    The incidence of death by asphyxia is second to the incidence of death by mechanical injury; however, death by mechanical asphyxia may be difficult to prove in court, particularly in cases in which corpses do not exhibit obvious signs of asphyxia. To identify a credible biomarker of asphyxia, we first examined the expression levels of 47,000 mRNAs in human cardiac tissue specimens from individuals who died of mechanical asphyxia and compared the expression levels with the levels of the corresponding mRNAs in specimens from individuals who died of craniocerebral injury using microarray. We selected 119 differentially expressed mRNAs, examined the expression levels of these mRNAs in 44 human cardiac tissue specimens of individuals who died of mechanical asphyxia, craniocerebral injury, hemorrhagic shock, or other causes. That the expression of dual-specificity phosphatase 1 (DUSP1) and potassium voltage-gated channel subfamily J member 2 (KCNJ2) was upregulated in human cardiac tissues from the mechanical asphyxia group compared with control tissues, regardless of age, environmental temperature, and postmortem interval (PMI), indicating that DUSP1 and KCNJ2 may be associated with mechanical asphyxia-induced death and can thus serve as useful biomarkers of death by mechanical asphyxia.

  16. Chemoreception and asphyxia-induced arousal

    PubMed Central

    Guyenet, Patrice G.; Abbott, Stephen B.G.

    2013-01-01

    Arousal protects against the adverse and potentially fatal effects of asphyxia during sleep. Asphyxia stimulates the carotid bodies and central chemoreceptors but the sequence of events leading to arousal is uncertain. In this review, the theoretical mechanisms leading to arousal from sleep are briefly summarized and the issue of whether central respiratory chemoreceptors (CRCs) or other types of CO2-responsive CNS neurons contribute to asphyxia-induced arousal is discussed. We focus on the role of the retrotrapezoid nucleus, the raphe and the locus coeruleus and emphasize the anatomical and neurophysiological evidence which suggests that these putative central chemoreceptors could contribute to arousal independently of their effects on breathing. Finally, we describe recent attempts to test the contribution of specific brainstem pathways to asphyxia-induced arousal using optogenetic and other tools and the possible contribution of a group of hypoxia-sensitive brainstem neurons (the C1 cells) to breathing and arousal. PMID:23608705

  17. Chemoreception and asphyxia-induced arousal.

    PubMed

    Guyenet, Patrice G; Abbott, Stephen B G

    2013-09-15

    Arousal protects against the adverse and potentially fatal effects of asphyxia during sleep. Asphyxia stimulates the carotid bodies and central chemoreceptors but the sequence of events leading to arousal is uncertain. In this review, the theoretical mechanisms leading to arousal from sleep are briefly summarized and the issue of whether central respiratory chemoreceptors (CRCs) or other types of CO2-responsive CNS neurons contribute to asphyxia-induced arousal is discussed. We focus on the role of the retrotrapezoid nucleus, the raphe and the locus coeruleus and emphasize the anatomical and neurophysiological evidence which suggests that these putative central chemoreceptors could contribute to arousal independently of their effects on breathing. Finally, we describe recent attempts to test the contribution of specific brainstem pathways to asphyxia-induced arousal using optogenetic and other tools and the possible contribution of a group of hypoxia-sensitive brainstem neurons (the C1 cells) to breathing and arousal. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. The Role of Erythropoietin Signaling in Human Cancer

    DTIC Science & Technology

    2004-01-01

    Semenza GL. Hearts from rodents exposed to intermittent hypoxia or erythropoietin are protected against ischemia - reperfusion injury . Circulation, 2003...against ischemia - reperfusion injury . Circulation, 2003; 108:79-85. 18. Wu H, Lee SH, Gao J, Liu X and Iruela-Arispe ML. Inactivation of... injury of the brain and spinal cord39, 40. It prevents hypoxia/ ischemia -induced DNA fragmentation in an experimental model of perinatal asphyxia41. Epo

  19. DHA-supplemented diet increases the survival of rats following asphyxia-induced cardiac arrest and cardiopulmonary bypass resuscitation.

    PubMed

    Kim, Junhwan; Yin, Tai; Shinozaki, Koichiro; Lampe, Joshua W; Becker, Lance B

    2016-11-04

    Accumulating evidence illustrates the beneficial effects of dietary docosahexaenoic acid (DHA) on cardiovascular diseases. However, its effects on cardiac arrest (CA) remain controversial in epidemiological studies and have not been reported in controlled animal studies. Here, we examined whether dietary DHA can improve survival, the most important endpoint in CA. Male Sprague-Dawley rats were randomized into two groups and received either a control diet or a DHA-supplemented diet for 7-8 weeks. Rats were then subjected to 20 min asphyxia-induced cardiac arrest followed by 30 min cardiopulmonary bypass resuscitation. Rat survival was monitored for additional 3.5 h following resuscitation. In the control group, 1 of 9 rats survived for 4 h, whereas 6 of 9 rats survived in the DHA-treated group. Surviving rats in the DHA-treated group displayed moderately improved hemodynamics compared to rats in the control group 1 h after the start of resuscitation. Rats in the control group showed no sign of brain function whereas rats in the DHA-treated group had recurrent seizures and spontaneous respiration, suggesting dietary DHA also protects the brain. Overall, our study shows that dietary DHA significantly improves rat survival following 20 min of severe CA.

  20. Perinatal Asphyxia in a Nonhuman Primate Model

    PubMed Central

    Misbe, Elizabeth N. Jacobson; Richards, Todd L.; McPherson, Ronald J.; Burbacher, Thomas M.; Juul, Sandra E.

    2011-01-01

    Perinatal asphyxia is a leading cause of brain injury in neonates, occurring in 2–4 per 1,000 live births, and there are limited treatment options. Because of their similarity to humans, nonhuman primates are ideal for performing preclinical tests of safety and efficacy for neurotherapeutic interventions. We previously developed a primate model of acute perinatal asphyxia using 12–15 min of umbilical cord occlusion. Continuing this research, we have increased cord occlusion time from 15 to 18 min and extended neurodevelopmental follow-up to 9 months. The purpose of this report is to evaluate the increase in morbidity associated with 18 min of asphyxia by comparing indices obtained from colony controls, nonasphyxiated controls and asphyxiated animals. Pigtail macaques were delivered by hysterotomy after 0, 15 or 18 min of cord occlusion, then resuscitated. Over the ensuing 9 months, for each biochemical and physiologic parameters, behavioral and developmental evaluations, and structural and spectroscopic MRI were recorded. At birth, all asphyxiated animals required resuscitation with positive pressure ventilation and exhibited biochemical and clinical characteristics diagnostic of hypoxic-ischemic encephalopathy, including metabolic acidosis and attenuated brain activity. Compared with controls, asphyxiated animals developed long-term physical and cognitive deficits. This preliminary report characterizes the acute and chronic consequences of perinatal asphyxia in a nonhuman primate model, and describes diagnostic imaging tools for quantifying correlates of neonatal brain injury as well as neurodevelopmental tests for evaluating early motor and cognitive outcomes. PMID:21659720

  1. Perinatal asphyxia in a nonhuman primate model.

    PubMed

    Jacobson Misbe, Elizabeth N; Richards, Todd L; McPherson, Ronald J; Burbacher, Thomas M; Juul, Sandra E

    2011-01-01

    Perinatal asphyxia is a leading cause of brain injury in neonates, occurring in 2-4 per 1,000 live births, and there are limited treatment options. Because of their similarity to humans, nonhuman primates are ideal for performing preclinical tests of safety and efficacy for neurotherapeutic interventions. We previously developed a primate model of acute perinatal asphyxia using 12-15 min of umbilical cord occlusion. Continuing this research, we have increased cord occlusion time from 15 to 18 min and extended neurodevelopmental follow-up to 9 months. The purpose of this report is to evaluate the increase in morbidity associated with 18 min of asphyxia by comparing indices obtained from colony controls, nonasphyxiated controls and asphyxiated animals. Pigtail macaques were delivered by hysterotomy after 0, 15 or 18 min of cord occlusion, then resuscitated. Over the ensuing 9 months, for each biochemical and physiologic parameters, behavioral and developmental evaluations, and structural and spectroscopic MRI were recorded. At birth, all asphyxiated animals required resuscitation with positive pressure ventilation and exhibited biochemical and clinical characteristics diagnostic of hypoxic-ischemic encephalopathy, including metabolic acidosis and attenuated brain activity. Compared with controls, asphyxiated animals developed long-term physical and cognitive deficits. This preliminary report characterizes the acute and chronic consequences of perinatal asphyxia in a nonhuman primate model, and describes diagnostic imaging tools for quantifying correlates of neonatal brain injury as well as neurodevelopmental tests for evaluating early motor and cognitive outcomes. Copyright © 2011 S. Karger AG, Basel.

  2. Adrenergic Blockade Bi-directionally and Asymmetrically Alters Functional Brain-Heart Communication and Prolongs Electrical Activities of the Brain and Heart during Asphyxic Cardiac Arrest

    PubMed Central

    Tian, Fangyun; Liu, Tiecheng; Xu, Gang; Li, Duan; Ghazi, Talha; Shick, Trevor; Sajjad, Azeem; Wang, Michael M.; Farrehi, Peter; Borjigin, Jimo

    2018-01-01

    Sudden cardiac arrest is a leading cause of death in the United States. The neurophysiological mechanism underlying sudden death is not well understood. Previously we have shown that the brain is highly stimulated in dying animals and that asphyxia-induced death could be delayed by blocking the intact brain-heart neuronal connection. These studies suggest that the autonomic nervous system plays an important role in mediating sudden cardiac arrest. In this study, we tested the effectiveness of phentolamine and atenolol, individually or combined, in prolonging functionality of the vital organs in CO2-mediated asphyxic cardiac arrest model. Rats received either saline, phentolamine, atenolol, or phentolamine plus atenolol, 30 min before the onset of asphyxia. Electrocardiogram (ECG) and electroencephalogram (EEG) signals were simultaneously collected from each rat during the entire process and investigated for cardiac and brain functions using a battery of analytic tools. We found that adrenergic blockade significantly suppressed the initial decline of cardiac output, prolonged electrical activities of both brain and heart, asymmetrically altered functional connectivity within the brain, and altered, bi-directionally and asymmetrically, functional, and effective connectivity between the brain and heart. The protective effects of adrenergic blockers paralleled the suppression of brain and heart connectivity, especially in the right hemisphere associated with central regulation of sympathetic function. Collectively, our results demonstrate that blockade of brain-heart connection via alpha- and beta-adrenergic blockers significantly prolonged the detectable activities of both the heart and the brain in asphyxic rat. The beneficial effects of combined alpha and beta blockers may help extend the survival of cardiac arrest patients. PMID:29487541

  3. Adrenergic Blockade Bi-directionally and Asymmetrically Alters Functional Brain-Heart Communication and Prolongs Electrical Activities of the Brain and Heart during Asphyxic Cardiac Arrest.

    PubMed

    Tian, Fangyun; Liu, Tiecheng; Xu, Gang; Li, Duan; Ghazi, Talha; Shick, Trevor; Sajjad, Azeem; Wang, Michael M; Farrehi, Peter; Borjigin, Jimo

    2018-01-01

    Sudden cardiac arrest is a leading cause of death in the United States. The neurophysiological mechanism underlying sudden death is not well understood. Previously we have shown that the brain is highly stimulated in dying animals and that asphyxia-induced death could be delayed by blocking the intact brain-heart neuronal connection. These studies suggest that the autonomic nervous system plays an important role in mediating sudden cardiac arrest. In this study, we tested the effectiveness of phentolamine and atenolol, individually or combined, in prolonging functionality of the vital organs in CO 2 -mediated asphyxic cardiac arrest model. Rats received either saline, phentolamine, atenolol, or phentolamine plus atenolol, 30 min before the onset of asphyxia. Electrocardiogram (ECG) and electroencephalogram (EEG) signals were simultaneously collected from each rat during the entire process and investigated for cardiac and brain functions using a battery of analytic tools. We found that adrenergic blockade significantly suppressed the initial decline of cardiac output, prolonged electrical activities of both brain and heart, asymmetrically altered functional connectivity within the brain, and altered, bi-directionally and asymmetrically, functional, and effective connectivity between the brain and heart. The protective effects of adrenergic blockers paralleled the suppression of brain and heart connectivity, especially in the right hemisphere associated with central regulation of sympathetic function. Collectively, our results demonstrate that blockade of brain-heart connection via alpha- and beta-adrenergic blockers significantly prolonged the detectable activities of both the heart and the brain in asphyxic rat. The beneficial effects of combined alpha and beta blockers may help extend the survival of cardiac arrest patients.

  4. Relationship between temperature variability and brain injury on magnetic resonance imaging in cooled newborn infants after perinatal asphyxia.

    PubMed

    Brotschi, B; Gunny, R; Rethmann, C; Held, U; Latal, B; Hagmann, C

    2017-09-01

    The objective of the study was whether temperature management during therapeutic hypothermia correlates with the severity of brain injury assessed on magnetic resonance imaging in term infants with hypoxic-ischemic encephalopathy. Prospectively collected register data from the National Asphyxia and Cooling Register of Switzerland were analyzed. Fifty-five newborn infants were cooled for 72 h with a target temperature range of 33 to 34 °C. Individual temperature variability (odds ratio (OR) 40.17 (95% confidence interval (CI) 1.37 to 1037.67)) and percentage of temperatures within the target range (OR 0.95 (95% CI 0.90 to 0.98)) were associated with the severity of brain injury seen on magnetic resonance imaging (MRI). Neither the percentage of measured temperatures above (OR 1.08 (95% CI 0.96 to 1.21)) nor below (OR 0.99 (95% CI 0.92 to 1.07) the target range was associated with the severity of brain injury seen on MRI. In a national perinatal asphyxia cohort, temperature variability and percentage of temperatures within the target temperature range were associated with the severity of brain injury.

  5. Molecular hydrogen affords neuroprotection in a translational piglet model of hypoxic-ischemic encephalopathy.

    PubMed

    Nemeth, J; Toth-Szuki, V; Varga, V; Kovacs, V; Remzso, G; Domoki, F

    2016-10-01

    Hypoxic-ischemic encephalopathy (HIE) is the major consequence of perinatal asphyxia (PA) in term neonates. Although the newborn piglet is an accepted large animal PA/HIE model, there is no consensus on PA-induction methodology to produce clinically relevant HIE. We aimed to create and to characterize a novel PA model faithfully reproducing all features of asphyxiation including severe hypercapnia resulting in HIE, and to test whether H 2 is neuroprotective in this model. Piglets were anaesthetised, artificially ventilated, and intensively monitored (electroencephalography, core temperature, O 2 saturation, arterial blood pressure and blood gases). Asphyxia (20 min) was induced by ventilation with a hypoxic-hypercapnic (6%O 2 - 20%CO 2 ) gas mixture. Asphyxia-induced changes in the cortical microcirculation were assessed with laser-speckle contrast imaging and analysis. Asphyxia was followed by reventilation with air or air containing hydrogen (2.1%H 2 , 4 hours). After 24 hours survival, the brains were harvested for neuropathology. Our PA model was characterized by the development of severe hypoxia (pO2 = 27 ± 4 mmHg), and combined acidosis (pH = 6.76 ± 0.04; pCO 2 = 114 ± 11 mmHg; lactate = 12.12 ± 0.83 mmol/L), however, cortical ischemia did not develop during the stress. Severely depressed electroencephalography (EEG), and marked neuronal injury indicated the development of HIE. H 2 was neuroprotective shown both by the enhanced recovery of EEG and by the significant preservation of neurons in the cerebral cortex, hippocampus, basal ganglia, and the thalamus. H2 appeared to reduce oxidative stress shown by attenuation of 8-hydroxy-2'-deoxyguanosine immunostaining. In summary, this new PA piglet model is able to induce moderate/severe HIE, and the efficacy of hydrogen post-treatment to preserve neuronal activity/function in this PA/HIE model suggests the feasibility of this safe and inexpensive approach in the treatment of asphyxiated babies.

  6. Trans-resveratrol enriched maternal diet protects the immature hippocampus from perinatal asphyxia in rats.

    PubMed

    Isac, Sebastian; Panaitescu, Anca Maria; Spataru, Ana; Iesanu, Mara; Totan, Alexandra; Udriste, Amalia; Cucu, Natalia; Peltecu, Gheorghe; Zagrean, Leon; Zagrean, Ana-Maria

    2017-07-13

    Trans-resveratrol (tRESV), a polyphenol with antioxidant properties, is common in many food sources, hence easily accessible for study as a maternal dietary supplement in perinatal asphyxia (PA). Hypoxic-ischemic encephalopathy secondary to PA affects especially vulnerable brain areas such as hippocampus and is a leading cause of neonatal morbidity. The purpose of this study is to identify new epigenetic mechanisms of brain inflammation and injury related to PA and to explore the benefit of tRESV enriched maternal diet. The hippocampal interleukin 1 beta (IL-1b), tumour necrosis factor alpha (TNFα) and S-100B protein, at 24-48h after 90min of asphyxia were assessed in postnatal day 6 rats whose mothers received either standard or tRESV enriched diet. The expression of non-coding microRNAs miR124, miR132, miR134, miR146 and miR15a as epigenetic markers of hippocampus response to PA was determined 24h post-asphyxia. Our results indicate that neural response to PA could be epigenetically controlled and that tRESV reduces asphyxia-related neuroinflammation and neural injury. Moreover, tRESV could increase, through epigenetic mechanisms, the tolerance to asphyxia, with possible impact on the neuronal maturation. Our data support the neuroprotective quality of tRESV when used as a supplement in the maternal diet on the offspring's outcome in PA. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Acute brain injury and therapeutic hypothermia in the PICU: A rehabilitation perspective

    PubMed Central

    Fink, Ericka L.; Beers, Sue R.; Russell, Mary Louise; Bell, Michael J.

    2011-01-01

    Acquired brain injury from traumatic brain injury, cardiac arrest (CA), stroke, and central nervous system infection is a leading cause of morbidity and mortality in the pediatric population and admission to inpatient rehabilitation. Therapeutic hypothermia is the only intervention shown to have efficacy from bench to bedside in improving neurological outcome after birth asphyxia and adult arrhythmia-induced CA, thought to be due to its multiple mechanisms of action. Research to determine if therapeutic hypothermia should be applied to other causes of brain injury and how to best apply it is underway in children and adults. Changes in clinical practice in the hospitalized brain-injured child may have effects on rehabilitation referral practices, goals and strategies of therapies offered, and may increase the degree of complex medical problems seen in children referred to inpatient rehabilitation. PMID:21791822

  8. Asphyxia by Drowning Induces Massive Bleeding Due To Hyperfibrinolytic Disseminated Intravascular Coagulation.

    PubMed

    Schwameis, Michael; Schober, Andreas; Schörgenhofer, Christian; Sperr, Wolfgang Reinhard; Schöchl, Herbert; Janata-Schwatczek, Karin; Kürkciyan, Erol Istepan; Sterz, Fritz; Jilma, Bernd

    2015-11-01

    To date, no study has systematically investigated the impact of drowning-induced asphyxia on hemostasis. Our objective was to test the hypothesis that asphyxia induces bleeding by hyperfibrinolytic disseminated intravascular coagulation. Observational study. A 2,100-bed tertiary care facility in Vienna, Austria, Europe. All cases of drowning-induced asphyxia (n=49) were compared with other patients with cardiopulmonary resuscitation (n=116) and to patients with acute promyelocytic leukemia (n=83). Six drowning victims were investigated prospectively. To study the mechanism, a forearm-ischemia model was used in 20 volunteers to investigate whether hypoxia releases tissue plasminogen activator. None. Eighty percent of patients with drowning-induced asphyxia developed overt disseminated intravascular coagulation within 24 hours. When compared with nondrowning cardiac arrest patients, drowning patients had a 13 times higher prevalence of overt disseminated intravascular coagulation at admission (55% vs 4%; p<0.001). Despite comparable disseminated intravascular coagulation scores, acute promyelocytic leukemia patients had higher fibrinogen but lower d-dimer levels and platelet counts than drowning patients (p<0.001). Drowning victims had a three-fold longer activated partial thromboplastin time (124 s; p<0.001) than both nondrowning cardiac arrest and acute promyelocytic leukemia patients. Hyperfibrinolysis was reflected by up to 1,000-fold increased d-dimer levels, greater than 5-fold elevated plasmin antiplasmin levels, and a complete absence of thrombelastometric clotting patterns, which was reversed by antifibrinolytics and heparinase. Thirty minutes of forearm-ischemia increased tissue plasminogen activator 31-fold (p<0.001). The vast majority of drowning patients develops overt hyperfibrinolytic disseminated intravascular coagulation, partly caused by hypoxia induced tissue plasminogen activator release. Antifibrinolytics and heparinase partially reverse the abnormal clotting patterns. Severe activated partial thromboplastin time prolongation may be a marker of combined hyperfibrinolytic afibrinogenemia and autoheparinization in drowning-related asphyxia.

  9. Effect of perinatal asphyxia on tuberomammillary nucleus neuronal density and object recognition memory: A possible role for histamine?

    PubMed

    Flores-Balter, Gabriela; Cordova-Jadue, Héctor; Chiti-Morales, Alessandra; Lespay, Carolyne; Espina-Marchant, Pablo; Falcon, Romina; Grinspun, Noemi; Sanchez, Jessica; Bustamante, Diego; Morales, Paola; Herrera-Marschitz, Mario; Valdés, José L

    2016-10-15

    Perinatal asphyxia (PA) is associated with long-term neuronal damage and cognitive deficits in adulthood, such as learning and memory disabilities. After PA, specific brain regions are compromised, including neocortex, hippocampus, basal ganglia, and ascending neuromodulatory pathways, such as dopamine system, explaining some of the cognitive disabilities. We hypothesize that other neuromodulatory systems, such as histamine system from the tuberomammillary nucleus (TMN), which widely project to telencephalon, shown to be relevant for learning and memory, may be compromised by PA. We investigated here the effect of PA on (i) Density and neuronal activity of TMN neurons by double immunoreactivity for adenosine deaminase (ADA) and c-Fos, as marker for histaminergic neurons and neuronal activity respectively. (ii) Expression of the histamine-synthesizing enzyme, histidine decarboxylase (HDC) by western blot and (iii) thioperamide an H3 histamine receptor antagonist, on an object recognition memory task. Asphyxia-exposed rats showed a decrease of ADA density and c-Fos activity in TMN, and decrease of HDC expression in hypothalamus. Asphyxia-exposed rats also showed a low performance in object recognition memory compared to caesarean-delivered controls, which was reverted in a dose-dependent manner by the H3 antagonist thioperamide (5-10mg/kg, i.p.). The present results show that the histaminergic neuronal system of the TMN is involved in the long-term effects induced by PA, affecting learning and memory. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. G6PC3, ALDOA and CS induction accompanies mir-122 down-regulation in the mechanical asphyxia and can serve as hypoxia biomarkers.

    PubMed

    Zeng, Yan; Lv, Yehui; Tao, Li; Ma, Jianlong; Zhang, Heng; Xu, Hongmei; Xiao, Bi; Shi, Qun; Ma, Kaijun; Chen, Long

    2016-10-26

    Hypoxia influences different cellular biological processes. To reveal the dynamics of hypoxia's effects on miRNA regulation in vivo, we examined the expression levels of all miRNAs in human brain and heart specimens from cases of mechanical asphyxia compared with those from cases of craniocerebral injury and hemorrhagic shock. We further validated differently expressed miRNAs in another 84 human specimens and rat models. We found that mir-122 was significantly down-regulated and that its putative targets G6PC3, ALDOA and CS were increased in the brain and cardiac tissues in cases of mechanical asphyxia compared with craniocerebral injury and hemorrhagic shock. Our data indicate that mir-122 and its targets G6PC3, ALDOA and CS play roles in the hypoxia responses that regulate glucose and energy metabolism and can serve as hypoxia biomarkers.

  11. G6PC3, ALDOA and CS induction accompanies mir-122 down-regulation in the mechanical asphyxia and can serve as hypoxia biomarkers

    PubMed Central

    Zeng, Yan; Lv, Yehui; Tao, Li; Ma, Jianlong; Zhang, Heng; Xu, Hongmei; Xiao, Bi; Shi, Qun; Ma, Kaijun; Chen, Long

    2016-01-01

    Hypoxia influences different cellular biological processes. To reveal the dynamics of hypoxia's effects on miRNA regulation in vivo, we examined the expression levels of all miRNAs in human brain and heart specimens from cases of mechanical asphyxia compared with those from cases of craniocerebral injury and hemorrhagic shock. We further validated differently expressed miRNAs in another 84 human specimens and rat models. We found that mir-122 was significantly down-regulated and that its putative targets G6PC3, ALDOA and CS were increased in the brain and cardiac tissues in cases of mechanical asphyxia compared with craniocerebral injury and hemorrhagic shock. Our data indicate that mir-122 and its targets G6PC3, ALDOA and CS play roles in the hypoxia responses that regulate glucose and energy metabolism and can serve as hypoxia biomarkers. PMID:27793029

  12. Death as a result of violent asphyxia in autopsy reports.

    PubMed

    Trnka, J; Gesicki, M; Suslo, R; Siuta, J; Drobnik, J; Pirogowicz, I

    2013-01-01

    Violent asphyxia can be subdivided into various kinds according to the mechanism, so that the resuscitation techniques are different in each case. The purpose of the present article was to analyze the autopsy reports of the Department of Forensic Medicine of the Medical University in Wroclaw, Poland of 2010, in which the established cause of death was violent asphyxia. We found that among the 890 autopsies performed, there were 164 cases of death due to violent asphyxia caused by drowning, choking on food, gastric fluid, or blood, hanging, manual strangulations, immobilization of the chest (positional asphyxia), environmental asphyxia due to substitution of the oxygen-rich air for some other gas, and others. The most common cause of death in the group was hanging, mostly suicidal hangings of alcohol-intoxicated males. Despite an early medical treatment consisting of removing the noose from the neck and suction the fluids from the mouth and bronchial tree to safe the central nervous system from imminent hypoxia, there were negative outcomes in most cases due to the development of critical brain ischemia, with deaths followed after several days spent in the intensive care units. No connection to gender or age of the deceased was noted. We conclude that violent asphyxia remains to be a quite commonly cause of death in the practice of forensic pathologists - among all the autopsies performed in 2010 every sixth was of an asphyxia victim.

  13. [Effect of Xinmailong on hypoxia-inducible factor-1alpha expression in neonatal rats with asphyxia].

    PubMed

    Huang, Li-Xin; Wu, Xing-Heng

    2009-08-01

    Xinmailong, a compound extracted from Periplaneta americana, is used for the treatment of cardiovascular diseases. This study investigated the effects of Xinmailong on myocardial hypoxia-inducible factor-1alpha (HIF-1alpha) and plasma endothelin-1(ET-1) levels in neonatal rats with asphyxia and explored the protection mechanism of Xinmailong in hypoxia-ischemic myocardial injury. Seven-day-old Sprague-Dawley rats were randomly divided into three groups (n=30 each): sham-operated, asphyxia, Xinmailong-treated asphyxia. Each group was randomly subdivided into three groups according to the observed time points: 6 hrs, 24 hrs and 72 hrs. Xinmailong (5 mg/kg) was intraperitoneally injected to the rats in the Xinmailong-treated group five minutes before asphyxia. Myocardial HIF-1alpha expression, and plasma ET-1 and creatine kinase (CK) levels were measured. The histopathologic changes of the myocardium were observed by hematoxylin-eosin staining. Four rats died in the asphyxia group while only one died in the Xinmailong-treated group during the experiment. The plasma ET-1 and CK levels as well as myocardial HIF-1alpha expression increased at 6 hrs, reached a peak at 24 hrs, and declined at 72 hrs after asphyxia in the asphyxia group, being higher than that in the sham-operated group (P<0.01). Myocardial ischemia was observed in the three time points, and cell necrosis occurred at 24 hrs after asphyxia in the asphyxia group. Myocardial HIF-1alpha expression was positively correlated with plasma ET-1 levels (r=0.876, P<0.01). In the Xinmailong-treated group, plasma levels of CK and ET-1 as well as myocardial HIF-1alpha expression were significantly lower than those in the asphyxia group (P<0.01). Myocardial ischemia was alleviated and no cell necrosis was found in the Xinmailong-treated group. Asphyxia leads to increase in myocardial HIF-1alpha expression and plasma levels of ET-1 and CK. Xinmailong can reduce the myocardial expression of HIF-1alpha and decrease plasma ET-1 levels, thus alleviating hypoxia-ischemic myocardial injury.

  14. Angiogenesis Dysregulation in Term Asphyxiated Newborns Treated with Hypothermia

    PubMed Central

    Shaikh, Henna; Boudes, Elodie; Khoja, Zehra; Shevell, Michael; Wintermark, Pia

    2015-01-01

    Background Neonatal encephalopathy following birth asphyxia is a major predictor of long-term neurological impairment. Therapeutic hypothermia is currently the standard of care to prevent brain injury in asphyxiated newborns but is not protective in all cases. More robust and versatile treatment options are needed. Angiogenesis is a demonstrated therapeutic target in adult stroke. However, no systematic study examines the expression of angiogenesis-related markers following birth asphyxia in human newborns. Objective This study aimed to evaluate the expression of angiogenesis-related protein markers in asphyxiated newborns developing and not developing brain injury compared to healthy control newborns. Design/Methods Twelve asphyxiated newborns treated with hypothermia were prospectively enrolled; six developed eventual brain injury and six did not. Four healthy control newborns were also included. We used Rules-Based Medicine multi-analyte profiling and protein array technologies to study the plasma concentration of 49 angiogenesis-related proteins. Mean protein concentrations were compared between each group of newborns. Results Compared to healthy newborns, asphyxiated newborns not developing brain injury showed up-regulation of pro-angiogenic proteins, including fatty acid binding protein-4, glucose-6-phosphate isomerase, neuropilin-1, and receptor tyrosine-protein kinase erbB-3; this up-regulation was not evident in asphyxiated newborns eventually developing brain injury. Also, asphyxiated newborns developing brain injury showed a decreased expression of anti-angiogenic proteins, including insulin-growth factor binding proteins -1, -4, and -6, compared to healthy newborns. Conclusions These findings suggest that angiogenesis pathways are dysregulated following birth asphyxia and are putatively involved in brain injury pathology and recovery. PMID:25996847

  15. Immediate Remote Ischemic Postconditioning Reduces Brain Nitrotyrosine Formation in a Piglet Asphyxia Model.

    PubMed

    Rocha-Ferreira, Eridan; Rudge, Brogan; Hughes, Michael P; Rahim, Ahad A; Hristova, Mariya; Robertson, Nicola J

    2016-01-01

    Remote ischemic postconditioning (RIPostC) is a promising therapeutic intervention that could be administered as an alternative to cooling in cases of perinatal hypoxia-ischemia (HI). In the current study we hypothesized that RIPostC in the piglet model of birth asphyxia confers protection by reducing nitrosative stress and subsequent nitrotyrosine formation, as well as having an effect on glial immunoreactivity. Postnatal day 1 (P1) piglets underwent HI brain injury and were randomised to HI (control) or HI + RIPostC. Immunohistochemistry assessment 48 hours after HI revealed a significant decrease in brain nitrotyrosine deposits in the RIPostC-treated group (p = 0.02). This was accompanied by a significant increase in eNOS expression (p < 0.0001) and decrease in iNOS (p = 0.010), with no alteration in nNOS activity. Interestingly, RIPostC treatment was associated with a significant increase in GFAP (p = 0.002) and IBA1 (p = 0.006), markers of astroglial and microglial activity, respectively. The current study demonstrates a beneficial effect of RIPostC therapy in the preclinical piglet model of neonatal asphyxia, which appears to be mediated by modulation of nitrosative stress, despite glial activation.

  16. Brain research to ameliorate impaired neurodevelopment--home-based intervention trial (BRAIN-HIT).

    PubMed

    Wallander, Jan L; McClure, Elizabeth; Biasini, Fred; Goudar, Shivaprasad S; Pasha, Omrana; Chomba, Elwyn; Shearer, Darlene; Wright, Linda; Thorsten, Vanessa; Chakraborty, Hrishikesh; Dhaded, Sangappa M; Mahantshetti, Niranjana S; Bellad, Roopa M; Abbasi, Zahid; Carlo, Waldemar

    2010-04-30

    This randomized controlled trial aims to evaluate the effects of an early developmental intervention program on the development of young children in low- and low-middle-income countries who are at risk for neurodevelopmental disability because of birth asphyxia. A group of children without perinatal complications are evaluated in the same protocol to compare the effects of early developmental intervention in healthy infants in the same communities. Birth asphyxia is the leading specific cause of neonatal mortality in low- and low-middle-income countries and is also the main cause of neonatal and long-term morbidity including mental retardation, cerebral palsy, and other neurodevelopmental disorders. Mortality and morbidity from birth asphyxia disproportionately affect more infants in low- and low-middle-income countries, particularly those from the lowest socioeconomic groups. There is evidence that relatively inexpensive programs of early developmental intervention, delivered during home visit by parent trainers, are capable of improving neurodevelopment in infants following brain insult due to birth asphyxia. This trial is a block-randomized controlled trial that has enrolled 174 children with birth asphyxia and 257 without perinatal complications, comparing early developmental intervention plus health and safety counseling to the control intervention receiving health and safety counseling only, in sites in India, Pakistan, and Zambia. The interventions are delivered in home visits every two weeks by parent trainers from 2 weeks after birth until age 36 months. The primary outcome of the trial is cognitive development, and secondary outcomes include social-emotional and motor development. Child, parent, and family characteristics and number of home visits completed are evaluated as moderating factors. The trial is supervised by a trial steering committee, and an independent data monitoring committee monitors the trial. Findings from this trial have the potential to inform about strategies for reducing neurodevelopmental disabilities in at-risk young children in low and middle income countries.

  17. THE PROTECTIVE EFFECT OF LOCAL BONE MARROW ASPHYXIA IN ACUTE RADIATION SICKNESS IN ANIMALS (in Russian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zherebchenko, P.G.; Krasnykh, I.G.; Lebkova, N.P.

    1960-10-01

    In experiments on mice, rats, and dogs, a study was made of the effect of local bone marrow asphyxia on the course and outcome of radiation sickness. Asphyxia was induced by applying a hemostatic tourniquet on the extremity of animals during irradiation. It was established that local asphyxia of the bone marrow alleviates the severity of acute radiation sickness and increases the survival of animals. It is shown that at the basis of the radioprotective action lies the reduced degeneration of the bone marrow, subsequently facilitating the regeneration of hematopeiesis. Data are obtained relative to the intensification of the effectmore » of local asphyxia with the aid of prophylactic (mercamine) and curative (streptomycin) agents. (auth)« less

  18. The current crisis in obstetrics.

    PubMed

    Low, James A

    2005-11-01

    Of the issues leading to legal actions in obstetrics, the most important are events occurring before delivery that are deemed to account for the birth of a physically or mentally challenged child. In determining causation in the clinical setting, the diagnosis of fetal asphyxia can be made using blood gas and acid-base assessment. However, there are many subsidiary questions that in most cases cannot be answered, including when the asphyxia began, the severity and nature of the asphyxia during the exposure, the quality of the cardiovascular compensation, and when the brain damage occurred. When scientific proof is not available, the dilemma for the court is the requirement to reach a conclusion about the timing of brain damage on the balance of probabilities. Although it is of value, clinical risk scoring using fetal heart rate (FHR) monitoring may result in false positive predictions of fetal asphyxia. The problem in FHR monitoring is the lack of a detailed algorithm for the interpretation of FHR patterns with appropriate recommendations for management. Until such an algorithm is developed, health care workers cannot be expected to respond to fetal heart rate patterns consistently. Responsibility for the crisis in obstetrics must rest with the members of the health care disciplines who provide expert testimony. Progress made in research encourages us to assume that more is known about the causes of brain damage in the clinical setting than in fact is known. Similarly, health care professionals, parents, and lawyers often assume current methods of prediction and diagnosis to be more effective than they actually are.

  19. A combined behavioral and morphological study on the effects of fetal asphyxia on the nigrostriatal dopaminergic system in adult rats.

    PubMed

    Strackx, E; Van den Hove, D L A; Steinbusch, H P; Steinbusch, H W M; Vles, J S H; Blanco, C E; Gavilanes, A W D

    2008-06-01

    Fetal asphyxic insults in the brain are known to be associated with developmental neurological problems like neuromotor disorders. However, little is known about the long-term consequences of fetal asphyxia (FA). For that reason, the present study investigated the long-term effects of FA on motor behavior and dopaminergic circuitry. FA was induced at embryonic day 17 by 75-minute clamping of the uterine circulation. SHAM animals underwent the same procedure except for the clamping. This was followed by full-term vaginal delivery of animals in all groups (FA, SHAM and untreated controls). At 6 months, basal and amphetamine-induced locomotor activity was measured during open field testing. Brain sections were stained for tyrosine hydroxylase (TH) and glial fibrillary acidic protein (GFAP). TH-positive cells and GFAP-positive cells in substantia nigra pars compacta (SN(C)) and striatum were counted using design-based stereology. Moreover, TH-immunoreactivity in the striatum was assessed by grey value measurements. Behavioral analysis demonstrated that SHAM and FA showed less basal and amphetamine-induced activity than controls. Histochemically, FA decreased the number of TH-positive neurons in the SN(C) and lowered TH-positive in the striatum. Furthermore, more GFAP-positive cells were found in the SN(C) and striatum in FA than in either control and SHAM groups. Additionally, FA animals showed ventriculomegaly associated with smaller white matter as well as grey matter volumes. The data show that FA was associated with deficits in both dopamine-related motor behavior and biochemistry. These alterations were associated with nigrostriatal astrogliosis. The present study demonstrates the sensitivity of the dopaminergic system towards FA.

  20. Neurodegeneration, neuronal loss, and neurotransmitter changes in the adult guinea pig with perinatal asphyxia.

    PubMed

    Bernert, Guenther; Hoeger, Harald; Mosgoeller, Wilhelm; Stolzlechner, Doris; Lubec, Barbara

    2003-10-01

    There is only limited morphologic information on long-term alterations and neurotransmitter changes after perinatal asphyxia, and no long-term study showing neurodegeneration has been reported so far. We used an animal model for perinatal asphyxia well documented in the rat to investigate the guinea pig as a species highly mature at birth. Cesarean section was performed on full-term pregnant guinea pigs, and pups, still in membranes, were placed into a water bath at 37 degrees C for asphyxia periods from 2 to 4 min. Thereafter pups were given to surrogate mothers and examined at 3 mo of age. We studied brain areas reported to be hypoxia-sensitive. Neurodegeneration was evaluated by fluoro-jade, neuronal loss by Nissl, reactive gliosis by glial fibrillary acidic protein staining, and differentiation by neuroendocrine-specific protein C immunoreactivity. We tested tyrosine hydroxylase, the vesicular monoamine transporter, and dopamine beta-hydroxylase, representing the monoaminergic system; the vesicular acetylcholine transporter; and the excitatory amino acid carrier 1. Neurodegeneration was evident in cerebellum, hippocampal area CA1, and hypothalamus, and neuronal loss could be observed in cerebellum and hypothalamus; gliosis was observed in cerebellum, hippocampus, hypothalamus, and parietal cortex; dedifferentiation was found in hypothalamus and striatum; and monoaminergic, cholinergic, and amino acidergic deficits were shown in several brain regions. The major finding of the present study was that neurodegeneration and dedifferentiation evolved in the guinea pig, a species highly mature at birth. The relevance of this contribution is that a simple animal model of perinatal asphyxia resembling the clinical situation of intrauterine hypoxia-ischemia and presenting with neurodegeneration was characterized.

  1. Maternal Creatine Supplementation during Pregnancy Prevents Long-Term Changes in Diaphragm Muscle Structure and Function after Birth Asphyxia

    PubMed Central

    LaRosa, Domenic A.; Ellery, Stacey J.; Parkington, Helena C.; Snow, Rod J.

    2016-01-01

    Using a model of birth asphyxia, we previously reported significant structural and functional deficits in the diaphragm muscle in spiny mice, deficits that are prevented by supplementing the maternal diet with 5% creatine from mid-pregnancy. The long-term effects of this exposure are unknown. Pregnant spiny mice were fed control or 5% creatine-supplemented diet for the second half of pregnancy, and fetuses were delivered by caesarean section with or without 7.5 min of in-utero asphyxia. Surviving pups were raised by a cross-foster dam until 33±2 days of age when they were euthanized to obtain the diaphragm muscle for ex-vivo study of twitch tension and muscle fatigue, and for structural and enzymatic analyses. Functional analysis of the diaphragm revealed no differences in single twitch contractile parameters between any groups. However, muscle fatigue, induced by stimulation of diaphragm strips with a train of pulses (330ms train/sec, 40Hz) for 300sec, was significantly greater for asphyxia pups compared with controls (p<0.05), and this did not occur in diaphragms of creatine + asphyxia pups. Birth asphyxia resulted in a significant increase in the proportion of glycolytic, fast-twitch fibres and a reduction in oxidative capacity of Type I and IIb fibres in male offspring, as well as reduced cross-sectional area of all muscle fibre types (Type I, IIa, IIb/d) in both males and females at 33 days of age. None of these changes were observed in creatine + asphyxia animals. Thus, the changes in diaphragm fatigue and structure induced by birth asphyxia persist long-term but are prevented by maternal creatine supplementation. PMID:26930669

  2. Effects of acute perinatal asphyxia in the rat hippocampus.

    PubMed

    Frizzo, Juliana Karl; Cardoso, Michele Petter; de Assis, Adriano Martimbianco; Perry, Marcos Luiz; Volonté, Cinzia; Frizzo, Marcos Emílio

    2010-07-01

    In the present work, we have used a rat animal model to study the early effects of intrauterine asphyxia occurring no later than 60 min following the cesarean-delivery procedure. Transitory hypertonia accompanied by altered posture was observed in asphyxiated pups, which also showed appreciably increased lactate values in plasma and hippocampal tissues. Despite this, there was no difference in terms of either cell viability or metabolic activities such as oxidation of lactate, glucose, and glycine in the hippocampus of those fetuses submitted to perinatal asphyxia with respect to normoxic animals. Moreover, a significant decrease in glutamate, but not GABA uptake was observed in the hippocampus of asphyctic pups. Since intense ATP signaling especially through P2X(7) purinergic receptors can lead to excitotoxicity, a feature which initiates neurotransmission failure in experimental paradigms relevant to ischemia, here we assessed the expression level of the P2X(7) receptor in the paradigm of perinatal asphyxia. A three-fold increase in P2X(7) protein was transiently observed in hippocampus immediately following asphyxia. Nevertheless, further studies are needed to delineate whether the P2X(7) receptor subtype is involved in the pathogenesis, contributing to ongoing brain injury after intrapartum asphyxia. In that case, new pharmacologic intervention strategies providing neuroprotection during the reperfusion phase of injury might be identified.

  3. Brain caspase-3 and intestinal FABP responses in preterm and term rats submitted to birth asphyxia.

    PubMed

    Figueira, R L; Gonçalves, F L; Simões, A L; Bernardino, C A; Lopes, L S; Castro E Silva, O; Sbragia, L

    2016-06-23

    Neonatal asphyxia can cause irreversible injury of multiple organs resulting in hypoxic-ischemic encephalopathy and necrotizing enterocolitis (NEC). This injury is dependent on time, severity, and gestational age, once the preterm babies need ventilator support. Our aim was to assess the different brain and intestinal effects of ischemia and reperfusion in neonate rats after birth anoxia and mechanical ventilation. Preterm and term neonates were divided into 8 subgroups (n=12/group): 1) preterm control (PTC), 2) preterm ventilated (PTV), 3) preterm asphyxiated (PTA), 4) preterm asphyxiated and ventilated (PTAV), 5) term control (TC), 6) term ventilated (TV), 7) term asphyxiated (TA), and 8) term asphyxiated and ventilated (TAV). We measured body, brain, and intestine weights and respective ratios [(BW), (BrW), (IW), (BrW/BW) and (IW/BW)]. Histology analysis and damage grading were performed in the brain (cortex/hippocampus) and intestine (jejunum/ileum) tissues, as well as immunohistochemistry analysis for caspase-3 and intestinal fatty acid-binding protein (I-FABP). IW was lower in the TA than in the other terms (P<0.05), and the IW/BW ratio was lower in the TA than in the TAV (P<0.005). PTA, PTAV and TA presented high levels of brain damage. In histological intestinal analysis, PTAV and TAV had higher scores than the other groups. Caspase-3 was higher in PTAV (cortex) and TA (cortex/hippocampus) (P<0.005). I-FABP was higher in PTAV (P<0.005) and TA (ileum) (P<0.05). I-FABP expression was increased in PTAV subgroup (P<0.0001). Brain and intestinal responses in neonatal rats caused by neonatal asphyxia, with or without mechanical ventilation, varied with gestational age, with increased expression of caspase-3 and I-FABP biomarkers.

  4. Brain caspase-3 and intestinal FABP responses in preterm and term rats submitted to birth asphyxia

    PubMed Central

    Figueira, R.L.; Gonçalves, F.L.; Simões, A.L.; Bernardino, C.A.; Lopes, L.S.; Castro e Silva, O.; Sbragia, L.

    2016-01-01

    Neonatal asphyxia can cause irreversible injury of multiple organs resulting in hypoxic-ischemic encephalopathy and necrotizing enterocolitis (NEC). This injury is dependent on time, severity, and gestational age, once the preterm babies need ventilator support. Our aim was to assess the different brain and intestinal effects of ischemia and reperfusion in neonate rats after birth anoxia and mechanical ventilation. Preterm and term neonates were divided into 8 subgroups (n=12/group): 1) preterm control (PTC), 2) preterm ventilated (PTV), 3) preterm asphyxiated (PTA), 4) preterm asphyxiated and ventilated (PTAV), 5) term control (TC), 6) term ventilated (TV), 7) term asphyxiated (TA), and 8) term asphyxiated and ventilated (TAV). We measured body, brain, and intestine weights and respective ratios [(BW), (BrW), (IW), (BrW/BW) and (IW/BW)]. Histology analysis and damage grading were performed in the brain (cortex/hippocampus) and intestine (jejunum/ileum) tissues, as well as immunohistochemistry analysis for caspase-3 and intestinal fatty acid-binding protein (I-FABP). IW was lower in the TA than in the other terms (P<0.05), and the IW/BW ratio was lower in the TA than in the TAV (P<0.005). PTA, PTAV and TA presented high levels of brain damage. In histological intestinal analysis, PTAV and TAV had higher scores than the other groups. Caspase-3 was higher in PTAV (cortex) and TA (cortex/hippocampus) (P<0.005). I-FABP was higher in PTAV (P<0.005) and TA (ileum) (P<0.05). I-FABP expression was increased in PTAV subgroup (P<0.0001). Brain and intestinal responses in neonatal rats caused by neonatal asphyxia, with or without mechanical ventilation, varied with gestational age, with increased expression of caspase-3 and I-FABP biomarkers. PMID:27356106

  5. Consequences of intrauterine growth restriction on ventilatory and thermoregulatory responses to asphyxia and hypercapnia in the newborn guinea-pig.

    PubMed

    Tolcos, Mary; Rees, Sandra; McGregor, Hugh; Walker, David

    2002-01-01

    The purpose of this study was to determine the effects of prenatal growth restriction on the ventilatory and thermoregulatory responses to asphyxia and hypercapnia in the newborn guinea-pig. Spontaneously growth-restricted (SGR) animals born to unoperated dams, and growth-retarded (GR) neonates born to dams in which a uterine artery had been ligated at mid gestation, were studied and compared with control neonates. Ventilatory responses to progressive asphyxia and steady-state hypercapnia were tested at 3-6 days of age using a barometric plethysmograph. The animals were then killed and the brains prepared for histological and immunohistochemical analysis. During progressive asphyxia, SGR neonates (n = 5) had a significantly increased minute ventilation compared with both control (n = 6) and GR (n = 5) neonates. Rectal temperature fell significantly in GR and SGR neonates after progressive asphyxia, but was unchanged in control neonates. The ventilatory responses to steady-state hypercapnia were not different in the GR, SGR and control neonates. The immunoreactive expression of glial fibrillary acidic protein, tyrosine hydroxylase, substance P and met-enkephalin in the medulla was also not different between the three groups. It was concluded that prenatal growth restriction is associated with alterations in the respiratory and thermoregulatory responses to asphyxia and hypercapnia, with greater effects observed when in utero growth restriction arises spontaneously, compared with that produced experimentally over approximately the last half of gestation.

  6. Becoming a parent to a child with birth asphyxia-From a traumatic delivery to living with the experience at home.

    PubMed

    Heringhaus, Alina; Blom, Michaela Dellenmark; Wigert, Helena

    2013-04-30

    The aim of this study is to describe the experiences of becoming a parent to a child with birth asphyxia treated with hypothermia in the neonatal intensive care unit (NICU). In line with the medical advances, the survival of critically ill infants with increased risk of morbidity is increasing. Children who survive birth asphyxia are at a higher risk of functional impairments, cerebral palsy (CP), or impaired vision and hearing. Since 2006, hypothermia treatment following birth asphyxia is used in many of the Swedish neonatal units to reduce the risk of brain injury. To date, research on the experience of parenthood of the child with birth asphyxia is sparse. To improve today's neonatal care delivery, health-care providers need to better understand the experiences of becoming a parent to a child with birth asphyxia. A total of 26 parents of 16 children with birth asphyxia treated with hypothermia in a Swedish NICU were interviewed. The transcribed interview texts were analysed according to a qualitative latent content analysis. We found that the experience of becoming a parent to a child with birth asphyxia treated with hypothermia at the NICU was a strenuous journey of overriding an emotional rollercoaster, that is, from being thrown into a chaotic situation which started with a traumatic delivery to later processing the difficult situation of believing the child might not survive or was to be seriously affected by the asphyxia. The prolonged parent-infant separation due to the hypothermia treatment and parents' fear of touching the infant because of the high-tech equipment seemed to hamper the parent-infant bonding. The adaption of the everyday life at home seemed to be facilitated by the follow-up information of the doctor after discharge. The results of this study underline the importance of family-centered support during and also after the NICU discharge.

  7. Heart rate changes during positive pressure ventilation after asphyxia-induced bradycardia in a porcine model of neonatal resuscitation.

    PubMed

    Espinoza, Maria Liza; Cheung, Po-Yin; Lee, Tze-Fun; O'Reilly, Megan; Schmölzer, Georg M

    2018-05-19

    The Neonatal Resuscitation Program (NRP) states that if adequate positive pressure ventilation (PPV) was given for a low heart rate (HR), the infant's HR should increase within the first 15 s of PPV. To assess changes in HR in piglets with asphyxia-induced bradycardia. Term newborn piglets (n=30) were anaesthetised, intubated, instrumented and exposed to 50 min normocapnic hypoxia followed by asphyxia. Asphyxia was achieved by clamping the tube until severe bradycardia (defined as HR at < 25% of baseline). This was followed by 30 s adequate PPV and chest compression thereafter. Changes in HR during the 30 s of PPV were assessed and divided into four epochs (0-10 s, 5-15 s, 10-20 s and 20-30 s, respectively). Increase in HR >100/min was observed in 6/30 (20%) after 30 s of PPV. Within the epochs 0-10 s, 5-15 s or 10-20 s no piglet had an increase in HR >100/min. Additional 10/30 (33%) had a >10% increase in HR. In contrast to NRP recommendation, adequate PPV does not increase HR within 15 s after ventilation in piglets with asphyxia-induced bradycardia. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  8. Methylene blue prevents retinal damage in an experimental model of ischemic proliferative retinopathy.

    PubMed

    Rey-Funes, Manuel; Larrayoz, Ignacio M; Fernández, Juan C; Contartese, Daniela S; Rolón, Federico; Inserra, Pablo I F; Martínez-Murillo, Ricardo; López-Costa, Juan J; Dorfman, Verónica B; Martínez, Alfredo; Loidl, César F

    2016-06-01

    Perinatal asphyxia induces retinal lesions, generating ischemic proliferative retinopathy, which may result in blindness. Previously, we showed that the nitrergic system was involved in the physiopathology of perinatal asphyxia. Here we analyze the application of methylene blue, a well-known soluble guanylate cyclase inhibitor, as a therapeutic strategy to prevent retinopathy. Male rats (n = 28 per group) were treated in different ways: 1) control group comprised born-to-term animals; 2) methylene blue group comprised animals born from pregnant rats treated with methylene blue (2 mg/kg) 30 and 5 min before delivery; 3) perinatal asphyxia (PA) group comprised rats exposed to perinatal asphyxia (20 min at 37°C); and 4) methylene blue-PA group comprised animals born from pregnant rats treated with methylene blue (2 mg/kg) 30 and 5 min before delivery, and then the pups were subjected to PA as above. For molecular studies, mRNA was obtained at different times after asphyxia, and tissue was collected at 30 days for morphological and biochemical analysis. Perinatal asphyxia produced significant gliosis, angiogenesis, and thickening of the inner retina. Methylene blue treatment reduced these parameters. Perinatal asphyxia resulted in a significant elevation of the nitrergic system as shown by NO synthase (NOS) activity assays, Western blotting, and (immuno)histochemistry for the neuronal isoform of NOS and NADPH-diaphorase activity. All these parameters were also normalized by the treatment. In addition, methylene blue induced the upregulation of the anti-angiogenic peptide, pigment epithelium-derived factor. Application of methylene blue reduced morphological and biochemical parameters of retinopathy. This finding suggests the use of methylene blue as a new treatment to prevent or decrease retinal damage in the context of ischemic proliferative retinopathy. Copyright © 2016 the American Physiological Society.

  9. Effects of perinatal asphyxia on cell proliferation and neuronal phenotype evaluated with organotypic hippocampal cultures.

    PubMed

    Morales, P; Reyes, P; Klawitter, V; Huaiquín, P; Bustamante, D; Fiedler, J; Herrera-Marschitz, M

    2005-01-01

    The present report summarizes studies combining an in vivo and in vitro approach, where asphyxia is induced in vivo at delivery time of Wistar rats, and the long term effects on hippocampus neurocircuitry are investigated in vitro with organotypic cultures plated at postnatal day seven. The cultures preserved hippocampus layering and regional subdivisions shown in vivo, and only few dying cells were observed when assayed with a viability test at day in vitro 27. When properly fixed, cultures from asphyxia-exposed animals showed a decreased amount of microtubule-associated protein-2 immunocytochemically positive cells (approximately 30%), as compared with that from controls. The decrease in microtubule-associated protein-2 immunocytochemistry was particularly prominent in Ammon's horn 1 and dentate gyrus regions (approximately 40%). 5-Bromo-2'deoxyuridine labeling revealed a two-fold increase in cellular proliferation in cultures from asphyxia-exposed, compared with that from control animals. Furthermore, confocal microscopy and quantification using the optical disector technique demonstrated that in cultures from asphyxia-exposed animals approximately 30% of 5-bromo-2'deoxyuridine-positive cells were also positive to microtubule-associated protein-2, a marker for neuronal phenotype. That proportion was approximately 20% in cultures from control animals. Glial fibrillary acidic protein-immunocytochemistry and Fast Red nuclear staining revealed that the core of the hippocampus culture was surrounded by a well-developed network of glial fibrillary acidic protein-positive cells and glial fibrillary acidic protein-processes providing an apparent protective shield around the hippocampus. That shield was less developed in cultures from asphyxia-exposed animals. The increased mitotic activity observed in this study suggests a compensatory mechanism for the long-term impairment induced by perinatal asphyxia, although it is not clear yet if that mechanism leads to neurogenesis, astrogliogenesis, or to further apoptosis.

  10. Perinatal asphyxia results in changes in presynaptic bouton number in striatum and cerebral cortex-a stereological and behavioral analysis.

    PubMed

    Van de Berg, W D; Blokland, A; Cuello, A C; Schmitz, C; Vreuls, W; Steinbusch, H W; Blanco, C E

    2000-10-01

    Deficits in cognitive function have been related to quantitative changes in synaptic population, particularly in the cerebral cortex. Here, we used an established model of perinatal asphyxia that induces morphological changes, i.e. neuron loss in the cerebral cortex and striatum, as well as behavioural deficits. We hypothesized that perinatal asphyxia may lead to a neurodegenerative process resulting in cognitive impairment and altered presynaptic bouton numbers in adult rats. We studied cognitive performance at 18 months and presynaptic bouton numbers at 22 months following perinatal asphyxia. Data of the spatial Morris water escape task did not reveal clear memory or learning deficits in aged asphyctic rats compared to aged control rats. However, a memory impairment in aged rats versus young rats was observed, which was more pronounced in asphyctic rats. We found an increase in presynaptic bouton density in the parietal cortex, whereas no changes were found in striatum and frontal cortex in asphyctic rats. An increase of striatal volume was observed in asphyctic rats, leading to an increase in presynaptic bouton numbers in this area. These findings stress the issue that volume measurements have to be taken into account when determining presynaptic bouton density. Furthermore, perinatal asphyxia led to region-specific changes in presynaptic bouton numbers and it worsened the age-related cognitive impairment. These results suggest that perinatal asphyxia induced neuronal loss, which is compensated for by an increase in presynaptic bouton numbers.

  11. Impact of perinatal asphyxia on the GABAergic and locomotor system.

    PubMed

    Van de Berg, W D J; Kwaijtaal, M; de Louw, A J A; Lissone, N P A; Schmitz, C; Faull, R L M; Blokland, A; Blanco, C E; Steinbusch, H W M

    2003-01-01

    Perinatal asphyxia can cause neuronal loss and depletion of neurotransmitters within the striatum. The striatum plays an important role in motor control, sensorimotor integration and learning. In the present study we investigated whether perinatal asphyxia leads to motor deficits related to striatal damage, and in particular to the loss of GABAergic neurons. Perinatal asphyxia was induced in time-pregnant Wistar rats on the day of delivery by placing the uterus horns, containing the pups, in a 37 degrees C water bath for 20 min. Three motor performance tasks (open field, grip test and walking pattern) were performed at 3 and 6 weeks of age. Antibodies against calbindin and parvalbumin were used to stain GABAergic striatal projection neurons and interneurons, respectively. The motor tests revealed subtle effects of perinatal asphyxia, i.e. small decrease in motor activity. Analysis of the walking pattern revealed an increase in stride width at 6 weeks of age after perinatal asphyxia. Furthermore, a substantial loss of calbindin-immunoreactive (-22%) and parvalbumin-immunoreactive (-43%) cells was found in the striatum following perinatal asphyxia at two months of age. GABA(A) receptor autoradiography revealed no changes in GABA binding activity within the striatum, globus pallidus or substantia nigra. We conclude that perinatal asphyxia resulted in a loss of GABAergic projection neurons and interneurons in the striatum without alteration of GABA(A) receptor affinity. Despite a considerable loss of striatal neurons, only minor deficits in motor performance were found after perinatal asphyxia.

  12. Pregnancy and Birth-Related Brain Disorders.

    ERIC Educational Resources Information Center

    Fink, Leslie

    1986-01-01

    Although it once seemed simple to say that a single event such as birth trauma or asphyxia caused brain disorders like cerebral palsy, mental retardation, and epilepsy, a recent study showed that it is nearly impossible to pinpoint a single cause and its effects. Recommendations for further research are made. (BB)

  13. Fetal circulatory responses to oxygen lack.

    PubMed

    Jensen, A; Berger, R

    1991-10-01

    The knowledge on fetal and neonatal circulatory physiology accumulated by basic scientists and clinicians over the years has contributed considerably to the recent decline of perinatal morbidity and mortality. This review will summarize the peculiarities of the fetal circulation, the distribution of organ blood flow during normoxemia, and that during oxygen lack caused by various experimental perturbations. Furthermore, the relation between oxygen delivery and tissue metabolism during oxygen lack as well as evidence to support a new concept will be presented along with the principal cardiovascular mechanisms involved. Finally, blood flow and oxygen delivery to the principal fetal organs will be examined and discussed in relation to organ function. The fetal circulatory response to hypoxemia and asphyxia is a centralization of blood flow in favour of the brain, heart, and adrenals and at the expense of almost all peripheral organs, particularly of the lungs, carcass, skin and scalp. This response is qualitatively similar but quantitatively different under various experimental conditions. However, at the nadir of severe acute asphyxia the circulatory centralization cannot be maintained. Then there is circulatory decentralization, and the fetus will experience severe brain damage if not expire unless immediate resuscitation occurs. Future work in this field will have to concentrate on the important questions, what factors determine this collapse of circulatory compensating mechanisms in the fetus, how does it relate to neuronal damage, and how can the fetal brain be pharmacologically protected against the adverse effects of asphyxia.

  14. [Etiology of cerebral palsy].

    PubMed

    Jaisle, F

    1996-01-01

    The "perinatal asphyxia" is regarded to be one of the causes of cerebral palsy, though in the very most of the children with cerebral palsy there is found no hypoxia during labour. It should be mentioned, that the definition of "perinatal" and "asphyxia" neither are unic nor concret. And also there is no correlation between nonreassuring fetal heart rate patterns and acidosis in fetal blood with the incidence of cerebral palsy. Numerous studies in pregnant animals failed in proving an acute intrapartal hypoxia to be the origin of the cerebral palsy. Myers (1975) describes four patterns of anatomic brain damage after different injuries. Only his so called oligo-acidotic hypoxia, which is protracted and lasts over a longer time is leading to brain injury, which can be regarded in analogy to the injury of children with cerebral palsy. Summarising the update publications about the causes of cerebral palsy and the studies in pregnant animals there is no evidence that hypoxia during labour may be the cause of cerebral palsy. There is a great probability of a pre(and post-)natal origin of brain injury (for instance a periventricular leucomalacia found after birth) which leads to cerebral palsy. Short after labour signs of a so called "asphyxia" may occur in addition to this preexisting injury and misrepresent the cause of cerebral palsy. Finally the prepartal injury may cause both: Cerebral palsy and hypoxia.

  15. Renal dysfunction in early adulthood following birth asphyxia in male spiny mice, and its amelioration by maternal creatine supplementation during pregnancy.

    PubMed

    Ellery, Stacey J; LaRosa, Domenic A; Cullen-McEwen, Luise A; Brown, Russell D; Snow, Rod J; Walker, David W; Kett, Michelle M; Dickinson, Hayley

    2017-04-01

    Acute kidney injury affects ~70% of asphyxiated newborns, and increases their risk of developing chronic kidney disease later in life. Acute kidney injury is driven by renal oxygen deprivation during asphyxia, thus we hypothesized that creatine administered antenatally would protect the kidney from the long-term effects of birth asphyxia. Pregnant spiny mice were fed standard chow or chow supplemented with 5% creatine from 20-d gestation (midgestation). One day prior to term (37-d gestation), pups were delivered by caesarean or subjected to intrauterine asphyxia. Litters were allocated to one of two time-points. Kidneys were collected at 1 mo of age to estimate nephron number (stereology). Renal function (excretory profile and glomerular filtration rate) was measured at 3 mo of age, and kidneys then collected for assessment of glomerulosclerosis. Compared with controls, at 1 mo of age male (but not female) birth-asphyxia offspring had 20% fewer nephrons (P < 0.05). At 3 mo of age male birth-asphyxia offspring had 31% lower glomerular filtration rate (P < 0.05) and greater glomerular collagen IV content (P < 0.01). Antenatal creatine prevented these renal injuries arising from birth asphyxia. Maternal creatine supplementation during pregnancy may be an effective prophylactic to prevent birth asphyxia induced acute kidney injury and the emergence of chronic kidney disease.

  16. Effect of perinatal asphyxia and carbamazepine treatment on cortical dopamine and DOPAC levels.

    PubMed

    López-Pérez, Silvia J; Morales-Villagrán, Alberto; Medina-Ceja, Laura

    2015-02-13

    One of the most important manifestations of perinatal asphyxia is the occurrence of seizures, which are treated with antiepileptic drugs, such as carbamazepine. These early seizures, combined with pharmacological treatments, may influence the development of dopaminergic neurotransmission in the frontal cortex. This study aimed to determine the extracellular levels of dopamine and its main metabolite DOPAC in 30-day-old rats that had been asphyxiated for 45 min in a low (8%) oxygen chamber at a perinatal age and treated with daily doses of carbamazepine. Quantifications were performed using microdialysis coupled to a high-performance liquid chromatography (HPLC) system in basal conditions and following the use of the chemical stimulus. Significant decreases in basal and stimulated extracellular dopamine and DOPAC content were observed in the frontal cortex of the asphyxiated group, and these decreases were partially recovered in the animals administered daily doses of carbamazepine. Greater basal dopamine concentrations were also observed as an independent effect of carbamazepine. Perinatal asphyxia plus carbamazepine affects extracellular levels of dopamine and DOPAC in the frontal cortex and stimulated the release of dopamine, which provides evidence for the altered availability of dopamine in cortical brain areas during brain development.

  17. Becoming a parent to a child with birth asphyxia—From a traumatic delivery to living with the experience at home

    PubMed Central

    Heringhaus, Alina; Wigert, Helena

    2013-01-01

    The aim of this study is to describe the experiences of becoming a parent to a child with birth asphyxia treated with hypothermia in the neonatal intensive care unit (NICU). In line with the medical advances, the survival of critically ill infants with increased risk of morbidity is increasing. Children who survive birth asphyxia are at a higher risk of functional impairments, cerebral palsy (CP), or impaired vision and hearing. Since 2006, hypothermia treatment following birth asphyxia is used in many of the Swedish neonatal units to reduce the risk of brain injury. To date, research on the experience of parenthood of the child with birth asphyxia is sparse. To improve today's neonatal care delivery, health-care providers need to better understand the experiences of becoming a parent to a child with birth asphyxia. A total of 26 parents of 16 children with birth asphyxia treated with hypothermia in a Swedish NICU were interviewed. The transcribed interview texts were analysed according to a qualitative latent content analysis. We found that the experience of becoming a parent to a child with birth asphyxia treated with hypothermia at the NICU was a strenuous journey of overriding an emotional rollercoaster, that is, from being thrown into a chaotic situation which started with a traumatic delivery to later processing the difficult situation of believing the child might not survive or was to be seriously affected by the asphyxia. The prolonged parent–infant separation due to the hypothermia treatment and parents’ fear of touching the infant because of the high-tech equipment seemed to hamper the parent–infant bonding. The adaption of the everyday life at home seemed to be facilitated by the follow-up information of the doctor after discharge. The results of this study underline the importance of family-centered support during and also after the NICU discharge. PMID:23639330

  18. Effects of perinatal asphyxia on the neurobehavioral and retinal development of newborn rats.

    PubMed

    Kiss, Peter; Szogyi, Donat; Reglodi, Dora; Horvath, Gabor; Farkas, Jozsef; Lubics, Andrea; Tamas, Andrea; Atlasz, Tamas; Szabadfi, Krisztina; Babai, Norbert; Gabriel, Robert; Koppan, Miklos

    2009-02-19

    Perinatal asphyxia during delivery produces long-term deficits and represents a major problem in both neonatal and pediatric care. Several morphological, biochemical and behavioral changes have been described in rats exposed to perinatal asphyxia. The aim of the present study was to evaluate how perinatal asphyxia affects the complex early neurobehavioral development and retinal structure of newborn rats. Asphyxia was induced in ready-to-deliver mothers by removing the pups by cesarian section after 15 min of asphyxia. Somatic and neurobehavioral development was tested daily during the first 3 weeks, and motor coordination tests were performed on postnatal weeks 3-5. After completion of the testing procedure, retinas were removed for histological analysis. We found that in spite of the fast catch-up-growth of asphyctic pups, nearly all examined reflexes were delayed by 1-4 days: negative geotaxis, sensory reflexes, righting reflexes, development of fore- and hindlimb grasp and placing, gait and auditory startle reflexes. Time to perform negative geotaxis, surface righting and gait reflexes was significantly longer during the first few weeks in asphyctic pups. Among the motor coordination tests, a markedly weaker performance was observed in the grid walking and footfault test and in the walk initiation test. Retinal structure showed severe degeneration in the layer of the photoreceptor and bipolar cell bodies. In summary, our present study provided a detailed description of reflex and motor development following perinatal asphyxia, showing that asphyxia led to a marked delay in neurobehavioral development and a severe retinal degeneration.

  19. A systematic review comparing neurodevelopmental outcome in term infants with hypoxic and vascular brain injury with and without seizures.

    PubMed

    De Haan, T R; Langeslag, J; van der Lee, J H; van Kaam, A H

    2018-05-02

    There is increasing evidence that neonatal seizures in term neonates with stroke, asphyxia or brain haemorrhage might be associated with adverse neurodevelopment and development of epilepsy. The extent of this association is not known. The objective of this study was to assess the possible impact of neonatal seizures on these outcomes and if possible calculate a relative risk. A systematic review and meta-analysis was performed (study period January 2000-June 2015). PubMed, Medline and Embase were searched for cohort studies evaluating neurodevelopmental outcome at the age of at least 18 months or development of epilepsy in surviving term neonates with or without neonatal seizures. The methodological quality of included studies was assessed and data extractions were performed in a standardized manner by independent reviewers. Pooled Relative Risks (RR) with 95% confidence intervals for adverse outcome were calculated if possible. Out of 1443 eligible studies 48 were selected for full text reading leaving 9 cohort studies for the final analyses (4 studies on stroke, 4 on perinatal asphyxia and one on cerebral hemorrhage). For all cases with stroke or asphyxia combined the pooled risk ratio (RR) for adverse outcome when suffering neonatal seizures was 7.42 (3.84-14.34); for neonates with perinatal asphyxia: 8.41 (4.07-17.39) and for neonates with stroke: 4.95 (1.07-23.0). The pooled RR for development of late onset epilepsy could only be determined for infants suffering from stroke: 1.48 (0.82-2.68). Results were biased and evidence sparse. The presence of neonatal seizures in term newborns with vascular or hypoxic brain injury may have an impact on or be a predictor of neurodevelopmental outcome. The biased available data yield insufficient evidence about the true size of this association.

  20. Creatine pretreatment prevents birth asphyxia-induced injury of the newborn spiny mouse kidney.

    PubMed

    Ellery, Stacey J; Ireland, Zoe; Kett, Michelle M; Snow, Rod; Walker, David W; Dickinson, Hayley

    2013-02-01

    Acute kidney injury (AKI) is a major complication for infants following an asphyxic insult at birth. We aimed to determine if kidney structure and function were affected in an animal model of birth asphyxia and if maternal dietary creatine supplementation could provide an energy reserve to the fetal kidney, maintaining cellular respiration during asphyxia and preventing AKI. Pregnant spiny mice were maintained on normal chow or chow supplemented with creatine from day 20 gestation. On day 38 (term ~39 d), pups were delivered by cesarean section (c-section) or subjected to intrauterine asphyxia. Twenty-four hours after insult, kidneys were collected for histological or molecular analysis. Urine and plasma were also collected for biochemical analysis. AKI was evident at 24 h after birth asphyxia, with a higher incidence of shrunken glomeruli (P < 0.02), disturbance to tubular arrangement, tubular dilatation, a twofold increase (P < 0.02) in expression of Ngal (early marker of kidney injury), and decreased expression of the podocyte differentiation marker nephrin. Maternal creatine supplementation prevented the glomerular and tubular abnormalities observed in the kidney at 24 h and the increased expression of Ngal. Maternal creatine supplementation may prove useful in ameliorating kidney injury associated with birth asphyxia.

  1. Estradiol Activates PI3K/Akt/GSK3 Pathway Under Chronic Neurodegenerative Conditions Triggered by Perinatal Asphyxia

    PubMed Central

    Saraceno, G. Ezequiel; Bellini, Maria J.; Garcia-Segura, Luis M.; Capani, Francisco

    2018-01-01

    Perinatal asphyxia (PA) remains as one of the most important causes of short-term mortality, psychiatric and neurological disorders in children, without an effective treatment. In previous studies we have observed that the expression of different neurodegenerative markers increases in CA1 hippocampal area of 4-months-old male rats born by cesarean section and exposed for 19 min to PA. We have also shown that a late treatment with 17β estradiol (daily dose of 250 μg/kg for 3 days) was able to revert the brain alterations observed in those animals. Based on these previous results, the main aim of the present study was to explore the mechanism by which the estrogenic treatment is involved in the reversion of the chronic neurodegenerative conditions induced by PA. We demonstrated that estradiol treatment of adult PA exposed animals induced an increase in estrogen receptor (ER) α and insulin-like growth factor receptor (IGF-1R) protein levels, an activation of the phosphatidylinositol 3-kinase/Akt/glycogen synthase kinase 3 beta/β-catenin signaling pathway and an increase in Bcl-2/Bax ratio in the hippocampus in comparison to PA exposed animals treated with vehicle. Taking together, our data suggest that the interaction between ERα and IGF-IR, with the subsequent downstream activation, underlies the beneficial effects of estradiol observed in late treatment of PA. PMID:29686616

  2. Estradiol Activates PI3K/Akt/GSK3 Pathway Under Chronic Neurodegenerative Conditions Triggered by Perinatal Asphyxia.

    PubMed

    Saraceno, G Ezequiel; Bellini, Maria J; Garcia-Segura, Luis M; Capani, Francisco

    2018-01-01

    Perinatal asphyxia (PA) remains as one of the most important causes of short-term mortality, psychiatric and neurological disorders in children, without an effective treatment. In previous studies we have observed that the expression of different neurodegenerative markers increases in CA1 hippocampal area of 4-months-old male rats born by cesarean section and exposed for 19 min to PA. We have also shown that a late treatment with 17β estradiol (daily dose of 250 μg/kg for 3 days) was able to revert the brain alterations observed in those animals. Based on these previous results, the main aim of the present study was to explore the mechanism by which the estrogenic treatment is involved in the reversion of the chronic neurodegenerative conditions induced by PA. We demonstrated that estradiol treatment of adult PA exposed animals induced an increase in estrogen receptor (ER) α and insulin-like growth factor receptor (IGF-1R) protein levels, an activation of the phosphatidylinositol 3-kinase/Akt/glycogen synthase kinase 3 beta/β-catenin signaling pathway and an increase in Bcl-2/Bax ratio in the hippocampus in comparison to PA exposed animals treated with vehicle. Taking together, our data suggest that the interaction between ERα and IGF-IR, with the subsequent downstream activation, underlies the beneficial effects of estradiol observed in late treatment of PA.

  3. [Reproducing and evaluating a rabbit model of multiple organ dysfunction syndrome after cardiopulmonary resuscitation resulted from asphyxia].

    PubMed

    Zhang, Dong; Li, Nan; Chen, Ying; Wang, Yu-shan

    2013-02-01

    To evaluate the reproduction of a model of post resuscitation multiple organ dysfunction syndrome (PR-MODS) after cardiac arrest (CA) in rabbit, in order to provide new methods for post-CA treatment. Thirty-five rabbits were randomly divided into three groups, the sham group (n=5), the 7-minute asphyxia group (n=15), and the 8-minute asphyxia group (n=15). The asphyxia CA model was reproduced with tracheal occlusion. After cardiopulmonary resuscitation (CPR), the ratio of recovery of spontaneous circulation (ROSC), the mortality at different time points and the incidence of systemic inflammatory response syndrome (SIRS) were observed in two asphyxia groups. Creatine kinase isoenzyme (CK-MB), alanine aminotransferase (ALT), creatinine (Cr), glucose (Glu) and arterial partial pressure of oxygen (PaO2) levels in blood were measured in the two asphyxia groups before CPR and 12, 24 and 48 hours after ROSC. The survived rabbits were euthanized at 48 hours after ROSC, and heart, brain, lung, kidney, liver, and intestine were harvested for pathological examination using light microscope. PR-MODS after CA was defined based on the function of main organs and their pathological changes. (1) The incidence of ROSC was 100.0% in 7-minute asphyxia group and 86.7% in 8-minute asphyxia group respectively (P>0.05). The 6-hour mortality in 8-minute asphyxia group was significantly higher than that in 7-minute asphyxia group (46.7% vs. 6.7%, P<0.05), and the mortality of 8-minute asphyxia group at 12 - 48 hours was slightly higher compared with that of 7-minute asphyxia group (all P>0.05). (2) There was a variety of organ dysfunctions in survived rabbits after ROSC, including chemosis, respiratory distress, hypotension, abdominal distension, weakened or disappearance of bowel peristalsis and oliguria. (3) There was no SIRS or associated changes in major organ function in the sham group. SIRS was observed at 12 - 24 hours after ROSC in the two asphyxia groups. CK-MB was increased significantly at 12 hours after ROSC compared with that before asphyxia (7-minute asphyxia group: 786.88±211.84 U/L vs. 468.20±149.45 U/L, 8-minute asphyxia group: 894.88±248.80 U/L vs. 462.11±115.15 U/L, both P<0.05), ALT, Cr and Glu were elevated obviously at 24 hours after ROSC (7-minute asphyxia group ALT: 174.25±36.28 U/L vs. 50.27±9.37 U/L, Cr: 144.25±41.64 μmol/L vs. 67.71±16.47 μmol/L, Glu: 11.21±1.14 mmol/L vs. 5.59±1.10 mmol/L; 8-minute asphyxia group ALT: 205.50±10.61 U/L vs. 51.13±10.37 U/L, Cr: 230.50±88.39 μmol/L vs. 65.93±13.81 μmol/L, Glu: 11.55±0.35 mmol/L vs. 6.41±1.23 mmol/L, all P<0.05), and PaO2 was lowered significantly at 48 hours after ROSC (7-minute asphyxia group: 5.03±0.73 kPa vs. 9.07±1.03 kPa, P<0.05). (4) There were pathological changes in major organ in the survived rabbits at 48 hours after ROSC (only 4 rabbits survived in 7-minute asphyxia group), including infiltration of inflammatory cells, partial cellular degeneration, edema, necrosis and tissue bleeding in major organs. If the SIRS and dysfunction of two or more organ were defined in animals after ROSC, the signs, biochemical markers and nonspecific pathological changes could be accepted to evaluate the PR-MODS.

  4. Cerebral palsy after neonatal encephalopathy: do neonates with suspected asphyxia have worse outcomes?

    PubMed

    Garfinkle, Jarred; Wintermark, Pia; Shevell, Michael I; Oskoui, Maryam

    2016-02-01

    We sought to investigate how brain injury and severity, and neurological subtype of cerebral palsy (CP) differed in term-born children with CP after neonatal encephalopathy, between those with suspected birth asphyxia and those without. Using the Canadian CP Registry, which included 1001 children, those with CP born at ≥ 36 wks after moderate or severe neonatal encephalopathy, were dichotomized according to the presence or absence of suspected birth asphyxia. Gross Motor Function Classification System (GMFCS) scores, neurological subtypes, comorbidities, and magnetic resonance imaging findings were compared. Of the 147 term-born children with CP (82 males, 65 females; median age 37 months, interquartile range [IQR] 26-52.5) who after moderate or severe neonatal encephalopathy had the required outcome data, 61 (41%) met criteria for suspected birth asphyxia. They had a higher frequency of non-ambulatory GMFCS status (odds ratio [OR] 3.4, 95% confidence interval [CI] 1.72-6.8), spastic quadriplegia (OR 2.8, 95% CI 1.4-5.6), non-verbal communication skills impairment (OR 4.2, 95% CI 2.0-8.6), isolated deep grey matter injury (OR 4.1, 95% CI 1.8-9.5), a lower frequency of spastic hemiplegia (OR 0.17, 95% CI 0.07-0.42), focal injury (OR 0.20; 95% CI 0.04-0.93), and more comorbidities (p=0.017) than those who did not meet criteria. Term-born children who develop CP after neonatal encephalopathy with suspected birth asphyxia have a greater burden of disability than those without suspected birth asphyxia. © 2015 Mac Keith Press.

  5. Positional Asphyxia: Death Due to Unusual Head-Down Position in a Narrow Space.

    PubMed

    Chaudhari, Vinod Ashok; Ghodake, Dattatray G; Kharat, Rajesh D

    2016-06-01

    Death due to a head-down position with hyperflexion of the neck is a rare event. A person accidentally falling into a narrow space and remaining in an upside-down position with no timely recovery may experience positional or postural asphyxia. It is a critical condition arising out of particular body positions, leading to mechanical obstruction of respiration. The precipitating factors are intoxication due to alcohol, drugs, obesity, psychiatric illnesses, and injuries. A 30-year-old unmarried woman, weighing 82 kg and with a body mass index of 31.24, was found in a narrow space between the bed and the wall in a naked state and in a head-down position with hyperflexion of the neck. The distribution of lividity was consistent with the position of the body at the scene. Blood was oozing from the mouth and nostrils, and signs of asphyxia were present. The toxicological analyses of viscera, blood, and urine were negative for alcohol, drugs, and poisons. Glucose levels in the blood (86 mg/dL) as well as urine and vitreous humor levels (68 mg/dL) were within normal limits. On microscopic examination, there were no findings of coronary atherosclerosis, whereas the brain and lung were edematous. After meticulous examination, we ruled out sexual assault, autoerotic asphyxia, epilepsy, psychiatric illness, diabetes, toxicity, and coronary artery disease. Death was attributed to the accidental fall of the obese individual being stuck in a narrow space, resulting in positional asphyxia. It is imperative to recognize the precipitating or risk factors before labeling positional asphyxia as a cause of death.

  6. Effect of lidocaine on the asphyxial responses in the mature fetal lamb.

    PubMed

    Morishima, H O; Santos, A C; Pedersen, H; Finster, M; Tsuji, A; Hiraoka, H; Arthur, G R; Covino, B G

    1987-04-01

    The effects of lidocaine on the fetal circulatory responses to asphyxia were evaluated in chronically instrumented pregnant sheep. Twenty-six preparations were studied. Animals were assigned to one of three groups. The animals in group I (N = 10) did not have umbilical cord occluders placed. Lidocaine at 0.1 mg X kg-1 X min-1 was infused to the mother for 180 min. The animals in group II (N = 11) had an umbilical cord occluder, which was inflated to induce fetal asphyxia (PaO2 15 mmHg) for 90 min. Occlusion was then maintained for an additional 180 min while lidocaine at 0.1 mg X kg-1 X min-1 was infused. The animals in group III (N = 5) also had an umbilical cord occluder inflated for 90 min. While occlusion was maintained for an additional 180 min, saline was infused, in place of lidocaine. The infusion rate of lidocaine of 0.1 mg X kg-1 X min-1 over 180 min resulted in a steady-state arterial lidocaine blood concentration in the mother of approximately 2.15 micrograms/ml. Fetal circulatory responses to asphyxia were evaluated before and after maternal infusion of lidocaine or normal saline. Measurements included heart rate, blood pressure, arterial pH, and blood gases. Cardiac output and organ blood flow were determined using the radio-labelled microsphere technique. In general, arterial and tissue lidocaine concentrations in asphyxiated fetuses were higher than those in the nonasphyxiated ones, the differences being significant in the brain, heart, liver, and adrenal glands.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. Cardiovascular alterations and multi organ dysfunction after birth asphyxia

    PubMed Central

    Polglase, Graeme R.; Ong, Tracey; Hillman, Noah H

    2016-01-01

    Synopsis The cardiovascular response to asphyxia involves redistribution of cardiac output to maintain oxygen delivery to critical organs such as the adrenal gland, heart and brain, at the expense of other organs such as the gut, kidneys and skin. This results in reduced perfusion and localized hypoxia/ischemia in these organs, which if severe, can result in multi-organ failure. Liver injury, coagulopathy, bleeding, thrombocytopenia, renal dysfunction, pulmonary and gastrointestinal injury all result from hypoxia, under-perfusion or both. Current clinical therapies need to be considered together with therapeutic hypothermia and cardiovascular recovery. PMID:27524448

  8. Deferoxamine improves antioxidative protection in the brain of neonatal rats: The role of anoxia and body temperature.

    PubMed

    Kletkiewicz, Hanna; Nowakowska, Anna; Siejka, Agnieszka; Mila-Kierzenkowska, Celestyna; Woźniak, Alina; Caputa, Michał; Rogalska, Justyna

    2016-08-15

    After hypoxic-ischemic insult iron deposited in the brain catalyzes formation of reactive oxygen species. Newborn rats, showing reduced physiological body temperature and their hyperthermic counterparts injected with deferoxamine (DF), a chelator of iron, are protected both against iron-mediated neurotoxicity and against depletion of low-molecular antioxidants after perinatal asphyxia. Therefore, we decided to study the effects of DF on activity of antioxidant enzymes (superoxide dismutase-SOD, glutathione peroxidase-GPx and catalase-CAT) in the brain of rats exposed neonatally to a critical anoxia at body temperatures elevated to 39°C. Perinatal anoxia under hyperthermic conditions intensified oxidative stress and depleted the pool of antioxidant enzymes. Both the depletion of antioxidants and lipid peroxidation were prevented by post-anoxic DF injection. The present paper evidenced that deferoxamine may act by recovering of SOD, GPx and CAT activity to reduce anoxia-induced oxidative stress. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. The Responses of Tissues from the Brain, Heart, Kidney, and Liver to Resuscitation following Prolonged Cardiac Arrest by Examining Mitochondrial Respiration in Rats

    PubMed Central

    Kim, Junhwan; Perales Villarroel, José Paul; Zhang, Wei; Yin, Tai; Shinozaki, Koichiro; Hong, Angela; Lampe, Joshua W.; Becker, Lance B.

    2016-01-01

    Cardiac arrest induces whole-body ischemia, which causes damage to multiple organs. Understanding how each organ responds to ischemia/reperfusion is important to develop better resuscitation strategies. Because direct measurement of organ function is not practicable in most animal models, we attempt to use mitochondrial respiration to test efficacy of resuscitation on the brain, heart, kidney, and liver following prolonged cardiac arrest. Male Sprague-Dawley rats are subjected to asphyxia-induced cardiac arrest for 30 min or 45 min, or 30 min cardiac arrest followed by 60 min cardiopulmonary bypass resuscitation. Mitochondria are isolated from brain, heart, kidney, and liver tissues and examined for respiration activity. Following cardiac arrest, a time-dependent decrease in state-3 respiration is observed in mitochondria from all four tissues. Following 60 min resuscitation, the respiration activity of brain mitochondria varies greatly in different animals. The activity after resuscitation remains the same in heart mitochondria and significantly increases in kidney and liver mitochondria. The result shows that inhibition of state-3 respiration is a good marker to evaluate the efficacy of resuscitation for each organ. The resulting state-3 respiration of brain and heart mitochondria following resuscitation reenforces the need for developing better strategies to resuscitate these critical organs following prolonged cardiac arrest. PMID:26770657

  10. Functional photoacoustic tomography for neonatal brain imaging: developments and challenges

    NASA Astrophysics Data System (ADS)

    Hariri, Ali; Tavakoli, Emytis; Adabi, Saba; Gelovani, Juri; Avanaki, Mohammad R. N.

    2017-03-01

    Transfontanelle ultrasound imaging (TFUSI) is a routine diagnostic brain imaging method in infants who are born prematurely, whose skull bones have not completely fused together and have openings between them, so-called fontanelles. Open fontanelles in neonates provide acoustic windows, allowing the ultrasound beam to freely pass through. TFUSI is used to rule out neurological complications of premature birth including subarachnoid hemorrhage (SAH), intraventricular (IVH), subependimal (SEPH), subdural (SDH) or intracerebral (ICH) hemorrhages, as well as hypoxic brain injuries. TFUSI is widely used in the clinic owing to its low cost, safety, accessibility, and noninvasive nature. Nevertheless, the accuracy of TFUSI is limited. To address several limitations of current clinical imaging modalities, we develop a novel transfontanelle photoacoustic imaging (TFPAI) probe, which, for the first time, should allow for non-invasive structural and functional imaging of the infant brain. In this study, we test the feasibility of TFPAI for detection of experimentally-induced intra ventricular and Intraparenchymal hemorrhage phantoms in a sheep model with a surgically-induced cranial window which will serve as a model of neonatal fontanelle. This study is towards using the probe we develop for bedside monitoring of neonates with various disease conditions and complications affecting brain perfusion and oxygenation, including apnea, asphyxia, as well as for detection of various types of intracranial hemorrhages (SAH, IVH, SEPH, SDH, ICH).

  11. The Responses of Tissues from the Brain, Heart, Kidney, and Liver to Resuscitation following Prolonged Cardiac Arrest by Examining Mitochondrial Respiration in Rats.

    PubMed

    Kim, Junhwan; Villarroel, José Paul Perales; Zhang, Wei; Yin, Tai; Shinozaki, Koichiro; Hong, Angela; Lampe, Joshua W; Becker, Lance B

    2016-01-01

    Cardiac arrest induces whole-body ischemia, which causes damage to multiple organs. Understanding how each organ responds to ischemia/reperfusion is important to develop better resuscitation strategies. Because direct measurement of organ function is not practicable in most animal models, we attempt to use mitochondrial respiration to test efficacy of resuscitation on the brain, heart, kidney, and liver following prolonged cardiac arrest. Male Sprague-Dawley rats are subjected to asphyxia-induced cardiac arrest for 30 min or 45 min, or 30 min cardiac arrest followed by 60 min cardiopulmonary bypass resuscitation. Mitochondria are isolated from brain, heart, kidney, and liver tissues and examined for respiration activity. Following cardiac arrest, a time-dependent decrease in state-3 respiration is observed in mitochondria from all four tissues. Following 60 min resuscitation, the respiration activity of brain mitochondria varies greatly in different animals. The activity after resuscitation remains the same in heart mitochondria and significantly increases in kidney and liver mitochondria. The result shows that inhibition of state-3 respiration is a good marker to evaluate the efficacy of resuscitation for each organ. The resulting state-3 respiration of brain and heart mitochondria following resuscitation reenforces the need for developing better strategies to resuscitate these critical organs following prolonged cardiac arrest.

  12. Estradiol therapy in adulthood reverses glial and neuronal alterations caused by perinatal asphyxia.

    PubMed

    Saraceno, Gustavo Ezequiel; Bertolino, María Laura Aón; Galeano, Pablo; Romero, Juan Ignacio; Garcia-Segura, Luis Miguel; Capani, Francisco

    2010-06-01

    The capacity of the ovarian hormone 17beta-estradiol to prevent neurodegeneration has been characterized in several animal models of brain and spinal cord pathology. However, the potential reparative activity of the hormone under chronic neurodegenerative conditions has received less attention. In this study we have assessed the effect of estradiol therapy in adulthood on chronic glial and neuronal alterations caused by perinatal asphyxia (PA) in rats. Four-month-old male Sprague-Dawley rats submitted to PA just after delivery, and their control littermates, were injected for 3 consecutive days with 17beta estradiol or vehicle. Animals subjected to PA and treated with vehicle showed an increased astrogliosis, focal swelling and fragmented appearance of MAP-2 immunoreactive dendrites, decreased MAP-2 immunoreactivity and decreased phosphorylation of high and medium molecular weight neurofilaments in the hippocampus, compared to control animals. Estradiol therapy reversed these alterations. These findings indicate that estradiol is able to reduce, in adult animals, chronic reactive astrogliosis and neuronal alterations caused by an early developmental neurodegenerative event, suggesting that the hormone might induce reparative actions in the Central Nervous System (CNS). Copyright (c) 2009 Elsevier Inc. All rights reserved.

  13. Changes in cell proliferation kinetics in the mouse cerebellum after total asphyxia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoshioka, H.; Mino, M.; Morikawa, Y.

    1985-12-01

    This study was undertaken to investigate the effects of neonatal asphyxia on brain development, with special reference to the kinetics of neuronal proliferation by using autoradiography. For 30 minutes, two-day-old suckling mice, Jcl:ICR strain, were put into a chamber which was constantly flushed with 100% CO/sub 2/ gas. After the exposure to asphyxia, 29% of the mice survived. Cell cycle studies were carried out at two days and at seven days on the external matrix cells, the precursor of the granule cells, at the external granular layer of the cerebellum from CO/sub 2/-exposed and control mice by /sup 3/H-thymidine autoradiography.more » At two days the generation time of the control mice was about 15 hours, whereas that of the asphyxiated mice was about 17 hours. The prolongation of the generation time in the asphyxiated mice was caused mainly by a delay in the G2 phase. This prolongation was apparent for about five days and thereafter growth caught up. These results suggest that neonatal asphyxia has an adverse effect on cerebellar neuronal proliferation that may revert to normal spontaneously in older animals.« less

  14. A key circulatory defence against asphyxia in infancy – the heart of the matter!

    PubMed Central

    Cohen, Gary; Katz-Salamon, Miriam; Malcolm, Girvan

    2012-01-01

    A resumption of, and escalation in, breathing efforts (hyperpnoea) reflexively accelerates heart rate (HR) and may facilitate cardiac and circulatory recovery from apnoea. We analysed whether this mechanism can produce a sustained rise in HR (tachycardia) when a sleeping infant is confronted by mild, rapidly worsening asphyxia, simulating apnoea. Twenty-seven healthy term-born infants aged 1–8 days rebreathed the expired gas for 90 s during quiet sleep to stimulate breathing and heart rate. To discriminate cardio-excitatory effects of central respiratory drive, lung inflation, hypoxia, hypercapnia and asphyxia, we varied the inspired O2 level and compared temporal changes in response profiles as respiratory sensitivity to hypoxia and asphyxia ‘reset’ after birth. We demonstrate that asphyxia-induced hyperpnoea and tachycardia strengthen dramatically over the first week with different time courses and via separate mechanisms. Cardiac excitation by hypercapnia improves first, followed by a slower improvement in respiratory hypoxic drive. A rise in CO2 consequently elicits stronger, longer lasting tachycardia than moderate increases in respiratory drive or lung expansion. We suggest that without a strong facilitating action of CO2 on the immature heart, respiratory manoeuvres may be unable to reflexively counteract strong vagal bradycardia. This may increase the vulnerability of some infants to apnoea – asphyxia. PMID:23006482

  15. A key circulatory defence against asphyxia in infancy--the heart of the matter!

    PubMed

    Cohen, Gary; Katz-Salamon, Miriam; Malcolm, Girvan

    2012-12-01

    A resumption of, and escalation in, breathing efforts (hyperpnoea) reflexively accelerates heart rate (HR) and may facilitate cardiac and circulatory recovery from apnoea. We analysed whether this mechanism can produce a sustained rise in HR (tachycardia) when a sleeping infant is confronted by mild, rapidly worsening asphyxia, simulating apnoea. Twenty-seven healthy term-born infants aged 1-8 days rebreathed the expired gas for 90 s during quiet sleep to stimulate breathing and heart rate. To discriminate cardio-excitatory effects of central respiratory drive, lung inflation, hypoxia, hypercapnia and asphyxia, we varied the inspired O(2) level and compared temporal changes in response profiles as respiratory sensitivity to hypoxia and asphyxia 'reset' after birth. We demonstrate that asphyxia-induced hyperpnoea and tachycardia strengthen dramatically over the first week with different time courses and via separate mechanisms. Cardiac excitation by hypercapnia improves first, followed by a slower improvement in respiratory hypoxic drive. A rise in CO(2) consequently elicits stronger, longer lasting tachycardia than moderate increases in respiratory drive or lung expansion. We suggest that without a strong facilitating action of CO(2) on the immature heart, respiratory manoeuvres may be unable to reflexively counteract strong vagal bradycardia. This may increase the vulnerability of some infants to apnoea-asphyxia.

  16. Neonates of diabetic mothers: The starting point for developing novel therapeutic approaches to ischemic heart and brain?

    PubMed

    Mormile, Raffaella

    2016-11-01

    Diabetes mellitus represents the most common medical condition causing complications during pregnancy. However, there is still some controversy surrounding complications. Maternal hyperglycemia leads to fetal hyperglycemia. Offspring of diabetic mothers compensate excess glucose concentrations by producing higher levels of insulin causing transient hyperinsulinemia. Infants of diabetic mothers are at risk for congenital cardiac malformations, of which 40% are with hypertrophic cardiomyopathy. However, regardless of severity, cardiac hypertrophy is transient with echocardiographic resolution within the first months after birth. Neonates of diabetic mothers are more likely to suffer from macrosomia that predisposes the infant to birth asphyxia brain damage. However, there is no evidence for an increase in the incidence of brain injury from perinatal asphyxia in macrosomic babies of diabetic mothers in comparison to macrosomic newborns of non-diabetic mothers. We hypothesize that infants of diabetic mother may represent the starting point for developing novel approaches to the treatment and prevention of obstructive hypertrophic cardiomyopathy, AMI and stroke at every age. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Cerebral palsy risk factors and their impact on psychopathology.

    PubMed

    Levy-Zaks, Anat; Pollak, Yehuda; Ben-Pazi, Hilla

    2014-01-01

    We examined whether the type of brain injury impacts the psychopathological profile and quality of life in children with cerebral palsy (CP). We assessed 18 children with CP [9 premature, 9 asphyxia at term] and 16 siblings using parent forms of the child behavior checklist (CBCL), disruptive behavior disorder rating scale (DBDRS), and pediatric quality of life inventory (PEDSQL). Children with CP demonstrated more emotional and behavioral symptoms (depression, anxiety, and social, thought, and attention problems) and lower quality of life than their siblings. The pathopsychological profile of children with CP due to prematurity and asphyxia was similar. Etiology does not impact the psychopathology in children with CP.

  18. Mechanism of intracellular signal transduction during injury of renal tubular cells induced by postasphyxial serum in neonates with asphyxia.

    PubMed

    Zhao, Jin; Dong, Wen-Bin; Li, Peng-yun; Deng, Chun-liang

    2009-01-01

    Renal injury is a severe and extremely common complication that occurs early in neonates with asphyxia. Reperfusion injury has been suggested as the cause of kidney damage during resuscitation of neonatal asphyxia. Previous studies have demonstrated that postasphyxial serum from neonates with asphyxia may result in apoptosis of renal tubular cells. However, the mechanisms that mediate renal tubular cell apoptosis induced by postasphyxial serum remain poorly understood. In this report we investigate the intracellular signal transduction mechanisms that operate during injury of renal tubular cells induced by postasphyxial serum in neonates. Cultured human renal proximal tubular cells HK-2 cell were exposed to 10% fetal calf serum (normal control), 20% postasphyxial serum or 20% postasphyxial serum with pyrrolidine dithiocarbamate (PDTC). The expression of both BAD and BAX in the cytoplasm was detected by immunohistochemistry. The mitochondria membrane potential (Deltapsim) was examined by confocal microscopy, and the release of the apoptogenic mitochondrial proteins cytochrome C and AIF was assessed by Western blot analysis. Loss of mitochondria membrane potential was detected in HK-2 cells treated with 20% postasphyxial serum as compared to cells in normal serum or PTDC-pretreated cells in 20% postasphyxial serum. A significant increase of Bad and Bax protein expression was also detected, along with the release of cytochrome C and AIF from mitochondria to cytosol in the postasphyxial serum treated cells, but not in the normal or PTDC-pretreated control cells. Our findings suggest that postasphyxial serum may induce renal tubular cell apoptosis through the mitochondrial pathway, and its intracellular signal transduction mechanism includes the activation of nuclear factor-kappaB. Copyright 2009 S. Karger AG, Basel.

  19. A traumatic asphyxia in a child.

    PubMed

    Nishiyama, T; Hanaoka, K

    2000-11-01

    Traumatic asphyxia in a child is rare and the pathophysiology is different from that occurring in an adult. We report a case of traumatic asphyxia in a child who recovered without specific treatment, even though chest and abdominal compression was severe. A three-year-old boy (14.2 kg) was run over by the rear wheel of a Jeep. He was under the tire for about three minutes and then was transferred to our hospital. When he arrived, he was lethargic with Glasgow Coma Scale of E3V4M6 (coma score of 13). He was cyanotic in his face and had a tire mark from the left shoulder to the right abdomen, petechiae on the head, face, conjunctiva and chest, oral bleeding, and facial edema. Serum concentrations of liver enzymes were increased and microhematuria was detected. However, no injuries were seen in the brain, eye, chest, or abdomen. Cyanosis disappeared in a few hours. Facial and thoracic petechiae disappeared in three days and that of the conjunctiva in five days. He was discharged from hospital on the 13th day without any disturbances. We present a three-year-old boy with traumatic asphyxia. He had no complications although he received severe thoraco-abdominal compression by a Jeep.

  20. Polwarth and Texel ewe parturition duration and its association with lamb birth asphyxia.

    PubMed

    Dutra, F; Banchero, G

    2011-10-01

    The objective of the present study was to test the hypothesis that parturition duration is related to birth asphyxia in lambs and that asphyxia affects newborn lamb viability and vigor. Two sire and dam genotypes (Texel: TX; Polwarth: PW) and their crosses were represented in the study. Eighty lambs (25 PW sire × PW dam, 13 TX × TX, 25 TX × PW, and 17 PW × TX) born to 69 grazing ewes were used. At birth, the log₁₀ length of the second stage of parturition, birth weight, placental weight, and several body measurements were recorded on all lambs, and jugular blood samples were analyzed with the i-Stat Portable Clinical Analyzer (Abbott, Montevideo, Uruguay). A modified Apgar viability score at birth and lamb behavior during their first hour of life were recorded. Brain weight, muscle:bone ratio, and bone density were recorded in 20 male lambs (5 from each breed group) that were euthanized and dissected 24 h after birth. Data were analyzed by linear regression, least squares ANOVA, and ordinal and binary logistic regressions. Mean blood gas and acid-base variables were 7.21 ± 0.09 for pH, 18.4 ± 9.8 mmHg for partial pressure of oxygen, 53 ± 12.5 mmHg for partial pressure of carbon dioxide, and -4 ± 5.1 mmol/L for extracellular fluid base excess. Parturition duration increased with birth weight (P < 0.001) and was shorter in TX ewes (P < 0.001), female lambs (P < 0.05), twins (P < 0.09), and twin females (sex × litter size interaction, P < 0.02). Twenty-six (32.9%) lambs were born asphyxiated (pO₂ < 10 mmHg or pH <7.1). Parturition duration increased the risk of asphyxia (P < 0.001), decreased the viability score (P < 0.001), and increased the latency to suckle the udder (P < 0.05). Twin-born lambs presented at birth a 16-fold greater risk of asphyxia (P < 0.01) and reduced placental efficiency (P < 0.05). Texel-sired lambs appeared immature at birth, with less bone density (P < 0.05), smaller brain (P < 0.05), shorter forelimbs (P < 0.05), greater anterior (P < 0.001) and posterior (P < 0.05) neck circumference, and greater muscle:bone ratio (P < 0.05). Immaturity may explain greater TX biotype survival. Together these results demonstrate that a relationship exists between parturition duration, neonatal viability and behavior, and acid-base balance values in single- and twin-born lambs, suggesting that birth asphyxia is an important risk factor in perinatal lamb mortality.

  1. Perinatal asphyxia induces neurogenesis in hippocampus: an organotypic culture study.

    PubMed

    Morales, P; Huaiquín, P; Bustamante, D; Fiedler, J; Herrera-Marschitz, M

    2007-07-01

    There is clinical and experimental evidence indicating that neurocircuitries of the hippocampus are vulnerable to hypoxia/ischemia occurring at birth, inducing, upon re-oxygenation/re-circulation, delayed neuronal death, but also compensatory mechanisms, including neurogenesis. In the present report, perinatal asphyxia was induced by immersing foetuses-containing uterine horns removed from ready-to-deliver rats into a water bath at 37 degrees C for 20 min. Some pups were delivered immediately after the hysterectomy to be used as non-asphyxiated caesarean-delivered controls. The pups were sacrificed after seven days for preparing organotypic hippocampal cultures. The cultures were grown on a coverslip in a medium-containing culture tube inserted in a hole of a roller device standing on the internal area of a cell incubator at 35 degrees C, 10% CO2. At days in vitro (DIV) 25-27, cultures were fixed for assaying cell proliferation and neuronal phenotype with antibodies against 5-bromo-2'deoxyuridine (BrdU) and microtubule associated protein-2 (MAP-2), respectively. Confocal microscopy revealed that there was a 2-fold increase of BrdU-positive, but a 40% decrease of MAP-2-positive cells/mm3 in cultures from asphyxia-exposed, compared to that from control animals. Approximately 30% of BrdU-positive cells were also positive for MAP-2 (approximately 4800 cells), mainly seen in the dentate gyrus of the hippocampus, demonstrating a 3-fold increase of postnatal neurogenesis, when the total amount of double-labelled cells seen in cultures from asphyxia-exposed animals is compared to that from control animals.

  2. Cerebral energy metabolism in diving and non-diving birds during hypoxia and apnoeic asphyxia.

    PubMed Central

    Bryan, R M; Jones, D R

    1980-01-01

    1. Cerebral energy metabolism during apnoeic asphyxia and steady-state hypoxia was compared in ducks and chickens; ducks tolerate apnoeic asphyxia 3-8 times longer than chickens. 2. Fluctuations in the reduced form of respiratory chain nicotinamide adenine dinucleotide (NADH) were monitored from the left cerebral hemisphere by a noninvasive fluorometric technique and used as an indicator of mitochondrial hypoxia. NADH fluorescence was expressed in aribtrary units (a.u.) where 100 a.u. was defined as the fluorescence change from normoxia to anoxia. Electroencephalogram (e.e.g.) and surface Po2 were recorded from the right hemisphere. 3. After 1 min of asphyxia NADH fluorescence increased by 37 a.u.+/-3.60 S.E. of mean (n=54) in paralysed chickens and 8 a.u.+/-1.41 (n=55) in aralysed ducks. After 2 min the fluorescence increased by only 15 a.u.+/-1.95 in ducks. 4. Both species showed an isoelectric e.e.g. when fluorescence increased by approximately 35 a.u., indicating that anaerobic ATP production in ducks did not maintain brain function (e.e.g.) for a greater accumulation of respiratory chain NADH. 5. At a given decrease in tissue Po2 ducks and chickens showed the same level of NADH increase, indicating that both species are equally dependent on tissue Po2 for the maintenance of redox state. 6. We conclude that biochemical adjustment which enhance anaerobic ATP production and/or prolong oxidative phosphorylation during progressive hypoxia are not responsible for increased cerebral tolerance to apnoeic asphyxia in the duck. PMID:7381772

  3. Cerebral blood flow and oxygenation in infants after birth asphyxia. Clinically useful information?

    PubMed

    Greisen, Gorm

    2014-10-01

    The term 'luxury perfusion' was coined nearly 50 years ago after observation of bright-red blood in the cerebral veins of adults with various brain pathologies. The bright-red blood represents decreased oxygen extraction and hence the perfusion is 'luxurious' compared to oxygen needs. Gradual loss of cellular energy charge during the hours following severe birth asphyxia was observed twenty years later by sequential cranial magnetic resonance spectroscopy. This led to the concept of delayed energy failure that is linked to mitochondrial dysfunction and apoptotic cell death. Abnormally increased perfusion and lack of normal cerebral blood flow regulation are also typically present, but whether the perfusion abnormalities at this secondary stage are detrimental, beneficial, or a mere epiphenomenon remains elusive. In contrast, incomplete reoxygenation of the brain during and following resuscitation is likely to compromise outcome. The clinical value of cerebral oximetry in this context can only be examined in a randomised clinical trial. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. [Induction of hypoxia-inducible factor-1alpha in two kinds of rats asphyxiation death models].

    PubMed

    Zhang, Bei-lei; Yang, Zhi-hui; Ran, Peng; Liang, Wei-bo; Zhou, Bin; Zhang, Geng-qian; Lu, Mei-li; Zhang, Lin

    2007-02-15

    To investigate the expression of hypoxia-inducible factor 1-alpha (HIF1-alpha) in the heart, lung, liver and kidney in rats died of two typical models of asphyxia. Two asphyxia models were made and tissue samples of the dead rats were collected from different groups at various postmortem duration. The expression and the changes of HIF1-alpha in various tissues were examined by immunohistochemistry and image analysis techniques. Results Significant expression of HIF1-alpha was observed in the myocardial fibers, kidney cells, liver cells and lung cells in both asphyxia models, but not in the control group. The expression of HIF1-alpha in various tissues in the rat died of nitrogen gas breathing was found in the nuclei at 0 hour and the expression level decreased gradually thereafter. The HIF1-alpha expression level and duration in various tissues of the rat died of hanging were higher and longer than that of the former group, with a peak of the expression level observed 6 hours after death, and then started to decline in all tissues except the heart where the expression still showed an increase 24 hours after death. The control groups showed a steady expression in the cytoplasm but not in the nuclei. HIF1-alpha appears to be a valuable biomarker in the diagnosis of asphyxia within 24 hours after death.

  5. Methyl-isobutyl amiloride reduces brain Lac/NAA, cell death and microglial activation in a perinatal asphyxia model.

    PubMed

    Robertson, Nicola J; Kato, Takenori; Bainbridge, Alan; Chandrasekaran, Manigandan; Iwata, Osuke; Kapetanakis, Andrew; Faulkner, Stuart; Cheong, Jeanie; Iwata, Sachiko; Hristova, Mariya; Cady, Ernest; Raivich, Gennadij

    2013-03-01

    Na⁺/H⁺ exchanger (NHE) blockade attenuates the detrimental consequences of ischaemia and reperfusion in myocardium and brain in adult and neonatal animal studies. Our aim was to use magnetic resonance spectroscopy (MRS) biomarkers and immunohistochemistry to investigate the cerebral effects of the NHE inhibitor, methyl isobutyl amiloride (MIA) given after severe perinatal asphyxia in the piglet. Eighteen male piglets (aged < 24 h) underwent transient global cerebral hypoxia-ischaemia and were randomized to (i) saline placebo; or (ii) 3 mg/kg intravenous MIA administered 10 min post-insult and 8 hourly thereafter. Serial phosphorus-31 (³¹P) and proton (¹H) MRS data were acquired before, during and up to 48 h after hypoxia-ischaemia and metabolite-ratio time-series Area under the Curve (AUC) calculated. At 48 h, histological and immunohistochemical assessments quantified regional tissue injury. MIA decreased thalamic lactate/N-acetylaspartate and lactate/creatine AUCs (both p < 0.05) compared with placebo. Correlating with improved cerebral energy metabolism, transferase mediated biotinylated d-UTP nick end-labelling (TUNEL) positive cell density was reduced in the MIA group in cerebral cortex, thalamus and white matter (all p < 0.05) and caspase 3 immunoreactive cells were reduced in pyriform cortex and caudate nucleus (both p < 0.05). Microglial activation was reduced in pyriform and midtemporal cortex (both p < 0.05). Treatment with MIA starting 10 min after hypoxia-ischaemia was neuroprotective in this perinatal asphyxia model. © 2012 International Society for Neurochemistry.

  6. High-potential defense mechanisms of neocortex in a rat model of transient asphyxia induced cardiac arrest.

    PubMed

    Keilhoff, Gerburg; Esser, Torben; Titze, Maximilian; Ebmeyer, Uwe; Schild, Lorenz

    2017-11-01

    Cardiac arrest (CA) is a common cause of disability and mortality and thus an important risk for human health. Circulatory failure has dramatic consequences for the brain as one of the most oxygen-consuming organs. Hippocampus, striatum and neocortex rate among the most vulnerable brain regions. The neocortex is less sensitive to hypoxia/reperfusion in comparison with the hippocampal CA1 region. That implicates the existence of efficient defense mechanisms in the neocortex against hypoxia/reperfusion injury, which we analyzed in a well-established CA rat model. We explored different immunohistochemical markers (NeuN, MAP2, GFAP, IBA1, NOX4, MnSOD, Bax, caspase 3, cfos, nNOS, eNOS, iNOS, TUNEL), amount of mitochondria, activities of respiratory chain complexes and amount/composition of cardiolipin. CA induced a moderate degeneration of cortical neurons. As possible defense mechanisms the study revealed: (i) increased activities of respiratory chain complexes of cortical mitochondria as response to increased energy demand after ACA-induced cell stress; (ii) increase of cardiolipin content as cellular stress response, which might contribute to the promotion of mitochondrial ATP synthesis; (iii) strengthening of the fast, effective and long-lasting mitochondrial MnSOD defense system; (iv) ACA-induced increase in expression of eNOS and nNOS in vasculature being able to reduce ischemic injury by vasodilation. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Neuronal apoptosis in the neonates born to preeclamptic mothers.

    PubMed

    Cosar, Hese; Ozer, Erdener; Topel, Hande; Kahramaner, Zelal; Turkoglu, Ebru; Erdemir, Aydin; Sutcuoglu, Sumer; Bagriyanik, Alper; Ozer, Esra Arun

    2013-07-01

    Preeclampsia may result in uteroplacental insufficiency and chronic intrauterine fetal distress. The aim of this study is to address this issue investigating neuronal apoptosis in an experimental model of preeclampsia and to evaluate the neurological outcome of the perinatal asphyxia in the neonates born to preeclamptic mother. Two out of four pregnant Sprague-Dawley rats (preeclamptic group) were given water containing 1.8% NaCl on gestation day 15 and 22 in order to establish the model of preeclampsia whereas other two (non-preeclamptic group) received normal diet. A model of perinatal asphyxia was established on the postnatal 7th day to one preeclamptic and one non-preeclamptic dam. Overall 23 pups born to overall four dams were decapitated to assess neuronal apoptosis by the TUNEL assay. The number of apoptotic neuronal cells was significantly higher in the preeclampsia groups in comparison with the control group (p = 0.006 and p = 0.006, respectively). It was also significantly higher in the asphyctic/non-preeclamptic group than the count in the control group (p = 0.01). There was also significant difference between both asphyctic groups (p = 0.003). We conclude that preeclampsia causes small babies for the gestational age and cerebral hypoplasia. Both preeclampsia and perinatal asphyxia can cause increased neuronal apoptosis in the neonatal brains. However, the prognosis for neurological outcome is much worse when the perinatal asphyxia occurs in newborns born to preeclamptic mothers.

  8. Long-term sequelae of perinatal asphyxia in the aging rat.

    PubMed

    Weitzdoerfer, R; Gerstl, N; Hoeger, H; Mosgoeller, W; Dreher, W; Engidawork, E; Overgaard-Larsen, J; Lubec, B

    2002-03-01

    Information on the consequences of perinatal asphyxia (PA) on brain morphology and function in the aging rat is missing although several groups have hypothesized that PA may be responsible for neurological and psychiatric deficits in the adult. We therefore decided to study the effects of PA on the central nervous system (CNS) in terms of morphology, immunohistochemistry, neurology and behavior in the aging animal. Hippocampus and cerebellum were evaluated morphologically by histological, immunohistochemical and magnetic resonance imaging and cerebellum also by stereological tests. Neurological function was tested by an observational test battery and rota rod test. Cognitive functions were examined by multiple-T-maze and the Morris water maze (MWM). Increased serotonin transporter (SERT) immunoreactivity in the CA2 region of the hippocampus and a significant difference in the escape latency, when the platform of the MWM was moved to a new location, were observed in asphyxiated rats. We showed that deteriorated cognitive functions accompanied by aberrant expression of hippocampal SERT and impaired relearning are long-term sequelae of perinatal asphyxia, a finding that may form the basis for understanding CNS pathology in the aging subject, animal or human.

  9. Translational Approaches for Studying Neurodevelopmental Disorders Utilizing in Vivo Proton (+H) Magnetic Resonance Spectroscopic Imaging in Rats

    NASA Technical Reports Server (NTRS)

    Ronca, April E.

    2014-01-01

    Intrauterine complications have been implicated in the etiology of neuripsychiatric disorders including schizophrenia, autism and ADHD. This presentation will describe new translational studies derived from in vivo magnetic resonance imaging of developing and adult brain following perinatal asphyxia (PA). Our findings reveal significant effects of PA on neurometabolic profiles at one week of age, and significant relationships between early metabolites and later life phenotypes including behavior and brain morphometry

  10. The effects of bupivacaine, L-nitro-L-arginine-methyl ester, and phenylephrine on cardiovascular adaptations to asphyxia in the preterm fetal lamb.

    PubMed

    Santos, A C; Yun, E M; Bobby, P D; Noble, G; Arthur, G R; Finster, M

    1997-12-01

    The preterm fetal lamb that is exposed to clinically relevant plasma concentrations of lidocaine loses its cardiovascular adaptations to asphyxia, and its condition deteriorates further. Nitric oxide (NO) is an important regulator of vascular tone, and local anesthetics are known to inhibit endothelium-dependent vasodilation. The purpose of the present study was to determine whether the adverse effects of lidocaine noted in the preterm fetal lamb also occur with bupivacaine and whether the inhibition of NO results in effects similar to those of bupivacaine. Thirty-two chronically prepared pregnant sheep were studied at 117-119 days' gestation. Maternal and fetal blood pressure, heart rate, and acid-base state were evaluated. Fetal organ blood flows were determined using 15-microM diameter dye-labeled microspheres. After a control period, mild to moderate asphyxia (fetal PaO2 15 mm Hg) was induced by partial umbilical cord occlusion and maintained throughout the experiment. Ewes in Group I (n = 13) were given a two-step intravenous infusion of bupivacaine for 180 min. Fetuses in Group II (n = 12) received an intravenous injection of L-nitro-L-arginine-methyl ester (L-NAME) (25 mg/kg), and measurements were taken 10 and 30 min after the injection. A third group (Group III) of fetuses (n = 7) were given an intravenous infusion of phenylephrine to mimic the blood pressure increases noted in L-NAME-treated fetuses. At 90 min of stable asphyxia, there was a significant decrease in fetal PaO2 and pHa and an increase in PaCO2 and mean arterial blood pressure. There was also an increase in blood flow to the adrenals, myocardium, and cerebral cortex, whereas blood flow to the placenta decreased. Administration of bupivacaine during asphyxia did not affect the changes in mean arterial blood pressure and acid-base state but did abolish the increases in blood flows to the myocardium and cerebral cortex. Injection of L-NAME to the asphyxiated fetus resulted in an increase in mean arterial blood pressure above the level noted at 90 min of cord occlusion, and an increase in fetal PaO2 toward control levels. This was accompanied by a reduction in organ blood flows to preasphyxia levels. In asphyxiated Group III fetuses, titration of the phenylephrine infusion to achieve blood pressure increases similar to those noted with L-NAME were also associated with an increase in fetal PaO2. These data indicate that bupivacaine abolishes some of the circulatory adaptations to mild to moderate asphyxia induced by partial cord occlusion in the preterm fetal lamb. It is not clear whether these effects of bupivacaine are due to inhibition of NO. In the preterm fetal lamb, clinically relevant plasma concentrations of bupivacaine achieved by intravenous infusion to the pregnant ewe (80% gestation) abolished some of the fetal cardiovascular adaptations to asphyxia induced by partial umbilical cord occlusion.

  11. Thioredoxin 1 and glutaredoxin 2 contribute to maintain the phenotype and integrity of neurons following perinatal asphyxia.

    PubMed

    Romero, Juan Ignacio; Hanschmann, Eva-Maria; Gellert, Manuela; Eitner, Susanne; Holubiec, Mariana Inés; Blanco-Calvo, Eduardo; Lillig, Christopher Horst; Capani, Francisco

    2015-06-01

    Thioredoxin (Trx) family proteins are crucial mediators of cell functions via regulation of the thiol redox state of various key proteins and the levels of the intracellular second messenger hydrogen peroxide. Their expression, localization and functions are altered in various pathologies. Here, we have analyzed the impact of Trx family proteins in neuronal development and recovery, following hypoxia/ischemia and reperfusion. We have analyzed the regulation and potential functions of Trx family proteins during hypoxia/ischemia and reoxygenation of the developing brain in both an animal and a cellular model of perinatal asphyxia. We have analyzed the distribution of 14 Trx family and related proteins in the cerebellum, striatum, and hippocampus, three areas of the rat brain that are especially susceptible to hypoxia. Using SH-SY5Y cells subjected to hypoxia and reoxygenation, we have analyzed the functions of some redoxins suggested by the animal experiment. We have described/discovered a complex, cell-type and tissue-specific expression pattern following the hypoxia/ischemia and reoxygenation. Particularly, Grx2 and Trx1 showed distinct changes during tissue recovery following hypoxia/ischemia and reoxygenation. Silencing of these proteins in SH-SY5Y cells subjected to hypoxia-reoxygenation confirmed that these proteins are required to maintain the normal neuronal phenotype. These findings demonstrate the significance of redox signaling in cellular pathways. Grx2 and Trx1 contribute significantly to neuronal integrity and could be clinically relevant in neuronal damage following perinatal asphyxia and other neuronal disorders. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Polyuria and impaired renal blood flow after asphyxia in preterm fetal sheep.

    PubMed

    Quaedackers, J S; Roelfsema, V; Hunter, C J; Heineman, E; Gunn, A J; Bennet, L

    2004-03-01

    Renal impairment is common in preterm infants, often after exposure to hypoxia/asphyxia or other circulatory disturbances. We examined the hypothesis that this association is mediated by reduced renal blood flow (RBF), using a model of asphyxia induced by complete umbilical cord occlusion for 25 min (n = 13) or sham occlusion (n = 6) in chronically instrumented preterm fetal sheep (104 days, term is 147 days). During asphyxia there was a significant fall in RBF and urine output (UO). After asphyxia, RBF transiently recovered, followed within 30 min by a secondary period of hypoperfusion (P < 0.05). This was mediated by increased renal vascular resistance (RVR, P < 0.05); arterial blood pressure was mildly increased in the first 24 h (P < 0.05). RBF relatively normalized between 3 and 24 h, but hypoperfusion developed again from 24 to 60 h (P < 0.05, analysis of covariance). UO significantly increased to a peak of 249% of baseline between 3 and 12 h (P < 0.05), with increased fractional excretion of sodium, peak 10.5 +/- 1.4 vs. 2.6 +/- 0.6% (P < 0.001). Creatinine clearance returned to normal after 2 h; there was a transient reduction at 48 h to 0.32 +/- 0.02 ml.min(-1).g(-1) (vs. 0.45 +/- 0.04, P < 0.05) corresponding with the time of maximal depression of RBF. No renal injury was seen on histological examination at 72 h. In conclusion, severe asphyxia in the preterm fetus was associated with evolving renal tubular dysfunction, as shown by transient polyuria and natriuresis. Despite a prolonged increase in RVR, there was only a modest effect on glomerular function.

  13. Neurological Abnormalities in Full-Term Asphyxiated Newborns and Salivary S100B Testing: The “Cooperative Multitask against Brain Injury of Neonates” (CoMBINe) International Study

    PubMed Central

    Gazzolo, Diego; Pluchinotta, Francesca; Bashir, Moataza; Aboulgar, Hanna; Said, Hala Mufeed; Iman, Iskander; Ivani, Giorgio; Conio, Alessandra; Tina, Lucia Gabriella; Nigro, Francesco; Li Volti, Giovanni; Galvano, Fabio; Michetti, Fabrizio; Di Iorio, Romolo; Marinoni, Emanuela; Zimmermann, Luc J.; Gavilanes, Antonio D. W.; Vles, Hans J. S.; Kornacka, Maria; Gruszfeld, Darek; Frulio, Rosanna; Sacchi, Renata; Ciotti, Sabina; Risso, Francesco M.; Sannia, Andrea; Florio, Pasquale

    2015-01-01

    Background Perinatal asphyxia (PA) is a leading cause of mortality and morbidity in newborns: its prognosis depends both on the severity of the asphyxia and on the immediate resuscitation to restore oxygen supply and blood circulation. Therefore, we investigated whether measurement of S100B, a consolidated marker of brain injury, in salivary fluid of PA newborns may constitute a useful tool for the early detection of asphyxia-related brain injury. Methods We conducted a cross-sectional study in 292 full-term newborns admitted to our NICUs, of whom 48 suffered PA and 244 healthy controls admitted at our NICUs. Saliva S100B levels measurement longitudinally after birth; routine laboratory variables, neurological patterns, cerebral ultrasound and, magnetic resonance imaging were performed. The primary end-point was the presence of neurological abnormalities at 12-months after birth. Results S100B salivary levels were significantly (P<0.001) higher in newborns with PA than in normal infants. When asphyxiated infants were subdivided according to a good (Group A; n = 15) or poor (Group B; n = 33) neurological outcome at 12-months, S100B was significantly higher at all monitoring time-points in Group B than in Group A or controls (P<0.001, for all). A cut-off >3.25 MoM S100B achieved a sensitivity of 100% (CI5-95%: 89.3%-100%) and a specificity of 100% (CI5-95%: 98.6%-100%) as a single marker for predicting the occurrence of abnormal neurological outcome (area under the ROC curve: 1.000; CI5-95%: 0.987-1.0). Conclusions S100B protein measurement in saliva, soon after birth, is a useful tool to identify which asphyxiated infants are at risk of neurological sequelae. PMID:25569796

  14. Being Small for Gestational Age: Does it Matter for the Neurodevelopment of Premature Infants? A Cohort Study.

    PubMed

    Bickle Graz, Myriam; Tolsa, Jean-François; Fischer Fumeaux, Céline Julie

    2015-01-01

    Whether being small for gestational age (SGA) increases the risk of adverse neurodevelopmental outcome in premature infants remains controversial. to study the impact of SGA (birthweight < percentile 10) on cognition, behavior, neurodevelopmental impairment and use of therapy at 5 years old. This population-based prospective cohort included infants born before 32 weeks of gestation. Cognition was evaluated with the K-ABC, and behavior with the Strengths and Difficulties Questionnaire (SDQ). Primary outcomes were cognitive and behavioral scores, as well as neurodevelopmental impairment (cognitive score < 2SD, hearing loss, blindness, or cerebral palsy). The need of therapy, an indirect indicator of neurodevelopmental impairment, was a secondary outcome. Linear and logistic regression models were used to analyze the association of SGA with neurodevelopment. 342/515 (76%) premature infants were assessed. SGA was significantly associated with hyperactivity scores of the SDQ (coefficient 0.81, p < 0.04), but not with cognitive scores, neurodevelopmental impairment or the need of therapy. Gestational age, socio-economic status, and major brain lesions were associated with cognitive outcome in the univariate and multivariate model, whereas asphyxia, sepsis and bronchopulmonary dysplasia were associated in the univariate model only. Severe impairment was associated with fetal tobacco exposition, asphyxia, gestational age and major brain lesions. Different neonatal factors were associated with the use of single or multiple therapies: children with one therapy were more likely to have suffered birth asphyxia or necrotizing enterocolitis, whereas the need for several therapies was predicted by major brain lesions. In this large cohort of premature infants, assessed at 5 years old with a complete panel of tests, SGA was associated with hyperactive behavior, but not with cognition, neurodevelopmental impairment or use of therapy. Birthweight <10th percentile alone does not appear to be an independent risk factor of neurodevelopmental adverse outcome in preterm children.

  15. Age, transvestism, bondage, and concurrent paraphilic activities in 117 fatal cases of autoerotic asphyxia.

    PubMed

    Blanchard, R; Hucker, S J

    1991-09-01

    Autoerotic asphyxia is the practice of self-inducing cerebral anoxia, usually by hanging, strangulation, or suffocation, during masturbation. This study investigated the relationships between: asphyxiators' ages; two paraphilias commonly accompanying autoerotic asphyxia, bondage and transvestism; and various other types of simultaneous sexual behaviour. Subjects were two concurrent series totalling 117 males aged 10-56 who died accidentally during autoerotic asphyxial activities. Data concerning sexual paraphernalia at the scene of death or among the deceased's effects were extracted from coronors' files using standardised protocols. Anal self-stimulation with dildos, etc., and self-observation with mirrors or cameras were correlated with transvestism. Older asphyxiators were more likely to have been simultaneously engaged in bondage or transvestism, suggesting elaboration of the masturbatory ritual over time. The greatest degree of transvestism was associated with intermediate rather than high levels of bondage, suggesting that response competition from bondage may limit asphyxiators' involvement in a third paraphilia like transvestism.

  16. Protein ubiquitination in postsynaptic densities after hypoxia in rat neostriatum is blocked by hypothermia.

    PubMed

    Capani, Francisco; Saraceno, Gustavo Ezequiel; Botti, Valeria; Aon-Bertolino, Laura; de Oliveira, Diêgo Madureira; Barreto, George; Galeano, Pablo; Giraldez-Alvarez, Lisandro Diego; Coirini, Héctor

    2009-10-01

    Synaptic dysfunction has been associated with neuronal cell death following hypoxia. The lack of knowledge on the mechanisms underlying this dysfunction prompted us to investigate the morphological changes in the postsynaptic densities (PSDs) induced by hypoxia. The results presented here demonstrate that PSDs of the rat neostriatum are highly modified and ubiquitinated 6 months after induction of hypoxia in a model of perinatal asphyxia. Using both two dimensional (2D) and three dimensional (3D) electron microscopic analyses of synapses stained with ethanolic phosphotungstic acid (E-PTA), we observed an increment of PSD thickness dependent on the duration and severity of the hypoxic insult. The PSDs showed clear signs of damage and intense staining for ubiquitin. These morphological and molecular changes were effectively blocked by hypothermia treatment, one of the most effective strategies for hypoxia-induced brain injury available today. Our data suggest that synaptic dysfunction following hypoxia may be caused by long-term misfolding and aggregation of proteins in the PSD.

  17. Hypobaric hypoxia postconditioning reduces brain damage and improves antioxidative defense in the model of birth asphyxia in 7-day-old rats.

    PubMed

    Gamdzyk, Marcin; Makarewicz, Dorota; Słomka, Marta; Ziembowicz, Apolonia; Salinska, Elzbieta

    2014-01-01

    Perinatal brain insult mostly resulting from hypoxia-ischemia (H-I) often brings lifelong permanent disability, which has a major impact on the life of individuals and their families. The lack of progress in clinically-applicable neuroprotective strategies for birth asphyxia has led to an increasing interest in alternative methods of therapy, including induction of brain tolerance by pre- and particularly postconditioning. Hypoxic postconditioning represents a promising strategy for preventing ischemic brain damage. The aim of this study was to investigate the potential neuroprotective effect of hypobaric hypoxia (HH) postconditioning applied to 7-day old rats after H-I insult. The mild hypobaric conditions (0.47 atm) used in this study imitate an altitude of 5,000 m. We show that application of mild hypobaric hypoxia at relatively short time intervals (1-6 h) after H-I, repeated for two following days leads to significant neuroprotection, manifested by a reduction in weight loss of the ipsilateral hemisphere observed 14 days after H-I. HH postconditioning results in decrease in reactive oxygen species level observed in all experimental groups. The increase in superoxide dismutase activity observed after H-I is additionally enhanced by HH postconditioning applied 1 h after H-I. The increase observed 3 and 6 h after H-I was not statistically significant. Postconditioning with HH suppresses the glutathione concentration decrease evoked by H-I and increased glutathione peroxidase activity and this effect is not dependent on the time of postconditioning initiation. HH postconditioning had no effect on catalase activity. We show for the first time that HH postconditioning reduces brain damage resulting from H-I in immature rats and that the mechanism potentially involved in this effect is related to antioxidant defense mechanisms of immature brain.

  18. Asphyxia: a rare cause of death for motor vehicle crash occupants.

    PubMed

    Conroy, Carol; Stanley, Christina; Eastman, A Brent; Vaughan, Teresa; Vilke, Gary M; Hoyt, David B; Pacyna, Sharon; Smith, Alan

    2008-03-01

    Motor vehicle related trauma is one of the leading causes of traumatic death. Although most of these deaths are because of severe blunt force trauma, there are people without severe injury who die of asphyxia related to the motor vehicle collision. There were 37 deaths because of motor vehicle related asphyxia in San Diego County during 1995-2004. Almost half (48.6%) of these deaths were because of compression asphyxia, 29.7% were positional asphyxia deaths, and 16.2% died of a combination of compression and positional asphyxia. We were unable to classify the mechanism of asphyxia for the remaining 5.4% of asphyxia deaths. Almost all occupants dying from asphyxia were involved in rollover crashes and may have been incapacitated by obesity, drug or alcohol intoxication, or blunt force trauma. Compression asphyxia deaths occurred both from vehicle crush with intrusion into the passenger compartment and from ejection of the occupant and subsequent crushing by the vehicle. Positional asphyxia occurred in positions interfering with normal respiration, including inversion. None of the occupants had injury severe enough to result in death at the scene if they had not first died of asphyxia. This study suggests classifying the mechanism of asphyxia for these fatalities may be a challenge to forensic pathologists who seldom see these rare deaths.

  19. Expression of Glucose-Regulated Protein 78 and miR-199a in Rat Brain After Fatal Ligature Strangulation.

    PubMed

    Feng, Xueying; Zhang, Dongchuan; Gong, Qingjin; Zhang, Zhiyong; Quan, Li

    2017-03-01

    The roles of endoplasmic reticulum (ER) stress and microRNA in the brain tissue after fatal mechanical asphyxia have not been clearly elucidated. We examined the expression of glucose-regulated protein 78 (GRP78), the key regulator of unfolded protein response, and miR-199a in the brain tissues of rats subjected to fatal ligature strangulation to understand the roles of ER stress and microRNA in ligature strangulation. The expressions of GRP78 and miR-199a in rat cortex, hippocampi, and midbrain were measured by immunohistochemistry and Western blot analysis in a rat model of ligature strangulation. Furthermore, the levels of miR-199a-3p and miR-199a-5p were detected by real-time fluorescent quantitative polymerase chain reaction. Glucose-regulated protein 78 was highly expressed in the cortex and midbrain in the ligature strangulation group (P < 0.01) when compared with the control group. The expression of GRP78 in the hippocampi showed no significant difference between the 2 groups. miR-199a-3p in the cortex and midbrain was significantly down-regulated in the ligature strangulation group (P < 0.01). However, miR-199a-5p in each brain region showed no significant difference between the 2 groups. In conclusion, ER stress was involved in the physiological and pathological processes of ligature strangulation. Furthermore, upstream miR-199a may play an important regulatory role in mechanical asphyxia.

  20. The expression of a novel stress protein '150-kDa oxygen regulated protein' in sudden infant death.

    PubMed

    Ikematsu, Kazuya; Tsuda, Ryouichi; Kondo, Toshikazu; Kondo, Hisayoshi; Ozawa, Kentaro; Ogawa, Satoshi; Nakasono, Ichiro

    2003-03-01

    The oxygen regulated protein 150-kDa (ORP-150) is only induced in hypoxic conditions. We performed an immunohistochemical and morphometrical study on the expression of ORP-150 in the brains of sudden infant death (SID) victims. The cerebral cortexes of 18 infants were used for this study. Each tissue section was incubated with anti-ORP-150 polyclonal antibodies and the number of ORP-150 positive cells was counted. In the cluster analysis, the 18 cases were classified into three groups (A-C groups). Group A was composed of six sudden infant death syndrome (SIDS) cases and its mean value of ORP-150 positive cells was 66.75+/-3.44, Group B (six severe respiratory infectious disease such as pneumonia and bronchitis including sepsis): 39.50+/-2.52 and Group C (five SIDS and one severe respiratory infectious disease): 16.00+/-2.92, respectively. These results might reflect chronic hypoxic condition before death, because ORP-150 is only induced when a hypoxic condition exist, but not acute hypoxia. And chronic hypoxic state is likely to be antecedent to SIDS. Therefore, immunohistochemical analysis of OPR-150 in the brain of SID cases may be very useful to differentiate between SIDS and acute asphyxia.

  1. Delayed preconditioning with NMDA receptor antagonists in a rat model of perinatal asphyxia.

    PubMed

    Makarewicz, Dorota; Sulejczak, Dorota; Duszczyk, Małgorzata; Małek, Michał; Słomka, Marta; Lazarewicz, Jerzy W

    2014-01-01

    In vitro experiments have demonstrated that preconditioning primary neuronal cultures by temporary application of NMDA receptor antagonists induces long-term tolerance against lethal insults. In the present study we tested whether similar effects also occur in brain submitted to ischemia in vivo and whether the potential benefit outweighs the danger of enhancing the constitutive apoptosis in the developing brain. Memantine in pharmacologically relevant doses of 5 mg/kg or (+)MK-801 (3 mg/kg) was administered i.p. 24, 48, 72 and 96 h before 3-min global forebrain ischemia in adult Mongolian gerbils or prior to hypoxia/ischemia in 7-day-old rats. Neuronal loss in the hippocampal CA1 in gerbils or weight deficit of the ischemic hemispheres in the rat pups was evaluated after 14 days. Also, the number of apoptotic neurons in the immature rat brain was evaluated. In gerbils only the application of (+)MK-801 24 h before ischemia resulted in significant prevention of the loss of pyramidal neurons. In rat pups administration of (+)MK-801 at all studied times before hypoxia-ischemia, or pretreatment with memantine or with hypoxia taken as a positive control 48 to 92 h before the insult, significantly reduced brain damage. Both NMDA receptor antagonists equally reduced the number of apoptotic neurons after hypoxia-ischemia, while (+)MK-801-evoked potentiation of constitutive apoptosis greatly exceeded the effect of memantine. We ascribe neuroprotection induced in the immature rats by the pretreatment with both NMDA receptor antagonists 48 to 92 h before hypoxia-ischemia to tolerance evoked by preconditioning, while the neuroprotective effect of (+)MK-801 applied 24 h before the insults may be attributed to direct consequences of the inhibition of NMDA receptors. This is the first report demonstrating the phenomenon of inducing tolerance against hypoxia-ischemia in vivo in developing rat brain by preconditioning with NMDA receptor antagonists.

  2. Electrical bioimpedance enabling prompt intervention in traumatic brain injury

    NASA Astrophysics Data System (ADS)

    Seoane, Fernando; Atefi, S. Reza

    2017-05-01

    Electrical Bioimpedance (EBI) is a well spread technology used in clinical practice across the world. Advancements in Textile material technology with conductive textile fabrics and textile-electronics integration have allowed exploring potential applications for Wearable Measurement Sensors and Systems exploiting. The sensing principle of electrical bioimpedance is based on the intrinsic passive dielectric properties of biological tissue. Using a pair of electrodes, tissue is electrically stimulated and the electrical response can be sensed with another pair of surface electrodes. EBI spectroscopy application for cerebral monitoring of neurological conditions such as stroke and perinatal asphyxia in newborns have been justified using animal studies and computational simulations. Such studies have shown proof of principle that neurological pathologies indeed modify the dielectric composition of the brain that is detectable via EBI. Similar to stroke, Traumatic Brain Injury (TBI) also affects the dielectric properties of brain tissue that can be detected via EBI measurements. Considering the portable and noninvasive characteristics of EBI it is potentially useful for prehospital triage of TBI patients where. In the battlefield blast induced Traumatic Brain Injuries are very common. Brain damage must be assessed promptly to have a chance to prevent severe damage or eventually death. The relatively low-complexity of the sensing hardware required for EBI sensing and the already proven compatibility with textile electrodes suggest the EBI technology is indeed a candidate for developing a handheld device equipped with a sensorized textile cap to produce an examination in minutes for enabling medically-guided prompt intervention.

  3. Magnesium sulfate treatment decreases the initial brain damage alterations produced after perinatal asphyxia in fetal lambs.

    PubMed

    Goñi-de-Cerio, Felipe; Alvarez, Antonia; Lara-Celador, Idoia; Alvarez, Francisco J; Alonso-Alconada, Daniel; Hilario, Enrique

    2012-10-01

    The aim of this work was to analyze the effect of MgSO(4) treatment in the brain after hypoxic-ischemic (HI) injury in premature fetal lambs. Injury was induced by partial occlusion of umbilical cord for 60 min, and then the preterm lambs (80-90% of gestation) were randomly assigned to one of the following groups: control group, in which the animals were managed by conventional mechanical ventilation for 3 hr; 3 hr postpartial cord occlusion (3-hr-PCO) group, in which injured animals were managed by ventilation and then sacrificed 3 hr after HI; and MgSO(4) group, in which animals received 400 mg/kg MgSO(4) for 20 min soon after HI was induced and were managed by ventilation for 3 hr. Brains were analyzed for apoptosis by TUNEL assay. Cell viability and intracellular state studies were assessed by flow cytometry. The delayed death index was significantly increased in the 3-hr-PCO group in comparison with control. Administration of MgSO(4) elicited a delay in cell death that was similar to that in the control group. The 3-hr-PCO group showed a significantly higher concentration of reactive oxygen species, mitochondrial damage, and intracellular calcium in comparison with control and MgSO(4) - treated groups. Our results suggest that MgSO(4) treatment might have potential therapeutic benefits after the HI event. Copyright © 2012 Wiley Periodicals, Inc.

  4. Maturation of the Mitochondrial Redox Response to Profound Asphyxia in Fetal Sheep

    PubMed Central

    Drury, Paul P.; Bennet, Laura; Booth, Lindsea C.; Davidson, Joanne O.; Wassink, Guido; Gunn, Alistair J.

    2012-01-01

    Fetal susceptibility to hypoxic brain injury increases over the last third of gestation. This study examined the hypothesis that this is associated with impaired mitochondrial adaptation, as measured by more rapid oxidation of cytochrome oxidase (CytOx) during profound asphyxia. Methods: Chronically instrumented fetal sheep at 0.6, 0.7, and 0.85 gestation were subjected to either 30 min (0.6 gestational age (ga), n = 6), 25 min (0.7 ga, n = 27) or 15 min (0.85 ga, n = 17) of complete umbilical cord occlusion. Fetal EEG, cerebral impedance (to measure brain swelling) and near-infrared spectroscopy-derived intra-cerebral oxygenation (ΔHb = HbO2 – Hb), total hemoglobin (THb) and CytOx redox state were monitored continuously. Occlusion was associated with profound, rapid fall in ΔHb in all groups to a plateau from 6 min, greatest at 0.85 ga compared to 0.6 and 0.7 ga (p<0.05). THb initially increased at all ages, with the greatest rise at 0.85 ga (p<0.05), followed by a progressive fall from 7 min in all groups. CytOx initially increased in all groups with the greatest rise at 0.85 ga (p<0.05), followed by a further, delayed increase in preterm fetuses, but a striking fall in the 0.85 group after 6 min of occlusion. Cerebral impedance (a measure of cytotoxic edema) increased earlier and more rapidly with greater gestation. In conclusion, the more rapid rise in CytOx and cortical impedance during profound asphyxia with greater maturation is consistent with increasing dependence on oxidative metabolism leading to earlier onset of neural energy failure before the onset of systemic hypotension. PMID:22720088

  5. Current management of the infant who presents with neonatal encephalopathy.

    PubMed

    Wachtel, Elena V; Hendricks-Muñoz, Karen D

    2011-01-01

    Neonatal encephalopathy after perinatal hypoxic-ischemic insult is a major contributor to global child mortality and morbidity. Brain injury in term infants in response to hypoxic-ischemic insult is a complex process evolving over hours to days, which provides a unique window of opportunity for neuroprotective treatment interventions. Advances in neuroimaging, brain monitoring techniques, and tissue biomarkers have improved the ability to diagnose, monitor, and care for newborn infants with neonatal encephalopathy as well as predict their outcome. However, challenges remain in early identification of infants at risk for neonatal encephalopathy, determination of timing and extent of hypoxic-ischemic brain injury, as well as optimal management and treatment duration. Therapeutic hypothermia is the most promising neuroprotective intervention to date for infants with moderate to severe neonatal encephalopathy after perinatal asphyxia and has currently been incorporated in many neonatal intensive care units in developed countries. However, only 1 in 6 babies with encephalopathy will benefit from hypothermia therapy; many infants still develop significant adverse outcomes. To enhance the outcome, specific diagnostic predictors are needed to identify patients likely to benefit from hypothermia treatment. Studies are needed to determine the efficacy of combined therapeutic strategies with hypothermia therapy to achieve maximal neuroprotective effect. This review focuses on important concepts in the pathophysiology, diagnosis, and management of infants with neonatal encephalopathy due to perinatal asphyxia, including an overview of recently introduced novel therapies. © 2011 Published by Mosby, Inc.

  6. Dominant use of the left hand by athetotic cerebral palsied children.

    PubMed

    Yokochi, K; Shimabukuro, S; Kodama, M; Hosoe, A

    1990-01-01

    Hand preference was studied in 57 children with athetotic cerebral palsy. A left-sided preference was seen in 61% of the subjects. In more severely affected children for whom the possible cause was asphyxia, the left-sided preference was especially common. The perinatal brain damage causing athetosis may affect a motor system controlling movement on the right side more severely.

  7. ERα Signaling Is Required for TrkB-Mediated Hippocampal Neuroprotection in Female Neonatal Mice after Hypoxic Ischemic Encephalopathy123

    PubMed Central

    Cikla, Ulas; Chanana, Vishal; Kintner, Douglas B.; Eickhoff, Jens; Marquez, Stephanie; Covert, Lucia; Otles, Arel; Ferrazzano, Peter; Vemuganti, Raghu; Levine, Jon E.

    2016-01-01

    Abstract Male neonate brains are more susceptible to the effects of perinatal asphyxia resulting in hypoxia and ischemia (HI)-related brain injury. The relative resistance of female neonatal brains to adverse consequences of HI suggests that there are sex-specific mechanisms that afford females greater neuroprotection and/or facilitates recovery post-HI. We hypothesized that HI preferentially induces estrogen receptor α (ERα) expression in female neonatal hippocampi and that ERα is coupled to Src family kinase (SFK) activation that in turn augments phosphorylation of the TrkB and thereby results in decreased apoptosis. After inducing the Vannucci’s HI model on P9 (C57BL/6J) mice, female and male ERα wild-type (ERα+/+) or ERα null mutant (ERα−/−) mice received vehicle control or the selective TrkB agonist 7,8-dihydroxyflavone (7,8-DHF). Hippocampi were collected for analysis of mRNA of ERα and BDNF, protein levels of ERα, p-TrkB, p-src, and cleaved caspase 3 (c-caspase-3) post-HI. Our results demonstrate that: (1) HI differentially induces ERα expression in the hippocampus of the female versus male neonate, (2) src and TrkB phosphorylation post-HI is greater in females than in males after 7,8-DHF therapy, (3) src and TrkB phosphorylation post-HI depend on the presence of ERα, and (4) TrkB agonist therapy decreases the c-caspase-3 only in ERα+/+ female mice hippocampus. Together, these observations provide evidence that female-specific induction of ERα expression confers neuroprotection with TrkB agonist therapy via SFK activation and account for improved functional outcomes in female neonates post-HI. PMID:26839918

  8. Hippocampal dendritic spines modifications induced by perinatal asphyxia.

    PubMed

    Saraceno, G E; Castilla, R; Barreto, G E; Gonzalez, J; Kölliker-Frers, R A; Capani, F

    2012-01-01

    Perinatal asphyxia (PA) affects the synaptic function and morphological organization. In previous works, we have shown neuronal and synaptic changes in rat neostriatum subjected to hypoxia leading to long-term ubi-protein accumulation. Since F-actin is highly concentrated in dendritic spines, modifications in its organization could be related with alterations induced by hypoxia in the central nervous system (CNS). In the present study, we investigate the effects of PA on the actin cytoskeleton of hippocampal postsynaptic densities (PSD) in 4-month-old rats. PSD showed an increment in their thickness and in the level of ubiquitination. Correlative fluorescence-electron microscopy photooxidation showed a decrease in the number of F-actin-stained spines in hippocampal excitatory synapses subjected to PA. Although western blot analysis also showed a slight decrease in β-actin in PSD in PA animals, the difference was not significant. Taken together, this data suggests that long-term actin cytoskeleton might have role in PSD alterations which would be a spread phenomenon induced by PA.

  9. Hippocampal Dendritic Spines Modifications Induced by Perinatal Asphyxia

    PubMed Central

    Saraceno, G. E.; Castilla, R.; Barreto, G. E.; Gonzalez, J.; Kölliker-Frers, R. A.; Capani, F.

    2012-01-01

    Perinatal asphyxia (PA) affects the synaptic function and morphological organization. In previous works, we have shown neuronal and synaptic changes in rat neostriatum subjected to hypoxia leading to long-term ubi-protein accumulation. Since F-actin is highly concentrated in dendritic spines, modifications in its organization could be related with alterations induced by hypoxia in the central nervous system (CNS). In the present study, we investigate the effects of PA on the actin cytoskeleton of hippocampal postsynaptic densities (PSD) in 4-month-old rats. PSD showed an increment in their thickness and in the level of ubiquitination. Correlative fluorescence-electron microscopy photooxidation showed a decrease in the number of F-actin-stained spines in hippocampal excitatory synapses subjected to PA. Although Western Blot analysis also showed a slight decrease in β-actin in PSD in PA animals, the difference was not significant. Taken together, this data suggests that long-term actin cytoskeleton might have role in PSD alterations which would be a spread phenomenon induced by PA. PMID:22645692

  10. [The contribution of the clinical examination, electroencephalogram, and brain MRI in assessing the prognosis in term newborns with neonatal encephalopathy. A cohort of 30 newborns before the introduction of treatment with hypothermia].

    PubMed

    Jadas, V; Brasseur-Daudruy, M; Chollat, C; Pellerin, L; Devaux, A M; Marret, S

    2014-02-01

    Perinatal asphyxia complicated by hypoxic ischemic brain injury remains a source of neurological lesions. A major aim of neonatologists is to evaluate the severity of neonatal encephalopathy (NE) and to evaluate prognosis. The purpose of this study was to determine the contribution of brain MRI compared to electroencephalogram (EEG) and clinical data in assessing patients' prognosis. Thirty newborns from the pediatric resuscitation unit at Rouen university hospital were enrolled in a retrospective study between January 2006 and December 2008, prior to introduction of hypothermia treatment. All 30 newborns had at least two anamnestic criteria of perinatal asphyxia, one brain MRI in the first 5 days of life and another after 7 days of life as well as an early EEG in the first 2 days of life. Then, the infants were seen in consultation to assess neurodevelopment. This study showed a relation between NE stage and prognosis. During stage 1, prognosis was good, whereas stage 3 was associated with poor neurodevelopment outcome. Normal clinical examination before the 8th day of life was a good prognostic factor in this study. There was a relationship between severity of EEG after the 5th day of life and poor outcome. During stage 2, EEG patterns varied in severity, and brain MRI provided a better prognosis. Lesions of the basal ganglia and a decreased or absent signal of the posterior limb of the internal capsule were poor prognostic factors during brain MRI. These lesions were underestimated during standard MRI in the first days of life but were visible with diffusion sequences. Cognitive impairment affected 40% of surviving children, justifying extended pediatric follow-up. This study confirms the usefulness of brain MRI as a diagnostic tool in hypoxic ischemic encephalopathy in association with clinical data and EEG tracings. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  11. [Immunohistochemical studies on neuronal changes in brain stem nucleus of forensic autopsied cases. I. Various cases of asphyxia and respiratory disorder].

    PubMed

    Kubo, S; Orihara, Y; Gotohda, T; Tokunaga, I; Tsuda, R; Ikematsu, K; Kitamura, O; Yamamoto, A; Nakasono, I

    1998-12-01

    Several nuclei in brain stem are well known to play an important role in supporting human life. However, the connection between neural changes of brain stem and the cause of death is not yet fully understood. To investigate the correlation of brain stem damage with various cause of respiratory disorders, neural changes of the arcuate nucleus (ARC), the hypoglossal nucleus (HN) and the inferior olivary nucleus (IO) were examined using immunohistochemical technique. Based on the cause of death, the forensic autopsy cases were divided into 5 groups as follows. Group I: hanging, ligature strangulation and manual strangulation, Group II: smothering and choking, Group III: drowning, Group IV: respiratory failure, control group: heat stroke and sun stroke. Brain was fixed with phosphate-buffer formalin, and the brain stem was horizontally dissected at the level of apex, then embedded in paraffin. The sections were stained with the antibodies against microtubule-associated protein 2 (MAP2), muscalinic acetylcholine receptor (mAChR), c-fos gene product (c-Fos) and 72 kD heat-shock protein (HSP70). Three nuclei showed no obvious morphological changes in all examined groups. However, in case of asphyxia (Group I to III), neurons in HN were positively stained with both HSP70 and c-Fos antibodies. This may indicate that the occlusion of upper airway results in the neuronal damage of HN without their morphological changes. Positive staining of HSP70 and c-Fos in IO was more frequently observed in Group III than other 4 groups. Since IO is involved in maintaining body balance which is often disturbed by drowning, it seems possible that neuronal damage in IO observed in drowning may be related to the disturbance of body balance. These observations indicate that immunohistochemical study on the damage to neurons in brain stem nuclei can provide useful information for determining the cause of death.

  12. Brain pertechnetate SPECT in perinatal asphyxia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sfakianakis, G.; Curless, R.; Goldberg, R.

    1984-01-01

    Single photon emission computed tomography of the brain was performed in 6 patients with perinatal asphyxis aged 8-26 days. A single-head (LFOV) commercial SPECT system (Picker) was used and data were acquired 2-3 hr after an IV injection of 1-2 mCi Tc-99m-pertechnetate (360/sup 0/ rotation, 60 views, 64 x 64 matrix, 50K cts/view). Reconstruction in three planes was performed using MDS software (Hanning medium resolution filter, with or without attenuation correction using Sorenson's technique). For each clinical study, a ring type phantom source was used to identify the level of reconstruction noise in the tomographic planes. Abnormalities were found inmore » all patients studied, 3 central (moderate intensity), 2 peripheral (1 severe, 1 moderate) and 1 diffuse (mild intensity). Despite use of oral perchlorate (50 mg) in one patient the choroid plexus was visible. Since attenuation correction tended to amplify noise, the clinical studies were interpreted both with and without this correction. All 3 patients with central lesions were found abnormal on early (1-4 mo) neurologic follow-up examination, whereas the others were normal. No correlation was found between SPECT and 24 hr blood levels of CPK, ammonia, base excess, or the Apgar scores. Ct scans were reported abnormal (3 diffuse, 1 peripheral, 1 central and 1 questionable). Planar scintigrams obtained immediately after SPECT were normal (2), questionable (2) and abnormal (2). Follow-up SPECT brain scintigrams in two of the patients showed partial resolution. SPECT of the brain appears promising in perinatal asphyxia but long-term correlation with patient development is necessary.« less

  13. Prevalence, severity and early outcomes of hypoxic ischemic encephalopathy among newborns at a tertiary hospital, in northern Tanzania.

    PubMed

    Simiyu, Irene N; Mchaile, Deborah N; Katsongeri, Kahindo; Philemon, Rune N; Msuya, Sia E

    2017-05-25

    Hypoxic Ischemic Encephalopathy (HIE) remains a problem of great concern worldwide especially in developing countries. The occurrence of a neurological syndrome can be an indicator of insult to the brain. We aimed to determine the prevalence, HIE proportions, neurological signs and early outcomes of newborns that developed birth asphyxia at KCMC Tanzania. A prospective study was conducted at KCMC from November 2014 to April 2015 among newborns with birth asphyxia. Sarnat and Sarnat score was used to assess newborns immediately after birth to classify HIE and were later followed daily for 7 days or until discharge. Of the 1752 deliveries during the study period, 11.5% (n = 201) had birth asphyxia. Of the 201 newborns, 187 had HIE. Of these 187 with HIE; 39.0% had moderate HIE and 10.2% had severe HIE according to the Sarnat and Sarnat classification. Neurological signs that were observed during the study period were; weak/absent reflexes (46.0%), hypotonia (43.3%) and lethargy (42.2%). Mortality was 9.1% among the 187 newborns with HIE. Mortality was higher among newborns with severe HIE 84.2% (16/19) compared to those with moderate HIE 1.4% (1/73). On the 7th day after delivery, 17.1% (32/187) of the newborns did not show any change from the initial score at delivery. Prevalence of birth asphyxia is high in our setting and most of the newborns (49%) end up with moderate/severe HIE. Good obstetric care and immediate resuscitation of newborns are vital in reducing the occurrence of HIE and improving the general outcome of newborns.

  14. Perinatal asphyxia alters neuregulin-1 and COMT gene expression in the medial prefrontal cortex in rats.

    PubMed

    Wakuda, Tomoyasu; Iwata, Keiko; Iwata, Yasuhide; Anitha, Ayyappan; Takahashi, Taro; Yamada, Kohei; Vasu, Mahesh Mundalil; Matsuzaki, Hideo; Suzuki, Katsuaki; Mori, Norio

    2015-01-02

    Epidemiological studies suggest that perinatal complications, particularly hypoxia-related ones, increase the risk of schizophrenia. Recent genetic studies of the disorder have identified several putative susceptibility genes, some of which are known to be regulated by hypoxia. It can be postulated therefore that birth complications that cause hypoxia in the fetal brain may be associated with a dysregulation in the expression of some of the schizophrenia candidate genes. To test this, we used an animal model of perinatal asphyxia, in which rat pups were exposed to 15 min of intrauterine anoxia during Caesarean section birth, and examined the expression of mRNA of five of the putative susceptibility genes (NRG1, ErbB4, AKT1, COMT and BDNF) by real-time quantitative PCR in the medial prefrontal cortex (mPFC) and the hippocampus at 6 and 12 weeks after birth. The expression of NRG1 mRNA was significantly decreased in the mPFC, but not in the hippocampus, at 6 and 12 weeks after birth. In addition, a significant increase in COMT mRNA expression was observed in the mPFC at 12 weeks. The alteration in mRNA levels of NRG1 and COMT was not associated with a change in their protein levels. These results suggest that perinatal asphyxia may lead to disturbances in the PFC, which in turn may exert a long-lasting influence on the expression of specific genes, such as NRG1 and COMT. Our results also suggest that translational interruption may occur in this model of perinatal asphyxia. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. MRI evaluation and functional assessment of brain injury after hypoxic ischemia in neonatal mice.

    PubMed

    Adén, Ulrika; Dahlberg, Viktoria; Fredholm, Bertil B; Lai, Li-Ju; Chen, Zhengguan; Bjelke, Börje

    2002-05-01

    Severe perinatal asphyxia is an important cause of brain injury in the newborn infant. We examined early events after hypoxic ischemia (HI) in the 7-day-old mouse brain by MRI and related them to long-term functional effects and histopathology in the same animals at 4 to 5 weeks of age. HI was induced in 7-day-old CD1 mice by exposure to 8% oxygen for 30 minutes after occlusion of the left common carotid artery. The resulting unilateral focal lesion was evaluated in vivo by MRI (T2 maps and apparent diffusion coefficient maps) at 3, 6, and 24 hours and 5 days after hypoxia. Locomotion and sensorimotor function were analyzed after 3 weeks. Four weeks after HI, the mice were killed, and cresyl violet-stained brain sections were examined morphologically. A decrease in apparent diffusion coefficient values in cortex on the affected side was found at 3 hours after HI. T2 values were significantly increased after 6 hours and remained so for 5 days. Maximal size of the lesion was attained at 3 to 6 hours after HI and declined thereafter. Animals with MRI-detected lesions had decreased forward locomotion, performed worse than controls in the beam-walking test, and showed a unilateral hypotrophy in the cresyl violet-stained brain sections 4 weeks later. The temporal progression of the damage after HI in 7-day-old mice differs from that of the adult brain as judged by MRI. The early lesions detected by MRI were related to functional impairments for these mice in near-adult life.

  16. Impact of race on male predisposition to birth asphyxia.

    PubMed

    Mohamed, M A; Aly, H

    2014-06-01

    To examine the associations of: (a) neonatal sex with mild-to-moderate and severe birth asphyxia, (b) fetal sex with mortality due to birth asphyxia and (c) neonatal race with severe birth asphyxia. We used the Nationwide Inpatient Sample (NIS) Database including the years 1993 to 2008 or its pediatric sub portion Kid's Inpatient Database (KID) for the years 1997, 2000, 2003 and 2006. NIS database is collected annually from more than 1000 hospitals across the United States for millions of inpatient discharge summaries. We included newborns older than 36 weeks gestational age or more than 2500 g at birth. We excluded newborns with congenital heart disease, major congenital anomalies and chromosomal disorders. We compared birth asphyxia in males to females, and in each race compared with whites, and examined effect of sex in association with birth asphyxia within each race/ethnicity. There were 9 708 251 term infants (51.8% males) included in the study. There were 15 569 newborns diagnosed with severe birth asphyxia (1.6 in 1000); of them 56.1% were males. Odds ratio (OR)to have severe birth asphyxia in male newborns was 1.16 (confidence interval (CI): 1.12 to 1.20, P<0.001). Compared with Whites, African-American newborns had more birth asphyxia, OR 1.23 (CI: 1.16 to 1.31, P<0001), whereas Hispanics and Asians had less birth asphyxia. Native American newborns did not differ from their white counterparts. On comparing males to females within each race, male sex was associated with increased birth asphyxia in all races but Native American. Male sex and African-American race were associated with increased prevalence of birth asphyxia.

  17. Effects of asphyxia on lung fluid balance in baby lambs.

    PubMed Central

    Hansen, T N; Hazinski, T A; Bland, R D

    1984-01-01

    The purpose of this study was to assess the effects of combined hypoxia and hypercapnia and of severe asphyxia on lung water balance and protein transport in newborn lambs. We studied ten 2-4-wk-old anesthetized lambs which were mechanically ventilated first with air for 2-3 h, then with 10-12% oxygen in nitrogen for 2-4 h, and then with 10-12% oxygen and 10-12% carbon dioxide in nitrogen for 2-4 h. Next we stopped their breathing for 1-2 min to produce severe asphyxia, after which we followed their recovery in air for 2-4 h. In 5 of the 10 lambs we intravenously injected radioactive albumin and measured its turnover time between plasma and lymph during the baseline period and after recovery from asphyxia. During alveolar hypoxia alone, mean pulmonary arterial pressure increased 60% and lung lymph flow increased 74%, whereas lymph protein concentration decreased from 3.47 +/- 0.13 to 2.83 +/- 0.15 g/dl. Cardiac output, left atrial pressure, and plasma protein concentration did not change. When carbon dioxide was added to the inspired gas mixture, pulmonary arterial pressure increased 22%, cardiac output increased 13%, lung lymph flow increased 33%, and lymph protein concentration decreased from 2.83 +/- 0.15 to 2.41 +/- 0.13 g/dl. Left atrial pressure and plasma protein concentration did not change. After 60-90 s of induced asphyxia, vascular pressures and lung lymph flow rapidly returned to values the same as those obtained during the baseline period. The turnover time for radioactive albumin between plasma and lymph was the same between the baseline and recovery periods (185 +/- 16 vs. 179 +/- 12 min). The ratio of albumin to globulin in lymph relative to the same ratio in plasma did not change during any phase of these experiments. Five lambs killed after recovery from asphyxia had significantly less blood and extravascular water in their lungs than control lambs had. We conclude that in the newborn lamb both alveolar hypoxia and alveolar hypoxia with hypercapnia increase lung lymph flow by increasing filtration pressure in the microcirculation, but neither hypoxia with hypercapnia nor brief severe asphyxia alters the protein permeability of the pulmonary microcirculation. PMID:6430959

  18. [The influence of different asphyxia time on the reproduction of multiply organ dysfunction model after cardiopulmonary resuscitation following cardiac arrest in rabbit].

    PubMed

    Zhang, Dong; Wang, Yu-shan; Li, Nan; Chen, Ying

    2011-06-01

    To explore the effects of different asphyxia time on the reproduction of multiply organ dysfunction syndrome in rabbit after cardiopulmonary resuscitation (CPR-MODS) for cardiac arrest, in order to provide a method to reproduce an animal model of CPR-MODS for further research of cardiopulmonary resuscitation (CPR). The rabbit cardiac arrest was caused by asphyxia as a result of clamping the trachea. Thirty rabbits were divided into 7-minute asphyxia group and 8-minute asphyxia group by means of random number table with 15 rabbits in each group. The rate of resumption of spontaneous circulation (ROSC), the mortality at different time points and the occurrence incidence of systemic inflammatory response syndrome (SIRS) of two groups were observed after CPR and the ROSC. The levels of serum tumor necrosis factor-α (TNF-α), myocardial MB-isoenzyme of creatine kinase (CK-MB), alanine aminotransferase (ALT), creatinine (Cr), glucose (Glu) and arterial partial pressure of oxygen (PaO₂) before resuscitation and 12, 24 and 48 hours after ROSC were measured simultaneously in the two groups. The incidence of CPR-MODS was calculated. The CPR time (seconds) in 7-minute asphyxia group was significantly shorter than that in 8-minute asphyxia group (147.60±22.09 vs. 193.08±23.07, P<0.01). The ROSC rate of 7-minute asphyxia group and 8-minute asphyxia group was 100.00% and 86.67%, respectively, and there was no significant difference. The incidence of MODS in the rabbits surviving more than 24 hours after ROSC was 100% in both groups. The mortality at 6 hours after ROSC in 7-minute asphyxia group was remarkably lower than that of 8-minute asphyxia group (6.67% vs. 46.67%, P<0.05). All the rabbits in 8-minute asphyxia group died at 48 hours. The incidence of SIRS after ROSC was 100% in both groups. Compared with that before asphyxiation, the level of serum TNF-α (ng/L) as well as CK-MB (U/L) increased significantly at 12 hours after ROSC in both groups (TNF-α in 7-minute asphyxia group: 100.71±20.43 vs. 49.13±8.64, in 8-minute asphyxia group: 118.09±21.90 vs. 48.48±6.70; CK-MB in 7-minute asphyxia group: 786.88±211.84 vs. 468.20±149.45, in 8-minute asphyxia group: 894.88±248.80 vs. 462.11±115.15, all P<0.05). There was a significant elevation of ALT (U/L) and Glu (mmol/L) at 24 hours after ROSC (ALT in 7-minute asphyxia group: 174.25±36.28 vs. 50.27±9.37, in 8-minute asphyxia group: 205.50±10.61 vs. 51.13±10.37; Glu in 7-minute asphyxia group: 11.21±1.14 vs. 5.59±1.10, in 8-minute asphyxia group: 11.55±0.35 vs. 6.41±1.23, all P<0.05). Cr (μmol/L) was significantly higher at 12 hours after ROSC in 8-minute asphyxia group (98.83±16.70 vs. 65.93±13.81), while it was elevated at 24 hours in 7-minute asphyxia group (144.25±41.64 vs. 67.71±16.47, both P<0.05). PaO₂ in both groups was significantly higher at 12 hours after ROSC and significantly decreased at 24 hours. The model of cardiac arrest caused by 7 minutes asphyxia provided more possibility and feasibility for the subsequent study of reproducing CPR-MODS model.

  19. Early neonatal Glutaric aciduria type I hidden by perinatal asphyxia: a case report.

    PubMed

    Biasucci, Giacomo; Morelli, Nicola; Natacci, Federica; Mastrangelo, Massimo

    2018-01-15

    Perinatal asphyxia (PA) occurs in about 2 to 10 per 1000 live full-term births. Although neonatal epileptic seizures are observed in up to 60% of cases, PA may mimic or subtend other conditions. Hypoxia related brain injury is particularly relevant, as it may have permanent effects on neuropsychomotor development. Antepartum obstetric conditions, may, in turn, lead to hypoxic-ischemic damage to the fetus and the newborn, often underlying PA. Herein, a case of PA that hid and triggered signs and symptoms of Glutaric Aciduria type I (GA-I), is reported. R.F. was born at term after prolonged labour, by induced vaginal delivery with the Kristeller manoeuvre. He presented with severe asphyxia and asystoly. Immediate cardiopulmonary resuscitation promptly restored cardiorespiratory parameters, allowing for early extubation 30 min after. During the following hours, severe axial muscle hypotonia with an increased tone of the limb extensor muscles became evident. The absence of crying and archaic reflexes persisted and there was an onset of generalized tonic or clonic seizure. First level metabolic and inflammatory markers were within the normal range. An inherited metabolic disease was then suspected, due to the persistent clinical signs of severe neurological damage without any detectable septic parameter. GA-I was assessed and specific treatment started without any clinical improvement, although ensuring adequate growth and metabolic control. Thereafter, the baby developed a severe encephalopathy with drug resistant epileptic seizures. The progression of the neurological damage and a CVC-related sepsis led him to exitus at 2 years. To the best of our knowledge, this is the first case of early post-natal onset of GA-I reported in literature to date, in the absence of expanded newborn screening (NBS) programme. As expanded NBS programmes for inborn errors of metabolism have not yet been internationally adopted, we are of the opinion that such diseases may well be hidden by misleading signs and symptoms imputable to other more frequent harmful clinical conditions. Moreover, it would be advisable that neonatologists be trained to include GA-I in the differential diagnosis of neurological damage secondary to PA.

  20. Nondrowning Asphyxia in Veterinary Forensic Pathology: Suffocation, Strangulation, and Mechanical Asphyxia.

    PubMed

    McEwen, B J

    2016-09-01

    Asphyxia in a forensic context refers to death by rapid cerebral anoxia or hypoxia due to accidental or nonaccidental injury. Death due to nondrowning asphyxia can occur with strangulation, suffocation, and mechanical asphyxia, each of which is categorized based on the mechanism of injury. Individuals dying due to various types of asphyxia may or may not have lesions, and even those lesions that are present may be due to other causes. The interpretation or opinion that death was due to asphyxia requires definitive and compelling evidence from the postmortem examination, death scene, and/or history. Beyond the postmortem examination, pathologists may be faced with questions of forensic importance that revolve around the behavioral and physiological responses in animals subjected to strangulation, suffocation, or mechanical asphyxia to determine if the animal suffered. While there is no prescriptive answer to these questions, it is apparent that, because of physiological and anatomical differences between humans and animals, for some mechanisms of asphyxia, consciousness is maintained for longer periods and the onset of death is later in animals than that described for people. Veterinary pathologists must be cognizant that direct extrapolation from the medical forensic literature to animals may be incorrect. This article reviews the terminology, classification, mechanisms, and lesions associated with asphyxial deaths in companion animals and highlights significant comparative differences of the response to various types of asphyxia in animals and people. © The Author(s) 2016.

  1. Factors Affecting the Nutritional Status of Pregnant Women

    DTIC Science & Technology

    1989-01-01

    asphyxia during the labor process , resulting in varying degrees of brain damage or even death. Statistically, there is a higher mortality rate for...1976). A person can respond to the various stimuli through two mechanisms. First is the regulator mechanism which involves the processes that result in...status also improves. This alteration in nutritional status is evidence of information processing , learning, and improved Jludgement which are all aspects

  2. [Protective effect of erythropoietin on brain tissue in rats with cardiopulmonary resuscitation after asphyxia].

    PubMed

    Chunling, Ji; Hourong, Zhou; Xiulin, Yang; Qian, Zhang; Yuhui, Yuan; Jia, Huang

    2015-12-01

    To study the protective effect of erythropoietin (EPO) on brain tissue with cardiac arrest-cardiopulmonary resuscitation (CA-CPR) and its mechanism. 120 male Sprague-Dawley (SD) rats were randomly divided into three groups (each n = 40), namely: sham group, routine chest compression group, and conventional chest compression + EPO group (EPO group). The rats in each group were subdivided into CA and 6, 12, 24, 48 hours after restoration of spontaneous circulation (ROSC) five subgroups (each n = 8). The model of CA was reproduced according to the Hendrickx classical asphyxia method followed by routine chest compression, and the rats in sham group only underwent anesthesia, tracheostomy intubation and venous-puncture without asphyxia and CPR. The rats in EPO group were given the routine chest compression + EPO 5 kU/kg (2 mL/kg) after CA. Blood sample was collected at different time points of intervention for the determination the content of serum S100 β protein by enzyme linked immunosorbent assay (ELISA). All the rats were sacrificed at the corresponding time points, and the hippocampus was harvested for the calculation of the number of S100 β protein positive cells, and to examine the pathological changes and their scores at 24 hours after ROSC by light microscopy. With prolongation of ROSC time, the serum levels of S100 β protein (µg/L) in the routine chose compression group and the EPO group were significantly elevated, peaking at 24 hours (compared with CA: 305.7 ± 29.2 vs. 44.4 ± 6.2 in routine chest compression group, and 276.7 ± 28.9 vs. 44.7 ± 5.6 in the EPO group, both P < 0.05), followed by a fall. The levels of S100 β protein at each time point after ROSC in EPO group were significanthy lower than those of the routine chest compression group (83.2 ± 7.5 vs. 114.3 ± 15.3 at 6 hours, 123.9 ± 20.2 vs. 184.9 ± 22.2 at 12 hours, 276.7 ± 28.9 vs. 305.7 ± 29.2 at 24 hours, 256.3 ± 26.6 vs. 283.2 ± 23.6 at 48 hours, all P < 0.05). With the prolongation of ROSC time, the S100 β protein positive cell number in brain (cells/HP) in the routine chest compression group and the EPO group was significantly increased, peaking at 24 hours (compared with CA: 14.3 ± 2.2 vs. 6.7 ± 0.7 in the routine chest compression group, 11.3 ± 1.3 vs. 6.8 ± 0.9 in the EPO group, both P < 0.05), then it began to fall. The S100 β protein positive cell number in brain at each time point after ROSC in the EPO group was significantly lower than that of the routine chest compression group (7.0 ± 0.9 vs. 7.9 ± 1.9 at 6 hours, 8.4 ± 1.1 vs. 10.2 ± 2.2 at 12 hours, 11.3 ± 1.3 vs. 14.3 ± 2.2 at 24 hours, 8.3 ± 0.8 vs. 10.8 ± 2.0 at 48 hours, all P < 0.05). Under the light microscope, a serious brain cortex injury was found after reproduction of the model, and the degree of injury was reduced after EPO intervention. The pathological score at 24 hours after ROSC in EPO group was lower than that of routine chest compression group (3.83 ± 0.73 vs. 4.17 ± 0.75, P < 0.05). The S100 β protein level in serum and brain tissue was increased early in asphyxia CA-CPR rats. EPO intervention can reduce the expression of S100 protein and reduce the degree of brain injury.

  3. Two cases of death due to plastic bag suffocation.

    PubMed

    Nadesan, K; Beng, O B

    2001-01-01

    Deaths due to plastic bag suffocation or plastic bag asphyxia are not reported in Malaysia. In the West many suicides by plastic bag asphyxia, particularly in the elderly and those who are chronically and terminally ill, have been reported. Accidental deaths too are not uncommon in the West, both among small children who play with shopping bags and adolescents who are solvent abusers. Another well-known but not so common form of accidental death from plastic bag asphyxia is sexual asphyxia, which is mostly seen among adult males. Homicide by plastic bag asphyxia too is reported in the West and the victims are invariably infants or adults who are frail or terminally ill and who cannot struggle. Two deaths due to plastic bag asphyxia are presented. Both the autopsies were performed at the University Hospital Mortuary, Kuala Lumpur. Both victims were 50-year old married Chinese males. One death was diagnosed as suicide and the other as sexual asphyxia. Sexual asphyxia is generally believed to be a problem associated exclusively with the West. Specific autopsy findings are often absent in deaths due to plastic bag asphyxia and therefore such deaths could be missed when some interested parties have altered the scene and most importantly have removed the plastic bag. A visit to the scene of death is invariably useful.

  4. Caffeine improves the ability of serotonin-deficient (Pet-1−/−) mice to survive episodic asphyxia

    PubMed Central

    Cummings, Kevin J.; Commons, Kathryn G.; Trachtenberg, Felicia L.; Li, Aihua; Kinney, Hannah C.; Nattie, Eugene E.

    2015-01-01

    Background In neonatal rodents, serotonin (5-HT) neurons are critical for successful autoresuscitation. We hypothesized that caffeine, a respiratory stimulant, would hasten the onset of gasping and improve autoresuscitation in 5-HT-deficient, Pet-1−/− mice. Methods Using a head-out system and electrocardiogram, we measured respiratory and heart rate (HR) responses of Pet-1−/− rodents and their littermates during episodic asphyxia at postnatal days 8–9 (P8–9). After a baseline recording, we injected either vehicle or caffeine (i.p.) at doses of 1, 5, or 10 mg/ kg. We then induced 10 brief (~30 s) episodes of asphyxia, each interspersed with 5 min of room air to allow autoresuscitation. In addition to measuring survival, we measured the duration of hypoxic apnea (time to initiate gasping) and time to recover eupnea and HR. Results Caffeine had a dose-dependent effect of hastening the onset of gasping, recovery of breathing, and restoration of HR in Pet-1−/−(but not in wild-type) rodents, thereby improving survival across asphyxic episodes. Increased survival was strongly correlated with hastened onset of gasping. Conclusion Our data suggest that caffeine reduces mortality relating to asphyxia and 5-HT deficiency. These findings may be relevant for efforts to reduce the incidence of sudden infant death syndrome (SIDS), given that SIDS is associated with failed autoresuscitation and reduced brainstem 5-HT. PMID:23095976

  5. Maturation of Peripheral and Brainstem Auditory Function in the First Year Following Perinatal Asphyxia: A Longitudinal Study.

    ERIC Educational Resources Information Center

    Jiang, Ze D.

    1998-01-01

    A study of 44 infants who suffered asphyxia during the perinatal period examined the influence of perinatal asphyxia on the maturation of auditory pathways by serial recordings of the brainstem auditory evoked potentials (BAEP). The general maturational course of the BAEP following asphyxia was similar to a control group. (Author/CR)

  6. Characterization of a cerebral palsy-like model in rats: Analysis of gait pattern and of brain and spinal cord motor areas.

    PubMed

    Dos Santos, Adriana Souza; de Almeida, Wellington; Popik, Bruno; Sbardelotto, Bruno Marques; Torrejais, Márcia Miranda; de Souza, Marcelo Alves; Centenaro, Lígia Aline

    2017-08-01

    In an attempt to propose an animal model that reproduces in rats the phenotype of cerebral palsy, this study evaluated the effects of maternal exposure to bacterial endotoxin associated with perinatal asphyxia and sensorimotor restriction on gait pattern, brain and spinal cord morphology. Two experimental groups were used: Control Group (CTG) - offspring of rats injected with saline during pregnancy and Cerebral Palsy Group (CPG) - offspring of rats injected with lipopolysaccharide during pregnancy, submitted to perinatal asphyxia and sensorimotor restriction for 30days. At 29days of age, the CPG exhibited coordination between limbs, weight-supported dorsal steps or weight-supported plantar steps with paw rotation. At 45days of age, CPG exhibited plantar stepping with the paw rotated in the balance phase. An increase in the number of glial cells in the primary somatosensory cortex and dorsal striatum were observed in the CPG, but the corpus callosum thickness and cross-sectional area of lateral ventricle were similar between studied groups. No changes were found in the number of motoneurons, glial cells and soma area of the motoneurons in the ventral horn of spinal cord. The combination of insults in the pre, peri and postnatal periods produced changes in hindlimbs gait pattern of animals similar to those observed in diplegic patients, but motor impairments were attenuated over time. Besides, the greater number of glial cells observed seems to be related to the formation of a glial scar in important sensorimotor brain areas. Copyright © 2017 ISDN. Published by Elsevier Ltd. All rights reserved.

  7. [Revised act on organ transplantation: a pediatrician's viewpoint].

    PubMed

    Mizuguchi, Masashi

    2010-06-01

    In Japan, from July 2010, an infant or a child with brain death will be legally regarded as a candidate of donor for organ transplantation under the consent of his or her family members. Official diagnostic criteria of brain death in children are currently under compilation. The causes and incidence of brain death remarkably differ among individuals belonging to different age groups. Secondary brain damages resulting from asphyxia, drowning, hypoxemia, and cardiopulmonary arrest more commonly occur in childhood than in adulthood. Child abuse or neglect is suspected to be involved in many of the cases of brain death. The current Japanese diagnostic criteria hitherto used for adults require several modifications before these can be applied to infants and children. According to the requirements of the new act, abused or neglected infants and children must be excluded from the category of donor candidates. Neonates and young infants below 12 weeks of corrected age will also be excluded, because neurological diagnosis of brain death is difficult in these individuals.

  8. [Expression of HIF1-alpha on myocardium and lung in rats model of asphyxia death].

    PubMed

    Zhang, Geng-qian; Zhou, Bin; Du, Bing; Yang, Zhi-hui; Zhang, Bei-lei; Zhu, Yin-hua; Zhang, Lin

    2006-12-01

    To investigate the expression of HIF1-alpha in heart and lung tissue died from asphyxia. The rats model of asphyxia death was constructed by hanging, different asphyxia groups and control group sets were made according the postmortem time (0,2,6,24 h), immunohistochemistry and half-quantitative RT-PCR methods were used to investigate expression of HIF1-alpha and mRNA changes on heart and lung tissue. The positive staining of HIF1-alpha could be observed in the myocardium and lung tissue. Significant differences were found between the groups of asphyxia and their corresponding control group. HIF1-alpha expression was found in all the asphyxia groups while it was only expressed in the control groups of 2 h, 6 h and 24 h. Nucleic positive staining could be detected in all the asphyxia groups but none was found in the control groups. RT-PCR showed that the expression of mRNA between 0 h asphyxia group and 0 h control group were equal in both cardic muscle and lung, but elevated expression in groups of 2,6,24h compared to their control groups. The nuclear positive staining of HIF1-alpha in heart and lung can be a special character of suffocation death.

  9. Traumatic asphyxia.

    PubMed

    Montes-Tapia, Fernando; Barreto-Arroyo, Itzel; Cura-Esquivel, Idalia; Rodríguez-Taméz, Antonio; de la O-Cavazos, Manuel

    2014-02-01

    Traumatic asphyxia is a rare condition in children that usually occurs after severe compression to the chest or abdomen. We report 3 cases in patients 18, 20, and 36 months of age who presented signs and symptoms of traumatic asphyxia after car accidents. Two clinical features were consistent in all 3 patients: multiple petechiae on the face and bulbar conjunctival hemorrhage; 2 patients had facial cyanosis, and 1 had facial edema.In children, the number of clinical manifestations that should be evident to diagnose traumatic asphyxia has not been ascertained. However, in any history of trauma with compression of the chest or abdomen and signs of increased intravenous craniocervical pressure, traumatic asphyxia should be suspected.

  10. Is the appearance of macrophages in pulmonary tissue related to time of asphyxia?

    PubMed

    Vacchiano, G; D'Armiento, F; Torino, R

    2001-01-01

    In order to connect the appearance of macrophages and giant cells in pulmonary tissue with the time of asphyxia the authors analyzed 50 asphyxiated human lungs paying their attention on the number of alveolar and interstitial macrophages and giant cells. They compared histological specimens of 25 asphixiated humans lungs following a slow asphyxia (30 min or more) with 25 histological specimens of asphyxiated human lungs following a rapid asphyxia (10-15 min). Alveolar and interstitial macrophages and giant cells per section, were considered and numbered. Controls were done on histological examination of traumatized lungs. In the pulmonary alveoli following on acute asphyxia there were 27.7+/-4.4 macrophages per section. Subjects dead after a slow asphyxiation showed 68.2+/-7.1 alveolar macrophages per section (p<0.001). Interstitial macrophages were also frequently present. No differences are detectable in the number of polynuclear giant cells between rapidly and slowly asphyxiated human lungs. The number of alveolar and interstitial macrophages per section can be considered as a further histological evidence of a slow asphyxia and can differentiate a slow asphyxia from an acute one.

  11. [Oxidative stress in perinatal asphyxia and hypoxic-ischaemic encephalopathy].

    PubMed

    Nuñez, Antonio; Benavente, Isabel; Blanco, Dorotea; Boix, Héctor; Cabañas, Fernando; Chaffanel, Mercedes; Fernández-Colomer, Belén; Fernández-Lorenzo, José Ramón; Loureiro, Begoña; Moral, María Teresa; Pavón, Antonio; Tofé, Inés; Valverde, Eva; Vento, Máximo

    2018-04-01

    Birth asphyxia is one of the principal causes of early neonatal death. In survivors it may evolve to hypoxic-ischaemic encephalopathy and major long-term neurological morbidity. Prolonged and intense asphyxia will lead to energy exhaustion in tissues exclusively dependent on aerobic metabolism, such as the central nervous system. Energy deficit leads to ATP-dependent pumps blockage, with the subsequent loss of neuronal transmembrane potential. The most sensitive areas of the brain will die due to necrosis. In more resistant areas, neuronal hyper-excitability, massive entrance of ionic calcium, activation of NO-synthase, free radical generation, and alteration in mitochondrial metabolism will lead to a secondary energy failure and programmed neuronal death by means of the activation of the caspase pathways. A third phase has recently been described that includes persistent inflammation and epigenetic changes that would lead to a blockage of oligodendrocyte maturation, alteration of neurogenesis, axonal maturation, and synaptogenesis. In this scenario, oxidative stress plays a critical role causing direct damage to the central nervous system and activating metabolic cascades leading to apoptosis and inflammation. Moderate whole body hypothermia to preserve energy stores and to reduce the formation of oxygen reactive species attenuates the mechanisms that lead to the amplification of cerebral damage upon resuscitation. The combination of hypothermia with coadjuvant therapies may contribute to improve the prognosis. Copyright © 2017 Asociación Española de Pediatría. Publicado por Elsevier España, S.L.U. All rights reserved.

  12. Evidence on Adrenaline Use in Resuscitation and Its Relevance to Newborn Infants: A Non-Systematic Review.

    PubMed

    Pinto, Merlin; Solevåg, Anne Lee; OʼReilly, Megan; Aziz, Khalid; Cheung, Po-Yin; Schmölzer, Georg M

    2017-01-01

    Guidelines for newborn resuscitation state that if the heart rate does not increase despite adequate ventilation and chest compressions, adrenaline administration should be considered. However, controversy exists around the safety and effectiveness of adrenaline in newborn resuscitation. The aim of this review was to summarise a selection of the current knowledge about adrenaline during resuscitation and evaluate its relevance to newborn infants. A search in PubMed, Embase, and Google Scholar until September 1, 2015, using search terms including adrenaline/epinephrine, cardiopulmonary resuscitation, death, severe brain injury, necrotizing enterocolitis, bronchopulmonary dysplasia, and adrenaline versus vasopressin/placebo. Adult data indicate that adrenaline improves the return of spontaneous circulation (ROSC) but not survival to hospital discharge. Newborn animal studies reported that adrenaline might be needed to achieve ROSC. Intravenous administration (10-30 μg/kg) is recommended; however, if there is no intravenous access, a higher endotracheal dose (50-100 μg/kg) is needed. The safety and effectiveness of intraosseous adrenaline remain undetermined. Early and frequent dosing does not seem to be beneficial. In fact, negative hemodynamic effects have been observed, especially with doses ≥30 μg/kg intravenously. Little is known about adrenaline in birth asphyxia and in preterm infants, but observations indicate that hemodynamics and neurological outcomes may be impaired by adrenaline administration in these conditions. However, a causal relationship between adrenaline administration and outcomes cannot be established from the few available retrospective studies. Alternative vasoconstrictors have been investigated, but the evidence is scarce. More research is needed on the benefits and risks of adrenaline in asphyxia-induced bradycardia or cardiac arrest during perinatal transition. © 2016 S. Karger AG, Basel.

  13. Surge of Peripheral Arginine Vasopressin in a Rat Model of Birth Asphyxia

    PubMed Central

    Summanen, Milla; Bäck, Susanne; Voipio, Juha; Kaila, Kai

    2018-01-01

    Mammalian birth is accompanied by a period of obligatory asphyxia, which consists of hypoxia (drop in blood O2 levels) and hypercapnia (elevation of blood CO2 levels). Prolonged, complicated birth can extend the asphyxic period, leading to a pathophysiological situation, and in humans, to the diagnosis of clinical birth asphyxia, the main cause of hypoxic-ischemic encephalopathy (HIE). The neuroendocrine component of birth asphyxia, in particular the increase in circulating levels of arginine vasopressin (AVP), has been extensively studied in humans. Here we show for the first time that normal rat birth is also accompanied by an AVP surge, and that the fetal AVP surge is further enhanced in a model of birth asphyxia, based on exposing 6-day old rat pups to a gas mixture containing 4% O2 and 20% CO2 for 45 min. Instead of AVP, which is highly unstable with a short plasma half-life, we measured the levels of copeptin, the C-terminal part of prepro-AVP that is biochemically much more stable. In our animal model, the bulk of AVP/copeptin release occurred at the beginning of asphyxia (mean 7.8 nM after 15 min of asphyxia), but some release was still ongoing even 90 min after the end of the 45 min experimental asphyxia (mean 1.2 nM). Notably, the highest copeptin levels were measured after hypoxia alone (mean 14.1 nM at 45 min), whereas copeptin levels were low during hypercapnia alone (mean 2.7 nM at 45 min), indicating that the hypoxia component of asphyxia is responsible for the increase in AVP/copeptin release. Alternating the O2 level between 5 and 9% (CO2 at 20%) with 5 min intervals to mimic intermittent asphyxia during prolonged labor resulted in a slower but quantitatively similar rise in copeptin (peak of 8.3 nM at 30 min). Finally, we demonstrate that our rat model satisfies the standard acid-base criteria for birth asphyxia diagnosis, namely a drop in blood pH below 7.0 and the formation of a negative base excess exceeding −11.2 mmol/l. The mechanistic insights from our work validate the use of the present rodent model in preclinical work on birth asphyxia. PMID:29403357

  14. Markers of mechanical asphyxia: immunohistochemical study on autoptic lung tissues.

    PubMed

    Cecchi, R; Sestili, C; Prosperini, G; Cecchetto, G; Vicini, E; Viel, G; Muciaccia, B

    2014-01-01

    Forensic pathologists are often asked to provide evidence of asphyxia death in the trial and a histological marker of asphyxiation would be of great help. Data from the literature indicate that the reaction of lung tissue cells to asphyxia may be of more interest for forensic purposes than migrating cells. The lungs of 62 medico-legal autopsy cases, 34 acute mechanical asphyxia (AMA), and 28 control cases (CC), were immunostained with anti-P-selectin, anti-E-selectin, anti-SP-A, and anti-HIF1-α antibodies, in order to verify if some of them may be used as markers of asphyxia death. Results show that P- and E-selectins expression in lung vessels, being activated by several types of trigger stimuli not specific to hypoxia, cannot be used as indicator of asphyxia. Intra-alveolar granular deposits of SP-A seem to be related to an intense hypoxic stimulus, and when massively present, they can suggest, together with other elements, a severe hypoxia as the mechanism of death. HIF1-α was expressed in small-, medium-, and large-caliber lung vessels of the vast majority of mechanical asphyxia deaths and CO intoxications, with the number and intensity of positive-stained vessels increasing with the duration of the hypoxia. Although further confirmation studies are required, these preliminary data indicate an interesting potential utility of HIF1-α as a screening test for asphyxia deaths.

  15. Single Sustained Inflation followed by Ventilation Leads to Rapid Cardiorespiratory Recovery but Causes Cerebral Vascular Leakage in Asphyxiated Near-Term Lambs

    PubMed Central

    Sobotka, Kristina S.; Hooper, Stuart B.; Crossley, Kelly J.; Ong, Tracey; Schmölzer, Georg M.; Barton, Samantha K.; McDougall, Annie R. A.; Miller, Suzie L.; Tolcos, Mary; Klingenberg, Claus; Polglase, Graeme R.

    2016-01-01

    Background A sustained inflation (SI) rapidly restores cardiac function in asphyxic, bradycardic newborns but its effects on cerebral haemodynamics and brain injury are unknown. We determined the effect of different SI strategies on carotid blood flow (CaBF) and cerebral vascular integrity in asphyxiated near-term lambs. Methods Lambs were instrumented and delivered at 139 ± 2 d gestation and asphyxia was induced by delaying ventilation onset. Lambs were randomised to receive 5 consecutive 3 s SI (multiple SI; n = 6), a single 30 s SI (single SI; n = 6) or conventional ventilation (no SI; n = 6). Ventilation continued for 30 min in all lambs while CaBF and respiratory function parameters were recorded. Brains were assessed for gross histopathology and vascular leakage. Results CaBF increased more rapidly and to a greater extent during a single SI (p = 0.01), which then decreased below both other groups by 10 min, due to a higher cerebral oxygen delivery (p = 0.01). Blood brain barrier disruption was increased in single SI lambs as indicated by increased numbers of blood vessel profiles with plasma protein extravasation (p = 0.001) in the cerebral cortex. There were no differences in CaBF or cerebral oxygen delivery between the multiple SI and no SI lambs. Conclusions Ventilation with an initial single 30 s SI improves circulatory recovery, but is associated with greater disruption of blood brain barrier function, which may exacerbate brain injury suffered by asphyxiated newborns. This injury may occur as a direct result of the initial SI or to the higher tidal volumes delivered during subsequent ventilation. PMID:26765258

  16. Severe asphyxia due to delivery-related malpractice in Sweden 1990–2005

    PubMed Central

    Berglund, S; Grunewald, C; Pettersson, H; Cnattingius, S

    2008-01-01

    Objective To describe possible causes of delivery-related severe asphyxia due to malpractice. Design and setting A nationwide descriptive study in Sweden. Population All women asking for financial compensation because of suspected medical malpractice in connection with childbirth during 1990–2005. Method We included infants with a gestational age of ≥33 completed gestational weeks, a planned vaginal onset of delivery, reactive cardiotocography at admission for labour and severe asphyxia-related outcomes presumably due to malpractice. As asphyxia-related outcomes, we included cases of neonatal death and infants with diagnosed encephalopathy before the age of 28 days. Main outcome measure Severe asphyxia due to malpractice during labour. Results A total of 472 case records were scrutinised. One hundred and seventy-seven infants were considered to suffer from severe asphyxia due to malpractice around labour. The most common events of malpractice in connection with delivery were neglecting to supervise fetal wellbeing in 173 cases (98%), neglecting signs of fetal asphyxia in 126 cases (71%), including incautious use of oxytocin in 126 cases (71%) and choosing a nonoptimal mode of delivery in 92 cases (52%). Conclusion There is a great need and a challenge to improve cooperation and to create security barriers within our labour units. The most common cause of malpractice is that stated guidelines for fetal surveillance are not followed. Midwives and obstetricians need to improve their shared understanding of how to act in cases of imminent fetal asphyxia and how to choose a timely and optimal mode of delivery. Please cite this paper as:Berglund S, Grunewald C, Pettersson H, Cnattingius S. Severe asphyxia due to delivery-related malpractice in Sweden 1990–2005. BJOG 2008;115:316–323. PMID:18190367

  17. Prevalence of electrolyte disturbances in perinatal asphyxia: a prospective study.

    PubMed

    Thakur, Jitendra; Bhatta, Nisha Keshary; Singh, Rupa Rajbhandari; Poudel, Prakash; Lamsal, Madhab; Shakya, Anjum

    2018-05-21

    Birth asphyxia is defined as the presence of hypoxia, hypercapnia, and acidosis leading the newborn to systemic disturbances probably electrolyte disturbance also. Knowledge of these electrolyte disturbances is very valuable as it can be an important parameter affecting perinatal morbidity, mortality and ongoing management. Serum sodium, potassium and ionized calcium of asphyxiated term newborn were sent within one hour of birth as per the inclusion criteria. Statistical comparison of mean values of different electrolytes between different groups of perinatal asphyxia was performed by ANOVA test for parametric data and significant data were further analyzed using post hoc test. Bivariate analysis was done to determine the correlations between Apgar score at 5 min and serum electrolytes. Pearson test was used to calculate the correlation coefficient. Box plot was used to show the median and quartile between serum electrolytes and Apgar score at 5 min. The mean values of sodium for mild, moderate and severe asphyxia were 135.52, 130.7 and 127.15 meq/l respectively. The values of potassium for mild, moderate and severe asphyxia were 4.96, 5.93 and 6.78 meq/l respectively. Similarly, the mean values of ionized calcium for mild, moderate and severe asphyxia were 1.07, 1.12 and 0.99 mmol/l respectively. The values of sodium and potassium among different severity of asphyxia were significantly different (p-value< 0.001). Significant positive correlation was found between serum sodium and Apgar score at 5 min. Significant negative correlation was present between serum potassium and Apgar score at 5 min. The degree of hyponatremia and hyperkalemia was directly proportional to the severity of birth asphyxia. So these electrolyte disturbances should always be kept in mind while managing cases of perinatal asphyxia and should be managed accordingly.

  18. Perinatal asphyxia in monochorionic versus dichorionic twins: incidence, risk factors and outcome.

    PubMed

    van Steenis, A; Kromhout, H E; Steggerda, S J; Sueters, M; Rijken, M; Oepkes, D; Lopriore, E

    2014-01-01

    To estimate the incidence, risk factors, severity and outcome after perinatal asphyxia in monochorionic (MC) versus dichorionic (DC) twins. We included all consecutive near-term MC and DC twins with perinatal asphyxia admitted to our neonatal ward between 2004 and 2013 and compared the perinatal characteristics and neonatal outcome between both groups. The incidence of perinatal asphyxia in MC and DC twin infants was 4.0 (11/272) and 4.0% (8/200; p = 1.00). In contrast to DC twins, asphyxia in MC twins was strongly associated with acute exsanguination and anemia at birth; 64% (7/11) in MC twins and 0% (0/8) in DC twins (p < 0.01). Median hemoglobin level at birth in the MC and DC groups was 11.5 and 18.6 g/dl, respectively (p < 0.01). Perinatal asphyxia in MC twins is often associated with severe anemia at birth due to acute hemorrhage through the placental vascular anastomoses. © 2014 S. Karger AG, Basel.

  19. Nucleated red blood cells count as a prognostic biomarker in predicting the complications of asphyxia in neonates.

    PubMed

    Boskabadi, Hassan; Zakerihamidi, Maryam; Sadeghian, Mohammad Hadi; Avan, Amir; Ghayour-Mobarhan, Majid; Ferns, Gordon A

    2017-11-01

    Nucleated-red-blood-cells (NRBC) count in umbilical cord of newborns is been suggested as a sign of birth asphyxia. The present study was conducted to explore the value of NRBC count in prognosis of asphyxiated neonates. Sixty-three neonates with asphyxia were followed up for two years. Maternal and neonatal information was recorded follow by clinical and laboratory evaluation. NRBC-level was determined per 100 white-blood-cells (WBC). After discharge, follow-up of asphyxiated infants was performed using Denver II test at 6, 12, 18 and 24 months. Neonates were divided into two groups, with favorable and unfavorable outcome based on developmental delay or death. We observed that NRBC count with more than 11 per 100 WBC, had sensitivity of 85% and specificity of 90% in predicting complications of asphyxia, while in absolute NRBC count with more than 1554, the sensitivity and specificity were 85% and of 87%, respectively. Combination of NRBC + HIE (hypoxic ischemic encephalopathy) grade had a high-predictive power for determining the prognosis of asphyxia in neonates. We demonstrate that NRBC/100 WBC and absolute NRCB count can be used as prognostic marker for neonatal asphyxia, which in combination with the severity of asphyxia could indicate high infant mortality, and complications of asphyxia. Further studies in a larger and multi center setting trail are warranted to investigate the value of NRBC and HIE in asphyxiate term infants.

  20. Deficient brain RNA polymerase and altered nucleolar structure persists until day 8 after perinatal asphyxia of the rat.

    PubMed

    Kastner, Philomena; Mosgoeller, Wilhelm; Fang-Kircher, Susanne; Kitzmueller, Erwin; Kirchner, Liselotte; Hoeger, Harald; Seither, Peter; Lubec, Gert; Lubec, Barbara

    2003-01-01

    RNA polymerases (POL) are integral constituents of the protein synthesis machinery, with POL I and POL III coding for ribosomal RNA and POL II coding for protein. POL I is located in the nucleolus and transcribes class I genes, those that code for large ribosomal RNA. It has been reported that the POL system is seriously affected in perinatal asphyxia (PA) immediately after birth. Because POL I is necessary for protein synthesis and brain protein synthesis was shown to be deranged after hypoxic-ischemic conditions, we aimed to study whether POL derangement persists in a simple, well-documented animal model of graded global PA at the activity, mRNA, protein, and morphologic level until 8 d after the asphyctic insult. Nuclear POL I activity was determined according to a radiochemical method; mRNA steady state and protein levels of RPA4O-an essential subunit of POL I and III-were evaluated by blotting methods; and the POL I subunit polymerase activating factor-53 was evaluated using immunohistochemistry. Silver staining and transmission electron microscopy were used to examine the nucleolus. At the eighth day after PA, nuclear POL I decreased with the length of the asphyctic period, whereas mRNA and protein levels for RPA4O were unchanged. The subunit polymerase activating factor-53, however, was unambiguously reduced in several brain regions. Dramatic changes of nucleolar morphology were observed, the main finding being nucleolar disintegration at the electron microscopy level. We suggest that severe acidosis and/or deficient protein kinase C in the brain during the asphyctic period may be responsible for disintegration of the nucleolus as well as for decreased POL activity persisting until the eighth day after PA. The biologic effect may be that PA causes impaired RNA and protein synthesis, which has been already observed in hypoxic-ischemic states.

  1. Acylethanolamides and endocannabinoid signaling system in dorsal striatum of rats exposed to perinatal asphyxia.

    PubMed

    Holubiec, Mariana I; Romero, Juan I; Blanco, Eduardo; Tornatore, Tamara Logica; Suarez, Juan; Rodríguez de Fonseca, Fernando; Galeano, Pablo; Capani, Francisco

    2017-07-13

    Endocannabinoids (eCBs) and acylethanolamides (AEs) have lately received more attention due to their neuroprotective functions in neurological disorders. Here we analyze the alterations induced by perinatal asphyxia (PA) in the main metabolic enzymes and receptors of the eCBs/AEs in the dorsal striatum of rats. To induce PA, we used a model developed by Bjelke et al. (1991). Immunohistochemical techniques were carried out to determine the expression of neuronal and glial markers (NeuN and GFAP), eCBs/AEs synthesis and degradation enzymes (DAGLα, NAPE-PLD and FAAH) and their receptors (CB1 and PPARα). We found a decrease in NAPE-PLD and PPARα expression. Since NAPE-PLD and PPARα take part in the production and reception of biochemical actions of AEs, such as oleoylethanolamide, these results may suggest that PA plays a key role in the regulation of this system. These data agree with previous results obtained in the hippocampus and encourage us to develop further studies using AEs as potential neuroprotective compounds. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Swallowing Disorders in Schizophrenia.

    PubMed

    Kulkarni, Deepika P; Kamath, Vandan D; Stewart, Jonathan T

    2017-08-01

    Disorders of swallowing are poorly characterized but quite common in schizophrenia. They are a source of considerable morbidity and mortality in this population, generally as a result of either acute asphyxia from airway obstruction or more insidious aspiration and pneumonia. The death rate from acute asphyxia may be as high as one hundred times that of the general population. Most swallowing disorders in schizophrenia seem to fall into one of two categories, changes in eating and swallowing due to the illness itself and changes related to psychotropic medications. Behavioral changes related to the illness are poorly understood and often involve eating too quickly or taking inappropriately large boluses of food. Iatrogenic problems are mostly related to drug-induced extrapyramidal side effects, including drug-induced parkinsonism, dystonia, and tardive dyskinesia, but may also include xerostomia, sialorrhea, and changes related to sedation. This paper will provide an overview of common swallowing problems encountered in patients with schizophrenia, their pathophysiology, and management. While there is a scarcity of quality evidence in the literature, a thorough history and examination will generally elucidate the predominant problem or problems, often leading to effective management strategies.

  3. Neonatal cholestatic hepatitis from carbamazepine exposure during pregnancy and breast feeding.

    PubMed

    Frey, Bernhard; Braegger, Christian P; Ghelfi, Daniela

    2002-04-01

    To report a case of transient cholestatic hepatitis occurring in an infant between the third and seventh weeks of life, most likely due to carbamazepine exposure during pregnancy and breast feeding. A boy, born to an epileptic mother who had been treated with carbamazepine monotherapy throughout pregnancy and breast feeding, experienced asphyxia at birth with transient hepatic dysfunction in the first week of life. After full recovery from asphyxia, he experienced a second period of liver dysfunction, presenting as cholestatic hepatitis that lasted approximately 5 weeks. Infectious and metabolic etiologies as well as extrahepatic biliary atresia were excluded. Carbamazepine is known to induce hepatic damage in children and adults. As the drug crosses the placenta and is excreted into breast milk, infants of mothers taking carbamazepine might also develop liver dysfunction. In addition to the present case, there are 2 well-documented case reports of cholestasis in association with transplacental and transmammary carbamazepine exposure. Carbamazepine-induced hepatitis may occur in association with prenatal exposure and breast feeding. This may expose infants to unnecessary diagnostic procedures, and should therefore be mentioned in the company's product information.

  4. Asphyxial suicide by inhalation of chloroform inside a plastic bag.

    PubMed

    Zorro, Andres Rodriguez

    2014-01-01

    Asphyxia suicide by placing a plastic bag over the head in addition with inhalation of gases or use of sedative substances is an unusual method of committing suicide, but frequently referenced by right to die groups in the Internet. This article reports 2 suicides in which chloroform was used to induce unconsciousness and subsequent asphyxia by placing the head in a plastic bag. Case histories of 2 males, ages 23 and 28, are described with special emphasis on characteristics death related to suffocation using plastic bags and chloroform. The final remarkable point in both cases is that the victims previously searched the WEB for instructions of suicide methods. The importance of the phenomenon of misuse of Internet by young people who commit suicide is stressed. Copyright © 2013 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  5. Structural and Perfusion Abnormalities of Brain on MRI and Technetium-99m-ECD SPECT in Children With Cerebral Palsy: A Comparative Study.

    PubMed

    Rana, Kamer Singh; Narwal, Varun; Chauhan, Lokesh; Singh, Giriraj; Sharma, Monica; Chauhan, Suneel

    2016-04-01

    Cerebral palsy has traditionally been associated with hypoxic ischemic brain damage. This study was undertaken to demonstrate structural and perfusion brain abnormalities. Fifty-six children diagnosed clinically as having cerebral palsy were studied between 1 to 14 years of age and were subjected to 3 Tesla magnetic resonance imaging (MRI). Brain and Technetium-99m-ECD brain single-photon emission computed tomography (SPECT) scan. Male to female ratio was 1.8:1 with a mean age of 4.16 ± 2.274 years. Spastic cerebral palsy was the most common type, observed in 91%. Birth asphyxia was the most common etiology (69.6%). White matter changes (73.2%) such as periventricular leukomalacia and corpus callosal thinning were the most common findings on MRI. On SPECT all cases except one revealed perfusion impairments in different regions of brain. MRI is more sensitive in detecting white matter changes, whereas SPECT is better in detecting cortical and subcortical gray matter abnormalities of perfusion. © The Author(s) 2015.

  6. Propofol administration to the fetal-maternal unit reduces cardiac oxidative stress in preterm lambs subjected to prenatal asphyxia and cardiac arrest.

    PubMed

    Seehase, Matthias; Houthuizen, Patrick; Collins, Jennifer J P; Zimmermann, Luc J; Kramer, Boris W

    2016-05-01

    Little is known about the effects of propofol on oxidative stress and its effect on key structures of the contractile apparatus as the myosin light chain 2 (MLC2) and the p38MAPK survival pathway in the preterm heart. We hypothesized that propofol administration could attenuate the hypoxic myocardial injury after birth asphyxia. Pregnant ewes were randomized to receive either propofol or isoflurane anesthesia. A total of 44 late-preterm lambs were subjected to in utero umbilical cord occlusion (UCO), resulting in asphyxia and cardiac arrest, or sham treatment. After emergency cesarean delivery, each fetus was resuscitated, mechanically ventilated, and supported under anesthesia for 8 h using the same anesthetic as the one received by its mother. At 8 h after UCO, occurrence of reactive oxygen species and activation of inducible nitric oxide synthase in the heart were lower in association with propofol anesthesia than with isoflurane. This was accompanied by less degradation of MLC2 but higher p38MAPK level and in echocardiography with a trend toward a higher median left ventricular fractional shortening. The use of propofol resulted in less oxidative stress and was associated with less cytoskeletal damage of the contractile apparatus than the use of isoflurane anesthesia.

  7. Potential asphyxia and brainstem abnormalities in sudden and unexpected death in infants.

    PubMed

    Randall, Bradley B; Paterson, David S; Haas, Elisabeth A; Broadbelt, Kevin G; Duncan, Jhodie R; Mena, Othon J; Krous, Henry F; Trachtenberg, Felicia L; Kinney, Hannah C

    2013-12-01

    Sudden and unexplained death is a leading cause of infant mortality. Certain characteristics of the sleep environment increase the risk for sleep-related sudden and unexplained infant death. These characteristics have the potential to generate asphyxial conditions. We tested the hypothesis that infants may be exposed to differing degrees of asphyxia in sleep environments, such that vulnerable infants with a severe underlying brainstem deficiency in serotonergic, γ-aminobutyric acid-ergic, or 14-3-3 transduction proteins succumb even without asphyxial triggers (e.g., supine), whereas infants with intermediate or borderline brainstem deficiencies require asphyxial stressors to precipitate death. We classified cases of sudden infant death into categories relative to a "potential asphyxia" schema in a cohort autopsied at the San Diego County Medical Examiner's Office. Controls were infants who died with known causes of death established at autopsy. Analysis of covariance tested for differences between groups. Medullary neurochemical abnormalities were present in both infants dying suddenly in circumstances consistent with asphyxia and infants dying suddenly without obvious asphyxia-generating circumstances. There were no differences in the mean neurochemical measures between these 2 groups, although mean measures were both significantly lower (P < .05) than those of controls dying of known causes. We found no direct relationship between the presence of potentially asphyxia conditions in the sleep environment and brainstem abnormalities in infants dying suddenly and unexpectedly. Brainstem abnormalities were associated with both asphyxia-generating and non-asphyxia generating conditions. Heeding safe sleep messages is essential for all infants, especially given our current inability to detect underlying vulnerabilities.

  8. Management of hypothermia for perinatal asphyxia in Austria - a survey of current practice standards.

    PubMed

    Gerstl, N; Youssef, C; Cardona, F; Klebermass-Schrehof, K; Grill, A; Weninger, M; Berger, A; Olischar, M

    2015-01-01

    Therapeutic hypothermia (HT) has been shown to reduce the risk of death or disability and increase the rate of survival free of -disability at 18-24 months of age in hypoxic-ischemic encephalopathy (HIE). The aim of this study was to take a national survey which (a) evaluated the practice of therapeutic HT for perinatal asphyxia in Austria, (b) evaluated the current clinical management of neonatal HIE and (c) evaluated the need for a national perinatal asphyxia and HT registry. In January 2013, a questionnaire was sent out to the clinical heads of all neonatal level-II and level-III units in Austria. We received replies from all 30 level II and level III units in Austria (response rate 100%). 19 units (63%) answered that they applied HT, 11 units (37%) said they transferred patients for cooling to other units, 3 of those 11 units (27%) said they applied cooling during transport. 25 units (83%) felt the necessity to establish a national registry. The results of this survey show that there is already a high implementation of therapeutic HT in Austria, but there remains a need for information, awareness and training. Problem areas tend to be in the transport of asphyxiated neonates, brain monitoring during cooling and follow-up of affected patients. We believe, that the establishment of national guidelines and a national register could increase awareness for the importance of therapeutic HT in neonatal HIE, thus improve the Austrian management of those infants. © Georg Thieme Verlag KG Stuttgart · New York.

  9. Death of a seven-month-old child in a washing machine: a case report.

    PubMed

    Osculati, Antonio; Visonà, Silvia Damiana; Re, Laura; Sozzi, Marta; Castelli, Francesca; Andrello, Luisa; Vignali, Claudia

    2017-05-01

    The authors present a case which brings out a unique modality of child homicide by placing the baby in a washing machine and turning it on. The murder was perpetrated by the baby's mother, who suffered from a serious depressive disorder. A postmortem RX and then a forensic autopsy were performed, followed by histologic examinations and toxicology. On the basis of the results of the autopsy, as well as the histology and the negative toxicological data, the cause of death was identified as acute asphyxia. This diagnosis was rendered in light of the absence of other causes of death, as well as the presence of typical signs of asphyxia, such as epicardial and pleural petechiae and, above all, the microscopic examinations, which pointed out a massive acute pulmonary emphysema. Regarding the cause of the asphyxia, at least two mechanisms can be identified: drowning and smothering. In addition, the histology of the brain revealed some findings that can be regarded as a consequence of the barotrauma due to the centrifugal force applied by the rotating drum of the washing machine. Another remarkable aspect is that we are dealing with a mentally-ill assailant. In fact, the baby's mother, after a psychiatric examination, was confirmed to be suffering from a mental illness-a severe depressive disorder-and so she was adjudicated not-guilty-by-reason-of-insanity. This case warrants attention because of its uniqueness and complexity and, above all, its usefulness in the understanding of the pathophysiology of this particular manner of death.

  10. Perinatal asphyxia, hypoxia, ischemia and hearing loss. An overview.

    PubMed

    Borg, E

    1997-01-01

    Birth hypoxia, asphyxia and ischemia have often been thought to be major causes of early hearing loss or deafness. The purpose of the present review is to focus on the role of these particular factors for perinatal auditory disorders. On the whole, only a small proportion of neonatal hearing loss is caused by perinatal factors. The exact etiology of neonatal hearing loss in children with complicated deliveries is difficult to evaluate due to the large number of causative factors that might be involved. After reviewing the literature covering the past 15-20 years, it is not possible to say that we understand the relative importance of different factors and their interactions. However, in the majority of studies, birth asphyxia is not correlated with hearing loss in babies with complicated deliveries Prolonged artificial ventilation, the presence of severe hypoxic ischemic encephalopathy or persistent pulmonary hypertension are important factors. The brain is more susceptible to anoxia than the ear and both are more likely to be damaged after prolonged pre-, peri- and postnatal hypoxia-ischemia than pure hypoxia during delivery. Perinatal hypoxia is more likely to cause a temporary hearing loss than a permanent one. Preterm babies are more vulnerable than term babies. The total number of risk factors, e.g. medicated by total length of stay in the neonatal intensive care unit and length of artificial ventilation, is the best predictor of risk for hearing loss of perinatal origin. The similarities between hearing loss and cerebral palsy are pointed out; only 8% of the cases of cerebral palsy are considered to be caused by conditions during delivery.

  11. Immunohistochemical investigation of a pulmonary surfactant in fatal mechanical asphyxia.

    PubMed

    Zhu, B L; Ishida, K; Fujita, M Q; Maeda, H

    2000-01-01

    We evaluated the usefulness of pulmonary surfactant protein A (SP-A) as a practical diagnostic marker of fatal mechanical asphyxia in forensic autopsy cases. A total of 27 cases of asphyxia were examined histologically and immunohistochemically and compared with a control group consisting of 16 cases of poisoning (n = 9) and peracute death (n = 7). Both groups showed histological findings of local atelectasis and local emphysema, congestion, intra-alveolar and interstitial edema in most cases and pulmonary hemorrhages in some cases. The mechanical asphyxia group showed a significantly increased intensity of SP-A staining in the intra-alveolar space accompanied by many massive aggregates in approximately 60% of cases, which was not found in the control group. These structures may be interpreted as aggregates of pulmonary surfactant released from the alveolar wall due to enhanced secretion caused by strong forced breathing or over-excitement of the autonomic nervous system by mechanical asphyxia. The results of our investigation suggest the practical usefulness of the immunohistochemical detection of SP-A in distinguishing mechanical asphyxia from other types of hypoxia.

  12. [Traumatic asphyxia or Perthe's syndrome. About two paediatric cases].

    PubMed

    El koraichi, A; Benafitou, R; Tadili, J; Rafii, M; El Kharaz, H; Al Haddoury, M; El Kettani, S

    2012-03-01

    The traumatic asphyxia or Perthes' syndrome is a condition characterized by a classic triad involving head and neck cyanosis, subconjonctival bleeding, and petechiae. The pathophysiology of traumatic asphyxia is different in children compared to adults, because of the greater elasticity of the thorax in children. The purpose of this paper is to describe through two cases of traumatic asphyxia in young children the characteristics of this disease in children. Copyright © 2011 Société française d’anesthésie et de réanimation (Sfar). Published by Elsevier SAS. All rights reserved.

  13. Traumatic asphyxia: An autopsy case.

    PubMed

    Türkmen, Nursel; Eren, Bülent; Erkol, Zerrin

    2015-01-01

    Traumatic asphyxia is a form of asphyxia where respiration is prevented by external pressure on the body. A 19-year-old man was found by relatives compressed by motorboat in the garage. The death was investigated by the prosecutor; body was taken to the Morgue Department for performing autopsy. On gross physical examination; the face, neck and upper part of the chest were congested and many petechiae were observed on the conjunctivae, but not in low extremities. Autopsy macroscopic examination of lungs revealed congestion, sub pleural superficial bleeding areas. In the presented case death was reported as traumatic asphyxia by thorax compression without other lethal factors.

  14. Triggered by asphyxia neurogenesis seems not to be an endogenous repair mechanism, gliogenesis more like it.

    PubMed

    Keilhoff, G; John, R; Langnaese, K; Schweizer, H; Ebmeyer, U

    2010-12-15

    We analyzed the long-term consequences of asphyxial cardiac arrest for hippocampal cell proliferation in rats to evaluate if the ischaemia-induced degenerated CA1 region may be repopulated by endogenous (stem) cells. Studies were performed in an asphyxial cardiac arrest model with 5 minutes of asphyxiation and three different survival times: 7, 21, and 90 days. Sham-operated non-asphyxiated rats served as control. Cell proliferation was studied by labeling dividing cells with 5-bromo-2'-deoxy-uridine (BrdU). The neurodegenerative/regenerative pattern at single cell levels was monitored by immunohistochemistry. Alterations of gene expression were analyzed by real-time quantitative RT-PCR. Analysis of BrdU-incorporation demonstrated an increase at 7, 21 as well as 90 days after global ischaemia in the hippocampal CA1 pyramidal cell layer. Similar results were found in the dentate gyrus. Differentiation of BrdU-positive cells, investigated by cell phenotype-specific double fluorescent labeling, showed increased neurogenesis only in the dentate gyrus of animals surviving the cardiac arrest for 7 days. The majority of newcomers, especially in the damaged CA1 region, consisted of glial cells. Moreover, asphyxia seemed to be able to induce the migration of microglia and astroglia from adjacent areas into the damaged area and/or the activation of resident cells. In addition, we show microglia proliferation/activation even 90 days after cardiac arrest. This morphological finding was confirmed by PCR analysis. The results indicate that asphyxia triggers cell proliferation in general and gliogenesis in particular - a possible pro-reparative event. Furthermore, from the finding of microglia proliferation up to 90 days after insult we conclude that delayed cell death processes take place which should be considered for further therapy strategies. Copyright © 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

  15. Curved reformat of the paediatric brain MRI into a 'flat-earth map' - standardised method for demonstrating cortical surface atrophy resulting from hypoxic-ischaemic encephalopathy.

    PubMed

    Simpson, Ewan; Andronikou, Savvas; Vedajallam, Schadie; Chacko, Anith; Thai, Ngoc Jade

    2016-09-01

    Hypoxic-ischaemic encephalopathy is optimally imaged with brain MRI in the neonatal period. However neuroimaging is often also performed later in childhood (e.g., when parents seek compensation in cases of alleged birth asphyxia). We describe a standardised technique for creating two curved reconstructions of the cortical surface to show the characteristic surface changes of hypoxic-ischaemic encephalopathy in children imaged after the neonatal period. The technique was applied for 10 cases of hypoxic-ischaemic encephalopathy and also for age-matched healthy children to assess the visibility of characteristic features of hypoxic-ischaemic encephalopathy. In the abnormal brains, fissural or sulcal widening was seen in all cases and ulegyria was identifiable in 7/10. These images could be used as a visual aid for communicating MRI findings to clinicians and other interested parties.

  16. EEG - A Valuable Biomarker of Brain Injury in Preterm Infants.

    PubMed

    Pavlidis, Elena; Lloyd, Rhodri O; Boylan, Geraldine B

    2017-01-01

    This review focuses on the role of electroencephalography (EEG) in monitoring abnormalities of preterm brain function. EEG features of the most common developmental brain injuries in preterm infants, including intraventricular haemorrhage, periventricular leukomalacia, and perinatal asphyxia, are described. We outline the most common EEG biomarkers associated with these injuries, namely seizures, positive rolandic sharp waves, EEG suppression/increased interburst intervals, mechanical delta brush activity, and other deformed EEG waveforms, asymmetries, and asynchronies. The increasing survival rate of preterm infants, in particular those that are very and extremely preterm, has led to a growing demand for a specific and shared characterization of the patterns related to adverse outcome in this unique population. This review includes abundant high-quality images of the EEG patterns seen in premature infants and will provide a valuable resource for everyone working in developmental neuroscience. © 2017 S. Karger AG, Basel.

  17. Apoptotic cell death correlates with ROS overproduction and early cytokine expression after hypoxia-ischemia in fetal lambs.

    PubMed

    Alonso-Alconada, Daniel; Hilario, Enrique; Álvarez, Francisco José; Álvarez, Antonia

    2012-07-01

    Despite advances in neonatology, the hypoxic-ischemic injury in the perinatal period remains the single most important cause of brain injury in the newborn, leading to death or lifelong sequelae. Using a sheep model of intrauterine asphyxia, we evaluated the correlation between reactive oxygen species (ROS) overproduction, cytokine expression, and apoptotic cell death. Fetal lambs were assigned to sham group, nonasphyctic animals; and hypoxia-ischemia (HI) group, lambs subjected to 60 minutes of HI) by partial cord occlusion and sacrificed 3 hours later. Different brain regions were separated to quantify the number of apoptotic cells and the same territories were dissociated for flow cytometry studies. Our results suggest that the overproduction of ROS and the early increase in cytokine production after HI in fetal lambs correlate in a significant manner with the apoptotic index, as well as with each brain region evaluated.

  18. Epileptic encephalopathy in children with risk factors for brain damage.

    PubMed

    Ricardo-Garcell, Josefina; Harmony, Thalía; Porras-Kattz, Eneida; Colmenero-Batallán, Miguel J; Barrera-Reséndiz, Jesús E; Fernández-Bouzas, Antonio; Cruz-Rivero, Erika

    2012-01-01

    In the study of 887 new born infants with prenatal and perinatal risk factors for brain damage, 11 children with West syndrome that progressed into Lennox-Gastaut syndrome and another 4 children with Lennox-Gastaut syndrome that had not been preceded by West syndrome were found. In this study we present the main findings of these 15 subjects. In all infants multifactor antecedents were detected. The most frequent risk factors were prematurity and severe asphyxia; however placenta disorders, sepsis, and hyperbilirubinemia were also frequent. In all infants MRI direct or secondary features of periventricular leukomalacia were observed. Followup of all infants showed moderate to severe neurodevelopmental delay as well as cerebral palsy. It is concluded that prenatal and perinatal risk factors for brain damage are very important antecedents that should be taken into account to follow up those infants from an early age in order to detect and treat as early as possible an epileptic encephalopathy.

  19. Interdisciplinary approach to neurocritical care in the intensive care nursery.

    PubMed

    Glass, Hannah C; Rogers, Elizabeth E; Peloquin, Susan; Bonifacio, Sonia L

    2014-12-01

    Neurocritical care is a multidisciplinary subspecialty that combines expertise in critical care medicine, neurology, and neurosurgery, and has led to improved outcomes in adults who have critical illnesses. Advances in resuscitation and critical care have led to high rates of survival among neonates with life-threatening conditions such as perinatal asphyxia, extreme prematurity, and congenital malformations. The sequelae of neurologic conditions arising in the neonatal period include lifelong disabilities such as cerebral palsy and epilepsy, as well as intellectual and behavioral disabilities. Centers of excellence have adapted the principles of neurocritical care to reflect the needs of the developing newborn brain, including early involvement of a neurologist for recognition and treatment of neurologic conditions, attention to physiology to help prevent secondary brain injury, a protocol-driven approach for common conditions like seizures and hypoxic-ischemic encephalopathy, and education of specialized teams that use brain monitoring and imaging to evaluate the effect of critical illness on brain function and development. Copyright © 2014. Published by Elsevier Inc.

  20. Asphyxia in Motor Vehicle Crashes: Analysis of Crash-Related Variables Using National Automotive Sampling System Crashworthiness Data System and Forensic Case Studies.

    PubMed

    Storvik, Steven G; Campbell, Julius Q; Wheeler, Jeffrey B

    2017-06-01

    Rates of death because of asphyxia in motor vehicle crashes have been previously estimated using county and statewide data sets, but national estimates have not been reported. The literature regarding asphyxia in motor vehicle crashes primarily involves discussions about clinical findings, and crash-related variables have been sparsely reported. The current study calculated a nationwide fatality rate for asphyxia in motor vehicle crashes of 1.4%. Seventeen case studies of asphyxia were also reported providing crash-, vehicle-, and occupant-related variables. These included type of accident, crash severity, seat belt use, containment status, extent of occupant compartment intrusion, height, weight, and injury pattern. The data presented can be used to better understand the injury mechanism, identify risk factors, develop possible protective countermeasures, and create situational awareness for emergency responders and investigators.

  1. Association of hypoglycemia, hypocalcemia and hypomagnesemia in neonates with perinatal asphyxia.

    PubMed

    Saha, D; Ali, M A; Haque, M A; Ahmed, M S; Sutradhar, P K; Latif, T; Sarkar, D; Husain, F

    2015-04-01

    The clinical evidence of neurological menifestations associated with asphyxia is described as hypoxic ischaemic encephalopathy (HIE). A variety of metabolic problems are present in asphyxiated newborns including hypoglycemia, hypocalcemia, hypomagnesemia and others metabolic abnormalities. Some of these biochemical disturbances may trigger seizure or potentiate further brain damage. This cross sectional case-control study was done in Mymensingh Medical College Hospital, to identify the association of hypoglycemia, hypocalcemia, hypomagnesemia in neonates with perinatal asphyxia. Study period was six months. Sample size was 60. Among total sample 30 term asphyxiated newborns of <24 hours age were case and equal number term healthy newborns <24 hours age were control. The main clinical presentations were delayed cry after birth along with respiratory distress, convulsion and absence of cry in asphyxiated newborns. Major physical findings were cyanosis, convulsion and tachypnoea in asphyxiated group. The mean value of serum calcium level was significantly lower in asphyxiated newborns (7.37 ± 0.10mg/dl) than control value (8.04±0.09mg/dl). Hypocalcemia was found among 23.33% babies in case group. On the contrary, hypocalcemia was found in single baby among control group. The mean value of serum magnesium was significantly lower in asphyxiated newborns (1.83 ± 0.04mg/dl) than control value (1.96 ± 0.05mg/dl). Hypomagnesemia was found among 3(10%) newborns but none was found among control group. Hypoglycemia was found in 7(23.33%) cases though the mean value of blood glucose was higher in case group (5.72 ± 0.62mmol/l) than control group (4.87 ± 0.15mmol/l) difference was not statistically significant. Combined hypoglycemia, hypocalcemia and hypomagnesemia were found in 1(3.33%) case; combined hypoglycemia and hypocalcemia were found in 2(6.67%) cases; and combined hypocalcemia and hypomagnesemia were found in 1(3.33%) case. During the study period, 3(10.0%) cases were expired but no death occurred among control group. This study shows isolated or combined hypoglycemia, hypocalcemia, hypomagnesemia are frequently found in newborns with perinatal asphyxia. So, it is necessary to monitor blood glucose, serum calcium and also serum magnesium among asphyxiated newborns for proper management.

  2. [Postural asphyxia in the publications of foreign authors].

    PubMed

    Shigeev, S V; Khabova, Z S; Fetisov, V A

    2014-01-01

    In this country, expertise of the corpses of subjects who died from various forms of asphixia is the third, after mechanical injury and intoxication, most frequent procedure in the forensic medical practice. Asphixia may be either violent (i.e. caused by a variety of external factors) or non-violent (resulting from the disturbances of intra-tissue respiration). According to the statistical data accumulated by the Russian State Forensic Expertise Facilities for the period from 2009 till 2013, the examination of the corpses of subjects who died from various forms of asphyxia accounts for 23.9-24.6% of all cases of violent death. The foreign forensic medical literature reports rare cases of death in accidents categorized by the authors as postural asphyxia. The objective of the present communication was to discuss similar observations of mechanical asphixia reported by the Russian forensic medical experts in the papers published in the second half of the 20th century in conjunction with the cases encountered in the current forensic medical practice. The authors emphasize that the cases of death from mechanical asphyxia are usually described in the domestic literature in terms of "compression asphyxia" or "asphyxia from compression of chest or abdomen".

  3. Effects of asphyxia and potassium on canine and feline electrocardiograms.

    PubMed Central

    Coulter, D B; Duncan, R J; Sander, P D

    1975-01-01

    The effects of asphyxia and potassium on the electrocardiogram (ECG), lead II, were recorded from dogs and cats anesthetized with sodium pentobarbital and halothane. Electrocardiographic recordings were made during control periods, during asphyxia (occluded endotracheal tube), during infusion of an isotonic KCl solution and during infusion of an isotonic NaCl solution. Arterial and venous blood gas partial pressures (PaCO2, PvCO2, PaO2 and and PvO2), plasma Na+ and K+ concentrations, heart rate and mean arterial blood pressure were measured during control periods, asphyxia and during the periods of infusion. The vagi were severed to assess the effect of vagal tone on the ECG changes. The characteristic ECG changes during asphyxia and the electrolyte imbalances resulting from infusion of isotonic KCl and NaCl were determined during sodium pentobarbital and halothane anesthesia in both dogs and cats. The combination of halothane and high PCO2 caused cardiac arrhythmias. Spontaneous recovery from ventricular fibrillation, as a result of hyperkalemia, was recorded from cats. Disappearance of the P waves, which is characteristic of hyperkalemia, was infrequent in this study and the U waves associated with hypokalemia were not found. Severing the vagi did not alter the ECG changes characteristic of asphyxia, hyperkalemia and hypokalemia. It was found that asphyxia and infusion of fluids high or low in potassium can produce ECG changes in both dogs and cats that can be correlated with blood gas partial pressure changes or plasma potassium concentrations. PMID:1175078

  4. Immediate Outcome of Hypoxic Ischaemic Encephalopathy in Hypoxiate Newborns in Nepal Medical College.

    PubMed

    Shrestha, S; Shrestha, G S; Sharma, A

    2016-05-01

    Birth asphyxia is the fifth major cause of under-five child deaths after pneumonia, diarrhoea, neonatal infections and complications of preterm birth. It is one of the important causes of neonatal mortality and morbidity accounting up to 30% of neonatal death in Nepal. It is also an important cause of long-term neurological disability and impairment. The mortality rate due to birth asphyxia is considered a good guide to the quality of perinatal care. This study was conducted to assess the rate of birth asphyxia, risk factors and outcome of the babies who were asphyxiated at birth. A prospective study was conducted during the period of one year from April 2013 to March 2014 in Nepal Medical College. All the term babies born during the period with APGAR score at 5 minutes of < 7 were considered to have birth asphyxia and included in the study. Details of maternal risk factors during pregnancy and labor were analyzed. The newborn babies were assessed for clinical features of hypoxic ischemic encephalopathy (HIE) and its immediate outcome. Out of 2226 live births, 47 (15.9%) newborns had birth asphyxia with the rate of 21.1/1000 live births. The mortality rate due to birth asphyxia was 4.25%. Meconium stained liquor was present in 31(65.96%) cases during delivery and prolonged rupture of membrane in 7(14.89%). Early identification and close monitoring of high-risk mothers with maintaining partograph during labor help to reduce birth asphyxia.

  5. Circulatory Responses to Asphyxia Differ if the Asphyxia Occurs In Utero or Ex Utero in Near-Term Lambs

    PubMed Central

    Sobotka, Kristina S.; Morley, Colin; Ong, Tracey; Polglase, Graeme R.; Aridas, James D. S.; Miller, Suzanne L.; Schmölzer, Georg M.; Klingenberg, Claus; Moss, Timothy J. M.; Jenkin, Graham; Hooper, Stuart B.

    2014-01-01

    Background A cornerstone of neonatal resuscitation teaching suggests that a rapid vagal-mediated bradycardia is one of the first signs of perinatal compromise. As this understanding is based primarily on fetal studies, we investigated whether the heart rate and blood pressure response to total asphyxia is influenced by whether the animal is in utero or ex utero. Methods Fetal sheep were instrumented at ∼139 days of gestation and then asphyxiated by umbilical cord occlusion until mean arterial blood pressure decreased to ∼20 mmHg. Lambs were either completely submerged in amniotic fluid (in utero; n = 8) throughout the asphyxia or were delivered and then remained ex utero (ex utero; n = 8) throughout the asphyxia. Heart rate and arterial blood pressure were continuously recorded. Results Heart rate was higher in ex utero lambs than in utero lambs. Heart rates in in utero lambs rapidly decreased, while heart rates in ex utero lambs initially increased following cord occlusion (for ∼1.5 min) before they started to decrease. Mean arterial pressure initially increased then decreased in both groups. Conclusions Heart rate response to asphyxia was markedly different depending upon whether the lamb was in utero or ex utero. This indicates that the cardiovascular responses to perinatal asphyxia are significantly influenced by the newborn's local environment. As such, based solely on heart rate, the stage and severity of a perinatal asphyxic event may not be as accurate as previously assumed. PMID:25393411

  6. Circulatory responses to asphyxia differ if the asphyxia occurs in utero or ex utero in near-term lambs.

    PubMed

    Sobotka, Kristina S; Morley, Colin; Ong, Tracey; Polglase, Graeme R; Aridas, James D S; Miller, Suzanne L; Schmölzer, Georg M; Klingenberg, Claus; Moss, Timothy J M; Jenkin, Graham; Hooper, Stuart B

    2014-01-01

    A cornerstone of neonatal resuscitation teaching suggests that a rapid vagal-mediated bradycardia is one of the first signs of perinatal compromise. As this understanding is based primarily on fetal studies, we investigated whether the heart rate and blood pressure response to total asphyxia is influenced by whether the animal is in utero or ex utero. Fetal sheep were instrumented at ∼ 139 days of gestation and then asphyxiated by umbilical cord occlusion until mean arterial blood pressure decreased to ∼ 20 mmHg. Lambs were either completely submerged in amniotic fluid (in utero; n = 8) throughout the asphyxia or were delivered and then remained ex utero (ex utero; n = 8) throughout the asphyxia. Heart rate and arterial blood pressure were continuously recorded. Heart rate was higher in ex utero lambs than in utero lambs. Heart rates in in utero lambs rapidly decreased, while heart rates in ex utero lambs initially increased following cord occlusion (for ∼ 1.5 min) before they started to decrease. Mean arterial pressure initially increased then decreased in both groups. Heart rate response to asphyxia was markedly different depending upon whether the lamb was in utero or ex utero. This indicates that the cardiovascular responses to perinatal asphyxia are significantly influenced by the newborn's local environment. As such, based solely on heart rate, the stage and severity of a perinatal asphyxic event may not be as accurate as previously assumed.

  7. Management of birth asphyxia in home deliveries in rural Gadchiroli: the effect of two types of birth attendants and of resuscitating with mouth-to-mouth, tube-mask or bag-mask.

    PubMed

    Bang, Abhay T; Bang, Rani A; Baitule, Sanjay B; Reddy, Hanimi M; Deshmukh, Mahesh D

    2005-03-01

    To evaluate the effect of home-based neonatal care on birth asphyxia and to compare the effectiveness of two types of workers and three methods of resuscitation in home delivery. In a field trial of home-based neonatal care in rural Gadchiroli, India, birth asphyxia in home deliveries was managed differently during different phases. Trained traditional birth attendants (TBA) used mouth-to-mouth resuscitation in the baseline years (1993 to 1995). Additional village health workers (VHWs) only observed in 1995 to 1996. In the intervention years (1996 to 2003), they used tube-mask (1996 to 1999) and bag-mask (1999 to 2003). The incidence, case fatality (CF) and asphyxia-specific mortality rate (ASMR) during different phases were compared. During the intervention years, 5033 home deliveries occurred. VHWs were present during 84% home deliveries. The incidence of mild birth asphyxia decreased by 60%, from 14% in the observation year (1995 to 1996) to 6% in the intervention years (p<0.0001). The incidence of severe asphyxia did not change significantly, but the CF in neonates with severe asphyxia decreased by 47.5%, from 39 to 20% (p<0.07) and ASMR by 65%, from 11 to 4% (p<0.02). Mouth-to-mouth resuscitation reduced the ASMR by 12%, tube-mask further reduced the CF by 27% and the ASMR by 67%. The bag-mask showed an additional decrease in CF of 39% and in the fresh stillbirth rate of 33% in comparison to tube-mask (not significant). The cost of bag and mask was US dollars 13 per averted death. Oxytocic injection administered by unqualified doctors showed an odds ratio of three for the occurrence of severe asphyxia or fresh stillbirth. Home-based interventions delivered by a team of TBA and a semiskilled VHW reduced the asphyxia-related neonatal mortality by 65% compared to only TBA. The bag-mask appears to be superior to tube-mask or mouth-to-mouth resuscitation, with an estimated equipment cost of US dollars 13 per death averted.

  8. Prevalence and risk factors for central diabetes insipidus in cardiac arrest survivor treated with targeted temperature management.

    PubMed

    Lee, Dong Hun; Lee, Byung Kook; Song, Kyoung Hwan; Jung, Yong Hun; Park, Jung Soo; Lee, Sung Min; Cho, Yong Soo; Kim, Jin Woong; Jeung, Kyung Woon

    2016-08-01

    Central diabetes insipidus (CDI) is a marker of severe brain injury. Here we aimed to investigate the prevalence and risk factors of CDI in cardiac arrest survivors treated with targeted temperature management (TTM). This retrospective observational study included consecutive adult cardiac arrest survivors treated with TTM between 2008 and 2014. Central diabetes insipidus was confirmed if all of the following criteria were met: urine volume >50 cc kg(-1) d(-1), serum osmolarity >300 mmol/L, urine osmolarity <300 mmol/L, and serum sodium >145 mEq/L. The primary outcome was the incidence of CDI. Of the 385 included patients, 45 (11.7%) had confirmed central CDI. Univariate analysis showed that younger age, nonwitness of collapse, nonshockable rhythm, a high incidence of asphyxia arrest, longer downtime, and lower initial core temperature were associated with CDI development. Patients with CDI had a higher incidence of poor neurologic outcomes at discharge and higher in-hospital mortality rate (20/45 vs 76/340, P= .001) as well as 180-day mortality (44/45 vs 174/340, P< .001). Multivariate analysis revealed that age (odds ratio [OR], 0.963; 95% confidence interval [CI], 0.942-0.984), shockable rhythm (OR, 0.077; 95% CI, 0.009-0.662), downtime (OR, 1.025; 95% CI, 1.006-1.044), and asphyxia etiology (OR, 6.815; 95% CI, 2.457-18.899) were independently associated with CDI development. Central diabetes insipidus developed in 12% of cardiac arrest survivors treated with TTM, and those with CDI showed poor neurologic outcomes and high mortality rates. Younger age, nonshockable rhythm, long downtime, and asphyxia arrest were significant risk factors for development of CDI. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Long-Term Cognitive Outcomes of Birth Asphyxia and the Contribution of Identified Perinatal Asphyxia to Cerebral Palsy.

    PubMed

    Pappas, Athina; Korzeniewski, Steven J

    2016-09-01

    Neonatal encephalopathy among survivors of presumed perinatal asphyxia is recognized as an important cause of cerebral palsy (CP) and neuromotor impairment. Recent studies suggest that moderate to severe neonatal encephalopathy contributes to a wide range of neurodevelopmental and cognitive impairments among survivors with and without CP. Nearly 1 of every 4 to 5 neonates treated with hypothermia has or develops CP. Neonatal encephalopathy is diagnosed in only approximately 10% of all cases. This article reviews the long-term cognitive outcomes of children with presumed birth asphyxia and describes what is known about its contribution to CP. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Alterations of Ca(v)1.2 and 5-hydroxytryptamine in rat hearts after positional asphyxia.

    PubMed

    Li, X-F; Huang, Q-Y

    2015-01-01

    We investigated alterations of cardiac Ca(v)1.2 and 5-hydroxytryptamine (5-HT) associated with positional asphyxia. Male rats were divided into five groups: a control group with no restraint, group 1 restrained for 1 h, group 2 restrained for 2 h, group 3 restrained for 4 h, and group 4 restrained for 8 h. The rats that were restrained for 8 h ultimately suffered fatal asphyxia. After the restraint periods, the rats were sacrificed and immunohistochemistry was performed to evaluate the expressions of Ca(v)1.2 and 5-HT in the heart. Sections were analyzed by digital image analysis. Cardiac expression of Ca(v)1.2 and 5-HT proteins were significantly decreased by positional asphyxia in the rat, shown by integrated optical density (IOD) compared to controls. Our findings indicate that Ca(v)1.2 and 5-HT alterations could cause abnormal cardiac function, and the proteins investigated here may be useful for investigating the mechanisms underlying positional asphyxia.

  11. Using uterine activity to improve fetal heart rate variability analysis for detection of asphyxia during labor.

    PubMed

    Warmerdam, G J J; Vullings, R; Van Laar, J O E H; Van der Hout-Van der Jagt, M B; Bergmans, J W M; Schmitt, L; Oei, S G

    2016-03-01

    During labor, uterine contractions can cause temporary oxygen deficiency for the fetus. In case of severe and prolonged oxygen deficiency this can lead to asphyxia. The currently used technique for detection of asphyxia, cardiotocography (CTG), suffers from a low specificity. Recent studies suggest that analysis of fetal heart rate variability (HRV) in addition to CTG can provide information on fetal distress. However, interpretation of fetal HRV during labor is difficult due to the influence of uterine contractions on fetal HRV. The aim of this study is therefore to investigate whether HRV features differ during contraction and rest periods, and whether these differences can improve the detection of asphyxia. To this end, a case-control study was performed, using 14 cases with asphyxia that were matched with 14 healthy fetuses. We did not find significant differences for individual HRV features when calculated over the fetal heart rate without separating contractions and rest periods (p  >  0.30 for all HRV features). Separating contractions from rest periods did result in a significant difference. In particular the ratio between HRV features calculated during and outside contractions can improve discrimination between fetuses with and without asphyxia (p  <  0.04 for three out of four ratio HRV features that were studied in this paper).

  12. Neonatal encephalopathy and the association to asphyxia in labor.

    PubMed

    Jonsson, Maria; Ågren, Johan; Nordén-Lindeberg, Solveig; Ohlin, Andreas; Hanson, Ulf

    2014-12-01

    In cases with moderate and severe neonatal encephalopathy, we aimed to determine the proportion that was attributable to asphyxia during labor and to investigate the association between cardiotocographic (CTG) patterns and neonatal outcome. In a study population of 71,189 births from 2 Swedish university hospitals, 80 cases of neonatal encephalopathy were identified. Cases were categorized by admission CTG patterns (normal or abnormal) and by the presence of asphyxia (cord pH, <7.00; base deficit, ≥12 mmol/L). Cases with normal admission CTG patterns and asphyxia at birth were considered to experience asphyxia related to labor. CTG patterns were assessed for the 2 hours preceding delivery. Admission CTG patterns were normal in 51 cases (64%) and abnormal in 29 cases (36%). The rate of cases attributable to asphyxia (ie, hypoxic ischemic encephalopathy) was 48 of 80 cases (60%), most of which evolved during labor (43/80 cases; 54%). Both severe neonatal encephalopathy and neonatal death were more frequent with an abnormal, rather than with a normal, admission CTG pattern (13 [45%] vs 11 [22%]; P = .03), and 6 [21%] vs 3 [6%]; P = .04), respectively. Comparison of cases with an abnormal and a normal admission CTG pattern also revealed more frequently observed decreased variability (12 [60%] and 8 [22%], respectively) and more late decelerations (8 [40%] and 1 [3%], respectively). Moderate and severe encephalopathy is attributable to asphyxia in 60% of cases, most of which evolve during labor. An abnormal admission CTG pattern indicates a poorer neonatal outcome and more often is associated with pathologic CTG patterns preceding delivery. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Potential Asphyxia and Brainstem Abnormalities in Sudden and Unexpected Death in Infants

    PubMed Central

    Randall, Bradley B.; Paterson, David S.; Haas, Elisabeth A.; Broadbelt, Kevin G.; Duncan, Jhodie R.; Mena, Othon J.; Krous, Henry F.; Trachtenberg, Felicia L.

    2013-01-01

    OBJECTIVE: Sudden and unexplained death is a leading cause of infant mortality. Certain characteristics of the sleep environment increase the risk for sleep-related sudden and unexplained infant death. These characteristics have the potential to generate asphyxial conditions. We tested the hypothesis that infants may be exposed to differing degrees of asphyxia in sleep environments, such that vulnerable infants with a severe underlying brainstem deficiency in serotonergic, γ-aminobutyric acid-ergic, or 14-3-3 transduction proteins succumb even without asphyxial triggers (eg, supine), whereas infants with intermediate or borderline brainstem deficiencies require asphyxial stressors to precipitate death. METHODS: We classified cases of sudden infant death into categories relative to a “potential asphyxia” schema in a cohort autopsied at the San Diego County Medical Examiner’s Office. Controls were infants who died with known causes of death established at autopsy. Analysis of covariance tested for differences between groups. RESULTS: Medullary neurochemical abnormalities were present in both infants dying suddenly in circumstances consistent with asphyxia and infants dying suddenly without obvious asphyxia-generating circumstances. There were no differences in the mean neurochemical measures between these 2 groups, although mean measures were both significantly lower (P < .05) than those of controls dying of known causes. CONCLUSIONS: We found no direct relationship between the presence of potentially asphyxia conditions in the sleep environment and brainstem abnormalities in infants dying suddenly and unexpectedly. Brainstem abnormalities were associated with both asphyxia-generating and non–asphyxia generating conditions. Heeding safe sleep messages is essential for all infants, especially given our current inability to detect underlying vulnerabilities. PMID:24218471

  14. Combination of Serum Interleukin-1β and 6 Levels in the Diagnosis of Perinatal Asphyxia.

    PubMed

    Boskabadi, Hassan; Maamouri, Gholamali; Tavakkol Afshari, Jalil; Zakerihamidi, Maryam; Kalateh Molaee, Maryam; Bagheri, Fatemeh; Parizadeh, Mustafa; Ghayour-Mobarhan, Majid; Moradi, Ali; Ferns, Gordon A A

    2016-05-01

    Perinatal asphyxia is an important cause of death, as well as permanent neurological and developmental complications. Diagnosing in time would lead to better prognosis and applying the most proper treatment. We sought to define the predictive values of serum concentrations of interleukin-1β (IL-1β) and interleukin-6 (IL-6) in newborns with perinatal asphyxia to see if there is a relation between the short-term neurological deficit and serum IL-1β and IL-6 concentrations. This was a prospective (case-control) study conducted between March 2006 and April 2013, at the Neonatal Intensive Care Unit, Mashhad, Iran. Serum IL-1β and IL-6 levels were measured at birth in 38 consecutive uninfected neonates with perinatal asphyxia (blood pH < 7.2, low Apgar score, signs of fetal distress) and 47 randomly selected healthy newborns. The results were compared between the groups, using Chi-Square, t-tests, and Mann-Whitney tests, as well as receiver operator characteristics (ROC) curves and regression models. Serum IL-1β and IL-6 concentrations in the infants who developed perinatal asphyxia were significantly higher compared to values in the normal infants [16.88 vs  3.34 pg/mL for IL-1β, (P = 0.006), and 88.15 vs 6.74 pg/ mL for IL-6, (P < 0.001) respectively]. The sensitivity and  specificity for the diagnosis of perinatal asphyxia using serum IL-6 were 80.5% and 81.6% respectively. The sensitivity and specificity using serum IL-1β were 71% and 89.1%, respectively. Evaluating serum IL-6 and 1β simultaneously, could improve the sensitivity and specificity of early diagnosis of the perinatal  asphyxia. The most appropriate indicator of perinatal asphyxia is combined measurement of interleukin 1β and interleukin 6.

  15. [Effect of leptin on expression of calpain-1 and Bcl-2 and apoptosis in myocardial tissue of neonatal rats after asphyxia].

    PubMed

    Wu, Dan-Dan; Wu, Xing-Heng; Zhang, Li-Na

    2016-10-01

    To study the effect of leptin on the expression of calcium-activated neutral protease 1 (calpain-1) and B cell lymphoma-2 (Bcl-2) and apoptosis in the myocardial tissue of neonatal rats after asphyxia. A total of 48 neonatal rats were randomly and equally divided into normal control group, asphyxia group, leptin treatment groups, and calpain-1 inhibitor (CAI-1) group. The neonatal rat model of asphyxia under normal atmospheric condition was established in all groups except the control group. For the leptin treatment groups, rats received 20, 80, and 160 μg/kg leptin by intraperitoneal injection immediately after model establishment, respectively. For the CAI-1 group, rats received 10 mg/kg CAI-1 by intraperitoneal injection immediately after model establishment. For all the groups, the myocardial tissue was collected at 2 hours after model establishment. Immunohistochemistry was used to measure the expression of calpain-1 and Bcl-2. The TUNEL method was used to evaluate apoptosis of myocardial cells. The expression of calpain-1 and Bcl-2 and apoptosis index (AI) were significantly higher in the asphyxia group than in the normal control group (P˂0.05). The leptin treatment groups and the CAI-1 group had significantly lower expression of calpain-1, significantly lower AI, and significantly higher expression of Bcl-2 than the asphyxia group (P˂0.05). The CAI-1 group had the largest changes in all the indices compared with the asphyxia group. However, there were no significant differences in all indices between the 160 μg/kg leptin treatment group and the CAI-1 group. After asphyxia, the expression of calpain-1 was positively correlated with AI, while the expression of Bcl-2 was negatively correlated with AI and the expression of calpain-1 (P˂0.05). Leptin reduces apoptosis of myocardial cells in asphyxiated neonatal rats by the inhibition of calpain-1 activation and upregulation of Bcl-2 expression.

  16. Developmental study of the distribution of hypoxia-induced factor-1 alpha and microtubule-associated protein 2 in children's brainstem: comparison between controls and cases with signs of perinatal hypoxia.

    PubMed

    Coveñas, R; González-Fuentes, J; Rivas-Infante, E; Lagartos-Donate, M J; Cebada-Sánchez, S; Arroyo-Jiménez, M M; Insausti, R; Marcos, P

    2014-06-20

    Perinatal asphyxia and hypoxia are common causes of morbidity in neonates. Prenatal birth associated with hypoxemia often results in several disorders because of the lack of oxygen in the brain. Survival rates from perinatal hypoxia have improved, but appropriate treatments for recovery are still limited, with great impact on patients, their families, society in general and health systems. The aim of this work is to contribute to a better understanding of the cellular mechanisms underlying the brainstem responses to hypoxia. For this purpose, distributions of two proteins, hypoxia-inducible factor-1 alpha (HIF-1α) and microtubule-associated protein 2 (MAP-2) were analyzed in brainstems of 11 children, four of them showing neuropathological evidence of brain hypoxia. They were included in control or hypoxic groups, and then in several subgroups according to their age. Immunohistochemical labeling for these proteins revealed only cell bodies containing HIF-1α, and both cell bodies and fibers positive for MAP-2 in the children's brainstems. The distribution of HIF-1α was more restricted than that of MAP-2, and it can be suggested that the expression of HIF-1α increased with age. The distribution pattern of MAP-2 in the medulla oblongata could be more due to age-related changes than to a response to hypoxic damage, whereas in the pons several regions, such as the nucleus ambiguus or the solitary nucleus, showed different immunolabeling patterns in controls and hypoxic cases. The distribution patterns of these two proteins suggest that some brainstem regions, such as the reticular formation or the central gray, could be less affected by conditions of hypoxia. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  17. [Risk factors associated with the development of perinatal asphyxia in neonates at the Hospital Universitario del Valle, Cali, Colombia, 2010-2011].

    PubMed

    Torres-Muñoz, Javier; Rojas, Christian; Mendoza-Urbano, Diana; Marín-Cuero, Darly; Orobio, Sandra; Echandía, Carlos

    2017-04-01

    Perinatal asphyxia is one of the main causes of perinatal mortality and morbidity worldwide and it generates high costs for health systems; however, it has modifiable risk factors. To identify the risk factors associated with the development of perinatal asphyxia in newborns at Hospital Universitario del Valle, Cali, Colombia. Incident cases and concurrent controls were examined. Cases were defined as newborns with moderate to severe perinatal asphyxia who were older than or equal to 36 weeks of gestational age, needed advanced resuscitation and presented one of the following: early neurological disorders, multi-organ commitment or a sentinel event. The controls were newborns without asphyxia who were born one week apart from the case at the most and had a comparable gestational age. Patients with major congenital malformations and syndromes were excluded. Fifty-six cases and 168 controls were examined. Premature placental abruption (OR=41.09; 95%CI: 4.61-366.56), labor with a prolonged expulsive phase (OR=31.76; 95%CI: 8.33-121.19), lack of oxytocin use (OR=2.57; 95% CI: 1.08 - 6.13) and mothers without a partner (OR=2.56; 95% CI: 1.21-5.41) were risk factors for the development of perinatal asphyxia in the study population. Social difficulties were found in a greater proportion among the mothers of cases. Proper control and monitoring of labor, development of a thorough partograph, and active searches are recommended to ensure that all pregnant women have adequate prenatal care with the provision of social support to reduce the frequency and negative impact of perinatal asphyxia.

  18. Claims for compensation after alleged birth asphyxia: a nationwide study covering 15 years.

    PubMed

    Andreasen, Stine; Backe, Bjørn; Øian, Pål

    2014-02-01

    To analyze compensation claims with neurological sequela or death following alleged birth asphyxia. A cohort study. A nationwide study in Norway. All claims made to The Norwegian System of Compensation to Patients (NPE) concerning sequela related to alleged birth asphyxia, between 1994 and 2008. A total of 315 claims of which 161 were awarded compensation. Examination of hospital records, experts' assessments and the decisions made by the NPE, the appeal body and courts of law. Characteristics of deliveries resulting in intrapartum asphyxia and causes of substandard care categorized in eight groups. In the 161 compensated cases, 107 children survived (96 with neurological sequela), and 54 children died. Human error was a frequent reason of substandard care, seen as inadequate fetal monitoring (50%), lack of clinical knowledge and skills (14%), noncompliance with clinical guidelines (11%), failure in referral for senior medical help (10%) and error in drug administration (4%). System errors were registered in only 3%, seen as poor organization of the department, lack of guidelines and time conflicts. The health personnel held responsible for substandard care was an obstetrician in 49% and a midwife in 46%. Substandard care is common in birth asphyxia, and human error is the cause in most cases. Inadequate fetal monitoring and lack of clinical knowledge and skills are the most frequent reasons for compensation after birth asphyxia. © 2013 Nordic Federation of Societies of Obstetrics and Gynecology.

  19. Are mast cells implicated in asphyxia?

    PubMed

    Muciaccia, Barbara; Sestili, Cristina; De Grossi, Stefania; Vestri, Annarita; Cipolloni, Luigi; Cecchi, Rossana

    2016-01-01

    In a previous immunohistochemical (IHC) study, we documented the reaction of lung tissue vessels to hypoxia through the immunodetection of HIF1-α protein, a key regulator of cellular response to hypoxic conditions. Findings showing that asphyxia deaths are associated with an increase in the number of mast cell (MC)-derived tryptase enzymes in the blood suggests that HIF1-α production may be correlated with MC activation in hypoxic conditions. This hypothesis prompted us to investigate the possible role of pulmonary MC in acute asphyxia deaths. Lung of 47 medico-legal autopsy cases (35 asphyxia/hypoxia deaths, 11 controls, and 1 anaphylactic death) were processed by IHC analysis using anti-CD117 (c-Kit) antibody to investigate peri-airway and peri-vascular MC together with their counts and features. Results showed a significant increase in peri-vascular c-kit(+) MC in some asphyxia deaths, such as hanging, strangulation, and aspiration deaths. A strong activation of MC in peri-airway and peri-vascular areas was also observed in lung samples from the anaphylaxis case, which was used as a positive control. Our study points to the potential role of MC in hypoxia and suggests that an evaluation of MC in the lungs may be a useful parameter when forensic pathologists are required to make a differential diagnosis between acute asphyxia deaths and other kinds of death.

  20. Correlation between Apgar score and urinary uric acid to creatinine ratio in perinatal asphyxia.

    PubMed

    Basu, Pallab; Som, Sabyasachi; Choudhuri, Nabendu; Das, Harendranath

    2008-10-01

    A randomized case control hospital based study was conducted over 12 months time on 31 asphyxiated and 31 normal newborn to see whether urinary uric acid can be used as a marker of perinatal asphyxia and can be correlated with the clinical diagnosis by Apgar score. Uric acid and creatinine were estimated in spot urine within 24 hours after birth in both cases and controls. A ratio between concentrations of uric acid to creatinine was estimated and compared between cases and controls. It was found that the ratios were significantly higher in cases than controls (3.1± 1.3 vs 0.96± 0.54; P < 0.001) and among asphyxia patients, a significant negative linear correlation was found between the uric acid to creatinine ratio and the Apgar score (r = -0.857, P < 0.001). So urinary uric acid to creatinine ratio can be used as an additional non-invasive dispace, easy and at the same time early biochemical marker of birth asphyxia which biochemically supports the clinical diagnosis and severity grading of asphyxia by Apgar score.

  1. Predicting Severity of Acute Kidney Injury in Term Neonates with Perinatal Asphyxia Using Urinary Neutrophil Gelatinase Associated Lipocalin.

    PubMed

    Tanigasalam, Vasanthan; Bhat, Ballambattu Vishnu; Adhisivam, Bethou; Sridhar, Magadi Gopalakrishna; Harichandrakumar, Kottyen Thazath

    2016-11-01

    To evaluate the utility of urinary Neutrophil Gelatinase Associated Lipocalin (NGAL) as a biomarker for predicting Acute Kidney Injury (AKI) and its severity among neonates with perinatal asphyxia. This descriptive study included 120 term neonates with perinatal asphyxia. Renal parameters of neonates were monitored and AKI was ascertained as per Acute Kidney Injury Network criteria. Urinary NGAL was estimated and correlated with severity of AKI. Among the 120 neonates with perinatal asphyxia, 55(46 %) had AKI. The median urinary NGAL level was 165 ng/ml (88.8-245.8) in neonates with AKI compared to 58.97(42.8-74.7) in those without AKI. The median NGAL was 134.45(112.2-162.5), 301.2(255.5-361.2), 416.2(412.2-465.5) in AKI stages 1, 2 and 3 respectively. An NGAL cut off value of 86.82 ng/ml had 87 % sensitivity and 87.7 % specificity in predicting AKI. Urinary NGAL is a useful biomarker for predicting AKI and its severity among neonates with perinatal asphyxia.

  2. Pathological changes in the thyroid gland in crush asphyxia.

    PubMed

    Byard, Roger W

    2013-12-01

    To determine whether crush asphyxia may be associated with macro- and microscopic changes in the thyroid gland, four cases of death due to crush asphyxia were evaluated where the decedents (males aged 36, 37, 45, and 65 years respectively) suffered lethal chest compressions. The diagnosis of crush asphyxia in each case was suggested by the death scene description and confirmed by the finding of injuries to the torso, with marked congestion of the face, neck, and upper body associated with petechial and subconjunctival hemorrhages. In addition to other pathological findings, each decedent had intense congestion of their thyroid gland resulting in a dark/black appearance. Microscopically, stromal capillaries were engorged, with bulging of capillaries into the follicles. Rupture of these small vessels had created focal intrafollicular aggregates of erythrocytes within the colloid. As intense suffusion of the thyroid gland with blood in cases of crush asphyxia may impart an appearance of "black thyroid" this may be another feature of this condition to look for at autopsy, in addition to intrafollicular blood lakes on histology.

  3. Naloxone and epinephrine are equally effective for cardiopulmonary resuscitation in a rat asphyxia model.

    PubMed

    Chen, M-H; Xie, L; Liu, T-W; Song, F-Q; He, T

    2006-10-01

    It is not known whether naloxone is as efficacious as epinephrine during cardiopulmonary resuscitation (CPR). The aim of the study was to compare the effects of naloxone and epinephrine on the outcomes of CPR following asphyxial cardiac arrest in rats. Cardiac arrest was induced with asphyxia by clamping the tracheal tubes. Twenty-four Sprague-Dawley rats were randomized prospectively into a saline group (treated with normal saline, 1 ml intravenously, n = 8), an epinephrine group (treated with epinephrine, 0.04 mg/kg intravenously, n = 8) or a naloxone group (treated with naloxone, 1 mg/kg intravenously, n = 8) in a blind fashion during resuscitation after asphyxial cardiac arrest. After 5 min of untreated cardiac arrest, conventional manual CPR was started and each drug was administered at the same time. The rates of restoration of spontaneous circulation (ROSC) were one of eight (12.5%), seven of eight (87.5%) and seven of eight (87.5%) in the saline, epinephrine and naloxone groups, respectively. The rates of ROSC in the epinephrine and naloxone groups were equal and significantly greater than that in the saline group (P = 0.01 and P = 0.01, respectively). The administration of naloxone or epinephrine alone may increase the resuscitation rate, and both drugs are equally effective for CPR in a rat asphyxia model. However, the mechanism by which naloxone produces its efficacy during CPR remains unclear and further experimentation will be necessary.

  4. A Very Unusual Accidental Mechanical Asphyxia of Choking with a Whole Solea Solea.

    PubMed

    Busardò, Francesco Paolo; Mannocchi, Giulio; Pugnetti, Paola; Santurro, Alessandro; Maggiordomo, Aldo; Zaami, Simona

    2017-03-01

    The case here reported involves a schizophrenic 19-year-old girl under treatment with clotiapine, which was well tolerated except for a moderate dry mouth. The woman ingested a whole sole (Solea solea), which caused a very rapid death by choking. A complete autopsy was performed 24 h later, as well as histological and toxicological analysis. At autopsy, the sole was wedged in the esophagus causing a choking ab extrinseco. The fish had a length of 18 cm and a maximum width of 6 cm, weighing 188.7 g. Toxicological analysis detected 0.57 mg/L of clotiapine in blood, which falls within the therapeutic range. The peculiarity of this case is represented by two factors: one is the choking by fish and the second was the adverse affect caused by clotiapine, which induced a condition of dry mouth making the act of swallowing even more difficult, thereby contributing to a very rapid mechanical asphyxia and the death of the young woman. © 2016 American Academy of Forensic Sciences.

  5. Effects of perinatal asphyxia on rat striatal cytoskeleton.

    PubMed

    Saraceno, G E; Ayala, M V; Badorrey, M S; Holubiec, M; Romero, J I; Galeano, P; Barreto, G; Giraldez-Alvárez, L D; Kölliker-Fres, R; Coirini, H; Capani, F

    2012-01-01

    Perinatal asphyxia (PA) is a medical condition associated with a high short-term morbimortality and different long-term neurological diseases. In previous works, we have shown that neuronal and synaptic changes in rat striatum lead to ubi-protein accumulation in post-synaptic density (PSD) after six months of sub-severe PA. However, very little is known about the synaptic and related structural modifications induced by PA in young rats. In the present work, we studied neuronal cytoskeleton modifications in striatum induced by subsevere PA in 30-day-old rats. We observed a significant decrease in the number of neurons, in particular calbindin immunoreactive neurons after PA. In addition, it was also observed that actin cytoskeleton was highly modified in the PSD as well as an increment of F-actin staining by Phalloidin-alexa(488) in the striatum of PA rats. Using correlative fluorescence-electron microscopy photooxidation, we confirmed and extended confocal observations. F-actin staining augmentation was mostly related with an increment in the number of mushroom-shaped spines. Consistent with microscopic data, Western blot analysis revealed a β-actin increment in PSD in PA rats. On the other hand, MAP-2 immunostaining was decreased after PA, being NF-200 expression unmodified. Although neuronal death was observed, signs of generalized neurodegeneration were absent. Taken together these results showed early post-synaptic F-actin cytoskeleton changes induced by PA with slightly modifications in the other components of the neuronal cytoskeleton, suggesting that F-actin accumulation in the dendritic spines could be involved in the neuronal loss induced by PA. Copyright © 2011 Wiley Periodicals, Inc.

  6. Neuronal Damage Induced by Perinatal Asphyxia Is Attenuated by Postinjury Glutaredoxin-2 Administration.

    PubMed

    Romero, Juan Ignacio; Holubiec, Mariana Inés; Tornatore, Tamara Logica; Rivière, Stéphanie; Hanschmann, Eva-Maria; Kölliker-Frers, Rodolfo Alberto; Tau, Julia; Blanco, Eduardo; Galeano, Pablo; Rodríguez de Fonseca, Fernando; Lillig, Christopher Horst; Capani, Francisco

    2017-01-01

    The general disruption of redox signaling following an ischemia-reperfusion episode has been proposed as a crucial component in neuronal death and consequently brain damage. Thioredoxin (Trx) family proteins control redox reactions and ensure protein regulation via specific, oxidative posttranslational modifications as part of cellular signaling processes. Trx proteins function in the manifestation, progression, and recovery following hypoxic/ischemic damage. Here, we analyzed the neuroprotective effects of postinjury, exogenous administration of Grx2 and Trx1 in a neonatal hypoxia/ischemia model. P7 Sprague-Dawley rats were subjected to right common carotid ligation or sham surgery, followed by an exposure to nitrogen. 1 h later, animals were injected i.p. with saline solution, 10 mg/kg recombinant Grx2 or Trx1, and euthanized 72 h postinjury. Results showed that Grx2 administration, and to some extent Trx1, attenuated part of the neuronal damage associated with a perinatal hypoxic/ischemic damage, such as glutamate excitotoxicity, axonal integrity, and astrogliosis. Moreover, these treatments also prevented some of the consequences of the induced neural injury, such as the delay of neurobehavioral development. To our knowledge, this is the first study demonstrating neuroprotective effects of recombinant Trx proteins on the outcome of neonatal hypoxia/ischemia, implying clinical potential as neuroprotective agents that might counteract neonatal hypoxia/ischemia injury.

  7. Neuronal Damage Induced by Perinatal Asphyxia Is Attenuated by Postinjury Glutaredoxin-2 Administration

    PubMed Central

    Holubiec, Mariana Inés; Tornatore, Tamara Logica; Rivière, Stéphanie; Kölliker-Frers, Rodolfo Alberto; Tau, Julia; Blanco, Eduardo; Galeano, Pablo; Lillig, Christopher Horst

    2017-01-01

    The general disruption of redox signaling following an ischemia-reperfusion episode has been proposed as a crucial component in neuronal death and consequently brain damage. Thioredoxin (Trx) family proteins control redox reactions and ensure protein regulation via specific, oxidative posttranslational modifications as part of cellular signaling processes. Trx proteins function in the manifestation, progression, and recovery following hypoxic/ischemic damage. Here, we analyzed the neuroprotective effects of postinjury, exogenous administration of Grx2 and Trx1 in a neonatal hypoxia/ischemia model. P7 Sprague-Dawley rats were subjected to right common carotid ligation or sham surgery, followed by an exposure to nitrogen. 1 h later, animals were injected i.p. with saline solution, 10 mg/kg recombinant Grx2 or Trx1, and euthanized 72 h postinjury. Results showed that Grx2 administration, and to some extent Trx1, attenuated part of the neuronal damage associated with a perinatal hypoxic/ischemic damage, such as glutamate excitotoxicity, axonal integrity, and astrogliosis. Moreover, these treatments also prevented some of the consequences of the induced neural injury, such as the delay of neurobehavioral development. To our knowledge, this is the first study demonstrating neuroprotective effects of recombinant Trx proteins on the outcome of neonatal hypoxia/ischemia, implying clinical potential as neuroprotective agents that might counteract neonatal hypoxia/ischemia injury. PMID:28706574

  8. Birth asphyxia: pathophysiologic events and fetal adaptive changes.

    PubMed

    Woods, J R

    1983-06-01

    We have made significant advances toward understanding birth asphyxia and its effects upon neurologic development in the newborn and infant. The fetus is well adapted to compensate for moderate alterations in oxygen delivery. However, near lethal hypoxemia, prolonged exposure, and survival result in cell death and permanent neurologic sequelae. Neuroelectrical measurements such as the EEG and visual evoked potential provide insight into the acute alterations in nerve transmission during asphyxia, and in the recovery phase may ultimately provide information for long-term prognosis. These measurements are limited, however, by their inability once lost to distinguish cell inactivity from cell death. Permanent neurologic damage from asphyxia appears now to be a complex process in which severe hypoxemia precipitates a cascade of events leading to glycolysis, glycogenolysis, hypotension, and ultimately the accumulation of high concentrations of lactate at the cell level. As a consequence, cellular and extracellular fluid shifts produce cerebral edema, further impairment of cerebral circulation, and ultimately cell death. Clinical studies have helped to identify the newborn at high risk for neurologic impairment, but a cause-effect relationship remains unclear. That birth asphyxia can produce severe neurologic damage and death is generally accepted. Moreover, improper resuscitation of a severely depressed newborn increases the chance of permanent sequelae. The important clinical question is: Can one alter the natural course of asphyxia as has been alluded to through pharmacologic and ventilator manipulation? Answers to this question will depend upon continued study of the mechanisms of asphyctic damage in the central nervous system.

  9. Metabolic effects of perinatal asphyxia in the rat cerebral cortex.

    PubMed

    Souza, Samir Khal; Martins, Tiago Leal; Ferreira, Gustavo Dias; Vinagre, Anapaula Sommer; Silva, Roselis Silveira Martins da; Frizzo, Marcos Emilio

    2013-03-01

    We reported previously that intrauterine asphyxia acutely affects the rat hippocampus. For this reason, the early effects of this injury were studied in the cerebral cortex, immediately after hysterectomy (acute condition) or following a recovery period at normoxia (recovery condition). Lactacidemia and glycemia were determined, as well as glycogen levels in the muscle, liver and cortex. Cortical tissue was also used to assay the ATP levels and glutamate uptake. Asphyxiated pups exhibited bluish coloring, loss of movement, sporadic gasping and hypertonia. However, the appearance of the controls and asphyxiated pups was similar at the end of the recovery period. Lactacidemia and glycemia were significantly increased by asphyxia in both the acute and recovery conditions. Concerning muscle and hepatic glycogen, the control group showed significantly higher levels than the asphyxic group in the acute condition and when compared with groups of the recovery period. In the recovery condition, the control and asphyxic groups showed similar glycogen levels. However, in the cortex, the control groups showed significantly higher glycogen levels than the asphyxic group, in both the acute and recovery conditions. In the cortical tissue, asphyxia reduced ATP levels by 70 % in the acute condition, but these levels increased significantly in asphyxic pups after the recovery period. Asphyxia did not affect glutamate transport in the cortex of both groups. Our results suggest that the cortex uses different energy resources to restore ATP after an asphyxia episode followed by a reperfusion period. This strategy could sustain the activity of essential energy-dependent mechanisms.

  10. SUR1 Receptor Interaction with Hesperidin and Linarin Predicts Possible Mechanisms of Action of Valeriana officinalis in Parkinson.

    PubMed

    Santos, Gesivaldo; Giraldez-Alvarez, Lisandro Diego; Ávila-Rodriguez, Marco; Capani, Francisco; Galembeck, Eduardo; Neto, Aristóteles Gôes; Barreto, George E; Andrade, Bruno

    2016-01-01

    Parkinson's disease (PD) is one of the most common neurodegenerative disorders. A theoretical approach of our previous experiments reporting the cytoprotective effects of the Valeriana officinalis compounds extract for PD is suggested. In addiction to considering the PD as a result of mitochondrial metabolic imbalance and oxidative stress, such as in our previous in vitro model of rotenone, in the present manuscript we added a genomic approach to evaluate the possible underlying mechanisms of the effect of the plant extract. Microarray of substantia nigra (SN) genome obtained from Allen Brain Institute was analyzed using gene set enrichment analysis to build a network of hub genes implicated in PD. Proteins transcribed from hub genes and their ligands selected by search ensemble approach algorithm were subjected to molecular docking studies, as well as 20 ns Molecular Dynamics (MD) using a Molecular Mechanic Poison/Boltzman Surface Area (MMPBSA) protocol. Our results bring a new approach to Valeriana officinalis extract, and suggest that hesperidin, and probably linarin are able to relieve effects of oxidative stress during ATP depletion due to its ability to binding SUR1. In addition, the key role of valerenic acid and apigenin is possibly related to prevent cortical hyperexcitation by inducing neuronal cells from SN to release GABA on brain stem. Thus, under hyperexcitability, oxidative stress, asphyxia and/or ATP depletion, Valeriana officinalis may trigger different mechanisms to provide neuronal cell protection.

  11. SUR1 Receptor Interaction with Hesperidin and Linarin Predicts Possible Mechanisms of Action of Valeriana officinalis in Parkinson

    PubMed Central

    Santos, Gesivaldo; Giraldez-Alvarez, Lisandro Diego; Ávila-Rodriguez, Marco; Capani, Francisco; Galembeck, Eduardo; Neto, Aristóteles Gôes; Barreto, George E.; Andrade, Bruno

    2016-01-01

    Parkinson’s disease (PD) is one of the most common neurodegenerative disorders. A theoretical approach of our previous experiments reporting the cytoprotective effects of the Valeriana officinalis compounds extract for PD is suggested. In addiction to considering the PD as a result of mitochondrial metabolic imbalance and oxidative stress, such as in our previous in vitro model of rotenone, in the present manuscript we added a genomic approach to evaluate the possible underlying mechanisms of the effect of the plant extract. Microarray of substantia nigra (SN) genome obtained from Allen Brain Institute was analyzed using gene set enrichment analysis to build a network of hub genes implicated in PD. Proteins transcribed from hub genes and their ligands selected by search ensemble approach algorithm were subjected to molecular docking studies, as well as 20 ns Molecular Dynamics (MD) using a Molecular Mechanic Poison/Boltzman Surface Area (MMPBSA) protocol. Our results bring a new approach to Valeriana officinalis extract, and suggest that hesperidin, and probably linarin are able to relieve effects of oxidative stress during ATP depletion due to its ability to binding SUR1. In addition, the key role of valerenic acid and apigenin is possibly related to prevent cortical hyperexcitation by inducing neuronal cells from SN to release GABA on brain stem. Thus, under hyperexcitability, oxidative stress, asphyxia and/or ATP depletion, Valeriana officinalis may trigger different mechanisms to provide neuronal cell protection. PMID:27199743

  12. Copeptin concentration in cord blood in infants with early-onset sepsis, chorioamnionitis and perinatal asphyxia.

    PubMed

    Schlapbach, Luregn J; Frey, Stefanie; Bigler, Susanna; Manh-Nhi, Chiem; Aebi, Christoph; Nelle, Mathias; Nuoffer, Jean-Marc

    2011-05-19

    Vasopressin is one of the most important physiological stress and shock hormones. Copeptin, a stable vasopressin precursor, is a promising sepsis marker in adults. In contrast, its involvement in neonatal diseases remains unknown. The aim of this study was to establish copeptin concentrations in neonates of different stress states such as sepsis, chorioamnionitis and asphyxia. Copeptin cord blood concentration was determined using the BRAHMS kryptor assay. Neonates with early-onset sepsis (EOS, n = 30), chorioamnionitis (n = 33) and asphyxia (n = 25) were compared to a control group of preterm and term (n = 155) neonates. Median copeptin concentration in cord blood was 36 pmol/l ranging from undetectable to 5498 pmol/l (IQR 7 - 419). Copeptin cord blood concentrations were non-normally distributed and increased with gestational age (p < 0.0001). Neonates born after vaginal compared to cesarean delivery had elevated copeptin levels (p < 0.0001). Copeptin correlated strongly with umbilical artery pH (Spearman's Rho -0.50, p < 0.0001), umbilical artery base excess (Rho -0.67, p < 0.0001) and with lactate at NICU admission (Rho 0.54, p < 0.0001). No difference was found when comparing copeptin cord blood concentrations between neonates with EOS and controls (multivariate p = 0.30). The highest copeptin concentrations were found in neonates with asphyxia (median 993 pmol/l). Receiver-operating-characteristic curve analysis showed that copeptin cord blood concentrations were strongly associated with asphyxia: the area under the curve resulted at 0.91 (95%-CI 0.87-0.96, p < 0.0001). A cut-off of 400 pmol/l had a sensitivity of 92% and a specifity of 82% for asphyxia as defined in this study. Copeptin concentrations were strongly related to factors associated with perinatal stress such as birth acidosis, asphyxia and vaginal delivery. In contrast, copeptin appears to be unsuitable for the diagnosis of EOS.

  13. Impact of perinatal asphyxia on parental mental health and bonding with the infant: a questionnaire survey of Swiss parents

    PubMed Central

    Jacobs, Ingo; Gilbert, Leah; Favrod, Céline; Schneider, Juliane; Morisod Harari, Mathilde; Bickle Graz, Myriam

    2017-01-01

    Objective To compare current mental health symptoms and infant bonding in parents whose infants survived perinatal asphyxia in the last 2 years with control parents and to investigate which sociodemographic, obstetric and neonatal variables correlated with parental mental health and infant bonding in the asphyxia group. Design Cross-sectional questionnaire survey of parents whose children were registered in the Swiss national Asphyxia and Cooling register and of control parents (Post-traumatic Diagnostic Scale, Hospital Anxiety and Depression Scale, Mother-to-Infant Bonding Scale). Results The response rate for the asphyxia group was 46.5%. Compared with controls, mothers and fathers in the asphyxia group had a higher frequency of post-traumatic stress disorder (PTSD) symptoms (p<0.001). More mothers (n=28, 56%) had a symptom diagnosis of either full or partial PTSD than controls (n=54, 39%) (p=0.032). Similarly, more fathers (n=31, 51%) had a symptom diagnosis of either partial or full PTSD than controls (n=19, 33%) (p=0.034). Mothers reported poorer bonding with the infant (p=0.043) than controls. Having a trauma in the past was linked to more psychological distress in mothers (r=0.31 (95% CI 0.04 to 0.54)) and fathers (r=0.35 (95% CI 0.05 to 0.59)). For mothers, previous pregnancy was linked to poorer bonding (r=0.41 (95% CI 0.13 to 0.63)). In fathers, therapeutic hypothermia of the infant was related to less frequent PTSD symptoms (r=−0.37 (95% CI −0.61 to −0.06)) and past psychological difficulties (r=0.37 (95% CI 0.07 to 0.60)) to more psychological distress. A lower Apgar score was linked to poorer bonding (r=−0.38 (95% CI −0.64 to −0.05)). Conclusions Parents of infants hospitalised for perinatal asphyxia are more at risk of developing PTSD than control parents. PMID:29637108

  14. Copeptin concentration in cord blood in infants with early-onset sepsis, chorioamnionitis and perinatal asphyxia

    PubMed Central

    2011-01-01

    Background Vasopressin is one of the most important physiological stress and shock hormones. Copeptin, a stable vasopressin precursor, is a promising sepsis marker in adults. In contrast, its involvement in neonatal diseases remains unknown. The aim of this study was to establish copeptin concentrations in neonates of different stress states such as sepsis, chorioamnionitis and asphyxia. Methods Copeptin cord blood concentration was determined using the BRAHMS kryptor assay. Neonates with early-onset sepsis (EOS, n = 30), chorioamnionitis (n = 33) and asphyxia (n = 25) were compared to a control group of preterm and term (n = 155) neonates. Results Median copeptin concentration in cord blood was 36 pmol/l ranging from undetectable to 5498 pmol/l (IQR 7 - 419). Copeptin cord blood concentrations were non-normally distributed and increased with gestational age (p < 0.0001). Neonates born after vaginal compared to cesarean delivery had elevated copeptin levels (p < 0.0001). Copeptin correlated strongly with umbilical artery pH (Spearman's Rho -0.50, p < 0.0001), umbilical artery base excess (Rho -0.67, p < 0.0001) and with lactate at NICU admission (Rho 0.54, p < 0.0001). No difference was found when comparing copeptin cord blood concentrations between neonates with EOS and controls (multivariate p = 0.30). The highest copeptin concentrations were found in neonates with asphyxia (median 993 pmol/l). Receiver-operating-characteristic curve analysis showed that copeptin cord blood concentrations were strongly associated with asphyxia: the area under the curve resulted at 0.91 (95%-CI 0.87-0.96, p < 0.0001). A cut-off of 400 pmol/l had a sensitivity of 92% and a specifity of 82% for asphyxia as defined in this study. Conclusions Copeptin concentrations were strongly related to factors associated with perinatal stress such as birth acidosis, asphyxia and vaginal delivery. In contrast, copeptin appears to be unsuitable for the diagnosis of EOS. PMID:21595972

  15. Asphyxia in the Newborn: Evaluating the Accuracy of ICD Coding, Clinical Diagnosis and Reimbursement: Observational Study at a Swiss Tertiary Care Center on Routinely Collected Health Data from 2012-2015

    PubMed Central

    Rimle, Carole; Zwahlen, Marcel; Triep, Karen; Raio, Luigi; Nelle, Mathias

    2017-01-01

    Background The ICD-10 categories of the diagnosis “perinatal asphyxia” are defined by clinical signs and a 1-minute Apgar score value. However, the modern conception is more complex and considers metabolic values related to the clinical state. A lack of consistency between the former clinical and the latter encoded diagnosis poses questions over the validity of the data. Our aim was to establish a refined classification which is able to distinctly separate cases according to clinical criteria and financial resource consumption. The hypothesis of the study is that outdated ICD-10 definitions result in differences between the encoded diagnosis asphyxia and the medical diagnosis referring to the clinical context. Methods Routinely collected health data (encoding and financial data) of the University Hospital of Bern were used. The study population was chosen by selected ICD codes, the encoded and the clinical diagnosis were analyzed and each case was reevaluated. The new method categorizes the diagnoses of perinatal asphyxia into the following groups: mild, moderate and severe asphyxia, metabolic acidosis and normal clinical findings. The differences of total costs per case were determined by using one-way analysis of variance. Results The study population included 622 cases (P20 “intrauterine hypoxia” 399, P21 “birth asphyxia” 233). By applying the new method, the diagnosis asphyxia could be ruled out with a high probability in 47% of cases and the variance of case related costs (one-way ANOVA: F (5, 616) = 55.84, p < 0.001, multiple R-squared = 0.312, p < 0.001) could be best explained. The classification of the severity of asphyxia could clearly be linked to the complexity of cases. Conclusion The refined coding method provides clearly defined diagnoses groups and has the strongest effect on the distribution of costs. It improves the diagnosis accuracy of perinatal asphyxia concerning clinical practice, research and reimbursement. PMID:28118380

  16. Hypoxic ischemic encephalopathy in newborns linked to placental and umbilical cord abnormalities.

    PubMed

    Nasiell, Josefine; Papadogiannakis, Nikos; Löf, Erika; Elofsson, Fanny; Hallberg, Boubou

    2016-03-01

    Birth asphyxia and hypoxic ischemic encephalopathy (HIE) of the newborn remain serious complications. We present a study investigating if placental or umbilical cord abnormalities in newborns at term are associated with HIE. A prospective cohort study of the placenta and umbilical cord of infants treated with hypothermia (HT) due to hypoxic brain injury and follow-up at 12 months of age has been carried out. The study population included 41 infants treated for HT whose placentas were submitted for histopathological analysis. Main outcome measures were infant development at 12 months, classified as normal, cerebral palsy, or death. A healthy group of 100 infants without HIE and normal follow-up at 12 months of age were used as controls. A velamentous or marginal umbilical cord insertion and histological abruption was associated with the risk of severe HIE, OR = 5.63, p = 0.006, respectively, OR = 20.3, p = 0.01 (multiple-logistic regression). Velamentous or marginal umbilical cord insertion was found in 39% among HIE cases compared to 7% in controls. Placental and umbilical cord abnormalities have a profound association with HIE. A prompt examination of the placentas of newborns suffering from asphyxia can provide important information on the pathogenesis behind the incident and contribute to make a better early prognosis.

  17. De novo point mutations in patients diagnosed with ataxic cerebral palsy.

    PubMed

    Parolin Schnekenberg, Ricardo; Perkins, Emma M; Miller, Jack W; Davies, Wayne I L; D'Adamo, Maria Cristina; Pessia, Mauro; Fawcett, Katherine A; Sims, David; Gillard, Elodie; Hudspith, Karl; Skehel, Paul; Williams, Jonathan; O'Regan, Mary; Jayawant, Sandeep; Jefferson, Rosalind; Hughes, Sarah; Lustenberger, Andrea; Ragoussis, Jiannis; Jackson, Mandy; Tucker, Stephen J; Németh, Andrea H

    2015-07-01

    Cerebral palsy is a sporadic disorder with multiple likely aetiologies, but frequently considered to be caused by birth asphyxia. Genetic investigations are rarely performed in patients with cerebral palsy and there is little proven evidence of genetic causes. As part of a large project investigating children with ataxia, we identified four patients in our cohort with a diagnosis of ataxic cerebral palsy. They were investigated using either targeted next generation sequencing or trio-based exome sequencing and were found to have mutations in three different genes, KCNC3, ITPR1 and SPTBN2. All the mutations were de novo and associated with increased paternal age. The mutations were shown to be pathogenic using a combination of bioinformatics analysis and in vitro model systems. This work is the first to report that the ataxic subtype of cerebral palsy can be caused by de novo dominant point mutations, which explains the sporadic nature of these cases. We conclude that at least some subtypes of cerebral palsy may be caused by de novo genetic mutations and patients with a clinical diagnosis of cerebral palsy should be genetically investigated before causation is ascribed to perinatal asphyxia or other aetiologies. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain.

  18. Compression asphyxia from a human pyramid.

    PubMed

    Tumram, Nilesh Keshav; Ambade, Vipul Namdeorao; Biyabani, Naushad

    2015-12-01

    In compression asphyxia, respiration is stopped by external forces on the body. It is usually due to an external force compressing the trunk such as a heavy weight on the chest or abdomen and is associated with internal injuries. In present case, the victim was trapped and crushed under the falling persons from a human pyramid formation for a "Dahi Handi" festival. There was neither any severe blunt force injury nor any significant pathological natural disease contributing to the cause of death. The victim was unable to remove himself from the situation because his cognitive responses and coordination were impaired due to alcohol intake. The victim died from asphyxia due to compression of his chest and abdomen. Compression asphyxia resulting from the collapse of a human pyramid and the dynamics of its impact force in these circumstances is very rare and is not reported previously to the best of our knowledge. © The Author(s) 2015.

  19. Relationship of Hospital Staff Coverage and Delivery Room Resuscitation Practices to Birth Asphyxia.

    PubMed

    Tu, Joanna H; Profit, Jochen; Melsop, Kathryn; Brown, Taylor; Davis, Alexis; Main, Elliot; Lee, Henry C

    2017-02-01

    Objective  The objective of this study was to assess utilization of specialist coverage and checklists in perinatal settings and to examine utilization by birth asphyxia rates. Design  This is a survey study of California maternity hospitals concerning checklist use to prepare for delivery room resuscitation and 24-hour in-house specialist coverage (pediatrician/neonatologist, obstetrician, and obstetric anesthesiologist) and results linked to hospital birth asphyxia rates (preterm and low weight births were excluded). Results  Of 253 maternity hospitals, 138 responded (55%); 59 (43%) indicated checklist use, and in-house specialist coverage ranged from 38% (pediatrician/neonatologist) to 54% (anesthesiology). In-house coverage was more common in urban versus rural hospitals for all specialties ( p  < 0.0001), but checklist use was not significantly different ( p  = 0.88). Higher birth volume hospitals had more specialist coverage ( p  < 0.0001), whereas checklist use did not differ ( p  = 0.3). In-house obstetric coverage was associated with lower asphyxia rates (odds ratio: 0.34; 95% confidence interval [CI]: 0.20, 0.58) in a regression model accounting for other providers. Checklist use was not associated with birth asphyxia (odds ratio: 1.12; 95% CI: 0.75, 1.68). Conclusion  Higher birth volume and urban hospitals demonstrated greater in-house specialist coverage, but checklist use was similar across all hospitals. Current data suggest that in-house obstetric coverage has greater impact on asphyxia than other specialist coverage or checklist use. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  20. Severe Intrapartum Asphyxia from Subamniotic Hemorrhage.

    PubMed

    Lo, Tsz-Kin; Lee, Andrea; Chan, Wan-Pang; Hui, Sze-Ki; Fu, Yu-Ming; Shek, Chi-Chiu; Lam, Angus

    2016-01-01

    Subamniotic hemorrhage results from rupture of chorionic vessels near the cord insertion. In the literature, it has never been a major cause for severe intrapartum complications. We report the first case of acute massive subamniotic hemorrhage intrapartum resulting in severe perinatal asphyxia.

  1. [Significance of Hypoxia-related microRNA for Estimating the Cause of Mechanical Asphyxia Death].

    PubMed

    Zeng, Y; Ma, J L; Chen, L

    2017-02-01

    Under hypoxia condition, microRNA (miRNA) can interact with transcription factors for regulating the cell metabolism, angiogenesis, erythropoiesis, cellular proliferation, differentiation and apoptosis. The biological processes above may play an important role in mechanical asphyxia death. This article reviews the regulating function of miRNA under hypoxia condition and the influence of hypoxia to biosynthesis of miRNA, which may provide some new ideas to the research of miRNA on determining the cause of mechanical asphyxia death in the field of forensic medicine. Copyright© by the Editorial Department of Journal of Forensic Medicine.

  2. [Labor monitoring in high-risk situations].

    PubMed

    Houfflin-Debarge, V; Closset, E; Deruelle, P

    2008-02-01

    Intrapartum asphyxia is increased in several situations such as intrauterine growth retardation, preterm labor, postdate pregnancy or maternal diabetes. In all these cases, fetal heart rate monitoring should be preferred to intermittent auscultation. Fetal scalp blood pH or lactates can be used to identify fetuses at risk of intrapartum asphyxia. However, fetal scalp blood sampling should not delay delivery in case of severe abnormal fetal heart rate as fetal asphyxia could occur rapidly in theses high-risk pregnancies. Data is insufficient to recommend fetal pulse oximetry or ECG analysis. Research should be undertaken to evaluate their performance in these situations.

  3. Functional impairment of the auditory pathway after perinatal asphyxia and the short-term effect of perinatal propofol anesthesia in lambs.

    PubMed

    Smit, Adriana L; Seehase, Matthias; Stokroos, Robert J; Jellema, Reint K; Felipe, Lilian; Chenault, Michelene N; Anteunis, Lucien J C; Kremer, Bernd; Kramer, Boris W

    2013-07-01

    Sensorineural hearing loss (SNHL) is a common feature in the postasphyxial syndrome in newborns. Several anesthetic drugs have been proposed to attenuate secondary neuronal injury elicited by hypoxia-ischemia. We hypothesized that propofol anesthesia reduces auditory impairment after perinatal asphyxia in comparison with isoflurane. Twenty-three pregnant ewes were randomized to propofol or isoflurane anesthesia and sedation. The lambs underwent in utero umbilical cord occlusion (isoflurane n = 5; propofol n = 7) and were compared with sham-treated animals (isoflurane n = 5; propofol n = 6) at a gestational age of 133 d. For 8 h after delivery by cesarean section, repeated auditory brainstem responses (ABRs) were recorded to obtain hearing thresholds, peak amplitudes, latencies, and interpeak latencies. Significantly elevated mean thresholds, diminished amplitudes, and elevated latencies were observed in the asphyxia group relative to the control group through the observation period. Comparison of anesthetic treatment in the asphyxia group revealed a significantly lower elevation in threshold and less impairment in the ABR amplitudes and latencies during propofol anesthesia as compared with isoflurane anesthesia. Our results support the hypothesis that anesthesia with propofol has a preventive effect on the functional changes to the auditory pathway in the event of perinatal asphyxia.

  4. Comparison of autopsy findings and injury severity scores in deaths due to traumatic asphyxia (perthes syndrome).

    PubMed

    Arslan, M N; Kertmen, Ç; Esen Melez, I; Melez, D O

    2018-05-01

    Traumatic asphyxia is a rare clinical syndrome usually caused by sudden and severe thoracic and/or thoracoabdominal compression. It presents with craniofacial cyanosis, petechiae, and subconjunctival haemorrhages. The present study employed a postmortem retrospective methodology to analyse autopsy findings and accompanying injuries in cases of death due to traumatic asphyxia. Four years of case files from a morgue department at a forensic medicine institute were searched and 53 cases of lethal traumatic asphyxia were found. These cases were then classified into groups and compared using the Injury Severity Score (ISS) and New Injury Severity Score (NISS) indices to measure trauma. The individuals had died due to occupational (n = 28; 52.8%), farm (n = 10; 18.9%), traffic (n = 9; 17.0%) or household (n = 6; 11.3%) accidents. At the external examination, conjunctival petechiae (60.4%) and petechiae on the face/neck (52.8%); at the autopsy, subpleural petechiae (58.5%) and petrous ridge hemorrgahe (without skull base fracture) (56.6%) were the most common findings. A finding of petrous ridge hemorrgahe was very common in the cases without any accompanying injuries (Group A in which mean Injury Severity Score was 0.83 ± 0.98). Traumatic asphyxia is usually suspected from the given circumstances before an autosopy is performed. In cases without hospitalisation, any of the following signs may lead the physician to diagnose traumatic asphyxia as the cause of death: petechiae on the upper parts of the body and conjunctiva, petechiae on serous membranes (including subpleural regions), signs of petrous ridge haemorrhage without skull base fracture. Copyright © 2018 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  5. Asphyxia causes ultrasonographic D-shaping of the left ventricle--an experimental porcine study.

    PubMed

    Sørensen, A H; Wemmelund, K B; Møller-Helgestad, O K; Sloth, E; Juhl-Olsen, P

    2016-02-01

    In critical care, early diagnosis and correct treatment are of the utmost importance. Focused ultrasonography has gained acceptance as a pivotal tool for this by elucidating the underlying pathology. For example, massive pulmonary embolism is characterised by right ventricular dilatation. However, theoretically these characteristics might also be generated by asphyxia and the consequent hypoxia. We aimed to evaluate the ultrasonographic characteristics of asphyxia in a porcine model. Nineteen (13 intervention, 6 control) piglets were subjected to asphyxia until cardiac arrest, by disconnecting the ventilator tube. Ultrasonographic short-axis cine loops of the left ventricle were obtained every 30 seconds. The left ventricular (LV) eccentricity index (index of LV D-shaping) was quantified along with LV end-diastolic/end-systolic areas. Invasive pressures were measured throughout. The LV eccentricity index increased from 1.14 (1.10-1.31) to 1.86 (1.48-2.38), (P = 0.002), after 1.5 min, receded thereafter to baseline levels followed by a second increase after 5.5 min. LV end-diastolic area decreased from 11.6 cm(2) (11.1-13.2) to 6.3 cm(2) (3.3 -11.0) after 2.0 min (P = 0.009). Subsequently, values returned to the baseline level. The early and transient acute dilatation of the RV, coinciding with D-shaping of the LV and decrease in LV end-diastolic area seen in our study represent a combination of ultrasonographic characteristics normally attributed to pulmonary embolism. Early changes in ventricular chamber sizes and shape with septal flattening related to asphyxia can occur, but appear to be transient and disappear as circulatory collapse progresses, in an animal model. Despite this, asphyxia may represent a cause of ultrasonographic misinterpretation. © 2015 The Acta Anaesthesiologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  6. The effects and outcomes of electrolyte disturbances and asphyxia on newborns hearing

    PubMed Central

    Liang, Chun; Hong, Qi; Jiang, Tao-Tao; Gao, Yan; Yao, Xiao-Fang; Luo, Xiao-Xing; Zhuo, Xiu-Hui; Shinn, Jennifer B.; Jones, Raleigh O.; Zhao, Hong-Bo; Lu, Guang-Jin

    2013-01-01

    Objective To determine the effect of electrolyte disturbances (ED) and asphyxia on infant hearing and hearing outcomes. Study Design We conducted newborn hearing screening with transient evoked otoacoustic emission (TEOAE) test on a large scale (>5,000 infants). The effects of ED and asphyxia on infant hearing and hearing outcomes were evaluated. Result The pass rate of TEOAE test was significantly reduced in preterm infants with ED (83.1%, multiple logistic regression analysis: P<0.01) but not in full-term infants with ED (93.6%, P=0.41). However, there was no significant reduction in the pass rate in infants with asphyxia (P=0.85). We further found that hypocalcaemia significantly reduced the pass rate of TEOAE test (86.8%, P<0.01). In the follow-up recheck at 3 months of age, the pass rate remained low (44.4%, P<0.01). Conclusion ED is a high-risk factor for preterm infant hearing. Hypocalcaemia can produce more significant impairment with a low recovery rate. PMID:23648318

  7. Does therapeutic hypothermia reduce acute kidney injury among term neonates with perinatal asphyxia?--a randomized controlled trial.

    PubMed

    Tanigasalam, Vasanthan; Bhat, Vishnu; Adhisivam, Bethou; Sridhar, M G

    2016-01-01

    The objective of this study is to evaluate whether therapeutic hypothermia reduces the incidence of acute kidney injury (AKI) among term neonates perinatal asphyxia. This randomized controlled trial conducted in a tertiary care teaching hospital, south India included 120 term neonates with perinatal asphyxia who were randomized to receive either therapeutic hypothermia or standard supportive care. Renal parameters of neonates in both the groups were monitored and AKI was ascertained as per Acute Kidney Injury Network criteria. The incidence of AKI was less in therapeutic hypothermia group compared to standard treatment group (32% versus 60%, p < 0.05). The incidence of Stages 1, 2, and 3 AKI was 22%, 5%, and 5% in therapeutic hypothermia group compared with 52%, 5%, and 3%, respectively, in the standard treatment group. The mortality was less in therapeutic hypothermia group compared with the standard treatment group (26% versus 50%, p < 0.05). Therapeutic hypothermia reduces the incidence and severity of AKI among term neonates with perinatal asphyxia.

  8. Assessment of levels of otoacoustic emission response in neonates with perinatal asphyxia☆

    PubMed Central

    Ribeiro, Georgea Espindola; da Silva, Daniela Polo Camargo; Montovani, Jair Cortez

    2014-01-01

    Objective: To evaluate the effects of perinatal asphyxia on the level of the response to transient otoacoustic emissions in infants. Methods: Otoacoustic emissions in 154 neonates were performed: 54 infants who suffered asphyxia at birth, measured by Apgar score and medical diagnosis, and 100 infants without risk were compared. Scores less than 4 in the first minute and/or less than 6 in the fifth minute were considered as "low Apgar". Statistical analysis of the data was performed using the Kruskal, Wilcoxon, and Mann-Whitney nonparametric tests. Results: Lower levels of response were observed in transient otoacoustic emission in the group that suffered perinatal asphyxia, with significant values for the frequencies 2,000, 3,000, and 4,000 Hz in the right ear, and 2,000 and 4,000 Hz in the left ear. Conclusions: The analysis of the intrinsic characteristics of the otoacoustic emissions evidenced low performance of outer hair cells in neonates who had perinatal asphyxia, which may affect the development of listening skills in this population. PMID:25479848

  9. Serum Hsp70 Antigen: Early Diagnosis Marker in Perinatal Asphyxia.

    PubMed

    Boskabadi, Hassan; Omidian, Masoud; Tavallai, Shima; Mohammadi, Shabnam; Parizadeh, Mostafa; Ghayour Mobarhan, Majid; Ferns, Gordon Aa

    2015-04-01

    Perinatal asphyxia is an important cause of mortality and permanent neurological and developmental deficit. Early and accurate diagnosis would help to establish the likely prognosis and may also help in determining the most appropriate treatment. Studies in experimental animal models suggest that a protein called Hsp70 may be a good and potentially useful marker of cellular stress that may be clinically useful in determining the presence of neonatal asphyxia. Regarding the importance of early and accurate diagnosis of asphyxia, we conducted this study, which is the first investigation of the comparison of the serum Hsp70 antigen level between asphyxiated and healthy infants. In this observational study, the serum concentrations of Hsp70 antigen were compared between neonates suffering from perinatal asphyxia (n = 50) and normal neonates (n = 51). The inclusion criteria for the cases were neonates who had reached term and had at least two clinical criteria of asphyxia. Exclusion criteria were babies with gestational age < 37 weeks, infants with congenital abnormalities or positive blood culture. Exclusion criteria in this group were the requirement to hospital stay during first week of the life or babies whose mothers had difficulties during pregnancy or delivery. Term neonates without major anomalies who had asphyxia during delivery were enrolled in the first six hours after delivery, and control group consisted of healthy term neonates without problems and normal delivery process in the first week of life. The cord blood was taken during labor to measure Hsp70 antigen level by using an in-house ELISA (The enzyme-linked immunosorbent assay). The median values of serum anti Hsp70 titers were significantly higher in asphyxiated neonates compared with non-asphyxiated neonates (0.36 [0.04 - 1.14] vs 0.24 [0.01 - 0.63]). At cutoff point = 0.3125 ng/mL, sensitivity was 58% and specificity 76% based on ROC curve. A significant difference between the serum concentrations of Hsp70 of the control and patient group was observed in this study. It is inferred serum concentrations of Hsp70 antigen may be a useful marker for the early diagnosis of that prenatal hypoxia.

  10. Serum Hsp70 Antigen: Early Diagnosis Marker in Perinatal Asphyxia

    PubMed Central

    Boskabadi, Hassan; Omidian, Masoud; Tavallai, Shima; Mohammadi, Shabnam; Parizadeh, Mostafa; Ghayour Mobarhan, Majid; Ferns, Gordon AA

    2015-01-01

    Background: Perinatal asphyxia is an important cause of mortality and permanent neurological and developmental deficit. Early and accurate diagnosis would help to establish the likely prognosis and may also help in determining the most appropriate treatment. Studies in experimental animal models suggest that a protein called Hsp70 may be a good and potentially useful marker of cellular stress that may be clinically useful in determining the presence of neonatal asphyxia. Objectives: Regarding the importance of early and accurate diagnosis of asphyxia, we conducted this study, which is the first investigation of the comparison of the serum Hsp70 antigen level between asphyxiated and healthy infants. Patients and Methods: In this observational study, the serum concentrations of Hsp70 antigen were compared between neonates suffering from perinatal asphyxia (n = 50) and normal neonates (n = 51). The inclusion criteria for the cases were neonates who had reached term and had at least two clinical criteria of asphyxia. Exclusion criteria were babies with gestational age < 37 weeks, infants with congenital abnormalities or positive blood culture. Exclusion criteria in this group were the requirement to hospital stay during first week of the life or babies whose mothers had difficulties during pregnancy or delivery. Term neonates without major anomalies who had asphyxia during delivery were enrolled in the first six hours after delivery, and control group consisted of healthy term neonates without problems and normal delivery process in the first week of life. The cord blood was taken during labor to measure Hsp70 antigen level by using an in-house ELISA (The enzyme-linked immunosorbent assay). Results: The median values of serum anti Hsp70 titers were significantly higher in asphyxiated neonates compared with non-asphyxiated neonates (0.36 [0.04 - 1.14] vs 0.24 [0.01 - 0.63]). At cutoff point = 0.3125 ng/mL, sensitivity was 58% and specificity 76% based on ROC curve. Conclusions: A significant difference between the serum concentrations of Hsp70 of the control and patient group was observed in this study. It is inferred serum concentrations of Hsp70 antigen may be a useful marker for the early diagnosis of that prenatal hypoxia. PMID:26196004

  11. Traumatic asphyxia in children.

    PubMed Central

    Campbell-Hewson, G; Egleston, C V; Cope, A R

    1997-01-01

    Two cases of traumatic asphyxia in young children are reported. The first was a 2 year old child run over at low speed by the front wheels of a delivery van. He made an uncomplicated recovery. The second child was pinned to the floor by an empty chest of drawers in an unwitnessed accident. He was discovered in cardiac arrest and resuscitation was unsuccessful. The outcome following traumatic asphyxia is a product of duration of compression and the weight involved. Considerable weight can be tolerated for a short period, whereas a comparatively modest weight applied for a longer period may result in death. Images Case 1 p48-b PMID:9023627

  12. [Forensic medical peculiarities of mechanical strangulation asphyxia in the hanged subjects aged above 50 years].

    PubMed

    Chertovskikh, A A; Tuchik, E S; Astashkina, O G

    2014-01-01

    This paper presents the qualitative and quantitative characteristics of the morphological manifestations of mechanical strangulation asphyxia in the hanged subjects aged 50 years and the elder ones. In addition, the new diagnostic approaches to the expert confirmation of this condition are proposed.

  13. Clinical profile of infants with hypsarrhythmia.

    PubMed

    Khreisat, Wael Hayel

    2011-09-01

    The present study was done in order to obtain a baseline profile of infantile spasms and associated neurological disorders. The study included 50 patients with infantile spasm in Queen Rania Hospital for children in Jordan. The following data were obtained: sex, age at onset of spasms, details of seizure, family history of epilepsy, significant pre-/peri/ post-natal insults, Electroencephalography and detailed neuro imaging evaluation , detailed neurological, neuro developmental ,assessment were done by. Broad categories of possible etiologies were used the results were recorded for further study. Age of onset of infantile spasms ranged from 1month to 1 year and 6 months , (mean 4.8 months). The mean time of presentation was 9.4 months . A male preponderance was noted (74 %). flexor spasms (52%) was the commonest . Other types of seizures also accompanied infantile spasm in 44% children . (84%) were born of normal delivery, History of birth asphyxia was obtained in 48%, 3 (6%) had positive family history Developmental delay was recognized prior to onset of spasms in 52%, microcephaly was the commonest associated problem, Imaging studies of the brain revealed abnormality in 18 patients. 78% patients were classified as symptomatic and 22 % as cryptogenic. the pattern of infantile spasm in our country do not differ from that of developed countries, further researches is required to prevent both chronic epilepsy and psychomotor retardation and .preventive measurement to prevent birth asphyxia is recommended.

  14. Clinical Profile of Infants with Hypsarrhythmia

    PubMed Central

    Khreisat, Wael Hayel

    2011-01-01

    Objective: The present study was done in order to obtain a baseline profile of infantile spasms and associated neurological disorders. Patient and methods: The study included 50 patients with infantile spasm in Queen Rania Hospital for children in Jordan. The following data were obtained: sex, age at onset of spasms, details of seizure, family history of epilepsy, significant pre-/peri/ post-natal insults, Electroencephalography and detailed neuro imaging evaluation , detailed neurological, neuro developmental ,assessment were done by. Broad categories of possible etiologies were used the results were recorded for further study. Results: Age of onset of infantile spasms ranged from 1month to 1 year and 6 months , (mean 4.8 months). The mean time of presentation was 9.4 months . A male preponderance was noted (74 %). flexor spasms (52%) was the commonest . Other types of seizures also accompanied infantile spasm in 44% children . (84%) were born of normal delivery, History of birth asphyxia was obtained in 48%, 3 (6%) had positive family history Developmental delay was recognized prior to onset of spasms in 52%, microcephaly was the commonest associated problem, Imaging studies of the brain revealed abnormality in 18 patients. 78% patients were classified as symptomatic and 22 % as cryptogenic. Conclusion: the pattern of infantile spasm in our country do not differ from that of developed countries, further researches is required to prevent both chronic epilepsy and psychomotor retardation and .preventive measurement to prevent birth asphyxia is recommended. PMID:23407582

  15. Partial neuroprotection by nNOS inhibition during profound asphyxia in preterm fetal sheep

    PubMed Central

    Drury, Paul P.; Davidson, Joanne O.; van den Heuij, Lotte G.; Tan, Sidhartha; Silverman, Richard B.; Ji, Haitao; Blood, Arlin B.; Fraser, Mhoyra; Bennet, Laura; Jan Gunn, Alistair

    2013-01-01

    Preterm brain injury is partly associated with hypoxia-ischemia starting before birth. Excessive nitric oxide production during HI may cause nitrosative stress, leading to cell membrane and mitochondrial damage. We therefore tested the hypothesis that therapy with a new, selective neuronal nitric oxide synthase (nNOS) inhibitor, JI-10 (0.022 mg/kg bolus, n=8), given 30 min before 25 min of complete umbilical cord occlusion was protective in preterm fetal sheep at 101-104 d gestation (term is 147 d), compared to saline (n=8). JI-10 had no effect on fetal blood pressure, heart rate, carotid and femoral blood flow, total EEG power, nuchal activity, temperature or intracerebral oxygenation on near-infrared spectroscopy during or after occlusion. JI-10 was associated with later onset of post-asphyxial seizures compared with saline (p<0.05), and attenuation of the subsequent progressive loss of cytochrome oxidase (p<0.05). After 7 days recovery, JI-10 was associated with improved neuronal survival in the caudate nucleus (p<0.05), but not the putamen or hippocampus, and more CNPase positive oligodendrocytes in the periventricular white matter (p<0.05). In conclusion, prophylactic nNOS inhibition before profound asphyxia was associated with delayed onset of seizures, slower decline of cytochrome oxidase and partial white and grey matter protection, consistent with protection of mitochondrial function. PMID:24120436

  16. Partial neuroprotection by nNOS inhibition during profound asphyxia in preterm fetal sheep.

    PubMed

    Drury, Paul P; Davidson, Joanne O; van den Heuij, Lotte G; Tan, Sidhartha; Silverman, Richard B; Ji, Haitao; Blood, Arlin B; Fraser, Mhoyra; Bennet, Laura; Gunn, Alistair Jan

    2013-12-01

    Preterm brain injury is partly associated with hypoxia-ischemia starting before birth. Excessive nitric oxide production during HI may cause nitrosative stress, leading to cell membrane and mitochondrial damage. We therefore tested the hypothesis that therapy with a new, selective neuronal nitric oxide synthase (nNOS) inhibitor, JI-10 (0.022mg/kg bolus, n=8), given 30min before 25min of complete umbilical cord occlusion was protective in preterm fetal sheep at 101-104day gestation (term is 147days), compared to saline (n=8). JI-10 had no effect on fetal blood pressure, heart rate, carotid and femoral blood flow, total EEG power, nuchal activity, temperature or intracerebral oxygenation on near-infrared spectroscopy during or after occlusion. JI-10 was associated with later onset of post-asphyxial seizures compared with saline (p<0.05), and attenuation of the subsequent progressive loss of cytochrome oxidase (p<0.05). After 7days recovery, JI-10 was associated with improved neuronal survival in the caudate nucleus (p<0.05), but not the putamen or hippocampus, and more CNPase positive oligodendrocytes in the periventricular white matter (p<0.05). In conclusion, prophylactic nNOS inhibition before profound asphyxia was associated with delayed onset of seizures, slower decline of cytochrome oxidase and partial white and gray matter protection, consistent with protection of mitochondrial function. © 2013.

  17. Molecular pathology of brain matrix metalloproteases, claudin5, and aquaporins in forensic autopsy cases with special regard to methamphetamine intoxication.

    PubMed

    Wang, Qi; Ishikawa, Takaki; Michiue, Tomomi; Zhu, Bao-Li; Guan, Da-Wei; Maeda, Hitoshi

    2014-05-01

    Methamphetamine (METH) is a highly addictive drug of abuse and toxic to the brain. Recent studies indicated that besides direct damage to dopamine and 5-HT terminals, neurotoxicity of METH may also result from its ability to modify the structure of blood-brain barrier (BBB). The present study investigated the postmortem brain mRNA and immunohistochemical expressions of matrix metalloproteases (MMPs), claudin5 (CLDN5), and aquaporins (AQPs) in forensic autopsy cases of carbon monoxide (n = 14), METH (n = 21), and phenobarbital (n = 17) intoxication, compared with mechanical asphyxia (n = 15), brain injury (n = 11), non-brain injury (n = 21), and sharp instrument injury (n = 15) cases. Relative mRNA quantification using Taqman real-time PCR assay demonstrated higher expression of AQP4 and MMP9, lower expression of CLDN5 in METH intoxication cases and lower expression of MMP2 in phenobarbital intoxication cases. Immunostaining results showed substantial interindividual variations in each group, showing no evident differences in distribution or intensity among all the causes of death. These findings suggest that METH may increase BBB permeability by altering CLDN5 and MMP9, and the self-protective system maybe activated to eliminate accumulating water from the extracellular space of the brain by up-regulating AQP4. Systematic analysis of gene expressions using real-time PCR may be a useful procedure in forensic death investigation.

  18. Insulin-Like Growth Factors in the Pathogenesis of Neurological Diseases in Children.

    PubMed

    Riikonen, Raili

    2017-09-26

    Insulin-like growth factors play a key role for neuronal growth, differentiation, the survival of neurons and synaptic formation. The action of IGF-1 is most pronounced in the developing brain. In this paper we will try to give an answer to the following questions: Why are studies in children important? What clinical studies in neonatal asphyxia, infantile spasms, progressive encephalopathy-hypsarrhythmia-optical atrophy (PEHO) syndrome, infantile ceroid lipofuscinosis (INCL), autistic spectrum disorders (ASD) and subacute sclerosing encephalopathy (SSPE) have been carried out? What are IGF-based therapeutic strategies? What are the therapeutic approaches? We conclude that there are now great hopes for the therapeutic use of IGF-1 for some neurological disorders (particularly ASD).

  19. Peripheral neurolymphomatosis with tracheal asphyxia: a case report and literature review.

    PubMed

    Liu, Zuofeng; Jiang, Tao; Hou, Ni; Jia, Yongqian

    2015-08-23

    Neurolymphomatosis (NL) is an extremely rare disease and tracheal asphyxia due to NL has not been previously reported. A 54-year-old Chinese woman with a history of diffuse large B-cell lymphoma in her first complete remission developed peripheral neuropathy and tracheal asphyxia. Neurolymphomatosis involving the right brachial plexus and the right vagus nerve was demonstrated by PET/CT, but not by MRI. She underwent urgent tracheotomy and impact chemotherapy using rituximab combined with high dose methotrexate and involved field radiotherapy. She achieved a second complete remission. PET/CT plays valuable role in differentiating NL from other neuropathies in patients with lymphoma. Complete remission can be achieved in NL due to large B-cell lymphoma.

  20. Medicolegal Investigations Into Deaths Due to Crush Asphyxia After Tractor Side Rollovers.

    PubMed

    Moreschi, Carlo; Da Broi, Ugo; Fanzutto, Antonia; Cividino, Sirio; Gubiani, Rino; Pergher, Gianfranco

    2017-12-01

    Farm tractors are large, heavy, powerful vehicles with a high center of gravity. When driven carelessly on sloping, irregular, or slippery ground, tractors can overturn sideways and cause the death by crush asphyxia of the driver or passengers, especially if appropriate safety equipment is not fitted or used. The aim of this review is to focus on the diagnostic difficulties with which coroners and forensic pathologists have to cope when a confirmation of crush asphyxia after tractor side rollover is required by judicial authorities. Forensic investigations in such cases must involve the meticulous analysis of the death scene and the mechanical characteristics of the vehicle together with accurate postmortem and toxicological examination.

  1. The value of serum pro-oxidant/antioxidant balance in the assessment of asphyxia in term neonates.

    PubMed

    Boskabadi, Hassan; Zakerihamidi, Maryam; Heidarzadeh, Mohammad; Avan, Amir; Ghayour-Mobarhan, Majid; Ferns, Gordon A

    2017-07-01

    Asphyxia is a major cause of disabilities in term-born infants. Here we have explored the value in HIE (hypoxic-ischemic-encephalopathy) of using a combination of serum pro-oxidant/antioxidant balance (PAB) assay for predicting the prognosis of asphyxia. Ninety term neonates with asphyxia were enrolled and followed up for two years. Serum PAB, demographic/biochemical characteristics of mothers, and their neonates were determined. The Denver II test was used to assess outcomes. Of the 90 asphyxiated neonates, 47 (52.2%) had a normal outcome and 43 babies (47.8%) had abnormal outcome. Serum PAB levels in neonates with normal and abnormal outcomes were 17.1 ± 9.23 and 48.27 ± 41.30 HK, respectively. A combination of HIE intensity and PAB, compared to other indicators, had a higher predictive-value (95.2%) for outcomes in asphyxiated babies. We demonstrate that PAB in combination with HIE grade may have a better predictive value for the prognosis of asphyxiated babies and predicting future neurologic problems in asphyxiated term infants.

  2. Perinatal asphyxia: a review from a metabolomics perspective.

    PubMed

    Fattuoni, Claudia; Palmas, Francesco; Noto, Antonio; Fanos, Vassilios; Barberini, Luigi

    2015-04-17

    Perinatal asphyxia is defined as an oxygen deprivation that occurs around the time of birth, and may be caused by several perinatal events. This medical condition affects some four million neonates worldwide per year, causing the death of one million subjects. In most cases, infants successfully recover from hypoxia episodes; however, some patients may develop HIE, leading to permanent neurological conditions or impairment of different organs and systems. Given its multifactor dependency, the timing, severity and outcome of this disease, mainly assessed through Sarnat staging, are of difficult evaluation. Moreover, although the latest newborn resuscitation guideline suggests the use of a 21% oxygen concentration or room air, such an approach is still under debate. Therefore, the pathological mechanism is still not clear and a golden standard treatment has yet to be defined. In this context, metabolomics, a new discipline that has described important perinatal issues over the last years, proved to be a useful tool for the monitoring, the assessment, and the identification of potential biomarkers associated with asphyxia events. This review covers metabolomics research on perinatal asphyxia condition, examining in detail the studies reported both on animal and human models.

  3. Compression asphyxia in upright suspended position.

    PubMed

    Tumram, Nilesh Keshav; Ambade, Vipul Namdeorao; Dixit, Pradeep Gangadhar

    2014-06-01

    In compression asphyxia, the respiration is prevented by external pressure on the body. It is usually due to external force compressing the trunk due to heavy weight over chest/abdomen and is associated with internal injuries. In the present case, the victim was suspended in an upright position owing to wedging of the chest and the abdomen in the gap between 2 parallel bridges undergoing construction. There was neither any heavy weight over the body, nor was any external force applied over the trunk. Moreover, there was neither any severe blunt force injury nor any significant pathological natural disease contributing to the cause of death. The body was wedged in the gap between 2 static hard surfaces. The victim was unable to extricate himself from the position owing to impairment of cognitive responses and coordination due to influence of alcohol. The victim died as a result of "static" asphyxia due to compression of the chest and the abdomen. Compression asphyxia in upright suspended position under this circumstance is very rare and not reported previously to the best of our knowledge.

  4. Increased Brain Perfusion Persists over the First Month of Life in Term Asphyxiated Newborns Treated with Hypothermia: Does it Reflect Activated Angiogenesis?

    PubMed

    Shaikh, Henna; Lechpammer, Mirna; Jensen, Frances E; Warfield, Simon K; Hansen, Anne H; Kosaras, Bela; Shevell, Michael; Wintermark, Pia

    2015-06-01

    Many asphyxiated newborns still develop brain injury despite hypothermia therapy. The development of brain injury in these newborns has been related partly to brain perfusion abnormalities. The purposes of this study were to assess brain hyperperfusion over the first month of life in term asphyxiated newborns and to search for some histopathological clues indicating whether this hyperperfusion may be related to activated angiogenesis following asphyxia. In this prospective cohort study, regional cerebral blood flow was measured in term asphyxiated newborns treated with hypothermia around day 10 of life and around 1 month of life using magnetic resonance imaging (MRI) and arterial spin labeling. A total of 32 MRI scans were obtained from 24 term newborns. Asphyxiated newborns treated with hypothermia displayed an increased cerebral blood flow in the injured brain areas around day 10 of life and up to 1 month of life. In addition, we looked at the histopathological clues in a human asphyxiated newborn and in a rat model of neonatal encephalopathy. Vascular endothelial growth factor (VEGF) was expressed in the injured brain of an asphyxiated newborn treated with hypothermia in the first days of life and of rat pups 24-48 h after the hypoxic-ischemic event, and the endothelial cell count increased in the injured cortex of the pups 7 and 11 days after hypoxia-ischemia. Our data showed that the hyperperfusion measured by imaging persisted in the injured areas up to 1 month of life and that angiogenesis was activated in the injured brain of asphyxiated newborns.

  5. The effect of resuscitation in 100% oxygen on brain injury in a newborn rat model of severe hypoxic-ischaemic encephalopathy.

    PubMed

    Smit, Elisa; Liu, Xun; Gill, Hannah; Jary, Sally; Wood, Thomas; Thoresen, Marianne

    2015-11-01

    Infants with birth asphyxia frequently require resuscitation. Current guidance is to start newborn resuscitation in 21% oxygen. However, infants with severe hypoxia-ischaemia may require prolonged resuscitation with oxygen. To date, no study has looked at the effect of resuscitation in 100% oxygen following a severe hypoxic-ischaemic insult. Postnatal day 7 Wistar rats underwent a severe hypoxic-ischaemic insult (modified Vannucci unilateral brain injury model) followed by immediate resuscitation in either 21% or 100% oxygen for 30 min. Seven days following the insult, negative geotaxis testing was performed in survivors, and the brains were harvested. Relative ipsilateral cortical and hippocampal area loss was assessed histologically. Total area loss in the affected hemisphere and area loss within the hippocampus did not significantly differ between the two groups. The same results were seen for short-term neurological assessment. No difference was seen in weight gain between pups resuscitated in 21% and 100% oxygen. Resuscitation in 100% oxygen does not cause a deleterious effect on brain injury following a severe hypoxic-ischaemic insult in a rat model of hypoxia-ischaemia. Further work investigating the effects of resuscitation in 100% oxygen is warranted, especially for newborn infants with severe hypoxic-ischaemic encephalopathy. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  6. Diagnosis of Vein of Galen aneurysmal malformation using fetal MRI.

    PubMed

    Zhou, Li-Xia; Dong, Su-Zhen; Zhang, Ming-Feng

    2017-11-01

    To present three fetal vein of Galen aneurysmal malformations (VGAMs), which were diagnosed through magnetic resonance imaging (MRI), and highlight these cardiovascular findings. We retrospectively reviewed three fetuses with VGAM at 31, 32, and 33 weeks of gestation. Feeding arteries and draining veins were observed by MRI. Secondary changes in the brain and high-output heart failure caused by high blood flow in the lesion were evaluated. Two fetuses were born, and neonatal MRI was performed. One fetus was terminated. A characteristic dilated structure in the midline of the brain presented in each fetus. The arteriovenous fistula led to anatomical brain changes such as in the hydrocephalus, dilated feeding vessels (one or more), jugular vein, and/or superior vena cava. Substantial brachiocephalic vessel dilation was observed in two fetuses. Following parturition, one baby had neonatal asphyxia and sinus thrombosis, and MRI revealed hypoxic-ischemic encephalopathy. Cardiomegaly was detected in all three cases. With a large field of view, fetal MRI can observe brain VGAM, as well as the heart and affected large vessels. It can determine hydrocephalus, ischemia, intracranial hemorrhage, and sinus thrombosis. Providing such information on the infant's entire body can aid clinicians in determining the most appropriate treatment. 4 J. Magn. Reson. Imaging 2017;46:1535-1539. © 2016 International Society for Magnetic Resonance in Medicine.

  7. Oxygen-Glucose Deprivation (OGD) Modulates the Unfolded Protein Response (UPR) and Inflicts Autophagy in a PC12 Hypoxia Cell Line Model.

    PubMed

    Vavilis, Theofanis; Delivanoglou, Nikoleta; Aggelidou, Eleni; Stamoula, Eleni; Mellidis, Kyriakos; Kaidoglou, Aikaterini; Cheva, Angeliki; Pourzitaki, Chryssa; Chatzimeletiou, Katerina; Lazou, Antigone; Albani, Maria; Kritis, Aristeidis

    2016-07-01

    Hypoxia is the lack of sufficient oxygenation of tissue, imposing severe stress upon cells. It is a major feature of many pathological conditions such as stroke, traumatic brain injury, cerebral hemorrhage, perinatal asphyxia and can lead to cell death due to energy depletion and increased free radical generation. The present study investigates the effect of hypoxia on the unfolded protein response of the cell (UPR), utilizing a 16-h oxygen-glucose deprivation protocol (OGD) in a PC12 cell line model. Expression of glucose-regulated protein 78 (GRP78) and glucose-regulated protein 94 (GRP94), key players of the UPR, was studied along with the expression of glucose-regulated protein 75 (GRP75), heat shock cognate 70 (HSC70), and glyceraldehyde 3-phosphate dehydrogenase, all with respect to the cell death mechanism(s). Cells subjected to OGD displayed upregulation of GRP78 and GRP94 and concurrent downregulation of GRP75. These findings were accompanied with minimal apoptotic cell death and induction of autophagy. The above observation warrants further investigation to elucidate whether autophagy acts as a pro-survival mechanism that upon severe and prolonged hypoxia acts as a concerted cell response leading to cell death. In our OGD model, hypoxia modulates UPR and induces autophagy.

  8. Two-dimensional finite element modelling of the neonatal head.

    PubMed

    Gibson, A; Bayford, R H; Holder, D S

    2000-02-01

    Electrical impedance tomography (EIT) could allow the early diagnosis of infant brain injury following birth asphyxia. The purpose of this work was to determine the effect of variations in skull, scalp or cerebrospinal fluid (CSF) resistivity, as these vary in clinical conditions and could degrade image quality. These factors were investigated using finite element models of the adult and neonatal head. The results suggest that there is a wide range over which the resistivity of the neonatal skull has little effect on the sensitivity to a central impedance change. The scalp and CSF appear to shunt current away from the brain; when their resistivity was decreased from normal values, this shunting effect increased and caused a decrease in sensitivity to a central resistance change. The resistivity of neonatal skull has not, to our knowledge, been directly measured and will anyway vary within and between individuals; this work suggests that EIT will be relatively insensitive to variations in neonatal skull impedance.

  9. Neonatal hypoglycemia: A wide range of electroclinical manifestations and seizure outcomes.

    PubMed

    Arhan, Ebru; Öztürk, Zeynep; Serdaroğlu, Ayşe; Aydın, Kürşad; Hirfanoğlu, Tuğba; Akbaş, Yılmaz

    2017-09-01

    We examined the various types of epilepsy in children with neonatal hypoglycemia in order to define electroclinical and prognostic features of these patients. We retrospectively reviewed the medical records of patients with a history of symptomatic neonatal hypoglycaemia who have been followed at Gazi University Hospital Pediatric Neurology Department between 2006 and 2015. Patients with perinatal asphyxia were excluded. Details of each patient's perinatal history, neurological outcome, epilepsy details, seizure outcome and EEG and brain MRI findings were reviewed. Fourty five patients (range 6 mo-15 y) with a history of symptomatic neonatal hypoglycaemia were included the study. Epilepsy developed in 36 patients and 23 of them had intractable epilepsy. All patients had occipital brain injury. We observed that most of the patients, either manifesting focal or generalized seizures, further develop intractable epilepsy. This finding establishes neonatal hypoglycemia as a possible cause to be considered in any case of intractable epilepsy. Copyright © 2017 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  10. 13C NMR metabolomic evaluation of immediate and delayed mild hypothermia in cerebrocortical slices after oxygen-glucose deprivation.

    PubMed

    Liu, Jia; Segal, Mark R; Kelly, Mark J S; Pelton, Jeffrey G; Kim, Myungwon; James, Thomas L; Litt, Lawrence

    2013-11-01

    Mild brain hypothermia (32°-34°C) after human neonatal asphyxia improves neurodevelopmental outcomes. Astrocytes but not neurons have pyruvate carboxylase and an acetate uptake transporter. C nuclear magnetic resonance spectroscopy of rodent brain extracts after administering [1-C]glucose and [1,2-C]acetate can distinguish metabolic differences between glia and neurons, and tricarboxylic acid cycle entry via pyruvate dehydrogenase and pyruvate carboxylase. Neonatal rat cerebrocortical slices receiving a C-acetate/glucose mixture underwent a 45-min asphyxia simulation via oxygen-glucose-deprivation followed by 6 h of recovery. Protocols in three groups of N=3 experiments were identical except for temperature management. The three temperature groups were: normothermia (37°C), hypothermia (32°C for 3.75 h beginning at oxygen--glucose deprivation start), and delayed hypothermia (32°C for 3.75 h, beginning 15 min after oxygen-glucose deprivation start). Multivariate analysis of nuclear magnetic resonance metabolite quantifications included principal component analyses and the L1-penalized regularized regression algorithm known as the least absolute shrinkage and selection operator. The most significant metabolite difference (P<0.0056) was [2-C]glutamine's higher final/control ratio for the hypothermia group (1.75±0.12) compared with ratios for the delayed (1.12±0.12) and normothermia group (0.94±0.06), implying a higher pyruvate carboxylase/pyruvate dehydrogenase ratio for glutamine formation. Least Absolute Shrinkage and Selection Operator found the most important metabolites associated with adenosine triphosphate preservation: [3,4-C]glutamate-produced via pyruvate dehydrogenase entry, [2-C]taurine-an important osmolyte and antioxidant, and phosphocreatine. Final principal component analyses scores plots suggested separate cluster formation for the hypothermia group, but with insufficient data for statistical significance. Starting mild hypothermia simultaneously with oxygen-glucose deprivation, compared with delayed starting or no hypothermia, has higher pyruvate carboxylase throughput, suggesting that better glial integrity is one important neuroprotection mechanism of earlier hypothermia.

  11. Resuscitation with supplementary oxygen induces oxidative injury in the cerebral cortex.

    PubMed

    Solberg, Rønnaug; Longini, Mariangela; Proietti, Fabrizio; Vezzosi, Piero; Saugstad, Ola Didrik; Buonocore, Giuseppe

    2012-09-01

    Isoprostanes, neuroprostanes, isofurans, and neurofurans have all become attractive biomarkers of oxidative damage and lipid peroxidation in brain tissue. Asphyxia and subsequent reoxygenation cause a burst of oxygen free radicals. Isoprostanes and isofurans are generated by free radical attacks of esterified arachidonic acid. Neuroprostanes and neurofurans are derived from the peroxidation of docosahexanoic acid, which is abundant in neurons and could therefore more selectively represent oxidative brain injury. Newborn piglets (age 12-36 h) underwent hypoxia until the base excess reached -20 mmol/L or the mean arterial blood pressure dropped below 15 mm Hg. They were randomly assigned to receive resuscitation with 21, 40, or 100% oxygen for 30 min and then ventilation with air. The levels of isoprostanes, isofurans, neuroprostanes, and neurofurans were determined in brain tissue (ng/g) isolated from the prefrontal cortex using gas chromatography-mass spectrometry (GC/MS) with negative ion chemical ionization (NICI) techniques. A control group underwent the same procedures and observations but was not submitted to hypoxia or hyperoxia. Hypoxia and reoxygenation significantly increased the levels of isoprostanes, isofurans, neuroprostanes, and neurofurans in the cerebral cortex. Nine hours after resuscitation with 100% oxygen for 30 min, there was nearly a 4-fold increase in the levels of isoprostanes and isofurans compared to the control group (P=0.007 and P=0.001) and more than a 2-fold increase in neuroprostane levels (P=0.002). The levels of neuroprostanes and neurofurans were significantly higher in the piglets that were resuscitated with supplementary oxygen (40 and 100%) compared to the group treated with air (21%). The significance levels of the observed differences in neuroprostanes for the 21% vs 40% comparison and the 21% vs 100% comparison were P<0.001 and P=0.001, respectively. For neurofurans, the P values of the 21% vs 40% comparison and the 21% vs 100% comparison were P=0.036 and P=0.025, respectively. Supplementary oxygen used for the resuscitation of newborns increases lipid peroxidation in brain cortical neurons, a result that is indicative of oxidative brain damage. These novel findings provide new knowledge regarding the relationships between oxidative brain injury and resuscitation with oxygen. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. The Roles of Bacteria and TLR4 in Rat and Murine Models of Necrotizing Enterocolitis1

    PubMed Central

    Jilling, Tamas; Simon, Dyan; Lu, Jing; Meng, Fan Jing; Li, Dan; Schy, Robert; Thomson, Richard B.; Soliman, Antoine; Arditi, Moshe; Caplan, Michael S.

    2009-01-01

    Bacteria are thought to contribute to the pathogenesis of necrotizing enterocolitis (NEC), but it is unknown whether their interaction with the epithelium can participate in the initiation of mucosal injury or they can act only following translocation across a damaged intestinal barrier. Our aims were to determine whether bacteria and intestinal epithelial TLR4 play roles in a well-established neonatal rat model and a novel neonatal murine model of NEC. Neonatal rats, C57BL/6J, C3HeB/FeJ (TLR4 wild type), and C3H/HeJ (TLR4 mutant) mice were delivered by Cesarean section and were subjected to formula feeding and cold asphyxia stress or were delivered naturally and were mother-fed. NEC incidence was evaluated by histological scoring, and gene expression was quantified using quantitative real-time PCR from cDNA generated from intestinal total RNA or from RNA obtained by laser capture microdissection. Spontaneous feeding catheter colonization or supplementation of cultured bacterial isolates to formula increased the incidence of experimental NEC. During the first 72 h of life, i.e., the time frame of NEC development in this model, intestinal TLR4 mRNA gradually decreases in mother-fed but increases in formula feeding and cold asphyxia stress, correlating with induced inducible NO synthase. TLR4, inducible NO synthase, and inflammatory cytokine induction occurred in the intestinal epithelium but not in the submucosa. NEC incidence was diminished in C3H/HeJ mice, compared with C3HeB/FeJ mice. In summary, bacteria and TLR4 play significant roles in experimental NEC, likely via an interaction of intraluminal bacteria and aberrantly overexpressed TLR4 in enterocytes. PMID:16920968

  13. Effects of CO2/HCO3- in perilymph on the endocochlear potential in guinea pigs.

    PubMed

    Nimura, Yoshitsugu; Mori, Yoshiaki; Inui, Takaki; Sohma, Yoshiro; Takenaka, Hiroshi; Kubota, Takahiro

    2007-02-01

    The effect of CO(2)/HCO(3)(-) on the endocochlear potential (EP) was examined by using both ion-selective and conventional microelectrodes and the endolymphatic or perilymphatic perfusion technique. The main findings were as follows: (i) A decrease in the EP from approximately +75 to approximately +35 mV was produced by perilymphatic perfusion with CO(2)/HCO(3)(-)-free solution, which decrease was accompanied by an increase in the endolymphatic pH (DeltapH(e), approximately 0.4). (ii) Perilymphatic perfusion with a solution containing 20 mM NH(4)Cl produced a decrease in the EP (DeltaEP, approximately 20 mV) with an increase in the pH(e) (DeltapH(e), approximately 0.2), whereas switching the perfusion solution from the NH(4)Cl solution to a 5% CO(2)/25 mM HCO(3)(-) solution produced a gradual increase in the EP to the control level with the concomitant recovery of the pH(e). (iii) The perfusion with a solution of high or low HCO(3)(-) with a constant CO(2) level within 10 min produced no significant changes in the EP. (iv) Perfusion of the perilymph with 10 microg/ml nifedipine suppressed the transient asphyxia-induced decrease in EP slightly, but not significantly. (v) By contrast, the administration of 1 microg/ml nifedipine via the endolymph inhibited significantly the reduction in the EP induced by transient asphyxia or perilymphatic perfusion with CO(2)/HCO(3)(-)-free or 20 mM NH(4)Cl solution. These findings suggest that the effect of CO(2) removal from perilymphatic perfusion solution on the EP may be mediated by an increase in cytosolic Ca(2+) concentration induced by an elevation of cytosolic pH in endolymphatic surface cells.

  14. Physiological role of L-type Ca2+ channels in marginal cells in the stria vascularis of guinea pigs.

    PubMed

    Inui, Takaki; Mori, Yoshiaki; Watanabe, Masahito; Takamaki, Atsuko; Yamaji, Junko; Sohma, Yoshiro; Yoshida, Ryotaro; Takenaka, Hiroshi; Kubota, Takahiro

    2007-10-01

    Using immunohistochemical and electrophysiological methods, we investigated the role of L-type Ca(2+) channels in the regulation of the endocochlear potential (EP) of the endolymphatic surface cells (ESC) of the guinea pig stria vascularis. The following findings were made: (1) Administration of 30 microg/ml nifedipine via a vertebral artery significantly suppressed the transient asphyxia-induced decrease in the EP (TAID) and the transient asphyxia-induced increase in the Ca(2+), referred to as TAIICa, concentration in the endolymph ([Ca](e)). (2) The endolymphatic administration of 1 microg/ml nifedipine significantly inhibited the TAID as well as the TAIICa. The endolymphatic administration of nifedipine (0.001-10 microg/ml) inhibited the TAID in a dose-dependent manner. (3) The endolymphatic administration of (+)-Bay K8644, an L-type Ca(2+) channel closer, significantly inhibited the TAID, whereas (-)-Bay K8644, an L-type Ca(2+) channel opener, caused a large decrease in the EP from approximately +75 mV to approximately +20 mV at 10 min after the endolymphatic administration. (4) By means of immunohistochemistry, a positive staining reaction with L-type Ca(2+) channels was detected in the marginal cells of the stria vascularis. (5) Under the high [Ca](e) condition, we examined the mechanism of the TAIICa and hypothesized that the TAIICa might have been caused by the decrease in the EP through a shunt pathway in the ESC. (6) The administration of nifedipine to the endolymph significantly inhibited the Ba(2+)-induced decrease in the EP. These findings support the view that L-type Ca(2+) channels in the marginal cells regulate the EP, but not directly the TAIICa.

  15. Nitric oxide system alteration at spinal cord as a result of perinatal asphyxia is involved in behavioral disabilities: hypothermia as preventive treatment.

    PubMed

    Dorfman, Verónica Berta; Rey-Funes, Manuel; Bayona, Julio César; López, Ester María; Coirini, Héctor; Loidl, César Fabián

    2009-04-01

    Perinatal asphyxia (PA) is able to induce sequelae such as spinal spasticity. Previously, we demonstrated hypothermia as a neuroprotective treatment against cell degeneration triggered by increased nitric oxide (NO) release. Because spinal motoneurons are implicated in spasticity, our aim was to analyze the involvement of NO system at cervical and lumbar motoneurons after PA as well as the application of hypothermia as treatment. PA was performed by immersion of both uterine horns containing full-term fetuses in a water bath at 37 degrees C for 19 or 20 min (PA19 or PA20) or at 15 degrees C for 20 min (hypothermia during PA-HYP). Some randomly chosen PA20 rats were immediately exposed for 5 min over grain ice (hypothermia after PA-HPA). Full-term vaginally delivered rats were used as control (CTL). We analyzed NO synthase (NOS) activity, expression and localization by nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d) reactivity, inducible and neuronal NOS (iNOS and nNOS) by immunohistochemistry, and protein nitrotyrosilation state. We observed an increased NOS activity at cervical spinal cord of 60-day-old PA20 rats, with increased NADPH-d, iNOS, and nitrotyrosine expression in cervical motoneurons and increased NADPH-d in neurons of layer X. Lumbar neurons were not altered. Hypothermia was able to maintain CTL values. Also, we observed decreased forelimb motor potency in the PA20 group, which could be attributed to changes at cervical motoneurons. This study shows that PA can induce spasticity produced by alterations in the NO system of the cervical spinal cord. Moreover, this situation can be prevented by perinatal hypothermia.

  16. [Death by erotic asphyxiation (breath control play)].

    PubMed

    Madea, Burkhard; Hagemeier, Lars

    2013-01-01

    Most cases of sexual asphyxia are due to autoerotic activity. Asphyxia due to oronasal occlusion is mostly seen in very old or very young victims. Oronasal occlusion is also used in sadomasochistic sexual practices like "breath control play" or "erotic asphyxiation". If life saving time limitations of oronasal occlusion are not observed, conviction for homicide caused by negligence is possible.

  17. Interaction Pattern and Developmental Outcome of Infants with Severe Asphyxia: A Longitudinal Study of the First Years of Life.

    ERIC Educational Resources Information Center

    Campbell, Philippa H.; And Others

    1989-01-01

    Seven full-term infants with severe encephalopathy following perinatal asphyxia were followed longitudinally to two years of age to determine health and developmental outcome and to investigate mother-infant interaction patterns over time. Six infants demonstrated delayed development; five were diagnosed with cerebral palsy. Mother-infant…

  18. An overhung mute suspect died during restraint - Is this a case of positional asphyxia?

    PubMed

    Chen, Long; Pan, Hui; Ma, Jianlong; Lv, Yehui; Zhang, Heng; Li, Wencan

    2015-07-01

    Positional asphyxia is a specific type of suffocation that results from the body being forced and fixed in a particular position causing death by suffocation. The body exhibits obvious general characteristics of death by suffocation. We report a case of custody death that may have been caused by positional asphyxia. The mute criminal suspect died in a detention room after arrest. The suspect was found unconscious and died following placement in a hanging position for 8 h. We reviewed the case with respect to the autopsy findings, pathological changes, and specific scene where the death occurred as well as the circumstantial correlation of the investigation. Copyright © 2015 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  19. Adenoid Cystic Carcinoma of the Trachea Resulting in Fatal Asphyxia.

    PubMed

    Huston, Butch; Froloff, Victor; Mills, Kelly; McGee, Michael

    2017-01-01

    Primary malignant tumors of the trachea are uncommon. The authors report a case of a 72-year-old female who died from asphyxia due to an undiagnosed obstructing adenoid cystic carcinoma of the trachea. The decedent became unresponsive while eating cereal and was pronounced upon arrival at the local hospital. The autopsy revealed a near occlusive tumor mass just superior to the bifurcation of the distal trachea. There was no evidence of aspiration. The death was the result of asphyxia due to obstruction of the trachea by an adenoid cystic carcinoma. This case demonstrates that an obstructive tumor mass may remain undiagnosed until an obstructive episode results in a sudden death. © 2016 American Academy of Forensic Sciences.

  20. Perinatal Asphyxia Reduces the Number of Reelin Neurons in the Prelimbic Cortex and Deteriorates Social Interaction in Rats.

    PubMed

    Vázquez-Borsetti, Pablo; Peña, Elena; Rico, Catalina; Noto, Mariana; Miller, Nathalie; Cohon, Diego; Acosta, Juan Manuel; Ibarra, Mariano; Loidl, Fabián C

    2016-01-01

    Obstetrical complications of perinatal asphyxia (PA) can often induce lesions that, in the long-term, manifest as schizophrenia. A deterioration of the medial prefrontal cortex (mPFC) and a reduction in the number of GABAergic neurons are commonly observed in the pathophysiology of schizophrenia. In this study, we investigated the link between PA, reelin and calbindin diminution and psychiatric diseases that involve social interaction deficits. This was achieved by observing the effect of 19 min of asphyxia on both subpopulations of GABAergic neurons. PA was produced by water immersion of fetus-containing uterus horns removed by cesarean section from ready-to-deliver rats. PA generated a significant and specific decrease in the number of reelin-secreting neurons in mPFC layer VI [F(2, 6) = 8.716, p = 0.016; PA vs. vaginal controls (VC), p = 0.03, and PA vs. cesarean controls (CC), p = 0.022]. This reduction reached approximately 60% on average. Changes in the percentage of reelin neurons including all the cortex layers did not achieve a significant outcome but a trend: CC % 10.61 ± 1.34; PA % 8.64 ± 1.71 [F(2, 6) = 1.299, p = 0.33]. In the case of calbindin, there was a significant decrease in cell density in the PA group [2-way repeated-measures ANOVA, F(1, 4) = 13.03, p = 0.0226]. The multiple-comparisons test showed significant differences in the superficial aspect of layer II (Sidak test for multiple comparisons CC vs. PA at 200 µm: p = 0.003). A small, but significant difference could be seen when the distance from the pia mater to the start of layer VI was analyzed (CC mean ± SEM = 768.9 ± 8.382; PA mean ± SEM = 669.3 ± 17.75; p = 0.036). Rats exposed to PA showed deterioration in social interactions, which manifested as a decrease in play soliciting. In this model, which involved severe/moderate asphyxia, we did not find significant changes in locomotive activity or anxiety indicators in the open field task. The loss of reelin neurons could be conducive to the shrinkage of the prelimbic cortex through the reduction in neuropil and the deterioration of the function of this structure. © 2016 S. Karger AG, Basel.

  1. Association between Brain and Kidney Near-Infrared Spectroscopy and Early Postresuscitation Mortality in Asphyxiated Newborn Piglets.

    PubMed

    Solevåg, Anne Lee; Schmölzer, Georg M; Nakstad, Britt; Saugstad, Ola Didrik; Cheung, Po-Yin

    2017-01-01

    Early outcome predictors after delivery room cardiopulmonary resuscitation (CPR) of asphyxiated newborns are needed. To investigate if cerebral (rScO2) and renal (rSrO2) tissue oxygen saturation 30 min after return of spontaneous circulation (ROSC) are different between surviving versus nonsurviving piglets with asphyxia-induced cardiac arrest and CPR. Further, to investigate the relationship of rScO2 and rSrO2 to cardiac output (CO), blood pressure (BP), and biochemical variables 30 min and 4 h after ROSC. Anesthetized, mechanically ventilated piglets (1-3 days, 1.7-2.4 kg) were used. rScO2, rSrO2, SpO2, right common carotid artery flow, and arterial BP were measured continuously. CO was measured with echocardiography. The piglets were asphyxiated until cardiac arrest and resuscitated. Piglets that survived 4 h after ROSC (n = 12) were compared with piglets that died before planned euthanasia at 4 h (n = 13). Left ventricular, and kidney and brain tissue lactate were analyzed. Correlations between variables were assessed. Thirty minutes after ROSC, median rSrO2 (43% [n = 10] vs. 25% [n = 2], p = 0.003) but not rScO2 (46% [41-55] [n = 10] vs. 40% [22-45] [n = 5], p = 0.08) was higher in survivors than in nonsurvivors. Arterial lactate was negatively correlated and pH positively correlated with rScO2 and rSrO2. Left ventricular, but not kidney or brain lactate was negatively correlated with rScO2 and rSrO2. There was no correlation between CO or BP and rScO2 or rSrO2. Despite satisfactory CO and BP vital organ oxygenation can be poor. Tissue oxygen saturation, pH, and lactate, as measures of anaerobic metabolism, may reflect vital organ oxygenation and outcome. © 2017 S. Karger AG, Basel.

  2. Risk Factors for Birth Asphyxia in an Urban Health Facility in Cameroon

    PubMed Central

    CHIABI, Andreas; NGUEFACK, Seraphin; MAH, Evelyne; NODEM, Sostenne; MBUAGBAW, Lawrence; MBONDA, Elie; TCHOKOTEU, Pierre-Fernand; DOH FRCOG, Anderson

    2013-01-01

    Objective The World Health Organization (WHO) estimates that 4 million children are born with asphyxia every year, of which 1 million die and an equal number survive with severe neurologic sequelae. The purpose of this study was to identify the risk factors of birth asphyxia and the hospital outcome of affected neonates. Materials & Methods This study was a prospective case-control study on term neonates in a tertiary hospital in Yaounde, with an Apgar score of < 7 at the 5th minute as the case group, that were matched with neonates with an Apgar score of ≥ 7 at the 5th minute as control group. Statistical analysis of relevant variables of the mother and neonates was carried out to determine the significant risk factors. Results The prevalence of neonatal asphyxia was 80.5 per 1000 live births. Statistically significant risk factors were the single matrimonial status, place of antenatal visits, malaria, pre-eclampsia/eclampsia, prolonged labor, arrest of labour, prolonged rupture of membranes, and non-cephalic presentation. Hospital mortality was 6.7%, that 12.2% of them had neurologic deficits and/or abnormal transfontanellar ultrasound/electroencephalogram on discharge, and 81.1% had a satisfactory outcome. Conclusion The incidence of birth asphyxia in this study was 80.5% per1000 live birth with a mortality of 6.7%. Antepartum risk factors were: place of antenatal visit, malaria during pregnancy, and preeclampsia/eclampsia. Whereas prolonged labor, stationary labor, and term prolonged rupture of membranes were intrapartum risk faktors. Preventive measures during prenatal visits through informing and communicating with pregnant women should be reinforced. PMID:24665306

  3. Histological findings and immunohistochemical surfactant protein A (SP-A) expression in asphyxia: its application in the diagnosis of drowning.

    PubMed

    Pérez-Cárceles, M D; Sibón, A; Vizcaya, M A; Osuna, E; Gómez-Zapata, M; Luna, A; Martínez-Díaz, F

    2008-09-01

    The histopathological alterations that permit the diagnosis of death by asphyxia are very unspecific, although pulmonary alterations are of great importance in this respect. The postmortem diagnosis of drowning, particularly, continues to be one of the most difficult in forensic pathology. The aim of this study is to jointly evaluate microscopic findings and immunohistochemical surfactant protein A (SP-A) expression in the upper and lower lobes of lungs in different causes of death, and their possible application to the diagnosis of drowning. We studied 120 cadavers from subjects with a mean age of 48.73 years (SD 19.45; range 2-86 years), and with a mean post-mortem interval of 30 hours (SD 39.59; range 3-216 hours). According to the scene, cause and circumstances of death, and autopsy findings, cases were classified into groups as follows: (a) drowning (n=47); (b) other asphyxia (n=44) and (c) other causes (n=29). In the upper and lower lobes of lungs, histological studies of H&E staining and immunohistochemical surfactant protein A expression were made. The presence and severity of congestion, haemorrhage and oedema, together with immunohistochemical SP-A expression, may have a diagnostic value in differentiating asphyxia and drowning from other causes of death, and drowning from other types of asphyxia. Our findings suggest that both lobes should be investigated to establish the diagnosis, although the findings in the upper lobe might be the most important for differentiating the exact cause of death.

  4. Risk factors for birth asphyxia in an urban health facility in cameroon.

    PubMed

    Chiabi, Andreas; Nguefack, Seraphin; Mah, Evelyne; Nodem, Sostenne; Mbuagbaw, Lawrence; Mbonda, Elie; Tchokoteu, Pierre-Fernand; Doh Frcog, Anderson

    2013-01-01

    The World Health Organization (WHO) estimates that 4 million children are born with asphyxia every year, of which 1 million die and an equal number survive with severe neurologic sequelae. The purpose of this study was to identify the risk factors of birth asphyxia and the hospital outcome of affected neonates. This study was a prospective case-control study on term neonates in a tertiary hospital in Yaounde, with an Apgar score of < 7 at the 5th minute as the case group, that were matched with neonates with an Apgar score of ≥ 7 at the 5th minute as control group. Statistical analysis of relevant variables of the mother and neonates was carried out to determine the significant risk factors. The prevalence of neonatal asphyxia was 80.5 per 1000 live births. Statistically significant risk factors were the single matrimonial status, place of antenatal visits, malaria, pre-eclampsia/eclampsia, prolonged labor, arrest of labour, prolonged rupture of membranes, and non-cephalic presentation. Hospital mortality was 6.7%, that 12.2% of them had neurologic deficits and/or abnormal transfontanellar ultrasound/electroencephalogram on discharge, and 81.1% had a satisfactory outcome. The incidence of birth asphyxia in this study was 80.5% per1000 live birth with a mortality of 6.7%. Antepartum risk factors were: place of antenatal visit, malaria during pregnancy, and preeclampsia/eclampsia. Whereas prolonged labor, stationary labor, and term prolonged rupture of membranes were intrapartum risk faktors. Preventive measures during prenatal visits through informing and communicating with pregnant women should be reinforced.

  5. Think twice: misleading food-induced respiratory symptoms in children with food allergy.

    PubMed

    Ahrens, B; Mehl, A; Lau, S; Kroh, L; Magdorf, K; Wahn, U; Beyer, K; Niggemann, B

    2014-03-01

    Reported food-related symptoms of patients may sometimes be misleading. A correct delineation of food-induced symptoms is often difficult and various differential diagnoses have to be considered. We report on two cases of food-induced, predominantly respiratory symptoms (in one case life-threatening) in children with food allergy. First, a two-year-old boy with no history of allergies and suspected foreign body aspiration which was finally diagnosed as an anaphylactic reaction to fish, and secondly a six-year-old girl with multiple food allergies and allergic asthma who during an electively performed oral food challenge developed severe respiratory distress, drop in blood pressure, and asphyxia not due to an anaphylactic reaction but due to choking on an unnoticed sweet. These two cases represent challenging, life-threatening symptom constellations involving food-induced reactions in food allergic children, reminding us to question first impressions. © 2013 Wiley Periodicals, Inc.

  6. [Latency problems with smothering using soft cover].

    PubMed

    Wirth, Ingo; Strauch, Hansjürg; Schmeling, Andreas

    2007-01-01

    Smothering by covering the respiratory orifices with soft material is one of the rarely established forms of mechanically induced death by asphyxia. An important reason of latency is that this kind of homicide leaves almost no traces. The two described cases from the autopsy material of the Institute of Legal Medicine in Berlin (CCM) show the limits of medico-legal interpretation and the resulting special responsibility of the investigator. In the first case the defendant denied the offence and was acquitted of the charge, while in the second case the self-confessed offender was convicted.

  7. Developmental Research in Space: Predicting Adult Neurobehavioral Phenotypes via Metabolomic Imaging

    NASA Technical Reports Server (NTRS)

    Schorn, Julia M.; Moyer, Eric L.; Lowe, Moniece M.; Morgan, Jonathan; Tulbert, Christina D.; Olson, John; Olson, John; Horita, David A.; Kleven, Gale A.

    2017-01-01

    As human habitation and eventual colonization of space becomes an inevitable reality, there is a necessity to understand how organisms develop over the life span in the space environment. Microgravity, altered CO2, radiation and psychological stress are some of the key factors that could affect mammalian reproduction and development in space, however there is a paucity of information on this topic. Here we combine early (neonatal) in vivo spectroscopic imaging with an adult emotionality assay following a common obstetric complication (prenatal asphyxia) likely to occur during gestation in space. The neural metabolome is sensitive to alteration by degenerative changes and developmental disorders, thus we hypothesized that that early neonatal neurometabolite profiles can predict adult response to novelty. Late gestation fetal rats were exposed to moderate asphyxia by occluding the blood supply feeding one of the rats pair uterine horns for 15min. Blood supply to the opposite horn was not occluded (within-litter cesarean control). Further comparisons were made with vaginal (natural) birth controls. In one-week old neonates, we measured neurometabolites in three brain areas (i.e., striatum, prefrontal cortex, and hippocampus). Adult perinatally-asphyxiated offspring exhibited greater anxiety-like behavioral phenotypes (as measured the composite neurobehavioral assay involving open field activity, responses to novel object, quantification of fecal droppings, and resident-intruder tests of social behavior). Further, early neurometabolite profiles predicted adult responses. Non-invasive MRS screening of mammalian offspring is likely to advance ground-based space analogue studies informing mammalian reproduction in space, and achieving high-priority.

  8. Incidence and Predictors of Mortality Among Newborns With Perinatal Asphyxia: A 4-Year Prospective Study of Newborns Delivered in Health Care Facilities in Enugu, South-East Nigeria

    PubMed Central

    Ekwochi, Uchenna; Asinobi, Nwabueze I; Osuorah, Chidiebere DI; Ndu, Ikenna K; Ifediora, Christian; Amadi, Ogechukwu F; Iheji, Chukwunonso C; Orjioke, Casmir JG; Okenwa, Wilfred O; Okeke, Bernadette Ifeyinwa

    2017-01-01

    Fatalities from perinatal asphyxia remain high in developing countries, and continually assessing its risk factors will help improve outcomes in these settings. We explored how some identified risk factors predict mortality in asphyxiated newborns, to assist clinicians in prioritizing interventions. This was a 4-year prospective study conducted at the Enugu State University Teaching Hospital, Enugu, Nigeria. All newborns who met the study criteria that were admitted to this facility in this period were enrolled and monitored. Data collected were analysed with SPSS Version 18. A total of 161 newborns with perinatal asphyxia were enrolled into the study with an in-hospital incidence rate of 12.81 per 1000 birth and a case fatality rate of 18%. Overall, the APGAR scores were severe in 10%, moderate in 22%, mild to normal in 68%, whereas the SARNAT stages were III in 24%, II in 52%, and I in 25%. In terms of mortality, 66.7%, 22.2%, and 11.1% mortalities were, respectively, observed with SARNAT scores III, II, and I (P = .003), whereas the findings with APGAR were 31.2% (severe), 25.0% (moderate), 25.0% (mild), and 18.8% (normal) (P = .030). Fatality outcome was more correlated with SARNAT (R = .280; P = .000) than APGAR (R = −.247; P = .0125). The SARNAT score significantly differentiated between the degrees of asphyxia in newborns based on gestational age at delivery (P = .010), place of delivery (P = .032), and mode of delivery (P = .042). Finally, it was noted that newborns that were female (P = .007), or born outside the hospital (P = .010), or with oxygen saturations <60% (P = .001), or with heart rate <120 (P = .000), and those with respiratory rate <30 (P = .003), all have significantly higher likelihood of deaths from asphyxia. Therefore, predictors of neonatal mortality from perinatal asphyxia in our centre include being female and being born outside the hospital, as well as low oxygen saturations, heart rates, and respiratory rates at presentation. PMID:29276422

  9. Pulseless electrical activity: a misdiagnosed entity during asphyxia in newborn infants?

    PubMed

    Patel, Sparsh; Cheung, Po-Yin; Solevåg, Anne Lee; Barrington, Keith J; Kamlin, C Omar Farouk; Davis, Peter G; Schmölzer, Georg M

    2018-06-12

    The 2015 neonatal resuscitation guidelines added ECG as a recommended method of assessment of an infant's heart rate (HR) when determining the need for resuscitation at birth. However, a recent case report raised concerns about this technique in the delivery room. To compare accuracy of ECG with auscultation to assess asystole in asphyxiated piglets. Neonatal piglets had the right common carotid artery exposed and enclosed with a real-time ultrasonic flow probe and HR was continuously measured and recorded using ECG. This set-up allowed simultaneous monitoring of HR via ECG and carotid blood flow (CBF). The piglets were exposed to 30 min normocapnic alveolar hypoxia followed by asphyxia until asystole, achieved by disconnecting the ventilator and clamping the endotracheal tube. Asystole was defined as zero carotid blood flow and was compared with ECG traces and auscultation for heart sounds using a neonatal/infant stethoscope. Overall, 54 piglets were studied with a median (IQR) duration of asphyxia of 325 (200-491) s. In 14 (26%) piglets, CBF, ECG and auscultation identified asystole. In 23 (43%) piglets, we observed no CBF and no audible heart sounds, while ECG displayed an HR ranging from 15 to 80/min. Sixteen (30%) piglets remained bradycardic (defined as HR of <100/min) after 10 min of asphyxia, identified by CBF, ECG and auscultation. Clinicians should be aware of the potential inaccuracy of ECG assessment during asphyxia in newborn infants and should rather rely on assessment using a combination of auscultation, palpation, pulse oximetry and ECG. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  10. Docosahexaenoic acid augments hypothermic neuroprotection in a neonatal rat asphyxia model.

    PubMed

    Berman, Deborah R; Mozurkewich, Ellen; Liu, Yiqing; Shangguan, Yu; Barks, John D; Silverstein, Faye S

    2013-01-01

    In neonatal rats, early post-hypoxia-ischemia (HI) administration of the omega-3 fatty acid docosahexaenoic acid (DHA) improves sensorimotor function, but does not attenuate brain damage. To determine if DHA administration in addition to hypothermia, now standard care for neonatal asphyxial brain injury, attenuates post-HI damage and sensorimotor deficits. Seven-day-old (P7) rats underwent right carotid ligation followed by 90 min of 8% O2 exposure. Fifteen minutes later, pups received injections of DHA 2.5 mg/kg (complexed to 25% albumin) or equal volumes of albumin. After a 1-hour recovery, pups were cooled (3 h, 30°C). Sensorimotor and pathology outcomes were initially evaluated on P14. In subsequent experiments, sensorimotor function was evaluated on P14, P21, and P28; histopathology was assessed on P28. At P14, left forepaw function scores (normal: 20/20) were near normal in DHA + hypothermia-treated animals (mean ± SD 19.7 ± 0.7 DHA + hypothermia vs. 12.7 ± 3.5 albumin + hypothermia, p < 0.0001) and brain damage was reduced (mean ± SD right hemisphere damage 38 ± 17% with DHA + hypothermia vs. 56 ± 15% with albumin + hypothermia, p = 0.003). Substantial improvements on three sensorimotor function measures and reduced brain damage were evident up to P28. Unlike post-HI treatment with DHA alone, treatment with DHA + hypothermia produced both sustained functional improvement and reduced brain damage after neonatal HI. Copyright © 2013 S. Karger AG, Basel.

  11. Methane asphyxia. Coal mine accident investigation of distribution of gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terazawa, K.; Takatori, T.; Tomii, S.

    1985-09-01

    Death from asphyxia due to substitution of air by methane gas may occur in coal mine by gas outburst. In such a case, it is required to determine methane gas contents from cadaveric blood and tissues for diagnosing cause of death and estimating conditions of the accident. The methane concentration in blood and tissue samples of 22 male victims by a gas outburst accident was measured by gas chromatography. The level of methane in the cardiac blood was in the range of 6.8-26.8 microliters/g. As a model of gas outburst in coal mine, rats were exposed experimentally to various concentrationsmore » of methane. Their course of death and methane distribution in the bodies were observed. From these findings, diagnostic criteria for asphyxia from substitution of air by methane are also discussed.« less

  12. Quantitative measurement of cerebral blood flow during hypothermia with a time-resolved near-infrared technique

    NASA Astrophysics Data System (ADS)

    Fazel Bakhsheshi, Mohammad; Diop, Mamadou; St Lawrence, Keith; Lee, Ting-Yim

    2012-02-01

    Hypothermia, in which the brain is cooled to 32-33 °C, has been shown to be neuroprotective for brain injury caused by hypoxia-ischemia, head trauma, or neonatal asphyxia. Neuroprotective effect of Hypothermia is partly due to suppression of brain metabolism and cerebral blood flow (CBF). The ability to measure CBF at the bedside provides a means of detecting, and thereby preventing, secondary ischemia during neuro intensive care before brain injury occurs. The purpose of the present study is to investigate the ability of a time-resolved near-infrared (TR-NIR) bolus-tracking method using indocyanine green as an intravascular flow tracer to measure CBF during cooling in a newborn animal model. For validation, CBF was independently measured by computed tomography (CT) perfusion. The results show a good agreement between CBF obtained with the two methods (R2 ~ 0.84, Δ ~ 5.84 ml. min -1.100 g -1, 32-38.5 °C), demonstrating the ability of the TR-NIR technique to non-invasively measure absolute CBF in-vivo during dynamic hypothermia. The TR-NIR technique reveals that CBF decreases from 54.3 +/- 5.4 ml. min -1.100 g -1, at normothermia (Tbrain of 38.5 °C), to 33.8 +/- 0.9 ml. min -1.100 g -1 at Tbrain of 32 °C during the hypothermia treatment.

  13. An analysis of the causes of compressed-gas diving fatalities in Australia from 1972-2005.

    PubMed

    Lippmann, John; Baddeley, Adrian; Vann, Richard; Walker, Douglas

    2013-01-01

    In order to investigate causative factors, root cause analysis (RCA) was applied to 351 Australian compressed-gas diving fatalities from 1972-2005. Each case was described by four sequential events (trigger, disabling agent, disabling injury, cause of death) that were assessed for frequency, trends, and dive and diver characteristics. The average age increased by 16 years, with women three years younger than men annually. For the entire 34-year period, the principal disabling injuries were asphyxia (49%), cerebral arterial gas embolism (CAGE; 25%), and cardiac (19%). There was evidence of a long-term decline in the rate of asphyxia and a long-term increase in CAGE and cardiac disabling injuries. Asphyxia was associated with rough water, buoyancy trouble, equipment trouble, and gas supply trouble. CAGE was associated with gas supply trouble and ascent trouble, while cardiac cases were associated with exertion, cardiovascular disease, and greater age. Exertion was more common in younger cardiac deaths than in older deaths. Asphyxia became less common with increasing age. Equipment-related problems were most common during the late 1980s and less so in 2005. Buoyancy-related deaths usually involved loss of buoyancy on the surface but decreased when buoyancy control devices were used. Countermeasures to reduce fatalities based on these observations will require validation by active surveillance.

  14. Lactate: creatinine ratio in babies with thin meconium staining of amniotic fluid.

    PubMed

    Ojha, Rishi Kant; Singh, Saroj K; Batra, Sanjay; Sreenivas, V; Puliyel, Jacob M

    2006-04-20

    ACOG states meconium stained amniotic fluid (MSAF) as one of the historical indicators of perinatal asphyxia. Thick meconium along with other indicators is used to identify babies with severe intrapartum asphyxia. Lactate creatinine ratio (L:C ratio) of 0.64 or higher in first passed urine of babies suffering severe intrapartum asphyxia has been shown to predict Hypoxic Ischaemic Encephalopathy (HIE). Literature review shows that meconium is passed in distress and thin meconium results from mixing and dilution over time, which may be hours to days. Thin meconium may thus be used as an indicator of antepartum asphyxia. We tested L:C ratios in a group of babies born through thin and thick meconium, and for comparison, in a group of babies without meconium at birth. 86 consecutive newborns, 36 to 42 weeks of gestation, with meconium staining of liquor, were recruited for the study. 52 voided urine within 6 hours of birth; of these 27 had thick meconium and 25 had thin meconium at birth. 42 others, who did not have meconium or any other signs of asphyxia at birth provided controls. Lactate and creatinine levels in urine were tested by standard enzymatic methods in the three groups. Lactate values are highest in the thin MSAF group followed by the thick MSAF and controls. Creatinine was lowest in the thin MSAF, followed by thick MSAF and controls. Normal babies had an average L:C ratio of 0.13 (+/- 0.09). L:C ratio was more among thin MSAF babies (4.3 +/- 11.94) than thick MSAF babies (0.35 +/- 0.35). Median L:C ratio was also higher in the thin MSAF group. Variation in the values of these parameters is observed to be high in the thin MSAF group as compared to other groups. L:C ratio was above the cutoff of 0.64 of Huang et al in 40% of those with thin meconium. 2 of these developed signs of HIE with convulsions (HIE Sarnat and Sarnat Stage II) during hospital stay. One had L:C Ratio of 93 and the other of 58.6. A smaller proportion (20%) of those with thick meconium had levels above the cutoff and 2 developed HIE and convulsions with L:C ratio of 1.25 and 1.1 respectively. In evolving a cutoff of L:C ratios that would be highly sensitive and specific (0.64), Huang et al studied it in a series of babies with severe intrapartum asphyxia. Our study shows that the specificity may not be as good if babies born through thin meconium are also included. L:C ratios are much higher in babies with thin meconium. It may be that meconium alone is not a good indicator of asphyxia and the risk of HIE. However, if the presence of meconium implies asphyxia then perhaps a higher cut-off than 0.64 is needed. L:C ratios should be tested in a larger sample that includes babies with thin meconium, before L:C ratios can be applied universally.

  15. Lactate: creatinine ratio in babies with thin meconium staining of amniotic fluid

    PubMed Central

    Ojha, Rishi Kant; Singh, Saroj K; Batra, Sanjay; Sreenivas, V; Puliyel, Jacob M

    2006-01-01

    Background ACOG states meconium stained amniotic fluid (MSAF) as one of the historical indicators of perinatal asphyxia. Thick meconium along with other indicators is used to identify babies with severe intrapartum asphyxia. Lactate creatinine ratio (L: C ratio) of 0.64 or higher in first passed urine of babies suffering severe intrapartum asphyxia has been shown to predict Hypoxic Ischaemic Encephalopathy (HIE). Literature review shows that meconium is passed in distress and thin meconium results from mixing and dilution over time, which may be hours to days. Thin meconium may thus be used as an indicator of antepartum asphyxia. We tested L: C ratios in a group of babies born through thin and thick meconium, and for comparison, in a group of babies without meconium at birth. Methods 86 consecutive newborns, 36 to 42 weeks of gestation, with meconium staining of liquor, were recruited for the study. 52 voided urine within 6 hours of birth; of these 27 had thick meconium and 25 had thin meconium at birth. 42 others, who did not have meconium or any other signs of asphyxia at birth provided controls. Lactate and creatinine levels in urine were tested by standard enzymatic methods in the three groups. Results Lactate values are highest in the thin MSAF group followed by the thick MSAF and controls. Creatinine was lowest in the thin MSAF, followed by thick MSAF and controls. Normal babies had an average L: C ratio of 0.13 (± 0.09). L: C ratio was more among thin MSAF babies (4.3 ± 11.94) than thick MSAF babies (0.35 ± 0.35). Median L: C ratio was also higher in the thin MSAF group. Variation in the values of these parameters is observed to be high in the thin MSAF group as compared to other groups. L: C ratio was above the cutoff of 0.64 of Huang et al in 40% of those with thin meconium. 2 of these developed signs of HIE with convulsions (HIE Sarnat and Sarnat Stage II) during hospital stay. One had L: C Ratio of 93 and the other of 58.6. A smaller proportion (20%) of those with thick meconium had levels above the cutoff and 2 developed HIE and convulsions with L: C ratio of 1.25 and 1.1 respectively. Conclusion In evolving a cutoff of L: C ratios that would be highly sensitive and specific (0.64), Huang et al studied it in a series of babies with severe intrapartum asphyxia. Our study shows that the specificity may not be as good if babies born through thin meconium are also included. L: C ratios are much higher in babies with thin meconium. It may be that meconium alone is not a good indicator of asphyxia and the risk of HIE. However, if the presence of meconium implies asphyxia then perhaps a higher cut-off than 0.64 is needed. L: C ratios should be tested in a larger sample that includes babies with thin meconium, before L: C ratios can be applied universally. PMID:16626486

  16. Glucocorticoids Protect Neonatal Rat Brain in Model of Hypoxic-Ischemic Encephalopathy (HIE)

    PubMed Central

    Harding, Benjamin; Conception, Katherine; Li, Yong; Zhang, Lubo

    2016-01-01

    Hypoxic-ischemic encephalopathy (HIE) resulting from asphyxia in the peripartum period is the most common cause of neonatal brain damage and can result in significant neurologic sequelae, including cerebral palsy. Currently therapeutic hypothermia is the only accepted treatment in addition to supportive care for infants with HIE, however, many additional neuroprotective therapies have been investigated. Of these, glucocorticoids have previously been shown to have neuroprotective effects. HIE is also frequently compounded by infectious inflammatory processes (sepsis) and as such, the infants may be more amenable to treatment with an anti-inflammatory agent. Thus, the present study investigated dexamethasone and hydrocortisone treatment given after hypoxic-ischemic (HI) insult in neonatal rats via intracerebroventricular (ICV) injection and intranasal administration. In addition, we examined the effects of hydrocortisone treatment in HIE after lipopolysaccharide (LPS) sensitization in a model of HIE and sepsis. We found that dexamethasone significantly reduced rat brain infarction size when given after HI treatment via ICV injection; however it did not demonstrate any neuroprotective effects when given intranasally. Hydrocortisone after HI insult also significantly reduced brain infarction size when given via ICV injection; and the intranasal administration showed to be protective of brain injury in male rats at a dose of 300 µg. LPS sensitization did significantly increase the brain infarction size compared to controls, and hydrocortisone treatment after LPS sensitization showed a significant decrease in brain infarction size when given via ICV injection, as well as intranasal administration in both genders at a dose of 300 µg. To conclude, these results show that glucocorticoids have significant neuroprotective effects when given after HI injury and that these effects may be even more pronounced when given in circumstances of additional inflammatory injury, such as neonatal sepsis. PMID:28025500

  17. Agonal sequences in a filmed suicidal hanging: analysis of respiratory and movement responses to asphyxia by hanging.

    PubMed

    Sauvageau, Anny; Racette, Stéphanie

    2007-07-01

    The forensic literature on the pathophysiology of human hanging is still limited. Therefore, forensic pathologists often feel uncomfortable when confronted with related questions. Here presented is the filmed suicidal hanging of a 37-year-old man. This recording allows a unique analysis of agonal movement sequences: loss of consciousness (13 sec), convulsions (15 sec), decortication rigidity (21 sec), decerebration rigidity (46 sec), second decortication rigidity (1 min 11 sec), loss of muscle tone, (1 min 38 sec) and last isolated muscle movement (4 min 10 sec). As for respiratory responses, very deep respiratory attempts started at 20 sec. Respiratory movements progressively decreased and completely stopped at 2 min. Despite the fact that extending the presented data on all cases of hanging asphyxia would be a mistake, this case gives a very interesting insight into movement and respiratory response to asphyxia by hanging.

  18. Sudden Death From Ruptured Intracranial Vascular Malformations During Mechanical Asphyxia: A Domestic Violence Case Report.

    PubMed

    Wu, Xue-Mei; Zhang, Xu-Dong; Yun, Li-Bing; Liu, Min; Yi, Xu-Fu

    2017-03-01

    Smothering and manual strangulation are not uncommon in domestic violence against women; however, no report on the combination of mechanical asphyxia and intracranial vascular malformations has been previously published. We report a middle-aged woman who was smothered and manually strangled by her husband and subsequently died from subarachnoid hemorrhage due to ruptured intracranial vascular malformations, rather than direct mechanical asphyxiation. Smothering and manual strangulation are considered provocative conditions for rupture and contributory causes of death. In this case study, we underline the importance of meticulous autopsy in cases of mechanical asphyxia and intracranial hemorrhage. Exclusion of underlying diseases that may have caused or contributed to death is also required, despite serious asphyxiation signs and neck injuries. Postmortem angiography is a valuable complement to autopsy to detect vascular pathology, with good prospects for further development in China.

  19. Positional asphyxia without active restraint following an assault.

    PubMed

    Fernando, Tarini; Byard, Roger W

    2013-11-01

    Deaths due to positional asphyxia are most often accidental, associated with alcohol and/or drug intoxication. A 19-year-old male is reported who was assaulted and placed in a head-down position in the back of a car were he was later found dead. Brush abrasions indicated that he had been dragged to the vehicle. The head and right shoulder were wedged into the foot well with the body uppermost. At autopsy, there was marked congestion of the face, neck, and upper chest with conjunctival ecchymoses, bruising of the face and scalp, focal subarachnoid hemorrhage, minor cerebral contusion, and diffuse cerebral swelling with early hypoxic ischemic encephalopathy (HIE). Toxicology was negative. Death was attributed to HIE resulting from the unusual positioning of the body. Cases of positional asphyxia involving others may not always include restraint, and when encountered should initiate a careful evaluation of the possible events and lethal pathophysiological processes. © 2013 American Academy of Forensic Sciences.

  20. One oxygen breath shortened the time to return of spontaneous circulation in severely asphyxiated piglets.

    PubMed

    Linner, Rikard; Cunha-Goncalves, Doris; Perez-de-Sa, Valeria

    2017-10-01

    Asphyxiated neonates should be resuscitated with air, but it remains unclear if oxygen supplementation is needed in ineffectively ventilated newborn infants. We studied the return of spontaneous circulation (ROSC) with oxygen or air in an experimental model of inadequate ventilation. Asphyxia was induced in 16 newborn piglets until their heart rate was <60 bpm or mean arterial pressure (MAP) <30 mmHg. During the first 10 minutes of resuscitation, they received one breath per minute of oxygen (n = 8) or air (n = 8). Tidal volume was 7.5 mL/kg. If MAP was <30 mmHg for 15 seconds, closed-chest cardiac massage (CCCM) was performed for 45 seconds. From 10 minutes onward, all piglets received normal ventilation with air. ROSC was defined as a heart rate >150 bpm, MAP >40 mmHg and no subsequent CCCM. Before resuscitation, the median arterial pH was 6.73. At 10 minutes, no piglets in the oxygen group needed CCCM, while all did in the air group (p < 0.001). The median time to ROSC was 60 seconds with oxygen and 845 seconds with air (p < 0.001). No brain tissue hyperoxia occurred. When ventilation was inadequate, one oxygen breath reduced time to ROSC in piglets with severe metabolic and respiratory acidosis. ©2017 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.

  1. Injury of the developing cerebellum: a brief review of the effects of endotoxin and asphyxial challenges in the late gestation sheep fetus.

    PubMed

    Hutton, Lisa C; Yan, Edwin; Yawno, Tamara; Castillo-Melendez, Margie; Hirst, Jon J; Walker, David W

    2014-12-01

    The vulnerability of the fetal and newborn brain to events in utero or at birth that cause damage arising from perturbations of cerebral blood flow and metabolism, such as the accumulation of free radicals and excitatory transmitters to neurotoxic levels, has received considerable attention over the last few decades. Attention has usually been on the damage to cerebral structures, particularly, periventricular white matter. The rapid growth of the cerebellum in the latter half of fetal life in species with long gestations, such as the human and sheep, suggests that this may be a particularly important time for the development of cerebellar structure and function. In this short review, we summarize data from recent studies with fetal sheep showing that the developing cerebellum is particularly sensitive to infectious processes, chronic hypoxia and asphyxia. The data demonstrates that the cerebellum should be further studied in insults of this nature as it responds differently to the remainder of the brain. Damage to this region of the brain has implications not only for the development of motor control and posture, but also for higher cognitive processes and the subsequent development of complex behaviours, such as learning, memory and attention.

  2. Developmental Research in Space: Predicting Adult Neurobehavioral Phenotypes via Metabolomic Imaging

    NASA Technical Reports Server (NTRS)

    Schorn, Julia M.; Moyer, Eric L.; Lowe, M.; Morgan, Jonathan A.; Tulbert, Christina D.; Olson, John; Horita, David A.; Klevin, Gale A.; Ronca, April E.

    2017-01-01

    As human habitation and eventual colonization of space becomes an inevitable reality, there is a necessity to understand how organisms develop over the life span in the space environment. Microgravity, altered CO2, radiation and psychological stress are some of the key factors that could affect mammalian reproduction and development in space, however there is a paucity of information on this topic. Here we combine early (neonatal) in vivo spectroscopic imaging with an adult emotionality assay following a common obstetric complication (prenatal asphyxia) likely to occur during gestation in space. The neural metabolome is sensitive to alteration by degenerative changes and developmental disorders, thus we hypothesized that that early neonatal neurometabolite profiles can predict adult response to novelty. Late gestation fetal rats were exposed to moderate asphyxia by occluding the blood supply feeding one of the rats pair uterine horns for 15min. Blood supply to the opposite horn was not occluded (within-litter cesarean control). Further comparisons were made with vaginal (natural) birth controls. In one-week old neonates, we measured neurometabolites in three brain areas (i.e., striatum, prefrontal cortex, and hippocampus). Adult perinatally-asphyxiated offspring exhibited greater anxiety-like behavioral phenotypes (as measured the composite neurobehavioral assay involving open field activity, responses to novel object, quantification of fecal droppings, and resident-intruder tests of social behavior). Further, early neurometabolite profiles predicted adult responses. Non-invasive MRS screening of mammalian offspring is likely to advance ground-based space analogue studies informing mammalian reproduction in space, and achieving high-priority multigenerational research that will enable studies of the first truly space-developed mammals.

  3. The "Bermuda triangle" of neonatal neurology: cerebral palsy, neonatal encephalopathy, and intrapartum asphyxia.

    PubMed

    Shevell, Michael I

    2004-03-01

    The terms "cerebral palsy," "neonatal encephalopathy," and "intrapartum asphyxia" are frequently used in pediatric neurology. This article presents concise, verifiable definitions for each of these entities based on our current understanding and formulates the nature of the interrelationships between them. The aim is to provide a level of clarity that will enhance diagnostic and pathogenetic precision and minimize conceptual misunderstanding. This should aid future therapeutic and research efforts in this important area.

  4. Birth asphyxia measured by the pH value of the umbilical cord blood may predict an increased risk of attention deficit hyperactivity disorder.

    PubMed

    Mikkelsen, Susanne Hvolgaard; Olsen, Jørn; Bech, Bodil Hammer; Wu, Chunsen; Liew, Zeyan; Gissler, Mika; Obel, Carsten; Arah, Onyebuchi

    2017-06-01

    Although birth asphyxia is a major risk factor for neonatal and childhood morbidity and mortality, it has not been investigated much in relation to attention deficit hyperactivity disorder (ADHD). We examined whether birth asphyxia measured by the pH of the blood in the umbilical artery cord was associated with childhood ADHD. A population-based cohort of 295 687 children born in Finland between 1991 and 2002 was followed until December 31, 2007. ADHD was identified by the International Classification of Diseases, 10th edition, as a diagnosis of hyperkinetic disorder. We examined the risk of ADHD with varying pH values using Cox regression, taking time trends into consideration. When compared to the reference group, a pH value below 7.10 was significantly associated with an increased risk of ADHD. The strongest risks were observed among children with a pH value <7.15 and a gestational age of <32 weeks. The pH value did not contribute much to the risk among children with an Apgar score of 0-3. Birth asphyxia, defined by low pH value, may predict an increased risk of ADHD in childhood. The association between the pH value and ADHD was homogenous when stratified by gestational age and the Apgar score. ©2017 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.

  5. 2-Iminobiotin Superimposed on Hypothermia Protects Human Neuronal Cells from Hypoxia-Induced Cell Damage: An in Vitro Study.

    PubMed

    Zitta, Karina; Peeters-Scholte, Cacha; Sommer, Lena; Gruenewald, Matthias; Hummitzsch, Lars; Parczany, Kerstin; Steinfath, Markus; Albrecht, Martin

    2017-01-01

    Perinatal asphyxia represents one of the major causes of neonatal morbidity and mortality. Hypothermia is currently the only established treatment for hypoxic-ischemic encephalopathy (HIE), but additional pharmacological strategies are being explored to further reduce the damage after perinatal asphyxia. The aim of this study was to evaluate whether 2-iminobiotin (2-IB) superimposed on hypothermia has the potential to attenuate hypoxia-induced injury of neuronal cells. In vitro hypoxia was induced for 7 h in neuronal IMR-32 cell cultures. Afterwards, all cultures were subjected to 25 h of hypothermia (33.5°C), and incubated with vehicle or 2-IB (10, 30, 50, 100, and 300 ng/ml). Cell morphology was evaluated by brightfield microscopy. Cell damage was analyzed by LDH assays. Production of reactive oxygen species (ROS) was measured using fluorometric assays. Western blotting for PARP, Caspase-3, and the phosphorylated forms of akt and erk1/2 was conducted. To evaluate early apoptotic events and signaling, cell protein was isolated 4 h post-hypoxia and human apoptosis proteome profiler arrays were performed. Twenty-five hour after the hypoxic insult, clear morphological signs of cell damage were visible and significant LDH release as well as ROS production were observed even under hypothermic conditions. Post-hypoxic application of 2-IB (10 and 30 ng/ml) reduced the hypoxia-induced LDH release but not ROS production. Phosphorylation of erk1/2 was significantly increased after hypoxia, while phosphorylation of akt, protein expression of Caspase-3 and cleavage of PARP were only slightly increased. Addition of 2-IB did not affect any of the investigated proteins. Apoptosis proteome profiler arrays performed with cellular protein obtained 4 h after hypoxia revealed that post-hypoxic application of 2-IB resulted in a ≥ 25% down regulation of 10/35 apoptosis-related proteins: Bad, Bax, Bcl-2, cleaved Caspase-3, TRAILR1, TRAILR2, PON2, p21, p27, and phospho Rad17. In summary, addition of 2-IB during hypothermia is able to attenuate hypoxia-induced neuronal cell damage in vitro . Combination treatment of hypothermia with 2-IB could be a promising strategy to reduce hypoxia-induced neuronal cell damage and should be considered in further animal and clinical studies.

  6. Reduced infancy and childhood epilepsy following hypothermia-treated neonatal encephalopathy.

    PubMed

    Liu, Xun; Jary, Sally; Cowan, Frances; Thoresen, Marianne

    2017-11-01

    To investigate what proportion of a regional cohort of cooled infants with neonatal encephalopathy develop epilepsy (determined by the International League Against Epilepsy [ILAE] definition and the number of antiepileptic drugs [AEDs]) up to 8 years of age. From 2006-2013, 151 infants with perinatal asphyxia underwent 72 h cooling. Clinical and amplitude-integrated electroencepalography (aEEG) with single-channel EEG-verified neonatal seizures were treated with AEDs. Brain magnetic resonance imaging (MRI) was assessed using a 0-11 severity score. Postneonatal seizures, epilepsy rates, and AED treatments were documented. One hundred thirty-four survivors were assessed at 18-24 months; adverse outcome was defined as death or Bayley III composite Cognition/Language or Motor scores <85 and/or severe cerebral palsy or severely reduced vision/hearing. Epilepsy rates in 103 children age 4-8 years were also documented. aEEG confirmed seizures occurred precooling in 77 (57%) 151 of neonates; 48% had seizures during and/or after cooling and received AEDs. Only one infant was discharged on AEDs. At 18-24 months, one third of infants had an adverse outcome including 11% mortality. At 2 years, 8 (6%) infants had an epilepsy diagnosis (ILAE definition), of whom 3 (2%) received AEDs. Of the 103 4- to 8-year-olds, 14 (13%) had developed epilepsy, with 7 (7%) receiving AEDs. Infants/children on AEDs had higher MRI scores than those not on AEDs (median [interquartile range] 9 [8-11] vs. 2 [0-4]) and poorer outcomes. Nine (64%) of 14 children with epilepsy had cerebral palsy compared to 13 (11%) of 120 without epilepsy, and 10 (71%) of 14 children with epilepsy had adverse outcomes versus 23 (19%) of 120 survivors without epilepsy. The number of different AEDs given to control neonatal seizures, aEEG severity precooling, and MRI scores predicted childhood epilepsy. We report, in a regional cohort of infants cooled for perinatal asphyxia, 6% with epilepsy at 2 years (2% on AEDs) increasing to 13% (7% on AEDs) at early school age. These AED rates are much lower than those reported in the cooling trials, even with adjusting for our cohort's milder asphyxia. Long-term follow-up is needed to document final epilepsy rates. Wiley Periodicals, Inc. © 2017 International League Against Epilepsy.

  7. Successfully reducing newborn asphyxia in the labour unit in a large academic medical centre: a quality improvement project using statistical process control.

    PubMed

    Hollesen, Rikke von Benzon; Johansen, Rie Laurine Rosenthal; Rørbye, Christina; Munk, Louise; Barker, Pierre; Kjaerbye-Thygesen, Anette

    2018-02-03

    A safe delivery is part of a good start in life, and a continuous focus on preventing harm during delivery is crucial, even in settings with a good safety record. In January 2013, the labour unit at Copenhagen University Hospital, Hvidovre, undertook a quality improvement (QI) project to prevent asphyxia and reduced the percentage of newborns with asphyxia by 48%. The change theory consisted of two primary elements: (1) the clinical content, including three clinical bundles of evidence-based care, a 'delivery bundle', an 'oxytocin bundle' and a 'vacuum extraction bundle'; (2) an implementation theory, including improving skills in interpretation of cardiotocography, use of QI methods and participation in a national learning network. The Model for Improvement and Deming's system of profound knowledge were used as a methodological framework. Data on compliance with the care bundles and the number of deliveries between newborns with asphyxia (Apgar <7 after 5 min or pH <7) were analysed using statistical process control. Compliance with all three clinical care bundles improved to 95% or more, and the percentages of newborns with pH <7 and Apgar <7 after 5 min were reduced by 48% and 31%, respectively. In general, the QI approach strengthened multidisciplinary teamwork, systematised workflow and structured communication around the deliveries. Changes included making a standard memo in the medical record, the use of a bedside whiteboard, bedside handovers, shared decisions with a peer when using an oxytocin infusion and the use of a checklist before vacuum extractions. This QI project illustrates how aspects of patient safety, such as the prevention of asphyxia, can be improved using QI methods to more reliably implement best practice, even in high-performing systems. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  8. Molecular pathology of brain edema after severe burns in forensic autopsy cases with special regard to the importance of reference gene selection.

    PubMed

    Wang, Qi; Ishikawa, Takaki; Michiue, Tomomi; Zhu, Bao-Li; Guan, Da-Wei; Maeda, Hitoshi

    2013-09-01

    Brain edema is believed to be linked to high mortality incidence after severe burns. The present study investigated the molecular pathology of brain damage and responses involving brain edema in forensic autopsy cases of fire fatality (n = 55) compared with sudden cardiac death (n = 11), mechanical asphyxia (n = 13), and non-brain injury cases (n = 22). Postmortem mRNA and immunohistochemical expressions of aquaporins (AQPs), claudin5 (CLDN5), and matrix metalloproteinases (MMPs) were examined. Prolonged deaths due to severe burns showed an increase in brain water content, but relative mRNA quantification, using different normalization methods, showed inconsistent results: in prolonged deaths due to severe burns, higher expression levels were detected for all markers when three previously validated reference genes, PES1, POLR2A, and IPO8, were used for normalization, higher for AQP1 and MMP9 when GAPDH alone was used for normalization and higher for MMP9, but lower for MMP2 when B2M alone was used for normalization. Additionally, when B2M alone was used for normalization, higher expression of AQP4 was detected in acute fire deaths. Furthermore, the expression stability values of these five reference genes calculated by geNorm demonstrated that B2M was the least stable one, followed by GAPDH. In immunostaining, only AQP1 and MMP9 showed differences among the causes of death: they were evident in most prolonged deaths due to severe burns. These findings suggest that systematic analysis of gene expressions using real-time PCR might be a useful procedure in forensic death investigation, and validation of reference genes is crucial.

  9. Milk aspiration in an infant during supine bottle feeding: a case report.

    PubMed

    Kibayashi, Kazuhiko; Iwadate, Kimiharu; Shojo, Hideki

    2004-07-01

    A two-month-old infant died during bottle feeding in the supine position in the caregiver's absence. Scene investigations and autopsy examinations, including alpha-lactalbumin immunohistochemistry of the lungs, revealed the cause of death to be asphyxia due to aspiration of milk pooled in the naso-oral cavity, as a result of unsupervised supine feeding. This case emphasizes the need for an investigation into feeding positions and immunohistochemical examinations for the diagnosis of asphyxia due to milk aspiration.

  10. DHA Reduces Oxidative Stress after Perinatal Asphyxia: A Study in Newborn Piglets.

    PubMed

    Solberg, Rønnaug; Longini, Mariangela; Proietti, Fabrizio; Perrone, Serafina; Felici, Cosetta; Porta, Alessio; Saugstad, Ola Didrik; Buonocore, Giuseppe

    2017-01-01

    Perinatal hypoxic-ischemic brain damage is a major cause of acute mortality and chronic neurological morbidity in infants and children. Oxidative stress due to free radical formation and the initiation of abnormal oxidative reactions appears to play a key role. Docosahexanoic acid (DHA), a main component of brain membrane phospholipids, may act as a neuroprotectant after hypoxia-ischemia by regulating multiple molecular pathways and gene expression. The aims of this study were to test the hypothesis that DHA provides significant protection against lipoperoxidation damage in the cerebral cortex and hippocampus in a neonatal piglet model of severe hypoxia-reoxygenation. Newborn piglets, Noroc (LYLD), were subjected to severe global hypoxia. One group was resuscitated with ambient air (21% group, n = 11) and another also received 5 mg/kg of DHA 4 h after the end of hypoxia (21% DHA group, n = 10). After 9.5 h, tissues from the prefrontal cortex and hippocampus were sampled and the levels of isoprostanes, neuroprostanes, neurofurans, and F2-dihomo-isoprostanes were determined by the liquid chromatography triple quadrupole mass spectrometry technique. Lipid peroxidation biomarkers were significantly lower in both the cortex and hippocampus in the DHA-treated group compared with the untreated group. The present study demonstrates that DHA administration after severe hypoxia in newborn piglets has an antioxidative effect in the brain, suggesting a protective potential of DHA if given after injuries to the brain. © 2017 S. Karger AG, Basel.

  11. Pediatric constrictive asphyxia a rare form of child abuse: A report of two cases.

    PubMed

    Vester, M E M; Bilo, R A C; Nijs, H G T; van Rijn, R R

    2018-04-01

    We present two cases of infants who died under suspicious circumstances. After clinical and legal investigations, non-accidental constrictive asphyxia inflicted by one of the parents was established. The first case presents a to date not yet reported, unique mechanism of trauma. In order to stop his daughter from crying, the father admitted that he sometimes sat on his baby while she was lying on the bed. Occasionally increasing his force by pulling with his hands on the bottom of the bed. In the second case tight swaddling and encircling chest compression was the causative mechanism. In both cases the father was sentenced to imprisonment with mandate psychiatric care. Only two previous reports of this uncommon and relatively unknown cause of child abuse, called constrictive asphyxia, are known. In all reported cases static loading of the chest resulted in rib fractures and demise of the child. This rare abusive mechanism should be known to pediatric radiologists and pathologists. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Acid-base disorders in critically ill neonates

    PubMed Central

    Lekhwani, S.; Shanker, V.; Gathwala, G.; Vaswani, N. D.

    2010-01-01

    Objective: To study acid–base imbalance in common pediatric diseases (such as sepsis, bronchopneumonia, diarrhea, birth-asphyxia etc.) in neonates. Design and Setting: An observational study was conducted in an emergency room of a tertiary teaching care hospital in Haryana, India. Patients and Methods: Fifty neonates (from first hour to one month) attending pediatric emergency services with various ailments. Blood gas analysis, electrolytes, plasma lactate, and plasma albumin were estimated in neonates. Results: Metabolic acidosis was the most common acid–base disorder. Hyperlactatemia was observed in more than half of such cases. Birth asphyxia was another common disorder with the highest mortality in neonates followed by bronchopneumonia and sepsis. Significant correlation between mortality and critical values of lactate was observed. Conclusion: Birth asphyxia with high-lactate levels in neonates constituted major alterations in acid–base disorders seen in an emergency room of a tertiary teaching care hospital. Plasma lactate concentration measurement provides an invaluable tool to assess type of metabolic acidosis in addition to predicting mortality in these neonates. PMID:20859489

  13. Xenon and hypothermia combine to provide neuroprotection from neonatal asphyxia.

    PubMed

    Ma, Daqing; Hossain, Mahmuda; Chow, Andre; Arshad, Mubarik; Battson, Renee M; Sanders, Robert D; Mehmet, Huseyin; Edwards, A David; Franks, Nicholas P; Maze, Mervyn

    2005-08-01

    Perinatal asphyxia can result in neuronal injury with long-term neurological and behavioral consequences. Although hypothermia may provide some modest benefit, the intervention itself can produce adverse consequences. We have investigated whether xenon, an antagonist of the N-methyl-D-aspartate subtype of the glutamate receptor, can enhance the neuroprotection provided by mild hypothermia. Cultured neurons injured by oxygen-glucose deprivation were protected by combinations of interventions of xenon and hypothermia that, when administered alone, were not efficacious. A combination of xenon and hypothermia administered 4 hours after hypoxic-ischemic injury in neonatal rats provided synergistic neuroprotection assessed by morphological criteria, by hemispheric weight, and by functional neurological studies up to 30 days after the injury. The protective mechanism of the combination, in both in vitro and in vivo models, involved an antiapoptotic action. If applied to humans, these data suggest that low (subanesthetic) concentrations of xenon in combination with mild hypothermia may provide a safe and effective therapy for perinatal asphyxia.

  14. Agonal sequences in eight filmed hangings: analysis of respiratory and movement responses to asphyxia by hanging.

    PubMed

    Sauvageau, Anny; LaHarpe, Romano; Geberth, Vernon J

    2010-09-01

    It has been proposed that filmed hangings may hold the key to a better understanding of human asphyxia, and The Working Group on Human Asphyxia was formed to systematically review and compare these video recordings. This study analyzed eight filmed hangings. Considering time 0 to represent the onset of the final hanging, rapid loss of consciousness was observed (at 8-18 sec), closely followed by convulsions (at 10-19 sec). A complex pattern of decerebrate rigidity and decorticate rigidity then followed. Between 1 min 38 sec and 2 min 15 sec, muscle tone seemed to be lost, the body becoming progressively flaccid. From then on, isolated body movements were observed from time to time, the last one occurring between 1 min 2 sec and 7 min 31 sec. As for the respiratory responses, all cases presented deep rhythmic abdominal respiratory movements (last one between 1 min 2 sec and 2 min 5 sec). © 2010 American Academy of Forensic Sciences.

  15. Crush asphyxia and ride-on lawn mowers.

    PubMed

    Byard, Roger W; Langlois, Neil Ei

    2017-07-01

    Search of files at Forensic Science SA, Australia, over the past 20 years (1997-2016) revealed three cases of death due to crush asphyxia associated with the use of ride-on lawn mowers. (1) A 61-year-old man was trapped under a ride-on mower that had rolled over. Autopsy examination revealed congestion and petechial haemorrhages of the face and chest, and markings on the chest associated with underlying rib fractures. (2) A 78-year-old man was trapped under a ride-on mower that had also rolled over. Autopsy examination revealed petechial haemorrhages of the face and chest and markings on the chest. (3) A 72-year-old man was found wedged between a ride-on mower and a tree, with petechial haemorrhages of the face and chest, and markings on the front and back of the chest. These cases demonstrate a rare cause of crush asphyxia, often in older males in the domestic environment, which may arise from more than one mechanism.

  16. THE INFLUENCE OF A LOCAL ASPHYXIA OF THE MARROW ON THE COURSE OF THE RADIATION DISEASE (in Russian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zherebchenko, P.G.; Krasnykh, I.G.; Lebkova, N.P.

    1959-12-21

    Experiments were carried out with 263 mature white rats and 503 white mice of both sexes exposed to wholebody irradiations of 700, 750, and 800 r at 49 and 39 r per minute, respectively. One or two of the extremities of each animal were bound before exposure and unbound immediately following the exposure. The effects of the asphyxia were judged by the survival factor, time span, dynamics of degenerative alterations in the cells, mitotic index in the bone marrow, and morphological blood composition. The data obtained showed favorable effects of asphyxia on the course of irradiation injury. Twelve days aftermore » exposure to 700 to 750 r, 40 to 80% of the mice with bound extremities survived while the control group perished after 8 to 10 days. After 30 days only 10 to 15% survived. Similar data were taken on the rats. The results showed no appreciable difference in survival of animals with one or both extremities bound. (R.V.J.)« less

  17. Relationship between prolonged neural suppression and cerebral hemodynamic dysfunction during hypothermia in asphyxiated piglets.

    PubMed

    Jinnai, Wataru; Nakamura, Shinji; Koyano, Kosuke; Yamato, Satoshi; Wakabayashi, Takayuki; Htun, Yinmon; Nakao, Yasuhiro; Iwase, Takashi; Nakamura, Makoto; Yasuda, Saneyuki; Ueno, Masaki; Miki, Takanori; Kusaka, Takashi

    2018-05-19

    Hypothermia (HT) improves the outcome of neonatal hypoxic-ischemic encephalopathy. Here, we investigated changes during HT in cortical electrical activity using amplitude-integrated electroencephalography (aEEG) and in cerebral blood volume (CBV) and cerebral hemoglobin oxygen saturation using near-infrared time-resolved spectroscopy (TRS) and compared the results with those obtained during normothermia (NT) after a hypoxic-ischemic (HI) insult in a piglet model of asphyxia. We previously reported that a greater increase in CBV can indicate greater pressure-passive cerebral perfusion due to more severe brain injury and correlates with prolonged neural suppression during NT. We hypothesized that when energy metabolism is suppressed during HT, the cerebral hemodynamics of brains with severe injury would be suppressed to a greater extent, resulting in a greater decrease in CBV during HT that would correlate with prolonged neural suppression after insult. Twenty-six piglets were divided into four groups: control with NT (C-NT, n = 3), control with HT (C-HT, n = 3), HI insult with NT (HI-NT, n = 10), and HI insult with HT (HI-HT, n = 10). TRS and aEEG were performed in all groups until 24 h after the insult. Piglets in the HI-HT group were maintained in a hypothermic state for 24 h after the insult. There was a positive linear correlation between changes in CBV at 1, 3, 6, and 12 h after the insult and low-amplitude aEEG (<5 µV) duration after insult in the HI-NT group, but a negative linear correlation between these two parameters at 6 and 12 h after the insult in the HI-HT group. The aEEG background score and low-amplitude EEG duration after the insult did not differ between these two groups. A longer low-amplitude EEG duration after insult was associated with a greater CBV decrease during HT in the HI-HT group, suggesting that brains with more severe neural suppression could be more prone to HT-induced suppression of cerebral metabolism and circulation. Copyright © 2018 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  18. Correlates of birth asphyxia using two Apgar score classification methods.

    PubMed

    Olusanya, Bolajoko O; Solanke, Olumuyiwa A

    2010-01-01

    Birth asphyxia is commonly indexed by low five-minute Apgar scores especially in resource-constrained settings but the impact of different classification thresholds on the associated risk factors has not been reported. To determine the potential impact of two classification methods of five-minute Apgar score as predictor for birth asphyxia. A cross-sectional study of preterm and term survivors in Lagos, Nigeria in which antepartum and intrapartum factors associated with "very low" (0-3) or "intermediate" (4-6) five-minute Apgar scores were compared with correlates of low five-minute Apgar scores (0-6) based on multinomial and binary logistic regression analyses. Of the 4281 mother-infant pairs enrolled, 3377 (78.9%) were full-term and 904 (21.1%) preterm. Apgar scores were very low in 99 (2.3%) and intermediate in 1115 (26.0%). Antenatal care, premature rupture of membranes (PROM), hypertensive disorders and mode of delivery were associated with very low and intermediate Apgar scores in all infants. Additionally, parity, antepartum haemorrhage and prolonged/obstructed labour (PROL) were predictive in term infants compared with maternal occupation and intrauterine growth restriction (IUGR) in preterm infants. Conversely, PROM in term infants and maternal occupation in preterm infants were not significantly associated with the composite low Apgar scores (0-6) while IUGR was associated with term infants. Predictors of birth asphyxia in preterm and term infants are likely to be affected by the Apgar score classification method adopted and the clinical implications for optimal resuscitation practices merit attention in resource-constrained settings.

  19. Neonatal neuroimaging: going beyond the pictures.

    PubMed

    Ramenghi, Luca A; Rutherford, Mary; Fumagalli, Monica; Bassi, Laura; Messner, Hubert; Counsell, Serena; Mosca, Fabio

    2009-10-01

    The cerebral ultrasound has been used many years for the diagnosis of brain lesions in term and preterm newborns. Major improvements were obtained by the combination of different imaging modalities such as Magnetic Resonance Imaging with the Diffusion Weighted Imaging (DWI) and the new quantitative Diffusion Tensor Imaging (DTI). The clinical use of MRI has been validated over some years especially to depict the perinatal asphyxia lesions in term newborns, but its use in order to diagnose the typical diseases of preterm babies is very recent and useful in identifying a marker able to predict neurological outcome. The imaging correlates for motor impairment are well recognized (periventricular white matter cavitations), but no any imaging correlate for cognitive impairment and neurobehavioral disorders. While DWI has been used in term newborns to identify the ischemic areas with restricted diffusion, it may be also used to characterize brain development in preterm infants with the Apparent Diffusion Coefficient (ADC) and may allow us to detect abnormalities responsible for the non-motor impairments. Recent datas showed that in infants without focal lesions higher ADC values in WM were associated with poorer neurodevelopmental assessment at 2 years. The DTI also allows to detect the Fractional Anisotropy (FA) that measures the microstructure. DTI can also be used to map the WM tracts in the immature brain and may be applied to understand the normal development or the response of the brain to injury. Some WM regions in the preterm brain have a lower FA suggesting that widespread WM abnormalities are present in preterms even in the absence of focal lesions. The complexity of the developing brain can be explained by the new tractography that can assess the connectivity of different WM regions and the association between structure and function, such as optic radiations microstructure and visual assessment score. Technological advances in neonatal brain imaging have made a major contribution to understand the neurobehavioral disorders of the developing brain that have the origin in the early structural cerebral organization and maturation.

  20. Accidental hanging by a T-shirt collar in a man with morphine intoxication: an unusual case.

    PubMed

    Kodikara, Sarathchandra; Alagiyawanna, Ramesh

    2011-09-01

    Accidental hanging is rare across all age groups, and it is even rarer in the adult population except in autoerotic asphyxia. Few cases have been reported in the literature, which describe unusual patterns of accidental hanging. This article focuses on an unusual pattern of accidental hanging of a 25-year-old man, who was in a state of morphine-induced central nervous system depression and found dead in a sitting position with the collar of his T-shirt hanging off a jutting-out root of a tree. The hanged collar acted as a ligature compressing the neck.

  1. A case of death of the driver due to environmental asphyxia by liquid nitrogen leakage in the cabin of the car during a road accident

    PubMed

    Raczkowska, Zuzanna; Samojłowicz, Dorota

    2013-01-01

    Nitrogen causes environmental asphyxia by displacing oxygen in the air leading to death. The study presents a case of a death of a driver death who was transporting flasks with liquid nitrogen that depressurized during an accident. The mechanism and cause of death were determined based on the result of the autopsy and histopathologic examination. The authors emphasize the relevance of accident scene inspection during establishing the cause of death in similar cases.

  2. Intrapulmonary aquaporin-5 expression as a possible biomarker for discriminating smothering and choking from sudden cardiac death: a pilot study.

    PubMed

    Wang, Qi; Ishikawa, Takaki; Michiue, Tomomi; Zhu, Bao-Li; Guan, Da-Wei; Maeda, Hitoshi

    2012-07-10

    The diagnosis of mechanical asphyxia as a cause of death, especially smothering and choking lacking evident injury, is one of the most difficult tasks in forensic pathology. The present study investigated the intrapulmonary expressions of aquaporins (AQPs; AQP-1 and AQP-5), as markers of water homeostasis, in forensic autopsy cases (total n=64, within 48 h postmortem) of mechanical asphyxiation due to neck compression (strangulation, n=24), including manual/ligature strangulation (n=12) and atypical hanging (n=12), smothering (n=7) and choking (n=8), compared with sudden cardiac death (n=14) and acute brain injury (n=11). Quantification of mRNA using a Taqman real-time PCR assay system demonstrated suppressed expression of AQP-5, but not AQP-1, in smothering and choking, compared with that in strangulation as well as sudden cardiac death and acute brain injury death. Immunostaining of AQP-5 was weakly detected in a linear pattern in the type I alveolar epithelial cells in smothering and choking cases, while cardiac and brain injury death showed marked positivity, and most strangulation cases had AQP-5-positive granular aggregates and fragments in intra-alveolar spaces. These observations indicate a partial difference in pulmonary molecular pathology among these causes of death, suggesting a procedure for possible discrimination of smothering and choking from sudden cardiac death. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  3. Comparison of Cerebral Oximeter and Pulse Oximeter Values in the First 72 Hours in Premature, Asphyctic and Healthy Newborns.

    PubMed

    Kaya, A; Okur, M; Sal, E; Peker, E; Köstü, M; Tuncer, O; Kırımi, E

    2014-12-01

    The monitoring of oxygenation is essential for providing patient safety and optimal results. We aimed to determine brain oxygen saturation values in healthy, asphyctic and premature newborns and to compare cerebral oximeter and pulse oximeter values in the first 72 hours of life in neonatal intensive care units. This study was conducted at the neonatal intensive care unit (NICU) of Van Yüzüncü Yil University Research and Administration Hospital. Seventy-five neonatal infants were included in the study (28 asphyxia, 24 premature and 23 mature healthy infants for control group). All infants were studied within the first 72 hours of life. We used a Somanetics 5100C cerebral oximeter (INVOS cerebral/somatic oximeter, Troy, MI, USA). The oxygen saturation information was collected by a Nellcor N-560 pulse oximeter (Nellcor-Puriton Bennet Inc, Pleasanton, CA, USA). In the asphyxia group, the cerebral oximeter average was 76.85 ± 14.1, the pulse oximeter average was 91.86 ± 5.9 and the heart rate average was 139.91 ± 22.3. Among the premature group, the cerebral oximeter average was 79.08 ± 9.04, the pulse oximeter average was 92.01 ± 5.3 and the heart rate average was 135.35 ± 17.03. In the control group, the cerebral oximeter average was 77.56 ± 7.6, the pulse oximeter average was 92.82 ± 3.8 and the heart rate average was 127.04 ± 19.7. Cerebral oximeter is a promising modality in bedside monitoring in neonatal intensive care units. It is complementary to pulse oximeter. It may be used routinely in neonatal intensive care units.

  4. Comparison of Cerebral Oximeter and Pulse Oximeter Values in the First 72 Hours in Premature, Asphyctic and Healthy Newborns

    PubMed Central

    Kaya, A; Okur, M; Sal, E; Peker, E; Köstü, M; Tuncer, O; Kirimi, E

    2014-01-01

    ABSTRACT Aim: The monitoring of oxygenation is essential for providing patient safety and optimal results. We aimed to determine brain oxygen saturation values in healthy, asphyctic and premature newborns and to compare cerebral oximeter and pulse oximeter values in the first 72 hours of life in neonatal intensive care units. Methods: This study was conducted at the neonatal intensive care unit (NICU) of Van Yüzüncü Yil University Research and Administration Hospital. Seventy-five neonatal infants were included in the study (28 asphyxia, 24 premature and 23 mature healthy infants for control group). All infants were studied within the first 72 hours of life. We used a Somanetics 5100C cerebral oximeter (INVOS cerebral/somatic oximeter, Troy, MI, USA). The oxygen saturation information was collected by a Nellcor N-560 pulse oximeter (Nellcor-Puriton Bennet Inc, Pleasanton, CA, USA). Results: In the asphyxia group, the cerebral oximeter average was 76.85 ± 14.1, the pulse oximeter average was 91.86 ± 5.9 and the heart rate average was 139.91 ± 22.3. Among the premature group, the cerebral oximeter average was 79.08 ± 9.04, the pulse oximeter average was 92.01 ± 5.3 and the heart rate average was 135.35 ± 17.03. In the control group, the cerebral oximeter average was 77.56 ± 7.6, the pulse oximeter average was 92.82 ± 3.8 and the heart rate average was 127.04 ± 19.7. Conclusion: Cerebral oximeter is a promising modality in bedside monitoring in neonatal intensive care units. It is complementary to pulse oximeter. It may be used routinely in neonatal intensive care units. PMID:25867556

  5. Prevention of mental handicaps in children in primary health care.

    PubMed

    Shah, P M

    1991-01-01

    Some 5-15% of children aged 3 to 15 years in both developing and developed countries suffer from mental handicaps. There may be as many as 10-30 million severely and about 60-80 million mildly or moderately mentally retarded children in the world. The conditions causing mental handicaps are largely preventable through primary health care measures in developing countries. Birth asphyxia and birth trauma are the leading causes of mental handicaps in developing countries where over 1.2 million newborns die each year from moderate or severe asphyxia and an equal number survive with severe morbidity due to brain damage. The other preventable or manageable conditions are: infections such as tuberculous and pyogenic meningitides and encephalopathies associated with measles and whooping cough; severe malnutrition in infancy; hyperbilirubinaemia in the newborn; iodine deficiency; and iron deficiency anaemia in infancy and early childhood. In addition, recent demographic and socioeconomic changes and an increase in the number of working mothers tend to deprive both infants and young children of stimulation for normal development. To improve this situation, the primary health care approach involving families and communities and instilling the spirit of self-care and self-help is indispensable. Mothers and other family members, traditional birth attendants, community health workers, as well as nurse midwives and physicians should be involved in prevention and intervention activities, for which they should be trained and given knowledge and skills about appropriate technologies such as the risk approach, home-based maternal record, partograph, mobilogram (kick count), home-risk card, icterometer, and mouth-to-mask or bag and mask resuscitation of the newborn. Most of these have been field-tested by WHO and can be used in the home, the health centre or day care centres to detect and prevent the above-mentioned conditions which can cause mental handicap.

  6. Nitric Oxide Production in the Striatum and Cerebellum of a Rat Model of Preterm Global Perinatal Asphyxia.

    PubMed

    Barkhuizen, M; Van de Berg, W D J; De Vente, J; Blanco, C E; Gavilanes, A W D; Steinbusch, H W M

    2017-04-01

    Encephalopathy due to perinatal asphyxia (PA) is a major cause of neonatal morbidity and mortality in the period around birth. Preterm infants are especially at risk for cognitive, attention and motor impairments. Therapy for this subgroup is limited to supportive care, and new targets are thus urgently needed. Post-asphyxic excitotoxicity is partially mediated by excessive nitric oxide (NO) release. The aims of this study were to determine the timing and distribution of nitric oxide (NO) production after global PA in brain areas involved in motor regulation and coordination. This study focused on the rat striatum and cerebellum, as these areas also affect cognition or attention, in addition to their central role in motor control. NO/peroxynitrite levels were determined empirically with a fluorescent marker on postnatal days P5, P8 and P12. The distributions of neuronal NO synthase (nNOS), cyclic guanosine monophosphate (cGMP), astroglia and caspase-3 were determined with immunohistochemistry. Apoptosis was additionally assessed by measuring caspase-3-like activity from P2-P15. On P5 and P8, increased intensity of NO-associated fluorescence and cGMP immunoreactivity after PA was apparent in the striatum, but not in the cerebellum. No changes in nNOS immunoreactivity or astrocytes were observed. Modest changes in caspase-3-activity were observed between groups, but the overall time course of apoptosis over the first 11 days of life was similar between PA and controls. Altogether, these data suggest that PA increases NO/peroxynitrite levels during the first week after birth within the striatum, but not within the cerebellum, without marked astrogliosis. Therapeutic benefits of interventions that reduce endogenous NO production would likely be greater during this time frame.

  7. EEG, evoked potentials and pulsed Doppler in asphyxiated term infants.

    PubMed

    Julkunen, Mia K; Himanen, Sari-Leena; Eriksson, Kai; Janas, Martti; Luukkaala, Tiina; Tammela, Outi

    2014-09-01

    To evaluate electroencephalograms (EEG), evoked potentials (EPs) and Doppler findings in the cerebral arteries as predictors of a 1-year outcome in asphyxiated newborn infants. EEG and EPs (brain stem auditory (BAEP), somatosensory (SEP), visual (VEP) evoked potentials) were assessed in 30 asphyxiated and 30 healthy term infants during the first days (range 1-8). Cerebral blood flow velocities (CBFV) were measured from the cerebral arteries using pulsed Doppler at ∼24h of age. EEG, EPs, Doppler findings, symptoms of hypoxic ischemic encephalopathy (HIE) and their combination were evaluated in predicting a 1-year outcome. An abnormal EEG background predicted poor outcome in the asphyxia group with a sensitivity of 67% and 81% specificity, and an abnormal SEP with 75% and 79%, respectively. Combining increased systolic CBFV (mean+3SD) with abnormal EEG or SEP improved the specificity, but not the sensitivity. The predictive values of abnormal BAEP and VEP were poor. Normal EEG and SEP predicted good outcome in the asphyxia group with sensitivities from 79% to 81%. The combination of normal EEG, normal SEP and systolic CBFV<3SD predicted good outcome with a sensitivity of 74% and 100% specificity. Combining abnormal EEG or EPs findings with increased systolic CBFV did not improve prediction of a poor 1-year outcome of asphyxiated infants. Normal EEG and normal SEP combined with systolic CBFV<3SD at about 24 h can be valuable in the prediction of normal 1-year outcome. Combining systolic CBFV at 24 h with EEG and SEP examinations can be of use in the prediction of normal 1-year outcome among asphyxiated infants. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  8. Dietary creatine supplementation during pregnancy: a study on the effects of creatine supplementation on creatine homeostasis and renal excretory function in spiny mice.

    PubMed

    Ellery, Stacey J; LaRosa, Domenic A; Kett, Michelle M; Della Gatta, Paul A; Snow, Rod J; Walker, David W; Dickinson, Hayley

    2016-08-01

    Recent evidence obtained from a rodent model of birth asphyxia shows that supplementation of the maternal diet with creatine during pregnancy protects the neonate from multi-organ damage. However, the effect of increasing creatine intake on creatine homeostasis and biosynthesis in females, particularly during pregnancy, is unknown. This study assessed the impact of creatine supplementation on creatine homeostasis, body composition, capacity for de novo creatine synthesis and renal excretory function in non-pregnant and pregnant spiny mice. Mid-gestation pregnant and virgin spiny mice were fed normal chow or chow supplemented with 5 % w/w creatine for 18 days. Weight gain, urinary creatine and electrolyte excretion were assessed during supplementation. At post mortem, body composition was assessed by Dual-energy X-ray absorptiometry, or tissues were collected to assess creatine content and mRNA expression of the creatine synthesising enzymes arginine:glycine amidinotransferase (AGAT) and guanidinoacetate methyltransferase (GAMT) and the creatine transporter (CrT1). Protein expression of AGAT and GAMT was also assessed by Western blot. Key findings of this study include no changes in body weight or composition with creatine supplementation; increased urinary creatine excretion in supplemented spiny mice, with increased sodium (P < 0.001) and chloride (P < 0.05) excretion in pregnant dams after 3 days of supplementation; lowered renal AGAT mRNA (P < 0.001) and protein (P < 0.001) expressions, and lowered CrT1 mRNA expression in the kidney (P < 0.01) and brain (P < 0.001). Creatine supplementation had minimal impact on creatine homeostasis in either non-pregnant or pregnant spiny mice. Increasing maternal dietary creatine consumption could be a useful treatment for birth asphyxia.

  9. Increased platelet mitochondrial respiration after cardiac arrest and resuscitation as a potential peripheral biosignature of cerebral bioenergetic dysfunction.

    PubMed

    Ferguson, Michael A; Sutton, Robert M; Karlsson, Michael; Sjövall, Fredrik; Becker, Lance B; Berg, Robert A; Margulies, Susan S; Kilbaugh, Todd J

    2016-06-01

    Cardiac arrest (CA) results in a sepsis-like syndrome with activation of the innate immune system and increased mitochondrial bioenergetics. To determine if platelet mitochondrial respiration increases following CA in a porcine pediatric model of asphyxia-associated ventricular fibrillation (VF) CA, and if this readily obtained biomarker is associated with decreased brain mitochondrial respiration. CA protocol: 7 min of asphyxia, followed by VF, protocolized titration of compression depth to systolic blood pressure of 90 mmHg and vasopressor administration to a coronary perfusion pressure greater than 20 mmHg. platelet integrated mitochondrial electron transport system (ETS) function evaluated pre- and post-CA/ROSC four hours after return of spontaneous circulation (ROSC). Secondary outcome: correlation of platelet mitochondrial bioenergetics to cerebral bioenergetic function. Platelet maximal oxidative phosphorylation (OXPHOSCI+CII), P < 0.02, and maximal respiratory capacity (ETSCI+CII), P < 0.04, were both significantly increased compared to pre-arrest values. This was primarily due to a significant increase in succinate-supported respiration through Complex II (OXPHOSCII, P < 0.02 and ETSCII, P < 0.03). Higher respiration was not due to uncoupling, as the LEAKCI + CII respiration (mitochondrial respiration independent of ATP-production) was unchanged after CA/ROSC. Larger increases in platelet mitochondrial respiratory control ratio (RCR) compared to pre-CA RCR were significantly correlated with lower RCRs in the cortex (P < 0.03) and hippocampus (P < 0.04) compared to sham respiration. Platelet mitochondrial respiration is significantly increased four hours after ROSC. Future studies will identify mechanistic relationships between this serum biomarker and altered cerebral bioenergetics function following cardiac arrest.

  10. Fifty years of brain imaging in neonatal encephalopathy following perinatal asphyxia.

    PubMed

    Groenendaal, Floris; de Vries, Linda S

    2017-01-01

    In the past brain imaging of term infants with hypoxic-ischemic encephalopathy (HIE) was performed with cranial ultrasound (cUS) and computed tomography (CT). Both techniques have several disadvantages sensitivity and specificity is limited compared with magnetic resonance imaging (MRI) and CT makes use of radiation. At present MRI including diffusion weighted MRI during the first week of life, has become the method of choice for imaging infants with HIE. In addition to imaging, blood vessels and blood flow can be visualized using MR angiography, MR venography, and arterial spin labeling. Since the use of these techniques additional lesions in infants with HIE, such as arterial ischemic stroke, sinovenous thrombosis, and subdural hemorrhages can be diagnosed, and the incidence appears to be higher than shown previously. Phosphorus magnetic resonance spectroscopy (MRS) has led to the concept of secondary energy failure in infants with HIE, but has not been widely used. Proton MRS of the basal ganglia and thalamus is one of the best predictors of neurodevelopmental outcome. cUS should still be used for screening infants admitted to a NICU with neonatal encephalopathy. In the future magnetic resonance techniques will be increasingly used as early biomarkers of neurodevelopmental outcome in trials of neuroprotective strategies.

  11. Urinary Uric Acid/Creatinine Ratio - A Marker For Perinatal Asphyxia.

    PubMed

    Patel, Kinjal Prahaladbhai; Makadia, Mayur Goradhanbhai; Patel, Vishwal Indravardan; Nilayangode, Haridas Neelakandan; Nimbalkar, Somashekhar Marutirao

    2017-01-01

    Perinatal hypoxia is one of the leading causes of perinatal mortality in developing countries. Both apgar score and arterial blood pH predict the neonatal mortality in asphyxia. Apgar score alone does not predict neurologic outcome and as it is influenced by various factors. This study was conducted to evaluate the utility and sensitivity of urinary uric acid to creatinine ratio (UA/Cr ratio) in asphyxia diagnosis, compared to invasive Arterial Blood Gas (ABG) analysis. To assess the urinary uric acid/creatinine ratio as an additional marker for perinatal asphyxia compared with ABG analysis in apgar score monitoring. The present case control study was conducted at a teaching hospital in Central Gujarat. Data of 40 healthy newborns and 40 asphyxiated newborns were collected. In absence of regional estimates, a sample of size 39 was required to attain a power of 80% at 5% alpha (type I error) considering a moderate effect size of 0.65. (UA/Cr) ratio was measured from the spot urine sample collected during 24-72 hours of birth. Statistical analysis was performed by Independent t-test, Pearson's correlation coefficient (r) and Receiver Operating Characteristic (ROC) plots. The mean (UA/Cr ratio) (2.75±0.18 vs 1.78±0.23) is significantly higher in asphyxiated group than in the control group (p<0.0001). Urinary UA/Cr ratio had negative correlation with blood pH (r= -0.27, p=0.18), which was not significant (p>0.05). Urinary UA/Cr ratio with criterion of >2.3 had 100% sensitivity, 100% specificity with AUC of 1 (p<0.0001) had a better predictive value. Apgar score is usually reduced in neonates with congenital anomalies and premature neonates. Hence, it is preferable that the clinical diagnosis of asphyxia by apgar scores be supported by other investigations so that early decision can be taken about the level of care the baby needs. pH, lactates and base deficits change with establishment of respiration following resuscitation. However, pH, lactate, base deficit estimations are invasive and need rapid estimations. Non-invasive urinary UA/Cr ratio may be an answer to these issues as it easy, economical and equally efficient.

  12. The Role of Plasma and Urine Metabolomics in Identifying New Biomarkers in Severe Newborn Asphyxia: A Study of Asphyxiated Newborn Pigs following Cardiopulmonary Resuscitation.

    PubMed

    Sachse, Daniel; Solevåg, Anne Lee; Berg, Jens Petter; Nakstad, Britt

    2016-01-01

    Optimizing resuscitation is important to prevent morbidity and mortality from perinatal asphyxia. The metabolism of cells and tissues is severely disturbed during asphyxia and resuscitation, and metabolomic analyses provide a snapshot of many small molecular weight metabolites in body fluids or tissues. In this study metabolomics profiles were studied in newborn pigs that were asphyxiated and resuscitated using different protocols to identify biomarkers for subject characterization, intervention effects and possibly prognosis. A total of 125 newborn Noroc pigs were anesthetized, mechanically ventilated and inflicted progressive asphyxia until asystole. Pigs were randomized to resuscitation with a FiO2 0.21 or 1.0, different duration of ventilation before initiation of chest compressions (CC), and different CC to ventilation ratios. Plasma and urine samples were obtained at baseline, and 2 h and 4 h after return of spontaneous circulation (ROSC, heart rate > = 100 bpm). Metabolomics profiles of the samples were analyzed by nuclear magnetic resonance spectroscopy. Plasma and urine showed severe metabolic alterations consistent with hypoxia and acidosis 2 h and 4 h after ROSC. Baseline plasma hypoxanthine and lipoprotein concentrations were inversely correlated to the duration of hypoxia sustained before asystole occurred, but there was no evidence for a differential metabolic response to the different resuscitation protocols or in terms of survival. Metabolic profiles of asphyxiated newborn pigs showed severe metabolic alterations. Consistent with previously published reports, we found no evidence of differences between established and alternative resuscitation protocols. Lactate and pyruvate may have a prognostic value, but have to be independently confirmed.

  13. A practical classification schema incorporating consideration of possible asphyxia in cases of sudden unexpected infant death

    PubMed Central

    Randall, Brad B.; Wadee, Sabbir A.; Sens, Mary Ann; Kinney, Hannah C.; Folkerth, Rebecca D.; Odendaal, Hein J.; Dempers, Johan J.

    2012-01-01

    Although the rate of the sudden infant death syndrome (SIDS) has decreased over the last two decades, medical examiners and coroners are increasingly unwilling to use the SIDS diagnosis, particularly when there is an unsafe sleeping environment that might pose a risk for asphyxia. In order to reliably classify the infant deaths studied in a research setting in the mixed ancestory population in Cape Town, South Africa, we tested a classification system devised by us that incorporates the uncertainty of asphyxial risks at an infant death scene. We classified sudden infant deaths as: A) SIDS (where only a trivial potential for an overt asphyxial event existed); B) Unclassified—Possibly Asphyxial-Related (when any potential for an asphyxial death existed); C) Unclassified—Non-Asphyxial-Related (e.g., hyperthermia); D) Unclassified—No autopsy and/or death scene investigation; and E) Known Cause of Death. Ten infant deaths were classified according to the proposed schema as: SIDS, n = 2; Unclassified—Possibly Asphyxial-Related, n = 4; and Known Cause, n = 4. A conventional schema categorized the deaths as 6 cases, SIDS, and 4 cases, Known Cause, indicating that 4/6 (67%) of deaths previously classified as SIDS are considered related importantly to asphyxia and warrant their own subgroup. This new classification schema applies a simpler, more qualitative approach to asphyxial risk in infant deaths. It also allows us to test hypotheses about the role of asphyxia in sudden infant deaths, such as in brainstem defects in a range of asphyxial challenges. PMID:19484508

  14. Accidental mechanical asphyxia of children in Germany between 2000 and 2008.

    PubMed

    Meyer, F S; Trübner, K; Schöpfer, J; Zimmer, G; Schmidt, E; Püschel, K; Vennemann, M; Bajanowski, T; Althaus, L; Bach, P; Banaschak, S; Cordes, O; Dettmeyer, S R; Dressler, J; Gahr, B; Grellner, W; Héroux, V; Mützel, E; Tatschner, T; Zack, F; Zedler, B

    2012-09-01

    Accidents constitute one of the greatest risks to children, yet there are few medical reports that discuss the subject of accidental asphyxia. However, a systematic analysis of all documented cases in Germany over the years 2000-2008 has now been conducted, aiming at identifying patterns of accidental asphyxia, deducing findings, defining avoidance measures and recommending ways of increasing product safety and taking possible precautions. The analysis is based on a detailed retrospective analysis of all 91 relevant autopsy reports from 24 different German forensic institutes. A variety of demographic and morphological data was systematically collected and analysed. In 84 of the 91 cases, the sex of the victim was reported, resulting in a total of 57 boys (68 %) and 27 girls (32 %). The age spread ranged between 1 day and 14 years, with an average of 5.9 years. Most accidents occurred in the first year of life (20 %) or between the ages of 1 and 2 years (13 %). In 46 % of cases, the cause of death was strangulation, with the majority occurring in the home environment. In 31 % of all cases, the cause of death was positional asphyxia, the majority resulting from chest compression. In 23 % of cases, the cause of death was aspiration, mainly of foreign bodies. Today, accidental asphyxiation is a rare cause of death in children in Germany. Nevertheless, the majority of cases could have been avoided. Future incidence can be reduced by implementing two major precautions: increasing product safety and educating parents of potentially fatal risks. Specific recommendations relate to children's beds, toys and food.

  15. Reduced Cortical Activity Impairs Development and Plasticity after Neonatal Hypoxia Ischemia

    PubMed Central

    Ranasinghe, Sumudu; Or, Grace; Wang, Eric Y.; Ievins, Aiva; McLean, Merritt A.; Niell, Cristopher M.; Chau, Vann; Wong, Peter K. H.; Glass, Hannah C.; Sullivan, Joseph

    2015-01-01

    Survivors of preterm birth are at high risk of pervasive cognitive and learning impairments, suggesting disrupted early brain development. The limits of viability for preterm birth encompass the third trimester of pregnancy, a “precritical period” of activity-dependent development characterized by the onset of spontaneous and evoked patterned electrical activity that drives neuronal maturation and formation of cortical circuits. Reduced background activity on electroencephalogram (EEG) is a sensitive marker of brain injury in human preterm infants that predicts poor neurodevelopmental outcome. We studied a rodent model of very early hypoxic–ischemic brain injury to investigate effects of injury on both general background and specific patterns of cortical activity measured with EEG. EEG background activity is depressed transiently after moderate hypoxia–ischemia with associated loss of spindle bursts. Depressed activity, in turn, is associated with delayed expression of glutamate receptor subunits and transporters. Cortical pyramidal neurons show reduced dendrite development and spine formation. Complementing previous observations in this model of impaired visual cortical plasticity, we find reduced somatosensory whisker barrel plasticity. Finally, EEG recordings from human premature newborns with brain injury demonstrate similar depressed background activity and loss of bursts in the spindle frequency band. Together, these findings suggest that abnormal development after early brain injury may result in part from disruption of specific forms of brain activity necessary for activity-dependent circuit development. SIGNIFICANCE STATEMENT Preterm birth and term birth asphyxia result in brain injury from inadequate oxygen delivery and constitute a major and growing worldwide health problem. Poor outcomes are noted in a majority of very premature (<25 weeks gestation) newborns, resulting in death or life-long morbidity with motor, sensory, learning, behavioral, and language disabilities that limit academic achievement and well-being. Limited progress has been made to develop therapies that improve neurologic outcomes. The overall objective of this study is to understand the effect of early brain injury on activity-dependent brain development and cortical plasticity to develop new treatments that will optimize repair and recovery after brain injury. PMID:26311776

  16. The first fatal case of yam bean and rotenone toxicity in Thailand.

    PubMed

    Narongchai, Paitoon; Narongchai, Siripun; Thampituk, Suparat

    2005-07-01

    The first fatal case of Yam bean and Rotenone toxicity in Thailand was studied at Forensic Medicine, Chiang Mai, Thailand. A Chinese Taiwan man, 59 years old, was found dead after Yam bean ingestion. Yam bean toxicity and death have been found very rarely in the world and has not been reported in Thailand The Yam bean plant is grown widely in Northern Thailand. But many people know that mature pods, seeds and filage of the Yam bean, except the tuberous root, are very toxic. The victim ate a lot of Yam bean seeds and died within 2 hours with respiratory failure. The authors detected Rotenone substance in Yam bean seeds, gastric content and 72 ng/ml blood by HPLC. Also generalized microscopic hemorrhage in the brain, lungs, liver and adrenal glands which were of characteristic pathology were detected. The authors concluded that the cause of death was asphyxia from Yam bean or Rotenone toxicity.

  17. [Assessment of blood flow in the middle cerebral artery and the umbilical artery in fetuses with umbilical venous pulsations].

    PubMed

    Borowski, Dariusz; Czuba, Bartosz; Kaczmarek, Piotr; Włoch, Agata; Pawłowicz, Paweł; Wyrwas, Dorota; Wielgos, Mirosław; Sodowski, Krzysztof; Szaflik, Krzysztof

    2006-03-01

    Umbilical venous pulsation is an important sign of hemodynamic compromise, especially during fetal heart failure and asphyxia. The aim of this study was to determine of the blow flow in the middle cerebral artery and the umbilical artery in fetuses with umbilical venous pulsations. The investigation included 18 fetuses with signs of the intrauterine growth restriction and umbilical venous pulsations after 28th weeks of gestation. We evaluated cerebral-placental ratio (CPR) and pulsation index (PI) in the middle cerebral artery (MCA) and the umbilical artery (UA). We observed brain sparring effect in all cases of analyzing fetuses. There were 77,8% of abnormal flow pattern in umbilical artery. 13 fetuses had a single pulsation pattern in umbilical vein and another 5 had double pulsation pattern. The coexistence of umbilical vein pulsation and abnormal flow pattern in umbilical artery is closely related to increased perinatal mortality.

  18. Effects of combined xenon and hypothermia on cerebral blood flow and oxygen consumption in newborn piglets measured with a time-resolved near-infrared technique

    NASA Astrophysics Data System (ADS)

    Fazel Bakhsheshi, Mohammad; Hadway, Jennifer; Morrison, Laura B.; Diop, Mamadou; St. Lawrence, Keith; Lee, Ting-Yim

    2013-02-01

    Mild hypothermia (HT), in which the brain is cooled to 32-33°C, has been shown to be neuroprotective for neurological emergencies such as head trauma and neonatal asphyxia. Xenon (Xe), a scarce and expensive anesthetic gas, has also shown great promise as a neuroprotectant, particularly when combined with HT. The purpose of the present study was to investigate the combined effect of Xe and HT on the cerebral metabolic rate of oxygen (CMRO2) and cerebral blood flow (CBF). A closed circuit re-breathing system was used to deliver the Xe in order to make the treatment efficient and economical. A bolus-tracking method using indocyanine green (ICG) as a flow tracer with time-resolved near-infrared (TR-NIR) technique was used to measure CBF and CMRO2 in newborn piglets.

  19. Morphological analysis of astrocytes in the hippocampus in mechanical asphyxiation.

    PubMed

    Li, Dong-Ri; Ishikawa, Takaki; Quan, Li; Zhao, Dong; Michiue, Tomomi; Zhu, Bao-Li; Wang, Hui Jun; Maeda, Hitoshi

    2010-03-01

    The present study investigated the morphology of astrocytes in the hippocampus and serum S100B levels in cases of mechanical asphyxia due to neck compression (n=23: atypical hanging, n=7; ligature/manual strangulation, n=16) with regard to the classical autopsy findings, compared with those of other types of asphyxiation (n=9) and acute myocardial infarction/ischemia (AMI, n=20). The decrease in intact astrocyte number, as shown by S100 and GFAP-immunostaining, was larger for asphyxiation due to neck compression compared with that for other asphyxiation and AMI, showing a correlation with the increase in the serum S100B levels. The decrease in intact astrocyte number and increase in serum S100B were closely related to the severity of conjunctival petechial hemorrhage and fracture(s) of the hyoid bone and/or thyroid cartilage in asphyxia due to neck compression. These findings suggest that hippocampal astrocyte injury is caused by cerebral hypoxia accompanied by congestion, especially in mechanical asphyxia due to neck compression. (c) 2009 Elsevier Ireland Ltd. All rights reserved.

  20. Elevated levels of serum sICAM-1 in asphyxiated low birth weight newborns

    PubMed Central

    Huseynova, Saadat; Panakhova, Nushaba; Orujova, Pusta; Hasanov, Safikhan; Guliyev, Mehman; Orujov, Agil

    2014-01-01

    Perinatal hypoxia results in neuronal and endothelial cell damage. The main purpose of this study was to investigate the correlation of soluble intercellular adhesion molecule 1 (sICAM-1) expression and peripheral blood changes in perinatal asphyxia with neuronal injury markers in low birth weight (LBW) neonates. We compared the concentrations of serum sICAM-1, neuron-specific enolase (NSE) and antibodies specific for NR2 glutamate receptors in 29 asphyxiated and 20 control infants using standard enzyme immunoassay procedures. The mean total concentrations of sICAM-1 and neuron-specific proteins (NSE and NR2-specific antibodies) were higher in the asphyxiated infants than in the control infants. The serum sICAM-1 concentrations significantly correlated with Apgar scoring and with the pH and lactate data from capillary or arterial cord blood. No significant correlation between serum concentrations of neuron specific proteins and blood changes of asphyxia was found. Therefore, endothelial sICAM-1 expression levels might be accepted as an indicator of the severity of perinatal asphyxia in LBW infants. PMID:25358349

  1. Agonal sequences in four filmed hangings: analysis of respiratory and movement responses to asphyxia by hanging.

    PubMed

    Sauvageau, Anny

    2009-01-01

    The human pathophysiology of asphyxia by hanging is still poorly understood, despite great advances in forensic science. In that context, filmed hangings may hold the key to answer questions regarding the sequence of events leading to death in human asphyxia. Four filmed hangings were analyzed. Rapid loss of consciousness was observed between 13 sec and 18 sec after onset of hanging, closely followed by convulsions (at 14-19 sec). A complex pattern of decerebration rigidity (19-21 sec in most cases), followed by a quick phase of decortication rigidity (1 min 00 sec-1 min 08 sec in most cases), an extended phase of decortication rigidity (1 min 04 sec-1 min 32 sec) and loss of muscle tone (1 min 38 sec-2 min 47 sec) was revealed. Very deep respiratory attempts started between 20 and 22 sec, the last respiratory attempt being detected between 2 min 00 sec and 2 min 04 sec. Despite differences in the types of hanging, this unique study reveals similarities that are further discussed.

  2. Histological Changes in the Thyroid Gland in Cases of Infant and Early Childhood Asphyxia-A Preliminary Study.

    PubMed

    Byard, Roger W; Bellis, Maria

    2016-05-01

    A retrospective blinded study of thyroid gland histology was undertaken in 50 infants and young children aged from 1 to 24 months. Deaths were due to (i) suffocation (N = 7), hanging (4), wedging (3), and chest and/or neck compression (4), and (ii) SIDS (20), noncervical trauma (7), organic disease, (4) and drug toxicity (1). In the asphyxia group (N = 18), thyroid gland congestion ranged from 0 to 3+ with 39% of cases (7/18) having moderate/marked congestion. In three cases, focal aggregates of red blood cells (blood islands) were observed within the intrafollicular colloid. These deaths involved chest compression, chest and/or neck compression, and crush asphyxia in a vehicle accident, and all had facial petechiae. Only 22% of the 32 control cases (7/32) had moderate/marked congestion with no blood islands being identified (p < 0.05). Blood islands within the thyroid gland may be caused by congestion associated with crushing or compression and may provide supportive evidence for this diagnosis. © 2016 American Academy of Forensic Sciences.

  3. [An experimental study on the effects of rhythmic abdominal lifting and compression during cardiopulmonary resuscitation in a swine model of asphyxia].

    PubMed

    Li, Xiu-man; Wang, Li-xiang; Liu, Ya-hua; Sun, Kun; Ma, Li-zhi; Guo, Xiao-dong; Li, Hui-qing

    2012-04-01

    To compare the hemodynamic and respiratory influences of chest compression- cardiopulmonary resuscitation (CC-CPR) and rhythmic abdominal lifting and compression-cardiopulmonary resuscitation (ALC-CPR) in a swine model of asphyxia cardiac arrest (CA), and evaluate the effectiveness of rhythmic abdominal lifting and compression. Thirty swines were randomly divided into two groups, with 15 swines in each group. CA model was reproduced by asphyxia as a result of clamping the trachea, and CC-CPR and ALC-CPR was conducted in two groups, respectively. Electrocardiogram (ECG), pulse oxygen saturation [SpO(2)], end-tidal partial pressure of carbon dioxide [P(ET)CO(2)], aorta systolic blood pressure (SBP), diastolic blood pressure (DBP), central venous pressure (CVP), and tidal volume (VT) were monitored continuously from 10 minutes before asphyxia to the end of experiment. The aorta mean arterial pressure (MAP), coronary perfusion pressure (CPP) and minute ventilation (MV) were calculated. Artery blood samples were collected to determine the blood gas analysis at 10 minutes before asphyxia, 10 minutes after asphyxia, and 5, 10, 20 minutes after resuscitation. The restoration of spontaneous circulation (ROSC) rate, 24-hour survival rate and 24-hour neurological function score were observed. There were no significant differences in all mentioned indexes between two groups at 10 minutes before and 10 minutes after asphyxia. At 2 minutes after the resuscitation, the MAP (mm Hg, 1 mm Hg = 0.133 kPa) and CPP (mm Hg) in CC-CPR group were significantly higher than those in ALC-CPR group (MAP: 43.60 ± 12.91 vs. 33.40 ± 6.59, P < 0.05; CPP: 21.67 ± 11.28 vs. 11.80 ± 4.16, P < 0.01), the VT (ml) and MV (L/min)in ALC-CPR group were significantly higher than those in CC-CPR group (VT: 111.67 ± 18.12 vs. 56.60 ± 7.76; MV: 11.17 ± 1.81 vs. 5.54 ± 0.79, both P < 0.01). At 5, 10, 20 minutes after resuscitation, in ALC-CPR group, pH value, arterial partial pressure of oxygen [PaO(2), mm Hg] and arterial oxygen saturation [SaO(2)] were increased, and HCO(3)(-) (mmol/L) and base excess (BE, mmol/L) were decreased, which significantly higher than those in CC-CPR group [pH at 20 minutes after resuscitation: 7.16 ± 0.16 vs. 7.01 ± 0.14; PaO(2): 82.73 ± 13.20 vs. 58.33 ± 17.77; HCO(3)(-): 27.71 ± 3.11 vs. 21.04 ± 3.62; BE: -4.78 ± 4.30 vs. -10.23 ± 2.12; SaO(2): 0.893 ± 0.088 vs. 0.764 ± 0.122], and arterial partial pressure of carbon dioxide [PaCO(2), mm Hg], K(+) (mmol/L) and lactic acid (Lac,mmol/L) were significantly lower than those in CC-CPR group [PaCO(2) at 20 minutes after resuscitation: 49.40 ± 15.60 vs. 79.80 ± 15.35; K(+): 7.18 ± 1.76 vs. 8.55 ± 1.02; Lac: 8.17 ± 1.46 vs. 10.39 ± 1.92], with statistical significant (P < 0.05 or P < 0.01). But the ROSC rate and 24-hour survival rate in ALC-CPR group were significantly higher than those in CC-CPR group (ROSC rate: 80.0% vs. 26.7%, P < 0.01; 24-hour survival rate: 60.0% vs. 13.3%, P < 0.05), and the 24-hour neurological function score was significantly lower than that in CC-CPR group (1.11 ± 0.33 vs. 3.50 ± 0.70, P < 0.01). In the incipient stage of cardiopulmonary resuscitation of the swine CA model of asphyxia, compared with CC-CPR, ALC-CPR can be more effective.

  4. Vasoparalysis associated with brain damage in asphyxiated term infants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pryds, O.; Greisen, G.; Lou, H.

    1990-07-01

    The relationship of cerebral blood flow to acute changes in arterial carbon dioxide and mean arterial blood pressure (MABP) was determined during the first day of life in 19 severely asphyxiated term infants supported by mechanical ventilation. For comparison, 12 infants without perinatal asphyxia were also investigated. Global cerebral blood flow (CBF infinity) was determined by xenon 133 clearance two or three times within approximately 2 hours. During the cerebral blood flow measurement, the amplitude-integrated electroencephalogram and visual-evoked potential were recorded. Changes in arterial carbon dioxide pressure followed adjustments of the ventilator settings, whereas MABP fluctuated spontaneously. Arterial oxygen pressuremore » and blood glucose concentration were in the normal range. Five of the asphyxiated infants had isoelectric electroencephalograms and died subsequently with severe brain damage. They had a high CBF infinity (mean 30.6 ml/100 gm/min) and abolished carbon dioxide and MABP reactivity. Lower CBF infinity (mean 14.7 ml/100 gm/min) and abolished MABP reactivity were found in another five asphyxiated infants with burst-suppression electroencephalograms in whom computed tomographic or clinical signs of brain lesions developed. The carbon dioxide reactivity was preserved in these infants. In the remaining nine asphyxiated infants without signs of central nervous system abnormality, carbon dioxide and MABP reactivity were preserved, as was also the case in the control group. We conclude that abolished autoregulation is associated with cerebral damage in asphyxiated infants and that the combination of isoelectric electroencephalograms and cerebral hyperperfusion is an early indicator of very severe brain damage.« less

  5. Return of spontaneous Circulation Is Not Affected by Different Chest Compression Rates Superimposed with Sustained Inflations during Cardiopulmonary Resuscitation in Newborn Piglets

    PubMed Central

    Li, Elliott S.; Cheung, Po-Yin; Lee, Tze-Fun; Lu, Min; O'Reilly, Megan

    2016-01-01

    Objective Recently, sustained inflations (SI) during chest compression (CC) have been suggested as an alternative to the current approach during neonatal resuscitation. However, the optimal rate of CC during SI has not yet been established. Our aim was to determine whether different CC rates during SI reduce time to return of spontaneous circulation (ROSC) and improve hemodynamic recovery in newborn piglets with asphyxia-induced bradycardia. Intervention and measurements Term newborn piglets were anesthetized, intubated, instrumented and exposed to 45-min normocapnic hypoxia followed by asphyxia. Resuscitation was initiated when heart rate decreased to 25% of baseline. Piglets were randomized into three groups: CC superimposed by SI at a rate of 90 CC per minute (SI+CC 90, n = 8), CC superimposed by SI at a rate of 120 CC per minute (SI+CC 120, n = 8), or a sham group (n = 6). Cardiac function, carotid blood flow, cerebral oxygenation and respiratory parameters were continuously recorded throughout the experiment. Main results Both treatment groups had similar time of ROSC, survival rates, hemodynamic and respiratory parameters during cardiopulmonary resuscitation. The hemodynamic recovery in the subsequent 4h was similar in both groups and was only slightly lower than sham-operated piglets at the end of experiment. Conclusion Newborn piglets resuscitated by SI+CC 120 did not show a significant advantage in ROSC, survival, and hemodynamic recovery as compared to those piglets resuscitated by SI+CC 90. PMID:27304210

  6. Exhaled CO2 Parameters as a Tool to Assess Ventilation-Perfusion Mismatching during Neonatal Resuscitation in a Swine Model of Neonatal Asphyxia

    PubMed Central

    Li, Elliott Shang-shun; Cheung, Po-Yin; O'Reilly, Megan; LaBossiere, Joseph; Lee, Tze-Fun; Cowan, Shaun; Bigam, David L.; Schmölzer, Georg Marcus

    2016-01-01

    Background End-tidal CO2 (ETCO2), partial pressure of exhaled CO2 (PECO2), and volume of expired CO2 (VCO2) can be continuously monitored non-invasively to reflect pulmonary ventilation and perfusion status. Although ETCO2 ≥14mmHg has been shown to be associated with return of an adequate heart rate in neonatal resuscitation and quantifying the PECO2 has the potential to serve as an indicator of resuscitation quality, there is little information regarding capnometric measurement of PECO2 and ETCO2 in detecting return of spontaneous circulation (ROSC) and survivability in asphyxiated neonates receiving cardiopulmonary resuscitation (CPR). Methods Seventeen newborn piglets were anesthetized, intubated, instrumented, and exposed to 45-minute normocapnic hypoxia followed by apnea to induce asphyxia. Protocolized resuscitation was initiated when heart rate decreased to 25% of baseline. Respiratory and hemodynamic parameters including ETCO2, PECO2, VCO2, heart rate, cardiac output, and carotid artery flow were continuously measured and analyzed. Results There were no differences in respiratory and hemodynamic parameters between surviving and non-surviving piglets prior to CPR. Surviving piglets had significantly higher ETCO2, PECO2, VCO2, cardiac index, and carotid artery flow values during CPR compared to non-surviving piglets. Conclusion Surviving piglets had significantly better respiratory and hemodynamic parameters during resuscitation compared to non-surviving piglets. In addition to optimizing resuscitation efforts, capnometry can assist by predicting outcomes of newborns requiring chest compressions. PMID:26766424

  7. Proinflammatory Cytokines, Enolase and S-100 as Early Biochemical Indicators of Hypoxic-Ischemic Encephalopathy Following Perinatal Asphyxia in Newborns.

    PubMed

    Chaparro-Huerta, Verónica; Flores-Soto, Mario Eduardo; Merin Sigala, Mario Ernesto; Barrera de León, Juan Carlos; Lemus-Varela, María de Lourdes; Torres-Mendoza, Blanca Miriam de Guadalupe; Beas-Zárate, Carlos

    2017-02-01

    Estimation of the neurological prognosis of infants suffering from perinatal asphyxia and signs of hypoxic-ischemic encephalopathy is of great clinical importance; however, it remains difficult to satisfactorily assess these signs with current standard medical practices. Prognoses are typically based on data obtained from clinical examinations and neurological tests, such as electroencephalography (EEG) and neuroimaging, but their sensitivities and specificities are far from optimal, and they do not always reliably predict future neurological sequelae. In an attempt to improve prognostic estimates, neurological research envisaged various biochemical markers detectable in the umbilical cord blood of newborns (NB). Few studies examining these biochemical factors in the whole blood of newborns exist. Thus, the aim of this study was to determine the expression and concentrations of proinflammatory cytokines (TNF-α, IL-1β and IL-6) and specific CNS enzymes (S-100 and enolase) in infants with perinatal asphyxia. These data were compared between the affected infants and controls and were related to the degree of HIE to determine their utilities as biochemical markers for early diagnosis and prognosis. The levels of the proinflammatory cytokines and enzymes were measured by enzyme-linked immunosorbent assay (ELISA) and Reverse Transcription polymerase chain reaction (RT-PCR). The expression and serum levels of the proinflammatory cytokines, enolase and S-100 were significantly increased in the children with asphyxia compared with the controls. The role of cytokines after hypoxic-ischemic insult has been determined in studies of transgenic mice that support the use of these molecules as candidate biomarkers. Similarly, S-100 and enolase are considered promising candidates because these markers have been correlated with tissue damage in different experimental models. Copyright © 2016. Published by Elsevier B.V.

  8. Risks of asphyxia-related neonatal complications in offspring of mothers with type 1 or type 2 diabetes: the impact of maternal overweight and obesity.

    PubMed

    Cnattingius, Sven; Lindam, Anna; Persson, Martina

    2017-07-01

    We aimed to compare the risks of severe asphyxia-related neonatal complications in the offspring of mothers with type 1 or type 2 diabetes, and to assess the impact of maternal overweight/obesity on these risks. This was a population-based study of 1,343,751 live-born singleton infants in Sweden between 1997 and 2011, including 5941 and 711 infants of mothers with type 1 and type 2 diabetes, respectively. ORs with 95% CIs were calculated for low Apgar score (0-6) at 5 min after birth, hypoxic ischaemic encephalopathy and neonatal seizures. The rates of a low Apgar score were 0.9%, 2.6% and 2.1% in the offspring of mothers without diabetes or with type 1 or type 2 diabetes, respectively. After controlling for maternal confounders (including BMI), the risk of a low Apgar score increased in the offspring of mothers with type 1 diabetes (OR 2.67, 95% CI 2.23, 3.20) but not in the offspring of mothers with type 2 diabetes (OR 1.25, 95% CI 0.66, 2.35). The ORs of hypoxic ischaemic encephalopathy or neonatal seizures were increased in the offspring of mothers with type 1 diabetes (OR 3.41, 95% CI 2.58, 4.49) and type 2 diabetes (OR 2.54, 95% CI 1.13, 5.69). Maternal overweight/obesity was a risk factor for asphyxia-related neonatal complications and low Apgar scores in the offspring of mothers with type 1 diabetes and mothers without diabetes. The risks of a low Apgar score and severe asphyxia-related neonatal complications are increased in the offspring of mothers with type 1 or type 2 diabetes. Maternal overweight/obesity is an important contributing factor.

  9. Risk of poor neonatal outcome at term after medically assisted reproduction: a propensity score-matched study.

    PubMed

    Ensing, Sabine; Abu-Hanna, Ameen; Roseboom, Tessa J; Repping, Sjoerd; van der Veen, Fulco; Mol, Ben Willem J; Ravelli, Anita C J

    2015-08-01

    To study risk of birth asphyxia and related morbidity among term singletons born after medically assisted reproduction (MAR). Population cohort study. Not applicable. A total of 1,953,932 term singleton pregnancies selected from a national registry for 1999-2011. None. Primary outcome Apgar score <4; secondary outcomes Apgar score <7, intrauterine fetal death, perinatal mortality, congenital anomalies, small for gestational age, asphyxia related morbidity, and cesarean delivery. The risks of birth asphyxia and related morbidity were calculated in women who conceived either through MAR or spontaneously (SC), with a subgroup analysis for in vitro fertilization (IVF). An additional propensity score matching analysis was performed with matching on multiple maternal baseline covariates (maternal age, ethnicity, socioeconomic status, parity, year of birth, and preexistent diseases). Each MAR pregnancy was matched to three SC controls. Relative to SC, the MAR singletons had an increased risk of adverse neonatal outcomes including Apgar score <4 (adjusted odds ratio [OR] 1.29; 95% CI, 1.14-1.46) and intrauterine fetal death (adjusted OR 1.61; 95% CI, 1.35-1.91). After propensity score matching, the risk of an Apgar score <4 was comparable between MAR and SC singletons (OR 0.99; 95% CI, 0.87-1.14). Cesarean delivery for both fetal distress and nonprogressive labor occurred more among MAR pregnancies compared with SC pregnancies. Term singletons conceived after MAR have an increased risk of morbidity related to birth asphyxia. Because this is mainly due to maternal characteristics, obstetric caregivers should be aware that the increased rates of cesareans reflect the behavior of women and physicians rather than increased perinatal complications. Copyright © 2015 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  10. High-dose phenobarbital or erythropoietin for the treatment of perinatal asphyxia in term newborns.

    PubMed

    Avasiloaiei, Andreea; Dimitriu, Cristina; Moscalu, Mihaela; Paduraru, Luminita; Stamatin, Maria

    2013-10-01

    The aim of this study was to compare two neuroprotective strategies to supportive care in the treatment of perinatal asphyxia. A total of 67 term newborns with perinatal asphyxia were included and randomized into three groups: one group received supportive treatment; another group received a single dose of 40 mg/kg phenobarbital; and the third received three daily doses of 1000 IU/kg erythropoietin. The following parameters were analyzed: gestational age, birthweight, Apgar scores, cord blood pH, total serum antioxidant status (TAS), superoxide dismutase (SOD), glutathione peroxidase (GPx) and malondialdehyde (MDA). The newborns were included in the follow-up program and examined up to 18 months of age. TAS was higher in the erythropoietin group than in the other groups. SOD and GPx were lower for infants treated with phenobarbital or erythropoietin compared to control infants. MDA was lower in the erythropoietin group compared to the other groups, although the difference was not statistically significant (P > 0.05). The mortality rate was lower in the phenobarbital and erythropoietin groups (both 4.6%) than in the control group (17.4%). Long-term neurologic follow up showed a high incidence of sequelae in the control group compared to the phenobarbital and erythropoietin groups. Follow-up results were better in the phenobarbital group than in the erythropoietin group for motor and cognitive function at 3 and 6 months and worse for expressive language. At 18 months, however, the differences between these two groups were not significant. High-dose phenobarbital or erythropoietin along with supportive treatment has a positive influence on the outcome of newborns with perinatal asphyxia. Phenobarbital has the advantage of low cost and simplicity. © 2013 The Authors. Pediatrics International © 2013 Japan Pediatric Society.

  11. The Role of Plasma and Urine Metabolomics in Identifying New Biomarkers in Severe Newborn Asphyxia: A Study of Asphyxiated Newborn Pigs following Cardiopulmonary Resuscitation

    PubMed Central

    Sachse, Daniel; Solevåg, Anne Lee; Berg, Jens Petter; Nakstad, Britt

    2016-01-01

    Background Optimizing resuscitation is important to prevent morbidity and mortality from perinatal asphyxia. The metabolism of cells and tissues is severely disturbed during asphyxia and resuscitation, and metabolomic analyses provide a snapshot of many small molecular weight metabolites in body fluids or tissues. In this study metabolomics profiles were studied in newborn pigs that were asphyxiated and resuscitated using different protocols to identify biomarkers for subject characterization, intervention effects and possibly prognosis. Methods A total of 125 newborn Noroc pigs were anesthetized, mechanically ventilated and inflicted progressive asphyxia until asystole. Pigs were randomized to resuscitation with a FiO2 0.21 or 1.0, different duration of ventilation before initiation of chest compressions (CC), and different CC to ventilation ratios. Plasma and urine samples were obtained at baseline, and 2 h and 4 h after return of spontaneous circulation (ROSC, heart rate > = 100 bpm). Metabolomics profiles of the samples were analyzed by nuclear magnetic resonance spectroscopy. Results Plasma and urine showed severe metabolic alterations consistent with hypoxia and acidosis 2 h and 4 h after ROSC. Baseline plasma hypoxanthine and lipoprotein concentrations were inversely correlated to the duration of hypoxia sustained before asystole occurred, but there was no evidence for a differential metabolic response to the different resuscitation protocols or in terms of survival. Conclusions Metabolic profiles of asphyxiated newborn pigs showed severe metabolic alterations. Consistent with previously published reports, we found no evidence of differences between established and alternative resuscitation protocols. Lactate and pyruvate may have a prognostic value, but have to be independently confirmed. PMID:27529347

  12. Hemodynamic directed CPR improves short-term survival from asphyxia-associated cardiac arrest.

    PubMed

    Sutton, Robert M; Friess, Stuart H; Bhalala, Utpal; Maltese, Matthew R; Naim, Maryam Y; Bratinov, George; Niles, Dana; Nadkarni, Vinay M; Becker, Lance B; Berg, Robert A

    2013-05-01

    Adequate coronary perfusion pressure (CPP) during cardiopulmonary resuscitation (CPR) is essential for establishing return of spontaneous circulation. The objective of this study was to compare short-term survival using a hemodynamic directed resuscitation strategy versus an absolute depth-guided approach in a porcine model of asphyxia-associated cardiac arrest. We hypothesized that a hemodynamic directed approach would improve short-term survival compared to depth-guided care. After 7 min of asphyxia, followed by induction of ventricular fibrillation, 19 female 3-month old swine (31±0.4 kg) were randomized to receive one of three resuscitation strategies: (1) hemodynamic directed care (CPP-20): chest compressions (CCs) with depth titrated to a target systolic blood pressure of 100 mmHg and titration of vasopressors to maintain CPP>20 mmHg; (2) depth 33 mm (D33): target CC depth of 33 mm with standard American Heart Association (AHA) epinephrine dosing; or (3) depth 51 mm (D51): target CC depth of 51 mm with standard AHA epinephrine dosing. All animals received manual CPR guided by audiovisual feedback for 10 min before first shock. 45-Min survival was higher in the CPP-20 group (6/6) compared to D33 (1/7) or D51 (1/6) groups; p=0.002. Coronary perfusion pressures were higher in the CPP-20 group compared to D33 (p=0.011) and D51 (p=0.04), and in survivors compared to non-survivors (p<0.01). Total number of vasopressor doses administered and defibrillation attempts were not different. Hemodynamic directed care targeting CPPs>20 mmHg improves short-term survival in an intensive care unit porcine model of asphyxia-associated cardiac arrest. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  13. Random urine uric acid to creatinine and prediction of perinatal asphyxia: a meta-analysis.

    PubMed

    Bellos, Ioannis; Fitrou, Georgia; Pergialiotis, Vasilios; Perrea, Despina N; Papantoniou, Nikolaos; Daskalakis, Georgios

    2018-05-15

    The purpose of the present review is to evaluate whether urine uric acid to creatinine ratio is increased in perinatal asphyxia and hypoxic-ischemic encephalopathy (HIE), as well as to assess its predictive accuracy in the disease. We used the Medline (1966-2017), Scopus (2004-2017), Clinicaltrials.gov (2008-2017), Embase (1980-2017), Cochrane Central Register of Controlled Trials CENTRAL (1999-2017), and Google Scholar (2004-2017) databases in our primary search along with the reference lists of electronically retrieved full-text papers. The hierarchical summary receiver operating characteristic (HSROC) model was used for the meta-analysis of diagnostic accuracy. Fourteen studies were finally included in the present review, that investigated 1226 neonates. Urinary uric acid to creatinine ratio was significantly higher in neonates with perinatal asphyxia than in healthy controls (mean differences (MD): 1.43 95%CI [1.17, 1.69]). Specifically, the mean difference for Sarnat stage 1 was 0.70 (95%CI [0.28, 1.13]), for stage 2 1.41 (95%CI [0.99, 1.84]), and for stage 3 2.71 (95%CI [2.08, 3.35]). The estimated sensitivity for the summary point was 0.90 (95%CI (0.82-0.95)), the specificity was 0.88 (95%CI (0.73-0.95)) and the diagnostic odds ratio was calculated at 63.62 (95%CI (17.08-236.96)). Urinary uric acid to creatinine ratio is a rapid and an easily detected biomarker that may help physicians identify neonates at risk of developing perinatal asphyxia and HIE. However, large-scale prospective studies are still needed to determine its value in predicting mortality, as well as short- and long-term adverse neurological outcomes.

  14. Monitoring of cerebral hemodynamics and oxygenation by continuous-wave optical spectroscopy during asphyxia in newborn piglets

    NASA Astrophysics Data System (ADS)

    Stankovic, Miljan R.; Fujii, Alan M.; Kirby, Debra; Boas, David A.; Ntziachristos, Vasilis; Stubblefield, Phillip G.

    1997-12-01

    The present study demonstrated that optical variables HbT and SmcO2 can be used to monitor changes in cerebral hemodynamics and oxygenation during asphyxia. Unfortunately none of the individual optical variables alone could be used to monitor changes in cerebral hemodynamics and oxygenation under a variety of possible clinical circumstances. However, all variables together, forming patterns unique to the commonly occurring physiological conditions, might potentially serve as a `silver standard' to aid interpretations of optical signals in clinical settings where `gold standard' techniques are not available, i.g. in the human fetus and neonate.

  15. Monitoring of cerebral hemodynamics and oxygenation by continuous-wave optical spectroscopy during asphyxia in newborn piglets

    NASA Astrophysics Data System (ADS)

    Stankovic, Miljan R.; Fujii, Alan M.; Kirby, Debra; Boas, David A.; Ntziachristos, Vasilis; Stubblefield, Phillip G.

    1998-01-01

    The present study demonstrated that optical variables HbT and SmcO2 can be used to monitor changes in cerebral hemodynamics and oxygenation during asphyxia. Unfortunately none of the individual optical variables alone could be used to monitor changes in cerebral hemodynamics and oxygenation under a variety of possible clinical circumstances. However, all variables together, forming patterns unique to the commonly occurring physiological conditions, might potentially serve as a `silver standard' to aid interpretations of optical signals in clinical settings where `gold standard' techniques are not available, i.g. in the human fetus and neonate.

  16. Metabolomic profiling in perinatal asphyxia: a promising new field.

    PubMed

    Denihan, Niamh M; Boylan, Geraldine B; Murray, Deirdre M

    2015-01-01

    Metabolomics, the latest "omic" technology, is defined as the comprehensive study of all low molecular weight biochemicals, "metabolites" present in an organism. As a systems biology approach, metabolomics has huge potential to progress our understanding of perinatal asphyxia and neonatal hypoxic-ischaemic encephalopathy, by uniquely detecting rapid biochemical pathway alterations in response to the hypoxic environment. The study of metabolomic biomarkers in the immediate neonatal period is not a trivial task and requires a number of specific considerations, unique to this disease and population. Recruiting a clearly defined cohort requires standardised multicentre recruitment with broad inclusion criteria and the participation of a range of multidisciplinary staff. Minimally invasive biospecimen collection is a priority for biomarker discovery. Umbilical cord blood presents an ideal medium as large volumes can be easily extracted and stored and the sample is not confounded by postnatal disease progression. Pristine biobanking and phenotyping are essential to ensure the validity of metabolomic findings. This paper provides an overview of the current state of the art in the field of metabolomics in perinatal asphyxia and neonatal hypoxic-ischaemic encephalopathy. We detail the considerations required to ensure high quality sampling and analysis, to support scientific progression in this important field.

  17. Electrolyte status in birth asphyxia.

    PubMed

    Basu, Pallab; Som, Sabyasachi; Das, Harendranath; Choudhuri, Nabendu

    2010-03-01

    To study electrolyte status in asphyxiated newborns of different severity in early neonatal period and compare with controls. Sodium, potassium and total calcium levels were estimated in the serum samples of asphyxiated newborns of different severity and control group immediately after birth. Mean serum sodium level was significantly lower (122.1 +/- 6.0 mEq/L vs 138.8 +/- 2.7 mEq/L; P < 0.001), mean serum potassium was higher (5.05 +/- 0.63 mEq/L vs 4.19 +/- 0.40 mEq/L; P < 0.001) and mean serum calcium level was found lower (6.85 +/- 0.95 mg/dl vs 9.50 +/- 0.51 mg/dl; P < 0.001) in cases than controls. Among cases, a strong positive linear correlation was found between the serum sodium, serum calcium levels and their Apgar scores, between sodium levels and total calcium levels and significant negative linear correlation between Apgar scores and serum potassium level. Among cases, hyponatremia and hypocalcemia developed early and simultaneously and the decrease in their serum levels was directly proportional to each other and to the degree of asphyxia. Though, mean potassium level was within the normal limit, the value was higher among cases than controls and directly proportional to asphyxia.

  18. Metabolomic Profiling in Perinatal Asphyxia: A Promising New Field

    PubMed Central

    Denihan, Niamh M.; Boylan, Geraldine B.; Murray, Deirdre M.

    2015-01-01

    Metabolomics, the latest “omic” technology, is defined as the comprehensive study of all low molecular weight biochemicals, “metabolites” present in an organism. As a systems biology approach, metabolomics has huge potential to progress our understanding of perinatal asphyxia and neonatal hypoxic-ischaemic encephalopathy, by uniquely detecting rapid biochemical pathway alterations in response to the hypoxic environment. The study of metabolomic biomarkers in the immediate neonatal period is not a trivial task and requires a number of specific considerations, unique to this disease and population. Recruiting a clearly defined cohort requires standardised multicentre recruitment with broad inclusion criteria and the participation of a range of multidisciplinary staff. Minimally invasive biospecimen collection is a priority for biomarker discovery. Umbilical cord blood presents an ideal medium as large volumes can be easily extracted and stored and the sample is not confounded by postnatal disease progression. Pristine biobanking and phenotyping are essential to ensure the validity of metabolomic findings. This paper provides an overview of the current state of the art in the field of metabolomics in perinatal asphyxia and neonatal hypoxic-ischaemic encephalopathy. We detail the considerations required to ensure high quality sampling and analysis, to support scientific progression in this important field. PMID:25802843

  19. Etiologic profile of spastic quadriplegia in children.

    PubMed

    Venkateswaran, Sunita; Shevell, Michael I

    2007-09-01

    The etiologic profile and possible predictors of etiology in children with spastic quadriplegia were assessed in a consecutive cohort of children with this motor impairment. Medical records from a single pediatric neurology practice over a 14-year interval were retrospectively and systematically reviewed. Variables comprised possible demographic, prenatal, perinatal, and postnatal risk factors. Of the 99 patients included in the study, 39 were premature (<37 weeks gestation). The overall etiologic yield was 83%. The top three diagnoses were hypoxic-ischemic perinatal asphyxia (33%), periventricular leukomalacia (15%), and central nervous system infections (11%). In premature children, the most common diagnoses were periventricular leukomalacia (33%), perinatal asphyxia (26%), and central nervous system infections (15%). In term-born children, the most frequent diagnoses were perinatal asphyxia (37%), metabolic disease (12%), and structural malformation or infection (9% each). Factors predicting the identification of an etiology included male sex (P = 0.05), low birth weight (P = 0.003), prematurity (P = 0.01), perinatal complications (P = 0.002), and neonatal encephalopathy (P = 0.006). The etiologic yield in patients with spastic quadriplegia was 83%, with differing underlying etiologies depending on gestational age. These results should help guide physicians in investigating possible underlying etiologies in patients with spastic quadriplegia.

  20. Urinary Uric Acid/Creatinine Ratio - A Marker For Perinatal Asphyxia

    PubMed Central

    Patel, Kinjal Prahaladbhai; Makadia, Mayur Goradhanbhai; Patel, Vishwal Indravardan; Nilayangode, Haridas Neelakandan

    2017-01-01

    Background Perinatal hypoxia is one of the leading causes of perinatal mortality in developing countries. Both apgar score and arterial blood pH predict the neonatal mortality in asphyxia. Apgar score alone does not predict neurologic outcome and as it is influenced by various factors. This study was conducted to evaluate the utility and sensitivity of urinary uric acid to creatinine ratio (UA/Cr ratio) in asphyxia diagnosis, compared to invasive Arterial Blood Gas (ABG) analysis. Aim To assess the urinary uric acid/creatinine ratio as an additional marker for perinatal asphyxia compared with ABG analysis in apgar score monitoring. Materials and Methods The present case control study was conducted at a teaching hospital in Central Gujarat. Data of 40 healthy newborns and 40 asphyxiated newborns were collected. In absence of regional estimates, a sample of size 39 was required to attain a power of 80% at 5% alpha (type I error) considering a moderate effect size of 0.65. (UA/Cr) ratio was measured from the spot urine sample collected during 24-72 hours of birth. Statistical analysis was performed by Independent t-test, Pearson’s correlation coefficient (r) and Receiver Operating Characteristic (ROC) plots. Results The mean (UA/Cr ratio) (2.75±0.18 vs 1.78±0.23) is significantly higher in asphyxiated group than in the control group (p<0.0001). Urinary UA/Cr ratio had negative correlation with blood pH (r= -0.27, p=0.18), which was not significant (p>0.05). Urinary UA/Cr ratio with criterion of >2.3 had 100% sensitivity, 100% specificity with AUC of 1 (p<0.0001) had a better predictive value. Conclusions Apgar score is usually reduced in neonates with congenital anomalies and premature neonates. Hence, it is preferable that the clinical diagnosis of asphyxia by apgar scores be supported by other investigations so that early decision can be taken about the level of care the baby needs. pH, lactates and base deficits change with establishment of respiration following resuscitation. However, pH, lactate, base deficit estimations are invasive and need rapid estimations. Non-invasive urinary UA/Cr ratio may be an answer to these issues as it easy, economical and equally efficient. PMID:28274014

  1. Comparison of Quantitative Characteristics of Early Post-resuscitation EEG Between Asphyxial and Ventricular Fibrillation Cardiac Arrest in Rats.

    PubMed

    Chen, Bihua; Chen, Gang; Dai, Chenxi; Wang, Pei; Zhang, Lei; Huang, Yuanyuan; Li, Yongqin

    2018-04-01

    Quantitative electroencephalogram (EEG) analysis has shown promising results in studying brain injury and functional recovery after cardiac arrest (CA). However, whether the quantitative characteristics of EEG, as potential indicators of neurological prognosis, are influenced by CA causes is unknown. The purpose of this study was designed to compare the quantitative characteristics of early post-resuscitation EEG between asphyxial CA (ACA) and ventricular fibrillation CA (VFCA) in rats. Thirty-two Sprague-Dawley rats of both sexes were randomized into either ACA or VFCA group. Cardiopulmonary resuscitation was initiated after 5-min untreated CA. Characteristics of early post-resuscitation EEG were compared, and the relationships between quantitative EEG features and neurological outcomes were investigated. Compared with VFCA, serum level of S100B, neurological deficit score and brain histopathologic damage score were dramatically higher in the ACA group. Quantitative measures of EEG, including onset time of EEG burst, time to normal trace, burst suppression ratio, and information quantity, were significantly lower for CA caused by asphyxia and correlated with the 96-h neurological outcome and survival. Characteristics of earlier post-resuscitation EEG differed between cardiac and respiratory causes. Quantitative measures of EEG not only predicted neurological outcome and survival, but also have the potential to stratify CA with different causes.

  2. Maternal treatment of rats with the new pyridoindole antioxidant during pregnacy and lactation resulting in improved offspring hippocampal resistance to ischemia in vitro.

    PubMed

    Gáspárová, Zdenka; Snirc, Vladimír; Stolc, Svorad; Dubovický, Michal; Mach, Mojmír; Ujházy, Eduard

    2010-01-01

    Damage to the developing brain may be caused by maternal environment, nutritional deficiencies, failure of protective mechanisms, etc. Further, the developing brain may be damaged by intrauterine ischemia or by ischemia in newborns complicated by perinatal asphyxia. There is an effort to find agents with neuroprotective effect on the developing brain. The aim was to study the effect of the new pyridoindole antioxidant SMe1EC2 on the resistance of offspring hippocampus exposed to ischemia in vitro after treatment of mothers. The electrically evoked responses were determined by extracellular recording from offspring hippocampal slices. The effect of oral treatment of rats with SMe1EC2 over 18 consecutive days, from day 15 of gestation to day 10 post partum (PP) was analyzed in the model of ischemia in vitro measured on the hippocampus of 21-day-old pups, with focus on neuronal function recovery in reoxygenation. Increased recovery of neuronal response was found at the end of 20-min reoxygenation in offspring hippocampal slices exposed to 10-min hypoxia/hypoglycemia from rats whose mothers were treated with the dose of 50 and 250 mg/kg of SMe1EC2, compared to control offspring slices (mothers received vehicle over the same time). The increased offspring hippocampus resistance to hypoxia/hypoglycemia due to 18-day maternal treatment with SMe1EC2 might have been obtained via the transplacental way as well as in the neonatal period via breast milk, skin and saliva. The manifested neuroprotective effect of SMe1EC2 on the developing brain might find exploitation during risk pregnancy and delivery.

  3. Dietary interventions designed to protect the perinatal brain from hypoxic-ischemic encephalopathy--Creatine prophylaxis and the need for multi-organ protection.

    PubMed

    Ellery, Stacey J; Dickinson, Hayley; McKenzie, Matthew; Walker, David W

    2016-05-01

    Birth asphyxia or hypoxia arises from impaired placental gas exchange during labor and remains one of the leading causes of neonatal morbidity and mortality worldwide. It is a condition that can strike in pregnancies that have been uneventful until these final moments, and leads to fundamental loss of cellular energy reserves in the newborn. The cascade of metabolic changes that occurs in the brain at birth as a result of hypoxia can lead to significant damage that evolves over several hours and days, the severity of which can be ameliorated with therapeutic cerebral hypothermia. However, this treatment is only applied to a subset of newborns that meet strict inclusion criteria and is usually administered only in facilities with a high level of medical surveillance. Hence, a number of neuropharmacological interventions have been suggested as adjunct therapies to improve the efficacy of hypothermia, which alone improves survival of the post-hypoxic infant but does not altogether prevent adverse neurological outcomes. In this review we discuss the prospect of using creatine as a dietary supplement during pregnancy and nutritional intervention that can significantly decrease the risk of brain damage in the event of severe oxygen deprivation at birth. Because brain damage can also arise secondarily to compromise of other fetal organs (e.g., heart, diaphragm, kidney), and that compromise of mitochondrial function under hypoxic conditions may be a common mechanism leading to damage of these tissues, we present data suggesting that dietary creatine supplementation during pregnancy may be an effective prophylaxis that can protect the fetus from the multi-organ consequences of severe hypoxia at birth. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Spontaneous hypothermia ameliorated inflammation and neurologic deficit in rat cardiac arrest models following resuscitation

    PubMed Central

    Zhou, Minggen; Wang, Peng; Yang, Zhengfei; Wu, Haidong; Huang, Zitong

    2018-01-01

    Cardiac arrest (CA) is a leading cause of mortality worldwide. The majority of the associated mortalities are caused by post-CA syndrome, which includes symptoms, such as neurologic damage, myocardial dysfunction and systemic inflammation. Following CA, return of spontaneous circulation (ROSC) leads to a brain reperfusion injury, which subsequently causes adverse neurologic outcomes or mortality. Therefore, investigating the underlying mechanisms of ROSC-induced neurologic deficits and establishing potential treatments is critical to prevent and treat post-CA syndrome. In the current study, CA rat models were established by asphyxia. Following ROSC, the temperature was controlled to achieve hypothermia. The general neurologic status was assessed using the neurologic deficit scale. Changes in the concentrations of interleukin (IL)-18 and IL-1β were measured with ELISA and the dynamic change in NACHT, LRR and PYD domains-containing protein 3 inflammasome components was determined by western blot analysis and immunohistochemistry. Neuronal death and apoptosis were measured via TUNEL assays. In the CA rat models, increasing the duration of CA before cardiopulmonary resuscitation was found to aggravate the neural deficit and increase the incidence of inflammation. Following ROSC, the expression level of the inflammasome components was observed to increase in CA rat models, which was accompanied by increased secretion of IL-18 and IL-1β, indicating the promotion of inflammation. In addition, the study identified the beneficial role of spontaneous hypothermia in ameliorating the ROSC-induced inflammation and neurologic deficit in CA rat models, including the downregulation of inflammasome components and attenuating neuronal apoptosis. The present study contributes to the understanding of underlying mechanisms in CA-evoked inflammation and the subsequent neurologic damage following ROSC. A novel potential therapeutic strategy that may increase survival times and the quality of life for patients suffering from post-CA syndrome is proposed in the present study. PMID:29207113

  5. A case of autoerotic asphyxia associated with multiplex paraphilia.

    PubMed

    Boglioli, L R; Taff, M L; Stephens, P J; Money, J

    1991-03-01

    During the past 20 years, the sensational aspects of autoerotic fatalities have captured the attention of medical examiners, psychiatrists, law enforcement agents, and the public, as well as the individuals themselves who engage in these dangerous practices. Reports of deaths related to sexual asphyxia have been presented numerous times at national and international meetings and have been the topic of discussion on television talk shows and in the press. Autoerotic fatalities and all the sexual curiosities related to these activities have prompted death scene investigators to publish case reports, and even textbooks, on the subject. The case presented herein is one of a multicomponent paraphilia in which self-asphyxiation (autoasphyxiophilia) led to a fatal autoerotic event.

  6. Tracheal Suctioning Improves Gas Exchange but not Hemodynamics in Asphyxiated Lambs with Meconium Aspiration

    PubMed Central

    Lakshminrusimha, Satyan; Mathew, Bobby; Nair, Jayasree; Gugino, Sylvia F.; Koenigsknecht, Carmon; Rawat, Munmun; Nielsen, Lori; Swartz, Daniel D.

    2014-01-01

    Background Current neonatal resuscitation guidelines recommend tracheal suctioning of non-vigorous neonates born through meconium stained amniotic fluid. Methods We evaluated the effect of tracheal suctioning at birth in 29 lambs with asphyxia induced by cord occlusion and meconium aspiration during gasping. Results Tracheal suctioning at birth (n=15) decreased amount of meconium in distal airways (53±29 particles/mm2 lung area) compared to no-suction (499±109 particles/mm2, n=14, p<0.001). Three lambs in the suction group had cardiac arrest during suctioning requiring chest compressions and epinephrine. Onset of ventilation was delayed in the suction group (146±11 vs. 47±3 sec in no-suction group, p=0.005). There was no difference in pulmonary blood flow, carotid blood flow, pulmonary or systemic blood pressure between the two groups. Left atrial pressure was significantly higher in the suction group. Tracheal suctioning resulted in higher PaO2/FiO2 levels (122±21 vs. 78±10 mmHg) and ventilator efficiency index (0.3±0.05 vs.0.16±0.03). Two lambs in the no-suction group required inhaled NO. Lung 3-nitrotyrosine levels were higher in the suction group (0.65±0.03 ng/μg protein) compared to the no-suction group (0.47 ± 0.06). Conclusion Tracheal suctioning improves oxygenation and ventilation. Suctioning does not improve pulmonary/systemic hemodynamics or oxidative stress in an ovine model of acute meconium aspiration with asphyxia. PMID:25406897

  7. Emergency endotracheal intubation under fluoroscopy guidance for patients with acute dyspnea or asphyxia.

    PubMed

    Jiao, Dechao; Xie, Na; Han, Xinwei; Wu, Gang

    2016-11-01

    To evaluate the feasibility and effectiveness of emergency endotracheal intubation (EEI) under fluoroscopy guidance for patients with acute dyspnea or asphyxia. From October 2011 to October 2014, of 1521 patients with acute dyspnea or asphyxia who required EEI in 6 departments, 43 patients who experienced intubation difficulty or failure were entered into this study. Data on technical success, procedure time, complications, and clinical outcome were collected. The pulse oxygen saturation and Hugh-Jones classification changes were analyzed. Fluoroscopy-guided EEI was technically successful in all patients. Acute dyspnea had resolved in all patients with clinical success rate 100% after the procedure. There were no serious complications during or after the procedure. The pulse oxygen saturation and Hugh-Jones classification showed significant increase after EEI (P < .05). Further treatments, including tracheal stents (n = 21), surgical resection (n = 16), palliative tracheotomy (n = 4), and bronchoscopic treatment (n = 2), were performed 1 to 72 hours after EEI. During a mean follow-up period of 13.2 months, 13 patients had died and 30 patients remained alive without dyspnea. Fluoroscopy-guided EEI is a safe and feasible procedure, and may serve as an alternative treatment option for patients when traditional EEI is unsuccessful. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. [Median nerve constrictive operation combined with tendon transfer to treat brain paralysis convulsive deformity of hand].

    PubMed

    Ma, Shanjun; Zhou, Tianjian

    2014-05-01

    To evaluate the effectiveness of the median nerve constrictive operation combined with tendon transfer to treat the brain paralysis convulsive deformity of the hand. The clinical data from 21 cases with brain paralysis convulsive deformity of the hand were analyzed retrospectively between August 2009 and April 2012. Of them, there were 13 males and 8 females with an average age of 15 years (range, 10-29 years). The causes of the convulsive cerebral palsy included preterm deliveries in 11 cases, hypoxia asphyxia in 7, traumatic brain injury in 2, and encephalitis sequela in 1. The disease duration was 2-26 years (mean, 10.6 years). All the 21 patients had cock waists, crooking fingers, and contracture of adductors pollicis, 12 had the forearm pronation deformity. According to Ashworth criteria, there were 2 cases at level I, 5 cases at level II, 8 cases at level III, 4 cases at level IV, and 2 cases at level V. All patients had no intelligence disturbances. The forearm X-ray film showed no bone architectural changes before operation. The contraction of muscle and innervation was analyzed before operation. The median nerve constrictive operation combined with tendon transfer was performed. The functional activities and deformity improvement were evaluated during follow-up. After operation, all the patients' incision healed by first intension, without muscle atrophy and ischemic spasm. All the 21 cases were followed up 1.5-4.5 years (mean, 2.3 years). No superficial sensory loss occurred. The effectiveness was excellent in 13 cases, good in 6 cases, and poor in 2 cases, with an excellent and good rate of 90.4% at last follow-up. The median nerve constrictive operation combined with tendon transfer to treat brain paralysis convulsive deformity of the hand can remove and prevent the recurrence of spasm, achieve the orthopedic goals, to assure the restoration of motor function and the improvement of the life quality.

  9. Neuroprotective effect of melatonin: a novel therapy against perinatal hypoxia-ischemia.

    PubMed

    Alonso-Alconada, Daniel; Alvarez, Antonia; Arteaga, Olatz; Martínez-Ibargüen, Agustín; Hilario, Enrique

    2013-04-29

    One of the most common causes of mortality and morbidity in children is perinatal hypoxia-ischemia (HI). In spite of the advances in neonatology, its incidence is not diminishing, generating a pediatric population that will require an extended amount of chronic care throughout their lifetime. For this reason, new and more effective neuroprotective strategies are urgently required, in order to minimize as much as possible the neurological consequences of this encephalopathy. In this sense, interest has grown in the neuroprotective possibilities of melatonin, as this hormone may help to maintain cell survival through the modulation of a wide range of physiological functions. Although some of the mechanisms by which melatonin is neuroprotective after neonatal asphyxia remain a subject of investigation, this review tries to summarize some of the most recent advances related with its use as a therapeutic drug against perinatal hypoxic-ischemic brain injury, supporting the high interest in this indoleamine as a future feasible strategy for cerebral asphyctic events.

  10. Neuroprotective Effect of Melatonin: A Novel Therapy against Perinatal Hypoxia-Ischemia

    PubMed Central

    Alonso-Alconada, Daniel; Álvarez, Antonia; Arteaga, Olatz; Martínez-Ibargüen, Agustín; Hilario, Enrique

    2013-01-01

    One of the most common causes of mortality and morbidity in children is perinatal hypoxia-ischemia (HI). In spite of the advances in neonatology, its incidence is not diminishing, generating a pediatric population that will require an extended amount of chronic care throughout their lifetime. For this reason, new and more effective neuroprotective strategies are urgently required, in order to minimize as much as possible the neurological consequences of this encephalopathy. In this sense, interest has grown in the neuroprotective possibilities of melatonin, as this hormone may help to maintain cell survival through the modulation of a wide range of physiological functions. Although some of the mechanisms by which melatonin is neuroprotective after neonatal asphyxia remain a subject of investigation, this review tries to summarize some of the most recent advances related with its use as a therapeutic drug against perinatal hypoxic-ischemic brain injury, supporting the high interest in this indoleamine as a future feasible strategy for cerebral asphyctic events. PMID:23629670

  11. Prevention of mental handicaps in children in primary health care.

    PubMed Central

    Shah, P. M.

    1991-01-01

    Some 5-15% of children aged 3 to 15 years in both developing and developed countries suffer from mental handicaps. There may be as many as 10-30 million severely and about 60-80 million mildly or moderately mentally retarded children in the world. The conditions causing mental handicaps are largely preventable through primary health care measures in developing countries. Birth asphyxia and birth trauma are the leading causes of mental handicaps in developing countries where over 1.2 million newborns die each year from moderate or severe asphyxia and an equal number survive with severe morbidity due to brain damage. The other preventable or manageable conditions are: infections such as tuberculous and pyogenic meningitides and encephalopathies associated with measles and whooping cough; severe malnutrition in infancy; hyperbilirubinaemia in the newborn; iodine deficiency; and iron deficiency anaemia in infancy and early childhood. In addition, recent demographic and socioeconomic changes and an increase in the number of working mothers tend to deprive both infants and young children of stimulation for normal development. To improve this situation, the primary health care approach involving families and communities and instilling the spirit of self-care and self-help is indispensable. Mothers and other family members, traditional birth attendants, community health workers, as well as nurse midwives and physicians should be involved in prevention and intervention activities, for which they should be trained and given knowledge and skills about appropriate technologies such as the risk approach, home-based maternal record, partograph, mobilogram (kick count), home-risk card, icterometer, and mouth-to-mask or bag and mask resuscitation of the newborn. Most of these have been field-tested by WHO and can be used in the home, the health centre or day care centres to detect and prevent the above-mentioned conditions which can cause mental handicap. PMID:1786628

  12. The Metabolomic Profile of Umbilical Cord Blood in Neonatal Hypoxic Ischaemic Encephalopathy

    PubMed Central

    Walsh, Brian H.; Broadhurst, David I.; Mandal, Rupasri; Wishart, David S.; Boylan, Geraldine B.; Kenny, Louise C.; Murray, Deirdre M.

    2012-01-01

    Background Hypoxic ischaemic encephalopathy (HIE) in newborns can cause significant long-term neurological disability. The insult is a complex injury characterised by energy failure and disruption of cellular homeostasis, leading to mitochondrial damage. The importance of individual metabolic pathways, and their interaction in the disease process is not fully understood. The aim of this study was to describe and quantify the metabolomic profile of umbilical cord blood samples in a carefully defined population of full-term infants with HIE. Methods and Findings The injury severity was defined using both the modified Sarnat score and continuous multichannel electroencephalogram. Using these classification systems, our population was divided into those with confirmed HIE (n = 31), asphyxiated infants without encephalopathy (n = 40) and matched controls (n = 71). All had umbilical cord blood drawn and biobanked at −80°C within 3 hours of delivery. A combined direct injection and LC-MS/MS assay (AbsolutIDQ p180 kit, Biocrates Life Sciences AG, Innsbruck, Austria) was used for the metabolomic analyses of the samples. Targeted metabolomic analysis showed a significant alteration between study groups in 29 metabolites from 3 distinct classes (Amino Acids, Acylcarnitines, and Glycerophospholipids). 9 of these metabolites were only significantly altered between neonates with Hypoxic ischaemic encephalopathy and matched controls, while 14 were significantly altered in both study groups. Multivariate Discriminant Analysis models developed showed clear multifactorial metabolite associations with both asphyxia and HIE. A logistic regression model using 5 metabolites clearly delineates severity of asphyxia and classifies HIE infants with AUC = 0.92. These data describe wide-spread disruption to not only energy pathways, but also nitrogen and lipid metabolism in both asphyxia and HIE. Conclusion This study shows that a multi-platform targeted approach to metabolomic analyses using accurately phenotyped and meticulously biobanked samples provides insight into the pathogenesis of perinatal asphyxia. It highlights the potential for metabolomic technology to develop a diagnostic test for HIE. PMID:23227182

  13. Umbilical cord clamping in term piglets: a useful model to study perinatal asphyxia?

    PubMed

    van Dijk, A J; van Loon, J P A M; Taverne, M A M; Jonker, F H

    2008-09-01

    Perinatal asphyxia results in tissue and cellular changes during the reperfusion period and clinical signs like perinatal mortality and decreased vitality at birth in newborn piglets. This study aimed to develop and validate a model of birth asphyxia, mimicking the evolvement of birth asphyxia in natural farrowings by conducting umbilical cord clamping (UCC) in term piglets during caesarean sections under general anaesthesia. In total 23 piglets were subjected to 5-8min of UCC and 24 piglets served as controls. Acid-base balance values and heart rates measured before UCC remained fairly constant throughout the surgical procedure, indicating nearly identical starting conditions of piglets within and between litters. UCC resulted in a significant, mild, mixed respiratory-metabolic acidosis (pH 7.22, pCO(2) 9.8kPa, BE(ecf) 2mmol/L, lactate 6.5mmol/L; controls: pH 7.31, pCO(2) 8.5kPa, BE(ecf) 5mmol/L, lactate 4mmol/L) at 10min after birth (defined as simultaneous cutting of the umbilical cord and removal of a plastic bag that had been placed over the head to avoid air intake). Heart rates were significantly decreased during UCC (range: 83-107beats/min versus 128-134beats/min in controls). Rectal temperatures and changes in body weight until 72h of life were not affected by UCC. Interestingly, four control and seven clamped piglets did not survive as no independent respiration could be attained. Birth weights and duration of UCC of these piglets did not differ significantly from those in surviving control and clamped piglets. In conclusion the mixed respiratory-metabolic acidosis arising in the surviving clamped piglets is not as severe as can be expected in highly asphyxiated, vaginally delivered newborn piglets. Repeatability of the model is compromised by considerable variation in the individual response to UCC.

  14. Airflow resistance and CO2 rebreathing properties of anti-asphyxia pillows designed for epilepsy.

    PubMed

    Catcheside, Peter G; Mohtar, Aaron A; Reynolds, Karen J

    2014-06-01

    Seizure related unconscious face-down positioning could contribute to sudden unexpected death in epilepsy via asphyxia. Low airflow resistance lattice foam pillows have been advocated for this group. However, data to support this approach remain lacking, and low airflow resistance per se may not negate asphyxia risk from expired gas rebreathing. This study was designed to compare the airflow resistance and CO2 rebreathing properties of lattice vs conventional pillows. Airflow resistance and inspired CO2 levels during replicate 10 min periods of simulated adult ventilation and CO2 rebreathing were compared between cotton, latex and two lattice pillows designed for use in epilepsy (one commercially available, one prototype). Kaplan-Meier and Cox regression analyses were used to examine the hazard of exceeding 10% inspired CO2 within 10-min of rebreathing. Inspiratory resistance was significantly lower in the commercially available and prototype lattice compared to cotton and latex pillows (mean±SD; 3.2±0.8, 2.6±0.4, 26.1±3.5, 4.6±0.4 cm H2O l(-1)s respectively at 0.2l s(-1)). During simulated rebreathing, inspired CO2 exceeded 10% within 2 min with cotton and latex pillows, compared to an upper asymptote around 8-9% at 10 min with lattice pillows. The hazard of exceeding 10% inspired CO2 was therefore markedly reduced with lattice compared to cotton and latex pillows (hazard ratio vs cotton pillow; commercial 0.04 [0.01-0.18], prototype 0.08 [0.02-0.26], latex 0.79 [0.33-1.87]). Conventional pillows can rapidly accumulate potentially life-threatening CO2 levels during simulated rebreathing. Lattice pillows appear to reduce asphyxia risk but accumulated CO2 may still reach levels threatening to health and survival. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  15. Blocked, delayed, or obstructed: What causes poor white matter development in intrauterine growth restricted infants?

    PubMed

    Tolcos, Mary; Petratos, Steven; Hirst, Jonathan J; Wong, Flora; Spencer, Sarah J; Azhan, Aminath; Emery, Ben; Walker, David W

    2017-07-01

    Poor white matter development in intrauterine growth restricted (IUGR) babies remains a major, untreated problem in neonatology. New therapies, guided by an understanding of the mechanisms that underlie normal and abnormal oligodendrocyte development and myelin formation, are required. Much of our knowledge of the mechanisms that underlie impaired myelination come from studies in adult demyelinating disease, preterm brain injury, or experimental models of hypoxia-ischemia. However, relatively less is known for IUGR which is surprising because IUGR is a leading cause of perinatal mortality and morbidity, second only to premature birth. IUGR is also a significant risk factor for the later development of cerebral palsy, and is a greater risk compared to some of the more traditionally researched antecedents - asphyxia and inflammation. Recent evidence suggests that the white matter injury and reduced myelination in the brains of some preterm babies is due to impaired maturation of oligodendrocytes thereby resulting in the reduced capacity to synthesize myelin. Therefore, it is not surprising that the hypomyelination observable in the central nervous system of IUGR infants has similarly lead to investigations identifying a delay or blockade in the progress of maturation of oligodendrocytes in these infants. This review will discuss current ideas thought to account for the poor myelination often present in the neonate's brain following IUGR, and discuss novel interventions that are promising as treatments that promote oligodendrocyte maturation, and thereby repair the myelination deficits that otherwise persist into infancy and childhood and lead to neurodevelopmental abnormalities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. [Neonatal complications related to shoulder dystocia].

    PubMed

    Lopez, E; de Courtivron, B; Saliba, E

    2015-12-01

    To describe neonatal complications related to shoulder dystocia. This systematic evidence review is based on PubMed search, Cochrane library and experts' recommendations. The risks of brachial plexus birth injury, clavicle and humeral fracture, perinatal asphyxia, hypoxic-ischemic encephalopathy and perinatal mortality are increased after shoulder dystocia. The medical team should be able to provide neonatal resuscitation in the delivery room in case of perinatal asphyxia following shoulder dystocia, according to national and international guidelines. The initial clinical examination should search for complications such as brachial plexus birth injury or clavicle fracture. The risk of perinatal complications is increased in newborn after shoulder dystocia. The medical team should be able to manage these complications. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  17. Inhaled 45-50% argon augments hypothermic brain protection in a piglet model of perinatal asphyxia.

    PubMed

    Broad, Kevin D; Fierens, Igor; Fleiss, Bobbi; Rocha-Ferreira, Eridan; Ezzati, Mojgan; Hassell, Jane; Alonso-Alconada, Daniel; Bainbridge, Alan; Kawano, Go; Ma, Daqing; Tachtsidis, Ilias; Gressens, Pierre; Golay, Xavier; Sanders, Robert D; Robertson, Nicola J

    2016-03-01

    Cooling to 33.5°C in babies with neonatal encephalopathy significantly reduces death and disability, however additional therapies are needed to maximize brain protection. Following hypoxia-ischemia we assessed whether inhaled 45-50% Argon from 2-26h augmented hypothermia neuroprotection in a neonatal piglet model, using MRS and aEEG, which predict outcome in babies with neonatal encephalopathy, and immunohistochemistry. Following cerebral hypoxia-ischemia, 20 Newborn male Large White piglets<40h were randomized to: (i) Cooling (33°C) from 2-26h (n=10); or (ii) Cooling and inhaled 45-50% Argon (Cooling+Argon) from 2-26h (n=8). Whole-brain phosphorus-31 and regional proton MRS were acquired at baseline, 24 and 48h after hypoxia-ischemia. EEG was monitored. At 48h after hypoxia-ischemia, cell death (TUNEL) was evaluated over 7 brain regions. There were no differences in body weight, duration of hypoxia-ischemia or insult severity; throughout the study there were no differences in heart rate, arterial blood pressure, blood biochemistry and inotrope support. Two piglets in the Cooling+Argon group were excluded. Comparing Cooling+Argon with Cooling there was preservation of whole-brain MRS ATP and PCr/Pi at 48h after hypoxia-ischemia (p<0.001 for both) and lower (1)H MRS lactate/N acetyl aspartate in white (p=0.03 and 0.04) but not gray matter at 24 and 48h. EEG background recovery was faster (p<0.01) with Cooling+Argon. An overall difference between average cell-death of Cooling versus Cooling+Argon was observed (p<0.01); estimated cells per mm(2) were 23.9 points lower (95% C.I. 7.3-40.5) for the Cooling+Argon versus Cooling. Inhaled 45-50% Argon from 2-26h augmented hypothermic protection at 48h after hypoxia-ischemia shown by improved brain energy metabolism on MRS, faster EEG recovery and reduced cell death on TUNEL. Argon may provide a cheap and practical therapy to augment cooling for neonatal encephalopathy. Copyright © 2015. Published by Elsevier Inc.

  18. Early central diabetes insipidus: An ominous sign in post-cardiac arrest patients.

    PubMed

    Chae, Minjung Kathy; Lee, Jeong Hoon; Lee, Tae Rim; Yoon, Hee; Hwang, Sung Yeon; Cha, Won Chul; Shin, Tae Gun; Sim, Min Seob; Jo, Ik Joon; Song, Keun Jeong; Rhee, Joong Eui; Jeong, Yeon Kwon

    2016-04-01

    Central diabetes insipidus (CDI) after cardiac arrest is not well described. Thus, we aim to study the occurrences, outcomes, and risk factors of CDI of survivors after out-of-hospital cardiac arrest (OHCA). We retrospectively analyzed post-OHCA patients treated at a single center. Central diabetes insipidus was retrospectively defined by diagnostic criteria. One-month cerebral performance category (CPC) scores were collected for outcomes. Of the 169 patients evaluated, 36 patients (21.3%) were diagnosed with CDI. All CDI patients had a poor neurologic outcome of either CPC 4 (13.9%) or CPC 5 (86.1%), and CDI was strongly associated with mortality. Age (odds ratio [OR], 0.96; 95% confidence interval [CI], 0.93-0.99), respiratory arrest (OR, 6.62; 95% CI, 1.23-35.44), asphyxia (OR, 9.26; 95% CI, 2.17-34.61), and gray to white matter ratio on brain computed tomogram (OR, 0.88; 95% CI, 0.81-0.95) were associated with the development of CDI. The onset of CDI was earlier (P < .001) and the maximum 24-hour urine output was larger (P = .03) in patients with worst outcomes. All patients diagnosed with CDI had poor neurologic outcomes, and occurrence of CDI was associated with mortality. Central diabetes insipidus patients with death or brain death had earlier occurrence of CDI and more maximum urine output. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Childhood mortality in federal medical centre umuahia, South eastern Nigeria.

    PubMed

    Charles, Nwafor Chukwuemeka; Chuku, Abali; Anazodo, Nnoli Martin

    2014-09-01

    This study aimed to evaluate the mortality pattern in children seen at Federal Medical Centre Umuahia (FMCU) Abia state, South Eastern Nigeria. A retrospective cross sectional descriptive study over a 5-year period from January 1, 2004 to December 31, 2008 using data retrieved from the hospital's medical records department. A total of 3,814 children were admitted in the hospital and 434 of them died giving a mortality rate of 11%. The mean age was 1.7 (Std D of 3.19). Two hundred and thirty eight of them were males while 196 of them were females giving a sex ratio of 1.2:1. Majority of the mortality (49%) occurred within 24 hours of admission. The major causes of death during neonatal period were birth asphyxia (34%), prematurity (24%) and neonatal sepsis (24%). Malaria was the leading cause of death beyond the neonatal period accounting for 42% of cases. Other common mortality causes were pneumonia, septicaemia, diarrhea, HIV AIDS and meningitis each accounting for 10%, 10%, 7%, 7% and 5% respectively. The months of July, May and March accounted for most deaths (12%, 12% and 11% respectively). Birth asphyxia and malaria associated deaths were responsible for most deaths during neonatal and beyond neonatal periods respectively. Presence of trained personal at all deliveries will help to reduce neonatal asphyxia. Efforts should be made to reinforce the existing effective malaria control tools.

  20. [Per partum acidosis: Interest and feasibility of cerebral Doppler during labor].

    PubMed

    Barrois, M; Chartier, M; Lecarpentier, E; Goffinet, F; Tsatsaris, V

    2016-09-01

    To evaluate feasibility and interest of fetal cerebral Doppler during labor and the link with fetal pH to predict perinatal fetal asphyxia. Our prospective study in a university perinatal center, included patients during labor. There were no risk factors during pregnancy and patients were included after 37 weeks of pregnancy. For each patient an ultrasound with cerebral Doppler was done concomitant to a fetal scalp blood sample. We collected maternal and fetal characteristics as well as cervix dilatation, fetal heart rate analysis and fetal presentation. Among 49 patients included over a period of 4 months, cerebral Doppler failed in 7 cases (11%). Majority of failure occurred at 10cm of dilatation (P=0.007, OR=14.1 [1.483; 709.1275]). Others factors like: maternal age, body mass index, parity, history of C-Section were not associated with higher rate of failure. We did not found either significant correlation between cerebral fetal Doppler and pH on fetal scalp blood sample (r=0.15) nor pH at cord blood sample (r=0.13). No threshold of cerebral Doppler is significant for fetal asphyxia prediction. Fetal cerebral Doppler is feasible during labor with a low rate of failure but not a good exam to predict fetal acidosis and asphyxia. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  1. Salivary lactate dehydrogenase levels can provide early diagnosis of hypoxic-ischaemic encephalopathy in neonates with birth asphyxia.

    PubMed

    Mehta, Akshay; Chawla, Deepak; Kaur, Jasbinder; Mahajan, Vidushi; Guglani, Vishal

    2015-06-01

    Timely detection of hypoxic-ischaemic encephalopathy (HIE) is crucial for selecting neonates who are likely to benefit from neuroprotective therapy. This study evaluated the efficacy of salivary lactate dehydrogenase (LDH) in the early diagnosis of HIE among neonates with perinatal asphyxia. We prospectively enrolled 30 neonates who needed resuscitation at birth or had a history of delayed cry into the HIE group if they developed HIE within 12 h of birth. The control group comprised 30 neonates who had no evidence of HIE, but had intrapartum foetal distress or needed resuscitation at birth. LDH was measured using saliva samples collected within 12 h of birth. Salivary LDH was significantly higher in the HIE group, with a median of 2578 and an interquartile range (IQR) of 1379-3408 international units per litre (IU/L), than in the control group (median 558.5, IQR: 348-924 IU/L, p < 0.001). The test demonstrated excellent discriminating ability: the area under the curve was 0.92 and the levels of 893 IU/L showed a sensitivity of 90% and a specificity of 73.3%. Measuring salivary LDH among neonates with birth asphyxia provided an early and accurate diagnosis of HIE and could be used as a triage tool. ©2015 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.

  2. Bone marrow mesenchymal stem cells repair the hippocampal neurons and increase the expression of IGF-1 after cardiac arrest in rats.

    PubMed

    Tang, Xiahong; Chen, Feng; Lin, Qinming; You, Yan; Ke, Jun; Zhao, Shen

    2017-11-01

    The present study aimed to investigate the beneficial effects and underlying mechanisms of bone marrow mesenchymal stem cells (BMSCs) on global ischemic hypoxic brain injury. Cells collected from the femurs and tibias of male Sprague Dawley rats were used to generate BMSCs following three culture passages. A rate model of cardiac arrest (CA) was induced by asphyxia. One hour following return of spontaneous circulation (ROSC), BMSCs were transplanted through injection into the tail vein. Neurological status was assessed using modified neurological severity score (mNSS) tests 1, 3 and 7 days following ROSC. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and immunohistochemical staining were used to detect insulin-like growth factor 1 (IGF-1) expression in the hippocampus. Furthermore, double-fluorescent labeling of green fluorescent protein (GFP) and IGF-1 was used to detect the IGF-1 expression in transplanted BMSCs. Serum levels of protein S100-B were examined using ELISA. GFP-labeled BMSCs were observed in the hippocampus at 1, 3 and 7 days post transplantation through fluorescent microscopy. BMSC transplantation resulted in reduced protein S100-B levels. The mNSS of the BMSC-treatment group was significantly reduced compared with that of the CA group. The RT-qPCR analysis and immunohistochemistry results demonstrated that BMSC treatment significantly increased IGF-1 expression in the hippocampus. In addition, the double-fluorescent labeling results demonstrated that transplanted BMSCs expressed IGF-1 in the hippocampus. The results of the present study suggest that BMSC treatment promotes the recovery of cerebral function following CA in rats possibly through the secretion of IGF-1.

  3. Perinatal asphyxia results in altered expression of the hippocampal acylethanolamide/endocannabinoid signaling system associated to memory impairments in postweaned rats.

    PubMed

    Blanco, Eduardo; Galeano, Pablo; Holubiec, Mariana I; Romero, Juan I; Logica, Tamara; Rivera, Patricia; Pavón, Francisco J; Suarez, Juan; Capani, Francisco; Rodríguez de Fonseca, Fernando

    2015-01-01

    Perinatal asphyxia (PA) is an obstetric complication that strongly affects the CNS. The endocannabinoid system (ECS) is a lipid transmitter system involved in several physiological processes including synaptic plasticity, neurogenesis, memory, and mood. Endocannabinoids, and other acylethanolamides (AEs) without endocannabinoid activity, have recently received growing attention due to their potential neuroprotective functions in neurological disorders, including cerebral ischemia. In the present study, we aimed to analyze the changes produced by PA in the major metabolic enzymes and receptors of the ECS/AEs in the hippocampus using a rodent model of PA. To induce PA, we removed uterine horns from ready-to-deliver rats and immersed them into a water bath during 19 min. Animals delivered spontaneously or by cesarean section were employed as controls. At 1 month of age, cognitive functions were assessed and immunohistochemical procedures were carried out to determine the expression of NeuN and glial fibrillary acidic protein, enzymes responsible for synthesis (DAGLα and NAPE-PLD) and degradation (FAAH) of ECS/AEs and their receptors (CB1 and PPARα) in the hippocampus. Postweaned asphyctic rats showed impaired recognition and spatial reference memory that were accompanied by hippocampal astrogliosis and changes in the expression of enzymes and receptors. The most remarkable findings in asphyctic rats were a decrease in the expression of NAPE-PLD and PPARα in both hippocampal areas CA1 and CA3. In addition, postweaned cesarean delivery rats showed an increase in the immunolabeling for FAAH in the hippocampal CA3 area. Since, NAPE-PLD and PPARα are proteins that participate in the biochemical process of AEs, specially the neuroprotective oleoylethanolamide, these results suggest that PA dysregulates this system. These data encourage conducting future studies using AEs as potential neuroprotective compounds in animal models of PA.

  4. Clinical profile, predisposing factors, and associated co-morbidities of children with cerebral palsy in South India

    PubMed Central

    Gowda, Vykuntaraju K.; Kumar, Anil; Shivappa, Sanjay K.; Srikanteswara, Praveen Kumar; Shivananda; Mahadeviah, M. S.; Govindraj, M.; Ramaswamy, Premalatha

    2015-01-01

    Introduction: Cerebral palsy (CP) is the most common physical disorder of children. Causes like jaundice and birth injury though are decreasing; complications resulting from the survival of low birth weight babies are replacing some of the older etiologies. Hence, this study was planned. Objectives: The objective was to study the clinical patterns, predisposing factors, and co-morbidities in children with CP. Materials and Methods: The present study is a hospital based prospective study conducted from January 2012 to January 2013 in children presenting to neurodevelopmental clinic at a tertiary care teaching hospital in India. Hundred cases with clinical features suggestive of CP were included in the study. Cases were evaluated by history, clinical examination, and necessary investigations. Results: Results of the study showed 81% of spastic, 12% of hypotonic, 5% of dystonic, and 2% of mixed CP cases. The mean age of presentation was 2 year, 2 month, and male to female ratio of 1:2. Pregnancy-induced hypertension (PIH) was the most common antenatal complication observed in 6%. Four percent had neonatal sepsis and 19% were born premature. Associated co-morbidities were mental retardation (55%), seizure disorder (46%), visual problems (26%), hearing problems (19%), and failure to thrive (47%). Discussion: Sex distribution observed in our study was male to female ratio of 1.2, which was comparable with a multicenter study in Europe. PIH was observed in 6% of cases, which was comparable with prior studies. Birth asphyxia was observed in 43% of cases. Eighty-one percent of the cases constituted a spastic variety of CP which was comparable to other studies. Conclusion: Perinatal asphyxia was the important etiological factor. We found preventable intranatal causes (60%) and antenatal causes (20%) forming a significant proportion. Co-morbidities were significantly observed in our study. PMID:26167210

  5. Ichthyosis prematurity syndrome with separation of fetal membranes and neonatal asphyxia

    PubMed Central

    Dereksson, Kristjan; Kjartansson, Sveinn; Hjartardóttir, Hulda; Arngrimsson, Reynir

    2012-01-01

    Ichthyosis prematurity syndrome (IPS) is a rare inherited skin disorder. Children are born prematurely with thick skin and have been found to develop neonatal asphyxia due to occlusions in the bronchial tree from debris in the amniotic fluid. At 31 weeks of gestation, separation of amniotic and chorionic membranes was identified as well as polyhydramnion. The child was born 2 weeks later, with thickened skin with a granular appearance and required immediate ventilation and intensive care. At 2 years of age, the patient has developed an atopic skin condition with severe itching, recurrent skin infections, food intolerance and periods of wheezing. Prenatal observation of separation of foetal membranes or dense amniotic fluid may be signs of IPS and severe complication immediately after birth. PMID:22927265

  6. Mechanisms of Neurodegeneration and Regeneration in Alcoholism

    PubMed Central

    Crews, Fulton T.; Nixon, Kim

    2009-01-01

    Aims: This is a review of preclinical studies covering alcohol-induced brain neuronal death and loss of neurogenesis as well as abstinence-induced brain cell genesis, e.g. brain regeneration. Efforts are made to relate preclinical studies to human studies. Methods: The studies described are preclinical rat experiments using a 4-day binge ethanol treatment known to induce physical dependence to ethanol. Neurodegeneration and cognitive deficits following binge treatment mimic the mild degeneration and cognitive deficits found in humans. Various histological methods are used to follow brain regional degeneration and regeneration. Results: Alcohol-induced degeneration occurs due to neuronal death during alcohol intoxication. Neuronal death is related to increases in oxidative stress in brain that coincide with the induction of proinflammatory cytokines and oxidative enzymes that insult brain. Degeneration is associated with increased NF-κB proinflammatory transcription and decreased CREB transcription. Corticolimbic brain regions are most sensitive to binge-induced degeneration and induce relearning deficits. Drugs that block oxidative stress and NF-κB transcription or increase CREB transcription block binge-induced neurodegeneration, inhibition of neurogenesis and proinflammatory enzyme induction. Regeneration of brain occurs during abstinence following binge ethanol treatment. Bursts of proliferating cells occur across multiple brain regions, with many new microglia across brain after months of abstinence and many new neurons in neurogenic hippocampal dentate gyrus. Brain regeneration may be important to sustain abstinence in humans. Conclusions: Alcohol-induced neurodegeneration occurs primarily during intoxication and is related to increased oxidative stress and proinflammatory proteins that are neurotoxic. Abstinence after binge ethanol intoxication results in brain cell genesis that could contribute to the return of brain function and structure found in abstinent humans. PMID:18940959

  7. The Diagnostic Value of Troponin T Level in the Determination of Cardiac Damage in Perinatal Asphyxia Newborns.

    PubMed

    Yildirim, Ali; Ozgen, Fatih; Ucar, Birsen; Alatas, Ozkan; Tekin, Neslihan; Kilic, Zubeyir

    2016-01-01

    Perinatal asphyxia is a clinical condition which results from oxygen deprivation of the fetus or newborn and the breakdown of perfusion in various organs. The aim of this study was to evaluate and compare troponin T levels over time as a marker of cardiac injury in cases of perinatal asphyxia and healthy newborns. The study included a total of 30 newborns diagnosed with perinatal asphyxia with a gestational age of 32-41 weeks, based on the last menstruation date, and 30 healthy newborns with a gestational age of 34-40 weeks, as the control group. Levels of troponin T and creatinin kinase MB were recorded for all participants. No difference was determined between the groups in terms of gestational age, manner of birth, electrocardiographic findings, and PaO2 and PaCO2 values. The umbilical artery pH levels and bicarbonate levels in the study group were found to be statistically lower than those in the control group (p < 0.001). The troponin T and creatinin kinase MB levels in the patients in the study group were higher than those within the control group, at all times. The periods when specificity and sensitivity were highest together for troponin T were the 12th and 24th h. Specificity for troponin T reached the highest value at the 24th h and sensitivity reached the highest value in the cord blood. A positive correlation was found between the troponin T and creatinin kinase MB values at the 6th and 12th h. However, no correlation could be found in the blood between the serum troponin T and creatinin kinase MB levels at the 3rd and 24th h. The troponin T level is a useful test for showing cardiac damage in hypoxic patients in the neonatal period. The sensitivity and specificity of cardiac specific troponin T levels in detecting cardiac damage are much higher according to telecardiography and electrocardiography, while the implementation of the method is simple.

  8. Ischemic Brain Injury Leads to Brain Edema via Hyperthermia-Induced TRPV4 Activation.

    PubMed

    Hoshi, Yutaka; Okabe, Kohki; Shibasaki, Koji; Funatsu, Takashi; Matsuki, Norio; Ikegaya, Yuji; Koyama, Ryuta

    2018-06-20

    Brain edema is characterized by an increase in net brain water content, which results in an increase in brain volume. Although brain edema is associated with a high fatality rate, the cellular and molecular processes of edema remain largely unclear. Here, we developed an in vitro model of ischemic stroke-induced edema in which male mouse brain slices were treated with oxygen-glucose deprivation (OGD) to mimic ischemia. We continuously measured the cross-sectional area of the brain slice for 150 min under macroscopic microscopy, finding that OGD induces swelling of brain slices. OGD-induced swelling was prevented by pharmacologically blocking or genetically knocking out the transient receptor potential vanilloid 4 (TRPV4), a member of the thermosensitive TRP channel family. Because TRPV4 is activated at around body temperature and its activation is enhanced by heating, we next elevated the temperature of the perfusate in the recording chamber, finding that hyperthermia induces swelling via TRPV4 activation. Furthermore, using the temperature-dependent fluorescence lifetime of a fluorescent-thermosensitive probe, we confirmed that OGD treatment increases the temperature of brain slices through the activation of glutamate receptors. Finally, we found that brain edema following traumatic brain injury was suppressed in TRPV4-deficient male mice in vivo Thus, our study proposes a novel mechanism: hyperthermia activates TRPV4 and induces brain edema after ischemia. SIGNIFICANCE STATEMENT Brain edema is characterized by an increase in net brain water content, which results in an increase in brain volume. Although brain edema is associated with a high fatality rate, the cellular and molecular processes of edema remain unclear. Here, we developed an in vitro model of ischemic stroke-induced edema in which mouse brain slices were treated with oxygen-glucose deprivation. Using this system, we showed that the increase in brain temperature and the following activation of the thermosensitive cation channel TRPV4 (transient receptor potential vanilloid 4) are involved in the pathology of edema. Finally, we confirmed that TRPV4 is involved in brain edema in vivo using TRPV4-deficient mice, concluding that hyperthermia activates TRPV4 and induces brain edema after ischemia. Copyright © 2018 the authors 0270-6474/18/385700-10$15.00/0.

  9. Neonatal encephalopathic cerebral injury in South India assessed by perinatal magnetic resonance biomarkers and early childhood neurodevelopmental outcome.

    PubMed

    Lally, Peter J; Price, David L; Pauliah, Shreela S; Bainbridge, Alan; Kurien, Justin; Sivasamy, Neeraja; Cowan, Frances M; Balraj, Guhan; Ayer, Manjula; Satheesan, Kariyapilly; Ceebi, Sreejith; Wade, Angie; Swamy, Ravi; Padinjattel, Shaji; Hutchon, Betty; Vijayakumar, Madhava; Nair, Mohandas; Padinharath, Krishnakumar; Zhang, Hui; Cady, Ernest B; Shankaran, Seetha; Thayyil, Sudhin

    2014-01-01

    Although brain injury after neonatal encephalopathy has been characterised well in high-income countries, little is known about such injury in low- and middle-income countries. Such injury accounts for an estimated 1 million neonatal deaths per year. We used magnetic resonance (MR) biomarkers to characterise perinatal brain injury, and examined early childhood outcomes in South India. We recruited consecutive term or near term infants with evidence of perinatal asphyxia and a Thompson encephalopathy score ≥6 within 6 h of birth, over 6 months. We performed conventional MR imaging, diffusion tensor MR imaging and thalamic proton MR spectroscopy within 3 weeks of birth. We computed group-wise differences in white matter fractional anisotropy (FA) using tract based spatial statistics. We allocated Sarnat encephalopathy stage aged 3 days, and evaluated neurodevelopmental outcomes aged 3½ years using Bayley III. Of the 54 neonates recruited, Sarnat staging was mild in 30 (56%); moderate in 15 (28%) and severe in 6 (11%), with no encephalopathy in 3 (6%). Six infants died. Of the 48 survivors, 44 had images available for analysis. In these infants, imaging indicated perinatal rather than established antenatal origins to injury. Abnormalities were frequently observed in white matter (n = 40, 91%) and cortex (n = 31, 70%) while only 12 (27%) had abnormal basal ganglia/thalami. Reduced white matter FA was associated with Sarnat stage, deep grey nuclear injury, and MR spectroscopy N-acetylaspartate/choline, but not early Thompson scores. Outcome data were obtained in 44 infants (81%) with 38 (79%) survivors examined aged 3½ years; of these, 16 (42%) had adverse neurodevelopmental outcomes. No infants had evidence for established brain lesions, suggesting potentially treatable perinatal origins. White matter injury was more common than deep brain nuclei injury. Our results support the need for rigorous evaluation of the efficacy of rescue hypothermic neuroprotection in low- and middle-income countries.

  10. Neonatal Encephalopathic Cerebral Injury in South India Assessed by Perinatal Magnetic Resonance Biomarkers and Early Childhood Neurodevelopmental Outcome

    PubMed Central

    Pauliah, Shreela S.; Bainbridge, Alan; Kurien, Justin; Sivasamy, Neeraja; Cowan, Frances M.; Balraj, Guhan; Ayer, Manjula; Satheesan, Kariyapilly; Ceebi, Sreejith; Wade, Angie; Swamy, Ravi; Padinjattel, Shaji; Hutchon, Betty; Vijayakumar, Madhava; Nair, Mohandas; Padinharath, Krishnakumar; Zhang, Hui; Cady, Ernest B.; Shankaran, Seetha; Thayyil, Sudhin

    2014-01-01

    Although brain injury after neonatal encephalopathy has been characterised well in high-income countries, little is known about such injury in low- and middle-income countries. Such injury accounts for an estimated 1 million neonatal deaths per year. We used magnetic resonance (MR) biomarkers to characterise perinatal brain injury, and examined early childhood outcomes in South India. Methods We recruited consecutive term or near term infants with evidence of perinatal asphyxia and a Thompson encephalopathy score ≥6 within 6 h of birth, over 6 months. We performed conventional MR imaging, diffusion tensor MR imaging and thalamic proton MR spectroscopy within 3 weeks of birth. We computed group-wise differences in white matter fractional anisotropy (FA) using tract based spatial statistics. We allocated Sarnat encephalopathy stage aged 3 days, and evaluated neurodevelopmental outcomes aged 3½ years using Bayley III. Results Of the 54 neonates recruited, Sarnat staging was mild in 30 (56%); moderate in 15 (28%) and severe in 6 (11%), with no encephalopathy in 3 (6%). Six infants died. Of the 48 survivors, 44 had images available for analysis. In these infants, imaging indicated perinatal rather than established antenatal origins to injury. Abnormalities were frequently observed in white matter (n = 40, 91%) and cortex (n = 31, 70%) while only 12 (27%) had abnormal basal ganglia/thalami. Reduced white matter FA was associated with Sarnat stage, deep grey nuclear injury, and MR spectroscopy N-acetylaspartate/choline, but not early Thompson scores. Outcome data were obtained in 44 infants (81%) with 38 (79%) survivors examined aged 3½ years; of these, 16 (42%) had adverse neurodevelopmental outcomes. Conclusions No infants had evidence for established brain lesions, suggesting potentially treatable perinatal origins. White matter injury was more common than deep brain nuclei injury. Our results support the need for rigorous evaluation of the efficacy of rescue hypothermic neuroprotection in low- and middle-income countries. PMID:24505327

  11. Fetal and neonatal deaths of children of patients classified as near miss.

    PubMed

    Nardello, Daniele Marin; Guimarães, Alzira Maria D Avila Nery; Barreto, Ikaro Daniel de Carvalho; Gurgel, Ricardo Queiroz; Ribeiro, Eleonora Ramos de Oliveira; Gois, Cristiane Franca Lisboa

    2017-01-01

    identify the epidemiological aspects of early fetal and neonatal deaths in children of patients classified with near miss and the factors associated with this outcome. a cross-sectional study of 79 women identified with near miss and their newborns. The variables were analyzed using Fisher's exact test. Risk factors were estimated based on unadjusted and adjusted odds ratios, and by means of multiple correspondence analysis, with significance for p <0.05. hypertensive disorders totaled 40.5%; Of these, 58.3% had adverse fetal and neonatal outcome. The newborns admitted to the Neonatal Intensive Care Unit proved to be significant for the outcome (70.8%), gestational age <32 weeks (41.6%), birth weight <2500 (66.7%), neonatal asphyxia (50%) and early respiratory discomfort (72.2%). prematurity, neonatal asphyxia, and early respiratory distress were significant characteristics for the outcome among newborns.

  12. Metabolic Changes Following Perinatal Asphyxia: Role of Astrocytes and Their Interaction with Neurons.

    PubMed

    Logica, Tamara; Riviere, Stephanie; Holubiec, Mariana I; Castilla, Rocío; Barreto, George E; Capani, Francisco

    2016-01-01

    Perinatal Asphyxia (PA) represents an important cause of severe neurological deficits including delayed mental and motor development, epilepsy, major cognitive deficits and blindness. The interaction between neurons, astrocytes and endothelial cells plays a central role coupling energy supply with changes in neuronal activity. Traditionally, experimental research focused on neurons, whereas astrocytes have been more related to the damage mechanisms of PA. Astrocytes carry out a number of functions that are critical to normal nervous system function, including uptake of neurotransmitters, regulation of pH and ion concentrations, and metabolic support for neurons. In this work, we aim to review metabolic neuron-astrocyte interactions with the purpose of encourage further research in this area in the context of PA, which is highly complex and its mechanisms and pathways have not been fully elucidated to this day.

  13. Metabolic Changes Following Perinatal Asphyxia: Role of Astrocytes and Their Interaction with Neurons

    PubMed Central

    Logica, Tamara; Riviere, Stephanie; Holubiec, Mariana I.; Castilla, Rocío; Barreto, George E.; Capani, Francisco

    2016-01-01

    Perinatal Asphyxia (PA) represents an important cause of severe neurological deficits including delayed mental and motor development, epilepsy, major cognitive deficits and blindness. The interaction between neurons, astrocytes and endothelial cells plays a central role coupling energy supply with changes in neuronal activity. Traditionally, experimental research focused on neurons, whereas astrocytes have been more related to the damage mechanisms of PA. Astrocytes carry out a number of functions that are critical to normal nervous system function, including uptake of neurotransmitters, regulation of pH and ion concentrations, and metabolic support for neurons. In this work, we aim to review metabolic neuron-astrocyte interactions with the purpose of encourage further research in this area in the context of PA, which is highly complex and its mechanisms and pathways have not been fully elucidated to this day. PMID:27445788

  14. Childhood Mortality in Federal Medical Centre Umuahia, South Eastern Nigeria

    PubMed Central

    Charles, Nwafor Chukwuemeka; Chuku, Abali; Anazodo, Nnoli Martin

    2014-01-01

    Objectives This study aimed to evaluate the mortality pattern in children seen at Federal Medical Centre Umuahia (FMCU) Abia state, South Eastern Nigeria. Methods A retrospective cross sectional descriptive study over a 5-year period from January 1, 2004 to December 31, 2008 using data retrieved from the hospital’s medical records department. Results A total of 3,814 children were admitted in the hospital and 434 of them died giving a mortality rate of 11%. The mean age was 1.7 (Std D of 3.19). Two hundred and thirty eight of them were males while 196 of them were females giving a sex ratio of 1.2:1. Majority of the mortality (49%) occurred within 24 hours of admission. The major causes of death during neonatal period were birth asphyxia (34%), prematurity (24%) and neonatal sepsis (24%). Malaria was the leading cause of death beyond the neonatal period accounting for 42% of cases. Other common mortality causes were pneumonia, septicaemia, diarrhea, HIV AIDS and meningitis each accounting for 10%, 10%, 7%, 7% and 5% respectively. The months of July, May and March accounted for most deaths (12%, 12% and 11% respectively). Conclusion Birth asphyxia and malaria associated deaths were responsible for most deaths during neonatal and beyond neonatal periods respectively. Presence of trained personal at all deliveries will help to reduce neonatal asphyxia. Efforts should be made to reinforce the existing effective malaria control tools. PMID:25337306

  15. The myths and physiology surrounding intrapartum decelerations: the critical role of the peripheral chemoreflex

    PubMed Central

    Lear, Christopher A.; Galinsky, Robert; Wassink, Guido; Yamaguchi, Kyohei; Davidson, Joanne O.; Westgate, Jenny A.; Bennet, Laura

    2016-01-01

    Abstract A distinctive pattern of recurrent rapid falls in fetal heart rate, called decelerations, are commonly associated with uterine contractions during labour. These brief decelerations are mediated by vagal activation. The reflex triggering this vagal response has been variably attributed to a mechanoreceptor response to fetal head compression, to baroreflex activation following increased blood pressure during umbilical cord compression, and/or a Bezold–Jarisch reflex response to reduced venous return from the placenta. Although these complex explanations are still widespread today, there is no consistent evidence that they are common during labour. Instead, the only mechanism that has been systematically investigated, proven to be reliably active during labour and, crucially, capable of producing rapid decelerations is the peripheral chemoreflex. The peripheral chemoreflex is triggered by transient periods of asphyxia that are a normal phenomenon associated with all uterine contractions. This should not cause concern as the healthy fetus has a remarkable ability to adapt to these repeated but short periods of asphyxia. This means that the healthy fetus is typically not at risk of hypotension and injury during uncomplicated labour even during repeated brief decelerations. The physiologically incorrect theories surrounding decelerations that ignore the natural occurrence of repeated asphyxia probably gained widespread support to help explain why many babies are born healthy despite repeated decelerations during labour. We propose that a unified and physiological understanding of intrapartum decelerations that accepts the true nature of labour is critical to improve interpretation of intrapartum fetal heart rate patterns. PMID:27328617

  16. Early Cord Metabolite Index and Outcome in Perinatal Asphyxia and Hypoxic-Ischaemic Encephalopathy.

    PubMed

    Ahearne, C E; Denihan, N M; Walsh, B H; Reinke, S N; Kenny, L C; Boylan, G B; Broadhurst, D I; Murray, D M

    2016-01-01

    A 1H-NMR-derived metabolomic index based on early umbilical cord blood alterations of succinate, glycerol, 3-hydroxybutyrate and O-phosphocholine has shown potential for the prediction of hypoxic-ischaemic encephalopathy (HIE) severity. To evaluate whether this metabolite score can predict 3-year neurodevelopmental outcome in infants with perinatal asphyxia and HIE, compared with current standard biochemical and clinical markers. From September 2009 to June 2011, infants at risk of perinatal asphyxia were recruited from a single maternity hospital. Cord blood was drawn and biobanked at delivery. Neonates were monitored for development of encephalopathy both clinically and electrographically. Neurodevelopmental outcome was assessed at 36-42 months using the Bayley Scales of Infant and Toddler Development, ed. III (BSID-III). Death and cerebral palsy were also considered as abnormal end points. Thirty-one infants had both metabolomic analysis and neurodevelopmental outcome at 36-42 months. No child had a severely abnormal BSID-III result. The metabolite index significantly correlated with outcome (ρ2 = 0.30, p < 0.01), which is robust to predict both severe outcome (area under the receiver operating characteristic curve: 0.92, p < 0.01) and intact survival (0.80, p = 0.01). There was no correlation between the index score and performance in the individual BSID-III subscales (cognitive, language, motor). The metabolite index outperformed other standard biochemical markers at birth for prediction of outcome at 3 years, but was not superior to EEG or the Sarnat score. © 2016 S. Karger AG, Basel.

  17. Medico-legal litigation in Obstetrics: a characterization analysis of a decade in Portugal.

    PubMed

    Domingues, Ana Patrícia Rodrigues; Belo, Adriana; Moura, Paulo; Vieira, Duarte Nuno

    2015-05-01

    It was to analyse the most critical areas in Obstetrics and to suggest measures to reduce or avoid the situations most often involved in these disputes. Obstetrics cases submitted to the Medico-legal Council since the creation of the National Institute of Legal Medicine and Forensic Sciences in 2001 until 2011 were evaluated. A comprehensive characterization, determination of absolute/relative frequencies, hypothesis of a linear trend over the years and the association between each parameter was done. The analysis has shown no significantly linear trend. The most common reasons for disputes were perinatal asphyxia (50%), traumatic injuries of the newborn (24%), maternal sequelae (19%) and issues related to prenatal diagnosis and/or obstetric ultrasound (5.4%). Perinatal asphyxia showed no significantly linear trend (p=0.58) and was usually related to perinatal deaths or permanent neurologic sequelae in newborn children. Traumatic injuries of the newborn, mostly related to instrumented deliveries, shoulder dystocia or vaginal delivery in breech presentation, has shown a significantly increased linear trend (p<0.001), especially related to instrumented deliveries. The delay/absence of cesarean section was the clinical procedure questioned in a significantly higher number of cases of perinatal asphyxia (68.7%) and of traumatic lesions of the newborn due to instrumented deliveries (20.5%). It is important to improve and correct theoretical/practical daily clinical performance in these highlighted areas, in order to reduce or even avoid situations that could end up in medico-legal litigations.

  18. Brain injury with diabetes mellitus: evidence, mechanisms and treatment implications.

    PubMed

    Hamed, Sherifa A

    2017-04-01

    Diabetes mellitus is a risk for brain injury. Brain injury is associated with acute and chronic hyperglycaemia, insulin resistance, hyperinsulinemia, diabetic ketoacidosis (DKA) and hypoglycaemic events in diabetic patients. Hyperglycemia is a cause of cognitive deterioration, low intelligent quotient, neurodegeneration, brain aging, brain atrophy and dementia. Areas covered: The current review highlights the experimental, clinical, neuroimaging and neuropathological evidence of brain injury induced by diabetes and its associated metabolic derangements. It also highlights the mechanisms of diabetes-induced brain injury. It seems that the pathogenesis of hyperglycemia-induced brain injury is complex and includes combination of vascular disease, oxidative stress, neuroinflammation, mitochondrial dysfunction, apoptosis, reduction of neurotrophic factors, acetylcholinesterase (AChE) activation, neurotransmitters' changes, impairment of brain repair processes, impairment of brain glymphatic system, accumulation of amyloid β and tau phosphorylation and neurodegeneration. The potentials for prevention and treatment are also discussed. Expert commentary: We summarize the risks and the possible mechanisms of DM-induced brain injury and recommend strategies for neuroprotection and neurorestoration. Recently, a number of drugs and substances [in addition to insulin and its mimics] have shown promising potentials against diabetes-induced brain injury. These include: antioxidants, neuroinflammation inhibitors, anti-apoptotics, neurotrophic factors, AChE inhibitors, mitochondrial function modifiers and cell based therapies.

  19. Mitochondrial Optic Atrophy (OPA) 1 Processing Is Altered in Response to Neonatal Hypoxic-Ischemic Brain Injury

    PubMed Central

    Baburamani, Ana A.; Hurling, Chloe; Stolp, Helen; Sobotka, Kristina; Gressens, Pierre; Hagberg, Henrik; Thornton, Claire

    2015-01-01

    Perturbation of mitochondrial function and subsequent induction of cell death pathways are key hallmarks in neonatal hypoxic-ischemic (HI) injury, both in animal models and in term infants. Mitoprotective therapies therefore offer a new avenue for intervention for the babies who suffer life-long disabilities as a result of birth asphyxia. Here we show that after oxygen-glucose deprivation in primary neurons or in a mouse model of HI, mitochondrial protein homeostasis is altered, manifesting as a change in mitochondrial morphology and functional impairment. Furthermore we find that the mitochondrial fusion and cristae regulatory protein, OPA1, is aberrantly cleaved to shorter forms. OPA1 cleavage is normally regulated by a balanced action of the proteases Yme1L and Oma1. However, in primary neurons or after HI in vivo, protein expression of YmelL is also reduced, whereas no change is observed in Oma1 expression. Our data strongly suggest that alterations in mitochondria-shaping proteins are an early event in the pathogenesis of neonatal HI injury. PMID:26393574

  20. Brain cell death is reduced with cooling by 3.5°C to 5°C but increased with cooling by 8.5°C in a piglet asphyxia model.

    PubMed

    Alonso-Alconada, Daniel; Broad, Kevin D; Bainbridge, Alan; Chandrasekaran, Manigandan; Faulkner, Stuart D; Kerenyi, Áron; Hassell, Jane; Rocha-Ferreira, Eridan; Hristova, Mariya; Fleiss, Bobbi; Bennett, Kate; Kelen, Dorottya; Cady, Ernest; Gressens, Pierre; Golay, Xavier; Robertson, Nicola J

    2015-01-01

    In infants with moderate to severe neonatal encephalopathy, whole-body cooling at 33°C to 34°C for 72 hours is standard care with a number needed to treat to prevent a adverse outcome of 6 to 7. The precise brain temperature providing optimal neuroprotection is unknown. After a quantified global cerebral hypoxic-ischemic insult, 28 piglets aged <24 hours were randomized (each group, n=7) to (1) normothermia (38.5°C throughout) or whole-body cooling 2 to 26 hours after insult to (2) 35°C, (3) 33.5°C, or (4) 30°C. At 48 hours after hypoxia-ischemia, delayed cell death (terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick end labeling and cleaved caspase 3) and microglial ramification (ionized calcium-binding adapter molecule 1) were evaluated. At 48 hours after hypoxia-ischemia, substantial cerebral injury was found in the normothermia and 30°C hypothermia groups. However, with 35°C and 33.5°C cooling, a clear reduction in delayed cell death and microglial activation was observed in most brain regions (P<0.05), with no differences between 35°C and 33.5°C cooling groups. A protective pattern was observed, with U-shaped temperature dependence in delayed cell death in periventricular white matter, caudate nucleus, putamen, hippocampus, and thalamus. A microglial activation pattern was also seen, with inverted U-shaped temperature dependence in periventricular white matter, caudate nucleus, internal capsule, and hippocampus (all P<0.05). Cooling to 35°C (an absolute drop of 3.5°C as in therapeutic hypothermia protocols) or to 33.5°C provided protection in most brain regions after a cerebral hypoxic-ischemic insult in the newborn piglet. Although the relatively wide therapeutic range of a 3.5°C to 5°C drop in temperature reassured, overcooling (an 8.5°C drop) was clearly detrimental in some brain regions. © 2014 American Heart Association, Inc.

  1. Ethanol-induced hyponatremia augments brain edema after traumatic brain injury.

    PubMed

    Katada, Ryuichi; Watanabe, Satoshi; Ishizaka, Atsushi; Mizuo, Keisuke; Okazaki, Shunichiro; Matsumoto, Hiroshi

    2012-04-01

    Alcohol consumption augments brain edema by expression of brain aquaporin-4 after traumatic brain injury. However, how ethanol induces brain aquaporin-4 expression remains unclear. Aquaporin-4 can operate with some of ion channels and transporters. Therefore, we hypothesized that ethanol may affect electrolytes through regulating ion channels, leading to express aquaporin-4. To clarify the hypothesis, we examined role of AQP4 expression in ethanol-induced brain edema and changes of electrolyte levels after traumatic brain injury in the rat. In the rat traumatic brain injury model, ethanol administration reduced sodium ion concentration in blood significantly 24 hr after injury. An aquaporin-4 inhibitor recovered sodium ion concentration in blood to normal. We observed low sodium ion concentration in blood and the increase of brain aquaporin-4 in cadaver with traumatic brain injury. Therefore, ethanol increases brain edema by the increase of aquaporin-4 expression with hyponatremia after traumatic brain injury.

  2. Hypothermia after cardiac arrest: expanding the therapeutic scope.

    PubMed

    Bernard, Stephen

    2009-07-01

    Therapeutic hypothermia for 12 to 24 hrs following resuscitation from out-of-hospital cardiac arrest is now recommended by the American Heart Association for the treatment of neurological injury when the initial cardiac rhythm is ventricular fibrillation. However, the role of therapeutic hypothermia is uncertain when the initial cardiac rhythm is asystole or pulseless electrical activity, or when the cardiac arrest is primarily due to a noncardiac cause, such as asphyxia or drug overdose. Given that survival rate in these latter conditions is very low, it is unlikely that clinical trials will be undertaken to test the efficacy of therapeutic hypothermia in this setting because of the very large sample size that would be required to detect a significant difference in outcomes. Therefore, in patients with anoxic brain injury after nonventricular fibrillation cardiac arrest, clinicians will need to balance the possible benefit of therapeutic hypothermia with the possible side effects of this therapy. Given that the side effects of therapeutic hypothermia are generally easily managed in the critical care setting, and there is benefit for anoxic brain injury demonstrated in laboratory studies, consideration may be given to treat comatose post-cardiac arrest patients with therapeutic hypothermia in this setting. Because the induction of therapeutic hypothermia has become more feasible with the development of simple intravenous cooling techniques and specialized equipment for improved temperature control in the critical care unit, it is expected that therapeutic hypothermia will become more widely used in the management of anoxic neurological injury whatever the presenting cardiac rhythm.

  3. CELECOXIB ATTENUATES SYSTEMIC LIPOPOLYSACCHARIDE-INDUCED BRAIN INFLAMMATION AND WHITE MATTER INJURY IN THE NEONATAL RATS

    PubMed Central

    FAN, L.-W.; KAIZAKI, A.; TIEN, L.-T.; PANG, Y.; TANAKA, S.; NUMAZAWA, S.; BHATT, A. J.; CAI, Z.

    2013-01-01

    Lipopolysaccharide (LPS)-induced white matter injury in the neonatal rat brain is associated with inflammatory processes. Cyclooxygenase-2 (COX-2) can be induced by inflammatory stimuli, such as cytokines and pro-inflammatory molecules, suggesting that COX-2 may be considered as the target for anti-inflammation. The objective of the present study was to examine whether celecoxib, a selective COX-2 inhibitor, can reduce systemic LPS-induced brain inflammation and brain damage. Intraperitoneal (i.p.) injection of LPS (2 mg/kg) was performed in postnatal day 5 (P5) of Sprague-Dawley rat pups and celecoxib (20 mg/kg) or vehicle was administered i.p. 5 min after LPS injection. The body weight and wire hanging maneuver test were performed 24 hr after the LPS exposure, and brain injury was examined after these tests. Systemic LPS exposure resulted in an impairment of behavioral performance and acute brain injury, as indicated by apoptotic death of oligodendrocytes (OLs) and loss of OL immunoreactivity in the neonatal rat brain. Treatments with celecoxib significantly reduced systemic LPS-induced neurobehavioral disturbance and brain damage. Celecoxib administration significantly attenuated systemic LPS-induced increments in the number of activated microglia and astrocytes, concentrations of IL-1β and TNFα, and protein levels of phosphorylated-p38 MAPK in the neonatal rat brain. The protection of celecoxib was also associated with a reduction of systemic LPS-induced COX-2+ cells which were double labeled with GFAP+ (astrocyte) cells. The overall results suggest that celecoxib was capable of attenuating the brain injury and neurobehavioral disturbance induced by systemic LPS exposure, and the protective effects are associated with its anti-inflammatory properties. PMID:23485816

  4. Pilot randomized trial of therapeutic hypothermia with serial cranial ultrasound and 18-22 month follow-up for neonatal encephalopathy in a low resource hospital setting in Uganda: study protocol.

    PubMed

    Robertson, Nicola J; Hagmann, Cornelia F; Acolet, Dominique; Allen, Elizabeth; Nyombi, Natasha; Elbourne, Diana; Costello, Anthony; Jacobs, Ian; Nakakeeto, Margaret; Cowan, Frances

    2011-06-04

    There is now convincing evidence that in industrialized countries therapeutic hypothermia for perinatal asphyxial encephalopathy increases survival with normal neurological function. However, the greatest burden of perinatal asphyxia falls in low and mid-resource settings where it is unclear whether therapeutic hypothermia is safe and effective. Under the UCL Uganda Women's Health Initiative, a pilot randomized controlled trial in infants with perinatal asphyxia was set up in the special care baby unit in Mulago Hospital, a large public hospital with ~20,000 births in Kampala, Uganda to determine:(i) The feasibility of achieving consent, neurological assessment, randomization and whole body cooling to a core temperature 33-34°C using water bottles(ii) The temperature profile of encephalopathic infants with standard care(iii) The pattern, severity and evolution of brain tissue injury as seen on cranial ultrasound and relation with outcome(iv) The feasibility of neurodevelopmental follow-up at 18-22 months of age Ethical approval was obtained from Makerere University and Mulago Hospital. All infants were in-born. Parental consent for entry into the trial was obtained. Thirty-six infants were randomized either to standard care plus cooling (target rectal temperature of 33-34°C for 72 hrs, started within 3 h of birth) or standard care alone. All other aspects of management were the same. Cooling was performed using water bottles filled with tepid tap water (25°C). Rectal, axillary, ambient and surface water bottle temperatures were monitored continuously for the first 80 h. Encephalopathy scoring was performed on days 1-4, a structured, scorable neurological examination and head circumference were performed on days 7 and 17. Cranial ultrasound was performed on days 1, 3 and 7 and scored. Griffiths developmental quotient, head circumference, neurological examination and assessment of gross motor function were obtained at 18-22 months. We will highlight differences in neonatal care and infrastructure that need to be taken into account when considering a large safety and efficacy RCT of therapeutic hypothermia in low and mid resource settings in the future. Current controlled trials ISRCTN92213707.

  5. The hidden side of drug action: Brain temperature changes induced by neuroactive drugs

    PubMed Central

    Kiyatkin, Eugene A.

    2013-01-01

    Rationale Most neuroactive drugs affect brain metabolism as well as systemic and cerebral blood flow, thus altering brain temperature. Although this aspect of drug action usually remains in the shadows, drug-induced alterations in brain temperature reflect their metabolic neural effects and affect neural activity and neural functions. Objectives Here, I review brain temperature changes induced by neuroactive drugs, which are used therapeutically (general anesthetics), as a research tool (dopamine agonists and antagonists), and self-administered to induce desired psychic effects (cocaine, methamphetamine, ecstasy). I consider the mechanisms underlying these temperature fluctuations and their influence on neural, physiological, and behavioral effects of these drugs. Results By interacting with neural mechanisms regulating metabolic activity and heat exchange between the brain and the rest of the body, neuroactive drugs either increase or decrease brain temperatures both within (35-39°C) and exceeding the range of physiological fluctuations. These temperature effects differ drastically depending upon the environmental conditions and activity state during drug administration. This state-dependence is especially important for drugs of abuse that are usually taken by humans during psycho-physiological activation and in environments that prevent proper heat dissipation from the brain. Under these conditions, amphetamine-like stimulants induce pathological brain hyperthermia (>40°C) associated with leakage of the blood-brain barrier and structural abnormalities of brain cells. Conclusions The knowledge on brain temperature fluctuations induced by neuroactive drugs provides new information to understand how they influence metabolic neural activity, why their effects depend upon the behavioral context of administration, and the mechanisms underlying adverse drug effects including neurotoxicity PMID:23274506

  6. Apatinib in refractory radiation-induced brain edema: A case report.

    PubMed

    Hu, Wei Guo; Weng, Yi Ming; Dong, Yi; Li, Xiang Pan; Song, Qi-Bin

    2017-11-01

    Apatinib is a novel tyrosine kinase inhibitor targeting vascular endothelial growth factor receptor-2, which has observed to be effective and safe in refractory radiation-induced brain edema, like Avastin did. Till now, there is no case report after apatinib came in the market. Two patients who received brain radiotherapy developed clinical manifestations of brain edema, including dizziness, headache, limb activity disorder, and so on. Two patients were both diagnosed as refractory radiation-induced brain edema. Two patients received apatinib (500 mg/day) for 2 and 4 weeks. Two patients got symptomatic improvements from apatinib in different degrees. Magnetic resonance imaging after apatinib treatments showed that compared with pre-treatment imaging, the perilesional edema reduced dramatically. However, the toxicity of apatinib was controllable and tolerable. Apatinib can obviously relieve the symptoms of refractory radiation-induced brain edema and improve the quality of life, which offers a new method for refractory radiation-induced brain edema in clinical practices. But that still warrants further investigation in the prospective study.

  7. Pathophysiological Responses in Rat and Mouse Models of Radiation-Induced Brain Injury.

    PubMed

    Yang, Lianhong; Yang, Jianhua; Li, Guoqian; Li, Yi; Wu, Rong; Cheng, Jinping; Tang, Yamei

    2017-03-01

    The brain is the major dose-limiting organ in patients undergoing radiotherapy for assorted conditions. Radiation-induced brain injury is common and mainly occurs in patients receiving radiotherapy for malignant head and neck tumors, arteriovenous malformations, or lung cancer-derived brain metastases. Nevertheless, the underlying mechanisms of radiation-induced brain injury are largely unknown. Although many treatment strategies are employed for affected individuals, the effects remain suboptimal. Accordingly, animal models are extremely important for elucidating pathogenic radiation-associated mechanisms and for developing more efficacious therapies. So far, models employing various animal species with different radiation dosages and fractions have been introduced to investigate the prevention, mechanisms, early detection, and management of radiation-induced brain injury. However, these models all have limitations, and none are widely accepted. This review summarizes the animal models currently set forth for studies of radiation-induced brain injury, especially rat and mouse, as well as radiation dosages, dose fractionation, and secondary pathophysiological responses.

  8. Household furniture tip-over deaths of young children.

    PubMed

    Wolf, Barbara C; Harding, Brett E

    2011-07-01

    The potential for the injury or death of a child resulting from the tip-over of a piece of household furniture or a domestic appliance has not been previously well recognized. We reviewed nine accidental deaths of young children that resulted from avoidable residential hazards and/or lapses in supervision of the children by their caregivers. The offending household items included televisions, bedroom dressers, a kitchen stove, and a lounge chair. The causes of death were mechanical asphyxia, blunt trauma, and combined blunt head trauma and asphyxia. All of the deaths could have been prevented by appropriate anchoring of the piece of furniture and/or closer supervision of the child. A thorough multidisciplinary investigation is essential in establishing the cause and manner of death in such cases and in identifying risk factors that may aid in the prevention of future childhood deaths. © 2011 American Academy of Forensic Sciences.

  9. [Traumatic asphyxia with permanent visual loss. Case report].

    PubMed

    Kántor, Tibor; Grigorescu, Bianca; Popescu, Gabriel; Ferencz, Attila; Nagy, Örs; Jung, János; Gergely, István

    2017-06-01

    Traumatic asphyxia is a rare condition that occurs after compressive thoracoabdominal trauma, which is characterized by subconjunctival hemorrhage, cervicofacial cyanosis, edema and petechiae. Serious life-threatening thoracic and abdominal injuries may coexist. After conservatory treatment in most cases complete recovery is achieved, but in isolated cases permanent neurological lesions may occur. We present the case of the 39-year-old male patient who suffered a compressive thoracoabdominal trauma. The physical examination showed the characteristic "ecchymotic mask". After surgical treatment of the abdominal injuries and intensive therapy the patient was discharged with permanent vision loss. The high retrograde venous pressure in the head and neck may be associated with neuronal ischemia, which can lead to irreversible optic nerve atrophy. It is therefore important to carry out an early, routine and complete ophtalmologic examination, especially in the intubated and poorly cooperative patients. Orv Hetil. 2017; 158(22): 864-868.

  10. Pediatric autopsy case of asphyxia due to salmon egg (ikura) aspiration.

    PubMed

    Takamiya, Masataka; Niitsu, Hisae; Saigusa, Kiyoshi; Dewa, Koji

    2016-09-01

    Here we report an autopsy case of asphyxia due to aspiration of a salmon egg (ikura) into the airway. The patient was a 19-month-old girl. During breakfast, she put salmon eggs into her mouth, and began to walk. She slipped, fell down, and collapsed. She was pronounced dead following 2 h of resuscitation. The body was autopsied 28 h after death. The gastric contents consisted of rice, orange sections, and white salmon eggs. The lungs were deeply congested and over-inflated. In the right lung, areas of atelectasis in the upper and middle lobes were seen. A yellow salmon egg (8 mm in diameter) was found in the trachea. Although fish eggs are consumed throughout the world, reports of this sort are limited. The aspiration of fish eggs is under-acknowledged and underreported. The importance of preventive measures needs to be emphasized to parents and caregivers. © 2016 Japan Pediatric Society.

  11. [Analysis of accidental deaths in mountain tourism and sport according to statistics from the Republic of Kabardino-Balkariia].

    PubMed

    Mechukaev, A M; Mechukaev, A A

    2006-01-01

    Lethal cases in mountain tourism and sports in the Republic of Kabardino-Balkaria were studied for 1978-1995. A total of 152 accidental deaths were analysed. Most of the victims were males under 30 years of age. The greatest number of the accidents took place on Monday, in July and August. Many amateur visitors from abroad were among the victims. The main cause of death in the mountains of Kabardino-Balkaria for the 18 years studied was multitrauma of the body (69.7%). Hypothermia and obturation asphyxia with snow and compression asphyxia due to snowbreak account for 11.8 and 13.2% deaths, respectively; lightning killed 4%. Combination of high mountain hypoxia with exacerbated chronic somatic disease or hypothermia caused death in 1% victims. The authors propose how to improve forensic-medical expert examination of accidental death and safety in the mountains.

  12. Tunicamycin-induced unfolded protein response in the developing mouse brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Haiping; Wang, Xin; Ke, Zun-Ji

    Accumulation of unfolded or misfolded proteins in the endoplasmic reticulum (ER) causes ER stress, resulting in the activation of the unfolded protein response (UPR). ER stress and UPR are associated with many neurodevelopmental and neurodegenerative disorders. The developing brain is particularly susceptible to environmental insults which may cause ER stress. We evaluated the UPR in the brain of postnatal mice. Tunicamycin, a commonly used ER stress inducer, was administered subcutaneously to mice of postnatal days (PDs) 4, 12 and 25. Tunicamycin caused UPR in the cerebral cortex, hippocampus and cerebellum of mice of PD4 and PD12, which was evident bymore » the upregulation of ATF6, XBP1s, p-eIF2α, GRP78, GRP94 and MANF, but failed to induce UPR in the brain of PD25 mice. Tunicamycin-induced UPR in the liver was observed at all stages. In PD4 mice, tunicamycin-induced caspase-3 activation was observed in layer II of the parietal and optical cortex, CA1–CA3 and the subiculum of the hippocampus, the cerebellar external germinal layer and the superior/inferior colliculus. Tunicamycin-induced caspase-3 activation was also shown on PD12 but to a much lesser degree and mainly located in the dentate gyrus of the hippocampus, deep cerebellar nuclei and pons. Tunicamycin did not activate caspase-3 in the brain of PD25 mice and the liver of all stages. Similarly, immature cerebellar neurons were sensitive to tunicamycin-induced cell death in culture, but became resistant as they matured in vitro. These results suggest that the UPR is developmentally regulated and the immature brain is more susceptible to ER stress. - Highlights: • Tunicamycin caused a development-dependent UPR in the mouse brain. • Immature brain was more susceptible to tunicamycin-induced endoplasmic reticulum stress. • Tunicamycin caused more neuronal death in immature brain than mature brain. • Tunicamycin-induced neuronal death is region-specific.« less

  13. The Urinary Uric Acid/Creatinine Ratio is An Adjuvant Marker for Perinatal Asphyxia.

    PubMed

    Bhongir, Aparna Varma; Yakama, Akhil Varma Venkata; Saha, Subhajit; Radia, Sejal B; Pabbati, Jayalakshmi

    2015-09-01

    To assess the urinary uric acid/creatinine ratio (UA/Cr) in relation to Apgar score and cord blood gas analysis in identification of perinatal asphyxia and to define the cutoff values. case control study. The newborns admitted in the department of pediatrics and NICU of Mediciti Institute of Medical Science, Ghanpur, Medchal mandal, Telangana from May-July 2011 were enrolled. The study was conducted on 31 (18 males, 13 females) controls and 18 (12males, 6 females) asphyxiated neonates. 5ml of arterial cord blood of newborn collected at the time of birth and spot urine samples were collected within 24-72 hours of life. Cord blood gas analysis were done immediately and Urinary uric acid was measured by modified Uricase method, urinary creatinine by modified kinetic Jaffe's reaction. The mean urinary uric acid and creatinine ratio (2.58± 0.48 vs 1.89 ± 0.59) is significantly higher in Asphyxiated group than in the control group. The umbilical cord blood pH had significant positive correlation with 1 st minute Apgar score (r= 0.41, p=0.003), 5 th minute Apgar (r= 0.44, p=0.002), while urinary UA/Cr ratio had significant negative correlation with cord blood pH (r= -0.63, p=0.002). Urinary UA/Cr ratio with criterion of >2.43 had 80% sensitivity, 87.5% specificity with AUC of 0.84 (p=0.003) had a better predictive value. Urinary UA/Cr ratio is easy, non-invasive, painless and economical adjuvant parameter with better predictive value for diagnosing perinatal asphyxia with simple diagnostic equipment.

  14. IN VITRO RESEARCH OF THE ALTERATION OF NEURONS IN VAGAL CORE IN MEDULLA OBLONGATA AT ASPHYXIC DEATHS

    PubMed Central

    Haliti, Naim; Islami, Hilmi; Elezi, Nevzat; Shabani, Ragip; Abdullahu, Bedri; Dragusha, Gani

    2010-01-01

    The aim of this study was to research the morphological changes of neurons in the vagus nerve nuclei in medulla oblongata in asphyxia related death cases. Morphological changes that were investigated were mainly in the dorsal motor respiratory center (DMRC), nucleus tractus solitarius (nTS) and nucleus ambigus (nA) in the medulla oblongata. In our research, the autopsy material from asphyxia related death cases was used from various etiologies: monoxide carbon (CO), liquid drowning, strangulation, electricity, clinical-pathological death, firing weapon, explosive weapon, sharp and blunt objects and death cases due to accident. The material selected for research was taken from medulla oblongata and lungs from all lobes. The material from the medulla oblongata and lungs was fixed in a 10% solution of buffered formalin. Special histochemical methods for central nervous system (CNS) were employed like: Cresyl echt violet, toluidin blue, Sevier-Munger modification and Grimelius. For stereometrical analysis of the quantitative density of the neurons the universal testing system Weibel M42 was used. The acquired results show that in sudden asphyxia related death cases, there are alterations in the nuclei of vagal nerve in form of: central chromatolysis, axonal retraction, axonal fragmentation, intranuclear vacuolization, cytoplasmic vacuolization, edema, condensation and dispersion of substance of Nissl, proliferation of oligodendrocytes, astrocytes and microglia. The altered population of vagus nerve neurons does not show an important statistica! significarne compared to the overall quantity of the neurons in the nuclei of the vagus nerve (p<0,05). PMID:20846134

  15. A Systematic Review of the Probability of Asphyxia in Children Aged <2 Years with Unexplained Epistaxis.

    PubMed

    Rees, Philippa; Kemp, Alison; Carter, Ben; Maguire, Sabine

    2016-01-01

    To determine the proportion of children aged <2 years who have been asphyxiated presenting with epistaxis in the absence of trauma or medical explanation and to identify the characteristics of the clinical presentation indicative of asphyxiation. An all-language systematic review was conducted by searching 10 databases from 1900 to 2015 and gray literature to identify high-quality studies that included children with epistaxis aged <2 years (alive or dead) with explicit confirmation of intentional or unintentional asphyxiation (upper airway obstruction). Studies of traumatic or pathological epistaxis were excluded. For each comparative study, the proportion of children presenting with epistaxis that were asphyxiated is reported with 95% CI. Of 2706 studies identified, 100 underwent full review, resulting in 6 included studies representing 30 children with asphyxiation-related epistaxis and 74 children with non-asphyxiation-related epistaxis. The proportion of children presenting with epistaxis that had been asphyxiated, reported by 3 studies, was between 7% and 24%. Features associated with asphyxiation in live children included malaise, altered skin color, respiratory difficulty, and chest radiograph abnormalities. There were no explicit associated features described among those children who were dead on arrival. There is an association between epistaxis and asphyxiation in young children; however, epistaxis does not constitute a diagnosis of asphyxia in itself. In any infant presenting with unexplained epistaxis, a thorough investigation of etiology is always warranted, which must include active exploration of asphyxia as a possible explanation. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Dimebon Inhibits Calcium-Induced Swelling of Rat Brain Mitochondria But Does Not Alter Calcium Retention or Cytochrome C Release

    PubMed Central

    Naga, Kranthi Kumari

    2012-01-01

    Dimebon was originally introduced as an antihistamine and subsequently investigated as a possible therapeutic for a variety of disorders, including Alzheimer's disease. One putative mechanism underlying the neuroprotective properties of Dimebon is inhibition of mitochondrial permeability transition, based on the observation that Dimebon inhibited the swelling of rat liver mitochondria induced by calcium and other agents that induce permeability transition. Because liver and brain mitochondria differ substantially in their properties and response to conditions associated with opening of the permeability transition pore, we sought to determine whether Dimebon inhibited permeability transition in brain mitochondria. Dimebon reduced calcium-induced mitochondrial swelling but did not enhance the calcium retention capacity or impair calcium-induced cytochrome C release from non-synaptic mitochondria isolated from rat brain cerebral cortex. These findings indicate that Dimebon does not inhibit mitochondrial permeability transition, induced by excessive calcium uptake, in brain mitochondria. PMID:20625939

  17. Dimebon inhibits calcium-induced swelling of rat brain mitochondria but does not alter calcium retention or cytochrome C release.

    PubMed

    Naga, Kranthi Kumari; Geddes, James W

    2011-03-01

    Dimebon was originally introduced as an antihistamine and subsequently investigated as a possible therapeutic for a variety of disorders, including Alzheimer's disease. One putative mechanism underlying the neuroprotective properties of Dimebon is inhibition of mitochondrial permeability transition, based on the observation that Dimebon inhibited the swelling of rat liver mitochondria induced by calcium and other agents that induce permeability transition. Because liver and brain mitochondria differ substantially in their properties and response to conditions associated with opening of the permeability transition pore, we sought to determine whether Dimebon inhibited permeability transition in brain mitochondria. Dimebon reduced calcium-induced mitochondrial swelling but did not enhance the calcium retention capacity or impair calcium-induced cytochrome C release from non-synaptic mitochondria isolated from rat brain cerebral cortex. These findings indicate that Dimebon does not inhibit mitochondrial permeability transition, induced by excessive calcium uptake, in brain mitochondria.

  18. [Accidental hanging during auto-erotic practices].

    PubMed

    Vieira, D N; da Silva, A G

    1989-01-01

    An unusual case of accidental hanging during autoerotic practices in a 25-year-old male student is described and the autoerotic asphyxia syndrome briefly discussed. The authors stressed the importance of a correct diagnostic of accidental death in these cases.

  19. Unintentional asphyxia, SIDS, and medically explained deaths: a descriptive study of outcomes of child death review (CDR) investigations following sudden unexpected death in infancy.

    PubMed

    Garstang, Joanna; Ellis, Catherine; Griffiths, Frances; Sidebotham, Peter

    2016-12-01

    A comprehensive child death review (CDR) program was introduced in England and Wales in 2008, but as yet data have only been analyzed at a local level, limiting the learning from deaths. The aim of this study is to describe the profile of causes and risk factors for sudden unexpected death in infancy (SUDI) as determined by the new CDR program. This was a descriptive outcome study using data from child death overview panel Form C for SUDI cases dying during 2010-2012 in the West Midlands region of England. The main outcome measures were: cause of death, risk factors and potential preventability of death, and determination of deaths probably due to unintentional asphyxia. Data were obtained for 65/70 (93 %) SUDI cases. 20/65 (31 %) deaths were initially categorized as due to medical causes; 21/65 (32 %) as SIDS; and 24/65 (37 %) as undetermined. Reanalysis suggested that 2/21 SIDS and 7/24 undetermined deaths were probably due to unintentional asphyxia, with 6 of these involving co-sleeping and excessive parental alcohol consumption. Deaths classified as "undetermined" had significantly higher total family and environmental risk factor scores (mean 2.6, 95 % CI 2.0-3.3) compared to those classified as SIDS (mean 1.6, 95 % CI 1.2-1.9), or medical causes for death (mean 1.1, 95 % CI 0.8-1.3). 9/20 (47 %) of medical deaths, 19/21 (90 %) SIDS, and 23/24 (96 %) undetermined deaths were considered to be potentially preventable. There were inadequacies in medical provision identified in 5/20 (25 %) of medically explained deaths. The CDR program results in detailed information about risk factors for SUDI cases but failed to recognize deaths probably due to unintentional asphyxia. The misclassification of probable unintentional asphyxial deaths and SIDS as "undetermined deaths" is likely to limit learning from these deaths and inhibit prevention strategies. Many SUDI occurred in families with mental illness, substance misuse and chaotic lifestyles and most in unsafe sleep environments. This knowledge could be used to better target safe sleep advice for vulnerable families and prevent SUDI in the future.

  20. Compound mechanism hypothesis on +Gz induced brain injury and dysfunction of learning and memory

    NASA Astrophysics Data System (ADS)

    Sun, Xi-Qing; Li, Jin-Sheng; Cao, Xin-Sheng; Wu, Xing-Yu

    2005-08-01

    We systematically studied the effect of high- sustained +Gz on the brain and its mechanism in past ten years by animal centrifuge experiments. On the basis of the facts we observed and the more recent advances in acceleration physiology, we put forward a compound mechanism hypothesis to offer a possible explanation for +Gz-induced brain injury and dysfunction of learning and memory. It states that, ischemia during high G exposure might be the main factor accounting for +Gz-induced brain injury and dysfunction of learning and memory, including transient depression of brain energy metabolism, disturbance of ion homeostasis, increased blood-brain barrier permeability, increased brain nitric oxide synthase expression, and the protective effect of heat shock protein 70. In addition, the large rapid change of intracranial pressure and increased stress during +Gz exposure, and the hemorrheologic change after +Gz exposure might be one of the important factors accounting for +Gz-induced brain injury and dysfunction of learning and memory.

  1. N-acetyl-L-cysteine protects against cadmium-induced neuronal apoptosis by inhibiting ROS-dependent activation of Akt/mTOR pathway in mouse brain

    PubMed Central

    Chen, Sujuan; Ren, Qian; Zhang, Jinfei; Ye, Yangjing; Zhang, Zhen; Xu, Yijiao; Guo, Min; Ji, Haiyan; Xu, Chong; Gu, Chenjian; Gao, Wei; Huang, Shile; Chen, Long

    2014-01-01

    Aims This study explores the neuroprotective effects and mechanisms of N-acetyl-L-cysteine (NAC) in mice exposed to cadmium (Cd). Methods NAC (150 mg/kg) was intraperitoneally administered to mice exposed to Cd (10-50 mg/L) in drinking water for 6 weeks. The changes of cell damage and death, reactive oxygen species (ROS), antioxidant enzymes, as well as Akt/mammalian target of rapamycin (mTOR) signaling pathway in brain neurons were assessed. To verify the role of mTOR activation in Cd-induced neurotoxicity, mice also received a subacute regimen of intraperitoneally administered Cd (1 mg/kg) with/without rapamycin (7.5 mg/kg) for 11 days. Results Chronic exposure of mice to Cd induced brain damage or neuronal cell death, due to ROS induction. Co-administration of NAC significantly reduced Cd levels in the plasma and brain of the animals. NAC prevented Cd-induced ROS and significantly attenuated Cd-induced brain damage or neuronal cell death. The protective effect of NAC was mediated, at least partially, by elevating the activities of Cu/Zn-superoxide dismutase, catalase and glutathione peroxidase, as well as the level of glutathione in the brain. Furthermore, Cd-induced activation of Akt/mTOR pathway in the brain was also inhibited by NAC. Rapamycin in vitro and in vivo protected against Cd-induced neurotoxicity. Conclusions NAC protects against Cd-induced neuronal apoptosis in mouse brain partially by inhibiting ROS-dependent activation of Akt/mTOR pathway. The findings highlight that NAC may be exploited for prevention and treatment of Cd-induced neurodegenerative diseases. PMID:24299490

  2. Apatinib in refractory radiation-induced brain edema

    PubMed Central

    Hu, Wei Guo; Weng, Yi Ming; Dong, Yi; Li, Xiang Pan; Song, Qi-Bin

    2017-01-01

    Abstract Rationale: Apatinib is a novel tyrosine kinase inhibitor targeting vascular endothelial growth factor receptor-2, which has observed to be effective and safe in refractory radiation-induced brain edema, like Avastin did. Till now, there is no case report after apatinib came in the market. Patient concerns: Two patients who received brain radiotherapy developed clinical manifestations of brain edema, including dizziness, headache, limb activity disorder, and so on. Diagnoses: Two patients were both diagnosed as refractory radiation-induced brain edema. Interventions: Two patients received apatinib (500 mg/day) for 2 and 4 weeks. Outcomes: Two patients got symptomatic improvements from apatinib in different degrees. Magnetic resonance imaging after apatinib treatments showed that compared with pre-treatment imaging, the perilesional edema reduced dramatically. However, the toxicity of apatinib was controllable and tolerable. Lessons: Apatinib can obviously relieve the symptoms of refractory radiation-induced brain edema and improve the quality of life, which offers a new method for refractory radiation-induced brain edema in clinical practices. But that still warrants further investigation in the prospective study. PMID:29145238

  3. 76 FR 63910 - Notice of Availability for Exclusive, Non-Exclusive, or Partially-Exclusive Licensing of an...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-14

    ..., or Partially-Exclusive Licensing of an Invention Concerning a Device and Method for Inducing Brain... Application Serial No. 61/521,446, entitled ``A Device and Method for Inducing Brain Injury in Animal Test... and method for inducing brain injury in animal test subjects through inflicting pressure-wave or...

  4. Effect of shivering on brain tissue oxygenation during induced normothermia in patients with severe brain injury.

    PubMed

    Oddo, Mauro; Frangos, Suzanne; Maloney-Wilensky, Eileen; Andrew Kofke, W; Le Roux, Peter D; Levine, Joshua M

    2010-02-01

    We analyzed the impact of shivering on brain tissue oxygenation (PbtO(2)) during induced normothermia in patients with severe brain injury. We studied patients with severe brain injury who developed shivering during induced normothermia. Induced normothermia was applied to treat refractory fever (body temperature [BT] > or =38.3 degrees C, refractory to conventional treatment) using a surface cooling device with computerized adjustment of patient BT target to 37 +/- 0.5 degrees C. PbtO(2), intracranial pressure, mean arterial pressure, cerebral perfusion pressure, and BT were monitored continuously. Circulating water temperature of the device system was measured to assess the intensity of cooling. Fifteen patients (10 with severe traumatic brain injury, 5 with aneurysmal subarachnoid hemorrhage) were treated with induced normothermia for an average of 5 +/- 2 days. Shivering caused a significant decrease in PbtO(2) levels both in SAH and TBI patients. Compared to baseline, shivering was associated with an overall reduction of PbtO(2) from 34.1 +/- 7.3 to 24.4 +/- 5.5 mmHg (P < 0.001). A significant correlation was found between the magnitude of shivering-associated decrease of PbtO(2) (DeltaPbtO(2)) and circulating water temperature (R = 0.82, P < 0.001). In patients with severe brain injury treated with induced normothermia, shivering was associated with a significant decrease of PbtO(2), which correlated with the intensity of cooling. Monitoring of therapeutic cooling with computerized thermoregulatory systems may help prevent shivering and optimize the management of induced normothermia. The clinical significance of shivering-induced decrease in brain tissue oxygenation remains to be determined.

  5. High-fat diet-induced downregulation of anorexic leukemia inhibitory factor in the brain stem.

    PubMed

    Licursi, Maria; Alberto, Christian O; Dias, Alex; Hirasawa, Kensuke; Hirasawa, Michiru

    2016-11-01

    High-fat diet (HFD) is known to induce low-grade hypothalamic inflammation. Whether inflammation occurs in other brain areas remains unknown. This study tested the effect of short-term HFD on cytokine gene expression and identified leukemia inhibitory factor (LIF) as a responsive cytokine in the brain stem. Thus, functional and cellular effects of LIF in the brain stem were investigated. Male rats were fed chow or HFD for 3 days, and then gene expression was analyzed in different brain regions for IL-1β, IL-6, TNF-α, and LIF. The effect of intracerebroventricular injection of LIF on chow intake and body weight was also tested. Patch clamp recording was performed in the nucleus tractus solitarius (NTS). HFD increased pontine TNF-α mRNA while downregulating LIF in all major parts of the brain stem, but not in the hypothalamus or hippocampus. LIF injection into the cerebral aqueduct suppressed food intake without conditioned taste aversion, suggesting that LIF can induce anorexia via lower brain regions without causing malaise. In the NTS, a key brain stem nucleus for food intake regulation, LIF induced acute changes in neuronal excitability. HFD-induced downregulation of anorexic LIF in the brain stem may provide a permissive condition for HFD overconsumption. This may be at least partially mediated by the NTS. © 2016 The Obesity Society.

  6. Perinatal asphyxia results in altered expression of the hippocampal acylethanolamide/endocannabinoid signaling system associated to memory impairments in postweaned rats

    PubMed Central

    Blanco, Eduardo; Galeano, Pablo; Holubiec, Mariana I.; Romero, Juan I.; Logica, Tamara; Rivera, Patricia; Pavón, Francisco J.; Suarez, Juan; Capani, Francisco; Rodríguez de Fonseca, Fernando

    2015-01-01

    Perinatal asphyxia (PA) is an obstetric complication that strongly affects the CNS. The endocannabinoid system (ECS) is a lipid transmitter system involved in several physiological processes including synaptic plasticity, neurogenesis, memory, and mood. Endocannabinoids, and other acylethanolamides (AEs) without endocannabinoid activity, have recently received growing attention due to their potential neuroprotective functions in neurological disorders, including cerebral ischemia. In the present study, we aimed to analyze the changes produced by PA in the major metabolic enzymes and receptors of the ECS/AEs in the hippocampus using a rodent model of PA. To induce PA, we removed uterine horns from ready-to-deliver rats and immersed them into a water bath during 19 min. Animals delivered spontaneously or by cesarean section were employed as controls. At 1 month of age, cognitive functions were assessed and immunohistochemical procedures were carried out to determine the expression of NeuN and glial fibrillary acidic protein, enzymes responsible for synthesis (DAGLα and NAPE-PLD) and degradation (FAAH) of ECS/AEs and their receptors (CB1 and PPARα) in the hippocampus. Postweaned asphyctic rats showed impaired recognition and spatial reference memory that were accompanied by hippocampal astrogliosis and changes in the expression of enzymes and receptors. The most remarkable findings in asphyctic rats were a decrease in the expression of NAPE-PLD and PPARα in both hippocampal areas CA1 and CA3. In addition, postweaned cesarean delivery rats showed an increase in the immunolabeling for FAAH in the hippocampal CA3 area. Since, NAPE-PLD and PPARα are proteins that participate in the biochemical process of AEs, specially the neuroprotective oleoylethanolamide, these results suggest that PA dysregulates this system. These data encourage conducting future studies using AEs as potential neuroprotective compounds in animal models of PA. PMID:26578900

  7. Curcumin attenuates chronic intermittent hypoxia-induced brain injuries by inhibiting AQP4 and p38 MAPK pathway.

    PubMed

    Wang, Bo; Li, Wenyang; Jin, Hongyu; Nie, Xinshi; Shen, Hui; Li, Erran; Wang, Wei

    2018-09-01

    Chronic intermittent hypoxia (CIH) is one of the main features of obstructive sleep apnea (OSA), which is also commonly associated with neurocognitive impairments. The present study aimed to elucidate the beneficial effect of curcumin on CIH-induced brain injuries. Male balb/c mice (6 ∼ 8 weeks) were exposed to normoxia or a pattern of CIH (8 h/day, cycles of 180 s each, hypoxia: 5% O 2 for 50 s, reoxygenation: 21% O 2 for 50 s) for 10 weeks, along with daily curcumin treatment (50, 100, or 200 mg/kg, intragastrically) or its vehicle. The results showed that CIH induced significant brain edema, as well as neuronal apoptosis and astrogliosis in the cerebral cortex, brainstem, and cerebellum regions of brain. In addition, increased astrocytic AQP4 expression and activation of p38 MAPK pathway were observed after CIH exposure. Curcumin dose-dependently mitigated the brain edema and relevant cell alterations, showing a neuroprotective effect in CIH-induced brain injury. Together, these results suggest curcumin ameliorates the CIH-induced brain injuries, including brain edema, neuronal death and astrogliosis. The beneficial role of curcumin is mediated partially by regulating AQP4 and p38 MAPK pathway. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Brain endothelial adhesion molecule expression in experimental colitis.

    PubMed

    Sans, M; Kawachi, S; Soriano, A; Palacín, A; Morise, Z; Granger, D N; Piqué, J M; Grisham, M B; Panés, J

    2001-04-01

    1) To determine if endothelial expression of adhesion molecules involved in leukocyte recruitment is increased in the brain and other organs in four different models of experimental colitis, and 2) to investigate whether leukocyte infiltration occurs in the brain of colitic animals. Endothelial vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) expression was quantified, using the dual radiolabeled antibody technique in rats with trinitrobenzenesulfonic acid (TNBS)-induced colitis, in mice with dextran sulfate sodium (DSS)-induced colitis, in SCID mice reconstituted with CD45RBhigh T-cells, and in IL-10-/- mice. Leukocyte infiltration in the brain of TNBS-induced colitic rats was assessed by myeloperoxidase activity and immunohistochemical staining with anti-CD45 monoclonal antibody. Marked upregulation of brain endothelial VCAM-1 (2- to 5.5-fold) was consistently found in colitic animals in the four models studied. Brain VCAM-1 strongly correlated with colon VCAM-1 and colon weight. By contrast, upregulation of brain ICAM-1 in colitic animals was only observed in the CD45RBhigh transfer (3-fold) and the TNBS-induced (1.5-fold models). Heart and muscle VCAM-1 and ICAM-1 were not upregulated in colitic animals in the majority of models studied. There was no leukocyte infiltration into the brain of TNBS-induced colitic rats. Our study demonstrates a marked and specific upregulation of endothelial VCAM-1 in the brain of colitic animals. This activation of cerebral endothelial cells was not associated with an infiltration of leukocytes into brain tissue.

  9. Evaluation method for in situ electric field in standardized human brain for different transcranial magnetic stimulation coils

    NASA Astrophysics Data System (ADS)

    Iwahashi, Masahiro; Gomez-Tames, Jose; Laakso, Ilkka; Hirata, Akimasa

    2017-03-01

    This study proposes a method to evaluate the electric field induced in the brain by transcranial magnetic stimulation (TMS) to realize focal stimulation in the target area considering the inter-subject difference of the brain anatomy. The TMS is a non-invasive technique used for treatment/diagnosis, and it works by inducing an electric field in a specific area of the brain via a coil-induced magnetic field. Recent studies that report on the electric field distribution in the brain induced by TMS coils have been limited to simplified human brain models or a small number of detailed human brain models. Until now, no method has been developed that appropriately evaluates the coil performance for a group of subjects. In this study, we first compare the magnetic field and the magnetic vector potential distributions to determine if they can be used as predictors of the TMS focality derived from the electric field distribution. Next, the hotspots of the electric field on the brain surface of ten subjects using six coils are compared. Further, decisive physical factors affecting the focality of the induced electric field by different coils are discussed by registering the computed electric field in a standard brain space for the first time, so as to evaluate coil characteristics for a large population of subjects. The computational results suggest that the induced electric field in the target area cannot be generalized without considering the morphological variability of the human brain. Moreover, there was no remarkable difference between the various coils, although focality could be improved to a certain extent by modifying the coil design (e.g., coil radius). Finally, the focality estimated by the electric field was more correlated with the magnetic vector potential than the magnetic field in a homogeneous sphere.

  10. Evaluation method for in situ electric field in standardized human brain for different transcranial magnetic stimulation coils.

    PubMed

    Iwahashi, Masahiro; Gomez-Tames, Jose; Laakso, Ilkka; Hirata, Akimasa

    2017-03-21

    This study proposes a method to evaluate the electric field induced in the brain by transcranial magnetic stimulation (TMS) to realize focal stimulation in the target area considering the inter-subject difference of the brain anatomy. The TMS is a non-invasive technique used for treatment/diagnosis, and it works by inducing an electric field in a specific area of the brain via a coil-induced magnetic field. Recent studies that report on the electric field distribution in the brain induced by TMS coils have been limited to simplified human brain models or a small number of detailed human brain models. Until now, no method has been developed that appropriately evaluates the coil performance for a group of subjects. In this study, we first compare the magnetic field and the magnetic vector potential distributions to determine if they can be used as predictors of the TMS focality derived from the electric field distribution. Next, the hotspots of the electric field on the brain surface of ten subjects using six coils are compared. Further, decisive physical factors affecting the focality of the induced electric field by different coils are discussed by registering the computed electric field in a standard brain space for the first time, so as to evaluate coil characteristics for a large population of subjects. The computational results suggest that the induced electric field in the target area cannot be generalized without considering the morphological variability of the human brain. Moreover, there was no remarkable difference between the various coils, although focality could be improved to a certain extent by modifying the coil design (e.g., coil radius). Finally, the focality estimated by the electric field was more correlated with the magnetic vector potential than the magnetic field in a homogeneous sphere.

  11. Protection from cyanide-induced brain injury by the Nrf2 transcriptional activator carnosic acid

    PubMed Central

    Zhang, Dongxian; Lee, Brian; Nutter, Anthony; Song, Paul; Dolatabadi, Nima; Parker, James; Sanz-Blasco, Sara; Newmeyer, Traci; Ambasudhan, Rajesh; McKercher, Scott R.; Masliah, Eliezer; Lipton, Stuart A.

    2015-01-01

    Cyanide is a life threatening, bioterrorist agent, preventing cellular respiration by inhibiting cytochrome c oxidase, resulting in cardiopulmonary failure, hypoxic brain injury, and death within minutes. However, even after treatment with various antidotes to protect cytochrome oxidase, cyanide intoxication in humans can induce a delayed-onset neurological syndrome that includes symptoms of Parkinsonism. Additional mechanisms are thought to underlie cyanide-induced neuronal damage, including generation of reactive oxygen species (ROS). This may account for the fact that antioxidants prevent some aspects of cyanide-induced neuronal damage. Here, as a potential preemptive countermeasure against a bioterrorist attack with cyanide, we tested the CNS protective effect of carnosic acid (CA), a pro-electrophilic compound found in the herb rosemary. CA crosses the blood-brain-barrier to upregulate endogenous antioxidant enzymes via activation of the Nrf2 transcriptional pathway. We demonstrate that CA exerts neuroprotective effects on cyanide-induced brain damage in cultured rodent and human induced pluripotent stem cell (hiPSC)-derived neurons in vitro, and in vivo in various brain areas of a non-Swiss albino (NSA) mouse model of cyanide poisoning that simulates damage observed in the human brain. PMID:25692407

  12. Association of moderate alcohol use and binge drinking during pregnancy with neonatal health.

    PubMed

    Meyer-Leu, Yvonne; Lemola, Sakari; Daeppen, Jean-Bernard; Deriaz, Olivier; Gerber, Stefan

    2011-09-01

    Heavy drinking and smoking during pregnancy are known to have a negative impact on the unborn child. However, the impact of low-to-moderate alcohol consumption and binge drinking has been debated recently. The aim of this study was to examine the relationship of moderate prenatal drinking and binge drinking with birthweight, being small for gestational age (SGA) at birth, preterm birth, and neonatal asphyxia. Moderate alcohol drinking, binge drinking, and several possible confounders were assessed in 1,258 pregnant women; information on neonatal health was obtained at birth. Results indicate that 30.8% of the women drank at low levels (<2 glasses/wk), 7.9% drank moderately (2 to 4 glasses/wk), and 0.9% showed higher levels of drinking (5 glasses/wk); 4.7% reported binge drinking (defined as 3 glasses/occasion). 6.4% of the children were SGA (<10th percentile of birthweight adjusted for gestational age), 4.6% were preterm (<37th week of gestation), and 13.0% showed asphyxia (arterial cord pH <7.10 and/or arterial cord lactate >6.35 mmol and/or Apgar score <7 at 5 minutes). When controlling for maternal age, citizenship, occupational status, parity, smoking, use of prescription/over-the-counter drugs, illicit drug use, and child gender moderate drinking was related to lower birthweight (p < 0.01), and moderate drinking and binge drinking were associated with neonatal asphyxia at trend level (p = 0.06 and p = 0.09). Moderate drinking and binge drinking were not related to length of gestation. In contrast to recent reviews in the field, our results assume that moderate drinking and binge drinking are risk factors for neonatal health. 2011 by the Research Society on Alcoholism.

  13. Durations of second stage of labor and pushing, and adverse neonatal outcomes: a population-based cohort study.

    PubMed

    Sandström, A; Altman, M; Cnattingius, S; Johansson, S; Ahlberg, M; Stephansson, O

    2017-03-01

    The associations between duration of second stage of labor, pushing time and risk of adverse neonatal outcomes are not fully established. Therefore, we aimed to examine such relationships. A population-based cohort study including 42 539 nulliparous women with singleton infants born in cephalic presentation at ⩾37 gestational weeks, using the Stockholm-Gotland Obstetric Cohort, Sweden, and the Swedish Neonatal Quality Register, 2008 to 2013. Poisson regression was used to analyze estimated adjusted relative risks (RRs), with 95% confidence intervals (CIs). Outcome measures were umbilical artery acidosis (pH <7.05 and base excess <-12), birth asphyxia-related complications (including any of the following conditions: hypoxic ischemic encephalopathy, hypothermia treatment, neonatal seizures, meconium aspiration syndrome or advanced resuscitation after birth) and admission to neonatal intensive care unit (NICU). Overall rates of umbilical artery acidosis, birth asphyxia-related complications and admission to NICU were 1.08, 0.63 and 6.42%, respectively. Rate of birth asphyxia-related complications gradually increased with duration of second stage: from 0.42% at <1 h to 1.29% at ≥4 h (adjusted RR 2.46 (95% CI 1.66 to 3.66)). For admission to NICU, corresponding rates were 4.97 and 9.45%, and adjusted RR (95% CI) was 1.80 (95% CI 1.58 to 2.04). Compared with duration of pushing <15 min, a duration of pushing ⩾60 min increased rates of acidosis from 0.57 to 1.69% (adjusted RR 2.55 (95% CI 1.51 to 4.30)). Prolonged durations of second stage of labor and pushing are associated with increased RRs of adverse neonatal outcomes. Clinical assessment of fetal well-being is essential when durations of second stage and pushing increases.

  14. Short and long term prognosis in perinatal asphyxia: An update.

    PubMed

    Ahearne, Caroline E; Boylan, Geraldine B; Murray, Deirdre M

    2016-02-08

    Interruption of blood flow and gas exchange to the fetus in the perinatal period, known as perinatal asphyxia, can, if significant, trigger a cascade of neuronal injury, leading on to neonatal encephalopathy (NE) and resultant long-term damage. While the majority of infants who are exposed to perinatal hypoxia-ischaemia will recover quickly and go on to have a completely normal survival, a proportion will suffer from an evolving clinical encephalopathy termed hypoxic-ischaemic encephalopathy (HIE) or NE if the diagnosis is unclear. Resultant complications of HIE/NE are wide-ranging and may affect the motor, sensory, cognitive and behavioural outcome of the child. The advent of therapeutic hypothermia as a neuroprotective treatment for those with moderate and severe encephalopathy has improved prognosis. Outcome prediction in these infants has changed, but is more important than ever, as hypothermia is a time sensitive intervention, with a very narrow therapeutic window. To identify those who will benefit from current and emerging neuroprotective therapies we must be able to establish the severity of their injury soon after birth. Currently available indicators such as blood biochemistry, clinical examination and electrophysiology are limited. Emerging biological and physiological markers have the potential to improve our ability to select those infants who will benefit most from intervention. Biomarkers identified from work in proteomics, metabolomics and transcriptomics as well as physiological markers such as heart rate variability, EEG analysis and radiological imaging when combined with neuroprotective measures have the potential to improve outcome in HIE/NE. The aim of this review is to give an overview of the literature in regards to short and long-term outcome following perinatal asphyxia, and to discuss the prediction of this outcome in the early hours after birth when intervention is most crucial; looking at both currently available tools and introducing novel markers.

  15. Troponin-T as a biomarker in neonates with perinatal asphyxia.

    PubMed

    Abiramalatha, T; Kumar, M; Chandran, S; Sudhakar, Y; Thenmozhi, M; Thomas, N

    2017-01-01

    Troponin-T is a commonly used cardiac biomarker, which could be useful in perinatal asphyxia. We aimed to analyze troponin-T concentrations in asphyxiated neonates and to correlate the concentrations with clinical outcomes. Data were collected from electronic medical records of neonates diagnosed with perinatal asphyxia over a period of four years. There were 63 neonates with moderate to severe encephalopathy, in whom serial troponin-T concentrations had been done on days 1, 3, and 7. 53 (84%) asphyxiated infants had troponin-T concentration >100 pg/ml at 2-4 h of life.The difference in troponin-T concentrations between moderate and severe encephalopathy was not statistically significant (173 vs. 263 pg/ml, p value 0.40). The difference in the concentrations at 72 hours between cooled and non-cooled neonates was not significant (48.5 vs. 62.5 pg/ml, p value 0.22). Troponin-T concentration was significantly higher in babies with hypotensive shock and hepatic injury, but not acute kidney injury. There was no significant correlation between troponin-T and the extent of resuscitation needed.Troponin-T concentration on day 1 of life was significantly higher in babies who died than who survived (407 vs. 168 pg/ml, p value 0.03). ROC curve for troponin-T to predict mortality had an area under the curve (AUC) of 0.803; the best cut-off value (190 pg/ml) had 82% sensitivity and 80% specificity. There was no significant difference in troponin-T concentrations between cooled and non-cooled neonates. Troponin-T concentration had a good predictive accuracy for mortality before discharge.

  16. The Urinary Uric Acid/Creatinine Ratio is An Adjuvant Marker for Perinatal Asphyxia

    PubMed Central

    Bhongir, Aparna Varma; Yakama, Akhil Varma Venkata; Saha, Subhajit; Radia, Sejal B.; Pabbati, Jayalakshmi

    2015-01-01

    Objective To assess the urinary uric acid/creatinine ratio (UA/Cr) in relation to Apgar score and cord blood gas analysis in identification of perinatal asphyxia and to define the cutoff values. Design case control study. Setting The newborns admitted in the department of pediatrics and NICU of Mediciti Institute of Medical Science, Ghanpur, Medchal mandal, Telangana from May-July 2011 were enrolled. Participants/patients The study was conducted on 31 (18 males, 13 females) controls and 18 (12males, 6 females) asphyxiated neonates. Outcome Measure(s) 5ml of arterial cord blood of newborn collected at the time of birth and spot urine samples were collected within 24-72 hours of life. Cord blood gas analysis were done immediately and Urinary uric acid was measured by modified Uricase method, urinary creatinine by modified kinetic Jaffe's reaction. Results The mean urinary uric acid and creatinine ratio (2.58± 0.48 vs 1.89 ± 0.59) is significantly higher in Asphyxiated group than in the control group. The umbilical cord blood pH had significant positive correlation with 1st minute Apgar score (r= 0.41, p=0.003), 5th minute Apgar (r= 0.44, p=0.002), while urinary UA/Cr ratio had significant negative correlation with cord blood pH (r= -0.63, p=0.002). Urinary UA/Cr ratio with criterion of >2.43 had 80% sensitivity, 87.5% specificity with AUC of 0.84 (p=0.003) had a better predictive value. Conclusions Urinary UA/Cr ratio is easy, non-invasive, painless and economical adjuvant parameter with better predictive value for diagnosing perinatal asphyxia with simple diagnostic equipment. PMID:26998526

  17. A Brief Analysis of Suicide Methods and Trends in Virginia from 2003 to 2012

    PubMed Central

    Keyser-Marcus, Lori; Crouse Breden, Ericka; Hobron, Kathrin; Bhattachan, Atit; Pandurangi, Ananda

    2015-01-01

    Background. The objective is to analyze and compare Virginia suicide data from 2003 to 2012 to US suicide data. Methods. Suicide trends by method, age, gender, and race were obtained from Virginia's Office of the Chief Medical Examiner's annual reports. Results. Similar to US suicide rates, suicide rates in Virginia increased between 2003 and 2012 from 10.9/100,000 people to 12.9/100,000 people. The most common methods were firearm, asphyxia, and intentional drug overdose, respectively. The increase in asphyxia (r = 0.77, P ≤ 0.01) and decrease in CO poisoning (r = −0.89, P ≤ 0.01) were significant. Unlike national trends, intentional drug overdoses decreased (r = −0.55, P = 0.10). Handgun suicides increased (r = 0.61, P = 0.06) and are the most common method of firearm suicide. Hanging was the most common method of asphyxia. Helium suicides also increased (r = 0.75, P = 0.05). Middle age females and males comprise the largest percentage of suicide. Unlike national data, the increase in middle age male suicides occurred only in the 55–64-year-old age group (r = 0.79, P ≤ 0.01) and decreased in the 35–44-year-old age group (r = −0.60, P = 0.07) and 10–14-year-old age group (r = −0.73, P = 0.02). Suicide in all female age ranges remained stable. Caucasians represent the highest percentage of suicide. Conclusion. There has been a rise in suicide in Virginia and suicide rates and trends have closely resembled the national average albeit some differences. Suicide prevention needs to be enhanced. PMID:25705647

  18. Prenatal nicotine exposure increases hyperventilation in α4-knock-out mice during mild asphyxia.

    PubMed

    Avraam, Joanne; Cohen, Gary; Drago, John; Frappell, Peter B

    2015-03-01

    Prenatal nicotine exposure alters breathing and ventilatory responses to stress through stimulation of nicotine acetylcholine receptors (nAChRs). We tested the hypothesis that α4-containing nAChRs are involved in mediating the effects of prenatal nicotine exposure on ventilatory and metabolic responses to intermittent mild asphyxia (MA). Using open-flow plethysmography, we measured ventilation (V̇(E)) and rate of O2 consumption ( V̇(O2)) of wild-type (WT) and α4-knock-out (KO) mice, at postnatal (P) days 1-2 and 7-8, with and without prenatal nicotine exposure (6 mg kg(-1) day(-1) beginning on embryonic day 14). Mice were exposed to seven 2 min cycles of mild asphyxia (10% O2 and 5% CO2), each interspersed with 2 min of air. Compared to WT, α4 KO mice had increased air V̇(E) and V̇(O2) at P7-8, but not P1-2. Irrespective of age, genotype had no effect on the hyperventilatory response (increase in V̇(E)/V̇(O2)) to MA. At P1-2, nicotine suppressed air V̇(E) and V̇(O2) in both genotypes but did not affect the hyperventilatory response to MA. At P7-8 nicotine suppressed air V̇(E) and V̇(O2) of only α4 KO's but also significantly enhanced V̇(E) during MA (nearly double that of WT; p<0.001). This study has revealed complex effects of α4 nAChR deficiency and prenatal nicotine exposure on ventilatory and metabolic interactions and responses to stress. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Patient-centric blood pressure-targeted cardiopulmonary resuscitation improves survival from cardiac arrest.

    PubMed

    Sutton, Robert M; Friess, Stuart H; Naim, Maryam Y; Lampe, Joshua W; Bratinov, George; Weiland, Theodore R; Garuccio, Mia; Nadkarni, Vinay M; Becker, Lance B; Berg, Robert A

    2014-12-01

    Although current resuscitation guidelines are rescuer focused, the opportunity exists to develop patient-centered resuscitation strategies that optimize the hemodynamic response of the individual in the hopes to improve survival. To determine if titrating cardiopulmonary resuscitation (CPR) to blood pressure would improve 24-hour survival compared with traditional CPR in a porcine model of asphyxia-associated ventricular fibrillation (VF). After 7 minutes of asphyxia, followed by VF, 20 female 3-month-old swine randomly received either blood pressure-targeted care consisting of titration of compression depth to a systolic blood pressure of 100 mm Hg and vasopressors to a coronary perfusion pressure greater than 20 mm Hg (BP care); or optimal American Heart Association Guideline care consisting of depth of 51 mm with standard advanced cardiac life support epinephrine dosing (Guideline care). All animals received manual CPR for 10 minutes before first shock. Primary outcome was 24-hour survival. The 24-hour survival was higher in the BP care group (8 of 10) compared with Guideline care (0 of 10); P = 0.001. Coronary perfusion pressure was higher in the BP care group (point estimate +8.5 mm Hg; 95% confidence interval, 3.9-13.0 mm Hg; P < 0.01); however, depth was higher in Guideline care (point estimate +9.3 mm; 95% confidence interval, 6.0-12.5 mm; P < 0.01). Number of vasopressor doses before first shock was higher in the BP care group versus Guideline care (median, 3 [range, 0-3] vs. 2 [range, 2-2]; P = 0.003). Blood pressure-targeted CPR improves 24-hour survival compared with optimal American Heart Association care in a porcine model of asphyxia-associated VF cardiac arrest.

  20. Patient-centric Blood Pressure–targeted Cardiopulmonary Resuscitation Improves Survival from Cardiac Arrest

    PubMed Central

    Friess, Stuart H.; Naim, Maryam Y.; Lampe, Joshua W.; Bratinov, George; Weiland, Theodore R.; Garuccio, Mia; Nadkarni, Vinay M.; Becker, Lance B.; Berg, Robert A.

    2014-01-01

    Rationale: Although current resuscitation guidelines are rescuer focused, the opportunity exists to develop patient-centered resuscitation strategies that optimize the hemodynamic response of the individual in the hopes to improve survival. Objectives: To determine if titrating cardiopulmonary resuscitation (CPR) to blood pressure would improve 24-hour survival compared with traditional CPR in a porcine model of asphyxia-associated ventricular fibrillation (VF). Methods: After 7 minutes of asphyxia, followed by VF, 20 female 3-month-old swine randomly received either blood pressure–targeted care consisting of titration of compression depth to a systolic blood pressure of 100 mm Hg and vasopressors to a coronary perfusion pressure greater than 20 mm Hg (BP care); or optimal American Heart Association Guideline care consisting of depth of 51 mm with standard advanced cardiac life support epinephrine dosing (Guideline care). All animals received manual CPR for 10 minutes before first shock. Primary outcome was 24-hour survival. Measurements and Main Results: The 24-hour survival was higher in the BP care group (8 of 10) compared with Guideline care (0 of 10); P = 0.001. Coronary perfusion pressure was higher in the BP care group (point estimate +8.5 mm Hg; 95% confidence interval, 3.9–13.0 mm Hg; P < 0.01); however, depth was higher in Guideline care (point estimate +9.3 mm; 95% confidence interval, 6.0–12.5 mm; P < 0.01). Number of vasopressor doses before first shock was higher in the BP care group versus Guideline care (median, 3 [range, 0–3] vs. 2 [range, 2–2]; P = 0.003). Conclusions: Blood pressure–targeted CPR improves 24-hour survival compared with optimal American Heart Association care in a porcine model of asphyxia-associated VF cardiac arrest. PMID:25321490

  1. NADPH oxidase 2-derived reactive oxygen species signal contributes to bradykinin-induced matrix metalloproteinase-9 expression and cell migration in brain astrocytes

    PubMed Central

    2012-01-01

    Background Matrix metalloproteinase-9 (MMP-9) plays a crucial role in pathological processes of brain inflammation, injury, and neurodegeneration. Moreover, bradykinin (BK) induces the expression of several inflammatory proteins in brain astrocytes. Recent studies have suggested that increased oxidative stress is implicated in the brain inflammation and injury. However, whether BK induced MMP-9 expression mediated through oxidative stress remains virtually unknown. Herein we investigated the role of redox signals in BK-induced MMP-9 expression in rat brain astrocytes (RBA-1 cells). Results In the study, we first demonstrated that reactive oxygen species (ROS) plays a crucial role in BK-induced MMP-9 expression in cultured brain astrocytes (in vitro) and animal brain tissue (in vivo) models. Next, BK-induced MMP-9 expression is mediated through a Ca2+-mediated PKC-α linking to p47phox/NADPH oxidase 2 (Nox2)/ROS signaling pathway. Nox2-dependent ROS generation led to activation and up-regulation of the downstream transcriptional factor AP-1 (i.e. c-Fos and c-Jun), which bound to MMP-9 promoter region, and thereby turned on transcription of MMP-9 gene. Functionally, BK-induced MMP-9 expression enhanced astrocytic migration. Conclusions These results demonstrated that in RBA-1 cells, activation of AP-1 (c-Fos/c-Jun) by the PKC-α-mediated Nox2/ROS signals is essential for up-regulation of MMP-9 and cell migration enhanced by BK. PMID:23176293

  2. A nitric oxide donor reduces brain injury and enhances recovery of cerebral blood flow after hypoxia-ischemia in the newborn rat.

    PubMed

    Wainwright, Mark S; Grundhoefer, Dava; Sharma, Shruti; Black, Stephen M

    2007-03-26

    Nitric oxide (NO) released in response to hypoxia-ischemia (HI) in the newborn brain may mediate both protective and pathologic responses. We sought to determine whether pharmacologic increase of NO using an NO donor would reduce neurologic injury resulting from HI in the postnatal day 7 rat. We measured NO levels and CBF in the presence of either a NOS inhibitor, N-nitro-l-arginine methyl ester (L-NAME) or an NO donor (Z)-1-[N-(2-amino-ethyl)-N-(2-ammonio-ethyl)amino]diazen-1-ium-1,2-diolate (DETANONOate). Both inhibition of NOS and administration of an NO donor reduced neuropathologic injury after 7-day recovery. NO levels decreased in both ischemic and contralateral hemispheres during HI. This response was prevented by treatment with DETANONOate. Despite the decrease in NO, CBF increased during ischemia in the contralateral hemisphere but decreased when combined with brief hypoxia. Treatment with L-NAME abolished these increases, which were not altered by DETANONOate. Reduction of cellular metabolism by mild hypothermia also reduced both NO and CBF. Following prolonged HI, CBF remained decreased in the ischemic hemisphere up to 24-h recovery. This decrease was prevented by treatment with DETANONOate. These data show that administration of an NO donor reduces neurologic injury following HI in the newborn rat. This mechanism of this protection, in part, is due to an increase in the rate of recovery of CBF compared to vehicle-treated animals. Augmentation of NO-dependent increases in CBF may serve to improve neurologic outcome after perinatal asphyxia.

  3. A NITRIC OXIDE DONOR REDUCES BRAIN INJURY AND ENHANCES RECOVERY OF CEREBRAL BLOOD FLOW AFTER HYPOXIA-ISCHEMIA IN THE NEWBORN RAT

    PubMed Central

    Wainwright, Mark S.; Grundhoefer, Dava; Sharma, Shruti; Black, Stephen M.

    2007-01-01

    Nitric oxide (NO) released in response to hypoxia-ischemia (HI) in the newborn brain may mediate both protective and pathologic responses. We sought to determine whether pharmacologic increase of NO using an NO donor would reduce neurologic injury resulting from HI in the postnatal day 7 rat. We measured NO levels and CBF in the presence of either a NOS inhibitor, N-nitro-L-arginine methyl ester (L-NAME) or an NO donor (Z)-1-[N-(2aminoethyl)-N-(2-ammonio-ethyl)amino]diazen-1-ium-1,2-diolate (DETANONOate). Both inhibition of NOS and administration of an NO donor reduced neuropathologic injury after 7-day recovery. NO levels decreased in both ischemic and contralateral hemispheres during HI. This response was prevented by treatment with DETANONOate. Despite the decrease in NO, CBF increased during ischemia in the contralateral hemisphere but decreased when combined with brief hypoxia. Treatment with L-NAME abolished these increases, which were not altered by DETANONOate. Reduction of cellular metabolism by mild hypothermia also reduced both NO and CBF. Following prolonged HI, CBF remained decreased in the ischemic hemisphere up to 24-hour recovery. This decrease was prevented by treatment with DETANONOate. These data show that administration of an NO donor reduces neurologic injury following HI in the newborn rat. This mechanism of this protection, in part, is due to an increase in the rate of recovery of CBF compared to vehicle-treated animals. Augmentation of NO-dependent increases in CBF may serve to improve neurologic outcome after perinatal asphyxia. PMID:17270345

  4. Melatonin use for neuroprotection in perinatal asphyxia: a randomized controlled pilot study.

    PubMed

    Aly, H; Elmahdy, H; El-Dib, M; Rowisha, M; Awny, M; El-Gohary, T; Elbatch, M; Hamisa, M; El-Mashad, A-R

    2015-03-01

    Melatonin has been shown to be neuroprotective in animal models. The objective of this study is to examine the effect of melatonin on clinical, biochemical, neurophysiological and radiological outcomes of neonates with hypoxic-ischemic encephalopathy (HIE). We conducted a prospective trial on 45 newborns, 30 with HIE and 15 healthy controls. HIE infants were randomized into: hypothermia group (N=15; received 72-h whole-body cooling) and melatonin/hypothermia group (N=15; received hypothermia and five daily enteral doses of melatonin 10 mg kg(-1)). Serum melatonin, plasma superoxide dismutase (SOD) and serum nitric oxide (NO) were measured at enrollment for all infants (N=45) and at 5 days for the HIE groups (N=30). In addition to electroencephalography (EEG) at enrollment, all surviving HIE infants were studied with brain magnetic resonance imaging (MRI) and repeated EEG at 2 weeks of life. Neurologic evaluations and Denver Developmental Screening Test II were performed at 6 months. Compared with healthy neonates, the two HIE groups had increased melatonin, SOD and NO. At enrollment, the two HIE groups did not differ in clinical, laboratory or EEG findings. At 5 days, the melatonin/hypothermia group had greater increase in melatonin (P<0.001) and decline in NO (P<0.001), but less decline in SOD (P=0.004). The melatonin/hypothermia group had fewer seizures on follow-up EEG and less white matter abnormalities on MRI. At 6 months, the melatonin/hypothermia group had improved survival without neurological or developmental abnormalities (P<0.001). Early administration of melatonin to asphyxiated term neonates is feasible and may ameliorate brain injury.

  5. Setting up of a cerebral visual impairment clinic for children: Challenges and future developments.

    PubMed

    Philip, Swetha Sara

    2017-01-01

    The aim of this study is to describe the setting up of a cerebral visual impairment (CVI) clinic in a tertiary care hospital in South India and to describe the spectrum of cases seen. The CVI clinic, set up in February 2011, receives interdisciplinary input from a core team involving a pediatrician, neurologist, psychiatrist, occupational therapist, pediatric ophthalmologist, and an optometrist. All children, <18 years of age, with cerebral palsy (CP), learning disability, autism, neurodegenerative diseases, and brain trauma are referred to the clinic for functional vision assessment and opinion for further management. One thousand four hundred and seventy-eight patients were seen in the CVI clinic from February 2011 to September 2015. Eighty-five percent of the patients were from different parts of India. In the clinic, 61% had CP, 28% had seizure disorders, autism was seen in 9.5%, and learning disability, neurodegenerative conditions, and brain injury together constituted 1.5%. Most of the children (45%) had moderate CP. Forty percent of CVI was due to birth asphyxia, but about 20% did not have any known cause for CVI. Seventy percent of patients, who came back for follow-up, were carrying out the habilitation strategies suggested. Average attendance of over 300 new patients a year suggests a definite need for CVI clinics in the country. These children need specialized care to handle their complex needs. Although difficult to coordinate, an interdisciplinary team including the support groups and voluntary organizations is needed to facilitate the successful implementation of such specialized service.

  6. Setting up of a cerebral visual impairment clinic for children: Challenges and future developments

    PubMed Central

    Philip, Swetha Sara

    2017-01-01

    Aim: The aim of this study is to describe the setting up of a cerebral visual impairment (CVI) clinic in a tertiary care hospital in South India and to describe the spectrum of cases seen. Materials and Methods: The CVI clinic, set up in February 2011, receives interdisciplinary input from a core team involving a pediatrician, neurologist, psychiatrist, occupational therapist, pediatric ophthalmologist, and an optometrist. All children, <18 years of age, with cerebral palsy (CP), learning disability, autism, neurodegenerative diseases, and brain trauma are referred to the clinic for functional vision assessment and opinion for further management. Results: One thousand four hundred and seventy-eight patients were seen in the CVI clinic from February 2011 to September 2015. Eighty-five percent of the patients were from different parts of India. In the clinic, 61% had CP, 28% had seizure disorders, autism was seen in 9.5%, and learning disability, neurodegenerative conditions, and brain injury together constituted 1.5%. Most of the children (45%) had moderate CP. Forty percent of CVI was due to birth asphyxia, but about 20% did not have any known cause for CVI. Seventy percent of patients, who came back for follow-up, were carrying out the habilitation strategies suggested. Conclusions: Average attendance of over 300 new patients a year suggests a definite need for CVI clinics in the country. These children need specialized care to handle their complex needs. Although difficult to coordinate, an interdisciplinary team including the support groups and voluntary organizations is needed to facilitate the successful implementation of such specialized service. PMID:28300737

  7. The safety issues and hardware-related complications of deep brain stimulation therapy: a single-center retrospective analysis of 478 patients with Parkinson’s disease

    PubMed Central

    Zhang, Jing; Wang, Tao; Zhang, Chen-cheng; Zeljic, Kristina; Zhan, Shikun; Sun, Bo-min; Li, Dian-you

    2017-01-01

    Introduction Deep brain stimulation (DBS) is a well-established therapy for the treatment of advanced Parkinson’s disease (PD) in patients experiencing motor fluctuations and medication-refractory tremor. Despite the relative tolerability and safety of this procedure, associated complications and unnatural deaths are still unavoidable. Methods In this study, hardware-related complications and the causes of unnatural death were retrospectively analyzed in 478 patients with PD who were treated with DBS. Results The results showed a 3-year survival rate of 98.6% and a 5-year survival rate of 96.4% for patients with PD who underwent DBS treatment at the study center. Pneumonia was the cause of death with the highest frequency. Prophylactic antibiotics and steroids or antihistamine drugs were adopted to reduce the risk of infection. Twenty-two patients (4.6%) experienced hardware-related complications. Conclusion Deaths of PD patients who receive DBS are typically unrelated to the disease itself or complications associated with the surgery. Pneumonia, malignant tumors, asphyxia, and multiple-organ failure are the common causes of death. Swallowing-related problems may be the most important clinical symptom in late-stage PD, as they cannot be stabilized or improved by DBS alone, and are potentially lethal. Although prophylactic antibiotics and steroids or antihistamine drugs may reduce the risk of infection, it is imperative to identify high-risk patients for whom a therapeutic approach not requiring an implantable device is more suitable, for example, pallidotomy and potentially transcranial ultrasound. PMID:28652714

  8. Evaluating the methods used for measuring cerebral blood flow at rest and during exercise in humans.

    PubMed

    Tymko, Michael M; Ainslie, Philip N; Smith, Kurt J

    2018-05-16

    The first accounts of measuring cerebral blood flow (CBF) in humans were made by Angelo Mosso in ~1880, who recorded brain pulsations in patients with skull defects. In 1890, Charles Roy and Charles Sherrington determined in animals that brain pulsations-assessed via a similar method used by Mosso-were altered during a variety of stimuli including sensory nerve stimulation, asphyxia, and pharmacological interventions. Between 1880 and 1944, measurements for CBF were typically relied on skull abnormalities in humans. Thereafter, Kety and Schmidt introduced a new methodological approach in 1945 that involved nitrous oxide dilution combined with serial arterial and jugular venous blood sampling. Less than a decade later (1950's), several research groups employed the Kety-Schmidt technique to assess the effects of exercise on global CBF and metabolism; these studies demonstrated an uncoupling of CBF and metabolism during exercise, which was contrary to early hypotheses. However, there were several limitations to this technique related to low temporal resolution and the inability to measure regional CBF. These limitations were overcome in the 1960's when transcranial Doppler ultrasound (TCD) was developed as a method to measure beat-by-beat cerebral blood velocity. Between 1990 and 2010, TCD further progressed our understanding of CBF regulation and allowed for insight into other mechanistic factors, independent of local metabolism, involved in regulating CBF during exercise. Recently, it was discovered that TCD may not be accurate under several physiological conditions. Other measures of indexing CBF such as Duplex ultrasound and magnetic resonance imaging, although not without some limitations, may be more applicable for future investigations.

  9. An investigation into the induced electric fields from transcranial magnetic stimulation

    NASA Astrophysics Data System (ADS)

    Hadimani, Ravi; Lee, Erik; Duffy, Walter; Waris, Mohammed; Siddiqui, Waquar; Islam, Faisal; Rajamani, Mahesh; Nathan, Ryan; Jiles, David; David C Jiles Team; Walter Duffy Collaboration

    Transcranial magnetic stimulation (TMS) is a promising tool for noninvasive brain stimulation that has been approved by the FDA for the treatment of major depressive disorder. To stimulate the brain, TMS uses large, transient pulses of magnetic field to induce an electric field in the head. This transient magnetic field is large enough to cause the depolarization of cortical neurons and initiate a synaptic signal transmission. For this study, 50 unique head models were created from MRI images. Previous simulation studies have primarily used a single head model, and thus give a limited image of the induced electric field from TMS. This study uses finite element analysis simulations on 50 unique, heterogeneous head models to better investigate the relationship between TMS and the electric field induced in brain tissues. Results showed a significant variation in the strength of the induced electric field in the brain, which can be reasonably predicted by the distance from the TMS coil to the stimulated brain. Further, it was seen that some models had high electric field intensities in over five times as much brain volume as other models.

  10. Activation of nuclear transcription factor-kappaB in mouse brain induced by a simulated microgravity environment

    NASA Technical Reports Server (NTRS)

    Wise, Kimberly C.; Manna, Sunil K.; Yamauchi, Keiko; Ramesh, Vani; Wilson, Bobby L.; Thomas, Renard L.; Sarkar, Shubhashish; Kulkarni, Anil D.; Pellis, Neil R.; Ramesh, Govindarajan T.

    2005-01-01

    Microgravity induces inflammatory responses and modulates immune functions that may increase oxidative stress. Exposure to a microgravity environment induces adverse neurological effects; however, there is little research exploring the etiology of these effects resulting from exposure to such an environment. It is also known that spaceflight is associated with increase in oxidative stress; however, this phenomenon has not been reproduced in land-based simulated microgravity models. In this study, an attempt has been made to show the induction of reactive oxygen species (ROS) in mice brain, using ground-based microgravity simulator. Increased ROS was observed in brain stem and frontal cortex with concomitant decrease in glutathione, on exposing mice to simulated microgravity for 7 d. Oxidative stress-induced activation of nuclear factor-kappaB was observed in all the regions of the brain. Moreover, mitogen-activated protein kinase kinase was phosphorylated equally in all regions of the brain exposed to simulated microgravity. These results suggest that exposure of brain to simulated microgravity can induce expression of certain transcription factors, and these have been earlier argued to be oxidative stress dependent.

  11. Molecular, Cellular and Functional Effects of Radiation-Induced Brain Injury: A Review

    PubMed Central

    Balentova, Sona; Adamkov, Marian

    2015-01-01

    Radiation therapy is the most effective non-surgical treatment of primary brain tumors and metastases. Preclinical studies have provided valuable insights into pathogenesis of radiation-induced injury to the central nervous system. Radiation-induced brain injury can damage neuronal, glial and vascular compartments of the brain and may lead to molecular, cellular and functional changes. Given its central role in memory and adult neurogenesis, the majority of studies have focused on the hippocampus. These findings suggested that hippocampal avoidance in cranial radiotherapy prevents radiation-induced cognitive impairment of patients. However, multiple rodent studies have shown that this problem is more complex. As the radiation-induced cognitive impairment reflects hippocampal and non-hippocampal compartments, it is of critical importance to investigate molecular, cellular and functional modifications in various brain regions as well as their integration at clinically relevant doses and schedules. We here provide a literature overview, including our previously published results, in order to support the translation of preclinical findings to clinical practice, and improve the physical and mental status of patients with brain tumors. PMID:26610477

  12. Impact of Cerebral Visual Impairments on Motor Skills: Implications for Developmental Coordination Disorders

    PubMed Central

    Chokron, Sylvie; Dutton, Gordon N.

    2016-01-01

    Cerebral visual impairment (CVI) has become the primary cause of visual impairment and blindness in children in industrialized countries. Its prevalence has increased sharply, due to increased survival rates of children who sustain severe neurological conditions during the perinatal period. Improved diagnosis has probably contributed to this increase. As in adults, the nature and severity of CVI in children relate to the cause, location and extent of damage to the brain. In the present paper, we define CVI and how this impacts on visual function. We then define developmental coordination disorder (DCD) and discuss the link between CVI and DCD. The neuroanatomical correlates and aetiologies of DCD are also presented in relationship with CVI as well as the consequences of perinatal asphyxia (PA) and preterm birth on the occurrence and nature of DCD and CVI. This paper underlines why there are both clinical and theoretical reasons to disentangle CVI and DCD, and to categorize the features with more precision. In order to offer the most appropriate rehabilitation, we propose a systematic and rapid evaluation of visual function in at-risk children who have survived preterm birth or PA whether or not they have been diagnosed with cerebral palsy or DCD. PMID:27757087

  13. Identification of pulmonary edema in forensic autopsy cases of fatal anaphylactic shock using Fourier transform infrared microspectroscopy.

    PubMed

    Lin, Hancheng; Luo, Yiwen; Wang, Lei; Deng, Kaifei; Sun, Qiran; Fang, Ruoxi; Wei, Xin; Zha, Shuai; Wang, Zhenyuan; Huang, Ping

    2018-03-01

    Anaphylaxis is a rapid allergic reaction that may cause sudden death. Currently, postmortem diagnosis of anaphylactic shock is sometimes difficult and often achieved through exclusion. The aim of our study was to investigate whether Fourier transform infrared (FTIR) microspectroscopy combined with pattern recognition methods would be complementary to traditional methods and provide a more accurate postmortem diagnosis of fatal anaphylactic shock. First, the results of spectral peak area analysis showed that the pulmonary edema fluid of the fatal anaphylactic shock group was richer in protein components than the control group, which included mechanical asphyxia, brain injury, and acute cardiac death. Subsequently, principle component analysis (PCA) was performed and showed that the anaphylactic shock group contained more turn and α-helix protein structures as well as less tyrosine-rich proteins than the control group. Ultimately, a partial least-square discriminant analysis (PLS-DA) model combined with a variables selection method called the genetic algorithm (GA) was built and demonstrated good separation between these two groups. This pilot study demonstrates that FTIR microspectroscopy has the potential to be an effective aid for postmortem diagnosis of fatal anaphylactic shock.

  14. The dissociation of perception and cognition in children with early brain damage.

    PubMed

    Stiers, Peter; Vandenbussche, Erik

    2004-03-01

    Reduced non-verbal compared to verbal intelligence is used in many outcome studies of perinatal complications as an indication of visual perceptual impairment. To investigate whether this is justified, we re-examined data sets from two previous studies, both of which used the visual perceptual battery L94. The first study comprised 47 children at risk for cerebral visual impairment due to prematurity or birth asphyxia, who had been administered the McCarthy Scales of Children's abilities. The second study evaluated visual perceptual abilities in 82 children with a physical disability. These children's intellectual ability had been assessed with the Wechsler Intelligence Scale for Children-Revised and/or Wechsler Pre-school and Primary Scale of Intelligence-Revised. No significant association was found between visual perceptual impairment and (1) reduced non-verbal to verbal intelligence; (2) increased non-verbal subtest scatter; or (3) non-verbal subtest profile deviation, for any of the intelligence scales. This result suggests that non-verbal intelligence subtests assess a complex of cognitive skills that are distinct from visual perceptual abilities, and that this assessment is not hampered by deficits in perceptual abilities as manifested in these children.

  15. Clinical application of metabolomics in neonatology.

    PubMed

    Fanos, Vassilios; Antonucci, Roberto; Barberini, Luigi; Noto, Antonio; Atzori, Luigi

    2012-04-01

    The youngest and more rapidly increasing "omic" discipline, called metabolomics, is the process of describing the phenotype of a cell, tissue or organism through the full complement of metabolites present. Metabolomics measure global sets of low molecular weight metabolites (including amino acids, organic acids, sugars, fatty acids, lipids, steroids, small peptides, vitamins, etc.), thus providing a "snapshot" of the metabolic status of a cell, tissue or organism in relation to genetic variations or external stimuli. The use of metabolomics appears to be a promising tool in neonatology. The management of sick newborns might improve if more information on perinatal/neonatal maturational processes and their metabolic background were available. Urine ("a window on the organism") is a biofluid particularly suitable for metabolomic analysis in neonatology because it may be collected by using simple, noninvasive techniques and because it may provide valuable diagnostic information. In this review, the authors report the few literature data on neonatal metabolomics, including their personal experience, in the following fields: intrauterine growth restriction, perinatal transition, asphyxia, brain injury and hypothermia, maternal milk evaluation, postnatal maturation, bronchiolitis, sepsis, patent ductus arteriosus, respiratory distress syndrome, nephrouropathies, metabolic diseases, antibiotic treatment, perinatal programming and long-term outcome in extremely low birth-weight infants.

  16. Predict the neurological recovery under hypothermia after cardiac arrest using C0 complexity measure of EEG signals.

    PubMed

    Lu, Yueli; Jiang, Dineng; Jia, Xiaofeng; Qiu, Yihong; Zhu, Yisheng; Thakor, Nitish; Tong, Shanbao

    2008-01-01

    Clinical trials have proven the efficacy of therapeutic hypothermia in improving the functional outcome after cardiac arrest (CA) compared with the normothermic controls. Experimental researches also demonstrated quantitative electroencephalogram (qEEG) analysis was associated with the long-term outcome of the therapeutic hypothermia in brain injury. Nevertheless, qEEG has not been able to provide a prediction earlier than 6h after the return of spontaneous circulation (ROSC). In this study, we use C0 complexity to analyze the nonlinear characteristic of EEG, which could predict the neurological recovery under therapeutic hypothermia during the early phase after asphyxial cardiac arrest in rats. Twelve Wistar rats were randomly assigned to 9-min asphyxia injury under hypothermia (33 degrees C, n=6) or normothermia (37 degrees C, n=6). Significantly greater C0 complexity was found in hypothermic group than that in normothermic group as early as 4h after the ROSC (P0.05). C0 complexity at 4h correlated well with the 72h neurodeficit score (NDS) (Pearson's correlation = 0.882). The results showed that the C0 complexity could be an early predictor of the long-term neurological recovery from cardiac arrest.

  17. Anthocyanins abrogate glutamate-induced AMPK activation, oxidative stress, neuroinflammation, and neurodegeneration in postnatal rat brain.

    PubMed

    Shah, Shahid Ali; Amin, Faiz Ul; Khan, Mehtab; Abid, Muhammad Noman; Rehman, Shafiq Ur; Kim, Tae Hyun; Kim, Min Woo; Kim, Myeong Ok

    2016-11-08

    Glutamate-induced excitotoxicity, oxidative damage, and neuroinflammation are believed to play an important role in the development of a number of CNS disorders. We recently reported that a high dose of glutamate could induce AMPK-mediated neurodegeneration in the postnatal day 7 (PND7) rat brain. Yet, the mechanism of glutamate-induced oxidative stress and neuroinflammation in the postnatal brain is not well understood. Here, we report for the first time the mechanism of glutamate-induced oxidative damage, neuroinflammation, and neuroprotection by polyphenolic anthocyanins in PND7. PND7 rat brains, SH-SY5Y, and BV2 cells treated either alone with glutamate or in combination with anthocyanins and compound C were examined with Western blot and immunofluorescence techniques. Additionally, reactive oxygen species (ROS) assay and other ELISA kit assays were employed to know the therapeutic efficacy of anthocyanins against glutamate. A single injection of glutamate to developing rats significantly increased brain glutamate levels, activated and phosphorylated AMPK induction, and inhibited nuclear factor-E2-related factor 2 (Nrf2) after 2, 3, and 4 h in a time-dependent manner. In contrast, anthocyanin co-treatment significantly reduced glutamate-induced AMPK induction, ROS production, neuroinflammation, and neurodegeneration in the developing rat brain. Most importantly, anthocyanins increased glutathione (GSH and GSSG) levels and stimulated the endogenous antioxidant system, including Nrf2 and heme oxygenase-1 (HO-1), against glutamate-induced oxidative stress. Interestingly, blocking AMPK with compound C in young rats abolished glutamate-induced neurotoxicity. Similarly, all these experiments were replicated in SH-SY5Y cells by silencing AMPK with siRNA, which suggests that AMPK is the key mediator in glutamate-induced neurotoxicity. Here, we report for the first time that anthocyanins can potentially decrease glutamate-induced neurotoxicity in young rats. Our work demonstrates that glutamate is toxic to the developing rat brain and that anthocyanins can minimize the severity of glutamate-induced neurotoxicity in an AMPK-dependent manner.

  18. Neostriatal cytoskeleton changes following perinatal asphyxia: effect of hypothermia treatment.

    PubMed

    Cebral, Elisa; Capani, Francisco; Selvín-Testa, Asia; Funes, Manuel Rey; Coirini, Héctor; Loidl, C Fabián

    2006-06-01

    Long-term changes of different types of neurofilaments (NF) and glial fibrillar acid protein (GFAP) were studied in neostriatal rat subjected to perinatal asphyxia (PA) under normothermic and hypothermic (15 degrees C) conditions, using immunohistochemistry for light and electron microscopy. Neostriatal neurons of 6-month-old rats that were subjected to 19 and 20 min of PA, showed an increase of NF 200 kDa immunostaining mainly in the axon fascicles in comparison with the control and hypothermia groups. In contrast, no alterations were seen with NF68 and NF160 neurofilament antibodies. Furthermore, the same PA groups showed astroglial cells with enhanced GFAP immunoreactivity, evidencing a typical astroglial reaction with a clear hypertrophy of these cells. A quantitative image analysis confirmed these observations. Hypothermic treated animals did show neither astroglial nor neuronal cytoskeletal changes in comparison to the control group. These findings showed that PA produces chronic cytoskeletal alterations in the neostriatum cells that can be prevented by hypothermia.

  19. Effects of fisetin on hyperhomocysteinemia-induced experimental endothelial dysfunction and vascular dementia.

    PubMed

    Hemanth Kumar, Boyina; Arun Reddy, Ravula; Mahesh Kumar, Jerald; Dinesh Kumar, B; Diwan, Prakash V

    2017-01-01

    This study was designed to investigate the effects of fisetin (FST) on hyperhomocysteinemia (HHcy)-induced experimental endothelial dysfunction (ED) and vascular dementia (VaD) in rats. Wistar rats were randomly divided into 8 groups: control, vehicle control, l-methionine, FST (5, 10, and 25 mg/kg, p.o.), FST-per se (25 mg/kg, p.o.), and donepezil (0.1 mg/kg, p.o.). l-Methionine administration (1.7 g/kg, p.o.) for 32 days induced HHcy. ED and VaD induced by HHcy were determined by vascular reactivity measurements, behavioral analysis using Morris water maze and Y-maze, along with a biochemical and histological evaluation of thoracic aorta and brain tissues. Administration of l-methionine developed behavioral deficits; triggered brain lipid peroxidation (LPO); compromised brain acetylcholinesterase activity (AChE); and reduced the levels of brain superoxide dismutase (SOD), brain catalase (CAT), brain reduced glutathione (GSH), and serum nitrite; and increased serum homocysteine and cholesterol levels. These effects were accompanied by decreased vascular NO bioavailability, marked intimal thickening of the aorta, and multiple necrotic foci in brain cortex. HHcy-induced alterations in the activities of SOD, CAT, GSH, AChE, LPO, behavioral deficits, ED, and histological aberrations were significantly attenuated by treatment with fisetin in a dose-dependent manner. Collectively, our results indicate that fisetin exerts endothelial and neuroprotective effects against HHcy-induced ED and VaD.

  20. Brain and Peripheral Atypical Inflammatory Mediators Potentiate Neuroinflammation and Neurodegeneration.

    PubMed

    Kempuraj, Duraisamy; Thangavel, Ramasamy; Selvakumar, Govindhasamy P; Zaheer, Smita; Ahmed, Mohammad E; Raikwar, Sudhanshu P; Zahoor, Haris; Saeed, Daniyal; Natteru, Prashant A; Iyer, Shankar; Zaheer, Asgar

    2017-01-01

    Neuroinflammatory response is primarily a protective mechanism in the brain. However, excessive and chronic inflammatory responses can lead to deleterious effects involving immune cells, brain cells and signaling molecules. Neuroinflammation induces and accelerates pathogenesis of Parkinson's disease (PD), Alzheimer's disease (AD) and Multiple sclerosis (MS). Neuroinflammatory pathways are indicated as novel therapeutic targets for these diseases. Mast cells are immune cells of hematopoietic origin that regulate inflammation and upon activation release many proinflammatory mediators in systemic and central nervous system (CNS) inflammatory conditions. In addition, inflammatory mediators released from activated glial cells induce neurodegeneration in the brain. Systemic inflammation-derived proinflammatory cytokines/chemokines and other factors cause a breach in the blood brain-barrier (BBB) thereby allowing for the entry of immune/inflammatory cells including mast cell progenitors, mast cells and proinflammatory cytokines and chemokines into the brain. These peripheral-derived factors and intrinsically generated cytokines/chemokines, α-synuclein, corticotropin-releasing hormone (CRH), substance P (SP), beta amyloid 1-42 (Aβ1-42) peptide and amyloid precursor proteins can activate glial cells, T-cells and mast cells in the brain can induce additional release of inflammatory and neurotoxic molecules contributing to chronic neuroinflammation and neuronal death. The glia maturation factor (GMF), a proinflammatory protein discovered in our laboratory released from glia, activates mast cells to release inflammatory cytokines and chemokines. Chronic increase in the proinflammatory mediators induces neurotoxic Aβ and plaque formation in AD brains and neurodegeneration in PD brains. Glial cells, mast cells and T-cells can reactivate each other in neuroinflammatory conditions in the brain and augment neuroinflammation. Further, inflammatory mediators from the brain can also enter into the peripheral system through defective BBB, recruit immune cells into the brain, and exacerbate neuroinflammation. We suggest that mast cell-associated inflammatory mediators from systemic inflammation and brain could augment neuroinflammation and neurodegeneration in the brain. This review article addresses the role of some atypical inflammatory mediators that are associated with mast cell inflammation and their activation of glial cells to induce neurodegeneration.

  1. Corticotropin-releasing factor-1 receptor activation mediates nicotine withdrawal-induced deficit in brain reward function and stress-induced relapse.

    PubMed

    Bruijnzeel, Adrie W; Prado, Melissa; Isaac, Shani

    2009-07-15

    Tobacco addiction is a chronic brain disorder that is characterized by a negative affective state upon smoking cessation and relapse after periods of abstinence. Previous research has shown that blockade of corticotropin-releasing factor (CRF) receptors with a nonspecific CRF1/CRF2 receptor antagonist prevents the deficit in brain reward function associated with nicotine withdrawal and stress-induced reinstatement of extinguished nicotine-seeking in rats. The aim of these studies was to investigate the role of CRF1 and CRF2 receptors in the deficit in brain reward function associated with precipitated nicotine withdrawal and stress-induced reinstatement of nicotine-seeking. The intracranial self-stimulation (ICSS) procedure was used to assess the negative affective state of nicotine withdrawal. Elevations in brain reward thresholds are indicative of a deficit in brain reward function. Stress-induced reinstatement of nicotine-seeking was investigated in animals in which responding for intravenously infused nicotine was extinguished by substituting saline for nicotine. In the ICSS experiments, the nicotinic receptor antagonist mecamylamine elevated the brain reward thresholds of the nicotine-dependent rats but not those of the control rats. The CRF1 receptor antagonist R278995/CRA0450 but not the CRF2 receptor antagonist astressin-2B prevented the elevations in brain reward thresholds associated with precipitated nicotine withdrawal. Furthermore, R278995/CRA0450 but not astressin-2B prevented stress-induced reinstatement of extinguished nicotine-seeking. Neither R278995/CRA0450 nor astressin-2B affected operant responding for chocolate-flavored food pellets. These studies indicate that CRF(1) receptors but not CRF(2) receptors play an important role in the anhedonic-state associated with acute nicotine withdrawal and stress-induced reinstatement of nicotine-seeking.

  2. CRF1 receptor activation mediates nicotine withdrawal-induced deficit in brain reward function and stress-induced relapse

    PubMed Central

    Bruijnzeel, Adrie W.; Prado, Melissa; Isaac, Shani

    2010-01-01

    Background Tobacco addiction is a chronic brain disorder that is characterized by a negative affective state upon smoking cessation and relapse after periods of abstinence. Previous research has shown that blockade of CRF receptors with a non-specific CRF1/CRF2 receptor antagonist prevents the deficit in brain reward function associated with nicotine withdrawal and stress-induced reinstatement of extinguished nicotine seeking in rats. The aim of these studies was to investigate the role of CRF1 and CRF2 receptors in the deficit in brain reward function associated with precipitated nicotine withdrawal and stress-induced reinstatement of nicotine seeking. Methods The intracranial self-stimulation (ICSS) procedure was used to assess the negative affective state of nicotine withdrawal. Elevations in brain reward thresholds are indicative of a deficit in brain reward function. Stress-induced reinstatement of nicotine seeking was investigated in animals in which responding for intravenously infused nicotine was extinguished by substituting saline for nicotine. Results In the ICSS experiments, the nicotinic receptor antagonist mecamylamine elevated the brain reward thresholds of the nicotine dependent rats but not those of the control rats. The CRF1 receptor antagonist R278995/CRA0450, but not the CRF2 receptor antagonist astressin-2B, prevented the elevations in brain reward thresholds associated with precipitated nicotine withdrawal. Furthermore, R278995/CRA0450, but not astressin-2B, prevented stress-induced reinstatement of extinguished nicotine seeking. Neither R278995/CRA0450 nor astressin-2B affected operant responding for chocolate-flavored food pellets. Conclusions These studies indicate that CRF1 receptors, but not CRF2 receptors, play an important role in the anhedonic-state associated with acute nicotine withdrawal and stress-induced reinstatement of nicotine seeking. PMID:19217073

  3. Carnosine reverses the aging-induced down regulation of brain regional serotonergic system.

    PubMed

    Banerjee, Soumyabrata; Ghosh, Tushar K; Poddar, Mrinal K

    2015-12-01

    The purpose of the present investigation was to study the role of carnosine, an endogenous dipeptide biomolecule, on brain regional (cerebral cortex, hippocampus, hypothalamus and pons-medulla) serotonergic system during aging. Results showed an aging-induced brain region specific significant (a) increase in Trp (except cerebral cortex) and their 5-HIAA steady state level with an increase in their 5-HIAA accumulation and declination, (b) decrease in their both 5-HT steady state level and 5-HT accumulation (except cerebral cortex). A significant decrease in brain regional 5-HT/Trp ratio (except cerebral cortex) and increase in 5-HIAA/5-HT ratio were also observed during aging. Carnosine at lower dosages (0.5-1.0μg/Kg/day, i.t. for 21 consecutive days) didn't produce any significant response in any of the brain regions, but higher dosages (2.0-2.5μg/Kg/day, i.t. for 21 consecutive days) showed a significant response on those aging-induced brain regional serotonergic parameters. The treatment with carnosine (2.0μg/Kg/day, i.t. for 21 consecutive days), attenuated these brain regional aging-induced serotonergic parameters and restored towards their basal levels that observed in 4 months young control rats. These results suggest that carnosine attenuates and restores the aging-induced brain regional down regulation of serotonergic system towards that observed in young rats' brain regions. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. Effects of hypothermia on S100B and glial fibrillary acidic protein in asphyxia rats after cardiopulmonary resuscitation.

    PubMed

    Liu, Sha; Zhang, Yibing; Zhao, Yong; Cui, Haifeng; Cao, Chunyu; Guo, Jianyou

    2015-01-01

    The aim of the study was to investigate the effects of hypothermia on S100B and glial fibrillary acidic protein (GFAP) in serum and hippocampus CA1 area in asphyxiated rats after cardiopulmonary resuscitation (CPR). A total of 100 SD rats were designated into four groups: group A, sham operation group; group B, rats received conventional resuscitation; group C, rats received conventional resuscitation and hypothermia at cardiac arrest; group D, rats received conventional resuscitation and hypothermia at 30 min after restoration of spontaneous circulation (ROSC). Rats were then killed by cardiac arrest at 2 and 4 h after ROSC; brain tissue was taken to observe dynamic changes of S100B and GFAP in serum and hippocampus CA1 area. Following ROSC, S100B levels increased from 2 to 4 h in group B, C, and D. In addition, S100B in serum and hippocampus CA1 area was all significantly increased at different time points compared with group A (P < 0.05). Following ROSC, serum S100B level at 2 h in group C was significantly decreased compared with group B, but the difference was not statistically significant (P > 0.05). Moreover, S100B in serum at 4 h after ROSC was significantly decreased (P < 0.05), S100B in cortex was significantly decreased (P < 0.05). The expression of GFAP was also examined. GFAP level in hippocampus CA1 area was significantly decreased in group B, C, and D at 4 h after ROSC compared with group A (P < 0.05). S100B and GFAP were expressed in rat serum and hippocampus CA2 area at early stage after ROSC, which can be used as sensitive markers for brain injury diagnosis and prognosis prediction. Hypothermia is also shown to reduce brain injury after CPR.

  5. Protection of cultured brain endothelial cells from cytokine-induced damage by α-melanocyte stimulating hormone.

    PubMed

    Harazin, András; Bocsik, Alexandra; Barna, Lilla; Kincses, András; Váradi, Judit; Fenyvesi, Ferenc; Tubak, Vilmos; Deli, Maria A; Vecsernyés, Miklós

    2018-01-01

    The blood-brain barrier (BBB), an interface between the systemic circulation and the nervous system, can be a target of cytokines in inflammatory conditions. Pro-inflammatory cytokines tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) induce damage in brain endothelial cells and BBB dysfunction which contribute to neuronal injury. The neuroprotective effects of α-melanocyte stimulating hormone (α-MSH) were investigated in experimental models, but there are no data related to the BBB. Based on our recent study, in which α-MSH reduced barrier dysfunction in human intestinal epithelial cells induced by TNF-α and IL-1β, we hypothesized a protective effect of α-MSH on brain endothelial cells. We examined the effect of these two pro-inflammatory cytokines, and the neuropeptide α-MSH on a culture model of the BBB, primary rat brain endothelial cells co-cultured with rat brain pericytes and glial cells. We demonstrated the expression of melanocortin-1 receptor in isolated rat brain microvessels and cultured brain endothelial cells by RT-PCR and immunohistochemistry. TNF-α and IL-1β induced cell damage, measured by impedance and MTT assay, which was attenuated by α-MSH (1 and 10 pM). The peptide inhibited the cytokine-induced increase in brain endothelial permeability, and restored the morphological changes in cellular junctions visualized by immunostaining for claudin-5 and β-catenin. Elevated production of reactive oxygen species and the nuclear translocation of NF-κB were also reduced by α-MSH in brain endothelial cells stimulated by cytokines. We demonstrated for the first time the direct beneficial effect of α-MSH on cultured brain endothelial cells, indicating that this neurohormone may be protective at the BBB.

  6. Protection of cultured brain endothelial cells from cytokine-induced damage by α-melanocyte stimulating hormone

    PubMed Central

    Barna, Lilla; Kincses, András; Váradi, Judit; Fenyvesi, Ferenc; Tubak, Vilmos

    2018-01-01

    The blood–brain barrier (BBB), an interface between the systemic circulation and the nervous system, can be a target of cytokines in inflammatory conditions. Pro-inflammatory cytokines tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) induce damage in brain endothelial cells and BBB dysfunction which contribute to neuronal injury. The neuroprotective effects of α-melanocyte stimulating hormone (α-MSH) were investigated in experimental models, but there are no data related to the BBB. Based on our recent study, in which α-MSH reduced barrier dysfunction in human intestinal epithelial cells induced by TNF-α and IL-1β, we hypothesized a protective effect of α-MSH on brain endothelial cells. We examined the effect of these two pro-inflammatory cytokines, and the neuropeptide α-MSH on a culture model of the BBB, primary rat brain endothelial cells co-cultured with rat brain pericytes and glial cells. We demonstrated the expression of melanocortin-1 receptor in isolated rat brain microvessels and cultured brain endothelial cells by RT-PCR and immunohistochemistry. TNF-α and IL-1β induced cell damage, measured by impedance and MTT assay, which was attenuated by α-MSH (1 and 10 pM). The peptide inhibited the cytokine-induced increase in brain endothelial permeability, and restored the morphological changes in cellular junctions visualized by immunostaining for claudin-5 and β-catenin. Elevated production of reactive oxygen species and the nuclear translocation of NF-κB were also reduced by α-MSH in brain endothelial cells stimulated by cytokines. We demonstrated for the first time the direct beneficial effect of α-MSH on cultured brain endothelial cells, indicating that this neurohormone may be protective at the BBB. PMID:29780671

  7. Reduced activities of thiamine-dependent and cytochrome c oxidase enzymes in cerebral cortex of cattle affected by sulfur-induced polioencephalomalacia

    PubMed Central

    Amat, Samat; Hendrick, Steve; Moshynskyy, Igor; Simko, Elemir

    2017-01-01

    Sulfur-induced polioencephalomalacia (PEM) is an important disease affecting cattle in certain geographical regions. However, the pathogenesis of brain damage is not completely understood. We previously observed that excess dietary sulfur may influence thiamine status and altered thiamine metabolism may be involved in the pathogenesis of sulfur-induced PEM in cattle. In this study, we evaluated the activities of thiamine-dependent enzymes [α-ketogluterate dehydrogenase (α-KGDH) and pyruvate dehydrogenase (PDH)] and cytochrome c oxidase (COX) in the cerebral cortex of sulfur-induced PEM-affected cattle (n = 9) and clinically normal cattle (n = 8, each group) exposed to low or high dietary sulfur [LS = 0.30% versus HS = 0.67% sulfur on a dry matter (DM) basis]. Enzyme activities in PEM brains were measured from the brain tissue regions and examined using ultraviolent (UV) light illumination to show fluorescence or non-fluorescence regions. No gross changes under regular or UV light, or histopathological changes indicative of PEM were detected in the brains of cattle exposed to LS or HS diets. The PDH, α-KGDH, and COX activities did not differ between LS and HS brains, but all enzymes showed significantly lower (P < 0.05) activities in UV-positive region of PEM brains compared with LS and HS brains. The UV-negative regions of PEM brain had similar PDH activities to LS and HS brains, but the activities of α-KGDH and COX were significantly lower than in LS and HS brains. The results of this study suggest that reduced enzyme activities of brain PHD, α-KGDH, and COX are associated with the pathogenesis of sulfur-induced PEM. PMID:29081580

  8. Severe spontaneous bradycardia associated with respiratory disruptions in rat pups with fewer brain stem 5-HT neurons

    PubMed Central

    Cummings, Kevin J.; Commons, Kathryn G.; Fan, Kenneth C.; Li, Aihua; Nattie, Eugene E.

    2009-01-01

    The medullary 5-HT system has potent effects on heart rate and breathing in adults. We asked whether this system mitigates the respiratory instability and bradycardias frequently occurring during the neonatal period. 5,7-Dihydroxytryptamine (5,7-DHT) or vehicle was administered to rat pups at postnatal day 2 (P2), and we then compared the magnitude of bradycardias occurring with disruptions to eupnea in treated and vehicle control littermates at P5–6 and P10–12. We then used a novel method that would allow accurate assessment of the ventilatory and heart rate responses to near square-wave challenges of hypoxia (10% O2), hypercapnia (5 and 8% CO2 in normoxia and hyperoxia), and asphyxia (8% CO2-10% O2), and to the induction of the Hering-Breuer inflation reflex (HBR), a potent, apnea-inducing reflex in newborns. The number of 5-HT-positive neurons was reduced ∼80% by drug treatment. At both ages, lesioned animals had considerably larger bradycardias during brief apnea; at P5–6, average and severe events were ∼50% and 70% greater, respectively, in lesioned animals (P = 0.002), whereas at P10–12, events were ∼ 23% and 50% greater (P = 0.018). However, lesioning had no effect on the HR responses to sudden gas challenge or the HBR. At P5–6, lesioned animals had reduced breathing frequency and ventilation (V̇e), but normal V̇e relative to metabolic rate (V̇e/V̇o2). At P10–12, lesioned animals had a more unstable breathing pattern (P = 0.04) and an enhanced V̇e response to moderate hypercapnia (P = 0.007). Within the first two postnatal weeks, the medullary 5-HT system plays an important role in cardiorespiratory control, mitigating spontaneous bradycardia, stabilizing the breathing pattern, and dampening the hypercapnic V̇e response. PMID:19369586

  9. Hypothermia Is Neuroprotective after Severe Hypoxic-Ischaemic Brain Injury in Neonatal Rats Pre-Exposed to PAM3CSK4.

    PubMed

    Falck, Mari; Osredkar, Damjan; Maes, Elke; Flatebø, Torun; Wood, Thomas Ragnar; Walløe, Lars; Sabir, Hemmen; Thoresen, Marianne

    2018-06-01

    Preclinical research on the neuroprotective effect of hypothermia (HT) after perinatal asphyxia has shown variable results, depending on comorbidities and insult severity. Exposure to inflammation increases vulnerability of the neonatal brain to hypoxic-ischaemic (HI) injury, and could be one explanation for those neonates whose injury is unexpectedly severe. Gram-negative type inflammatory exposure by lipopolysaccharide administration prior to a mild HI insult results in moderate brain injury, and hypothermic neuroprotection is negated. However, the neuroprotective effect of HT is fully maintained after gram-positive type inflammatory exposure by PAM3CSK4 (PAM) pre-administration in the same HI model. Whether HT is neuroprotective in severe brain injury with gram-positive inflammatory pre-exposure has not been investigated. 59 seven-day-old rat pups were subjected to a unilateral HI insult, with left carotid artery ligation followed by 90-min hypoxia (8% O2 at Trectal 36°C). An additional 196 pups received intraperitoneal 0.9% saline (control) or PAM1 mg/kg, 8 h before undergoing the same HI insult. After randomisation to 5 h normothermia (NT37°C) or HT32°C, pups survived 1 week before they were sacrificed by perfusion fixation. Brains were harvested for hemispheric and hippocampal area loss analyses at postnatal day 14, as well as immunostaining for neuron count in the HIP CA1 region. Normothermic PAM animals (PAM-NT) had a comparable median area loss (hemispheric: 60% [95% CI 33-66]; hippocampal: 61% [95% CI 29-67]) to vehicle animals (Veh-NT) (hemispheric: 58% [95% CI 11-64]; hippocampal: 60% [95% CI 19-68]), which is defined as severe brain injury. Furthermore, mortality was low and similar in the two groups (Veh-NT 4.5% vs. PAM-NT 6.6%). HT reduced hemispheric and hippocampal injury in the Veh group by 13 and 28%, respectively (hemispheric: p = 0.048; hippocampal: p = 0.042). HT also provided neuroprotection in the PAM group, reducing hemispheric injury by 22% (p = 0.03) and hippocampal injury by 37% (p = 0.027). In these experiments with severe brain injury, Toll-like receptor-2 triggering prior to HI injury does not have an additive injurious effect, and there is a small but significant neuroprotective effect of HT. HT appears to be neuroprotective over a continuum of injury severity in this model, and the effect size tapers off with increasing area loss. Our results indicate that gram-positive inflammatory exposure prior to HI injury does not negate the neuroprotective effect of HT in severe brain injury. © 2018 S. Karger AG, Basel.

  10. Increased calcineurin expression after pilocarpine-induced status epilepticus is associated with brain focal edema and astrogliosis.

    PubMed

    Liu, Jinzhi; Li, Xiaolin; Chen, Liguang; Xue, Ping; Yang, Qianqian; Wang, Aihua

    2015-07-28

    Calcineurin plays an important role in the development of neuronal excitability, modulation of receptor's function and induction of apoptosis in neurons. It has been established in kindling models that status epilepticus induces brain focal edema and astrocyte activation. However, the role of calcineurin in brain focal edema and astrocyte activation in status epilepticus has not been fully understood. In this study, we employed a model of lithium-pilocarpine-induced status epilepticus and detected calcineurin expression in hippocampus by immunoblotting, brain focal edema by non-invasive magnetic resonance imaging (MRI-7T) and astrocyte expression by immunohistochemistry. We found that the brain focal edema was seen at 24 h after status epilepticus, and astrocyte expression was obviously seen at 7 d after status epilepticus. Meanwhile, calcineurin expression was seen at24 h and retained to 7 d after status epilepticus. A FK506, a calcineurin inhibitor, remarkably suppressed the status epilepticus-induced brain focal edema and astrocyte expression. Our data suggested that calcineurin overexpression plays a very important role in brain focal edema and astrocyte expression. Therefore, calcineurin may be a novel candidate for brain focal edema occurring and intracellular trigger of astrogliosis in status epilepticus.

  11. The effects of musical training on structural brain development: a longitudinal study.

    PubMed

    Hyde, Krista L; Lerch, Jason; Norton, Andrea; Forgeard, Marie; Winner, Ellen; Evans, Alan C; Schlaug, Gottfried

    2009-07-01

    Long-term instrumental music training is an intense, multisensory and motor experience that offers an ideal opportunity to study structural brain plasticity in the developing brain in correlation with behavioral changes induced by training. Here, for the first time, we demonstrate structural brain changes after only 15 months of musical training in early childhood, which were correlated with improvements in musically relevant motor and auditory skills. These findings shed light on brain plasticity, and suggest that structural brain differences in adult experts (whether musicians or experts in other areas) are likely due to training-induced brain plasticity.

  12. Selenium attenuates apoptosis, inflammation and oxidative stress in the blood and brain of aged rats with scopolamine-induced dementia.

    PubMed

    Demirci, Kadir; Nazıroğlu, Mustafa; Övey, İshak Suat; Balaban, Hasan

    2017-04-01

    A potent antioxidant, selenium might modulate dementia-induced progression of brain and blood oxidative and apoptotic injuries. The present study explores whether selenium protects against experimental dementia (scopolamine, SCOP)-induced brain, and blood oxidative stress, apoptosis levels, and cytokine production in rats. Thirty-two rats were equally divided into four groups. The first group was used as an untreated control. The second group was treated with SCOP to induce dementia. The third and fourth groups received 1.5 mg/kg selenium (sodium selenite) and SCOP + selenium, respectively. Dementia was induced in the second and forth groups by intraperitoneal SCOP (1 mg/kg) administration. Brain, plasma, and erythrocyte lipid peroxidation levels as well as plasma TNF-α, interleukin (IL)-1β, and IL-4 levels were high in the SCOP group though they were low in selenium treatments. Selenium and selenium + SCOP treatments increased the lowered glutathione peroxidase activity, reduced glutathione, vitamins A and E concentrations in the brain, erythrocytes and plasma of the SCOP group. Apoptotic value expressions as active caspase-3, procaspase-9, and PARP were also increased by SCOP, while they were decreased by selenium and selenium + SCOP treatments. In conclusion, selenium induced protective effects against experimental dementia-induced brain, and blood oxidative injuries and apoptosis through regulation of cytokine production, vitamin E, glutathione concentrations, and glutathione peroxidase activity.

  13. In vitro and in vivo studies of Allium sativum extract against deltamethrin-induced oxidative stress in rats brain and kidney.

    PubMed

    Ncir, Marwa; Saoudi, Mongi; Sellami, Hanen; Rahmouni, Fatma; Lahyani, Amina; Makni Ayadi, Fatma; El Feki, Abdelfattah; Allagui, Mohamed Salah

    2017-09-18

    The present study investigated the in vitro and the in vivo antioxidant capacities of Allium sativum (garlic) extract against deltamethrin-induced oxidative damage in rat's brain and kidney. The in vitro result showed that highest extraction yield was achieved with methanol (20.08%). Among the tested extracts, the methanol extract exhibited the highest total phenolic, flavonoids contents and antioxidant activity. The in vivo results showed that deltamethrin treatment caused an increase of the acetylcholinesterase level (AChE) in brain and plasma, the brain and kidney conjugated dienes and lipid peroxidation (LPO) levels as compared to control group. The antioxidant enzymes results showed that deltamethrin treatment induced a significantly decrease (p < 0.01) in brain and kidney antioxidant enzymes as catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx) to control group. The co-administration of garlic extract reduced the toxic effects in brain and kidney tissues induced by deltamethrin.

  14. Transcranial magnetic stimulation of mouse brain using high-resolution anatomical models

    NASA Astrophysics Data System (ADS)

    Crowther, L. J.; Hadimani, R. L.; Kanthasamy, A. G.; Jiles, D. C.

    2014-05-01

    Transcranial magnetic stimulation (TMS) offers the possibility of non-invasive treatment of brain disorders in humans. Studies on animals can allow rapid progress of the research including exploring a variety of different treatment conditions. Numerical calculations using animal models are needed to help design suitable TMS coils for use in animal experiments, in particular, to estimate the electric field induced in animal brains. In this paper, we have implemented a high-resolution anatomical MRI-derived mouse model consisting of 50 tissue types to accurately calculate induced electric field in the mouse brain. Magnetic field measurements have been performed on the surface of the coil and compared with the calculations in order to validate the calculated magnetic and induced electric fields in the brain. Results show how the induced electric field is distributed in a mouse brain and allow investigation of how this could be improved for TMS studies using mice. The findings have important implications in further preclinical development of TMS for treatment of human diseases.

  15. Protective effects of Petroselinum crispum (Mill) Nyman ex A. W. Hill leaf extract on D-galactose-induced oxidative stress in mouse brain.

    PubMed

    Vora, Shreya R; Patil, Rahul B; Pillai, Meena M

    2009-05-01

    With an aim to examine the effect of ethanolic extract of P. crispum (Parsley) leaves on the D-galactose-induced oxidative stress in the brain of mouse, the activities of antioxidant enzymes (superoxide dismutase, catalase and glutathione peroxidase) involved in oxygen radical (OR)-detoxification and antiperoxidative defense were measured in conjunction with an index of lipid peroxidation in mitochondrial fraction of various regions of the mouse brain. A significant decrease in superoxide dismutase and glutathione peroxidase activity was observed in D-galactose-stressed mice, while catalase activity was increased. Treatment of D-galactose-stressed mice with the ethanolic extract of P. crispum showed protection against the induced oxidative stress in brain regions. Concentration of thiobarbituric acid-reactive product was greatly elevated in D-galactose stress-induced mice and was significantly reduced in the brain regions of these mice upon treatment with P. crispum. It is postulated that parsley shows a protective effect against mitochondrial oxidative damage in the mouse brain.

  16. Partially silencing brain toll-like receptor 4 prevents in part left ventricular remodeling with sympathoinhibition in rats with myocardial infarction-induced heart failure.

    PubMed

    Ogawa, Kiyohiro; Hirooka, Yoshitaka; Kishi, Takuya; Ide, Tomomi; Sunagawa, Kenji

    2013-01-01

    Left ventricular (LV) remodeling and activation of sympathetic nervous system (SNS) are cardinal features of heart failure. We previously demonstrated that enhanced central sympathetic outflow is associated with brain toll-like receptor 4 (TLR4) probably mediated by brain angiotensin II type 1 receptor in mice with myocardial infarction (MI)-induced heart failure. The purpose of the present study was to examine whether silencing brain TLR4 could prevent LV remodeling with sympathoinhibition in MI-induced heart failure. MI-induced heart failure model rats were created by ligation of left coronary artery. The expression level of TLR4 in brainstem was significantly higher in MI-induced heart failure treated with intracerebroventricular (ICV) injection of hGAPDH-SiRNA than in sham. TLR4 in brainstem was significantly lower in MI-induced heart failure treated with ICV injection of TLR4-SiRNA than in that treated with ICV injection of hGAPDH-SiRNA. Lung weight, urinary norepinephrine excretion, and LV end-diastolic pressure were significantly lower and LV dimension was significantly smaller in MI-induced heart failure treated with TLR4-SiRNA than in that treated with hGAPDH-SiRNA for 2 weeks. Partially silencing brain TLR4 by ICV injection of TLR4-SiRNA for 2 weeks could in part prevent LV remodeling with sympathoinhibition in rats with MI-induced heart failure. Brain TLR4 has a potential to be a target of the treatment for MI-induced heart failure.

  17. Intravenous Heroin Induces Rapid Brain Hypoxia and Hyperglycemia that Precede Brain Metabolic Response.

    PubMed

    Solis, Ernesto; Cameron-Burr, Keaton T; Shaham, Yavin; Kiyatkin, Eugene A

    2017-01-01

    Heroin use and overdose have increased in recent years as people transition from abusing prescription opiates to using the cheaper street drug. Despite a long history of research, many physiological effects of heroin and their underlying mechanisms remain unknown. Here, we used high-speed amperometry to examine the effects of intravenous heroin on oxygen and glucose levels in the nucleus accumbens (NAc) in freely-moving rats. Heroin within the dose range of human drug use and rat self-administration (100-200 μg/kg) induced a rapid, strong, but transient drop in NAc oxygen that was followed by a slower and more prolonged rise in glucose. Using oxygen recordings in the subcutaneous space, a densely-vascularized site with no metabolic activity, we confirmed that heroin-induced brain hypoxia results from decreased blood oxygen, presumably due to drug-induced respiratory depression. Respiratory depression and the associated rise in CO 2 levels appear to drive tonic increases in NAc glucose via local vasodilation. Heroin-induced changes in oxygen and glucose were rapid and preceded the slow and prolonged increase in brain temperature and were independent of enhanced intra-brain heat production, an index of metabolic activation. A very high heroin dose (3.2 mg/kg), corresponding to doses used by experienced drug users in overdose conditions, caused strong and prolonged brain hypoxia and hyperglycemia coupled with robust initial hypothermia that preceded an extended hyperthermic response. Our data suggest heroin-induced respiratory depression as a trigger for brain hypoxia, which leads to hyperglycemia, both of which appear independent of subsequent changes in brain temperature and metabolic neural activity.

  18. Neonates and Infants At Risk for Hearing and Speech-Language Disorders.

    ERIC Educational Resources Information Center

    Clark, David A.

    1989-01-01

    High-risk infants may exhibit hearing impairments which can subsequently impede speech/language development. Discussed are prenatal risk factors, including environmental toxins and infections; and perinatal factors such as prematurity, asphyxia, intracranial hemorrhage, bilirubin, ototoxic drugs, and environmental noise. A table summarizes factors…

  19. [Transitory hypothermia as early prognostic factor in term newborns with intrauterine growth retardation].

    PubMed

    Lazić-Mitrović, Tanja; Djukić, Milan; Cutura, Nedjo; Andjelić, Spaso; Curković, Aleksandar; Soldo, Vesna; Radlović, Nedeljko

    2010-01-01

    According to numerous researches, transitory hypothermia is a part of the neonatological energetic triangle and represents a significant prognostic factor within morbidity and mortality in newborns with intrauterine growth retardation (IUGR), that are, due to their characteristics, more inclined to transitory hypothermia. The aim of the study was an analysis of frequency of transitory hypothermia in term newborns with IUGR, as well as an analysis of frequency of the most frequent pathological conditions typical of IUGR newborns depending on the presence of transitory hypothermia after birth (hypoglycaemia, perinatal asphyxia, hyperbilirubinaemia and hypocalcaemia). The study included 143 term newborns with IUGR treated at the Neonatology Ward of the Gynaecology-Obstetrics Clinic "Narodni front", Belgrade. The newborns were divided into two groups: the one with registered transitory hypothermia--the observed group, and the one without transitory hypothermia--the control group. The data analysis included the analysis of the frequency of transitory hypothermia depending on gestation and body mass, as well as the analysis of pathological conditions (perinatal asphyxia, hypoglycaemia, hypocalcaemia, hyperbilirubinaemia) depending on the presence of hypothermia. The analysis was done by statistical tests of analytic and descriptive statistics. In morbidity structure dominate hypothermia (65.03%), hypoglycaemia (43.36%), perinatal asphyxia (37.76%), hyperbilirubinaemia (30.77%), hypocalcaemia (25.17%). There were 93 newborns in the observed group, and 50 in the control one. Mean value of the measured body temperature was 35.9 degrees C. 20 newborns (32.26%) had moderate hypothermia, and 73 newborns (67.74%) had mild hypothermia. In the observed group, average gestation was 39.0 weeks, and 39.6 (p < 0.01) in the control group. Average body mass at birth in the whole group was 2339 g: 2214 g in the observed and 2571 g in the control group. The frequency of hypoglycaemia in the observed group was 53.8%, and 24% in the control group (p < 0.01). In the observed group, the frequency of pH < 7.25 was 38.71%, and 14% in the control group (p < 0.05). The frequency of hyperbilirubinaemia was 38.71% in the observed group, and 16% in the control group (p < 0.01). The frequency of hypocalcaemia was 32.26% in the observed, and 12% in the control group (p < 0.01). Transitory hypothermia in the first ten hours of life represents a significant risk factor for deepening hypoglycaemia, asphyxia, hyperbilirubinaemia and hypocalcaemia in term newborns with IUGR.

  20. Impact of Hypoglycemia on Brain Metabolism During Diabetes.

    PubMed

    Rehni, Ashish K; Dave, Kunjan R

    2018-04-10

    Diabetes is a metabolic disease afflicting millions of people worldwide. A substantial fraction of world's total healthcare expenditure is spent on treating diabetes. Hypoglycemia is a serious consequence of anti-diabetic drug therapy, because it induces metabolic alterations in the brain. Metabolic alterations are one of the central mechanisms mediating hypoglycemia-related functional changes in the brain. Acute, chronic, and/or recurrent hypoglycemia modulate multiple metabolic pathways, and exposure to hypoglycemia increases consumption of alternate respiratory substrates such as ketone bodies, glycogen, and monocarboxylates in the brain. The aim of this review is to discuss hypoglycemia-induced metabolic alterations in the brain in glucose counterregulation, uptake, utilization and metabolism, cellular respiration, amino acid and lipid metabolism, and the significance of other sources of energy. The present review summarizes information on hypoglycemia-induced metabolic changes in the brain of diabetic and non-diabetic subjects and the manner in which they may affect brain function.

Top