Science.gov

Sample records for assay elisa-like fluorescence

  1. Molecular mass dependence of hyaluronan detection by sandwich ELISA-like assay and membrane blotting using biotinylated hyaluronan binding protein

    PubMed Central

    Yuan, Han; Tank, Mihir; Alsofyani, Abeer; Shah, Naman; Talati, Nishant; LoBello, Jaclyn C; Kim, Jin Ryoun; Oonuki, Yoji; de la Motte, Carol A; Cowman, Mary K

    2013-01-01

    Hyaluronan (HA) is widely detected in biological samples and its concentration is most commonly determined by the use of a labeled specific HA binding protein (aggrecan G1-IGD-G2, HABP), employing membrane blotting and sandwich enzyme-linked immunosorbent assay (ELISA)-like methods. However, the detected signal intensity or the quantified value obtained by using these surface-based methods is related to the molecular mass (M) of HA, especially for HA in the low M range below ∼150 kDa. At the same mass or mass concentration, higher M HA gives a higher signal than lower M HA. We have experimentally determined the quantitative relationship between the M of HA (in the range 20–150 kDa) and the relative signal intensity in comparison with a standard HA, in a sandwich ELISA-like assay. An M-dependent signal correction factor (SCF) was calculated and used to correct the signal intensity, so that the corrected concentration value would more accurately reflect the true HA concentration in solution. The SCF for polydisperse low M HA was also calculated and compared with experimental results. When the molecular mass distribution of an HA sample is determined by a method such as gel electrophoresis, then its appropriately averaged SCF can be calculated and used to correct the signal in sandwich ELISA to obtain a more accurate concentration estimation. The correction method works for HA with M between ∼150 and 20 kDa, but lower M HA is too poorly detected for useful analysis. The physical basis of the M-dependent detection is proposed to be the increase in detector-accessible fraction of each surface-bound molecule as M increases. PMID:23964097

  2. Naked-eye sensitive ELISA-like assay based on gold-enhanced peroxidase-like immunogold activity.

    PubMed

    Wang, Shasha; Chen, Zhaopeng; Choo, Jaebum; Chen, Lingxin

    2016-02-01

    A naked-eye sensitive ELISA-like assay was developed based on gold-enhanced peroxidase-like activity of gold nanoparticles (AuNPs). Using human IgG (H-IgG) as an analytical model, goat anti-human IgG antibody (anti-IgG) adsorbed on microtiter plate and AuNPs-labeled anti-IgG acted as capture antibody and detection antibody, respectively. Because the surfaces of AuNPs were blocked by protein molecules, the peroxidase-like activity of AuNPs was almost inhibited, evaluated by the catalytic oxidation of peroxidase enzyme substrate 3,3',5,5'-tetramethylbenzidine (TMB), which could produce a bright blue color in the presence of H2O2. Fortunately, the catalytic ability of AuNPs was dramatically increased by the deposition of gold due to the formation of a new gold shell on immunogold. Under optimal reaction conditions, the colorimetric immunoassay presented a good linear relationship in the range of 0.7-100 ng/mL and the limit of detection (LOD) of 0.3 ng/mL calculated by 3σ/S for UV-vis detection, and obtained LOD of 5 ng/mL for naked-eye detection. The obtained results were competitive with conventional sandwich ELISA with the LOD of 1.6 ng/mL. Furthermore, this developed colorimetric immunoassay was successfully applied to diluted human serum and fetal bovine serum samples, and predicted a broad prospect for the use of peroxidase-like activity involving nanomaterials in bioassay and diagnostics.

  3. Continuous Fluorescence Assay for Peptidoglycan Glycosyltransferases.

    PubMed

    Egan, Alexander J F; Vollmer, Waldemar

    2016-01-01

    Bacterial cell wall peptidoglycan is synthesized from its precursor lipid II by two enzymatic reactions. First, glycosyltransferases polymerize the glycan strands and second, DD-transpeptidases form cross-links between peptides of neighboring strands. Most bacteria possess bifunctional peptidoglycan synthesis enzymes capable of catalyzing both reactions. Here, we describe a continuous fluorescence glycosyltransferase assay using Dansyl-labeled lipid II as substrate. Progression of the reaction is monitored by the reduction in fluorescence over time. The assay is suitable to investigate the effect of protein interaction partners on the glycan strand synthesis activity of peptidoglycan polymerases.

  4. Detection of immobilized amplicons by ELISA-like techniques.

    PubMed

    Oroskar, A A; Rasmussen, S E; Rasmussen, H N; Rasmussen, S R; Sullivan, B M; Johansson, A

    1996-09-01

    The NucleoLink surface is a physically modified, thermostable, optically clear resin. It allows the covalent binding of 5'-phosphorylated oligonucleotides. Target DNA amplification by polymerase chain reaction (PCR) is accomplished by asymmetric amplification on the covalently immobilized primer that develops into immobilized amplicons. A DNA fragment of bovine leukemia virus is used as a model system for the detection of immobilized amplicons by ELISA-like techniques. Covalently bound oligonucleotides are also utilized as capture probe in the hybridization-based signal amplification for detection of an infectious organism.

  5. Nuclear Resonance Fluorescence for Materials Assay

    SciTech Connect

    Quiter, Brian J.; Ludewigt, Bernhard; Mozin, Vladimir; Prussin, Stanley

    2009-06-29

    This paper discusses the use of nuclear resonance fluorescence (NRF) techniques for the isotopic and quantitative assaying of radioactive material. Potential applications include age-dating of an unknown radioactive source, pre- and post-detonation nuclear forensics, and safeguards for nuclear fuel cycles Examples of age-dating a strong radioactive source and assaying a spent fuel pin are discussed. The modeling work has ben performed with the Monte Carlo radiation transport computer code MCNPX, and the capability to simulate NRF has bee added to the code. Discussed are the limitations in MCNPX?s photon transport physics for accurately describing photon scattering processes that are important contributions to the background and impact the applicability of the NRF assay technique.

  6. Nuclear Resonance Fluorescence for Materials Assay

    SciTech Connect

    Quiter, Brian; Ludewigt, Bernhard; Mozin, Vladimir; Prussin, Stanley

    2009-06-05

    This paper discusses the use of nuclear resonance fluorescence (NRF) techniques for the isotopic and quantitative assaying of radioactive material. Potential applications include age-dating of an unknown radioactive source, pre- and post-detonation nuclear forensics, and safeguards for nuclear fuel cycles Examples of age-dating a strong radioactive source and assaying a spent fuel pin are discussed. The modeling work has ben performed with the Monte Carlo radiation transport computer code MCNPX, and the capability to simulate NRF has bee added to the code. Discussed are the limitations in MCNPX's photon transport physics for accurately describing photon scattering processes that are important contributions to the background and impact the applicability of the NRF assay technique.

  7. Avoiding Fluorescence Assay Interference-The Case for Diaphorase.

    PubMed

    Hall, Matthew D; Simeonov, Anton; Davis, Mindy I

    2016-04-01

    Fluorescence is utilized as the output for a range of assay formats used in high-throughput screening (HTS). Interference with these assays from the compounds in libraries utilized in HTS is a well-recognized phenomenon, particularly for assays relying on UV excitation such as for direct detection of the oxidoreductase cofactors NADH or NADPH. In this study, we discuss these interference challenges and highlight the specific case of the diaphorase/resazurin system that can be coupled to enzymes utilizing NADH or NADPH. We review the utilization of this assay system in the literature and argue that the diaphorase/resazurin system is underutilized in assay development. It is the authors' hope that this Perspective and the accompanying Technical Brief in this issue will stimulate interest in a robust and sensitive coupling system to avoid assay fluorescence interference.

  8. Protein subcellular localization assays using split fluorescent proteins

    DOEpatents

    Waldo, Geoffrey S.; Cabantous, Stephanie

    2009-09-08

    The invention provides protein subcellular localization assays using split fluorescent protein systems. The assays are conducted in living cells, do not require fixation and washing steps inherent in existing immunostaining and related techniques, and permit rapid, non-invasive, direct visualization of protein localization in living cells. The split fluorescent protein systems used in the practice of the invention generally comprise two or more self-complementing fragments of a fluorescent protein, such as GFP, wherein one or more of the fragments correspond to one or more beta-strand microdomains and are used to "tag" proteins of interest, and a complementary "assay" fragment of the fluorescent protein. Either or both of the fragments may be functionalized with a subcellular targeting sequence enabling it to be expressed in or directed to a particular subcellular compartment (i.e., the nucleus).

  9. Development of fluorescent methods for DNA methyltransferase assay

    NASA Astrophysics Data System (ADS)

    Li, Yueying; Zou, Xiaoran; Ma, Fei; Tang, Bo; Zhang, Chun-yang

    2017-03-01

    DNA methylation modified by DNA methyltransferase (MTase) plays an important role in regulating gene transcription, cell growth and proliferation. The aberrant DNA MTase activity may lead to a variety of human diseases including cancers. Therefore, accurate and sensitive detection of DNA MTase activity is crucial to biomedical research, clinical diagnostics and therapy. However, conventional DNA MTase assays often suffer from labor-intensive operations and time-consuming procedures. Alternatively, fluorescent methods have significant advantages of simplicity and high sensitivity, and have been widely applied for DNA MTase assay. In this review, we summarize the recent advances in the development of fluorescent methods for DNA MTase assay. These emerging methods include amplification-free and the amplification-assisted assays. Moreover, we discuss the challenges and future directions of this area.

  10. Photon upconversion in homogeneous fluorescence-based bioanalytical assays.

    PubMed

    Soukka, Tero; Rantanen, Terhi; Kuningas, Katri

    2008-01-01

    Upconverting phosphors (UCPs) are very attractive reporters for fluorescence resonance energy transfer (FRET)-based bioanalytical assays. The large anti-Stokes shift and capability to convert near-infrared to visible light via sequential absorption of multiple photons enable complete elimination of autofluorescence, which commonly impairs the performance of fluorescence-based assays. UCPs are ideal donors for FRET, because their very narrow-banded emission allows measurement of the sensitized acceptor emission, in principle, without any crosstalk from the donor emission at a wavelength just tens of nanometers from the emission peak of the donor. In addition, acceptor dyes emitting at visible wavelengths are essentially not excited by near-infrared, which further emphasizes the unique potential of upconversion FRET (UC-FRET). These characteristics result in favorable assay performance using detection instrumentation based on epifluorometer configuration and laser diode excitation. Although UC-FRET is a recently emerged technology, it has already been applied in both immunoassays and nucleic acid hybridization assays. The technology is also compatible with optically difficult biological samples, such as whole blood. Significant advances in assay performance are expected using upconverting lanthanide-doped nanocrystals, which are currently under extensive research. UC-FRET, similarly to other fluorescence techniques based on resonance energy transfer, is strongly distance dependent and may have limited applicability, for example in sandwich-type assays for large biomolecules, such as viruses. In this article, we summarize the essentials of UC-FRET, describe its current applications, and outline the expectations for its future potential.

  11. Fluorescence Assay for Evaluating Microbicidal Activity of Hand Antiseptics

    PubMed Central

    Lopez-Gigosos, Rosa M.; Mariscal-Lopez, Eloisa; Gutierrez-Bedmar, Mario; Fernandez, Joaquin

    2015-01-01

    We developed a fluorescent β-d-glucuronidase activity (BGA)-based assay for detecting and quantifying Escherichia coli in samples to assess the biocide efficacy of hand antiseptics. The fluorescence level is proportional to the number of viable E. coli organisms present. We compared our assay results to those of the E. coli plate count method specified by the European standard for testing hygienic hand rub disinfectant products (EN1500). The plate count method requires excessive handling and materials and is not valid if the number of organisms per plate is too low or high for counting in many of the samples. We optimized the fluorescent assay based on the cleavage of 4-methylumbelliferyl-β-d-glucuronide by adding 4-nitrophenyl-β-d-glucuronide, a nonfluorogenic BGA substrate, to induce glucuronidase activity and reduce assay time. Furthermore, our method can be automated and eliminates the need for multiple dilutions. Fluorescence was temporally monitored, and the time required to reach a specific value of fluorescence was correlated with the initial number of viable E. coli organisms on the samples. There was a positive correlation (P < 0.05) with a high correlation coefficient (R2 = 0.82) between the E. coli counts by plate count and fluorescence methods. Reported effects in fluorescent BGA were compared to the EN1500 plate count method with five hand disinfectants. We found our method more advantageous, because it was as sensitive as the EN1500 method, requires less time to complete, and is less expensive and less laborious than conventional plating techniques. PMID:26276114

  12. A Rapid Fluorescence-based Assay for Soluble Methane Monooxgyenase

    SciTech Connect

    Miller, Amber Reese; Keener, William Kelvin; Roberto, Francisco Figueroa; Watwood, Maribeth E.

    2002-01-01

    A fluorescence-based assay was developed to estimate soluble methane monooxygenase (sMMO) activity in solution. Whole cells of Methylosinus trichosporium OB3b expressing sMMO were used to oxidize various compounds to screen for fluorescent products. Of the 12 compounds tested, only coumarin yielded a fluorescent product. The UV absorbance spectrum of the product matches that of 7-hydroxycoumarin, and this identification was confirmed by 13C-NMR spectroscopy. The dependence of the fluorescent reaction on sMMO activity was investigated by pre-incubation with acetylene, a known inhibitor of sMMO activity. Apparent kinetic parameters for whole cells were determined to be Km(app)=262 µM and Vmax(app)=821 nmol 7-hydroxycoumarin min–1 mg protein–1. The rate of coumarin oxidation by sMMO correlates well with those of trichloroethylene degradation and naphthalene oxidation. Advantages of the fluorescence-based coumarin oxidation assay over the naphthalene oxidation assay include a more stable product, direct detection of the product without additional reagents, and greater speed and convenience.

  13. Acquisition of accurate data from intramolecular quenched fluorescence protease assays.

    PubMed

    Arachea, Buenafe T; Wiener, Michael C

    2017-04-01

    The Intramolecular Quenched Fluorescence (IQF) protease assay utilizes peptide substrates containing donor-quencher pairs that flank the scissile bond. Following protease cleavage, the dequenched donor emission of the product is subsequently measured. Inspection of the IQF literature indicates that rigorous treatment of systematic errors in observed fluorescence arising from inner-filter absorbance (IF) and non-specific intermolecular quenching (NSQ) is incompletely performed. As substrate and product concentrations vary during the time-course of enzyme activity, iterative solution of the kinetic rate equations is, generally, required to obtain the proper time-dependent correction to the initial velocity fluorescence data. Here, we demonstrate that, if the IQF assay is performed under conditions where IF and NSQ are approximately constant during the measurement of initial velocity for a given initial substrate concentration, then a simple correction as a function of initial substrate concentration can be derived and utilized to obtain accurate initial velocity data for analysis.

  14. A modified fluorescent intercalator displacement assay for RNA ligand discovery

    PubMed Central

    Asare-Okai, Papa Nii; Chow, Christine S.

    2010-01-01

    Fluorescent intercalator displacement (FID) is a convenient and practical tool for identifying new nucleic-acid-binding ligands. The success of FID is based on the fact that it can be fashioned into a versatile screening assay for assessing the relative binding affinities of compounds to nucleic acids. FID is a tagless approach; the target RNAs and the ligands or small molecules under investigation do not have to be modified in order to be examined. In this study, a modified FID assay for screening RNA-binding ligands was established using 3-methyl-2-((1-(3-(trimethylammonio)propyl)-4-quinolinylidene)methyl)benzothiazolium (TO-PRO) as the fluorescent indicator. Electrospray ionization mass spectrometry (ESI-MS) results provide direct evidence that correlates the reduction in fluorescence intensity observed in the FID assay with displacement of the dye molecule from RNA. The assay was successfully applied to screen a variety of RNA-binding ligands with a set of small hairpin RNAs. Ligands that bind with moderate affinity to the chosen RNA constructs (A-site, TAR, h31, and H69) were identified. PMID:20863807

  15. Fluorescent and Lanthanide Labeling for Ligand Screens, Assays, and Imaging

    PubMed Central

    Josan, Jatinder S.; De Silva, Channa R.; Yoo, Byunghee; Lynch, Ronald M.; Pagel, Mark D.; Vagner, Josef; Hruby, Victor J.

    2012-01-01

    The use of fluorescent (or luminescent) and metal contrast agents in high-throughput screens, in vitro assays, and molecular imaging procedures has rapidly expanded in recent years. Here we describe the development and utility of high-affinity ligands for cancer theranostics and other in vitro screening studies. In this context, we also illustrate the syntheses and use of heteromultivalent ligands as targeted imaging agents. PMID:21318902

  16. A fluorescent plate reader assay for ceramide kinase.

    PubMed

    Don, Anthony S; Rosen, Hugh

    2008-04-15

    Ceramide kinase and its product ceramide 1-phosphate have been implicated in cellular proliferation and survival, activation of cytosolic phospholipase A(2), mast cell degranulation, and phagocytosis. Current assays for ceramide kinase activity employ [(32)P]ATP, with separation of labeled product from excess ATP by organic extraction and thin-layer chromatography. We have developed a fluorescent plate reader assay for ceramide kinase that uses commercially available C6-NBD ceramide (N-{6-[(7-nitro-2-1,3-benzoxadiazol-4-yl)amino]hexanoyl}-D-erythro-sphingosine). Our assay is based on the differential partitioning of substrate and product following a single chloroform/methanol extraction. The product, which partitions into the aqueous phase at physiological pH, is quantitated directly in a plate reader. The substrate may be delivered using either fatty acid-free albumin or detergent/lipid mixed micelles, and we have found that the use of albumin rather than detergent micelles allows one to detect lipid interactions with the enzyme that might otherwise go unnoticed. Our method is useful for assaying ceramide kinase activity both in vitro and in cultured cells, and it offers several advantages over the conventional assay, including greater speed, the ability to run a larger number of assay replicates at one time, and the elimination of environmental and safety issues associated with the use of radioactive materials.

  17. A label-free, fluorescence based assay for microarray

    NASA Astrophysics Data System (ADS)

    Niu, Sanjun

    DNA chip technology has drawn tremendous attention since it emerged in the mid 90's as a method that expedites gene sequencing by over 100-fold. DNA chip, also called DNA microarray, is a combinatorial technology in which different single-stranded DNA (ssDNA) molecules of known sequences are immobilized at specific spots. The immobilized ssDNA strands are called probes. In application, the chip is exposed to a solution containing ssDNA of unknown sequence, called targets, which are labeled with fluorescent dyes. Due to specific molecular recognition among the base pairs in the DNA, the binding or hybridization occurs only when the probe and target sequences are complementary. The nucleotide sequence of the target is determined by imaging the fluorescence from the spots. The uncertainty of background in signal detection and statistical error in data analysis, primarily due to the error in the DNA amplification process and statistical distribution of the tags in the target DNA, have become the fundamental barriers in bringing the technology into application for clinical diagnostics. Furthermore, the dye and tagging process are expensive, making the cost of DNA chips inhibitive for clinical testing. These limitations and challenges make it difficult to implement DNA chip methods as a diagnostic tool in a pathology laboratory. The objective of this dissertation research is to provide an alternative approach that will address the above challenges. In this research, a label-free assay is designed and studied. Polystyrene (PS), a commonly used polymeric material, serves as the fluorescence agent. Probe ssDNA is covalently immobilized on polystyrene thin film that is supported by a reflecting substrate. When this chip is exposed to excitation light, fluorescence light intensity from PS is detected as the signal. Since the optical constants and conformations of ssDNA and dsDNA (double stranded DNA) are different, the measured fluorescence from PS changes for the same

  18. Hybridization assay based on evanescent fluorescence excitation and collection

    NASA Astrophysics Data System (ADS)

    Sumner, James J.; Mmerole, Robert U.; Stratis-Cullum, Dimitra N.; Yi, Hyunmin; Bentley, William E.; Gillespie, James B.

    2003-08-01

    There is a great need for high throughput and sensitive sensors for genetic analysis. These sensors can be used for varied purposes from monitoring gene expression in organims to speciation of possible pathogens. Consequently, an instrument capable of these tasks would be a great benefit for food and water safety, medical diagnostics and defense of military and civilian populations from biological threats. This work examines the development of a hybridization-based biosensor using a novel tapered fiber optic rpobe. The immobilization of single-stranded, synthetic ologinucleotides utilizing aminoproplytriethoxysilane and glutaraldehyde was implemented on the fiber optic sensor. Hybridization takes place with a complementary analyte sequence followed by a fluorescent, labeled signaling probe to form a sandwich assay. Following hybridization, the fiber is interrogated with a diode laser source and the resulting fluorescence signal is detected using a miniature spectrometer.

  19. Fluorescent Receptor Binding Assay for Detecting Ciguatoxins in Fish

    PubMed Central

    Hardison, D. Ransom; Holland, William C.; McCall, Jennifer R.; Bourdelais, Andrea J.; Baden, Daniel G.; Darius, H. Taiana; Chinain, Mireille; Tester, Patricia A.; Shea, Damian; Flores Quintana, Harold A.; Morris, James A.; Litaker, R. Wayne

    2016-01-01

    Ciguatera fish poisoning is an illness suffered by > 50,000 people yearly after consumption of fish containing ciguatoxins (CTXs). One of the current methodologies to detect ciguatoxins in fish is a radiolabeled receptor binding assay (RBA(R)). However, the license requirements and regulations pertaining to radioisotope utilization can limit the applicability of the RBA(R) in certain labs. A fluorescence based receptor binding assay (RBA(F)) was developed to provide an alternative method of screening fish samples for CTXs in facilities not certified to use radioisotopes. The new assay is based on competition binding between CTXs and fluorescently labeled brevetoxin-2 (BODIPY®- PbTx-2) for voltage-gated sodium channel receptors at site 5 instead of a radiolabeled brevetoxin. Responses were linear in fish tissues spiked from 0.1 to 1.0 ppb with Pacific ciguatoxin-3C (P-CTX-3C) with a detection limit of 0.075 ppb. Carribean ciguatoxins were confirmed in Caribbean fish by LC-MS/MS analysis of the regional biomarker (C-CTX-1). Fish (N = 61) of six different species were screened using the RBA(F). Results for corresponding samples analyzed using the neuroblastoma cell-based assay (CBA-N2a) correlated well (R2 = 0.71) with those of the RBA(F), given the low levels of CTX present in positive fish. Data analyses also showed the resulting toxicity levels of P-CTX-3C equivalents determined by CBA-N2a were consistently lower than the RBA(F) affinities expressed as % binding equivalents, indicating that a given amount of toxin bound to the site 5 receptors translates into corresponding lower cytotoxicity. Consequently, the RBA(F), which takes approximately two hours to perform, provides a generous estimate relative to the widely used CBA-N2a which requires 2.5 days to complete. Other RBA(F) advantages include the long-term (> 5 years) stability of the BODIPY®- PbTx-2 and having similar results as the commonly used RBA(R). The RBA(F) is cost-effective, allows high sample

  20. Fluorescent Receptor Binding Assay for Detecting Ciguatoxins in Fish.

    PubMed

    Hardison, D Ransom; Holland, William C; McCall, Jennifer R; Bourdelais, Andrea J; Baden, Daniel G; Darius, H Taiana; Chinain, Mireille; Tester, Patricia A; Shea, Damian; Quintana, Harold A Flores; Morris, James A; Litaker, R Wayne

    2016-01-01

    Ciguatera fish poisoning is an illness suffered by > 50,000 people yearly after consumption of fish containing ciguatoxins (CTXs). One of the current methodologies to detect ciguatoxins in fish is a radiolabeled receptor binding assay (RBA(R)). However, the license requirements and regulations pertaining to radioisotope utilization can limit the applicability of the RBA(R) in certain labs. A fluorescence based receptor binding assay (RBA(F)) was developed to provide an alternative method of screening fish samples for CTXs in facilities not certified to use radioisotopes. The new assay is based on competition binding between CTXs and fluorescently labeled brevetoxin-2 (BODIPY®-PbTx-2) for voltage-gated sodium channel receptors at site 5 instead of a radiolabeled brevetoxin. Responses were linear in fish tissues spiked from 0.1 to 1.0 ppb with Pacific ciguatoxin-3C (P-CTX-3C) with a detection limit of 0.075 ppb. Carribean ciguatoxins were confirmed in Caribbean fish by LC-MS/MS analysis of the regional biomarker (C-CTX-1). Fish (N = 61) of six different species were screened using the RBA(F). Results for corresponding samples analyzed using the neuroblastoma cell-based assay (CBA-N2a) correlated well (R2 = 0.71) with those of the RBA(F), given the low levels of CTX present in positive fish. Data analyses also showed the resulting toxicity levels of P-CTX-3C equivalents determined by CBA-N2a were consistently lower than the RBA(F) affinities expressed as % binding equivalents, indicating that a given amount of toxin bound to the site 5 receptors translates into corresponding lower cytotoxicity. Consequently, the RBA(F), which takes approximately two hours to perform, provides a generous estimate relative to the widely used CBA-N2a which requires 2.5 days to complete. Other RBA(F) advantages include the long-term (> 5 years) stability of the BODIPY®-PbTx-2 and having similar results as the commonly used RBA(R). The RBA(F) is cost-effective, allows high sample

  1. AFBI assay – Aptamer Fluorescence Binding and Internalization assay for cultured adherent cells

    PubMed Central

    Thiel, William H.; Giangrande, Paloma H.

    2016-01-01

    The SELEX (Systematic Evolution of Ligands by Exponential Enrichment) process allows for the enrichment of DNA or RNA aptamers from a complex nucleic acid library that are specific for a target molecule. The SELEX process has been adapted from identifying aptamers in vitro using recombinant target protein to cell-based methodologies (Cell-SELEX), where the targets are expressed on the surface of cells. One major advantage of Cell-SELEX is that the target molecules are maintained in a native confirmation. Additionally, Cell-SELEX may be used to discover novel therapeutic biomarkers by performing selections on diseased versus healthy cells. However, a caveat to Cell-SELEX is that testing of single aptamers identified in the selection is laborious, time-consuming, and expensive. The most frequently used methods to screen for aptamer binding and internalization on cells are flow cytometry and quantitative PCR (qPCR). While flow cytometry can directly assess binding of a fluorescently-labeled aptamer to a target, it requires significant starting material and is not easily scalable. qPCR-based approaches are highly sensitive but have non-negligible experiment-to-experiment variability due to the number of sample processing steps. Herein we describe a cell-based aptamer fluorescence binding and internalization (AFBI) assay. This assay requires minimal reagents and has few experimental steps/manipulations, thereby allowing for rapid screening of many aptamers and conditions simultaneously and direct quantitation of aptamer binding and internalization. PMID:26972784

  2. Development and characterization of the NanoOrange protein quantitation assay: a fluorescence-based assay of proteins in solution.

    PubMed

    Jones, Laurie J; Haugland, Richard P; Singer, Victoria L

    2003-04-01

    We developed a sensitive fluorescence assay for the quantitation of proteins in solution using the NanoOrange reagent, a merocyanine dye that produces a large increase in fluorescence quantum yield upon interaction with detergent-coated proteins. The NanoOrange assay allowed for the detection of 10 ng/mL to 10 micrograms/mL protein with a standard fluorometer, offering a broad, dynamic quantitation range and improved sensitivity relative to absorption-based protein solution assays. The protein-to-protein variability of the NanoOrange assay was comparable to those of standard assays, including Lowry, bicinchoninic acid, and Bradford procedures. We also found that the NanoOrange assay is useful for detecting relatively small proteins or large peptides, such as aprotinin and insulin. The assay was somewhat sensitive to the presence of several common contaminants found in protein preparations such as salts and detergents; however, it was insensitive to the presence of reducing agents, nucleic acids, and free amino acids. The simple assay protocol is suitable for automation. Samples are briefly heated in the presence of dye in a detergent-containing diluent, allowed to cool to room temperature, and fluorescence is measured using 485-nm excitation and 590-nm emission wavelengths. Therefore, the NanoOrange assay is well suited for use with standard fluorescence microplate readers, fluorometers, and some laser scanners.

  3. HPLC-fluorescence assay for acyclovir in children.

    PubMed

    Zeng, L; Nath, C E; Shaw, P J; Earl, J W; McLachlan, A J

    2008-08-01

    A simple, accurate, reliable and sensitive HPLC method was developed and validated for quantitating acyclovir in human plasma. Sample (100 microL) preparation involved addition of guanosine (internal standard) and protein precipitation with 7% perchloric acid and centrifugation. Supernatant (20 microL) was injected onto a C18 HPLC column with a mobile phase of 0.05 m sodium phosphate buffer-acetonitrile (pH 2.35, 992:8, v/v) with 25 microL of 0.4 m tetrabutylammonium hydroxide titrant and fluorescence detection (excitation, 260 nm; emission, 375 nm). Analyte recovery was 101% and the assay response was linear over the acyclovir concentration range of 0.1-20 mg/L. Intra- and inter-day accuracy and precision were less than 7%. The limit of detection and limit of quantitation were 0.033 and 0.1 mg/L, respectively. In five paediatric oncology patients administered intravenous acyclovir, concentrations ranged from 0.24 to 43.65 mg/L. This method can be used to measure acyclovir concentrations in paediatric patients.

  4. Novel assay for direct fluorescent imaging of sialidase activity

    NASA Astrophysics Data System (ADS)

    Tomin, A.; Shkandina, T.; Bilyy, R.

    2011-07-01

    Here we describe a novel approach to sialidase activity estimation. Sialidases (EC 3.2.1.18, exo-α-sialidases), also known as neuraminidases, are the group of enzymes, which hydrolyze the glycoside bound between terminal sialic acid and subsequent carbohydrate residue in glycoproteins and glycolipids. Sialic acids are the group of monosaccharides with acidic properties, since they are acetylated or glycolylated derivates of neuraminic acid. Flu and some other viruses use neuraminidase activity to infect host cells. The level of sialylation was shown to be tightly connected with tumor cell invasiveness and metastatic potential, sialylation level also determines the clearance of aged or virus-infected cells. Thus, detection of sialidase activity is of primary importance for clinical diagnostics as well as life science research. The authors developed the assay for both visualization and estimation of sialidase activity in living cells. Previously known methods for sialidase activity detection required destruction of cellular material, or were low-sensitive, or provided no information on the activity localization in certain intracellular compartment. To overcome these problems, a fluorogenic neuraminidase substrate, 4-MUNA was utilized, and the method for detection of neuraminidase activity using fluorescent microscopy was proposed, it provided a high signal level and information on cellular localization of the studied enzyme. By using this approach the increase of sialidase activity on apoptotic cells was demonstrated in comparison to viable and primary necrotic cells.

  5. Calcofluor fluorescence assay for wort beta-glucan in a microplate format

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The widely-used fluorescent (Calcofluor) flow injection analysis method for determining the concentrations of beta-glucans in Congress worts from barley malts is adapted to microplate format. Adaptation of the Calcofluor assay to use widely available fluorescent microplate readers makes the assay m...

  6. Development of a quantitative fluorescence-based ligand-binding assay

    PubMed Central

    Breen, Conor J.; Raverdeau, Mathilde; Voorheis, H. Paul

    2016-01-01

    A major goal of biology is to develop a quantitative ligand-binding assay that does not involve the use of radioactivity. Existing fluorescence-based assays have a serious drawback due to fluorescence quenching that accompanies the binding of fluorescently-labeled ligands to their receptors. This limitation of existing fluorescence-based assays prevents the number of cellular receptors under investigation from being accurately measured. We have developed a method where FITC-labeled proteins bound to a cell surface are proteolyzed extensively to eliminate fluorescence quenching and then the fluorescence of the resulting sample is compared to that of a known concentration of the proteolyzed FITC-protein employed. This step enables the number of cellular receptors to be measured quantitatively. We expect that this method will provide researchers with a viable alternative to the use of radioactivity in ligand binding assays. PMID:27161290

  7. A fluorescence-based assay for indoleamine 2,3-dioxygenase.

    PubMed

    Matin, Azadeh; Streete, Isla M; Jamie, Ian M; Truscott, Roger J W; Jamie, Joanne F

    2006-02-01

    A rapid and sensitive fluorescence-based bioassay for determination of indoleamine 2,3-dioxygenase (IDO) activity has been developed. This assay relies on the quantification of the amount of kynurenine produced in the assay medium by fluorescence and complements the standard absorbance and high-performance liquid chromatography (HPLC) assay methods. The fluorescence method has limits of detection similar to those of the standard assay methods. Measured activities of IDO, including in the presence of tryptophan-based inhibitors, were in statistical agreement with the absorbance and HPLC assay methods. The fluorescence-based assay was also suitable for assessment of IDO inhibition by compounds that are incompatible with the absorbance method.

  8. A FLUORESCENCE BASED ASSAY FOR DNA DAMAGE: INDUCED BY RADIATION, CHEMICALS AND ENZYMES

    EPA Science Inventory

    A simple and rapid assay to detect DNA damage is reported. This assay is based on the ability of certain dyes to fluoresce upon intercalation with dsDNA. Damage caused by ultraviolet (UV) radiation, chemicals or restriction enzymes is detected using this assay. UV radiation at...

  9. A fluorescent analogue of UDP-N-acetylglucosamine: application for FRET assay of peptidoglycan translocase II (MurG).

    PubMed

    Li, Jian-Jun; Bugg, Timothy D H

    2004-01-21

    A direct continuous fluorescence assay for translocase II MurG based on fluorescence resonance energy transfer (FRET) has been developed using a 6-substituted fluorescent analogue of UDP-N-acetylglucosamine.

  10. A Fluorescent Assay for Plant Caffeic Acid O-methyltransferases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have developed a facile, sensitive and continuous assay to measure the activities of plant COMTs using s-adenosyl homocysteine hydrolase as a coupling enzyme and and adeonsine a thiol-specific fluor, Thioglo1, as the detecting reagent. This assay was validated using recombinant sorghum COMT (BMR-...

  11. High-throughput screening assay of hepatitis C virus helicase inhibitors using fluorescence-quenching phenomenon

    SciTech Connect

    Tani, Hidenori; Akimitsu, Nobuyoshi; Fujita, Osamu; Matsuda, Yasuyoshi; Miyata, Ryo; Tsuneda, Satoshi; Igarashi, Masayuki; Sekiguchi, Yuji; Noda, Naohiro

    2009-02-20

    We have developed a novel high-throughput screening assay of hepatitis C virus (HCV) nonstructural protein 3 (NS3) helicase inhibitors using the fluorescence-quenching phenomenon via photoinduced electron transfer between fluorescent dyes and guanine bases. We prepared double-stranded DNA (dsDNA) with a 5'-fluorescent-dye (BODIPY FL)-labeled strand hybridized with a complementary strand, the 3'-end of which has guanine bases. When dsDNA is unwound by helicase, the dye emits fluorescence owing to its release from the guanine bases. Our results demonstrate that this assay is suitable for quantitative assay of HCV NS3 helicase activity and useful for high-throughput screening for inhibitors. Furthermore, we applied this assay to the screening for NS3 helicase inhibitors from cell extracts of microorganisms, and found several cell extracts containing potential inhibitors.

  12. Fluorescence Assay Based on Aptamer-Quantum Dot Binding to Bacillus thuringiensis Spores

    DTIC Science & Technology

    2007-01-01

    Binding to Bacillus thuringiensis 5a. CONTRACT NUMBER N/A Spores 5b. GRANT NUMBER N/A 5c. PROGRAM ELEMENT NUMBER 62202F 6. AUTHOR(S) Milada...assay was developed for the detection of Bacillus thuringiensis (BT) spores. The assay is based on the fluorescence observed after binding an aptamer...units/ml. 15. SUBJECT TERMS Bacillus thuringiensis , Aptamer, Quantum dots, SELEX, Fluorescence 16. SECURITY CLASSIFICATION OF: Unclassified U

  13. Phytoplankton photosynthetic characteristics from fluorescence induction assays of individual cells

    SciTech Connect

    Olson, R.J.; Chekalyuk, A.M.; Sosik, H.M.

    1996-09-01

    Saturating-flash fluorescence techniques, which can provide information about the physiological state of phytoplankton, at present measure bulk water samples and so provide {open_quotes}averaged{close_quotes} values for all the fluorescent particles present. In analyzing natural samples, however, more detailed information about the distribution of photosynthetic characteristics among different cell types and(or) individual cells is desirable. Therefore we developed two methods for applying a {open_quotes}pump-during-probe{close_quotes} technique on a cell-by-cell basis. We used either an epifluorescence microscope or a flow cytometer to make time-resolved measurements of the increase in chlorophyll fluorescence induced by a rectangular excitation pulse of 100-{mu}s duration. We used a biophysical model of fluorescence induction to obtain information about the quantum yield of photochemistry in photosystem 2 (PS2) and the functional absorption cross-section for PS2. For several species (including the smallest phytoplankton, Prochlorococcus, which are 0.7 {mu}m in diameter), the maximum quantum yield of photochemistry in PS2 obtained by averaging data from many individual cells agreed well with estimates derived from bulk measurements of DCMU enhancement of Chl fluorescence. 40 refs., 9 figs.

  14. Microwave-accelerated metal-enhanced fluorescence: platform technology for ultrafast and ultrabright assays.

    PubMed

    Aslan, Kadir; Geddes, Chris D

    2005-12-15

    We describe an exciting assay platform technology that promises to fundamentally address two underlying physical constraints of modern assays and immunoassays, namely, assay sensitivity and rapidity. By combining the use of metal-enhanced fluorescence with low-power microwave heating, we can indeed significantly increase the sensitivity of surface assays as well as >95 % kinetically complete the assay within a few seconds. Subsequently, this new technology promises to fundamentally change the way we currently employ immunoassays in clinical medicine. This new model platform system can be potentially applied to many other important assays, such as to the clinical assessment of myoglobin, where both assay speed and sensitivity is paramount for the assessment and treatment of acute myocardial infarction. To demonstrate the utility of microwave-accelerated metal-enhanced fluorescence (MAMEF), we show that a simple protein-based assay system can be optically amplified approximately 10-fold by using silver nanostructures, while being kinetically complete in less than 20 s. This new platform approach is subsequently over 10-fold more sensitive and approximately 90 times faster than a control assay that operates both at room temperature and without the use of metal-enhanced fluorescence. Finally, we show that low-power heating by microwaves in our model system does not denature proteins, as evidenced by no protein structural changes, probed by fluorescence resonance energy transfer.

  15. pFe(3+) determination of multidentate ligands by a fluorescence assay.

    PubMed

    Ma, Yongmin; Zhou, Tao; Hider, Robert C

    2015-05-21

    The fluorescence intensity of the iron-CP691 complex in the presence of a competing multidentate ligand is associated with pFe(3+) of the competing ligand and the relative fluorescence has a linear correlation with the pFe(3+) values. A correlation was also found to exist between the relative fluorescence and the ratio of a competing ligand to the probe CP691. Based on this assay, the pFe(3+) value of a range of hexadentate ligands, dendrimers and polymers can be determined when they fall in the range 24.5-30.5. Only small quantities of chelators are required for this assay.

  16. A FLUORESCENCE BASED ASSAY FOR DNA DAMAGE INDUCED BY RADIATION, CHEMICAL MUTAGENS AND ENZYMES

    EPA Science Inventory

    A simple and rapid assay to detect DNA damage is reported. This novel assay is based on changes in melting/annealing behavior and facilitated using certain dyes that increase their fluorescence upon association with double stranded (ds)DNA. Damage caused by ultraviolet (UV) ra...

  17. A FLUORESCENCE BASED ASSAY FOR DNA DAMAGE INDUCED BY STYRENE OXIDE

    EPA Science Inventory

    A rapid and simple assay to detect DNA damage to calf thymus DNA caused by styrene oxide (SO) is reported. This assay is based on changes observed in the melting and annealing behavior of the damaged DNA. The melting annealing process was monitored using a fluorescence indicat...

  18. A fluorescence enhancement assay for cellular DNA damage. [X Radiation

    SciTech Connect

    Kanter, P.M.; Schwartz, H.S.

    1982-07-01

    A fluorescence procedure is described for quantitative measurement of DNA damage in mammalian cells. The technique is based upon the time-dependent partial alkaline unwinding of cellular DNA followed by determination of duplex:total DNA ratios with bisbenzamide, which has a differential molar fluorescence with single-stranded and duplex DNA. The method is rapid, does not require radioactive labeling of DNA, and is sufficiently sensitive to detect damage induced with 100 rads of X-irradiation. This method is standardized with respect to the alkaline unwinding unit, Mn0, and the unwinding constant, beta. Results obtained with this new technique and with hydroxylapatite chromatography for physical separation of single- and double-stranded DNA were confirmatory. The utility of the technique was demonstrated by detection of dose-related damage with X-irradiation and a variety of antineoplastic agents in unlabeled murine leukemia cells.

  19. Fluorescence assay based on aptamer-quantum dot binding to Bacillus thuringiensis spores.

    PubMed

    Ikanovic, Milada; Rudzinski, Walter E; Bruno, John G; Allman, Amity; Carrillo, Maria P; Dwarakanath, Sulatha; Bhahdigadi, Suneetha; Rao, Poornima; Kiel, Johnathan L; Andrews, Carrie J

    2007-03-01

    A novel assay was developed for the detection of Bacillus thuringiensis (BT) spores. The assay is based on the fluorescence observed after binding an aptamer-quantum dot conjugate to BT spores. The in vitro selection and amplification technique called SELEX (Systematic Evolution of Ligands by EXponential enrichment) was used in order to identify the DNA aptamer sequence specific for BT. The 60 base aptamer was then coupled to fluorescent zinc sulfide-capped, cadmium selenide quantum dots (QD). The assay is semi-quantitative, specific and can detect BT at concentrations of about 1,000 colony forming units/ml.

  20. Putting the pieces together: contribution of fluorescence polarization assays to small-molecule lead optimization

    NASA Astrophysics Data System (ADS)

    Keating, Susan M.; Marsters, Jim; Beresini, Maureen; Ladner, Carmen; Zioncheck, Kim; Clark, Kevin; Arellano, Fred; Bodary, Sarah

    2000-04-01

    Fluorescence polarization assays with both purified receptor and intact cells have been developed to assess potency and selectivity of antagonists of the interaction of the lymphocyte receptor, LFA-1, and its endothelial ligand, ICAM-1. Fluorescein isothiocyanate conjugated small molecule probes were optimized for use in binding assay with LFA-1 and a closely related receptor, MAC-1. In the assays, the antagonists compete with the fluorescent probe for binding to the receptor. This enables the determination of IC50 and consequently Ki values of the antagonists for each of the receptors. Routine use of polarization assay with tranfected cells, in addition to purified receptors, has become feasible with the availability of sensitive plate readers that are able to detect 1 nM fluorescent probe in 15 (mu) l sample volumes with good signal to noise. These measurements aid in the iterative synthesis of more potent and selective compounds.

  1. Homogeneous time-resolved fluorescence quenching assay (LANCE) for caspase-3.

    PubMed

    Karvinen, Jarkko; Hurskainen, Pertti; Gopalakrishnan, Sujatha; Burns, David; Warrior, Usha; Hemmilä, Ilkka

    2002-06-01

    In addition to kinases and G protein-coupled receptors, proteases are one of the main targets in modern drug discovery. Caspases and viral proteases, for instance, are potential targets for new drugs. To satisfy the current need for fast and sensitive high-throughput screening for inhibitors, new homogeneous protease assays are needed. We used a caspase-3 assay as a model to develop a homogeneous time-resolved fluorescence quenching assay technology. The assay utilizes a peptide labeled with both a luminescent europium chelate and a quencher. Cleavage of the peptide by caspase-3 separates the quencher from the chelate and thus recovers europium fluorescence. The sensitivity of the assay was 1 pg/microl for active caspase-3 and 200 pM for the substrate. We evaluated the assay for high-throughput usage by screening 9600 small-molecule compounds. We also evaluated this format for absorption/distribution/metabolism/excretion assays with cell lysates. Additionally, the assay was compared to a commercial fluorescence caspase-3 assay.

  2. Comparison of different fluorescence fluctuation methods for their use in FRET assays: monitoring a protease reaction.

    PubMed

    Eggeling, C; Jäger, S; Winkler, D; Kask, Peet

    2005-10-01

    We compare the accuracy of a variety of Fluorescence Fluctuation Spectroscopy (FFS) methods for the study of Förster Resonance Energy Transfer (FRET) assays. As an example, the cleavage of a doubly labeled, FRET-active peptide substrate by the protease Trypsin is monitored and analyzed using methods based on fluorescence intensity, Fluorescence Correlation Spectroscopy (FCS) and Fluorescence Intensity Distribution Analysis (FIDA). The presented fluorescence data are compared to High-Pressure Liquid Chromatography (HPLC) data obtained from the same assay. The HPLC analysis discloses general disadvantages of the FRET approach, such as incomplete labeling and the need for aliquots. However, the simultaneous use of two photon detectors monitoring the fluorescence signal of both labels significantly improves the analysis. In particular, the two global analysis tools Two-Dimensional Fluorescence Intensity Distribution Analysis (2D-FIDA) and Two-Color Global Fluorescence Correlation Spectroscopy (2CG-FCS) highlight the potential of a combination of FFS and FRET. While conventional FIDA and FCS auto- or cross-correlation analysis leaves the user with drawbacks inherent in two-color and FRET applications, these effects are overcome by the global analysis on the molecular level. Furthermore, it is advantageous to analyze the unnormalized as opposed to the normalized correlation data when combining any fluorescence correlation method with FRET, since the analysis of the unnormalized data introduces more accuracy and is less sensitive to the experimental drawbacks.

  3. Highly sensitive C-reactive protein (CRP) assay using metal-enhanced fluorescence (MEF)

    NASA Astrophysics Data System (ADS)

    Zhang, Yi; Keegan, Gemma L.; Stranik, Ondrej; Brennan-Fournet, Margaret E.; McDonagh, Colette

    2015-07-01

    Fluorescence has been extensively employed in the area of diagnostic immunoassays. A significant enhancement of fluorescence can be achieved when noble metal nanoparticles are placed in close proximity to fluorophores. This effect, referred to as metal-enhanced fluorescence (MEF), has the potential to produce immunoassays with a high sensitivity and a low limit of detection (LOD). In this study, we investigate the fluorescence enhancement effect of two different nanoparticle systems, large spherical silver nanoparticles (AgNPs) and gold edge-coated triangular silver nanoplates, and both systems were evaluated for MEF. The extinction properties and electric field enhancement of both systems were modeled, and the optimum system, spherical AgNPs, was used in a sandwich immunoassay for human C-reactive protein with a red fluorescent dye label. A significant enhancement in the fluorescence was observed, which corresponded to an LOD improvement of 19-fold compared to a control assay without AgNPs.

  4. DNA detection assay based on fluorescence quenching of rhodamine B by gold nanoparticles: The optical mechanisms

    NASA Astrophysics Data System (ADS)

    Pylaev, T. E.; Volkova, E. K.; Kochubey, V. I.; Bogatyrev, V. A.; Khlebtsov, N. G.

    2013-12-01

    The different ability of single- and double-stranded oligonucleotides to stabilize gold nanoparticles (GNPs) in solution has recently been used to design several label-free hybridization assays on the basis of optical changes associated with GNP aggregation. DNA hybridization can be detected through changes in dye fluorescence quenching by GNPs. Here we examine the mechanisms behind a fluorescent DNA assay for model systems containing DNA oligonucleotides, 15-nm GNPs, and Rhodamine B (RB). There was a direct correlation between complete disappearance of fluorescence and complete adsorption of all RB molecules on nonaggregated GNPs, as revealed by an analysis of the colloids' supernatant liquids. We show that both the inner filter effect and the quenching of the dye owing to its adsorption on GNPs contribute to the observed changes in fluorescence intensity. Therefore, both factors should be properly adjusted to optimize the assay sensitivity. In particular, the low detection limit of the fluorescent DNA assay lies in the range 30-100 pM, which is close to the data reported previously for colorimetric and dynamic light scattering DNA assays.

  5. Conjugated polyelectrolyte-based real-time fluorescence assay for alkaline phosphatase with pyrophosphate as substrate.

    PubMed

    Liu, Yan; Schanze, Kirk S

    2008-11-15

    The fluorescence of the anionic, carboxylate-substituted poly(phenylene ethynylene) polymer PPECO2 is quenched very efficiently via the addition of 1 equiv of Cu(2+). Addition of pyrophosphate (PPi) into the weakly fluorescent solution of PPECO2 and Cu(2+) induces recovery of the polymer's fluorescence; the recovery occurs because PPi complexes with Cu(2+), effectively sequestering the ion so it cannot bind to the carboxylate groups of the polymer. A calibration curve was developed that relates the extent of fluorescence recovery to [PPi], making the PPECO2-Cu(2+) system a sensitive and selective turn-on sensor for PPi. Using the PPECO2-Cu(2+) system as the signal transducer, a real-time fluorescence turn-off assay for the enzyme alkaline phosphatase (ALP) using PPi as the substrate is developed. The assay operates with [PPi] in the micromolar range, and it offers a straightforward and rapid detection of ALP activity with the enzyme present in the nanomolar concentration range, operating either in an end point or real-time format. Kinetic and product inhibition parameters are derived by converting time-dependent fluorescence intensity into PPi (substrate) concentration, thus allowing calculation of the initial reaction rates (v(o)). Weak, nonspecific fluorescence responses are observed concomitant to addition of other proteins to the assay solution; however, the signal response to ALP is demonstrated to arise from the ALP catalyzed hydrolysis of PPi to phosphate (Pi).

  6. A Morphological identification cell cytotoxicity assay using cytoplasm-localized fluorescent probe (CLFP) to distinguish living and dead cells.

    PubMed

    Lai, Fangfang; Shen, Zhengwei; Wen, Hui; Chen, Jialing; Zhang, Xiang; Lin, Ping; Yin, Dali; Cui, Huaqing; Chen, Xiaoguang

    2017-01-08

    Cell cytotoxicity assays include cell activity assays and morphological identification assays. Currently, all frequently used cytotoxicity assays belong to cell activity assays but suffer from detection limitations. Morphological identification of cell death remains as the gold standard, although the method is difficult to scale up. At present there is no generally accepted morphological identification based cell cytotoxicity assay. In this study, we applied previous developed cell cytoplasm-localized fluorescent probe (CLFP) to display cell morphologies. Under fluorescence microscopy, the fluorescence morphology and intensity of living cells are distinct from dead cells. Based on these characters we extracted the images of living cells from series of samples via computational analysis. Thus, a novel cell morphological identification cytotoxicity assay (CLFP assay) is developed. The performance of the CLFP assay was similar to cell activity assay (MTT assay), but the accuracy of the CLFP assay was superior when measuring the cytotoxicity of active compounds.

  7. A fluorescence-based assay for measuring the redox potential of 5-lipoxygenase inhibitors.

    PubMed

    Lee, Sangchul; Park, Youngsam; Kim, Junghwan; Han, Sung-Jun

    2014-01-01

    The activities and side effects of 5-lipoxygenase (5-LO) inhibitors can be predicted by identifying their redox mechanisms. In this study, we developed a fluorescence-based method to measure the redox potential of 5-LO inhibitors and compared it to the conventional, absorbance-based method. After the pseudo-peroxidase reaction, the amount of remaining lipid peroxide was quantified using the H2DCFDA (2',7'-dichlorodihydrofluorescein diacetate) fluorescence dye. Our method showed large signal windows and provided comparable redox potential values. Importantly, the redox mechanisms of known inhibitors were accurately measured with the fluorescence assay, whereas the conventional, absorbance-based method showed contradictory results. Our findings suggest that our developed method is a better alternative for classifying the redox potential of 5-LO inhibitors, and the fluorescence assay can be effectively used to study the mechanisms of action that are related to redox cycling.

  8. Four-part leukocyte differential count based on sheathless microflow cytometer and fluorescent dye assay.

    PubMed

    Shi, Wendian; Guo, Luke; Kasdan, Harvey; Tai, Yu-Chong

    2013-04-07

    Leukocyte differential count is one of the most frequently ordered clinical tests in hospitals. This paper reports a point-of-care test for the leukocyte count by using a microflow cytometer and a fluorescent dye assay. The dye assay relied on fluorescent detection alone to count leukocytes in blood and to identify leukocyte subtypes. By combining the fluorescent assay with a sheathless microflow design, the proposed method achieved a minimal sample volume by eliminating excessive dilution and sheath flow. In this paper, a four-part leukocyte differential count including lymphocyte, monocyte, neutrophil and eosinophil was demonstrated, and the whole test consumed only a small amount of blood (5 μL) and reagents (68 μL in total). The merits of minimal sample volume, long reagent shelf life and portable instrument made this method optimal for point-of-care applications.

  9. Rapid fluorescence-based assay for radiosensitivity and chemosensitivity testing in mammalian cells in vitro

    SciTech Connect

    Begg, A.C.; Mooren, E.

    1989-02-01

    An efficient and rapid cytotoxicity assay has been developed, particularly for radiobiological studies, utilizing 96-well microtiter plates. Several days after treatment, cell numbers per well were measured by fluorescent intensity using an automatic reader after staining with the DNA specific dye Hoechst 33258. For radiobiological applications, a microtiter plate irradiation box was designed and built which allowed a variable number of wells (minimum 4, maximum 16) to be irradiated at one time. In this manner, complete dose-response curves could be obtained from one plate. The assay depends on the growth of surviving and untreated cells, and by appropriate choice of conditions (cell numbers plated, time of assay), cell survival curves for this quick fluorescence assay were in reasonable agreement with those from a clonogenic assay for cisplatin and X-ray-induced cell killing. The assay can span 1.5-2 decades of cell survival and is suitable for any cell line which grows as a monolayer. Radiobiological applications were tested using agents or conditions which modified radiation damage. Firstly, sublethal damage repair could be demonstrated in RIF1 mouse tumor cells by comparing the survival curve for a single X-ray dose with that for two fractions separated by 4 h. Secondly, incorporation of 5-iodo-2'-deoxyuridine into cellular DNA was shown to radiosensitize Chinese Hamster cells, with similar enhancement ratios obtained from the fluorescence and clonogenic assays. Thirdly, radiosensitization by cisplatin and radioprotection by cysteamine could be readily measured using the quick fluorescence assay. The ability to have multiple dose groups per plate makes it an efficient assay for both radiosensitivity and chemosensitivity testing.

  10. Fluorescence polarization assays in high-throughput screening and drug discovery: a review

    NASA Astrophysics Data System (ADS)

    Hall, Matthew D.; Yasgar, Adam; Peryea, Tyler; Braisted, John C.; Jadhav, Ajit; Simeonov, Anton; Coussens, Nathan P.

    2016-06-01

    The sensitivity of fluorescence polarization (FP) and fluorescence anisotropy (FA) to molecular weight changes has enabled the interrogation of diverse biological mechanisms, ranging from molecular interactions to enzymatic activity. Assays based on FP/FA technology have been widely utilized in high-throughput screening (HTS) and drug discovery due to the homogenous format, robust performance and relative insensitivity to some types of interferences, such as inner filter effects. Advancements in assay design, fluorescent probes, and technology have enabled the application of FP assays to increasingly complex biological processes. Herein we discuss different types of FP/FA assays developed for HTS, with examples to emphasize the diversity of applicable targets. Furthermore, trends in target and fluorophore selection, as well as assay type and format, are examined using annotated HTS assays within the PubChem database. Finally, practical considerations for the successful development and implementation of FP/FA assays for HTS are provided based on experience at our center and examples from the literature, including strategies for flagging interference compounds among a list of hits.

  11. Real-time fluorescence assays to monitor duplex unwinding and ATPase activities of helicases.

    PubMed

    Özeş, Ali R; Feoktistova, Kateryna; Avanzino, Brian C; Baldwin, Enoch P; Fraser, Christopher S

    2014-07-01

    Many physiological functions of helicases are dependent on their ability to unwind nucleic acid duplexes in an ATP-dependent fashion. Determining the kinetic frameworks of these processes is crucial to understanding how these proteins function. We recently developed a fluorescence assay to monitor RNA duplex unwinding by DEAD-box helicases in real time. In this assay, two fluorescently modified short reporter oligonucleotides are annealed to an unmodified RNA loading strand of any length so that the fluorescent moieties of the two reporters find themselves in close proximity to each other and fluorescence is quenched. One reporter is modified with cyanine 3 (Cy3), whereas the other is modified with a spectrally paired black-hole quencher (BHQ). As the helicase unwinds the loading strand, the enzyme displaces the Cy3-modified reporter, which will bind to a capture or competitor DNA strand, permanently separating it from the BHQ-modified reporter. Complete separation of the Cy3-modified reporter strand is thus detected as an increase in total fluorescence. This assay is compatible with reagentless biosensors to monitor ATPase activity so that the coupling between ATP hydrolysis and duplex unwinding can be determined. With the protocol described, obtaining data and analyzing results of unwinding and ATPase assays takes ∼4 h.

  12. High-throughput fluorescence assay of cytochrome P450 3A4

    PubMed Central

    Cheng, Qian; Sohl, Christal D; Guengerich, F Peter

    2013-01-01

    Cytochrome P450 mono-oxygenases (P450s) are the principal enzymes involved in the oxidative metabolism of drugs and other xenobiotics. In this protocol, we describe a fluorescence-based, high-throughput assay for measuring the activity of P450 3A4, one of the key enzymes involved in drug metabolism. The assay involves the oxidative debenzylation of a substituted coumarin, yielding an increase in fluorescence on reaction. The entire procedure can be accomplished in 1 h or less. PMID:19661996

  13. Combined thioflavin T-Congo red fluorescence assay for amyloid fibril detection

    NASA Astrophysics Data System (ADS)

    Girych, Mykhailo; Gorbenko, Galyna; Maliyov, Ivan; Trusova, Valeriya; Mizuguchi, Chiharu; Saito, Hiroyuki; Kinnunen, Paavo

    2016-09-01

    Fluorescence represents one of the most powerful tools for the detection and structural characterization of the pathogenic protein aggregates, amyloid fibrils. The traditional approaches to the identification and quantification of amyloid fibrils are based on monitoring the fluorescence changes of the benzothiazole dye thioflavin T (ThT) and absorbance changes of the azo dye Congo red (CR). In routine screening it is usually sufficient to perform only the ThT and CR assays, but both of them, when used separately, could give false results. Moreover, fibrillization kinetics can be measured only by ThT fluorescence, while the characteristic absorption spectra and birefringence of CR represent more rigid criteria for the presence of amyloid fibrils. Therefore, it seemed reasonable to use both these dyes simultaneously, combining the advantages of each technique. To this end, we undertook a detailed analysis of the fluorescence spectral behavior of these unique amyloid tracers upon their binding to amyloid fibrils from lysozyme, insulin and an N-terminal fragment of apolipoprotein A-I with Iowa mutation. The fluorescence measurements revealed several criteria for distinguishing between fibrillar and monomeric protein states: (i) a common drastic increase in ThT fluorescence intensity; (ii) a sharp decrease in ThT fluorescence upon addition of CR; (iii) an appearance of the maximum at 535-540 nm in the CR excitation spectra; (iv) increase in CR fluorescence intensity at 610 nm. Based on these findings we designed a novel combined ThT-CR fluorescence assay for amyloid identification. Such an approach not only strengthens the reliability of the ThT assay, but also provides new opportunities for structural characterization of amyloid fibrils.

  14. Real-time fluorescence assays of alkaline phosphatase and ATP sulfurylase activities based on a novel PPi fluorescent probe.

    PubMed

    Wang, Xiaobo; Zhang, Zhiyang; Ma, Xiaoyan; Wen, Jinghan; Geng, Zhirong; Wang, Zhilin

    2015-05-01

    An anthracene-armed tetraaza macrocyclic fluorescent probe 3-(9-anthrylmethyl)-3,6,9,15-tetraazabicyclo[9.3.1]pentadeca-1(15),11,13-triene(l) for detecting Zn(2+) in aqueous medium was synthesized. L-Zn(2+) complex, showed selectivity toward pyrophosphate ion (PPi) by quenching the fluorescence in aqueous HEPES buffer (pH 7.4). Furthermore, L-Zn(2+) was also used to set up a real-time fluorescence assay for monitoring enzyme activities of alkaline phosphatase (ALP) and adenosine triphosphate sulfurylase (ATPS). In the presence of ALP inhibitor Na3VO4 and ATPS inhibitor chlorate, two enzymes activities decreased obviously, respectively.

  15. The polarized total internal reflection fluorescence microscopy (polTIRFM) twirling filament assay.

    PubMed

    Beausang, John F; Sun, Yujie; Quinlan, Margot E; Forkey, Joseph N; Goldman, Yale E

    2012-06-01

    Polarized total internal reflection fluorescence microscopy (polTIRFM) can be used to detect the spatial orientation and rotational dynamics of single molecules. polTIRFM determines the three-dimensional angular orientation and the extent of wobble of a fluorescent probe bound to the macromolecule of interest. This protocol describes the twirling filament assay, so named because actin sometimes twirls about its own axis as it is translocated by myosin. A gliding filament assay is constructed in which a sparsely labeled actin filament (0.3% of the actin monomers contain 6'- iodoacetamidotetramethylrhodamine [IATR]) is translocated by a field of unlabeled myosin V fixed to the surface. The polTIRFM twirling assay differs from a standard gliding filament assay in that full filaments are not visible, but rather individual fluorophores are spaced along each filament. The goal is to investigate possible rotational motions of the actin filament about its axis (i.e., twirling) by measuring the spatial angle of the fluorescent probe as a function of time. Successful assays contain microscopic fields of approximately 50 isolated points of fluorescence that move across the field in the presence of ATP. Actin is usually translocated by more than one myosin molecule, depending on the filament length and the myosin surface density. Sparsely labeled filaments are required because the orientation of only one probe can be resolved at a time.

  16. Development and use of chlorotetracycline fluorescence as a measurement assay of chloroplast envelope-bound mg.

    PubMed

    Gupta, A S; Berkowitz, G A

    1989-03-01

    Experiments were conducted to develop chlorotetracycline (CTC) fluorescence as an assay of Mg(2+) bound to the envelope of the intact chloroplast. This assay technique has been widely used to measure envelope associated divalent cations in animal cell and subcellular systems, but has not been used with chloroplasts. Chloroplast envelope-associated Mg(2+) was altered by pretreatment with Mg(2+) and divalent cation chelating agents and by additions of Mg(2+) to the CTC assay medium. Results indicated that for a given chloroplast preparation, relative changes in envelope-associated Mg(2+) can be effectively monitored with CTC fluorescence. It was concluded that the limitations of this assay system are: (a) chlorophyll strongly quenches CTC fluorescence signal, so a constant chlorophyll concentration must be maintained, (b) measurements must be made quickly, and (c) use of the technique to compare different chloroplast preparations may not be valid. Studies with (28)Mg(2+) confirmed our interpretation of the fluorescence results, and also suggested that the chloroplast envelope is fairly impermeable to Mg(2+). It was concluded that changes in Mg(2+) associated with the chloroplast due to incubation of plastids in solutions containing up to 5 millimolar Mg(2+) may be exclusively due to increased envelope-associated Mg(2+). The CTC assay was used in experiments to demonstrate that increases in chloroplast envelope-associated Mg(2+) inhibit photosynthetic capacity. This inhibition can be partially overcome by the presence of K(+) in the photosynthetic reaction media.

  17. Long term response of a Concanavalin-A based fluorescence glucose sensing assay

    NASA Astrophysics Data System (ADS)

    Locke, Andrea K.; Cummins, Brian M.; Abraham, Alexander A.; Coté, Gerard L.

    2015-03-01

    Competitive binding assays comprised of the protein Concanavalin A (ConA) have shown potential for use in continuous glucose monitoring devices. However, its time-dependent, thermal instability can impact the lifetime of these ConA based assays. In an attempt to design sensors with longer in vivo lifetimes, different groups have immobilized the protein to various surfaces. For example, Ballerstadt et al. have shown that immobilizing ConA onto the interior of a micro-dialysis membrane and allowing dextran to be freely suspended within solution allowed for successful in vivo glucose sensing up to 16 days. This work explores the glucose response of an assay comprised of modified ConA and a single fluorescently labeled competing ligand in free solution to increase the in vivo sensing lifetime without immobilization,. The behavior of this assay in the presence of varying glucose concentrations is monitored via fluorescence anisotropy over a 30 day period.

  18. Assessment of Nuclear Resonance Fluorescence for Spent Nuclear Fuel Assay

    SciTech Connect

    Quiter, Brian; Ludewigt, Bernhard; Ambers, Scott

    2011-06-30

    In nuclear resonance fluorescence (NRF) measurements, resonances are excited by an external photon beam leading to the emission of gamma rays with specific energies that are characteristic of the emitting isotope. NRF promises the unique capability of directly quantifying a specific isotope without the need for unfolding the combined responses of several fissile isotopes as is required in other measurement techniques. We have analyzed the potential of NRF as a non-destructive analysis technique for quantitative measurements of Pu isotopes in spent nuclear fuel (SNF). Given the low concentrations of 239Pu in SNF and its small integrated NRF cross sections, the main challenge in achieving precise and accurate measurements lies in accruing sufficient counting statistics in a reasonable measurement time. Using analytical modeling, and simulations with the radiation transport code MCNPX that has been experimentally tested recently, the backscatter and transmission methods were quantitatively studied for differing photon sources and radiation detector types. Resonant photon count rates and measurement times were estimated for a range of photon source and detection parameters, which were used to determine photon source and gamma-ray detector requirements. The results indicate that systems based on a bremsstrahlung source and present detector technology are not practical for high-precision measurements of 239Pu in SNF. Measurements that achieve the desired uncertainties within hour-long measurements will either require stronger resonances, which may be expressed by other Pu isotopes, or require quasi-monoenergetic photon sources with intensities that are approximately two orders of magnitude higher than those currently being designed or proposed.This work is part of a larger effort sponsored by the Next Generation Safeguards Initiative to develop an integrated instrument, comprised of individual NDA techniques with complementary features, that is fully capable of

  19. A direct, continuous, sensitive assay for protein disulphide-isomerase based on fluorescence self-quenching.

    PubMed

    Raturi, Arun; Vacratsis, Panayiotis O; Seslija, Dana; Lee, Lana; Mutus, Bulent

    2005-10-15

    PDI (protein disulphide-isomerase) activity is generally monitored by insulin turbidity assay or scrambled RNase assay, both of which are performed by UV-visible spectroscopy. In this paper, we present a sensitive fluorimetric assay for continuous determination of disulphide reduction activity of PDI. This assay utilizes the pseudo-substrate diabz-GSSG [where diabz stands for di-(o-aminobenzoyl)], which is formed by the reaction of isatoic anhydride with the two free N-terminal amino groups of GSSG. The proximity of two benzoyl groups leads to quenching of the diabz-GSSG fluorescence by approx. 50% in comparison with its non-disulphide-linked form, abz-GSH (where abz stands for o-aminobenzoyl). Therefore the PDI-dependent disulphide reduction can be monitored by the increase in fluorescence accompanying the loss of proximity-quenching upon conversion of diabz-GSSG into abz-GSH. The apparent K(m) of PDI for diabz-GSSG was estimated to be approx. 15 muM. Unlike the insulin turbidity assay and scrambled RNase assay, the diabz-GSSG-based assay was shown to be effective in determining a single turnover of enzyme in the absence of reducing agents with no appreciable blank rates. The assay is simple to perform and very sensitive, with an estimated detection limit of approx. 2.5 nM PDI, enabling its use for the determination of platelet surface PDI activity in crude sample preparations.

  20. Medically Relevant Assays with a Simple Smartphone and Tablet Based Fluorescence Detection System

    PubMed Central

    Wargocki, Piotr; Deng, Wei; Anwer, Ayad G.; Goldys, Ewa M.

    2015-01-01

    Cell phones and smart phones can be reconfigured as biomedical sensor devices but this requires specialized add-ons. In this paper we present a simple cell phone-based portable bioassay platform, which can be used with fluorescent assays in solution. The system consists of a tablet, a polarizer, a smart phone (camera) and a box that provides dark readout conditions. The assay in a well plate is placed on the tablet screen acting as an excitation source. A polarizer on top of the well plate separates excitation light from assay fluorescence emission enabling assay readout with a smartphone camera. The assay result is obtained by analysing the intensity of image pixels in an appropriate colour channel. With this device we carried out two assays, for collagenase and trypsin using fluorescein as the detected fluorophore. The results of collagenase assay with the lowest measured concentration of 3.75 µg/mL and 0.938 µg in total in the sample were comparable to those obtained by a microplate reader. The lowest measured amount of trypsin was 930 pg, which is comparable to the low detection limit of 400 pg for this assay obtained in a microplate reader. The device is sensitive enough to be used in point-of-care medical diagnostics of clinically relevant conditions, including arthritis, cystic fibrosis and acute pancreatitis. PMID:26007723

  1. Development of fluorescent Plasmodium falciparum for in vitro growth inhibition assays

    PubMed Central

    2010-01-01

    Background Plasmodium falciparum in vitro growth inhibition assays are widely used to evaluate and quantify the functional activity of acquired and vaccine-induced antibodies and the anti-malarial activity of known drugs and novel compounds. However, several constraints have limited the use of these assays in large-scale population studies, vaccine trials and compound screening for drug discovery and development. Methods The D10 P. falciparum line was transfected to express green fluorescent protein (GFP). In vitro growth inhibition assays were performed over one or two cycles of P. falciparum asexual replication using inhibitory polyclonal antibodies raised in rabbits, an inhibitory monoclonal antibody, human serum samples, and anti-malarials. Parasitaemia was evaluated by microscopy and flow cytometry. Results Transfected parasites expressed GFP throughout all asexual stages and were clearly detectable by flow cytometry and fluorescence microscopy. Measurement of parasite growth inhibition was the same when determined by detection of GFP fluorescence or staining with ethidium bromide. There was no difference in the inhibitory activity of samples when tested against the transfected parasites compared to the parental line. The level of fluorescence of GFP-expressing parasites increased throughout the course of asexual development. Among ring-stages, GFP-fluorescent parasites were readily separated from uninfected erythrocytes by flow cytometry, whereas this was less clear using ethidium bromide staining. Inhibition by serum and antibody samples was consistently higher when tested over two cycles of growth compared to one, and when using a 1 in 10 sample dilution compared to 1 in 20, but there was no difference detected when using a different starting parasitaemia to set-up growth assays. Flow cytometry based measurements of parasitaemia proved more reproducible than microscopy counts. Conclusions Flow cytometry based assays using GFP-fluorescent parasites proved

  2. Evaluation of a fluorescent DNA hybridization assay for the detection of Neisseria gonorrhoeae.

    PubMed

    Cano, R J; Palomares, J C; Torres, M J; Klem, R E

    1992-07-01

    This study evaluates a four-hour fluorescent DNA hybridization assay using both known bacterial isolates and clinical specimens. A biotinylated oligonucleotide probe from a sequence of the plasmid-encoded gene cppB was used. Hybrids were detected by addition of a streptavidin-alkaline phosphatase conjugate, followed by incubation for 30 min in a fluorescent substrate for alkaline phosphatase. The level of detection of the fluorescent assay was 0.1 pg of cryptic plasmid DNA or 200 cfu of the plasmid-containing strain NG 34/85 of Neisseria gonorrhoeae. A total of 119 reference strains of Neisseria gonorrhoeae and other related bacteria were tested for reactivity with the probe. All Neisseria gonorrhoeae strains, including eight plasmid-free strains, hybridized with the probe. Fluorescence ratios were 2.67 for plasmid-free strains and 3.85 for plasmid-containing strains. Of the heterologous microorganisms tested, only one of six strains of Neisseria cinerea gave a fluorescence ratio above the 2.0 cut-off value for positivity with the probe at a cell density of 1 x 10(4) cfu. The probe was also evaluated using clinical specimens from 100 patients attending a clinic for sexually transmitted diseases. The sensitivity of the assay was 100% while the specificity was 97.5%. Positive and negative predictive values were 91.2% and 100%, respectively. The fluorescent DNA hybridization assay for the detection of Neisseria gonorrhoeae described here thus appears to be a highly specific and sensitive assay.

  3. Depolarization of Surface-Enhanced Fluorescence: An Approach to Fluorescence Polarization Assays

    PubMed Central

    Szmacinski, Henryk; Lakowicz, Joseph R.

    2009-01-01

    Localized surface plasmons of metallic particles of sub-wavelength sizes strongly modify the spectral properties of nearby fluorophores. The enhanced radiative decay rate leads to high fluorescence efficiencies and decreased fluorescence lifetimes. In this report we show that metal-enhanced fluorescence generated by the presence of the silver islands on the glass substrate displays high depolarization. Intensities, lifetimes, and emission anisotropies of several fluorophore protein conjugates have been studied in the absence and presence of metallic nanostructures. Despite highly decreased lifetimes of about 10-fold and immobilization of conjugates on the solid substrate, the observed emission anisotropies for all fluorophores on the metal-enhanced substrate decreased 300–500% compared to that in solution. This observation implies a new generation of fluorescence polarization immunoassays with broad applications because of no restrictions to the lifetime of the probe and the size of labeled biomolecules. The changes in polarization are due to binding that occur on the bioactive surface localized near the metal particles. PMID:18627176

  4. Osteoconductivity of Complex Biomaterials Assayed by Fluorescent-Engineered Osteoblast-like Cells.

    PubMed

    Manfrini, Marco; Mazzoni, Elisa; Barbanti-Brodano, Giovanni; Nocini, Pierfrancesco; D'agostino, Antonio; Trombelli, Leonardo; Tognon, Mauro

    2015-04-01

    Biomaterials employed for the bone regeneration can be assayed for specific features such as osteoconductivity and gene expression. In this study, the composite HA/collagen/chondroitin-sulfate biomaterial was investigated using an engineered human cell line, named Saos-eGFP. This cell line, a green fluorescent engineered human osteoblast-like cell, was employed as a cellular model for the in vitro study of biomaterial characteristics. The cytotoxicity was indirectly evaluated by fluorescence detection, osteoconductivity was assayed both by fluorescence and electron microscope analysis as well as cell morphology, whereas the RT-PCR technique was employed to assay gene expression. Saos-eGFP cells viability detection after 24 and 96 h of incubation showed that biomaterial enables the adhesion and proliferation of seeded cells as well as that of the plastic surface, the control. Fluorescence and scanning electron microscopy (SEM) analyses indicated that Saos-eGFP cells were homogeneously distributed on the HA granule surfaces, exhibiting cytoplasmic bridges, and were localized on the collagen-chondroitin sulfate extra-cellular matrix. An expression analysis of specific genes encoding for differentiation markers, showed that biomaterial assayed did not alter the osteogenic pathway of the Saos-eGFP cell line. Our assays confirm the cytocompatibility of this biomaterial, suggesting an osteoconductive capacity mediated by its chemical contents. We showed that the Saos-eGFP cellular model is suitable for in vitro biomaterial assays, and more specifically for assessing osteoconductivity. This result suggests that the cytocompatibility and osteoconductive features of the biomaterial assayed as bone substitute, could have a positive downstream effect on implant osteo-integration.

  5. DETECTION OF LOW DOSE RADIATION INDUCED DNA DAMAGE USING TEMPERATURE DIFFERENTIAL FLUORESCENCE ASSAY

    EPA Science Inventory

    A rapid and sensitive fluorescence assay for radiation-induced DNA damage is reported. Changes in temperature-induced strand separation in both calf thymus DNA and plasmid DNA (puc 19 plasmid from Escherichia coli) were measured after exposure to low doses of radiation. Exposur...

  6. Detection of Viruses By Counting Single Fluorescent Genetically Biotinylated Reporter Immunophage Using a Lateral Flow Assay

    PubMed Central

    Kim, Jinsu; Adhikari, Meena; Dhamane, Sagar; Hagström, Anna E. V.; Kourentzi, Katerina; Strych, Ulrich; Willson, Richard C.; Conrad, Jacinta C.

    2015-01-01

    We demonstrated a lateral flow immunoassay (LFA) for detection of viruses using fluorescently-labeled M13 bacteriophage as reporters and single-reporter counting as the readout. AviTag-biotinylated M13 phage were functionalized with antibodies using avidin-biotin conjugation and fluorescently labeled with AlexaFluor 555. Individual phage bound to target viruses (here MS2 as a model) captured on an LFA membrane strip were imaged using epi-fluorescence microscopy. Using automated image processing, we counted the number of bound phage in micrographs as a function of target concentration. The resultant assay was more sensitive than enzyme-linked immunosorbent assays and traditional colloidal-gold nanoparticle LFAs for direct detection of viruses. PMID:25581289

  7. The inhibition of fluorescence resonance energy transfer between quantum dots for glucose assay.

    PubMed

    Hu, Bo; Zhang, Li-Pei; Chen, Mei-Ling; Chen, Ming-Li; Wang, Jian-Hua

    2012-02-15

    Fluorescence resonance energy transfer (FRET) between two quantum dots of different sizes causes fluorescence quenching. Hereby a binding site pre-blocking approach is proposed to avoid this effect. Pre-binding of glucose on the donor occupies the binding sites and thus blocks resonance energy transfer between the two quantum dots, protecting the fluorescence from being quenched. A glucose assay is developed based on this approach. The glucose content is correlated with the fluorescence difference in the absence and in the presence of glucose. In practice, Green QDs-Con A conjugates are used as donors and Red QDs-NH(2)-glu conjugates as acceptors to form FRET system. The inhibition of fluorescence quenching is then measured in the presence of glucose. A linear calibration graph is achieved within 0.1-2.0 mmolL(-1), along with a detection limit of 0.03 mmolL(-1) and a RSD of 2.1% (1.0 mmolL(-1)). 91-105% of glucose in serum and urine samples is recovered. It is worth mentioning that the present glucose assay approach also generates a fluorescence chromatic difference imaging, and the color display clearly identifies the glucose contents by visual detection with a distinguishing ability of ca. 0.5 mmolL(-1). The present approach can potentially be used for the clinical determination of glucose in biological samples which can be further developed into a glucose sensor.

  8. Fluorescence-based assays for in vitro analysis of cell adhesion and migration.

    PubMed

    Spessotto, Paola; Lacrima, Katia; Nicolosi, Pier Andrea; Pivetta, Eliana; Scapolan, Martina; Perris, Roberto

    2009-01-01

    Cell adhesion and cell migration are two primary cellular phenomena for which in vitro approaches may be exploited to effectively dissect the individual events and underlying molecular mechanisms. The use of assays dedicated to the analysis of cell adhesion and migration in vitro also afford an efficient way of conducting larger basic and applied research screenings on the factors affecting these processes and are potentially exploitable in the context of routine diagnostic, prognostic, and predictive tests in the biological and medical fields. Therefore, there is a longstanding continuum in the interest in devising more rationale such assays and major contributions in this direction have been provided by the advent of procedures based on fluorescence cell tagging, the design of instruments capable of detecting fluorescent signals with high sensitivity, and informatic tools allowing sophisticated elaboration of data generated through these instruments. In this report, we describe three representative fluorescence-based model assays for the qualitative and quantitative assessment of cell adhesion and cell locomotion in static and dynamic conditions. The assays are easily performed, accurate and reproducible, and can be automated for high-to-medium throughput screenings of cell behavior in vitro. Performance of the assays involves the use of certain dedicated disposable accessories, which are commercially available, and a few instruments that, due to their versatility, can be regarded as constituents of a more generic laboratory setup.

  9. Homogeneous plate based antibody internalization assay using pH sensor fluorescent dye.

    PubMed

    Nath, Nidhi; Godat, Becky; Zimprich, Chad; Dwight, Stephen J; Corona, Cesear; McDougall, Mark; Urh, Marjeta

    2016-04-01

    Receptor-mediated antibody internalization is a key mechanism underlying several anti-cancer antibody therapeutics. Delivering highly toxic drugs to cancer cells, as in the case of antibody drug conjugates (ADCs), efficient removal of surface receptors from cancer cells and changing the pharmacokinetics profile of the antibody drugs are some of key ways that internalization impacts the therapeutic efficacy of the antibodies. Over the years, several techniques have been used to study antibody internalization including radiolabels, fluorescent microscopy, flow cytometry and cellular toxicity assays. While these methods allow analysis of internalization, they have limitations including a multistep process and limited throughput and are generally endpoint assays. Here, we present a new homogeneous method that enables time and concentration dependent measurements of antibody internalization. The method uses a new hydrophilic and bright pH sensor dye (pHAb dye), which is not fluorescent at neutral pH but becomes highly fluorescent at acidic pH. For receptor mediated antibody internalization studies, antibodies against receptors are conjugated with the pHAb dye and incubated with the cells expressing the receptors. Upon binding to the receptor, the dyes conjugated to the antibody are not fluorescent because of the neutral pH of the media, but upon internalization and trafficking into endosomal and lysosomal vesicles the pH drops and dyes become fluorescent. The enabling attributes of the pHAb dyes are the hydrophilic nature to minimize antibody aggregation and bright fluorescence at acidic pH which allows development of simple plate based assays using a fluorescent reader. Using two different therapeutic antibodies--Trastuzumab (anti-HER2) and Cetuximab (anti-EGFR)--we show labeling with pHAb dye using amine and thiol chemistries and impact of chemistry and dye to antibody ration on internalization. We finally present two new approaches using the pHAb dye, which will be

  10. A chimera of green fluorescent protein with single chain variable fragment antibody against ginsenosides for fluorescence-linked immunosorbent assay.

    PubMed

    Sakamoto, Seiichi; Tanizaki, Yusuke; Pongkitwitoon, Benyakan; Tanaka, Hiroyuki; Morimoto, Satoshi

    2011-05-01

    A chimera of green fluorescent protein extracted from Aequorea coerulescens (AcGFP), a mutant that has been codon optimized for mammalian expression, with single-chain variable fragment (scFv) antibody against ginsenoside Re (GRe-scFv), named fluobody, has been successfully expressed in Escherichia coli (E. coli) to develop simple, speedy, and sensitive fluorescence-linked immunosorbent assay (FLISA). Two chimera proteins were constructed to contain GRe-scFv at the C-terminus of AcGFP (C-fluobody) and at the N-terminus of AcGFP (N-fluobody). These fluobodies were then purified by ion metal affinity chromatography and refolded by stepwise dialysis. The characterization of both fluobodies revealed that C-fluobody was found to be appropriate probe for FLISA as compare with N-fluobody. Furthermore, improvement of limit of detection (LOD) was observed in FLISA using C-fluobody (10 ng/mL) due to its strong fluorescence intensity of AcGFP compared with conventional enzyme-linked immunosorbent assay (ELISA) using parental monoclonal antibody against ginsenoside Re (G-Re), MAb-4G10 (100 ng/mL). Since some steps required in ELISA can be avoided in this present FLISA, speedy and sensitive immunoassay also could be performed using fluobody instead of monoclonal antibody and scFv.

  11. A continuous fluorescence displacement assay for BioA: An enzyme involved in biotin biosynthesis

    PubMed Central

    Wilson, Daniel J.; Shi, Ce; Duckworth, Benjamin P.; Muretta, Joseph M.; Manjunatha, Ujjini; Sham, Yuk Y.; Thomas, David D.; Aldrich, Courtney C.

    2011-01-01

    Cofactor biosynthetic pathways represent a rich source of potential antibiotic targets. The second step in biotin biosynthesis is performed by BioA, a pyridoxal 5′-phosphate (PLP) dependent enzyme. This enzyme has been confirmed as a candidate target in Mycobacterium tuberculosis; however, the current bioassay used to measure BioA activity is cumbersome and low-throughput. Here we describe the design, development and optimization of a continuous coupled fluorescence displacement assay to measure BioA activity. In this coupled assay, BioD converts the product of the BioA–catalyzed reaction into dethiobiotin, which is subsequently detected by displacement of a fluorescently labeled dethiobiotin probe from streptavidin. The assay was further adapted to a high-throughput screening format and validated against the LOPAC library. PMID:21621502

  12. Highly adaptable and sensitive protease assay based on fluorescence resonance energy transfer.

    PubMed

    Zauner, Thomas; Berger-Hoffmann, Renate; Müller, Katrin; Hoffmann, Ralf; Zuchner, Thole

    2011-10-01

    Proteases are widely used in analytical sciences and play a central role in several widespread diseases. Thus, there is an immense need for highly adaptable and sensitive assays for the detection and monitoring of various proteolytic enzymes. We established a simple protease fluorescence resonance energy transfer (pro-FRET) assay for the determination of protease activities, which could in principle be adapted for the detection of all proteases. As proof of principle, we demonstrated the potential of our method using trypsin and enteropeptidase in complex biological mixtures. Briefly, the assay is based on the cleavage of a FRET peptide substrate, which results in a dramatic increase of the donor fluorescence. The assay was highly sensitive and fast for both proteases. The detection limits for trypsin and enteropeptidase in Escherichia coli lysate were 100 and 10 amol, respectively. The improved sensitivity for enteropeptidase was due to the application of an enzyme cascade, which leads to signal amplification. The pro-FRET assay is highly specific as even high concentrations of other proteases did not result in significant background signals. In conclusion, this sensitive and simple assay can be performed in complex biological mixtures and can be easily adapted to act as a versatile tool for the sensitive detection of proteases.

  13. A high-throughput fluorescence-based assay for Plasmodium dihydroorotate dehydrogenase inhibitor screening.

    PubMed

    Caballero, Iván; Lafuente, María José; Gamo, Francisco-Javier; Cid, Concepción

    2016-08-01

    Plasmodium dihydroorotate dehydrogenase (DHODH) is a mitochondrial membrane-associated flavoenzyme that catalyzes the rate-limiting step of de novo pyrimidine biosynthesis. DHODH is a validated target for malaria, and DSM265, a potent inhibitor, is currently in clinical trials. The enzyme catalyzes the oxidation of dihydroorotate to orotate using flavin mononucleotide (FMN) as cofactor in the first half of the reaction. Reoxidation of FMN to regenerate the active enzyme is mediated by ubiquinone (CoQD), which is the physiological final electron acceptor and second substrate of the reaction. We have developed a fluorescence-based high-throughput enzymatic assay to find DHODH inhibitors. In this assay, the CoQD has been replaced by a redox-sensitive fluorogenic dye, resazurin, which changes to a fluorescent state on reduction to resorufin. Remarkably, the assay sensitivity to find competitive inhibitors of the second substrate is higher than that reported for the standard colorimetric assay. It is amenable to 1536-well plates with Z' values close to 0.8. The fact that the human enzyme can also be assayed in the same format opens additional applications of this assay to the discovery of inhibitors to treat cancer, transplant rejection, autoimmune diseases, and other diseases mediated by rapid cellular growth.

  14. Azadioxatriangulenium: a long fluorescence lifetime fluorophore for large biomolecule binding assay

    NASA Astrophysics Data System (ADS)

    Just Sørensen, Thomas; Thyrhaug, Erling; Szabelski, Mariusz; Luchowski, Rafal; Gryczynski, Ignacy; Gryczynski, Zygmunt; Laursen, Bo W.

    2013-06-01

    Of the many optical bioassays available, sensing by fluorescence anisotropy has great advantages as it provides a sensitive, instrumentally simple, ratiometric method of detection. However, it is hampered by a severe limitation, as the emission lifetime of the label needs to be comparable to the correlation lifetime (tumbling time) of the biomolecule which is labelled. For proteins of moderate size this is on the order of 20-200 ns, which due to practical issues currently limits the choice of labels to the dansyl-type dyes and certain aromatic dyes. These have the significant drawback of UV/blue absorption and emission as well as an often significant solvent sensitivity. Here, we report the synthesis and characterization of a new fluorescent label for high molecular weight biomolecule assay based on the azadioxatriangulenium motif. The NHS ester of the long fluorescence lifetime, red-emitting fluorophore: azadioxatriangulenium (ADOTA-NHS) was conjugated to anti-rabbit Immunoglobulin G (antiIgG). The long fluorescence lifetime was exploited to determine the correlation time of the high molecular weight antibody and its complex with rabbit Immunoglobulin G (IgG) with steady-state fluorescence anisotropy and time-resolved methods: solution phase immuno-assay was performed following either steady-state or time-resolved fluorescence anisotropy. By performing a variable temperature experiment it was determined that the binding of the ligand resulted in an increase in correlation time of more than 75%, and an increase in the steady-state anisotropy of 18%. The results show that the triangulenium class of dyes can be used in anisotropy assay to detect binding events involving biomolecules of far larger size than what is possible with most other red-emitting organic dyes.

  15. Fluorescence-based assay as a new screening tool for toxic chemicals

    NASA Astrophysics Data System (ADS)

    Moczko, Ewa; Mirkes, Evgeny M.; Cáceres, César; Gorban, Alexander N.; Piletsky, Sergey

    2016-09-01

    Our study involves development of fluorescent cell-based diagnostic assay as a new approach in high-throughput screening method. This highly sensitive optical assay operates similarly to e-noses and e-tongues which combine semi-specific sensors and multivariate data analysis for monitoring biochemical processes. The optical assay consists of a mixture of environmental-sensitive fluorescent dyes and human skin cells that generate fluorescence spectra patterns distinctive for particular physico-chemical and physiological conditions. Using chemometric techniques the optical signal is processed providing qualitative information about analytical characteristics of the samples. This integrated approach has been successfully applied (with sensitivity of 93% and specificity of 97%) in assessing whether particular chemical agents are irritating or not for human skin. It has several advantages compared with traditional biochemical or biological assays and can impact the new way of high-throughput screening and understanding cell activity. It also can provide reliable and reproducible method for assessing a risk of exposing people to different harmful substances, identification active compounds in toxicity screening and safety assessment of drugs, cosmetic or their specific ingredients.

  16. Fluorescence-based assay as a new screening tool for toxic chemicals.

    PubMed

    Moczko, Ewa; Mirkes, Evgeny M; Cáceres, César; Gorban, Alexander N; Piletsky, Sergey

    2016-09-22

    Our study involves development of fluorescent cell-based diagnostic assay as a new approach in high-throughput screening method. This highly sensitive optical assay operates similarly to e-noses and e-tongues which combine semi-specific sensors and multivariate data analysis for monitoring biochemical processes. The optical assay consists of a mixture of environmental-sensitive fluorescent dyes and human skin cells that generate fluorescence spectra patterns distinctive for particular physico-chemical and physiological conditions. Using chemometric techniques the optical signal is processed providing qualitative information about analytical characteristics of the samples. This integrated approach has been successfully applied (with sensitivity of 93% and specificity of 97%) in assessing whether particular chemical agents are irritating or not for human skin. It has several advantages compared with traditional biochemical or biological assays and can impact the new way of high-throughput screening and understanding cell activity. It also can provide reliable and reproducible method for assessing a risk of exposing people to different harmful substances, identification active compounds in toxicity screening and safety assessment of drugs, cosmetic or their specific ingredients.

  17. Fluorescence-based assay as a new screening tool for toxic chemicals

    PubMed Central

    Moczko, Ewa; Mirkes, Evgeny M.; Cáceres, César; Gorban, Alexander N.; Piletsky, Sergey

    2016-01-01

    Our study involves development of fluorescent cell-based diagnostic assay as a new approach in high-throughput screening method. This highly sensitive optical assay operates similarly to e-noses and e-tongues which combine semi-specific sensors and multivariate data analysis for monitoring biochemical processes. The optical assay consists of a mixture of environmental-sensitive fluorescent dyes and human skin cells that generate fluorescence spectra patterns distinctive for particular physico-chemical and physiological conditions. Using chemometric techniques the optical signal is processed providing qualitative information about analytical characteristics of the samples. This integrated approach has been successfully applied (with sensitivity of 93% and specificity of 97%) in assessing whether particular chemical agents are irritating or not for human skin. It has several advantages compared with traditional biochemical or biological assays and can impact the new way of high-throughput screening and understanding cell activity. It also can provide reliable and reproducible method for assessing a risk of exposing people to different harmful substances, identification active compounds in toxicity screening and safety assessment of drugs, cosmetic or their specific ingredients. PMID:27653274

  18. Comparison of conventional lateral-flow assays and a new fluorescent immunoassay to detect influenza viruses.

    PubMed

    Leonardi, Gary P; Wilson, Adele M; Zuretti, Alejandro R

    2013-05-01

    Sofia, a novel, fluorescent lateral-flow immunoassay was compared with two conventional colorimetric assays, Quickvue Influenza A+B and Directigen FLU A+B, to identify influenza viral antigen from patient nasopharyngeal specimens. A total of 118 frozen original influenza-positive specimens and 57 prospective specimens were examined. Using rt-PCR as a referee assay, sensitivity values (%) for influenza A/B of 80.0/74.8, 73.3/59.3 and 73.3/40.7 were obtained using the Sofia, Quickvue and Directigen assays, respectively. All assays demonstrated reduced sensitivity for influenza B as compared with influenza A virus. With respect to the Sofia assay, the sensitivity of influenza B for the Directigen assay was significantly diminished. False positive results were not observed in the Sofia and Directigen assays. The Quickvue assay produced 3 false-positive results (2 influenza A and 1 influenza B) resulting in a specificity (%) of 96 and 98 for influenza A and B, respectively. Cross-reactivity to other respiratory viruses was not observed among immunoassays. A sensitivity rank (highest to low) of rt-PCR>culture>Sofia>Quickvue>Directigen was established using dilutions of influenza A and B. Sofia provides enhanced sensitivity and objective result interpretation over conventional colorimetric immunoassays.

  19. A fluorescence-based quantitative real-time PCR assay for accurate Pocillopora damicornis species identification

    NASA Astrophysics Data System (ADS)

    Thomas, Luke; Stat, Michael; Evans, Richard D.; Kennington, W. Jason

    2016-09-01

    Pocillopora damicornis is one of the most extensively studied coral species globally, but high levels of phenotypic plasticity within the genus make species identification based on morphology alone unreliable. As a result, there is a compelling need to develop cheap and time-effective molecular techniques capable of accurately distinguishing P. damicornis from other congeneric species. Here, we develop a fluorescence-based quantitative real-time PCR (qPCR) assay to genotype a single nucleotide polymorphism that accurately distinguishes P. damicornis from other morphologically similar Pocillopora species. We trial the assay across colonies representing multiple Pocillopora species and then apply the assay to screen samples of Pocillopora spp. collected at regional scales along the coastline of Western Australia. This assay offers a cheap and time-effective alternative to Sanger sequencing and has broad applications including studies on gene flow, dispersal, recruitment and physiological thresholds of P. damicornis.

  20. A human CXCL13-induced actin polymerization assay measured by fluorescence plate reader.

    PubMed

    Alley, Jennifer; Bloom, Laird; Kasaian, Marion; Gao, Huilan; Berstein, Gabriel; Clark, James D; Miao, Wenyan

    2010-02-01

    The chemokine receptor CXCR5 is predominantly expressed on mature B cells and follicular T-helper cells. CXCR5 and its ligand CXCL13 participate in ectopic germinal center formation at the inflammatory sites of multiple immune diseases such as rheumatoid arthritis, multiple sclerosis, and Sjogren's syndrome. Therefore, disrupting CXCL13-induced chemotaxis may be a fruitful approach for developing therapeutics in treating these diseases. Cells undergo cytoskeletal rearrangement prior to chemotaxis, and therefore actin polymerization can be used as a surrogate readout more proximal to chemokine receptor activation than chemotaxis. Conventionally, actin polymerization is measured by fluorescence microscopy or flow cytometry, which are either of low throughput or in need of special instruments. We developed a 96-well actin polymerization assay that can process 1,000 to 1,500 samples a day. This assay uses a standard laboratory fluorescence microplate reader as the detection instrument and was optimized for various experimental conditions such as cell density, actin filament staining reagent, staining buffer, and cell culture conditions. We demonstrate that this actin polymerization assay in 96-well format exhibits the expected pharmacology for human CXCR5 and is suitable as a primary functional assay to screen neutralizing scFv in crude bacterial peri-preps and a secondary assay for small compound collections.

  1. Pharmacological characterization of a fluorescent uptake assay for the noradrenaline transporter.

    PubMed

    Haunsø, Anders; Buchanan, Dawn

    2007-04-01

    The noradrenaline transporter (NET) is a Na(+)/Cl(-) dependent monoamine transporter that mediates rapid clearance of noradrenaline from the synaptic cleft, thereby terminating neuronal signaling. NET is an important target for drug development and is known to be modulated by many psychoactive compounds, including psychostimulants and antidepressants. Here, the authors describe the development and pharmacological characterization of a nonhomogeneous fluorescent NET uptake assay using the compound 4-(4-dimethylaminostyryl)-N-methylpyridinium (ASP(+)). Data presented show that the pharmacology of both the classic radiolabeled (3)H-noradrenaline- and ASP(+)-based uptake assays are comparable, with an excellent correlation between potency obtained for known modulators of NET (r = 0.95, p < 0.0001). Furthermore, the fluorescent uptake assay is highly reproducible and has sufficiently large Z' values to be amenable for high-throughput screening (HTS). The advantage of this assay is compatibility with both 96- and 384-well formats and lack of radioactivity usage. Thus, the authors conclude that the assay is an inexpensive, viable approach for the identification and pharmacological profiling of small-molecule modulators of the monoamine transporter NET and may be amenable for HTS.

  2. An accurate assay for HCV based on real-time fluorescence detection of isothermal RNA amplification.

    PubMed

    Wu, Xuping; Wang, Jianfang; Song, Jinyun; Li, Jiayan; Yang, Yongfeng

    2016-09-01

    Hepatitis C virus (HCV) is one of the common reasons of liver fibrosis and hepatocellular carcinoma (HCC). Early, rapid and accurate HCV RNA detection is important to prevent and control liver disease. A simultaneous amplification and testing (SAT) assay, which is based on isothermal amplification of RNA and real-time fluorescence detection, was designed to optimize routine HCV RNA detection. In this study, HCV RNA and an internal control (IC) were amplified and analyzed simultaneously by SAT assay and detection of fluorescence using routine real-time PCR equipment. The assay detected as few as 10 copies of HCV RNA transcripts. We tested 705 serum samples with SAT, among which 96.4% (680/705) showed consistent results compared with routine real-time PCR. About 92% (23/25) discordant samples were confirmed to be same results as SAT-HCV by using a second real-time PCR. The sensitivity and specificity of SAT-HCV assay were 99.6% (461/463) and 100% (242/242), respectively. In conclusion, the SAT assay is an accurate test with a high specificity and sensitivity which may increase the detection rate of HCV. It is therefore a promising tool to diagnose HCV infection.

  3. Preparation of filamentous actin for polarized total internal reflection fluorescence microscopy (polTIRFM) motility assays.

    PubMed

    Beausang, John F; Sun, Yujie; Quinlan, Margot E; Forkey, Joseph N; Goldman, Yale E

    2012-05-01

    Polarized total internal reflection fluorescence microscopy (polTIRFM) can be used to detect the spatial orientation and rotational dynamics of single molecules. polTIRFM determines the three-dimensional angular orientation and the extent of wobble of a fluorescent probe bound to the macromolecule of interest. In this protocol, filamentous actin (F-actin) is polymerized from purified, monomeric actin (G-actin) for use in polTIRFM motility assays in which actin interacts with myosin. The procedures include (1) the preparation of unlabeled F-actin from G-actin; (2) the preparation of F-actin that is sparsely labeled with 6'-IATR (6'-iodoacetamidotetramethylrhodamine); and (3) the preparation of F-actin with a combination of unlabeled, biotinylated, and rhodamine-labeled monomers. Rhodamine-phalloidin actin, also used in polTIRFM assays, can be prepared using a procedure similar to the one for unlabeled actin.

  4. Development of Time Resolved Fluorescence Resonance Energy Transfer-based Assay for FXR Antagonist Discovery

    PubMed Central

    Yu, Donna D.; Lin, Wenwei; Chen, Taosheng; Forman, Barry M.

    2013-01-01

    FXR (farnesoid X receptor, NRIH4), a nuclear receptor, plays a major role in the control of cholesterol metabolism. FXR ligands have been investigated in preclinical studies for targeted therapy against metabolic diseases, but have shown limitations. Therefore, there is a need for new agonist or antagonist ligands of FXR, both for potential clinical applications, as well as to further elucidate its biological functions. Here we describe the use of the X-ray crystal structure of FXR complexed with the potent small molecule agonist GW4064 to design and synthesize a novel fluorescent, high-affinity probe (DY246) for time resolved fluorescence resonance energy transfer (TR-FRET) assays. We then used the TR-FRET assay for high throughput screening of a library of over 5,000 bioactive compounds. From this library, we identified 13 compounds that act as putative FXR transcriptional antagonists. PMID:23688559

  5. A Simple Fluorescence Assay for Quantification of Canine Neutrophil Extracellular Trap Release.

    PubMed

    Jeffery, Unity; Gray, Robert D; LeVine, Dana N

    2016-11-21

    Neutrophil extracellular traps are networks of DNA, histones and neutrophil proteins released in response to infectious and inflammatory stimuli. Although a component of the innate immune response, NETs are implicated in a range of disease processes including autoimmunity and thrombosis. This protocol describes a simple method for canine neutrophil isolation and quantification of NETs using a microplate fluorescence assay. Blood is collected using conventional venipuncture techniques. Neutrophils are isolated using dextran sedimentation and a density gradient using conditions optimized for dog blood. After allowing time for attachment to the wells of a 96 well plate, neutrophils are treated with NET-inducing agonists such as phorbol-12-myristate-13-acetate or platelet activating factor. DNA release is measured by the fluorescence of a cell-impermeable nucleic acid dye. This assay is a simple, inexpensive method for quantifying NET release, but NET formation rather than other causes of cell death must be confirmed with alternative methods.

  6. Development of time resolved fluorescence resonance energy transfer-based assay for FXR antagonist discovery.

    PubMed

    Yu, Donna D; Lin, Wenwei; Chen, Taosheng; Forman, Barry M

    2013-07-15

    FXR (farnesoid X receptor, NRIH4), a nuclear receptor, plays a major role in the control of cholesterol metabolism. FXR ligands have been investigated in preclinical studies for targeted therapy against metabolic diseases, but have shown limitations. Therefore, there is a need for new agonist or antagonist ligands of FXR, both for potential clinical applications, as well as to further elucidate its biological functions. Here we describe the use of the X-ray crystal structure of FXR complexed with the potent small molecule agonist GW4064 to design and synthesize a novel fluorescent, high-affinity probe (DY246) for time resolved fluorescence resonance energy transfer (TR-FRET) assays. We then used the TR-FRET assay for high throughput screening of a library of over 5000 bioactive compounds. From this library, we identified 13 compounds that act as putative FXR transcriptional antagonists.

  7. Fluorescence-based lateral flow assays for rapid oral fluid roadside detection of cannabis use.

    PubMed

    Plouffe, Brian D; Murthy, Shashi K

    2017-02-01

    With the recent worldwide changes in the legalization of marijuana, there is a significant need for rapid, roadside screening test for driving under the influence of drugs. A robust, sensitive, lateral flow assay has been developed to detect recent use via oral-fluid testing for Δ(9) -tetrahydrocannabinol (THC). This proof-of-concept assay uses a fluorescent-based immunoassay detection of polymeric beads, conjugated to antibodies against native THC. The fluorescent technique allows for significantly lower limits of detection and higher precision determination of recent marijuana use without the use of urine or blood sampling-thus allowing for roadside identification. Detection levels of 0.01 ng/mL were distinguished from background and the lower limit of quantification was determined to approach 1 ng/mL.

  8. A Microfluidic Microbeads Fluorescence Assay with Quantum Dots-Bead-DNA Probe.

    PubMed

    Ankireddy, S R; Kim, Jongsung

    2016-03-01

    A microfluidic bead-based nucleic acid sensor for the detection of tumor causing N-Ras genes using quantum dots has been developed. Presently, quantum dots-bead-DNA probe based hybridization detection methods are often called as 'bead based assays' and their success is substantially influenced by the dispensing and manipulation capability of the microfluidic technology. This study reports the detection of N-Ras cancer gene by fluorescence quenching of quantum dots immobilized on the surface of polystyrene beads. A microfluidic chip was constructed in which the quantum dots-bead-DNA probes were packed in the channel. The target DNA flowed across the beads and hybridized with immobilized probe sequences. The target DNA can be detected by the fluorescence quenching of the quantum dots due to their transfer of emission energy to intercalation dye after DNA hybridization. The mutated gene also induces fluorescence quenching but with less degree than the perfectly complementary target DNA.

  9. Engineering a ribozyme cleavage-induced split fluorescent aptamer complementation assay

    PubMed Central

    Ausländer, Simon; Fuchs, David; Hürlemann, Samuel; Ausländer, David; Fussenegger, Martin

    2016-01-01

    Hammerhead ribozymes are self-cleaving RNA molecules capable of regulating gene expression in living cells. Their cleavage performance is strongly influenced by intra-molecular loop–loop interactions, a feature not readily accessible through modern prediction algorithms. Ribozyme engineering and efficient implementation of ribozyme-based genetic switches requires detailed knowledge of individual self-cleavage performances. By rational design, we devised fluorescent aptamer-ribozyme RNA architectures that allow for the real-time measurement of ribozyme self-cleavage activity in vitro. The engineered nucleic acid molecules implement a split Spinach aptamer sequence that is made accessible for strand displacement upon ribozyme self-cleavage, thereby complementing the fluorescent Spinach aptamer. This fully RNA-based ribozyme performance assay correlates ribozyme cleavage activity with Spinach fluorescence to provide a rapid and straightforward technology for the validation of loop–loop interactions in hammerhead ribozymes. PMID:26939886

  10. Paper-based fluorescence resonance energy transfer assay for directly detecting nucleic acids and proteins.

    PubMed

    Li, Hua; Fang, Xueen; Cao, Hongmei; Kong, Jilie

    2016-06-15

    Paper-based fluorescence resonance energy transfer assay (FRET) is gaining great interest in detecting macro-biological molecule. It is difficult to achieve conveniently and fast detection for macro-biological molecule. Herein, a graphene oxide (GO)-based paper chip (glass fiber) integrated with fluorescence labeled single-stranded DNA (ssDNA) for fast, inexpensive and direct detection of biological macromolecules (proteins and nucleic acids) has been developed. In this paper, we employed the Cy3/FAM-labeled ssDNA as the reporter and the GO as quencher and the original glass fiber paper as data acquisition substrates. The chip which was designed and fabricated by a cutting machine is a miniature biosensor that monitors fluorescence recovery from resonance energy transfer. The hybridization assays and fluorescence detection were all simplified, and the surface of the chip did not require immobilization or washing. A Nikon Eclipse was employed as excited resource and a commercial digital camera was employed for capturing digital images. This paper-based microfluidics chip has been applied in the detection of proteins and nucleic acids. The biosensing capability meets many potential requirements for disease diagnosis and biological analysis.

  11. Novel fluorescent trimethine cyanine dye 7519 for amyloid fibril inhibition assay.

    PubMed

    Volkova, K D; Kovalska, V B; Inshin, D; Slominskii, Y L; Tolmachev, O I; Yarmoluk, S M

    2011-06-01

    Fluorescence spectroscopy was used to study the ability of dye 7519 to follow the transition of monomeric insulin into fibrils and applicability of the dye to the insulin aggregation inhibition assay. The commercially available classic amyloid stain, thioflavin T, was used as the reference dye. For selecting potential inhibitors, the QSAR approach was applied. Dye 7519 appeared to be suitable for monitoring insulin aggregation into fibrils in vitro. The properties of the dye allowed us to test it as a potential probe in the screening assay of potential inhibitors of insulin fibrillization. One hundred forty-four flavonoids were tested as potential inhibitors of amyloid fibril formation using the quantitative structure activity relationship approach. Among them, 10 candidates with high indexes of inhibition were selected for tests in vitro using dye 7519 and the reference amyloid dye thioflavine T. Using dye 7519 fluorescence, we found that two compounds had inhibitory effects on insulin amyloid formation. These results agree with inhibition data using the thioflavine T assay. Our studies demonstrated that the fluorescent cyanine dye 7519 is a sensitive probe for quantitative detection of insulin amyloid formation and can be applied to screen agents capable of affecting aggregation of amyloid proteins.

  12. Development of Tyrosinase Promoter-Based Fluorescent Assay for Screening of Anti-melanogenic Agents.

    PubMed

    Lee, JaeHo; Lee, SeungJun; Lee, ByungMan; Roh, KyungBaeg; Park, DeokHoon; Jung, EunSun

    2015-01-01

    For screening of skin-whitening ingredients that modulate inhibition of melanogenesis, tyrosinase promoter-based assay using a three-dimensional (3D) spheroid culture technique is a beneficial tool to improve the accuracy of raw material screening in cosmetics through mimicking of the in vivo microenvironment. Although the advantages of high-throughput screening (HTS) are widely known, there has been little focus on specific cell-based promoter assays for HTS in identifying skin-whitening ingredients that inhibit accumulation of melanin. The aim of this study was therefore to develop a large-scale compatible assay through pTyr-EGFP, an enhanced green fluorescent protein (EGFP)-based tyrosinase-specific promoter, to seek potential melanogenesis inhibitors for cosmetic use. Herein, a stably transfected human melanoma cell line expressing EGFP under the control of a 2.2-kb fragment derived from the tyrosinase gene was generated. Spontaneous induction of the tyrosinase promoter by 3D spheroid culture resulted in increased expression of EGFP, providing a significant correlation with the tyrosinase mRNA level, and subsequent inhibition of tyrosinase activity. Importantly, the pTyr-EGFP system provided successful tracking of the changes in the live image and real-time monitoring. Thus tyrosinase promoter-based fluorescent assay using a 3D spheroid culture can be useful as a screening system for exploring the efficiency of anti-melanogenesis ingredients.

  13. Quantitative determination of triglyceride by photoactivated CdSe/ZnS quantum dots through fluorescence assay.

    PubMed

    Huang, Chin-Ping; Li, Yaw-Kuen; Chen, Teng-Ming

    2008-07-01

    The quantitative detection of triglycerides is an important issue for health inspection of metabolic disorders and for food and oil-refining industries. Many methods have been designed to approach this target, in which multiple reactions catalyzed by enzymes are normally coupled consecutively. In this study, we demonstrated a simple assay system containing lipase and photoactivated luminescent CdSe/ZnS quantum dots (QDs) for the quantitative detection of triglycerides. Photoactivated CdSe/ZnS QDs function as a sensitive "indicator" to reveal the minute acidity change of the assay system resulting from the enzymatic hydrolysis of triglycerides. By controlling the initial buffer condition of the assay system at 5, 10, or 20 mM phosphate buffer at pH 8.0, respectively, the quenching ratio of the QDs fluorescence intensity monitored at the maximum photoluminescence showed a linear correlation with the concentration of the examined triglyceride in the range of 0.02-6, 0.2-10, or 2-20 mM, respectively. The assay system also provides a convenient way to estimate triglyceride concentration by visualizing the color change of the QDs fluorescence. As compared to most of the existing methods, the system reported herein possessed many advantages, including simplicity, low cost, high flexibility, and high sensitivity. Furthermore, no complicated chemical modification or enzyme immobilization is needed.

  14. Fluorescence assay of the interaction between hemoglobin and the cytoplasmic domain of erythrocyte membrane band 3.

    PubMed

    Sega, Martiana F; Chu, Haiyan; Christian, John A; Low, Philip S

    2015-10-01

    Oxygen tension has emerged as a potent regulator of multiple erythrocyte properties, including glucose metabolism, cell volume, ATP release, and cytoskeletal organization. Because hemoglobin (Hb)(1) binds to the cytoplasmic domain of band 3 (cdb3) in an oxygen dependent manner, with deoxyHb exhibiting significantly greater affinity for cdb3 than oxyHb, the deoxyHb-cdb3 interaction has been hypothesized to constitute the molecular switch for all O2-controlled erythrocyte processes. In this study, we describe a rapid and accurate method for quantitating the interaction of deoxyHb binding to cdb3. For this purpose, enhanced green fluorescent protein (eGFP) is fused to the COOH-terminus of cdb3, and the binding of Hb to the NH2-terminus of cdb3-eGFP is quantitated by Hb-mediated quenching of cdb3-eGFP fluorescence. As expected, the intensity of cdb3-eGFP fluorescence decreases only slightly following addition of oxyHb. However, upon deoxygenation of the same Hb-cdb3 solution, the fluorescence decreases dramatically (i.e. confirming that deoxyHb exhibits much greater affinity for cdb3 than oxyHb). Using this fluorescence quenching method, we not only confirm previously established characteristics of the Hb-cdb3 interaction, but also establish an assay that can be exploited to screen for inhibitors of the sickle Hb-cdb3 interaction that accelerates sickle Hb polymerization.

  15. A Combined Phagocytosis and Fluorescent Substrate Degradation Assay to Simultaneously Assess Cell Migration and Substrate Degradation.

    PubMed

    Pulkoski-Gross, Ashleigh

    2016-01-01

    In order to more rapidly define the mechanism by which certain drugs and compounds can influence cancer cell invasion, we have combined a traditional phagokinetic gold migration assay with a fluorescent substrate. The purpose of this dual assay is to provide a platform by which to simultaneously monitor proteolytic activity and cancer cell migratory ability, both of which are required for the crucial step of cancer cell invasion during metastasis. This assay allows for delineation of potential mechanisms of action a compound of interest has, as one can determine whether or not a cancer cell that is being treated with the potential drug has changes in proteolytic activity and/or migratory ability at the same time.

  16. Development of a Rapid Insulin Assay by Homogenous Time-Resolved Fluorescence

    PubMed Central

    Vallaghe, Julie; Gregor, Nathalie; Donthamsetti, Prashant; Harris, Paul E.; Pierre, Nicolas; Freyberg, Robin; Charrier-Savournin, Fabienne; Javitch, Jonathan A.; Freyberg, Zachary

    2016-01-01

    Direct measurement of insulin is critical for basic and clinical studies of insulin secretion. However, current methods are expensive and time-consuming. We developed an insulin assay based on homogenous time-resolved fluorescence that is significantly more rapid and cost-effective than current commonly used approaches. This assay was applied effectively to an insulin secreting cell line, INS-1E cells, as well as pancreatic islets, allowing us to validate the assay by elucidating mechanisms by which dopamine regulates insulin release. We found that dopamine functioned as a significant negative modulator of glucose-stimulated insulin secretion. Further, we showed that bromocriptine, a known dopamine D2/D3 receptor agonist and newly approved drug used for treatment of type II diabetes mellitus, also decreased glucose-stimulated insulin secretion in islets to levels comparable to those caused by dopamine treatment. PMID:26849707

  17. Androgen receptor transactivation assay using green fluorescent protein as a reporter.

    PubMed

    Beck, Verena; Reiter, Evelyne; Jungbauer, Alois

    2008-02-15

    For screening of a large number of samples for androgenic activity, a robust system with minimal handling is required. The coding sequence for human androgen receptor (AR) was inserted into expression plasmid YEpBUbi-FLAG1, resulting in the plasmid YEpBUbiFLAG-AR, and the estrogen response element (ERE) on the reporter vector YRpE2 was replaced by an androgen response element (ARE), resulting in the plasmid YRpE2-ARE. Thus, a fully functional transactivation assay system with beta-galactosidase as a reporter gene could be created. Furthermore, green fluorescent protein (GFP) was introduced as an alternative reporter gene that resulted in a simplification of the whole assay procedure. For evaluation of both reporter systems, seven steroidal compounds with known AR agonistic properties (5 alpha-dihydrotestosterone, testosterone, androstenedione, 17 alpha-methyltestosterone, progesterone, epitestosterone, and d-norgestrel) were tested, and their potencies obtained in the different assays were compared. Furthermore, potencies from the transactivation assays were compared with IC(50) values obtained in radioligand binding assays. The newly developed androgen receptor transactivation assay is a useful tool for characterizing compounds with androgenic activity.

  18. Five-Antigen Fluorescent Bead-Based Assay for Diagnosis of Lyme Disease

    PubMed Central

    Hasenkampf, Nicole R.; Barnes, Mary B.; Didier, Elizabeth S.; Philipp, Mario T.; Tardo, Amanda C.

    2016-01-01

    The systematically difficult task of diagnosing Lyme disease can be simplified by sensitive and specific laboratory tests. The currently recommended two-tier test for serology is highly specific but falls short in sensitivity, especially in the early acute phase. We previously examined serially collected serum samples from Borrelia burgdorferi-infected rhesus macaques and defined a combination of antigens that could be utilized for detection of infection at all phases of disease in humans. The five B. burgdorferi antigens, consisting of OspC, OspA, DbpA, OppA2, and the C6 peptide, were combined into a fluorescent cytometric bead-based assay for the detection of B. burgdorferi antigen-specific IgG antibodies. Samples from Lyme disease patients and controls were used to determine the diagnostic value of this assay. Using this sample set, we found that our five-antigen multiplex IgG assay exhibited higher sensitivity (79.5%) than the enzyme immunoassay (EIA) (76.1%), the two-tier test (61.4%), and the C6 peptide enzyme-linked immunosorbent assay (ELISA) (77.2%) while maintaining specificity over 90%. When detection of IgM was added to the bead-based assay, the sensitivity improved to 91%, but at a cost of reduced specificity (78%). These results indicate that the rational combination of antigens in our multiplex assay may offer an improved serodiagnostic test for Lyme disease. PMID:26843487

  19. Fluorescence-based assay for reactive oxygen species: A protective role for creatinine

    SciTech Connect

    Glazer, A.N. )

    1988-06-01

    Attack by reactive oxygen species leads to a decay in phycoerythrin fluorescence emission. This phenomenon provides a versatile new assay for small molecules and macromolecules that can function as protective compounds. With 1-2 {times} 10{sup {minus}8} M phycoerythrin, under conditions where peroxyl radical generation is rate-limiting, the fluorescence decay follows apparent zero-order kinetics. On reaction with HO{center dot}, generated with the ascorbate-Cu{sup 2+} system, the fluorescence decays with apparent first-order kinetics. Examination of the major components of human urine in this assay confirms that at physiological concentrations, urate protects against both types of oxygen radicals. A novel finding is that creatinine protects efficiently by a chelation mechanism against radical damage in the ascorbate-Cu{sup 2+} system at creatinine, ascorbate, and Cu{sup 2+} concentrations comparable to those in normal urine. Urate and creatinine provide complementary modes of protection against reactive oxygen species in the urinary tract.

  20. A fluorescent assay to quantitatively measure in vitro acyl CoA:diacylglycerol acyltransferase activity.

    PubMed

    McFie, Pamela J; Stone, Scot J

    2011-09-01

    Triacylglycerols (TG) are the major storage form of energy in eukaryotic organisms and are synthesized primarily by acyl CoA:1,2-diacylglycerol acyltransferase (DGAT) enzymes. In vitro DGAT activity has previously been quantified by measuring the incorporation of either radiolabeled fatty acyl CoA or diacylglycerol (DG) into TG. We developed a modified acyltransferase assay using a fluorescent fatty acyl CoA substrate to accurately quantify in vitro DGAT activity. In the modified assay, radioactive fatty acyl CoA is replaced with fluorescent NBD-palmitoyl CoA, which is used as a substrate by DGAT with DG to produce NBD-TG. After extraction with organic solvents and separation by thin layer chromatography, NBD-TG formation can be detected and accurately quantified using a fluorescent imaging system. We demonstrate that this method can be adapted to detect other acyltransferase activities. Because NBD-palmitoyl CoA is commercially available at a much lower cost compared with radioactive acyl CoA substrates, it is a more economical alternative to radioactive tracers. In addition, the exposure of laboratory personnel to radioactivity is greatly reduced.

  1. A high throughput fluorescent assay for measuring the activity of fatty acid amide hydrolase.

    PubMed

    Kage, Karen L; Richardson, Paul L; Traphagen, Linda; Severin, Jean; Pereda-Lopez, Ana; Lubben, Thomas; Davis-Taber, Rachel; Vos, Melissa H; Bartley, Diane; Walter, Karl; Harlan, John; Solomon, Larry; Warrior, Usha; Holzman, Thomas F; Faltynek, Connie; Surowy, Carol S; Scott, Victoria E

    2007-03-30

    Fatty acid amide hydrolase (FAAH) is the enzyme responsible for the rapid degradation of fatty acid amides such as the endocannabinoid anandamide. Inhibition of FAAH activity has been suggested as a therapeutic approach for the treatment of chronic pain, depression and anxiety, through local activation of the cannabinoid receptor CB1. We have developed a high throughput screening assay for identification of FAAH inhibitors using a novel substrate, decanoyl 7-amino-4-methyl coumarin (D-AMC) that is cleaved by FAAH to release decanoic acid and the highly fluorescent molecule 7-amino-4-methyl coumarin (AMC). This assay gives an excellent signal window for measuring FAAH activity and, as a continuous assay, inherently offers improved sensitivity and accuracy over previously reported endpoint assays. The assay was validated using a panel of known FAAH inhibitors and purified recombinant human FAAH, then converted to a 384 well format and used to screen a large library of compounds (>600,000 compounds) to identify FAAH inhibitors. This screen identified numerous novel FAAH inhibitors of diverse chemotypes. These hits confirmed using a native FAAH substrate, anandamide, and had very similar rank order potency to that obtained using the D-AMC substrate. Collectively these data demonstrate that D-AMC can be successfully used to rapidly and effectively identify novel FAAH inhibitors for potential therapeutic use.

  2. An enzyme-coupled continuous fluorescence assay for farnesyl diphosphate synthases.

    PubMed

    Dozier, Jonathan K; Distefano, Mark D

    2012-02-01

    Farnesyl diphosphate synthase (FDPS) catalyzes the conversion of isopentenyl diphosphate and dimethylallyl diphosphate to farnesyl diphosphate, a crucial metabolic intermediate in the synthesis of cholesterol, ubiquinone, and prenylated proteins; consequently, much effort has gone into developing inhibitors that target FDPS. Currently most FDPS assays either use radiolabeled substrates and are discontinuous or monitor pyrophosphate release and not farnesyl diphosphate (FPP) creation. Here we report the development of a continuous coupled enzyme assay for FDPS activity that involves the subsequent incorporation of the FPP product of that reaction into a peptide via the action of protein farnesyltransferase (PFTase). By using a dansylated peptide whose fluorescence quantum yield increases upon farnesylation, the rate of FDPS-catalyzed FPP production can be measured. We show that this assay is more sensitive than existing coupled assays, that it can be used to conveniently monitor FDPS activity in a 96-well plate format, and that it can reproduce IC(50) values for several previously reported FDPS inhibitors. This new method offers a simple, safe, and continuous method to assay FDPS activity that should greatly facilitate the screening of inhibitors of this important target.

  3. An enzyme-coupled continuous fluorescence assay for farnesyl diphosphate synthases

    PubMed Central

    Dozier, Jonathan K; Distefano, Mark D

    2012-01-01

    Farnesyl diphosphate synthase (FDPS) catalyzes the conversion of isopentenyl diphosphate and dimethylallyl diphosphate to farnesyl diphosphate, a crucial metabolic intermediate in the synthesis of cholesterol, ubiquinone and prenylated proteins; consequently, much effort has gone into developing inhibitors that target FDPS. Currently most FDPS assays use either radiolabeled substrates and are discontinuous, or monitor pyrophosphate release and not farnesyl diphosphate (FPP) creation. Here we report the development of a continuous coupled enzyme assay for FDPS activity that involves the subsequent incorporation of the FPP product of that reaction into a peptide via the action of protein farnesyltransferase (PFTase). By using a dansylated peptide whose fluorescence quantum yield increases upon farnesylation, the rate of FDPS-catalyzed FPP production can be measured. We show that this assay is more sensitive than existing coupled assays, that it can be used to conveniently monitor FDPS activity in a 96-well plate format and that it can reproduce IC50 values for several previously reported FDPS inhibitors. This new method offers a simple, safe and continuous method to assay FDPS activity that should greatly facilitate the screening of inhibitors of this important target. PMID:22085443

  4. A filter microplate assay for quantitative analysis of DNA binding proteins using fluorescent DNA.

    PubMed

    Yang, William C; Swartz, James R

    2011-08-15

    We present a rapid method for quantifying the apparent DNA binding affinity and capacity of recombinant transcription factors (TFs). We capture His6-tagged TFs using nickel-nitrilotriacetic acid (Ni-NTA) agarose and incubate the immobilized TFs with fluorescently labeled cognate DNA probes. After washing, the strength of the fluorescence signal indicates the extent of DNA binding. The assay was validated using two pluripotency-regulating TFs: SOX2 and NANOG. Using competitive binding analysis with nonlabeled competitor DNA, we show that SOX2 and NANOG specifically bind to their consensus sequences. We also determined the apparent affinity of SOX2 and NANOG for their consensus sequences to be 54.2±9 and 44.0±6nM, respectively, in approximate agreement with literature values. Our assay does not require radioactivity, but radioactively labeling the TFs enables the measurement of absolute amounts of immobilized SOX2 and NANOG and, hence, a DNA-to-protein binding ratio. SOX2 possesses a 0.95 DNA-to-protein binding ratio, whereas NANOG possesses a 0.44 ratio, suggesting that most of the SOX2 and approximately half of the NANOG are competent for DNA binding. Alternatively, the NANOG dimer may be capable of binding only one DNA target. This flexible DNA binding assay enables the analysis of crude or purified samples with or without radioactivity.

  5. Development of an immunochromatographic assay kit using fluorescent silica nanoparticles for rapid diagnosis of Acanthamoeba keratitis.

    PubMed

    Toriyama, Koji; Suzuki, Takashi; Inoue, Tomoyuki; Eguchi, Hiroshi; Hoshi, Saichi; Inoue, Yoshitsugu; Aizawa, Hideki; Miyoshi, Kazutomi; Ohkubo, Michio; Hiwatashi, Eiji; Tachibana, Hiroshi; Ohashi, Yuichi

    2015-01-01

    We developed an immunochromatographic assay kit that uses fluorescent silica nanoparticles bound to anti-Acanthamoeba antibodies (fluorescent immunochromatographic assay [FICGA]) and evaluated its efficacy for the detection of Acanthamoeba and diagnosis of Acanthamoeba keratitis (AK). The sensitivity of the FICGA kit was evaluated using samples of Acanthamoeba trophozoites and cysts diluted to various concentrations. A conventional immunochromatographic assay kit with latex labels (LICGA) was also evaluated to determine its sensitivity in detecting Acanthamoeba trophozoites. To check for cross-reactivity, the FICGA was performed by using samples of other common causative pathogens of infectious keratitis, such as Pseudomonas aeruginosa, Staphylococcus aureus, Staphylococcus epidermidis, and Candida albicans. Corneal scrapings from patients with suspected AK were tested with the FICGA kit to detect the presence of Acanthamoeba, and the results were compared with those of real-time PCR. The FICGA kit detected organisms at concentrations as low as 5 trophozoites or 40 cysts per sample. There were no cross-reactivities with other pathogens. The FICGA was approximately 20 times more sensitive than the LICGA for the detection of Acanthamoeba trophozoites. The FICGA kit yielded positive results for all 10 patients, which corresponded well with the real-time PCR results. The FICGA kit demonstrated high sensitivity for the detection of Acanthamoeba and may be useful for the diagnosis of AK.

  6. Fluorescence-based retention assays reveals sustained release of vascular endothelial growth factor from bone grafts.

    PubMed

    Kang, Wonmo; Yun, Ye-Rang; Lee, Dong-Sung; Kim, Tae-Hyun; Kim, Joong-Hyun; Kim, Hae-Won; Jang, Jun-Hyeog

    2016-01-01

    The sustained release of growth factors following their implantation in vivo is essential for successful outcomes in bone tissue engineering. In this study, we evaluated the release kinetics and delivery efficacies of vascular endothelial growth factor (VEGF), a potent angiogenic growth factor, incorporated into calcium phosphate bone grafts (BGs). We evaluated the release profile of VEGF from BGs using a novel fluorescence-based retention assay, which revealed that VEGF loaded on BGs can be released in a sustained manner without an initial burst (near zero-order cumulative release) with a controlled release rate of 13.6% per week for up to 7 weeks. In contrast, an ELISA-based release assay showed VEGF to have an early burst-release profile for the first week. However, the biological activity of VEGF released from the BGs was preserved over the 7-week release period, which is consistent with the sustained-release profile observed in the fluorescence-based retention assay. Furthermore, the in vivo bone-forming action of the VEGF-loaded BGs was well demonstrated in a rat subcutaneous model. Taken together, the sustained release of VEGF loaded onto BGs was effective in stimulating proliferation, angiogenesis and osteogenesis, suggesting the ultimate value of VEGF-engineered BGs for bone tissue engineering.

  7. Selective nonpeptidic fluorescent ligands for oxytocin receptor: design, synthesis, and application to time-resolved FRET binding assay.

    PubMed

    Karpenko, Iuliia A; Margathe, Jean-François; Rodriguez, Thiéric; Pflimlin, Elsa; Dupuis, Elodie; Hibert, Marcel; Durroux, Thierry; Bonnet, Dominique

    2015-03-12

    The design and the synthesis of the first high-affinity fluorescent ligands for oxytocin receptor (OTR) are described. These compounds enabled the development of a TR-FRET based assay for OTR, readily amenable to high throughput screening. The validation of the assay was achieved by competition experiments with both peptide and nonpeptide OTR ligands as competitors. These probes represent the first selective fluorescent ligands for the oxytocin G protein-coupled receptor.

  8. New applications of fluorescence polarization for enzyme assays and in genomics

    NASA Astrophysics Data System (ADS)

    Nikiforov, Theo; Coffin, Jill; Jeong, Sang; Simeonov, Anton; Bi, Xiahui

    2001-05-01

    We have developed new, fluorescence polarization-based approaches for performing enzyme assays in homogeneous solutions and for detecting the hybridization of peptide nucleic acids to DNA targets. In the first method, fluorescein-labeled peptides serving as protein kinase sustrates are thiophosphorylated in the presence of the ATP analog ATPγS. A sulfer-reactive biotin derivative is then added to the mixture and allowed to react with the thiophosphorylated peptide. The formation of a fluorescein-labeled, biotinylated product can be detected by measuring the fluorescence polarization signal of fluorescein upon addition of streptavidin. In the second method, fluorescein-labeled peptides are subjected to enzymatic phosphorylation, desphosphorlation, or proteollytic cleavage by protein kinases, phosphatases, and proteases. The differential binding of the enzymatic substrates and products to cationic polymers such as polyaraginine can be conveniently measured by fluorescence polarization. Finally, we have discovered that the process of hybridization of peptide nucleic acid probes (PNAs) to their target DNA molecules can be followed by measuring the fluorescence polarization of a fluorophore attached to the PNA probes. These measurements can be done either in the presence or absence of polylysine in solution. Examples of the application of this method for single nucleotide polymorphism (SNP) typing are presented.

  9. An Optimized Protocol for Electrophoretic Mobility Shift Assay Using Infrared Fluorescent Dye-labeled Oligonucleotides.

    PubMed

    Hsieh, Yi-Wen; Alqadah, Amel; Chuang, Chiou-Fen

    2016-11-29

    Electrophoretic Mobility Shift Assays (EMSA) are an instrumental tool to characterize the interactions between proteins and their target DNA sequences. Radioactivity has been the predominant method of DNA labeling in EMSAs. However, recent advances in fluorescent dyes and scanning methods have prompted the use of fluorescent tagging of DNA as an alternative to radioactivity for the advantages of easy handling, saving time, reducing cost, and improving safety. We have recently used fluorescent EMSA (fEMSA) to successfully address an important biological question. Our fEMSA analysis provides mechanistic insight into the effect of a missense mutation, G73E, in the highly conserved HMG transcription factor SOX-2 on olfactory neuron type diversification. We found that mutant SOX-2(G73E) protein alters specific DNA binding activity, thereby causing olfactory neuron identity transformation. Here, we present an optimized and cost-effective step-by-step protocol for fEMSA using infrared fluorescent dye-labeled oligonucleotides containing the LIM-4/SOX-2 adjacent target sites and purified SOX-2 proteins (WT and mutant SOX-2(G73E) proteins) as a biological example.

  10. Characterization of G Protein-coupled Receptors by a Fluorescence-based Calcium Mobilization Assay

    PubMed Central

    Caers, Jelle; Peymen, Katleen; Suetens, Nick; Temmerman, Liesbet; Janssen, Tom; Schoofs, Liliane; Beets, Isabel

    2014-01-01

    For more than 20 years, reverse pharmacology has been the preeminent strategy to discover the activating ligands of orphan G protein-coupled receptors (GPCRs). The onset of a reverse pharmacology assay is the cloning and subsequent transfection of a GPCR of interest in a cellular expression system. The heterologous expressed receptor is then challenged with a compound library of candidate ligands to identify the receptor-activating ligand(s). Receptor activation can be assessed by measuring changes in concentration of second messenger reporter molecules, like calcium or cAMP. The fluorescence-based calcium mobilization assay described here is a frequently used medium-throughput reverse pharmacology assay. The orphan GPCR is transiently expressed in human embryonic kidney 293T (HEK293T) cells and a promiscuous Gα16 construct is co-transfected. Following ligand binding, activation of the Gα16 subunit induces the release of calcium from the endoplasmic reticulum. Prior to ligand screening, the receptor-expressing cells are loaded with a fluorescent calcium indicator, Fluo-4 acetoxymethyl. The fluorescent signal of Fluo-4 is negligible in cells under resting conditions, but can be amplified more than a 100-fold upon the interaction with calcium ions that are released after receptor activation. The described technique does not require the time-consuming establishment of stably transfected cell lines in which the transfected genetic material is integrated into the host cell genome. Instead, a transient transfection, generating temporary expression of the target gene, is sufficient to perform the screening assay. The setup allows medium-throughput screening of hundreds of compounds. Co-transfection of the promiscuous Gα16, which couples to most GPCRs, allows the intracellular signaling pathway to be redirected towards the release of calcium, regardless of the native signaling pathway in endogenous settings. The HEK293T cells are easy to handle and have proven their

  11. A Quantitative Fluorescence-Based Assay for Assessing LIM Domain-Peptide Interactions.

    PubMed

    Robertson, Neil O; Shah, Manan; Matthews, Jacqueline M

    2016-10-10

    We have developed Förster resonance energy transfer (FRET)-based experiments for measuring the binding affinity, off-rates, and inferred on-rates for interactions between a family of transcriptional regulators and their intrinsically disordered binding partners. It was difficult to evaluate these interactions previously, as the transcriptional regulators are obligate binding proteins that aggregate in the absence of a binding partner. The assays rely on fusion constructs where binding domains are linked by a flexible tether containing a specific protease site, with fluorescent proteins at either end that display FRET when the complex is formed. Loss of FRET is monitored after cutting the tether followed by dilution or competition with a non-fluorescent peptide. These methods allowed a wide range of binding affinities (10(-9) -10(-5)  m) to be determined. Our data indicate that interactions of closely related proteins can have surprisingly different binding properties.

  12. Evaluation of three-dimensional microchannel glass biochips for multiplexed nucleic acid fluorescence hybridization assays.

    PubMed

    Benoit, V; Steel, A; Torres, M; Yu, Y Y; Yang, H; Cooper, J

    2001-06-01

    Three-dimensional, flow-through microchannel glass substrates have a potential for enhanced performance, including increased sensitivity and dynamic range, over traditional planar substrates used in medium-density microarray platforms. This paper presents a methodology for the implementation of multiplexed nucleic acid hybridization fluorescence assays on microchannel glass substrates. Fluorescence detection was achieved, in a first instance, using conventional low-magnification microscope objective lenses, as imaging optics whose depth-of-field characteristics match the thickness of the microchannel glass chip. The optical properties of microchannel glass were shown, through experimental results and simulations, to be compatible with the quantitative detection of heterogeneous hybridization events taking place along the microchannel sidewalls, with detection limits for oligonucleotide targets in the low-attomole range.

  13. Fluorescence polarization assay and inhibitor design for MDM2/p53 interaction.

    PubMed

    Zhang, Rumin; Mayhood, Todd; Lipari, Philip; Wang, Yaolin; Durkin, James; Syto, Rosalinda; Gesell, Jennifer; McNemar, Charles; Windsor, William

    2004-08-01

    MDM2 is an important negative regulator of the tumor suppressor protein p53 which regulates the expression of many genes including MDM2. The delicate balance of this autoregulatory loop is crucial for the maintenance of the genome and control of the cell cycle and apoptosis. MDM2 hyperactivity, due to amplification/overexpression or mutational inactivation of the ARF locus, inhibits the function of wild-type p53 and can lead to the development of a wide variety of cancers. Thus, the development of anti-MDM2 therapies may restore normal p53 function in tumor cells and induce growth suppression and apoptosis. We report here a novel high-throughput fluorescence polarization binding assay and its application in rank ordering small-molecule inhibitors that block the binding of MDM2 to a p53-derived fluorescent peptide.

  14. A Cellular Screening Assay Using Analysis of Metal-Modified Fluorescence Lifetime

    PubMed Central

    Cade, Nicholas I.; Fruhwirth, Gilbert; Archibald, Stephen J.; Ng, Tony; Richards, David

    2010-01-01

    Abstract Current methods for screening cell receptor internalization often require complex image analysis with limited sensitivity. Here we describe a novel bioassay based on detection of changes in global fluorescence lifetime above a gold substrate, with superresolution axial sensitivity and no need for image analysis. We show that the lifetime of enhanced green fluorescent protein expressed in a cellular membrane is greatly reduced in close proximity to the gold, resulting in a distance-dependent lifetime distribution throughout the cell. We demonstrate the application of this phenomenon in a screening assay by comparing the efficacies of two small molecule inhibitors interfering with the internalization process of a G protein-coupled receptor. PMID:20513420

  15. A reliable and sensitive bead-based fluorescence assay for identification of nucleic acid sequences

    NASA Astrophysics Data System (ADS)

    Klamp, Tobias; Yahiatène, Idir; Lampe, André; Schüttpelz, Mark; Sauer, Markus

    2011-03-01

    The sensitive and rapid detection of pathogenic DNA is of tremendous importance in the field of diagnostics. We demonstrate the ability of detecting and quantifying single- and double-stranded pathogenic DNA with picomolar sensitivity in a bead-based fluorescence assay. Selecting appropriate capturing and detection sequences enables rapid (2 h) and reliable DNA quantification. We show that synthetic sequences of S. pneumoniae and M. luteus can be quantified in very small sample volumes (20 μL) across a linear detection range over four orders of magnitude from 1 nM to 1 pM, using a miniaturized wide-field fluorescence microscope without amplification steps. The method offers single molecule detection sensitivity without using complex setups and thus volunteers as simple, robust, and reliable method for the sensitive detection of DNA and RNA sequences.

  16. Upconversion nanoparticle-based fluorescence resonance energy transfer assay for organophosphorus pesticides.

    PubMed

    Long, Qian; Li, Haitao; Zhang, Youyu; Yao, Shouzhuo

    2015-06-15

    This paper reports a novel nanosensor for organophosphorus pesticides based on the fluorescence resonance energy transfer (FRET) between NaYF4:Yb,Er upconversion nanoparticles (UCNPs) and gold nanoparticles (AuNPs). The detection mechanism is based on the facts that AuNPs quench the fluorescence of UCNPs and organophosphorus pesticides (OPs) inhibit the activity of acetylcholinesterase (AChE) which catalyzes the hydrolysis of acetylthiocholine (ATC) into thiocholine. Under the optimized conditions, the logarithm of the pesticides concentration was proportional to the inhibition efficiency. The detection limits of parathion-methyl, monocrotophos and dimethoate reached 0.67, 23, and 67 ng/L, respectively. Meanwhile, the biosensor shows good sensitivity, stability, and could be successfully applied to detection of OPs in real food samples, suggesting the biosensor has potentially extensive application clinic diagnoses assays.

  17. A Rapid Fluorescence Assay for Danofloxacin in Beef Muscle. Effect of Muscle Type on Limit of Quantitation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A simple, rapid fluorescence screening assay was applied to the analysis of beef muscle for danofloxacin at the U.S. tolerance level of 200 ng/g. Muscle samples were homogenized in acetic acid/acetonitrile, the resultant mixture centrifuged, and fluorescence of the supernatants was then measured. ...

  18. Nanoparticle-enhanced fluorescence emission for non-separation assays of carbohydrates using a boronic acid-alizarin complex.

    PubMed

    Li, Qianjin; Kamra, Tripta; Ye, Lei

    2016-03-04

    Addition of crosslinked polymer nanoparticles into a solution of a 3-nitrophenylboronic acid-alizarin complex leads to significant enhancement of fluorescence emission. Using the nanoparticle-enhanced boronic acid-alizarin system has improved greatly the sensitivity and extended the dynamic range of separation-free fluorescence assays for carbohydrates.

  19. Fluorescent target array killing assay: a multiplex cytotoxic T-cell assay to measure detailed T-cell antigen specificity and avidity in vivo.

    PubMed

    Quah, Benjamin J C; Wijesundara, Danushka K; Ranasinghe, Charani; Parish, Christopher R

    2012-08-01

    Here we describe a multiplex, fluorescence-based, in vivo cytotoxic T-cell assay using the three vital dyes carboxyfluorescein diacetate succinimidyl ester, cell trace violet, and cell proliferation dye efluor 670. When used to label cells in combination, these dyes can discriminate >200 different target cell populations in the one animal due to each target population having a unique fluorescence signature based on fluorescence intensity and the different emission wavelengths of the dyes. This allows the simultaneous measurement of the in vivo killing of target cells pulsed with numerous peptides at different concentrations and the inclusion of many replicates. This fluorescent target array killing assay can be used to measure the fine antigen specificity and avidity of polyclonal cytotoxic T-cell responses in vivo, immunological parameters that were previously impossible to monitor.

  20. Photonic Crystal Surfaces as a General Purpose Platform for Label-Free and Fluorescent Assays.

    PubMed

    Cunningham, Brian T

    2010-04-01

    Photonic crystal surfaces can be designed to provide a wide range of functions that are used to perform biochemical and cell-based assays. Detection of the optical resonant reflections from photonic crystal surfaces enables high sensitivity label-free biosensing, while the enhanced electromagnetic fields that occur at resonant wavelengths can be used to enhance the detection sensitivity of any surface-based fluorescence assay. Fabrication of photonic crystals from inexpensive plastic materials over large surface areas enables them to be incorporated into standard formats that include microplates, microarrays, and microfluidic channels. This report reviews the design of photonic crystal biosensors, their associated detection instrumentation, and biological applications. Applications including small molecule high throughput screening, cell membrane integrin activation, gene expression analysis, and protein biomarker detection are highlighted. Recent results in which photonic crystal surfaces are used for enhancing the detection of Surface-Enhanced Raman Spectroscopy, and the development of high resolution photonic crystal-based laser biosensors are also described.

  1. Use of anchor protein modules in fluorescence polarisation aptamer assay for ochratoxin A determination.

    PubMed

    Samokhvalov, Alexey V; Safenkova, Irina V; Eremin, Sergei A; Zherdev, Anatoly V; Dzantiev, Boris B

    2017-04-15

    A new strategy for sensitive fluorescence polarisation (FP) analysis is proposed which uses aptamer as the receptor and anchor protein modules as the enhancers by including the aptamers in complexes with protein modules. This approach is based on increasing the size differences of bound and unbound fluorophores. The strategy was applied in an ochratoxin A (ОТА) assay with the competitive binding of fluorophore-labelled and free OTA with aptamer-based receptors. We showed that the binding of labelled OTA with aptamer included in complexes with anchors led to higher a FP than binding with free aptamer. This allowed the aptamer concentration to be reduced, thus lowering the limit of detection by a factor of 40, down to 3.6 nM. The assay time was 15 min. To evaluate the applicability of the FP assay with aptamer-anchor complex to real samples, we conducted OTA measurements in spiked white wine. The OTA limit of detection in wine was 2.8 nM (1.1 μg/kg), and the recoveries ranged from 83% to 113%. The study shows that the proposed anchor strategy is efficient for increasing the sensitivity of FP-based aptamer assays.

  2. GFP-based fluorescence assay for CAG repeat instability in cultured human cells.

    PubMed

    Santillan, Beatriz A; Moye, Christopher; Mittelman, David; Wilson, John H

    2014-01-01

    Trinucleotide repeats can be highly unstable, mutating far more frequently than point mutations. Repeats typically mutate by addition or loss of units of the repeat. CAG repeat expansions in humans trigger neurological diseases that include myotonic dystrophy, Huntington disease, and several spinocerebellar ataxias. In human cells, diverse mechanisms promote CAG repeat instability, and in mice, the mechanisms of instability are varied and tissue-dependent. Dissection of mechanistic complexity and discovery of potential therapeutics necessitates quantitative and scalable screens for repeat mutation. We describe a GFP-based assay for screening modifiers of CAG repeat instability in human cells. The assay exploits an engineered intronic CAG repeat tract that interferes with expression of an inducible GFP minigene. Like the phenotypes of many trinucleotide repeat disorders, we find that GFP function is impaired by repeat expansion, in a length-dependent manner. The intensity of fluorescence varies inversely with repeat length, allowing estimates of repeat tract changes in live cells. We validate the assay using transcription through the repeat and engineered CAG-specific nucleases, which have previously been reported to induce CAG repeat instability. The assay is relatively fast and should be adaptable to large-scale screens of chemical and shRNA libraries.

  3. GFP-Based Fluorescence Assay for CAG Repeat Instability in Cultured Human Cells

    PubMed Central

    Santillan, Beatriz A.; Moye, Christopher; Mittelman, David; Wilson, John H.

    2014-01-01

    Trinucleotide repeats can be highly unstable, mutating far more frequently than point mutations. Repeats typically mutate by addition or loss of units of the repeat. CAG repeat expansions in humans trigger neurological diseases that include myotonic dystrophy, Huntington disease, and several spinocerebellar ataxias. In human cells, diverse mechanisms promote CAG repeat instability, and in mice, the mechanisms of instability are varied and tissue-dependent. Dissection of mechanistic complexity and discovery of potential therapeutics necessitates quantitative and scalable screens for repeat mutation. We describe a GFP-based assay for screening modifiers of CAG repeat instability in human cells. The assay exploits an engineered intronic CAG repeat tract that interferes with expression of an inducible GFP minigene. Like the phenotypes of many trinucleotide repeat disorders, we find that GFP function is impaired by repeat expansion, in a length-dependent manner. The intensity of fluorescence varies inversely with repeat length, allowing estimates of repeat tract changes in live cells. We validate the assay using transcription through the repeat and engineered CAG-specific nucleases, which have previously been reported to induce CAG repeat instability. The assay is relatively fast and should be adaptable to large-scale screens of chemical and shRNA libraries. PMID:25423602

  4. Fluorescence-based blood coagulation assay device for measuring activated partial thromboplastin time.

    PubMed

    Dudek, Magdalena M; Kent, Nigel; Gustafsson, Kerstin M; Lindahl, Tomas L; Killard, Anthony J

    2011-01-01

    The measurement of blood clotting time is important in a range of clinical applications such as assessing coagulation disorders and controlling the effect of various anticoagulant drug therapies. Clotting time tests essentially measure the onset of clot formation which results from the formation of fibrin fibers in the blood sample. However, such assays are inherently imprecise due to the highly variable nature of the clot formation process and the sample matrix. This work describes a clotting time measurement assay which uses a fluorescent probe to very precisely detect the onset of fibrin clot formation. It uses a microstructured surface which enhances the formation of multiple localized clot loci and which results in the abrupt redistribution of the fluorescent label at the onset of clot formation in both whole blood and plasma. This methodology was applied to the development of an activated partial thromboplastin time (aPTT) test in a lateral flow microfluidic platform and used to monitor the effect of heparin dosage where it showed linearity from 0 to 2 U/mL in spiked plasma samples (R(2)=0.996, n = 3), correlation against gold standard coagulometry of 0.9986, and correlation against standard hospital aPTT in 32 patient samples of 0.78.

  5. Dead cell counts during serum cultivation are underestimated by the fluorescent live/dead assay.

    PubMed

    Zhou, Shengda; Cui, Zhanfeng; Urban, Jill

    2011-05-01

    The live/dead fluorescent assay provides a quick method for assessing the proportion of live and dead cells in cell culture systems or tissues and is widely used. Dead cells are detected by the fluorescence produced when propidium iodide (PI) binds to DNA; PI and similar molecules are excluded from live cells but can penetrate dead cells because of their loss of membrane integrity. Here we investigated the effect of serum in the culture medium on the reliability of the method. We assessed viability of chondrocytes with/without serum using both a live/dead assay kit and also trypan blue staining. We found that after 2 days of culture, the DNA-binding dye PI could no longer detect dead cells if serum was present but they were readily detected in serum-free medium or if an inhibitor to DNase I was added to the serum-containing medium. Dead cells could be detected by trypan blue staining in all cultures. Hence dead cells are no longer detected as the DNase I present in serum degrades their DNA. DNA-binding dyes may thus not give a reliable estimate of the number of dead cells in systems that have been cultured in the presence of serum for several days.

  6. Fluorescent oligonucleotide probe based on G-quadruplex scaffold for signal-on ultrasensitive protein assay.

    PubMed

    Wu, Zai-Sheng; Hu, Peng; Zhou, Hui; Shen, Guoli; Yu, Ruqin

    2010-03-01

    This work reported the G-quadruplex structure of pyrene-labeled G-rich DNA probe and its application in the immunoglobulin E (IgE) detection, providing plausibly an insight into the biological function of human telomere. Based on the intermolecular G-quadruplex, a terminal-single-pyrene-labeled oligonucleotide signaling probe was developed and a novel protein assay strategy was proposed via combining specific DNA cleavage by S1 nuclease with target-recognizing aptamer. This assay platform not only circumvented the optimization of specific sites for reporter attachment and the pyrene monomer fluorescence quenching by flanking nucleotide bases but also presented a signal-on mechanism. Thus, ultrasensitive homogeneous detection of IgE was successfully conducted. A linear dynamic range of 4.72 x 10(-12) to 7.56 x 10(-9)m, a regression coefficient of 0.9941 and a detection limit of 9.45 x 10(-14)m were given. Additionally, a preliminary concept of the single-pyrene-labeled excimer fluorescence probes associated with G-quadruplex for screening biological markers was described. Importantly, the unexpected structural property of G-quadruplex discovered seems to provide valuable information to allow understanding of the structure and function of human telomere and exploring of useful structure-based anticancer drug.

  7. Label-free, turn-on fluorescent sensor for trypsin activity assay and inhibitor screening.

    PubMed

    Zhang, Lufeng; Qin, Haiyan; Cui, Wanwan; Zhou, Yang; Du, Jianxiu

    2016-12-01

    The development of new detection methods for proteases activity assay is important in clinical diagnostics and drug development. In this work, a simple, label-free, and turn-on fluorescent sensor was fabricated for trypsin, a protease produced in the pancreas. Cytochrome c, a natural substance of trypsin, could be selectively cleaved by trypsin into heme-peptide fragment. The produced heme-peptide fragment exhibited an intensive catalytic role on the H2O2-mediated the oxidation of thiamine to form strong fluorescent thiochrome. The fluorescence intensity was closely dependent on the amount of trypsin presented. The procedure allowed the measurement of trypsin over the range of 0.5-20.0μg/mL with a detection limit of 0.125μg/mL. The sensor showed better precision with a relative standard deviation of 1.6% for the measurement of 1.0μg/mL trypsin solution (n=11). This sensing system was applied to screen the inhibitor of trypsin, the IC50 values were calculated to be 12.71ng/mL for the trypsin inhibitor from soybean and 2.0μg/mL for benzamidine hydrochloride, respectively, demonstrating its potential application in drug development and related diseases treatment.

  8. Development and Application of a High-Throughput Fluorescence Polarization Assay to Target Pim Kinases.

    PubMed

    Lee, Seongho; Hong, Victor Sukbong

    2016-01-01

    Pim proteins consisting of three isoforms (Pim-1, Pim-2, and Pim-3) are a family of serine/threonine kinases that regulate fundamental cellular responses such as cell growth, differentiation, and apoptosis. Overexpression of the Pim kinases has been linked to a wide variety of hematological and solid tumors. Thus, all three Pim kinases have been studied as promising targets for anticancer therapy. Here, we report on the development and optimization of an immobilized metal ion affinity partitioning (IMAP) fluorescence polarization (FP) method for Pim kinases. In this homogeneous 384-well assay method, fluorescein-labeled phosphopeptides are captured on cationic nanoparticles through interactions with immobilized trivalent metals, resulting in high polarization values. The apparent Km values for adenosine triphosphate (ATP) were determined to be 45 ± 7, 6.4 ± 2, and 29 ± 5 μM for Pim-1, Pim-2, and Pim-3, respectively. The assay yielded robustness with Z'-factors of >0.75 and low day-to-day variability (CV <5%) for all three Pim kinases. The IMAP FP assay was further validated by determining IC50 values for staurosporine and a known Pim inhibitor. We have also used an IMAP FP assay to examine whether compound 1, an ATP mimetic inhibitor designed through structure-based drug design, is indeed an ATP-competitive inhibitor of Pim kinases. Kinetic analysis based on Lineweaver-Burk plots showed that the inhibition mechanism of compound 1 is ATP competitive against all three Pim isoforms. The optimized IMAP assay for Pim kinases not only allows for high-throughput screening but also facilitates the characterization of novel Pim inhibitors for drug development.

  9. A real-time fluorescence polarization activity assay to screen for inhibitors of bacterial ribonuclease P

    PubMed Central

    Liu, Xin; Chen, Yu; Fierke, Carol A.

    2014-01-01

    Ribonuclease P (RNase P) is an essential endonuclease that catalyzes the 5′ end maturation of precursor tRNA (pre-tRNA). Bacterial RNase P is an attractive potential antibacterial target because it is essential for cell survival and has a distinct subunit composition compared to the eukaryal counterparts. To accelerate both structure-function studies and discovery of inhibitors of RNase P, we developed the first real-time RNase P activity assay using fluorescence polarization/anisotropy (FP/FA) with a 5′ end fluorescein-labeled pre-tRNAAsp substrate. This FP/FA assay also detects binding of small molecules to pre-tRNA. Neomycin B and kanamycin B bind to pre-tRNAAsp with a Kd value that is comparable to their IC50 value for inhibition of RNase P, suggesting that binding of these antibiotics to the pre-tRNA substrate contributes to the inhibitory activity. This assay was optimized for high-throughput screening (HTS) to identify specific inhibitors of RNase P from a 2880 compound library. A natural product derivative, iriginol hexaacetate, was identified as a new inhibitor of Bacillus subtilis RNase P. The FP/FA methodology and inhibitors reported here will further our understanding of RNase P molecular recognition and facilitate discovery of antibacterial compounds that target RNase P. PMID:25249623

  10. Versatility of homogeneous time-resolved fluorescence resonance energy transfer assays for biologics drug discovery.

    PubMed

    Rossant, Christine J; Matthews, Carl; Neal, Frances; Colley, Caroline; Gardener, Matthew J; Vaughan, Tristan

    2015-04-01

    Identification of potential lead antibodies in the drug discovery process requires the use of assays that not only measure binding of the antibody to the target molecule but assess a wide range of other characteristics. These include affinity ranking, measurement of their ability to inhibit relevant protein-protein interactions, assessment of their selectivity for the target protein, and determination of their species cross-reactivity profiles to support in vivo studies. Time-resolved fluorescence resonance energy transfer is a technology that offers the flexibility for development of such assays, through the availability of donor and acceptor fluorophore-conjugated reagents for detection of multiple tags or fusion proteins. The time-resolved component of the technology reduces potential assay interference, allowing screening of a range of different crude sample types derived from the bacterial or mammalian cell expression systems often used for antibody discovery projects. Here we describe the successful application of this technology across multiple projects targeting soluble proteins and demonstrate how it has provided key information for the isolation of potential therapeutic antibodies with the desired activity profile.

  11. Fast and sensitive DNA hybridization assays using microwave-accelerated metal-enhanced fluorescence.

    PubMed

    Aslan, Kadir; Malyn, Stuart N; Geddes, Chris D

    2006-09-22

    A new, fast, and sensitive DNA hybridization assay platform based on microwave-accelerated metal-enhanced fluorescence (MAMEF) is presented. Thiolated oligonucleotide anchors were immobilized onto silver nanoparticles on a glass substrate. The hybridization of the complementary fluorescein-labeled DNA target with the surface-bound oligonucleotides was completed within 20 s upon heating with low-power microwaves. In addition, the signal is optically amplified, a consequence of close proximity of the fluorophore to the silvered substrate. In this proof-of-principle methodology, as low as 50 nM of a target DNA was detected, although we envisage far-lower detection limits. Control experiments, where the surface-bound oligonucleotide was omitted, were also performed to determine the extent of non-specific binding. In these studies a significantly reduced non-specific adsorption was found when using microwave heating near to silvered structures as compared to room temperature incubation. These findings suggest that MAMEF could be a most useful alternative to the DNA hybridization assays used today, especially with regard to substantially increasing both the assay rapidity and sensitivity.

  12. Fluorescence assay of dihydroorotate dehydrogenase that may become a cancer biomarker

    PubMed Central

    Yin, Sheng; Kabashima, Tsutomu; Zhu, Qinchang; Shibata, Takayuki; Kai, Masaaki

    2017-01-01

    We developed an assay method for measuring dihydroorotate dehydrogenase (DHODH) activity in cultured HeLa cells and fibroblasts, and in stage III stomach cancer and adjacent normal tissues from the same patient. The assay comprised enzymatic reaction of DHODH with a large amount of dihydroorotic acid substrate, followed by fluorescence (FL) detection specific for orotic acid using the 4-trifluoromethyl-benzamidoxime fluorogenic reagent. The DHODH activities in the biologically complex samples were readily measured by the assay method. Our data indicate significantly higher DHODH activity in HeLa cells (340 ± 25.9 pmol/105 cells/h) than in normal fibroblasts (54.1 ± 7.40 pmol/105 cells/h), and in malignant tumour tissue (1.10 ± 0.19 nmol/mg total proteins/h) than in adjacent normal tissue (0.24 ± 0.11 nmol/mg total proteins/h). This is the first report that DHODH activity may be a diagnostic biomarker for cancer. PMID:28084471

  13. Real-time ratiometric fluorescent assay for alkaline phosphatase activity with stimulus responsive infinite coordination polymer nanoparticles.

    PubMed

    Deng, Jingjing; Yu, Ping; Wang, Yuexiang; Mao, Lanqun

    2015-03-03

    This study demonstrates a novel ratiometric fluorescent method for real-time alkaline phosphatase (ALP) activity assay with stimulus responsive infinite coordination polymer (ICP) nanoparticles as the probe. The ICP nanoparticles used in this study are composed of two components; one is the supramolecular ICP network formed with guanine monophosphate (GMP) as the ligand and Tb(3+) as the central metal ion, and the other is a fluorescent dye, i.e., 7-amino-4-methyl coumarin (coumarin) encapsulated into the ICP network. Upon being excited at 315 nm, the ICP network itself emits green fluorescence at 552 nm. Coumarin dye encapsulated in the ICP network emits weak fluorescence at 450 nm upon excitation at the same wavelength (315 nm), and this fluorescence emission becomes strong when the encapsulated dye is released from the network into the solution phase. Hence, we develop a ratiometric fluorescent assay based on the ALP-induced destruction of the supramolecular ICP network and the release of coumarin. This mechanism can be used for real-time ratiometric fluorescent monitoring of ALP activity by continuously measuring the ratio of fluorescent intensity at the wavelength of 552 nm (F552) to that at 450 nm (F450) (F552/F450) in the time-dependent fluorescent spectra of the coumarin@Tb-GMP suspension containing ALP with different activities. Under the experimental conditions employed here, the F552/F450 value is linear with the ALP activity within a range from 0.025 U/mL to 0.2 U/mL. The detection limit is down to 0.010 U/mL (S/N = 3). Moreover, the assay developed here is employed for ALP inhibitor evaluation. This study offers a simple yet sensitive method for real-time ALP activity assay.

  14. A Fluorescence-Based Thermal Shift Assay Identifies Inhibitors of Mitogen Activated Protein Kinase Kinase 4

    PubMed Central

    Krishna, Sankar N.; Luan, Chi-Hao; Mishra, Rama K.; Xu, Li; Scheidt, Karl A.; Anderson, Wayne F.; Bergan, Raymond C.

    2013-01-01

    Prostate cancer (PCa) is the second highest cause of cancer death in United States males. If the metastatic movement of PCa cells could be inhibited, then mortality from PCa could be greatly reduced. Mitogen-activated protein kinase kinase 4 (MAP2K4) has previously been shown to activate pro-invasion signaling pathways in human PCa. Recognizing that MAP2K4 represents a novel and validated therapeutic target, we sought to develop and characterize an efficient process for the identification of small molecules that target MAP2K4. Using a fluorescence-based thermal shift assay (FTS) assay, we first evaluated an 80 compound library of known kinase inhibitors, thereby identifying 8 hits that thermally stabilized MAP2K4 in a concentration dependent manner. We then developed an in vitro MAP2K4 kinase assay employing the biologically relevant downstream substrates, JNK1 and p38 MAPK, to evaluate kinase inhibitory function. In this manner, we validated the performance of our initial FTS screen. We next applied this approach to a 2000 compound chemically diverse library, identified 7 hits, and confirmed them in the in vitro kinase assay. Finally, by coupling our structure-activity relationship data to MAP2K4's crystal structure, we constructed a model for ligand binding. It predicts binding of our identified inhibitory compounds to the ATP binding pocket. Herein we report the creation of a robust inhibitor-screening platform with the ability to inform the discovery and design of new and potent MAP2K4 inhibitors. PMID:24339940

  15. High performance magnesium anode in paper-based microfluidic battery, powering on-chip fluorescence assay

    PubMed Central

    Koo, Youngmi; Sankar, Jagannathan; Yun, Yeoheung

    2014-01-01

    A high power density and long-lasting stable/disposable magnesium battery anode was explored for a paper-based fluidic battery to power on-chip functions of various Point of Care (POC) devices. The single galvanic cell with magnesium foil anode and silver foil cathode in Origami cellulose chip provided open circuit potential, 2.2 V, and power density, 3.0 mW/cm2. A paper-based fluidic galvanic cell was operated with one drop of water (80 μl) and continued to run until it was dry. To prove the concept about powering on-chip POC devices, two-serial galvanic cells are developed and incorporated with a UV-light emitting diode (λ = 365 nm) and fluorescence assay for alkaline phosphatase reaction. Further, detection using smart phones was performed for quantitative measurement of fluorescent density. To conclude, a magnesium-based fluidic battery paper chip was extremely low-cost, required minute sample volumes, was easy to dispose of, light weight, easy to stack, store and transport, easy to fabricate, scalable, and has faster analysis times. PMID:25332741

  16. Homogeneous competitive hybridization assay based on two-photon excitation fluorescence resonance energy transfer.

    PubMed

    Liu, Lingzhi; Dong, Xiaohu; Lian, Wenlong; Peng, Xiaoniu; Liu, Zhihong; He, Zhike; Wang, Ququan

    2010-02-15

    Recently, we have successfully developed a two-photon excitation fluorescence resonance energy transfer (TPE-FRET)-based homogeneous immunoassay using two-photon excitable small organic molecule as the energy donor. In the present work, the newly emerging TPE-FRET technique was extended to the determination of oligonucleotide. A new TPE molecule with favorable two-photon action cross section was synthesized [2-(2,5-bis(4-(dimethylamino)styryl)-1H-pyrrol-1-yl)acetic acid, abbreviated as TP-COOH], with the tagged reactive carboxyl group allowing facile conjugation with streptavidin (SA). Employing the TP-COOH molecule as energy donor and black hole quencher 1 (BHQ-1) as acceptor, a TPE-FRET-based homogeneous competitive hybridization model was constructed via a biotin-streptavidin bridge. Through the hybridization between a biotinylated single-stranded DNA (ssDNA) and a BHQ-1-linked ssDNA, and the subsequent capture of the as-formed hybrid by TP-COOH labeled SA, the donor fluorescence was quenched due to the FRET between TP-COOH and BHQ-1. Upon the competition between a target ssDNA and the quencher-linked ssDNA toward the biotinylated oligonucleotide, the donor fluorescence was recovered in a target-dependent manner. Good linearity was obtained with the target oligonucleotide ranging from 0.08 to 1.52 microM. The method was applied to spiked serum and urine samples with satisfying recoveries obtained. The results of this work verified the applicability of TPE-FRET technique in hybridization assay and confirmed the advantages of TPE-FRET in complicated matrix.

  17. A homogeneous assay for relative affinity of binding proteins using a green fluorescent protein tag and membrane disk.

    PubMed

    Aoki, Takashi; Kazama, Hitoshi; Satoh, Marie; Mizuki, Kazuhiro; Watabe, Hiroyuki

    2005-09-01

    When the association between a ligand immobilized on a membrane disk and a fluorescence-labeled analyte was monitored with a fluorescent microplate reader, the time-dependent increase in fluorescence intensity of the reaction mixture was observed. A novel assay system for the specific interaction based on this phenomenon was designated the homogeneous assay for fluorescence concentrated on membrane (HAFCOM). In this study, streptococcal protein G (SpG) and glycogen-binding subunit R5 of protein phosphatase 1 (PPP1R5) tagged by green fluorescent protein (GFP) were used as the fluorescence-labeled analytes, and the affinity change caused by various amino acid substitutions was measured with HAFCOM. From the site-directed mutagenesis of SpG and PPP1R5, it was clarified that (i) the association rate constant of the Lys454Pro/Glu456Gln mutant of SpG to goat immunoglobulin G was almost equivalent to that of the wild-type but its dissociation rate constant was about 2.7 times that of the wild-type and (ii) the amino acid substitutions of Phe180 in PPP1R5 reduced glycogen-binding by 30-50%. Since HAFCOM using the GFP-tagged analyte requires no special chemicals and instruments, this system can easily and economically assay the specific interaction between target protein and ligand.

  18. A high-throughput fluorescence resonance energy transfer-based assay for DNA ligase.

    PubMed

    Shapiro, Adam B; Eakin, Ann E; Walkup, Grant K; Rivin, Olga

    2011-06-01

    DNA ligase is the enzyme that catalyzes the formation of the backbone phosphodiester bond between the 5'-PO(4) and 3'-OH of adjacent DNA nucleotides at single-stranded nicks. These nicks occur between Okazaki fragments during replication of the lagging strand of the DNA as well as during DNA repair and recombination. As essential enzymes for DNA replication, the NAD(+)-dependent DNA ligases of pathogenic bacteria are potential targets for the development of antibacterial drugs. For the purposes of drug discovery, a high-throughput assay for DNA ligase activity is invaluable. This article describes a straightforward, fluorescence resonance energy transfer-based DNA ligase assay that is well suited for high-throughput screening for DNA ligase inhibitors as well as for use in enzyme kinetics studies. Its use is demonstrated for measurement of the steady-state kinetic constants of Haemophilus influenzae NAD(+)-dependent DNA ligase and for measurement of the potency of an inhibitor of this enzyme.

  19. Toward a hybridization assay using fluorescence resonance energy transfer and quantum dots immobilized in microfluidic channels

    NASA Astrophysics Data System (ADS)

    Tavares, Anthony J.; Petryayeva, Eleonora; Algar, W. Russ; Chen, Lu; Krull, Ulrich J.

    2010-06-01

    Quantum dots (QDs) have been widely adopted as integrated components of bioassays and biosensors. In particular, solid phase nucleic acid hybridization assays have been demonstrated to have several advantages and permit the detection of up to four DNA targets simultaneously using fluorescence resonance energy transfer (FRET). This work explores the potential for miniaturization of a solid-phase nucleic acid hybridization assay using QDs and FRET on a microfluidics platform. A method was developed for the immobilization of Streptavidin coated QDs and the preparation of QD-probe oligonucleotide conjugates within microfluidic channels using electrokinetic delivery. Proof-of-concept was demonstrated for the selective detection of target DNA using FRET-sensitized emission from a Cy3 acceptor paired with a green emitting QD donor. The microfluidic platform offered the advantages of smaller sample volumes, nearly undetectable non-specific adsorption, and hybridization within minutes. This work is an important first step toward the development of biochips that enable the multiplexed detection of nucleic acid targets.

  20. Photonic Crystal Surfaces as a General Purpose Platform for Label-Free and Fluorescent Assays

    PubMed Central

    Cunningham, Brian T.

    2009-01-01

    Photonic crystal surfaces can be designed to provide a wide range of functions that are used to perform biochemical and cell-based assays. Detection of the optical resonant reflections from photonic crystal surfaces enables high sensitivity label-free biosensing, while the enhanced electromagnetic fields that occur at resonant wavelengths can be used to enhance the detection sensitivity of any surface-based fluorescence assay. Fabrication of photonic crystals from inexpensive plastic materials over large surface areas enables them to be incorporated into standard formats that include microplates, microarrays, and microfluidic channels. This report reviews the design of photonic crystal biosensors, their associated detection instrumentation, and biological applications. Applications including small molecule high throughput screening, cell membrane integrin activation, gene expression analysis, and protein biomarker detection are highlighted. Recent results in which photonic crystal surfaces are used for enhancing the detection of Surface-Enhanced Raman Spectroscopy, and the development of high resolution photonic crystal-based laser biosensors are also described. PMID:20383277

  1. A new total antioxidant potential measurements using RP-HPLC assay with fluorescence detection.

    PubMed

    Głód, Bronisław K; Piszcz, Paweł; Czajka, Katarzyna; Zarzycki, Paweł K

    2011-05-01

    In this paper, an improved total antioxidant potential (TAP) estimation using high-performance liquid chromatographic (HPLC) assay with fluorometric detection has been described. The principle of this method is based on the hydroxyl radicals generated in the Fenton-like reaction and subsequently detected using hydroxyterephthalic acid (HTPA), which is a reaction product of hydroxyl radicals and terephthalic acid (TPA), working as a sensing compound. HTPA quantity in the samples was measured by fluorescence detector working at excitation and emission wavelengths equal to 312 and 428 nm, respectively. A number of key experimental conditions including the influence of the reaction (incubation) time on the surface areas of HTPA peaks, concentration of Fe(II) ions as well as the influence of concentration of TPA on the surface area of the chromatographic peak of HTPA were optimized to the characteristic feature of TAP measurements. The elaborated assay has been used to evaluate TAP values of selected low-molecular mass compounds like pyrogallol, tryptamine, and n-alcohols (methanol, ethanol, and n-propanol) as well as chlorogenic and ascorbic acids and benzoic acid derivatives, which are commonly present in the food samples.

  2. Fluorescent assay based on resazurin for detection of activity of disinfectants against bacterial biofilm.

    PubMed

    Mariscal, Alberto; Lopez-Gigosos, Rosa M; Carnero-Varo, Manuel; Fernandez-Crehuet, Joaquin

    2009-03-01

    A new, quick method, using the resazurin dye test as a bacterial respiration indicator, has been developed to assay the antibacterial activity of various substances used as disinfectants against bacterial biofilm growth on clinical devices. Resazurin was used to measure the presence of active biofilm bacteria, after adding disinfectant, in relation to a standard curve generated from inocula in suspension of the same organism used to grow the biofilm. The biofilm was quantified indirectly by measuring the fluorescent, water-soluble resorufin product produced when resazurin is reduced by reactions associated with respiration. Four products used as disinfectants and the biofilm growth of five bacterial species on carriers made of materials commonly found in clinical devices were studied. Under test conditions, chlorhexidine, NaOCl, ethanol, and Perasafe at concentrations of 0.2, 0.01, 350, and 0.16 mg/ml, respectively, all produced 5-log reductions in biofilm cell numbers on the three different carriers. The redox-driven test depends on bacterial catabolism, for which reason resazurin reduction produces an analytic signal of the bacterial activity in whole cells, and therefore could be used for determining disinfectant efficacy in an assay based on the metabolic activity of microorganisms grown as biofilm or in suspension.

  3. Carbon quantum dots-based recyclable real-time fluorescence assay for alkaline phosphatase with adenosine triphosphate as substrate.

    PubMed

    Qian, Zhaosheng; Chai, Lujing; Tang, Cong; Huang, Yuanyuan; Chen, Jianrong; Feng, Hui

    2015-03-03

    A convenient, reliable, and highly sensitive real-time assay for alkaline phosphatase (ALP) activity in the continuous and recyclable way is established on the basis of aggregation and disaggregation of carbon quantum dots (CQDs) through the competitive assay approach. CQDs and adenosine triphosphate (ATP) were used as the fluorescent indicator and substrate for ALP activity assessment, respectively. Richness of carboxyl groups on the surface of CQDs enables their severe aggregation triggered by cerium ions, which results in effective fluorescence quenching. Under the catalytic hydrolysis of ALP, ATP can be rapidly transformed to phosphate ions. Stronger affinity of phosphate ions to cerium ions than carboxyl groups is taken advantage of to achieve fluorescence recovery induced by redispersion of CQDs in the presence of ALP and ATP. Quantitative evaluation of ALP activity in a broad range from 4.6 to 383.3 U/L with the detection limit of 1.4 U/L can be realized in this way, which endows the assay with high enough sensitivity for practical detection in human serum. The assay can be used in a recyclable way for more than three times since the generated product CePO4 as a precipitate can be easily removed from the standard assay system. This strategy broadens the sensing application of fluorescent CQDs with excellent biocompatibility and provides an example based on disaggregation in optical probe development.

  4. Depolarization after resonance energy transfer (DARET): a sensitive fluorescence-based assay for botulinum neurotoxin protease activity.

    PubMed

    Gilmore, Marcella A; Williams, Dudley; Okawa, Yumiko; Holguin, Bret; James, Nicholas G; Ross, Justin A; Roger Aoki, K; Jameson, David M; Steward, Lance E

    2011-06-01

    The DARET (depolarization after resonance energy transfer) assay is a coupled Förster resonance energy transfer (FRET)-fluorescence polarization assay for botulinum neurotoxin type A or E (BoNT/A or BoNT/E) proteolytic activity that relies on a fully recombinant substrate. The substrate consists of blue fluorescent protein (BFP) and green fluorescent protein (GFP) flanking SNAP-25 (synaptosome-associated protein of 25 kDa) residues 134-206. In this assay, the substrate is excited with polarized light at 387 nm, which primarily excites the BFP, whereas emission from the GFP is monitored at 509 nm. Energy transfer from the BFP to the GFP in the intact substrate results in a substantial depolarization of the GFP emission. The energy transfer is eliminated when the fluorescent domains separate on cleavage by the endopeptidase, and emission from the directly excited GFP product fragment is then highly polarized, resulting in an overall increase in polarization. This increase in polarization can be monitored to assay the proteolytic activity of BoNT/A and BoNT/E in real time. It allows determination of the turnover rate of the substrate and the kinetic constants (V(max) and k(cat)) based on the concentration of cleaved substrate determined directly from the measurements using the additivity properties of polarization. The assay is amenable to high-throughput applications.

  5. Time-resolved fluorescence resonance energy transfer as a versatile tool in the development of homogeneous cellular kinase assays.

    PubMed

    Saville, Lisa; Spais, Chrysanthe; Mason, Jennifer L; Albom, Mark S; Murthy, Seetha; Meyer, Sheryl L; Ator, Mark A; Angeles, Thelma S; Husten, Jean

    2012-12-01

    Homogeneous cellular assays can streamline product detection in the drug discovery process. One commercially available assay employing time-resolved fluorescence resonance energy transfer (TR-FRET) that detects phosphorylated products was used to evaluate inhibitors of the receptor tyrosine kinase AXL in a cell line expressing an AXL-green fluorescent protein fusion protein. This TR-FRET assay was modified to evaluate the phosphorylation state of the AXL family member MER in a cell line expressing MER with a V5 tag by adding a fluorescein-labeled anti-V5 antibody. This homogeneous cellular assay was further modified to evaluate the nonreceptor tyrosine kinase focal adhesion kinase (FAK) in cell lines that expressed an untagged kinase by the inclusion of a commercially available anti-FAK antibody conjugated with an acceptor dye. The methods described here can be further adapted for TR-FRET detection of other cellular kinase activities.

  6. Determination of Aflatoxin M1 and Chloramphenicol in Milk Based on Background Fluorescence Quenching Immunochromatographic Assay

    PubMed Central

    Wu, Xiaoxia; Tian, Xiaofeng; Xu, Lihua; Li, Jiutong

    2017-01-01

    Harsh demanding has been exposed on the concentration of aflatoxin M1 (AFM1) and chloramphenicol (CAP) in milk. In this study, we developed a new method based on background fluorescence quenching immunochromatographic assay (bFQICA) to detect AFM1 and CAP in milk. The detection limit for AFM1 was 0.0009 ng/mL, while that for the CAP was 0.0008 ng/mL. The assay variability was determined with 3 AFM1 standards (i.e., 0.25 ng/mL, 0.5 ng/mL, and 1.0 ng/mL), and the actual detection value was 0.2497, 0.5329, and 1.0941, respectively. For the assay variability of 3 CAP standards (i.e., 0.10 ng/mL, 0.30 ng/mL, and 0.50 ng/mL), the actual detection value was 0.0996, 0.3096, and 0.4905, respectively. The recovery rate of AFM1 was 99.7%–101.7%, while that for CAP was 95.3%–97.6%. For the test stability, AFM1 and CAP showed satisfactory test stability even at month 5. Compared with the sensitivity of liquid chromatography-mass spectrometry (LC-MS) method, no statistical difference was noticed in results of the bFQICA. Our method is convenient for the detection of AFM1 and CAP in milk with a test duration of about 8 minutes. Additionally, an internal WiFi facility is provided in the system allowing for quick connection and storage in the intelligent cell phone. PMID:28367449

  7. Fluorescence assay for mitochondrial permeability transition in cardiomyocytes cultured in a microtiter plate.

    PubMed

    Christensen, Marie Louise Muff; Braunstein, Thomas Hartig; Treiman, Marek

    2008-07-01

    Mitochondrial permeability transition pore (MPTP) is a voltage-dependent, large-conductance channel of the inner mitochondrial membrane with an important role in a range of pathophysiological conditions. To facilitate studies of pharmacological pore modulation, we describe an assay in a model using neonatal cardiomyocytes in a 96-well microtiter plate format. In the presence of mitochondrial membrane potential Delta Psi m, accumulation of rhodamine-123 in mitochondria (40,000 cells/well, 2.6 microM rhodamine-123) caused fluorescence signal quenching. Following substitution of dye-free buffer, dequenching occurred on the distribution of rhodamine-123 into the extracellular volume. The addition of a small buffer volume containing digitonin (final concentration 10 microg/ml) and Ca(2+) (final concentrations up to 100 microM free Ca(2+)) caused dequenching (Delta F) due to Delta Psi m dissipation by MPTP, as evidenced by inhibition in the presence of cyclosporin A (0.2-2 microM) and facilitation by pH 6.2. Delta F due to Delta Psi m-dissipating agent carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP) or alamethicin (10 microM) was insensitive to either pH or cyclosporin A. Inhibition of Ca(2+)-induced (but not of FCCP- or alamethicin-induced) Delta F by glycogen synthase kinase 3beta (GSK3 beta) antagonist SB216763 and adenosine, acting at the level of intracellular signaling and plasma membrane receptors, respectively, is shown to illustrate potential applications of this assay. Limitation of the assay to cells with energized mitochondria is stressed.

  8. Bimolecular fluorescence complementation (BiFC) assay for protein-protein interaction in onion cells using the helios gene gun.

    PubMed

    Hollender, Courtney A; Liu, Zhongchi

    2010-06-12

    Investigation of gene function in diverse organisms relies on knowledge of how the gene products interact with each other in their normal cellular environment. The Bimolecular Fluorescence Complementation (BiFC) Assay(1) allows researchers to visualize protein-protein interactions in living cells and has become an essential research tool. This assay is based on the facilitated association of two fragments of a fluorescent protein (GFP) that are each fused to a potential interacting protein partner. The interaction of the two protein partners would facilitate the association of the N-terminal and C-terminal fragment of GFP, leading to fluorescence. For plant researchers, onion epidermal cells are an ideal experimental system for conducting the BiFC assay because of the ease in obtaining and preparing onion tissues and the direct visualization of fluorescence with minimal background fluorescence. The Helios Gene Gun (BioRad) is commonly used for bombarding plasmid DNA into onion cells. We demonstrate the use of Helios Gene Gun to introduce plasmid constructs for two interacting Arabidopsis thaliana transcription factors, SEUSS (SEU) and LEUNIG HOMOLOG (LUH)(2) and the visualization of their interactions mediated by BiFC in onion epidermal cells.

  9. Photo- and biophysical studies of lectin-conjugated fluorescent nanoparticles: reduced sensitivity in high density assays.

    PubMed

    Wang, Yaqi; Gildersleeve, Jeffrey C; Basu, Amit; Zimmt, Matthew B

    2010-11-18

    Lectin-conjugated, fluorescent silica nanoparticles (fNP) have been developed for carbohydrate-based histopathology evaluations of epithelial tissue biopsies. The fNP platform was selected for its enhanced emissive brightness compared to direct dye labeling. Carbohydrate microarray studies were performed to compare the carbohydrate selectivity of the mannose-recognizing lectin Concanavalin A (ConA) before and after conjugation to fluorescent silica nanoparticles (ConA-fNP). These studies revealed surprisingly low emission intensities upon staining with ConA-fNP compared to those with biotin-ConA/Cy3-streptavidin staining. A series of photophysical and biophysical characterizations of the fNP and ConA-fNP conjugates were performed to probe the low sensitivity from fNP in the microarray assays. Up to 1200 fluorescein (FL) and 80 tetramethylrhodamine (TR) dye molecules were incorporated into 46 nm diameter fNP, yielding emissive brightness values 400 and 35 times larger than the individual dye molecules, respectively. ConA lectin conjugated to carboxylic acid surface-modified nanoparticles covers 15-30% of the fNP surface. The CD spectra and mannose substrate selectivity of ConA conjugated to the fNP differed slightly compared to that of soluble ConA. Although, the high emissive brightness of fNP enhances detection sensitivity for samples with low analyte densities, large fNP diameters limit fNP recruitment and binding to samples with high analyte densities. The high analyte density and nearly two-dimensional target format of carbohydrate microarrays make probe size a critical parameter. In this application, fNP labels afford minimal sensitivity advantage compared to direct dye labeling.

  10. Testing a dual-fluorescence assay to monitor the viability of filamentous cyanobacteria.

    PubMed

    Johnson, Tylor J; Hildreth, Michael B; Gu, Liping; Zhou, Ruanbao; Gibbons, William R

    2015-06-01

    Filamentous cyanobacteria are currently being engineered to produce long-chain organic compounds, including 3rd generation biofuels. Because of their filamentous morphology, standard methods to quantify viability (e.g., plate counts) are not possible. This study investigated a dual-fluorescence assay based upon the LIVE/DEAD® BacLight™ Bacterial Viability Kit to quantify the percent viability of filamentous cyanobacteria using a microplate reader in a high throughput 96-well plate format. The manufacturer's protocol calls for an optical density normalization step to equalize the numbers of viable and non-viable cells used to generate calibration curves. Unfortunately, the isopropanol treatment used to generate non-viable cells released a blue pigment that altered absorbance readings of the non-viable cell solution, resulting in an inaccurate calibration curve. Thus we omitted this optical density normalization step, and carefully divided cell cultures into two equal fractions before the isopropanol treatment. While the resulting calibration curves had relatively high correlation coefficients, their use in various experiments resulted in viability estimates ranging from below 0% to far above 100%. We traced this to the apparent inaccuracy of the propidium iodide (PI) dye that was to stain only non-viable cells. Through further analysis via microplate reader, as well as confocal and wide-field epi-fluorescence microscopy, we observed non-specific binding of PI in viable filamentous cyanobacteria. While PI will not work for filamentous cyanobacteria, it is possible that other fluorochrome dyes could be used to selectively stain non-viable cells. This will be essential in future studies for screening mutants and optimizing photobioreactor system performance for filamentous cyanobacteria.

  11. Measuring Norfloxacin Binding to Trypsin Using a Fluorescence Quenching Assay in an Upper-Division, Integrated Laboratory Course

    ERIC Educational Resources Information Center

    Hicks, Katherine A.

    2016-01-01

    Fluorescence quenching assays are often used to measure dissociation constants that quantify the binding affinity between small molecules and proteins. In an upper-division undergraduate laboratory course, where students work on projects using a guided inquiry-based approach, a binding titration experiment at physiological pH is performed to…

  12. Monitoring water supplies for weaponized bacteria and bacterial toxins using rapid fluorescence-based viability and affinity assays

    NASA Astrophysics Data System (ADS)

    Van Tassell, Roger L.; Evans, Mishell

    2004-03-01

    The rapid detection of weaponized bacteria and toxins is a major problem during a biological attack. Although sensitive detection formats exist for many biowarfare agents, they often require advanced training and complex procedures. Luna has developed simple, rapid means for determining the presence of pathogens and bacterial toxins in water supplies using fluorescence-based assays that can be adapted for field use. The batteries of rapid assays are designed for i) determining cell viability and bacterial loads by exploiting metabolic markers (e.g., acid-production, redox potentials, etc) and ii) detecting bacterial toxins using fluorescent, polymerized affinity liposomes (fluorosomes). The viability assays were characterized using E. coli, S. aureus and the anthrax simulant, B. globigii. The viability assays detected bacterial loads of ~ 104 CFU/ml and with simple filtration ~ 100CFU/ml could be detected. The affinity fluorosomes were characterized using cholera toxin (CT). Affinity liposomes displaying GM1 and anti-CT antibodies could detect CT at <μg/ml levels. Stability studies showed that affinity vesicles could be stored for weeks at 4°C or freeze-dried with no significant loss of binding capacity. Using an in-house fiber optic fluorescence system, Luna characterized the binding of affinity fluorosomes to respective targets and determined the responses of bacterial loads in the fluorescent viability assays. Using this two-tiered approach, Luna demonstrated that water susceptible to sabotage could be easily monitored and confirmed for specific agents using simple, general and specific fluorescence-based detection schemes based on metabolism and ligand-target interactions.

  13. A liposomal fluorescence assay to study permeation kinetics of drug-like weak bases across the lipid bilayer.

    PubMed

    Eyer, Klaus; Paech, Franziska; Schuler, Friedrich; Kuhn, Phillip; Kissner, Reinhard; Belli, Sara; Dittrich, Petra S; Krämer, Stefanie D

    2014-01-10

    Lipid bilayer permeation is considered the major route for in vivo barrier passage of drugs. Despite this fact, no technique is currently available to measure the kinetics of permeation across a single lipid bilayer of structurally unrelated drug-like solutes. We developed a liposomal fluorescence assay capable to determine permeation kinetics of basic drug-like solutes across lipid bilayers. The assay is based on the hypothesis that permeation of a weak base along a concentration gradient results in net proton release at the cis-side and net proton capture at the trans-side of the bilayer. The resulting pH changes were monitored with pH-sensitive fluorophores: Test compounds were incubated with liposomes containing a pH-sensitive fluorophore at the bilayer surfaces or in the aqueous lumen and fluorescence changes were monitored with a stopped-flow apparatus in solution or by total internal reflection fluorescence microscopy with surface-captured liposomes on a microfluidic platform. Incubation with lipophilic basic drugs resulted in the expected fluorescence changes while incubation with compounds without basic functionality or high polarity did not affect fluorescence. Kinetics of fluorescence changes followed bi-exponential functions. Logarithmic permeation coefficients (logPermapp) determined in solution and by microfluidics technology showed a good correlation (r(2)=0.94, n=7) and logPermapp increased with increasing lipophilicity. Neither diffusion in the aqueous phase nor partitioning into the bilayer was rate-limiting. PEGylation of 2% of the liposomal lipids reduced Permapp by a factor ~300. In conclusion, the presented liposomal fluorescence assay is capable to determine permeation kinetics of weak basic drug-like solutes across lipid bilayers. The method is adaptable to microfluidics technology for high-throughput measurements and can potentially be modified to work for weak acid solutes.

  14. Molecular recognition, fluorescence sensing, and biological assay of phosphate anion derivatives using artificial Zn(II)-Dpa complexes.

    PubMed

    Sakamoto, Takashi; Ojida, Akio; Hamachi, Itaru

    2009-01-08

    In this Feature Article, we focus on recent advances in our research on molecular recognition and fluorescence sensing of phosphate anion derivatives of biological importance. Because of their significant roles in biological systems, considerable efforts have been devoted to developing detection or determination systems. However, the recognition and sensing of these anion species under aqueous biological conditions using small-molecular chemosensors still remain as a challenging research topic. We have been developing a variety of artificial receptors and fluorescent chemosensors for phosphoproteins and nucleoside polyphosphates in recent years. They consist of a binuclear Zn(II)-dipicolylamine (Dpa) complex as a common binding motif for phosphate anion derivatives. Taking advantage of their strong binding affinities or high sensing abilities, a variety of biological assay systems have also been successfully developed, which includes the enzyme assays such as the kinase, phosphatase and glycosyltransferase reaction, as well as an inhibitor assay for the phosphoprotein-protein surface interaction.

  15. A label-free fluorescent assay for free chlorine in drinking water based on protein-stabilized gold nanoclusters.

    PubMed

    Xiong, Xiaoli; Tang, Yan; Zhang, Liangliang; Zhao, Shulin

    2015-01-01

    Bovine serum albumin stabilized Au nanoclusters (BSA-AuNCs) were demonstrated as a novel fluorescence probe for sensitive and selective detection of free chlorine in drinking water. The fluorescence of BSA-AuNCs was found to be quenched effectively by the free chlorine, and the decrease in fluorescence intensity of BSA-AuNCs allowed the sensitive detection of free chlorine in the range of 0.8-800 μM. The detection limit is 0.50 μM at a signal-to-noise ratio of 3. The present fluorescent assay for free chlorine possesses low detection limit, wide linear range and good selectivity. Real tap water samples were analyzed with satisfactory results, which suggested its potential for water quality analysis.

  16. "Molecular beacon"-based fluorescent assay for selective detection of glutathione and cysteine.

    PubMed

    Xu, Hui; Hepel, Maria

    2011-02-01

    We report on the development of a fluorescence turn-on "molecular beacon" probe for the detection of glutathione (GSH) and cysteine (Cys). The method is based on a competitive ligation of Hg(2+) ions by GSH/Cys and thymine-thymine (T-T) mismatches in a DNA strand of the self-hybridizing beacon strand. The assay relies on the distance-dependent optical properties of the fluorophore/quencher pair attached to the ends of the molecular beacon DNA strand. In a very selective coordination of Hg(2+) to GSH/Cys, the fluorophore/quencher distance increases concomitantly with the dehybridization and dissociation of the beacon stem T-Hg(2+)-T due to the extraction of Hg(2+) ions. This process results in switching the molecular beacon to the "on" state. The concentration range of the probe is 4-200 nM with the limit of detection (LOD) of 4.1 nM for GSH and 4.2 nM Cys. The probe tested satisfactorily against interference for a range of amino acids including sulfur-containing methionine.

  17. A fluorescence spectroscopy assay for real-time monitoring of enzyme immobilization into mesoporous silica particles.

    PubMed

    Nabavi Zadeh, Pegah S; Mallak, Kassam Abdel; Carlsson, Nils; Åkerman, Björn

    2015-05-01

    Mesoporous silica particles are used as support material for immobilization of enzymes. Here we investigated a fluorescence-based assay for real-time monitoring of the immobilization of lipase, bovine serum albumin, and glucose oxidase into micrometer-sized mesoporous silica particles. The proteins are labeled with the dye epicocconone, and the interaction with the particles is observed as an increase in emission intensity of the protein-dye conjugates that can be quantified if correcting for a comparatively slow photobleaching. The immobilization occurs in tens of minutes to hours depending on particle concentration and type of protein. In the limit of excess particles over proteins, the formation of the particle-protein complexes can be described by a single exponential growth for all three investigated proteins, and the fitted pseudo-first-order rate constant increases linearly with particle concentration for each protein type. The derived second-order rate constant k varies with the protein hydrodynamic radius according to k∼RH(-4.70±0.01), indicating that the rate-limiting step at high particle concentrations is not the diffusional encounter between proteins and particles but rather the entry into the pores, consistent with the hydrodynamic radii of the three proteins being smaller but comparable to the pore radius of the particles.

  18. Photonic Crystal Enhancement of a Homogeneous Fluorescent Assay using Submicron Fluid Channels Fabricated by E-jet Patterning

    PubMed Central

    Tan, Yafang; Sutanto, Erick; Alleyne, Andrew G.; Cunningham, Brian T.

    2016-01-01

    We demonstrate the enhancement of a liquid-based homogenous fluorescence assay using the resonant electric fields from a photonic crystal (PC) surface. Because evanescent fields are confined to the liquid volume nearest to the photonic crystal, we developed a simple approach for integrating a PC fabricated on a silicon substrate within a fluid channel with submicron height, using electrohydrodynamic jet (e-jet) printing of a light-curable epoxy adhesive to define the fluid channel pattern. The PC is excited by a custom-designed compact instrument that illuminates the PC with collimated light that precisely matches the resonant coupling condition when the PC is covered with aqueous media. Using a molecular beacon nucleic acid fluorescence resonant energy transfer (FRET) probe for a specific miRNA sequence, we demonstrate an 8x enhancement of the fluorescence emission signal, compared to performing the same assay without exciting resonance in the PC detecting a miRNA sequence at a concentration of 62nM from a liquid volume of only ~20 nl. The approach may be utilized for any liquid-based fluorescence assay for applications in point-of-care diagnostics, environmental monitoring, or pathogen detection. PMID:24376013

  19. Photonic crystal enhancement of a homogeneous fluorescent assay using submicron fluid channels fabricated by E-jet patterning.

    PubMed

    Tan, Yafang; Sutanto, Erick; Alleyne, Andrew G; Cunningham, Brian T

    2014-04-01

    We demonstrate the enhancement of a liquid-based homogenous fluorescence assay using the resonant electric fields from a photonic crystal (PC) surface. Because evanescent fields are confined to the liquid volume nearest to the photonic crystal, we developed a simple approach for integrating a PC fabricated on a silicon substrate within a fluid channel with submicron height, using electrohydrodynamic jet (e-jet) printing of a light-curable epoxy adhesive to define the fluid channel pattern. The PC is excited by a custom-designed compact instrument that illuminates the PC with collimated light that precisely matches the resonant coupling condition when the PC is covered with aqueous media. Using a molecular beacon nucleic acid fluorescence resonant energy transfer (FRET) probe for a specific miRNA sequence, we demonstrate an 8× enhancement of the fluorescence emission signal, compared to performing the same assay without exciting resonance in the PC detecting a miRNA sequence at a concentration of 62 nM from a liquid volume of only ∼20 nL. The approach may be utilized for any liquid-based fluorescence assay for applications in point-of-care diagnostics, environmental monitoring, or pathogen detection.

  20. Rapid fluorometric bacteria detection assay and photothermal effect by fluorescent polymer of coated surfaces and aqueous state.

    PubMed

    Islamy Mazrad, Zihnil Adha; In, Insik; Lee, Kang-Dae; Park, Sung Young

    2017-03-15

    A fluorescent dye and a photothermal agent were grafted onto a cationic polymer for rapid and simple bacteria detection in liquid and solid phase based fluorescence on/off. The integrated poly(vinylpyrrolidone) (PVP) backbone with catechol and bromoethane moieties possesses unique optical properties due to the presence of boron dipyrromethane (BODIPY) and near infared NIR-responsive IR825 (F-PVP). The cationic segments showed distinct fluorescence quenching patterns after interaction with gram-positive and gram-negative bacteria via polyion complex interactions. Fluorescence quenching depended on direct interaction of the bacterial cell membrane, as confirmed using SEM and confocal imaging. The detection limit was 1mg/mL for the liquid-phase assay and the minimal detectable concentration of bacteria using the solid-phase assay was 10(6)CFU/mL. After bacterial detection in contaminated area, our system can directly kill bacteria via the photothermal conversion ability of the IR825 substituent using NIR exposure by polymer solution and limited in coated PP. Finally, the proposed biosensor is capable as potential material for detection of bacteria in simple liquid and solid phase assay.

  1. Label-free detection of kanamycin based on a G-quadruplex DNA aptamer-based fluorescent intercalator displacement assay

    NASA Astrophysics Data System (ADS)

    Xing, Yun-Peng; Liu, Chun; Zhou, Xiao-Hong; Shi, Han-Chang

    2015-01-01

    This work was the first to report that the kanamycin-binding DNA aptamer (5'-TGG GGG TTG AGG CTA AGC CGA-3') can form stable parallel G-quadruplex DNA (G4-DNA) structures by themselves and that this phenomenon can be verified by nondenaturing polyacrylamide gel electrophoresis and circular dichroism spectroscopy. Based on these findings, we developed a novel label-free strategy for kanamycin detection based on the G4-DNA aptamer-based fluorescent intercalator displacement assay with thiazole orange (TO) as the fluorescence probe. In the proposed strategy, TO became strongly fluorescent upon binding to kanamycin-binding G4-DNA. However, the addition of kanamycin caused the displacement of TO from the G4-DNA-TO conjugate, thereby resulting in decreased fluorescent signal, which was inversely related to the kanamycin concentration. The detection limit of the proposed assay decreased to 59 nM with a linear working range of 0.1 μM to 20 μM for kanamycin. The cross-reactivity against six other antibiotics was negligible compared with the response to kanamycin. A satisfactory recovery of kanamycin in milk samples ranged from 80.1% to 98.0%, confirming the potential of this bioassay in the measurement of kanamycin in various applications. Our results also served as a good reference for developing similar fluorescent G4-DNA-based bioassays in the future.

  2. Label-free detection of kanamycin based on a G-quadruplex DNA aptamer-based fluorescent intercalator displacement assay.

    PubMed

    Xing, Yun-Peng; Liu, Chun; Zhou, Xiao-Hong; Shi, Han-Chang

    2015-01-30

    This work was the first to report that the kanamycin-binding DNA aptamer (5'-TGG GGG TTG AGG CTA AGC CGA-3') can form stable parallel G-quadruplex DNA (G4-DNA) structures by themselves and that this phenomenon can be verified by nondenaturing polyacrylamide gel electrophoresis and circular dichroism spectroscopy. Based on these findings, we developed a novel label-free strategy for kanamycin detection based on the G4-DNA aptamer-based fluorescent intercalator displacement assay with thiazole orange (TO) as the fluorescence probe. In the proposed strategy, TO became strongly fluorescent upon binding to kanamycin-binding G4-DNA. However, the addition of kanamycin caused the displacement of TO from the G4-DNA-TO conjugate, thereby resulting in decreased fluorescent signal, which was inversely related to the kanamycin concentration. The detection limit of the proposed assay decreased to 59 nM with a linear working range of 0.1 μM to 20 μM for kanamycin. The cross-reactivity against six other antibiotics was negligible compared with the response to kanamycin. A satisfactory recovery of kanamycin in milk samples ranged from 80.1% to 98.0%, confirming the potential of this bioassay in the measurement of kanamycin in various applications. Our results also served as a good reference for developing similar fluorescent G4-DNA-based bioassays in the future.

  3. Toward a multiplexed solid-phase nucleic acid hybridization assay using quantum dots as donors in fluorescence resonance energy transfer.

    PubMed

    Algar, W Russ; Krull, Ulrich J

    2009-05-15

    Solid-phase assays using immobilized quantum dots (QDs) as donors in fluorescence resonance energy transfer (FRET) have been developed for the selective detection of nucleic acids. QDs were immobilized on optical fibers and conjugated with probe oligonucleotides. Hybridization with acceptor labeled target oligonucleotides generated FRET-sensitized acceptor fluorescence that was used as the analytical signal. A sandwich assay was also introduced and avoided the need for target labeling. Green and red emitting CdSe/ZnS QDs were used as donors with Cy3 and Alexa Fluor 647 acceptors, respectively. Quantitative measurements were made via spectrofluorimetry or fluorescence microscopy. Detection limits as low as 1 nM were obtained, and the discrimination of single nucleotide polymorphisms (SNPs) with contrast ratios as high as 31:1 was possible. The assays retained their selectivity and at least 50% of their signal when tested in bovine serum and against a large background of noncomplementary genomic DNA. Mixed films of the two colors of QD and two probe oligonucleotide sequences were prepared for multiplexed solid-phase hybridization assays. It was possible to simultaneously detect two target sequences with retention of selectivity, including SNP discrimination. This research provides an important precedent and framework for the future development of QD-based bioassays and biosensors.

  4. Development of a high-throughput fluorescence polarization DNA cleavage assay for the identification of FEN1 inhibitors.

    PubMed

    McWhirter, Claire; Tonge, Michael; Plant, Helen; Hardern, Ian; Nissink, Willem; Durant, Stephen T

    2013-06-01

    Flap endonuclease-1 (FEN1) is a highly conserved metallonuclease and is the main human flap endonuclease involved in the recognition and cleavage of single-stranded 5' overhangs from DNA flap structures. The involvement of FEN1 in multiple DNA metabolism pathways and the identification of FEN1 overexpression in a variety of cancers has led to interest in FEN1 as an oncology target. In this article, we describe the development of a 1536-well high-throughput screening assay based on the change in fluorescence polarization of a FEN1 DNA substrate labeled with Atto495 dye. The assay was subsequently used to screen 850 000 compounds from the AstraZeneca compound collection, with a Z' factor of 0.66 ± 0.06. Hits were followed up by IC50 determination in both a concentration-response assay and a technology artifact assay.

  5. A pre-breeding screening program for transgenic boars based on fluorescence in situ hybridization assay.

    PubMed

    Bou, Gerelchimeg; Sun, Mingju; Lv, Ming; Zhu, Jiang; Li, Hui; Wang, Juan; Li, Lu; Liu, Zhongfeng; Zheng, Zhong; He, Wenteng; Kong, Qingran; Liu, Zhonghua

    2014-08-01

    For efficient transgenic herd expansion, only the transgenic animals that possess the ability to transmit transgene into next generation are considered for breeding. However, for transgenic pig, practically lacking a pre-breeding screening program, time, labor and money is always wasted to maintain non-transgenic pigs, low or null transgenic transmission pigs and the related fruitless gestations. Developing a pre-breeding screening program would make the transgenic herd expansion more economical and efficient. In this technical report, we proposed a three-step pre-breeding screening program for transgenic boars simply through combining the fluorescence in situ hybridization (FISH) assay with the common pre-breeding screening workflow. In the first step of screening, combined with general transgenic phenotype analysis, FISH is used to identify transgenic boars. In the second step of screening, combined with conventional semen test, FISH is used to detect transgenic sperm, thus to identify the individuals producing high quality semen and transgenic sperm. In the third step of screening, FISH is used to assess the in vitro fertilization embryos, thus finally to identify the individuals with the ability to produce transgenic embryos. By this three-step screening, the non-transgenic boars and boars with no ability to produce transgenic sperm or transgenic embryos would be eliminated; therefore only those boars could produce transgenic offspring are maintained and used for breeding and herd expansion. It is the first time a systematic pre-breeding screening program is proposed for transgenic pigs. This program might also be applied in other transgenic large animals, and provide an economical and efficient strategy for herd expansion.

  6. Growth assays with mixed cultures of cyanobacteria and algae assessed by in vivo fluorescence: One step closer to real ecosystems?

    PubMed

    Gregor, Jakub; Jancula, Daniel; Marsálek, Blahoslav

    2008-02-01

    A growth toxicity assay with mixed cultures of cyanobacteria and algae using in vivo fluorescence is presented. Test organisms (the green alga Pseudokirchneriella subcapitata and the cyanobacterium Aphanothece clathrata) growing alone and in a mixture were exposed to selected chemicals. P. subcapitata featured a higher sensitivity to toxicants in the presence of A. clathrata compared to the single species assay. On the other hand, growth of a cyanobacterium was not affected by the presence or absence of the green alga. The proposed method seems to be suitable for pre-screening studies of toxicants (algistatic agents, herbicides) applied into the aquatic environment and for the assessment of their impact on natural phytoplankton communities.

  7. Spatially selective photonic crystal enhanced fluorescence and application to background reduction for biomolecule detection assays.

    PubMed

    Chaudhery, Vikram; Huang, Cheng-Sheng; Pokhriyal, Anusha; Polans, James; Cunningham, Brian T

    2011-11-07

    By combining photonic crystal label-free biosensor imaging with photonic crystal enhanced fluorescence, it is possible to selectively enhance the fluorescence emission from regions of the PC surface based upon the density of immobilized capture molecules. A label-free image of the capture molecules enables determination of optimal coupling conditions of the laser used for fluorescence imaging of the photonic crystal surface on a pixel-by-pixel basis, allowing maximization of fluorescence enhancement factor from regions incorporating a biomolecule capture spot and minimization of background autofluorescence from areas between capture spots. This capability significantly improves the contrast of enhanced fluorescent images, and when applied to an antibody protein microarray, provides a substantial advantage over conventional fluorescence microscopy. Using the new approach, we demonstrate detection limits as low as 0.97 pg/ml for a representative protein biomarker in buffer.

  8. Plasmon-enhanced fluorescence imaging with silicon-based silver chips for protein and nucleic acid assay.

    PubMed

    Yuan, Bing; Jiang, Xiangxu; Yao, Chu; Bao, Meimei; Liu, Jiaojiao; Dou, Yujiang; Xu, Yinze; He, Yao; Yang, Kai; Ma, Yuqiang

    2017-02-22

    Metal-enhanced fluorescence shows great potential for improving the sensitivity of fluoroscopy, which has been widely used in protein and nucleic acid detection for biosensor and bioassay applications. In comparison with the traditional glass-supported metal nanoparticles (MNPs), the introduction of a silicon substrate has been shown to provide an increased surface-enhanced Raman scattering (SERS) effect due to the coupling between the MNPs and the semiconducting silicon substrate. In this work, we further study the fluorescence-enhanced effect of the silicon-supported silver-island (Ag@Si) plasmonic chips. In particular, we investigate their practical application of improving the traditional immunoassay such as the biotin-streptavidin-based protein assay and the protein-/nucleic acid-labeled cell and tissue samples. The protein assay shows a wavelength-dependent enhancement effect of the Ag@Si chip, with an enhancement factor ranging from 1.2 (at 532 nm) to 57.3 (at 800 nm). Moreover, for the protein- and nucleic acid-labeled cell and tissue samples, the Ag@Si chip provides a fluorescence enhancement factor of 3.0-4.1 (at 800 nm) and a significant improvement in the signal/background ratio for the microscopy images. Such a ready accommodation of the fluorescence-enhanced effect for the immunoassay samples with simple manipulations indicates broad potential for applications of the Ag@Si chip not only in biological studies but also in the clinical field.

  9. Rapid and quantitative detection of 4(5)-methylimidazole in caramel colours: A novel fluorescent-based immunochromatographic assay.

    PubMed

    Wu, Xinlan; Huang, Minghui; Yu, Shujuan; Kong, Fansheng

    2016-01-01

    A novel fluorescence-based immunochromatographic assay (ICA) for rapid detecting 4(5)-methylimidazole (4-MI) is presented in this study. In our work, the conjugates of fluorescent microspheres (FMs) and 4-MI monoclonal antibody were used as probe for ICA. Under optimal conditions, a standard curve of ICA-based detection of 4-MI was developed, linear detection ranged from 0.50 to 32.0 mg/L. The cross-reactivities were observed less than 3.93% by detecting 6 selected structural analogues of 4-MI. The recoveries of 4-MI in caramels detection were ranged from 82.85% to 102.31%, with the coefficient of variation (n = 3) below 9.06%. Quantitative comparison of the established fluorescence-based ICA with high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) and indirect competitive enzyme-linked immunosorbent assay (ic-ELISA) analysis of real caramel colour samples indicated a good correlation among the methods. Therefore, our developed fluorescence-based ICA method shows great potential for simple, rapid, sensitive, and cost-effective quantitative detection of 4-MI in food safety control.

  10. A rapid fluorescence "switch-on" assay for glutathione detection by using carbon dots-MnO2 nanocomposites.

    PubMed

    Cai, Qi-Yong; Li, Jie; Ge, Jia; Zhang, Lin; Hu, Ya-Lei; Li, Zhao-Hui; Qu, Ling-Bo

    2015-10-15

    Glutathione (GSH) serves many cellular functions and plays crucial roles in human pathologies. Simple and sensitive sensors capable of detecting GSH would be useful tools to understand the mechanism of diseases. In this work, a rapid fluorescence "switch-on" assay was developed to detect trace amount of GSH based on carbon dots-MnO2 nanocomposites, which was fabricated through in situ synthesis of MnO2 nanosheets in carbon dots colloid solution. Due to the formation of carbon dots-MnO2 nanocomposites, fluorescence of carbon dots could be quenched efficiently by MnO2 nanosheeets through fluorescence resonance energy transfer (FRET). However, the presence of GSH would reduce MnO2 nanosheets to Mn(2+) ions and subsequently release carbon dots, which resulted in sufficient recovery of fluorescent signal. This proposed assay demonstrated highly selectivity toward GSH with a detection limit of 300nM. Moreover, this method has also shown sensitive responses to GSH in human serum samples, which indicated its great potential to be used in disease diagnosis. As no requirement of any further functionalization of these as-prepared nanomaterials, this sensing system shows remarkable advantages including very fast and simple, cost-effective as well as environmental-friendly, which suggest that this new strategy could serve as an efficient tool for analyzing GSH level in biosamples.

  11. Engineering and exploitation of a fluorescent HIV-1 gp120 for live cell CD4 binding assays

    SciTech Connect

    Costantini, Lindsey M.; Irvin, Susan C.; Kennedy, Steven C.; Guo, Feng; Goldstein, Harris; Herold, Betsy C.; Snapp, Erik L.

    2015-02-15

    The HIV-1 envelope glycoprotein, gp120, binds the host cell receptor, CD4, in the initial step of HIV viral entry and infection. This process is an appealing target for the development of inhibitory drugs and neutralizing antibodies. To study gp120 binding and intracellular trafficking, we engineered a fluorescent fusion of the humanized gp120 JRFL HIV-1 variant and GFP. Gp120-sfGFP is glycosylated with human sugars, robustly expressed, and secreted from cultured human cells. Protein dynamics, quality control, and trafficking can be visualized in live cells. The fusion protein can be readily modified with different gp120 variants or fluorescent proteins. Finally, secreted gp120-sfGFP enables a sensitive and easy binding assay that can quantitatively screen potential inhibitors of gp120-CD4 binding on live cells via fluorescence imaging or laser scanning cytometry. This adaptable research tool should aid in studies of gp120 cell biology and the development of novel anti-HIV drugs. - Highlights: • Development of fluorescent protein labeled HIV-1 envelope gp120. • Imaging of gp120 dynamics and trafficking in live cells. • Quantitative visual assay of antibody-mediated inhibition of gp120 binding to CD4 on live cells.

  12. A fluorescent microsphere-based method for assay of multiple analytes in plasma.

    PubMed

    Bernhard, Oliver K; Mathias, Rommel A; Barnes, Thomas W; Simpson, Richard J

    2011-01-01

    Measurement of multiple analytes can provide increased sensitivity and specificity for the detection and management of disease. The enzyme-linked immunosorbent assay (ELISA) is currently the "gold standard" for protein quantification; however, individual assays for each analyte must be performed, placing demand on sample volume. On the contrary, multiplex assays using microsphere-based technologies allow for multiple analytes to be simultaneously assayed within a single sample. Here, we present a protocol for the preparation and development of a multiple-analyte assay in human plasma using the BioPlex 200 platform (Bio-Rad), which incorporates xMAP technology (Luminex).

  13. Fluorescence-based quantitative scratch wound healing assay demonstrating the role of MAPKAPK-2/3 in fibroblast migration.

    PubMed

    Menon, Manoj B; Ronkina, Natalia; Schwermann, Jessica; Kotlyarov, Alexey; Gaestel, Matthias

    2009-12-01

    The scratch wound healing assay is a sensitive method to characterize cell proliferation and migration, but it is difficult to be quantitatively evaluated. Therefore, we developed an infrared fluorescence detection-based real-time assay for sensitive and accurate quantification of cell migration in vitro. The method offers sensitivity, simplicity, and the potential for integration into automated large-scale screening studies. A live cell staining lipophilic tracer-1,1'-dioctadecyl-3,3,3',3'-tetramethyl indotricarbocyanine iodide (DiR)-is used for accurate imaging of wound closure in a simple 96-well scratch assay. Scratches are made on prestained confluent cell monolayers using a pipette tip and scanned at different time intervals using a fluorescent scanner. Images are analyzed using Image J software and the migration index is calculated. Effect of cell number, time after scratch and software settings are analyzed. The method is validated by showing concentration- and time-dependent effects of cytochalasin-D on fibroblast migration. Using this assay, we quantitatively evaluate the role of the MAPK-activated protein kinases MK2 and MK3 in fibroblast migration. First, the migratory phenotype of MK2-deficient MEFs is analyzed in a retroviral rescue model. In addition, migration of MK2/3-double-deficient cells is determined and the ability of MK3 to rescue cell migration in MK2/3-double-deficient fibroblasts is demonstrated.

  14. Solid-phase receptor-based assay for the detection of cyclic imines by chemiluminescence, fluorescence, or colorimetry.

    PubMed

    Rodríguez, Laura P; Vilariño, Natalia; Molgó, Jordi; Aráoz, Rómulo; Antelo, Alvaro; Vieytes, Mercedes R; Botana, Luis M

    2011-08-01

    The spirolides and gymnodimines are marine phycotoxins included in the group of cyclic imines. The toxicity of these compounds to humans is still unknown, although their toxicity by intraperitoneal injection in rodents is very high. A receptor-based method was developed using the competition of the 13-desmethyl spirolide C with biotin-labeled α-bungarotoxin for binding to nicotinic acetylcholine receptors and the immobilization of the α-bungarotoxin-receptor complex on streptavidin-coated surfaces. The quantification of the immobilized receptor can be achieved using a specific antibody. Finally, after the addition of a secondary antibody labeled with horseradish peroxidase, three alternative substrates of this enzyme generate a chemiluminescent, fluorescent, or colorimetric signal. The assay performs well in shellfish extracts and the detection range is 5-150 nM of 13-desmethyl spirolide C in shellfish extracts, which is at least 5 times more sensitive than the existing fluorescence polarization assay. This assay can also detect gymnodimine, although with 10 times lower sensitivity than the spirolide. The detection of cyclic imines with microplate assays would be useful for screening purposes in order to reduce the number of samples to be processed by bioassays or analytical methods.

  15. Screening for IgG antinuclear autoantibodies by HEp-2 indirect fluorescent antibody assays and the need for standardization.

    PubMed

    Copple, Susan S; Giles, S Rashelle; Jaskowski, Troy D; Gardiner, Anna E; Wilson, Andrew M; Hill, Harry R

    2012-05-01

    We evaluated 5 commercially available HEp-2 antinuclear antibody (ANA) indirect fluorescent antibody (IFA) assays using patient serum samples from 45 patients with rheumatoid arthritis, 50 with systemic lupus erythematosus (SLE), 35 with scleroderma, 20 with Sjögren syndrome, 10 with polymyositis, and 100 healthy control subjects. In addition, 12 defined serum samples from the Centers for Disease Control and Prevention and 100 patient serum samples sent to ARUP Laboratories (Salt Lake City, UT) for ANA IFA testing were also examined (n = 372). Standardization among the HEp-2 IFA assays occurred when they exhibited the same titer ± 1 doubling dilution. Agreement of the 5 assays was 78%. Within the specific groups of serum samples, agreement ranged from 44% in scleroderma serum samples to 93% in healthy control subjects, with 72% agreement in the SLE group. Variations in slide and substrate quality were also noted (ie, clarity, consistency of fluorescence, cell size, number and quality of mitotic cells). Along with subjectivity of interpretation, HEp-2 IFA assays are also vulnerable to standardization issues similar to other methods for ANA screening.

  16. High-throughput fluorescence polarization assay for chemical library screening against anti-apoptotic Bcl-2 family member Bfl-1.

    PubMed

    Zhai, Dayong; Godoi, Paulo; Sergienko, Eduard; Dahl, Russell; Chan, Xochella; Brown, Brock; Rascon, Justin; Hurder, Andrew; Su, Ying; Chung, Thomas D Y; Jin, Chaofang; Diaz, Paul; Reed, John C

    2012-03-01

    Overexpression of the anti-apoptotic Bcl-2 family proteins occurs commonly in human cancers. Bfl-1 is highly expressed in some types of malignant cells, contributing significantly to tumor cell survival and chemoresistance. Therefore, it would be desirable to have chemical antagonists of Bfl-1. To this end, we devised a fluorescence polarization assay (FPA) using Bfl-1 protein and fluorescein-conjugated Bid BH3 peptide, which was employed for high-throughput screening of chemical libraries. Approximately 66 000 compounds were screened for the ability to inhibit BH3 peptide binding to Bfl-1, yielding 14 reproducible hits with ≥50% displacement. After dose-response analysis and confirmation using a secondary assay based on time-resolved fluorescence resonance energy transfer (TR-FRET), two groups of Bfl-1-specific inhibitors were identified, including chloromaleimide and sulfonylpyrimidine series compounds. FPAs generated for each of the six anti-apoptotic Bcl-2 proteins demonstrated selective binding of both classes of compounds to Bfl-1. Analogs of the sulfonylpyrimidine series were synthesized and compared with the original hit for Bfl-1 binding by both FPAs and TR-FRET assays. The resulting structure-activity relation analysis led to the chemical probe compound CID-2980973 (ML042). Collectively, these findings demonstrate the feasibility of using the HTS assay for discovery of selective chemical inhibitors of Bfl-1.

  17. Planar Supported Membranes with Mobile SNARE Proteins and Quantitative Fluorescence Microscopy Assays to Study Synaptic Vesicle Fusion

    PubMed Central

    Kiessling, Volker; Liang, Binyong; Kreutzberger, Alex J. B.; Tamm, Lukas K.

    2017-01-01

    Synaptic vesicle membrane fusion, the process by which neurotransmitter gets released at the presynaptic membrane is mediated by a complex interplay between proteins and lipids. The realization that the lipid bilayer is not just a passive environment where other molecular players like SNARE proteins act, but is itself actively involved in the process, makes the development of biochemical and biophysical assays particularly challenging. We summarize in vitro assays that use planar supported membranes and fluorescence microscopy to address some of the open questions regarding the molecular mechanisms of SNARE-mediated membrane fusion. Most of the assays discussed in this mini-review were developed in our lab over the last 15 years. We emphasize the sample requirements that we found are important for the successful application of these methods. PMID:28360838

  18. A high-throughput fluorescence resonance energy transfer (FRET)-based endothelial cell apoptosis assay and its application for screening vascular disrupting agents

    SciTech Connect

    Zhu, Xiaoming; Fu, Afu; Luo, Kathy Qian

    2012-02-24

    Highlights: Black-Right-Pointing-Pointer An endothelial cell apoptosis assay using FRET-based biosensor was developed. Black-Right-Pointing-Pointer The fluorescence of the cells changed from green to blue during apoptosis. Black-Right-Pointing-Pointer This method was developed into a high-throughput assay in 96-well plates. Black-Right-Pointing-Pointer This assay was applied to screen vascular disrupting agents. -- Abstract: In this study, we developed a high-throughput endothelial cell apoptosis assay using a fluorescence resonance energy transfer (FRET)-based biosensor. After exposure to apoptotic inducer UV-irradiation or anticancer drugs such as paclitaxel, the fluorescence of the cells changed from green to blue. We developed this method into a high-throughput assay in 96-well plates by measuring the emission ratio of yellow fluorescent protein (YFP) to cyan fluorescent protein (CFP) to monitor the activation of a key protease, caspase-3, during apoptosis. The Z Prime factor for this assay was above 0.5 which indicates that this assay is suitable for a high-throughput analysis. Finally, we applied this functional high-throughput assay for screening vascular disrupting agents (VDA) which could induce endothelial cell apoptosis from our in-house compounds library and dioscin was identified as a hit. As this assay allows real time and sensitive detection of cell apoptosis, it will be a useful tool for monitoring endothelial cell apoptosis in living cell situation and for identifying new VDA candidates via a high-throughput screening.

  19. New high-performance liquid chromatography assay for glycosyltransferases based on derivatization with anthranilic acid and fluorescence detection.

    PubMed

    Anumula, Kalyan Rao

    2012-07-01

    Assays were developed using the unique labeling chemistry of 2-aminobenzoic acid (2AA; anthranilic acid, AA) for measuring activities of both β1-4 galactosyltransferase (GalT-1) and α2-6 sialyltransferase (ST-6) by high-performance liquid chromatography (HPLC) with fluorescence detection (Anumula KR. 2006. Advances in fluorescence derivatization methods for high-performance liquid chromatographic analysis of glycoprotein carbohydrates. Anal Biochem. 350:1-23). N-Acetylglucosamine (GlcNAc) and N-acetyllactosamine were used as acceptors and uridine diphosphate (UDP)-galactose and cytidine monophosphate (CMP)-N-acetylneuraminic acid (NANA) as donors for GalT-1 and ST-6, respectively. Enzymatic products were labeled in situ with AA and were separated from the substrates on TSKgel Amide 80 column using normal-phase conditions. Enzyme units were determined from the peak areas by comparison with the concomitantly derivatized standards Gal-β1-4GlcNAc and NANA-α2-6 Gal-β1-4GlcNAc. Linearity (time and enzyme concentration), precision (intra- and interassay) and reproducibility for the assays were established. The assays were found to be useful in monitoring the enzyme activities during isolation and purification. The assays were highly sensitive and performed equal to or better than the traditional radioactive sugar-based measurements. The assay format can also be used for measuring the activity of other transferases, provided that the carbohydrate acceptors contain a reducing end for labeling. An assay for glycoprotein acceptors was developed using IgG. A short HPLC profiling method was developed for the separation of IgG glycans (biantennary G0, G1, G2, mono- and disialylated), which facilitated the determination of GalT-1 and ST-6 activities in a rapid manner. Furthermore, this profiling method should prove useful for monitoring the changes in IgG glycans in clinical settings.

  20. Advantages of time-resolved fluorescent nanobeads compared with fluorescent submicrospheres, quantum dots, and colloidal gold as label in lateral flow assays for detection of ractopamine.

    PubMed

    Hu, Li-Ming; Luo, Kai; Xia, Jun; Xu, Guo-Mao; Wu, Cheng-Hui; Han, Jiao-Jiao; Zhang, Gang-Gang; Liu, Miao; Lai, Wei-Hua

    2017-05-15

    Label selection is a critical factor for improving the sensitivity of lateral flow assay. Time-resolved fluorescent nanobeads, fluorescent submicrospheres, quantum dots, and colloidal gold-based lateral flow assay (TRFN-LFA, FM-LFA, QD-LFA, and CG-LFA) were first systematically compared for the quantitative detection of ractopamine in swine urine based on competitive format. The limits of detection (LOD) of TRFN-LFA, FM-LFA, QD-LFA, and CG-LFA were 7.2, 14.7, 23.6, and 40.1pg/mL in swine urine samples, respectively. The sensitivity of TRFN-LFA was highest. In the quantitative determination of ractopamine (RAC) in swine urine samples, TRFN-LFA exhibited a wide linear range of 5pg/mL to 2500pg/mL with a reliable coefficient of correlation (R(2)=0.9803). Relatively narrow linear ranges of 10-500pg/mL (FM-LFA) and 25-2500pg/mL (QD-LFA and CG-LFA) were acquired. Approximately 0.005µg of anti-RAC poly antibody (pAb) was used in each TRFN-LFA test strip, whereas 0.02, 0.054, and 0.15µg of pAb were used in each of the FM-LFA, QD-LFA, and CG-LFA test strips, respectively. In addition, TRFN-LFA required the least RAC-BSA antigens and exhibited the shortest detection time compared with the other lateral flow assays. Analysis of the RAC in swine urine samples showed that the result of TRFN-LFA was consistent with that of liquid chromatography-tandem mass spectrometry (LC-MS/MS) and a commercial enzyme-linked immunosorbent assay (ELISA) kit.

  1. Assay of ceftazidime and cefepime based on fluorescence quenching of carbon quantum dots.

    PubMed

    Huang, Yu; Zhang, Ying; Yan, Zhengyu; Liao, Shenghua

    2015-11-01

    A novel and sensitive method for the determination of ceftazidime and cefepime in an active pharmaceutical ingredient (API) has been developed based on the fluorescence quenching of poly(ethylene glycol) (PEG)2000-capped carbon quantum dots (CQDs) prepared using a chemical oxidation method. The quenching of fluorescence intensity is proportional to the concentration of ceftazidime and cefepime over the range of 0.33-3.30 and 0.24-2.40 µg/mL, respectively. The mode of interaction between PEG2000-capped CQDs and ceftazidime/cefepime in aqueous solutions was investigated using a fluorescence, UV/Vis and Fourier transform infrared spectrometry (FTIR) at physiological pH. UV/Vis and FTIR spectra demonstrated that ground state compounds were formed through hydrophobic interaction the fluorescence quenching of CQDs caused by ceftazidime and cefepime. The quenching constants decreased with increases in temperature, which was consistent with static quenching.

  2. Enhanced Sensitivity for Detection of HIV-1 p24 Antigen by a Novel Nuclease-Linked Fluorescence Oligonucleotide Assay

    PubMed Central

    Fan, Peihu; Li, Xiaojun; Su, Weiheng; Kong, Wei; Kong, Xianggui; Wang, Zhenxin; Wang, Youchun; Jiang, Chunlai; Gao, Feng

    2015-01-01

    The relatively high detection limit of the Enzyme-linked immunosorbent assay (ELISA) prevents its application for detection of low concentrations of antigens. To increase the sensitivity for detection of HIV-1 p24 antigen, we developed a highly sensitive nuclease-linked fluorescence oligonucleotide assay (NLFOA). Two major improvements were incorporated in NLFOA to amplify antibody-antigen interaction signals and reduce the signal/noise ratio; a large number of nuclease molecules coupled to the gold nanoparticle/streptavidin complex and fluorescent signals generated from fluorescent-labeled oligonucleotides by the nuclease. The detection limit of p24 by NLFOA was 1 pg/mL, which was 10-fold more sensitive than the conventional ELISA (10 pg/mL). The specificity was 100% and the coefficient of variation (CV) was 7.8% at low p24 concentration (1.5 pg/mL) with various concentrations of spiked p24 in HIV-1 negative sera. Thus, NLFOA is highly sensitive, specific, reproducible and user-friendly. The more sensitive detection of low p24 concentrations in HIV-1-infected individuals by NLFOA could allow detection of HIV-1 infections that are missed by the conventional ELISA at the window period during acute infection to further reduce the risk for HIV-1 infection due to the undetected HIV-1 in the blood products. Moreover, NLFOA can be easily applied to more sensitive detection of other antigens. PMID:25915630

  3. Fluorescence resonance energy transfer from pyrene to perylene labels for nucleic acid hybridization assays under homogeneous solution conditions

    PubMed Central

    Masuko, Masayuki; Ohuchi, Shohkichi; Sode, Koji; Ohtani, Hiroyuki; Shimadzu, Akira

    2000-01-01

    We characterized the fluorescence resonance energy transfer (FRET) from pyrene (donor) to perylene (acceptor) for nucleic acid assays under homogeneous solution conditions. We used the hybridization between a target 32mer and its complementary two sequential 16mer deoxyribonucleotides whose neighboring terminals were each respectively labeled with a pyrene and a perylene residue. A transfer efficiency of ~100% was attained upon the hybridization when observing perylene fluorescence at 459 nm with 347-nm excitation of a pyrene absorption peak. The Förster distance between two dye residues was 22.3 Å (the orientation factor of 2/3). We could change the distance between the residues by inserting various numbers of nucleotides into the center of the target, thus creating a gap between the dye residues on a hybrid. Assuming that the number of inserted nucleotides is proportional to the distance between the dye residues, the energy transfer efficiency versus number of inserted nucleotides strictly obeyed the Förster theory. The mean inter-nucleotide distance of the single-stranded portion was estimated to be 2.1 Å. Comparison between the fluorescent properties of a pyrene–perylene pair with those of a widely used fluorescein–rhodamine pair showed that the pyrene–perylene FRET is suitable for hybridization assays. PMID:10734211

  4. Bimolecular Fluorescence Complementation (BiFC) Assay for Direct Visualization of Protein-Protein Interaction in vivo.

    PubMed

    Lai, Hsien-Tsung; Chiang, Cheng-Ming

    Bimolecular Fluorescence Complementation (BiFC) assay is a method used to directly visualize protein-protein interaction in vivo using live-cell imaging or fixed cells. This protocol described here is based on our recent paper describing the functional association of human chromatin adaptor and transcription cofactor Brd4 with p53 tumor suppressor protein (Wu et al., 2013). BiFC was first described by Hu et al. (2002) using two non-fluorescent protein fragments of enhanced yellow fluorescent protein (EYFP), which is an Aequorea victoria GFP variant protein, fused respectively to a Rel family protein and a bZIP family transcription factor to investigate interactions between these two family members in living cells. The YFP was later improved by introducing mutations to reduce its sensitivity to pH and chloride ions, thus generating a super-enhanced YFP, named Venus fluorescent protein, without showing diminished fluorescence at 37 °C as typically observed with EYFP (Nagai et al., 2006). The fluorescence signal is regenerated by complementation of two non-fluorescent fragments (e.g., the Venus N-terminal 1-158 amino acid residues, called Venus-N, and its C-terminal 159-239 amino acid residues, named Venus-C; see Figure 1A and Gully et al., 2012; Ding et al., 2006; Kerppola, 2006) that are brought together by interaction between their respective fusion partners (e.g., Venus-N to p53, and Venus-C to the PDID domain of human Brd4; see Figure 1B and 1C). The intensity and cellular location of the regenerated fluorescence signals can be detected by fluorescence microscope. The advantages of the proximity-based BiFC assay are: first, it allows a direct visualization of spatial and temporal interaction between two partner proteins in vivo; second, the fluorescence signal provides a sensitive readout for detecting protein-protein interaction even at a low expression level comparable to that of the endogenous proteins; third, the intensity of the fluorescence signal is

  5. Sequential bioluminescence resonance energy transfer-fluorescence resonance energy transfer-based ratiometric protease assays with fusion proteins of firefly luciferase and red fluorescent protein.

    PubMed

    Branchini, Bruce R; Rosenberg, Justin C; Ablamsky, Danielle M; Taylor, Kelsey P; Southworth, Tara L; Linder, Samantha J

    2011-07-15

    We report here the preparation of ratiometric luminescent probes that contain two well-separated emission peaks produced by a sequential bioluminescence resonance energy transfer (BRET)-fluorescence resonance energy transfer (FRET) process. The probes are single soluble fusion proteins consisting of a thermostable firefly luciferase variant that catalyze yellow-green (560nm maximum) bioluminescence and a red fluorescent protein covalently labeled with a near-infrared fluorescent dye. The two proteins are connected by a decapeptide containing a protease recognition site specific for factor Xa, thrombin, or caspase 3. The rates of protease cleavage of the fusion protein substrates were monitored by recording emission spectra and plotting the change in peak ratios over time. Detection limits of 0.41nM for caspase 3, 1.0nM for thrombin, and 58nM for factor Xa were realized with a scanning fluorometer. Our results demonstrate for the first time that an efficient sequential BRET-FRET energy transfer process based on firefly luciferase bioluminescence can be employed to assay physiologically important protease activities.

  6. Simultaneous quantification of five bacterial and plant toxins from complex matrices using a multiplexed fluorescent magnetic suspension assay.

    PubMed

    Pauly, Diana; Kirchner, Sebastian; Stoermann, Britta; Schreiber, Tanja; Kaulfuss, Stefan; Schade, Rüdiger; Zbinden, Reto; Avondet, Marc-André; Dorner, Martin B; Dorner, Brigitte G

    2009-10-01

    Proteotoxins such as ricin, abrin, botulinum neurotoxins type A and B (BoNT/A, BoNT/B) and staphylococcal enterotoxin B (SEB) are regarded as potential biological warfare agents which could be used for bioterrorism attacks on the food chain. In this study we used a novel immunisation strategy to generate high-affinity monoclonal and polyclonal antibodies against native ricin, BoNT/A, and BoNT/B. The antibodies were used along with antibodies against SEB and abrin to establish a highly sensitive magnetic and fluorescent multiplex bead array with excellent sensitivities between 2 ng/L and 546 ng/L from a minimal sample volume of 50 microL. The assay was validated using 20 different related analytes and the assay precision was determined. Advancing the existing bead array technology, the novel magnetic and fluorescent microbeads proved amenable to enrichment procedures, by further increasing sensitivity to 0.3-85 ng/L, starting from a sample volume of 500 microL. Furthermore, the method was successfully applied for the simultaneous identification of the target toxins spiked into complex food matrices like milk, baby food and yoghurt. On the basis of our results, the assay appears to be a good tool for large-scale screening of samples from the food supply chain.

  7. An improved high-throughput Nile red fluorescence assay for estimating intracellular lipids in a variety of yeast species

    PubMed Central

    Sitepu, I.R.; Ignatia, L.; Franz, A. K.; Wong, D. M.; Faulina, S.A.; Tsui, M.; Kanti, A.; Boundy-Mills, K.

    2012-01-01

    A rapid and inexpensive method for estimating lipid content of yeasts is needed for screening large numbers of yeasts samples. Nile red is a fluorescent lipophilic dye used for detection and quantification of intracellular lipid droplets in various biological system including algae, yeasts and filamentous fungi. However, a published assay for yeast is affected by variable diffusion across the cell membrane, and variation in the time required to reach maximal fluorescence emission. In this study, parameters that may influence the emission were varied to determine optimal assay conditions. An improved assay with a high-throughput capability was developed that includes the addition of dimethyl sulfoxide (DMSO) solvent to improve cell permeability, elimination of the washing step, the reduction of Nile red concentration, kinetic readings rather than single time-point reading, and utilization of a black 96-well microplate. The improved method was validated by comparison to gravimetric determination of lipid content of a broad variety of ascomycete and basidiomycete yeast species. PMID:22985718

  8. Kinetic studies of Escherichia coli AlkB using a new fluorescence-based assay for DNA demethylation.

    PubMed

    Roy, Todd W; Bhagwat, A S

    2007-01-01

    The Escherichia coli AlkB protein catalyzes the direct reversal of alkylation damage to DNA; primarily 1-methyladenine (1mA) and 3-methylcytosine (3mC) lesions created by endogenous or environmental alkylating agents. AlkB is a member of the non-heme iron (II) alpha-ketoglutarate-dependent dioxygenase superfamily, which removes the alkyl group through oxidation eliminating a methyl group as formaldehyde. We have developed a fluorescence-based assay for the dealkylation activity of this family of enzymes. It uses formaldehyde dehydrogenase to convert formaldehyde to formic acid and monitors the creation of an NADH analog using fluorescence. This assay is a great improvement over the existing assays for DNA demethylation in that it is continuous, rapid and does not require radioactively labeled material. It may also be used to study other demethylation reactions including demethylation of histones. We used it to determine the kinetic constants for AlkB and found them to be somewhat different than previously reported values. The results show that AlkB demethylates 1mA and 3mC with comparable efficiencies and has only a modest preference for a single-stranded DNA substrate over its double-stranded DNA counterpart.

  9. A fluorescent-based HPLC assay for quantification of cysteine and cysteamine adducts in Escherichia coli-derived proteins.

    PubMed

    Soriano, Brian D; Tam, Lei-Ting T; Lu, Hsieng S; Valladares, Violeta G

    2012-01-01

    Recombinant proteins expressed in Escherichia coli are often produced as unfolded, inactive forms accumulated in inclusion bodies. Redox-coupled thiols are typically employed in the refolding process in order to catalyze the formation of correct disulfide bonds at maximal folding efficiency. These thiols and the recombinant proteins can form mixed disulfide bonds to generate thiol-protein adducts. In this work, we apply a fluorescent-based assay for the quantification of cysteine and cysteamine adducts as observed in E. coli-derived proteins. The thiols are released by reduction of the adducted protein, collected and labeled with a fluorescent reagent, 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate. The derivatized thiols are separated by reversed-phase HPLC and can be accurately quantified after method optimization. The estimated thiol content represents total amount of adducted forms present in the analyzed samples. The limit of quantification (LOQ) was established; specifically, the lowest amount of quantifiable cysteine adduction is 30 picograms and the lowest amount of quantifiable cysteamine adduction is 60 picograms. The assay is useful for quantification of adducts in final purified products as well as in-process samples from various purification steps. The assay indicates that the purification process accomplishes a decrease in cysteine adduction from 0.19 nmol adduct/nmol protein to 0.03 nmol adduct/nmol protein as well as a decrease in cysteamine adduction from 0.24 nmol adduct/nmol protein to 0.14 nmol adduct/nmol protein.

  10. A Fluorescence Polarization Assay for Binding to Macrophage Migration Inhibitory Factor and Crystal Structures for Complexes of Two Potent Inhibitors

    PubMed Central

    2016-01-01

    Human macrophage migration inhibitory factor (MIF) is both a keto–enol tautomerase and a cytokine associated with numerous inflammatory diseases and cancer. Consistent with observed correlations between inhibition of the enzymatic and biological activities, discovery of MIF inhibitors has focused on monitoring the tautomerase activity using l-dopachrome methyl ester or 4-hydroxyphenyl pyruvic acid as substrates. The accuracy of these assays is compromised by several issues including substrate instability, spectral interference, and short linear periods for product formation. In this work, we report the syntheses of fluorescently labeled MIF inhibitors and their use in the first fluorescence polarization-based assay to measure the direct binding of inhibitors to the active site. The assay allows the accurate and efficient identification of competitive, noncompetitive, and covalent inhibitors of MIF in a manner that can be scaled for high-throughput screening. The results for 22 compounds show that the most potent MIF inhibitors bind with Kd values of ca. 50 nM; two are from our laboratory, and the other is a compound from the patent literature. X-ray crystal structures for two of the most potent compounds bound to MIF are also reported here. Striking combinations of protein–ligand hydrogen bonding, aryl–aryl, and cation−π interactions are responsible for the high affinities. A new chemical series was then designed using this knowledge to yield two more strong MIF inhibitors/binders. PMID:27299179

  11. Evaluation of a novel real-time fluorescent polymerase chain reaction assay for high-risk human papilloma virus DNA genotypes in cytological cervical screening

    PubMed Central

    CHENG, JIAOYING; BIAN, MEILU; CONG, XIAO; SUN, AIPING; LI, MIN; MA, LI; CHEN, YING; LIU, JUN

    2013-01-01

    It has been confirmed that detection of high-risk human papillomavirus (HR HPV) DNA is useful in cervical cancer (CC) screening. Recently, a new real-time fluorescent polymerase chain reaction (PCR) assay was developed to detect HR HPV. This assay can synchronize nucleic acid amplification and testing using specific primers for 13 types of HR HPV genomes, combined with specific TaqMan fluorescent marker probe techniques through the fluorescence automatic PCR instrument. Furthermore, it uses TaqGold™ DNA polymerase, which minimizes the amount of non-specific amplification and increases the sensitivity of the assay. The aim of this study was to evaluate the analytical and clinical performance of the real-time fluorescent PCR assay in CC screening, compared to the Qiagen Hybrid Capture® II High-Risk HPV DNA test® (HC II). In total, 1,252 cervical specimens were collected from women between 19 and 71 years of age. The specimens were examined with three different assays, real-time fluorescent PCR assay and HC II for HR HPV detection combined with liquid-based cytology. Women with cytological abnormalities or HR HPV-positive results underwent colposcopy and cervical biopsy. This study demonstrated good overall agreement between HC II and real-time fluorescent PCR assay (overall agreement, 92.25%; Cohen’s κ=0.814). For the detection of high-grade cervical intraepithelial neoplasias (CIN) and CC, the sensitivity of HC II and real-time fluorescent PCR was 94.48 and 92.82%, respectively, and the negative predictive value was 98.85 and 98.54%, respectively. High HR HPV infection rate of the high-grade CIN and CC group was detected (P<0.05). In conclusion, real-time fluorescent PCR assay provides similar results compared to the HC II test for HR HPV detection and could be used in CC screening in clinic. PMID:24648936

  12. Fluorescence assay based on preconcentration by a self-ordered ring using berberine as a model analyte.

    PubMed

    Liu, Ying; Huang, Cheng Zhi; Li, Yuan Fang

    2002-11-01

    A novel assay for trace amounts of fluorescent analytes is proposed based on the assembly of a self-ordered ring (SOR) through capillary flow in a sessile droplet on a glass slide support. After solvent evaporation of the sessile droplet containing a fluorescent analyte on a hydrophobic-treated glass slide, an outward capillary flow of the solvent from the interior of the droplet occurs. The resultant outward capillary flow then carries the analyte to the perimeter of the droplet spot where the analyte deposits and forms a fluorescent SOR. For the model analyte of berberine, SORs with outer diameter less than 1.2 mm and ring belt width less than 19 microm can be obtained depending on the droplet volume of the berberine solution. Data analysis for the digitally imaged SOR by using a CCD camera showed that the berberine molecules across the SOR belt section follow a Gaussian distribution, and the maximum fluorescent intensity (Imax) was found to be proportional to berberine content at the femtomole level. With the proposed technique, the content in tablets and the average excretion rates of berberine through human urine after oral administration could be satisfactorily monitored.

  13. Effect of lateral mobility of fluorescent probes in lipid mixing assays of cell fusion.

    PubMed Central

    Huang, S K; Cheng, M; Hui, S W

    1990-01-01

    Monolayers of human erythrocytes, immobilized on a cover slip, were induced to fuse by polyethylene glycol (mol wt 8,000). The mobility of fluorescent probes, 1-oleoyl-2-[12-[(7-nitro-2,1,3-benzoxadizol-4-yl)amino]dodecanoyl] phosphatidyl-choline (C12-NBD-PC), from labeled cells to unlabeled cells was monitored by video-enhanced fluorescence microscopy. A dequenching curve was obtained from the measurement of fluorescence intensities of pairs of fused cells over time. The dequenching curve and the curve obtained from macroscopic measurements of a cell monolayer (described in the preceding article) were compared and discussed. The slow probe transfer rate between a pair of fused cells was explained by a diffusion model based on membrane area conservation and the geometry of the fusion lumen. An equivalent lumen between two fused cells, thought to be the main rate limitation of probe mobility after fusion, was calculated to be approximately 130 nm in diameter. Lumens of 75 nm in diameter were observed by electron microscopy. Thus, the rate of macroscopic fluorescence dequenching depends not only upon the fusion efficiency, but also upon the number of simultaneous fusion partners, the geometry of their contact points, and the lateral mobility of the fluorescent probes through these points. The relative fusion efficiency can be derived only from the saturation dequenching values. Images FIGURE 3 FIGURE 5 FIGURE 7 PMID:2291938

  14. A near-infrared fluorescence assay method to detect patulin in food.

    PubMed

    Pennacchio, Anna; Varriale, Antonio; Esposito, Maria Grazia; Staiano, Maria; D'Auria, Sabato

    2015-07-15

    Patulin (PAT) is a toxic secondary metabolite (mycotoxin) of different fungal species belonging to the genera Penicillium, Aspergillus, and Byssochlamys. They can grow on a large variety of food, including fruits, grains, and cheese. The amount of PAT in apple derivative products is a crucial issue because it is the measure of the quality of both the used raw products and the performed production process. Actually, all current methodologies used for the quantification of PAT are time-consuming and require skilled personnel beyond the sample pretreatment methods (e.g., high-performance liquid chromatography, mass spectrometry, and electrophoresis techniques). In this work, we present a novel fluorescence polarization approach based on the use of emergent near-infrared (NIR) fluorescence probes. The use of these fluorophores coupled to anti-PAT antibodies makes possible the detection of PAT directly in apple juice without any sample pretreatment. This methodology is based on the increase of fluorescence polarization emission of a fluorescence-labeled PAT derivative on binding to specific antibodies. A competition between PAT and the fluorescence-labeled PAT derivative allowed detecting PAT. The limit of detection of the method is 0.06 μg/L, a value that is lower than maximum residue limit of PAT fixed at 50 μg/L from European Union regulation.

  15. Interference of low-molecular substances with the thioflavin-T fluorescence assay of amyloid fibrils.

    PubMed

    Noormägi, Andra; Primar, Kateryna; Tõugu, Vello; Palumaa, Peep

    2012-01-01

    Abnormal fibrillization of amyloidogenic peptides/proteins has been linked to various neurodegenerative diseases such as Alzheimer's and Parkinson's disease as well as with type-II diabetes mellitus. The kinetics of protein fibrillization is commonly studied by using a fluorescent dye Thioflavin T (ThT) that binds to protein fibrils and exerts increased fluorescence intensity in bound state. Recently, it has been demonstrated that several low-molecular weight compounds like Basic Blue 41, Basic Blue 12, Azure C, and Tannic acid interfere with the fluorescence of ThT bound to Alzheimers' amyloid-β fibrils and cause false positive results during the screening of fibrillization inhibitors. In the current study, we demonstrated that the same selected substances also decrease the fluorescence signal of ThT bound to insulin fibrils already at submicromolar or micromolar concentrations. Kinetic experiments show that unlike to true inhibitors, these compounds did neither decrease the fibrillization rate nor increase the lag-period. Absence of soluble insulin in the end of the experiment confirmed that these compounds do not disaggregate the insulin fibrils and, thus, are not fibrillization inhibitors at concentrations studied. Our results show that interference with ThT test is a general phenomenon and more attention has to be paid to interpretation of kinetic results of protein fibrillization obtained by using fluorescent dyes.

  16. Determination of the drug-DNA binding modes using fluorescence-based assays.

    PubMed

    Williams, Alicia K; Dasilva, Sofia Cheliout; Bhatta, Ankit; Rawal, Baibhav; Liu, Melinda; Korobkova, Ekaterina A

    2012-03-15

    Therapeutic drugs and environmental pollutants may exhibit high reactivity toward DNA bases and backbone. Understanding the mechanisms of drug-DNA binding is crucial for predicting their potential genotoxicity. We developed a fluorescence analytical method for the determination of the preferential binding mode for drug-DNA interactions. Two nucleic acid dyes were employed in the method: TO-PRO-3 iodide (TP3) and 4',6-diamidino-2-phenylindole (DAPI). TP3 binds DNA by intercalation, whereas DAPI exhibits minor groove binding. Both dyes exhibit significant fluorescence magnification on binding to DNA. We evaluated the DNA binding constant, K(b), for each dye. We also performed fluorescence quenching experiments with 11 molecules of various structures and measured a C(50) value for each compound. We determined preferential binding modes for the aforementioned molecules and found that they bound to DNA consistently, as indicated by other studies. The values of the likelihood of DNA intercalation were correlated with the partition coefficients of the molecules. In addition, we performed nuclear magnetic resonance (NMR) studies of the interactions with calf thymus DNA for the three molecules. The results were consistent with the fluorescence method described above. Thus, we conclude that the fluorescence method we developed provides a reliable determination of the likelihoods of the two different DNA binding modes.

  17. Combination of DNA ligase reaction and gold nanoparticle-quenched fluorescent oligonucleotides: a simple and efficient approach for fluorescent assaying of single-nucleotide polymorphisms.

    PubMed

    Wang, Hao; Li, Jishan; Wang, Yongxiang; Jin, Jiangyu; Yang, Ronghua; Wang, Kemin; Tan, Weihong

    2010-09-15

    A new fluorescent sensing approach for detection of single-nucleotide polymorphisms (SNPs) is proposed based on the ligase reaction and gold nanoparticle (AuNPs)-quenched fluorescent oligonucleotides. The design exploits the strong fluorescence quenching of AuNPs for organic dyes and the difference in noncovalent interactions of the nanoparticles with single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA), where ssDNA can be adsorbed onto the surface of AuNPs while dsDNA cannot be. In the assay, two half primer DNA probes, one being labeled with a dye and the other being phosphorylated, were first incubated with a target DNA template. In the presence of DNA ligase, the two captured ssDNAs are linked for the perfectly matched DNA target to form a stable duplex, but the duplex could not be formed by the single-base mismatched DNA template. After addition of AuNPs, the fluorescence of dye-tagged DNA probe will be efficiently quenched unless the perfectly matched DNA target is present. To demonstrate the feasibility of this design, the performance of SNP detection using two different DNA ligases, T4 DNA ligase and Escherichia coli DNA ligase, were investigated. In the case of T4 DNA ligase, the signal enhancement of the dye-tagged DNA for perfectly matched DNA target is 4.6-fold higher than that for the single-base mismatched DNA. While in the presence of E. coli DNA ligase, the value raises to be 30.2, suggesting excellent capability for SNP discrimination.

  18. Bisubstrate fluorescent probes and biosensors in binding assays for HTS of protein kinase inhibitors.

    PubMed

    Uri, Asko; Lust, Marje; Vaasa, Angela; Lavogina, Darja; Viht, Kaido; Enkvist, Erki

    2010-03-01

    Conjugates of adenosine mimics and d-arginine-rich peptides (ARCs) are potent inhibitors of protein kinases (PKs) from the AGC group. Labeling ARCs with fluorescent dyes or immobilizing on chip surfaces gives fluorescent probes (ARC-Photo) and biosensors that can be used for high-throughput screening (HTS) of inhibitors of protein kinases. The bisubstrate character (simultaneous association with both binding sites of the kinase) and high affinity of ARCs allow ARC-based probes and sensors to be used for characterization of inhibitors targeted to either binding site of the kinase with affinities in whole nanomolar to micromolar range. The ability to penetrate cell plasma membrane and bind to the target kinase fused with a fluorescent protein leads to the possibility to use ARC-Photo probes for high content screening (HCS) of inhibitors in cellular milieu with detection of intensity of Förster resonance energy transfer (FRET) between two fluorophores.

  19. A fluorescence-based hydrolytic enzyme activity assay for quantifying toxic effects of Roundup® to Daphnia magna.

    PubMed

    Ørsted, Michael; Roslev, Peter

    2015-08-01

    Daphnia magna is a widely used model organism for aquatic toxicity testing. In the present study, the authors investigated the hydrolytic enzyme activity of D. magna after exposure to toxicant stress. In vivo enzyme activity was quantified using 15 fluorogenic enzyme probes based on 4-methylumbelliferyl or 7-amino-4-methylcoumarin. Probing D. magna enzyme activity was evaluated using short-term exposure (24-48 h) to the reference chemical K2 Cr2 O7 or the herbicide formulation Roundup®. Toxicant-induced changes in hydrolytic enzyme activity were compared with changes in mobility (International Organization for Standardization standard 6341). The results showed that hydrolytic enzyme activity was quantifiable as a combination of whole body fluorescence of D. magna and the fluorescence of the surrounding water. Exposure of D. magna to lethal and sublethal concentrations of Roundup resulted in loss of whole body enzyme activity and release of cell constituents, including enzymes and DNA. Roundup caused comparable inhibition of mobility and alkaline phosphatase activity with median effective concentration values at 20 °C of 8.7 mg active ingredient (a.i.)/L to 11.7 mg a.i./L. Inhibition of alkaline phosphatase activity by Roundup was lowest at 14 °C and greater at 20 °C and 26 °C. The results suggest that the fluorescence-based hydrolytic enzyme activity assay (FLEA assay) can be used as an index of D. magna stress. Combining enzyme activity with fluorescence measurements may be applied as a simple and quantitative supplement for toxicity testing with D. magna.

  20. Detection of p16INK4a promoter methylation status in non-small cell lung cancer by a fluorescence polarization assay.

    PubMed

    Song, Zujun; Zhou, Rongbin; Li, Ding; Chen, Yanan; Liang, Ping; Liu, Wenchao; Zhang, Ju

    2011-09-01

    The detection of the p16INK4a promoter methylation status has a good value for the prognosis, early detection, and individualized management of patients with non-small cell lung cancer. A novel method detecting the p16INK4a promoter methylation status of primary carcinoma tissue samples by a fluorescence polarization assay was developed in this research. A pair of general primers was used to amplify a 305-basepair fragment in the promoter region of p16INK4a. Two probes specific for either methylated p16INK4a or unmethylated p16INK4a DNA labeled with either tetramethyl 6-carboxyrhodamine or 6-carboxy-fluorescein hybridized, respectively, with their target amplicons, and the hybridization increased the fluorescence polarization values. The p16INK4a promoter methylation status was determined by the analysis of the fluorescence polarization values. One hundred and twenty-nine non-small cell lung cancer samples were analyzed in parallel with a fluorescence polarization assay and a gel-based methylation-specific polymerase chain reaction (PCR) assay. There was no significant difference between the results of the p16INK4a promoter methylation status obtained with the fluorescence polarization assay and the results obtained with the gel-based methylation-specific PCR assay. The minimum detection level of the fluorescence polarization assay was 25 copies/μL. The fluorescence polarization assay allowed the semiautomated detection of the methylated p16INK4a and unmethylated p16INK4a promoters directly in the solution with 1 PCR cycle, and it was much simpler than methylation-specific PCR and methylation-specific multiplex ligation-dependent probe amplification assays.

  1. Microplate fluorescence protease assays test the inhibition of select North American snake venoms' activities with an anti-proteinase library.

    PubMed

    Price, Joseph A

    2015-09-01

    Snake envenomation is a relatively neglected significant world health problem, designated an orphan disease by the WHO. While often effective, antivenins are insufficient. Could another approach greatly aid inhibition of the venom toxins? New fluorescent substrates for measuring protease activity in microplate assays suitable for high throughput screening were tested and found reproducible with snake venom. Representative North American venoms showed relatively strong proteinase and collagenase, but weaker elastase activities. Caseinolytic activity is inhibited by the nonspecific proteinase inhibitor 1,10-phenanthroline and by EDTA, as is collagenase activity, consistent with the action of metalloproteinases. Both general protease and collagenase assays CV average 3%, and Km measured were above normal working conditions. Using a library of anti -proteinase compounds with multiple venoms revealed high inhibitor activity by three agents with known multiple metalloproteinase inhibitor activity (Actinonin, GM6001, and NNGH), which incidentally supports the concept that much of the degradative activity of certain venoms is due to metalloproteinases with collagenase activity. These results together support the use of microplate proteinase assays, particularly this collagenase assay, in future drug repurposing studies leading to the development of new treatments for those envenomations that have a major proteolytic component in their pathophysiology.

  2. Quantification of mucosal mononuclear cells in tissues with a fluorescent bead-based polychromatic flow cytometry assay.

    PubMed

    Reeves, R Keith; Evans, Tristan I; Gillis, Jacqueline; Wong, Fay E; Connole, Michelle; Carville, Angela; Johnson, R Paul

    2011-03-31

    Since the vast majority of infections occur at mucosal surfaces, accurate characterization of mucosal immune cells is critically important for understanding transmission and control of infectious diseases. Standard flow cytometric analysis of cells obtained from mucosal tissues can provide valuable information on the phenotype of mucosal leukocytes and their relative abundance, but does not provide absolute cell counts of mucosal cell populations. We developed a bead-based flow cytometry assay to determine the absolute numbers of multiple mononuclear cell types in colorectal biopsies of rhesus macaques. Using 10-color flow cytometry panels and pan-fluorescent beads, cells were enumerated in biopsy specimens by adding a constant ratio of beads per mg of tissue and then calculating cell numbers/mg of tissue based on cell-to-bead ratios determined at the time of sample acquisition. Testing in duplicate specimens showed the assay to be highly reproducible (Spearman R=0.9476, P<0.0001). Using this assay, we report enumeration of total CD45(+) leukocytes, CD4(+) and CD8(+) T cells, B cells, NK cells, CD14(+) monocytes, and myeloid and plasmacytoid dendritic cells in colorectal biopsies, with cell numbers in normal rhesus macaques varying from medians of 4486 cells/mg (T cells) to 3 cells/mg (plasmacytoid dendritic cells). This assay represents a significant advancement in rapid, accurate quantification of mononuclear cell populations in mucosal tissues and could be applied to provide absolute counts of a variety of different cell populations in diverse tissues.

  3. Development and utilization of a fluorescence-based receptor-binding assay for the site 5 voltage-sensitive sodium channel ligands brevetoxin and ciguatoxin.

    PubMed

    McCall, Jennifer R; Jacocks, Henry M; Niven, Susan C; Poli, Mark A; Baden, Daniel G; Bourdelais, Andrea J

    2014-01-01

    Brevetoxins are a family of ladder-frame polyether toxins produced during blooms of the marine dinoflagellate Karenia brevis. Consumption of fish exposed to K. brevis blooms can lead to the development of neurotoxic shellfish poisoning. The toxic effects of brevetoxins are due to activation of voltage-sensitive sodium channels (VSSCs) in cell membranes. Binding of toxins has historically been measured using a radioligand competition assay that is fraught with difficulty. In this study, we developed a novel fluorescence-based binding assay for the brevetoxin receptor. Several fluorophores were conjugated to polyether brevetoxin-2 and used as the labeled ligand. Brevetoxin analogs were able to compete for binding with the fluorescent ligands. This assay was qualified against the standard radioligand receptor assay for the brevetoxin receptor. Furthermore, the fluorescence-based assay was used to determine relative concentrations of toxins in raw extracts of K. brevis culture, and to determine ciguatoxin affinity to site 5 of VSSCs. The fluorescence-based assay was quicker, safer, and far less expensive. As such, this assay can be used to replace the current radioligand assay and will be a vital tool for future experiments examining the binding affinity of various ligands for site 5 on sodium channels.

  4. Lead discovery for mammalian elongation of long chain fatty acids family 6 using a combination of high-throughput fluorescent-based assay and RapidFire mass spectrometry assay.

    PubMed

    Takamiya, Mari; Sakurai, Masaaki; Teranishi, Fumie; Ikeda, Tomoko; Kamiyama, Tsutomu; Asai, Akira

    2016-11-25

    A high-throughput RapidFire mass spectrometry assay is described for elongation of very long-chain fatty acids family 6 (Elovl6). Elovl6 is a microsomal enzyme that regulates the elongation of C12-16 saturated and monounsaturated fatty acids. Elovl6 may be a new therapeutic target for fat metabolism disorders such as obesity, type 2 diabetes, and nonalcoholic steatohepatitis. To identify new Elovl6 inhibitors, we developed a high-throughput fluorescence screening assay in 1536-well format. However, a number of false positives caused by fluorescent interference have been identified. To pick up the real active compounds among the primary hits from the fluorescence assay, we developed a RapidFire mass spectrometry assay and a conventional radioisotope assay. These assays have the advantage of detecting the main products directly without using fluorescent-labeled substrates. As a result, 276 compounds (30%) of the primary hits (921 compounds) in a fluorescence ultra-high-throughput screening method were identified as common active compounds in these two assays. It is concluded that both methods are very effective to eliminate false positives. Compared with the radioisotope method using an expensive (14)C-labeled substrate, the RapidFire mass spectrometry method using unlabeled substrates is a high-accuracy, high-throughput method. In addition, some of the hit compounds selected from the screening inhibited cellular fatty acid elongation in HEK293 cells expressing Elovl6 transiently. This result suggests that these compounds may be promising lead candidates for therapeutic drugs. Ultra-high-throughput fluorescence screening followed by a RapidFire mass spectrometry assay was a suitable strategy for lead discovery against Elovl6.

  5. Optimization of Fluorescence Assay of Cellular Manganese Status for High Throughput Screening

    PubMed Central

    Kumar, Kevin K.; Aboud, Asad A.; Patel, Devin K.; Aschner, Michael; Bowman, Aaron B.

    2013-01-01

    The advent of high throughput screening (HTS) technology permits identification of compounds that influence various cellular phenotypes. However, screening for small molecule chemical modifiers of neurotoxicants has been limited by the scalability of existing phenotyping assays. Furthermore, the adaptation of existing cellular assays to HTS format requires substantial modification of experimental parameters and analysis methodology to meet the necessary statistical requirements. Here we describe the successful optimization of the Cellular Fura-2 Manganese Extraction Assay (CFMEA) for HTS. By optimizing cellular density, manganese (Mn) exposure conditions, and extraction parameters, the sensitivity and dynamic range of the fura-2 Mn response was enhanced to permit detection of positive and negative modulators of cellular manganese status. Finally, we quantify and report strategies to control sources of intra-and inter-plate variability by batch level and plate-geometric level analysis. Our goal is to enable HTS with the CFMEA to identify novel modulators of Mn transport. PMID:23169769

  6. Stably transfected human cell lines as fluorescent screening assay for nuclear factor KB activation dependent gene expression

    NASA Astrophysics Data System (ADS)

    Hellweg, Christine E.; Baumstark-Khan, Christa; Horneck, Gerda

    2004-06-01

    Activation of the Nuclear Factor kappaB (NF-kappaB) pathway as a possible antiapoptotic route represents one important cellular stress response. For identifying conditions which are capable to modify this pathway, a screening assay for detection of NF-kappaB-dependent gene activation using the reporter proteins Enhanced Green Fluorescent Protein (EGFP) and its destabilized variant (d2EGFP) has been developed. Human Embryonic Kidney (HEK/293) cells were stably transfected with a vector carrying EGFP or d2EGFP under control of a synthetic promoter containing four copies of the NF-kappaB response element. Treatment with tumor necrosis factor alpha (TNF-alpha) gave rise to substantial EGFP / d2EGFP expression in up to 90 % of the cells and was therefore used to screen different stably transfected clones for induction of NF-kappaB dependent gene expression. The time course of d2EGFP expression after treatment with TNF-alpha or phorbol ester was measured using flow cytometry. Cellular response to TNF-alpha was faster than to phorbol ester. Treatment of cells with TNF-alpha and DMSO revealed antagonistic interactions of these substances in the activation NF-kappaB dependent gene expression. The detection of d2EGFP expression required FACS analysis or fluorescence microscopy, while EGFP could also be measured in the microplate reader, rendering the assay useful for high-throughput screening.

  7. Detecting Autophagy and Autophagy Flux in Chronic Myeloid Leukemia Cells Using a Cyto-ID Fluorescence Spectrophotometric Assay.

    PubMed

    Guo, Sujuan; Pridham, Kevin J; Sheng, Zhi

    2016-01-01

    Autophagy is a catabolic process whereby cellular components are degraded to fuel cells for longer survival during stress. Hence, autophagy plays a vital role in determining cell fate and is central for homeostasis and pathogenesis of many human diseases including chronic myeloid leukemia (CML). It has been well established that autophagy is important for the leukemogenesis as well as drug resistance in CML. Thus, autophagy is an intriguing therapeutic target. However, current approaches that detect autophagy lack reliability and often fail to provide quantitative measurements. To overcome this hurdle and facilitate the development of autophagy-related therapies, we have recently developed an autophagy assay termed as the Cyto-ID fluorescence spectrophotometric assay. This method uses a cationic fluorescence dye, Cyto-ID, which specifically labels autophagic compartments and is detected by a spectrophotometer to permit a large-scale and quantitative analysis. As such, it allows rapid, reliable, and quantitative detection of autophagy and estimation of autophagy flux. In this chapter, we further provide technical details of this method and step-by-step protocols for measuring autophagy or autophagy flux in CML cell lines as well as primary hematopoietic cells.

  8. Fluorescence assay for monitoring Zn-deficient superoxide dismutase in vitro

    NASA Astrophysics Data System (ADS)

    Martyshkin, D. V.; Mirov, S. B.; Zhuang, Y.-X.; Crow, J. P.; Ermilov, V.; Beckman, J. S.

    2003-11-01

    A method has been developed for selective detection of the zinc-deficient form of Cu, Zn superoxide dismutase (SOD1) in vitro. Zinc-deficient SOD1 mutants have been implicated in the death of motor neurons leading in amyotrophic lateral sclerosis (ALS or Lou Gerhig's disease). Thus, this method may have applicability for detecting zinc-deficient SOD1 mutants in human ALS patients samples as well as in a transgenic mouse model of ALS and in cultured motor neurons. We determined previously that structural analogs of 1,10 phenanthroline, which react specifically with Cu(I), react with the active Cu(I) of SOD1 when zinc is absent, but not when zinc is also bound, as evidenced by the fact that the reaction is inhibited by pretreatment of the enzyme with zinc. We report herein that bathocuproine, or its water-soluble derivative bathocuproine disulfonate, react with zinc-deficient SOD1 to form a complex which fluoresces at 734 nm when excited at 482 nm. Fluorescent intensity is concentration dependent, thus we propose to use fluorescent confocal microscopy to measure intracellular levels of zinc-deficient SOD1 in situ.

  9. Synthesis and biological assay of GSH functionalized fluorescent quantum dots for staining Hydra vulgaris.

    PubMed

    Tortiglione, Claudia; Quarta, Alessandra; Tino, Angela; Manna, Liberato; Cingolani, Roberto; Pellegrino, Teresa

    2007-01-01

    Quantum dots (QDs) have been used extensively as fluorescent markers in several studies on living cells. Here, we report the synthesis of conjugates based on glutathione (GSH) and QDs (GSH-QDs) and we prove how these functionalized fluorescent probes can be used for staining a freshwater invertebrate called Hydra vulgaris. GSH is known to promote Hydra feeding response by inducing mouth opening. We demonstrate that GSH-QDs as well are able to elicit biological activity in such an animal, which results in the fluorescent staining of Hydra. GSH-QDs, once they reach the gastric region, are internalized by endodermal cells. The efficiency of GSH-QD internalization increases significantly when nanoparticles are coadministrated with free GSH. We also compared the behavior of bare QDs to that of GSH-QDs both in the presence and in the absence of free GSH. The conclusions from these series of experiments point to the presence of GSH binding proteins in the endodermal cell layer and uncover a novel role played by glutathione in this organism.

  10. Competitive detection of influenza neutralizing antibodies using a novel bivalent fluorescence-based microneutralization assay (BiFMA).

    PubMed

    Baker, Steven F; Nogales, Aitor; Santiago, Felix W; Topham, David J; Martínez-Sobrido, Luis

    2015-07-09

    Avian-derived influenza A zoonoses are closely monitored and may be an indication of virus strains with pandemic potential. Both successful vaccination and convalescence of influenza A virus in humans typically results in the induction of antibodies that can neutralize viral infection. To improve long-standing and new-generation methodologies for detection of neutralizing antibodies, we have employed a novel reporter-based approach that allows for multiple antigenic testing within a single sample. Central to this approach is a single-cycle infectious influenza A virus (sciIAV), where a functional hemagglutinin (HA) gene was changed to encode either the green or the monomeric red fluorescent protein (GFP and mRFP, respectively) and HA is complemented in trans by stable HA-expressing cell lines. By using fluorescent proteins with non-overlapping emission spectra, this novel bivalent fluorescence-based microneutralization assay (BiFMA) can be used to detect neutralizing antibodies against two distinct influenza isolates in a single reaction, doubling the speed of experimentation while halving the amount of sera required. Moreover, this approach can be used for the rapid identification of influenza broadly neutralizing antibodies. Importantly, this novel BiFMA can be used for any given influenza HA-pseudotyped virus under BSL-2 facilities, including highly pathogenic influenza HA isolates.

  11. A homogeneous europium cryptate-based assay for the diagnosis of mutations by time-resolved fluorescence resonance energy transfer

    PubMed Central

    Lopez-Crapez, E.; Bazin, H.; Andre, E.; Noletti, J.; Grenier, J.; Mathis, G.

    2001-01-01

    Oligonucleotide ligation assay (OLA) is considered to be a very useful methodology for the detection and characterization of mutations, particularly for clinical purposes. The fluorescence resonance energy transfer between a fluorescent donor and a suitable fluorophore as acceptor has been applied in the past to several scientific fields. This technique is well adapted to nucleic acid analysis such as DNA sequencing, DNA hybridization and polymerase chain reaction. We describe here a homogeneous format based on the use of a rare earth cryptate label as donor: tris-bipyridine-Eu3+. The long-lived fluorescence of this label makes it possible to reach a high sensitivity by using a time-resolved detection mode. A non-radiative energy transfer technology, known as time-resolved amplification of cryptate emission (TRACE®) characterized by a temporal and spectral selectivity has been developed. The TRACE® detection of characterized single nucleotide polymorphism using the OLA for allelic discrimination is proposed. We demonstrate the potentialities of this OLA–TRACE® methodology through the analysis of K-ras oncogene point mutations. PMID:11452039

  12. Development of a multiplex quantitative fluorescent PCR assay for identification of rearrangements in the AZFb and AZFc regions.

    PubMed

    Zhang, Jun; Li, Pei-qiong; Yu, Qi-hong; Chen, Hua-yun; Li, Juan; He, Yun-shao

    2008-06-01

    The azoospermia factor b (AZFb) and azoospermia factor c (AZFc) regions in the human Y chromosome consist of five palindromes constructed from six distinct families of amplicons and are prone to rearrangement. Partial deletion and duplication in the region can cause azoospermia or oligozoospermia and male infertility. The aim of the study was to establish a quantitative fluorescent PCR (QF-PCR) assay to classify AZFb and AZFc rearrangements. A single pair of fluorescent primers was designed to amplify simultaneously the amplicon in AZFc and the length-variant homologous sequences outside of the region as control. Since the copy number of the control sequences is fixed in the human genome, dosage of the target could be easily obtained through comparing the height of the fluorescent peaks between the target and the control after amplification with limited PCR cycles. Most types of rearrangements in AZFb and AZFc regions could be classified with QF-PCR containing four such primer pairs. Eleven types of rearrangement in AZFb and AZFc regions were well discriminated with QF-PCR. In conclusion, QF-PCR is a simple and reliable method to detect rearrangements in AZFb and AZFc.

  13. Firefly Luciferase-Based Sequential Bioluminescence Resonance Energy Transfer (BRET)-Fluorescence Resonance Energy Transfer (FRET) Protease Assays.

    PubMed

    Branchini, Bruce

    2016-01-01

    We describe here the preparation of ratiometric luminescent probes that contain two well-separated emission peaks produced by a sequential bioluminescence resonance energy transfer (BRET)-fluorescence resonance energy transfer (FRET) process. The probes are single soluble fusion proteins consisting of a thermostable firefly luciferase variant that catalyzes yellow-green (560 nm maximum) bioluminescence and a red fluorescent protein covalently labeled with a near-Infrared fluorescent dye. The two proteins are connected by a decapeptide containing a protease recognition site specific for factor Xa, thrombin, or caspase 3. The rates of protease cleavage of the fusion protein substrates were monitored by recording emission spectra and plotting the change in peak ratios over time. Detection limits of 0.41 nM for caspase 3, 1.0 nM for thrombin, and 58 nM for factor Xa were realized with a scanning fluorometer. This method successfully employs an efficient sequential BRET-FRET energy transfer process based on firefly luciferase bioluminescence to assay physiologically important protease activities and should be generally applicable to the measurement of any endoprotease lacking accessible cysteine residues.

  14. Adaptation of Tri-molecular fluorescence complementation allows assaying of regulatory Csr RNA-protein interactions in bacteria.

    PubMed

    Gelderman, Grant; Sivakumar, Anusha; Lipp, Sarah; Contreras, Lydia

    2015-02-01

    sRNAs play a significant role in controlling and regulating cellular metabolism. One of the more interesting aspects of certain sRNAs is their ability to make global changes in the cell by interacting with regulatory proteins. In this work, we demonstrate the use of an in vivo Tri-molecular Fluorescence Complementation assay to detect and visualize the central regulatory sRNA-protein interaction of the Carbon Storage Regulatory system in E. coli. The Carbon Storage Regulator consists primarily of an RNA binding protein, CsrA, that alters the activity of mRNA targets and of an sRNA, CsrB, that modulates the activity of CsrA. We describe the construction of a fluorescence complementation system that detects the interactions between CsrB and CsrA. Additionally, we demonstrate that the intensity of the fluorescence of this system is able to detect changes in the affinity of the CsrB-CsrA interaction, as caused by mutations in the protein sequence of CsrA. While previous methods have adopted this technique to study mRNA or RNA localization, this is the first attempt to use this technique to study the sRNA-protein interaction directly in bacteria. This method presents a potentially powerful tool to study complex bacterial RNA protein interactions in vivo.

  15. A FLUORESCENCE BASED ASSAY FOR DNA DAMAGE INDUCED BY TOXIC INDUSTRIAL CHEMICALS

    EPA Science Inventory

    One of the reported effects for exposure to many of the toxic industrial chemicals is DNA damage. The present study describes a simple, rapid and innovative assay to detect DNA damage resulting from exposure of surrogate DNA to toxic industrial chemicals (acrolein, allylamine, ch...

  16. Multi-Fluorescence Real-Time PCR Assay for Detection of RIF and INH Resistance of M. tuberculosis

    PubMed Central

    Peng, Jingfu; Yu, Xiaoli; Cui, Zhenling; Xue, Wenfei; Luo, Ziyi; Wen, Zilu; Liu, Minghua; Jiang, Danqing; Zheng, Heping; Wu, Hai; Zhang, Shulin; Li, Yao

    2016-01-01

    Background: Failure to early detect multidrug-resistant tuberculosis (MDR-TB) results in treatment failure and poor clinical outcomes, and highlights the need to rapidly detect resistance to rifampicin (RIF) and isoniazid (INH). Methods: In Multi-Fluorescence quantitative Real-Time PCR (MF-qRT-PCR) assay, 10 probes labeled with four kinds of fluorophores were designed to detect the mutations in regions of rpoB, katG, mabA-inhA, oxyR-ahpC, and rrs. The efficiency of MF-qRT-PCR assay was tested using 261 bacterial isolates and 33 clinical sputum specimens. Among these samples, 227 Mycobacterium tuberculosis isolates were analyzed using drug susceptibility testing (DST), DNA sequencing and MF-qRT-PCR assay. Results: Compared with DST, MF-qRT-PCR sensitivity and specificity for RIF-resistance were 94.6 and 100%, respectively. And the detection sensitivity and specificity for INH-resistance were 85.9 and 95.3%, respectively. Compared with DNA sequencing, the sensitivity and specificity of our assay were 97.2 and 100% for RIF-resistance and 97.9 and 96.4% for INH-resistance. Compared with Phenotypic strain identification, MF-qRT-PCR can distinguish 227 M. tuberculosis complexes (MTC) from 34 Non-tuberculous mycobacteria (NTM) isolates with 100% accuracy rate. Conclusions: MF-qRT-PCR assay was an efficient, accurate, reliable, and easy-operated method for detection of RIF and INH-resistance, and distinction of MTC and NTM of clinical isolates. PMID:27199947

  17. The function of the milk-clotting enzymes bovine and camel chymosin studied by a fluorescence resonance energy transfer assay.

    PubMed

    Jensen, Jesper Langholm; Jacobsen, Jonas; Moss, Marcia L; Rasmussen, Fred; Qvist, Karsten Bruun; Larsen, Sine; van den Brink, Johannes M

    2015-05-01

    Enzymatic coagulation of bovine milk can be divided in 2 steps: an enzymatic step, in which the Phe105-Met106 bond of the milk protein bovine κ-casein is cleaved, and an aggregation step. The aspartic peptidases bovine and camel chymosin (EC 3.4.23.4) are typically used to catalyze the enzymatic step. The most commonly used method to study chymosin activity is the relative milk-clotting activity test that measures the end point of the enzymatic and aggregation step. This method showed that camel chymosin has a 2-fold higher milk-clotting activity toward bovine milk than bovine chymosin. To enable a study of the enzymatic step independent of the aggregation step, a fluorescence resonance energy transfer assay has been developed using a peptide substrate derived from the 98-108 sequence of bovine κ-casein. This assay and Michaelis-Menten kinetics were employed to determine the enzymatic activity of camel and bovine chymosin under milk clotting-like conditions (pH 6.65, ionic strength 80 mM). The results obtained show that the catalytic efficiency of camel chymosin is 3-fold higher than bovine chymosin. The substrate affinity and catalytic activity of bovine and camel chymosin increase at lower pH (6.00 and 5.50). The glycosylation of bovine and camel chymosin did not affect binding of the fluorescence resonance energy transfer substrate, but doubly glycosylated camel chymosin seems to have slightly higher catalytic efficiency. In the characterization of the enzymes, the developed assay is easier and faster to use than the traditionally used relative milk-clotting activity test method.

  18. Design of peptide substrates for nanosecond time-resolved fluorescence assays of proteases: 2,3-diazabicyclo[2.2.2]oct-2-ene as a noninvasive fluorophore.

    PubMed

    Hennig, Andreas; Florea, Mara; Roth, Doris; Enderle, Thilo; Nau, Werner M

    2007-01-15

    Fluorescence protease assays were investigated with peptide substrates containing a 2,3-diazabicyclo[2.2.2]oct-2-ene-labeled asparagine (Dbo) as a fluorescent amino acid. The special characteristic of the fluorophore Dbo is its exceedingly long fluorescence lifetime (ca. 300 ns in water under air), which allows the use of nanosecond time-resolved fluorescence (Nano-TRF) detection to efficiently suppress shorter-lived background emission. In addition, the natural amino acids tryptophan and tyrosine can be employed as intramolecular fluorescence quenchers, which facilitates substrate design. Fourteen synthetic peptide substrates (composed of 2-19 amino acids) and five enzymes (trypsin, pepsin, carboxypeptidase A, leucine aminopeptidase, and chymotrypsin) were investigated and, in all 28 examined combinations, enzymatic activity was detected by monitoring the increase in steady state fluorescence with time and determining the reaction rates as kcat/Km values, which ranged from 0.2 to 80x10(6) M-1 min-1. The results suggest an excellent compatibility of the very small and hydrophilic fluorescent probe Dbo with solid-phase peptide synthesis and the investigated proteases. For all 14 peptides the fluorescence lifetimes before and after enzymatic cleavage were measured and Nano-TRF measurements were performed in 384-well microplates. The fluorescence lifetimes of the different peptides provide the basis for the rational design of Dbo-based fluorescent substrates for protease assays. Measurements in Nano-TRF mode revealed, in addition to efficient suppression of background fluorescence, an increased differentiation between cleaved and uncleaved substrate. The Dbo-based assays can be adapted for high-throughput screening.

  19. Development of a Fluorescence Polarization Based High-Throughput Assay to Identify Casitas B-Lineage Lymphoma RING Domain Regulators

    PubMed Central

    Pessetto, Ziyan Yuan; Zhao, Yan; Zang, Zhihe; Zhong, Ling; Wu, Min; Su, Qing; Gao, Xiurong; Zan, Wang; Sun, Yiyi

    2013-01-01

    The E3 ubiquitin protein ligase Casitas B-lineage Lymphoma (Cbl) proteins and their binding partners play an important role in regulating signal transduction pathways. It is important to utilize regulators to study the protein-protein interactions (PPIs) between these proteins. However, finding specific small-molecule regulators of PPIs remains a significant challenge due to the fact that the interfaces involved in PPIs are not well suited for effective small molecule binding. We report the development of a competitive, homogeneous, high-throughput fluorescence polarization (FP) assay to identify small molecule regulators of Cbl (RING) domain. The FP assay was used to measure binding affinities and inhibition constants of UbCH7 peptides and small molecule regulators of Cbl (RING) domains, respectively. In order to rule out promiscuous, aggregation-based inhibition, two assay conditions were developed and compared side by side. Under optimized conditions, we screened a 10,000 natural compound library in detergent-free and detergent-present (0.01% Triton X-100) systems. The results indicate that the detergent-present system is more suitable for high-throughput screens. Three potential compounds, methylprotodioscin, leonuride and catalpol, have been identified that bind to Cbl (RING) domain and interfere with the Cbl (RING)-UbCH7 protein-protein interaction. PMID:24205080

  20. Development of homogeneous binding assays based on fluorescence resonance energy transfer between quantum dots and Alexa Fluor fluorophores.

    PubMed

    Nikiforov, Theo T; Beechem, Joseph M

    2006-10-01

    We studied the fluorescence resonance energy transfer (FRET) between quantum dots emitting at 565, 605, and 655 nm as energy donors and Alexa Fluor fluorophores with absorbance maxima at 594, 633, 647, and 680 nm as energy acceptors. As a first step, we prepared covalent conjugates between all three types of quantum dots and each of the Alexa Fluor fluorophores that could act as an energy acceptor. All of these conjugates displayed efficient resonance energy transfer. Then we prepared covalent conjugates of these quantum dots with biotin, fluorescein, and cortisol and established that the binding of these conjugates to suitable Alexa Fluor-labeled antibodies and streptavidin (in the case of biotin) can be efficiently detected by measuring the resonance energy transfer in homogeneous solutions. Finally, based on these observations, competitive binding assays for these three small analytes were developed. The performance of these assays as a function of the degree of labeling of the quantum dots was evaluated. It was found that decreasing the degree of loading of the quantum dots leads to decreases of the limits of detection. The results show the great potential of this FRET system for the development of new homogeneous binding assays.

  1. Two-Component Direct Fluorescent-Antibody Assay for Rapid Identification of Bacillus Anthracis

    DTIC Science & Technology

    2002-10-01

    Bacillus spp. (n=56) Five closely related Bacillus species—B. cereus (n=23), B. megaterium (n=11), B. subtilis (n=9), B. thuringiensis (n=12), and B...Rapid Identification of Bacillus anthracis Barun K. De,* Sandra L. Bragg,* Gary N. Sanden,* Kathy E. Wilson,* Lois A. Diem,* Chung K. Marston...antibody (DFA) assay, using fluorescein-labeled monoclonal antibodies specific to the Bacillus anthracis cell wall (CW-DFA) and capsule (CAP-DFA

  2. A Fluorescence Displacement Assay for Antidepressant Drug Discovery Based on Ligand-Conjugated Quantum Dots

    SciTech Connect

    Chang, Jerry; Tomlinson, Ian; Warnement, Michael; Iwamoto, Hideki

    2011-01-01

    The serotonin (5-hydroxytryptamine, 5-HT) transporter (SERT) protein plays a central role in terminating 5-HT neurotransmission and is the most important therapeutic target for the treatment of major depression and anxiety disorders. We report an innovative, versatile, and target-selective quantum dot (QD) labeling approach for SERT in single Xenopus oocytes that can be adopted as a drug-screening platform. Our labeling approach employs a custom-made, QD-tagged indoleamine derivative ligand, IDT318, that is structurally similar to 5-HT and accesses the primary binding site with enhanced human SERT selectivity. Incubating QD-labeled oocytes with paroxetine (Paxil), a high-affinity SERT-specific inhibitor, showed a concentration- and time-dependent decrease in QD fluorescence, demonstrating the utility of our approach for the identification of SERT modulators. Furthermore, with the development of ligands aimed at other pharmacologically relevant targets, our approach may potentially form the basis for a multitarget drug discovery platform.

  3. Cell-based fluorescence assay for evaluation of new-drugs potential for phospholipidosis in an early stage of drug development.

    PubMed

    Fujimura, Hisako; Dekura, Eriha; Kurabe, Michie; Shimazu, Noriko; Koitabashi, Mieko; Toriumi, Wataru

    2007-08-01

    To evaluate new-drugs potential for phospholipidosis (PL), we developed a cell-based fluorescence assay using a fluorescent-labeled phospholipid analogue (NBD-PE). CHL/IU cells derived from newborn hamster lung were exposed to positive reference compounds (amiodarone, imipramine, chloroquine, propranolol, chlorpromazine and amantadine) in the presence of NBD-PE, and the level of PL, as indicated by accumulation of fluorescent inclusions in the cytoplasm, was evaluated using fluorescence microscopy and fluorometry. All positive reference compounds induced accumulation of fluorescent inclusions in a concentration-dependent manner with an increase in fluorescence intensity. Fluorescence microscopically, the positive dose of test compound was determined as the concentration with a grade equivalent to or above that of 3.13 microM of amiodarone. Based on this criterion, 8 of 20 test compounds including PL-positive or -negative compounds were judged positive that were concurrent with the pathological results from rat toxicity studies. Furthermore, a positive criterion for fluorometry was decided as equivalent to or above 25% of maximum intensity induced by 1.56-25.0 microM amiodarone. In comparison of fluorometry methods with fluorescence microscopy method, 19 of 20 compounds were judged same. From these findings, we concluded that the assay developed in this study is a rapid and reliable method to predict new-drugs potential for PL at an early stage of drug development.

  4. High-content fluorescent-based assay for screening activators of DNA damage checkpoint pathways.

    PubMed

    Bin Zhang; Xiubin Gu; Uppalapati, Uma; Ashwell, Mark A; Leggett, David S; Li, Chiang J

    2008-07-01

    Activation of DNA damage checkpoint pathways, including Chk2, serves as an anticancer barrier in precancerous lesions. In an effort to identify small-molecule activators of Chk2, the authors developed a quantitative cell-based assay using a high-content analysis (HCA) platform. Induction of phosphorylated Chk2 was evaluated using several different parameters, including fold induction, Kolmogorov-Smirnov score, and percentage of positively stained cells. These measurements were highly correlated and provided an accurate method for compound ranking/binning, structure-activity relationship studies, and lead identification. Screening for Chk2 activators was undertaken with a target-focused library and a diversified library from ArQule chemical space. Several compounds exhibited submicromolar EC( 50) values for phosphorylated Chk2 induction. These compounds were further analyzed for Chk2-dependent cytotoxicity, as assessed through a high-content cell death assay in combination with siRNA silencing of Chk2 expression. Several compounds were identified and showed specific inhibition or lethality in a target-dependent manner. Therefore, identification of DNA damage checkpoint pathway activators by HCA is an attractive approach for discovering the next generation of targeted cancer therapeutics.

  5. Use of Modern Chemical Protein Synthesis and Advanced Fluorescent Assay Techniques to Experimentally Validate the Functional Annotation of Microbial Genomes

    SciTech Connect

    Kent, Stephen

    2012-07-20

    The objective of this research program was to prototype methods for the chemical synthesis of predicted protein molecules in annotated microbial genomes. High throughput chemical methods were to be used to make large numbers of predicted proteins and protein domains, based on microbial genome sequences. Microscale chemical synthesis methods for the parallel preparation of peptide-thioester building blocks were developed; these peptide segments are used for the parallel chemical synthesis of proteins and protein domains. Ultimately, it is envisaged that these synthetic molecules would be ‘printed’ in spatially addressable arrays. The unique ability of total synthesis to precision label protein molecules with dyes and with chemical or biochemical ‘tags’ can be used to facilitate novel assay technologies adapted from state-of-the art single molecule fluorescence detection techniques. In the future, in conjunction with modern laboratory automation this integrated set of techniques will enable high throughput experimental validation of the functional annotation of microbial genomes.

  6. Fluorescence anisotropy microplate assay to investigate the interaction of full-length steroid receptor coactivator-1a with steroid receptors

    PubMed Central

    Zhang, Chen; Nordeen, Steven K.; Shapiro, David J.

    2013-01-01

    Estrogens, acting via estrogen receptor (ER) play key roles in growth, differentiation and gene regulation in the reproductive, central nervous and skeletal systems. ER-mediated gene transcription contributes to the development and spread of breast, uterine, and liver cancer. Steroid receptor coactivator-1a (SRC1a) belongs to the P160 family of coactivators, which is the best known of the many coactivators implicated in ER-mediated transactivation. Binding of full-length P160 coactivators to steroid receptors has been difficult to investigate in vitro. This chapter details how to investigate the interaction of SRC1a with ER using the fluorescence anisotropy/polarization microplate assay (FAMA). PMID:23436375

  7. A fluorescent microplate assay quantifies bacterial efflux and demonstrates two distinct compound binding sites in AcrB.

    PubMed

    Iyer, Ramkumar; Ferrari, Annette; Rijnbrand, R; Erwin, Alice L

    2015-04-01

    A direct assay of efflux by Escherichia coli AcrAB-TolC and related multidrug pumps would have great value in discovery of new Gram-negative antibiotics. The current understanding of how efflux is affected by the chemical structure and physical properties of molecules is extremely limited, derived from antibacterial data for compounds that inhibit growth of wild-type E. coli. We adapted a previously described fluorescent efflux assay to a 96-well microplate format that measured the ability of test compounds to compete for efflux with Nile Red (an environment-sensitive fluor), independent of antibacterial activity. We show that Nile Red and the lipid-sensitive probe DiBAC4-(3) [bis-(1,3-dibutylbarbituric acid)-trimethine oxonol] can quantify efflux competition in E. coli. We extend the previous findings that the tetracyclines compete with Nile Red and show that DiBAC4-(3) competes with macrolides. The extent of the competition shows a modest correlation with the effect of the acrB deletion on MICs within the compound sets for both dyes. Crystallographic studies identified at least two substrate binding sites in AcrB, the proximal and distal pockets. High-molecular-mass substrates bound the proximal pocket, while low-mass substrates occupied the distal pocket. As DiBAC4-(3) competes with macrolides but not with Nile Red, we propose that DiBAC4-(3) binds the proximal pocket and Nile Red likely binds the distal site. In conclusion, competition with fluorescent probes can be used to study the efflux process for diverse chemical structures and may provide information as to the site of binding and, in some cases, enable rank-ordering a series of related compounds by efflux.

  8. A Fluorescent Microplate Assay Quantifies Bacterial Efflux and Demonstrates Two Distinct Compound Binding Sites in AcrB

    PubMed Central

    Ferrari, Annette; Rijnbrand, R.; Erwin, Alice L.

    2015-01-01

    A direct assay of efflux by Escherichia coli AcrAB-TolC and related multidrug pumps would have great value in discovery of new Gram-negative antibiotics. The current understanding of how efflux is affected by the chemical structure and physical properties of molecules is extremely limited, derived from antibacterial data for compounds that inhibit growth of wild-type E. coli. We adapted a previously described fluorescent efflux assay to a 96-well microplate format that measured the ability of test compounds to compete for efflux with Nile Red (an environment-sensitive fluor), independent of antibacterial activity. We show that Nile Red and the lipid-sensitive probe DiBAC4-(3) [bis-(1,3-dibutylbarbituric acid)-trimethine oxonol] can quantify efflux competition in E. coli. We extend the previous findings that the tetracyclines compete with Nile Red and show that DiBAC4-(3) competes with macrolides. The extent of the competition shows a modest correlation with the effect of the acrB deletion on MICs within the compound sets for both dyes. Crystallographic studies identified at least two substrate binding sites in AcrB, the proximal and distal pockets. High-molecular-mass substrates bound the proximal pocket, while low-mass substrates occupied the distal pocket. As DiBAC4-(3) competes with macrolides but not with Nile Red, we propose that DiBAC4-(3) binds the proximal pocket and Nile Red likely binds the distal site. In conclusion, competition with fluorescent probes can be used to study the efflux process for diverse chemical structures and may provide information as to the site of binding and, in some cases, enable rank-ordering a series of related compounds by efflux. PMID:25645845

  9. High-throughput fluorescence screening assay for the identification and comparison of antimicrobial peptides' activity on various yeast species.

    PubMed

    Kodedová, Marie; Sychrová, Hana

    2016-09-10

    New antifungal compounds that circumvent the resistance of the pathogen by directly damaging yeast cell surface structures are promising agents for the treatment of fungal infections, due to their different mechanism of action from current clinically used antifungal drugs. We present here a rapid and cost-effective fluorescence method suitable for identifying new potent drugs that directly target yeast cell surface structures, causing cell permeabilization and thus bypassing the multidrug resistance mechanisms of pathogens. The fluorescence assay enabled us to detect with high sensitivity damage to the Candida plasma membrane (its hyperpolarization and permeabilization) as a result of short-term exposure to the antifungal compounds. Results can be obtained in 1-2h with minimal effort and consumption of the tested compounds, also 96 samples can be analysed simultaneously. We used this method to study antimicrobial peptides isolated from the venom of bees and their synthetic analogs, compare the potency of the peptides and determine their minimal effective concentrations. The antimicrobial peptides were able to kill yeast cells at low concentrations within a 15-min treatment, the LL-III peptide exhibited a broad spectrum of antifungal activity on various Saccharomyces, pathogenic Candida and osmotolerant yeast species.

  10. Activity, polypeptide and gene identification of thylakoid Ndh complex in trees: potential physiological relevance of fluorescence assays.

    PubMed

    Serrot, Patricia H; Sabater, Bartolomé; Martín, Mercedes

    2012-09-01

    Three evergreen (Laurus nobilis, Viburnum tinus and Thuja plicata) and two autumnal abscission deciduous trees (Cydonia oblonga and Prunus domestica) have been investigated for the presence (zymogram and immunodetection) and functionality (post-illumination chlorophyll fluorescence) of the thylakoid Ndh complex. The presence of encoding ndh genes has also been investigated in T. plicata. Western assays allowed tentative identification of zymogram NADH dehydrogenase bands corresponding to the Ndh complex after native electrophoresis of solubilized fractions from L. nobilis, V. tinus, C. oblonga and P. domestica leaves, but not in those of T. plicata. However, Ndh subunits were detected after SDS-PAGE of thylakoid solubilized proteins of T. plicata. The leaves of the five plants showed the post-illumination chlorophyll fluorescence increase dependent on the presence of active Ndh complex. The fluorescence increase was higher in autumn in deciduous, but not in evergreen trees, which suggests that the thylakoid Ndh complex could be involved in autumnal leaf senescence. Two ndhB genes were sequenced from T. plicata that differ at the 350 bp 3' end sequence. Comparison with the mRNA revealed that ndhB genes have a 707-bp type II intron between exons 1 (723 bp) and 2 (729 bp) and that the UCA 259th codon is edited to UUA in mRNA. Phylogenetically, the ndhB genes of T. plicata group close to those of Metasequoia, Cryptomeria, Taxodium, Juniperus and Widdringtonia in the cupresaceae branch and are 5' end shortened by 18 codons with respect to that of angiosperms.

  11. Development of a fluorescence-based in vivo phagocytosis assay to measure mononuclear phagocyte system function in the rat.

    PubMed

    Tartaro, Karrie; VanVolkenburg, Maria; Wilkie, Dean; Coskran, Timothy M; Kreeger, John M; Kawabata, Thomas T; Casinghino, Sandra

    2015-01-01

    The mononuclear phagocyte system (MPS) which provides protection against infection is made up of phagocytic cells that engulf and digest bacteria or other foreign substances. Suppression of the MPS may lead to decreased clearance of pathogenic microbes. Drug delivery systems and immunomodulatory therapeutics that target phagocytes have a potential to inhibit MPS function. Available methods to measure inhibition of MPS function use uptake of radioactively-labeled cells or labor-intensive semi-quantitative histologic techniques. The objective of this work was to develop a non-radioactive quantitative method to measure MPS function in vivo by administering heat-killed E. coli conjugated to a pH-sensitive fluorescent dye (Bioparticles(®)). Fluorescence of the Bioparticles(®) is increased at low pH when they are in phagocytic lysosomes. The amount of Bioparticles(®) phagocytosed by MPS organs in rats was determined by measuring fluorescence intensity in livers and spleens ex vivo using an IVIS(®) Spectrum Pre-clinical In Vivo Imaging System. Phagocytosis of the particles by peripheral blood neutrophils was measured by flow cytometry. To assess method sensitivity, compounds likely to suppress the MPS [clodronate-containing liposomes, carboxylate-modified latex particles, maleic vinyl ether (MVE) polymer] were administered to rats prior to injection of the Bioparticles(®). The E. coli particles consistently co-localized with macrophage markers in the liver but not in the spleen. All of the compounds tested decreased phagocytosis in the liver, but had no consistent effects on phagocytic activity in the spleen. In addition, administration of clodronate liposomes and MVE polymer increased the percentage of peripheral blood neutrophils that phagocytosed the Bioparticles(®). In conclusion, an in vivo rat model was developed that measures phagocytosis of E. coli particles in the liver and may be used to assess the impact of test compounds on MPS function. Still, the

  12. Activity, polypeptide and gene identification of thylakoid Ndh complex in trees: potential physiological relevance of fluorescence assays

    PubMed Central

    Serrot, Patricia H; Sabater, Bartolomé; Martín, Mercedes

    2012-01-01

    Three evergreen (Laurus nobilis, Viburnum tinus and Thuja plicata) and two autumnal abscission deciduous trees (Cydonia oblonga and Prunus domestica) have been investigated for the presence (zymogram and immunodetection) and functionality (post-illumination chlorophyll fluorescence) of the thylakoid Ndh complex. The presence of encoding ndh genes has also been investigated in T. plicata. Western assays allowed tentative identification of zymogram NADH dehydrogenase bands corresponding to the Ndh complex after native electrophoresis of solubilized fractions from L. nobilis, V. tinus, C. oblonga and P. domestica leaves, but not in those of T. plicata. However, Ndh subunits were detected after SDS-PAGE of thylakoid solubilized proteins of T. plicata. The leaves of the five plants showed the post-illumination chlorophyll fluorescence increase dependent on the presence of active Ndh complex. The fluorescence increase was higher in autumn in deciduous, but not in evergreen trees, which suggests that the thylakoid Ndh complex could be involved in autumnal leaf senescence. Two ndhB genes were sequenced from T. plicata that differ at the 350 bp 3′ end sequence. Comparison with the mRNA revealed that ndhB genes have a 707-bp type II intron between exons 1 (723 bp) and 2 (729 bp) and that the UCA 259th codon is edited to UUA in mRNA. Phylogenetically, the ndhB genes of T. plicata group close to those of Metasequoia, Cryptomeria, Taxodium, Juniperus and Widdringtonia in the cupresaceae branch and are 5′ end shortened by 18 codons with respect to that of angiosperms. PMID:22324908

  13. Ultrasensitive quantum dot fluorescence quenching assay for selective detection of mercury ions in drinking water.

    PubMed

    Ke, Jun; Li, Xinyong; Zhao, Qidong; Hou, Yang; Chen, Junhong

    2014-07-09

    Mercury is one of the most acutely toxic substances at trace level to human health and living thing. Developing a rapid, cheap and water soluble metal sensor for detecting mercury ions at ppb level remains a challenge. Herein, a metal sensor consisting of MPA coated Mn doped ZnSe/ZnS colloidal nanoparticles was utilized to ultrasensitively and selectively detect Hg(2+) ions with a low detection limit (0.1 nM) over a dynamic range from 0 to 20 nM. According to strong interaction between thiol(s) and mercury ions, mercaptopropionic acid (MPA) was used as a highly unique acceptor for mercury ions in the as-obtained ultrasensitive sensor. In the presence of mercury ions, colloidal nanoparticles rapidly agglomerated due to changes of surface chemical properties, which results in severe quenching of fluorescent intensity. Meanwhile, we find that the original ligands are separated from the surface of colloidal nanoparticles involving strongly chelation between mercury ion and thiol(s) proved by controlled IR analysis. The result shows that the QD-based metal ions sensor possesses satisfactory precision, high sensitivity and selectivity, and could be applied for the quantification analysis of real samples.

  14. Organophosphorus pesticides detection using broad-specific single-stranded DNA based fluorescence polarization aptamer assay.

    PubMed

    Zhang, Cunzheng; Wang, Li; Tu, Zhui; Sun, Xing; He, Qinghua; Lei, Zhaojing; Xu, Chongxin; Liu, Yuan; Zhang, Xiao; Yang, Jingyi; Liu, Xianjin; Xu, Yang

    2014-05-15

    An approach is developed to detect the organophosphorus pesticides via competitive binding to a recombinant broad-specificity DNA aptamer with a molecular beacon (MB), the binding of the MB to the aptamer results in the activation of a fluorescent signal, which can be measured for pesticide quantification. Aptamers selected via the Systematic Evolution of Ligands by Exponential Enrichment (SELEX) were structurally modified and truncated to narrow down the binding region of the target, which indicated that loops of the aptamer contributed different functions for different chemical recognition. Thereafter, a variant fused by two different minimum functional structures, was clarified with broad specificity and increased affinity. Further molecular docking and molecular dynamics simulations was conducted to understand the molecular interaction between DNA structure and chemicals. 3D modeling revealed a hot spot area formed by 3 binding sites, forces including hydrogen bonds and van der Waals interactions appear to play a significant role in enabling and stabilizing the binding of chemicals. Finally, an engineered aptamer based approach for the detection of organophosphorus pesticides was successfully applied in a test using a real sample, the limit of quantification (LOQ) for phorate, profenofos, isocarbophos, and omethoate reached 19.2, 13.4, 17.2, and 23.4 nM (0.005 mg L(-1)), respectively.

  15. A new competitive fluorescence assay for the detection of patulin toxin.

    PubMed

    de Champdoré, Marcella; Bazzicalupo, Paolo; De Napoli, Lorenzo; Montesarchio, Daniela; Di Fabio, Giovanni; Cocozza, Immacolata; Parracino, Antonietta; Rossi, Mose'; D'Auria, Sabato

    2007-01-15

    Patulin is a toxic secondary metabolite of a number of fungal species belonging to the genera Penicillum and Aspergillus. It has been mainly isolated from apples and apple products contaminated with the common storage-rot fungus of apples, Penicillum expansum, but it has also been extracted from rotten fruits, moldy feeds, and stored cheese. Human exposure to patulin can lead to serious health problems, and according to a long-term investigation in rats, the World Health Organization has set a tolerable weekly intake of 7 ppb body weight. The content of patulin in foods has been restricted to 50 ppb in many countries. Conventional analytical detection methods involve chromatographic analyses, such as HPLC, GC, and, more recently, techniques such as LC/MS and GC/MS. However, extensive protocols of sample cleanup are required prior to the analysis, and to accomplish it, expensive analytical instrumentation is necessary. An immunochemical analytical method, based on highly specific antigen-antibody interactions, would be desirable, offering several advantages compared to conventional techniques, i.e., low cost per sample, high selectivity, high sensitivity, and high throughput. In this paper, the synthesis of two new derivatives of patulin is described, along with their conjugation to the bovine serum albumin for the production of polyclonal antibodies. Finally, a fluorescence competitive immunoassay was developed for the on-line detection of patulin.

  16. Macromolecule Biosynthesis Assay and Fluorescence Spectroscopy Methods to Explore Antimicrobial Peptide Mode(s) of Action.

    PubMed

    Jana, Bimal; Baker, Kristin Renee; Guardabassi, Luca

    2017-01-01

    Antimicrobial peptides (AMPs) are viable alternatives to the currently available antimicrobials, and numerous studies have investigated their possible use as therapeutic agents for specific clinical applications. AMPs are a diverse class of antimicrobials that often act upon the bacterial cell membrane but may exhibit additional modes of action. Identification of the multiple modes of action requires a comprehensive study at subinhibitory concentrations and careful data analysis since additional modes of action can be eclipsed by AMP action on the cell membrane.Techniques that measure the biosynthesis rate of macromolecules (e.g., DNA, RNA, protein, and cell wall) and the cytoplasmic membrane proton motive force (PMF) energy can help to unravel the diverse modes of action of AMPs. Here, we present an overview of macromolecule biosynthesis rate measurement and fluorescence spectroscopy methods to identify AMP mode(s) of action. Detailed protocols designed to measure inhibition of DNA, RNA, protein, and cell wall synthesis or membrane de-energization are presented and discussed for optimal application of these two techniques as well as to enable accurate interpretation of the experimental findings.

  17. Ultrasensitive Quantum Dot Fluorescence quenching Assay for Selective Detection of Mercury Ions in Drinking Water

    PubMed Central

    Ke, Jun; Li, Xinyong; Zhao, Qidong; Hou, Yang; Chen, Junhong

    2014-01-01

    Mercury is one of the most acutely toxic substances at trace level to human health and living thing. Developing a rapid, cheap and water soluble metal sensor for detecting mercury ions at ppb level remains a challenge. Herein, a metal sensor consisting of MPA coated Mn doped ZnSe/ZnS colloidal nanoparticles was utilized to ultrasensitively and selectively detect Hg2+ ions with a low detection limit (0.1 nM) over a dynamic range from 0 to 20 nM. According to strong interaction between thiol(s) and mercury ions, mercaptopropionic acid (MPA) was used as a highly unique acceptor for mercury ions in the as-obtained ultrasensitive sensor. In the presence of mercury ions, colloidal nanoparticles rapidly agglomerated due to changes of surface chemical properties, which results in severe quenching of fluorescent intensity. Meanwhile, we find that the original ligands are separated from the surface of colloidal nanoparticles involving strongly chelation between mercury ion and thiol(s) proved by controlled IR analysis. The result shows that the QD-based metal ions sensor possesses satisfactory precision, high sensitivity and selectivity, and could be applied for the quantification analysis of real samples. PMID:25005836

  18. Ultrasensitive Quantum Dot Fluorescence quenching Assay for Selective Detection of Mercury Ions in Drinking Water

    NASA Astrophysics Data System (ADS)

    Ke, Jun; Li, Xinyong; Zhao, Qidong; Hou, Yang; Chen, Junhong

    2014-07-01

    Mercury is one of the most acutely toxic substances at trace level to human health and living thing. Developing a rapid, cheap and water soluble metal sensor for detecting mercury ions at ppb level remains a challenge. Herein, a metal sensor consisting of MPA coated Mn doped ZnSe/ZnS colloidal nanoparticles was utilized to ultrasensitively and selectively detect Hg2+ ions with a low detection limit (0.1 nM) over a dynamic range from 0 to 20 nM. According to strong interaction between thiol(s) and mercury ions, mercaptopropionic acid (MPA) was used as a highly unique acceptor for mercury ions in the as-obtained ultrasensitive sensor. In the presence of mercury ions, colloidal nanoparticles rapidly agglomerated due to changes of surface chemical properties, which results in severe quenching of fluorescent intensity. Meanwhile, we find that the original ligands are separated from the surface of colloidal nanoparticles involving strongly chelation between mercury ion and thiol(s) proved by controlled IR analysis. The result shows that the QD-based metal ions sensor possesses satisfactory precision, high sensitivity and selectivity, and could be applied for the quantification analysis of real samples.

  19. A label-free near-infrared fluorescent assay for the determination of deoxyribonuclease I activity based on malachite green/G-quadruplexes.

    PubMed

    Sun, Shao-Kai; Wang, Bei-Bei; Yan, Xiu-Ping

    2013-05-07

    Owing to the biological and clinical significance of deoxyribonuclease I (DNase I), it is highly desirable to develop near-infrared (NIR) fluorescent assays for the determination of DNase I activity. Here we report a label-free NIR fluorescent assay for selective determination of DNase I activity based on malachite green (MG)/G-quadruplexes. In the presence of Na(+) or K(+), single stranded DNA (ssDNA) is able to form a G-quadruplex structure, thus to increase the rigidity of MG structure and result in a remarkable NIR fluorescence. As DNase I is capable of cleaving all types of DNA indiscriminately to release nucleotide products, the G-quadruplexes are cleaved into oligonucleotides in the presence of DNase I. As a result, the rigidity of MG structure is reduced, and the NIR fluorescence of the solution decreases with increase of DNase I activity, providing a useful platform for low-cost, label-free and convenient detection of DNase I activity. Under the optimum conditions, the proposed label-free NIR fluorescent assay gave a detection limit of 1 u mL(-1), and a relative standard deviation of 3.2% for eleven replicate detections of 50 u mL(-1) DNase I. The proposed assay was applied to the determination of DNase I activity in spiked human urine samples with recoveries from 99.1 to 109.0%.

  20. Sensitive fluorescent assay for copper (II) determination in aqueous solution using copper-specific ssDNA and Sybr Green I.

    PubMed

    Zhan, Shenshan; Xu, Hanchu; Zhang, Weilin; Zhan, Xuejia; Wu, Yuangen; Wang, Lumei; Zhou, Pei

    2015-09-01

    This paper reports a fluorescent turn-off assay for sensitive detection of Cu(2+) in an aqueous solution by using a copper-specific ssDNA Cu100 and Sybr Green I. By monitoring the fluorescence changes arose from different interactions of Sybr Green I with Cu100 and Cu100/Cu(2+) complex, the Cu(2+) could be linearly detected from 5.57 to 250 ppb, with a detection limit of 5.57 ppb. The feasibility of this assay was demonstrated by detecting Cu(2+) in certified reference materials and spiked water samples with satisfactory results.

  1. Improving the Assay of 239Pu in Spent and Melted Fuel Using the Nuclear Resonance Fluorescence Integral Resonance Transmission Method

    NASA Astrophysics Data System (ADS)

    Angell, C. T.; Hayakawa, T.; Shizuma, T.; Hajima, R.; Quiter, B. J.; Ludewigt, B. A.; Karwowski, H.; Rich, G.

    2015-10-01

    Non-destructive assay (NDA) of 239Pu in spent nuclear fuel is possible using the isotope-specific nuclear resonance fluorescence (NRF) integral resonance transmission (IRT) method. The IRT method measures the absorption of photons from a quasi-monoenergetic γ-ray beam due to all resonances in the energy width of the beam. According to calculations the IRT method could greatly improve assay times for 239Pu in nuclear fuel. To demonstrate and verify the IRT method, the IRT signature was first measured in 181Ta, whose nuclear resonant properties are similar to those of 239Pu, and then measured in 239Pu. These measurements were done using the quasi-monoenergetic beam at the High Intensity γ-ray Source (HIγS) in Durham, NC, USA. The IRT signature was observed as a decrease in scattering strength when the same isotope material was placed upstream of the scattering target. The results confirm the validity of the IRT method in both 181Ta and 239Pu.

  2. Nucleic acid sandwich hybridization assay with quantum dot-induced fluorescence resonance energy transfer for pathogen detection.

    PubMed

    Chou, Cheng-Chung; Huang, Yi-Han

    2012-12-04

    This paper reports a nucleic acid sandwich hybridization assay with a quantum dot (QD)-induced fluorescence resonance energy transfer (FRET) reporter system. Two label-free hemagglutinin H5 sequences (60-mer DNA and 630-nt cDNA fragment) of avian influenza viruses were used as the targets in this work. Two oligonucleotides (16 mers and 18 mers) that specifically recognize two separate but neighboring regions of the H5 sequences were served as the capturing and reporter probes, respectively. The capturing probe was conjugated to QD655 (donor) in a molar ratio of 10:1 (probe-to-QD), and the reporter probe was labeled with Alexa Fluor 660 dye (acceptor) during synthesis. The sandwich hybridization assay was done in a 20 μL transparent, adhesive frame-confined microchamber on a disposable, temperature-adjustable indium tin oxide (ITO) glass slide. The FRET signal in response to the sandwich hybridization was monitored by a homemade optical sensor comprising a single 400 nm UV light-emitting diode (LED), optical fibers, and a miniature 16-bit spectrophotometer. The target with a concentration ranging from 0.5 nM to 1 μM was successfully correlated with both QD emission decrease at 653 nm and dye emission increase at 690 nm. To sum up, this work is beneficial for developing a portable QD-based nucleic acid sensor for on-site pathogen detection.

  3. A High-Throughput Fluorescence-Based Assay System for Appetite-Regulating Gene and Drug Screening

    PubMed Central

    Shimada, Yasuhito; Hirano, Minoru; Nishimura, Yuhei; Tanaka, Toshio

    2012-01-01

    The increasing number of people suffering from metabolic syndrome and obesity is becoming a serious problem not only in developed countries, but also in developing countries. However, there are few agents currently approved for the treatment of obesity. Those that are available are mainly appetite suppressants and gastrointestinal fat blockers. We have developed a simple and rapid method for the measurement of the feeding volume of Danio rerio (zebrafish). This assay can be used to screen appetite suppressants and enhancers. In this study, zebrafish were fed viable paramecia that were fluorescently-labeled, and feeding volume was measured using a 96-well microplate reader. Gene expression analysis of brain-derived neurotrophic factor (bdnf), knockdown of appetite-regulating genes (neuropeptide Y, preproinsulin, melanocortin 4 receptor, agouti related protein, and cannabinoid receptor 1), and the administration of clinical appetite suppressants (fluoxetine, sibutramine, mazindol, phentermine, and rimonabant) revealed the similarity among mechanisms regulating appetite in zebrafish and mammals. In combination with behavioral analysis, we were able to evaluate adverse effects on locomotor activities from gene knockdown and chemical treatments. In conclusion, we have developed an assay that uses zebrafish, which can be applied to high-throughput screening and target gene discovery for appetite suppressants and enhancers. PMID:23300705

  4. A high-throughput fluorescence-based assay system for appetite-regulating gene and drug screening.

    PubMed

    Shimada, Yasuhito; Hirano, Minoru; Nishimura, Yuhei; Tanaka, Toshio

    2012-01-01

    The increasing number of people suffering from metabolic syndrome and obesity is becoming a serious problem not only in developed countries, but also in developing countries. However, there are few agents currently approved for the treatment of obesity. Those that are available are mainly appetite suppressants and gastrointestinal fat blockers. We have developed a simple and rapid method for the measurement of the feeding volume of Danio rerio (zebrafish). This assay can be used to screen appetite suppressants and enhancers. In this study, zebrafish were fed viable paramecia that were fluorescently-labeled, and feeding volume was measured using a 96-well microplate reader. Gene expression analysis of brain-derived neurotrophic factor (bdnf), knockdown of appetite-regulating genes (neuropeptide Y, preproinsulin, melanocortin 4 receptor, agouti related protein, and cannabinoid receptor 1), and the administration of clinical appetite suppressants (fluoxetine, sibutramine, mazindol, phentermine, and rimonabant) revealed the similarity among mechanisms regulating appetite in zebrafish and mammals. In combination with behavioral analysis, we were able to evaluate adverse effects on locomotor activities from gene knockdown and chemical treatments. In conclusion, we have developed an assay that uses zebrafish, which can be applied to high-throughput screening and target gene discovery for appetite suppressants and enhancers.

  5. Chromosome analysis of nuclear power plant workers using fluorescence in situ hybridization and Giemsa assay.

    PubMed

    Hristova, Rositsa; Hadjidekova, Valeria; Grigorova, Mira; Nikolova, Teodora; Bulanova, Minka; Popova, Ljubomira; Staynova, Albena; Benova, Donka

    2013-09-01

    The aim of this study was to evaluate the genotoxic effects of ionizing radiation in vivo in exposed Bulgarian nuclear power plant workers by using classical cytogenetic and molecular cytogenetic analyses of peripheral lymphocytes. Chromosome analysis using fluorescence in situ hybrydization (FISH) and Giemsa techniques was undertaken on 63 workers and 45 administrative staff controls from the Bulgarian Nuclear Power Plant. Using the Giemsa method, the frequencies of cells studied with chromosome aberrations, dicentrics plus rings and chromosome fragments in the radiation workers were significantly higher compared with the control group (P = 0.044, P = 0.014, and P = 0.033, respectively). A significant association between frequencies of dicentrics plus rings and accumulated doses was registered (P < 0.01). In the present study, a FISH cocktail of whole chromosome paints for chromosomes 1, 4 and 11 was used. A significant association between frequency of translocations and accumulated doses was also observed (P < 0.001). Within the control group, a correlation was found between age and the spontaneous frequency of translocations. No correlation was found between smoking status and frequency of translocations. When compared with the control group, workers with accumulated doses up to 100 mSv showed no increase in genome translocation frequency, whereas workers with accumulated doses from 101 to 200 mSv showed a statistically significant doubling of genome translocation frequency (P = 0.009). Thus, in cases of chronic exposure and for purposes of retrospective dosimetry, the genome frequency of translocations is a more useful marker for evaluation of genotoxic effects than dicentric frequency.

  6. Chromosome analysis of nuclear power plant workers using fluorescence in situ hybridization and Giemsa assay

    PubMed Central

    Hristova, Rositsa; Hadjidekova, Valeria; Grigorova, Mira; Nikolova, Teodora; Bulanova, Minka; Popova, Ljubomira; Staynova, Albena; Benova, Donka

    2013-01-01

    The aim of this study was to evaluate the genotoxic effects of ionizing radiation in vivo in exposed Bulgarian nuclear power plant workers by using classical cytogenetic and molecular cytogenetic analyses of peripheral lymphocytes. Chromosome analysis using fluorescence in situ hybrydization (FISH) and Giemsa techniques was undertaken on 63 workers and 45 administrative staff controls from the Bulgarian Nuclear Power Plant. Using the Giemsa method, the frequencies of cells studied with chromosome aberrations, dicentrics plus rings and chromosome fragments in the radiation workers were significantly higher compared with the control group (P = 0.044, P = 0.014, and P = 0.033, respectively). A significant association between frequencies of dicentrics plus rings and accumulated doses was registered (P < 0.01). In the present study, a FISH cocktail of whole chromosome paints for chromosomes 1, 4 and 11 was used. A significant association between frequency of translocations and accumulated doses was also observed (P < 0.001). Within the control group, a correlation was found between age and the spontaneous frequency of translocations. No correlation was found between smoking status and frequency of translocations. When compared with the control group, workers with accumulated doses up to 100 mSv showed no increase in genome translocation frequency, whereas workers with accumulated doses from 101 to 200 mSv showed a statistically significant doubling of genome translocation frequency (P = 0.009). Thus, in cases of chronic exposure and for purposes of retrospective dosimetry, the genome frequency of translocations is a more useful marker for evaluation of genotoxic effects than dicentric frequency. PMID:23536543

  7. Establishment of a 10-Plex Quantitative Fluorescent-PCR Assay for rapid diagnosis of sex chromosome aneuploidies.

    PubMed

    Xie, Xingmei; Liang, Qiaoyi

    2014-01-01

    Sex chromosome aneuploidies occur commonly in the general population, with an incidence of 1 in 400 newborns. However, no tests specifically targeting sex chromosomes have been carried out in prenatal diagnosis or newborn screening, resulting in late recognition of these diseases. In this study, a rapid diagnostic method for sex chromosome aneuploidies was established using Quantitative Fluorescent-PCR (QF-PCR). Ten markers were included in one multiplex QF-PCR assay, including two sex determination genes (AMXY and SRY), five X-linked short tandem repeats (STRs; DXS1053, DXS981, DXS6809, DXS1187, and DXS8377), one X/Y-common STR (X22), and two autosomal STRs (D13S305 and D21S11). Retrospective tests of 70 cases with known cytogenetic results indicated that the 10-plex QF-PCR assay could well determine sex chromosome copy numbers by both allelic peak numbers and a sex chromosome dosage calculation with the autosomal STRs as internal controls. Prospective comparison with cytogenetic karyotyping on 534 cases confirmed that the 10-plex QF-PCR assay could be well employed for sex chromosome aneuploidy diagnosis in at least the Chinese Han population. This is the first QF-PCR test for the diagnosis of sex chromosome aneuploidies in the Chinese population. This test is superior to previous designs by including up to 8 sex-linked markers covering different parts of sex chromosomes as well as employing internal controls for copy number dosage calculation in a single PCR reaction. Due to simple technique and data analysis, as well as easy implementation within routine clinical services, this method is of great clinical application value and could be widely applied.

  8. Free cortisol in serum assayed by temperature-controlled ultrafiltration before fluorescence polarization immunoassay.

    PubMed

    Lentjes, E G; Romijn, F; Maassen, R J; de Graaf, L; Gautier, P; Moolenaar, A J

    1993-12-01

    A method is described for a temperature-controlled ultrafiltration procedure to measure free cortisol in serum. A special thermometer with a sensor was developed, measuring the temperature directly in the ultrafiltration device. The sensor is screwed on the axis of the centrifuge rotor, and the centrifuge is placed in a temperature-controlled box so that the temperature of the sample is kept at 37 degrees C +/- 0.1 degrees C. The overall CV of the free cortisol assay ranges from 2.2% to 11.4%, of which the ultrafiltration contributes only 2.2-3.6%. Increasing amounts of cortisol-binding protein, as found in women using estrogen-containing oral contraceptives, have minor but significant effects on the free cortisol concentrations in serum. Serum free cortisol concentrations in a reference population (n = 114; central 95 percentiles) were 12-43 nmol/L (4-9.5% of total cortisol); in the group of the oral-contraceptive users (n = 27), the reference interval was 11-53 nmol/L (1.5-4.5%).

  9. Development of filtration-based time-resolved fluorescence assay for the high-throughput screening of urotensin II receptor antagonist.

    PubMed

    Oh, Kwang-Seok; Lee, Sunghou; Lee, Byung Ho

    2011-10-01

    The time-resolved fluorescence (TRF) receptor binding assay has many advantages over the traditional radioligand binding assay in terms of sensitivity and reproducibility for the screening of receptor ligands. The TRF-based urotensin receptor (UT) binding assay with an automatic vacuum filtration system was developed and evaluated for the high-throughput screening of UT receptor antagonists. For this assay development, the human recombinant urotensin II (UII) was modified by labeling europium at its N-terminal position (Eu-UII) and used as a fluorescent tracer. The microsomal membrane fraction of UT receptor was prepared from HEK293 cells stably expressing the human UT receptor. The 50% inhibitory concentration (IC(50)) values of UII from competition binding assays with Eu-UII were 2.76 nM, which is very similar to that of fluorescence polarization (FP)-based UT receptor binding experiment (2.18 nM). Comparing with the FP-based receptor binding assay for UII (Z' factor, 0.36), the current TRF assay presented improved Z' factor (0.76) with a relatively higher signal-to-background ratio (1.5 and 2.1, respectively). The known high-affinity UT receptor antagonists, palosuran and SB657510, exhibited IC(50) values of 23.6 and 73.4 nM, respectively, which were consistent with the IC(50) values from FP-based receptor binding assay (30.6 and 78.7 nM, respectively). These results suggest that our filtration-based TRF UT receptor binding assay can achieve the desired sensitivity with higher reproducibility to adapt for the high-throughput screening of compound libraries.

  10. Budded baculoviruses as a tool for a homogeneous fluorescence anisotropy-based assay of ligand binding to G protein-coupled receptors: the case of melanocortin 4 receptors.

    PubMed

    Veiksina, Santa; Kopanchuk, Sergei; Rinken, Ago

    2014-01-01

    We present here the implementation of budded baculoviruses that display G protein-coupled receptors on their surfaces for the investigation of ligand-receptor interactions using fluorescence anisotropy (FA). Melanocortin 4 (MC4) receptors and the fluorescent ligand Cy3B-NDP-α-MSH were used as the model system. The real-time monitoring of reactions and the high assay quality allow the application of global data analysis with kinetic mechanistic models that take into account the effect of nonspecific interactions and the depletion of the fluorescent ligand during the reaction. The receptor concentration, affinity and kinetic parameters of fluorescent ligand binding as well as state anisotropies for different fluorescent ligand populations were determined. At low Cy3B-NDP-α-MSH concentrations, a one-site receptor-ligand binding model described the processes, whereas divergence from this model was observed at higher ligand concentrations, which indicated a more complex mechanism of interactions similar to those mechanisms that have been found in experiments with radioactive ligands. The information obtained from our kinetic experiments and the inherent flexibility of FA assays also allowed the estimation of binding parameters for several MC4 receptor-specific unlabelled compounds. In summary, the FA assay that was developed with budded baculoviruses led the experimental data to a level that would solve complex models of receptor-ligand interactions also for other receptor systems and would become as a valuable tool for the screening of pharmacologically active compounds.

  11. Assessment of SYBR green I dye-based fluorescence assay for screening antimalarial activity of cationic peptides and DNA intercalating agents.

    PubMed

    Bhatia, Rakesh; Gautam, Ankur; Gautam, Shailendra K; Mehta, Divya; Kumar, Vinod; Raghava, Gajendra P S; Varshney, Grish C

    2015-05-01

    The SYBR green I (SG) dye-based fluorescence assay for screening antimalarial compounds is based on direct quantitation of parasite DNA. We show that DNA-interacting cationic cell-penetrating peptides (CPPs) and intercalating agents compete with SG dye to bind to DNA. Therefore, readouts of this assay, unlike those of the [(3)H]hypoxanthine incorporation assay, for the antimalarial activity of the above DNA binding agents may be erroneous. In the case of CPPs, false readouts can be improved by the removal of excess peptides.

  12. SPONTANEOUS AND MNNG-INDUCED REVERSION OF AN EGFP CONSTRUCT IN HELA CELLS: AN ASSAY FOR OBSERVING MUTATIONS IN LIVING CELLS BY FLUORESCENT MICROSCOPY

    EPA Science Inventory

    A HeLa cell line stably expressing the Enhanced Green Fluorescence Protein (EGFP) gene, interrupted by the IVS2-654 intron, was studied without treatment and after treatment with a single standard dose of 15 ?M of N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). This assay was done ...

  13. Novel migrating mouse neural crest cell assay system utilizing P0-Cre/EGFP fluorescent time-lapse imaging

    PubMed Central

    2011-01-01

    Background Neural crest cells (NCCs) are embryonic, multipotent stem cells. Their long-range and precision-guided migration is one of their most striking characteristics. We previously reported that P0-Cre/CAG-CAT-lacZ double-transgenic mice showed significant lacZ expression in tissues derived from NCCs. Results In this study, by embedding a P0-Cre/CAG-CAT-EGFP embryo at E9.5 in collagen gel inside a culture glass slide, we were able to keep the embryo developing ex vivo for more than 24 hours; this development was with enough NCC fluorescent signal intensity to enable single-cell resolution analysis, with the accompanying NCC migration potential intact and with the appropriate NCC response to the extracellular signal maintained. By implantation of beads with absorbed platelet-derived growth factor-AA (PDGF-AA), we demonstrated that PDGF-AA acts as an NCC-attractant in embryos. We also performed assays with NCCs isolated from P0-Cre/CAG-CAT-EGFP embryos on culture plates. The neuromediator 5-hydroxytryptamine (5-HT) has been known to regulate NCC migration. We newly demonstrated that dopamine, in addition to 5-HT, stimulated NCC migration in vitro. Two NCC populations, with different axial levels of origins, showed unique distribution patterns regarding migration velocity and different dose-response patterns to both 5-HT and dopamine. Conclusions Although avian species predominated over the other species in the NCC study, our novel system should enable us to use mice to assay many different aspects of NCCs in embryos or on culture plates, such as migration, division, differentiation, and apoptosis. PMID:22070366

  14. A "turn-on" and label-free fluorescent assay for the rapid detection of exonuclease III activity based on Tb(3+)-induced G-quadruplex conjugates.

    PubMed

    Yang, WeiJuan; Ruan, YaJuan; Wu, WeiHua; Chen, PingPing; Xu, LiangJun; Fu, FengFu

    2014-07-01

    A "turn-on" and label-free fluorescent assay for the specific, rapid, and sensitive detection of 3' → 5' exonuclease III activity is reported in this study. The assay is based on the Tb(3+)-promoted G-quadruplex, which lead to the enhancement of Tb(3+) fluorescence due to the energy transfer from guanines. The proposed assay is highly simple, rapid, and cost-effective, and does not require sophisticated experimental techniques such as gel-based equipment or radioactive labels. It can be used for the rapid detection of exonuclease III activity with a detection limit of 0.8 U and a RSD (n = 6) <5 %. Notably, no dye was covalently conjugated to the DNA strands, which offers the advantages of low-cost and being interference-free.

  15. Cell Painting, a high-content image-based assay for morphological profiling using multiplexed fluorescent dyes

    PubMed Central

    Bray, Mark-Anthony; Singh, Shantanu; Han, Han; Davis, Chadwick T.; Borgeson, Blake; Hartland, Cathy; Kost-Alimova, Maria; Gustafsdottir, Sigrun M.; Gibson, Christopher C.; Carpenter, Anne E.

    2016-01-01

    In morphological profiling, quantitative data are extracted from microscopy images of cells to identify biologically relevant similarities and differences among samples based on these profiles. This protocol describes the design and execution of experiments using Cell Painting, a morphological profiling assay multiplexing six fluorescent dyes imaged in five channels, to reveal eight broadly relevant cellular components or organelles. Cells are plated in multi-well plates, perturbed with the treatments to be tested, stained, fixed, and imaged on a high-throughput microscope. Then, automated image analysis software identifies individual cells and measures ~1,500 morphological features (various measures of size, shape, texture, intensity, etc.) to produce a rich profile suitable for detecting subtle phenotypes. Profiles of cell populations treated with different experimental perturbations can be compared to suit many goals, such as identifying the phenotypic impact of chemical or genetic perturbations, grouping compounds and/or genes into functional pathways, and identifying signatures of disease. Cell culture and image acquisition takes two weeks; feature extraction and data analysis take an additional 1-2 weeks. PMID:27560178

  16. Cell Painting, a high-content image-based assay for morphological profiling using multiplexed fluorescent dyes.

    PubMed

    Bray, Mark-Anthony; Singh, Shantanu; Han, Han; Davis, Chadwick T; Borgeson, Blake; Hartland, Cathy; Kost-Alimova, Maria; Gustafsdottir, Sigrun M; Gibson, Christopher C; Carpenter, Anne E

    2016-09-01

    In morphological profiling, quantitative data are extracted from microscopy images of cells to identify biologically relevant similarities and differences among samples based on these profiles. This protocol describes the design and execution of experiments using Cell Painting, which is a morphological profiling assay that multiplexes six fluorescent dyes, imaged in five channels, to reveal eight broadly relevant cellular components or organelles. Cells are plated in multiwell plates, perturbed with the treatments to be tested, stained, fixed, and imaged on a high-throughput microscope. Next, an automated image analysis software identifies individual cells and measures ∼1,500 morphological features (various measures of size, shape, texture, intensity, and so on) to produce a rich profile that is suitable for the detection of subtle phenotypes. Profiles of cell populations treated with different experimental perturbations can be compared to suit many goals, such as identifying the phenotypic impact of chemical or genetic perturbations, grouping compounds and/or genes into functional pathways, and identifying signatures of disease. Cell culture and image acquisition takes 2 weeks; feature extraction and data analysis take an additional 1-2 weeks.

  17. Application of green fluorescent protein-labeled assay for the study of subcellular localization of Newcastle disease virus matrix protein.

    PubMed

    Duan, Zhiqiang; Li, Qunhui; He, Liang; Zhao, Guo; Chen, Jian; Hu, Shunlin; Liu, Xiufan

    2013-12-01

    Green fluorescent protein (GFP) used as a powerful marker of gene expression in vivo has so far been applied widely in studying the localizations and functions of protein in living cells. In this study, GFP-labeled assay was used to investigate the subcellular localization of matrix (M) protein of different virulence and genotype Newcastle disease virus (NDV) strains. The M protein of ten NDV strains fused with GFP (GFP-M) all showed nuclear-and-nucleolar localization throughout transfection, whereas that of the other two strains were observed in the nucleus and nucleolus early in transfection but in the cytoplasm late in transfection. In addition, mutations to the previously defined nuclear localization signal in the GFP-M fusion protein were studied as well. Single changes at positions 262 and 263 did not affect nuclear localization of M, while changing both of these arginine residues to asparagine caused re-localization of M mainly to the cytoplasm. The GFP-M was validated as a suitable system for studying the subcellular localization of M protein and could be used to assist us in further identifying the signal sequences responsible for the nucleolar localization and cytoplasmic localization of M protein.

  18. A fluorescence-detection size-exclusion chromatography-based thermostability assay to identify membrane protein expression and crystallization conditions

    PubMed Central

    Hattori, Motoyuki; Hibbs, Ryan E.; Gouaux, Eric

    2012-01-01

    SUMMARY Optimization of membrane protein stability under different solution conditions is essential for obtaining crystals that diffract to high resolution. Traditional methods that evaluate protein stability require large amounts of material, and are therefore ill-suited for medium- to high-throughput screening of membrane proteins. Here we present a rapid and efficient fluorescence-detection size-exclusion chromatography-based thermostability assay (FSEC-TS). In this method, the target protein is fused to GFP. Heated protein samples, treated with a panel of additives, are then analyzed by FSEC. FSEC-TS allows one to evaluate the thermostability of nanogram to microgram amounts of the target protein under a variety of conditions without purification. We applied this method to the Danio rerio P2X4 receptor and Caenorhabditis elegans GluCl to screen ligands, ions and lipids, including newly designed cholesterol derivatives. In the case of GluCl, the screening results were used to obtain crystals of the receptor in the presence of lipids. PMID:22884106

  19. Clinical Application of an Innovative Multiplex-Fluorescent-Labeled STRs Assay for Prader-Willi Syndrome and Angelman Syndrome.

    PubMed

    Zhang, Kaihui; Liu, Shu; Feng, Bing; Yang, Yali; Zhang, Haiyan; Dong, Rui; Liu, Yi; Gai, Zhongtao

    2016-01-01

    Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are two clinically distinct neurodevelopmental disorders caused by absence of paternally or maternally expressed imprinted genes on chr15q11.2-q13.3. Three mechanisms are known to be involved in the pathogenesis: microdeletions, uniparental disomy (UPD) and imprinting defects. Both disorders are difficult to be definitely diagnosed at early age if no available molecular cytogenetic tests. In this study, we identified 5 AS patients with the maternal deletion and 26 PWS patients with paternal deletion on chr15q11-q13 by using an innovative multiplex-fluorescent-labeled short tandem repeats (STRs) assay based on linkage analysis, and validated by the methylation-specific PCR and array comparative genomic hybridization techniques. More interesting, one of these PWS patients was confirmed as maternal uniparental isodisomy by the STR linkage analysis. The phenotypic and genotypic characteristics of these individuals were also presented. Our results indicate that the new linkage analysis is much faster and easier for large-scale screening deletion and uniparental disomy, thus providing a valuable method for early diagnosis of PWS/AS patients, which is critical for genetic diagnosis, management and improvement of prognosis.

  20. Novel Alexa Fluor-488 labeled antagonist of the A(2A) adenosine receptor: Application to a fluorescence polarization-based receptor binding assay.

    PubMed

    Kecskés, Miklós; Kumar, T Santhosh; Yoo, Lena; Gao, Zhan-Guo; Jacobson, Kenneth A

    2010-08-15

    Fluorescence polarization (FP) assay has many advantages over the traditional radioreceptor binding studies. We developed an A(2A) adenosine receptor (AR) FP assay using a newly synthesized fluorescent antagonist of the A(2A)AR (MRS5346), a pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidin-5-amine derivative conjugated to the fluorescent dye Alexa Fluor-488. MRS5346 displayed a K(i) value of 111+/-16nM in radioligand binding using [(3)H]CGS21680 and membranes prepared from HEK293 cells stably expressing the human A(2A)AR. In a cyclic AMP functional assay, MRS5346 was shown to be an A(2A)AR antagonist. MRS5346 did not show any effect on A(1) and A(3) ARs in binding or the A(2B)AR in a cyclic AMP assay at 10microM. Its suitability as a fluorescent tracer was indicated in an initial observation of an FP signal following A(2A)AR binding. The FP signal was optimal with 20nM MRS5346 and 150microg protein/mL HEK293 membranes. The association and dissociation kinetic parameters were readily determined using this FP assay. The K(d) value of MRS5346 calculated from kinetic parameters was 16.5+/-4.7nM. In FP competition binding experiments using MRS5346 as a tracer, K(i) values of known AR agonists and antagonists consistently agreed with K(i) values from radioligand binding. Thus, this FP assay, which eliminates using radioisotopes, appears to be appropriate for both routine receptor binding and high-throughput screening with respect to speed of analysis, displaceable signal and precision. The approach used in the present study could be generally applicable to other GPCRs.

  1. Fluorescent nanoparticle adhesion assay: a novel method for surface pKa determination of self-assembled monolayers on silicon surfaces.

    PubMed

    van der Maaden, Koen; Sliedregt, Karen; Kros, Alexander; Jiskoot, Wim; Bouwstra, Joke

    2012-02-21

    Since the computer industry enables us to generate smaller and smaller structures, silicon surface chemistry is becoming increasingly important for (bio-)analytical and biological applications. For controlling the binding of charged biomacromolecules such as DNA and proteins on modified silicon surfaces, the surface pK(a) is an important factor. Here we present a fluorescent nanoparticle adhesion assay as a novel method to determine the surface pK(a) of silicon surfaces modified with weak acids or bases. This method is based upon electrostatic interactions between the modified silicon surface and fluorescent nanoparticles with an opposite charge. Silicon slides were modified with 3-aminopropyltriethoxysilane (APTES) and were further derivatized with succinic anhydride. Layer thickness of these surfaces was determined by ellipsometry. After incubating the surfaces with an amine-reactive fluorescent dye, fluorescence microscopy revealed that the silicon surfaces were successfully modified with amine- and carboxyl-groups. Two surface pK(a) values were found for APTES surfaces by the fluorescent nanoparticle adhesion assay. The first surface pK(a) (6.55 ± 0.73) was comparable with the surface pK(a) obtained by contact angle titration (7.3 ± 0.8), and the second surface pK(a) (9.94 ± 0.19) was only found by using the fluorescent nanoparticle adhesion assay. The surface pK(a) of the carboxyl-modified surface by the fluorescent nanoparticle adhesion assay (4.37 ± 0.59) did not significantly differ from that found by contact angle titration (5.7 ± 1.4). In conclusion, we have developed a novel method to determine the surface pK(a) of modified silicon surfaces: the fluorescent nanoparticle adhesion assay. This method may provide a useful tool for designing pH-dependent electrostatic protein and particle binding/release and to design surfaces with a pH-dependent surface charge for (bio-)analytical lab-on-a-chip devices or drug delivery purposes.

  2. Inhibition of dsDNA-templated copper nanoparticles by pyrophosphate as a label-free fluorescent strategy for alkaline phosphatase assay.

    PubMed

    Zhang, Liangliang; Zhao, Jingjin; Duan, Min; Zhang, Hua; Jiang, Jianhui; Yu, Ruqin

    2013-04-16

    On the basis of the inhibition of double strand DNA (dsDNA)-templated fluorescent copper nanoparticles (CuNPs) by pyrophosphate (PPi), a novel label-free turn-on fluorescent strategy to detect alkaline phosphatase (ALP) under physiological conditions has been developed. This method relies on the strong interaction between PPi and Cu(2+), which would hamper the effective formation of fluorescent CuNPs, leading to low fluorescence intensity. The ALP-catalyzed PPi hydrolysis would disable the complexation between Cu(2+) and PPi, facilitating the formation of fluorescent CuNPs through the reduction by ascorbate in the presence of dsDNA templates. Thus, the fluorescence intensity was recovered, and the fluorescence enhancement was related to the concentration of ALP. This method is cost-effective and convenient without any labels or complicated operations. The present strategy exhibits a high sensitivity and the turn-on mode provides a high selectivity for the ALP assay. Additionally, the inhibition effect of phosphate on the ALP activity was also studied. The proposed method using a PPi substrate may hold a potential application in diagnosis of ALP-related diseases or evaluation of ALP functions in biological systems.

  3. Accuracy of the Fluorescence-Activated Cell Sorting Assay for the Aquaporin-4 Antibody (AQP4-Ab): Comparison with the Commercial AQP4-Ab Assay Kit

    PubMed Central

    Kim, Yoo-Jin; Cheon, So Young; Kim, Boram; Jung, Kyeong Cheon; Park, Kyung Seok

    2016-01-01

    Background The aquaporin-4 antibody (AQP4-Ab) is a disease-specific autoantibody to neuromyelitis optica (NMO). We aimed to evaluate the accuracy of the FACS assay in detecting the AQP4-Ab compared with the commercial cell-based assay (C-CBA) kit. Methods Human embryonic kidney-293 cells were transfected with human aquaporin-4 (M23) cDNA. The optimal cut off values of FACS assay was tested using 1123 serum samples from patients with clinically definite NMO, those at high risk for NMO, patients with multiple sclerosis, patients with other idiopathic inflammatory demyelinating diseases, and negative controls. The accuracy of FACS assay and C-CBA were compared in consecutive 225 samples that were collected between January 2014 and June 2014. Results With a cut-off value of MFIi of 3.5 and MFIr of 2.0, the receiver operating characteristic curve for the FACS assay showed an area under the curve of 0.876. Among 225 consecutive sera, the FACS assay and C-CBA had a sensitivity of 77.3% and 69.7%, respectively, in differentiating the sera of definite NMO patients from sera of controls without IDD or of MS. Both assay had a good specificity of 100% in it. The overall positivity of the C-CBA among FACS-positive sera was 81.5%; moreover, its positivity was low as 50% among FACS-positive sera with relatively low MFIis. Conclusions Both the FACS assay and C-CBA are sensitive and highly specific assays in detecting AQP4-Ab. However, in some sera with relatively low antibody titer, FACS-assay can be a more sensitive assay option. In real practice, complementary use of FACS assay and C-CBA will benefit the diagnosis of NMO patients, because the former can be more sensitive among low titer sera and the latter are easier to use therefore can be widely used. PMID:27658059

  4. A novel label-free fluorescence assay for one-step sensitive detection of Hg(2+) in environmental drinking water samples.

    PubMed

    Li, Ya; Liu, Nan; Liu, Hui; Wang, Yu; Hao, Yuwei; Ma, Xinhua; Li, Xiaoli; Huo, Yapeng; Lu, Jiahai; Tang, Shuge; Wang, Caiqin; Zhang, Yinhong; Gao, Zhixian

    2017-04-05

    A novel label-free fluorescence assay for detection of Hg(2+) was developed based on the Hg(2+)-binding single-stranded DNA (ssDNA) and SYBR Green I (SG I). Differences from other assays, the designed rich-thymine (T) ssDNA probe without fluorescent labelling can be rapidly formed a T-Hg(2+)-T complex and folded into a stable hairpin structure in the presence of Hg(2+) in environmental drinking water samples by facilitating fluorescence increase through intercalating with SG I in one-step. In the assay, the fluorescence signal can be directly obtained without additional incubation within 1 min. The dynamic quantitative working ranges was 5-1000 nM, the determination coefficients were satisfied by optimization of the reaction conditions. The lowest detection limit of Hg(2+) was 3 nM which is well below the standard of U.S. Environmental Protection Agency. This method was highly specific for detecting of Hg(2+) without being affected by other possible interfering ions from different background compositions of water samples. The recoveries of Hg(2+) spiked in these samples were 95.05-103.51%. The proposed method is more viable, low-costing and simple for operation in field detection than the other methods with great potentials, such as emergency disposal, environmental monitoring, surveillance and supporting of ecological risk assessment and management.

  5. Incorporation of a fluorescent guanosine analog into oligonucleotides and its application to a real time assay for the HIV-1 integrase 3'-processing reaction.

    PubMed Central

    Hawkins, M E; Pfleiderer, W; Mazumder, A; Pommier, Y G; Balis, F M

    1995-01-01

    We have synthesized a highly fluorescent (quantum yield 0.88) guanosine analog, (3-methyl-8-(2-deoxy-beta-D-ribofuranosyl) isoxanthopterin (3-Mi) in a dimethoxytrityl, phosphoramidite protected form, which can be site-specifically inserted into oligonucleotides through a 3',5'-phosphodiester linkage using an automated DNA synthesizer. Fluorescence is partially quenched within an oligonucleotide and the degree of quench is a function of the fluorophore's proximity to purines and its position in the oligonucleotide. As an example of the potential utility of this class of fluorophores, we developed a continuous assay for HIV-1 integrase 3'-processing reaction by incorporating 3-MI at the cleavage site in a double-stranded oligonucleotide identical to the U5 terminal sequence of the HIV genome. Integrase cleaves the 3'-terminal dinucleotide containing the fluorophore, resulting in an increase in fluorescence which can be monitored on a spectrofluorometer. Substitution of the fluorophore for guanosine at the cleavage site does not inhibit integrase activity. This assay is specific for the 3'-processing reaction. The change in fluorescence intensity is linear over time and proportional to the rate of the reaction. This assay demonstrates the potential utility of this new class of fluorophore for continuous monitoring of protein/DNA interactions. PMID:7659509

  6. A novel label-free fluorescence assay for one-step sensitive detection of Hg2+ in environmental drinking water samples

    PubMed Central

    Li, Ya; Liu, Nan; Liu, Hui; Wang, Yu; Hao, Yuwei; Ma, Xinhua; Li, Xiaoli; Huo, Yapeng; Lu, Jiahai; Tang, Shuge; Wang, Caiqin; Zhang, Yinhong; Gao, Zhixian

    2017-01-01

    A novel label-free fluorescence assay for detection of Hg2+ was developed based on the Hg2+-binding single-stranded DNA (ssDNA) and SYBR Green I (SG I). Differences from other assays, the designed rich-thymine (T) ssDNA probe without fluorescent labelling can be rapidly formed a T-Hg2+-T complex and folded into a stable hairpin structure in the presence of Hg2+ in environmental drinking water samples by facilitating fluorescence increase through intercalating with SG I in one-step. In the assay, the fluorescence signal can be directly obtained without additional incubation within 1 min. The dynamic quantitative working ranges was 5–1000 nM, the determination coefficients were satisfied by optimization of the reaction conditions. The lowest detection limit of Hg2+ was 3 nM which is well below the standard of U.S. Environmental Protection Agency. This method was highly specific for detecting of Hg2+ without being affected by other possible interfering ions from different background compositions of water samples. The recoveries of Hg2+ spiked in these samples were 95.05–103.51%. The proposed method is more viable, low-costing and simple for operation in field detection than the other methods with great potentials, such as emergency disposal, environmental monitoring, surveillance and supporting of ecological risk assessment and management. PMID:28378768

  7. Pharmacological characterization of human excitatory amino acid transporters EAAT1, EAAT2 and EAAT3 in a fluorescence-based membrane potential assay.

    PubMed

    Jensen, Anders A; Bräuner-Osborne, Hans

    2004-06-01

    We have expressed the human excitatory amino acid transporters EAAT1, EAAT2 and EAAT3 stably in HEK293 cells and characterized the transporters pharmacologically in a conventional [(3) H]-d-aspartate uptake assay and in a fluorescence-based membrane potential assay, the FLIPR Membrane Potential (FMP) assay. The K(m) and K(i) values obtained for 12 standard EAAT ligands at EAAT1, EAAT2 and EAAT3 in the FMP assay correlated well with the K(i) values obtained in the [(3) H]-d-aspartate assay (r(2) values of 0.92, 0.92, and 0.95, respectively). Furthermore, the pharmacological characteristics of the cell lines in the FMP assay were in good agreement with previous findings in electrophysiology studies of the transporters. The FMP assay was capable of distinguishing between substrates and non-substrate inhibitors and to discriminate between "full" and "partial" substrates at the transporters. Taking advantage of the prolific nature of the FMP assay, interactions of the EAATs with substrates and inhibitors were studied in some detail. This is the first report of a high throughput screening assay for EAATs. We propose that the assay will be of great use in future studies of the transporters. Although conventional electrophysiology set-ups might be superior in terms of studying sophisticated kinetic aspects of the uptake process, the FMP assay enables the collection of considerable amounts of highly reproducible data with relatively little labor. Furthermore, considering that the number of EAAT ligands presently available is limited, and that almost all of these are characterized by low potency and a low degree of subtype selectivity, future screening of compound libraries at the EAAT-cell lines in the FMP assay could help identify structurally and pharmacologically novel ligands for the transporters.

  8. Applying a high-throughput fluorescence polarization assay for the discovery of chemical probes blocking La:RNA interactions in vitro and in cells

    PubMed Central

    Kota, Venkatesh; Rodriguez, Reycel; Smith, Charles D.

    2017-01-01

    The RNA-binding protein La is overexpressed in a number of tumor tissues and is thought to support tumorigenesis by binding to and facilitating the expression of mRNAs encoding tumor-promoting and anti-apoptotic factors. Hence, small molecules able to block the binding of La to specific RNAs could have a therapeutic impact by reducing the expression of tumor-promoting and anti-apoptotic factors. Toward this novel therapeutic strategy, we aimed to develop a high-throughput fluorescence polarization assay to screen small compound libraries for molecules blocking the binding of La to an RNA element derived from cyclin D1 mRNA. Herein, we make use of a robust fluorescence polarization assay and the validation of primary hits by electrophoretic mobility shift assays. We showed recently that La protects cells against cisplatin treatment by stimulating the protein synthesis of the anti-apoptotic factor Bcl2. Here, we show by RNA immunoprecipitation experiments that one small compound specifically impairs the association of La with Bcl2 mRNA in cells and sensitizes cells for cipslatin-induced cell death. In summary, we report the application of a high-throughput fluorescence polarization assay to identify small compounds that impair the binding of La to target RNAs in vitro and in cells. PMID:28291789

  9. Applying a high-throughput fluorescence polarization assay for the discovery of chemical probes blocking La:RNA interactions in vitro and in cells.

    PubMed

    Sommer, Gunhild; Fedarovich, Alena; Kota, Venkatesh; Rodriguez, Reycel; Smith, Charles D; Heise, Tilman

    2017-01-01

    The RNA-binding protein La is overexpressed in a number of tumor tissues and is thought to support tumorigenesis by binding to and facilitating the expression of mRNAs encoding tumor-promoting and anti-apoptotic factors. Hence, small molecules able to block the binding of La to specific RNAs could have a therapeutic impact by reducing the expression of tumor-promoting and anti-apoptotic factors. Toward this novel therapeutic strategy, we aimed to develop a high-throughput fluorescence polarization assay to screen small compound libraries for molecules blocking the binding of La to an RNA element derived from cyclin D1 mRNA. Herein, we make use of a robust fluorescence polarization assay and the validation of primary hits by electrophoretic mobility shift assays. We showed recently that La protects cells against cisplatin treatment by stimulating the protein synthesis of the anti-apoptotic factor Bcl2. Here, we show by RNA immunoprecipitation experiments that one small compound specifically impairs the association of La with Bcl2 mRNA in cells and sensitizes cells for cipslatin-induced cell death. In summary, we report the application of a high-throughput fluorescence polarization assay to identify small compounds that impair the binding of La to target RNAs in vitro and in cells.

  10. Exploring the dynamics of fluorescence staining of bacteria with cyanine dyes for the development of kinetic assays

    NASA Astrophysics Data System (ADS)

    Thomas, Marlon Sheldon

    Bacterial infections continue to be one of the major health risks in the United States. The common occurrence of such infection is one of the major contributors to the high cost of health care and significant patient mortality. The work presented in this thesis describes spectroscopic studies that will contribute to the development of a fluorescent assay that may allow the rapid identification of bacterial species. Herein, the optical interactions between six bacterial species and a series of thiacyanine dyes are investigated. The interactions between the dyes and the bacterial species are hypothesized to be species-specific. For this thesis, two Gram-negative strains, Escherichia coli (E. coli) TOP10 and Enterobacter aerogenes; two Gram-positive bacterial strains, Bacillus sphaericus and Bacillus subtilis; and two Bacillus endospores, B. globigii and B. thuringiensis, were used to test the proposed hypothesis. A series of three thiacyanine dyes---3,3'-diethylthiacyanine iodide (THIA), 3,3'-diethylthiacarbocyanine iodide (THC) and thiazole orange (THO)---were used as fluorescent probes. The basis of our spectroscopic study was to explore the bacterium-induced interactions of the bacterial cells with the individual thiacyanine dyes or with a mixture of the three dyes. Steady-state absorption spectroscopy revealed that the different bacterial species altered the absorption properties of the dyes. Mixed-dye solutions gave unique absorption patterns for each bacteria tested, with competitive binding observed between the bacteria and spectrophotometric probes (thiacyanine dyes). Emission spectroscopy recorded changes in the emission spectra of THIA following the introduction of bacterial cells. Experimental results revealed that the emission enhancement of the dyes resulted from increases in the emission quantum yield of the thiacyanine dyes upon binding to the bacteria cellular components. The recorded emission enhancement data were fitted to an exponential (mono

  11. Rapid detection of highly pathogenic porcine reproductive and respiratory syndrome virus by a fluorescent probe-based isothermal recombinase polymerase amplification assay.

    PubMed

    Yang, Yang; Qin, Xiaodong; Sun, Yingjun; Chen, Ting; Zhang, Zhidong

    2016-12-01

    A novel fluorescent probe-based real-time reverse transcription recombinase polymerase amplification (real-time RT-RPA) assay was developed for rapid detection of highly pathogenic type 2 porcine reproductive and respiratory syndrome virus (HP-PRRSV). The sensitivity analysis showed that the detection limit of RPA was 70 copies of HP-PRRSV RNA/reaction. The real-time RT-RPA highly specific amplified HP-PRRSV with no cross-reaction with classic PRRSV, classic swine fever virus, pseudorabies virus, and foot-and-mouth disease virus. Assessment with 125 clinical samples showed that the developed real-time RT-RPA assay was well correlated with real-time RT-qPCR assays for detection of HP-PRRSV. These results suggest that the developed real-time RT-RPA assay is suitable for rapid detection of HP-PRRSV.

  12. Evaluation of an automated enzyme-linked fluorescent assay for thyroxine measurement in cat and dog sera.

    PubMed

    Anderson, Rouven; Mueller, Ralf; Reese, Sven; Wehner, Astrid

    2017-03-01

    Measurement of total thyroxine (T4) is the first testing step in the work-up of thyroid disease in small animals. We evaluated an enzyme-linked fluorescent assay (ELFA) as an in-house method to measure T4 in cats and dogs. We compared the T4 concentration in sera of 122 cats and 176 dogs measured by the ELFA with an enzyme immunoassay (EIA) to assess the concordance of the 2 methods. Bias of the ELFA in cats was -11.4% and in dogs 1.4%. Using Bland-Altman plots, limits of agreement were -81.5 to 58.7% in cats and -71.4 to 74.4% in dogs. Imprecision was calculated for both methods. Intra- and interassay coefficients of variation (CVs) of the ELFA in feline sera were 0.7 and 3.4% and of the EIA 7.6 and 15.7%, respectively. Intra- and interassay CVs of both ELFA and EIA in canine sera were <9.5%. Reference intervals for the ELFA method were established and were 13.3-49.5 nmol/L for cats and 10.1-42.9 nmol/L for dogs. Accuracy of the EIA and ELFA was scored by assessing if the measured T4 value would identify the expected T4 range (low, normal, or elevated) of patients, based on history, clinical presentation, other diagnostic means, and response to therapy. This was possible for 75 cats and 50 dogs. Both methods yielded acceptable results, but the EIA was more accurate compared to the ELFA (percentage of true-positives in cats and dogs: EIA: 97% and 100%; ELFA: 92% and 94%).

  13. Time-Resolved Fluorescent Resonance Energy Transfer Assay for Simple and Rapid Detection of Anti-Brucella Antibodies in Ruminant Serum Samples▿

    PubMed Central

    McGiven, John A.; Thompson, Iain J.; Commander, Nicola J.; Stack, Judy A.

    2009-01-01

    Brucellosis is a globally significant zoonosis, the control of which is difficult and resource intensive. Serological tests form a vital part of a multifactorial approach to control and are often performed in large numbers. The aim of the present study was to develop a new assay to improve the efficiency, ease, and effectiveness of serological testing. An existing competitive enzyme-linked immunosorbent assay (cELISA) was adapted to a completely homogeneous time-resolved fluorescent resonance energy transfer (TR-FRET) assay. This was achieved by labeling an anti-Brucella monoclonal antibody with a long-lifetime donor fluorophore and Brucella smooth lipopolysaccharide with a compatible acceptor and optimizing the reading conditions. The assay was performed in a 96-well plate with a single 30-min incubation period and no separation (wash) steps and was concluded by a single plate-reading step. The performance of the assay was evaluated with a panel of serum samples from infected (n = 73) and uninfected (n = 480) sources and compared to the performance of the parent cELISA, an indirect ELISA (iELISA), and fluorescence polarization assay (FPA). The performance of the TR-FRET assay matched the performance of the iELISA, which had 100% diagnostic sensitivity and specificity, and surpassed the performance of the cELISA and the FPA. The results also demonstrated that the TR-FRET technique is effective with poor-quality serum samples from the field. To the knowledge of the authors, this is the first homogeneous TR-FRET assay to detect antibodies raised against an infectious disease. The technique appears to be sufficiently adaptable to meet the needs of many other similar testing requirements to identify infectious diseases. PMID:19656980

  14. Optimization of a Yellow fluorescent protein-based iodide influx high-throughput screening assay for cystic fibrosis transmembrane conductance regulator (CFTR) modulators.

    PubMed

    Sui, Jinliang; Cotard, Shakira; Andersen, Jennifer; Zhu, Ping; Staunton, Jane; Lee, Margaret; Lin, Stephen

    2010-12-01

    Cystic fibrosis is an inherited, life-threatening disease associated with mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. The most common mutation, F508del CFTR, is found in 90% of CF patients. The loss of a single amino acid (phenylalanine at position 508) results in malformed CFTR with defective trafficking to the plasma membrane and impaired channel function. A functional assay with cells expressing F508del CFTR has been previously described by others using genetically engineered halide-sensitive yellow fluorescent protein to screen for CFTR modulators. We adapted this yellow fluorescent protein assay to 384-well plate format with a high-throughput screening plate reader, and optimized the assay in terms of data quality, resolution, and throughput, with target-specific protocols. The optimized assay was validated with reference compounds from cystic fibrosis foundation therapeutics. On the basis of the Z-factor range (≥0.5) and the potential productivity, this assay is well suited for high-throughput screening. It was successfully used to screen for active single agent and synergistic combinations of single agent modulators of F508del CFTR from a library collection of current active pharmaceutical ingredients (supported by Cystic Fibrosis Foundation Therapeutics).

  15. Ultra-fast pg/ml anthrax toxin (protective antigen) detection assay based on microwave-accelerated metal-enhanced fluorescence.

    PubMed

    Dragan, Anatoliy I; Albrecht, Mark T; Pavlovic, Radmila; Keane-Myers, Andrea M; Geddes, Chris D

    2012-06-01

    Rapid presymptomatic diagnosis of Bacillus anthracis at early stages of infection plays a crucial role in prompt medical intervention to prevent rapid disease progression and accumulation of lethal levels of toxin. To detect low levels of the anthrax protective antigen (PA) exotoxin in biological fluids, we have developed a metal-enhanced fluorescence (MEF)-PA assay using a combination of the MEF effect and microwave-accelerated PA protein surface absorption. The assay is based on a modified version of our "rapid catch and signal" (RCS) technology previously designed for the ultra-fast and sensitive analysis of genomic DNA sequences. Technologically, the proposed MEF-PA assay uses standard 96-well plastic plates modified with silver island films (SiFs) grown within the wells. It is shown that the fluorescent probe, covalently attached to the secondary antibody, plays a crucial role of indicating complex formation (i.e., shows a strong MEF response to the recognition event). Microwave irradiation rapidly accelerates PA deposition onto the surface ("rapid catch"), significantly speeding up the MEF-PA assay and resulting in a total assay run time of less than 40 min with an analytical sensitivity of less than 1 pg/ml PA.

  16. Optimization of a New Cell-Based Fluorescence Assay for U.S. Army Global Malaria Surveillance Efforts in Support of the Warfighter

    DTIC Science & Technology

    2006-11-01

    hemisulfate salt, and mefloquine hydrochloride were purchased from Sigma Chemical Co., Saint Louis, Missouri. P. falciparum strains D6 (CDC...screening laboratory. The drugs tested included chloroquine, quinine, and mefloquine . Their respective IC50s were determined using the MSF assay... Mefloquine . RFU = relative fluorescence units. CONCLUSIONS The drug resistance profile of D6 and W2 has been well established by our group and

  17. A Combination Fluorescence Assay Demonstrates Increased Efflux Pump Activity as a Resistance Mechanism in Azole-Resistant Vaginal Candida albicans Isolates

    PubMed Central

    Bhattacharya, Somanon; Sobel, Jack D.

    2016-01-01

    Candida albicans is a pathogenic fungus causing vulvovaginal candidiasis (VVC). Azole drugs, such as fluconazole, are the most common treatment for these infections. Recently, azole-resistant vaginal C. albicans isolates have been detected in patients with recurring and refractory vaginal infections. However, the mechanisms of resistance in vaginal C. albicans isolates have not been studied in detail. In oral and systemic resistant isolates, overexpression of the ABC transporters Cdr1p and Cdr2p and the major facilitator transporter Mdr1p is associated with resistance. Sixteen fluconazole-susceptible and 22 fluconazole-resistant vaginal C. albicans isolates were obtained, including six matched sets containing a susceptible and a resistant isolate, from individual patients. Using quantitative real-time reverse transcriptase PCR (qRT-PCR), 16 of 22 resistant isolates showed overexpression of at least one efflux pump gene, while only 1 of 16 susceptible isolates showed such overexpression. To evaluate the pump activity associated with overexpression, an assay that combined data from two separate fluorescent assays using rhodamine 6G and alanine β-naphthylamide was developed. The qRT-PCR results and activity assay results were in good agreement. This combination of two fluorescent assays can be used to study efflux pumps as resistance mechanisms in clinical isolates. These results demonstrate that efflux pumps are a significant resistance mechanism in vaginal C. albicans isolates. PMID:27431223

  18. A highly selective and sensitive fluorescence assay for determination of copper(II) and cobalt(II) ions in environmental water and toner samples.

    PubMed

    Tsai, Chia-Yi; Lin, Yang-Wei

    2013-02-21

    In this study, a highly selective and sensitive fluorescence assay has been proposed for the determination of copper(II) and cobalt(II) ions in environmental water and toner samples. In the presence of hydrogen peroxide, copper(II) reacted with a new fluorescence reagent Amplex® UltraRed (AUR), forming a fluorescence product only at pH 7.0, while the fluorescence product of cobalt(II) with AUR formed only at pH 9.0. The fluorescence signal obtained was linear with respect to the copper(II) concentration over the range of 1.6-12.0 μM (R(2) = 0.988) and was linear with respect to the cobalt(II) concentration over the range of 45.0 nM to 1.0 μM (R(2) = 0.992). The limits of detection (at a signal-to-noise ratio of 3) for copper(II) and cobalt(II) were 0.17 μM and 14.0 nM, respectively. Our present approach is simpler, faster, and more cost-effective than other techniques for the detection of copper(II) and cobalt(II) ions in environmental water samples and that of copper(II) ions in toner samples.

  19. An acetyltransferase assay for CREB-binding protein based on reverse phase-ultra-fast liquid chromatography of fluorescent histone H3 peptides.

    PubMed

    Duval, Romain; Fritsch, Lauriane; Bui, Linh-Chi; Berthelet, Jérémy; Guidez, Fabien; Mathieu, Cécile; Dupret, Jean-Marie; Chomienne, Christine; Ait-Si-Ali, Slimane; Rodrigues-Lima, Fernando

    2015-10-01

    CREB-binding protein (CBP) is a lysine acetyltransferase that regulates transcription by acetylating histone and non-histone substrates. Defects in CBP activity are associated with hematologic malignancies, neurodisorders, and congenital malformations. Sensitive and quantitative enzymatic assays are essential to better characterize the pathophysiological features of CBP. We describe a sensitive nonradioactive method to measure purified and immunopurified cellular CBP enzymatic activity through rapid reverse phase-ultra-fast liquid chromatography (RP-UFLC) analysis of fluorescent histone H3 peptide substrates. The applicability and biological relevance of the assay are supported by kinetic, inhibition, and immunoprecipitation studies. More broadly, this approach could be easily adapted to assay other lysine acetyltransferases or methyltransferases.

  20. Visual and fluorescent assays for selective detection of beta-amyloid oligomers based on the inner filter effect of gold nanoparticles on the fluorescence of CdTe quantum dots.

    PubMed

    Xia, Ning; Zhou, Binbin; Huang, Nanbing; Jiang, Mengsha; Zhang, Jiebing; Liu, Lin

    2016-11-15

    Beta-amyloid (Aβ) peptides are the major constituents of senile plaques in the brains of Alzheimer's disease (AD) patients. Aβ monomers (AβMs) can coalesce to form small, soluble oligomers (AβOs), followed by reorganization and assembly into long, thread-like fibrils (AβFs). Recently, soluble AβOs have been regarded as reliable molecular biomarkers for the diagnosis of AD because of their high toxicity for neuronal synapse and high concentration levels in the brains of AD patients. In this work, we reported a label-free, sensitive and selective method for visual and fluorescent detection of AβOs based on the inner filter effect (IFE) of gold nanoparticles (AuNPs) on the fluorescence of CdTe quantum dots (QDs). Specifically, the fluorescence of CdTe QDs was quenched significantly by AuNPs through the IFE. PrP(95-110), an AβOs-specific binding peptide from cellular prion protein, triggered the aggregation and color change of AuNPs suspension; thus, the IFE of AuNPs on the fluorescence of CdTe QDs was weakened and the fluorescence intensity was recovered. However, in the presence of AβOs, the specific interaction of AβOs and PrP(95-110) prevented the absorption of PrP(95-110) onto the surface of AuNPs. As a result, the aggregation of AuNPs was inhibited and the fluorescence intensity of CdTe QDs was quenched again. This label-free method is specific for detection of AβOs but not for AβMs and AβFs. The detection limits were found to be 0.5nM for the visual assay and 0.2nM for the fluorescent detection. We believe that this work would be valuable for many investigations related to AD diagnosis and drug discovery.

  1. A fluorescence polarization assay to quantify biotin and biotin-binding proteins in whole plant extracts using Alexa-Fluor 594 biocytin.

    PubMed

    Martin, Harry; Murray, Colleen; Christeller, John; McGhie, Tony

    2008-10-01

    A high-throughput fluorescence polarization assay has been developed for the detection of biotin and biotin-binding proteins in whole leaf extracts. Various groups are investigating the insecticidal properties of avidin and other biotin-binding proteins expressed in leaves of transgenic plants. The methods commonly used to quantify biotin and avidin in leaf extracts are enzyme-linked immunosorbent assay (ELISA) and Western blotting. Here we describe a homogeneous fluorescence polarization (FP) method that quantifies transgenic avidin in whole leaf extract by the simple addition of the fluorescent avidin ligand Alexa-Fluor 594 biocytin (AFB). The FP assay exploits the fact that AFB excites and emits in regions of the spectrum that are relatively free of background fluorescence in leaf extract. Transgenic leaf avidin can be quantified within 1-2 h by the FP method, in comparison with 1-2 days for ELISA and Western blotting. The FP method can also measure the amount of biotin in control leaves, not expressing avidin. Functional avidin levels of 1.54 microM (26.1 microg/g leaf tissue) were detected in tobacco leaves expressing vacuole-targeted avidin. Control leaves had biotin levels of around 0.74 microM (approximately 0.18 microg/g leaf tissue). Reagent costs are minimal: typically AFB is used at concentrations of 1-10 nM, avidin is used at 1-100 nM, and sample volumes are 20 microL in 384-well microplates.

  2. Development and validation of a high-content bimolecular fluorescence complementation assay for small-molecule inhibitors of HIV-1 Nef dimerization.

    PubMed

    Poe, Jerrod A; Vollmer, Laura; Vogt, Andreas; Smithgall, Thomas E

    2014-04-01

    Nef is a human immunodeficiency virus 1 (HIV-1) accessory factor essential for viral pathogenesis and AIDS progression. Many Nef functions require dimerization, and small molecules that block Nef dimerization may represent antiretroviral drug leads. Here we describe a cell-based assay for Nef dimerization inhibitors based on bimolecular fluorescence complementation (BiFC). Nef was fused to nonfluorescent, complementary fragments of yellow fluorescent protein (YFP) and coexpressed in the same cell population. Dimerization of Nef resulted in juxtaposition of the YFP fragments and reconstitution of the fluorophore. For automation, the Nef-YFP fusion proteins plus a monomeric red fluorescent protein (mRFP) reporter were expressed from a single vector, separated by picornavirus "2A" linker peptides to permit equivalent translation of all three proteins. Validation studies revealed a critical role for gating on the mRFP-positive subpopulation of transfected cells, as well as use of the mRFP signal to normalize the Nef-BiFC signal. Nef-BiFC/mRFP ratios resulting from cells expressing wild-type versus dimerization-defective Nef were very clearly separated, with Z factors consistently in the 0.6 to 0.7 range. A fully automated pilot screen of the National Cancer Institute Diversity Set III identified several hit compounds that reproducibly blocked Nef dimerization in the low micromolar range. This BiFC-based assay has the potential to identify cell-active small molecules that directly interfere with Nef dimerization and function.

  3. A fluorescence-based polymerase chain reaction-linked single-strand conformation polymorphism (F-PCR-SSCP) assay for the identification of Fasciola spp.

    PubMed

    Alasaad, Samer; Soriguer, Ramón C; Abu-Madi, Marawan; El Behairy, Ahmed; Baños, Pablo Díez; Píriz, Ana; Fickel, Joerns; Zhu, Xing-Quan

    2011-06-01

    The present study aimed to establish a fluorescence-based polymerase chain reaction-linked single-strand conformation polymorphism (F-PCR-SSCP) assay for the identification of Fasciola spp. Based on the sequences of the second internal transcribed spacer (ITS-2) of the nuclear ribosomal DNA, we designed a set of genus-specific primers for the amplification of Fasciola ITS-2, with an estimated size of 140 bp. These primers were labelled by fluorescence dyes, and the PCR products were analyzed by capillary electrophoresis under non-denaturing conditions (F-PCR-SSCP). Capillary electrophoresis analysis of the fluorescence-labelled DNA fragments displayed three different peak profiles that allowed the accurate identification of Fasciola species: one single peak specific for either Fasciola hepatica or Fasciola gigantica and a doublet peak corresponding to the "intermediate" Fasciola. Validation of our novel method was performed using Fasciola specimens from different host animals from China, Spain, Nigeria, and Egypt. This F-PCR-SSCP assay provides a rapid, simple, and robust tool for the identification and differentiation between Fasciola spp.

  4. Water-soluble gold nanoclusters prepared by protein-ligand interaction as fluorescent probe for real-time assay of pyrophosphatase activity.

    PubMed

    Deng, Hao-Hua; Wang, Fei-Fei; Shi, Xiao-Qiong; Peng, Hua-Ping; Liu, Ai-Lin; Xia, Xing-Hua; Chen, Wei

    2016-09-15

    This paper reports a new and facile method for the synthesis of water-soluble thiolate-protected AuNCs via protein-ligand interaction. Using 3-mercaptopropionic acid (MPA) as a model ligand and bovine serum albumin (BSA) as a model protein, water-soluble AuNCs (BSA/MPA-AuNCs) with intense orange-yellow fluorescent emission (quantum yield=16%) are obtained. Results show that AuNCs produced with this method have hydrophobic interactions with BSA. The synthetic strategy is then successfully extended to produce water-soluble AuNCs protected by other thiolates. Moreover, a sensitive and eco-friendly sensing system is established for detection of the activity of inorganic pyrophosphatase (PPase), which relies on the selective coordination of Fe(3+)with BSA/MPA-AuNCs, the higher affinity between pyrophosphate (PPi) and Fe(3+), and the hydrolysis of PPi by PPase. A good linearity between the fluorescence intensity and PPase activity within the range from 0.1 to 3U/L is found, with a detection limit down to 0.07U/L. Additionally, the fluorescent assay developed here is utilized to assay the PPase activity in real biological samples and as well as to evaluate PPase inhibitor, illustrating the great potential for biological analysis.

  5. CdS/TiO2-fluorescein isothiocyanate nanoparticles as fluorescence resonance energy transfer probe for the determination of trace alkaline phosphatase based on affinity adsorption assay.

    PubMed

    Liu, Jia-Ming; Lin, Li-ping; Jiao, Li; Cui, Ma-Lin; Wang, Xin-Xing; Zhang, Li-Hong; Zheng, Zhi-Yong

    2012-08-30

    The CdS/TiO(2)-fluorescein isothiocyanate (FITC) luminescent nanoparticles (CdS/TiO(2)-FITC) with the particle size of 20 nm have been synthesized by sol-gel method. CdS/TiO(2)-FITC could emit the fluorescence of both FITC and CdS/TiO(2). The fluorescence resonance energy transfer (FRET) occurred between the donor CdS/TiO(2) and the acceptor FITC in the CdS/TiO(2)-FITC. Taking advantages of the excellent characteristics of FRET, a new CdS/TiO(2)-FITC FRET labeling reagent and a CdS/TiO(2)-FITC-wheat germ agglutinin (CdS/TiO(2)-FITC-WGA) fluorescent probe have been developed. The FRET occurring between the donor CdS/TiO(2) and the acceptor FITC in the labelled product CdS/TiO(2)-FITC-WGA-AP, formed in the affinity adsorption reaction between the WGA in this CdS/TiO(2)-FITC-WGA fluorescent probe and alkaline phosphatase (AP), sharply enhanced the fluorescence signal of FITC and quench the fluorescence signal of CdS/TiO(2). Moreover, the ΔF (the change of the fluorescence signal) of FITC and CdS/TiO(2) were proportional to the content of AP, respectively. Thus, a new method that CdS/TiO(2)-fluorescein isothiocyanate nanoparticles for the determination of trace AP based on FRET-affinity adsorption assay has been established. The limit of quantification (LOQ) of the method was 1.3×10(-17) g AP mL(-1) for CdS/TiO(2) and 1.1×10(-17) g AP mL(-1) for FITC, respectively. This sensitive, rapid, high selective and precise method has been applied to the determination of AP in human serum and the prediction of human disease with the results agreed well with enzyme-linked immunosorbent assay (ELISA) in Zhangzhou Municipal Hospital of Fujian Province. Simultaneously, the reaction mechanism for the determination of AP was also discussed.

  6. Diagnosing infection levels of four human malaria parasite species by a polymerase chain reaction/ligase detection reaction fluorescent microsphere-based assay.

    PubMed

    McNamara, David T; Kasehagen, Laurin J; Grimberg, Brian T; Cole-Tobian, Jennifer; Collins, William E; Zimmerman, Peter A

    2006-03-01

    Improving strategies for diagnosing infection by the four human Plasmodium species parasites is important as field-based epidemiologic and clinical studies focused on malaria become more ambitious. Expectations for malaria diagnostic assays include rapid processing with minimal expertise, very high specificity and sensitivity, and quantitative evaluation of parasitemia to be delivered at a very low cost. Toward fulfilling many of these expectations, we have developed a post-polymerase chain reaction (PCR)/ligase detection reaction-fluorescent microsphere assay (LDR-FMA). This assay, which uses Luminex FlexMAP microspheres, provides simultaneous, semi-quantitative detection of infection by all four human malaria parasite species at a sensitivity and specificity equal to other PCR-based assays. In blinded studies using P. falciparum-infected blood from in vitro cultures, we identified infected and uninfected samples with 100% concordance. Additionally, in analyses of P. falciparum in vitro cultures and P. vivax-infected monkeys, comparisons between parasitemia and LDR-FMA signal intensity showed very strong positive correlations (r > 0.95). Application of this multiplex Plasmodium species LDR-FMA diagnostic assay will increase the speed, accuracy, and reliability of diagnosing human Plasmodium species infections in epidemiologic studies of complex malaria-endemic settings.

  7. Screening of HIV-1 Protease Using a Combination of an Ultra-High-Throughput Fluorescent-Based Assay and RapidFire Mass Spectrometry.

    PubMed

    Meng, Juncai; Lai, Ming-Tain; Munshi, Vandna; Grobler, Jay; McCauley, John; Zuck, Paul; Johnson, Eric N; Uebele, Victor N; Hermes, Jeffrey D; Adam, Gregory C

    2015-06-01

    HIV-1 protease (PR) represents one of the primary targets for developing antiviral agents for the treatment of HIV-infected patients. To identify novel PR inhibitors, a label-free, high-throughput mass spectrometry (HTMS) assay was developed using the RapidFire platform and applied as an orthogonal assay to confirm hits identified in a fluorescence resonance energy transfer (FRET)-based primary screen of > 1 million compounds. For substrate selection, a panel of peptide substrates derived from natural processing sites for PR was evaluated on the RapidFire platform. As a result, KVSLNFPIL, a new substrate measured to have a ~ 20- and 60-fold improvement in k cat/K m over the frequently used sequences SQNYPIVQ and SQNYPIV, respectively, was identified for the HTMS screen. About 17% of hits from the FRET-based primary screen were confirmed in the HTMS confirmatory assay including all 304 known PR inhibitors in the set, demonstrating that the HTMS assay is effective at triaging false-positives while capturing true hits. Hence, with a sampling rate of ~7 s per well, the RapidFire HTMS assay enables the high-throughput evaluation of peptide substrates and functions as an efficient tool for hits triage in the discovery of novel PR inhibitors.

  8. Visualization of cofilin-actin and Ras-Raf interactions by bimolecular fluorescence complementation assays using a new pair of split Venus fragments.

    PubMed

    Ohashi, Kazumasa; Kiuchi, Tai; Shoji, Kazuyasu; Sampei, Kaori; Mizuno, Kensaku

    2012-01-01

    The bimolecular fluorescence complementation (BiFC) assay is a method for visualizing protein-protein interactions in living cells. To visualize the cofilin-actin interaction in living cells, a series of combinations of the N- and C-terminal fragments of Venus fused upstream or downstream of cofilin and actin were screened systematically. A new pair of split Venus fragments, Venus (1-210) fused upstream of cofilin and Venus (210-238) fused downstream of actin, was the most effective combination for visualizing the specific interaction between cofilin and actin in living cells. This pair of Venus fragments was also effective for detecting the active Ras-dependent interaction between H-Ras and Raf1 and the Ca(2+)-dependent interaction between calmodulin and its target M13 peptide. In vitro BiFC assays using the pair of purified BiFC probes provided the means to detect the specific interactions between cofilin and actin and between H-Ras and Raf1. In vivo and in vitro BiFC assays using the newly identified pair of Venus fragments will serve as a useful tool for measuring protein-protein interactions with high specificity and low background fluorescence and could be applied to the screening of inhibitors that block protein-protein interactions.

  9. Two-photon excitation fluorescence cross-correlation assay for ligand-receptor binding: cell membrane nanopatches containing the human micro-opioid receptor.

    PubMed

    Swift, Jody L; Burger, Melanie C; Massotte, Dominique; Dahms, Tanya E S; Cramb, David T

    2007-09-01

    Current ligand-receptor binding assays for G-protein coupled receptors cannot directly measure the system's dissociation constant, Kd, without purification of the receptor protein. Accurately measured Kd's are essential in the development of a molecular level understanding of ligand-receptor interactions critical in rational drug design. Here we report the introduction of two-photon excitation fluorescence cross-correlation spectroscopy (TPE-FCCS) to the direct analysis of ligand-receptor interactions of the human micro opioid receptor (hMOR) for both agonists and antagonists. We have developed the use of fluorescently distinct, dye-labeled hMOR-containing cell membrane nanopatches ( approximately 100-nm radius) and ligands, respectively, for this assay. We show that the output from TPE-FCCS data sets can be converted to the conventional Hill format, which provides Kd and the number of active receptors per nanopatch. When ligands are labeled with quantum dots, this assay can detect binding with ligand concentrations in the subnanomolar regime. Interestingly, conjugation to a bulky quantum dot did not adversely affect the binding propensity of the hMOR pentapeptide ligand, Leu-enkephalin.

  10. Two-color, 30 second microwave-accelerated Metal-Enhanced Fluorescence DNA assays: a new Rapid Catch and Signal (RCS) technology.

    PubMed

    Dragan, Anatoliy I; Golberg, Karina; Elbaz, Amit; Marks, Robert; Zhang, Yongxia; Geddes, Chris D

    2011-03-07

    For analyses of DNA fragment sequences in solution we introduce a 2-color DNA assay, utilizing a combination of the Metal-Enhanced Fluorescence (MEF) effect and microwave-accelerated DNA hybridization. The assay is based on a new "Catch and Signal" technology, i.e. the simultaneous specific recognition of two target DNA sequences in one well by complementary anchor-ssDNAs, attached to silver island films (SiFs). It is shown that fluorescent labels (Alexa 488 and Alexa 594), covalently attached to ssDNA fragments, play the role of biosensor recognition probes, demonstrating strong response upon DNA hybridization, locating fluorophores in close proximity to silver NPs, which is ideal for MEF. Subsequently the emission dramatically increases, while the excited state lifetime decreases. It is also shown that 30s microwave irradiation of wells, containing DNA molecules, considerably (~1000-fold) speeds up the highly selective hybridization of DNA fragments at ambient temperature. The 2-color "Catch and Signal" DNA assay platform can radically expedite quantitative analysis of genome DNA sequences, creating a simple and fast bio-medical platform for nucleic acid analysis.

  11. Paper-based solid-phase nucleic acid hybridization assay using immobilized quantum dots as donors in fluorescence resonance energy transfer.

    PubMed

    Noor, M Omair; Shahmuradyan, Anna; Krull, Ulrich J

    2013-02-05

    A paper-based solid-phase assay is presented for transduction of nucleic acid hybridization using immobilized quantum dots (QDs) as donors in fluorescence resonance energy transfer (FRET). The surface of paper was modified with imidazole groups to immobilize QD-probe oligonucleotide conjugates that were assembled in solution. Green-emitting QDs (gQDs) were FRET-paired with Cy3 acceptor. Hybridization of Cy3-labeled oligonucleotide targets provided the proximity required for FRET-sensitized emission from Cy3, which served as an analytical signal. The assay exhibited rapid transduction of nucleic acid hybridization within minutes. Without any amplification steps, the limit of detection of the assay was found to be 300 fmol with the upper limit of the dynamic range at 5 pmol. The implementation of glutathione-coated QDs for the development of nucleic acid hybridization assay integrated on a paper-based platform exhibited excellent resistance to nonspecific adsorption of oligonucleotides and showed no reduction in the performance of the assay in the presence of large quantities of noncomplementary DNA. The selectivity of nucleic acid hybridization was demonstrated by single-nucleotide polymorphism (SNP) detection at a contrast ratio of 19 to 1. The reuse of paper over multiple cycles of hybridization and dehybridization was possible, with less than 20% reduction in the performance of the assay in five cycles. This work provides an important framework for the development of paper-based solid-phase QD-FRET nucleic acid hybridization assays that make use of a ratiometric approach for detection and analysis.

  12. Preliminary Study of the Efficacy of Using Nuclear Resonance Fluorescence with Quasi-Monoenergetic Gamma-Ray Sources for Nuclear Safeguards Assay

    SciTech Connect

    Johnson, M S; McNabb, D P; Hall, J M; Gonzalez, J J

    2011-02-17

    We have studied the efficacy of using nuclear resonance fluorescence (NRF)-based techniques to assay spent nuclear fuel for Pu content using quasi-monoenergetic sources. We have developed two techniques to precisely determine the Pu content in a fuel rod/pin. One of our approaches is virtually free of systematic uncertainties. Using analytical models, we have determined the amount of time required to measure the Pu content in spent nuclear fuel rods and spent fuel assemblies to within 1% precision. We note that Pu content can be determined in a fuel assembly about as fast as in a single fuel pin. The performance of NRF-based assay techniques with improved photon sources, which are currently under development, will also estimated. For follow-on research we propose to: (1) Construct research prototype detection systems for both of the NRF-based assay systems proposed in this paper and measure their calibration curves; (2) Determine the systematic errors associated with both assay methods, explore ways to reduce the errors and fold the results into future performance calculations; (3) Develop an algorithm to assay a fuel assembly; (4) Perform validation measurements using a single pin and scaled assemblies; (5) Research and develop current-mode detection and/or threshold detection techniques to improve assay times; (6) Characterize the flux of newly constructed sources and fold the results into the calculations presented here to determine the feasibility of a variety of proposed sources; and (7) Collaborate with others in the safeguards community to build a prototype system and perform an NRF-based assay demonstration on spent fuel.

  13. Ag@SiO2-entrapped hydrogel microarray: a new platform for a metal-enhanced fluorescence-based protein assay.

    PubMed

    Jang, Eunji; Kim, Minsu; Koh, Won-Gun

    2015-05-21

    We developed a novel protein-based bioassay platform utilizing metal-enhanced fluorescence (MEF), which is a hydrogel microarray entrapping silica-coated silver nanoparticles (Ag@SiO2). As a model system, different concentrations of glucose were detected using a fluorescence method by sequential bienzymatic reaction of hydrogel-entrapped glucose oxidase (GOX) and peroxidase (POD) inside a hydrogel microarray. Microarrays based on poly(ethylene glycol)(PEG) hydrogels were prepared by photopatterning a solution containing PEG diacrylate (PEG-DA), photoinitiator, enzymes, and Ag@SiO2. The resulting hydrogel microarrays were able to entrap both enzymes and Ag@SiO2 without leaching and deactivation problems. The presence of Ag@SiO2 within the hydrogel microarray enhanced the fluorescence signal, and the extent of the enhancement was dependent on the thickness of silica shells and the amount of Ag@SiO2. Optimal MEF effects were achieved when the thickness of the silica shell was 17.5 nm, and 0.5 mg mL(-1) of Ag@SiO2 was incorporated into the assay systems. Compared with the standard hydrogel microarray-based assay performed without Ag@SiO2, more than a 4-fold fluorescence enhancement was observed in a glucose concentration range between 10(-3) mM and 10.0 mM using hydrogel microarray entrapping Ag@SiO2, which led to significant improvements in the sensitivity and the limit of detection (LOD). The hydrogel microarray system presented in this study could be successfully combined with a microfluidic device as an initial step to create an MEF-based micro-total-analysis-system (μ-TAS).

  14. Hypericin fluorescence kinetics in the presence of low density lipoproteins: study on quail CAM assay for topical delivery.

    PubMed

    Buríková, Monika; Bilčík, Boris; Máčajová, Mariana; Výboh, Pavel; Bizik, Jozef; Mateašík, Anton; Miškovský, Pavol; Čavarga, Ivan

    2016-10-01

    There has been increasing interest in fluorescence-based imaging techniques in clinical practice, with the aim to detect and visualize the tumour configuration and the border with healthy tissue. Strong photodynamic activity of hypericin (Hyp) can be improved by various molecular transport systems (e.g. LDL). Our aim was to examine pharmacokinetics of Hyp in the presence of LDL particles on ex ovo chorioallantoic membrane (CAM) of Japanese quail with implanted TE1 tumour spheroids (human squamocellular carcinoma). Spheroids were implanted on CAM surface on embryonal day 7 and after 24 hours formulations of free Hyp and Hyp:LDL 100:1 and 200:1 were topically applied. All experimental formulations in the fluorescent image very well visualized the tumour spheroid position, with gradual increase of fluorescence intensity in 6-h observation period. LDL transportation system exhibited clear superiority in fluorescence pharmacokinetics than free Hyp formulation by increasing tumour-normal difference. Our experimental results confirm that Hyp and Hyp:LDL complex is potent fluorophore for photodynamic diagnosis of squamocellular carcinoma.

  15. A novel aggregation-induced emission based fluorescent probe for an angiotensin converting enzyme (ACE) assay and inhibitor screening.

    PubMed

    Wang, Haibo; Huang, Yi; Zhao, Xiaoping; Gong, Wan; Wang, Yi; Cheng, Yiyu

    2014-12-11

    A 'turn-on' fluorescent probe based on aggregation-induced emission (AIE) has been developed. It exhibits excellent selectivity and sensitivity for monitoring angiotensin converting enzyme (ACE) activity both in solutions and in living cells as well as for screening ACE inhibitors in vitro.

  16. Midori-ishi Cyan/monomeric Kusabira-Orange-based fluorescence resonance energy transfer assay for characterization of various E3 ligases.

    PubMed

    Otsubo, Ryota; Kim, Minsoo; Lee, Jihye; Sasakawa, Chihiro

    2016-06-01

    Many bacterial pathogens hijack the host ubiquitin system for their own benefit by delivering effectors with ubiquitin ligase (E3) into host cells via the type III secretion system. Therefore, screening for small compounds that selectively inhibit bacterial but not mammalian E3 ligases is a promising strategy for identifying molecules that could substitute for antibiotics. To facilitate high-throughput screening for bacterial E3 ligase inhibitors, we developed a MiCy/mKO (Midori-ishi Cyan/monomeric Kusabira-Orange)-based FRET (fluorescence resonance energy transfer) assay and validated it on Shigella IpaH E3 ligase effectors. We showed the feasibility of using the MiCy/mKO-based FRET assay to identify the most appropriate ubiquitin-conjugating enzymes (E2s) and determine the lysine specificity of a given E3, both hallmarks of E3 activity. Furthermore, we showed the usefulness of the FRET assay in characterizing mammalian E3 ligases, such as TNF receptor-associated factor 6 (TRAF6) and mouse double minute 2 homologue (MDM2). In addition, we confirmed the feasibility of determining the efficiency of inhibition of E3 ligase activity using inhibitors of E1 ubiquitin-activating enzymes, such as UBE1-41, by measuring the IC50 . Based on these results, we concluded that the MiCy/mKO-based FRET assay is useful for characterizing E3 enzyme activity, as well as for high-throughput E3 inhibitor screening.

  17. On-chip multiplexed solid-phase nucleic acid hybridization assay using spatial profiles of immobilized quantum dots and fluorescence resonance energy transfer.

    PubMed

    Noor, M Omair; Tavares, Anthony J; Krull, Ulrich J

    2013-07-25

    A microfluidic based solid-phase assay for the multiplexed detection of nucleic acid hybridization using quantum dot (QD) mediated fluorescence resonance energy transfer (FRET) is described herein. The glass surface of hybrid glass-polydimethylsiloxane (PDMS) microfluidic channels was chemically modified to assemble the biorecognition interface. Multiplexing was demonstrated using a detection system that was comprised of two colors of immobilized semi-conductor QDs and two different oligonucleotide probe sequences. Green-emitting and red-emitting QDs were paired with Cy3 and Alexa Fluor 647 (A647) labeled oligonucleotides, respectively. The QDs served as energy donors for the transduction of dye labeled oligonucleotide targets. The in-channel assembly of the biorecognition interface and the subsequent introduction of oligonucleotide targets was accomplished within minutes using a combination of electroosmotic flow and electrophoretic force. The concurrent quantification of femtomole quantities of two target sequences was possible by measuring the spatial coverage of FRET sensitized emission along the length of the channel. In previous reports, multiplexed QD-FRET hybridization assays that employed a ratiometric method for quantification had challenges associated with lower analytical sensitivity arising from both donor and acceptor dilution that resulted in reduced energy transfer pathways as compared to single-color hybridization assays. Herein, a spatial method for quantification that is based on in-channel QD-FRET profiles provided higher analytical sensitivity in the multiplexed assay format as compared to single-color hybridization assays. The selectivity of the multiplexed hybridization assays was demonstrated by discrimination between a fully-complementary sequence and a 3 base pair sequence at a contrast ratio of 8 to 1.

  18. Paper-based solid-phase multiplexed nucleic acid hybridization assay with tunable dynamic range using immobilized quantum dots as donors in fluorescence resonance energy transfer.

    PubMed

    Noor, M Omair; Krull, Ulrich J

    2013-08-06

    A multiplexed solid-phase nucleic acid hybridization assay on a paper-based platform is presented using multicolor immobilized quantum dots (QDs) as donors in fluorescence resonance energy transfer (FRET). The surface of paper was modified with imidazole groups to immobilize two types of QD-probe oligonucleotide conjugates that were assembled in solution. Green-emitting QDs (gQDs) and red-emitting QDs (rQDs) served as donors with Cy3 and Alexa Fluor 647 (A647) acceptors. The gQD/Cy3 FRET pair served as an internal standard, while the rQD/A647 FRET pair served as a detection channel, combining the control and analytical test zones in one physical location. Hybridization of dye-labeled oligonucleotide targets provided the proximity for FRET sensitized emission from the acceptor dyes, which served as an analytical signal. Hybridization assays in the multicolor format provided a limit of detection of 90 fmol and an upper limit of dynamic range of 3.5 pmol. The use of an array of detection zones was designed to provide improved analytical figures of merit compared to that which could be achieved on one type of array design in terms of relative concentration of multicolor QDs. The hybridization assays showed excellent resistance to nonspecific adsorption of oligonucleotides. Selectivity of the two-plex hybridization assay was demonstrated by single nucleotide polymorphism (SNP) detection at a contrast ratio of 50:1. Additionally, it is shown that the use of preformed QD-probe oligonucleotide conjugates and consideration of the relative number density of the two types of QD-probe conjugates in the two-color assay format is advantageous to maximize assay sensitivity and the upper limit of dynamic range.

  19. Graphene and graphene-like two-denominational materials based fluorescence resonance energy transfer (FRET) assays for biological applications.

    PubMed

    Tian, Feng; Lyu, Jing; Shi, Jingyu; Yang, Mo

    2017-03-15

    In the past decades, Förster resonance energy transfer (FRET) has been applied in many biological applications to reveal the biological information at the nanoscale. Recently, graphene and graphene-like two-dimensional (2D) nanomaterials started to be used in FRET assays as donors or acceptors including graphene oxide (GO), graphene quantum dot (GQD), graphitic-carbon nitride nanosheets (g-C3N4) and transition metal dichalcogenides (e.g. MoS2, MnO2, and WS2). Due to the remarkable properties such as large surface to volume ratio, tunable energy band, photoluminescence and excellent biocompatibility, these 2D nanomaterials based FRET assays have shown great potential in various biological applications. This review summarizes the recent development of graphene and graphene-like 2D nanomaterials based FRET assays in applications of biosensing, bioimaging, and drug delivery monitoring.

  20. A Quantitative High-Throughput 96-well plate Fluorescence Assay for Mechanism-Based Inactivators of Cytochromes P450 Exemplified using CYP2B6

    PubMed Central

    Kenaan, Cesar; Zhang, Haoming; Hollenberg, Paul F.

    2010-01-01

    Mechanism-based inactivators such as bergamottin are useful chemical tools for identifying the roles of specific active-site amino acid residues in the reactions catalyzed by the cytochromes P450 (CYPs or P450s) that are responsible for the metabolism of a wide variety of drugs and endogenous substrates. In clinical settings mechanism-based inactivation of P450s involved in xenobiotic metabolism has the potential to lead to adverse drug-drug interactions and assays to identify and characterize drug candidates as P450 inactivators are important in drug discovery and development. Here we present a quantitative high-throughput protocol for investigating cytochrome P450 mechanism-based inactivators using the example of CYP2B6 and bergamottin to illustrate the finer points of this protocol. This protocol details the adaptation of a 7-ethoxytrifluoromethyl coumarin (7-EFC) O-deethylation fluorescence activity assay to a 96-well microtiter plate format and uses a plate-reader to detect the fluorescence of the product. Compared to previous methods, this protocol requires less P450 and takes significantly less time while greatly increasing throughput. The protocol as written takes approximately two hours to complete. The principles and procedures outlined in this protocol can be easily adapted to other inactivators, P450 isoforms, substrates and plate-readers. PMID:20885377

  1. Competitive fluorescence assay for specific recognition of atrazine by magnetic molecularly imprinted polymer based on Fe3O4-chitosan.

    PubMed

    Liu, Guangyang; Li, Tengfei; Yang, Xin; She, Yongxin; Wang, Miao; Wang, Jing; Zhang, Min; Wang, Shanshan; Jin, Fen; Jin, Maojun; Shao, Hua; Jiang, Zejun; Yu, Hailong

    2016-02-10

    A novel fluorescence sensing strategy for determination of atrazine in tap water involving direct competition between atrazine and 5-(4,6-dichlorotriazinyl) aminofluorescein (5-DTAF), and which exploits magnetic molecularly imprinted polymer (MMIP), has been developed. The MMIP, based on Fe3O4-chitosan nanoparticles, was synthesized to recognize specific binding sites of atrazine. The recognition capability and selectivity of the MMIP for atrazine and other triazine herbicides was investigated. Under optimal conditions, the competitive reaction between 5-DTAF and atrazine was performed to permit quantitation. Fluorescence intensity changes at 515 nm was linearly related to the logarithm of the atrazine concentration for the range 2.32-185.4 μM. The detection limit for atrazine was 0.86μM (S/N=3) and recoveries were 77.6-115% in spiked tap water samples.

  2. Real-time thermal imaging of microwave accelerated metal-enhanced fluorescence (MAMEF) based assays on sapphire plates.

    PubMed

    Previte, Michael J R; Zhang, Yongxia; Aslan, Kadir; Geddes, Chris D

    2007-11-01

    In this paper, we describe an optical geometry that facilitates our further characterization of the temperature changes above silver island films (SiFs) on sapphire plates, when exposed to microwave radiation. Since sapphire transmits IR, we designed an optical scheme to capture real-time temperature images of a thin water film on sapphire plates with and without SiFs during the application of a short microwave pulse. Using this optical scheme, we can accurately determine the temperature profile of solvents in proximity to metal structures when exposed to microwave irradiation. We believe that this optical scheme will provide us with a basis for further studies in designing metal structures to further improve plasmonic-fluorescence clinical sensing applications, such as those used in microwave accelerated metal-enhanced fluorescence (MAMEF).

  3. Identification of ACAT1- and ACAT2-specific inhibitors using a novel, cell-based fluorescence assay: individual ACAT uniqueness.

    PubMed

    Lada, Aaron T; Davis, Matthew; Kent, Carol; Chapman, James; Tomoda, Hiroshi; Omura, Satoshi; Rudel, Lawrence L

    2004-02-01

    Acyl CoA:cholesterol acyltransferase 1 (ACAT1) and ACAT2 are enzymes responsible for the formation of cholesteryl esters in tissues. While both ACAT1 and ACAT2 are present in the liver and intestine, the cells containing either enzyme within these tissues are distinct, suggesting that ACAT1 and ACAT2 have separate functions. In this study, NBD-cholesterol was used to screen for specific inhibitors of ACAT1 and ACAT2. Incubation of AC29 cells, which do not contain ACAT activity, with NBD-cholesterol showed weak fluorescence when the compound was localized in the membrane. When AC29 cells stably transfected with either ACAT1 or ACAT2 were incubated with NBD-cholesterol, the fluorescent signal localized to the nonpolar core of cytoplasmic lipid droplets was strongly fluorescent and was correlated with two independent measures of ACAT activity. Several compounds were found to have greater inhibitory activity toward ACAT1 than ACAT2, and one compound was identified that specifically inhibits ACAT2. The demonstration of selective inhibition of ACAT1 and ACAT2 provides evidence for uniqueness in structure and function of these two enzymes. To the extent that ACAT2 is confined to hepatocytes and enterocytes, the only two cell types that secrete lipoproteins, selective inhibition of ACAT2 may prove to be most beneficial in the reduction of plasma lipoprotein cholesterol concentrations.

  4. Label-Free Fluorescence Assay of S1 Nuclease and Hydroxyl Radicals Based on Water-Soluble Conjugated Polymers and WS2 Nanosheets

    PubMed Central

    Li, Junting; Zhao, Qi; Tang, Yanli

    2016-01-01

    We developed a new method for detecting S1 nuclease and hydroxyl radicals based on the use of water-soluble conjugated poly[9,9-bis(6,6-(N,N,N-trimethylammonium)-fluorene)-2,7-ylenevinylene-co-alt-2,5-dicyano-1,4-phenylene)] (PFVCN) and tungsten disulfide (WS2) nanosheets. Cationic PFVCN is used as a signal reporter, and single-layer WS2 is used as a quencher with a negatively charged surface. The ssDNA forms complexes with PFVCN due to much stronger electrostatic interactions between cationic PFVCN and anionic ssDNA, whereas PFVCN emits yellow fluorescence. When ssDNA is hydrolyzed by S1 nuclease or hydroxyl radicals into small fragments, the interactions between the fragmented DNA and PFVCN become weaker, resulting in PFVCN being adsorbed on the surface of WS2 and the fluorescence being quenched through fluorescence resonance energy transfer. The new method based on PFVCN and WS2 can sense S1 nuclease with a low detection limit of 5 × 10−6 U/mL. Additionally, this method is cost-effective by using affordable WS2 as an energy acceptor without the need for dye-labeled ssDNA. Furthermore, the method provides a new platform for the nuclease assay and reactive oxygen species, and provides promising applications for drug screening. PMID:27304956

  5. Development of a Novel Green Fluorescent Protein-Based Binding Assay to Study the Association of Plakins with Intermediate Filament Proteins.

    PubMed

    Favre, Bertrand; Begré, Nadja; Bouameur, Jamal-Eddine; Borradori, Luca

    2016-01-01

    Protein-protein interactions are fundamental for most biological processes, such as the formation of cellular structures and enzymatic complexes or in signaling pathways. The identification and characterization of protein-protein interactions are therefore essential for understanding the mechanisms and regulation of biological systems. The organization and dynamics of the cytoskeleton, as well as its anchorage to specific sites in the plasma membrane and organelles, are regulated by the plakins. These structurally related proteins anchor different cytoskeletal networks to each other and/or to other cellular structures. The association of several plakins with intermediate filaments (IFs) is critical for maintenance of the cytoarchitecture. Pathogenic mutations in the genes encoding different plakins can lead to dramatic manifestations, occurring principally in the skin, striated muscle, and/or nervous system, due to cytoskeletal disorganization resulting in abnormal cell fragility. Nevertheless, it is still unclear how plakins bind to IFs, although some general rules are slowly emerging. We here describe in detail a recently developed protein-protein fluorescence binding assay, based on the production of recombinant proteins tagged with green fluorescent protein (GFP) and their use as fluid-phase fluorescent ligands on immobilized IF proteins. Using this method, we have been able to assess the ability of C-terminal regions of GFP-tagged plakin proteins to bind to distinct IF proteins and IF domains. This simple and sensitive technique, which is expected to facilitate further studies in this area, can also be potentially employed for any kind of protein-protein interaction studies.

  6. A homogeneous and "off-on" fluorescence aptamer-based assay for chloramphenicol using vesicle quantum dot-gold colloid composite probes.

    PubMed

    Miao, Yang-Bao; Ren, Hong-Xia; Gan, Ning; Zhou, You; Cao, Yuting; Li, Tianhua; Chen, Yinji

    2016-07-27

    In this work, a novel homogeneous and signal "off-on" aptamer based fluorescence assay was successfully developed to detect chloramphenicol (CAP) residues in food based on the fluorescence resonance energy transfer (FRET). The vesicle nanotracer was prepared through labeling single stranded DNA binding protein (SSB) on limposome-CdSe/ZnS quantum dot (SSB/L-QD) complexes. It was worth mentioning that the signal tracer (SSB/L-QD) with vesicle shape, which was fabricated being encapsulated with a number of quantum dots and SSB. The nanotracer has excellent signal amplification effects. The vesicle composite probe was formed by combining aptamer labeled nano-gold (Au-Apt) and SSB/L-QD. Which based on SSB's specific affinity towards aptamer. This probe can't emit fluoresce which is in "off" state because the signal from SSB/L-QD as donor can be quenched by the Au-aptas acceptor. When CAP was added in the composite probe solution, the aptamer on the Au-Apt can be preferentially bounded with CAP then release from the composite probe, which can turn the "off" signal of SSB/L-QD tracer into "on" state. The assay indicates excellent linear response to CAP from 0.001 nM to 10 nM and detection limit down to 0.3 pM. The vesicle probes with size of 88 nm have strong signal amplification. Because a larger number of QDs can be labeled inside the double phosphorus lipid membrane. Besides, it was employed to detect CAP residues in the milk samples with results being agreed well with those from ELISA, verifying its accuracy and reliability.

  7. Unique Nanoparticle Optical Properties Confound Fluorescent Based Assays Widely Employed in Their In Vitro Toxicity Screening and Ranking

    EPA Science Inventory

    Nanoparticles (NPs) are novel materials having at least one dimension less than 100 nm and display unique physicochemical properties due to their nanoscale size. An emphasis has been placed on developing high throughput screening (HTS) assays to characterize and rank the toxiciti...

  8. DETECTION OF LOW DOSE RADIATION-AND CHEMICALLY-INDUCED DNA DAMAGE USING TEMPERATURE DIFFERENTIAL FLUORESCENCE ASSAYS

    EPA Science Inventory

    Rapid, sensitive and simple assays for radiation- and chemically-induced DNA damage can be of significant benefit to a number of fields including radiation biology, clinical research, and environmental monitoring. Although temperature-induced DNA strand separation has been use...

  9. Unique Nanoparticle Properties Confound Fluorescent Based Assays Widely Employed in Their In Vitro Toxicity Testing and Ranking

    EPA Science Inventory

    Nanomaterials are a diverse collection of novel materials that exhibit at least one dimension less than 100 nm and display unique chemical and physical properties due to their nanoscale size. An emphasis has been put on developing high throughput screening (HTS) assays to charac...

  10. 4-Hydroxy-N-propyl-1,8-naphthalimide esters: New fluorescence-based assay for analysing lipase and esterase activity.

    PubMed

    Nalder, Tim D; Ashton, Trent D; Pfeffer, Frederick M; Marshall, Susan N; Barrow, Colin J

    2016-01-01

    Research using 1,8-naphthalimide derivatives has expanded rapidly in recent years owing to their cell-permeable nature, ability to target certain cellular locations and fluorescent properties. Here we describe the synthesis of three new esters of 4-hydroxy-N-propyl-1,8-naphthalimide (NAP) and the development of a simple and sensitive assay protocol to measure the activity of carboxylester hydrolases. The NAP fluorophore was esterified with short (butyrate), medium (octanoate) and long (palmitate) chain fatty acids. The esters were spectroscopically characterised and their properties investigated for their suitability as assay substrates. The esters were found to be relatively stable under the conditions of the assay and levels of spontaneous hydrolysis were negligible. Non-specific hydrolysis by proteins such as bovine serum albumin was also minimal. A simple and rapid assay methodology was developed and used to analyse a range of commercially available enzymes that included enzymes defined as lipases, esterases and phospholipases. Clear differences were observed between the enzyme classes with respect to the hydrolysis of the various chain length esters, with lipases preferentially hydrolysing the medium chain ester, whereas esterases reacted more favourably with the short ester. The assay was found to be highly sensitive with the fluorophore detectable to the low nM range. These esters provide alternate substrates from established coumarin-based fluorophores, possessing distinctly different excitation (447 nm) and emission (555 nm) optima. Absorbing at 440-450 nm also offers the flexibility of analysis by UV-visible spectrophotometry. This represents the first instance of a naphthalimide-derived compound being used to analyse these enzymes.

  11. Mapping the Distribution of Cysts from the Toxic Dinoflagellate Cochlodinium polykrikoides in Bloom-Prone Estuaries by a Novel Fluorescence In Situ Hybridization Assay.

    PubMed

    Hattenrath-Lehmann, Theresa K; Zhen, Yu; Wallace, Ryan B; Tang, Ying-Zhong; Gobler, Christopher J

    2015-12-04

    Cochlodinium polykrikoides is a cosmopolitan dinoflagellate that is notorious for causing fish-killing harmful algal blooms (HABs) across North America and Asia. While recent laboratory and ecosystem studies have definitively demonstrated that Cochlodinium forms resting cysts that may play a key role in the dynamics of its HABs, uncertainties regarding cyst morphology and detection have prohibited even a rudimentary understanding of the distribution of C. polykrikoides cysts in coastal ecosystems. Here, we report on the development of a fluorescence in situ hybridization (FISH) assay using oligonucleotide probes specific for the large subunit (LSU) ribosomal DNA (rDNA) of C. polykrikoides. The LSU rDNA-targeted FISH assay was used with epifluorescence microscopy and was iteratively refined to maximize the fluorescent reaction with C. polykrikoides and minimize cross-reactivity. The final LSU rDNA-targeted FISH assay was found to quantitatively recover cysts made by North American isolates of C. polykrikoides but not cysts formed by other common cyst-forming dinoflagellates. The method was then applied to identify and map C. polykrikoides cysts across bloom-prone estuaries. Annual cyst and vegetative cell surveys revealed that elevated densities of C. polykrikoides cysts (>100 cm(-3)) during the spring of a given year were spatially consistent with regions of dense blooms the prior summer. The identity of cysts in sediments was confirmed via independent amplification of C. polykrikoides rDNA. This study mapped C. polykrikoides cysts in a natural marine setting and indicates that the excystment of cysts formed by this harmful alga may play a key role in the development of HABs of this species.

  12. A cell-based time-resolved fluorescence assay for selection of antibody reagents for G protein-coupled receptor immunohistochemistry.

    PubMed

    Su, Jui-Lan; Fornwald, Jim; Rivers, Philip; Goldsworthy, Susan; Looney, Noeleen A; Hanvey, Jeff; Plumpton, Chris; Parham, Janet; Romanos, Michael; Kost, Thomas A; Kull, Frederick C

    2004-08-01

    A cell-based time-resolved fluorescence (celTRF) immunoassay is described for pre-screening antibodies to G protein-coupled receptor (GPCR) peptides that predicts suitability for immunohistochemistry (IHC). Rat GPCRs were expressed in Saos-2 human osteosarcoma cells via recombinant baculoviruses designed for mammalian cell expression, i.e., the transduced cells were used as a "screening lawn". The lawn was fixed and permeabilized similarly to IHC tissue. The celTRF, a dissociation-enhanced lanthanide fluorescence immunoassay (DELFIA), employed Eu-labelled goat anti-rabbit IgG. It exhibited a broad dynamic range upon which enzyme-linked immunosorbant assay (ELISA)-positive affinity-purified anti-peptide antibody reagents were examined for specificity and potency. Over 150 anti-peptide reagents to 27 GPCRs were characterized. All celTRF-positive antibodies were found to be suitable for IHC, whereas ELISA alone did not predict IHC utility. Examples are illustrated with five rabbit anti-neuropeptide FF receptor 1 (NPFF1) antibodies, where a strong correlation between celTRF potency and IHC utility was observed in both applications. In contrast, two high anti-peptide ELISA titer but celTRF-negative antibodies failed to recognize the NPFF1 receptor in IHC. The celTRF assay was performed manually and in an automated fashion, in our case, using a Biomek FX station and Sami scheduling software. The celTRF is the first in vitro automated assay that offers confident pre-selection of antibodies for IHC and the versatility to accommodate the rapid screening of large numbers of GPCRs. The celTRF is readily applicable to other protein target classes.

  13. Use of the Brucella melitensis native hapten to diagnose brucellosis in goats by a rapid, simple, and specific fluorescence polarization assay.

    PubMed

    Ramírez-Pfeiffer, Carlos; Díaz-Aparicio, Efrén; Gomez-Flores, Ricardo; Rodríguez-Padilla, Cristina; Morales-Loredo, Alberto; Alvarez-Ojeda, Genoveva

    2008-06-01

    The performance of the fluorescence polarization assay (FPA) using the recently described Brucella melitensis native hapten and the Brucella abortus O-polysaccharide tracer was evaluated and compared with those of The World Organization for Animal Health tests related to indirect and competitive enzyme-linked immunosorbent assays as classification variables for goat sera obtained from a high-prevalence area where vaccination was performed; test series were also evaluated to increase the final specificity of the tests. Our results showed that the respective relative sensitivity and specificity were 99.7% and 32.5% for the rose Bengal test with a 3% cell concentration (RBT3), 92.8% and 68.8% for the rose Bengal test with 8% cell concentration (RBT8), 98.4% and 84.9% for the Canadian complement fixation test (CFT), 83.7% and 65.5% for the Mexican CFT, 98.4% and 81.0% for the buffered plate agglutination test (BPAT), and 78.1% and 89.3% for the fluorescence polarization assay (FPA). The use of the FPA as the secondary test significantly increased the final specificities of test combinations; the screening tests BPAT, RBT3, and RBT8 plus FPA resulted in 90%, 91.2%, and 91.3% final specificities, respectively, whereas for the combinations RBT3 plus Mexican CFT, RBT8 plus Mexican CFT, and BPAT plus Canadian CFT, the specificities were 65.5%, 63.2%, and 91.7%, respectively. The results suggested that the FPA may be routinely applied as an adaptable screening test for diagnosis of goat brucellosis, since its cutoff can be adjusted to improve its sensitivity or specificity, it is a rapid and simple test, it can be the test of choice when specificity is relevant or when an alternative confirmatory test is not available, and it is not affected by vaccination, thus reducing the number of goats wrongly slaughtered due to misdiagnosis.

  14. [Techniques for assaying the activity of transcription factor NF-κB].

    PubMed

    Ling, Xiao-Qian; Wang, Jin-Ke

    2013-05-01

    NF-κB is a stimulatory transcription factor that is ubiquitous in almost all kinds of cells. When cells are under various stimuli, NF-κB is activated and regulates large numbers of target genes, and thus controls important cellular processes, ranging from cell growth and differentiation to apoptosis and cancer. Therefore, NF-κB is a forefront hotspot transcription factor that is intensively studied in virtually all fields of biomedical sciences, and becomes a promising target for disease therapy and drug screening. The activity detection is the first and inevitable step for the studies of NF-κB activation and function.Therefore, the techniques for detection of NF-κB activity have always been paid more attention and continuously developed. Especially in recent year, along with the development of each disciplines, various new techniques have been developed, including ELISA-like assays based on dsDNA-coupled plate, filter binding assays, FRET assays, fluorescence reporting and nucleic acids amplification assays based on exonuclease and endonuclease, MS and flow cytometry assays based on immunomicrobeads, and other biophysical and electrochemical assays. Some of these techniques have already played important roles in NF-κB studies. This paper reviewed new techniques developed in recent years by classification, in order to provide an overview of NF-κB activity assays, which may be helpful for researchers to select appropriate techniques used in their studies. Moreover, the learning and understanding of these techniques may inspire researchers to improve currently existing techniques and develop novel methods for the studies of NF-κB.

  15. Fluorescence bio-barcode DNA assay based on gold and magnetic nanoparticles for detection of Exotoxin A gene sequence.

    PubMed

    Amini, Bahram; Kamali, Mehdi; Salouti, Mojtaba; Yaghmaei, Parichehreh

    2017-06-15

    Bio-barcode DNA based on gold nanoparticle (bDNA-GNPs) as a new generation of biosensor based detection tools, holds promise for biological science studies. They are of enormous importance in the emergence of rapid and sensitive procedures for detecting toxins of microorganisms. Exotoxin A (ETA) is the most toxic virulence factor of Pseudomonas aeruginosa. ETA has ADP-ribosylation activity and decisively affects the protein synthesis of the host cells. In the present study, we developed a fluorescence bio-barcode technology to trace P. aeruginosa ETA. The GNPs were coated with the first target-specific DNA probe 1 (1pDNA) and bio-barcode DNA, which acted as a signal reporter. The magnetic nanoparticles (MNPs) were coated with the second target-specific DNA probe 2 (2pDNA) that was able to recognize the other end of the target DNA. After binding the nanoparticles with the target DNA, the following sandwich structure was formed: MNP 2pDNA/tDNA/1pDNA-GNP-bDNA. After isolating the sandwiches by a magnetic field, the DNAs of the probes which have been hybridized to their complementary DNA, GNPs and MNPs, via the hydrogen, electrostatic and covalently bonds, were released from the sandwiches after dissolving in dithiothreitol solution (DTT 0.8M). This bio-barcode DNA with known DNA sequence was then detected by fluorescence spectrophotometry. The findings showed that the new method has the advantages of fast, high sensitivity (the detection limit was 1.2ng/ml), good selectivity, and wide linear range of 5-200ng/ml. The regression analysis also showed that there was a good linear relationship (∆F=0.57 [target DNA]+21.31, R(2)=0.9984) between the fluorescent intensity and the target DNA concentration in the samples.

  16. A rapid, high-throughput vaccinia virus neutralization assay for testing smallpox vaccine efficacy based on detection of green fluorescent protein.

    PubMed

    Johnson, Matthew C; Damon, Inger K; Karem, Kevin L

    2008-06-01

    Virus neutralization remains a vital tool in assessment of vaccine efficacy for smallpox in the absence of animal smallpox models. In this regard, development of a rapid, sensitive, and high-throughput vaccinia neutralization assay has been sought for evaluating alternative smallpox vaccines, use in bridging studies, as well as understanding the effects of anti-viral immunotherapeutic regimes. The most frequently used method of measuring vaccinia virus neutralization by plaque reduction is time, labor, and material intensive, and therefore limiting in its utility for large scale, high-throughput analysis. Recent advances provide alternative methods that are less labor intensive and higher throughput but with limitations in reagents needed and ease of use. An innovative neutralization assay is described based on a modified Western Reserve vaccinia vector expressing green fluorescent protein (WR-GFP) and an adherent cell monolayer in multi-well plate format. The assay is quick, accurate, provides a large dynamic range and is well suited for large-scale vaccination studies using standard adherent cell lines.

  17. Development of a fluorescence resonance energy transfer peptide library technology for detection of protease contaminants in protein-based raw materials used in diagnostic assays.

    PubMed

    Kapprell, Hans-Peter; Maurer, Andreas; Kramer, Florian; Heinrich, Boris; Buenning, Carsten; Narvaez, Alfredo; Kalbacher, Hubert; Flad, Thomas

    2011-10-01

    Protease impurities in raw materials used in enzyme immunoassays can impair assay performance. This risk may be greatly decreased if incoming protein-based raw materials are controlled for protease impurities or if protease inhibitors are used in the assay formulations. As many different proteases might occur in protein raw materials, it is desirable to have a general test for protease contamination. With the help of a fluorescence resonance energy transfer peptide library containing about 2.5 million peptides, we have succeeded in establishing such a system, with sensitivity in the nanogram range for known proteases. Protease contamination was found to differ between different raw materials and was correlated with assay performance. Protease activity in contaminated raw materials could be suppressed to various degrees with different chemical inhibitors or by thermal treatment. This technology is suited for the control of incoming protein-based raw materials used for enzyme immunoassays, as well as for the optimization of the use of protein inhibitors or thermal treatment of protein-based raw materials for the inactivation of proteases.

  18. Interfacial chemistry and the design of solid-phase nucleic acid hybridization assays using immobilized quantum dots as donors in fluorescence resonance energy transfer.

    PubMed

    Algar, W Russ; Krull, Ulrich J

    2011-01-01

    The use of quantum dots (QDs) as donors in fluorescence resonance energy transfer (FRET) offer several advantages for the development of multiplexed solid-phase QD-FRET nucleic acid hybridization assays. Designs for multiplexing have been demonstrated, but important challenges remain in the optimization of these systems. In this work, we identify several strategies based on the design of interfacial chemistry for improving sensitivity, obtaining lower limits of detection (LOD) and enabling the regeneration and reuse of solid-phase QD-FRET hybridization assays. FRET-sensitized emission from acceptor dyes associated with hybridization events at immobilized QD donors provides the analytical signal in these assays. The minimization of active sensing area reduces background from QD donor PL and allows the resolution of smaller amounts of acceptor emission, thus lowering the LOD. The association of multiple acceptor dyes with each hybridization event can enhance FRET efficiency, thereby improving sensitivity. Many previous studies have used interfacial protein layers to generate selectivity; however, transient destabilization of these layers is shown to prevent efficient regeneration. To this end, we report a protein-free interfacial chemistry and demonstrate the specific detection of as little as 2 pmol of target, as well as an improved capacity for regeneration.

  19. Assay of glutathione in must and wines using capillary electrophoresis and laser-induced fluorescence detection. Changes in concentration in dry white wines during alcoholic fermentation and aging.

    PubMed

    Lavigne, Valérie; Pons, Alexandre; Dubourdieu, Denis

    2007-01-12

    Glutathione (GSH) was assayed in must and wine using capillary electrophoresis coupled with laser-induced fluorescence (LIF) detection. Sample preparation involved conjugating thiols with monobromobimane (MBB) in a 2-(N-cyclohexylamino)ethanesulfonic acid [CHES] buffer (179mM). The electrophoretic conditions were 30kV with a capillary length of 105cm from the inlet to the detector (120cm total length) and a 50microm inner diameter. Under these conditions, the complete separation from the other main non-volatile thiols took less than 20min. We also described the optimum conditions for derivatizing wine samples with MBB to increase eletrophoretic sensitivity. The detection limit for glutathione assay is 65nmol/L. This simple, sensitive method provides a specific assay of glutathione in reduced form, as the sample preparation technique does not modify the balance of oxidized and reduced forms. We used this method to monitor changes in the reduced glutathione content of a white wine during alcoholic fermentation and barrel aging.

  20. Toward an on-chip multiplexed nucleic acid hybridization assay using immobilized quantum dot-oligonucleotide conjugates and fluorescence resonance energy transfer

    NASA Astrophysics Data System (ADS)

    Tavares, Anthony J.; Noor, M. Omair; Algar, W. Russ; Vannoy, Charles H.; Chen, Lu; Krull, Ulrich J.

    2011-03-01

    Semiconductor quantum dots (QD) are a class of NP with photophysical properties that are ideally suited for optical multiplexing and use as donors in fluorescence resonance energy transfer (FRET). A new strategy is presented for the development of multiplexed DNA hybridization assays using immobilized QDs in a microfluidic system. Green- or red-emitting QDs were immobilized via self-assembly with a multidentate-thiol-derivatized glass slide, and subsequently conjugated with amine-terminated probe oligonucleotides using carbodiimide activation. Immobilized QD-probe conjugates were then passivated with adsorbed non-complementary oligonucleotides to achieve selectivity in microfluidic assays. Target nucleic acid sequences hybridized with QD-probe conjugates and were labeled with Cy3 or Alexa Fluor 647 as acceptor dyes for the QD donors, where FRET-sensitized dye emission provided a signal for the detection of picomolar quantities of target. The simultaneous immobilization of green- and red-emitting QDs at different ratios within a microfluidic channel was demonstrated as a step toward multiplexed assays.

  1. A loop-mediated isothermal amplification (LAMP) assay for Strongyloides stercoralis in stool that uses a visual detection method with SYTO-82 fluorescent dye.

    PubMed

    Watts, Matthew R; James, Gregory; Sultana, Yasmin; Ginn, Andrew N; Outhred, Alexander C; Kong, Fanrong; Verweij, Jaco J; Iredell, Jonathan R; Chen, Sharon C-A; Lee, Rogan

    2014-02-01

    An assay to detect Strongyloides stercoralis in stool specimens was developed using the loop-mediated isothermal amplification (LAMP) method. Primers were based on the 28S ribosomal subunit gene. The reaction conditions were optimized and SYTO-82 fluorescent dye was used to allow real-time and visual detection of the product. The product identity was confirmed with restriction enzyme digestion, cloning, and sequence analysis. The assay was specific when tested against DNA from bacteria, fungi and parasites, and 30 normal stool samples. Analytical sensitivity was to < 10 copies of target sequence in a plasmid and up to a 10(-2) dilution of DNA extracted from a Strongyloides ratti larva spiked into stool. Sensitivity was increased when further dilutions were made in water, indicative of reduced reaction inhibition. Twenty-seven of 28 stool samples microscopy and polymerase chain reaction positive for S. stercoralis were positive with the LAMP method. On the basis of these findings, the assay warrants further clinical validation.

  2. Elimination of Matrix-Based Interferences to a Fluorescent Nitrite/Nitrate Assay by a Simple Filtration Procedure

    DTIC Science & Technology

    2000-08-15

    reaction is with O2 and water to form nitrite/nitrates (detectable by the DAN assay). Nitric oxide can also react with proteins, such as he- moglobin ...W., and Currie, M. (1993) Anal. Biochem. 214, 11–16. 2. Sonoda, M., Kobayashi, J., Takezawa, M., Miyazaki, T., Naka- jima, T., Shimomura, H ., Koike...K., Satomi, A., and Ogino, H . (1996) Anal. Biochem. 247, 417–427. 3. Griess, P. (1879) Chem. Ber. 12, 426. 4. Johnson, A., and Burleson, D. (1995

  3. Rapid screening and identification of dominant B cell epitopes of HBV surface antigen by quantum dot-based fluorescence polarization assay

    NASA Astrophysics Data System (ADS)

    Meng, Zhongji; Song, Ruihua; Chen, Yue; Zhu, Yang; Tian, Yanhui; Li, Ding; Cui, Daxiang

    2013-03-01

    A method for quickly screening and identifying dominant B cell epitopes was developed using hepatitis B virus (HBV) surface antigen as a target. Eleven amino acid fragments from HBV surface antigen were synthesized by 9-fluorenylmethoxy carbonyl solid-phase peptide synthesis strategy, and then CdTe quantum dots were used to label the N-terminals of all peptides. After optimizing the factors for fluorescence polarization (FP) immunoassay, the antigenicities of synthetic peptides were determined by analyzing the recognition and combination of peptides and standard antibody samples. The results of FP assays confirmed that 10 of 11 synthetic peptides have distinct antigenicities. In order to screen dominant antigenic peptides, the FP assays were carried out to investigate the antibodies against the 10 synthetic peptides of HBV surface antigen respectively in 159 samples of anti-HBV surface antigen-positive antiserum. The results showed that 3 of the 10 antigenic peptides may be immunodominant because the antibodies against them existed more widely among the samples and their antibody titers were higher than those of other peptides. Using three dominant antigenic peptides, 293 serum samples were detected for HBV infection by FP assays; the results showed that the antibody-positive ratio was 51.9% and the sensitivity and specificity were 84.3% and 98.2%, respectively. In conclusion, a quantum dot-based FP assay is a very simple, rapid, and convenient method for determining immunodominant antigenic peptides and has great potential in applications such as epitope mapping, vaccine designing, or clinical disease diagnosis in the future.

  4. A novel four-color fluorescence in situ hybridization assay for the detection of TMPRSS2 and ERG rearrangements in prostate cancer.

    PubMed

    Qu, Xiaoyu; Randhawa, Grace; Friedman, Cynthia; O'Hara-Larrivee, Siobhan; Kroeger, Kathleen; Dumpit, Ruth; True, Larry; Vakar-Lopez, Funda; Porter, Christopher; Vessella, Robert; Nelson, Peter; Fang, Min

    2013-01-01

    Since the identification of the TMPRSS2-ERG rearrangement as the most common fusion event in prostate cancer, various methods have been developed to detect this rearrangement and to study its prognostic significance. We report a novel four-color fluorescence in situ hybridization (FISH) assay that detects not only the typical TMPRSS2-ERG fusion but also alternative rearrangements of the TMPRSS2 or ERG gene. We validated this assay on fresh, frozen, or formalin-fixed paraffin-embedded prostate cancer specimens, including cell lines, primary prostate cancer tissues, xenograft tissues derived from metastatic prostate cancer, and metastatic tissues from castration-resistant prostate cancer (CRPC) patients. When compared with either reverse transcription-polymerase chain reaction or the Gen-Probe method as the technical reference, analysis using the four-color FISH assay demonstrated an analytical sensitivity of 94.5% (95% confidence interval [CI] 0.80-0.99) and specificity of 100% (95% CI 0.89-1.00) for detecting the TMPRSS2-ERG fusion. The TMPRSS2-ERG fusion was detected in 41% and 43% of primary prostate cancer (n = 59) and CRPC tumors (n = 82), respectively. Rearrangements other than the typical TMPRSS2-ERG fusion were confirmed by karyotype analysis and found in 7% of primary cancer and 13% of CRPC tumors. Successful karyotype analyses are reported for the first time on four of the xenograft samples, complementing the FISH results. Analysis using the four-color FISH assay provides sensitive detection of TMPRSS2 and ERG gene rearrangements in prostate cancer.

  5. Evaluation of modified Ziehl-Neelsen, direct fluorescent-antibody and PCR assay for detection of Cryptosporidium spp. in children faecal specimens.

    PubMed

    Aghamolaie, S; Rostami, A; Fallahi, Sh; Tahvildar Biderouni, F; Haghighi, A; Salehi, N

    2016-09-01

    To determine the sensitivity and specificity of routine screening methods for cryptosporidiosis, three methods including conventional modified Ziehl-Neelsen (MZN), direct fluorescent-antibody (DFA) and Nested-PCR assay compared together. To this end, their ability to identify the low concentrations of Cryptosporidium spp. oocysts in children fecal samples was evaluated. The sample population of this study was children under 12 years old who had diarrhea and referred to pediatric hospitals in Tehran, Iran. 2,510 stool specimens from patients with diarrhea were screened for Cryptosporidium oocysts by concentration method and MZN. To determine sensitivity and specificity, Nested-PCR and DFA were performed on 30 positive and 114 negative samples which previously had been proved by MZN. By using the microscopic method, DFA assay and PCR analysis, a total of 30 (1.2 %), 28 (1.1 %) and 32 (1.27 %) positive samples were detected respectively. According to the results, the sensitivity, specificity, and positive and negative predictive values of the Nested-PCR assay were 100 %, compared to 94, 100, 100, and 98 %, respectively, for MZN and 87.5, 100, 100, and 96 %, respectively, for DFA. Results of the present study showed that the Nested-PCR assay was more sensitive than the other two methods and laboratories can use the Nested-PCR method for precise diagnosis of Cryptosporidium spp. However, regarding the costs of Nested-PCR and its unavailability in all laboratories and hospitals, MZN staining on smears has also enough accuracy for Cryptosporidium diagnosis.

  6. Exploration of fluorescence-based real-time loop-mediated isothermal amplification (LAMP) assay for detection of Isospora suis oocysts.

    PubMed

    Huang, Cuiqin; Wen, Fuli; Yue, Liangping; Chen, Renfeng; Zhou, Wei; Hu, Lingying; Chen, Meizhen; Wang, Shoukun

    2016-06-01

    Isospora suis is an intestinal protozoan parasite in pigs. The 2-3 weeks old piglets are most often infected by I. suis because their immune system is not fully developed. The infection exhibits clinical features such as diarrhea and dehydration and seriously affects the economic interests of farmers. The traditional method of identifying I. suis relies on the detection of fecal oocysts, which depends heavily on the accumulation of experience. Thus, missed detection, and false alarms often occur during detection. With the development of molecular-based detection methods, development of a simple, convenient and more sensitive method for the detection of I. suis is an urgent need. In this study, based on the 18S rRNA gene sequence, a fluorescence -based real-time loop-mediated isothermal amplification (LAMP) assay was established for the detection of I. suis. The results showed that the assay is highly specific and sensitive, with a detection limit of 2.74 × 10(2) copies/μL recombinant plasmid of I. suis, corresponding to 1 fg/μL plasmid when converted to DNA concentration. The sensitivity is about 100 times higher than conventional PCR. Additionally, DNA extracted from a certain number of oocysts was used for detection, and it showed that the LAMP assay had a detection limit of 5 oocysts, lower than that of 13 oocysts of conventional PCR. The established LAMP assay overcomes the shortage of the traditional microscopy-based method, and provides a valuable way for molecular detection of I. suis.

  7. Nuclear displacement and fluorescence recovery after photobleaching (FRAP) assays to study division site placement and cytokinesis in fission yeast.

    PubMed

    Ullal, P; Bhatia, P; Martin, S G

    2017-01-01

    Cytokinesis is an essential cellular event that completes the cell division cycle. It begins with the assembly of an actomyosin contractile ring that undergoes constriction concomitant with the septum formation to divide the cell in two. Placement of the septum at the right position is important to ensure fidelity of the division process. In fission yeast, the medially placed nucleus is a major spatial cue to position the site of division. In this chapter, we describe a simple synthetic biology-based approach to displace the nucleus and study the consequence on division site positioning. We also describe how to perform fluorescence recovery after photobleaching to follow the dynamics of cytokinetic proteins at defined time points by live-cell microscopy.

  8. Rapid, low-cost fluorescent assay of β-lactamase-derived antibiotic resistance and related antibiotic susceptibility

    PubMed Central

    Erdem, S. Sibel; Khan, Shazia; Palanisami, Akilan; Hasan, Tayyaba

    2014-01-01

    Abstract. Antibiotic resistance (AR) is increasingly prevalent in low and middle income countries (LMICs), but the extent of the problem is poorly understood. This lack of knowledge is a critical deficiency, leaving local health authorities essentially blind to AR outbreaks and crippling their ability to provide effective treatment guidelines. The crux of the problem is the lack of microbiology laboratory capacity available in LMICs. To address this unmet need, we demonstrate a rapid and simple test of β-lactamase resistance (the most common form of AR) that uses a modified β-lactam structure decorated with two fluorophores quenched due to their close proximity. When the β-lactam core is cleaved by β-lactamase, the fluorophores dequench, allowing assay speeds of 20 min to be obtained with a simple, streamlined protocol. Furthermore, by testing in competition with antibiotics, the β-lactamase-associated antibiotic susceptibility can also be extracted. This assay can be easily implemented into standard lab work flows to provide near real-time information of β-lactamase resistance, both for epidemiological purposes as well as individualized patient care. PMID:25321396

  9. Rapid, low-cost fluorescent assay of β-lactamase-derived antibiotic resistance and related antibiotic susceptibility

    NASA Astrophysics Data System (ADS)

    Erdem, S. Sibel; Khan, Shazia; Palanisami, Akilan; Hasan, Tayyaba

    2014-10-01

    Antibiotic resistance (AR) is increasingly prevalent in low and middle income countries (LMICs), but the extent of the problem is poorly understood. This lack of knowledge is a critical deficiency, leaving local health authorities essentially blind to AR outbreaks and crippling their ability to provide effective treatment guidelines. The crux of the problem is the lack of microbiology laboratory capacity available in LMICs. To address this unmet need, we demonstrate a rapid and simple test of β-lactamase resistance (the most common form of AR) that uses a modified β-lactam structure decorated with two fluorophores quenched due to their close proximity. When the β-lactam core is cleaved by β-lactamase, the fluorophores dequench, allowing assay speeds of 20 min to be obtained with a simple, streamlined protocol. Furthermore, by testing in competition with antibiotics, the β-lactamase-associated antibiotic susceptibility can also be extracted. This assay can be easily implemented into standard lab work flows to provide near real-time information of β-lactamase resistance, both for epidemiological purposes as well as individualized patient care.

  10. High-performance liquid chromatographic stability indicating assay method of tianeptine sodium with simultaneous fluorescence and UV detection.

    PubMed

    Khedr, Alaa

    2007-07-01

    The purpose of this work is to develop a sensitive, selective, and validated stability-indicating HPLC assay of tianeptine (TIA) in bulk drug and tablet form. TIA is subjected to different stress conditions, including UV-light, oxidation, acid base-base hydrolysis, and temperature. TIA and its possible degradation products are analyzed on Agilent-Zorbax-XDB-C18 column using gradient elution with acetonitrile and 0.02M sodium acetate (pH 4.2). The samples are monitored simultaneously with photo-diode array at 254 nm and fluoroscence detector set to 350 nm (ex) and 425 nm (em). TIA is integrated from its UV-chromatogram, and the photodecomposition products are integrated from the fluoroscence-chromatogram. TIA and its photodecomposition products are separated by TLC using ethyl acetate-n-hexane-glacial acetic acid-methanol (10.0:14.0:0.2:1.0, v/v) as developing system. One potential photodegradation product is detected by fluoroscence in TIA-tablet form and separated by TLC. The linear range of TIA is between 0.5 to 50 microg/injection with limits of quantitation and detection values of 30 and 8 ng/injection, respectively. The inter-assay percentage of deviation is not more than 0.03%, and the day-to-day variation is not more than 0.1%.

  11. An assay for α 1,6-fucosyltransferase (FUT8) activity based on the HPLC separation of a reaction product with fluorescence detection.

    PubMed

    Ihara, Hideyuki; Tsukamoto, Hiroki; Taniguchi, Naoyuki; Ikeda, Yoshitaka

    2013-01-01

    N-Glycans with an α-fucose unit linked to the 6-position of the innermost GlcNAc are widely distributed among the animal kingdom, from worms and insects to human. This α1,6-linked fucosyl residue, frequently referred to as a core fucose, is formed via the action of an α1,6-fucosyltransferase, the mammalian ortholog which is systematically called FUT8. In mammals, it is well known that the extent of core-fucosylation in cellular and secreted glycoproteins varies, e.g., according to differentiation and carcinogenesis of the cells. This chapter describes a method for the sensitive and quantitative assay of FUT8 activity using a fluorescence-labeled oligosaccharyl asparagine derivative as the glycosyl acceptor substrate.

  12. Identification of promethazine as an amyloid-binding molecule using a fluorescence high-throughput assay and MALDI imaging mass spectrometry☆

    PubMed Central

    McClure, Richard A.; Chumbley, Chad W.; Reyzer, Michelle L.; Wilson, Kevin; Caprioli, Richard M.; Gore, John C.; Pham, Wellington

    2013-01-01

    The identification of amyloid-binding compounds is a crucial step in the development of imaging probes and therapeutics for the detection and cure of Alzheimer's disease. Unfortunately, the process typically lags during the translation from in vitro to in vivo studies due to the impenetrable nature of the blood brain barrier (BBB). Here, we integrate fluorescence assay with MALDI imaging mass spectrometry to screen known compounds and repurpose their properties to enable the second function of binding to amyloid plaques. Through this approach, we identified an antihistamine compound, promethazine, that can bind to amyloid plaques. Finally, we demonstrate that promethazine is retained in the amyloid-burdened brain compared to a normal brain and that its distribution within the brain corroborates with that of amyloid plaques. PMID:24179813

  13. Comparative study of affinity and selectivity of ligands targeting abasic and mismatch sites in DNA using a fluorescence-melting assay.

    PubMed

    Kotera, Naoko; Granzhan, Anton; Teulade-Fichou, Marie-Paule

    2016-01-01

    Recently, several families of small-molecule ligands have been developed to selectively target DNA pairing defects, such as abasic sites and mismatched base pairs, with the aim to interfere with the DNA repair and the template function of the DNA. However, the affinity and selectivity (with respect to well-matched DNA) of these ligands has barely been evaluated in a systematic way. Herein, we report a comparative study of binding affinity and selectivity of a representative panel of 16 ligands targeting abasic sites and a T-T mismatch in DNA, using a fluorescence-monitored melting assay. We demonstrate that bisintercalator-type macrocyclic ligands are characterized by moderate affinity but exceptionally high selectivity with respect to well-matched DNA, whereas other reported ligands show either modest selectivity or rather low affinity in identical conditions.

  14. Putative model for heat shock protein 70 complexation with receptor of advanced glycation end products through fluorescence proximity assays and normal mode analyses.

    PubMed

    Grunwald, Marcelo Sartori; Ligabue-Braun, Rodrigo; Souza, Cristiane Santos; Heimfarth, Luana; Verli, Hugo; Gelain, Daniel Pens; Moreira, José Cláudio Fonseca

    2017-01-01

    Extracellular heat shock protein 70 (HSP70) is recognized by receptors on the plasma membrane, such as Toll-like receptor 4 (TLR4), TLR2, CD14, and CD40. This leads to activation of nuclear factor-kappa B (NF-κB), release of pro-inflammatory cytokines, enhancement of the phagocytic activity of innate immune cells, and stimulation of antigen-specific responses. However, the specific characteristics of HSP70 binding are still unknown, and all HSP70 receptors have not yet been described. Putative models for HSP70 complexation to the receptor for advanced glycation endproducts (RAGEs), considering both ADP- and ATP-bound states of HSP70, were obtained through molecular docking and interaction energy calculations. This interaction was detected and visualized by a proximity fluorescence-based assay in A549 cells and further analyzed by normal mode analyses of the docking complexes. The interacting energy of the complexes showed that the most favored docking situation occurs between HSP70 ATP-bound and RAGE in its monomeric state. The fluorescence proximity assay presented a higher number of detected spots in the HSP70 ATP treatment, corroborating with the computational result. Normal-mode analyses showed no conformational deformability in the interacting interface of the complexes. Results were compared with previous findings in which oxidized HSP70 was shown to be responsible for the differential modulation of macrophage activation, which could result from a signaling pathway triggered by RAGE binding. Our data provide important insights into the characteristics of HSP70 binding and receptor interactions, as well as putative models with conserved residues on the interface area, which could be useful for future site-directed mutagenesis studies.

  15. Automatic and integrated micro-enzyme assay (AIμEA) platform for highly sensitive thrombin analysis via an engineered fluorescence protein-functionalized monolithic capillary column.

    PubMed

    Lin, Lihua; Liu, Shengquan; Nie, Zhou; Chen, Yingzhuang; Lei, Chunyang; Wang, Zhen; Yin, Chao; Hu, Huiping; Huang, Yan; Yao, Shouzhuo

    2015-04-21

    Nowadays, large-scale screening for enzyme discovery, engineering, and drug discovery processes require simple, fast, and sensitive enzyme activity assay platforms with high integration and potential for high-throughput detection. Herein, a novel automatic and integrated micro-enzyme assay (AIμEA) platform was proposed based on a unique microreaction system fabricated by a engineered green fluorescence protein (GFP)-functionalized monolithic capillary column, with thrombin as an example. The recombinant GFP probe was rationally engineered to possess a His-tag and a substrate sequence of thrombin, which enable it to be immobilized on the monolith via metal affinity binding, and to be released after thrombin digestion. Combined with capillary electrophoresis-laser-induced fluorescence (CE-LIF), all the procedures, including thrombin injection, online enzymatic digestion in the microreaction system, and label-free detection of the released GFP, were integrated in a single electrophoretic process. By taking advantage of the ultrahigh loading capacity of the AIμEA platform and the CE automatic programming setup, one microreaction column was sufficient for many times digestion without replacement. The novel microreaction system showed significantly enhanced catalytic efficiency, about 30 fold higher than that of the equivalent bulk reaction. Accordingly, the AIμEA platform was highly sensitive with a limit of detection down to 1 pM of thrombin. Moreover, the AIμEA platform was robust and reliable to detect thrombin in human serum samples and its inhibition by hirudin. Hence, this AIμEA platform exhibits great potential for high-throughput analysis in future biological application, disease diagnostics, and drug screening.

  16. Measurement of X-ray-induced DNA double-strand breaks at various stages of the cell cycle using the total fluorescence as a comet assay parameter

    NASA Astrophysics Data System (ADS)

    Attia, Atef M. M.; Nabil, Ghada M.; Frankenberg, Dieter; Frankenberg-Schwager, M.

    2011-11-01

    The aim of the study was to develop a protocol for both estimating cell cycle position and the level of ionizing radiation-induced DNA dsb using the neutral comet assay. Using DNA histograms, cell cycle positions were determined for human dermal fibroblasts. The tail intensity was used to estimate the level of DNA damage induced by X-rays, at different positions of the cell cycle. The results of tail intensity versus DNA content bivariate analysis of exponentially growing cells showed a remarkable decrease in tail intensity with transition of cells from G1 to S-phase and increases slightly with transition to G2/M phase. This effect is observed at all doses including unirradiated cells, indicating that the effect is not caused by X-rays and the comet assay based on the current tail parameters is not relevant to measure DNA damage at various stages of the cell cycle. The results of dose response curves showed a linear decrease in the comet fluorescence with the X-ray dose. This observation provides a basis for estimating the fraction of damaged DNA, based on the fluorescence decrement induced by ionizing radiation. The results of this new approach showed a linear increase in DNA damage with dose, at various stages of the cell cycle, with rates, which vary in the following order G0>G2/M>S/G1 cells.These results suggest that G0 and G2/M cells are the most sensitive to X-rays among all phases of the cell cycle and suggest synchronization of cells at these phases to increase the cellular radiosensitivity during radiotherapy.

  17. A Fluorescence-based Exonuclease Assay to Characterize DmWRNexo, Orthologue of Human Progeroid WRN Exonuclease, and Its Application to Other Nucleases

    PubMed Central

    Mason, Penelope A.; Boubriak, Ivan; Cox, Lynne S.

    2013-01-01

    WRN exonuclease is involved in resolving DNA damage that occurs either during DNA replication or following exposure to endogenous or exogenous genotoxins. It is likely to play a role in preventing accumulation of recombinogenic intermediates that would otherwise accumulate at transiently stalled replication forks, consistent with a hyper-recombinant phenotype of cells lacking WRN. In humans, the exonuclease domain comprises an N-terminal portion of a much larger protein that also possesses helicase activity, together with additional sites important for DNA and protein interaction. By contrast, in Drosophila, the exonuclease activity of WRN (DmWRNexo) is encoded by a distinct genetic locus from the presumptive helicase, allowing biochemical (and genetic) dissection of the role of the exonuclease activity in genome stability mechanisms. Here, we demonstrate a fluorescent method to determine WRN exonuclease activity using purified recombinant DmWRNexo and end-labeled fluorescent oligonucleotides. This system allows greater reproducibility than radioactive assays as the substrate oligonucleotides remain stable for months, and provides a safer and relatively rapid method for detailed analysis of nuclease activity, permitting determination of nuclease polarity, processivity, and substrate preferences. PMID:24378758

  18. A Label-Free and Sensitive Fluorescent Qualitative Assay for Bisphenol A Based on Rolling Circle Amplification/Exonuclease III-Combined Cascade Amplification

    PubMed Central

    Li, Xia; Song, Juan; Xue, Qing-Wang; You, Fu-Heng; Lu, Xia; Kong, Yan-Cong; Ma, Shu-Yi; Jiang, Wei; Li, Chen-Zhong

    2016-01-01

    Bisphenol A (BPA) detection in drinking water and food packaging materials has attracted much attention since the discovery that BPA can interfere with normal physiological processes and cause adverse health effects. Here, we constructed a label-free aptamer fluorescent assay for selective and sensitive detection of BPA based on the rolling circle amplification (RCA)/Exonuclease III (Exo III)-combined cascade amplification strategy. First, the duplex DNA probe (RP) with anti-BPA aptamer and trigger sequence was designed for BPA recognition and signal amplification. Next, under the action of BPA, the trigger probe was liberated from RP to initiate RCA reaction as primary amplification. Subsequently, the RCA products were used to trigger Exo III assisted secondary amplification with the help of hairpin probes, producing plenty of “G-quadruplex” in lantern-like structures. Finally, the continuously enriched “G-quadruplex lanterns” were lightened by zinc(II)-protoporphyrin IX (ZnPPIX) generating enhanced fluorescence signals. By integrating the primary RCA and secondary Exo III mediated cascade amplification strategy, this method displayed an excellent sensitivity with the detection limits of 5.4 × 10−17 M. In addition, the anti-BPA aptamer exhibits high recognition ability with BPA, guaranteeing the specificity of detection. The reporter signal probe (G-quadruplex with ZnPPIX) provides a label-free fluorescence signals readout without complicated labeling procedures, making the method simple in design and cost-effective in operation. Moreover, environmental samples analysis was also performed, suggesting that our strategy was reliable and had a great potential application in environmental monitoring. PMID:28335318

  19. Inhibitors of Streptococcus pneumoniae surface endonuclease EndA discovered by high-throughput screening using a PicoGreen fluorescence assay.

    PubMed

    Peterson, Eliza J R; Kireev, Dmitri; Moon, Andrea F; Midon, Marika; Janzen, William P; Pingoud, Alfred; Pedersen, Lars C; Singleton, Scott F

    2013-03-01

    The human commensal pathogen Streptococcus pneumoniae expresses a number of virulence factors that promote serious pneumococcal diseases, resulting in significant morbidity and mortality worldwide. These virulence factors may give S. pneumoniae the capacity to escape immune defenses, resist antimicrobial agents, or a combination of both. Virulence factors also present possible points of therapeutic intervention. The activities of the surface endonuclease, EndA, allow S. pneumoniae to establish invasive pneumococcal infection. EndA's role in DNA uptake during transformation contributes to gene transfer and genetic diversification. Moreover, EndA's nuclease activity degrades the DNA backbone of neutrophil extracellular traps (NETs), allowing pneumococcus to escape host immune responses. Given its potential impact on pneumococcal pathogenicity, EndA is an attractive target for novel antimicrobial therapy. Herein, we describe the development of a high-throughput screening assay for the discovery of nuclease inhibitors. Nuclease-mediated digestion of double-stranded DNA was assessed using fluorescence changes of the DNA dye ligand, PicoGreen. Under optimized conditions, the assay provided robust and reproducible activity data (Z'= 0.87) and was used to screen 4727 small molecules against an imidazole-rescued variant of EndA. In total, six small molecules were confirmed as novel EndA inhibitors, some of which may have utility as research tools for understanding pneumococcal pathogenesis and for drug discovery.

  20. Fluorescent dye labeled influenza virus mainly infects innate immune cells and activated lymphocytes and can be used in cell-mediated immune response assay.

    PubMed

    Xie, Dongxu

    2009-03-31

    Early results have recognized that influenza virus infects the innate and adaptive immune cells. The data presented in this paper demonstrated that influenza virus labeled with fluorescent dye not only retained the ability to infect and replicate in host cells, but also stimulated a similar human immune response as did unlabeled virus. Influenza virus largely infected the innate and activated adaptive immune cells. Influenza B type virus was different from that of A type virus. B type virus was able to infect the immature lymphocytes, but in lower amounts when compared to activated lymphocytes. Protection from influenza is tightly associated with cellular immunity. Traditional methods of cellular immunity assay had limitations to imitate the natural human cell-mediated responses to influenza virus. Labeled viruses could be used in the assay of virus-specific cytotoxicity, which might reflect the natural process more closely. Furthermore, human immune cells activated by one influenza subtype virus could kill the cells infected by other subtype virus. These results implied the human immune cells could directly handle and remove free virus using similar mechanism that was used to remove virus-infected nonimmune cells, which might help to simplify the design and production of influenza vaccine, thereby reduce the cost.

  1. Inhibitors of Streptococcus pneumoniae Surface Endonuclease EndA Discovered by High-Throughput Screening Using a PicoGreen Fluorescence Assay

    PubMed Central

    Peterson, Eliza J.R.; Kireev, Dmitri; Moon, Andrea F.; Midon, Marika; Janzen, William P.; Pingoud, Alfred; Pedersen, Lars C.

    2016-01-01

    The human commensal pathogen, Streptococcus pneumoniae, expresses a number of virulence factors that promote serious pneumococcal diseases, resulting in significant morbidity and mortality worldwide. These virulence factors may give S. pneumoniae the capacity to escape immune defenses, resist antimicrobial agents, or a combination of both. Virulence factors also present possible points of therapeutic intervention. The activities of the surface endonuclease, EndA, allow S. pneumoniae to establish invasive pneumococcal infection. EndA’s role in DNA uptake during transformation contributes to gene transfer and genetic diversitifcation. Moreover, EndA’s nuclease activity degrades the DNA backbone of neutrophil extracellular traps (NETs), allowing pneumococcus to escape host immune responses. Given its potential impact on pneumococcal pathogenicity, EndA is an attractive target for novel antimicrobial therapy. Herein, we describe the development of a high-throughput screening assay for the discovery of nuclease inhibitors. Nuclease-mediated digestion of double-stranded DNA was assessed using fluorescence intensity changes of the DNA dye ligand, PicoGreen. Under optimized conditions, the assay provided robust and reproducible activity data (Z'=0.87) and was used to screen 4727 small molecules against an imidazole-rescued variant of EndA. In total, 10 small molecules were confirmed as novel EndA inhibitors that may have utility as research tools for understanding pneumococcal pathogenesis, and ultimately drug discovery. PMID:23015019

  2. Homogeneous time-resolved fluorescence assays for the detection of activity and inhibition of phosphatase enzymes employing phosphorescently labeled peptide substrates.

    PubMed

    O'Shea, Desmond J; O'Riordan, Tomás C; O'Sullivan, Paul J; Papkovsky, Dmitri B

    2007-02-05

    A rapid, homogenous, antibody-free assay for phosphatase enzymes was developed using the phosphorescent platinum (II)-coproporphyrin label (PtCP) and time-resolved fluorescent detection. An internally quenched decameric peptide substrate containing a phospho-tyrosine residue, labeled with PtCP-maleimide and dabcyl-NHS at its termini was designed. Phosphatase catalysed dephosphorylation of the substrate resulted in a minor increase in PtCP signal, while subsequent cleavage by chymotrypsin at the dephosphorylated Tyr-Leu site provided a 3.5 fold enhancement of PtCP phosphorescence. This phosphorescence phosphatase enhancement assay was optimized to a 96 well plate format with detection on a commercial TR-F plate reader, and applied to measure the activity and inhibition of alkaline phosphatase, recombinant human CD45, and tyrosine phosphatases in Jurkat cell lysates within 40 min. Parameters of these enzymatic reactions such as Km's, limits of detection (L.O.D's) and IC50 values for the non-specific inhibitor sodium orthovanadate were also determined.

  3. High yield expression of serine/threonine protein phosphatase type 5, and a fluorescent assay suitable for use in the detection of catalytic inhibitors

    PubMed Central

    Ni, Li; Swingle, Mark S.; Bourgeois, Austin C.B; Honkanen, Richard E.

    2008-01-01

    Protein phosphatase type 5 (PP5) belongs to the PPP-family of serine/threonine protein phosphatases and is expressed in most, if not all, human tissues. Although the physiological roles played by PP5 are not yet clear, PP5 is found in association with several proteins that influence intracellular signaling networks initiated by hormones (i.e. glucocorticoids) or cellular stress (i.e. hypoxia, oxidative stress). Recently, studies conducted with siRNA and antisense oligonucleotides indicate that PP5 plays an important role in the regulation of stress-induced signaling cascades that influence both cell growth and the onset of apoptosis. Therefore, the identification of small molecule inhibitors of PP5 is desired for use in studies to further define the biological/pathological roles of PP5. Such inhibitors may also prove useful for development into novel antitumor agents. Here we describe methods to express and purify large amounts of biologically active PP5c, an inhibitor-titration based assay to determine the amount of PP5 in solution, and a fluorescent phosphatase assay that can be used to screen chemical libraries and natural extracts for the presence of catalytic inhibitors. PMID:17939754

  4. Combined QSAR-based virtual screening and fluorescence binding assay to identify natural product mediators of Interferon Regulatory Factor 7 (IRF-7) in pulmonary infection.

    PubMed

    Liu, Y; Huang, L; Ye, H; Lv, X

    2016-11-01

    Interferon regulatory factor-7 (IRF-7) is involved in pulmonary infection and pneumonia. Here, a synthetic strategy that combined quantitative structure-activity relationship (QSAR)-based virtual screening and in vitro binding assay was described to identify new and potent mediator ligands of IRF-7 from natural products. In the procedure, a QSAR scoring function was developed and validated using Gaussian process (GP) regression and a structure-based set of protein-ligand affinity data. By integrating hotspot pocket prediction, pharmacokinetics profile analysis and molecular docking calculations, the scoring function was successfully applied to virtual screening against a large library of structurally diverse, drug-like natural products. With the method we were able to identify a number of potential hits, from which several compounds were found to have moderate or high affinity to IRF-7 using fluorescence binding assays, with dissociation constants Kd at micromolar level. We have also examined the structural basis and noncovalent interactions of computationally modelled IRF-7 complex with its potent ligands. It is revealed that hydrophobic forces and van der Waals contacts play a central role in stabilization of the complex architecture, while few hydrogen bonds confer additional specificity for the protein-ligand recognition.

  5. Sensitivity of the Quidel Sofia Fluorescent Immunoassay Compared With 2 Nucleic Acid Assays and Viral Culture to Detect Pandemic Influenza A(H1N1)pdm09.

    PubMed

    Arbefeville, Sophie S; Fickle, Ann R; Ferrieri, Patricia

    2015-01-01

    To confirm a diagnosis of influenza at the point of care, healthcare professionals may rely on rapid influenza diagnostic tests (RIDTs). RIDTs have low to moderate sensitivity compared with viral culture or real-time reverse-transcription polymerase chain reaction (rRT-PCR). With the resurgence of the influenza A (Flu A; subtype H1N1) pandemic 2009 (pdm09) strain in the years 2013 and 2014, we evaluated the accuracy of the United State Food and Drug Administration (FDA)-approved Sofia Influenza A+B Fluorescent Immunoassay to detect epidemic Flu A(H1N1)pdm09 in specimens from the upper-respiratory tract. During a 3-month period, we collected 40 specimens that tested positive via PCR and/or culture for Flu A of the H1N1 pdm09 subtype. Of the 40 specimens, 27 tested positive (67.5%) via Sofia assay for Flu A. Of the 13 specimens with a negative result via Sofia testing, 4 had coinfection, as detected by the GenMark Diagnostics eSensor Respiratory Viral Panel. This sensitivity of the RIDT Sofia assay to detect Flu A(H1N1) pdm09 was comparable to previously reported sensitivities ranging from 10% to 75% for older RIDTs.

  6. Re-assessment of direct fluorescent antibody negative brain tissues with a real-time PCR assay to detect the presence of raccoon rabies virus RNA.

    PubMed

    Szanto, Annamaria G; Nadin-Davis, Susan A; Rosatte, Richard C; White, Bradley N

    2011-06-01

    The first report of the raccoon variant of rabies virus was in Ontario, Canada in 1999. As part of the control of this outbreak a Point Infection Control (PIC) strategy of trapping and euthanizing vector species was implemented. To evaluate whether this strategy was indeed removing diseased animals, rabies diagnosis was performed on these specimens. During a PIC program conducted in 2003, 721 animals (raccoons, striped skunks and red foxes) were collected and euthanized and brain material from each specimen was divided into two halves; one half was submitted for rabies diagnosis by a direct fluorescent antibody (DFA) test while the other was tested using a sensitive real-time reverse-transcriptase polymerase chain reaction (RT-qPCR), to detect raccoon rabies virus (RRV) RNA. This latter assay can detect less than ten viral copies in 200ng of total cellular RNA. All 721 PIC brain samples were negative by the DFA test but ten of them (5 raccoons, 5 skunks) tested positive for raccoon rabies virus by the RT-qPCR assay albeit at low levels. Three of these samples were confirmed by sequencing of the PCR products. Little correlation was observed between clinical rabies DFA positive scoring categories and viral copy number as determined by RT-qPCR.

  7. Design and validation of a homogeneous time-resolved fluorescence cell-based assay targeting the ligand-gated ion channel 5-HT3A.

    PubMed

    Blanc, Emilie; Wagner, Patrick; Plaisier, Fabrice; Schmitt, Martine; Durroux, Thierry; Bourguignon, Jean-Jacques; Partiseti, Michel; Dupuis, Elodie; Bihel, Frederic

    2015-09-01

    Ligand-gated ion channels (LGICs) are considered as attractive protein targets in the search for new therapeutic agents. Nowadays, this strategy involves the capability to screen large chemical libraries. We present a new Tag-lite ligand binding assay targeting LGICs on living cells. This technology combines the use of suicide enzyme tags fused to channels of interest with homogeneous time-resolved fluorescence (HTRF) as the detection readout. Using the 5-HT3 receptor as system model, we showed that the pharmacology of the HALO-5HT3 receptor was identical to that of the native receptor. After validation of the assay by using 5-HT3 agonists and antagonists of reference, a pilot screen enabled us to identify azelastine, a well-known histamine H1 antagonist, as a potent 5-HT3 antagonist. This interesting result was confirmed with electrophysiological experiments. The method described here is easy to implement and could be applicable for other LGICs, opening new ways for the screening of chemical libraries.

  8. Development of a Fluorescence-based Trypanosoma cruzi CYP51 Inhibition Assay for Effective Compound Triaging in Drug Discovery Programmes for Chagas Disease

    PubMed Central

    Riley, Jennifer; Brand, Stephen; Voice, Michael; Caballero, Ivan; Calvo, David; Read, Kevin D.

    2015-01-01

    Chagas disease, caused by the protozoan parasite Trypanosoma cruzi (T. cruzi), is a life threatening global health problem with only two drugs available for treatment (benznidazole and nifurtimox), both having variable efficacy in the chronic stage of the disease and high rates of adverse drug reactions. Inhibitors of sterol 14α-demethylase (CYP51) have proven effective against T. cruzi in vitro and in vivo in animal models of Chagas disease. Consequently two azole inhibitors of CYP51 (posaconazole and ravuconazole) have recently entered clinical development by the Drugs for Neglected Diseases initiative. Further new drug treatments for this disease are however still urgently required, particularly having a different mode of action to CYP51 in order to balance the overall risk in the drug discovery portfolio. This need has now been further strengthened by the very recent reports of treatment failure in the clinic for both posaconazole and ravuconazole. To this end and to prevent enrichment of drug candidates against a single target, there is a clear need for a robust high throughput assay for CYP51 inhibition in order to evaluate compounds active against T. cruzi arising from phenotypic screens. A high throughput fluorescence based functional assay using recombinantly expressed T. cruzi CYP51 (Tulahuen strain) is presented here that meets this requirement. This assay has proved valuable in prioritising medicinal chemistry resource on only those T. cruzi active series arising from a phenotypic screening campaign where it is clear that the predominant mode of action is likely not via inhibition of CYP51. PMID:26394211

  9. Development of a Fluorescence-based Trypanosoma cruzi CYP51 Inhibition Assay for Effective Compound Triaging in Drug Discovery Programmes for Chagas Disease.

    PubMed

    Riley, Jennifer; Brand, Stephen; Voice, Michael; Caballero, Ivan; Calvo, David; Read, Kevin D

    2015-09-01

    Chagas disease, caused by the protozoan parasite Trypanosoma cruzi (T. cruzi), is a life threatening global health problem with only two drugs available for treatment (benznidazole and nifurtimox), both having variable efficacy in the chronic stage of the disease and high rates of adverse drug reactions. Inhibitors of sterol 14α-demethylase (CYP51) have proven effective against T. cruzi in vitro and in vivo in animal models of Chagas disease. Consequently two azole inhibitors of CYP51 (posaconazole and ravuconazole) have recently entered clinical development by the Drugs for Neglected Diseases initiative. Further new drug treatments for this disease are however still urgently required, particularly having a different mode of action to CYP51 in order to balance the overall risk in the drug discovery portfolio. This need has now been further strengthened by the very recent reports of treatment failure in the clinic for both posaconazole and ravuconazole. To this end and to prevent enrichment of drug candidates against a single target, there is a clear need for a robust high throughput assay for CYP51 inhibition in order to evaluate compounds active against T. cruzi arising from phenotypic screens. A high throughput fluorescence based functional assay using recombinantly expressed T. cruzi CYP51 (Tulahuen strain) is presented here that meets this requirement. This assay has proved valuable in prioritising medicinal chemistry resource on only those T. cruzi active series arising from a phenotypic screening campaign where it is clear that the predominant mode of action is likely not via inhibition of CYP51.

  10. Use of the fluorescent micronucleus assay to detect the genotoxic effects of radiation and arsenic exposure in exfoliated human epithelial cells

    SciTech Connect

    Moore, L.E.; Warner, M.L.; Smith, A.H.

    1996-12-31

    The exfoliated cell micronucleus (MN) assay using fluorescent in situ hybridization (FISH) with a centromeric probe is a rapid method for determining the mechanism of MN formation in epithelial tissues exposed to carcinogenic agents. Here, we describe the use of this assay to detect the presence or absence of centromeric DNA in MN induced in vivo by radiation therapy and chronic arsenic (As) ingestion. We examined the buccal cells of an individual receiving 6,500 rads of photon radiation to the head and neck. Exfoliated cells were collected before, during, and after treatment. After radiation exposure a 16.6-fold increase in buccal cell MN frequency was seen. All induced MN were centromere negative (MN-) resulting from chromosome breakage. This finding is consistent with the clastogenic action of radiation and confirmed the reliability of the method. Three weeks post-therapy, MN frequencies returned to baseline. The assay was used on 18 people chronically exposed to high levels of inorganic arsenic (In-As) in drinking water (average level, 1,312 {mu}g As/L) and 18 matched controls (average level, 16 {mu}g As/L). The combined increase in MN frequency was 1.8-fold (P = 0.001, Fisher`s exact test). Frequencies of micronuclei containing acentric fragments (MN-) and those containing whole chromosomes (MN+) both increased, suggesting that arsenic may have both clastogenic and weak aneuploidogenic properties in vivo. After stratification on sex, the effect was stronger in male than in female bladder cells. In males the MN-frequency increased 2.06-fold (P =0.07) while the frequency of MN+ increased 1.86-fold (P = 0.08). In addition, the frequencies of MN and MN+ were positively associated with urinary arsenic and its metabolites. The association was stronger for micronuclei containing acentric fragments. By using FISH with centromeric probes, the mechanism of chemically induced genotoxicity can not be determined in epithelial tissues. 35 refs., 4 tabs.

  11. Implementation of a fluorescence-based screening assay identifies histamine H3 receptor antagonists clobenpropit and iodophenpropit as subunit-selective N-methyl-D-aspartate receptor antagonists.

    PubMed

    Hansen, Kasper B; Mullasseril, Praseeda; Dawit, Sara; Kurtkaya, Natalie L; Yuan, Hongjie; Vance, Katie M; Orr, Anna G; Kvist, Trine; Ogden, Kevin K; Le, Phuong; Vellano, Kimberly M; Lewis, Iestyn; Kurtkaya, Serdar; Du, Yuhong; Qui, Min; Murphy, T J; Snyder, James P; Bräuner-Osborne, Hans; Traynelis, Stephen F

    2010-06-01

    N-Methyl-D-aspartate (NMDA) receptors are ligand-gated ion channels that mediate a slow, Ca(2+)-permeable component of excitatory synaptic transmission in the central nervous system and play a pivotal role in synaptic plasticity, neuronal development, and several neurological diseases. We describe a fluorescence-based assay that measures NMDA receptor-mediated changes in intracellular calcium in a BHK-21 cell line stably expressing NMDA receptor NR2D with NR1 under the control of a tetracycline-inducible promoter (Tet-On). The assay selectively identifies allosteric modulators by using supramaximal concentrations of glutamate and glycine to minimize detection of competitive antagonists. The assay is validated by successfully identifying known noncompetitive, but not competitive NMDA receptor antagonists among 1800 screened compounds from two small focused libraries, including the commercially available library of pharmacologically active compounds. Hits from the primary screen are validated through a secondary screen that used two-electrode voltage-clamp recordings on recombinant NMDA receptors expressed in Xenopus laevis oocytes. This strategy identified several novel modulators of NMDA receptor function, including the histamine H3 receptor antagonists clobenpropit and iodophenpropit, as well as the vanilloid receptor transient receptor potential cation channel, subfamily V, member 1 (TRPV1) antagonist capsazepine. These compounds are noncompetitive antagonists and the histamine H3 receptor ligand showed submicromolar potency at NR1/NR2B NMDA receptors, which raises the possibility that compounds can be developed that act with high potency on both glutamate and histamine receptor systems simultaneously. Furthermore, it is possible that some actions attributed to histamine H3 receptor inhibition in vivo may also involve NMDA receptor antagonism.

  12. Overcoming RNA inhibition in the fluorescent polymerase chain reaction assay to enhance detection of bovine DNA in cattle feeds.

    PubMed

    Sawyer, Mary; Rensen, Gabriel; Smith, Wayne; Yee, Melanie; Wong, Alice; Osburn, Bennie; Cullor, James

    2004-01-01

    The practice of incorporating mammalian protein in ruminant feeds was banned in the United States in 1997 as a measure to avoid transmission of bovine spongiform encephalopathy (BSE). A sensitive means of identifying the banned additives in feeds would be by detection of species-specific DNA using the polymerase chain reaction (PCR). However, problems may arise in the PCR due to the presence of inhibitory substances. Using human DNA as an internal PCR control, inhibitory substances were evident in the DNA extraction products of cattle feeds. The results of heating experiments excluded enzymes as a cause of inhibition, and spectrophotometric calculations suggested the possibility of RNA contamination. Co-electrophoresis of untreated and RNAse digested extracts confirmed the presence of RNA in the undigested product. Seven cattle feeds were spiked with predetermined amounts of bovine meat and bone meal (BMBM). The DNA extracted products were treated with RNAse and the bovine specific mitochondrial DNA (B-mtDNA) was amplified by PCR. The minimum level of detection of B-mtDNA was influenced by RNAse treatment and feed composition. RNAse treatment decreased false-negative results overall by 75%. False-negative results were decreased 100% in the higher BMBM concentrations and 50% in the lower BMBM concentrations. Also, each cattle feed was spiked to attain a 2% wt/wt concentration with each swine, fish, sheep, or poultry product, or cattle dried blood. Amplification of B-mtDNA occurred only with the cattle dried blood and only in three feeds in which B-mtDNA was detected at the only level tested (2%). A commercial immunochromotographic assay (Neogen) detected the spiked BMBM in only one of the seven feeds and only at the upper concentration (1%).

  13. Comparison of Clot-based, Chromogenic, and Fluorescence Assays for Measurement of Factor VIII Inhibitors in the U.S. Hemophilia Inhibitor Research Study

    PubMed Central

    Miller, Connie H.; Rice, Anne S.; Boylan, Brian; Shapiro, Amy D.; Lentz, Steven R.; Wicklund, Brian M.; Kelly, Fiona M.; Soucie, J. Michael

    2015-01-01

    Summary Background Detection and validation of inhibitors (antibodies) to hemophilia treatment products are important for clinical care, evaluation of product safety, and assessment of population trends. Methods Centralized monitoring for factor VIII (FVIII) inhibitors was conducted for patients in the Hemophilia Inhibitor Research Study using a previously reported modified Nijmegen-Bethesda clotting assay (NBA), a chromogenic Bethesda assay (CBA), and a novel fluorescence immunoassay (FLI). Results NBA and CBA were performed on 1005 specimens and FLI on 272 specimens. CBA was negative on 880/883 specimens (99.7%) with Nijmegen-Bethesda units (NBU)<0.5 and positive on 42/42 specimens (100%) with NBU≥2.0 and 43/80 specimens (53.8%) with NBU 0.5–1.9. Among specimens with positive NBA and negative CBA, 58.1% were FLI-negative, 12.9% had evidence of lupus anticoagulant, and 35.5% had non-time-dependent inhibition. CBA and FLI were positive on 72.4% and 100% of 1.0–1.9 NBU specimens and 43.1% and 50.0% of 0.5–0.9 NBU specimens. FLI detected antibodies in 98.0% of CBA-positive and 81.6% of NBA-positive specimens (P=0.004). Among 21 new inhibitors detected by NBA, 5 (23.8%) with 0.7–1.3 NBU did not react in CBA or FLI. Among previously positive patients with 0.5–1.9 NBU, 7/25 (28%) were not CBA or FLI positive. FLI was positive on 36/169 NBU-negative specimens (21.3%). Conclusions FVIII specificity could not be demonstrated by CBA or FLI for 26% of inhibitors of 0.5–1.9 NBU; such results must be interpreted with caution. Low titer inhibitors detected in clot-based assays should always be repeated, with consideration given to evaluating their reactivity with FVIII using more specific assays. PMID:23601690

  14. Short communication: A novel method using immunomagnetic separation with a fluorescent nanobeads lateral flow assay for the rapid detection of low-concentration Escherichia coli O157:H7 in raw milk.

    PubMed

    Huang, Zhen; Cui, Xi; Xie, Quan-Yuan; Liu, Dao-Feng; Lai, Wei-Hua

    2016-12-01

    Escherichia coli O157:H7 is an important serotype of enterohemorrhagic E. coli that was first identified as a human pathogen in 1982. This pathogen causes several serious diseases. In this study, immunomagnetic separation was coupled with a fluorescent nanobeads lateral flow assay to establish a sensitive and rapid detection method for Escherichia coli O157:H7 in raw milk. The pathogen was captured from raw milk by immunomagnetic separation with immunomagnetic nanobeads and then detected using a fluorescent nanobeads lateral flow assay. A fluorescent line was formed in the test line of the test strip and quantitatively detected using a fluorescent reader. Screening times, which included immunomagnetic separation and the fluorescent nanobeads lateral flow assay, were 8, 7, 6, and 5h when 1, 5, 25, and 125 cfu of E. coli O157:H7, respectively, were inoculated into 25mL of raw milk. The established method could be widely applied to the rapid onsite detection of other pathogens to ensure food safety.

  15. Development and evaluation of a real-time fluorescent polymerase chain reaction assay for the detection of bovine contaminates in cattle feed.

    PubMed

    Rensen, Gabriel; Smith, Wayne; Ruzante, Juliana; Sawyer, Mary; Osburn, Bennie; Cullor, James

    2005-01-01

    A real-time fluorescent polymerase chain reaction assay for detecting prohibited ruminant materials such as bovine meat and bone meal (BMBM) in cattle feed using primers and FRET probes targeting the ruminant specific mitochondrial cytochrome b gene was developed and evaluated on two different types of cattle feed. Common problems involved with PCR based testing of cattle feed include the presence of high levels of PCR inhibitors and the need for certain pre-sample processing techniques in order to perform DNA extractions. We have developed a pre-sample processing technique for extracting DNA from cattle feed which does not require the feed sample to be ground to a fine powder and utilizes materials that are disposed of between samples, thus, reducing the potential of cross contamination. The DNA extraction method utilizes Whatman FTA card technology, is adaptable to high sample throughput analysis and allows for room temperature storage with established archiving of samples of up to 14 years. The Whatman FTA cards are subsequently treated with RNAse and undergo a Chelex-100 extraction (BioRad, Hercules, CA), thus removing potential PCR inhibitors and eluting the DNA from the FTA card for downstream PCR analysis. The detection limit was evaluated over a period of 30 trials on calf starter mix and heifer starter ration feed samples spiked with known concentrations of BMBM. The PCR detection assay detected 0.05% wt/wt BMBM contamination with 100% sensitivity, 100% specificity, and 100% confidence. Concentrations of 0.005% and 0.001% wt/wt BMBM contamination were also detected in both feed types but with varying levels of confidence.

  16. Real-time PCR and enzyme-linked fluorescent assay methods for detecting Shiga-toxin-producing Escherichia coli in mincemeat samples.

    PubMed

    Stefan, A; Scaramagli, S; Bergami, R; Mazzini, C; Barbanera, M; Perelle, S; Fach, P

    2007-03-01

    This work aimed to compare real-time polymerase chain reaction (PCR) with the commercially available enzyme-linked fluorescent assay (ELFA) VIDAS ECOLI O157 for detecting Escherichia coli O157 in mincemeat. In addition, a PCR-based survey on Shiga-toxin-producing E. coli (STEC) in mincemeat collected in Italy is presented. Real-time PCR assays targeting the stx genes and a specific STEC O157 sequence (SILO157, a small inserted locus of STEC O157) were tested for their sensitivity on spiked mincemeat samples. After overnight enrichment, the presence of STEC cells could be clearly determined in the 25 g samples containing 10 bacterial cells, while the addition of five bacteria provided equivocal PCR results with Ct values very close to or above the threshold of 40. The PCR tests proved to be more sensitive than the ELFA-VIDAS ECOLI O157, whose detection level started from 50 bacterial cells/25 g of mincemeat. The occurrence of STEC in 106 mincemeat (bovine, veal) samples collected from September to November 2004 at five different points of sale in Italy (one point of sale in Arezzo, Tuscany, central Italy, two in Mantova, Lombardy, Northern Italy, and two in Bologna, Emilia-Romagna, upper-central Italy) was less than 1%. Contamination by the main STEC O-serogroups representing a major public health concern, including O26, O91, O111, O145, and O157, was not detected. This survey indicates that STEC present in these samples are probably not associated with pathogenesis in humans.

  17. Identification of a Compound That Disrupts Binding of Amyloid-β to the Prion Protein Using a Novel Fluorescence-based Assay*

    PubMed Central

    Risse, Emmanuel; Nicoll, Andrew J.; Taylor, William A.; Wright, Daniel; Badoni, Mayank; Yang, Xiaofan; Farrow, Mark A.; Collinge, John

    2015-01-01

    The prion protein (PrP) has been implicated both in prion diseases such as Creutzfeldt-Jakob disease, where its monomeric cellular isoform (PrPC) is recruited into pathogenic self-propagating polymers of misfolded protein, and in Alzheimer disease, where PrPC may act as a receptor for synaptotoxic oligomeric forms of amyloid-β (Aβ). There has been considerable interest in identification of compounds that bind to PrPC, stabilizing its native fold and thereby acting as pharmacological chaperones to block prion propagation and pathogenesis. However, compounds binding PrPC could also inhibit the binding of toxic Aβ species and may have a role in treating Alzheimer disease, a highly prevalent dementia for which there are currently no disease-modifying treatments. However, the absence of a unitary, readily measurable, physiological function of PrP makes screening for ligands challenging, and the highly heterogeneous nature of Aβ oligomer preparations makes conventional competition binding assays difficult to interpret. We have therefore developed a high-throughput screen that utilizes site-specifically fluorescently labeled protein to identify compounds that bind to PrP and inhibit both Aβ binding and prion propagation. Following a screen of 1,200 approved drugs, we identified Chicago Sky Blue 6B as the first small molecule PrP ligand capable of inhibiting Aβ binding, demonstrating the feasibility of development of drugs to block this interaction. The interaction of Chicago Sky Blue 6B was characterized by isothermal titration calorimetry, and its ability to inhibit Aβ binding and reduce prion levels was established in cell-based assays. PMID:25995455

  18. Community Laboratory Testing for Cryptosporidium: Multicenter Study Retesting Public Health Surveillance Stool Samples Positive for Cryptosporidium by Rapid Cartridge Assay with Direct Fluorescent Antibody Testing

    PubMed Central

    Roellig, Dawn M.; Yoder, Jonathan S.; Madison-Antenucci, Susan; Robinson, Trisha J.; Van, Tam T.; Collier, Sarah A.; Boxrud, Dave; Monson, Timothy; Bates, Leigh Ann; Blackstock, Anna J.; Shea, Shari; Larson, Kirsten; Xiao, Lihua; Beach, Michael

    2017-01-01

    Cryptosporidium is a common cause of sporadic diarrheal disease and outbreaks in the United States. Increasingly, immunochromatography-based rapid cartridge assays (RCAs) are providing community laboratories with a quick cryptosporidiosis diagnostic method. In the current study, the Centers for Disease Control and Prevention (CDC), the Association of Public Health Laboratories (APHL), and four state health departments evaluated RCA-positive samples obtained during routine Cryptosporidium testing. All samples underwent “head to head” re-testing using both RCA and direct fluorescence assay (DFA). Community level results from three sites indicated that 54.4% (166/305) of Meridian ImmunoCard STAT! positives and 87.0% (67/77) of Remel Xpect positives were confirmed by DFA. When samples were retested by RCA at state laboratories and compared with DFA, 83.3% (155/186) of Meridian ImmunoCard STAT! positives and 95.2% (60/63) of Remel Xpect positives were confirmed. The percentage of confirmed community results varied by site: Minnesota, 39.0%; New York, 63.9%; and Wisconsin, 72.1%. The percentage of confirmed community results decreased with patient age; 12.5% of community positive tests could be confirmed by DFA for patients 60 years of age or older. The percentage of confirmed results did not differ significantly by sex, storage temperature, time between sample collection and testing, or season. Findings from this study demonstrate a lower confirmation rate of community RCA positives when compared to RCA positives identified at state laboratories. Elucidating the causes of decreased test performance in order to improve overall community laboratory performance of these tests is critical for understanding the epidemiology of cryptosporidiosis in the United States (US). PMID:28085927

  19. Improved performance of Brucella melitensis native hapten over Brucella abortus OPS tracer on goat antibody detection by the fluorescence polarization assay.

    PubMed

    Ramírez-Pfeiffer, C; Díaz-Aparicio, E; Rodríguez-Padilla, C; Morales-Loredo, A; Alvarez-Ojeda, G; Gomez-Flores, R

    2008-06-15

    The current method for goat brucellosis diagnosis is based on the World Organization for Animal Health (OIE) using the screening card test (CT), with antigen at 8% (CT8) or 3% (CT3) of cell concentrations, and the confirmatory complement fixation test (CFT). However, these tests do not differentiate antibodies induced by vaccination from those derived from field infections by Brucella species or other bacterial agents; in places like Mexico, where the prevalence of brucellosis and the vaccination rates are high, there is a considerable percentage of false positive reactions that causes significant unnecessary slaughter of animals. Furthermore, results of the fluorescence polarization assay (FPA) using the Brucella abortus O-polysaccharide (OPS) tracer in goats are poorer than those with cattle. The present study was undertaken to investigate a tracer prepared from the native hapten (NH) of the Rev. 1 strain of Brucella melitensis to improve FPA performance on goat brucellosis diagnosis. Evaluation of 48 positive samples and 96 negative samples showed that the NH tracer was more accurate (p<0.01) than the OPS tracer (97.2% vs. 93.8% accuracy, respectively). On the diagnostic performance evaluation, the NH tracer performed better (87.5% accuracy, 79.5% sensitivity, 84.3% specificity, and 163.8 performance index) than the OPS tracer (83.5%, 75.9%, 81.0%, and 156.9, respectively) using 1009 positive and 2039 negative Mexican field goat sera samples selected by test series approved by the OIE (card test 3% and CFT). We demonstrated a new application for the NH lipopolysaccharide on detecting antibodies against Brucella using the FPA, which may yield faster results (minutes vs. 24-72h) than the immunodiagnosis assays frequently used in bovine brucellosis. In addition, NH tracer produces similar or better performance results than the conventional OPS tracer, using the FPA in goat sera samples.

  20. Application of the fluorescence polarization assay for detection of caprine antibodies to Brucella melitensis in areas of high prevalence and widespread vaccination.

    PubMed

    Ramírez-Pfeiffer, C; Nielsen, K; Smith, P; Marín-Ricalde, F; Rodríguez-Padilla, C; Gomez-Flores, R

    2007-03-01

    The screening Rose Bengal test (RBT), the buffered plate agglutination test (BPAT), and the confirmatory complement fixation test (CFT) are currently approved by the World Organization for Animal Health (OIE) for diagnosis of goat brucellosis. However, RBT (at 3% or 8% cell concentration) is known to be affected by vaccinal antibodies. In the present study, Mexican and Canadian OIE tests were compared with the fluorescence polarization assay (FPA), alone or in combination, using indirect and competitive enzyme-linked immunosorbent assays as classification variables for goat sera obtained from an area of high prevalence and widespread vaccination. The relative sensitivities and specificities were, respectively, 99.7% and 32.5% for RBT3, 92.8% and 68.8% for RBT8, 98.4% and 84.8% for Canadian CFT, 83.7% and 65.5% for Mexican CFT, and 78.1% and 89.3% for FPA. The use of FPA as the confirmatory test in combination with other tests significantly increased the final specificities of the screening tests alone; BPAT, RBT3, and RBT8 plus FPA resulted in final specificities of 90%, 91.2%, and 91.3%, respectively, whereas for the combinations RBT3 plus Mexican CFT, RBT8 plus Mexican CFT, and BPAT plus Canadian CFT, specificities were 65.5%, 63.2%, and 91.7%, respectively. We suggest that FPA may be routinely applied as an adaptable screening test for diagnosis of goat brucellosis and as a confirmatory test for screening test series. Some advantages of FPA are that its cutoff can be adjusted to improve its sensitivity or specificity, it is a low-cost and easy-to-perform test of choice when specificity is relevant or when an alternative confirmatory test is not available, and it is not affected by vaccination, thus reducing the number of misdiagnosed and killed goats.

  1. Diagnosis and clinical virology of Lassa fever as evaluated by enzyme-linked immunosorbent assay, indirect fluorescent-antibody test, and virus isolation.

    PubMed

    Bausch, D G; Rollin, P E; Demby, A H; Coulibaly, M; Kanu, J; Conteh, A S; Wagoner, K D; McMullan, L K; Bowen, M D; Peters, C J; Ksiazek, T G

    2000-07-01

    The Lassa virus (an arenavirus) is found in West Africa, where it sometimes causes a severe hemorrhagic illness called Lassa fever. Laboratory diagnosis has traditionally been by the indirect fluorescent-antibody (IFA) test. However, enzyme-linked immunosorbent assays (ELISAs) for Lassa virus antigen and immunoglobulin M (IgM) and G (IgG) antibodies have been developed that are thought to be more sensitive and specific. We compared ELISA and IFA testing on sera from 305 suspected cases of Lassa fever by using virus isolation with a positive reverse transcription-PCR (RT-PCR) test as the "gold standard." Virus isolation and RT-PCR were positive on 50 (16%) of the 305 suspected cases. Taken together, Lassa virus antigen and IgM ELISAs were 88% (95% confidence interval [CI], 77 to 95%) sensitive and 90% (95% CI, 88 to 91%) specific for acute infection. Due to the stringent gold standard used, these likely represent underestimates. Diagnosis could often be made on a single serum specimen. Antigen detection was particularly useful in providing early diagnosis as well as prognostic information. Level of antigenemia varied inversely with survival. Detection by ELISA of IgG antibody early in the course of illness helped rule out acute Lassa virus infection. The presence of IFA during both acute and convalescent stages of infection, as well as significant interobserver variation in reading the slides, made interpretation difficult. However, the assay provided useful prognostic information, the presence of IFA early in the course of illness correlating with death. The high sensitivity and specificity, capability for early diagnosis, and prognostic value of the ELISAs make them the diagnostic tests of choice for the detection of Lassa fever.

  2. Community Laboratory Testing for Cryptosporidium: Multicenter Study Retesting Public Health Surveillance Stool Samples Positive for Cryptosporidium by Rapid Cartridge Assay with Direct Fluorescent Antibody Testing.

    PubMed

    Roellig, Dawn M; Yoder, Jonathan S; Madison-Antenucci, Susan; Robinson, Trisha J; Van, Tam T; Collier, Sarah A; Boxrud, Dave; Monson, Timothy; Bates, Leigh Ann; Blackstock, Anna J; Shea, Shari; Larson, Kirsten; Xiao, Lihua; Beach, Michael

    2017-01-01

    Cryptosporidium is a common cause of sporadic diarrheal disease and outbreaks in the United States. Increasingly, immunochromatography-based rapid cartridge assays (RCAs) are providing community laboratories with a quick cryptosporidiosis diagnostic method. In the current study, the Centers for Disease Control and Prevention (CDC), the Association of Public Health Laboratories (APHL), and four state health departments evaluated RCA-positive samples obtained during routine Cryptosporidium testing. All samples underwent "head to head" re-testing using both RCA and direct fluorescence assay (DFA). Community level results from three sites indicated that 54.4% (166/305) of Meridian ImmunoCard STAT! positives and 87.0% (67/77) of Remel Xpect positives were confirmed by DFA. When samples were retested by RCA at state laboratories and compared with DFA, 83.3% (155/186) of Meridian ImmunoCard STAT! positives and 95.2% (60/63) of Remel Xpect positives were confirmed. The percentage of confirmed community results varied by site: Minnesota, 39.0%; New York, 63.9%; and Wisconsin, 72.1%. The percentage of confirmed community results decreased with patient age; 12.5% of community positive tests could be confirmed by DFA for patients 60 years of age or older. The percentage of confirmed results did not differ significantly by sex, storage temperature, time between sample collection and testing, or season. Findings from this study demonstrate a lower confirmation rate of community RCA positives when compared to RCA positives identified at state laboratories. Elucidating the causes of decreased test performance in order to improve overall community laboratory performance of these tests is critical for understanding the epidemiology of cryptosporidiosis in the United States (US).

  3. Clinical comparison of the Treponema pallidum CAPTIA syphilis-G enzyme immunoassay with the fluorescent treponemal antibody absorption immunoglobulin G assay for syphilis testing.

    PubMed

    Halling, V W; Jones, M F; Bestrom, J E; Wold, A D; Rosenblatt, J E; Smith, T F; Cockerill, F R

    1999-10-01

    Recently, a treponema-specific immunoglobulin G (IgG) enzyme immunoassay (EIA), the CAPTIA Syphilis-G (Trinity Biotech, Jamestown, N.Y.), has become available as a diagnostic test for syphilis. A total of 89 stored sera previously tested by the fluorescent treponemal antibody absorption (FTA-ABS) IgG assay were evaluated by the CAPTIA EIA. The FTA-ABS IgG procedure was performed by technologists unblinded to results of rapid plasmid reagin (RPR) testing of the same specimens. Borderline CAPTIA-positive samples (antibody indices of >/=0.650 and 0.900, the sample was considered positive. Thirteen of 89 (15%) samples had discrepant results. Compared to the FTA-ABS assay, the CAPTIA EIA had a sensitivity and specificity and positive and negative predictive values of 70.7, 97.9, 96.7, and 79.7%, respectively. In another analysis, discrepancies between results were resolved by repeated FTA-ABS testing (technologists were blinded to previous RPR results) and patient chart reviews. Seven CAPTIA-negative samples which were previously interpreted (unblinded) as minimally reactive by the FTA method were subsequently interpreted (blinded) as nonreactive. One other discrepant sample (CAPTIA negative and FTA-ABS positive [at an intensity of 3+], unblinded) was FTA negative with repeated testing (blinded). For the five remaining discrepant samples, chart reviews indicated that one patient (CAPTIA negative and FTA-ABS positive [minimally reactive], blinded) had possible syphilis. These five samples were also evaluated and found to be negative by another treponema-specific test, the Treponema pallidum microhemagglutination assay. Therefore, after repeated testing and chart reviews, 2 of the 89 (2%) samples had discrepant results; the adjusted sensitivity, specificity, and positive and negative predictive values were 96.7, 98.3, 96.7, and 98.3%, respectively. This study demonstrates that the CAPTIA IgG EIA is a

  4. Validation of a fluorescence polarization assay (FPA) performed in microplates and comparison with other tests used for diagnosing B. melitensis infection in sheep and goats.

    PubMed

    Minas, A; Stournara, A; Minas, M; Stack, J; Petridou, E; Christodoulopoulos, G; Krikelis, V

    2007-03-30

    Fluorescence polarization assay (FPA) is a relatively new test for the serological diagnosis of Brucella spp. infection in animals. FPA, carried out in 96-well microplate format, was validated here for diagnosing B. melitensis infection in sheep and goats. This study included sera from 1933 sheep and goats, from animals reared in naturally infected flocks (verified by culture) and showing a positive reaction to two different tests conducted in parallel. In addition, 2154 sera originating from healthy sheep and goats, reared in areas where B. melitensis had never been isolated, were assayed. The optimum cut-off value offering the highest diagnostic sensitivity (DSn) and diagnostic specificity (DSp) was determined at 15 mP over the mean value of the buffer control used in each microplate as determined by receiver operating characteristic analysis. The DSn and DSp of the FPA for small ruminants carried out in microplates at this cut-off value were calculated to be 95.9% and 97.9% with 95% confidence intervals (95% CI) of 94.9-97.7% and 97.2-98.4%, respectively. The accuracy of the FPA, as expressed by determination of the area under the curve, was 0.991. Indirect ELISA and FPA tests offered the highest DSn when compared with the Rose Bengal test, the complement fixation test, the modified Rose Bengal test and competitive ELISA. The parallel or serial combination of FPA with indirect ELISA offers the highest DSn and DSp. As temperature can affect the results of the FPA, all reagents must be at the same temperature and the standard for comparison must always be read under the same conditions as the sera under test. FPA performed in microplates is a promising assay; the DSn and accuracy are better than those of the tests currently approved for diagnosing B. melitensis in small ruminants. Because of its simplicity, speed, and accuracy, this test can improve capacity for laboratory testing and the efficacy of an eradication program based on a test-and-slaughter policy.

  5. Comparison of the membrane-filtration fluorescent antibody test, the enzyme-linked immunosorbent assay, and the polymerase chain reaction to detect Renibacterium salmoninarum in salmon ovarian fluid

    USGS Publications Warehouse

    Pascho, Ronald J.; Chase, Dorothy M.; McKibben, Constance L.

    1998-01-01

    Ovarian fluid samples from naturally infected chinook salmon (Oncorhynchus tshawytscha) were examined for the presence of Renibacterium salmoninarum by the membrane-filtration fluorescent antibody test (MF-FAT), an antigen capture enzyme-linked immunosorbent assay (ELISA), and a nested polymerase chain reaction (PCR). On the basis of the MF-FAT, 64% (66/103) samples contained detectable levels of R. salmoninarum cells. Among the positive fish, the R. salmoninarum concentrations ranged from 25 cells/ml to 4.3 × 109cells/ml. A soluble antigenic fraction of R. salmoninarum was detected in 39% of the fish (40/103) by the ELISA. The ELISA is considered one of the most sensitive detection methods for bacterial kidney disease in tissues, yet it did not detect R. salmoninarum antigen consistently at bacterial cell concentrations below about 1.3 × 104cells/ml according to the MF-FAT counts. When total DNA was extracted and tested in a nested PCR designed to amplify a 320-base-pair region of the gene encoding a soluble 57-kD protein of R. salmoninarum, 100% of the 100 samples tested were positive. The results provided strong evidence that R. salmoninarum may be present in ovarian fluids thought to be free of the bacterium on the basis of standard diagnostic methods.

  6. The role of cyclodextrins in ORAC-fluorescence assays. antioxidant capacity of tyrosol and caffeic acid with hydroxypropyl-β-cyclodextrin.

    PubMed

    García-Padial, Marcos; Martínez-Ohárriz, María Cristina; Navarro-Blasco, Iñigo; Zornoza, Arantza

    2013-12-18

    Tyrosol and caffeic acid are biophenols that contribute to the beneficial properties of virgin olive oil. The influence of hydroxypropyl-β-cyclodextrin (HPβ-CD) on their respective antioxidant capacities was analyzed. The ORAC antioxidant activity of tyrosol (expressed as μM Trolox equivalents/μM Tyrosol) was 0.83 ± 0.03 and it increased up to 1.20 ± 0.11 in the presence of 0.8 mM HPβ-CD. However, the ORAC antioxidant activity of caffeic acid experienced no change. The different effect of HPβ-CD on each compound was discussed. In addition, the effect of increasing concentrations of different cyclodextrins in the development of ORAC-fluorescence (ORAC-FL) assays was studied. The ORAC signal was higher for HPβ-CD, followed by Mβ-CD, β-CD, γ-CD and finally α-CD. These results could be explained by the formation of inclusion complexes with fluorescein.

  7. Diagnosis of anaplastic lymphoma kinase rearrangement in cytological samples through a fluorescence in situ hybridization-based assay: Cytological smears versus cell blocks.

    PubMed

    Zito Marino, Federica; Rossi, Giulio; Brunelli, Matteo; Malzone, Maria Gabriella; Liguori, Giuseppina; Bogina, Giuseppe; Morabito, Alessandro; Rocco, Gaetano; Franco, Renato; Botti, Gerardo

    2017-02-14

    Anaplastic lymphoma kinase (ALK) status analysis of lung cytological specimens should be successfully encouraged in routine practice because biopsy specimens are not always available. To date, the US Food and Drug Administration has approved both fluorescence in situ hybridization (FISH) and immunohistochemistry (IHC) as diagnostic tests for identifying ALK-positive patients eligible for treatment with crizotinib. Although ALK IHC is an optimal diagnostic tool, FISH becomes mandatory in equivocal cases. ALK FISH of paraffin-embedded tissue material is still the gold standard, whereas the cytological specimen assay has not yet been completely standardized. Many controversial data have been reported on the adequacy of cytology cell blocks (CBs) versus conventional smears for FISH testing. This review discusses some critical issues related to ALK FISH of cytological samples, including the triaging of collected specimens to optimize the material, the use of CBs versus conventional smears, and alternative methods for an ALK rearrangement diagnosis. Conventional smears have the advantages of an immediate evaluation, no probe tissue-related artifactual loss, no fixation-related alterations, and usually sufficient material for an analytic preparation. On the other hand, CBs have several advantages, including the appropriate conservation of the tissue architecture, an absence of problems related to cell overlapping, and the ability to evaluate neoplastic cells in a dark field. Cancer Cytopathol 2017. © 2017 American Cancer Society.

  8. Detection of gastroenteritis viruses among pediatric patients in Hiroshima Prefecture, Japan, between 2006 and 2013 using multiplex reverse transcription PCR-based assays involving fluorescent dye-labeled primers.

    PubMed

    Shigemoto, Naoki; Hisatsune, Yuri; Toukubo, Yasushi; Tanizawa, Yukie; Shimazu, Yukie; Takao, Shinichi; Tanaka, Tomoyuki; Noda, Mamoru; Fukuda, Shinji

    2017-05-01

    Multiplex reverse transcription (RT)-polymerase chain reaction (PCR)-based assays involving fluorescent dye-labeled primers were modified to detect 10 types of gastroenteritis viruses by adding two further assays to a previously developed assay. Then, these assays were applied to clinical samples, which were collected between January 2006 and December 2013. All 10 types of viruses were effectively detected in the multiplex RT-PCR-based assays. In addition, various viral parameters, such as the detection rates and age distributions of each viral type, were examined. The frequency and types of mixed infections were also investigated. Among the 186 virus-positive samples, genogroup II noroviruses were found to be the most common type of virus (32.7%), followed by group A rotaviruses (10.6%) and parechoviruses (10.3%). Mixed infections were observed in 37 samples, and many of them were detected in patients who were less than 2 years old. These observations showed that the multiplex RT-PCR-based assays involving fluorescent dye-labeled primers were able to effectively detect the viruses circulating among pediatric acute gastroenteritis patients and contributed to the highly specific and sensitive diagnosis of gastroenteritis. J. Med. Virol. 89:791-800, 2017. © 2016 Wiley Periodicals, Inc.

  9. Identification, Expression Profiling and Fluorescence-Based Binding Assays of a Chemosensory Protein Gene from the Western Flower Thrips, Frankliniella occidentalis

    PubMed Central

    Zhang, Zhi-Ke; Lei, Zhong-Ren

    2015-01-01

    Using RT-PCR and RACE-PCR strategies, we cloned and identified a new chemosensory protein (FoccCSP) from the Western flower thrips, Frankliniella occidentalis, a species for which no chemosensory protein (CSP) has yet been identified. The FoccCSP gene contains a 387 bp open-reading frame encoding a putative protein of 128 amino acids with a molecular weight of 14.51 kDa and an isoelectric point of 5.41. The deduced amino acid sequence contains a putative signal peptide of 19 amino acid residues at the N-terminus, as well as the typical four—cysteine signature found in other insect CSPs. As FoccCSP is from a different order of insect than other known CSPs, the GenBank FoccCSP homolog showed only 31-50% sequence identity with them. A neighbor-joining tree was constructed and revealed that FoccCSP is in a group with CSPs from Homopteran insects (e.g., AgosCSP4, AgosCSP10, ApisCSP, and NlugCSP9), suggesting that these genes likely developed from a common ancestral gene. The FoccCSP gene expression profile of different tissues and development stages was measured by quantitative real-time PCR. The results of this analysis revealed this gene is predominantly expressed in the antennae and also highly expressed in the first instar nymph, suggesting a function for FoccCSP in olfactory reception and in particular life activities during the first instar nymph stage. We expressed recombinant FoccCSP protein in a prokaryotic expression system and purified FoccCSP protein by affinity chromatography using a Ni-NTA-Sepharose column. Using N-phenyl-1-naphthylamine (1-NPN) as a fluorescent probe in fluorescence-based competitive binding assay, we determined the binding affinities of 19 volatile substances for FoccCSP protein. This analysis revealed that anisic aldehyde, geraniol and methyl salicylate have high binding affinities for FoccCSP, with KD values of 10.50, 15.35 and 35.24 μM, respectively. Thus, our study indicates that FoccCSP may play an important role in regulating

  10. Comparison of fluorescence polarization assay with card and complement fixation tests for the diagnosis of goat brucellosis in a high-prevalence area.

    PubMed

    Ramirez-Pfeiffer, C; Nielsen, K; Marin-Ricalde, F; Rodríguez-Padilla, C; Gomez-Flores, R

    2006-03-15

    An evaluation of fluorescence polarization assay (FPA) to detect antibodies against Brucella melitensis according to the Mexican Official Norm (NOM) was performed. In this study, a total of 2582 goat serum samples from a high-prevalence area in northeast Mexico where vaccination is applied, were used. Of these, 1094 were classified as NOM negatives (card test (CT) negatives or CT positives/complement fixation test (CFT) negatives) and 1488 as NOM positives (CT and CFT positives). The receiver operator characteristics (ROC) curve analysis was used to obtain the FPA sensitivity (83.5%), specificity (82.2%) and accuracy (88.2%) compared with NOM criteria, using a cut-off value of 89mP for positive samples. In addition, FPA produced 84.1% of negative results versus 65.7% of CT using 1094 CFT negative samples, which indicated that FPA performance was better than CT to detect negative samples or differentiate samples from vaccinated animals. Finally, FPA showed 95.8% sensitivity when using 702 negative non-vaccinated samples. Taken together, these results suggested that FPA might replace CT as a screening test for its better performance compared with CFT, its adjustable cut-off useful in different epidemiological situations, and for its reliability, ease of performance, comparable cost with CT regimen, and potential application in field and high-throughput laboratories. The use of FPA as screening test will help to reduce the percentage of goats wrongly slaughtered because of brucellosis misdiagnosis. More studies on FPA are required for its approval as diagnostic tool for goat brucellosis.

  11. Increased incidence of micronuclei assessed with the micronucleus assay and the fluorescence in situ hybridization (FISH) technique in peripheral blood lymphocytes of nurses exposed to nitrous oxide.

    PubMed

    Lewińska, D; Stepnik, M; Krajewski, W; Arkusz, J; Stańczyk, M; Wrońska-Nofer, T

    2005-03-07

    It has been postulated that exposure to nitrous oxide and halogenated anaesthetics is associated with various adverse health effects such as neurological and reproductive abnormalities or impairment of hepatic functions. In spite of the quite well known genotoxic effects of exposure to nitrous oxide in vivo, the mechanisms of these effects are still not clear. The aim of this study was to assess the frequency of micronuclei and to identify the type of chromosomal damage (clastogenic or aneugenic) in peripheral blood lymphocytes of operating-room nurses exposed to nitrous oxide. The study group comprised 46 women working at departments where the concentration of nitrous oxide ranged from 14 to 2308 mg/m3. The control population was composed of 28 women employed in the same hospitals but in non-surgical departments. The clastogenic/aneugenic effect of nitrous oxide was evaluated in lymphocytes using the standard micronucleus (MN) assay in combination with the fluorescence in situ hybridization (FISH) technique with pancentromeric probes. The results show a significant increase of the MN frequency in lymphocytes of exposed nurses compared with the control group (4.36+/-2.23 versus 9.02+/-4.67). The multiple regression analysis revealed a statistically significant relationship (p=0.0009) between MN frequency and exposure status, indicating that the level of exposure was the main factor affecting chromosomal damage. As assessed by FISH analysis, the overall frequencies of centromere-positive MN in the control and exposed groups were 43 and 49%, respectively. The increase observed in the exposed group may suggest a slight, statistically insignificant pro-aneugenic effect of exposure to nitrous oxide.

  12. Construction of a Turn Off-On-Off Fluorescent System Based on Competitive Coordination of Cu2+ between 6,7-Dihydroxycoumarin and Pyrophosphate Ion for Sensitive Assay of Pyrophosphatase Activity

    PubMed Central

    Zhao, Liu; Miao, Yanqing; Liu, Chunye; Zhang, Chenxiao

    2016-01-01

    The detection of pyrophosphatase (PPase) activity is of great significance in diagnosing diseases and understanding the function of PPase-related biological events. This study constructed a turn off-on-off fluorescent system for PPase activity assay based on PPase-regulated competitive coordination of Cu2+ between a water-soluble fluorescent probe 6,7-dihydroxycoumarin (DHC) and pyrophosphate (PPi). The probe DHC can coordinate with Cu2+ and consequently display on-off type fluorescence response. Furthermore, the in situ formed nonfluorescent Cu2+-DHC complex can act as an effective off-on type fluorescent probe for sensing PPi due to the higher coordination reactivity between Cu2+ and PPi than that between Cu2+ and DHC. The subsequent addition of PPase to the mixture containing Cu2+, DHC, and PPi leads to the fluorescence requenching of the system again (an off state) because PPase catalyzes the hydrolysis of PPi into orthophosphate in the reaction system. Under the optimum conditions, the decrease of the fluorescence intensity of DHC-Cu2+-PPi system was linear with the increase of the PPase activity in the range from 0.1 to 0.3 U. The detection limit was down to 0.028 U PPase (S/N = 3). Moreover, the as-established system was also applied to evaluate PPase inhibitor. This study offers a simple yet effective method for the detection of PPase activity. PMID:27766179

  13. A fluorescence lifetime-based binding assay for acetylpolyamine amidohydrolases from Pseudomonas aeruginosa using a [1,3]dioxolo[4,5-f][1,3]benzodioxole (DBD) ligand probe.

    PubMed

    Meyners, Christian; Wawrzinek, Robert; Krämer, Andreas; Hinz, Steffen; Wessig, Pablo; Meyer-Almes, Franz-Josef

    2014-08-01

    High-throughput assays for drug screening applications have to fulfill particular specifications. Besides the capability to identify even compounds with low potency, one of the major issues is to minimize the number of false-positive hits in a screening campaign in order to reduce the logistic effort for the subsequent cherry picking and confirmation procedure. In this respect, fluorescence lifetime (FLT) appears as an ideal readout parameter that is supposed to be robust against autofluorescent and light-absorbing compounds, the most common source of systematic false positives. The extraordinary fluorescence features of the recently discovered [1,3]dioxolo[4,5-f][1,3] benzodioxole dyes were exploited to develop an FLT-based binding assay with exceptionally robust readout. The assay setup was comprehensively validated and shown to comply not only with all requirements for a powerful high-throughput screening assay but also to be suitable to determine accurate binding constants for inhibitors against enzymes of the histone deacetylase family. Using the described binding assay, the first inhibitors against three members of this enzyme family from Pseudomonas aeruginosa were identified. The compounds were characterized in terms of potency and selectivity profile. The novel ligand probe should also be applicable to other homologues of the histone deacetylase family that are inhibited by N-hydroxy-N'-phenyloctandiamide.

  14. Highly specific and rapid immuno-fluorescent visualization and detection of E. coli O104:H4 with protein-A coated magnetic beads based LST-MUG assay.

    PubMed

    Barizuddin, Syed; Balakrishnan, Baskar; Stringer, R Cody; Dweik, Majed

    2015-08-01

    A method combining immunomagnetic separation and fluorescent sensing was developed to detect Escherichia coli (E. coli) O104:H4. The antibody specific to E. coli O104:H4 was immobilized on protein A-coated magnetic beads. This protein-A-anti E. coli O104:H4 complex was used to bind Fluorescein IsoThioCyanate (FITC) labeled E. coli O104:H4 antigen (whole cell) on it. The goal was to achieve a fluorescently detectable protein-A-anti E. coli O104:H4-E. coli O104:H4 complex on the magnetic beads. Fluorescent microscopy was used to image the magnetic beads. The resulting fluorescence on the beads was due to the FITC labeled antigen binding on the protein-A-anti E. coli O104:H4 immobilized magnetic beads. This visually proves the antigen-antibody binding. The fluorescent imaging results were obtained in 2 h if the minimum available bacteria in the sample were at least 10(5) CFU/ml. If no fluorescence was observed on the magnetic beads during fluorescent imaging, it indicates the bacterial concentration in the sample to be too low for it to have bound to the magnetic beads and hence no detection was possible. To detect bacterial concentration less than 10(5) CFU/ml in the sample, an additional step was required for detection. The magnetic bead complex was added to the LST-MUG (lauryl sulfate tryptose-4-methylumbelliferyl-β-D-glucuronide), a signaling reporter. The E. coli O104:H4 grows in LST-MUG and releases β-glucuronidase enzyme. This enzyme cleaves the MUG substrate that produces 4-methylumbelliferone, a highly fluorescent species. This fluorescence was detected using a spectrofluorometer. The emission peak in the fluorescent spectrum was found to be at 450 nm. The lower and upper detection range for this LST-MUG assay was found to be 2.05×10(5)-4.09×10(8) CFU/ml. The results for the LST-MUG assay for concentrations below 10(5) CFU/ml were ascertained in 8h. The advantages of this technique include the specific detection of bacteria without an enrichment step and

  15. Effect of gamma irradiation on reactivity of rinderpest virus antigen with bovine immune serum in enzyme-linked immunosorbent assays and virus neutralization and indirect fluorescent-antibody tests.

    PubMed Central

    Saliki, J T; Berninger, M L; Torres, A; House, J A; Mebus, C A; Dubovi, E J

    1993-01-01

    Gamma irradiation effectively inactivated gradient-purified rinderpest virus. Irradiated antigen and sera remained functional in enzyme-linked immunosorbent assays, virus neutralization tests, and indirect fluorescent-antibody tests. Irradiation, however, led to a dose-dependent decrease in reactivity, particularly significant (P < 0.05) when both reagents were irradiated. To avoid false-positive reactions, only one reagent (serum or antigen) may be irradiated. PMID:8432831

  16. Detection of Babesia canis vogeli and Hepatozoon canis in canine blood by a single-tube real-time fluorescence resonance energy transfer polymerase chain reaction assay and melting curve analysis.

    PubMed

    Kongklieng, Amornmas; Intapan, Pewpan M; Boonmars, Thidarut; Thanchomnang, Tongjit; Janwan, Penchom; Sanpool, Oranuch; Lulitanond, Viraphong; Taweethavonsawat, Piyanan; Chungpivat, Sudchit; Maleewong, Wanchai

    2015-03-01

    A real-time fluorescence resonance energy transfer polymerase chain reaction (qFRET PCR) coupled with melting curve analysis was developed for detection of Babesia canis vogeli and Hepatozoon canis infections in canine blood samples in a single tube assay. The target of the assay was a region within the 18S ribosomal RNA gene amplified in either species by a single pair of primers. Following amplification from the DNA of infected dog blood, a fluorescence melting curve analysis was done. The 2 species, B. canis vogeli and H. canis, could be detected and differentiated in infected dog blood samples (n = 37) with high sensitivity (100%). The detection limit for B. canis vogeli was 15 copies of a positive control plasmid, and for H. canis, it was 150 copies of a positive control plasmid. The assay could simultaneously distinguish the DNA of both parasites from the DNA of controls. Blood samples from 5 noninfected dogs were negative, indicating high specificity. Several samples can be run at the same time. The assay can reduce misdiagnosis and the time associated with microscopic examination, and is not prone to the carryover contamination associated with the agarose gel electrophoresis step of conventional PCR. In addition, this qFRET PCR method would be useful to accurately determine the range of endemic areas or to discover those areas where the 2 parasites co-circulate.

  17. Development of a real-time fluorescence loop-mediated isothermal amplification assay for rapid and quantitative detection of Fusarium oxysporum f. sp. cubense tropical race 4 in soil.

    PubMed

    Zhang, Xin; Zhang, He; Pu, Jinji; Qi, Yanxiang; Yu, Qunfang; Xie, Yixian; Peng, Jun

    2013-01-01

    Fusarium oxysporum f. sp. cubense (Foc), the causal agent of Fusarium wilt (Panama disease), is one of the most devastating diseases of banana (Musa spp.). The Foc tropical race 4 (TR4) is currently known as a major concern in global banana production. No effective resistance is known in Musa to Foc, and no effective measures for controlling Foc once banana plants have been infected in place. Early and accurate detection of Foc TR4 is essential to protect banana industry and guide banana planting. A real-time fluorescence loop-mediated isothermal amplification assay (RealAmp) was developed for the rapid and quantitative detection of Foc TR4 in soil. The detection limit of the RealAmp assay was approximately 0.4 pg/µl plasmid DNA when mixed with extracted soil DNA or 10(3) spores/g of artificial infested soil, and no cross-reaction with other relative pathogens were observed. The RealAmp assay for quantifying genomic DNA of TR4 was confirmed by testing both artificially and naturally infested samples. Quantification of the soil-borne pathogen DNA of Foc TR4 in naturally infested samples was no significant difference compared to classic real-time PCR (P>0.05). Additionally, RealAmp assay was visual with an improved closed-tube visual detection system by adding SYBR Green I fluorescent dye to the inside of the lid prior to amplification, which avoided the inhibitory effects of the stain on DNA amplification and makes the assay more convenient in the field and could thus become a simple, rapid and effective technique that has potential as an alternative tool for the detection and monitoring of Foc TR4 in field, which would be a routine DNA-based testing service for the soil-borne pathogen in South China.

  18. Development of a Real-Time Fluorescence Loop-Mediated Isothermal Amplification Assay for Rapid and Quantitative Detection of Fusarium oxysporum f. sp. cubense Tropical Race 4 In Soil

    PubMed Central

    Pu, Jinji; Qi, Yanxiang; Yu, Qunfang; Xie, Yixian; Peng, Jun

    2013-01-01

    Fusarium oxysporum f. sp. cubense (Foc), the causal agent of Fusarium wilt (Panama disease), is one of the most devastating diseases of banana (Musa spp.). The Foc tropical race 4 (TR4) is currently known as a major concern in global banana production. No effective resistance is known in Musa to Foc, and no effective measures for controlling Foc once banana plants have been infected in place. Early and accurate detection of Foc TR4 is essential to protect banana industry and guide banana planting. A real-time fluorescence loop-mediated isothermal amplification assay (RealAmp) was developed for the rapid and quantitative detection of Foc TR4 in soil. The detection limit of the RealAmp assay was approximately 0.4 pg/µl plasmid DNA when mixed with extracted soil DNA or 103 spores/g of artificial infested soil, and no cross-reaction with other relative pathogens were observed. The RealAmp assay for quantifying genomic DNA of TR4 was confirmed by testing both artificially and naturally infested samples. Quantification of the soil-borne pathogen DNA of Foc TR4 in naturally infested samples was no significant difference compared to classic real-time PCR (P>0.05). Additionally, RealAmp assay was visual with an improved closed-tube visual detection system by adding SYBR Green I fluorescent dye to the inside of the lid prior to amplification, which avoided the inhibitory effects of the stain on DNA amplification and makes the assay more convenient in the field and could thus become a simple, rapid and effective technique that has potential as an alternative tool for the detection and monitoring of Foc TR4 in field, which would be a routine DNA-based testing service for the soil-borne pathogen in South China. PMID:24376590

  19. Application of a real-time fluorescence resonance energy transfer polymerase chain reaction assay with melting curve analysis for the detection of Paragonimus heterotremus eggs in the feces of experimentally infected cats.

    PubMed

    Tantrawatpan, Chairat; Intapan, Pewpan M; Thanchomnang, Tongjit; Sanpool, Oranuch; Janwan, Penchom; Lulitanond, Viraphong; Anamnart, Witthaya; Maleewong, Wanchai

    2013-09-01

    Paragonimus heterotremus is a medically important lung fluke that causes human and animal paragonimiasis in Southeast Asia, including Thailand. In the current study, a real-time fluorescence resonance energy transfer polymerase chain reaction (real-time FRET PCR) with melting curve analysis was developed and evaluated to detect P. heterotremus eggs in the feces of experimentally infected cats. The detection limit of this method for the P. heterotremus DNA sequence was 3 × 10(2) copies of the positive control plasmid and 10(-3) ng of P. heterotremus genomic DNA. The assay system could detect 10 eggs of P. heterotremus per gram of cat feces. No fluorescence signal was observed when DNA purified from 16 other organisms or genomic DNA from cats and human beings were tested. Real-time FRET PCR yielded positive results for all fecal samples from 17 P. heterotremus-infected cats and showed a negative relationship (r = -0.852, P < 0.001) between the number of parasite eggs in feces and the number of PCR cycles. The assay could detect genomic DNA from P. heterotremus, P. westermani, P. macrorchis, P. siamensis, P. harinasutai, and P. bangkokensis and can differentiate P. heterotremus from the other 5 species. The 6 Paragonimus species examined were divided into 4 groups by melting peak analysis. This assay can be useful for the detection of, and epidemiological studies on, P. heterotremus infection in endemic areas.

  20. An ultra-sensitive monoclonal antibody-based fluorescent microsphere immunochromatographic test strip assay for detecting aflatoxin M1 in milk

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A rapid lateral flow fluorescent microspheres immunochromatography test strip (FMs-ICTS) has been developed for the detection of aflatoxin M1 (AFM1) residues in milk. For this purpose, an ultra-sensitive anti-AFM1 monoclonal antibody (MAb) 1D3 was prepared and identified. The IC50 value of the MA...

  1. Colorimetric assay for on-the-spot alcoholic strength sensing in spirit samples based on dual-responsive lanthanide coordination polymer particles with ratiometric fluorescence.

    PubMed

    Deng, Jingjing; Shi, Guoyue; Zhou, Tianshu

    2016-10-26

    This study demonstrates a new strategy for colorimetric detection of alcoholic strength (AS) in spirit samples based on dual-responsive lanthanide infinite coordination polymer (Ln-ICP) particles with ratiometric fluorescence. The ICP used in this study are composed of two components: one is the supramolecular Ln-ICP network formed by the coordination between the ligand 2,2'-thiodiacetic acid (TDA) and central metal ion Eu(3+); and the other is a fluorescent dye, i.e., coumarin 343 (C343), both as the cofactor ligand and as the sensitizer, doped into the Ln-ICP network through self-adaptive chemistry. Upon being excited at 300 nm, the red fluorescence of Ln-ICP network itself at 617 nm is highly enhanced due to the concomitant energy transfer from C343 to Eu(3+), while the fluorescence of C343 at 495 nm is supressed. In pure ethanol solvent, the as-formed C343@Eu-TDA is well dispersed and quite stable. However, the addition of water into ethanolic dispersion of C343@Eu-TDA destructs Eu-TDA network structure, resulting in the release of C343 from ICP network into the solvent. Consequently, the fluorescence of Eu-TDA turns off and the fluorescence of C343 turns on, leading to the fluorescent color change of the dispersion from red to blue, which constitutes a new mechanism for colorimetric sensing of AS in commercial spirit samples. With the method developed here, we could clearly distinguish the AS of different spirit samples within a wide linear range from 10% vol to 100% vol directly by "naked eye" with the help of UV-lamp (365 nm). This study not only offers a new method for on-the-spot visible detection of AS, but also provides a strategy for dual-responsive sensing mode by rational designing the optical properties of the Ln-ICP network and the guest, respectively.

  2. A Novel Semiquantitative Fluorescence-Based Multiplex Polymerase Chain Reaction Assay for Rapid Simultaneous Detection of Bacterial and Parasitic Pathogens from Blood

    PubMed Central

    Selvapandiyan, Angamuthu; Stabler, Katie; Ansari, Nasim A.; Kerby, Stephen; Riemenschneider, Jenny; Salotra, Poonam; Duncan, Robert; Nakhasi, Hira L.

    2005-01-01

    A multiplex polymerase chain reaction assay was developed for the rapid simultaneous detection of category A select bacterial agents (Bacillus anthracis and Yersinia pestis) and parasitic pathogens (Leishmania species) in blood using the Cepheid Smart Cycler platform. B. anthracis (Sterne) and Yersinia. pseudotuberculosis were used in the assay for optimization for B. anthracis and Y. pestis, respectively. The specificity of the target amplicons [protective antigen gene of B. anthracis and rRNA genes of other pathogens or human (internal control)] was evaluated by staining the amplicons with SYBR Green I and determining their individual melting temperatures (Tm). As a novel approach for pathogen semiquantitation, the Tm peak height of the amplicon was correlated with a known standard curve of pathogen-spiked samples. This assay was able to detect DNA in blood spiked with less than 50 target cells/ml for all of the pathogens. The sensitivity of this assay in blood was 100% for the detection of Leishmania donovani from leishmaniasis patients and B. anthracis (Sterne) from symptomatic mice. The time necessary for performing this assay including sample preparation was less than 1.5 hours, making this a potentially useful method for rapidly diagnosing and monitoring the efficacy of drugs or vaccines in infected individuals. PMID:15858151

  3. The ApoCorrect assay: a novel, rapid method to determine the biological functionality of radiolabeled and fluorescent Annexin A5.

    PubMed

    Boersma, Hendrikus H; Stolk, Leo M L; Kenis, Heidi; Deckers, Niko M; Vanderheyden, Jean-Luc; Hofstra, Leo; Heidendal, Guido A K; Reutelingsperger, Chris P M

    2004-04-01

    We have demonstrated that imaging of programmed cell death (PCD) in patients is possible using 99mTc-Annexin A5. Because of the short half-life of the technetium label it is important to limit the time span between the preparation of 99mTc-Annexin A5 and its administration into the patient. Therefore methods of quality control that determine the biological active fraction in the 99mTc-Annexin A5 should be not only accurate and precise but also rapid. We report the development and validation of a rapid, simple assay measuring the biological active fraction of 99mTc-Annexin A5. The assay is based on a solid phase of paramagnetic beads which are coated with phospholipids. Annexin A5 binds to these beads with high affinity if phosphatidyl serine is present within the phospholipid coat. Furthermore the binding depends on Ca2+ ions and functional Ca2+/phospholipid binding sites of Annexin A5. The bead assay is specific, stability-indicating, repeatable, and reproducible. It allows one to determine within 25 min the biological active fraction of a 99mTc-Annexin A5 preparation. We dubbed this assay the ApoCorrect assay.

  4. Rapid and Quantitative Detection of Leifsonia xyli subsp. xyli in Sugarcane Stalk Juice Using a Real-Time Fluorescent (TaqMan) PCR Assay

    PubMed Central

    Fu, Hua-Ying; Sun, Sheng-Ren; Wang, Jin-Da; Ahmad, Kashif; Wang, Heng-Bo; Chen, Ru-Kai

    2016-01-01

    Ratoon stunting disease (RSD) of sugarcane, one of the most important diseases seriously affecting the productivity of sugarcane crops, was caused by the bacterial agent Leifsonia xyli subsp. xyli (Lxx). A TaqMan probe-based real-time quantitative polymerase chain reaction (qPCR) assay was established in this study for the quantification of Lxx detection in sugarcane stalk juice. A pair of PCR primers (Pat1-QF/Pat1-QR) and a fluorogenic probe (Pat1-QP) targeting the Part1 gene of Lxx were used for the qPCR assay. The assay had a detection limit of 100 copies of plasmid DNA and 100 fg of Lxx genomic DNA, which was 100-fold more sensitive than the conventional PCR. Fifty (28.7%) of 174 stalk juice samples from two field trials were tested to be positive by qPCR assay, whereas, by conventional PCR, only 12.1% (21/174) were tested to be positive with a published primer pair CxxITSf#5/CxxITSr#5 and 15.5% (27/174) were tested to be positive with a newly designed primer pair Pat1-F2/Pat1-R2. The new qPCR assay can be used as an alternative to current diagnostic methods for Lxx, especially when dealing with certificating a large number of healthy cane seedlings and determining disease incidence accurately in commercial fields. PMID:27725937

  5. Localized surface plasmon resonance-mediated fluorescence signals in plasmonic nanoparticle-quantum dot hybrids for ultrasensitive Zika virus RNA detection via hairpin hybridization assays.

    PubMed

    Adegoke, Oluwasesan; Morita, Masahiro; Kato, Tatsuya; Ito, Masahito; Suzuki, Tetsuro; Park, Enoch Y

    2017-03-22

    The current epidemic caused by the Zika virus (ZIKV) and the devastating effects of this virus on fetal development, which result in an increased incidence of congenital microcephaly symptoms, have prompted the World Health Organization (WHO) to declare the ZIKV a public health issue of global concern. Efficient probes that offer high detection sensitivity and specificity are urgently required to aid in the point-of-care treatment of the virus. In this study, we show that localized surface plasmon resonance (LSPR) signals from plasmonic nanoparticles (NPs) can be used to mediate the fluorescence signal from semiconductor quantum dot (Qdot) nanocrystals in a molecular beacon (MB) biosensor probe for ZIKV RNA detection. Four different plasmonic NPs functionalized with 3-mercaptopropionic acid (MPA), namely MPA-AgNPs, MPA-AuNPs, core/shell (CS) Au/AgNPs, and alloyed AuAgNPs, were synthesized and conjugated to L-glutathione-capped CdSeS alloyed Qdots to form the respective LSPR-mediated fluorescence nanohybrid. The concept of the plasmonic NP-Qdot-MB biosensor involves using LSPR from the plasmonic NPs to mediate a fluorescence signal to the Qdots, triggered by the hybridization of the target ZIKV RNA with the DNA loop sequence of the MB. The extent of the fluorescence enhancement based on ZIKV RNA detection was proportional to the LSPR-mediated fluorescence signal. The limits of detection (LODs) of the nanohybrids were as follows: alloyed AuAgNP-Qdot646-MB (1.7 copies/mL)) > CS Au/AgNP-Qdot646-MB (LOD =2.4 copies/mL) > AuNP-Qdot646-MB (LOD =2.9 copies/mL) > AgNP-Qdot646-MB (LOD =7.6 copies/mL). The LSPR-mediated fluorescence signal was stronger for the bimetallic plasmonic NP-Qdots than the single metallic plasmonic NP-Qdots. The plasmonic NP-Qdot-MB biosensor probes exhibited excellent selectivity toward ZIKV RNA and could serve as potential diagnostic probes for the point-of care detection of the virus.

  6. Direct comparison of the histidine-rich protein-2 enzyme-linked immunosorbent assay (HRP-2 ELISA) and malaria SYBR green I fluorescence (MSF) drug sensitivity tests in Plasmodium falciparum reference clones and fresh ex vivo field isolates from Cambodia

    PubMed Central

    2013-01-01

    Background Performance of the histidine-rich protein-2 enzyme-linked immunosorbent assay (HRP-2 ELISA) and malaria SYBR Green I fluorescence (MSF) drug sensitivity tests were directly compared using Plasmodium falciparum reference strains and fresh ex vivo isolates from Cambodia against a panel of standard anti-malarials. The objective was to determine which of these two common assays is more appropriate for studying drug susceptibility of “immediate ex vivo” (IEV) isolates, analysed without culture adaption, in a region of relatively low malaria transmission. Methods Using the HRP-2 and MSF methods, the 50% inhibitory concentration (IC50) values against a panel of malaria drugs were determined for P. falciparum reference clones (W2, D6, 3D7 and K1) and 41 IEV clinical isolates from an area of multidrug resistance in Cambodia. Comparison of the IC50 values from the two methods was made using Wilcoxon matched pair tests and Pearson’s correlation. The lower limit of parasitaemia detection for both methods was determined for reference clones and IEV isolates. Since human white blood cell (WBC) DNA in clinical samples is known to reduce MSF assay sensitivity, SYBR Green I fluorescence linearity of P. falciparum samples spiked with WBCs was evaluated to assess the relative degree to which MSF sensitivity is reduced in clinical samples. Results IC50 values correlated well between the HRP-2 and MSF methods when testing either P. falciparum reference clones or IEV isolates against 4-aminoquinolines (chloroquine, piperaquine and quinine) and the quinoline methanol mefloquine (Pearson r = 0.85-0.99 for reference clones and 0.56-0.84 for IEV isolates), whereas a weaker IC50 value correlation between methods was noted when testing artemisinins against reference clones and lack of correlation when testing IEV isolates. The HRP-2 ELISA produced a higher overall success rate (90% for producing IC50 best-fit sigmoidal curves), relative to only a 40% success rate for the

  7. SDS-binding assay based on tyrosine fluorescence as a tool to determine binding properties of human serum albumin in blood plasma

    NASA Astrophysics Data System (ADS)

    Zhdanova, Nadezda; Shirshin, Evgeny; Fadeev, Victor; Priezzhev, Alexander

    2016-04-01

    Among all plasma proteins human serum albumin (HSA) is the most studied one as it is the main transport protein and can bind a wide variety of ligands especially fatty acids (FAs). The concentration of FAs bound to HSA in human blood plasma differs by three times under abnormal conditions (fasting, physical exercises or in case of social important diseases). In the present study a surfactant sodium dodecyl sulfate (SDS) was used to simulate FAs binding to HSA. It was shown that the increase of Tyr fluorescence of human blood plasma due to SDS addition can be completely explained by HSA-SDS complex formation. Binding parameters of SDS-HSA complex (average number of sites and apparent constant of complex formation) were determined from titration curves based on tyrosine (Tyr) fluorescence.

  8. Fluorescent turn-on detection and assay of water based on 4-(2-dimethylaminoethyloxy)-N-octadecyl-1,8-naphthalimide with aggregation-induced emission enhancement

    NASA Astrophysics Data System (ADS)

    Sun, Yang; Liang, Xuhua; Wei, Song; Fan, Jun; Yang, Xiaohui

    2012-11-01

    The photophysical properties of 4-(2-dimethylaminoethyloxy)-N-octadecyl-1,8-naphthalimide (DON) consisting of donor and acceptor units were investigated in different solutions. Changing from a non-polar to a polar solvent increased the solvent interaction and both the excitation and emission spectra were shifted to longer wavelength and intensity decreased through taking advantage of twisted intramolecular charge transfer (TICT). Density functional theory (DFT) calculations and spectral analyses revealed that such fluorophores were capable of sensing protons by intramolecular charge transfer (ICT). Empirical and quantum mechanical calculations showed that the electron donating effect of the dimethylamino group decreased the change in dipole moment on excitation which resulted in a fluorescence quantum yield remarkably enhanced as the solvent polarity increased. In alkaline media the fluorescence of DON was quenched owing to photoinduced electron transfer being disabled in acidic media. The pKa of the 1,8-naphthailimide dye was 6.70, which defines the dye as a highly efficient "off-on" switch. DON exhibited a typical aggregation-induced emission enhancement (AIEE) behavior that it is virtually nonemissive in organic solvent but highly luminescent in water, as a result of the restriction of free intramolecular rotation of a C-N bond and the non-planar configuration in the aggregate state. The hydrophobicity of octadecyl group provided DON with a fluorescent response to water based on AIEE and the water-dependent spectral characteristics of DON, and the AIEE of DON caused by the effect of water and formation of J-aggregation states. In the range of 0-79.8% (v/v), the fluorescence intensity of DON in acetone solution increased as a linear function of the water content. The optimum detection limits were of 0.011%, 0.0021%, and 0.0033% of water in acetone, ethanol, and acetonitrile, respectively. Satisfactory reproducibility, reversibility and a short response time were

  9. Using fluorescence-based microplate assay to assess DOM-metal binding in reactive materials for treatment of acid mine drainage.

    PubMed

    Neculita, Carmen Mihaela; Dudal, Yves; Zagury, Gerald J

    2011-01-01

    One potential drawback of compost-based passive bioreactors, which is a promising biotechnology for acid mine drainage (AMD) treatment, is the transport of dissolved organic matter (DOM)-metal complexes in surface waters. To address this problem, the objective of this study was to assess the maximum capacity of organic substrates to release soluble DOM-metal complexes in treated water. The reactivities of DOM in maple wood chips and sawdust, composted poultry manure, and leaf compost were quantified toward Cd2+, Ni2+, Fe2+, and Cu2+ using fluorescence quenching. The DOM showed the highest reactivity toward Fe, but a limited number of available sites for sorption, whereas DOM-Cd complexes exhibited the lowest fluorescence quenching. Overall, the DOM from a mixture of wastes formed higher concentrations of DOM-metal complexes relative to sole substrates. Among DOM-metal complexes, the concentrations of DOM-Ni complexes were the highest. After reaching steady-state, low concentrations of DOM-metal complexes were released in treated water, which is in agreement with theoretical predictions based on geochemical modeling. Therefore, in addition to physicochemical characterization, fluorescence quenching technique is recommended for the substrate selection of bioreactors.

  10. Host impact on the stability of a plant virus gene vector as measured by a new fluorescent local lesion passaging assay.

    PubMed

    Seaberg, Bonnie L; Hsieh, Yi-Cheng; Scholthof, Karen-Beth G; Scholthof, Herman B

    2012-02-01

    Viruses can be used as vectors for transient expression of proteins in plants but frequently foreign gene inserts are not maintained stably over time due to recombination events. In this study the hypothesis was that the choice of plant host affects the foreign gene retention level by a Tomato bushy stunt virus (TBSV) vector expressing green fluorescent protein (GFP). To accomplish this, a novel virus vector integrity bioassay was developed based on an old concept, whereby RNA transcripts of the TBSV-GFP vector were rub-inoculated onto leaves of test plants, and at 3 days post inoculation (dpi), these leaves were used as inoculum for passage to cowpea (Vigna unguiculata), a local lesion host. Chlorotic lesions at points of virus infection were counted on cowpea at 4dpi and then the leaves were exposed to ultraviolet light to count green fluorescent foci. These tests with seven different plant species covering five families showed that the percentage of green fluorescent lesions varied on the cowpea indicator plants in a host-dependent manner. For instance, the vector was relatively unstable in Nicotiana benthamiana, tomato, bean, and spinach, but compared to those its stability in lettuce was significantly improved (~3-fold). This host-dependent effect suggests that some plants may present a more suitable environment than others to support or maintain optimum levels of virus vector-mediated foreign gene expression.

  11. Establishment and Validation of Whole-Cell Based Fluorescence Assays to Identify Anti-Mycobacterial Compounds Using the Acanthamoeba castellanii - Mycobacterium marinum Host-Pathogen System

    PubMed Central

    Kicka, Sébastien; Trofimov, Valentin; Harrison, Christopher; Ouertatani-Sakouhi, Hajer; McKinney, John; Scapozza, Leonardo; Hilbi, Hubert; Cosson, Pierre; Soldati, Thierry

    2014-01-01

    Tuberculosis is considered to be one of the world’s deadliest disease with 2 million deaths each year. The need for new antitubercular drugs is further exacerbated by the emergence of drug-resistance strains. Despite multiple recent efforts, the majority of the hits discovered by traditional target-based screening showed low efficiency in vivo. Therefore, there is heightened demand for whole-cell based approaches directly using host-pathogen systems. The phenotypic host-pathogen assay described here is based on the monitoring of GFP-expressing Mycobacterium marinum during infection of the amoeba Acanthamoeba castellanii. The assay showed straight-forward medium-throughput scalability, robustness and ease of manipulation, demonstrating its qualities as an efficient compound screening system. Validation with a series of known antitubercular compounds highlighted the advantages of the assay in comparison to previously published macrophage-Mycobacterium tuberculosis-based screening systems. Combination with secondary growth assays based on either GFP-expressing D. discoideum or M. marinum allowed us to further fine-tune compound characterization by distinguishing and quantifying growth inhibition, cytotoxic properties and antibiotic activities of the compounds. The simple and relatively low cost system described here is most suitable to detect anti-infective compounds, whether they present antibiotic activities or not, in which case they might exert anti-virulence or host defense boosting activities, both of which are largely overlooked by classical screening approaches. PMID:24498207

  12. ALA-PpIX variability quantitatively imaged in A431 epidermoid tumors using in vivo ultrasound fluorescence tomography and ex vivo assay

    NASA Astrophysics Data System (ADS)

    DSouza, Alisha V.; Flynn, Brendan P.; Gunn, Jason R.; Samkoe, Kimberley S.; Anand, Sanjay; Maytin, Edward V.; Hasan, Tayyaba; Pogue, Brian W.

    2014-03-01

    Treatment monitoring of Aminolevunilic-acid (ALA) - Photodynamic Therapy (PDT) of basal-cell carcinoma (BCC) calls for superficial and subsurface imaging techniques. While superficial imagers exist for this purpose, their ability to assess PpIX levels in thick lesions is poor; additionally few treatment centers have the capability to measure ALA-induced PpIX production. An area of active research is to improve treatments to deeper and nodular BCCs, because treatment is least effective in these. The goal of this work was to understand the logistics and technical capabilities to quantify PpIX at depths over 1mm, using a novel hybrid ultrasound-guided, fiber-based fluorescence molecular spectroscopictomography system. This system utilizes a 633nm excitation laser and detection using filtered spectrometers. Source and detection fibers are collinear so that their imaging plane matches that of ultrasound transducer. Validation with phantoms and tumor-simulating fluorescent inclusions in mice showed sensitivity to fluorophore concentrations as low as 0.025μg/ml at 4mm depth from surface, as presented in previous years. Image-guided quantification of ALA-induced PpIX production was completed in subcutaneous xenograft epidermoid cancer tumor model A431 in nude mice. A total of 32 animals were imaged in-vivo, using several time points, including pre-ALA, 4-hours post-ALA, and 24-hours post-ALA administration. On average, PpIX production in tumors increased by over 10-fold, 4-hours post-ALA. Statistical analysis of PpIX fluorescence showed significant difference among all groups; p<0.05. Results were validated by exvivo imaging of resected tumors. Details of imaging, analysis and results will be presented to illustrate variability and the potential for imaging these values at depth.

  13. Fusion between Newcastle disease virus and erythrocyte ghosts using octadecyl Rhodamine B fluorescence assay produces dequenching curves that fit the sum of two exponentials.

    PubMed Central

    Cobaleda, C; García-Sastre, A; Villar, E

    1994-01-01

    The kinetics of fusion between Newcastle disease virus and erythrocyte ghosts has been investigated with the octadecyl Rhodamine B chloride assay [Hoekstra, De Boer, Klappe, and Wilschut (1984) Biochemistry 23, 5675-5681], and the data from the dequenching curves were fitted by non-linear regression to currently used kinetic models. We used direct computer-assisted fitting of the dequenching curves to the mathematical equations. Discrimination between models was performed by statistical analysis of different fits. The experimental data fit the exponential model previously published [Nir, Klappe, and Hoekstra (1986) Biochemistry 25, 2155-2161] but we describe for the first time that the best fit was achieved for the sum of two exponential terms: A1[1-exp(-k1t)]+A2[1-exp(-k2t)]. The first exponential term represents a fast reaction and the second a slow dequenching reaction. These findings reveal the existence of two independent, but simultaneous, processes during the fusion assay. In order to challenge the model and to understand the meaning of both equation, fusion experiments were carried out under different conditions well known to affect viral fusion (changes in pH, temperature and ghost concentration, and the presence of disulphide-reducing agents or inhibitors of viral neuraminidase activity), and the same computer fitting scheme was followed. The first exponential equation represents the viral protein-dependent fusion process itself, because it is affected by the assay conditions. The second exponential equation accounts for a nonspecific reaction, because it is completely independent of the assay conditions and hence of the viral proteins. An interpretation of this second process is discussed in terms of probe transfer between vesicles. PMID:8002938

  14. Novel fluorescent probe for highly sensitive bioassay using sequential enzyme-linked immunosorbent assay-capillary isoelectric focusing (ELISA-cIEF).

    PubMed

    Henares, Terence G; Uenoyama, Yuta; Nogawa, Yuto; Ikegami, Ken; Citterio, Daniel; Suzuki, Koji; Funano, Shun-ichi; Sueyoshi, Kenji; Endo, Tatsuro; Hisamoto, Hideaki

    2013-06-07

    This paper presents a novel rhodamine diphosphate molecule that allows highly sensitive detection of proteins by employing sequential enzyme-linked immunosorbent assay and capillary isoelectric focusing (ELISA-cIEF). Seven-fold improvement in the immunoassay sensitivity and a 1-2 order of magnitude lower detection limit has been demonstrated by taking advantage of the combination of the enzyme-based signal amplification of ELISA and the concentration of enzyme reaction products by cIEF.

  15. The impact of pre-analytical processing on staining quality for H&E, dual hapten, dual color in situ hybridization and fluorescent in situ hybridization assays.

    PubMed

    Babic, Andrea; Loftin, Isabell R; Stanislaw, Stacey; Wang, Maria; Miller, Rachel; Warren, Stephanie M; Zhang, Wenjun; Lau, Alexandria; Miller, Melanie; Wu, Ping; Padilla, Mary; Grogan, Thomas M; Pestic-Dragovich, Lidija; McElhinny, Abigail S

    2010-12-01

    With the advent of personalized medicine, anatomic pathology-based molecular assays, including in situ hybridization (ISH) and mRNA detection tests, are performed routinely in many laboratories and have increased in their clinical importance and complexity. These assays require appropriately fixed tissue samples that preserve both nucleic acid targets and histomorphology to ensure reliable test results for determining patient treatment options. However, all aspects of tissue processing, including time until tissue fixation, type of fixative, duration of fixation, post-fixation treatments, and sectioning of the sample, impact the staining results. ASCO/CAP has issued pre-analytical guidelines to standardize tissue processing for HER2 testing in breast carcinoma specimens: 10% neutral-buffered formalin (NBF) with a fixation time from at least 6 to 48h [1]. Often, this recommendation is not followed to the detriment of staining results [2]. In this paper, we used a human breast carcinoma cell line (MCF7) generated as xenograft tumors as a model system to analyze the effects of different pre-analytical conditions on ISH staining. We performed H&E, FISH and dual colorimetric HER2 ISH assays using specimens fixed across a range of times in six different commonly used fixatives. Additionally, we investigated the effects of varying tissue section thickness, which also impacted the quality of ISH staining. Finally, we evaluated the effects of three different decalcifying solutions on human breast specimens, typically a treatment that occurs post-fixation for evaluating metastases to bone. The results indicate that time and type of fixation treatment, as well as appropriate tissue thickness and post-fixation treatment, all contribute to the quality of ISH staining results. Our data support the ASCO/CAP recommendations for standardized tissue processing (at least 6h in formalin-based fixatives and 4μm section thickness) and indicate that certain fixatives and post

  16. A simple and rapid genotyping assay for simultaneous detection of two ADRB2 allelic variants using fluorescence resonance energy transfer probes and melting curve analysis.

    PubMed

    Sábato, M Fernanda; Irani, Anne-Marie; Bukaveckas, Bonny L; Schwartz, Lawrence B; Wilkinson, David S; Ferreira-Gonzalez, Andrea

    2008-05-01

    Allelic variants at codons 16 and 27 of the beta(2)-adrenergic receptor gene (ADRB2) have shown clinical and pharmacological implications in asthma, hypertension, ischemic heart failure, diabetes, obesity, and cystic fibrosis. We have developed a simultaneous genotyping assay for the c.46A>G and c.79C>G allelic variants using hybridization probes and melting curve analysis. The assay was optimized on a panel of 30 DNA samples of known ADRB2 genotype as determined by sequencing with 100% concordance between the two techniques. Melting temperature (Tm) ranges for the different genotypes were obtained using data from three independent experiments. Single peaks for p.Arg16Arg (Tm = 57.76 degrees C +/- 0.10 degrees C) and p.Gly16Gly (Tm = 66.73 degrees C +/- 0.18 degrees C) and two melting peaks for p.Arg16Gly were obtained. Similarly, single peaks for p.Gln27Gln (Tm = 53.98 degrees C +/- 0.19 degrees C) and p.Glu27Glu (Tm = 64.93 degrees C +/- 0.16 degrees C) and two peaks for p.Gln27Glu were detected. Independent operators easily assigned genotypes in a sample set of 385 asthmatic patients. Haplotype and allele frequencies were in concordance with previously published data: Arg allele frequencies in children/adults were 0.34/0.30 in Caucasians and 0.45/0.52 in African Americans, and Gln allele frequencies were 0.58/0.52 in Caucasians and 0.82/0.84 in African Americans. Thus, the ADRB2 genotyping assay represents a highly reliable and rapid technique for routine clinical use in the simultaneous detection of ADRB2 variants.

  17. Novel Piperazine Arylideneimidazolones Inhibit the AcrAB-TolC Pump in Escherichia coli and Simultaneously Act as Fluorescent Membrane Probes in a Combined Real-Time Influx and Efflux Assay

    PubMed Central

    Schuster, Sabine; Kern, Winfried V.; Karcz, Tadeusz; Olejarz, Agnieszka; Kaczor, Aneta; Handzlik, Jadwiga; Kieć-Kononowicz, Katarzyna

    2016-01-01

    In this study, we tested five compounds belonging to a novel series of piperazine arylideneimidazolones for the ability to inhibit the AcrAB-TolC efflux pump. The biphenylmethylene derivative (BM-19) and the fluorenylmethylene derivative (BM-38) were found to possess the strongest efflux pump inhibitor (EPI) activities in the AcrAB-TolC-overproducing Escherichia coli strain 3-AG100, whereas BM-9, BM-27, and BM-36 had no activity at concentrations of up to 50 μM in a Nile red efflux assay. MIC microdilution assays demonstrated that BM-19 at 1/4 MIC (intrinsic MIC, 200 μM) was able to reduce the MICs of levofloxacin, oxacillin, linezolid, and clarithromycin 8-fold. BM-38 at 1/4 MIC (intrinsic MIC, 100 μM) was able to reduce only the MICs of oxacillin and linezolid (2-fold). Both compounds markedly reduced the MIC of rifampin (BM-19, 32-fold; and BM-38, 4-fold), which is suggestive of permeabilization of the outer membrane as an additional mechanism of action. Nitrocefin hydrolysis assays demonstrated that in addition to their EPI activity, both compounds were in fact weak permeabilizers of the outer membrane. Moreover, it was found that BM-19, BM-27, BM-36, and BM-38 acted as near-infrared-emitting fluorescent membrane probes, which allowed for their use in a combined influx and efflux assay and thus for tracking of the transport of an EPI across the outer membrane by an efflux pump in real time. The EPIs BM-38 and BM-19 displayed the most rapid influx of all compounds, whereas BM-27, which did not act as an EPI, showed the slowest influx. PMID:26824939

  18. Novel Piperazine Arylideneimidazolones Inhibit the AcrAB-TolC Pump in Escherichia coli and Simultaneously Act as Fluorescent Membrane Probes in a Combined Real-Time Influx and Efflux Assay.

    PubMed

    Bohnert, Jürgen A; Schuster, Sabine; Kern, Winfried V; Karcz, Tadeusz; Olejarz, Agnieszka; Kaczor, Aneta; Handzlik, Jadwiga; Kieć-Kononowicz, Katarzyna

    2016-04-01

    In this study, we tested five compounds belonging to a novel series of piperazine arylideneimidazolones for the ability to inhibit the AcrAB-TolC efflux pump. The biphenylmethylene derivative (BM-19) and the fluorenylmethylene derivative (BM-38) were found to possess the strongest efflux pump inhibitor (EPI) activities in the AcrAB-TolC-overproducingEscherichia colistrain 3-AG100, whereas BM-9, BM-27, and BM-36 had no activity at concentrations of up to 50 μM in a Nile red efflux assay. MIC microdilution assays demonstrated that BM-19 at 1/4 MIC (intrinsic MIC, 200 μM) was able to reduce the MICs of levofloxacin, oxacillin, linezolid, and clarithromycin 8-fold. BM-38 at 1/4 MIC (intrinsic MIC, 100 μM) was able to reduce only the MICs of oxacillin and linezolid (2-fold). Both compounds markedly reduced the MIC of rifampin (BM-19, 32-fold; and BM-38, 4-fold), which is suggestive of permeabilization of the outer membrane as an additional mechanism of action. Nitrocefin hydrolysis assays demonstrated that in addition to their EPI activity, both compounds were in fact weak permeabilizers of the outer membrane. Moreover, it was found that BM-19, BM-27, BM-36, and BM-38 acted as near-infrared-emitting fluorescent membrane probes, which allowed for their use in a combined influx and efflux assay and thus for tracking of the transport of an EPI across the outer membrane by an efflux pump in real time. The EPIs BM-38 and BM-19 displayed the most rapid influx of all compounds, whereas BM-27, which did not act as an EPI, showed the slowest influx.

  19. Development of a microwave-accelerated metal-enhanced fluorescence 40 second, <100 cfu/ml point of care assay for the detection of Chlamydia trachomatis.

    PubMed

    Zhang, Yongxia; Agreda, Patricia; Kelley, Shannon; Gaydos, Charlotte; Geddes, Chris D

    2011-03-01

    An inexpensive technology to both lyse Chlamydia trachomatis (CT) and detect DNA released from CT within 40 s is demonstrated. In a microwave cavity, energy is highly focused using 100-nm gold films with "bow-tie" structures to lyse CT within 10 s. The ultrafast detection of the released DNA from less than 100 cfu/mL CT is accomplished in an additional 30 s by employing the microwave-accelerated metal-enhanced fluorescence technique. This new "release and detect" platform technology is a highly attractive alternative method for the lysing of bacteria, DNA extraction, and the fast quantification of bacteria and potentially other pathogenic species and cells as well. Our approach is a significant step forward for the development of a point of care test for CT.

  20. A Fluorescent Live Imaging Screening Assay Based on Translocation Criteria Identifies Novel Cytoplasmic Proteins Implicated in G Protein-coupled Receptor Signaling Pathways.

    PubMed

    Lecat, Sandra; Matthes, Hans W D; Pepperkok, Rainer; Simpson, Jeremy C; Galzi, Jean-Luc

    2015-05-01

    Several cytoplasmic proteins that are involved in G protein-coupled receptor signaling cascades are known to translocate to the plasma membrane upon receptor activation, such as beta-arrestin2. Based on this example and in order to identify new cytoplasmic proteins implicated in the ON-and-OFF cycle of G protein-coupled receptor, a live-imaging screen of fluorescently labeled cytoplasmic proteins was performed using translocation criteria. The screening of 193 fluorescently tagged human proteins identified eight proteins that responded to activation of the tachykinin NK2 receptor by a change in their intracellular localization. Previously we have presented the functional characterization of one of these proteins, REDD1, that translocates to the plasma membrane. Here we report the results of the entire screening. The process of cell activation was recorded on videos at different time points and all the videos can be visualized on a dedicated website. The proteins BAIAP3 and BIN1, partially translocated to the plasma membrane upon activation of NK2 receptors. Proteins ARHGAP12 and PKM2 translocated toward membrane blebs. Three proteins that associate with the cytoskeleton were of particular interest : PLEKHH2 rearranged from individual dots located near the cell-substrate adhesion surface into lines of dots. The speriolin-like protein, SPATC1L, redistributed to cell-cell junctions. The Chloride intracellular Channel protein, CLIC2, translocated from actin-enriched plasma membrane bundles to cell-cell junctions upon activation of NK2 receptors. CLIC2, and one of its close paralogs, CLIC4, were further shown to respond with the same translocation pattern to muscarinic M3 and lysophosphatidic LPA receptors. This screen allowed us to identify potential actors in signaling pathways downstream of G protein-coupled receptors and could be scaled-up for high-content screening.

  1. Smartphone fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Yu, Hojoeng; Tan, Yafang; Cunningham, Brian T.

    2014-03-01

    We demonstrate the first use of smartphone spectrophotometry for readout of fluorescence-based biological assays. We evaluated the smartphone fluorimeter in the context of a fluorescent molecular beacon (MB) assay for detection of a specific nucleic acid sequences in a liquid test sample. The capability of distinguishing a one-point mismatch is also demonstrated by detecting single-base mutation in target nucleic acids. Our approach offers a route towards portable biomolecular assays for viral/bacterial pathogens, disease biomarkers, and toxins.

  2. Characterization of the regulatory region of the dopa decarboxylase gene in Medaka: an in vivo green fluorescent protein reporter assay combined with a simple TA-cloning method.

    PubMed

    Fujimori, Kazuhiro E

    2009-03-01

    The mechanism by which differentiated cells cooperatively express specific sets of genes in multicellular organisms is a fundamental question for biologists. Currently, the mechanism is primarily attributed to complex regulation of transcriptional machinery. Here, I provide a method for studying spatiotemporal characteristics of promoters in vivo by rapid construction of reporter gene-expression vectors based on simple TA-cloning using an in vivo eGFP reporter assay in Medaka (Oryzias latipes). As an application of this method, I focused on the dopa decarboxylase (Ddc) gene, an essential enzyme for production of neurotransmitters, dopamine, and serotonin. Based on the known structure of the Medaka genome, I predicted and cloned the approximately 3 kbp fragment flanking the Ddc gene. Using an eGFP reporter assay in vivo, I showed that it functions as a promoter, directing reporter gene expression in the brain, retina, epiphysis, and gut, but not in sympathetic ganglia, kidney, or liver. Thus, the procedure presented here provides a useful tool for rapid screening of possible promoter regions and for establishing germ line-transmitted transgenic lines of Medaka.

  3. Use of monoclonal antibodies in an epidemiological marker system: a retrospective study of lung specimens from the 1976 outbreak of Legionnaires disease in Philadelphia by indirect fluorescent-antibody and enzyme-linked immunosorbent assay methods.

    PubMed Central

    Brown, S L; Bibb, W F; McKinney, R M

    1985-01-01

    Autopsy specimens of lung tissues from 15 patients that contracted legionellosis during the 1976 Philadelphia outbreak of Legionnaires disease were examined for the presence of Legionella organisms and soluble antigens by indirect fluorescent-antibody (IFA) testing and by an enzyme-linked immunosorbent assay (ELISA) with both polyclonal and monoclonal antibodies. In all 15 cases, at least one specimen was positive for Legionella pneumophila serogroup 1 (Lp-1) antigens by a polyclonal antibody ELISA system. Of the 15 cases tested for Lp-1, 9 were positive by a polyclonal antibody IFA test. Nine mouse monoclonal antibodies to Lp-1 gave essentially the same reactivity pattern with extracts from lung tissue homogenates as that obtained with a Philadelphia 1 culture extract by using a monoclonal antibody ELISA system. The same monoclonal antibody panel gave similar results when used in the IFA system with tissue homogenates. Monoclonal antibodies can be used as epidemiological marker systems with both IFA and ELISA testing. This study provides evidence that the 1976 common source outbreak in Philadelphia was probably caused by a single Lp-1 strain. ELISA testing of the soluble antigen of Lp-1 from lung tissue homogenate supernatants was more sensitive than IFA testing of the homogenates and should be extremely useful as either a primary test or as an adjunct to fluorescent antibody testing for legionellosis. Images PMID:3881470

  4. Fluorescence resonance energy transfer between ZnSe ZnS quantum dots and bovine serum albumin in bioaffinity assays of anticancer drugs

    NASA Astrophysics Data System (ADS)

    Shu, Chang; Ding, Li; Zhong, Wenying

    2014-10-01

    In the current work, using ZnSe ZnS quantum dots (QDs) as representative nanoparticles, the affinities of seven anticancer drugs for bovine serum albumin (BSA) were studied using fluorescence resonance energy transfer (FRET). The FRET efficiency of BSA-QD conjugates can reach as high as 24.87% by electrostatic interaction. The higher binding constant (3.63 × 107 L mol-1) and number of binding sites (1.75) between ZnSe ZnS QDs and BSA demonstrated that the QDs could easily associate to plasma proteins and enhance the transport efficacy of drugs. The magnitude of binding constants (103-106 L mol-1), in the presence of QDs, was between drugs-BSA and drugs-QDs in agreement with common affinities of drugs for serum albumins (104-106 L mol-1) in vivo. ZnSe ZnS QDs significantly increased the affinities for BSA of Vorinostat (SAHA), Docetaxel (DOC), Carmustine (BCNU), Doxorubicin (Dox) and 10-Hydroxycamptothecin (HCPT). However, they slightly reduced the affinities of Vincristine (VCR) and Methotrexate (MTX) for BSA. The recent work will not only provide useful information for appropriately understanding the binding affinity and binding mechanism at the molecular level, but also illustrate the ZnSe ZnS QDs are perfect candidates for nanoscal drug delivery system (DDS).

  5. Fluorescent organic nanoparticles of dihydropyrimidone derivatives for selective recognition of iodide using a displacement assay: application of the sensors in water and biological fluids.

    PubMed

    Kaur, Amanpreet; Raj, Tilak; Kaur, Simanpreet; Singh, Narinder; Kaur, Navneet

    2015-01-28

    Fluorescent organic nanoparticles (FON's) derived from dihydropyrimidone derivatives (1-4) were developed and evaluated for their sensor properties. Nano-aggregates of compound 3 and 4 resulted in sensors. Nano-aggregates of compound 3 showed enhancement in the monomer peaks of the pyrene moiety after the addition of mercury. Nano-aggregates of compound 4 resulted in quenching of intensity upon addition of Hg(2+). On the other hand, no sensor activity was recorded for nano-aggregates of compounds 1 and 2. Further, the complex of nano-aggregates of 3 and mercury (3·Hg(2+)) recognised iodide ions by showing quenching in monomer and excimer emission with a detection limit of 0.2 nM in aqueous medium; however the resultant metal complex 4·Hg(2+) does not show any anion sensing activity. Receptor 3·Hg(2+) has a highly sensitive and selective response toward I(-) ions. Therefore, the iodide content of tap water, urine and blood serum is monitored using this sensor and it is found that the sensor can detect a range of iodide in tap water, urine and blood serum. To the best of our knowledge, the system represents the first example of iodide recognition using FONs.

  6. Fluorescence resonance energy transfer between ZnSe ZnS quantum dots and bovine serum albumin in bioaffinity assays of anticancer drugs.

    PubMed

    Shu, Chang; Ding, Li; Zhong, Wenying

    2014-10-15

    In the current work, using ZnSe ZnS quantum dots (QDs) as representative nanoparticles, the affinities of seven anticancer drugs for bovine serum albumin (BSA) were studied using fluorescence resonance energy transfer (FRET). The FRET efficiency of BSA-QD conjugates can reach as high as 24.87% by electrostatic interaction. The higher binding constant (3.63×10(7)Lmol(-1)) and number of binding sites (1.75) between ZnSe ZnS QDs and BSA demonstrated that the QDs could easily associate to plasma proteins and enhance the transport efficacy of drugs. The magnitude of binding constants (10(3)-10(6)Lmol(-1)), in the presence of QDs, was between drugs-BSA and drugs-QDs in agreement with common affinities of drugs for serum albumins (10(4)-10(6)Lmol(-1)) in vivo. ZnSe ZnS QDs significantly increased the affinities for BSA of Vorinostat (SAHA), Docetaxel (DOC), Carmustine (BCNU), Doxorubicin (Dox) and 10-Hydroxycamptothecin (HCPT). However, they slightly reduced the affinities of Vincristine (VCR) and Methotrexate (MTX) for BSA. The recent work will not only provide useful information for appropriately understanding the binding affinity and binding mechanism at the molecular level, but also illustrate the ZnSe ZnS QDs are perfect candidates for nanoscal drug delivery system (DDS).

  7. Doing more with less: fluorescence in situ hybridization and gene sequencing assays can be reliably performed on archival stained tumor tissue sections.

    PubMed

    Pelosi, Giuseppe; Perrone, Federica; Tamborini, Elena; Fabbri, Alessandra; Testi, Maria Adele; Busico, Adele; Settanni, Giulio; Picciani, Benedetta; Bovio, Enrica; Sonzogni, Angelica; Valeri, Barbara; Garassino, Marina; De Braud, Filippo; Pastorino, Ugo

    2016-04-01

    Little is known about molecular testing on tumor tissue retrieved from stained sections, for which there may be a clinical need. We retrospectively analyzed 112 sections from 56 tumor patients using either fluorescence in situ hybridization (FISH) with different probes (19 sections from 17 patients) or Sanger or targeted next generation sequencing for detection of BRAF, EGFR, KRAS, C-KIT, and TP53 mutations (93 sections from 39 patients). Tumor tissue sections had been stained by hematoxylin and eosin (H&E) (42 sections) or by immunohistochemistry for cytoplasmic or nuclear/nuclear-cytoplasmic markers (70 sections) with a peroxidase (P-IHC, with 3,3'-diaminobenzidine as chromogen) or alkaline phosphatase label (AP-IHC, with Warp Red™ as chromogen). For FISH analysis, the concordance rate between the original diagnosis and that obtained on H&E- or P-IHC-stained tissue sections (AP-IHC was not on record for this set of patients) was 95% (18 out of 19 tumor sections). Only one tumor sample, diffusely positive for MLH1, did not yield any nuclear hybridization signal. For sequencing analysis, the concordance rate was 100% on negative P-IHC and positive AP-IHC-stained sections, regardless of the subcellular localization of the reaction product. Mutations were detected in only 52% of cases expressing nuclear/nuclear-cytoplasmic markers, regardless of the sequencing technology used (p = 0.0002). In conclusion, stained sections may be a valuable resource for FISH or sequencing analysis, but on cases expressing nuclear markers sequencing results need to be interpreted cautiously.

  8. Unravelling the Bacterial Vaginosis-Associated Biofilm: A Multiplex Gardnerella vaginalis and Atopobium vaginae Fluorescence In Situ Hybridization Assay Using Peptide Nucleic Acid Probes.

    PubMed

    Hardy, Liselotte; Jespers, Vicky; Dahchour, Nassira; Mwambarangwe, Lambert; Musengamana, Viateur; Vaneechoutte, Mario; Crucitti, Tania

    2015-01-01

    Bacterial vaginosis (BV), a condition defined by increased vaginal discharge without significant inflammation, is characterized by a change in the bacterial composition of the vagina. Lactobacillus spp., associated with a healthy vaginal microbiome, are outnumbered by BV-associated organisms. These bacteria could form a polymicrobial biofilm which allows them to persist in spite of antibiotic treatment. In this study, we examined the presence of Gardnerella vaginalis and Atopobium vaginae in vaginal biofilms using Peptide Nucleic Acid (PNA) probes targeting these bacteria. For this purpose, we developed three new PNA probes for A. vaginae. The most specific A. vaginae probe, AtoITM1, was selected and then used in an assay with two existing probes, Gard162 and BacUni-1, to evaluate multiplex FISH on clinical samples. Using quantitative polymerase chain reaction (qPCR) as the gold standard, we demonstrated a sensitivity of 66.7% (95% confidence interval: 54.5% - 77.1%) and a specificity of 89.4% (95% confidence interval: 76.1% - 96%) of the new AtoITM1 probe. FISH enabled us to show the presence of a polymicrobial biofilm in bacterial vaginosis, in which Atopobium vaginae is part of a Gardnerella vaginalis-dominated biofilm. We showed that the presence of this biofilm is associated with high bacterial loads of A. vaginae and G. vaginalis.

  9. Unravelling the Bacterial Vaginosis-Associated Biofilm: A Multiplex Gardnerella vaginalis and Atopobium vaginae Fluorescence In Situ Hybridization Assay Using Peptide Nucleic Acid Probes

    PubMed Central

    Hardy, Liselotte; Jespers, Vicky; Dahchour, Nassira; Mwambarangwe, Lambert; Musengamana, Viateur; Vaneechoutte, Mario; Crucitti, Tania

    2015-01-01

    Bacterial vaginosis (BV), a condition defined by increased vaginal discharge without significant inflammation, is characterized by a change in the bacterial composition of the vagina. Lactobacillus spp., associated with a healthy vaginal microbiome, are outnumbered by BV-associated organisms. These bacteria could form a polymicrobial biofilm which allows them to persist in spite of antibiotic treatment. In this study, we examined the presence of Gardnerella vaginalis and Atopobium vaginae in vaginal biofilms using Peptide Nucleic Acid (PNA) probes targeting these bacteria. For this purpose, we developed three new PNA probes for A. vaginae. The most specific A. vaginae probe, AtoITM1, was selected and then used in an assay with two existing probes, Gard162 and BacUni-1, to evaluate multiplex FISH on clinical samples. Using quantitative polymerase chain reaction (qPCR) as the gold standard, we demonstrated a sensitivity of 66.7% (95% confidence interval: 54.5% - 77.1%) and a specificity of 89.4% (95% confidence interval: 76.1% - 96%) of the new AtoITM1 probe. FISH enabled us to show the presence of a polymicrobial biofilm in bacterial vaginosis, in which Atopobium vaginae is part of a Gardnerella vaginalis-dominated biofilm. We showed that the presence of this biofilm is associated with high bacterial loads of A. vaginae and G. vaginalis. PMID:26305575

  10. A cell-based, high-throughput homogeneous time-resolved fluorescence assay for the screening of potential κ-opioid receptor agonists

    PubMed Central

    Wang, Yue; Yan, Ming; Zheng, Guang-yao; He, Ling; Yang, Huan

    2014-01-01

    Aim: The aim of this study was to identify κ-opioid receptor (KOR) agonists from a library of 80 000 small-molecule compounds and provide the experimental basis for the development of new analgesic candidates. Methods: The cell-based, high-throughput screen for human KOR agonists was based on the LANCE™ cAMP assay. Preliminary structure-activity relationship (SAR) analysis was applied according to the compounds' structures. An acetic acid twisting experiment was used to verify the pharmacodynamics. Results: In total, 31 compounds were identified as KOR agonists after preliminary and secondary screening. Of these compounds, five demonstrated significant KOR-stimulating activity that was comparable to U-50,488, a selective KOR agonist. The EC50 values for I-7, I-8, I-10, II-5, and II-8 were 13.34±1.65, 14.01±1.84, 9.57±0.19, 14.94±0.64, and 8.74±0.72 nmol/L, respectively. Based on SAR studies, the stimulating activity of compounds with 5-phenyl-7-(trifluoromethyl)-4,5,6,7-tetrahydropyrazolo [1, 5-a] pyrimidine (group I) and 3,4-dimethoxy-N-(2-oxoethyl)-N-p-tolylbenzenesulfonamide (group II) parent structures were higher than the compound with a 5-hydroxy-2-methylbenzofuran-3-carboxylic acid (group III) parent structure. Pharmacodynamic experiments indicated that 20–40 μg/kg ip of compounds I-10 and II-8 significantly decreased the number of writhes induced by acetic acid; this finding is consistent with the SAR studies. Furthermore, the analgesic effects of compounds I-10 and II-8 were significantly antagonized in the presence of the selective KOR antagonist nor-BNI. Conclusion: These findings collectively indicate that compounds I-10 and II-8 exhibit significant analgesic activities, providing evidence, at least in part, for their clinical application as new analgesic drugs. PMID:24930486

  11. Label-free characterization of carbonic anhydrase-novel inhibitor interactions using surface plasmon resonance, isothermal titration calorimetry and fluorescence-based thermal shift assays.

    PubMed

    Rogez-Florent, Tiphaine; Duhamel, Laetitia; Goossens, Laurence; Six, Perrine; Drucbert, Anne-Sophie; Depreux, Patrick; Danzé, Pierre-Marie; Landy, David; Goossens, Jean-François; Foulon, Catherine

    2014-01-01

    This work describes the development of biophysical unbiased methods to study the interactions between new designed compounds and carbonic anhydrase II (CAII) enzyme. These methods have to permit both a screening of a series of sulfonamide derivatives and the identification of a lead compound after a thorough study of the most promising molecules. Interactions data were collected using surface plasmon resonance (SPR) and thermal shift assay (TSA). In the first step, experiments were performed with bovine CAII isoform and were extended to human CAII. Isothermal titration calorimetry (ITC) experiments were also conducted to obtain thermodynamics parameters necessary for the processing of the TSA data. Results obtained with this reference methodology demonstrate the effectiveness of SPR and TSA. KD values obtained from SPR data were in perfect accordance with ITC. For TSA, despite the fact that the absolute values of KD were quite different, the same affinity scale was obtained for all compounds. The binding affinities of the analytes studied vary by more than 50 orders of magnitude; for example, the KD value determined by SPR were 6 ± 4 and 299 ± 25 nM for compounds 1 and 3, respectively. This paper discusses some of the theoretical and experimental aspects of the affinity-based methods and evaluates the protein consumption to develop methods for the screening of further new compounds. The double interest of SPR, that is, for screening and for the quick thorough study of the interactions parameters (ka , kd , and KD ), leads us to choose this methodology for the study of new potential inhibitors.

  12. Homogeneous, bioluminescent proteasome assays.

    PubMed

    O'Brien, Martha A; Moravec, Richard A; Riss, Terry L; Bulleit, Robert F

    2015-01-01

    Protein degradation is mediated predominantly through the ubiquitin-proteasome pathway. The importance of the proteasome in regulating degradation of proteins involved in cell-cycle control, apoptosis, and angiogenesis led to the recognition of the proteasome as a therapeutic target for cancer. The proteasome is also essential for degrading misfolded and aberrant proteins, and impaired proteasome function has been implicated in neurodegerative and cardiovascular diseases. Robust, sensitive assays are essential for monitoring proteasome activity and for developing inhibitors of the proteasome. Peptide-conjugated fluorophores are widely used as substrates for monitoring proteasome activity, but fluorogenic substrates can exhibit significant background and can be problematic for screening because of cellular autofluorescence or interference from fluorescent library compounds. Furthermore, fluorescent proteasome assays require column-purified 20S or 26S proteasome (typically obtained from erythrocytes), or proteasome extracts from whole cells, as their samples. To provide assays more amenable to high-throughput screening, we developed a homogeneous, bioluminescent method that combines peptide-conjugated aminoluciferin substrates and a stabilized luciferase. Using substrates for the chymotrypsin-like, trypsin-like, and caspase-like proteasome activities in combination with a selective membrane permeabilization step, we developed single-step, cell-based assays to measure each of the proteasome catalytic activities. The homogeneous method eliminates the need to prepare individual cell extracts as samples and has adequate sensitivity for 96- and 384-well plates. The simple "add and read" format enables sensitive and rapid proteasome assays ideal for inhibitor screening.

  13. Highly thermostable fluorescent proteins

    DOEpatents

    Bradbury, Andrew M [Santa Fe, NM; Waldo, Geoffrey S [Santa Fe, NM; Kiss, Csaba [Los Alamos, NM

    2012-05-01

    Thermostable fluorescent proteins (TSFPs), methods for generating these and other stability-enhanced proteins, polynucleotides encoding such proteins, and assays and method for using the TSFPs and TSFP-encoding nucleic acid molecules are provided. The TSFPs of the invention show extremely enhanced levels of stability and thermotolerance. In one case, for example, a TSFP of the invention is so stable it can be heated to 99.degree. C. for short periods of time without denaturing, and retains 85% of its fluorescence when heated to 80.degree. C. for several minutes. The invention also provides a method for generating stability-enhanced variants of a protein, including but not limited to fluorescent proteins.

  14. Highly thermostable fluorescent proteins

    DOEpatents

    Bradbury, Andrew M.; Waldo, Geoffrey S.; Kiss, Csaba

    2011-03-22

    Thermostable fluorescent proteins (TSFPs), methods for generating these and other stability-enhanced proteins, polynucleotides encoding such proteins, and assays and method for using the TSFPs and TSFP-encoding nucleic acid molecules are provided. The TSFPs of the invention show extremely enhanced levels of stability and thermotolerance. In one case, for example, a TSFP of the invention is so stable it can be heated to 99.degree. C. for short periods of time without denaturing, and retains 85% of its fluorescence when heated to 80.degree. C. for several minutes. The invention also provides a method for generating stability-enhanced variants of a protein, including but not limited to fluorescent proteins.

  15. Highly thermostable fluorescent proteins

    DOEpatents

    Bradbury, Andrew M [Santa Fe, NM; Waldo, Geoffrey S [Santa Fe, NM; Kiss, Csaba [Los Alamos, NM

    2011-11-29

    Thermostable fluorescent proteins (TSFPs), methods for generating these and other stability-enhanced proteins, polynucleotides encoding such proteins, and assays and method for using the TSFPs and TSFP-encoding nucleic acid molecules are provided. The TSFPs of the invention show extremely enhanced levels of stability and thermotolerance. In one case, for example, a TSFP of the invention is so stable it can be heated to 99.degree. C. for short periods of time without denaturing, and retains 85% of its fluorescence when heated to 80.degree. C. for several minutes. The invention also provides a method for generating stability-enhanced variants of a protein, including but not limited to fluorescent proteins.

  16. Single cell analysis and selection of living retrovirus vector-corrected mucopolysaccharidosis VII cells using a fluorescence-activated cell sorting-based assay for mammalian beta-glucuronidase enzymatic activity.

    PubMed

    Lorincz, M C; Parente, M K; Roederer, M; Nolan, G P; Diwu, Z; Martin, D I; Herzenberg, L A; Wolfe, J H

    1999-01-08

    Mutations in the acid beta-glucuronidase gene lead to systemic accumulation of undegraded glycosaminoglycans in lysosomes and ultimately to clinical manifestations of mucopolysaccharidosis VII (Sly disease). Gene transfer by retrovirus vectors into murine mucopolysaccharidosis VII hematopoietic stem cells or fibroblasts ameliorates glycosaminoglycan accumulation in some affected tissues. The efficacy of gene therapy for mucopolysaccharidosis VII depends on the levels of beta-glucuronidase secreted by gene-corrected cells; therefore, enrichment of transduced cells expressing high levels of enzyme prior to transplantation is desirable. We describe the development of a fluorescence-activated cell sorter-based assay for the quantitative analysis of beta-glucuronidase activity in viable cells. Murine mucopolysaccharidosis VII cells transduced with a beta-glucuronidase retroviral vector can be isolated by cell sorting on the basis of beta-glucuronidase activity and cultured for further use. In vitro analysis revealed that sorted cells have elevated levels of beta-glucuronidase activity and secrete higher levels of cross-correcting enzyme than the population from which they were sorted. Transduced fibroblasts stably expressing beta-glucuronidase after subcutaneous passage in the mucopolysaccharidosis VII mouse can be isolated by cell sorting and expanded ex vivo. A relatively high percentage of these cells maintain stable expression after secondary transplantation, yielding significantly higher levels of enzymatic activity than that generated in the primary transplant.

  17. New Gateway-compatible vectors for a high-throughput protein-protein interaction analysis by a bimolecular fluorescence complementation (BiFC) assay in plants and their application to a plant clathrin structure analysis.

    PubMed

    Nishimura, Kohji; Ishikawa, Syouta; Matsunami, Erika; Yamauchi, Junji; Homma, Keiichi; Faulkner, Christine; Oparka, Karl; Jisaka, Mitsuo; Nagaya, Tsutomu; Yokota, Kazushige; Nakagawa, Tsuyoshi

    2015-01-01

    Protein-protein interactions (PPI) play key roles in various biological processes. The bimolecular fluorescence complementation (BiFC) assay is an excellent tool for routine PPI analyses in living cells. We developed new Gateway vectors for a high-throughput BiFC analysis of plants, adopting a monomeric Venus split just after the tenth β-strand, and analyzed the interaction between Arabidopsis thaliana coated vesicle coatmers, the clathrin heavy chain (CHC), and the clathrin light chain (CLC). In competitive BiFC tests, CLC interacted with CHC through a coiled-coil motif in the middle section of CLC. R1340, R1448, and K1512 in CHC and W94 in CLC are potentially key amino acids underlying the inter-chain interaction, consistent with analyses based on homology modeling. Our Gateway BiFC system, the V10-BiFC system, provides a useful tool for a PPI analysis in living plant cells. The CLC-CHC interaction identified may facilitate clathrin triskelion assembly needed for cage formation.

  18. Design of a New Fluorescent Oligonucleotide-Based Assay for a Highly Specific Real-Time Detection of Apurinic/Apyrimidinic Site Cleavage by Tyrosyl-DNA Phosphodiesterase 1.

    PubMed

    Lebedeva, Natalia A; Anarbaev, Rashid O; Kupryushkin, Maxim S; Rechkunova, Nadejda I; Pyshnyi, Dmitrii V; Stetsenko, Dmitry A; Lavrik, Olga I

    2015-10-21

    Tyrosyl-DNA phosphodiesterase 1 (Tdp1) promotes catalytic scission of a phosphodiester bond between the 3'-end of DNA and the hydroxyl group of a tyrosine residue, as well as cleaving off a variety of other 3'-terminal phosphate-linked DNA substituents. We have shown recently that Tdp1 can initiate an apurinic/apyrimidinic (AP) site repair pathway that is independent from the one mediated by AP endonuclease 1 (APE1). Until recently, there was no method available of tracking the AP-site cleaving activity of Tdp1 by real-time fluorescence assay. In the present study we demonstrate a highly specific real-time detection of the AP-site cleaving activity of Tdp1 which allows one to distinguish it from the activity of APE1 by using a short hairpin oligonucleotide with a 1,12-dodecanediol loop, a 5'-fluorophore, and a 3'-quencher. Specific phosphodiesterase activity of Tdp1, which is usually able to remove quencher from the 3'-end of DNA, was suppressed in our approach by introducing a noncleavable phosphate group mimic between the 3'-end and the quencher. As a nondigestible 3'-phosphate analogue, we have used a new uncharged tetramethyl phosphoryl guanidine (Tmg) group, which is resistant to 3'-phosphodiesterase cleavage.

  19. Fluorescent carbon nanoparticles for the fluorescent detection of metal ions.

    PubMed

    Guo, Yongming; Zhang, Lianfeng; Zhang, Shushen; Yang, Yan; Chen, Xihan; Zhang, Mingchao

    2015-01-15

    Fluorescent carbon nanoparticles (F-CNPs) as a new kind of fluorescent nanoparticles, have recently attracted considerable research interest in a wide range of applications due to their low-cost and good biocompatibility. The fluorescent detection of metal ions is one of the most important applications. In this review, we first present the general detection mechanism of F-CNPs for the fluorescent detection of metal ions, including fluorescence turn-off, fluorescence turn-on, fluorescence resonance energy transfer (FRET) and ratiometric response. We then focus on the recent advances of F-CNPs in the fluorescent detection of metal ions, including Hg(2+), Cu(2+), Fe(3+), and other metal ions. Further, we discuss the research trends and future prospects of F-CNPs. We envision that more novel F-CNPs-based nanosensors with more accuracy and robustness will be widely used to assay and remove various metal ions, and there will be more practical applications in coming years.

  20. Data transformation methods for multiplexed assays

    DOEpatents

    Tammero, Lance F. Bentley; Dzenitis, John M; Hindson, Benjamin J

    2013-07-23

    Methods to improve the performance of an array assay are described. A correlation between fluorescence intensity-related parameters and negative control values of the assay is determined. The parameters are then adjusted as a function of the correlation. As a result, sensitivity of the assay is improved without changes in its specificity.

  1. New oligosaccharyltransferase assay method.

    PubMed

    Kohda, Daisuke; Yamada, Masaki; Igura, Mayumi; Kamishikiryo, Jun; Maenaka, Katsumi

    2007-11-01

    We developed a new in vitro assay for oligosaccharyltransferase (OST), which catalyzes the transfer of preassembled oligosaccharides on lipid carriers onto asparagine residues in polypeptide chains. The asparagine residues reside in the sequon, Asn-X-Thr/Ser, where X can be any amino acid residue except Pro. We demonstrate the potency of our assay using the OST from yeast. In our method, polyacrylamide gel electrophoresis is used to separate the glycopeptide products from the peptide substrates. The substrate peptide is fluorescently labeled and the formation of glycopeptides is analyzed by fluorescence gel imaging. Two in vitro OST assay methods are now widely used, but both the methods depend on previous knowledge of the oligosaccharide moiety: One method uses lectin binding as the separation mechanism and the other method uses biosynthetically or chemoenzymatically synthesized lipid-linked oligosaccharides as donors. N-linked protein glycosylation is found in all three domains of life, but little is known about the N-glycosylation in Archaea. Thus, our new assay, which does not require a priori knowledge of the oligosaccharides, will be useful in such cases. Indeed, we have detected the OST activity in the membrane fraction from a hyperthermophilic archaeon, Pyrococcus furiosus.

  2. Topoisomerase Assays

    PubMed Central

    Nitiss, John L.; Soans, Eroica; Rogojina, Anna; Seth, Aman; Mishina, Margarita

    2012-01-01

    Topoisomerases are nuclear enzymes that play essential roles in DNA replication, transcription, chromosome segregation, and recombination. All cells have two major forms of topoisomerases: type I, which makes single-stranded cuts in DNA, and type II enzymes, which cut and pass double-stranded DNA. DNA topoisomerases are important targets of approved and experimental anti-cancer agents. The protocols described in this unit are of assays used to assess new chemical entities for their ability to inhibit both forms of DNA topoisomerase. Included are an in vitro assay for topoisomerase I activity based on relaxation of supercoiled DNA and an assay for topoisomerase II based on the decatenation of double-stranded DNA. The preparation of mammalian cell extracts for assaying topoisomerase activity is described, along with a protocol for an ICE assay for examining topoisomerase covalent complexes in vivo and an assay for measuring DNA cleavage in vitro. PMID:22684721

  3. Flow cytometer measurement of binding assays

    DOEpatents

    Saunders, George C.

    1987-01-01

    A method of measuring the result of a binding assay that does not require separation of fluorescent smaller particles is disclosed. In a competitive binding assay the smaller fluorescent particles coated with antigen compete with antigen in the sample being analyzed for available binding sites on larger particles. In a sandwich assay, the smaller, fluorescent spheres coated with antibody attach themselves to molecules containing antigen that are attached to larger spheres coated with the same antibody. The separation of unattached, fluorescent smaller particles is made unnecessary by only counting the fluorescent events triggered by the laser of a flow cytometer when the event is caused by a particle with a light scatter measurement within a certain range corresponding to the presence of larger particles.

  4. Enzyme assays.

    PubMed

    Reymond, Jean-Louis; Fluxà, Viviana S; Maillard, Noélie

    2009-01-07

    Enzyme assays are analytical tools to visualize enzyme activities. In recent years a large variety of enzyme assays have been developed to assist the discovery and optimization of industrial enzymes, in particular for "white biotechnology" where selective enzymes are used with great success for economically viable, mild and environmentally benign production processes. The present article highlights the aspects of fluorogenic and chromogenic substrates, sensors, and enzyme fingerprinting, which are our particular areas of interest.

  5. Integrated Fluorescence

    NASA Technical Reports Server (NTRS)

    Tuma, Margaret (Inventor); Gruhlke, Russell W. (Inventor)

    1998-01-01

    A detection method is integrated with a filtering method and an enhancement method to create a fluorescence sensor that can be miniaturized. The fluorescence sensor comprises a thin film geometry including a waveguide layer, a metal film layer and sensor layer. The thin film geometry of the fluorescence sensor allows the detection of fluorescent radiation over a narrow wavelength interval. This enables wavelength discrimination and eliminates the detection of unwanted light from unknown or spurious sources.

  6. Brood stock segregation of spring chinook salmon Oncorhynchus tshawytscha by use of the enzyme-linked immunosorbent assay (ELISA) and the fluorescent antibody technique (FAT) affects the prevalence and levels of Renibacterium salmoninarum infection in progeny

    USGS Publications Warehouse

    Pascho, Ronald J.; Elliott, Diane G.; Streufert, Jonathan M.

    1991-01-01

    A study of the effect of maternal Renibacterium salmoninarum infection levels on the prevalence and levels of bacterial kidney disease (BKD) in progeny fish was conducted at a production salmon hatchery. A total of 302 mating pairs of spring chinook salmon Oncorhynchus tshawytscha was screened in August 1988 for R. salmoninarum by an enzyme-linked immunosorbent assay (ELISA). On the basis of ELISA testing of kidney tissues from all fish and the testing of ovarian fluid samples from a subsample of the females by a direct membrane filtration fluorescent antibody technique (MF-FAT), selected egg lots were segregated into 2 groups of 30 egg lots or about 135 000 eggs each. One group contained egg lots from male and female parents that had low R. salmoninarum infection levels or tested negative for R. salmoninarum (low-BKD group), and the other group contained egg lots from female parents with relatively high R. salmoninarum infection levels and male parents with various infection levels (high-BKD group). The progeny groups were maintained in separate rearing units supplied with untreated river water, and were monitored for R. salmoninarum by the ELISA until they were released from the hatchery in April 1990. Total mortality of the juvenile fish was higher (p = 0.0001) in the high-BKD group (20%) than in the low-BKD group (10 %). Mortality in the high-BKD group was highest after the fish were moved from nursery tanks to raceways, and clinical BKD became evident in this group. During the 11 mo of raceway rearing, mortality in the high-BKD group was 17 % compared with 5 % for the low-BKD group. An ELISA analysis of smolts just before release showed an R. salmoninarum infection rate of 85 % in the high-BKD group and 62 % in the low-BKD group. Of the positive fish, 98 % in the low-BKD group and 55 % in the high-BKD group had low infection levels, whereas 36 % in the high-BKD group and only 1 % in the low-BKD group had high infection levels. The results of this research

  7. Optical assay for biotechnology and clinical diagnosis.

    PubMed

    Moczko, Ewa; Cauchi, Michael; Turner, Claire; Meglinski, Igor; Piletsky, Sergey

    2011-08-01

    In this paper, we present an optical diagnostic assay consisting of a mixture of environmental-sensitive fluorescent dyes combined with multivariate data analysis for quantitative and qualitative examination of biological and clinical samples. The performance of the assay is based on the analysis of spectrum of the selected fluorescent dyes with the operational principle similar to electronic nose and electronic tongue systems. This approach has been successfully applied for monitoring of growing cell cultures and identification of gastrointestinal diseases in humans.

  8. Multiplex Flow Assays

    PubMed Central

    2016-01-01

    Lateral flow or dipstick assays (e.g., home pregnancy tests), where an analyte solution is drawn through a porous membrane and is detected by localization onto a capture probe residing at a specific site on the flow strip, are the most commonly and extensively used type of diagnostic assay. However, after over 30 years of use, these assays are constrained to measuring one or a few analytes at a time. Here, we describe a completely general method, in which any single-plex lateral flow assay is transformed into a multiplex assay capable of measuring an arbitrarily large number of analytes simultaneously. Instead of identifying the analyte by its localization onto a specific geometric location in the flow medium, the analyte-specific capture probe is identified by its association with a specific optically encoded region within the flow medium. The capture probes for nucleic acids, antigens, or antibodies are attached to highly porous agarose beads, which have been encoded using multiple lanthanide emitters to create a unique optical signature for each capture probe. The optically encoded capture probe-derivatized beads are placed in contact with the analyte-containing porous flow medium and the analytes are captured onto the encoded regions as the solution flows through the porous medium. To perform a multiplex diagnostic assay, a solution comprising multiple analytes is passed through the flow medium containing the capture probe-derivatized beads, and the captured analyte is treated with a suitable fluorescent reporter. We demonstrate this multiplex analysis technique by simultaneously measuring DNA samples, antigen–antibody pairs, and mixtures of multiple nucleic acids and antibodies. PMID:27819063

  9. Stroboscopic fluorescence lifetime imaging.

    PubMed

    Holton, Mark D; Silvestre, Oscar R; Errington, Rachel J; Smith, Paul J; Matthews, Daniel R; Rees, Paul; Summers, Huw D

    2009-03-30

    We report a fluorescence lifetime imaging technique that uses the time integrated response to a periodic optical excitation, eliminating the need for time resolution in detection. A Dirac pulse train of variable period is used to probe the frequency response of the total fluorescence per pulse leading to a frequency roll-off that is dependent on the relaxation rate of the fluorophores. The technique is validated by demonstrating wide-field, realtime, lifetime imaging of the endocytosis of inorganic quantum dots by a cancer cell line. Surface charging of the dots in the intra-cellular environment produces a switch in the fluorescence lifetime from approximately 40 ns to < 10 ns. A temporal resolution of half the excitation period is possible which in this instance is 15 ns. This stroboscopic technique offers lifetime based imaging at video rates with standard CCD cameras and has application in probing millisecond cell dynamics and in high throughput imaging assays.

  10. Hexosaminidase assays.

    PubMed

    Wendeler, Michaela; Sandhoff, Konrad

    2009-11-01

    beta-Hexosaminidases (EC 3.2.1.52) are lysosomal enzymes that remove terminal beta-glycosidically bound N-acetylglucosamine and N-acetylgalactosamine residues from a number of glycoconjugates. Reliable assay systems are particularly important for the diagnosis of a family of lysosomal storage disorders, the GM2 gangliosidoses that result from inherited beta-hexosaminidase deficiency. More recently, aberrant hexosaminidase levels have also been found to be associated with a variety of inflammatory diseases. Apart from patient testing and carrier screening, practical in vitro assays are indispensable for the characterization of knock-out mice with potentially altered hexosaminidase activities, for detailed structure-function studies aimed at elucidating the enzymatic mechanism, and to characterize newly described enzyme variants from other organisms. The purpose of this article is to discuss convenient hexosaminidase assay procedures for these and other applications, using fluorogenic or chromogenic artificial substrates as well as the physiological glycolipid substrate GM2. Attempts are also made to provide an overview of less commonly used alternative techniques and to introduce recent developments enabling high-throughput screening for enzyme inhibitors.

  11. Fluorescent Aptamer Sensors

    NASA Astrophysics Data System (ADS)

    Chen, Hui William; Kim, Youngmi; Meng, Ling; Mallikaratchy, Prabodhika; Martin, Jennifer; Tang, Zhiwen; Shangguan, Dihua; O'Donoghue, Meghan; Tan, Weihong

    Aptamers are single-stranded nucleic acid probes that can be evolved to have high specificity and affinity for different targets. These targets include biomar-ker proteins, small molecules, and even whole live cells that express a variety of surface proteins of interest. Aptamers offer several advantages over protein-based molecular probes such as low immunogenic activity, flexible modification, and in vitro synthesis. In addition, aptamers used as molecular probes can be made with easy signaling for binding with their corresponding targets. There are a few different fluorescence-based signal transduction mechanisms, such as direct fluorophore labeling, fluorescence resonance energy transfer (FRET), fluorescence quenching, fluorescence anisotropy, and light-switching excimers. These signaling processes in combination with various labeling strategies of nucleic acid aptamers contribute to simple, rapid, sensitive, and selective biological assays. In this chapter, we discuss the optical signaling of aptamers for single proteins such as α-thrombin and platelet-derived growth factor (PDGF). We also present detailed discussion about fluorescent aptamers developed from cell-based systematic evolution of ligands by exponential enrichment (SELEX) for the recognition of different target tumor cells.

  12. Dual fluorescence resonance energy transfer assay between tunable upconversion nanoparticles and controlled gold nanoparticles for the simultaneous detection of Pb²⁺ and Hg²⁺.

    PubMed

    Wu, Shijia; Duan, Nuo; Shi, Zhao; Fang, Congcong; Wang, Zhouping

    2014-10-01

    In this work, we presented a novel dual fluorescence resonance energy transfer (FRET) system for the simultaneous detection of Pb(2+) and Hg(2+). This system employed two color upconversion nanoparticles (UCNPs) as the donors, and controlled gold nanoparticles (AuNPs) as the acceptors. The two donor-acceptor pairs were fabricated by hybridizing the aptamers and their corresponding complementary DNA. Thus, the green and red upconversion fluorescence could be quenched because of a good overlap between the UCNPs fluorescence emission and the AuNPs absorption spectrum. In the presence of Pb(2+) and Hg(2+), the aptamers preferred to bind to their corresponding analytes and formed a G-quadruplexes structure for Pb(2+) and the hairpin-like structure for Hg(2+). As a result, the dual FRET was disrupted, and the green and red upconversion fluorescence was restored. Under optimized experimental conditions, the relative fluorescence intensity increased as the metal ion concentrations were increased, allowing for the quantification of Pb(2+) and Hg(2+). The relationships between the fluorescence intensity and plotting logarithms of ion concentrations were linear in the range from 0.1 to 100 nM for Pb(2+) and 0.5 to 500 nM for Hg(2+), and the detection limits of Pb(2+) and Hg(2+) were 50 pM and 150 pM, respectively. As a practical application, the aptasensor was used to monitor Pb(2+) and Hg(2+) levels in naturally contaminated samples and human serum samples. Ultimately, this type of dual FRET could be used to detect other metal ions or contaminants in food safety analysis and environment monitoring.

  13. Fluorescent refrigeration

    DOEpatents

    Epstein, Richard I.; Edwards, Bradley C.; Buchwald, Melvin I.; Gosnell, Timothy R.

    1995-01-01

    Fluorescent refrigeration is based on selective radiative pumping, using substantially monochromatic radiation, of quantum excitations which are then endothermically redistributed to higher energies. Ultimately, the populated energy levels radiatively deexcite emitting, on the average, more radiant energy than was initially absorbed. The material utilized to accomplish the cooling must have dimensions such that the exciting radiation is strongly absorbed, but the fluorescence may exit the material through a significantly smaller optical pathlength. Optical fibers and mirrored glasses and crystals provide this requirement.

  14. Enzyme-linked immunosorbent assay for detection of respiratory syncytial virus infection: application to clinical samples.

    PubMed Central

    McIntosh, K; Hendry, R M; Fahnestock, M L; Pierik, L T

    1982-01-01

    An enzyme-linked immunosorbent assay (ELISA) for respiratory syncytial virus antigens was applied to the rapid diagnosis of acute infections in children and was compared with viral culture and immunofluorescence tests. The ELISA test employed commercially available reagents and was run on a day-to-day basis as specimens were received in the laboratory. Sensitivity and specificity by ELISA were 82 and 95%, respectively, compared with culture. In the same specimens, the sensitivity and specificity by immunofluorescence were 86 and 96%, respectively. Nasopharyngeal aspirates were proven to be a better source of viral antigen than were nasopharyngeal swabs. ELISA-positive samples remained positive even when left unrefrigerated for a week or mailed to the laboratory in plastic containers. Respiratory syncytial virus ELISA, like culture, became negative as the disease progressed and showed no superiority over culture for diagnosis late in the illness. PMID:6749895

  15. Direct Comparison of the Histidine-rich Protein-2 Enzyme-linked Immunosorbent Assay (HRP-2 ELISA) and Malaria SYBR Green I Fluorescence (MSF) Drug Sensitivity Tests in Plasmodium falciparum Reference Clones and Fresh ex vivo Field Isolates from Cambodia

    DTIC Science & Technology

    2013-07-12

    parasitaemia detection for both methods was determined for reference clones and IEV isolates. Since human white blood cell (WBC) DNA in clinical samples is...that may reduce sensitivity of parasite detection [8]. Since 2004, Armed Forces Research Institute of Medical Sciences (AFRIMS) routinely applies the HRP...susceptibilities of P. falciparum la- boratory reference strains showed that the HRP-2 assay provides a similar limit of detection in either whole blood

  16. Identification of cagA tyrosine phosphorylation DNA motifs in Helicobacter pylori isolates from peptic ulcer patients by novel PCR-restriction fragment length polymorphism and real-time fluorescence PCR assays.

    PubMed

    Owen, Robert J; Sharp, Sally I; Chisholm, Stephanie A; Rijpkema, Sjoerd

    2003-07-01

    Cag pathogenicity island-containing Helicobacter pylori (type I) induces signal transduction pathways resulting in tyrosine phosphorylation of proteins adjacent to the site of bacterial adhesion on host gastric epithelial cells. Conventional block PCR-restriction fragment length polymorphism (RFLP) and real-time LightCycler (LC) PCR hybridization assays, validated by direct sequencing, were designed to test for the presence of three nucleotide sequences corresponding to tyrosine phosphorylation motifs (TPMs) A, B, and C in 84 isolates of H. pylori type I from patients in England. Overall, the PCR assays demonstrated that one or more TPMs were present in 62 strains (75%). Motif A was common (71% of strains), whereas motifs B and C were rarer (8% of strains). Strains lacking a TPM were typically vacuolating cytotoxin genotype vacA m2. Motif A was widely distributed in relation to disease severity and was more commonly (but not significantly [P = 0.071]) associated with gastric ulcer than with duodenal ulcer (86 versus 56%). The LC hybridization assay provided a rapid means of detecting all three motifs, but RFLP analysis was more specific for TPM-A. TPMs provide novel additional strain markers for defining cagA variation, including identification of RFLP types within TPM-A. The presence of a particular TPM was not of direct diagnostic value, either singly or in combination, but the higher proportion of TPM-A strains in gastric ulcer patients merits further investigation.

  17. Fluorescence Microscopy

    PubMed Central

    Sanderson, Michael J.; Smith, Ian; Parker, Ian; Bootman, Martin D.

    2016-01-01

    Fluorescence microscopy is a major tool with which to monitor cell physiology. Although the concepts of fluorescence and its optical separation using filters remain similar, microscope design varies with the aim of increasing image contrast and spatial resolution. The basics of wide-field microscopy are outlined to emphasize the selection, advantages, and correct use of laser scanning confocal microscopy, two-photon microscopy, scanning disk confocal microscopy, total internal reflection, and super-resolution microscopy. In addition, the principles of how these microscopes form images are reviewed to appreciate their capabilities, limitations, and constraints for operation. PMID:25275114

  18. Fluorescent refrigeration

    DOEpatents

    Epstein, R.I.; Edwards, B.C.; Buchwald, M.I.; Gosnell, T.R.

    1995-09-05

    Fluorescent refrigeration is based on selective radiative pumping, using substantially monochromatic radiation, of quantum excitations which are then endothermically redistributed to higher energies. Ultimately, the populated energy levels radiatively deexcite emitting, on the average, more radiant energy than was initially absorbed. The material utilized to accomplish the cooling must have dimensions such that the exciting radiation is strongly absorbed, but the fluorescence may exit the material through a significantly smaller optical pathlength. Optical fibers and mirrored glasses and crystals provide this requirement. 6 figs.

  19. Bicinchoninic acid (BCA) assay in low volume.

    PubMed

    Bainor, Anthony; Chang, Lyra; McQuade, Thomas J; Webb, Brian; Gestwicki, Jason E

    2011-03-15

    The BCA assay is a colorimetric method for estimating protein concentration. In 96-well plates, the relationship between protein content and absorbance is nearly linear over a wide range; however, performance is reduced in lower volume. To overcome this limitation, we performed the BCA assays in opaque, white 384-well plates. These plates emit fluorescence between 450-600 nm when excited at 430 nm; thus, their fluorescence is quenched by the BCA chromophore (λ(max) 562 nm). This arrangement allowed accurate determination of protein content using only 2 μL of sample. Moreover, soluble flourescein could replace the white plates, creating a homogenous format.

  20. VISUALIZATION OF MOLECULAR INTERACTIONS BY FLUORESCENCE COMPLEMENTATION

    PubMed Central

    Kerppola, Tom K.

    2008-01-01

    The visualization of protein complexes in living cells enables validation of protein interactions in their normal environment and determination of their subcellular localization. The bimolecular fluorescence complementation (BiFC) assay has been used to visualize interactions among multiple proteins in many cell types and organisms. This assay is based on the association between two fluorescent-protein fragments when they are brought together by an interaction between proteins fused to the fragments. Modified forms of this assay have been used to visualize the competition between alternative interaction partners and the covalent modification of proteins by ubiquitin family peptides. PMID:16625152

  1. Fluorescent microspheres

    NASA Technical Reports Server (NTRS)

    Rembaum, A.

    1978-01-01

    Latex particles with attached antibodies have potential biochemical and environmental applications. Human red blood cells and lymphocytes have been labeled with fluorescent microspheres by either direct or indirect immunological technique. Immunolatex spheres can also be used for detecting and localizing specific cell surface receptors. Hormones and toxins may also be bondable.

  2. Application of TaqMan fluorescent probe-based quantitative real-time PCR assay for the environmental survey of Legionella spp. and Legionella pneumophila in drinking water reservoirs in Taiwan.

    PubMed

    Kao, Po-Min; Hsu, Bing-Mu; Hsu, Tsui-Kang; Ji, Wen-Tsai; Huang, Po-Hsiang; Hsueh, Chih-Jen; Chiang, Chuen-Sheue; Huang, Shih-Wei; Huang, Yu-Li

    2014-08-15

    In this study, TaqMan fluorescent quantitative real-time PCR was performed to quantify Legionella species in reservoirs. Water samples were collected from 19 main reservoirs in Taiwan, and 12 (63.2%) were found to contain Legionella spp. The identified species included uncultured Legionella spp., L. pneumophila, L. jordanis, and L. drancourtii. The concentrations of Legionella spp. and L. pneumophila in the water samples were in the range of 1.8×10(2)-2.6×10(3) and 1.6×10(2)-2.4×10(2) cells/L, respectively. The presence and absence of Legionella spp. in the reservoir differed significantly in pH values. These results highlight the importance that L. pneumophila, L. jordanis, and L. drancourtii are potential pathogens in the reservoirs. The presence of L. pneumophila in reservoirs may be a potential public health concern that must be further examined.

  3. Detection of Aequorea victoria green fluorescent protein by capillary electrophoresis laser induced fluorescence detection.

    PubMed

    Craig, D B; Wong, J C; Dovichi, N J

    1997-01-01

    Aequorea victoria green fluorescent protein was assayed by capillary electrophoresis using post-capillary laser-induced fluorescence detection in a sheath flow cuvette. The limit of detection was 3.0 x 10(-12) M protein in an injection volume of 17 nL, corresponding to a mass of 3100 molecules.

  4. Fluorescent probes and fluorescence (microscopy) techniques--illuminating biological and biomedical research.

    PubMed

    Drummen, Gregor P C

    2012-11-28

    Fluorescence, the absorption and re-emission of photons with longer wavelengths, is one of those amazing phenomena of Nature. Its discovery and utilization had, and still has, a major impact on biological and biomedical research, since it enables researchers not just to visualize normal physiological processes with high temporal and spatial resolution, to detect multiple signals concomitantly, to track single molecules in vivo, to replace radioactive assays when possible, but also to shed light on many pathobiological processes underpinning disease states, which would otherwise not be possible. Compounds that exhibit fluorescence are commonly called fluorochromes or fluorophores and one of these fluorescent molecules in particular has significantly enabled life science research to gain new insights in virtually all its sub-disciplines: Green Fluorescent Protein. Because fluorescent proteins are synthesized in vivo, integration of fluorescent detection methods into the biological system via genetic techniques now became feasible. Currently fluorescent proteins are available that virtually span the whole electromagnetic spectrum. Concomitantly, fluorescence imaging techniques were developed, and often progress in one field fueled innovation in the other. Impressively, the properties of fluorescence were utilized to develop new assays and imaging modalities, ranging from energy transfer to image molecular interactions to imaging beyond the diffraction limit with super-resolution microscopy. Here, an overview is provided of recent developments in both fluorescence imaging and fluorochrome engineering, which together constitute the “fluorescence toolbox” in life science research.

  5. Optical fiber hybridization assay fluorosensor

    NASA Astrophysics Data System (ADS)

    Pilevar, Saeed; Davis, Christopher C.; Hodzic, Vildana; Portugal, Frank

    1999-04-01

    The present work describes an all-fiber hybridization assay sensor that relies on the evanescent field excitation of fluorescence from surface-bound fluorophores. The evanescent field is made accessible through the use of a long adiabatically tapered single-mode fiber probe. A semiconductor laser operating at 785 nm wavelength is used in a pulsed mode to excite fluorescence in the tapered region of a fiber probe using the near-infrared fluorophore IRD 41. We have carried out real-time hybridization tests for IRD 41-labeled oligonucleotide at various probe concentrations binding to complementary oligonucleotide cross-linked to the tapered fiber surface. Short oligonucleotides (20-mer) bound to the fiber surface have been used to detect near-infrared dye labeled complementary sequences at sub-nanomolar levels. Sandwich assays with total RNA were conducted to examine the capability of the biosensor for detecting bacterial cells using rRNA as the target. The results indicate that this fluorosensor is capable of detecting H. pylori in a sandwich assay at picomolar concentrations.

  6. Cell-based assays in practice: cell markers from autofluorescent proteins of the GFP-family.

    PubMed

    Wolff, Michael; Kredel, Simone; Wiedenmann, Jörg; Nienhaus, G Ulrich; Heilker, Ralf

    2008-09-01

    The more recently discovered anthozoan fluorescent proteins (FPs) and the classic Aequorea victoria Green Fluorescent Protein (avGFP) as well as their derivatives have become versatile tools as live cell markers in fluorescence microscopy. In this review, we show the use of these FPs in drug discovery assays. Assay examples are given for the application of FPs in multiplexed imaging, as photosensitizers, as fluorescent timers, as pulse-chase labels and for robotically integrated compound testing. The development of fast microscopic imaging devices has enabled the application of automated fluorescence microscopy combined with image analysis to pharmaceutical high throughput drug discovery assays, generally referred to as High Content Screening (HCS).

  7. An assay for measurement of protein adsorption to glass vials.

    PubMed

    Varmette, Elizabeth; Strony, Brianne; Haines, Daniel; Redkar, Rajendra

    2010-01-01

    Protein adsorption to primary packaging is one of the problems faced by biopharmaceutical drug companies. An assay was developed to quantify loss of proteins to glass vial surfaces. The assay involves the labeling of protein with a fluorescent dye, incubation of the labeled protein with the vial surface, elution of the adsorbed protein using a stripping buffer, and determination of fluorescence of the adsorbed protein using a fluorometer. The assay is simple to set up, accurate, sensitive, and flexible. The assay can be modified for indirect measurement of protein adsorption and offers an attractive alternative for researchers to quantify protein adsorption to glass vials and syringes.

  8. 21 CFR 864.7375 - Glutathione reductase assay.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... activity of the enzyme glutathione reductase in serum, plasma, or erythrocytes by such techniques as fluorescence and photometry. The results of this assay are used in the diagnosis of liver disease,...

  9. Rapid and sensitive step gradient assays of glutamate, glycine, taurine and gamma-aminobutyric acid by high-performance liquid chromatography-fluorescence detection with o-phthalaldehyde-mercaptoethanol derivatization with an emphasis on microdialysis samples.

    PubMed

    Piepponen, T P; Skujins, A

    2001-06-15

    We developed a rapid step-gradient HPLC method for determination of glutamate, glycine and taurine, and a separate method for determination of gamma-aminobutyric acid (GABA) in striatal microdialysates. The amino acids were pre-column derivatized with o-phthalaldehyde-2-mercaptoethanol by using an automated refrigerated autoinjector. Separation of the amino acids was established with a non-porous ODS-II HPLC column, late-eluting substances were washed out with a one-step low-pressure gradient. Concentrations of the amino acids were determined with a fixed-wavelength fluorescence detector. The detection limit for GABA was 80 fmol in a 15 microl sample, detection limits for glutamate, glycine and taurine were not determined because their concentrations in striatal perfusates were far above their detection limits. Total analysis time was less than 12 min, including the wash-out step. The methods described are relatively simple, sensitive, inexpensive, and fast enough to keep up with the microdialysis sampling.

  10. Assay for Angiotensin-Converting Enzyme.

    ERIC Educational Resources Information Center

    Russo, Salvatore F.

    1983-01-01

    Describes a three-hour experiment designed to introduce students to chemistry of the angiotensis-converting enzyme, illustrate design of a quenched fluorescence substrate, and examine considerations necessary in designing a clinical assay. Includes background information on the biochemistry of hypertension, reagents/materials needed, procedures…

  11. Quantum-dot-based cell motility assay.

    PubMed

    Gu, Weiwei; Pellegrino, Teresa; Parak, Wolfgang J; Boudreau, Rosanne; Le Gros, Mark A; Gerion, Daniele; Alivisatos, A Paul; Larabell, Carolyn A

    2005-06-28

    Because of their favorable physical and photochemical properties, colloidal CdSe/ZnS-semiconductor nanocrystals (commonly known as quantum dots) have enormous potential for use in biological imaging. In this report, we present an assay that uses quantum dots as markers to quantify cell motility. Cells that are seeded onto a homogeneous layer of quantum dots engulf and absorb the nanocrystals and, as a consequence, leave behind a fluorescence-free trail. By subsequently determining the ratio of cell area to fluorescence-free track area, we show that it is possible to differentiate between invasive and noninvasive cancer cells. Because this assay uses simple fluorescence detection, requires no significant data processing, and can be used in live-cell studies, it has the potential to be a powerful new tool for discriminating between invasive and noninvasive cancer cell lines or for studying cell signaling events involved in migration.

  12. Fluorescent immunosensors using planar waveguides

    NASA Astrophysics Data System (ADS)

    Herron, James N.; Caldwell, Karin D.; Christensen, Douglas A.; Dyer, Shellee; Hlady, Vladimir; Huang, P.; Janatova, V.; Wang, Hiabo K.; Wei, A. P.

    1993-05-01

    The goal of our research program is to develop competitive and sandwich fluoroimmunoassays with high sensitivity and fast response time, that do not require external reagents. Our approach to this problem is to employ an optical immunoassay based on total internal reflection fluorescence (TIRF). Specifically, monoclonal antibodies are immobilized on a planar waveguide. Total internal reflection of light in the planar waveguide sets up an evanescent field which extends about 2000 angstroms from the interface. In the competitive immunoassay, a fluorescent label is coupled to a small synthetic antigen which is packaged with the antibody. In the absence of analyte, the fluorescently labeled antigen binds to the antibody and is excited by the evanescent field. Upon the addition of analyte, the fluorescently labeled antigen molecules are displaced by unlabeled antigen molecules and diffuse out of the evanescent field. In the sandwich assay, a primary or `capture' antibody is immobilized on the planar waveguide, and a secondary or `tracer' antibody (which is labeled with a fluorescent dye) is added to the bulk solution. In the absence of analyte, the tracer antibody remains in solution and very little fluorescence is observed. However, upon addition of analyte, a `molecular sandwich' is formed on the waveguide, composed of: (1) the capture antibody; (2) the analyte; and (3) the tracer antibody. Once this sandwich forms, the tracer antibody is within the evanescent field and fluoresces. Fluorescence emission is detected by a charged- coupled device (CCD). Using this approach, we have developed a prototype immunosensor for the detection of human chorionic gonadotropin (hCG). This device meets our design goals and exhibits a sensitivity of 0.1 - 1 pmolar.

  13. Ultrasensitive fluorescence detection of DNA

    SciTech Connect

    Mathies, R.A.; Glazer, A.N.

    1992-01-01

    We have shown that a number of polycationic highly fluorescent dyes form complexes with double-stranded DNA (dsDNA) which are stable to electrophoresis and have characterized in detail such dsDNA complexes with TOTO (1,1[prime]-(4,4,7,7-tetramethyl-4,7-diazaundecamethylene)-bis-4-[3-methyl-2,3-dihydro-(benzo-1,3-thiazole)-2-methylidene]-quinolinium tetraiodide) and oxazole yellow dimer (YOYO; an analogue of TOTO with a benzo-1,3-oxazole in place of the benzo-1,3-thiazole). TOTO and YOYO are virtually non-fluorescent in solution, but form highly fluorescent complexes with dsDNA, up to a maximum dye to DNA bp ratio of 1:4, with >1000-fold fluorescence enhancement. We have developed an assay using YOYO for the quantitation of single-stranded and dsDNA in solution applicable over a range of DNA concentrations from 0.5 to 100 ng per ml. The fluorescent dsDNA-dye complexes allow detection of dsDNA on agarose and acrylamide gels with picogram sensitivity. We have applied these complexes in multiplex mapping experiments for accurate sizing and quantitation of restriction fragments. We have shown that in gel shift experiments the stable dsDNA-dye complexes can be used to detect heteroduplex-Muts complexes with a sensitivity comparable to radioisotopic detection.

  14. Combining fluorescence and bioluminescence microscopy.

    PubMed

    Goda, Kazuhito; Hatta-Ohashi, Yoko; Akiyoshi, Ryutaro; Sugiyama, Takashi; Sakai, Ikuko; Takahashi, Takeo; Suzuki, Hirobumi

    2015-08-01

    Bioluminescence microscopy has revealed that gene expression in individual cells can respond differently to the same stimulus. To understand this phenomenon, it is important to sequentially observe the series of events from cellular signal transduction to gene expression regulated by specific transcription factors derived from signaling cascades in individual cells. However, these processes have been separately analyzed with fluorescence and bioluminescence microscopy. Furthermore, in culture medium, the background fluorescence of luciferin-a substrate of luciferase in promoter assays of gene expression in cultured cells-confounds the simultaneous observation of fluorescence and bioluminescence. Therefore, we optimized conditions for optical filter sets based on spectral properties and the luciferin concentration based on cell permeability for fluorescence observation combined with bioluminescence microscopy. An excitation and emission filter set (492-506 nm and 524-578 nm) was suitable for green fluorescent protein and yellow fluorescent protein imaging of cells, and >100 μM luciferin was acceptable in culture medium based on kinetic constants and the estimated intracellular concentration. Using these parameters, we present an example of sequential fluorescence and bioluminescence microscopic observation of signal transduction (translocation of protein kinase C alpha from the cytoplasm to the plasma membrane) coupled with activation of gene expression by nuclear factor of kappa light polypeptide B in individual cells and show that the gene expression response is not completely concordant with upstream signaling following stimulation with phorbol-12-myristate-13-acetate. Our technique is a powerful imaging tool for analysis of heterogeneous gene expression together with upstream signaling in live single cells.

  15. Relating dissolved organic matter fluorescence to functional properties

    NASA Astrophysics Data System (ADS)

    Tipping, E.; Baker, A.; Thacker, S.; Gondar, D.

    2007-12-01

    The fluorescence excitation emission matrix properties of dissolved organic matter from three rivers and one lake in NW England are analysed. Sites are sampled in duplicate and for some sites seasonally to cover variations in dissolved organic matter composition, river flow, and carbon isotopic (13C, 14C) variability. Results are compared to the functional properties of the dissolved organic matter, the functional assays provide quantitative information on light absorption, fluorescence, photochemical fading, pH buffering, copper binding, benzo[a]pyrene binding, hydrophilicity and adsorption to alumina. Fluorescence characterization of the dissolved organic matter samples demonstrates that peak C fluorescence emission wavelength, the ratio of peak T to peak C fluorescence intensity, and the fluorescence : absorbance ratio best differentiate different dissolved organic matter samples. These parameters correspond to dissolved organic matter aromaticity, the ratio of labile to recalcitrant organic matter, and dissolved organic matter molecular weight. Peak C fluorescence emission wavelength, the ratio of peak T to peak C fluorescence intensity, and the fluorescence : absorbance ratio fluorescence parameters also have strong correlations with several of the functional assays, in particular the extinction coefficients, benzo(a)pyrene binding and alumina adsorption, and buffering capacity. In many cases, regression equations with a correlation coefficient >0.9 are obtained, suggesting that dissolved organic matter functional character can be predicted from DOM fluorescence properties. For one site, the relationship between dissolved organic matter source, fluorescence, function and carbon isotopic composition is discussed.

  16. From Antenna to Assay

    PubMed Central

    Moore, Evan G.; Samuel, Amanda P. S.; Raymond, Kenneth N.

    2009-01-01

    Conspectus Ligand-sensitized, luminescent lanthanide(III) complexes are of considerable importance because their unique photophysical properties (microsecond to millisecond lifetimes, characteristic and narrow emission bands, and large Stokes shifts) make them well suited as labels in fluorescence-based bioassays. The long-lived emission of lanthanide(III) cations can be temporally resolved from scattered light and background fluorescence to vastly enhance measurement sensitivity. One challenge in this field is the design of sensitizing ligands that provide highly emissive complexes with sufficient stability and aqueous solubility for practical applications. In this Account, we give an overview of some of the general properties of the trivalent lanthanides and follow with a summary of advances made in our laboratory in the development of highly luminescent Tb(III) and Eu(III) complexes for applications in biotechnology. A focus of our research has been the optimization of these compounds as potential commercial agents for use in Homogeneous Time-Resolved Fluorescence (HTRF) technology. Our approach involves developing high-stability octadentate Tb(III) and Eu(III) complexes that rely on all-oxygen donor atoms and using multi-chromophore chelates to increase molar absorptivity; earlier examples utilized a single pendant chromophore (that is, a single “antenna”). Ligands based on 2-hydroxyisophthalamide (IAM) provide exceptionally emissive Tb(III) complexes with quantum yield values up to ∼60% that are stable at the nanomolar concentrations required for commercial assays. Through synthetic modification of the IAM chromophore and time-dependent density functional theory (TD-DFT) calculations, we have developed a method to predict absorption and emission properties of these chromophores as a tool to guide ligand design. Additionally, we have investigated chiral IAM ligands that yield Tb(III) complexes possessing both high quantum yield values and strong

  17. A lateral electrophoretic flow diagnostic assay.

    PubMed

    Lin, Robert; Skandarajah, Arunan; Gerver, Rachel E; Neira, Hector D; Fletcher, Daniel A; Herr, Amy E

    2015-03-21

    Immunochromatographic assays are a cornerstone tool in disease screening. To complement existing lateral flow assays (based on wicking flow) we introduce a lateral flow format that employs directed electrophoretic transport. The format is termed a "lateral e-flow assay" and is designed to support multiplexed detection using immobilized reaction volumes of capture antigen. To fabricate the lateral e-flow device, we employ mask-based UV photopatterning to selectively immobilize unmodified capture antigen along the microchannel in a barcode-like pattern. The channel-filling polyacrylamide hydrogel incorporates a photoactive moiety (benzophenone) to immobilize capture antigen to the hydrogel without a priori antigen modification. We report a heterogeneous sandwich assay using low-power electrophoresis to drive biospecimen through the capture antigen barcode. Fluorescence barcode readout is collected via a low-resource appropriate imaging system (CellScope). We characterize lateral e-flow assay performance and demonstrate a serum assay for antibodies to the hepatitis C virus (HCV). In a pilot study, the lateral e-flow assay positively identifies HCV+ human sera in 60 min. The lateral e-flow assay provides a flexible format for conducting multiplexed immunoassays relevant to confirmatory diagnosis in near-patient settings.

  18. Fluorescent protein biosensors applied to microphysiological systems

    PubMed Central

    Senutovitch, Nina; Boltz, Robert; DeBiasio, Richard; Gough, Albert; Taylor, D Lansing

    2015-01-01

    This mini-review discusses the evolution of fluorescence as a tool to study living cells and tissues in vitro and the present role of fluorescent protein biosensors (FPBs) in microphysiological systems (MPSs). FPBs allow the measurement of temporal and spatial dynamics of targeted cellular events involved in normal and perturbed cellular assay systems and MPSs in real time. FPBs evolved from fluorescent analog cytochemistry (FAC) that permitted the measurement of the dynamics of purified proteins covalently labeled with environmentally insensitive fluorescent dyes and then incorporated into living cells, as well as a large list of diffusible fluorescent probes engineered to measure environmental changes in living cells. In parallel, a wide range of fluorescence microscopy methods were developed to measure the chemical and molecular activities of the labeled cells, including ratio imaging, fluorescence lifetime, total internal reflection, 3D imaging, including super-resolution, as well as high-content screening. FPBs evolved from FAC by combining environmentally sensitive fluorescent dyes with proteins in order to monitor specific physiological events such as post-translational modifications, production of metabolites, changes in various ion concentrations, and the dynamic interaction of proteins with defined macromolecules in time and space within cells. Original FPBs involved the engineering of fluorescent dyes to sense specific activities when covalently attached to particular domains of the targeted protein. The subsequent development of fluorescent proteins (FPs), such as the green fluorescent protein, dramatically accelerated the adoption of studying living cells, since the genetic “labeling” of proteins became a relatively simple method that permitted the analysis of temporal–spatial dynamics of a wide range of proteins. Investigators subsequently engineered the fluorescence properties of the FPs for environmental sensitivity that, when combined with

  19. Broad base biological assay using liquid based detection assays

    SciTech Connect

    Milanovich, F; Albala, J; Colston, B; Langlois, R; Venkateswaren, K

    2000-10-31

    organization, and DNA replication and repair. Understanding the complexities of these interactions is a fundamental step towards comprehending key aspects of disease biochemistry. This past year, using the LA technology, we were able to confirm the dynamics of a well characterized three protein, bacterial DNA repair mechanism--UvrABC. Next fiscal year we will begin studying the less characterized mammalian homologous recombinational DNA repair pathway examining the protein/protein and protein/DNA interactions of RAD51B/C. In the second thrust, we are looking at a model human disease state to assess the application of the LA in highly parallel and rapid medical diagnostics. In collaboration with researchers at UCSF and the California Department of Public Health we are developing a multiplex assay for the determination of Herpes-8 exposure (a cancer inducing virus) in aids patients. We have successfully demonstrated a 8-plex assay and will extend to 20-plex in the near future. In a parallel effort we will develop an 18-plex assay for detecting antibodies to all vaccine-preventable childhood viral infections. Finally we are developing a concept that would utilize the bead assay in the simplest possible form. After microbead capture of the biomarker sample and a fluorescent reporter in solution, the beads are trapped on an ordered dipstick array. The color of each bead is used to identify the biomarker, while the fluorescent reporter measures its concentration. This concept, MIDS, would enable widespread use of the technology by reducing the capital investment required while greatly simplifying its operation and maintenance.

  20. Miniaturized detection system for handheld PCR assays

    NASA Astrophysics Data System (ADS)

    Richards, James B.; Benett, William J.; Stratton, Paul; Hadley, Dean R.; Nasarabadi, Shanavaz L.; Milanovich, Fred P.

    2000-12-01

    We have developed and delivered a four chamber, battery powered, handheld instrument referred to as the HANAA which monitors the polymerase chain reaction (PCR) process using a TaqMan based fluorescence assay. The detection system differs form standard configurations in two essential ways. First, the size is miniaturized, with a combined cycling and optics plug-in module for a duplex assay begin about the size of a small box of matches. Second, the detection/analysis system is designed to call a positive sample in real time.

  1. Development of an isothermal recombinase polymerase amplification assay for rapid detection of pseudorabies virus.

    PubMed

    Yang, Yang; Qin, Xiaodong; Zhang, Wei; Li, Zhiyong; Zhang, Shuaijun; Li, Yanmin; Zhang, Zhidong

    2017-03-22

    Recombinase polymerase amplification assays using real-time fluorescent detection (real-time RPA assay) and lateral flow dipstick (RPA LFD assay) were developed targeting the gD gene of pseudorabies virus (PRV). Both assays were performed at 39 °C within 20 min. The sensitivity of the real-time RPA assay and the RPA LFD assay was 100 copies per reaction and 160 copies per reaction, respectively. Both assays did not detect DNAs from other virus or PRV negative samples. Therefore, the developed RPA assays provide a rapid, simple, sensitive and specific alternative tool for detection of PRV.

  2. RAS - Screens & Assays

    Cancer.gov

    A primary goal of the RAS Initiative is to develop assays for RAS activity, localization, and signaling and adapt those assays so they can be used for finding new drug candidates. Explore the work leading to highly validated screening protocols.

  3. Assays of Serum Testosterone.

    PubMed

    Herati, Amin S; Cengiz, Cenk; Lamb, Dolores J

    2016-05-01

    The diagnosis of male hypogonadism depends on an assessment of the clinical signs and symptoms of hypogonadism and serum testosterone level. Current clinical laboratory testosterone assay platforms include immunoassays and mass spectrometry. Despite significant advances to improve the accuracy and precision of the currently available assays, limited comparability exists between assays at the lower and upper extremes of the testosterone range. Because of this lack of comparability, there is no current gold standard assay for the assessment of total testosterone levels.

  4. Using smell to triage samples in point-of-care assays.

    PubMed

    Mohapatra, Hemakesh; Phillips, Scott T

    2012-10-29

    Smell of success: Reagent 1 provides the dual readouts of odor (ethanethiol) and fluorescence (derivative of 7-hydroxycoumarin) and can be used in down-selection assays based on smell and quantitative fluorescence assays of the samples that give a positive result. An important feature of 1 is the matched sensitivity of the two outputs. This reagent is designed for use in resource-limited settings and is demonstrated in assays that detect enzymes.

  5. ABCs of DNA aptamer and related assay development.

    PubMed

    Sharma, Tarun Kumar; Bruno, John G; Dhiman, Abhijeet

    This review is intended to guide the novice in aptamer research and development to understand virtually all of the aptamer development options and currently available assay modalities. Aptamer development topics range from discussions of basic and advanced versions of Systematic Evolution of Ligands by EXponential Enrichment (SELEX) and SELEX variations involving incorporation of exotic unnatural nucleotides to expand library diversity for even greater aptamer affinity and specificity to improved next generation methods of DNA sequencing, screening and tracking aptamer development throughout the SELEX process and characterization of lead aptamer candidates. Aptamer assay development topics include descriptions of various colorimetric and fluorescent assays in microplates or on membranes including homogeneous beacon and multiplexed Fluorescence Resonance Energy Transfer (FRET) assays. Finally, a discussion of the potential for marketing successful aptamer-based assays or test kits is included.

  6. DNA Methyltransferase Activity Assays: Advances and Challenges

    PubMed Central

    Poh, Wan Jun; Wee, Cayden Pang Pee; Gao, Zhiqiang

    2016-01-01

    DNA methyltransferases (MTases), a family of enzymes that catalyse the methylation of DNA, have a profound effect on gene regulation. A large body of evidence has indicated that DNA MTase is potentially a predictive biomarker closely associated with genetic disorders and genetic diseases like cancer. Given the attention bestowed onto DNA MTases in molecular biology and medicine, highly sensitive detection of DNA MTase activity is essential in determining gene regulation, epigenetic modification, clinical diagnosis and therapeutics. Conventional techniques such as isotope labelling are effective, but they often require laborious sample preparation, isotope labelling, sophisticated equipment and large amounts of DNA, rendering them unsuitable for uses at point-of-care. Simple, portable, highly sensitive and low-cost assays are urgently needed for DNA MTase activity screening. In most recent technological advances, many alternative DNA MTase activity assays such as fluorescent, electrochemical, colorimetric and chemiluminescent assays have been proposed. In addition, many of them are coupled with nanomaterials and/or enzymes to significantly enhance their sensitivity. Herein we review the progress in the development of DNA MTase activity assays with an emphasis on assay mechanism and performance with some discussion on challenges and perspectives. It is hoped that this article will provide a broad coverage of DNA MTase activity assays and their latest developments and open new perspectives toward the development of DNA MTase activity assays with much improved performance for uses in molecular biology and clinical practice. PMID:26909112

  7. Monitoring the Decontamination of Bacterial Spores Using Fluorescent Viability Assays

    DTIC Science & Technology

    2007-11-02

    agents toward common bacterial pathogens can be critical. In many cases, the delay in determining MICs by conventional broth or plate methods can make...acceleration in three different culture broths (Figure 7). In all accelerated cultures , sonication indicated that considerable aggregation of viable cells... broth (BHIA) and incubated at 37ºC for 3 hours. Aliquots were then placed in a sonic bath at 37˚C for 2 minutes prior to plating . LBA was chosen

  8. Improved flow cytometer measurement of binding assays

    DOEpatents

    Saunders, G.C.

    1984-05-30

    The invention relates to a method of measuring binding assays carried out with different size particles wherein the binding assay sample is run through a flow cytometer without separating the sample from the marking agent. The amount of a binding reactant present in a sample is determined by providing particles with a coating of binder and also a known quantity of smaller particles with a coating of binder reactant. The binding reactant is the same as the binding reactant present in the sample. The smaller particles also contain a fluorescent chemical. The particles are combined with the sample and the binding reaction is allowed to occur for a set length of time followed by combining the smaller particles with the mixture of the particles and the sample produced and allowing the binding reactions to proceed to equilibrium. The fluorescence and light scatter of the combined mixture is then measured as the combined mixture passes through a flow cytometer equipped with a laser to bring about fluorescence, and the number and strength of fluorescent events are compared. A similar method is also provided for determining the amount of antigen present in the sample by providing spheres with an antibody coating and some smaller spheres with an antigen coating. (LEW)

  9. Ultrasensitive detection of potassium ions based on target induced DNA conformational switch enhanced fluorescence polarization.

    PubMed

    Hu, Kun; Huang, Yong; Zhao, Shulin; Tian, Jianniao; Wu, Qiang; Zhang, Guohai; Jiang, Jing

    2012-06-21

    We have developed a simple, highly sensitive and selective fluorescence polarization assay for the detection of potassium ions based on target induced DNA conformational switch from hairpin to G-quadruplex enhanced fluorescence polarization. The assay was applied in the detection of low nM concentrations of potassium ions and was highly selective over other cations.

  10. Azadioxatriangulenium: exploring the effect of a 20 ns fluorescence lifetime in fluorescence anisotropy measurements

    NASA Astrophysics Data System (ADS)

    Bogh, Sidsel A.; Bora, Ilkay; Rosenberg, Martin; Thyrhaug, Erling; Laursen, Bo W.; Just Sørensen, Thomas

    2015-12-01

    Azaoxatriangulenium (ADOTA) has been shown to be highly emissive despite a moderate molar absorption coefficient of the primary electronic transition. As a result, the fluorescence lifetime is ~20 ns, longer than all commonly used red fluorescent organic probes. The electronic transitions in ADOTA are highly polarised (r 0  =  0.38), which in combination with the long fluorescence lifetime extents the size-range of biomolecular weights that can be detected in fluorescence polarisation-based experiments. Here, the rotational dynamics of bovine serum albumin (BSA) are monitored with three different ADOTA derivatives, differing only in constitution of the reactive linker. A detailed study of the degree of labelling, the steady-state anisotropy, and the time-resolved anisotropy of the three different ADOTA-BSA conjugates are reported. The fluorescence quantum yields (ϕ fl) of the free dyes in PBS solution are determined to be ~55%, which is reduced to ~20% in the ADOTA-BSA conjugates. Despite the reduction in ϕ fl, a ~20 ns intensity averaged lifetime is maintained, allowing for the rotational dynamics of BSA to be monitored for up to 100 ns. Thus, ADOTA can be used in fluorescence polarisation assays to fill the gap between commonly used organic dyes and the long luminescence lifetime transition metal complexes. This allows for efficient steady-state fluorescence polarisation assays for detecting binding of analytes with molecular weights of up to 100 kDa.

  11. Colorimetric protein assay techniques.

    PubMed

    Sapan, C V; Lundblad, R L; Price, N C

    1999-04-01

    There has been an increase in the number of colorimetric assay techniques for the determination of protein concentration over the past 20 years. This has resulted in a perceived increase in sensitivity and accuracy with the advent of new techniques. The present review considers these advances with emphasis on the potential use of such technologies in the assay of biopharmaceuticals. The techniques reviewed include Coomassie Blue G-250 dye binding (the Bradford assay), the Lowry assay, the bicinchoninic acid assay and the biuret assay. It is shown that each assay has advantages and disadvantages relative to sensitivity, ease of performance, acceptance in the literature, accuracy and reproducibility/coefficient of variation/laboratory-to-laboratory variation. A comparison of the use of several assays with the same sample population is presented. It is suggested that the most critical issue in the use of a chromogenic protein assay for the characterization of a biopharmaceutical is the selection of a standard for the calibration of the assay; it is crucial that the standard be representative of the sample. If it is not possible to match the standard with the sample from the perspective of protein composition, then it is preferable to use an assay that is not sensitive to the composition of the protein such as a micro-Kjeldahl technique, quantitative amino acid analysis or the biuret assay. In a complex mixture it might be inappropriate to focus on a general method of protein determination and much more informative to use specific methods relating to the protein(s) of particular interest, using either specific assays or antibody-based methods. The key point is that whatever method is adopted as the 'gold standard' for a given protein, this method needs to be used routinely for calibration.

  12. Absolute nuclear material assay

    DOEpatents

    Prasad, Manoj K [Pleasanton, CA; Snyderman, Neal J [Berkeley, CA; Rowland, Mark S [Alamo, CA

    2012-05-15

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  13. Absolute nuclear material assay

    DOEpatents

    Prasad, Manoj K.; Snyderman, Neal J.; Rowland, Mark S.

    2010-07-13

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  14. Sperm chromatin structure assay (SCSA®).

    PubMed

    Evenson, Donald P

    2013-01-01

    The SCSA(®) is the pioneering assay for the detection of damaged sperm DNA and altered proteins in sperm nuclei via flow cytometry of acridine orange (AO) stained sperm. The SCSA(®) is considered to be the most precise and repeatable test providing very unique, dual parameter data (red vs. green fluorescence) on a 1,024 × 1,024 channel scale, not only on DNA fragmentation but also on abnormal sperm characterized by lack of normal exchange of histones to protamines. Raw semen/sperm aliquots or purified sperm can be flash frozen, placed in a box with dry ice and shipped by overnight courier to an experienced SCSA(®) lab. The samples are individually thawed, prepared, and analyzed in ∼10 min. Of significance, data on 5,000 individual sperm are recorded on a 1,024 × 1,024 dot plot of green (native DNA) and red (broken DNA) fluorescence. Repeat measurements have virtually identical dot plot patterns demonstrating that the low pH treatment that opens up the DNA strands at the sites of breaks and staining by acridine orange (AO) are highly precise and repeatable (CVs of 1-3%) and the same between fresh and frozen samples. SCSAsoft(®) software transforms the X-Y data to total DNA stainability versus red/red + green fluoresence (DFI) providing a more accurate determination of % DFI as well as the more sensitive value of standard deviation of DFI (SD DFI) as demonstrated by animal fertility and dose-response toxicology studies. The current established clinical threshold is 25% DFI for placing a man into a statistical probability of the following: (a) longer time to natural pregnancy, (b) low odds of IUI pregnancy, (c) more miscarriages, or (d) no pregnancy. Changes in lifestyle as well as medical intervention can lower the %DFI to increase the probability of natural pregnancy. Couples of men with >25% DFI are counseled to try ICSI and when in the >50% range may consider TESE/ICSI. The SCSA(®) simultaneously determines the % of sperm with high DNA stainability (%HDS

  15. Further characterization and independent validation of a DNA aptamer-quantum dot-based magnetic sandwich assay for Campylobacter.

    PubMed

    Bruno, John G; Sivils, Jeffrey C

    2017-03-24

    Previously reported DNA aptamers developed against surface proteins extracted from Campylobacter jejuni were further characterized by aptamer-based Western blotting and shown to bind epitopes on proteins weighing ~16 and 60 kD from reduced C. jejuni and Campylobacter coli lysates. Proteins of these approximate weights have also been identified in traditional antibody-based Western blots of Campylobacter spp. Specificity of the capture and reporter aptamers from the previous report was further validated by aptamer-based ELISA-like (ELASA) colorimetric microplate assay. Finally, the limit of detection of the previously reported plastic-adherent aptamer-magnetic bead and aptamer-quantum dot sandwich assay (PASA) was validated by an independent food safety testing laboratory to lie between 5 and 10 C. jejuni cells per milliliter in phosphate buffered saline and repeatedly frozen and thawed chicken rinsate. Such ultrasensitive and rapid (30 min) aptamer-based assays could provide alternative or additional screening tools to enhance food safety testing for Campylobacter and other foodborne pathogens.

  16. FLUORESCENT IN SITU DETECTION OF ENCEPHALITOZOON HELLEM SPORES WITH A 6-CARBOXYFLUORESCEIN-LABELED RNA-TARGETED OLIGONUCLEOTIDE PROBE

    EPA Science Inventory

    A fluorescent in situ hybridization assay has been developed for the detection of the human-pathogenic microsporidian, Encephalitozoon hellem, in water samples using epifluorescence microscopy. The assay employs a 19-nucleotide species-specific 6-carboxyfluorescein-labeled oligo...

  17. A Fluorescence Lecture Demonstration.

    ERIC Educational Resources Information Center

    Bozzelli, Joseph W.; Kemp, Marwin

    1982-01-01

    Describes fluorescence demonstrations related to several aspects of molecular theory and quantitized energy levels. Demonstrations use fluorescent chemical solutions having luminescence properties spanning the visible spectrum. Also describes a demonstration of spontaneous combustion of familiar substances in chlorine. (JN)

  18. Fluorescent optical position sensor

    DOEpatents

    Weiss, Jonathan D.

    2005-11-15

    A fluorescent optical position sensor and method of operation. A small excitation source side-pumps a localized region of fluorescence at an unknown position along a fluorescent waveguide. As the fluorescent light travels down the waveguide, the intensity of fluorescent light decreases due to absorption. By measuring with one (or two) photodetectors the attenuated intensity of fluorescent light emitted from one (or both) ends of the waveguide, the position of the excitation source relative to the waveguide can be determined by comparing the measured light intensity to a calibrated response curve or mathematical model. Alternatively, excitation light can be pumped into an end of the waveguide, which generates an exponentially-decaying continuous source of fluorescent light along the length of the waveguide. The position of a photodetector oriented to view the side of the waveguide can be uniquely determined by measuring the intensity of the fluorescent light emitted radially at that location.

  19. A simple real-time assay for in vitro translation

    PubMed Central

    Capece, Mark C.; Kornberg, Guy L.; Petrov, Alexey

    2015-01-01

    A high-throughput assay for real-time measurement of translation rates in cell-free protein synthesis (SNAP assay) is described. The SNAP assay enables quantitative, real-time measurement of overall translation rates in vitro via the synthesis of O6-alkylguanine DNA O6-alkyltransferase (SNAP). SNAP production is continuously detected by fluorescence produced by the reaction of SNAP with a range of quenched fluorogenic substrates. The capabilities of the assay are exemplified by measurements of the activities of Escherichia coli MRE600 ribosomes and fluorescently labeled E. coli mutant ribosomes in the PURExpress translation system and by determination of the 50% inhibitory concentrations (IC50) of three common macrolide antibiotics. PMID:25525154

  20. Safe biodegradable fluorescent particles

    DOEpatents

    Martin, Sue I.; Fergenson, David P.; Srivastava, Abneesh; Bogan, Michael J.; Riot, Vincent J.; Frank, Matthias

    2010-08-24

    A human-safe fluorescence particle that can be used for fluorescence detection instruments or act as a safe simulant for mimicking the fluorescence properties of microorganisms. The particle comprises a non-biological carrier and natural fluorophores encapsulated in the non-biological carrier. By doping biodegradable-polymer drug delivery microspheres with natural or synthetic fluorophores, the desired fluorescence can be attained or biological organisms can be simulated without the associated risks and logistical difficulties of live microorganisms.

  1. Atmospheric Nitrogen Fluorescence Yield

    NASA Technical Reports Server (NTRS)

    Adams, J. H., Jr.; Christl, M. J.; Fountain, W. F.; Gregory, J. C.; Martens, K. U.; Sokolsky, Pierre; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Several existing and planned experiments estimate the energies of ultra-high energy cosmic rays from air showers using the atmospheric nitrogen fluorescence. The nitrogen fluorescence yield from air shower electrons depends on the atmospheric composition. We will discuss the uncertainties in the fluorescence yield form electrons in the real atmosphere and describe a concept for a small balloon payload to measure the atmospheric fluorescence yield as a function of attitude.

  2. Fluorescence lifetime excitation cytometry by kinetic dithering.

    PubMed

    Li, Wenyan; Vacca, Giacomo; Castillo, Maryann; Houston, Kevin D; Houston, Jessica P

    2014-07-01

    Flow cytometers are powerful high-throughput devices that capture spectroscopic information from individual particles or cells. These instruments provide a means of multi-parametric analyses for various cellular biomarkers or labeled organelles and cellular proteins. However, the spectral overlap of fluorophores limits the number of fluorophores that can be used simultaneously during experimentation. Time-resolved parameters enable the quantification of fluorescence decay kinetics, thus circumventing common issues associated with intensity-based measurements. This contribution introduces fluorescence lifetime excitation cytometry by kinetic dithering (FLECKD) as a method to capture multiple fluorescence lifetimes using a hybrid time-domain approach. The FLECKD approach excites fluorophores by delivering short pulses of light to cells or particles by rapid dithering and facilitates measurement of complex fluorescence decay kinetics by flow cytometry. Our simulations demonstrated a resolvable fluorescence lifetime value as low as 1.8 ns (±0.3 ns) with less than 20% absolute error. Using the FLECKD instrument, we measured the shortest average fluorescence lifetime value of 2.4 ns and found the system measurement error to be ±0.3 ns (SEM), from hundreds of monodisperse and chemically stable fluorescent microspheres. Additionally, we demonstrate the ability to detect two distinct excited state lifetimes from fluorophores in single cells using FLECKD. This approach presents a new ability to resolve multiple fluorescence lifetimes while retaining the fluidic throughput of a cytometry system. The ability to discriminate more than one average fluorescence lifetime expands the current capabilities of high-throughput and intensity-based cytometry assays as the need to tag one single cell with multiple fluorophores is now widespread.

  3. Engineering luciferase enzymes and substrates for novel assay capabilities

    NASA Astrophysics Data System (ADS)

    Wood, Keith V.

    2004-06-01

    In the development of HTS as a central paradigm of drug discovery, fluorescent reporter molecules have generally been adopted as the favored signal transducer. Nevertheless, luminescence has maintained a prominent position among certain methodologies, most notably genetic reporters. Recently, there has been growing partiality for luminescent assays across a broader range of applications due to their sensitivity, extensive linearity, and robustness to library compounds and complex biological samples. This trend has been fostered by development several new assay designs for diverse targets such as kinases, cytochrome p450's, proteases, apoptosis, and cytotoxicity. This review addresses recent progress made in the use of bioluminescent assays for drug discovery, highlighting new detection capabilities brought about by engineering luciferase enzymes and substrates. In reporter gene applications, modified luciferases have provided greatly improved expression efficiency in mammalian cells, improved responsiveness to changes of transcriptional rate, and increased the magnitude of the reporter response. Highly stabilized luciferase mutants have enabled new assays strategies for high-throughput screening based on detection of ATP and luciferin. Assays based on ATP support rapid analysis of cell metabolism and enzymatic processes coupled to ATP hydrolysis. Although luciferin is found natively only in luminous beetles, coupled assays have been designed using modified forms of luciferin requiring the action of second enzyme to yield luminescence. Due to the very low inherent background and protection of the photon-emitter afforded by the enzyme, bioluminescent assays often outperform the analogous fluorescent assays for analyses performed in multiwell plates.

  4. Fluorescence study of sugars

    NASA Astrophysics Data System (ADS)

    Thongjamroon, Sunida; Pattanaporkratana, Apichart

    2015-07-01

    We studied photoemission of monosaccharides and disaccharides using laser-induced fluorescence spectroscopy. A 532- nm, 10 mW, laser was used to excite the samples and back-scattering signals were collected by a spectrometer. We found that most sugars show weak fluorescence in solid phase but do not fluoresce when dissolved in water solutions. The emission spectra show similar peak intensity at 590 nm, but they are different in emission intensities. We suggest that the fluorescence spectra may be used to differentiate sugar type, even though the origin of the fluorescence is unclear and needed further study.

  5. Monitoring helicase-catalyzed DNA unwinding by fluorescence anisotropy and fluorescence cross-correlation spectroscopy.

    PubMed

    Xi, Xu Guang; Deprez, Eric

    2010-07-01

    In order to elucidate molecular mechanism of helicases, we have developed two new rapid and sensitive fluorescence assays to measure helicase-mediated DNA unwinding. The fluorescence anisotropy (FA) assay takes the advantage of the substantial change in fluorescence polarization upon helicase binding to DNA and DNA unwinding. The extent of depolarization depends on the rate of tumbling of the fluorescently labeled DNA molecule, which decreases with increasing size. This assay therefore can simultaneously monitor the DNA binding of helicase and the subsequent helicase-catalyzed DNA unwinding in real-time. For size limitation reasons, the FA approach is more suitable for single-turnover kinetic studies. A fluorescence cross-correlation spectroscopy method (FCCS) is also described for measuring DNA unwinding. This assay is based on the degree of concomitant diffusion of the two complementary DNA strands in a small excitation volume, each labeled by a different color. The decrease in the amplitude of the cross-correlation signal is then directly related to the unwinding activity. By contrast with FA, the FCCS-based assay can be used to measure the unwinding activity under both single- and multiple-turnover conditions, with no limitation related to the size of the DNA strands constituting the DNA substrate. These methods used together have proven to be useful for studying molecular mechanism underlying efficient motor function of helicases. Here, we describe the theoretical basis and framework of FA and FCCS and some practical implications for measuring DNA binding and unwinding. We discuss sample preparation and potential troubleshooting. Special attention is paid to instrumentation, data acquisition and analysis.

  6. Multicolor Conjugated Polymer Dots for Biological Fluorescence Imaging

    PubMed Central

    Wu, Changfeng; Bull, Barbara; Szymanski, Craig; Christensen, Kenneth; McNeill, Jason

    2009-01-01

    Highly fluorescent conjugated polymer dots were developed for demanding applications such as fluorescence imaging in live cells. These nanoparticles exhibit small particle diameters, extraordinary fluorescence brightness, and excellent photostability. Single particle fluorescence imaging and kinetic studies indicate much higher emission rates (∼108 s-1) and little or no blinking of the nanoparticles as compared to typical results for single dye molecules and quantum dots. Analysis of single particle photobleaching trajectories reveals excellent photostability — as many as 109 or more photons emitted per nanoparticle prior to irreversible photobleaching. The superior figures of merit of these new fluorescent probes, together with the demonstration of cellular imaging, indicate their enormous potential for demanding fluorescence-based imaging and sensing applications such as high speed super-resolution single molecule/particle tracking and highly sensitive assays. PMID:19206410

  7. Plasmon-Enhanced Fluorescence Biosensors: a Review.

    PubMed

    Bauch, Martin; Toma, Koji; Toma, Mana; Zhang, Qingwen; Dostalek, Jakub

    Surfaces of metallic films and metallic nanoparticles can strongly confine electromagnetic field through its coupling to propagating or localized surface plasmons. This interaction is associated with large enhancement of the field intensity and local optical density of states which provides means to increase excitation rate, raise quantum yield, and control far field angular distribution of fluorescence light emitted by organic dyes and quantum dots. Such emitters are commonly used as labels in assays for detection of chemical and biological species. Their interaction with surface plasmons allows amplifying fluorescence signal (brightness) that accompanies molecular binding events by several orders of magnitude. In conjunction with interfacial architectures for the specific capture of target analyte on a metallic surface, plasmon-enhanced fluorescence (PEF) that is also referred to as metal-enhanced fluorescence (MEF) represents an attractive method for shortening detection times and increasing sensitivity of various fluorescence-based analytical technologies. This review provides an introduction to fundamentals of PEF, illustrates current developments in design of metallic nanostructures for efficient fluorescence signal amplification that utilizes propagating and localized surface plasmons, and summarizes current implementations to biosensors for detection of trace amounts of biomarkers, toxins, and pathogens that are relevant to medical diagnostics and food control.

  8. CPTAC Assay Portal: a repository of targeted proteomic assays

    SciTech Connect

    Whiteaker, Jeffrey R.; Halusa, Goran; Hoofnagle, Andrew N.; Sharma, Vagisha; MacLean, Brendan; Yan, Ping; Wrobel, John; Kennedy, Jacob; Mani, DR; Zimmerman, Lisa J.; Meyer, Matthew R.; Mesri, Mehdi; Rodriguez, Henry; Abbateillo, Susan E.; Boja, Emily; Carr, Steven A.; Chan, Daniel W.; Chen, Xian; Chen, Jing; Davies, Sherri; Ellis, Matthew; Fenyo, David; Hiltket, Tara; Ketchum, Karen; Kinsinger, Christopher; Kuhn, Eric; Liebler, Daniel; Lin, De; Liu, Tao; Loss, Michael; MacCoss, Michael; Qian, Weijun; Rivers, Robert; Rodland, Karin D.; Ruggles, Kelly; Scott, Mitchell; Smith, Richard D.; Thomas, Stefani N.; Townsend, Reid; Whiteley, Gordon; Wu, Chaochao; Zhang, Hui; Zhang, Zhen; Paulovich, Amanda G.

    2014-06-27

    To address these issues, the Clinical Proteomic Tumor Analysis Consortium (CPTAC) of the National Cancer Institute (NCI) has launched an Assay Portal (http://assays.cancer.gov) to serve as a public repository of well-characterized quantitative, MS-based, targeted proteomic assays. The purpose of the CPTAC Assay Portal is to facilitate widespread adoption of targeted MS assays by disseminating SOPs, reagents, and assay characterization data for highly characterized assays. A primary aim of the NCI-supported portal is to bring together clinicians or biologists and analytical chemists to answer hypothesis-driven questions using targeted, MS-based assays. Assay content is easily accessed through queries and filters, enabling investigators to find assays to proteins relevant to their areas of interest. Detailed characterization data are available for each assay, enabling researchers to evaluate assay performance prior to launching the assay in their own laboratory.

  9. Lateral flow assays

    PubMed Central

    Koczula, Katarzyna M.

    2016-01-01

    Lateral flow assays (LFAs) are the technology behind low-cost, simple, rapid and portable detection devices popular in biomedicine, agriculture, food and environmental sciences. This review presents an overview of the principle of the method and the critical components of the assay, focusing on lateral flow immunoassays. This type of assay has recently attracted considerable interest because of its potential to provide instantaneous diagnosis directly to patients. The range and interpretation of results and parameters used for evaluation of the assay will also be discussed. The main advantages and disadvantages of LFAs will be summarized and relevant future improvements to testing devices and strategies will be proposed. Finally, the major recent advances and future diagnostic applications in the LFA field will be explored. PMID:27365041