Science.gov

Sample records for assay tru waste

  1. Nondestructive boxed transuranic (TRU) waste assay systems

    NASA Astrophysics Data System (ADS)

    Caldwell, John T.; Jones, Stephanie A.; Lucero, Randy F.

    1999-01-01

    A brief history of boxed waste assay systems (primarily those developed at Los Alamos National Laboratory) is presented. The characteristics and design process involved with current generation systems--as practiced by BII--are also discussed in some detail. Finally, a specific boxed waste assay system and acceptance test results are presented. This system was developed by BII and installed at the Waste Receiving and Packaging (WRAP) facility in Hanford, Washington in early 1997. The WRAP system combines imaging passive/active neutron (IPAN) techniques with gamma- ray energy analysis (GEA) to assay crates up to 2.5 m X 2.5 m X 6.5 m in size. (Systems that incorporate both these methodologies are usually denoted IPAN/GEA types.) Two separate gamma-ray measurements are accomplished utilizing 16 arrayed NaI detectors and a moveable HPGe detector, while 3He detectors acquire both active and passive neutron data. These neutron measurements use BII's proprietary imaging methodology. Acceptance testing of the system was conducted at Hanford in January 1998. The system's operating performance was evaluated based on accuracy and sensitivity requirements for three different matrix types. Test results indicate an average 13% active mode accuracy for 10 nCi/g loadings of Pu waste and 5% passive mode accuracy for 10 g loadings of Pu waste. Sensitivity testing demonstrated an active mode lower limit of detection of less than 5 nCi/g of 239Pu for the medium matrix and less than 20 pCi/g of fission and activation products at 3(sigma) above background.

  2. Detector Evaluation for RH-TRU Nuclear Waste Assay

    NASA Astrophysics Data System (ADS)

    Humphrey, D. L.; Vourvopoulos, G.; Womble, P. C.; Schultz, F. J.

    1996-05-01

    A number of devices are available to assay Contact Handled-Transuranic (CH-TRU) for fissile material. One assay technique employs a pulsed fast-neutron source of 10^8 n/s to provide interrogation neutrons that upon thermalization produce fissions in any fissile material. The fission neutrons, counted using ^3He detector packs, are separated from the interrogation neutrons by their longer die-away time. Remote Handled-Transuranic (RH-TRU) waste, because of high neutron background, requires >10^10 fast n/s for interrogation. Under these conditions, the ^3He detectors are saturated and require considerable time before the number of interrogation neutrons is low enough to see the fission neutrons. A liquid scintillator is being evaluated for counting the fission neutrons. In the scintillators, the interrogation neutrons disappear as soon as the source is pulsed off. In addition, the fast scintillator offers the opportunity for coincidence methods to discriminate against the background neutrons. Results of evaluation tests will be given. ORNL, managed by Lockheed Martin Energy Research Corp. for the U.S. DOE under contract DE-AC05-96OR22464.

  3. Nondestructive assay of TRU waste using gamma-ray active and passive computed tomography

    SciTech Connect

    Roberson, G.P.; Decman, D.; Martz, H.; Keto, E.R.; Johansson, E.M.

    1995-10-04

    The authors have developed an active and passive computed tomography (A and PCT) scanner for assaying radioactive waste drums. Here they describe the hardware components of their system and the software used for data acquisition, gamma-ray spectroscopy analysis, and image reconstruction. They have measured the performance of the system using ``mock`` waste drums and calibrated radioactive sources. They also describe the results of measurements using this system to assay a real TRU waste drum with relatively low Pu content. The results are compared with X-ray NDE studies of the same TRU waste drum as well as assay results from segmented gamma scanner (SGS) measurements.

  4. Application of gamma-ray active and passive computed tomography to nondestructively assay TRU waste

    SciTech Connect

    Martz, H.E.; Decman, D.J.; Roberson, G.P.; Johansson, E.M.; Keto, E.R.

    1996-05-01

    The authors have developed an active and passive computed tomography scanner for assaying radioactive waste drums. They describe the hardware and software components of the system used for data acquisition, gamma-ray spectroscopy analysis, and image reconstruction. They have measured the performance of the system using mock waste drums and calibrated radioactive sources. They describe the results of measurements using this system to assay a real TRU waste drum with relatively low Pu content.

  5. Performance Demonstration Program Plan for Nondestructive Assay of Drummed Wastes for the TRU Waste Characterization Program

    SciTech Connect

    N /A

    2009-04-01

    Each testing and analytical facility performing waste characterization activities for the Waste Isolation Pilot Plant (WIPP) participates in the Performance Demonstration Program (PDP) to comply with the Transuranic Waste Acceptance Criteria for the Waste Isolation Pilot Plant (WAC) (DOE/WIPP-02-3122) and the Quality Assurance Program Document (QAPD) (CBFO-94-1012). The PDP serves as a quality control check for data generated in the characterization of waste destined for WIPP. Single blind audit samples are prepared and distributed to each of the facilities participating in the PDP. The PDP evaluates analyses of simulated headspace gases, constituents of the Resource Conservation and Recovery Act (RCRA), and transuranic (TRU) radionuclides using nondestructive assay (NDA) techniques.

  6. Performance Demonstration Program Plan for Nondestructive Assay of Boxed Wastes for the TRU Waste Characterization Program

    SciTech Connect

    None, None

    2009-10-01

    Each testing and analytical facility performing waste characterization activities for the Waste Isolation Pilot Plant (WIPP) participates in the Performance Demonstration Program (PDP) to comply with the Transuranic Waste Acceptance Criteria for the Waste Isolation Pilot Plant (WAC) (DOE/WIPP-02-3122) and the Quality Assurance Program Document (QAPD) (CBFO-94-1012). The PDP serves as a quality control check for data generated in the characterization of waste destined for WIPP. Single-blind audit samples are prepared and distributed to each of the facilities participating in the PDP. Different PDPs evaluate the analyses of simulated headspace gases (HSGs), constituents of the Resource Conservation and Recovery Act (RCRA), and transuranic (TRU) radionuclides using nondestructive assay (NDA) techniques.

  7. A hybrid neural network structure for application to nondestructive TRU waste assay

    SciTech Connect

    Becker, G.

    1995-12-31

    The determination of transuranic (TRU) and associated radioactive material quantities entrained in waste forms is a necessary component. of waste characterization. Measurement performance requirements are specified in the National TRU Waste Characterization Program quality assurance plan for which compliance must be demonstrated prior to the transportation and disposition of wastes. With respect to this criterion, the existing TRU nondestructive waste assay (NDA) capability is inadequate for a significant fraction of the US Department of Energy (DOE) complex waste inventory. This is a result of the general application of safeguard-type measurement and calibration schemes to waste form configurations. Incompatibilities between such measurement methods and actual waste form configurations complicate regulation compliance demonstration processes and illustrate the need for an alternate measurement interpretation paradigm. Hence, it appears necessary to supplement or perhaps restructure the perceived solution and approach to the waste NDA problem. The first step is to understand the magnitude of the waste matrix/source attribute space associated with those waste form configurations in inventory and how this creates complexities and unknowns with respect to existing NDA methods. Once defined and/or bounded, a conceptual method must be developed that specifies the necessary tools and the framework in which the tools are used. A promising framework is a hybridized neural network structure. Discussed are some typical complications associated with conventional waste NDA techniques and how improvements can be obtained through the application of neural networks.

  8. Performance Demonstration Program Plan for Nondestructive Assay of Boxed Wastes for the TRU Waste Characterization Program

    SciTech Connect

    Carlsbad Field Office

    2001-01-31

    The Performance Demonstration Program (PDP) for nondestructive assay (NDA) consists of a series of tests to evaluate the capability for NDA of transuranic (TRU) waste throughout the Department of Energy (DOE) complex. Each test is termed a PDP cycle. These evaluation cycles provide an objective measure of the reliability of measurements obtained from NDA systems used to characterize the radiological constituents of TRU waste. The primary documents governing the conduct of the PDP are the Waste Acceptance Criteria for the Waste Isolation Pilot Plant (WAC; DOE 1999a) and the Quality Assurance Program Document (QAPD; DOE 1999b). The WAC requires participation in the PDP; the PDP must comply with the QAPD and the WAC. The WAC contains technical and quality requirements for acceptable NDA. This plan implements the general requirements of the QAPD and applicable requirements of the WAC for the NDA PDP for boxed waste assay systems. Measurement facilities demonstrate acceptable performance by the successful testing of simulated waste containers according to the criteria set by this PDP Plan. Comparison among DOE measurement groups and commercial assay services is achieved by comparing the results of measurements on similar simulated waste containers reported by the different measurement facilities. These tests are used as an independent means to assess the performance of measurement groups regarding compliance with established quality assurance objectives (QAO’s). Measurement facilities must analyze the simulated waste containers using the same procedures used for normal waste characterization activities. For the boxed waste PDP, a simulated waste container consists of a modified standard waste box (SWB) emplaced with radioactive standards and fabricated matrix inserts. An SWB is a waste box with ends designed specifically to fit the TRUPACT-II shipping container. SWB’s will be used to package a substantial volume of the TRU waste for disposal. These PDP sample

  9. Statistical sampling plan for the TRU waste assay facility

    SciTech Connect

    Beauchamp, J. J.; Wright, T.; Schultz, F. J.; Haff, K.; Monroe, R. J.

    1983-08-01

    Due to limited space, there is a need to dispose appropriately of the Oak Ridge National Laboratory transuranic waste which is presently stored below ground in 55-gal (208-l) drums within weather-resistant structures. Waste containing less than 100 nCi/g transuranics can be removed from the present storage and be buried, while waste containing greater than 100 nCi/g transuranics must continue to be retrievably stored. To make the necessary measurements needed to determine the drums that can be buried, a transuranic Neutron Interrogation Assay System (NIAS) has been developed at Los Alamos National Laboratory and can make the needed measurements much faster than previous techniques which involved ..gamma..-ray spectroscopy. The previous techniques are reliable but time consuming. Therefore, a validation study has been planned to determine the ability of the NIAS to make adequate measurements. The validation of the NIAS will be based on a paired comparison of a sample of measurements made by the previous techniques and the NIAS. The purpose of this report is to describe the proposed sampling plan and the statistical analyses needed to validate the NIAS. 5 references, 4 figures, 5 tables.

  10. TRU Waste Assay Methodology with the Combined Thermal Epithermal Neutron (CTEN) System

    SciTech Connect

    Veilleux, J. M.; Enter, J. A.

    2003-02-27

    The CTEN assay system is designed to measure plutonium bearing 208-L waste drums and make the transuranic versus low-level waste determination. The system was certified for Waste Isolation Pilot Plant operations and the Environmental Protection Agency approved the CTEN in 2002. It is the only system capable of making the transuranic/low-level waste (TRU/LLW) determination since it can routinely assay below 100 nCi/g. The system conducts a measurement by using either (or both) an active 14 MeV neutron pulse to induce fission in 239Pu and 241Pu or measures the spontaneous fission properties of 238Pu, 240Pu and 242Pu. When the coincidence neutron signal is combined with mass fraction data from a gamma system, the result is the total plutonium mass. The system's lower limit of detection is as low as 2 mg of weapons grade plutonium, making it an ideal platform to make the TRU/LLW determination. Analysis of an assay is made with visual basic application driven subroutines and Micros oft Excel spreadsheets. Input values and calculations include: the raw neutron scaler and coincidence counts; mass fraction information; plutonium mass; alpha, total and TRU activity; thermal power, 239Pu Equivalent Curies; fissile gram equivalent mass; decay heat; and uncertainties associated with each parameter. A general diagnostic analysis is performed for each assay to facilitate a technical review of the results. The results of analysis from 372 waste drums are summarized. The results indicate that modifying current operating procedures involving the use of acceptable knowledge isotope data and use of the lower detection limit could increase the number of certifiable assays from 38% to 66%.

  11. Total Measurement Uncertainty (TMU) for Nondestructive Assay of Transuranic (TRU) Waste at the WRAP Facility

    SciTech Connect

    WILLS, C.E.

    2000-02-24

    The Waste Receiving and Processing (WRAP) facility, located on the Hanford Site in southeast Washington, is a key link in the certification of Hanford's transuranic (TRU) waste for shipment to the Waste Isolation Pilot Plant (WIPP). Waste characterization is one of the vital functions performed at WRAP, and nondestructive assay (NDA) measurements of TRU waste containers is one of two required methods used for waste characterization (Reference 1). Various programs exist to ensure the validity of waste characterization data; all of these cite the need for clearly defined knowledge of uncertainty, associated with any measurements taken. All measurements have an inherent uncertainty associated with them. The combined effect of all uncertainties associated with a measurement is referred to as the Total Measurement Uncertainty (TMU). The NDA measurement uncertainties can be numerous and complex. In addition to system-induced measurement uncertainty, other factors contribute to the TMU, each associated with a particular measurement. The NDA measurements at WRAP are based on processes (radioactive decay and induced fission) which are statistical in nature. As a result, the proper statistical summation of the various uncertainty components is essential. This report examines the contributing factors to NDA measurement uncertainty at WRAP. The significance of each factor on the TMU is analyzed, and a final method is given for determining the TMU for NDA measurements at WRAP. As more data becomes available, and WRAP gains in operational experience, this report will be reviewed semi-annually and updated as necessary. This report also includes the data flow paths for the analytical process in the radiometric determinations.

  12. Design and operation of a passive neutron monitor for assaying the TRU content of solid wastes

    SciTech Connect

    Brodzinski, R.L.; Brown, D.P.; Rieck, H.G. Jr.; Rogers, L.A.

    1984-02-01

    A passive neutron monitor has been designed and built for determining the residual transuranic (TRU) and plutonium content of chopped leached fuel hulls and other solid wastes from spent Fast Flux Test Facility (FFTF) fuel. The system was designed to measure as little as 8 g of plutonium or 88 mg of TRU in a waste package as large as a 208-l drum which could be emitting up to 220,000 R/hr of gamma radiation. For practical purposes, maximum assay times were chosen to be 10,000 sec. The monitor consists of 96 /sup 10/BF/sub 3/ neutron sensitive proportional counting tubes each 5.08 cm in diameter and 183 cm in active length. Tables of neutron emission rates from both spontaneous fission and (..cap alpha..,n) reactions on oxygen are given for all contributing isotopes expected to be present in spent FFTF fuel. Tables of neutron yeilds from isotopic compositions predicted for various exposures and cooling times are also given. Methods of data reduction and sources, magnitude, and control of errors are discussed. Backgrounds and efficiencies have been measured and are reported. A section describing step-by-step operational procedures is included. Guidelines and procedures for quality control and troubleshooting are also given. 13 references, 15 figures, 4 tables.

  13. CALORIMETRY OF TRU WASTE MATERIALS

    SciTech Connect

    C. RUDY; ET AL

    2000-08-01

    Calorimetry has been used for accountability measurements of nuclear material in the US. Its high accuracy, insensitivity to matrix effects, and measurement traceability to National Institute of Standards and Technology have made it the primary accountability assay technique for plutonium (Pu) and tritium in the Department of Energy complex. A measurement of Pu isotopic composition by gamma-ray spectroscopy is required to transform the calorimeter measurement into grams Pu. The favorable calorimetry attributes allow it to be used for verification measurements, for production of secondary standards, for bias correction of other faster nondestructive (NDA) methods, or to resolve anomalous measurement results. Presented in this paper are (1) a brief overview of calorimeter advantages and disadvantages, (2) a description of projected large volume calorimeters suitable for waste measurements, and (3) a new technique, direct measurement of transuranic TRU waste alpha-decay activity through calorimetry alone.

  14. TRU waste-sampling program

    SciTech Connect

    Warren, J.L.; Zerwekh, A.

    1985-08-01

    As part of a TRU waste-sampling program, Los Alamos National Laboratory retrieved and examined 44 drums of /sup 238/Pu- and /sup 239/Pu-contaminated waste. The drums ranged in age from 8 months to 9 years. The majority of drums were tested for pressure, and gas samples withdrawn from the drums were analyzed by a mass spectrometer. Real-time radiography and visual examination were used to determine both void volumes and waste content. Drum walls were measured for deterioration, and selected drum contents were reassayed for comparison with original assays and WIPP criteria. Each drum tested at atmospheric pressure. Mass spectrometry revealed no problem with /sup 239/Pu-contaminated waste, but three 8-month-old drums of /sup 238/Pu-contaminated waste contained a potentially hazardous gas mixture. Void volumes fell within the 81 to 97% range. Measurements of drum walls showed no significant corrosion or deterioration. All reassayed contents were within WIPP waste acceptance criteria. Five of the drums opened and examined (15%) could not be certified as packaged. Three contained free liquids, one had corrosive materials, and one had too much unstabilized particulate. Eleven drums had the wrong (or not the most appropriate) waste code. In many cases, disposal volumes had been inefficiently used. 2 refs., 23 figs., 7 tabs.

  15. Total Measurement Uncertainty (TMU) for Nondestructive Assay of Transuranic (TRU) Waste at the WRAP Facility

    SciTech Connect

    CANTALOUB, M.G.

    2000-05-22

    At the WRAP facility, there are two identical imaging passive/active neutron (IPAN) assay systems and two identical gamma energy assay (GEA) systems. Currently, only the GEA systems are used to characterize waste, therefore, only the GEA systems are addressed in this document. This document contains the limiting factors relating to the waste drum analysis for shipments destined for WIPP. The TMU document provides the uncertainty basis in the NDA analysis of waste containers at the WRAP facility. The defined limitations for the current analysis scheme are as follows: The WRAP waste stream debris is from the Hanford Plutonium Finishing Plant's process lines, primarily combustible materials. Plutonium analysis range is from the minimum detectable concentration (MDC), Reference 6, to 160 grams (8). The GEA system calibration density ranges from 0.013 g/cc to 1.6 g/cc. PDP Plutonium drum densities were evaluated from 0.065 g/cc to 0.305 gkc. PDP Plutonium source weights ranged from 0.030 g to 3 18 g, in both empty and combustibles matrix drums. The GEA system design density correction macroscopic absorption cross section table (MAC) is Lucite, a material representative of combustible waste. Drums with material not fitting the debris waste criteria are targeted for additional calculations, reviews, and potential re-analysis using a calibration suited for the waste type.

  16. Total Measurement Uncertainty (TMU) for Nondestructive Assay of Transuranic (TRU) Waste at the WRAP Facility

    SciTech Connect

    CANTALOUB, M.G.

    2000-10-20

    At the WRAP facility, there are two identical imaging passive/active neutron (IPAN) assay systems and two identical gamma energy assay (GEA) systems. Currently, only the GEA systems are used to characterize waste, therefore, only the GEA systems are addressed in this document. This document contains the limiting factors relating to the waste drum analysis for shipments destined for WIPP. The TMU document provides the uncertainty basis in the NDA analysis of waste containers at the WRAP facility. The defined limitations for the current analysis scheme are as follows: (1) The WRAP waste stream debris is from the Hanford Plutonium Finishing Plant's process lines, primarily combustible materials. (2) Plutonium analysis range is from the minimum detectable concentration (MDC), Reference 6, to 200 grams (g). (3) The GEA system calibration density ranges from 0.013 g/cc to 1.6 g/cc. (4) PDP Plutonium drum densities were evaluated from 0.065 g/cc to 0.305 g/cc. (5) PDP Plutonium source weights ranged from 0.030 g to 318 g, in both empty and combustibles matrix drums. (6) The GEA system design density correction mass absorption coefficient table (MAC) is Lucite, a material representative of combustible waste. (7) Drums with material not fitting the debris waste criteria are targeted for additional calculations, reviews, and potential re-analysis using a calibration suited for the waste type.

  17. Transuranic (TRU) Waste Phase I Retrieval Plan

    SciTech Connect

    MCDONALD, K.M.

    2000-09-28

    From 1970 to 1987, TRU and suspect TRU wastes at Hanford were placed in the SWBG. At the time of placement in the SWBG these wastes were not regulated under existing Resource Conservation and Recovery Act (RCRA) regulations, since they were generated and disposed of prior to the effective date of RCRA at the Hanford Site (1987). From the standpoint of DOE Order 5820.2A1, the TRU wastes are considered retrievably stored, and current plans are to retrieve these wastes for shipment to WIPP for disposal. This plan provides a strategy for the Phase I retrieval that meets the intent of TPA milestone M-91 and Project W-113, and incorporates the lessons learned during TRU retrieval campaigns at Hanford, LANL, and SRS. As in the original Project W-113 plans, the current plan calls for examination of approximately 10,000 suspect-TRU drums located in the 218-W-4C burial ground followed by the retrieval of those drums verified to contain TRU waste. Unlike the older plan, however, this plan proposes an open-air retrieval scenario similar to those used for TRU drum retrieval at LANL and SRS. Phase I retrieval consists of the activities associated with the assessment of approximately 10,000 55-gallon drums of suspect TRU-waste in burial ground 218-W-4C and the retrieval of those drums verified to contain TRU waste. Four of the trenches in 218-W-4C (Trenches 1, 4, 20, and 29) are prime candidates for Phase I retrieval because they contain large numbers of suspect TRU drums, stacked from 2 to 5 drums high, on an asphalt pad. In fact, three of the trenches (Trenches 1 , 20, and 29) contain waste that has not been covered with soil, and about 1500 drums can be retrieved without excavation. The other three trenches in 218-W-4C (Trenches 7, 19, and 24) are not candidates for Phase I retrieval because they contain significant numbers of boxes. Drums will be retrieved from the four candidate trenches, checked for structural integrity, overpacked, if necessary, and assayed at the burial

  18. Transuranic (TRU) Waste Phase I Retrieval Plan

    SciTech Connect

    MCDONALD, K.M.

    1999-08-27

    Phase I retrieval of post-1970 TRU wastes from burial ground 218-W-4C can be done in a safe, efficient, and cost-effective manner. Initiating TRU retrieval by retrieving uncovered drums from Trenches 1, 20, and 29, will allow retrieval to begin under the current SWBG safety authorization basis. The retrieval of buried drums from Trenches 1, 4, 20, and 29, which will require excavation, will commence once the uncovered drum are retrieved. This phased approach allows safety analysis for drum venting and drum module excavation to be completed and approved before the excavation proceeds. In addition, the lessons learned and the operational experience gained from the retrieval of uncovered drums can be applied to the more complicated retrieval of the buried drums. Precedents that have been set at SRS and LANL to perform retrieval without a trench cover, in the open air, should be followed. Open-air retrieval will result in significant cost savings over the original plans for Phase I retrieval (Project W-113). Based on LANL and SRS experience, open-air retrieval will have no adverse impacts to the environment or to the health and safety of workers or the public. Assaying the waste in the SWBG using a mobile assay system, will result in additional cost savings. It is expected that up to 50% of the suspect-TRU wastes will assay as LLW, allowing those waste to remain disposed of in the SWBG. Further processing, with its associated costs, will only occur to the portion of the waste that is verified to be TRU. Retrieval should be done, to the extent possible, under the current SWBG safety authorization basis as a normal part of SWBG operations. The use of existing personnel and existing procedures should be optimized. By working retrieval campaigns, typically during the slow months, it is easier to coordinate the availability of necessary operations personnel, and it is easier to coordinate the availability of a mobile assay vendor.

  19. Neutron and gamma-ray nondestructive examination of contact-handled transuranic waste at the ORNL TRU Waste Drum Assay Facility

    SciTech Connect

    Schultz, F.J.; Coffey, D.E.; Norris, L.B.; Haff, K.W.

    1985-03-01

    A nondestructive assay system, which includes the Neutron Assay System (NAS) and the Segmented Gamma Scanner (SGS), for the quantification of contact-handled (<200 mrem/h total radiation dose rate at contact with container) transuranic elements (CH-TRU) in bulk solid waste contained in 208-L and 114-L drums has been in operation at the Oak Ridge National Laboratory since April 1982. The NAS has been developed and demonstrated by Los Alamos National Laboratory (LANL) and the Oak Ridge National Laboratory (ORNL) for use by most US Department of Energy Defense Plant (DOE-DP) sites. More research and development is required, however, before the NAS can provide complete assay results for other than routine defense waste. To date, 525 ORNL waste drums have been assayed, with varying degrees of success. The isotopic complexity of the ORNL waste creates a correspondingly complex assay problem. The NAS and SGS assay data are presented and discussed. Neutron matrix effects, the destructive examination facility, and enriched uranium fuel-element assays are also discussed.

  20. Hanford Site Transuranic (TRU) Waste Certification Plan

    SciTech Connect

    GREAGER, T.M.

    2000-12-06

    As a generator of transuranic (TRU) and TRU mixed waste destined for disposal at the Waste Isolation Pilot Plant (WIPP), the Hanford Site must ensure that its TRU waste meets the requirements of US. Department of Energy (DOE) 0 435.1, ''Radioactive Waste Management,'' and the Contact-Handled (CH) Transuranic Waste Acceptance Criteria for the Waste Isolation Pilot Plant (WIPP-WAC). WIPP-WAC requirements are derived from the WIPP Technical Safety Requirements, WIPP Safety Analysis Report, TRUPACT-II SARP, WIPP Land Withdrawal Act, WIPP Hazardous Waste Facility Permit, and Title 40 Code of Federal Regulations (CFR) 191/194 Compliance Certification Decision. The WIPP-WAC establishes the specific physical, chemical, radiological, and packaging criteria for acceptance of defense TRU waste shipments at WIPP. The WPP-WAC also requires that participating DOE TRU waste generator/treatment/storage sites produce site-specific documents, including a certification plan, that describe their program for managing TRU waste and TRU waste shipments before transferring waste to WIPP. Waste characterization activities provide much of the data upon which certification decisions are based. Waste characterization requirements for TRU waste and TRU mixed waste that contains constituents regulated under the Resource Conservation and Recovery Act (RCRA) are established in the WIPP Hazardous Waste Facility Permit Waste Analysis Plan (WAP). The Hanford Site Quality Assurance Project Plan (QAPjP) (HNF-2599) implements the applicable requirements in the WAP and includes the qualitative and quantitative criteria for making hazardous waste determinations. The Hanford Site must also ensure that its TRU waste destined for disposal at WPP meets requirements for transport in the Transuranic Package Transporter-11 (TRUPACT-11). The US. Nuclear Regulatory Commission (NRC) establishes the TRUPACT-11 requirements in the Safety Analysis Report for the TRUPACT-II Shipping Package (TRUPACT-11 SARP). In

  1. Hanford Site Transuranic (TRU) Waste Certification Plan

    SciTech Connect

    GREAGER, T.M.

    2000-12-01

    As a generator of transuranic (TRU) and TRU mixed waste destined for disposal at the Waste Isolation Pilot Plant (WIPP), the Hanford Site must ensure that its TRU waste meets the requirements of US. Department of Energy (DOE) 0 435.1, ''Radioactive Waste Management,'' and the Contact-Handled (CH) Transuranic Waste Acceptance Criteria for the Waste Isolation Pilot Plant (WIPP-WAC). WIPP-WAC requirements are derived from the WIPP Technical Safety Requirements, WIPP Safety Analysis Report, TRUPACT-II SARP, WIPP Land Withdrawal Act, WIPP Hazardous Waste Facility Permit, and Title 40 Code of Federal Regulations (CFR) 191/194 Compliance Certification Decision. The WIPP-WAC establishes the specific physical, chemical, radiological, and packaging criteria for acceptance of defense TRU waste shipments at WIPP. The WPP-WAC also requires that participating DOE TRU waste generator/treatment/storage sites produce site-specific documents, including a certification plan, that describe their program for managing TRU waste and TRU waste shipments before transferring waste to WIPP. Waste characterization activities provide much of the data upon which certification decisions are based. Waste characterization requirements for TRU waste and TRU mixed waste that contains constituents regulated under the Resource Conservation and Recovery Act (RCRA) are established in the WIPP Hazardous Waste Facility Permit Waste Analysis Plan (WAP). The Hanford Site Quality Assurance Project Plan (QAPjP) (HNF-2599) implements the applicable requirements in the WAP and includes the qualitative and quantitative criteria for making hazardous waste determinations. The Hanford Site must also ensure that its TRU waste destined for disposal at WPP meets requirements for transport in the Transuranic Package Transporter-11 (TRUPACT-11). The US. Nuclear Regulatory Commission (NRC) establishes the TRUPACT-11 requirements in the Safety Analysis Report for the TRUPACT-II Shipping Package (TRUPACT-11 SARP). In

  2. Neutron multiplication error in TRU waste measurements

    SciTech Connect

    Veilleux, John; Stanfield, Sean B; Wachter, Joe; Ceo, Bob

    2009-01-01

    Total Measurement Uncertainty (TMU) in neutron assays of transuranic waste (TRU) are comprised of several components including counting statistics, matrix and source distribution, calibration inaccuracy, background effects, and neutron multiplication error. While a minor component for low plutonium masses, neutron multiplication error is often the major contributor to the TMU for items containing more than 140 g of weapons grade plutonium. Neutron multiplication arises when neutrons from spontaneous fission and other nuclear events induce fissions in other fissile isotopes in the waste, thereby multiplying the overall coincidence neutron response in passive neutron measurements. Since passive neutron counters cannot differentiate between spontaneous and induced fission neutrons, multiplication can lead to positive bias in the measurements. Although neutron multiplication can only result in a positive bias, it has, for the purpose of mathematical simplicity, generally been treated as an error that can lead to either a positive or negative result in the TMU. While the factors that contribute to neutron multiplication include the total mass of fissile nuclides, the presence of moderating material in the matrix, the concentration and geometry of the fissile sources, and other factors; measurement uncertainty is generally determined as a function of the fissile mass in most TMU software calculations because this is the only quantity determined by the passive neutron measurement. Neutron multiplication error has a particularly pernicious consequence for TRU waste analysis because the measured Fissile Gram Equivalent (FGE) plus twice the TMU error must be less than 200 for TRU waste packaged in 55-gal drums and less than 325 for boxed waste. For this reason, large errors due to neutron multiplication can lead to increased rejections of TRU waste containers. This report will attempt to better define the error term due to neutron multiplication and arrive at values that are

  3. Hanford Site Transuranic (TRU) Waste Certification Plan

    SciTech Connect

    GREAGER, T.M.

    1999-12-14

    The Hanford Site Transuranic Waste Certification Plan establishes the programmatic framework and criteria with in which the Hanford Site ensures that contract-handled TRU wastes can be certified as compliant with the WIPP WAC and TRUPACT-II SARP.

  4. Hanford Site Transuranic (TRU) Waste Certification Plan

    SciTech Connect

    GREAGER, T.M.

    1999-09-09

    The Hanford Site Transuranic Waste Certification Plan establishes the programmatic framework and criteria within which the Hanford Site ensures that contract-handled TRU wastes can be certified as compliant with the WIPP WAC and TRUPACT-II SARP.

  5. TRU waste from the Superblock

    SciTech Connect

    Coburn, T.T.

    1997-05-27

    This data analysis is to show that weapons grade plutonium is of uniform composition to the standards set by the Waste-Isolation Pilot Plant (WIPP) Transuranic Waste Characterization Quality Assurance Program Plan (TRUW Characterization QAPP, Rev. 2, DOE, Carlsbad Area Office, November 15, 1996). The major portion of Superblock transuranic (TRU) waste is glove-box trash contaminated with weapons grade plutonium. This waste originates in the Building 332 (B332) radioactive-materials area (RMA). Because each plutonium batch brought into the B332 RMA is well characterized with regard to nature and quantity of transuranic nuclides present, waste also will be well characterized without further analytical work, provided the batches are quite similar. A sample data set was created by examining the 41 incoming samples analyzed by Ken Raschke (using a {gamma}-ray spectrometer) for isotopic distribution and by Ted Midtaune (using a calorimeter) for mass of radionuclides. The 41 samples were from separate batches analyzed May 1993 through January 1997. All available weapons grade plutonium data in Midtaune's files were used. Alloys having greater than 50% transuranic material were included. The intention of this study is to use this sample data set to judge ''similarity.''

  6. Design and Preliminary Monte Carlo Calculations of an Active Compton Suppressed LaBr3(Ce) Detector System for TRU Assay in Remote-Handled Wastes

    SciTech Connect

    J. Kulisek; J. K. Hartwell; M. E. McIlwain; R. P. Gardner

    2006-09-01

    Recent studies indicate LaBr3(Ce) scintillation detectors have desirable attributes, such as room temperature operability, which may make them viable alternatives as primary detectors (PD) in a Compton suppression spectrometer (CSS) used for remote-handled transuranic (RH-TRU) waste assay. A CSS with a LaBr3(Ce) PD has been designed and its expected performance evaluated using Monte Carlo analysis. The unique design of this unit minimizes the amount of "dead" material between the PD and the secondary guard detector. The analysis results indicate that this detector will have a relatively high Compton-suppression capability, with greater suppression ability for large angle-scattered photons in the PD. J. K. Hartwell1, M. E. McIlwain1, R. P. Gardner2, J. Kulisek3 1) Idaho National Laboratory, PO Box 1625, Idaho Falls, ID 83415-2114 USA 2) North Carolina State University, Dept of Nuclear Eng., PO Box 7909, Raleigh, NC 27695 USA 3) Ohio State University, Columbus, Ohio 43210 The US Department of Energy’s transuranic (TRU) waste inventory includes about 4,500 m3 of remote-handled TRU (RH-TRU) wastes. The RH-TRU waste stream is composed of a variety of containerized waste forms having a contact surface dose rate that exceeds 2 mSv/hr (200 mrem/hr) containing waste materials with a total TRU concentration greater than 3700 Bq/g (100 nCi/g). As part of a research project to investigate the use of active Compton-suppressed room-temperature gamma-ray detectors for direct non-destructive quantification of the TRU content of these RH-TRU wastes, we have designed and purchased a unique detector system using a LaBr3(Ce) primary detector and a NaI(Tl) suppression mantle. The expected detector performance has been modeled using MCNP-X [1] and CEARCPG [2], and incorporates certain design features modeled as important to active Compton suppression systems in previously-published work [3]. The unique detector system is sketched in Fig. 1. The ~25 mm diameter by 75 mm long LaBr3(Ce

  7. The Remote-Handled TRU Waste Program

    SciTech Connect

    Gist, C. S.; Plum, H. L.; Wu, C. F.; Most, W. A.; Burrington, T. P.; Spangler, L. R.

    2002-02-26

    RH TRU Waste is radioactive waste that requires shielding in addition to that provided by the container to protect people nearby from radiation exposure. By definition, the radiation dose rate at the outer surface of the container is greater than 200 millirem per hour and less than 1,000 rem per hour. The DOE is proposing a process for the characterization of RH TRU waste planned for disposal in the WIPP. This characterization process represents a performance-driven approach that satisfies the requirements of the New Mexico Hazardous Waste Act, the Environmental Protection Agency (EPA) regulations for WIPP long-term performance, the transportation requirements of the Nuclear Regulatory Commission (NRC) and the Department of Transportation, as well as the technical safety requirements of RH TRU waste handling. The transportation, management and disposal of RH TRU waste is regulated by external government agencies as well as by the DOE itself. Externally, the characterization of RH-TRU waste for disposal at the WIPP is regulated by 20.4.1.500 New Mexico Administrative Code (incorporating 40 CFR 261.13) for the hazardous constituents and 40 CFR 194.24 for the radioactive constituents. The Nuclear Regulatory Commission certifies the shipping casks and the transportation system must meet DOT regulations. Internally, the DOE evaluates the environmental impacts of RH TRU waste transportation, handling and disposal through its National Environmental Policy Act program. The operational safety is assessed in the RH TRU Waste Safety Analysis Report, to be approved by the DOE. The WIPP has prepared a modification request to the Hazardous Waste Facility Permit that includes modifications to the WIPP facility for the safe receipt and handling of RH TRU waste and the addition of an RH TRU waste analysis plan. Modifications to the facility include systems and equipment for safe handling of RHTRU containers. Two shipping casks are to be used to optimize RH TRU was te throughput

  8. RH-TRU Waste Content Codes

    SciTech Connect

    Washington TRU Solutions

    2007-07-01

    The Remote-Handled Transuranic (RH-TRU) Content Codes (RH-TRUCON) document describes the inventory of RH-TRU waste within the transportation parameters specified by the Remote-Handled Transuranic Waste Authorized Methods for Payload Control (RH-TRAMPAC).1 The RH-TRAMPAC defines the allowable payload for the RH-TRU 72-B. This document is a catalog of RH-TRU 72-B authorized contents by site. A content code is defined by the following components: • A two-letter site abbreviation that designates the physical location of the generated/stored waste (e.g., ID for Idaho National Laboratory [INL]). The site-specific letter designations for each of the sites are provided in Table 1. • A three-digit code that designates the physical and chemical form of the waste (e.g., content code 317 denotes TRU Metal Waste). For RH-TRU waste to be transported in the RH-TRU 72-B, the first number of this three-digit code is “3.” The second and third numbers of the three-digit code describe the physical and chemical form of the waste. Table 2 provides a brief description of each generic code. Content codes are further defined as subcodes by an alpha trailer after the three-digit code to allow segregation of wastes that differ in one or more parameter(s). For example, the alpha trailers of the subcodes ID 322A and ID 322B may be used to differentiate between waste packaging configurations. As detailed in the RH-TRAMPAC, compliance with flammable gas limits may be demonstrated through the evaluation of compliance with either a decay heat limit or flammable gas generation rate (FGGR) limit per container specified in approved content codes. As applicable, if a container meets the watt*year criteria specified by the RH-TRAMPAC, the decay heat limits based on the dose-dependent G value may be used as specified in an approved content code. If a site implements the administrative controls outlined in the RH-TRAMPAC and Appendix 2.4 of the RH-TRU Payload Appendices, the decay heat or FGGR

  9. Design and testing of a unique active Compton-suppressed LaBr3(Ce) detector system for improved sensitivity assays of TRU in remote-handled TRU wastes

    SciTech Connect

    J. K. Hartwell; M. E. McIlwain; J. A. Kulisek

    2007-10-01

    The US Department of Energy’s transuranic (TRU) waste inventory includes about 4,500 m3 of remote-handled TRU (RH-TRU) wastes composed of a variety of containerized waste forms having a contact surface dose rate that exceeds 2 mSv/hr (200 mrem/hr) containing waste materials with a total TRU concentration greater than 3700 Bq/g (100 nCi/g). As part of a research project to investigate the use of active Compton-suppressed room-temperature gamma-ray detectors for direct non-destructive quantification of the TRU content of these RH-TRU wastes, we have designed and purchased a unique detector system using a LaBr3(Ce) primary detector and a NaI(Tl) suppression mantle. The LaBr3(Ce) primary detector is a cylindrical unit ~25 mm in diameter by 76 mm long viewed by a 38 mm diameter photomultiplier. The NaI(Tl) suppression mantle (secondary detector) is 175 mm by 175 mm with a center well that accommodates the primary detector. An important feature of this arrangement is the lack of any “can” between the primary and secondary detectors. These primary and secondary detectors are optically isolated by a thin layer (.003") of aluminized kapton, but the hermetic seal and thus the aluminum can surrounds the outer boundary of the detector system envelope. The hermetic seal at the primary detector PMT is at the PMT wall. This arrangement virtually eliminates the “dead” material between the primary and secondary detectors, a feature that preliminary modeling indicated would substantially improve the Compton suppression capability of this device. This paper presents both the expected performance of this unit determined from modeling with MCNPX, and the performance measured in our laboratory with radioactive sources.

  10. Innovations in the Assay of Un-Segregated Multi-Isotopic Grade TRU Waste Boxes with SuperHENC and FRAM Technology

    SciTech Connect

    Simpson, A. P.; Barber, S.; Abdurrahman, N. M.

    2006-07-01

    The Super High Efficiency Neutron Coincidence Counter (SuperHENC) was originally developed by BIL Solutions Inc., Los Alamos National Laboratory (LANL) and Rocky Flats Environmental Technology Site (RFETS) for assay of transuranic (TRU) waste in Standard Waste Boxes (SWB) at Rocky Flats. This mobile system was a key component in the shipment of over 4,000 SWBs to the Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico. The system was WIPP certified in 2001 and operated at the site for four years. The success of this system, a passive neutron coincidence counter combined with high resolution gamma spectroscopy, led to the order of two new units, delivered to Hanford in 2004. Several new challenges were faced at Hanford: For example, the original RFETS system was calibrated for segregated waste streams such that metals, plastics, wet combustibles and dry combustibles were separated by 'Item Description Codes' prior to assay. Furthermore, the RFETS mission of handling only weapons grade plutonium, enabled the original SuperHENC to benefit from the use of known Pu isotopics. Operations at Hanford, as with most other DOE sites, generate un-segregated waste streams, with a wide diversity of Pu isotopics. Consequently, the new SuperHENCs are required to deal with new technical challenges. The neutron system's software and calibration methodology have been modified to encompass these new requirements. In addition, PC-FRAM software has been added to the gamma system, providing a robust isotopic measurement capability. Finally a new software package has been developed that integrates the neutron and gamma data to provide a final assay results and analysis report. The new system's performance has been rigorously tested and validated against WIPP quality requirements. These modifications, together with the mobile platform, make the new SuperHENC far more versatile in handling diverse waste streams and allow for rapid redeployment around the DOE complex. (authors)

  11. Hydrogen generation in tru waste transportation packages

    SciTech Connect

    Anderson, B; Sheaffer, M K; Fischer, L E

    2000-03-27

    This document addresses hydrogen generation in TRU waste transportation packages. The potential sources of hydrogen generation are summarized with a special emphasis on radiolysis. After defining various TRU wastes according to groupings of material types, bounding radiolytic G-values are established for each waste type. Analytical methodologies are developed for prediction of hydrogen gas concentrations for various packaging configurations in which hydrogen generation is due to radiolysis. Representative examples are presented to illustrate how analytical procedures can be used to estimate the hydrogen concentration as a function of time. Methodologies and examples are also provided to show how the time to reach a flammable hydrogen concentration in the innermost confinement layer can be estimated. Finally, general guidelines for limiting the hydrogen generation in the payload and hydrogen accumulation in the innermost confinement layer are described.

  12. Characterization optimization for the National TRU waste system

    SciTech Connect

    Basabilvazo, George T. ,; Countiss, S.; Moody, D. C.; Jennings, S. G.; Lott, S. A.

    2002-01-01

    On March 26, 1999, the Waste Isolation Pilot Plant (WIPP) received its first shipment of transuranic (TRU) waste. On November 26, 1999, the Hazardous Waste Facility Permit (HWFP) to receive mixed TRU waste at WIPP became effective. Having achieved these two milestones, facilitating and supporting the characterization, transportation, and disposal of TRU waste became the major challenges for the National TRU Waste Program. Significant challenges still remain in the scientific, engineering, regulatory, and political areas that need to be addressed. The National TRU Waste System Optimization Project has been established to identify, develop, and implement cost-effective system optimization strategies that address those significant challenges. Fundamental to these challenges is the balancing and prioritization of potential regulatory changes with potential technological solutions. This paper describes some of the efforts to optimize (to make as functional as possible) characterization activities for TRU waste.

  13. TRU waste transportation package development

    SciTech Connect

    Eakes, R. G.; Lamoreaux, G. H.; Romesberg, L. E.; Sutherland, S. H.; Duffey, T. A.

    1980-01-01

    Inventories of the transuranic wastes buried or stored at various US DOE sites are tabulated. The leading conceptual design of Type-B packaging for contact-handled transuranic waste is the Transuranic Package Transporter (TRUPACT), a large metal container comprising inner and outer tubular steel frameworks which are separated by rigid polyurethane foam and sheathed with steel plate. Testing of TRUPACT is reported. The schedule for its development is given. 6 figures. (DLC)

  14. Optimizing the National TRU waste system transportation program.

    SciTech Connect

    Lott, S. A.; Countiss, S.

    2002-01-01

    The goal of the National TRU Waste Program (NTP) is to operate the system safely and cost-effectively, in compliance with applicable regulations and agreements, and at full capacity in a fully integrated mode. One of the objectives of the Department of Energy's Carlsbad Field Office (DOE/CBFO) is to complete the current Waste Isolation Pilot Plant (WIPP) mission for the disposal of the nation's legacy transuranic (TRU) waste at least IO years earlier thus saving approximately %7B. The National TRU Waste Optimization Plan (1) recommends changes to accomplish this. This paper discusses the optimization of the National TRU Waste System Transportation Program.

  15. CH-TRU Waste Content Codes

    SciTech Connect

    Washington TRU Solutions LLC

    2008-01-16

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  16. Repackaging SRS Black Box TRU Waste

    SciTech Connect

    Swale, D. J.; Stone, K.A.; Milner, T. N.

    2006-01-09

    Historically, large items of TRU Waste, which were too large to be packaged in drums for disposal have been packaged in various sizes of custom made plywood boxes at the Savannah River Site (SRS), for many years. These boxes were subsequently packaged into large steel ''Black Boxes'' for storage at SRS, pending availability of Characterization and Certification capability, to facilitate disposal of larger items of TRU Waste. There are approximately 107 Black Boxes in inventory at SRS, each measuring some 18' x 12' x 7', and weighing up to 45,000 lbs. These Black Boxes have been stored since the early 1980s. The project to repackage this waste into Standard Large Boxes (SLBs), Standard Waste Boxes (SWB) and Ten Drum Overpacks (TDOP), for subsequent characterization and WIPP disposal, commenced in FY04. To date, 10 Black Boxes have been repackaged, resulting in 40 SLB-2's, and 37 B25 overpack boxes, these B25's will be overpacked in SLB-2's prior to shipping to WIPP. This paper will describe experience to date from this project.

  17. TRU Waste Sampling Program: Volume I. Waste characterization

    SciTech Connect

    Clements, T.L. Jr.; Kudera, D.E.

    1985-09-01

    Volume I of the TRU Waste Sampling Program report presents the waste characterization information obtained from sampling and characterizing various aged transuranic waste retrieved from storage at the Idaho National Engineering Laboratory and the Los Alamos National Laboratory. The data contained in this report include the results of gas sampling and gas generation, radiographic examinations, waste visual examination results, and waste compliance with the Waste Isolation Pilot Plant-Waste Acceptance Criteria (WIPP-WAC). A separate report, Volume II, contains data from the gas generation studies.

  18. TRU waste transportation -- The flammable gas generation problem

    SciTech Connect

    Connolly, M.J.; Kosiewicz, S.T.

    1997-11-01

    The Nuclear Regulatory Commission (NRC) has imposed a flammable gas (i.e., hydrogen) concentration limit of 5% by volume on transuranic (TRU) waste containers to be shipped using the TRUPACT-II transporter. This concentration is the lower explosive limit (LEL) in air. This was done to minimize the potential for loss of containment during a hypothetical 60 day period. The amount of transuranic radionuclide that is permissible for shipment in TRU waste containers has been tabulated in the TRUPACT-II Safety Analysis Report for Packaging (SARP, 1) to conservatively prevent accumulation of hydrogen above this 5% limit. Based on the SARP limitations, approximately 35% of the TRU waste stored at the Idaho National Engineering and Environmental Lab (INEEL), Los Alamos National Lab (LANL), and Rocky Flats Environmental Technology Site (RFETS) cannot be shipped in the TRUPACT-II. An even larger percentage of the TRU waste drums at the Savannah River Site (SRS) cannot be shipped because of the much higher wattage loadings of TRU waste drums in that site`s inventory. This paper presents an overview of an integrated, experimental program that has been initiated to increase the shippable portion of the Department of Energy (DOE) TRU waste inventory. In addition, the authors will estimate the anticipated expansion of the shippable portion of the inventory and associated cost savings. Such projection should provide the TRU waste generating sites a basis for developing their TRU waste workoff strategies within their Ten Year Plan budget horizons.

  19. Final Hanford Site Transuranic (TRU) Waste Characterization QA Project Plan

    SciTech Connect

    GREAGER, T.M.

    2000-12-06

    The Quality Assurance Project Plan (QAPjP) has been prepared for waste characterization activities to be conducted by the Transuranic (TRU) Project at the Hanford Site to meet requirements set forth in the Waste Isolation Pilot Plan (WIPP) Hazardous Waste Facility Permit, 4890139088-TSDF, Attachment B, including Attachments B1 through B6 (WAP) (DOE, 1999a). The QAPjP describes the waste characterization requirements and includes test methods, details of planned waste sampling and analysis, and a description of the waste characterization and verification process. In addition, the QAPjP includes a description of the quality assurance/quality control (QA/QC) requirements for the waste characterization program. Before TRU waste is shipped to the WIPP site by the TRU Project, all applicable requirements of the QAPjP shall be implemented. Additional requirements necessary for transportation to waste disposal at WIPP can be found in the ''Quality Assurance Program Document'' (DOE 1999b) and HNF-2600, ''Hanford Site Transuranic Waste Certification Plan.'' TRU mixed waste contains both TRU radioactive and hazardous components, as defined in the WLPP-WAP. The waste is designated and separately packaged as either contact-handled (CH) or remote-handled (RH), based on the radiological dose rate at the surface of the waste container. RH TRU wastes are not currently shipped to the WIPP facility.

  20. DOE's Remote-Handled TRU Waste Characterization Program: Implementation Plan

    EPA Pesticide Factsheets

    Remote-handled (RH) transuranic (TRU) waste characterization, which involves obtaining chemical, radiological, and physical data, is a primary component of ensuring compliance of the Waste Isolation Pilot Plant (WIPP) with regulatory requirements.

  1. A strategy for analysis of TRU waste characterization needs

    SciTech Connect

    Leigh, C.D.; Chu, M.S.Y.; Arvizu, J.S.; Marcinkiewicz, C.J.

    1994-03-01

    Regulatory compliance and effective management of the nation`s TRU waste requires knowledge about the constituents present in the waste. With limited resources, the DOE needs a cost-effective characterization program. In addition, the DOE needs a method for predicting the present and future analytical requirements for waste characterization. Thus, a strategy for predicting the present and future waste characterization needs that uses current knowledge of the TRU inventory and prioritization of the data needs is presented.

  2. Major Components of the National TRU Waste System Optimization Project.

    SciTech Connect

    Moody, D. C.; Bennington, B.; Sharif, F.

    2002-01-01

    The National Transuranic (TRU) Program (NTP) is being optimized to allow for disposing of the legacy TRU waste at least 10 years earlier than originally planned. This acceleration will save the nation an estimated $713. The Department of Energy's (DOE'S) Carlsbad Field Office (CBFO) has initiated the National TRU Waste System Optimization Project to propose, and upon approvaI, implement activities that produce significant cost saving by improving efficiency, thereby accelerating the rate of TRU waste disposal without compromising safety. In its role as NTP agent of change, the National TRU Waste System Optimization Project (the Project) (1) interacts closely with all NTP activities. Three of the major components of the Project are the Central Characterization Project (CCP), the Central Confirmation Facility (CCF), and the MobiIe/Modular Deployment Program.

  3. Los Alamos National Laboratory TRU waste sampling projects

    SciTech Connect

    Yeamans, D.; Rogers, P.; Mroz, E.

    1997-02-01

    The Los Alamos National Laboratory (LANL) has begun characterizing transuranic (TRU) waste in order to comply with New Mexico regulations, and to prepare the waste for shipment and disposal at the Waste Isolation Pilot Plant (WIPP), near Carlsbad, New Mexico. Sampling consists of removing some head space gas from each drum, removing a core from a few drums of each homogeneous waste stream, and visually characterizing a few drums from each heterogeneous waste stream. The gases are analyzed by GC/MS, and the cores are analyzed for VOC`s and SVOC`s by GC/MS and for metals by AA or AE spectroscopy. The sampling and examination projects are conducted in accordance with the ``DOE TRU Waste Quality Assurance Program Plan`` (QAPP) and the ``LANL TRU Waste Quality Assurance Project Plan,`` (QAPjP), guaranteeing that the data meet the needs of both the Carlsbad Area Office (CAO) of DOE and the ``WIPP Waste Acceptance Criteria, Rev. 5,`` (WAC).

  4. Safety Enhancements for TRU Waste Handling - 12258

    SciTech Connect

    Cannon, Curt N.

    2012-07-01

    For years, proper Health Physics practices and 'As Low As Reasonably Achievable' (ALARA) principles have fostered the use of glove boxes or other methods of handling (without direct contact) high activities of radioactive material. The physical limitations of using glove boxes on certain containers have resulted in high-activity wastes being held in storage awaiting a path forward. Highly contaminated glove boxes and other remote handling equipment no longer in use have also been added to the growing list of items held for storage with no efficient method of preparation for proper disposal without creating exposure risks to personnel. This is especially true for wastes containing alpha-emitting radionuclides such as Plutonium and Americium that pose significant health risks to personnel if these Transuranic (TRU) wastes are not controlled effectively. Like any good safety program or root cause investigation PFNW has found that the identification of the cause of a negative change, if stopped, can result in a near miss and lessons learned. If this is done in the world of safety, it is considered a success story and is to be shared with others to protect the workers. PFNW believes that the tools, equipment and resources have improved over the past number of years but that the use of them has not progressed at the same rate. If we use our tools to timely identify the effect on the work environment and immediately following or possibly even simultaneously identify the cause or some of the causal factors, we may have the ability to continue to work rather than succumb to the start and stop-work mentality trap that is not beneficial in waste minimization, production efficiency or ALARA. (authors)

  5. Hybrid Microwave Treatment of SRS TRU and Mixed Wastes

    SciTech Connect

    Wicks, G.G.

    1999-11-18

    A new process, using hybrid microwave energy, has been developed as part of the Strategic Research and Development program and successfully applied to treatment of a wide variety of non-radioactive materials, representative of SRS transuranic (TRU) and mixed wastes. Over 35 simulated (non-radioactive) TRU and mixed waste materials were processed individually, as well as in mixed batches, using hybrid microwave energy, a new technology now being patented by Westinghouse Savannah River Company (WSRC).

  6. Statistical analysis of radiochemical measurements of TRU radionuclides in REDC waste

    SciTech Connect

    Beauchamp, J.; Downing, D.; Chapman, J.; Fedorov, V.; Nguyen, L.; Parks, C.; Schultz, F.; Yong, L.

    1996-10-01

    This report summarizes results of the study on the isotopic ratios of transuranium elements in waste from the Radiochemical Engineering Development Center actinide-processing streams. The knowledge of the isotopic ratios when combined with results of nondestructive assays, in particular with results of Active-Passive Neutron Examination Assay and Gamma Active Segmented Passive Assay, may lead to significant increase in precision of the determination of TRU elements contained in ORNL generated waste streams.

  7. Los Alamos Plutonium Facility newly generated TRU waste certification

    SciTech Connect

    Gruetzmacher, K.; Montoya, A.; Sinkule, B.; Maez, M.

    1997-02-01

    This paper presents an overview of the activities being planned and implemented to certify newly generated contact handled transuranic (TRU) waste produced by Los Alamos National Laboratory`s (LANL`s) Plutonium Facility. Certifying waste at the point of generation is the most important cost and labor saving step in the WIPP certification process. The pedigree of a waste item is best known by the originator of the waste and frees a site from expensive characterization activities such as those associated with legacy waste. Through a cooperative agreement with LANLs Waste Management Facility and under the umbrella of LANLs WIPP-related certification and quality assurance documents, the Plutonium Facility will be certifying its own newly generated waste. Some of the challenges faced by the Plutonium Facility in preparing to certify TRU waste include the modification and addition of procedures to meet WIPP requirements, standardizing packaging for TRU waste, collecting processing documentation from operations which produce TRU waste, and developing ways to modify waste streams which are not certifiable in their present form.

  8. The Advantages of Fixed Facilities in Characterizing TRU Wastes

    SciTech Connect

    FRENCH, M.S.

    2000-02-08

    In May 1998 the Hanford Site started developing a program for characterization of transuranic (TRU) waste for shipment to the Waste Isolation Pilot Plant (WIPP) in New Mexico. After less than two years, Hanford will have a program certified by the Carlsbad Area Office (CAO). By picking a simple waste stream, taking advantage of lessons learned at the other sites, as well as communicating effectively with the CAO, Hanford was able to achieve certification in record time. This effort was further simplified by having a centralized program centered on the Waste Receiving and Processing (WRAP) Facility that contains most of the equipment required to characterize TRU waste. The use of fixed facilities for the characterization of TRU waste at sites with a long-term clean-up mission can be cost effective for several reasons. These include the ability to control the environment in which sensitive instrumentation is required to operate and ensuring that calibrations and maintenance activities are scheduled and performed as an operating routine. Other factors contributing to cost effectiveness include providing approved procedures and facilities for handling hazardous materials and anticipated contingencies and performing essential evolutions, and regulating and smoothing the work load and environmental conditions to provide maximal efficiency and productivity. Another advantage is the ability to efficiently provide characterization services to other sites in the Department of Energy (DOE) Complex that do not have the same capabilities. The Waste Receiving and Processing (WRAP) Facility is a state-of-the-art facility designed to consolidate the operations necessary to inspect, process and ship waste to facilitate verification of contents for certification to established waste acceptance criteria. The WRAP facility inspects, characterizes, treats, and certifies transuranic (TRU), low-level and mixed waste at the Hanford Site in Washington state. Fluor Hanford operates the $89

  9. Transuranic (TRU) Waste Repackaging at the Nevada Test Site

    SciTech Connect

    E.F. Di Sanza; G. Pyles; J. Ciucci; P. Arnold

    2009-03-01

    This paper describes the activities required to modify a facility and the process of characterizing, repackaging, and preparing for shipment the Nevada Test Site’s (NTS) legacy transuranic (TRU) waste in 58 oversize boxes (OSB). The waste, generated at other U.S. Department of Energy (DOE) sites and shipped to the NTS between 1974 and 1990, requires size-reduction for off-site shipment and disposal. The waste processing approach was tailored to reduce the volume of TRU waste by employing decontamination and non-destructive assay. As a result, the low-level waste (LLW) generated by this process was packaged, with minimal size reduction, in large sea-land containers for disposal at the NTS Area 5 Radioactive Waste Management Complex (RWMC). The remaining TRU waste was repackaged and sent to the Idaho National Laboratory Consolidation Site for additional characterization in preparation for disposal at the Waste Isolation Pilot Plant (WIPP), near Carlsbad, New Mexico. The DOE National Nuclear Security Administration Nevada Site Office and the NTS Management and Operating (M&O) contractor, NSTec, successfully partnered to modify and upgrade an existing facility, the Visual Examination and Repackaging Building (VERB). The VERB modifications, including a new ventilation system and modified containment structure, required an approved Preliminary Documented Safety Analysis prior to project procurement and construction. Upgrade of the VERB from a radiological facility to a Hazard Category 3 Nuclear Facility required new rigor in the design and construction areas and was executed on an aggressive schedule. The facility Documented Safety Analysis required that OSBs be vented prior to introduction into the VERB. Box venting was safely completed after developing and implementing two types of custom venting systems for the heavy gauge box construction. A remotely operated punching process was used on boxes with wall thickness of up to 3.05 mm (0.120 in) to insert aluminum

  10. RH-TRU Waste Content Codes (RH-TRUCON)

    SciTech Connect

    Washington TRU Solutions LLC

    2007-08-01

    The Remote-Handled Transuranic (RH-TRU) Content Codes (RH-TRUCON) document describes the inventory of RH-TRU waste within the transportation parameters specified by the Remote-Handled Transuranic Waste Authorized Methods for Payload Control (RH-TRAMPAC).1 The RH-TRAMPAC defines the allowable payload for the RH-TRU 72-B. This document is a catalog of RH-TRU 72-B authorized contents by site. A content code is defined by the following components: • A two-letter site abbreviation that designates the physical location of the generated/stored waste (e.g., ID for Idaho National Laboratory [INL]). The site-specific letter designations for each of the sites are provided in Table 1. • A three-digit code that designates the physical and chemical form of the waste (e.g., content code 317 denotes TRU Metal Waste). For RH-TRU waste to be transported in the RH-TRU 72-B, the first number of this three-digit code is “3.” The second and third numbers of the three-digit code describe the physical and chemical form of the waste. Table 2 provides a brief description of each generic code. Content codes are further defined as subcodes by an alpha trailer after the three-digit code to allow segregation of wastes that differ in one or more parameter(s). For example, the alpha trailers of the subcodes ID 322A and ID 322B may be used to differentiate between waste packaging configurations. As detailed in the RH-TRAMPAC, compliance with flammable gas limits may be demonstrated through the evaluation of compliance with either a decay heat limit or flammable gas generation rate (FGGR) limit per container specified in approved content codes. As applicable, if a container meets the watt*year criteria specified by the RH-TRAMPAC, the decay heat limits based on the dose-dependent G value may be used as specified in an approved content code. If a site implements the administrative controls outlined in the RH-TRAMPAC and Appendix 2.4 of the RH-TRU Payload Appendices, the decay heat or FGGR

  11. RH-TRU Waste Content Codes (RH-TRUCON)

    SciTech Connect

    Washington TRU Solutions

    2007-05-30

    The Remote-Handled Transuranic (RH-TRU) Content Codes (RH-TRUCON) document describes the inventory of RH-TRU waste within the transportation parameters specified by the Remote-Handled Transuranic Waste Authorized Methods for Payload Control (RH-TRAMPAC).1 The RH-TRAMPAC defines the allowable payload for the RH-TRU 72-B. This document is a catalog of RH-TRU 72-B authorized contents by site. A content code is defined by the following components: • A two-letter site abbreviation that designates the physical location of the generated/stored waste (e.g., ID for Idaho National Laboratory [INL]). The site-specific letter designations for each of the sites are provided in Table 1. • A three-digit code that designates the physical and chemical form of the waste (e.g., content code 317 denotes TRU Metal Waste). For RH-TRU waste to be transported in the RH-TRU 72-B, the first number of this three-digit code is “3.” The second and third numbers of the three-digit code describe the physical and chemical form of the waste. Table 2 provides a brief description of each generic code. Content codes are further defined as subcodes by an alpha trailer after the three-digit code to allow segregation of wastes that differ in one or more parameter(s). For example, the alpha trailers of the subcodes ID 322A and ID 322B may be used to differentiate between waste packaging configurations. As detailed in the RH-TRAMPAC, compliance with flammable gas limits may be demonstrated through the evaluation of compliance with either a decay heat limit or flammable gas generation rate (FGGR) limit per container specified in approved content codes. As applicable, if a container meets the watt*year criteria specified by the RH-TRAMPAC, the decay heat limits based on the dose-dependent G value may be used as specified in an approved content code. If a site implements the administrative controls outlined in the RH-TRAMPAC and Appendix 2.4 of the RH-TRU Payload Appendices, the decay heat or FGGR

  12. RH-TRU Waste Content Codes (RH TRUCON)

    SciTech Connect

    Washington TRU Solutions

    2007-05-01

    The Remote-Handled Transuranic (RH-TRU) Content Codes (RH-TRUCON) document describes the inventory of RH-TRU waste within the transportation parameters specified by the Remote-Handled Transuranic Waste Authorized Methods for Payload Control (RH-TRAMPAC).1 The RH-TRAMPAC defines the allowable payload for the RH-TRU 72-B. This document is a catalog of RH-TRU 72-B authorized contents by site. A content code is defined by the following components: • A two-letter site abbreviation that designates the physical location of the generated/stored waste (e.g., ID for Idaho National Laboratory [INL]). The site-specific letter designations for each of the sites are provided in Table 1. • A three-digit code that designates the physical and chemical form of the waste (e.g., content code 317 denotes TRU Metal Waste). For RH-TRU waste to be transported in the RH-TRU 72-B, the first number of this three-digit code is “3.” The second and third numbers of the three-digit code describe the physical and chemical form of the waste. Table 2 provides a brief description of each generic code. Content codes are further defined as subcodes by an alpha trailer after the three-digit code to allow segregation of wastes that differ in one or more parameter(s). For example, the alpha trailers of the subcodes ID 322A and ID 322B may be used to differentiate between waste packaging configurations. As detailed in the RH-TRAMPAC, compliance with flammable gas limits may be demonstrated through the evaluation of compliance with either a decay heat limit or flammable gas generation rate (FGGR) limit per container specified in approved content codes. As applicable, if a container meets the watt*year criteria specified by the RH-TRAMPAC, the decay heat limits based on the dose-dependent G value may be used as specified in an approved content code. If a site implements the administrative controls outlined in the RH-TRAMPAC and Appendix 2.4 of the RH-TRU Payload Appendices, the decay heat or FGGR

  13. TRU waste certification and TRUPACT-2 payload verification

    SciTech Connect

    Hunter, E.K. . Waste Isolation Pilot Plant Project Office); Johnson, J.E. . Waste Isolation Div.)

    1990-01-01

    The Waste Isolation Pilot Plant (WIPP) established a policy that requires each waste shipper to verify that all waste shipments meet the requirements of the Waste Acceptance Criteria (WAC) prior to being shipped. This verification provides assurance that transuranic (TRU) wastes meet the criteria while still retained in a facility where discrepancies can be immediately corrected. Each Department of Energy (DOE) TRU waste facility planning to ship waste to the Waste Isolation Pilot Plant (WIPP) is required to develop and implement a specific program including Quality Assurance (QA) provisions to verify that waste is in full compliance with WIPP's WAC. This program is audited by a composite DOE and contractor audit team prior to granting the facility permission to certify waste. During interaction with the Nuclear Regulatory Commission (NRC) on payload verification for shipping in TRUPACT-II, a similar system was established by DOE. The TRUPACT-II Safety Analysis Report (SAR) contains the technical requirements and physical and chemical limits that payloads must meet (like the WAC). All shippers must plan and implement a payload control program including independent QA provisions. A similar composite audit team will conduct preshipment audits, frequent subsequent audits, and operations inspections to verify that all TRU waste shipments in TRUPACT-II meet the requirements of the Certificate of Compliance issued by the NRC which invokes the SAR requirements. 1 fig.

  14. Los Alamos National Laboratory accelerated tru waste workoff strategies

    SciTech Connect

    Kosiewicz, S.T.; Triay, I.R.; Rogers, P.Z.; Christensen, D.V.

    1997-03-01

    During 1996, the Los Alamos National Laboratory (LANL) developed two transuranic (TRU) waste workoff strategies that were estimated to save $270 - 340M through accelerated waste workoff and the elimination of a facility. The planning effort included a strategy to assure that LANL would have a significant quantity (3000+ drums) of TRU waste certified for shipment to the Waste Isolation Pilot Plant (WIPP) beginning in April of 1998, when WIPP was projected to open. One of the accelerated strategies can be completed in less than ten years through a Total Optimization of Parameters Scenario ({open_quotes}TOPS{close_quotes}). {open_quotes}TOPS{close_quotes} fully utilizes existing LANL facilities and capabilities. For this scenario, funding was estimated to be unconstrained at $23M annually to certify and ship the legacy inventory of TRU waste at LANL. With {open_quotes}TOPS{close_quotes} the inventory is worked off in about 8.5 years while shipping 5,000 drums per year at a total cost of $196M. This workoff includes retrieval from earthen cover and interim storage costs. The other scenario envisioned funding at the current level with some increase for TRUPACT II loading costs, which total $16M annually. At this funding level, LANL estimates it will require about 17 years to work off the LANL TRU legacy waste while shipping 2,500 drums per year to WIPP. The total cost will be $277M. This latter scenario decreases the time for workoff by about 19 years from previous estimates and saves an estimated $190M. In addition, the planning showed that a $70M facility for TRU waste characterization was not needed. After the first draft of the LANL strategies was written, Congress amended the WIPP Land Withdrawal Act (LWA) to accelerate the opening of WIPP to November 1997. Further, the No Migration Variance requirement for the WIPP was removed. This paper discusses the LANL strategies as they were originally developed. 1 ref., 3 figs., 2 tabs.

  15. Test Plan: WIPP bin-scale CH TRU waste tests

    SciTech Connect

    Molecke, M.A.

    1990-08-01

    This WIPP Bin-Scale CH TRU Waste Test program described herein will provide relevant composition and kinetic rate data on gas generation and consumption resulting from TRU waste degradation, as impacted by synergistic interactions due to multiple degradation modes, waste form preparation, long-term repository environmental effects, engineered barrier materials, and, possibly, engineered modifications to be developed. Similar data on waste-brine leachate compositions and potentially hazardous volatile organic compounds released by the wastes will also be provided. The quantitative data output from these tests and associated technical expertise are required by the WIPP Performance Assessment (PA) program studies, and for the scientific benefit of the overall WIPP project. This Test Plan describes the necessary scientific and technical aspects, justifications, and rational for successfully initiating and conducting the WIPP Bin-Scale CH TRU Waste Test program. This Test Plan is the controlling scientific design definition and overall requirements document for this WIPP in situ test, as defined by Sandia National Laboratories (SNL), scientific advisor to the US Department of Energy, WIPP Project Office (DOE/WPO). 55 refs., 16 figs., 19 tabs.

  16. TRU waste inventory collection and work off plans for the centralization of TRU waste characterization/certification at INL - on your mark - get set - 9410

    SciTech Connect

    Mctaggert, Jerri Lynne; Lott, Sheila A; Gadbury, Casey

    2008-01-01

    The U.S. Department of Energy (DOE) amended the Record of Decision (ROD) for the Waste Management Program: Treatment and Storage of Transuranic Waste to centralize transuranic (TRU) waste characterization/certification from fourteen TRU waste sites. This centralization will allow for treatment, characterization and certification ofTRU waste from the fourteen sites, thirteen of which are sites with small quantities ofTRU waste, at the Idaho National Laboratory (INL) prior to shipping the waste to the Waste Isolation Pilot Plant (WIPP) for disposal. Centralization of this TRU waste will avoid the cost of building treatment, characterization, certification, and shipping capabilities at each of the small quantity sites that currently do not have existing facilities. Advanced Mixed Waste Treatment Project (AMWTP) and Idaho Nuclear Technology and Engineering Center (INTEC) will provide centralized shipping facilities, to WIPP, for all of the small quantity sites. Hanford, the one large quantity site identified in the ROD, has a large number of waste in containers that are overpacked into larger containers which are inefficient for shipment to and disposal at WIPP. The AMWTF at the INL will reduce the volume of much of the CH waste and make it much more efficient to ship and dispose of at WIPP. In addition, the INTEC has a certified remote handled (RH) TRU waste characterization/certification program at INL to disposition TRU waste from the sites identified in the ROD.

  17. TRU waste inventory collection and work-off plans for the centralization of TRU waste characterization at INL - on your mark - get set - 9410

    SciTech Connect

    Mctaggert, Jerri Lynne; Lott, Sheila; Gadbury, Casey

    2009-01-01

    The U.S. Department of Energy (DOE) amended the Record of Decision (ROD) for the Waste Management Program: Treatment and Storage ofTransuranic Waste to centralize transuranic (TRU) waste characterization/certification from fourteen TRU waste sites. This centralization will allow for treatment, characterization and certification ofTRU waste from the fourteen sites, thirteen of which are sites with small quantities ofTRU waste, at the Idaho National Laboratory (INL) prior to shipping the waste to the Waste Isolation Pilot Plant (WIPP) for disposal. Centralization ofthis TRU waste will avoid the cost ofbuilding treatment, characterization, certification, and shipping capabilities at each ofthe small quantity sites that currently do not have existing facilities. Advanced Mixed Waste Treatment Project (AMWTP) and Idaho Nuclear Technology and Engineering Center (INTEC) will provide centralized shipping facilities, to WIPP, for all ofthe small quantity sites. Hanford, the one large quantity site identified in the ROD, has a large number ofwaste in containers that are overpacked into larger containers which are inefficient for shipment to and disposal at WIPP. The AMWTP at the INL will reduce the volume ofmuch of the CH waste and make it much more efficient to ship and dispose of at WIPP. In addition, the INTEC has a certified remote handled (RH) TRU waste characterization/certification program at INL to disposition TRU waste from the sites identified in the ROD.

  18. Savannah River Site Operating Experience with Transuranic (TRU) Waste Retrieval

    SciTech Connect

    Stone, K.A.; Milner, T.N.

    2006-07-01

    Drums of TRU Waste have been stored at the Savannah River Site (SRS) on concrete pads from the 1970's through the 1980's. These drums were subsequently covered with tarpaulins and then mounded over with dirt. Between 1996 and 2000 SRS ran a successful retrieval campaign and removed some 8,800 drums, which were then available for venting and characterization for WIPP disposal. Additionally, a number of TRU Waste drums, which were higher in activity, were stored in concrete culverts, as required by the Safety Analysis for the Facility. Retrieval of drums from these culverts has been ongoing since 2002. This paper will describe the operating experience and lessons learned from the SRS retrieval activities. (authors)

  19. Burning high-level TRU waste in fusion fission reactors

    NASA Astrophysics Data System (ADS)

    Shen, Yaosong

    2016-09-01

    Recently, the concept of actinide burning instead of a once-through fuel cycle for disposing spent nuclear fuel seems to get much more attention. A new method of burning high-level transuranic (TRU) waste combined with Thorium-Uranium (Th-U) fuel in the subcritical reactors driven by external fusion neutron sources is proposed in this paper. The thorium-based TRU fuel burns all of the long-lived actinides via a hard neutron spectrum while outputting power. A one-dimensional model of the reactor concept was built by means of the ONESN_BURN code with new data libraries. The numerical results included actinide radioactivity, biological hazard potential, and much higher burnup rate of high-level transuranic waste. The comparison of the fusion-fission reactor with the thermal reactor shows that the harder neutron spectrum is more efficient than the soft. The Th-U cycle produces less TRU, less radiotoxicity and fewer long-lived actinides. The Th-U cycle provides breeding of 233U with a long operation time (>20 years), hence significantly reducing the reactivity swing while improving safety and burnup.

  20. TRU Waste Management Program. Cost/schedule optimization analysis

    SciTech Connect

    Detamore, J.A.; Raudenbush, M.H.; Wolaver, R.W.; Hastings, G.A.

    1985-10-01

    This Current Year Work Plan presents in detail a description of the activities to be performed by the Joint Integration Office Rockwell International (JIO/RI) during FY86. It breaks down the activities into two major work areas: Program Management and Program Analysis. Program Management is performed by the JIO/RI by providing technical planning and guidance for the development of advanced TRU waste management capabilities. This includes equipment/facility design, engineering, construction, and operations. These functions are integrated to allow transition from interim storage to final disposition. JIO/RI tasks include program requirements identification, long-range technical planning, budget development, program planning document preparation, task guidance development, task monitoring, task progress information gathering and reporting to DOE, interfacing with other agencies and DOE lead programs, integrating public involvement with program efforts, and preparation of reports for DOE detailing program status. Program Analysis is performed by the JIO/RI to support identification and assessment of alternatives, and development of long-term TRU waste program capabilities. These analyses include short-term analyses in response to DOE information requests, along with performing an RH Cost/Schedule Optimization report. Systems models will be developed, updated, and upgraded as needed to enhance JIO/RI's capability to evaluate the adequacy of program efforts in various fields. A TRU program data base will be maintained and updated to provide DOE with timely responses to inventory related questions.

  1. Radiolytic decomposition of organic C-14 released from TRU waste

    SciTech Connect

    Kani, Yuko; Noshita, Kenji; Kawasaki, Toru; Nishimura, Tsutomu; Sakuragi, Tomofumi; Asano, Hidekazu

    2007-07-01

    It has been found that metallic TRU waste releases considerable portions of C-14 in the form of organic molecules such as lower molecular weight organic acids, alcohols and aldehydes. Due to the low sorption ability of organic C-14, it is important to clarify the long-term behavior of organic forms under waste disposal conditions. From investigations on radiolytic decomposition of organic carbon molecules into inorganic carbonic acid, it is expected that radiation from TRU waste will decompose organic C-14 into inorganic carbonic acid that has higher adsorption ability into the engineering barriers. Hence we have studied the decomposition behavior of organic C-14 by gamma irradiation experiments under simulated disposal conditions. The results showed that organic C-14 reacted with OH radicals formed by radiolysis of water, to produce inorganic carbonic acid. We introduced the concept of 'decomposition efficiency' which expresses the percentage of OH radicals consumed for the decomposition reaction of organic molecules in order to analyze the experimental results. We estimated the effect of radiolytic decomposition on the concentration of organic C-14 in the simulated conditions of the TRU disposal system using the decomposition efficiency, and found that the concentration of organic C-14 in the waste package will be lowered when the decomposition of organic C-14 by radiolysis was taken into account, in comparison with the concentration of organic C-14 without radiolysis. Our prediction suggested that some amount of organic C-14 can be expected to be transformed into the inorganic form in the waste package in an actual system. (authors)

  2. Expert System for Building TRU Waste Payloads - 13554

    SciTech Connect

    Bruemmer, Heather; Slater, Bryant

    2013-07-01

    The process for grouping TRU waste drums into payloads for shipment to the Waste Isolation Pilot Plant (WIPP) for disposal is a very complex process. Transportation and regulatory requirements must be met, along with striving for the goals of shipment efficiency: maximize the number of waste drums in a shipment and minimize the use of empty drums which take up precious underground storage space. The restrictions on payloads range from weight restrictions, to limitations on flammable gas in the headspace, to minimum TRU alpha activity concentration requirements. The Overpack and Payload Assistant Tool (OPAT) has been developed as a mixed-initiative intelligent system within the WIPP Waste Data System (WDS) to guide the construction of multiple acceptable payloads. OPAT saves the user time while at the same time maximizes the efficiency of shipments for the given drum population. The tool provides the user with the flexibility to tune critical factors that guide OPAT's operation based on real-time feedback concerning the results of the execution. This feedback complements the user's external knowledge of the drum population (such as location of drums, known challenges, internal shipment goals). This work demonstrates how software can be utilized to complement the unique domain knowledge of the users. The mixed-initiative approach combines the insight and intuition of the human expert with the proficiency of automated computational algorithms. The result is the ability to thoroughly and efficiently explore the search space of possible solutions and derive the best waste management decision. (authors)

  3. TRU Waste Management Program cost/schedule optimization analysis

    SciTech Connect

    Detamore, J.A. . Joint Integration Office); Raudenbush, M.H.; Wolaver, R.W.; Hastings, G.A. Corp., Boulder, CO )

    1985-10-01

    The cost/schedule optimization task is a necessary function to insure that program goals and plans are optimized from a cost and schedule aspect. Results of this study will offer DOE information with which it can establish, within institutional constraints, the most efficient program for the long-term management and disposal of contact handled transuranic waste (CH-TRU). To this end, a comprehensive review of program cost/schedule tradeoffs has been made, to identify any major cost saving opportunities that may be realized by modification of current program plans. It was decided that all promising scenarios would be explored, and institutional limitations to implementation would be described. Since a virtually limitless number of possible scenarios can be envisioned, it was necessary to distill these possibilities into a manageable number of alternatives. The resultant scenarios were described in the cost/schedule strategy and work plan document. Each scenario was compared with the base case: waste processing at the originating site; transport of CH-TRU wastes in TRUPACT; shipment of drums in 6-Packs; 25 year stored waste workoff; WIPP operational 10/88, with all sites shipping to WIPP beginning 10/88; and no processing at WIPP. Major savings were identified in two alternate scenarios: centralize waste processing at INEL and eliminate rail shipment of TRUPACT. No attempt was made to calculate savings due to combination of scenarios. 1 ref., 5 figs., 1 tab. (MHB)

  4. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect

    Washington TRU Solutions LLC

    2006-01-18

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  5. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect

    Washington TRU Solutions LLC

    2007-06-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  6. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect

    Washington TRU Solutions LLC

    2007-02-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  7. CH-TRU Waste Content Codes (CH TRUCON)

    SciTech Connect

    Washington TRU Solutions LLC

    2004-12-01

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  8. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect

    Washington TRU Solutions LLC

    2007-08-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  9. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect

    Washington TRU Solutions LLC

    2006-06-20

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  10. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect

    Washington TRU Solutions LLC

    2004-10-01

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  11. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect

    Washington TRU Solutions LLC

    2006-09-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  12. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect

    Washington TRU Solutions LLC

    2005-12-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  13. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect

    Washington TRU Solutions LLC

    2006-08-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  14. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect

    Washington TRU Solutions LLC

    2007-09-20

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  15. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect

    Washington TRU Solutions LLC

    2006-12-20

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  16. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect

    Washington TRU Solutions LLC

    2005-11-20

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  17. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect

    Washington TRU Solutions LLC

    2005-08-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  18. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect

    Washington TRU Solutions LLC

    2005-01-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codesand corresponding shipping categories for "Controlled Shipments

  19. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect

    Washington TRU Solutions LLC

    2005-06-20

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  20. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect

    Washington TRU Solutions LLC

    2005-03-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  1. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect

    Washington TRU Solutions LLC

    2005-01-30

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  2. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect

    Washington TRU Solutions LLC

    2005-05-01

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  3. Final environmental assessment: TRU waste drum staging building, Technical Area 55, Los Alamos National Laboratory

    SciTech Connect

    1996-02-09

    Much of the US Department of Energy`s (DOE`s) research on plutonium metallurgy and plutonium processing is performed at Los Alamos National Laboratory (LANL), in Los Alamos, New Mexico. LANL`s main facility for plutonium research is the Plutonium Facility, also referred to as Technical Area 55 (TA-55). The main laboratory building for plutonium work within the Plutonium Facility (TA-55) is the Plutonium Facility Building 4, or PF-4. This Environmental Assessment (EA) analyzes the potential environmental effects that would be expected to occur if DOE were to stage sealed containers of transuranic (TRU) and TRU mixed waste in a support building at the Plutonium Facility (TA-55) that is adjacent to PF-4. At present, the waste containers are staged in the basement of PF-4. The proposed project is to convert an existing support structure (Building 185), a prefabricated metal building on a concrete foundation, and operate it as a temporary staging facility for sealed containers of solid TRU and TRU mixed waste. The TRU and TRU mixed wastes would be contained in sealed 55-gallon drums and standard waste boxes as they await approval to be transported to TA-54. The containers would then be transported to a longer term TRU waste storage area at TA-54. The TRU wastes are generated from plutonium operations carried out in PF-4. The drum staging building would also be used to store and prepare for use new, empty TRU waste containers.

  4. MCNP Modeling Results for Location of Buried TRU Waste Drums

    NASA Astrophysics Data System (ADS)

    Steinman, D. K.; Schweitzer, J. S.

    2006-05-01

    In the 1960's, fifty-five gallon drums of TRU waste were buried in shallow pits on remote U.S. Government facilities such as the Idaho National Engineering Laboratory (now split into the Idaho National Laboratory and the Idaho Completion Project [ICP]). Subsequently, it was decided to remove the drums and the material that was in them from the burial pits and send the material to the Waste Isolation Pilot Plant in New Mexico. Several technologies have been tried to locate the drums non-intrusively with enough precision to minimize the chance for material to be spread into the environment. One of these technologies is the placement of steel probe holes in the pits into which wireline logging probes can be lowered to measure properties and concentrations of material surrounding the probe holes for evidence of TRU material. There is also a concern that large quantities of volatile organic compounds (VOC) are also present that would contaminate the environment during removal. In 2001, the Idaho National Engineering and Environmental Laboratory (INEEL) built two pulsed neutron wireline logging tools to measure TRU and VOC around the probe holes. The tools are the Prompt Fission Neutron (PFN) and the Pulsed Neutron Gamma (PNG), respectively. They were tested experimentally in surrogate test holes in 2003. The work reported here estimates the performance of the tools using Monte-Carlo modelling prior to field deployment. A MCNP model was constructed by INEEL personnel. It was modified by the authors to assess the ability of the tools to predict quantitatively the position and concentration of TRU and VOC materials disposed around the probe holes. The model was used to simulate the tools scanning the probe holes vertically in five centimetre increments. A drum was included in the model that could be placed near the probe hole and at other locations out to forty-five centimetres from the probe-hole in five centimetre increments. Scans were performed with no chlorine in the

  5. Programmable multi-timer for TRU waste analysis applications

    SciTech Connect

    Lawrence, R.S.; Nieschmidt, E.B.; Tsang, F.Y.

    1981-01-01

    A programmable, multiple-function timing module has been developed for use in transuranic (TRU) waste analysis applications at the Idaho National Engineering Laboratory. The Programmable Multi-Timer (PRMT) is an expanded version of a module originally built for accelerator-based active photon interrogation experiments. During the course of the experiments, it became obvious that a more versatile timer was needed to meet several unforeseen requirements. The PRMT was designed to meet the new requirements and to serve as a general-purpose timing module for other applications.

  6. Analysis of TRU waste for RCRA-listed elements

    SciTech Connect

    Mahan, C.; Gerth, D.; Yoshida, T.

    1996-07-01

    Analytical methods for RCRA listed elements on Portland cement type waste have been employed using both microwave and open hot plate digestions with subsequent analysis by inductively coupled plasma atomic emission spectroscopy (ICP-AES), inductively coupled plasma mass spectrometry (ICP-AES), inductively coupled plasma mass spectrometry (ICP-MS), graphite furnace atomic absorption (GFAA) and cold vapor atomic absorption and fluorescence (CVAA/CVAFS). Four different digestion procedures were evaluated including an open hot plate nitric acid digestion, EPA SW-846 Method 3051, and 2 methods using modifications to Method 3051. The open hot plate and the modified Method 3051, which used aqua regia for dissolution, were the only methods which resulted in acceptable data quality for all 14 RCRA-listed elements. Results for the nitric acid open hot plate digestion were used to qualify the analytical methods for TRU waste characterization, and resulted in a 99% passing score. Direct chemical analysis of TRU waste is being developed at Los Alamos National Laboratory in an attempt to circumvent the problems associated with strong acid digestion methods. Technology development includes laser induced breakdown spectroscopy (LIBS), laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS), dc arc CID atomic emission spectroscopy (DC-AES), and glow discharge mass spectrometry (GDMS). Analytical methods using the Portland cement matrix are currently being developed for each of the listed techniques. Upon completion of the development stage, blind samples will be distributed to each of the technology developers for RCRA metals characterization.

  7. Microbial Transformation of TRU and Mixed Wastes: Actinide Speciation and Waste Volume Reduction

    SciTech Connect

    Halada, Gary P.

    2004-12-01

    I. To characterize the biodegradation of cellulosic materials using Fourier Transform Infrared (FTIR) Spectroscopy. II. To develop an electrochemical/spectroscopic methodology to characterize TRU waste microbial transformation III. To develop molecular models of TRU complexes in order to understand microbial transformation In all cases, objectives are designed to compliment the efforts from other team members, and will be periodically coordinated through the lead P.I. at Brookhaven National Laboratory (BNL), A.J. Francis.

  8. TRU waste acceptance criteria for the Waste Isolation Pilot Plant: Revision 3

    SciTech Connect

    Not Available

    1989-01-01

    This document is intended to delineate the criteria by which unclassified waste will be accepted for emplacement at the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico and describe the bases upon which these criteria were established. These criteria are not intended to be specifications but rather limits that will allow waste generating and shipping sites to develop their own procedures and specifications for preparation of TRU waste for shipment to the WIPP. These criteria will also allow waste generating sites to plan future facilities for waste preparation that will produce TRU waste forms compatible with WIPP waste emplacement and isolation requirements. These criteria only apply to contract-handled (CH) and remote-handled (RH) transuranic (TRU) waste forms and are not intended to apply to beta-gamma wastes, spent fuel, high-level waste (HLW), low-level waste (LLW), low specific activity (LSA) waste, or forms of radioactive waste for experimental purposes. Specifications for receipt of experimental waste forms will be prepared by the responsible projects in conjunction with the staff of the WIPP project at a later date. In addition, these criteria only apply to waste emplaced in bedded rock salt. Technical bases for these criteria may differ significantly from those for other host rocks. 25 refs. 4 figs., 1 tab.

  9. CONCRETE CONTAINERS FOR LONG TERM STORAGE AND FINAL DISPOSAL OF TRU WASTE AND LONG LIVED ILW

    SciTech Connect

    Sakamoto, H.; Asano, H.; Tunaboylu, K.; Mayer, G.; Klubertanz, G.; Kobayashi, S.; Komuro, T.; Wagner, E.

    2003-02-27

    Transuranic (TRU) waste packaging development has been conducted since 1998 by the Radioactive Waste Management Funding and Research Centre (RWMC) to support the TRU waste disposal concept in Japan. In this paper, the overview of development status of the reinforced concrete package is introduced. This package has been developed in order to satisfy the Japanese TRU waste disposal concept based on current technology and to provide a low cost package. Since 1998, the basic design work (safety evaluation, manufacturing and handling procedure, economic evaluation, elemental tests etc.) have been carried out. As a result, the basic specification of the package was decided. This report presents the concept as well as the results of basic design, focused on safety analysis and handling procedure of the package. Two types of the packages exist: - Package-A: for non-heat generating TRU waste from reprocessing in 200 l drums and - Package-B: for heat generating TRU-waste from reprocessing.

  10. Repackaging of High Fissile TRU Waste at the Transuranic Waste Processing Center - 13240

    SciTech Connect

    Oakley, Brian; Heacker, Fred; McMillan, Bill

    2013-07-01

    Twenty-six drums of high fissile transuranic (TRU) waste from Oak Ridge National Laboratory (ORNL) operations were declared waste in the mid-1980's and placed in storage with the legacy TRU waste inventory for future treatment and disposal at the Waste Isolation Pilot Plant (WIPP). Repackaging and treatment of the waste at the TRU Waste Packaging Center (TWPC) will require the installation of additional equipment and capabilities to address the hazards for handling and repackaging the waste compared to typical Contact Handled (CH) TRU waste that is processed at the TWPC, including potential hydrogen accumulation in legacy 6M/2R packaging configurations, potential presence of reactive plutonium hydrides, and significant low energy gamma radiation dose rates. All of the waste is anticipated to be repackaged at the TWPC and certified for disposal at WIPP. The waste is currently packaged in multiple layers of containers which presents additional challenges for repackaging activities due to the potential for the accumulation of hydrogen gas in the container headspace in quantities than could exceed the Lower Flammability Limit (LFL). The outer container for each waste package is a stainless steel 0.21 m{sup 3} (55-gal) drum which contains either a 0.04 m{sup 3} or 0.06 m{sup 3} (10-gal or 15-gal) 6M drum. The inner 2R container in each 6M drum is ∼12 cm (5 in) outside diameter x 30-36 cm (12-14 in) long and is considered to be a > 4 liter sealed container relative to TRU waste packaging criteria. Inside the 2R containers are multiple configurations of food pack cans, pipe nipples, and welded capsules. The waste contains significant quantities of high burn-up plutonium oxides and metals with a heavy weight percentage of higher atomic mass isotopes and the subsequent in-growth of significant quantities of americium. Significant low energy gamma radiation is expected to be present due to the americium in-growth. Radiation dose rates on inner containers are estimated to

  11. Transuranic contaminated waste form characterization and data base

    SciTech Connect

    Kniazewycz, B.G.; McArthur, W.C.

    1980-07-01

    This volume contains 5 appendices. Title listing are: technologies for recovery of transuranics; nondestructive assay of TRU contaminated wastes; miscellaneous waste characteristics; acceptance criteria for TRU waste; and TRU waste treatment technologies.

  12. Waste Isolation Pilot Plant simulated RH TRU waste experiments: Data and interpretation pilot

    SciTech Connect

    Molecke, M.A.; Argueello, G.J.; Beraun, R.

    1993-04-01

    The simulated, i.e., nonradioactive remote-handled transuranic waste (RH TRU) experiments being conducted underground in the Waste Isolation Pilot Plant (WIPP) were emplaced in mid-1986 and have been in heated test operation since 9/23/86. These experiments involve the in situ, waste package performance testing of eight full-size, reference RH TRU containers emplaced in horizontal, unlined test holes in the rock salt ribs (walls) of WIPP Room T. All of the test containers have internal electrical heaters; four of the test emplacements were filled with bentonite and silica sand backfill materials. We designed test conditions to be ``near-reference`` with respect to anticipated thermal outputs of RH TRU canisters and their geometrical spacing or layout in WIPP repository rooms, with RH TRU waste reference conditions current as of the start date of this test program. We also conducted some thermal overtest evaluations. This paper provides a: detailed test overview; comprehensive data update for the first 5 years of test operations; summary of experiment observations; initial data interpretations; and, several status; experimental objectives -- how these tests support WIPP TRU waste acceptance, performance assessment studies, underground operations, and the overall WIPP mission; and, in situ performance evaluations of RH TRU waste package materials plus design details and options. We provide instrument data and results for in situ waste container and borehole temperatures, pressures exerted on test containers through the backfill materials, and vertical and horizontal borehole-closure measurements and rates. The effects of heat on borehole closure, fracturing, and near-field materials (metals, backfills, rock salt, and intruding brine) interactions were closely monitored and are summarized, as are assorted test observations. Predictive 3-dimensional thermal and structural modeling studies of borehole and room closures and temperature fields were also performed.

  13. Remote Handled TRU Waste Status and Activities and Challenges at the Hanford Site

    SciTech Connect

    MCKENNEY, D.E.

    2000-02-01

    A significant portion of the Department of Energy's forecast volume of remote-handled (RH) transuranic (TRU) waste will originate from the Hanford Site. The forecasted Hanford RH-TRU waste volume of over 2000 cubic meters may constitute over one-third of the forecast inventory of RH-TRU destined for disposal at the Waste Isolation Pilot Plant (WIPP). To date, the Hanford TRU waste program has focused on the retrieval, treatment and certification of the contact-handled transuranic (CH-TRU) wastes. This near-term focus on CH-TRU is consistent with the National TRU Program plans and capabilities. The first shipment of CH-TRU waste from Hanford to the WIPP is scheduled early in Calendar Year 2000. Shipments of RH-TRU from Hanford to the WIPP are scheduled to begin in Fiscal Year 2006 per the National TRU Waste Management Plan. This schedule has been incorporated into milestones within the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement). These Tri-Party milestones (designated the ''M-91'' series of milestones) relate to development of project management plans, completion of design efforts, construction and contracting schedules, and initiation of process operations. The milestone allows for modification of an existing facility, construction of a new facility, and/or commercial contracting to provide the capabilities for processing and certification of RH-TRU wastes for disposal at the WIPP. The development of a Project Management Plan (PMP) for TRU waste is the first significant step in the development of a program for disposal of Hanford's RH-TRU waste. This PMP will address the path forward for disposition of waste streams that cannot be prepared for disposal in the Hanford Waste Receiving and Processing facility (a contact-handled, small container facility) or other Site facilities. The PMP development effort has been initiated, and the PMP will be provided to the regulators for their approval by June 30, 2000. This plan will detail the

  14. Absorbing WIPP brines : a TRU waste disposal strategy.

    SciTech Connect

    Yeamans, D. R.; Wright, R.

    2002-01-01

    Los Alamos National Laboratory (LANL) has completed experiments involving 15 each, 250-liter experimental test containers of transuranic (TRU) heterogeneous waste immersed in two types of brine similar to those found in the underground portion of the Waste Isolation Pilot Plant (WIPP). To dispose of the waste without removing the brine from the test containers, LANL added commercially available cross-linked polyacrylate granules to absorb the 190 liters of brine in each container, making the waste compliant for shipping to the WlPP in a Standard Waste Box (SWB). Prior to performing the absorption, LANL and the manufacturer of the absorbent conducted laboratory and field tests to determine the ratio of absorbent to brine that would fully absorb the liquid. Bench scale tests indicated a ratio of 10 parts Castile brine to one part absorbent and 6.25 parts Brine A to one part absorbent. The minimum ratio of absorbent to brine was sought because headspace in the containers was limited. However, full scale testing revealed that the ratio should be adjusted to be about 15% richer in absorbent. Additional testing showed that the absorbent would not apply more than 13.8 kPa pressure on the walls of the vessel and that the absorbent would still function normally at that pressure and would not degrade in the approximately 5e-4 Sv/hr radioactive field produced by the waste. Heat generation from the absorption was minimal. The in situ absorption created a single waste stream of 8 SWBs whereas the least complicated alternate method of disposal would have yielded at least an additional 2600 liters of mixed low level liquid waste plus about two cubic meters of mixed low level solid waste, and would have resulted in higher risk of radiation exposure to workers. The in situ absorption saved $3 1 lk in a combination of waste treatment, disposal, material and personnel costs compared to the least expensive alternative and $984k compared to the original plan.

  15. ABSORBING WIPP BRINES: A TRU WASTE DISPOSAL STRATEGY

    SciTech Connect

    Yeamans, D. R.; Wrights, R. S.

    2002-02-25

    Los Alamos National Laboratory (LANL) has completed experiments involving 15 each, 250- liter experimental test containers of transuranic (TRU) heterogeneous waste immersed in two types of brine similar to those found in the underground portion of the Waste Isolation Pilot Plant (WIPP). To dispose of the waste without removing the brine from the test containers, LANL added commercially available cross-linked polyacrylate granules to absorb the 190 liters of brine in each container, making the waste compliant for shipping to the WIPP in a Standard Waste Box (SWB). Prior to performing the absorption, LANL and the manufacturer of the absorbent conducted laboratory and field tests to determine the ratio of absorbent to brine that would fully absorb the liquid. Bench scale tests indicated a ratio of 10 parts Castile brine to one part absorbent and 6.25 parts Brine A to one part absorbent. The minimum ratio of absorbent to brine was sought because headspace in the containers was limited. However, full scale testing revealed that the ratio should be adjusted to be about 15% richer in absorbent. Additional testing showed that the absorbent would not apply more than 13.8 kPa pressure on the walls of the vessel and that the absorbent would still function normally at that pressure and would not degrade in the approximately 5e-4 Sv/hr radioactive field produced by the waste. Heat generation from the absorption was minimal. The in situ absorption created a single waste stream of 8 SWBs whereas the least complicated alternate method of disposal would have yielded at least an additional 2600 liters of mixed low level liquid waste plus about two cubic meters of mixed low level solid waste, and would have resulted in higher risk of radiation exposure to workers. The in situ absorption saved $311k in a combination of waste treatment, disposal, material and personnel costs compared to the least expensive alternative and $984k compared to the original plan.

  16. Waste Isolation Pilot Plant TruDock crane system analysis

    SciTech Connect

    Morris, B.C.; Carter, M.

    1996-10-01

    The WIPP TruDock crane system located in the Waste Handling Building was identified in the WIPP Safety Analysis Report (SAR), November 1995, as a potential accident concern due to failures which could result in a dropped load. The objective of this analysis is to evaluate the frequency of failure of the TruDock crane system resulting in a dropped load and subsequent loss of primary containment, i.e. drum failure. The frequency of dropped loads was estimated to be 9.81E-03/year or approximately one every 102 years (or, for the 25% contingency, 7.36E-03/year or approximately one every 136 years). The dominant accident contributor was the failure of the cable/hook assemblies, based on failure data obtained from NUREG-0612, as analyzed by PLG, Inc. The WIPP crane system undergoes a rigorous test and maintenance program, crane operation is discontinued following any abnormality, and the crane operator and load spotter are required to be trained in safe crane operation, therefore it is felt that the WIPP crane performance will exceed the data presented in NUREG-0612 and the estimated failure frequency is felt to be conservative.

  17. EXAMPLE OF A RISK BASED DISPOSAL APPROVAL SOLIDIFICATION OF HANFORD SITE TRANSURANIC (TRU) WASTE

    SciTech Connect

    PRIGNANO AL

    2007-11-14

    The Hanford Site requested, and the U.S. Environmental Protection Agency (EPA) Region 10 approved, a Toxic Substances Control Act of 1976 (TSCA) risk-based disposal approval (RBDA) for solidifying approximately four cubic meters of waste from a specific area of one of the K East Basin: the North Loadout Pit (NLOP). The NLOP waste is a highly radioactive sludge that contained polychlorinated biphenyls (PCBs) regulated under TSCA. The prescribed disposal method for liquid PCB waste under TSCA regulations is either thermal treatment or decontamination. Due to the radioactive nature of the waste, however, neither thermal treatment nor decontamination was a viable option. As a result, the proposed treatment consisted of solidifying the material to comply with waste acceptance criteria at the Waste Isolation Pilot Plant (WPP) in Carlsbad, New Mexico, or possibly the Environmental Restoration Disposal Facility at the Hanford Site, depending on the resulting transuranic (TRU) content of the stabilized waste. The RBDA evaluated environmental risks associated with potential airborne PCBs. In addition, the RBDA made use of waste management controls already in place at the treatment unit. The treatment unit, the T Plant Complex, is a Resource Conservation and Recovery Act of 1976 (RCRA)-permitted facility used for storing and treating radioactive waste. The EPA found that the proposed activities did not pose an unreasonable risk to human health or the environment. Treatment took place from October 26,2005 to June 9,2006, and 332 208-liter (55-gallon) containers of solidified waste were produced. All treated drums assayed to date are TRU and will be disposed at WIPP.

  18. The NUMO Strategy for HLW and TRU Waste Disposal

    SciTech Connect

    Kitayama, K.; Oda, Y.

    2008-07-01

    Shortly after the Nuclear Waste Management Organization of Japan (NUMO) was established, we initiated an open call to all municipalities, requesting volunteers to host a repository for vitrified HLW. The first volunteer applied for a preliminary literature survey phase last January but, unfortunately, it withdrew the application in April. This failure provided an invaluable lesson for both the relevant authorities and NUMO; subsequently the Atomic Energy Commission of Japan and associated organizations are examining a support plan to back up NUMO's open solicitation. On another front, a recent amendment of 'The Specified Radioactive Waste Final Disposal Act' also allocates specific 'TRU' waste for deep geological disposal, requiring a demonstration of safety to a similar level as that for HLW. To implement the radioactive waste disposal project, NUMO has developed a methodology appropriate to our specific boundary conditions - the NUMO Structured Approach. This takes into account, in particular, our need to balance competing goals, such as operational safety, post-closure safety and cost, during repository tailoring to specific sites. The most important challenge for NUMO is, however, to attract volunteers. We believe that our open and structured R and D program is critical to demonstrate technical competence which, in turn, enhances the credibility of our various public relations activities. (authors)

  19. Transuranic (Tru) waste volume reduction operations at a plutonium facility

    SciTech Connect

    Cournoyer, Michael E; Nixon, Archie E; Dodge, Robert L; Fife, Keith W; Sandoval, Arnold M; Garcia, Vincent E

    2010-01-01

    Programmatic operations at the Los Alamos National Laboratory Plutonium Facility (TA 55) involve working with various amounts of plutonium and other highly toxic, alpha-emitting materials. The spread of radiological contamination on surfaces, airborne contamination, and excursions of contaminants into the operator's breathing zone are prevented through use of a variety of gloveboxes (the glovebox, coupled with an adequate negative pressure gradient, provides primary confinement). Size-reduction operations on glovebox equipment are a common activity when a process has been discontinued and the room is being modified to support a new customer. The Actin ide Processing Group at TA-55 uses one-meter-long glass columns to process plutonium. Disposal of used columns is a challenge, since they must be size-reduced to get them out of the glovebox. The task is a high-risk operation because the glass shards that are generated can puncture the bag-out bags, leather protectors, glovebox gloves, and the worker's skin when completing the task. One of the Lessons Learned from these operations is that Laboratory management should critically evaluate each hazard and provide more effective measures to prevent personnel injury. A bag made of puncture-resistant material was one of these enhanced controls. We have investigated the effectiveness of these bags and have found that they safely and effectively permit glass objects to be reduced to small pieces with a plastic or rubber mallet; the waste can then be easily poured into a container for removal from the glove box as non-compactable transuranic (TRU) waste. This size-reduction operation reduces solid TRU waste generation by almost 2% times. Replacing one-time-use bag-out bags with multiple-use glass crushing bags also contributes to reducing generated waste. In addition, significant costs from contamination, cleanup, and preparation of incident documentation are avoided. This effort contributes to the Los Alamos National

  20. Criticality safety analysis for remote handled TRU waste at the Waste Isolation Pilot Plant

    SciTech Connect

    Not Available

    1988-07-01

    The Waste Isolation Pilot Plant (WIPP) is a facility designed to store transuranic (TRU) waste underground in a mined salt bed. All fissile nuclides except U/sup 235/ are considered TRU nuclides. This report presents the results of the nuclear criticality analysis for Remote-Handled (RH) TRU waste stored at the WIPP site. The RH waste material will be contained in steel canisters that are five feet or ten feet long. Each ten foot canister is capable of holding three 55 gallon drums of waste material. The five foot canisters are to be welded together to form one ten foot long canister. In general the fissile waste material is mainly surface contamination on clothing, wipes, wrappings, tools, etc., or mixed in a borosilicate glass matrix or concrete. Other fissile material may be contained in absorbent mixtures. As a result, the fissile material will typically be spread over a large fraction of the volume in most of the waste storage canisters. Typical isotopic content of the fissile/other radioactive material is shown in Table 1-1. This analysis will analyze the RH waste storage and handling configurations at the WIPP site to show that up to 600 grams of fissile material per ten foot canister can be received and stored at the site without criticality safety concerns. 6 refs., 14 figs., 1 tab.

  1. Development of Infrared Welder for Sealing of Polyethylene TRU-Waste Containers

    SciTech Connect

    Milling, R.B.

    1999-06-08

    Engineers at the Savannah River Technology Center have successfully performed infrared welding of High Density Polyethylene test specimens to prove the feasibility of using the infrared welding process in the HANDSS-55-TRU-Waste Repackaging Module.

  2. Development of Infrared Welder for Sealing of Polyethylene TRU-Waste Containers

    SciTech Connect

    Milling, R.B.

    1999-06-08

    Engineers at the Savannah River Technology Center have successfully performed infrared welding of High Density Polyethylene test specimens to prove the feasibility of using the infrared welding process in the HANDSS-55-TRU-Waste Repackaging Module.

  3. Development of the remote-handled transuranic waste radioassay data quality objectives. An evaluation of RH-TRU waste inventories, characteristics, radioassay methods and capabilities

    SciTech Connect

    Meeks, A.M.; Chapman, J.A.

    1997-09-01

    The Waste Isolation Pilot Plant will accept remote-handled transuranic waste as early as October of 2001. Several tasks must be accomplished to meet this schedule, one of which is the development of Data Quality Objectives (DQOs) and corresponding Quality Assurance Objectives (QAOs) for the assay of radioisotopes in RH-TRU waste. Oak Ridge National Laboratory (ORNL) was assigned the task of providing to the DOE QAO, information necessary to aide in the development of DQOs for the radioassay of RH-TRU waste. Consistent with the DQO process, information needed and presented in this report includes: identification of RH-TRU generator site radionuclide data that may have potential significance to the performance of the WIPP repository or transportation requirements; evaluation of existing methods to measure the identified isotopic and quantitative radionuclide data; evaluation of existing data as a function of site waste streams using documented site information on fuel burnup, radioisotope processing and reprocessing, special research and development activities, measurement collection efforts, and acceptable knowledge; and the current status of technologies and capabilities at site facilities for the identification and assay of radionuclides in RH-TRU waste streams. This report is intended to provide guidance in developing the RH-TRU waste radioassay DQOs, first by establishing a baseline from which to work, second, by identifying needs to fill in the gaps between what is known and achievable today and that which will be required before DQOs can be formulated, and third, by recommending measures that should be taken to assure that the DQOs in fact balance risk and cost with an achievable degree of certainty.

  4. MANAGING THE RETRIEVAL RISK OF BURIED TRANSURANIC (TRU) WASTE WITH UNIQUE CHARACTERISTICS

    SciTech Connect

    WOJTASEK, R.D.; GADD, R.R.; GREENWELL, R.D.

    2006-01-19

    United States-Department of Energy (DOE) sites that store transuranic (TRU) waste are almost certain to encounter waste packages with characteristics that are so unique as to warrant special precautions for retrieval. At the Hanford Site, a subgroup of stored TRU waste (12 drums) had special considerations due to the radioactive source content of plutonium oxide (PuO{sub 2}), and the potential for high heat generation, pressurization, criticality, and high radiation. These characteristics bear on the approach to safely retrieve, overpack, vent, store, and transport the waste package. Because of the potential risk to personnel, contingency planning for unexpected conditions played an effective role in work planning and in preparing workers for the field inspection activity. As a result, the integrity inspections successfully confirmed waste package configuration and waste confinement without experiencing any perturbations due to unanticipated packaging conditions. This paper discusses the engineering and field approach to managing the risk of retrieving TRU waste with unique characteristics.

  5. MANAGEING THE RETRIEVAL RISK OF BURIED TRANSURANIC (TRU) WASTE WITH UNIQUE CHARACTERISTICS

    SciTech Connect

    WOJTASEK, R.D.; GREENWELL, R.D.

    2005-11-17

    United States-Department of Energy (DOE) sites that store transuranic (TRU) waste are almost certain to encounter waste packages with characteristics that are so unique as to warrant special precautions for retrieval. At the Hanford Site, a subgroup of stored TRU waste (12 drums) had special considerations due to the radioactive source content of plutonium oxide (PuO{sub 2}), and the potential for high heat generation, pressurization, criticality, and high radiation. These characteristics bear on the approach to safely retrieve, overpack, vent, store, and transport the waste package. Because of the potential risk to personnel, contingency planning for unexpected conditions played an effective roll in work planning and in preparing workers for the field inspection activity. As a result, the integrity inspections successfully confirmed waste package configuration and waste confinement without experiencing any perturbations due to unanticipated packaging conditions. This paper discusses the engineering and field approach to managing the risk of retrieving TRU waste with unique characteristics.

  6. The effect of vibration on alpha radiolysis of transuranic (TRU) waste

    SciTech Connect

    Zerwekh, A.; Kosiewicz, S.; Warren, J.

    1993-02-01

    This paper reports on previously unpublished scoping work related to the potential for vibration to redistribute radionuclides on transuranic (TRU) waste. If this were to happen, the amount of gases generated, including hydrogen, could be increased above the undisturbed levels. This could be an important consideration for transport of TRU wastes either at DOE sites or from them to a future repository, e.g., the Waste Isolation Pilot Plant (WIPP). These preliminary data on drums of real waste seem to suggest that radionuclide redistribution does not occur. However improvements in the experimental methodology are suggested to enhance safety of future experiments on real wastes as well as to provide more rigorous data.

  7. Comparative assessment of TRU waste forms and processes. Volume I. Waste form and process evaluations

    SciTech Connect

    Ross, W.A.; Lokken, R.O.; May, R.P.; Roberts, F.P.; Timmerman, C.L.; Treat, R.L.; Westsik, J.H. Jr.

    1982-09-01

    This study provides an assesses seven waste forms and eight processes for immobilizing transuranic (TRU) wastes. The waste forms considered are cast cement, cold-pressed cement, FUETAP (formed under elevated temperature and pressure) cement, borosilicate glass, aluminosilicate glass, basalt glass-ceramic, and cold-pressed and sintered silicate ceramic. The waste-immobilization processes considered are in-can glass melting, joule-heated glass melting, glass marble forming, cement casting, cement cold-pressing, FUETAP cement processing, ceramic cold-pressing and sintering, basalt glass-ceramic processing. Properties considered included gas generation, chemical durability, mechanical strength, thermal stability, and radiation stability. The ceramic products demonstrated the best properties, except for plutonium release during leaching. The glass and ceramic products had similar properties. The cement products generally had poorer properties than the other forms, except for plutonium release during leaching. Calculations of the Pu release indicated that the waste forms met the proposed NRC release rate limit of 1 part in 10/sup 5/ per year in most test conditions. The cast-cement process had the lowest processing cost, followed closely by the cold-pressed and FUETAP cement processes. Joule-heated glass melting had the lower cost of the glass processes. In-can melting in a high-quality canister had the highest cost, and cold-pressed and sintered ceramic the second highest. Labor and canister costs for in-can melting were identified. The major contributor to costs of disposing of TRU wastes in a defense waste repository is waste processing costs. Repository costs could become the dominant cost for disposing of TRU wastes in a commercial repository. It is recommended that cast and FUETAP cement and borosilicate glass waste-form systems be considered. 13 figures, 16 tables.

  8. MICROBIAL TRANSFORMATIONS OF TRU AND MIXED WASTES: ACTINIDE SPECIATION AND WASTE VOLUME REDUCTION.

    SciTech Connect

    FRANCIS, A.J.; DODGE, C.J.

    2006-11-16

    The overall goals of this research project are to determine the mechanism of microbial dissolution and stabilization of actinides in Department of Energy's (DOE) TRU wastes, contaminated sludges, soils, and sediments. This includes (1) investigations on the fundamental aspects of microbially catalyzed radionuclide and metal transformations (oxidation/reduction reactions, dissolution, precipitation, chelation); (2) understanding of the microbiological processes that control speciation and alter the chemical forms of complex inorganic/organic contaminant mixtures; and (3) development of new and improved microbially catalyzed processes resulting in immobilization of metals and radionuclides in the waste with concomitant waste volume reduction.

  9. MICROBIAL TRANSFORMATIONS OF TRU AND MIXED WASTES: ACTINIDE SPECIATION AND WASTE VOLUME REDUCTION

    SciTech Connect

    Francis, A.J.; Dodge, C.J.

    2006-06-01

    The overall goals of this research project are to determine the mechanism of microbial dissolution and stabilization of actinides in Department of Energy’s (DOE) TRU wastes, contaminated sludges, soils, and sediments. This includes (i) investigations on the fundamental aspects of microbially catalyzed radionuclide and metal transformations (oxidation/reduction reactions, dissolution, precipitation, chelation); (ii) understanding of the microbiological processes that control speciation and alter the chemical forms of complex inorganic/organic contaminant mixtures; and (iii) development of new and improved microbially catalyzed processes resulting in immobilization of metals and radionuclides in the waste with concomitant waste volume reduction.

  10. MICROBIAL TRANSFORMATIONS OF TRU AND MIXED WASTES: ACTINIDE SPECIATION AND WASTE VOLUME REDUCTION

    SciTech Connect

    Francis, A.J.; Dodge, C.J.

    2006-06-01

    The overall goals of this research project are to determine the mechanism of microbial dissolution and stabilization of actinides in Department of Energy's (DOE) TRU wastes, contaminated sludges, soils, and sediments. This includes (1) investigations on the fundamental aspects of microbially catalyzed radionuclide and metal transformations (oxidation/reduction reactions, dissolution, precipitation, chelation); (2) understanding of the microbiological processes that control speciation and alter the chemical forms of complex inorganic/organic contaminant mixtures; and (3) development of new and improved microbially catalyzed processes resulting in immobilization of metals and radionuclides in the waste with concomitant waste volume reduction.

  11. ACCELERATING HANFORD TRANSURANC (TRU) WASTE CERTIFICATION & SHIPMENT FROM 2 PER YEAR TO 12 PER MONTH

    SciTech Connect

    MCDONALD, K.M.

    2005-01-20

    storage building to provide sufficient space for the required temperature residence time; installing filter and sample ports in the drums using a pneumatic dart method; improving gas analysis time using cryofocusing technology and using both onsite and offsite labs for redundancy of analysis capability. The need for real-time radiography was reduced by implementing avisual examination technique as the waste was being packaged. Key to implementing the visual examination technique was the use of a ''portable procedure'' that can be used anywhere on the Hanford Site. This approach has been used successfully for packaging newly generated waste from various decontamination and decommissioning projects. Using a glovebox for repackaging drums has also been a rate-limiting step in accelerating the characterization of TRU waste at Hanford. The impacts of this requirement, however, have been minimized in two ways: first, by venting certain heat-sealed bags, and second, by implementing hydrogen and methane testing of headspace gas for high gram drums with multiple layers of confinement. The details of these specific efforts are included in a separate paper. Payload assembly and loading efficiencies of the TRUPACT-II, and certification and shipment efficiencies were instrumental to Hanford's successfully accelerating shipments. Loading time of TRUPACT II's for a shipment (three TRUPACTS per shipment) went from four days to two days. Future acceleration plans include certification of a box radioassay unit to assay TRU standard waste boxes (SWB) for shipment to WIPP and adding additional payload building/loadout stations to increase the shipping capabilities.

  12. Los Alamos Plutonium Facility newly generated tru waste certification. Final revised version 3/97

    SciTech Connect

    Gruetzmacher, K.; Montoya, A.; Sinkule, B.; Maez, M.

    1997-04-01

    This paper presents an overview of the activities being planned and implemented to certify newly generated contact handled transuranic (TRU) waste produced by Los Alamos National Laboratory`s (LANL`s) Plutonium Facility. Certifying waste at the point of generation is the most important cost and labor saving step in the WIPP certification process. The pedigree of a waste item is best known by the originator of the waste and frees a site from many of the expensive characterization activities associated with legacy waste. Through a cooperative agreement with LANLs Waste Management Facility and under the umbrella of LANLs WIPP-related certification and quality assurance documents, the Plutonium Facility will be certifying most of its own newly generated waste. Some of the challenges faced by the Plutonium Facility in preparing to certify TRU waste include the modification and addition of procedures to meet WIPP requirements, standardizing packaging for TRU waste, collecting processing documentation from operations which produce TRU waste, and developing ways to modify waste streams which are not certifiable in their present form.

  13. A facility design for repackaging ORNL CH-TRU legacy waste in Building 3525

    SciTech Connect

    Huxford, T.J.; Cooper, R.H. Jr.; Davis, L.E.; Fuller, A.B.; Gabbard, W.A.; Smith, R.B.; Guay, K.P.; Smith, L.C.

    1995-07-01

    For the last 25 years, the Oak Ridge National Laboratory (ORNL) has conducted operations which have generated solid, contact-handled transuranic (CH-TRU) waste. At present the CH-TRU waste inventory at ORNL is about 3400 55-gal drums retrievably stored in RCRA-permitted, aboveground facilities. Of the 3400 drums, approximately 2600 drums will need to be repackaged. The current US Department of Energy (DOE) strategy for disposal of these drums is to transport them to the Waste Isolation Pilot Plant (WIPP) in New Mexico which only accepts TRU waste that meets a very specific set of criteria documented in the WIPP-WAC (waste acceptance criteria). This report describes activities that were performed from January 1994 to May 1995 associated with the design and preparation of an existing facility for repackaging and certifying some or all of the CH-TRU drums at ORNL to meet the WIPP-WAC. For this study, the Irradiated Fuel Examination Laboratory (IFEL) in Building 3525 was selected as the reference facility for modification. These design activities were terminated in May 1995 as more attractive options for CH-TRU waste repackaging were considered to be available. As a result, this document serves as a final report of those design activities.

  14. Nitric-phosphoric acid treatment of TRU wastes

    SciTech Connect

    Smith, J.R.; Pierce, R.A.; Sturcken, E.F.

    1993-09-30

    A general process is being developed for the treatment of solid TRU and hazardous organic waste. Experimental data indicates that 100 lb/hr of aliphatic organic (plastics) and 1,000 lb/hr of non-aliphatic organic compounds can be quantitatively oxidized in a 1,000 gallon reaction vessel. The process uses dilute nitric acid in a concentrated phosphoric acid media as the main oxidant for the organic compounds. Phosphoric acid allows oxidation at temperatures up to 200{degrees}C and is relatively non-corrosive on 304-L stainless steel, especially at room temperature. Many organic materials have been completely oxidized to CO{sub 2}, CO, and inorganic acids in a 0.1M HNO{sub 3}/14.8M H{sub 3}PO{sub 4} solution. Addition of 0.001M Pd{sup 2+} reduces the CO to near 1% of the released carbon gases. To accomplish complete oxidation the solution temperature must be maintained above 130--150{degrees}C. Organic materials quantitatively destroyed include neoprene, cellulose, EDTA, TBP, tartaric acid, and nitromethane. The oxidation is usually complete in a few hours for soluble organic materials. The oxidation rate for non-aliphatic organic solids is moderately fast and surface area dependent. Polyethylene is quantitatively oxidized in 1.0M HNO{sub 3}/13.8M H{sub 3}PO{sub 4} solution while contained in pressure vessels heated with microwave energy. This is probably due to the high concentrations of NO{sub 2}{center_dot} obtained in the reaction environment.

  15. W-026, transuranic waste (TRU) glovebox acceptance test report

    SciTech Connect

    Leist, K.J.

    1998-03-11

    On July 18, 1997, the Transuranic (TRU) glovebox was tested using glovebox acceptance test procedure 13021A-86. The primary focus of the glovebox acceptance test was to examine control system interlocks, display menus, alarms, and operator messages. Limited mechanical testing involving the drum ports, hoists, drum lifter, compacted drum lifter, drum tipper, transfer car, conveyors, sorting table, lidder/delidder device and the TRU empty drum compactor were also conducted. As of February 25, 1998, 10 of the 102 test exceptions that affect the TRU glovebox remain open. These items will be tracked and closed via the WRAP Master Test Exception Database. As part of Test Exception resolution/closure the responsible individual closing the Test Exception performs a retest of the affected item(s) to ensure the identified deficiency is corrected, and, or to test items not previously available to support testing. Test exceptions are provided as appendices to this report.

  16. TRU waste absorbent addition project at the Idaho National Engineering and Environmental Laboratory.

    PubMed

    Colson, R Griff; Auman, Laurence E

    2003-08-01

    ABSTRACT In order to meet a commitment to ship 3,100 m3 of transuranic waste to the Waste Isolation Pilot Plant (WIPP), the Idaho National Engineering and Environmental Laboratory (INEEL) developed a process to add absorbent to TRU waste drums that did not meet WIPP waste acceptance criteria. The development, implementation, and safe completion of this project contributed to the INEEL's success in meeting the commitment three months early.

  17. TRU Waste Absorbent Addition Project at the Idaho National Engineering and Environmental Laboratory

    SciTech Connect

    Colson, Robert Griff; Auman, Laurence Eugene

    2003-08-01

    In order to meet a commitment to ship 3,100 m3 of transuranic waste to the Waste Isolation Pilot Plant (WIPP), the Idaho National Engineering and Environmental Laboratory (INEEL) developed a process to add absorbent to TRU waste drums that did not meet WIPP waste acceptance criteria. The development, implementation, and safe completion of this project contributed to the INEEL's success in meeting the commitment three months early.

  18. Pyrolysis/Steam Reforming Technology for Treatment of TRU Orphan Wastes

    SciTech Connect

    Mason, J. B.; McKibbin, J.; Schmoker, D.; Bacala, P.

    2003-02-27

    Certain transuranic (TRU) waste streams within the Department of Energy (DOE) complex cannot be disposed of at the Waste Isolation Pilot Plant (WIPP) because they do not meet the shipping requirements of the TRUPACT-II or the disposal requirements of the Waste Analysis Plan (WAP) in the WIPP RCRA Part B Permit. These waste streams, referred to as orphan wastes, cannot be shipped or disposed of because they contain one or more prohibited items, such as liquids, volatile organic compounds (VOCs), hydrogen gas, corrosive acids or bases, reactive metals, or high concentrations of polychlorinated biphenyl (PCB), etc. The patented, non-incineration, pyrolysis and steam reforming processes marketed by THOR Treatment Technologies LLC removes all of these prohibited items from drums of TRU waste and produces a dry, inert, inorganic waste material that meets the existing TRUPACT-II requirements for shipping, as well as the existing WAP requirements for disposal of TRU waste at WIPP. THOR Treatment Technologies is a joint venture formed in June 2002 by Studsvik, Inc. (Studsvik) and Westinghouse Government Environmental Services Company LLC (WGES) to further develop and deploy Studsvik's patented THORSM technology within the DOE and Department of Defense (DoD) markets. The THORSM treatment process is a commercially proven system that has treated over 100,000 cu. ft. of nuclear waste from commercial power plants since 1999. Some of this waste has had contact dose rates of up to 400 R/hr. A distinguishing characteristic of the THORSM process for TRU waste treatment is the ability to treat drums of waste without removing the waste contents from the drum. This feature greatly minimizes criticality and contamination issues for processing of plutonium-containing wastes. The novel features described herein are protected by issued and pending patents.

  19. RH-TRU Waste Characterization by Acceptable Knowledge at the Idaho National Engineering and Environmental Laboratory

    SciTech Connect

    Schulz, C.; Givens, C.; Bhatt, R.; Whitworth, J.

    2003-02-24

    Idaho National Engineering and Environmental Laboratory (INEEL) is conducting an effort to characterize approximately 620 drums of remote-handled (RH-) transuranic (TRU) waste currently in its inventory that were generated at the Argonne National Laboratory-East (ANL-E) Alpha Gamma Hot Cell Facility (AGHCF) between 1971 and 1995. The waste was generated at the AGHCF during the destructive examination of irradiated and unirradiated fuel pins, targets, and other materials from reactor programs at ANL-West (ANL-W) and other Department of Energy (DOE) reactors. In support of this effort, Shaw Environmental and Infrastructure (formerly IT Corporation) developed an acceptable knowledge (AK) collection and management program based on existing contact-handled (CH)-TRU waste program requirements and proposed RH-TRU waste program requirements in effect in July 2001. Consistent with Attachments B-B6 of the Waste Isolation Pilot Plant (WIPP) Hazardous Waste Facility Permit (HWFP) and th e proposed Class 3 permit modification (Attachment R [RH-WAP] of this permit), the draft AK Summary Report prepared under the AK procedure describes the waste generating process and includes determinations in the following areas based on AK: physical form (currently identified at the Waste Matrix Code level); waste stream delineation; applicability of hazardous waste numbers for hazardous waste constituents; and prohibited items. In addition, the procedure requires and the draft summary report contains information supporting determinations in the areas of defense relationship and radiological characterization.

  20. Process Description for the Retrieval of Earth Covered Transuranic (TRU) Waste Containers at the Hanford Site

    SciTech Connect

    JENS, J.

    2003-10-31

    This document presents a process description for the retrieval of earth-covered, contact handled (CH) suspect transuranic (TRU) waste containers located in the Low Level Burial Grounds (LLBG). The specific trenches include those in Burial Ground 218-W-4C (trenches 1, 4, 7, 20, and 29) and 218-W-4B (Trench 7 and TV-7). It describes the process planned for retrieval of the CH suspect TRU waste containers currently stored below grade in earth-covered trenches at the Hanford Site.

  1. RETRIEVING SUSPECT TRANSURANIC (TRU) WASTE FROM THE HANFORD BURIAL GROUNDS PROGRESS PLANS & CHALLENGES

    SciTech Connect

    FRENCH, M.S.

    2006-02-01

    This paper describes the scope and status of the program for retrieval of suspect transuranic (TRU) waste stored in the Hanford Site low-level burial grounds. Beginning in 1970 and continuing until the late 1980's, waste suspected of containing significant quantities of transuranic isotopes was placed in ''retrievable'' storage in designated modules in the Hanford burial grounds, with the intent that the waste would be retrieved when a national repository for disposal of such waste became operational. Approximately 15,000 cubic meters of waste, suspected of being TRU, was placed in storage modules in four burial grounds. With the availability of the national repository (the Waste Isolation Pilot Plant), retrieval of the suspect TRU waste is now underway. Retrieval efforts, to date, have been conducted in storage modules that contain waste, which is in general, contact-handled, relatively new (1980's and later), is stacked in neat, engineered configurations, and has a relatively good record of waste characteristics. Even with these optimum conditions, retrieval personnel have had to deal with a large number of structurally degraded containers, radioactive contamination issues, and industrial hazards (including organic vapors). Future retrieval efforts in older, less engineered modules are expected to present additional hazards and difficult challenges.

  2. Terminating Safeguards on Excess Special Nuclear Material: Defense TRU Waste Clean-up and Nonproliferation - 12426

    SciTech Connect

    Hayes, Timothy; Nelson, Roger

    2012-07-01

    The Department of Energy (DOE) and the National Nuclear Security Administration (NNSA) manages defense nuclear material that has been determined to be excess to programmatic needs and declared waste. When these wastes contain plutonium, they almost always meet the definition of defense transuranic (TRU) waste and are thus eligible for disposal at the Waste Isolation Pilot Plant (WIPP). The DOE operates the WIPP in a manner that physical protections for attractiveness level D or higher special nuclear material (SNM) are not the normal operating condition. Therefore, there is currently a requirement to terminate safeguards before disposal of these wastes at the WIPP. Presented are the processes used to terminate safeguards, lessons learned during the termination process, and how these approaches might be useful for future defense TRU waste needing safeguards termination prior to shipment and disposal at the WIPP. Also described is a new criticality control container, which will increase the amount of fissile material that can be loaded per container, and how it will save significant taxpayer dollars. Retrieval, compliant packaging and shipment of retrievably stored legacy TRU waste has dominated disposal operations at WIPP since it began operations 12 years ago. But because most of this legacy waste has successfully been emplaced in WIPP, the TRU waste clean-up focus is turning to newly-generated TRU materials. A major component will be transuranic SNM, currently managed in safeguards-protected vaults around the weapons complex. As DOE and NNSA continue to consolidate and shrink the weapons complex footprint, it is expected that significant quantities of transuranic SNM will be declared surplus to the nation's needs. Safeguards termination of SNM varies due to the wide range of attractiveness level of the potential material that may be directly discarded as waste. To enhance the efficiency of shipping waste with high TRU fissile content to WIPP, DOE designed an over

  3. W-026, transuranic waste restricted waste management (TRU RWM) glovebox operational test report

    SciTech Connect

    Leist, K.J.

    1998-02-18

    The TRU Waste/Restricted Waste Management (LLW/PWNP) Glovebox 401 is designed to accept and process waste from the Transuranic Process Glovebox 302. Waste is transferred to the glovebox via the Drath and Schraeder Bagless Transfer Port (DO-07401) on a transfer stand. The stand is removed with a hoist and the operator inspects the waste (with the aid of the Sampling and Treatment Director) to determine a course of action for each item. The waste is separated into compliant and non compliant. One Trip Port DO-07402A is designated as ``Compliant``and One Trip Port DO-07402B is designated as ``Non Compliant``. As the processing (inspection, bar coding, sampling and treatment) of the transferred items takes place, residue is placed in the appropriate One Trip port. The status of the waste items is tracked by the Data Management System (DMS) via the Plant Control System (PCS) barcode interface. As an item is moved for sampling or storage or it`s state altered by treatment, the Operator will track an items location using a portable barcode reader and entry any required data on the DMS console. The Operational Test Procedure (OTP) will perform evolutions (described here) using the Plant Operating Procedures (POP) in order to verify that they are sufficient and accurate for controlled glovebox operation.

  4. Final Hanford Site Transuranic (TRU) Waste Characterization QA Project Plan

    SciTech Connect

    GREAGER, T.M.

    1999-09-09

    The Transuranic Waste Characterization Quality Assurance Program Plan required each US Department of Energy (DOE) site that characterizes transuranic waste to be sent the Waste Isolation Pilot Plan that addresses applicable requirements specified in the QAPP.

  5. Evaluating criticality safety of TRU waste with NDA measurements and risk analyses

    SciTech Connect

    Hochel, R.C.; Hofstetter, K.J.; Sigg, R.A.; Winn, W.G.; Chay, S.C.

    1994-09-01

    The criticality safety of {sup 239}Pu in 55-gal. drums stored in TRU waste containers (concrete culverts) was evaluated using NDA neutron and gamma measurements and risk analyses. The neutron measurements yielded a {sup 239}Pu mass and k{sub eff} for a culvert, which contains up to 14 drums. The gamma measurements helped reveal and correct for any interfering neutron sources in the waste. Conservation probabilistic risk analyses were developed for both drums and culverts.

  6. Design and performance of a fluidized-bed incinerator for TRU combustible wastes

    SciTech Connect

    Meile, L.J.; Meyer, F.G.

    1982-01-01

    Problems encountered in the incineration of glovebox generated waste at Rocky Flats Plant (RFP) led to the development of a fluidized-bed incineration (FBI) system for transuranic (TRU) combustible wastes. Laboratory and pilot-scale testing of the process preceded the installation of an 82-kg/h production demonstration incinerator at RFP. The FBI process is discussed, and the design of the demonstration incinerator is described. Operating experience and process performance for both the pilot and demonstration units are presented.

  7. Hydrogen venting characteristics of commercial carbon-composite filters and applications to TRU waste

    SciTech Connect

    Callis, E.L.; Marshall, R.S.; Cappis, J.H.

    1997-04-01

    The generation of hydrogen (by radiolysis) and of other potentially flammable gases in radioactive wastes which are in contact with hydrogenous materials is a source of concern, both from transportation and on-site storage considerations. Because very little experimental data on the generation and accumulation of hydrogen was available in actual waste materials, work was initiated to experimentally determine factors affecting the concentration of hydrogen in the waste containers, such as the hydrogen generation rate, (G-values) and the rate of loss of hydrogen through packaging and commercial filter-vents, including a new design suitable for plastic bags. This report deals only with the venting aspect of the problem. Hydrogen venting characteristics of two types of commercial carbon-composite filter-vents, and two types of PVC bag closures (heat-sealed and twist-and-tape) were measured. Techniques and equipment were developed to permit measurement of the hydrogen concentration in various layers of actual transuranic (TRU) waste packages, both with and without filter-vents. A test barrel was assembled containing known configuration and amounts of TRU wastes. Measurements of the hydrogen in the headspace verified a hydrogen release model developed by Benchmark Environmental Corporation. These data were used to calculate revised wattage Emits for TRU waste packages incorporating the new bag filter-vent.

  8. DOE assay methods used for characterization of contact-handled transuranic waste

    SciTech Connect

    Schultz, F.J. ); Caldwell, J.T. )

    1991-08-01

    US Department of Energy methods used for characterization of contact-handled transuranic (CH-TRU) waste prior to shipment to the Waste Isolation Pilot Plant (WIPP) are described and listed by contractor site. The methods described are part of the certification process. All CH-TRU waste must be assayed for determination of fissile material content and decay heat values prior to shipment and prior to storage on-site. Both nondestructive assay (NDA) and destructive assay methods are discussed, and new NDA developments such as passive-action neutron (PAN) crate counter improvements and neutron imaging are detailed. Specifically addressed are assay method physics; applicability to CH-TRU wastes; calibration standards and implementation; operator training requirements and practices; assay procedures; assay precision, bias, and limit of detection; and assay limitation. While PAN is a new technique and does not yet have established American Society for Testing and Materials. American National Standards Institute, or Nuclear Regulatory Commission guidelines or methods describing proper calibration procedures, equipment setup, etc., comparisons of PAN data with the more established assay methods (e.g., segmented gamma scanning) have demonstrated its reliability and accuracy. Assay methods employed by DOE have been shown to reliable and accurate in determining fissile, radionuclide, alpha-curie content, and decay heat values of CH-TRU wastes. These parameters are therefore used to characterize packaged waste for use in certification programs such as that used in shipment of CH-TRU waste to the WIPP. 36 refs., 10 figs., 7 tabs.

  9. The Nevada Test Site Legacy TRU Waste - The WIPP Central Characterization Project

    SciTech Connect

    Norton, J. F.; Lahoud, R. G.; Foster, B. D.; VanMeighem, J.

    2003-02-25

    This paper discusses the Central Characterization Project (CCP) designed by the Waste Isolation Pilot Plant (WIPP) to aid sites, especially those sites with small quantities of transuranic (TRU) waste streams, in disposing of legacy waste at their facility. Because of the high cost of contracting vendors with the characterization capabilities necessary to meet the WIPP Waste Acceptance Criteria, utilizing the CCP is meant to simplify the process for small quantity sites. The paper will describe the process of mobilization of the vendors through CCP, the current production milestones that have been met, and the on-site lessons learned.

  10. EXPERIENCE FROM TWO SMALL QUANTITY RH-TRU WASTE SITES IN NAVIGATING THROUGH AN EVOLVING REGULATORY LANDSCAPE

    SciTech Connect

    Biedscheid, Jennifer; Devarakonda, Murthy; Eide, Jim; Kneff, Dennis

    2003-02-27

    Two small quantity transuranic (TRU) waste generator sites have gained considerable experience in navigating through a changing regulatory landscape in their efforts to remove the TRU waste from their sites and proceed with site remediation. The Battelle Columbus Laboratories Decommissioning Project (BCLDP) has the objectives of decontaminating nuclear research buildings and associated grounds and remediating to a level of residual contamination allowing future use without radiological restrictions. As directed by Congress, BCLDP must complete decontamination and decommissioning activities by the end of Fiscal Year (FY) 2006. This schedule requires the containerization of all TRU waste in 2002. BCLDP will generate a total of approximately 27 cubic meters (m3) of remote-handled (RH) TRU waste. Similarly, the Energy Technology Engineering Center (ETEC) is scheduled to close in 2006 pursuant to an agreement between the U.S. Department of Energy (DOE) and Boeing Canoga Park, the management and operating contractor for ETEC. ETEC had 11.0 m3 of RH-TRU and contact-handled (CH) TRU waste in storage, with the requirement to remove this waste in 2002 in order to meet their site closure schedule. The individual milestones for BCLDP and ETEC necessitated the establishment of site-specific programs to direct packaging and characterization of RH-TRU waste before the regulatory framework for the WIPP disposal of RH-TRU waste is finalized. The lack of large infrastructure for characterization activities, as well as the expedited schedules needed to meet regulatory milestones, provided both challenges and opportunities that are unique to small quantity sites. Both sites have developed unique programs for waste characterization based on the same premise, which directs comprehensive waste data collection efforts such that additional characterization will not be required following the finalization of the WIPP RH-TRU waste program requirements. This paper details the BCLDP program

  11. A Novel and Cost Effective Approach to the Decommissioning and Decontamination of Legacy Glove Boxes - Minimizing TRU Waste and Maximizing LLW Waste - 13634

    SciTech Connect

    Pancake, Daniel; Rock, Cynthia M.; Creed, Richard; Donohoue, Tom; Martin, E. Ray; Mason, John A.; Norton, Christopher J.; Crosby, Daniel; Nachtman, Thomas J.

    2013-07-01

    This paper describes the process of decommissioning two gloveboxes at the Argonne National Laboratory (ANL) that were employed for work with plutonium and other radioactive materials. The decommissioning process involved an initial phase of clearing tools and materials from the glove boxes and disconnecting them from the laboratory infrastructure. The removed materials, assessed as Transuranic (TRU) waste, were packaged into 55 gallon (200 litre) drums and prepared for ultimate disposal at the Waste Isolation Pilot Plant (WIPP) at Carlsbad New Mexico. The boxes were then sampled to determine the radioactive contents by means of smears that were counted with alpha and beta detectors to determine the residual surface contamination, especially in terms of alpha particle emitters that are an indicator of TRU activity. Paint chip samples were also collected and sent for laboratory analysis in order to ascertain the radioactive contamination contributing to the TRU activity as a fixed contamination. The investigations predicted that it may be feasible to reduce the residual surface contamination and render the glovebox structure low level waste (LLW) for disposal. In order to reduce the TRU activity a comprehensive decontamination process was initiated using chemical compounds that are particularly effective for lifting and dissolving radionuclides that adhere to the inner surfaces of the gloveboxes. The result of the decontamination process was a reduction in the TRU surface activity on the inner surfaces of the gloveboxes by four orders of magnitude in terms of disintegrations per unit area (DPA). The next phase of the process involved a comprehensive assay of the gloveboxes using a combination of passive neutron and gamma ray scintillation detectors and a shielded and collimated high purity Germanium (HPGe) gamma ray detector. The HPGe detector was used to obtain gamma ray spectra for a variety of measurement positions within the glovebox. The spectra were used to

  12. The Advancement of Public Awareness, Concerning TRU Waste Characterization, Using a Virtual Document

    SciTech Connect

    West, T. B.; Burns, T. P.; Estill, W. G.; Riggs, M. J.; Taggart, D. P.; Punjak, W. A.

    2002-02-28

    Building public trust and confidence through openness is a goal of the DOE Carlsbad Field Office for the Waste Isolation Pilot Plant (WIPP). The objective of the virtual document described in this paper is to give the public an overview of the waste characterization steps, an understanding of how waste characterization instrumentation works, and the type and amount of data generated from a batch of drums. The document is intended to be published on a web page and/or distributed at public meetings on CDs. Users may gain as much information as they desire regarding the transuranic (TRU) waste characterization program, starting at the highest level requirements (drivers) and progressing to more and more detail regarding how the requirements are met. Included are links to: drivers (which include laws, permits and DOE Orders); various characterization steps required for transportation and disposal under WIPP's Hazardous Waste Facility Permit; physical/chemical basis for each characterization method; types of data produced; and quality assurance process that accompanies each measurement. Examples of each type of characterization method in use across the DOE complex are included. The original skeleton of the document was constructed in a PowerPoint presentation and included descriptions of each section of the waste characterization program. This original document had a brief overview of Acceptable Knowledge, Non-Destructive Examination, Non-Destructive Assay, Small Quantity sites, and the National Certification Team. A student intern was assigned the project of converting the document to a virtual format and to discuss each subject in depth. The resulting product is a fully functional virtual document that works in a web browser and functions like a web page. All documents that were referenced, linked to, or associated, are included on the virtual document's CD. WIPP has been engaged in a variety of Hazardous Waste Facility Permit modification activities. During the

  13. Preliminary identification of interfaces for certification and transfer of TRU waste to WIPP

    SciTech Connect

    Whitty, W.J.; Ostenak, C.A.; Pillay, K.K.S.

    1982-02-01

    This study complements the national program to certify that newly generated and stored, unclassified defense transuranic (TRU) wastes meet the Waste Isolation Pilot Plant (WIPP) Waste Acceptance Criteria. The objectives of this study were to identify (1) the existing organizational structure at each of the major waste-generating and shipping sites and (2) the necessary interfaces between the waste shippers and WIPP. The interface investigations considered existing waste management organizations at the shipping sites and the proposed WIPP organization. An effort was made to identify the potential waste-certifying authorities and the lines of communication within these organizations. The long-range goal of this effort is to develop practicable interfaces between waste shippers and WIPP to enable the continued generation, interim storage, and eventual shipment of certified TRU wastes to WIPP. Some specific needs identified in this study include: organizational responsibility for certification procedures and quality assurance (QA) program; simple QA procedures; and specification and standardization of reporting forms and procedures, waste containers, and container labeling, color coding, and code location.

  14. Final Hanford Site Transuranic (TRU) Waste Characterization QA Project Plan

    SciTech Connect

    GREAGER, T.M.

    1999-12-14

    The Transuranic Waste Characterization Quality Assurance Program Plan required each U.S. Department of Energy (DOE) site that characterizes transuranic waste to be sent the Waste Isolation Pilot Plan that addresses applicable requirements specified in the quality assurance project plan (QAPP).

  15. MANAGEMENT OF TRANSURANIC (TRU) WASTE RETRIEVAL PROJECT RISKS SUCCESSES IN THE STARTUP OF THE HANFORD 200 AREA TRU WASTE RETRIEVAL PROJECT

    SciTech Connect

    GREENWLL, R.D.

    2005-01-20

    A risk identification and mitigation method applied to the Transuranic (TRU) Waste Retrieval Project performed at the Hanford 200 Area burial grounds is described. Retrieval operations are analyzed using process flow diagramming. and the anticipated project contingencies are included in the Authorization Basis and operational plans. Examples of uncertainties assessed include degraded container integrity, bulged drums, unknown containers, and releases to the environment. Identification and mitigation of project risks contributed to the safe retrieval of over 1700 cubic meters of waste without significant work stoppage and below the targeted cost per cubic meter retrieved. This paper will be of interest to managers, project engineers, regulators, and others who are responsible for successful performance of waste retrieval and other projects with high safety and performance risks.

  16. Development of an Alternative Treatment Scheme for Sr/TRU Removal: Permanganate Treatment of AN-107 Waste

    SciTech Connect

    RT Hallen; SA Bryan; FV Hoopes

    2000-08-04

    A number of Hanford tanks received waste containing organic complexants, which increase the volubility of Sr-90 and transuranic (TRU) elements. Wastes from these tanks require additional pretreatment to remove Sr-90 and TRU for immobilization as low activity waste (Waste Envelope C). The baseline pretreatment process for Sr/TRU removal was isotopic exchange and precipitation with added strontium and iron. However, studies at both Battelle and Savannah River Technology Center (SRTC) have shown that the Sr/Fe precipitates were very difficult to filter. This was a result of the formation of poor filtering iron solids. An alternate treatment technology was needed for Sr/TRU removal. Battelle had demonstrated that permanganate treatment was effective for decontaminating waste samples from Hanford Tank SY-101 and proposed that permanganate be examined as an alternative Sr/TRU removal scheme for complexant-containing tank wastes such as AW107. Battelle conducted preliminary small-scale experiments to determine the effectiveness of permanganate treatment with AN-107 waste samples that had been archived at Battelle from earlier studies. Three series of experiments were performed to evaluate conditions that provided adequate Sr/TRU decontamination using permanganate treatment. The final series included experiments with actual AN-107 diluted feed that had been obtained specifically for BNFL process testing. Conditions that provided adequate Sr/TRU decontamination were identified. A free hydroxide concentration of 0.5M provided adequate decontamination with added Sr of 0.05M and permanganate of 0.03M for archived AN-107. The best results were obtained when reagents were added in the sequence Sr followed by permanganate with the waste at ambient temperature. The reaction conditions for Sr/TRU removal will be further evaluated with a 1-L batch of archived AN-107, which will provide a large enough volume of waste to conduct crossflow filtration studies (Hallen et al. 2000a).

  17. Expert system technology for nondestructive waste assay

    SciTech Connect

    Becker, G.K.; Determan, J.C.

    1998-07-01

    Nondestructive assay waste characterization data generated for use in the National TRU Program must be of known and demonstrable quality. Each measurement is required to receive an independent technical review by a qualified expert. An expert system prototype has been developed to automate waste NDA data review of a passive/active neutron drum counter system. The expert system is designed to yield a confidence rating regarding measurement validity. Expert system rules are derived from data in a process involving data clustering, fuzzy logic, and genetic algorithms. Expert system performance is assessed against confidence assignments elicited from waste NDA domain experts. Performance levels varied for the active, passive shielded, and passive system assay modes of the drum counter system, ranging from 78% to 94% correct classifications.

  18. Evaluation of a neutron-photon shield for transuranic (TRU) waste containers

    SciTech Connect

    Wishau, R. J.; Gallegos, M.; Ruby, R.; Sullivan, E. J.

    2004-01-01

    The Los Alamos National Laboratory (LANL) Operational Health Physics Group, with the support of the Nuclear Materials Technology Waste Management Group, has developed a wrap-around shield for use with 0.208 cubic meter (55 gallon) drums containing transuranic (TRU) waste. The shield or 'drum cover' as it is called, is innovative in its ability to attenuate both neutron and photon radiation associated with TRU waste. This poster presents information on the design, fabrication and field use of the drum cover. Design details to be presented include the composition of the shield including the materials used, thicknesses, weight, dimensions and fastener arrangement. Information on the source supplier for the shield materials, the fabrication vendor and the drum cover cost are provided. Shielding data show the unique effectiveness of the drum cover and its ability to reduce neutron and photon radiation exposures as low as reasonably achievable (ALARA). These data include x-ray testing of the assembled shield materials, as well as field experience report on the drum cover using TRU waste containers and neutron source drums. The poster includes discussion and photographs of recent field uses for the drum cover, user experience and acceptance of the drum cover and suggestions for future use and enhancement of the drum cover design.

  19. Review and evaluation of metallic TRU nuclear waste consolidation methods

    SciTech Connect

    Montgomery, D.R.; Nesbitt, J.F.

    1983-08-01

    The US Department of Energy established the Commercial Waste Treatment Program to develop, demonstrate, and deploy waste treatment technology. In this report, viable methods are identified that could consolidate the volume of metallic wastes generated in a fuel reprocessing facility. The purpose of this study is to identify, evaluate, and rate processes that have been or could be used to reduce the volume of contaminated/irradiated metallic waste streams and to produce an acceptable waste form in a safe and cost-effective process. A technical comparative evaluation of various consolidation processes was conducted, and these processes were rated as to the feasibility and cost of producing a viable product from a remotely operated radioactive process facility. Out of the wide variety of melting concepts and consolidation systems that might be applicable for consolidating metallic nuclear wastes, the following processes were selected for evaluation: inductoslay melting, rotating nonconsumable electrode melting, plasma arc melting, electroslag melting with two nonconsumable electrodes, vacuum coreless induction melting, and cold compaction. Each process was evaluated and rated on the criteria of complexity of process, state and type of development required, safety, process requirements, and facility requirements. It was concluded that the vacuum coreless induction melting process is the most viable process to consolidate nuclear metallic wastes. 11 references.

  20. Systematic evaluation of options to avoid generation of noncertifiable transuranic (TRU) waste at Los Alamos National Laboratory

    SciTech Connect

    Boak, J.M.; Kosiewicz, S.T.; Triay, I.; Gruetzmacher, K.; Montoya, A.

    1998-03-01

    At present, >35% of the volume of newly generated transuranic (TRU) waste at Los Alamos National Laboratory is not certifiable for transport to the Waste Isolation Pilot Plant (WIPP). Noncertifiable waste would constitute 900--1,000 m{sup 3} of the 2,600 m{sup 3} of waste projected during the period of the Environmental Management (EM) Accelerated Cleanup: Focus on 2006 plan (DOE, 1997). Volume expansion of this waste to meet thermal limits would increase the shipped volume to {approximately}5,400 m{sup 3}. This paper presents the results of efforts to define which TRU waste streams are noncertifiable at Los Alamos, and to prioritize site-specific options to reduce the volume of certifiable waste over the period of the EM Accelerated Cleanup Plan. A team of Los Alamos TRU waste generators and waste managers reviewed historic generation rates and thermal loads and current practices to estimate the projected volume and thermal load of TRU waste streams for Fiscal Years 1999--2006. These data defined four major problem TRU waste streams. Estimates were also made of the volume expansion that would be required to meet the permissible wattages for all waste. The four waste streams defined were: (1) {sup 238}Pu-contaminated combustible waste from production of Radioactive Thermoelectric Generators (RTGs) with {sup 238}Pu activity which exceeds allowable shipping limits by 10--100X. (2) {sup 241}Am-contaminated cement waste from plutonium recovery processes (nitric and hydrochloric acid recovery) are estimated to exceed thermal limits by {approximately}3X. (3) {sup 239}Pu-contaminated combustible waste, mainly organic waste materials contaminated with {sup 239}Pu and {sup 241}Am, is estimated to exceed thermal load requirements by a factor of {approximately}2X. (4) Oversized metal waste objects, (especially gloveboxes), cannot be shipped as is to WIPP because they will not fit in a standard waste box or drum.

  1. Demonstration of Entrained Solids and Sr/TRU Removal Processes with Archived AN-107 Waste

    SciTech Connect

    RT Hallen; KP Brooks; LK Jagoda

    2000-08-02

    Archived AN-107 waste was used to evaluate entrained solids removal, Sr/TRU decontamination of supernatant, and Sr/TRU solids removal. Even though most of the entrained solids had been previously removed from the archived sample, the residual entrained solids rapidly fouled the filter element resulting in very poor filter performance. An attempt to run at higher pressure resulted in more fouling, and reduced filter performance. Filtration efforts to remove entrained solids were abandoned and the waste was treated for Sr/TRU removal with the entrained solids present. The new processing scheme for Sr/TRU removal involving precipitation by added strontium and permanganate worked well. The decontamination factors for Sr and TRU components were significantly greater than the ILAW DF requirements for higher reagent concentrations of 1M hydroxide, 0.075M Sr, and 0.05M permanganate and lower reagent concentrations of 0.8M hydroxide, 0.05M Sr, and 0.03M permanganate. These results support the use of lower concentration of reagent additions in future tests. Optimization studies should be conducted to examine the reduction in added hydroxide from 1M to 0.5 M, reduction of Sr from 0.075M to 0.05M, and reduction in permanganate from 0.05M to 0.03M and the impact this reduction has on filtration performance with new samples from Tank AN-107. The combined entrained solids and Sr/TRU precipitate were successfully filtered in the single element, crossflow filtration unit. The filtrate flux was high, >0.1 gpm/ft{sup 2}, at the initial test conditions of 53 psi and 11.2ft/s for the treated archived AN-107 sample. The filter flux rate dropped significantly with time as testing progressed and appears to be a result of shearing the agglomerated solids and fouling of the filter element by the resulting fine particles. The relatively low clean water flux rates obtained at the end of the test also indicate filter fouling. Chemical cleaning was required to restore clean water flux rates to

  2. DEVELOPMENT OF THE TRU WASTE TRANSPORTATION FLEET--A SUCCESS STORY

    SciTech Connect

    Devarakonda, Murthy; Morrison, Cindy; Brown, Mike

    2003-02-27

    Since March 1999, the Waste Isolation Pilot Plant (WIPP), located in southeastern New Mexico, has been operated by the U.S. Department of Energy (DOE), Carlsbad Field Office (CBFO), as a repository for the permanent disposal of defense-related transuranic (TRU) waste. More than 1,450 shipments of TRU waste for WIPP disposal have been completed, and the WIPP is currently receiving 12 to 16 shipments per week from five DOE sites around the nation. One of the largest fleets of Type B packagings supports the transportation of TRU waste to WIPP. This paper discusses the development of this fleet since the original Certificate of Compliance (C of C) for the Transuranic Package Transporter-II (TRUPACT-II) was issued by the U.S. Nuclear Regulatory Commission (NRC) in 1989. Evolving site programs, closure schedules of major sites, and the TRU waste inventory at the various DOE sites have directed the sizing and packaging mix of this fleet. This paper discusses the key issues that guided this fleet development, including the following: While the average weight of a 55-gallon drum packaging debris could be less than 300 pounds (lbs.), drums containing sludge waste or compacted waste could approach the maximum allowable weight of 1,000 lbs. A TRUPACT-II shipment may consist of three TRUPACT-II packages, each of which is limited to a total weight of 19,250 lbs. Payload assembly weights dictated by ''as-built'' TRUPACT-II weights limit each drum to an average weight of 312 lbs when three TRUPACT-IIs are shipped. To optimize the shipment of heavier drums, the HalfPACT packaging was designed as a shorter and lighter version of the TRUPACT-II to accommodate a heavier load. Additional packaging concepts are currently under development, including the ''TRUPACT-III'' packaging being designed to address ''oversized'' boxes that are currently not shippable in the TRUPACT-II or HalfPACT due to size constraints. Shipment optimization is applicable not only to the addition of new

  3. Analysis of long-term impacts of TRU waste remaining at generator/storage sites for No Action Alternative 2

    SciTech Connect

    Buck, J.W.; Bagaasen, L.M.; Bergeron, M.P.; Streile, G.P.

    1997-09-01

    This report is a supplement to the Waste Isolation Pilot Plant Disposal-Phase Final Supplemental Environmental Impact Statement (SEIS-II). Described herein are the underlying information, data, and assumptions used to estimate the long-term human-health impacts from exposure to radionuclides and hazardous chemicals in transuranic (TRU) waste remaining at major generator/storage sites after loss of institutional control under No Action Alternative 2. Under No Action Alternative 2, TRU wastes would not be emplaced at the Waste Isolation Pilot Plant (WIPP) but would remain at generator/storage sites in surface or near-surface storage. Waste generated at smaller sites would be consolidated at the major generator/storage sites. Current TRU waste management practices would continue, but newly generated waste would be treated to meet the WIPP waste acceptance criteria. For this alternative, institutional control was assumed to be lost 100 years after the end of the waste generation period, with exposure to radionuclides and hazardous chemicals in the TRU waste possible from direct intrusion and release to the surrounding environment. The potential human-health impacts from exposure to radionuclides and hazardous chemicals in TRU waste were analyzed for two different types of scenarios. Both analyses estimated site-specific, human-health impacts at seven major generator/storage sites: the Hanford Site (Hanford), Idaho National Engineering and Environmental Laboratory (INEEL), Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Oak Ridge National Laboratory (ORNL), Rocky Flats Environmental Technology Site (RFETS), and Savannah River Site (SRS). The analysis focused on these seven sites because 99 % of the estimated TRU waste volume and inventory would remain there under the assumptions of No Action Alternative 2.

  4. Issues in the shipment and disposal of TRU waste from small stream generators: The case of Battelle Columbus Operations

    SciTech Connect

    Kohli, R.; Pasupathi, V.

    1995-11-01

    The Battelle Hot Cell Facility in Central Ohio is scheduled to be decommissioned in the near future. Past nuclear research activities have left the hot cells and other controlled areas with highly contaminated equipment, as well as extensively contaminated surfaces and residual radioactive materials, including approximately 45 m{sup 3} of stored transuranic (TRU) waste. Because of the high radiation levels of the waste, it must be packaged in shielded containers for shipment and, depending on the final disposal site, repackaged in different containers to meet disposal site acceptance criteria. At present, Battelle does not have authorization to ship the TRU waste off site since no storage or disposal site has been designated to receive the waste. Various options are being considered for disposal of the TRU waste each with different packaging requirements that will have major impacts on the cost and schedule for completion of the decommissioning of the facility. These issues are discussed.

  5. System to control contamination during retrieval of buried TRU waste

    DOEpatents

    Menkhaus, D.E.; Loomis, G.G.; Mullen, C.K.; Scott, D.W.; Feldman, E.M.; Meyer, L.C.

    1993-04-20

    A system is described to control contamination during the retrieval of hazardous waste comprising an outer containment building, an inner containment building, within the outer containment building, an electrostatic radioactive particle recovery unit connected to and in communication with the inner and outer containment buildings, and a contaminate suppression system including a moisture control subsystem, and a rapid monitoring system having the ability to monitor conditions in the inner and outer containment buildings.

  6. System to control contamination during retrieval of buried TRU waste

    DOEpatents

    Menkhaus, Daniel E.; Loomis, Guy G.; Mullen, Carlan K.; Scott, Donald W.; Feldman, Edgar M.; Meyer, Leroy C.

    1993-01-01

    A system to control contamination during the retrieval of hazardous waste comprising an outer containment building, an inner containment building, within the outer containment building, an electrostatic radioactive particle recovery unit connected to and in communication with the inner and outer containment buildings, and a contaminate suppression system including a moisture control subsystem, and a rapid monitoring system having the ability to monitor conditions in the inner and outer containment buildings.

  7. IMPROVEMENTS IN HANFORD TRANSURANIC (TRU) PROGRAM UTILIZING SYSTEMS MODELING AND ANALYSES

    SciTech Connect

    UYTIOCO EM

    2007-11-12

    Hanford's Transuranic (TRU) Program is responsible for certifying contact-handled (CH) TRU waste and shipping the certified waste to the Waste Isolation Pilot Plant (WIPP). Hanford's CH TRU waste includes material that is in retrievable storage as well as above ground storage, and newly generated waste. Certifying a typical container entails retrieving and then characterizing it (Real-Time Radiography, Non-Destructive Assay, and Head Space Gas Sampling), validating records (data review and reconciliation), and designating the container for a payload. The certified payload is then shipped to WIPP. Systems modeling and analysis techniques were applied to Hanford's TRU Program to help streamline the certification process and increase shipping rates.

  8. Development of hydrogen gas getters for TRU waste

    SciTech Connect

    Kaszuba, J. P.; Mroz, E. J.; Peterson, E.; Stone, M.; Haga, M. J.

    2004-01-01

    Alpha radiolysis of hydrogenous waste and packaging materials generates hydrogen gas in radioactive storage containers. For this reason, the flammable gas (hydrogen) concentration in waste shipment containers (Transuranic Package Transporter-II or TP-II containers) is limited to the lower explosion limit of hydrogen in air (5 vol%). The use of hydrogen getters is being investigated to prevent the build up of hydrogen during storage and transport of the TP-II containers (up to 60 days). Preferred hydrogen getters are solid materials that scavenge hydrogen from the gas phase and chemically and irreversibly bind it in the solid state. One proven getter, 1,4-bis(phenylethynyl)benzene or DEB, belongs to a class of compounds called alkynes, which are characterized by the presence of carbon-carbon triple bonds. These carbon atoms will, in the presence of suitable catalysts such as palladium, irreversibly react with hydrogen to form the corresponding saturated alkane compounds. Because DEB contains two triple bonds, one mole of DEB reacts with 4 moles of hydrogen. The standard formulation for the 'DEB getter' is a mixture of 75% DEB and 25% carbon catalyst (5% palladium on carbon). Certain chemicals such as volatile organic compounds (VOCs) are known to 'poison' and reduce the activity of the catalyst. Therefore, in addition to the standard formulation, a semi-permeable barrier that encapsulates and protects the getter and its catalyst from poisons was also developed. The uncoated and polymer coated getter formulations were subjected to tests that determined the performance of the getters with regard to capacity, operating temperature range (with hydrogen in nitrogen and in air), hydrogen concentration, poisons, aging, pressure, reversibility, and radiation effects. This testing program was designed to address the following performance requirements: (1) Minimum rate for hydrogen removal of 1.2E-5 moles hydrogen per second for 60 days; (2) Sufficient getter material within

  9. Performance test of a gamma/neutron mapper on stored TRU waste drums at the RWMC

    SciTech Connect

    Gehrke, R.J.; Josten, N.E.; Lawrence, R.S.

    1995-12-01

    The results from a performance test of a {gamma}- and neutron-radiation measurement instrument used to provide two-dimensional radiation field maps are reported. The performance test was conducted at the Transuranic Storage Area of the Radioactive Waste Management Complex (RWMC) where interim storage is provided for 55-gal. drums of TRU waste from the Department of Energy`s Rocky Flats Plant. The performance test consisted of scanning drums stacked five high and five wide to identify high radiation areas and possible discrepancies with the waste manifest. Scans were taken at standoff distances of 15 cm, 30 cm, 45 cm and 90 cm. Data were acquired at scan speeds of 7.5 cm/s and 15 cm/s. The results of these scans are presented as one, two and three dimensional contour plots of the radiation fields. A comparison of these results with manifests of these drums are compared and discussed. While the T-radiation fields as measured by the Health Physicist and by the radiation maps are in general in agreement, the TRU content as given in the manifest did not often correlate with the neutron map.

  10. Improved Hydrogen Gas Getters for TRU Waste -- Final Report

    SciTech Connect

    Mark Stone; Michael Benson; Christopher Orme; Thomas Luther; Eric Peterson

    2005-09-01

    Alpha radiolysis of hydrogenous waste and packaging materials generates hydrogen gas in radioactive storage containers. For that reason, the Nuclear Regulatory Commission limits the flammable gas (hydrogen) concentration in the Transuranic Package Transporter-II (TRUPACT-II) containers to 5 vol% of hydrogen in air, which is the lower explosion limit. Consequently, a method is needed to prevent the build up of hydrogen to 5 vol% during the storage and transport of the TRUPACT-II containers (up to 60 days). One promising option is the use of hydrogen getters. These materials scavenge hydrogen from the gas phase and irreversibly bind it in the solid phase. One proven getter is a material called 1,4-bis (phenylethynyl) benzene, or DEB, characterized by the presence of carbon-carbon triple bonds. Carbon may, in the presence of suitable precious metal catalysts such as palladium, irreversibly react with and bind hydrogen. In the presence of oxygen, the precious metal may also eliminate hydrogen by catalyzing the formation of water. This reaction is called catalytic recombination. DEB has the needed binding rate and capacity for hydrogen that potentially could be generated in the TRUPACT II. Phases 1 and 2 of this project showed that uncoated DEB performed satisfactorily in lab scale tests. Based upon these results, Phase 3, the final project phase, included larger scale testing. Test vessels were scaled to replicate the ratio between void space in the inner containment vessel of a TRUPACT-II container and a payload of seven 55-gallon drums. The tests were run with an atmosphere of air for 63.9 days at ambient temperature (15-27°C) and a scaled hydrogen generation rate of 2.60E-07 moles per second (0.35 cc/min). A second type of getter known as VEI, a proprietary polymer hydrogen getter characterized by carbon-carbon double bonds, was also tested in Phase 3. Hydrogen was successfully “gettered” by both getter systems. Hydrogen concentrations remained below 5 vol% (in

  11. Final Environmental Impact Statement for Treating Transuranic (TRU)/Alpha Low-level Waste at the Oak Ridge National Laboratory Oak Ridge, Tennessee

    SciTech Connect

    N /A

    2000-06-30

    The DOE proposes to construct, operate, and decontaminate/decommission a TRU Waste Treatment Facility in Oak Ridge, Tennessee. The four waste types that would be treated at the proposed facility would be remote-handled TRU mixed waste sludge, liquid low-level waste associated with the sludge, contact-handled TRU/alpha low-level waste solids, and remote-handled TRU/alpha low-level waste solids. The mixed waste sludge and some of the solid waste contain metals regulated under the Resource Conservation and Recovery Act and may be classified as mixed waste. This document analyzes the potential environmental impacts associated with five alternatives--No Action, the Low-Temperature Drying Alternative (Preferred Alternative), the Vitrification Alternative, the Cementation Alternative, and the Treatment and Waste Storage at Oak Ridge National Laboratory (ORNL) Alternative.

  12. In-situ stabilization of TRU/mixed waste project at the INEEL

    SciTech Connect

    Milian, L.W.; Heiser, J.H.; Adams, J.W.; Rutenkroeger, S.P.

    1997-08-01

    Throughout the DOE complex, buried waste poses a threat to the environment by means of contaminant transport. Many of the sites contain buried waste that is untreated, prior to disposal, or insufficiently treated, by today`s standards. One option to remedy these disposal problems is to stabilize the waste in situ. This project was in support of the Transuranic/Mixed Buried Waste - Arid Soils product line of the Landfill Focus Area, which is managed currently by the Idaho National Engineering Laboratory (BNL) provided the analytical laboratory and technical support for the various stabilization activities that will be performed as part of the In Situ Stabilization of TRU/Mixed Waste project at the INEL. More specifically, BNL was involved in laboratory testing that included the evaluation of several grouting materials and their compatibility, interaction, and long-term durability/performance, following the encapsulation of various waste materials. The four grouting materials chosen by INEL were: TECT 1, a two component, high density cementious grout, WAXFIX, a two component, molten wax product, Carbray 100, a two component elastomeric epoxy, and phosphate cement, a two component ceramic. A simulated waste stream comprised of sodium nitrate, Canola oil, and INEL soil was used in this study. Seven performance and durability tests were conducted on grout/waste specimens: compressive strength, wet-dry cycling, thermal analysis, base immersion, solvent immersion, hydraulic conductivity, and accelerated leach testing.

  13. Determination of H{sub 2} Diffusion Rates through Various Closures on TRU Waste Bag-Out Bags

    SciTech Connect

    Phillip D. Noll, Jr.; E. Larry Callis; Kirsten M. Norman

    1999-06-01

    The amount of H{sub 2} diffusion through twist and tape (horse-tail), wire tie, plastic tie, and heat sealed closures on transuranic (TRU) waste bag-out bags has been determined. H{sub 2} diffusion through wire and plastic tie closures on TRU waste bag-out bags has not been previously characterized and, as such, TRU waste drums containing bags with these closures cannot be certified and/or shipped to the Waste Isolation Pilot Plant (WIPP). Since wire ties have been used at Los Alamos National Laboratory (LANL) from 1980 to 1991 and the plastic ties from 1991 to the present, there are currently thousands of waste drums that cannot be shipped to the WIPP site. Repackaging the waste would be prohibitively expensive. Diffusion experiments performed on the above mentioned closures show that the diffusion rates of plastic tie and horse-tail closures are greater than the accepted value presented in the TRU-PACT 11 Safety Analysis Report (SAR). Diffusion rates for wire tie closures are not statistically different from the SAR value. Thus, drums containing bags with these closures can now potentially be certified which would allow for their consequent shipment to WIPP.

  14. Savannah River Site Public and regulatory involvement in the transuranic (TRU) program and their effect on decisions to dispose of Pu-238 heat source tru waste onsite

    SciTech Connect

    Bert Crapse, H.M.; Sonny, W.T.

    2007-07-01

    The key to successful public involvement at the Savannah River Site (SRS) has been and continues to be vigorous, up-front involvement of the public and state regulators with technical experts. The SRS Waste Management Program includes all forms of radioactive waste. All of the decisions associated with the management of these wastes are of interest to the public and successful program implementation would be impossible without including the public up-front in the program formulation. Serious problems can result if program decisions are made without public involvement, and if the public is informed after key decisions are made. This paper will describe the regulatory and public involvement program and their effects on the decisions concerning the disposal at the Savannah River Site (SRS) of heat source Pu-238 TRU waste. As can be imagined, a decision to dispose of TRU waste onsite versus shipment to the Waste Isolation Pilot Plan (WIPP) in New Mexico for disposal is of considerable interest to the stakeholders in South Carolina. The interaction between the stakeholders not only include the general public, but also the South Carolina Department of Health and Environmental Control (SCDHEC) and Region IV of the Environmental Protection Agency (EPA). The discussions, educational sessions, and negotiations include resolution of equity issues as well and moved forward to an understanding of the difficulties including risk management faced by the Ship-to- WIPP program. Once the program was better understood, the real negotiations concerning equity, safety, and risk to workers from handling Pu-238 waste could begin. This paper will also discuss the technical, regulatory, and public involvement aspects of disposal onsite that must be properly communicated if the program is to be successful. The Risk Based End State Vision Report for the Savannah River Site includes a variance that proposes on-site near surface disposal of waste from the program to produce Pu-238 heat sources

  15. Rover waste assay system

    SciTech Connect

    Akers, D.W.; Stoots, C.M.; Kraft, N.C.; Marts, D.J.

    1997-11-01

    The Rover Waste Assay System (RWAS) is a nondestructive assay system designed for the rapid assay of highly-enriched {sup 235}U contaminated piping, tank sections, and debris from the Rover nuclear rocket fuel processing facility at the Idaho Chemical Processing Plant. A scanning system translates a NaI(Tl) detector/collimator system over the structural components where both relative and calibrated measurements for {sup 137}Cs are made. Uranium-235 concentrations are in operation and is sufficiently automated that most functions are performed by the computer system. These functions include system calibration, problem identification, collimator control, data analysis, and reporting. Calibration of the system was done through a combination of measurements on calibration standards and benchmarked modeling. A description of the system is presented along with the methods and uncertainties associated with the calibration and analysis of the system for components from the Rover facility. 4 refs., 2 figs., 4 tabs.

  16. Transuranic Waste Processing Center (TWPC) Legacy Tank RH-TRU Sludge Processing and Compliance Strategy - 13255

    SciTech Connect

    Rogers, Ben C.; Heacker, Fred K.; Shannon, Christopher; and others

    2013-07-01

    The U.S. Department of Energy (DOE) needs to safely and efficiently treat its 'legacy' transuranic (TRU) waste and mixed low-level waste (LLW) from past research and defense activities at the Oak Ridge National Laboratory (ORNL) so that the waste is prepared for safe and secure disposal. The TWPC operates an Environmental Management (EM) waste processing facility on the Oak Ridge Reservation (ORR). The TWPC is classified as a Hazard Category 2, non-reactor nuclear facility. This facility receives, treats, and packages low-level waste and TRU waste stored at various facilities on the ORR for eventual off-site disposal at various DOE sites and commercial facilities. The Remote Handled TRU Waste Sludge held in the Melton Valley Storage Tanks (MVSTs) was produced as a result of the collection, treatment, and storage of liquid radioactive waste originating from the ORNL radiochemical processing and radioisotope production programs. The MVSTs contain most of the associated waste from the Gunite and Associated Tanks (GAAT) in the ORNL's Tank Farms in Bethel Valley and the sludge (SL) and associated waste from the Old Hydro-fracture Facility tanks and other Federal Facility Agreement (FFA) tanks. The SL Processing Facility Build-outs (SL-PFB) Project is integral to the EM cleanup mission at ORNL and is being accelerated by DOE to meet updated regulatory commitments in the Site Treatment Plan. To meet these commitments a Baseline (BL) Change Proposal (BCP) is being submitted to provide continued spending authority as the project re-initiation extends across fiscal year 2012 (FY2012) into fiscal year 2013. Future waste from the ORNL Building 3019 U-233 Disposition project, in the form of U-233 dissolved in nitric acid and water, down-blended with depleted uranyl nitrate solution is also expected to be transferred to the 7856 MVST Annex Facility (formally the Capacity Increase Project (CIP) Tanks) for co-processing with the SL. The SL-PFB project will construct and install

  17. A computer model of gas generation and transport within TRU waste drums

    SciTech Connect

    Smith, F.G. III

    1988-06-01

    A computer model has been developed to predict radiolytic gas generation and transport within Transuranic (TRU) waste drums and surrounding enclosures. Gas generation from the radiolytic decomposition of organic material contaminated with plutonium is modeled and the concentrations of gas throughout the waste drum and enclosures are determined using a diffusional transport model. The model accurately reproduces experimentally measured gas concentrations. With polyethylene waste in unvented drums, the model predicts that the concentration of hydrogen gas can exceed 4 mole percent (lower flammable limit) with only about 5 curies of plutonium. If the drum liner is punctured and an unrestricted 0.75-in. carbon composite filter vent is installed in the drum lid, the plutonium loading can be increased to 240 Ci without generating flammable gas mixtures. Larger diameter filters can be used to increase the curie loading. The model has been used to show that shipments of 1000 Ci of plutonium-238 contaminated waste from Savannah River to the WIPP site are feasible using the TRUPACT shipping container. 10 refs., 17 figs., 6 tabs.

  18. Performance validation of commercially available mobile waste-assay systems: Preliminary report

    SciTech Connect

    Schanfein, M.; Bonner, C.; Maez, R.

    1997-11-01

    Prior to disposal, nuclear waste must be accurately characterized to identify and quantify the radioactive content to reduce the radioactive hazard to the public. Validation of the waste-assay systems` performance is critical for establishing the credibility of the assay results for storage and disposal purposes. Canberra Nuclear has evaluated regulations worldwide and identified standard, modular, neutron- and gamma-waste-assay systems that can be used to characterize a large portion of existing and newly generated transuranic (TRU) and low-level waste. Before making claims of guaranteeing any system`s performance for specific waste types, the standardized systems` performance be evaluated. 7 figs., 11 tabs.

  19. EPA's Review of DOE's Inventory Tracking for TRU Wastes at Waste Control Specialists

    EPA Pesticide Factsheets

    On April 9, 2014, EPA's Waste Isolation Pilot Plant (WIPP) waste characterization team visited Waste Control Specialists (WCS) to determine whether DOE was meeting EPA's waste inventory tracking requirements at 40 CFR 194.24(c)(4).

  20. Pinhole corrosion of CH-TRU waste containers by volatile organic compounds

    SciTech Connect

    Zeek, D.P.

    1998-03-01

    In the spring of 1996 at the Idaho National Engineering and Environmental Laboratory Radioactive Waste Management Complex, an epidemic of corroded CH-TRU waste drums was encountered. The observed corrosion was in the form of rusty brown streaks that emanated from pinholes in about the upper one-third of the 55 gal drums. Wet streaks were tested as highly acidic by litmus paper. The liquid that emanated from the pinholes was found to be hydrochloric (HCl) acid. An investigation concluded that the pinholes were localized pitting corrosion caused by HCl acid formed in the drum headspace from reactions involving chlorinated volatile organic compounds (VOCs) in the waste and the unlined steel of the internal drum wall. The pinholes occurred in the upper parts of the drums because this corresponds to the internal headspace region above the rigid liner. Affected drums had a few to hundreds of pinholes with no detectable release of radioactivity. This was due to the internal packaging of waste in heavy polyethylene and/or polyvinyl chloride waste bags inside a rigid high-density polyethylene liner. The corrective action taken was to overpack pinhole corrosion drums into polyethylene-lined 83-gal drums and to test hundreds of drums with drum filters, but without pinhole corrosion, for the presence of HCl acid in the headspace gas with colorimetric tubes fitted to the drum filters. These colorimetric tubes contain a substance that changes color in reaction to HCl acid when headspace gas is drawn by a hand pump. Only drums that had a significant probability for the presence of HCl acid in the headspace were segregated in storage to allow ready inspection and efficient handling, if needed. It is recommended that any facility involved in the long-term storage of waste or other contents, that include chlorinated VOCs in unlined steel containers, be wary for the possible development of pinhole corrosion.

  1. A Cask Processing Enclosure for the TRU Waste Processing Center - 13408

    SciTech Connect

    Newman, John T.; Mendez, Nicholas

    2013-07-01

    This paper will discuss the key elements considered in the design, construction, and use of an enclosure system built for the TRU Waste Processing Center (TWPC). The TWPC system is used for the repackaging and volume reduction of items contaminated with radioactive material, hazardous waste and mixed waste. The modular structural steel frame and stainless steel skin was designed for rapid field erection by the use of interchangeable self-framing panel sections to allow assembly of a sectioned containment building and for ease of field mobility. The structure was installed on a concrete floor inside of an outer containment building. The major sections included an Outer Cask Airlock, Inner Cask Airlock, Cask Process Area, and Personnel Airlocks. Casks in overpacks containing transuranic waste are brought in via an inter-site transporter. The overpack lid is removed and the cask/overpack is transferred into the Outer Cask Airlock. A contamination cover is installed on the overpack body and the Outer Cask Airlock is closed. The cask/overpack is transferred into the Inner Cask Airlock on a cask bogie and the Inner Cask Airlock is closed. The cask lid is removed and the cask is transferred into the Cask Process Area where it is placed on a cask tilting station. Once the Cask Processing Area is closed, the cask tilt station is activated and wastes are removed, size reduced, then sorted and re-packaged into drums and standard waste boxes through bag ports. The modular system was designed and built as a 'Fast Track' project at IP Systems in Broomfield Colorado and then installed and is currently in use at the DOE TWPC located near Oak Ridge, Tennessee. (authors)

  2. QA Objectives for Nondestructive Assay at the Waste Receiving & Processing (WRAP) Facility

    SciTech Connect

    CANTALOUB, M.G.

    2000-08-01

    The Waste Receiving and Processing (WRAP) facility, located on the Word Site in southeast Washington, is a key link in the certification of transuranic (TRU) waste for shipment to the Waste Isolation Pilot Plant (WIPP). Waste characterization is one of the vital functions performed at WRAP, and nondestructive assay (NDA) measurements of TRU waste containers is one of two required methods used for waste characterization. The Waste Acceptance Criteria for the Waste Isolation Pilot Plant, DOE/WIPP-069 (WIPP-WAC) delineates the quality assurance objectives which have been established for NDA measurement systems. Sites must demonstrate that the quality assurance objectives can be achieved for each radioassay system over the applicable ranges of measurement. This report summarizes the validation of the WRAP NDA systems against the radioassay quality assurance objectives or QAOs. A brief description of the each test and significant conclusions are included. Variables that may have affected test outcomes and system response are also addressed.

  3. Gas generation and migration studies involving recently generated /sup 238/Pu-contaminated waste for the TRU Waste Sampling Program

    SciTech Connect

    Zerwekh, A.; Warren, J.L.

    1986-07-01

    This study is part of the multicontractor TRU Waste Sampling Program. Radiolytically generated gases were vented through a filtering device to determine its effectiveness in maintaining hydrogen concentrations within acceptably safe levels. In the second part of the study measurements were made to determine the ability of these gases, particularly hydrogen, to migrate through a sealed rigid polyethylene drum liner. Void volumes in these drums were found to be generally in excess of 90%. The carbon composite filter was found to satisfactorily vent hydrogen up to moderately high levels of alpha activity in the waste substrate. The sealed 90-mil liner was found to inhibit, but not prevent, the migration of hydrogen and other radiolytically generated gases.

  4. Transportation considerations related to waste forms and canisters for Defense TRU wastes

    SciTech Connect

    Schneider, K.J.; Andrews, W.B.; Schreiber, A.M.; Rosenthal, L.J.; Odle, C.J.

    1981-09-01

    This report identifies and discusses the considerations imposed by transportation on waste forms and canisters for contact-handled, solid transuranic wastes from the US Department of Energy (DOE) activities. The report reviews (1) the existing raw waste forms and potential immobilized waste forms, (2) the existing and potential future DOE waste canisters and shipping containers, (3) regulations and regulatory trends for transporting commercial transuranic wastes on the ISA, (4) truck and rail carrier requirements and preferences for transporting the wastes, and (5) current and proposed Type B external packagings for transporting wastes.

  5. Status of microwave process development for RH-TRU (remote-handled transuranic) wastes at Oak Ridge National Laboratory

    SciTech Connect

    White, T.L.; Youngblood, E.L.; Berry, J.B.; Mattus, A.J.

    1990-01-01

    The Oak Ridge National Laboratory (ORNL) Waste Handling and Packaging Plant is developing a microwave process to reduce and solidify remote-handled transuranic (RH-TRU) liquids and sludges presently stored in large tanks at ORNL. Testing has recently begun on an in-drum microwave process using nonradioactive RH-TRU surrogates. The microwave process development effort has focused on an in-drum process to dry the RH-TRU liquids and sludges in the final storage container and then melt the salt residues to form a solid monolith. A 1/3-scale proprietary microwave applicator was designed, fabricated, and tested to demonstrate the essential features of the microwave design and to provide input into the design of the full-scale applicator. The microwave fields are uniform in one dimension to reduce the formation of hot spots on the microwaved wasteform. The final wasteform meets the waste acceptance criteria for the Waste Isolation Pilot Plant, a federal repository for defense transuranic wastes near Carlsbad, New Mexico. 7 refs., 1 fig., 1 tab.

  6. Process Description for the Retrieval of Earth Covered Transuranic (TRU) Waste Containers at the Hanford Site

    SciTech Connect

    DEROSA, D.C.

    2000-01-13

    This document describes process and operational options for retrieval of the contact-handled suspect transuranic waste drums currently stored below grade in earth-covered trenches at the Hanford Site. Retrieval processes and options discussed include excavation, container retrieval, venting, non-destructive assay, criticality avoidance, incidental waste handling, site preparation, equipment, and shipping.

  7. 3D thermal stress analysis of WIPP (Waste Isolation Pilot Plant) Room T RH TRU (Remote Handled Transuranic) experiments

    SciTech Connect

    Argueello, J.G.; Beraun, R.; Molecke, M.A.

    1989-08-01

    A three-dimensional finite element thermal stress analysis of the RH TRU experiments in WIPP Room T has been performed. This analysis aids in the interpretation of the borehole closure results being obtained from the Room T experiments and helps in assessing potential performance impacts in a typical storage room, during the waste retrieval period. Computed results are presented and compared to available in situ data, and a qualitative agreement between measured and computed closures is seen. 9 refs., 10 figs.

  8. Immobilization and Waste Form Product Acceptance for Low Level and TRU Waste Forms

    SciTech Connect

    Holtzscheiter, E.W.; Harbour, J.R.

    1998-05-01

    The Tanks Focus Area is supporting technology development in immobilization of both High Level (HLW) and Low Level (LLW) radioactive wastes. The HLW process development at Hanford and Idaho is patterned closely after that of the Savannah River (Defense Waste Processing Facility) and West Valley Sites (West Valley Demonstration Project). However, the development and options open to addressing Low Level Waste are diverse and often site specific. To start, it is important to understand the breadth of Low Level Wastes categories.

  9. Microbial Transformation of TRU and Mixed Waste: Actinide Speciation and Waste Volume

    SciTech Connect

    Halada, Gary P

    2008-04-10

    In order to understand the susceptibility of transuranic and mixed waste to microbial degradation (as well as any mechanism which depends upon either complexation and/or redox of metal ions), it is essential to understand the association of metal ions with organic ligands present in mixed wastes. These ligands have been found in our previous EMSP study to limit electron transfer reactions and strongly affect transport and the eventual fate of radionuclides in the environment. As transuranic waste (and especially mixed waste) will be retained in burial sites and in legacy containment for (potentially) many years while awaiting treatment and removal (or remaining in place under stewardship agreements at government subsurface waste sites), it is also essential to understand the aging of mixed wastes and its implications for remediation and fate of radionuclides. Mixed waste containing actinides and organic materials are especially complex and require extensive study. The EMSP program described in this report is part of a joint program with the Environmental Sciences Department at Brookhaven National Laboratory. The Stony Brook University portion of this award has focused on the association of uranium (U(VI)) and transuranic analogs (Ce(III) and Eu(III)) with cellulosic materials and related compounds, with development of implications for microbial transformation of mixed wastes. The elucidation of the chemical nature of mixed waste is essential for the formulation of remediation and encapsulation technologies, for understanding the fate of contaminant exposed to the environment, and for development of meaningful models for contaminant storage and recovery.

  10. HANFORD SITE RIVER PROTECTION PROJECT (RPP) TRANSURANIC (TRU) TANK WASTE IDENTIFICATION & PLANNING FOR REVRIEVAL TREATMENT & EVENTUAL DISPOSAL AT WIPP

    SciTech Connect

    KRISTOFZSKI, J.G.; TEDESCHI, R.; JOHNSON, M.E.; JENNINGS, M

    2006-01-18

    The CH2M HILL Manford Group, Inc. (CHG) conducts business to achieve the goals of the Office of River Protection (ORP) at Hanford. As an employee owned company, CHG employees have a strong motivation to develop innovative solutions to enhance project and company performance while ensuring protection of human health and the environment. CHG is responsible to manage and perform work required to safely store, enhance readiness for waste feed delivery, and prepare for treated waste receipts for the approximately 53 million gallons of legacy mixed radioactive waste currently at the Hanford Site tank farms. Safety and environmental awareness is integrated into all activities and work is accomplished in a manner that achieves high levels of quality while protecting the environment and the safety and health of workers and the public. This paper focuses on the innovative strategy to identify, retrieve, treat, and dispose of Hanford Transuranic (TRU) tank waste at the Waste Isolation Pilot Plant (WIPP).

  11. The Challenges of Creating a Real-Time Data Management System for TRU-Mixed Waste at the Advanced Mixed Waste Treatment Plant

    SciTech Connect

    Paff, S. W; Doody, S.

    2003-02-25

    This paper discusses the challenges associated with creating a data management system for waste tracking at the Advanced Mixed Waste Treatment Plant (AMWTP) at the Idaho National Engineering Lab (INEEL). The waste tracking system combines data from plant automation systems and decision points. The primary purpose of the system is to provide information to enable the plant operators and engineers to assess the risks associated with each container and determine the best method of treating it. It is also used to track the transuranic (TRU) waste containers as they move throughout the various processes at the plant. And finally, the goal of the system is to support paperless shipments of the waste to the Waste Isolation Pilot Plant (WIPP). This paper describes the approach, methodologies, the underlying design of the database, and the challenges of creating the Data Management System (DMS) prior to completion of design and construction of a major plant. The system was built utilizing an Oracle database platform, and Oracle Forms 6i in client-server mode. The underlying data architecture is container-centric, with separate tables and objects for each type of analysis used to characterize the waste, including real-time radiography (RTR), non-destructive assay (NDA), head-space gas sampling and analysis (HSGS), visual examination (VE) and coring. The use of separate tables facilitated the construction of automatic interfaces with the analysis instruments that enabled direct data capture. Movements are tracked using a location system describing each waste container's current location and a history table tracking the container's movement history. The movement system is designed to interface both with radio-frequency bar-code devices and the plant's integrated control system (ICS). Collections of containers or information, such as batches, were created across the various types of analyses, which enabled a single, cohesive approach to be developed for verification and

  12. Application of Robotics and X-ray Radiography to the Examination of Large Contact Handled Transuranic (TRU) Waste Containers

    SciTech Connect

    Pe, A.S.

    2007-07-01

    The US Department of Energy, Savannah River Site is storing a large number of transuranic (TRU) waste containers that are to be shipped to the Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico. Radiographic examination of waste containers is required prior to shipment. This paper will discuss the TRU waste container positioning system and safety system provided by PaR Systems, Inc., Shoreview, MN, to the inspection system prime contractor, Hytec, Inc., Los Alamos, NM. Most containers will be over-packed in large metal shipping containers (TRUPACT-III). The largest containers are 2.8 m x 1.9 m x 1.9 m and weigh 5600 kg. In addition, smaller containers and drums are inspected. The containers are manipulated to view the contents from various directions. The motions of the container, X-ray source and X-ray detectors are coordinated to obtain a constant viewing area relative to the item of interest in the container. (authors)

  13. Non-Destructive Assay of Curium Contaminated Transuranic Waste Drums

    SciTech Connect

    Foster, L.A.

    1998-11-01

    At the Plutonium Facility at Los Alamos National Laboratory, a series of non-destructive assays were performed on five transuranic waste (TRU) drums containing non-plutonium scrap metal that was potentially contaminated with weapons grade plutonium and trace quantities of curium. Typically, waste drums containing metal matrices are assayed for plutonium content using passive neutron coincidence counting techniques. The presence of trace quantities of Cm-244 prevents this type of analysis because of the strong coincidence signal created by spontaneous fission of Cm-244. To discriminate between the plutonium and curium materials present, an active neutron measurement technique was used. A Cf shuffler designed for measurement of uranium bearing materials was calibrated for plutonium in the active mode. The waste drums were then assayed for plutonium content in the shuffler using the active-mode calibration. The curium contamination levels were estimated from the difference between the active-mode measurement in the shuffler and a passive assay in a neutron coincidence counter. Far field gamma-ray measurements were made to identify additional radioactive contaminants and to corroborate the plutonium measurement results obtained from the active-mode assay. This report describes in detail the measurement process used for characterization of these waste drums. The measurement results and the estimated uncertainty will be presented.

  14. Design of benign matrix drums for the non-destructive assay performance demonstration program for the National TRU Program

    SciTech Connect

    Becker, G.K.

    1996-09-01

    Regulatory compliance programs associated with the Department of Energy (DOE) Waste Isolation Pilot Plant (WIPP) Transuranic (TRU) Waste Characterization Program (the Program) require the collection of waste characterization data of known quality to support repository performance assessment, permitting, and associated activities. Blind audit samples, referred to as PDP (performance demonstration program) samples, are devices used in the NDA PDP program to acquire waste NDA system performance data per defined measurement routines. As defined under the current NDA PDP Program Plan, a PDP sample consists of a DOT 17C 55-gallon PDP matrix drum configured with insertable radioactive standards, working reference materials (WRMs). The particular manner in which the matrix drum and PDP standard(s) are combined is a function of the waste NDA system performance test objectives of a given cycle. The scope of this document is confined to the design of the PDP drum radioactive standard internal support structure, the matrix type and the as installed configuration. The term benign is used to designate a matrix possessing properties which are nominally non-interfering to waste NDA measurement techniques. Measurement interference sources are technique specific but include attributes such as: high matrix density, heterogeneous matrix distributions, matrix compositions containing high moderator/high Z element concentrations, etc. To the extent practicable the matrix drum design should not unduly bias one NDA modality over another due to the manner in which the matrix drum configuration manifests itself to the measurement system. To this end the PDP matrix drum configuration and composition detailed below is driven primarily by the intent to minimize the incorporation of matrix attributes known to interfere with fundamental waste NDA modalities, i.e. neutron and gamma based techniques.

  15. Preliminary fire hazard analysis for the PUTDR and TRU trenches in the Solid Waste Burial Ground

    SciTech Connect

    Gaschott, L.J.

    1995-06-16

    This document represents the Preliminary Fire Hazards Analysis for the Pilot Unvented TRU Drum Retrieval effort and for the Transuranic drum trenches in the low level burial grounds. The FHA was developed in accordance with DOE Order 5480.7A to address major hazards inherent in the facility.

  16. Nondestructive Waste Assay Using Gamma-Ray Active & Passive Computed Tomography. Mixed Waste Focus Area. OST Reference Number 2123

    SciTech Connect

    None, None

    1999-09-01

    This project was supported by the Mixed Waste Focus Area (MWFA) and the Federal Environmental Technology Center (FETC) to develop an improved nondestructive assay (NDA) capability that uses gamma-ray computed tomography and gamma-energy spectral analysis techniques to perform waste assay measurements. It was the intent of the Gamma-Ray Active & Passive Computed Tomography (A&PCT) development and demonstration project to enhance the overall utility of waste assay through the implementation of techniques that can accommodate known measurement complications, e.g., waste matrix and radioactive material distribution heterogeneities. This technology can measure the radionuclide content in all types of waste regardless of their classification as low level (LLW), transuranic (TRU) or mixed (MLLW or MTRU). The nondestructive waste assay capability needed to support Department of Energy (DOE) mixed waste characterization needs is necessarily a function of the waste form configurations in inventory. These waste form configurations exhibit a number of variables impacting assay system response that must be accounted for to ensure valid measurement data. Such variables include: matrix density, matrix elemental composition, matrix density distribution, radioactive material radionuclidic/isotopic composition, radioactive material physical/chemical form, and physical distribution in the waste matrix. Existing nondestructive assay technologies have identified capability limits with respect to these variables. Certain combinations of these variables result in waste configurations within the capability of one or more of the existing systems. Other combinations that are prevalent in the inventory are outside of the capability of such systems.

  17. ANALYSIS OF AVAILABLE HYDROGEN DATA & ACCUMULATION OF HYDROGEN IN UNVENTED TRANSURANIC (TRU) DRUMS

    SciTech Connect

    DAYLEY, L

    2004-06-24

    This document provides a response to the second action required in the approval for the Justification for Continued Operations (JCO) Assay and Shipment of Transuranic (TRU) Waste Containers in 218-W-4C. The Waste Management Project continues to make progress toward shipping certified TRU waste to the Waste Isolation Pilot Plant (WIPP). As the existing inventory of TRU waste in the Central Waste Complex (CWC) storage buildings is shipped, and the uncovered inventory is removed from the trenches and prepared for shipment from the Hanford Site, the covered inventory of suspect TRU wastes must be retrieved and prepared for processing for shipment to WIPP. Accumulation of hydrogen in unvented TRU waste containers is a concern due to the possibility of explosive mixtures of hydrogen and oxygen. The frequency and consequence of these gas mixtures resulting in an explosion must be addressed. The purpose of this study is to recommend an approach and schedule for venting TRU waste containers in the low-level burial ground (LLBG) trenches in conjunction with TRU Retrieval Project activities. This study provides a detailed analysis of the expected probability of hydrogen gas accumulation in significant quantities in unvented drums. Hydrogen gas accumulation in TRU drums is presented and evaluated in the following three categories: Hydrogen concentrations less than 5 vol%; Hydrogen between 5-15 vol%; and Hydrogen concentrations above 15 vol%. This analysis is based on complex-wide experience with TRU waste drums, available experimental data, and evaluations of storage conditions. Data reviewed in this report includes experience from the Idaho National Environmental Engineering Laboratories (INEEL), Savannah River Site (SRS), Los Alamos National Laboratories (LANL), Oak Ridge National Laboratories, (ORNL), Rocky Flats sites, Matrix Depletion Program and the National Transportation and Packaging Program. Based on this analysis, as well as an assessment of the probability and

  18. Detection of Tritium in Storage Vaults Containing RH TRU Waste at the Idaho National Engineering and Environmental Laboratory

    SciTech Connect

    Pui Kuan

    2005-02-01

    Waste drums containing remote-handled (RH) transuranic (TRU) waste from the Argonne National Laboratory-East (ANL-E) are stored in sealed, underground vaults at the Radioactive Waste Management Complex (RWMC) at the Idaho National Engineering and Environmental Laboratory (INEEL). The waste consists of laboratory debris from the destructive examination of fuel elements irradiated mostly in the Experimental Breeder Reactor II (EBR-II). In 2004, air samples were obtained from some of these vaults and analyzed for radioactivity. Some of the samples show that the vaults contained several DAC's (derived air concentrations) of tritium, which are considered as non-negligible by Environmental Protection Agency (EPA) regulations. Based on Acceptable Knowledge (AK) records of the waste stored in the vaults, ORIGEN2 calculations were performed to estimate the isotopic contents in the waste drums stored in the vaults. The calculations are based on the irradiation of fuel elements that produced the waste. The absolute amounts of isotopic contents in the waste drums are normalized to Cs-137 contents derived from measured surface dose rates, mostly from the Cs-137 radiation, as documented in AK records. The amounts of tritium thus calculated (assuming no loss from those produced during fission except for decay) are compared to the measured values in the air samples from the vaults. The ratio of measured tritium in the form of tritiated water vapor to un-reduced tritium from fission is found to be from below detection levels to approximately 0.2%, but mostly in the range around 1 10-4 to 1 10-3. It appears that even the debris from cutting and grinding the fuel elements contained substantial amounts of tritium, which were subsequently released from the fuel particles during years of storage in the vaults.

  19. Development and Implementation of an Assay System for Rapid Screening of Transuranic Waste in Highly Contaminated Environments

    SciTech Connect

    Douglas Akers; Hopi Salomon; Lyle Robal

    2010-08-01

    An overview of the Fissile Material Monitor Waste Screener (FMM-WS) System is presented. This system is a multifunctional radioactive waste assay system suitable for the rapid assay of highly contaminated transuranic wastes immediately after retrieval, prior to packaging. The FMM-WS was developed for use at the Accelerated Cleanup Project (ARP) and began initial testing and operation in April 2008. The FMM-WS is currently in use and is providing needed data on transuranic (TRU) wastes with a range of material types, volumes, and densities from the Accelerated Retrieval Project (ARP).

  20. The long-term behaviors of passivation and hydride layer of commercial grade pure titanium in TRU waste disposal environments

    NASA Astrophysics Data System (ADS)

    Nakayama, Gen; Sakakibara, Yohei; Taniyama, Yoshihiro; Cho, Hideo; Jintoku, Takashi; Kawakami, Susumu; Takemoto, Mikio

    2008-09-01

    Preservation of the passivity under reducing environmental conditions for extended periods of time and the behavior of hydrogen evolution as the results of the preservation of the passivity of several candidate commercial grade pure titanium related to the small amount of palladium addition, such as Ti-Gr.17 for metallic containers to be buried under deep ground for disposing of transuranic (TRU) waste is investigated. The present investigation has revealed the following corrosion paths for the titanium alloys investigated. The passivity of the alloys is preserved as the result of repeated destruction and recovery of the surface films on the alloys. The long-term corrosion rate under the preserved passivity is of the order of 10 -6-10 -8 my -1 with evolution of hydrogen. The substrate alloys absorb parts of the hydrogen generated to form lath-type hydride phase before forming hydride layers at the final stage.

  1. Status and use of the Rocky Flats Environmental Technology Site Pipe Overpack Container for TRU waste storage and shipments

    SciTech Connect

    Thorp, D.T.; Geinitz, R.R.; Rivera, M.A.

    1998-03-03

    The Pipe Overpack Container was designed to optimize shipments of high plutonium content transuranic waste from Rocky Flats Environmental Technology Site (RFETS) to Waste Isolation Pilot Plant (WIPP). The container was approved for use in the TRUPACT-II shipping container by the Nuclear Regulatory Commission in February 1997. The container optimizes shipments to WIPP by increasing the TRUPACT-II criticality limit from 325 fissile grams equivalent (FGE) to 2,800 FGE and provides additional shielding for handling wastes with high americium-241 (Am-241) content. The container was subsequently evaluated and approved for storage of highly dispersible TRU wastes and residues at RFETS. Thermal evaluation of the container shows that the container will mitigate the impact of a worst case thermal event from reactive or potentially pyrophoric materials. These materials contain hazards postulated by the Defense Nuclear Facilities Safety Board for interim storage. Packaging these reactive or potentially pyrophoric residues in the container without stabilizing the materials is under consideration at RFETS. The design, testing, and evaluations used in the approvals, and the current status of the container usage, will be discussed.

  2. High sensitivity transuranic waste barrels assay by photon interrogation using an electron linear accelerator

    NASA Astrophysics Data System (ADS)

    Lyoussi, A.; Romeyer-Dherbey, J.; Loridon, J.; Buisson, A.; Allano, J.

    1997-02-01

    The system described here uses a pulsed electron beam from a linear accelerator (LINAC) to produce high-energy photon bursts from a metallic converter. The photons induce fissions in TRU waste package which is inside an original Neutron Separating and Counting Cavity-NS2C. When fission is induced in trace amounts of TRU contaminants in waste material, it provides "signatures" from fission products that can be used to assay the material before disposal. We counted delayed neutrons emitted after each pulse of the LINAC by using the Sequential Photon Interrogation and Neutron Counting Signatures—SPHINCS—technique. The use of SPHINS measurement technique coupled with NS2C facility improves the signal to noise ratio by a factor about 30. The dynamics of photofission and delayed neutron production, NS2C advantages and performances, use of an electron linear accelerator as a particle source, experimental and electronics details, and a future experimental works are discussed.

  3. Performance validation of commercially available mobile waste-assay systems: Preliminary report

    SciTech Connect

    Schanfein, M.; Bonner, C.; Maez, R.

    1997-08-01

    Prior to disposal, nuclear waste must be accurately characterized to identify and quantify the radioactive content to reduce the radioactive hazard to the public. Validation of the waste-assay systems` performance is critical for establishing the credibility of the assay results for storage and disposal purposes. Canberra Nuclear has evaluated regulations worldwide and identified standard, modular, neutron- and gamma-waste-assay systems that can be used to characterize a large portion of existing and newly generated transuranic (TRU) and low-level waste. Before making claims or guaranteeing any system`s performance for specific waste types, the standardized systems` performance must be evaluated. Canberra and Los Alamos National Laboratory`s (LANL) Plutonium Facility developed a three-phase validation plan. During Phase One, tests were performed using simulation sources at Canberra to determine the error bounds for measurement parameters, to determine the minimum detectable activity, and to measure precision and bias. During Phase Two, two mobile systems were installed at the Plutonium Facility. LANL is providing peer review of the systems` performance for plutonium, acting as a beta test site to evaluate the waste-assay software, and providing data for {open_quotes}precertification{close_quotes} at future Department of Energy installations. (Plutonium isotopics are determined from measurements using the Multi-Group Analysis code.) Finally, the two systems` performances are evaluated for representative waste types (salt, metal, combustibles, leaded rubber, and HEPA filters). Phase Three of the validation, the Waste Isolation Pilot Plant Performance Demonstration Plan, will require approval by the National TRU Program Office. This paper describes the standard mobile waste-assay systems, the test plan, and preliminary results from the peer review outlined above in Phase Two.

  4. Characterization of void volume VOC concentration in vented TRU waste drums. Final report

    SciTech Connect

    Liekhus, K.J.

    1995-08-01

    A test program has been conducted at the Idaho National Engineering Laboratory to demonstrate that the concentration of volatile organic compounds within the innermost layer of confinement in a vented waste drum can be estimated using a model incorporating diffusion and permeation transport principles and limited waste drum sampling data. This final report summarizes the experimental measurements and model predictions for transuranic waste drums containing solidified sludges and solid waste.

  5. Criticality Safety Evaluation for TRU Waste In Storage at the RWMC

    SciTech Connect

    M. E. Shaw; J. B. Briggs; C. A. Atkinson; G. J. Briscoe

    1994-04-01

    Stored containers (drums, boxes, and bins) of transuranic waste at the Radioactive Waste Management Complex (RWMC) facility located at the Idaho National Engineering Laboratory (INEL) were evaluated based on inherent neutron absorption characteristics of the waste materials. It was demonstrated that these properties are sufficient to preclude a criticality accident at the actual fissile levels present in the waste stored at the RWMC. Based on the database information available, the results reported herein confirm that the waste drums, boxes, and bins currently stored at the RWMC will remain safely subcritical if rearranged, restacked, or otherwise handled. Acceptance criteria for receiving future drum shipments were established based on fully infinite systems.

  6. NMT-7 plan for producing certifiable TRU debris waste for WIPP

    SciTech Connect

    Montoya, A.J.

    1997-12-01

    Analysis of waste characterization data for debris items generated during a recent six month period indicates that the certifiability of TRUPACT II payload containers packaged at the Los Alamos National Laboratory Plutonium Facility (TA-55) can be increased from approximately 52% of solid waste payload containers to 78% by applying the simple strategies of screening out high decay heat items and sorting remaining items to maintain nuclear material loading at levels below WIPP waste acceptance limits. Implementation of these strategies will have negative impacts on waste minimization and waste management operations that must also be considered.

  7. Criticality safety evaluation for TRU waste in storage at the RWMC

    SciTech Connect

    Shaw, M.E.; Briggs, J.B.; Atkinson, C.A.; Briscoe, G.J.

    1993-11-01

    Stored containers (drums, boxes, and bins) of transuranic waste at the Radioactive Waste Management Complex (RWMC) facility located at the Idaho National Engineering Laboratory (INEL) were evaluated based on inherent neutron absorption characteristics of the waste materials. It was demonstrated that these properties are sufficient to preclude an accidental criticality accident at the actual fissile levels present in the waste stored at the RWMC. Based on the database information available, the results reported herein confirm that the waste drums, boxes, and bins currently stored at the RWMC will remain safely subcritical if rearranged, restacked, or otherwise handled. Acceptance criteria for receiving future drum shipments were established based on fully infinite systems.

  8. Passive Neutron Non-Destructive Assay for Remediation of Radiological Waste at Hanford Burial Grounds- 13189

    SciTech Connect

    Simpson, A.; Pitts, M.; Ludowise, J.D.; Valentinelli, P.; Grando, C.J.; Haggard, D.L.

    2013-07-01

    The Hanford burial grounds contains a broad spectrum of low activity radioactive wastes, transuranic (TRU) wastes, and hazardous wastes including fission products, byproduct material (thorium and uranium), plutonium and laboratory chemicals. A passive neutron non-destructive assay technique has been developed for characterization of shielded concreted drums exhumed from the burial grounds. This method facilitates the separation of low activity radiological waste containers from TRU waste containers exhumed from the burial grounds. Two identical total neutron counting systems have been deployed, each consisting of He-3 detectors surrounded by a polyethylene moderator. The counts are processed through a statistical filter that removes outliers in order to suppress cosmic spallation events and electronic noise. Upon completion of processing, a 'GO / NO GO' signal is provided to the operator based on a threshold level equivalent to 0.5 grams of weapons grade plutonium in the container being evaluated. This approach allows instantaneous decisions to be made on how to proceed with the waste. The counting systems have been set up using initial on-site measurements (neutron emitting standards loaded into surrogate waste containers) combined with Monte Carlo modeling techniques. The benefit of this approach is to allow the systems to extend their measurement ranges, in terms of applicable matrix types and container sizes, with minimal interruption to the operations at the burial grounds. (authors)

  9. IMPLEMENTING HEAT SEALED BAG RELIEF & HYDROGEN & METANE TESTING TO REDUCE THE NEED TO REPACK HANFORD TRANSURANIC (TRU) WASTE

    SciTech Connect

    MCDONALD, K.M.

    2005-01-20

    The Department of Energy's site at Hanford has a significant quantity of drums containing heat-sealed bags that required repackaging under previous revisions of the TRUPACT-II Authorized Methods for Payload Control (TRAMPAC) before being shipped to the Waste Isolation Pilot Plant (WIPP). Since glovebox repackaging is the most rate-limiting and resource-intensive step for accelerating Hanford waste certification, a cooperative effort between Hanford's TRU Program and the WIPP site significantly reduced the number of drums requiring repackaging. More specifically, recent changes to the TRAMPAC (Revision 19C), allow relief for heat-sealed bags having more than 390 square inches of surface area. This relief is based on data provided by Hanford on typical Hanford heat-sealed bags, but can be applied to other sites generating transuranic waste that have waste packaged in heat-sealed bags. The paper provides data on the number of drums affected, the attendant cost savings, and the time saved. Hanford also has a significant quantity of high-gram drums with multiple layers of confinement including heat-scaled bags. These higher-gram drums are unlikely to meet the decay-heat limits required for analytical category certification under the TRAMPAC. The combination of high-gram drums and accelerated reprocessing/shipping make it even more difficult to meet the decay-heat limits because of necessary aging requirements associated with matrix depletion. Hydrogen/methane sampling of headspace gases can be used to certify waste that does not meet decay-heat limits of the more restrictive analytical category using the test category. The number of drums that can be qualified using the test category is maximized by assuring that the detection limit for hydrogen and methane is as low as possible. Sites desiring to ship higher-gram drums must understand the advantages of using hydrogen/methane sampling and shipping under the test category. Headspace gas sampling, as specified by the WIPP

  10. Radiologic safety assessment for low level waste storage on TRU pads

    SciTech Connect

    Ryan, J.P.

    1986-03-17

    The reference document (TA 2-1118) proposes to store Low Level Radioactive Solid Waste in B-25 boxes on concrete pads at the 643-G burial ground site, pending resolution of policy concernig its ultimate disposal. This analysis verifies that the reference proposal is safe, as long as it is applied to a limited material quantity of low specific activity, as described in the reference document. The predominant concern in the safety analysis is the emission of airborne activity as a result of tornados and fires. However, containment provided by B-25 boxes is sufficient to mitigate the consequences of these events sufficiently. Nevertheless, it is strongly recommended that any above-ground storage procedures include provisions for covering the waste containment boxes to prevent exposure to rainwater and subsequent corrosion if the storage period is to extend beyond one year.

  11. Using Aspen simulation package to determine solubility of mixed salts in TRU waste evaporator bottoms

    SciTech Connect

    Hatchell, J.L.

    1998-03-01

    Nitric acid from plutonium process waste is a candidate for waste minimization by recycling. Process simulation software packages, such as Aspen, are valuable tools to estimate how effective recovery processes can be, however, constants in equations of state for many ionic components are not in their data libraries. One option is to combine single salt solubility`s in the Aspen model for mixed salt system. Single salt solubilities were regressed in Aspen within 0.82 weight percent of literature values. These were combined into a single Aspen model and used in the mixed salt studies. A simulated nitric acid waste containing mixed aluminum, calcium, iron, magnesium and sodium nitrate was tested to determine points of solubility between 25 and 100 C. Only four of the modeled experimental conditions, at 50 C and 75 C, produced a saturated solution. While experimental results indicate that sodium nitrate is the first salt to crystallize out, the Aspen computer model shows that the most insoluble salt, magnesium nitrate, the first salt to crystallize. Possible double salt formation is actually taking place under experimental conditions, which is not captured by the Aspen model.

  12. Comparative assessment of TRU waste forms and processes. Volume II. Waste form data, process descriptions, and costs.

    SciTech Connect

    Ross, W.A.; Lokken, R.O.; May, R.P.; Roberts, F.P.; Thornhill, R.E.; Timmerman, C.L.; Treat, R.L.; Westsik, J.H. Jr.

    1982-09-01

    This volume contains supporting information for the comparative assessment of the transuranic waste forms and processes summarized in Volume I. Detailed data on the characterization of the waste forms selected for the assessment, process descriptions, and cost information are provided. The purpose of this volume is to provide additional information that may be useful when using the data in Volume I and to provide greater detail on particular waste forms and processes. Volume II is divided into two sections and two appendixes. The first section provides information on the preparation of the waste form specimens used in this study and additional characterization data in support of that in Volume I. The second section includes detailed process descriptions for the eight processes evaluated. Appendix A lists the results of MCC-1 leach test and Appendix B lists additional cost data. 56 figures, 12 tables.

  13. Developments in plutonium waste assay at AWE.

    PubMed

    Miller, T J

    2009-06-01

    In 2002 a paper was presented at the 43rd Annual Meeting of the Institute of Nuclear Materials Management (INMM) on the assay of low level plutonium (Pu) in soft drummed waste (Miller 2002 INMM Ann. Meeting (Orlando, FL, 23-27 July 2002)). The technique described enabled the Atomic Weapons Establishment (AWE), at Aldermaston in the UK, to meet the stringent Low Level Waste Repository at Drigg (LLWRD) conditions for acceptance for the first time. However, it was initially applied to only low density waste streams because it relied on measuring the relatively low energy (60 keV) photon yield from Am-241 during growth. This paper reviews the results achieved when using the technique to assay over 10,000 waste packages and presents the case for extending the range of application to denser waste streams.

  14. Mixed Waste Focus Area/Characterization Monitoring Sensor Technology Nondestructive Waste Assay Capability Evaluation Project End-User Summary Report

    SciTech Connect

    G. K. Becker; M. E. McIlwain; M. J. Connolly

    1998-11-01

    The Mixed Waste Focus Area (MWFA) in conjunction with the Characterization Monitoring and Sensor Technology (CMST) crosscut program identified the need to objectively evaluate the capability of nondestructive waste assay (NDA) technologies. This was done because of a general lack of NDA technology performance data with respect to a representative cross section of waste form configurations comprising the Department of Energy (DOE) contact-handled alpha contaminated [e.g., transuranic (TRU) waste]. The overall objective of the Capability Evaluation Project (CEP) was to establish a known and unbiased NDA data and information base that can be used to support end-user decisions with regards to technology system selection and to support technology development organizations in identifying technology system deficiencies. The primary performance parameters evaluated in the CEP were measurement bias and relative precision. The performance of a given NDA technology is a direct function of the attributes represented by the waste matrix configuration. Such attributes include matrix density, matrix elemental composition, radionuclidic composition, radionuclide mass loading, and the spatial variation of these components. Analyzing the manner in which bias and precision vary as a function of test sample attribute and NDA technology provides a foundation for deriving performance capability and limitation statements and determines which waste matrix attributes, or combinations of attributes, are compatible or incompatible with existing technologies. The CEP achieved the stated end-user objective. The data indicate that the nondestructive waste assay systems evaluated have a definite capability to perform assay of contact-handled TRU waste packaged in 55-gallon drums. There is, however, a performance envelope where this capability exists, an area near the envelope boundaries where it is questionable, and a realm outside the envelope where the technologies do not perform. Therefore

  15. Dose potential of sludge contaminated and/or TRU contaminated waste in B-25s for tornado and straight wind events

    SciTech Connect

    Aponte, C.I.

    2000-02-17

    F and H Tank Farms generate supernate and sludge contaminated Low-Level Waste. The waste is collected, characterized, and packaged for disposal. Before the waste can be disposed of, however, it must be properly characterized. Since the radionuclide distribution in typical supernate is well known, its characterization is relatively straight forward and requires minimal effort. Non-routine waste, including potentially sludge contaminated, requires much more effort to effectively characterize. The radionuclide distribution must be determined. In some cases the waste can be contaminated by various sludge transfers with unique radionuclide distributions. In these cases, the characterization can require an extensive effort. Even after an extensive characterization effort, the container must still be prepared for shipping. Therefore a significant amount of time may elapse from the time the waste is generated until the time of disposal. During the time it is possible for a tornado or high wind scenario to occur. The purpose of this report is to determine the effect of a tornado on potential sludge contaminated waste, or Transuranic (TRU) waste in B-25s [large storage containers], to evaluate the potential impact on F and H Tank Farms, and to help establish a B-25 control program for tornado events.

  16. INEL test plan for evaluating waste assay systems

    SciTech Connect

    Mandler, J.W.; Becker, G.K.; Harker, Y.D.; Menkhaus, D.E.; Clements, T.L. Jr.

    1996-09-01

    A test bed is being established at the Idaho National Engineering Laboratory (INEL) Radioactive Waste Management Complex (RWMC). These tests are currently focused on mobile or portable radioassay systems. Prior to disposal of TRU waste at the Waste Isolation Pilot Plant (WIPP), radioassay measurements must meet the quality assurance objectives of the TRU Waste Characterization Quality Assurance Program Plan. This test plan provides technology holders with the opportunity to assess radioassay system performance through a three-tiered test program that consists of: (a) evaluations using non-interfering matrices, (b) surrogate drums with contents that resemble the attributes of INEL-specific waste forms, and (c) real waste tests. Qualified sources containing a known mixture and range of radionuclides will be used for the non-interfering and surrogate waste tests. The results of these tests will provide technology holders with information concerning radioassay system performance and provide the INEL with data useful for making decisions concerning alternative or improved radioassay systems that could support disposal of waste at WIPP.

  17. TRU decontamination of high-level Purex waste by solvent extraction using a mixed octyl(phenyl)-N,N-diisobutyl-carbamoylmethylphosphine oxide/TBP/NPH (TRUEX) solvent

    SciTech Connect

    Horwitz, E.P.; Kalina, D.G.; Diamond, H.; Kaplan, L.; Vandegrift, G.F.; Leonard, R.A.; Steindler, M.J.; Schulz, W.W.

    1984-01-01

    The TRUEX (transuranium extraction) process was tested on a simulated high-level dissolved sludge waste (DSW). A batch counter-current extraction mode was used for seven extraction and three scrub stages. One additional extraction stage and two scrub stages and all strip stages were performed by batch extraction. The TRUEX solvent consisted of 0.20 M octyl(phenyl)-N,N-diisobutylcarbamoyl-methylphosphine oxide-1.4 M TBP in Conoco (C/sub 12/-C/sub 14/). The feed solution was 1.0 M in HNO/sub 3/, 0.3 M in H/sub 2/C/sub 2/O/sub 4/ and contained mixed (stable) fission products, U, Np, Pu, and Am, and a number of inert constituents, e.g., Fe and Al. The test showed that the process is capable of reducing the TRU concentration in the DSW by a factor of 4 x 10/sup 4/ (to <100 nCi/g of disposed form) and reducing the quantity of TRU waste by two orders of magnitude.

  18. Department of Energy Idaho Operations Office evaluation of feasibility studies for private sector treatment of alpha and TRU mixed wastes

    SciTech Connect

    1995-05-01

    The Idaho National Engineering Laboratory (INEL) is currently storing a large quantity of alpha contaminated mixed low level waste which will require treatment prior to disposal. The DOE Idaho Operations Office (DOE-ID) recognized that current knowledge and funding were insufficient to directly pursue services for the requisite treatment. Therefore, it was decided that private sector studies would be funded to clarify cost, regulatory, technology, and contractual issues associated with procuring treatment services. This report analyzes the three private sector studies procured and recommends a path forward for DOE in procuring retrieval, assay, characterization, and treatment services for INEL transuranic and alpha contaminated mixed low level waste. This report was prepared by a team of subject matter experts from the INEL referred to as the DOE-ID Evaluation Team.

  19. Destructive testings: dry drilling operations with TruPro system to collect samples in a powder form, from two hulls containing immobilized wastes in a hydraulic binder

    SciTech Connect

    Pombet, Denis; Desnoyers, Yvon; Charters, Grant; Aggarwal, Sue

    2013-07-01

    The TruPro{sup R} process enables to collect a significant number of samples to characterize radiological materials. This innovative and alternative technique is experimented for the ANDRA quality-control inspection of cemented packages. It proves to be quicker and more prolific than the current methodology. Using classical statistics and geo-statistics approaches, the physical and radiological characteristics of two hulls containing immobilized wastes (sludges or concentrates) in a hydraulic binder are assessed in this paper. The waste homogeneity is also evaluated in comparison to ANDRA criterion. Sensibility to sample size (support effect), presence of extreme values, acceptable deviation rate and minimum number of data are discussed. The final objectives are to check the homogeneity of the two characterized radwaste packages and also to validate and reinforce this alternative characterization methodology. (authors)

  20. SWEPP PAN assay system uncertainty analysis: Passive mode measurements of graphite waste

    SciTech Connect

    Blackwood, L.G.; Harker, Y.D.; Meachum, T.R.; Yoon, Woo Y.

    1997-07-01

    The Idaho National Engineering and Environmental Laboratory is being used as a temporary storage facility for transuranic waste generated by the U.S. Nuclear Weapons program at the Rocky Flats Plant (RFP) in Golden, Colorado. Currently, there is a large effort in progress to prepare to ship this waste to the Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico. In order to meet the TRU Waste Characterization Quality Assurance Program Plan nondestructive assay compliance requirements and quality assurance objectives, it is necessary to determine the total uncertainty of the radioassay results produced by the Stored Waste Examination Pilot Plant (SWEPP) Passive Active Neutron (PAN) radioassay system. To this end a modified statistical sampling and verification approach has been developed to determine the total uncertainty of a PAN measurement. In this approach the total performance of the PAN nondestructive assay system is simulated using computer models of the assay system and the resultant output is compared with the known input to assess the total uncertainty. This paper is one of a series of reports quantifying the results of the uncertainty analysis of the PAN system measurements for specific waste types and measurement modes. In particular this report covers passive mode measurements of weapons grade plutonium-contaminated graphite molds contained in 208 liter drums (waste code 300). The validity of the simulation approach is verified by comparing simulated output against results from measurements using known plutonium sources and a surrogate graphite waste form drum. For actual graphite waste form conditions, a set of 50 cases covering a statistical sampling of the conditions exhibited in graphite wastes was compiled using a Latin hypercube statistical sampling approach.

  1. Operational and Regulatory Performance of Waste Crate Assay Systems at RFETS

    SciTech Connect

    Clapham, M. J.; Franco, J.; Simpson, A.; Santo, J.; Menlove, H. O.; Durel, F. M.

    2003-02-27

    As Rocky Flats Environmental Technology Site (RFETS) approaches its closure target of 2006 emphasis for Non-Destructive Assay (NDA) has shifted from small waste package assay systems towards larger systems that are designed to accommodate Standard Waste Boxes (SWB) and larger Low Level Waste (LLW) containers. To this end, Kaiser Hill, with the support of BNFL Instruments, Inc. (BII) and Los Alamos National Laboratory (LANL), has recently deployed two new crate assay systems. These systems provide the capacity to meet the assay requirements associated with the Deactivation and Decommissioning (D&D) at RFETS. The Super High Efficiency Neutron Coincidence Counting System (SuperHENC) was designed and fabricated as a collaborative effort between RFETS, LANL and BII. The purpose of this counter is to provide a WIPP certified assay capability for SWBs with a sensitivity that allows for TRU/LLW sorting. The SuperHENC has been in operation since early 2001. The BII Multi-Purpose Crate Counter (MPCC) is based on the Imaging Passive Active Neutron (IPAN) technology. This counter was designed to provide diverse capacity for WIPP certified assay of SWBs and to provide assay capability for larger LLW crates that are generated at RFETS. The MPCC has been in operation since early 2002. In order to meet the requirement for measurement of the WIPP tracked radionuclides, both systems incorporate a BII Gamma Energy Analysis sub-system. The unique Energy Times Attenuation (ETA) method is used to provide isotopic mass fractions for diverse waste streams. These systems were the first, and at this time the only, waste crate assay systems that have achieved WIPP certification. This represents a significant achievement given that the performance criteria applied to the measurements of large crates is identical to the criteria for 55-gallon (208 liter) drums. They are now both fully operational at RFETS and continue to successfully support the site closure mission.

  2. Operational and regulatory performance of waste crate assay systems at RFETS.

    SciTech Connect

    Clapham, M.; Franco, J. B.; Simpson, A.; Santo, J.; Menlove, Howard O.; Durel, F. M.

    2003-01-01

    As Rocky Flats Environmental Technology Site (RFETS) approaches its closure target of 2006 emphasis for Non-Destructive Assay (NDA) has shifted from small waste package assay systems towards larger systems that are designed to accommodate Standard Waste Boxes (SWB) and larger Low Level Waste (LLW) containers. To this end, Kaiser Hill, with the support of BNFL Instruments, Inc . (BIn) and Los Alamos National Laboratory (LANL), has recently deployed two new crate assay systems . These systems provide the capacity to meet the assay requirements associated with the Deactivation and Decommissioning (D&D) at RFETS . The Super High Efficiency Neutron Coincidence Counting System (SuperHENC) was designed and fabricated as a collaborative effort between RFETS, LANL and BII. The purpose of this counter is to provide a WIPP certified assay capability for SWBs with a sensitivity that allows for TRU/LLW sorting. The SuperHENC has been in operation since early 2001 . The BII Mu1ti-Purpose Crate Counter (MPCC) is based on the Imaging Passive Active Neutron (IPANTM) technology. This counter was designed to provide diverse capacity for WIPP certified assay of SWBs and to provide assay capability for larger LLW crates that are generated at RFETS. The MPCC h as been in operation since early 2002 . In order to meet the requirement for measurement of the WIPP tracked radionuclides, both systems incorporate a BII Gamma Energy Analysis sub-system . The unique Energy Times . Attenuation (ETA) method is used to provide isotopic mass fractions for diverse wastes treams: These systems were the first, and at this time the only, waste crate assay systems that have achieved WIPP certification. This represents a significant achievement given that the performance criteria applied to the measurements of large crates is identical to the criteria for 55-gallon (208 liter) drums . They are now both fully operational at RFETS and continue to successfully support the site closure mission .

  3. DEVELOPMENT OF VISUAL CRITERIA FOR EVALUATION OF CORRODED TRANSURANIC (TRU) WASTE DRUMS AT THE DEPARTMENT OF ENERGY (US/DOE) HANFORD SITE

    SciTech Connect

    CANNELL, G.R.

    2004-11-01

    Fluor Hanford, Inc., at the Department of Energy (DOE) Hanford Site, has recently begun retrieving some 37,000 contact-handled, suspect-Transuranic or ''Retrievably Stored Waste'' (CH-TRU) waste drums from its Low Level Burial Grounds (LLBG). The drums are being retrieved, processed and prepared for eventual shipment to the DOE Waste Isolation Pilot Plant (WIPP). Immediately upon retrieval, the drums are visually inspected against requirements identified in the facility Authorization Basis to ensure they are safe for handling and fit for on-site transfer. A number of the retrieved drums did not meet specified corrosion criteria and as such required structural evaluation by Ultrasonic Test (UT) thickness checking (including mechanical surface prep) or overpacking into a Conex-type container prior to transfer. The additional evaluation and overpacking increases personnel exposure to the radioactive waste and reduces efficiency of the retrieval process. Based on historic Hanford CH-TRU waste drum corrosion data, showing very low general corrosion rates, there was reason to believe that existing Hanford site-transfer corrosion criteria were more conservative than needed. In an effort to demonstrate this belief, a corrosion investigation was performed. Eleven CH-TRU waste drums not meeting the corrosion criteria were included in the investigation and from these, 92 separate locations, or areas of corrosion, were evaluated. Each of these locations was visually characterized and evaluated for thickness using the UT method. Visual characterization consisted of ranking photographs for each location on a scale from 1 to 6, representing an increasing level of corrosion attack. UT thickness measurements were then plotted against the visual ratings to identify any significant correlation. Analysis of the data indicated that as the corrosion rating increased, wall thickness decreased. It was concluded that drum surfaces characterized by a corrosion rating of 1-4 could be

  4. Improved Hydrogen Gas Getters for TRU Waste Transuranic and Mixed Waste Focus Area - Phase 2 Final Report

    SciTech Connect

    Stone, Mark Lee

    2002-04-01

    Alpha radiolysis of hydrogenous waste and packaging materials generates hydrogen gas in radioactive storage containers. For that reason, the Nuclear Regulatory Commission (NRC) limits the flammable gas (hydrogen) concentration in the Transuranic Package Transporter-II (TRUPACT-II) containers to 5 vol% of hydrogen in air, which is the lower explosion limit. Consequently, a method is needed to prevent the build up of hydrogen to 5 vol% during the storage and transport of the TRUPACT-II containers (up to 60 days). One promising option is the use of hydrogen getters. These materials scavenge hydrogen from the gas phase and irreversibly bind it in the solid phase. One proven getter is a material called 1,4-bis (phenylethynyl) benzene, or DEB. It has the needed binding rate and capacity, but some of the chemical species that might be present in the containers could interfere with its ability to remove hydrogen. This project is focused upon developing a protective polymeric membrane coating for the DEB getter material, which comes in the form of small, irregularly shaped particles. This report summarizes the experimental results of the second phase of the development of the materials.

  5. SWEPP PAN assay system uncertainty analysis: Active mode measurements of solidified aqueous sludge waste

    SciTech Connect

    Blackwood, L.G.; Harker, Y.D.; Meachum, T.R.

    1997-12-01

    The Idaho National Engineering and Environmental Laboratory is being used as a temporary storage facility for transuranic waste generated by the US Nuclear Weapons program at the Rocky Flats Plant (RFP) in Golden, Colorado. Currently, there is a large effort in progress to prepare to ship this waste to the Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico. In order to meet the TRU Waste Characterization Quality Assurance Program Plan nondestructive assay compliance requirements and quality assurance objectives, it is necessary to determine the total uncertainty of the radioassay results produced by the Stored Waste Examination Pilot Plant (SWEPP) Passive Active Neutron (PAN) radioassay system. This paper is one of a series of reports quantifying the results of the uncertainty analysis of the PAN system measurements for specific waste types and measurement modes. In particular this report covers active mode measurements of weapons grade plutonium-contaminated aqueous sludge waste contained in 208 liter drums (item description codes 1, 2, 7, 800, 803, and 807). Results of the uncertainty analysis for PAN active mode measurements of aqueous sludge indicate that a bias correction multiplier of 1.55 should be applied to the PAN aqueous sludge measurements. With the bias correction, the uncertainty bounds on the expected bias are 0 {+-} 27%. These bounds meet the Quality Assurance Program Plan requirements for radioassay systems.

  6. LANL`s mobile nondestructive assay and examination systems for radioactive wastes

    SciTech Connect

    Taggart, D.P. Betts, S.E.; Vigil, J.J.

    1996-04-09

    The ability to accurately and rapidly measure nuclear material within drums and examine their contents without having to unpack the drums saves time, reduces characterization costs and minimizes radiation exposure. Over the past two years, Los Alamos National Laboratory (LANL) has developed and fielded a suite of mobile nondestructive assay and examination systems for use primarily on its own transuranic (TRU) waste but that also have application to low level, mixed and hazardous wastes. It has become obvious that systems like these are generally useful and have applications at other Department of Energy (DOE) production and environmental technology sites. Mobile capabilities present a potential cost savings where waste drums have to be transported to a fixed NDA facility. In other cases they fill a void where there is no fixed facility available because construction costs are prohibitive (as in the case of small quantity sites) or the available facilities may not meet current or evolving safety standards. Rather than bringing waste to a facility to be characterized, one can bring the characterization capability to the waste. The three systems described are: (1) mobile radiography system; (2) mobile segmented/tomographic gamma scanner; and (3) mobile passive/active neutron assay system.

  7. Total Measurement Uncertainty (TMU) for Nondestructive Assay of Transuranic (TRU) Waste at the WRAP Facility

    SciTech Connect

    WILLS, C.E.

    1999-09-20

    This report examines the contributing factors to NDA measurement uncertainty at WRAP. The significance of each factor on the TMU is analyzed, and a final method is given for determining the TMU for NDA measurements at WRAP. As more data becomes available, and WRAP gains in operational experience, this report will be reviewed semi-annually and updated as necessary.

  8. Total Measurement Uncertainty (TMU) for Nondestructive Assay of Transuranic (TRU) Waste at the WRAP Facility

    SciTech Connect

    WILLS, C.E.

    1999-12-06

    This report examines the contributing factors to NDA measurement uncertainty at WRAP. The significance of each factor on the TMU is analyzed, and a final method is given for determining the TMU for NDA measurements at WRAP. As more data becomes available, and WRAP gains in operational experience, this report will be reviewed semi-annually and updated as necessary.

  9. Total Measurement Uncertainty (TMU) for Nondestructive Assay of Transuranic (TRU) Waste at the WRAP Facility

    SciTech Connect

    WILLS, C.E.

    2000-01-06

    This report examines the contributing factors to NDA measurement uncertainty at WRAP The significance of each factor on the TMU is analyzed and a final method is given for determining the TMU for NDA measurements at WRAP. As more data becomes available and WRAP gains in operational experience this report will be reviewed semi annually and updated as necessary.

  10. Advanced radioactive waste assay methods: Final report

    SciTech Connect

    Cline, J.E.; Robertson, D.E.; DeGroot, S.E.

    1987-11-01

    This report describes an evaluation of advanced methodologies for the radioassay of low power-plant low-level radioactive waste for compliance with the 10CFR61 classification rules. The project evaluated current assay practices in ten operating plants and identified areas where advanced methods would apply, studied two direct-assay methodologies, demonstrated these two techniques on radwaste in four operating plants and on irradiated components in two plants, and developed techniques for obtaining small representative aliquots from larger samples and for enhancing the /sup 144/Ce activity analysis in samples of waste. The study demonstrated the accuracy, practicality, and ALARA aspects of advanced methods and indicates that cost savings, resulting from the accuracy improvement and reduction in sampling requirements can be significant. 24 refs., 60 figs., 67 tabs.

  11. Sensitivity and accuracy considerations for neutron assay of plutonium-contaminated waste in large containers

    SciTech Connect

    Melton, S. G.; Estep, R. J.

    2001-01-01

    Since the 1970 innovations have allowed both active and passive neutron techniques to address various safeguards and waste measurement needs in the DOE complex. Much research was focused on satisfjring the 100-nCi/g detection limit for TRU waste in 208-liter drums. The emphasis on measuring drum-sized containers for disposal at WIPP has resulted in improved waste assay capability that now needs to be extended to larger containers. The desire to expedite the decontamination and decommissioning of certtain DOE facilities, and the large waste encountered in that process, has prompted the need for increasingly large disposal containers. Instruments have recently been built to accommodate crates that are nearly 100 cubic feet in volume, such as a B-25 box or Standard Waste 13ox. The density of hydrogen inside a waste container profoundly affects the accuracy of neutron measurements, and the metal content greatly affects sensitivity. Depending on the matrix, and especially the hydrogen content, the response of an instrument to a single point source can vary tremendously within the container. Because the density and composition of metals inside each container are unknown, the observed cosmic ray background rate varies from one container to the next, resulting in a loss of sensitivity for passive counters. In the paper we will explore the magnitude of these problcms for both metal- and hydrogen-bearing matrices in a crate-sized containers.

  12. Caspase multiplexing: simultaneous homogeneous time-resolved quenching assay (TruPoint) for caspases 1, 3, and 6.

    PubMed

    Karvinen, Jarkko; Elomaa, Annika; Mäkinen, Maija Liisa; Hakala, Harri; Mukkala, Veli Matti; Peuralahti, Jari; Hurskainen, Pertti; Hovinen, Jari; Hemmilä, Ilkka

    2004-02-15

    Caspases are a group of cysteine proteases involved in apoptosis and inflammation. A multiparametric homogeneous assay capable of measuring activity of three different caspases in a single well of a microtiter plate is described. Different fluorescent europium, samarium, terbium, and dysprosium chelates were coupled to a caspase substrate peptide, their luminescence properties, were analyzed, and their function in a time-resolved fluorescence quenching-based caspase 3 assay was studied. Substrates for caspases 1, 2, 3, 6, and 8 and granzyme B were also synthesized and their specificities for different caspases were determined. By selecting suitable lanthanide chelates and substrates we developed a multiparametric homogeneous time-resolved fluorescence quenching-based assay for caspases 1, 3, and 6. The assay was capable of measuring the activity of both single caspases and a mixture of three caspases mixed in the same well.

  13. A preliminary evaluation of certain NDA techniques for RH-TRU characterization

    SciTech Connect

    Hartwell, J.K.; Yoon, W.Y.; Peterson, H.K.

    1996-12-31

    This report presents the results of modeling efforts to evaluate selected NDA assay methods for RH-TRU waste characterization. The target waste stream was Content Code 104/107 113-liter waste drums that comprise the majority of the INEL`s RH-TRU waste inventory. Two NDA techniques are treated in detail. One primary NDA technique examined is gamma-ray spectrometry to determine the drum fission and activation product content, and fuel sample inventory calculations using the ORIGEN code to predict the total drum inventory. A heavily shielded and strongly collimated HPGE spectrometer system was designed using MCNP modeling. Detection limits and expected precision of this approach were estimated by a combination of Monte Carlo modeling and synthetic gamma-ray spectrum generation. This technique may allow the radionuclide content of these wastes to be determined with relative standard deviations of 20 to 55% depending on the drum matrix and radionuclide. The INEL Passive/Active Neutron (PAN) assay system is the second primary technique considered. A shielded overpack for the 113-liter CC104/107 RH-TRU drums was designed to shield the PAN detectors from excessive gamma radiation. MCNP modeling suggests PAN detection limits of about 0.06 g {sup 235}U and 0.04 g {sup 239}Pu during active assays.

  14. A preliminary evaluation of certain NDA techniques for RH-TRU characterization

    SciTech Connect

    Hartwell, J.K.; Yoon, W.Y.; Peterson, H.K.

    1997-11-01

    This report presents the results of modeling efforts to evaluate selected NDA assay methods for RH-TRU waste characterization. The target waste stream was Content Code 104/107 113-liter waste drums that comprise the majority of the INEL`s RH-TRU waste inventory. Two NDA techniques are treated in detail. One primary NDA technique examined is gamma-ray spectrometry to determine the drum fission and activation product content, and fuel sample inventory calculations using the ORIGEN code to predict the total drum inventory. A heavily shielded and strongly collimated HPGe spectrometer system was designed using MCNP modeling. Detection limits and expected precision of this approach were estimated by a combination of Monte Carlo modeling and synthetic gamma-ray spectrum generation. This technique may allow the radionuclide content of these wastes to be determined with relative standard deviations of 20 to 50% depending on the drum matrix and radionuclide. The INEL Passive/Active Neutron (PAN) assay system is the second primary technique considered. A shielded overpack for the 113-liter CC104/107 RH-TRU drums was designed to shield the PAN detectors from excessive gamma radiation. MCNP modeling suggests PAN detection limits of about 0.06 g {sup 235}U and 0.04 g {sup 239}Pu during active assays. 12 refs., 2 figs., 6 tabs.

  15. Performance tests on PNL`s transportable neutron/gamma waste assay system

    SciTech Connect

    Haggard, D.L.; Davidson, D.; Lemons, C.J.

    1995-12-31

    Battelle Pacific Northwest Laboratory, in conjunction with Canberra Industries, has implemented a 55-gallon drum waste assay system. The single system unit consists of a combined segmented gamma assay system and a neutron assay system. The unit is designed to function either in the laboratory or in a mobile trailer. The system is on wheels and can be moved through standard double doors. The gamma system uses an HPGe detector with a Se-75 source for transmission corrections. The neutron detector uses 40 He-3 detectors connected to a JSR-12 neutron coincidence counter. The system`s software is unique and is interactive with the user; it features a menu driven operator screen from which all functions regarding operations and calibrations can be selected. Single or combined assays with various setups, including containers smaller than 55 gallons, may be performed. The software and analysis is designed for unknown waste contents, but allows input of waste stream information prior to assay. The system was originally designed for safeguards` MC&A requirements and has enough sensitivity to determine whether a drum is TRU or LLW in one assay pass. Typical counting times are approximately 1800 seconds for a dual pass. Preliminary testing of the system with the available Pu standards has shown the system will perform to the required levels stated in the Data Quality Objectives of the WIPP Performance Demonstration program. An overall study of the system is underway to determine the lower limit of detection (LLD) for different isotopes, to best utilize the combined assay results, and to apply the appropriate data corrections for more complete answers, such as corrections for the end effects. Results from these developments will be presented at the conference.

  16. PICTURES OF A SUSPECT-TRU RETRIEVAL

    SciTech Connect

    GADD, R.R.

    2007-05-24

    Retrieving ''suspect'' transuranic (TRU) waste from the Hanford Site's low-level waste burial grounds is a tall order, due to conditions that have changed as the work progresses. Project personnel developed several new methods for handling the waste that other retrieval operations may find useful. The Waste Retrieval Project is operated by Fluor Hanford, a prime contractor for the U.S. Department of Energy's Richland Operations Office since 1996.

  17. Test procedure for boxed waste assay system

    SciTech Connect

    Wachter, J.

    1994-12-07

    This document, prepared by Los Alamos National Laboratory`s NMT-4 group, details the test methodology and requirements for Acceptance/Qualification testing of a Boxed Waste Assay System (BWAS) designed and constructed by Pajarito Scientific Corporation. Testing of the BWAS at the Plutonium Facility (TA55) at Los Alamos National Laboratory will be performed to ascertain system adherence to procurement specification requirements. The test program shall include demonstration of conveyor handling capabilities, gamma ray energy analysis, and imaging passive/active neutron accuracy and sensitivity. Integral to these functions is the system`s embedded operating and data reduction software.

  18. In Plant Measurement and Analysis of Mixtures of Uranium and Plutonium TRU-Waste Using a {sup 252}Cf Shuffler Instrument

    SciTech Connect

    Hurd, J.R.

    1998-11-02

    The active-passive {sup 252}Cf shuffler instrument, installed and certified several years ago in Los Alamos National Laboratory's plutonium facility, has now been calibrated for different matrices to measure Waste Isolation Pilot Plant (WIPP)-destined transuranic (TRU)-waste. Little or no data currently exist for these types of measurements in plant environments where sudden large changes in the neutron background radiation can significantly distort the results. Measurements and analyses of twenty-two 55-gallon drums, consisting of mixtures of varying quantities of uranium and plutonium in mostly noncombustible matrices, have been recently completed at the plutonium facility. The calibration and measurement techniques, including the method used to separate out the plutonium component, will be presented and discussed. Calculations used to adjust for differences in uranium enrichment from that of the calibration standards will be shown. Methods used to determine various sources of both random and systematic error will be indicated. Particular attention will be directed to those problems identified as arising from the plant environment. The results of studies to quantify the aforementioned distortion effects in the data will be presented. Various solution scenarios will be outlined, along with those adopted here.

  19. Nondestructive radioassay for waste management: an assessment

    SciTech Connect

    Lehmkuhl, G.D.

    1981-06-01

    Nondestructive Assay (NDA) for Transuranic Waste Management is used to mean determining the amount of transuranic (TRU) isotopes in crates, drums, boxes, cans, or other containers without having to open the container. It also means determining the amount of TRU in soil, bore holes, and other environmental testing areas without having to go through extensive laboratory wet chemistry analyses. it refers to radioassay techniques used to check for contamination on objects after decontamination and to determine amounts of TRU in waste processing streams without taking samples to a laboratory. Gednerally, NDA instrumentation in this context refers to all use of radioassay which does not involve taking samples and using wet chemistry techniques. NDA instruments have been used for waste assay at some sites for over 10 years and other sites are just beginning to consider assay of wastes. The instrumentation used at several sites is discussed in this report. Almost all these instruments in use today were developed for special nuclear materials safeguards purposes and assay TRU waste down to the 500 nCi/g range. The need for instruments to assay alpha particle emitters at 10 nCi/g or less has risen from the wish to distinguish between Low Level Waste (LLW) and TRU Waste at the defined interface of 10 nCi/g. Wastes have historically been handled as TRU wastes if they were just suspected to be transuranically contaminated but their exact status was unknown. Economic and political considerations make this practice undesirable since it is easier and less costly to handle LLW. This prompted waste generators to want better instrumentation and led the Transuranic Waste Management Program to develop and test instrumentation capable of assaying many types of waste at the 10 nCi/g level. These instruments are discussed.

  20. DISPOSAL OF TRU WASTE FROM THE PLUTONIUM FINISHING PLANT IN PIPE OVERPACK CONTAINERS TO WIPP INCLUDING NEW SECURITY REQUIREMENTS

    SciTech Connect

    Hopkins, A.M.; Sutter, C.; Hulse, G.; Teal, J.

    2003-02-27

    The Department of Energy is responsible for the safe management and cleanup of the DOE complex. As part of the cleanup and closure of the Plutonium Finishing Plant (PFP) located on the Hanford site, the nuclear material inventory was reviewed to determine the appropriate disposition path. Based on the nuclear material characteristics, the material was designated for stabilization and packaging for long term storage and transfer to the Savannah River Site or, a decision for discard was made. The discarded material was designated as waste material and slated for disposal to the Waste Isolation Pilot Plant (WIPP). Prior to preparing any residue wastes for disposal at the WIPP, several major activities need to be completed. As detailed a processing history as possible of the material including origin of the waste must be researched and documented. A technical basis for termination of safeguards on the material must be prepared and approved. Utilizing process knowledge and processing history, the material must be characterized, sampling requirements determined, acceptable knowledge package and waste designation completed prior to disposal. All of these activities involve several organizations including the contractor, DOE, state representatives and other regulators such as EPA. At PFP, a process has been developed for meeting the many, varied requirements and successfully used to prepare several residue waste streams including Rocky Flats incinerator ash, Hanford incinerator ash and Sand, Slag and Crucible (SS&C) material for disposal. These waste residues are packed into Pipe Overpack Containers for shipment to the WIPP.

  1. Disposal of TRU Waste from the PFP in pipe overpack containers to WIPP Including New Security Requirements

    SciTech Connect

    HOPKINS, A.M.

    2003-02-01

    The Department of Energy is responsible for the safe management and cleanup of the DOE complex. As part of the cleanup and closure of the Plutonium Finishing Plant (PFP) located on the Hanford site, the nuclear material inventory was reviewed to determine the appropriate disposition path. Based on the nuclear material characteristics, the material was designated for stabilization and packaging for long term storage and transfer to the Savannah River Site, or a decision for discard was made. The discarded material was designated as waste material and slated for disposal to the Waste Isolation Pilot Plant (WIPP). Prior to preparing any residue wastes for disposal at the WIPP, several major activities need to be completed. As detailed a processing history as possible of the material including origin of the waste must be researched and documented. A technical basis for termination of safeguards on the material must be prepared and approved. Utilizing process knowledge and processing history, the material must be characterized, sampling requirements determined, acceptable knowledge package and waste designation completed prior to disposal. All of these activities involve several organizations including the contractor, DOE, state representatives and other regulators such as EPA. At PFP, a process has been developed for meeting the many, varied requirements and successfully used to prepare several residue waste streams including Rocky Flats incinerator ash, hanford incinerator ash and Sand, Slag and Crucible (SS and C) material for disposal. These waste residues are packed into Pipe Overpack Containers for shipment to the WIPP.

  2. Uncertainty analysis of the SWEPP PAN assay system for glass waste (content codes 440, 441 and 442)

    SciTech Connect

    Blackwood, L.G.; Harker, Y.D.; Meachum, T.R.; Yoon, W.Y.

    1996-10-01

    INEL is being used as a temporary storage facility for transuranic waste generated by the Nuclear Weapons program at the Rocky Flats Plant. Currently, there is a large effort in progress to prepare to ship this waste to WIPP. In order to meet the TRU Waste Characterization Quality Assurance Program Plan nondestructive assay compliance requirements and quality assurance objectives, it is necessary to determine the total uncertainty of the radioassay results produced by the Stored Waste Examination Pilot Plant (SWEPP) Passive Action Neutron (PAN) radioassay system. This paper discusses a modified statistical sampling and verification approach used to determine the total uncertainty of SWEPP PAN measurements for glass waste (content codes 440, 441, and 442) contained in 208 liter drums. In the modified statistical sampling and verification approach, the total performance of the SWEPP PAN nondestructive assay system for specifically selected waste conditions is simulated using computer models. A set of 100 cases covering the known conditions exhibited in glass waste was compiled using a combined statistical sampling and factorial experimental design approach. Parameter values assigned in each simulation were derived from reviews of approximately 100 real-time radiography video tapes of RFP glass waste drums, results from previous SWEPP PAN measurements on glass waste drums, and shipping data from RFP where the glass waste was generated. The data in the 100 selected cases form the multi-parameter input to the simulation model. The reported plutonium masses from the simulation model are compared with corresponding input masses. From these comparisons, the bias and total uncertainty associated with SWEPP PAN measurements on glass waste drums are estimated. The validity of the simulation approach is verified by comparing simulated output against results from calibration measurements using known plutonium sources and two glass waste calibration drums.

  3. Hazardous and Corrosive Gas Production in the Radiolysis of Water/Organic Mixtures in Model TRU Waste

    SciTech Connect

    LaVerne, Jay A.

    2005-06-01

    Experiments in combination with diffusion-kinetic modeling incorporating track structure simulations are used to examine the radiation chemistry of aqueous systems containing chlorinated hydrocarbons. Irradiations with both Co-60 gamma rays and alpha particles are employed in order to simulate typical mixed radiation environments encountered in waste management. The goal is to determine fundamental mechanisms, kinetics, and yields for the formation of potentially explosive gases and corrosive agents, such as H2 and HCl, respectively, in the radiolysis of water-organic mixtures. The radiation chemical systems studied are found throughout the DOE portfolio and are important in radioactive waste remediation and management.

  4. TRU VU rig instrumentation

    SciTech Connect

    Boone, S.G.

    1993-02-15

    TRU VU was developed in response to the growing need for real time rig instrumentation that interface various rig systems into a common database. TRU VU is a WITS compatible (Wellsite Information Transfer Standard) system that logs drilling data and MWD data into a common database. Real time data as well as historical data can be viewed from up to eight locations on the rig or from numerous locations in communication with the rig. The TRU VU well monitoring package can be configured to operate manned or unmanned depending on the specific requirements of the operator or drilling contractor. TRU VU does not require a drilling recorder and is totally independent of all rig systems. For example, depth is monitored directly from the draw works and can monitor pipe movement while drilling or tripping. Weight on bit is zeroed automatically on each connection and does not require manual input.

  5. CHALLENGES WITH RETRIEVING TRANSURANIC WASTE FROM THE HANFORD BURIAL GROUNDS

    SciTech Connect

    SWAN, R.J.; LAKES, M.E.

    2007-08-06

    The U.S. DOE's Hanford Reservation produced plutonium and other nuclear materials for the nation's defense starting in World War II. The defense mission generated wastes that were either retrievably stored (i.e. retrievably stored waste) and/or disposed of in burial grounds. Challenges have emerged from retrieving suspect TRU waste including adequacy of records, radiological concerns, container integrity, industrial hygiene and safety issues, the lack of processing/treatment facilities, and the integration of regulatory requirements. All retrievably stored waste is managed as mixed waste and assumed to be TRU waste, unless documented otherwise. Mixed waste is defined as radioactive waste that contains hazardous constituents. The Atomic Energy Act governs waste with radionuclides, and the Resource Conservation and Recovery Act (RCRA) governs waste with hazardous constituents. Waste may also be governed by the Toxic Substances Control Act (TSCA), and a portion may be managed under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). In 1970, TRU waste was required to be placed in 20-year retrievable storage and segregated from other Waste. Prior to that date, segregation did not occur. Because of the changing definition of TRU over the years, and the limitations of early assay equipment, all retrievably stored waste in the burial grounds is managed as suspect TRU. Experience has shown that some of this waste will be characterized as low-level (non-TRU) waste after assay. The majority of the retrieved waste is not amenable to sampling due to waste type and/or radiological issues. Key to waste retrieval and disposition are characterization, historical investigation and research, knowledge of past handling and packaging, as well as a broad understanding and application of the regulations.

  6. Mobile Nondestructive Assay (NDA) Measurements of Standard Waste Boxes (SWB)

    SciTech Connect

    Mozhayev, Andrey V.; Berg, Randal K.; Haggard, Daniel L.; Hilliard, James R.; Mapili, Gabriel M.

    2006-11-01

    A mobile NDA system was composed and qualified for Safeguards measurements of multiple standard waste boxes (SWB) generated as a result of clean-out activities at Hanford’s Plutonium Finishing Plant (PFP). The system included a neutron slab counter and high purity germanium (HPGe) detector. PC/FRAM software was used to determine the isotopic composition of plutonium residue contained in the waste in order to interpret two independent measurement results provided by total neutron counting and gamma energy analysis (GEA). The measurement procedure developed to estimate transuranic (TRU) content of boxes was based on assumptions about characteristics of the matrix and material distribution. The neutron slab counter was calibrated with various plutonium working standards that were placed in a surrogate SWB specifically made to simulate miscellaneous waste debris. Transmission measurements with a californium source were used to correct for the matrix effects. An In-Situ Object Counting System (ISOCS) was used to acquire spectra from SWBs and ISOCS software was applied to generate the efficiency curve of the HPGe detector. Infinite energy extrapolation was introduced to correct GEA results for self-attenuation. The gamma and neutron results obtained on multiple SWBs are compared and discussed in the paper. Revised measurement positions for the detector and the transmission source are also suggested based on experience gained during the measurements.

  7. VLLW/Exempt Waste Assay at AWE Using Cronos - 12001

    SciTech Connect

    Miller, T.J.

    2012-07-01

    Previous studies have indicated that waste bag photon monitors, such as the CANBERRA Cronos-11, have the potential to assay photon emitting uranium (U) and plutonium (Pu) contaminated wastes at the new UK VLLW/exempt waste thresholds of 1 Bq/g U and 0.15 Bq/g Pu. However, the technique has limitations associated with the operation of its plastic scintillation photon detectors. These include the absence of isotopic information and a variable detector background that is modified by the chemical and physical composition of the waste as well as the presence of any naturally occurring radioactive material (NORM). Hence, it is vital to operate Cronos in a low/non-fluctuating background environment and segregate wastes according to isotopic fingerprint, NORM concentration and waste composition. This paper presents results from subsequent Cronos measurements on a range of uncontaminated waste materials, contaminated wastes from Pu and U facilities and a National Physical Laboratory (NPL) waste package standard. The results were consistent with other assay techniques and show that Cronos can be used for exempt waste assay provided that it is operated in a low/non-fluctuating background area and the waste is well segregated before monitoring. (author)

  8. Potential VOC Deflagrations in a Vented TRU Drum

    SciTech Connect

    Mukesh, GUPTA

    2005-04-07

    The objective of the analysis is to examine the potential for lid ejection from a vented transuranic (TRU) waste drum due to pressure buildup caused by the deflagration of hydrogen and volatile organic compounds (VOCs) inside the drum. In this analysis, the AICC pressure for a stoichiometric mixture of VOCs is calculated and then compared against the experimental peak pressure of stoichiometric combustion of propane and hexane in a combustion chamber. The experimental peak pressures of propane and hexane are about 12 percent lower than the calculated AICC pressure. Additional losses in the drum are calculated due to venting of the gases, drum bulging, waste compaction, and heat losses from the presence of waste in the drum. After accounting for these losses, the final pressures are compared to the minimum observed pressure that ejects the lid from a TRU drum. The ejection pressure of 105 psig is derived from data that was recorded for a series of tests where hydrogen-air mixtures were ignited inside sealed TRU drums. Since the calculated pressures are below the minimum lid ejection pressure, none of the VOCs and the hydrogen (up to 4 percent) mixtures present in the TRU waste drum is expected to cause lid ejection if ignited. The analysis of potential VOC deflagrations in a vented TRU drum can be applied across the DOE-Complex since TRU waste is stored in drums throughout the complex.

  9. International Perspective on the Application of Non-Destructive Assay Technology Platforms for Sentencing and Disposal of Radioactive Waste - 12113

    SciTech Connect

    Simpson, A.P.; Clapham, M.J.

    2012-07-01

    Over the past decade, major technology improvements have been introduced in the field of Non-Destructive Assay (NDA) for the management and disposal of radioactive waste in compliance with an evolving regulatory structure. For example in the United States, various NDA technologies have been successfully developed to meet the stringent characterization requirements of the Department of Energy. The use of this instrumentation, combined with the compliant operational processes and expertise levels that have emerged in parallel, have enabled over 75,000 m{sup 3} (or in excess of 145,000 containers) of contact and remote handled transuranic (TRU) waste to be sentenced to date to the Waste Isolation Pilot Plant from 10 different consignor sites. Many of these techniques have applicability that transcends national borders and can be used for common characterization challenges in waste sentencing and disposal on an international basis. Applicable waste streams could include LLW, ILW, TRU and HLW. There are specific design aspects of assay equipment that must be tailored to meet the applicable regulatory requirements for detection and quantification of a set of nuclides of interest to a prescribed limit of detection and measurement uncertainty. Each host nation will have specific challenges in the form of matrix types and processes, availability of historical information, needs for portable versus fixed instruments and the requirement to measure all containers versus assay of a representative sample. Furthermore, the practice of load management (combining smaller packages into a larger package designed to meet the overall waste acceptance criteria for the bulk container) may not have universal acceptability. An evaluation has been performed on a sample of the most successful technologies that have recently emerged to understand their applicability in other countries. Two types of instrumentation 'suite' are considered for measurements on drums and larger boxes / crates: (i

  10. Oak Ridge National Laboratory contact-handled Transuranic Waste Certification Program plan

    SciTech Connect

    Smith, J.H.; Smith, M.A.

    1990-08-01

    The Oak Ridge National Laboratory (ORNL) is required by Department of Energy (DOE) Order 5820.2A to package its transuranic (TRU) waste to comply with waste acceptance criteria (WAC) for the Waste Isolation Pilot Plant (WIPP). TRU wastes are defined in DOE Order 5820.A as those radioactive wastes that are contaminated with alpha-emitting transuranium radionuclides having half-lives greater than 20 years and concentrations greater than 100 nCi/g at the time of the assay. In addition, ORNL handles U{sup 233}, Cm{sup 244}, and Cf{sup 252} as TRU waste radionuclides. The ORNL Transuranic Waste Certification Program was established to ensure that all TRU waste at ORNL is packaged to meet the required transportation and storage criteria for shipping to and storage at the WIPP. The objective of this document is to describe the methods that will be used at ORNL to package contact handled-transuranic (CH-TRU) waste to meet the criteria set forth in the WIPP certification requirements documents. This document addresses newly generated (NG) CH-TRU waste. Stored CH-TRU will be repackaged. This document is organized to provide a brief overview of waste generation operations at ORNL, along with details on data management for CH-TRU waste. The methods used to implement this plan are discussed briefly along with the responsibilities and authorities of applicable organizations. Techniques used for waste data collection, records control, and data archiving are defined. Procedures for the procurement and handling of waste containers are also described along with related quality control methods. 11 refs., 3 figs.

  11. Hazardous and Corrosive Gas Production in the Radiolysis of Water/Organic Mixtures in Model TRU Waste

    SciTech Connect

    LaVerne, Jay A.

    2004-12-01

    Scope. The radiation chemistry of aqueous systems containing chlorinated hydrocarbons is investigated using a multi-pronged approach employing 60Co gamma ray and alpha particle irradiation experiments in conjunction with diffusion-kinetic modeling incorporating track structure simulations. The goal is to determine mechanisms, kinetics, and yields for the formation of potentially explosive gases and corrosive agents, such as H2 and HCl, respectively, in the radiolysis of water-organic mixtures. The information obtained is of a fundamental nature, but the radiation chemical systems studied are found throughout the DOE portfolio and are important in radioactive waste remediation and management. Program Highlights. Radiation-induced production of H2 and HCl from chlorinated hydrocarbons. 60Co gamma-radiolysis experiments and stochastic kinetic modeling have been used to investigated the radiation-induced yield of H2 and Cl- from aqueous solutions of 1,2-dichloroethane (1,2-DCE) and 1,1-dichloroethane (1,1-DCE) over the concentration range 1-80 mM. In deoxygenated solution, the yield of H2 from both 1,2-DCE and 1,1-DCE solutions decreases as the concentration of DCE is increased. The decrease in the H2 yield shows that the reaction of H atom with DCE does not lead to the production of H2. This observation is unexpected and reflects the reverse of the effect seen in the gas phase, where the reaction of H atom with 1,2-DCE and 1,1-DCE leads to the production of H2. The yield of Cl- from 1,2-DCE and 1,1-DCE solutions increases slightly from 2.8 ions/100eV to 3.6 over the concentration range 10-50 mM, demonstrating the increased competition of the DCE with intra-track processes. Comparison of the measured yields of Cl- with the predictions of stochastic kinetic modeling shows that the reactions of eaq- with 1,2-DCE and with 1,1-DCE are quantitative, and that the reaction of H atom with both DCEs leads to the production of Cl- (and Haq+). In aerated solution, the yield of Cl

  12. Mobile neutron/gamma waste assay system for characterization of waste containing transuranics, uranium, and fission/activation products

    SciTech Connect

    Davidson, D.R.; Haggard, D.; Lemons, C.

    1994-12-31

    A new integrated neutron/gamma assay system has been built for measuring 55-gallon drums at Pacific Northwest Laboratory. The system is unique because it allows simultaneous measurement of neutrons and gamma-rays. This technique also allows measurement of transuranics (TRU), uranium, and fission/activation products, screening for shielded Special Nuclear Material prior to disposal, and critically determinations prior to transportation. The new system is positioned on a platform with rollers and installed inside a trailer or large van to allow transportation of the system to the waste site instead of movement of the drums to the scanner. The ability to move the system to the waste drums is particularly useful for drum retrieval programs common to all DOE sites and minimizes transportation problems on the site. For longer campaigns, the system can be moved into a facility. The mobile system consists of two separate subsystems: a passive Segmented Gamma Scanner (SGS) and a {open_quotes}clam-shell{close_quotes} passive neutron counter. The SGS with high purity germanium detector and {sup 75}Se transmission source simultaneously scan the height of the drum allowing identification of unshieled {open_quotes}hot spots{close_quotes} in the drum or segments where the matrix is too dense for the transmission source to penetrate. Dense segments can flag shielding material that could be used to hide plutonium or uranium during the gamma analysis. The passive nuetron counter with JSR-12N Neutron Coincidence Analyzer measures the coincident neutrons from the spontaneous fission of even isotopes of plutonium. Because high-density shielding produces minimal absorption of neutrons, compared to gamma rays, the passive neutron portion of the system can detect shielded SNM. Measurements to evaluate the performance of the system are still underway at Pacific Northwest Laboratory.

  13. APNEA/WIT system nondestructive assay capability evaluation plan for select accessibly stored INEL RWMC waste forms

    SciTech Connect

    Becker, G.K.

    1997-01-01

    Bio-Imaging Research Inc. (BIR) and Lockheed Martin Speciality Components (LMSC) are engaged in a Program Research and Development Agreement and a Rapid Commercialization Initiative with the Department of Energy, EM-50. The agreement required BIR and LMSC to develop a data interpretation method that merges nondestructive assay and nondestructive examination (NDA/NDE) data and information sufficient to establish compliance with applicable National TRU Program (Program) waste characterization requirements and associated quality assurance performance criteria. This effort required an objective demonstration of the BIR and LMSC waste characterization systems in their standalone and integrated configurations. The goal of the test plan is to provide a mechanism from which evidence can be derived to substantiate nondestructive assay capability and utility statement for the BIT and LMSC systems. The plan must provide for the acquisition, compilation, and reporting of performance data thereby allowing external independent agencies a basis for an objective evaluation of the standalone BIR and LMSC measurement systems, WIT and APNEA respectively, as well as an expected performance resulting from appropriate integration of the two systems. The evaluation is to be structured such that a statement regarding select INEL RWMC waste forms can be made in terms of compliance with applicable Program requirements and criteria.

  14. Physics Features of TRU-Fueled VHTRs

    DOE PAGES

    Lewis, Tom G.; Tsvetkov, Pavel V.

    2009-01-01

    The current waste management strategy for spent nuclear fuel (SNF) mandated by the US Congress is the disposal of high-level waste (HLW) in a geological repository at Yucca Mountain. Ongoing efforts on closed-fuel cycle options and difficulties in opening and safeguarding such a repository have led to investigations of alternative waste management strategies. One potential strategy for the US fuel cycle would be to make use of fuel loadings containing high concentrations of transuranic (TRU) nuclides in the next-generation reactors. The use of such fuels would not only increase fuel supply but could also potentially facilitate prolonged operation modes (viamore » fertile additives) on a single fuel loading. The idea is to approach autonomous operation on a single fuel loading that would allow marketing power units as nuclear batteries for worldwide deployment. Studies have already shown that high-temperature gas-cooled reactors (HTGRs) and their Generation IV (GEN IV) extensions, very-high-temperature reactors (VHTRs), have encouraging performance characteristics. This paper is focused on possible physics features of TRU-fueled VHTRs. One of the objectives of a 3-year U.S. DOE NERI project was to show that TRU-fueled VHTRs have the possibility of prolonged operation on a single fuel loading. A 3D temperature distribution was developed based on conceivable operation conditions of the 600 MWth VHTR design. Results of extensive criticality and depletion calculations with varying fuel loadings showed that VHTRs are capable for autonomous operation and HLW waste reduction when loaded with TRU fuel.« less

  15. Method for assay of radioactivity in waste soil

    SciTech Connect

    Bramlitt, E.T.; Willhoite, S.B.

    1991-11-01

    Contaminated soil is a result of many nuclear operations. During facility decommissioning or site cleanup, it may be packaged for disposal. The waste soil must be assayed for contaminants to follow transport regulations and waste handling facility requirements. Methods used for assay include the following: (1) sampling the ground before excavation and assuming ground data apply to soil when packaged; (2) analyzing samples taken from the soil added to a package; (3) counting radiation at the exterior of the package; and (4) measuring neutron absorption by packaged waste soil. The Defense Nuclear Agency (DNA) worked with Eberline Instruments Corporation (EIC) to develop an automated assay method for the waste stream in a plutonium-contaminated soil cleanup at Johnston Atoll in the North Pacific Ocean. The perfected method uses a personal computer, an electronic weighing scale, and a programmable radiation counter. Computer programs get weight and radiation counts at frequent intervals as packages fill, calculate activity in the waste, and produce reports. The automated assay method is an efficient one-person routine that steadfastly collects data and produces a comprehensive record on packaged waste.

  16. Quarter-scale modeling of room convergence effects on CH (contact-handled) TRU drum waste emplacements using WIPP (Waste Isolation Pilot Plant) reference design geometries

    SciTech Connect

    VandeKraats, J.

    1987-11-01

    This study investigates the effect of horizontal room convergence on CH waste packages emplaced in the WIPP Reference Design geometry (rooms 13 feet high by 33 feet wide, with minus 3/8 inch screened backfill emplaced over and around the waste packages) as a function of time. Based on two tests, predictions were made with regard to full-scale 6-packs emplaced in the Reference Design geometry. These are that load will be transmitted completely through the stack within the first five years after waste emplacement and all drums in all 6-packs will be affected; that virtually all drums will show some deformation eight years after emplacement; that some drums may breach before the eighth year after emplacement has elapsed; and that based on criteria developed during testing, it is predicted that 1% of the drums emplaced will be breached after 8 years and, after 15 years, approximately 12% of the drums are predicted to be breached. 8 refs., 41 figs., 3 tabs.

  17. TRU Drum Headspace Gas Analysis System

    SciTech Connect

    Collins, S.

    1998-10-27

    The Savannah River Site (SRS) has approximately 10,000 Transuranic (TRU) waste drums whose final disposition is the Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico. Each drum, prior to shipment to WIPP, must be inspected and tested to certify that is meets the WIPP requirements for acceptance. One, of many requirements, is the analysis of the TRU drum vapor space for hydrogen, methane, and volatile organic compounds (VOCs). The DOE Carlsbad Area Office has published two documents specifying the analytical methodologies and the quality assurance requirements for analyzing TRU drum vapor space.The Savannah River Technology Center (SRTC) was contracted by the Solid Waste Division of SRS to specify, assemble, and test a system that would satisfy the WIPP requirements for drum headspace gas analysis. Since no single vendor supplies a complete system, analytical instrumentation and supporting components were integrated into a configuration that performed that required analyses. This required both software and hardware design and modifications. The major goal of the design team was to integrate commercially available instrumentation and equipment into a seamless production process. The final output of the process is an analytical report formatted to the specifications outlined in the WIPP Quality Assurance Program Plan (QAPP). SRTC has assembled the necessary analytical instrumentation and installed it in a mobile trailer to perform the TRU drum vapor space analyses. This mobile trailer had previously housed instrumentation for reactor tank inspections. As a cost savings it was decided to renovate and install the instrumentation in this trailer to eliminate the need of building or modifying permanent structures. This also allows for portability to meet future analytical needs on or off site.This task was divided into three sub tasks: headspace gas sampling, gas analysis and system component integration, and sample canister cleaning. The following sections

  18. Nondestructive assay of curium-contaminated transuranic waste drums

    NASA Astrophysics Data System (ADS)

    Foster, Lynn A.

    1999-01-01

    At the Plutonium Facility at Los Alamos National Laboratory, a series of non-destructive assays were performed on five transuranic waste drums containing non-actinide scrap metal that was potentially contaminated with weapons grade plutonium and trace quantities of curium. Typically, waste drums containing metal matrices are assayed for plutonium content using passive neutron coincidence counting techniques. The presence of trace quantities of 244Cm prevents this type of analysis because of the strong coincidence signal created by spontaneous fission of 244Cm. To discrimination between the plutonium and curium materials in the matrix, an active neutron measurement technique was used. A californium shuffler designed for measurement of uranium bearing materials was calibrated for plutonium in the active mode. The waste drums were then assayed for plutonium content in the shuffler using the active-mode calibration, which is relatively insensitive to the 244Cm contamination. The curium contamination levels were estimated from the difference between the active-mode measurement in the shuffler and a passive assay in a neutron coincidence counter. Far field gamma-ray measurements were made to identify additional radioactive contaminants and to corroborate the plutonium measurement results obtained from the active-mode assay. This report describes in detail the measurement process used for characterization of these waste drums. The measurement results and the estimated uncertainty will be presented.

  19. MLW, TRU, LLW, MIXED, HAZARDOUS WASTES AND ENVIRONMENTAL RESTORATION. WASTE MANAGEMENT/ENERGY SECURITY AND A CLEAN ENVIRONMENT. DFR Decommissioning: the Breeder Fuel Processing

    SciTech Connect

    Bonnet, C.; Potier, P.; Ashton, Brian Morris

    2003-02-27

    The Dounreay site, in North Scotland, was opened in 1955 and a wide range of nuclear facilities have been built and operated there by UKAEA (The United Kingdom Atomic Energy Authority) for the development of atomic energy research. The Dounreay Fast Reactor (DFR) was built between 1955 and 1957, and operated until 1977 for demonstration purposes and for producing electricity. Today, its decommissioning is a key part of the whole Dounreay Site Restoration Plan that integrates the major decommissioning activities such as the fuel treatment and the waste management. The paper presents the contract strategy and provides an overview of the BFR project which consists in the removal of the breeder elements from the reactor and their further treatment. It mainly provides particular details of the Retrieval and Processing Facilities design.

  20. Waste Handling Practices for the Plutonium Immobilization Plant

    SciTech Connect

    Severynse, T.F.

    2000-08-04

    Solid waste handling operations refers to all activities associated with the segregation, collection, packaging, assay, storage, and removal of solid radioactive waste from radiological facilities. The Plutonium Immobilization Plant (PIP) is expected to generate the following types of radiological waste, as defined in WSRC Manual 1S, ''Waste Acceptance Criteria'': Low level waste; Mixed hazardous waste; TRU waste; and Mixed TRU waste. Historically, waste handling activities have been demanding proportionately larger amounts of labor, time, and space to effectively manage waste in accordance with increasing regulatory requirements. Since the PIP will be designed for an annual throughput of five metric tonnes plutonium, the facility waste handling operations can be expected to have at least twice the impact of such operations at existing facilities.

  1. Nondestructive and quantitative characterization of TRU and LLW mixed-waste using active and passive gamma-ray spectrometry and computed tomography

    SciTech Connect

    Camp, D.C.; Martz, H.E.

    1991-11-12

    The technology being proposed by LLNL is an Active and Passive Computed Tomography (A P CT) Drum Scanner for contact-handled (CH) wastes. It combines the advantages offered by two well-developed nondestructive assay technologies: gamma-ray spectrometry and computed tomography (CT). Coupled together, these two technologies offer to nondestructively and quantitatively characterize mixed- wastes forms. Gamma-ray spectroscopy uses one or more external radiation detectors to passively and nondestructively measure the energy spectrum emitted from a closed container. From the resulting spectrum one can identify most radioactivities detected, be they transuranic isotopes, mixed-fission products, activation products or environmental radioactivities. Spectral libraries exist at LLNL for all four. Active (A) or transmission CT is a well-developed, nondestructive medical and industrial technique that uses an external-radiation beam to map regions of varying attenuation within a container. Passive (P) or emission CT is a technique mainly developed for medical application, e.g., single-photon emission CT. Nondestructive industrial uses of PCT are under development and just coming into use. This report discuses work on the A P CT Drum Scanner at LLNL.

  2. TRU drum corrosion task team report

    SciTech Connect

    Kooda, K.E.; Lavery, C.A.; Zeek, D.P.

    1996-05-01

    During routine inspections in March 1996, transuranic (TRU) waste drums stored at the Radioactive Waste Management Complex (RWMC) were found with pinholes and leaking fluid. These drums were overpacked, and further inspection discovered over 200 drums with similar corrosion. A task team was assigned to investigate the problem with four specific objectives: to identify any other drums in RWMC TRU storage with pinhole corrosion; to evaluate the adequacy of the RWMC inspection process; to determine the precise mechanism(s) generating the pinhole drum corrosion; and to assess the implications of this event for WIPP certifiability of waste drums. The task team investigations analyzed the source of the pinholes to be Hcl-induced localized pitting corrosion. Hcl formation is directly related to the polychlorinated hydrocarbon volatile organic compounds (VOCs) in the waste. Most of the drums showing pinhole corrosion are from Content Code-003 (CC-003) because they contain the highest amounts of polychlorinated VOCs as determined by headspace gas analysis. CC-001 drums represent the only other content code with a significant number of pinhole corrosion drums because their headspace gas VOC content, although significantly less than CC-003, is far greater than that of the other content codes. The exact mechanisms of Hcl formation could not be determined, but radiolytic and reductive dechlorination and direct reduction of halocarbons were analyzed as the likely operable reactions. The team considered the entire range of feasible options, ranked and prioritized the alternatives, and recommended the optimal solution that maximizes protection of worker and public safety while minimizing impacts on RWMC and TRU program operations.

  3. Application of neutron multiplicity counting to waste assay

    SciTech Connect

    Pickrell, M.M.; Ensslin, N.; Sharpe, T.J.

    1997-11-01

    This paper describes the use of a new figure of merit code that calculates both bias and precision for coincidence and multiplicity counting, and determines the optimum regions for each in waste assay applications. A {open_quotes}tunable multiplicity{close_quotes} approach is developed that uses a combination of coincidence and multiplicity counting to minimize the total assay error. An example is shown where multiplicity analysis is used to solve for mass, alpha, and multiplication and tunable multiplicity is shown to work well. The approach provides a method for selecting coincidence, multiplicity, or tunable multiplicity counting to give the best assay with the lowest total error over a broad spectrum of assay conditions. 9 refs., 6 figs.

  4. Savannah River National Laboratory (SRNL) evaluations of absorbents for the TRU Remediation Project

    SciTech Connect

    Carraway, Anthony C.; Hill, Larry

    2005-10-17

    SRNL has been preparing to receive transuranic (TRU) waste drums from the Solid Waste Management Facility (SWMF) to aid in the remediation of Waste Acceptance Criteria prohibited items in SRS TRU waste drums. These prohibited items are primarily containerized liquids and aerosol cans which are easily identified using radiography. The remediation of these drums requires the use of an approved absorbent that is acceptable to the SWMF and Waste Isolation Pilot Plan (WIPP) for disposal. The goal of this document is to help establish guidelines that should be met to produce a final waste product that will be acceptable at the WIPP facility.

  5. Computed neutron coincidence counting applied to passive waste assay

    SciTech Connect

    Bruggeman, M.; Baeten, P.; De Boeck, W.; Carchon, R.

    1997-11-01

    Neutron coincidence counting applied for the passive assay of fissile material is generally realised with dedicated electronic circuits. This paper presents a software based neutron coincidence counting method with data acquisition via a commercial PC-based Time Interval Analyser (TIA). The TIA is used to measure and record all time intervals between successive pulses in the pulse train up to count-rates of 2 Mpulses/s. Software modules are then used to compute the coincidence count-rates and multiplicity related data. This computed neutron coincidence counting (CNCC) offers full access to all the time information contained in the pulse train. This paper will mainly concentrate on the application and advantages of CNCC for the non-destructive assay of waste. An advanced multiplicity selective Rossi-alpha method is presented and its implementation via CNCC demonstrated. 13 refs., 4 figs., 2 tabs.

  6. TRU partnership: Overview of technical challenges and initiatives

    SciTech Connect

    Moore, J.W.; Martin, M.R.; Mullin, R.J.; Ball, D.E.; Stewart, D.E.

    1994-03-01

    The Waste Isolation Pilot Plant (WIPP) has been constructed in a geologic salt deposit in Carlsbad, New Mexico. Current plans have the WIPP scheduled to begin permanent emplacement of TRU waste starting in approximately 2000 after completion of a 5-7 year test phase that is scheduled to begin in 1994. The WIPP has prepared a waste acceptance criteria (WAC) that establishes requirements that must be met by waste packages intended for disposal at WIPP. In addition there are other existing criteria (e.g. DOE General Design Criteria 6430.lA), regulations, procedures, guidelines and safety concerns (e.g. ALARA), regarding designing, building and operating radiological waste handling/processing facilities. All of these, along with the desire to minimize each projects total cost, encourage and in some cases dictate the use of new, developing technologies and other innovative technologies and operating philosophies. In the summer of 1990 the TRU Partnership was formed comprising several of the DOE TRU waste generator and storage/disposal sites. This partnership meets approximately quarterly to present the status of each site`s projects and has resulted in the establishment of a list of technical/development needs/challenges and initiatives. The initiatives are discussed in this report.

  7. Acceptable Knowledge Summary Report for Mixed TRU Waste Streams: SR-W026-221F-HET-A through D

    SciTech Connect

    Lunsford, G.F.

    2001-10-02

    This document, along with referenced supporting documents provides a defensible and auditable record of acceptable knowledge for the heterogeneous debris mixed transuranic waste streams generated in the FB-Line after January 25, 1990 and before March 20, 1997.

  8. Nondestructive characterization of low-level transuranic waste

    SciTech Connect

    Barna, B.A.; Reinhardt, W.W.

    1981-10-01

    The use of nondestructive evaluation (NDE) methods is proposed for characterization of transuranic (TRU) waste stored at the Radioactive Waste Management Complex. These NDE methods include real-time x-ray radiography, real-time neutron radiography, x-ray and neutron computed tomography, thermal imaging, container weighing, visual examination, and acoustic measurements. An integrated NDE system is proposed for characterization and certification of TRU waste destined for eventual shipment to the Waste Isolation Pilot Plant in New Mexico. Methods for automating both the classification waste and control of a complete nondestructive evaluation/nondestructive assay system are presented. Feasibility testing of the different NDE methods, including real-time x-ray radiography, and development of automated waste classification techniques are covered as part of a five year effort designed to yield a production waste characterization system.

  9. Repository disposal requirements for commercial transuranic wastes (generated without reprocessing)

    SciTech Connect

    Daling, P.M.; Ludwick, J.D.; Mellinger, G.B.; McKee, R.W.

    1986-06-01

    This report forms a preliminary planning basis for disposal of commercial transuranic (TRU) wastes in a geologic repository. Because of the unlikely prospects for commercial spent nuclear fuel reprocessing in the near-term, this report focuses on TRU wastes generated in a once-through nuclear fuel cycle. The four main objectives of this study were to: develop estimates of the current inventories, projected generation rates, and characteristics of commercial TRU wastes; develop proposed acceptance requirements for TRU wastes forms and waste canisters that ensure a safe and effective disposal system; develop certification procedures and processing requirements that ensure that TRU wastes delivered to a repository for disposal meet all applicable waste acceptance requirements; and identify alternative conceptual strategies for treatment and certification of commercial TRU first objective was accomplished through a survey of commercial producers of TRU wastes. The TRU waste acceptance and certification requirements that were developed were based on regulatory requirements, information in the literature, and from similar requirements already established for disposal of defense TRU wastes in the Waste Isolation Pilot Plant (WIPP) which were adapted, where necessary, to disposal of commercial TRU wastes. The results of the TRU waste-producer survey indicated that there were a relatively large number of producers of small quantities of TRU wastes.

  10. Safety evaluation for packaging (onsite) for concrete-shielded RHTRU waste drum for the 327 postirradiation testing laboratory

    SciTech Connect

    Adkins, H.E.

    1996-10-29

    This safety evaluation for packaging authorizes onsite transport of Type B quantities of radioactive material in the Concrete- Shielded Remote-Handled Transuranic Waste (RH TRU) Drum per WHC-CM-2-14, Hazardous Material Packaging and Shipping. The drum will be used for transport of 327 Building legacy waste from the 300 Area to the Transuranic Waste Storage and Assay Facility in the 200 West Area and on to a Solid Waste Storage Facility, also in the 200 Area.

  11. Waste inspection tomography (WIT)

    SciTech Connect

    Bernardi, R.T.

    1995-10-01

    Waste Inspection Tomography (WIT) provides mobile semi-trailer mounted nondestructive examination (NDE) and assay (NDA) for nuclear waste drum characterization. WIT uses various computed tomography (CT) methods for both NDE and NDA of nuclear waste drums. Low level waste (LLW), transuranic (TRU), and mixed radioactive waste can be inspected and characterized without opening the drums. With externally transmitted x-ray NDE techniques, WIT has the ability to identify high density waste materials like heavy metals, define drum contents in two- and three-dimensional space, quantify free liquid volumes through density and x-ray attenuation coefficient discrimination, and measure drum wall thickness. With waste emitting gamma-ray NDA techniques, WIT can locate gamma emitting radioactive sources in two- and three-dimensional space, identify gamma emitting, isotopic species, identify the external activity levels of emitting gamma-ray sources, correct for waste matrix attenuation, provide internal activity approximations, and provide the data needed for waste classification as LLW or TRU.

  12. CLAB Transuranic Waste Spreadsheets

    SciTech Connect

    Leyba, J.D.

    2000-08-11

    The Building 772-F Far-Field Transuranic (TRU) Waste Counting System is used to measure the radionuclide content of waste packages produced at the Central Laboratory Facilities (CLAB). Data from the instrument are entered into one of two Excel spreadsheets. The waste stream associated with the waste package determines which spreadsheet is actually used. The spreadsheets calculate the necessary information required for completion of the Transuranic Waste Characterization Form (OSR 29-90) and the Radioactive Solid Waste Burial Ground Record (OSR 7-375 or OSR 7-375A). In addition, the spreadsheets calculate the associated Low Level Waste (LLW) stream information that potentially could be useful if the waste container is ever downgraded from TRU to LLW. The spreadsheets also have the capability to sum activities from source material added to a waste container after assay. A validation data set for each spreadsheet along with the appropriate results are also presented in this report for spreadsheet verification prior to each use.

  13. Thermodynamic Modeling of Sr/TRU Removal

    SciTech Connect

    AR Felmy

    2000-08-15

    This report summarizes the development and application of a thermodynamic modeling capability designed to treat the Envelope C wastes containing organic complexants. A complete description of the model development is presented. In addition, the model was utilized to help gain insight into the chemical processes responsible for the observed levels of Sr, TRU, Fe, and Cr removal from the diluted feed from tank 241-AN-107 which had been treated with Sr and permanganate. Modeling results are presented for Sr, Nd(III)/Eu(III), Fe, Cr, Mn, and the major electrolyte components of the waste (i.e. NO{sub 3}, NO{sub 2}, F,...). On an overall basis the added Sr is predicted to precipitate as SrCO{sub 3}(c) and the MnO{sub 4}{sup {minus}} reduced by the NO{sub 2}{sup {minus}} and precipitated as a Mn oxide. These effects result in only minor changes to the bulk electrolyte chemistry, specifically, decreases in NO{sub 2}{sup {minus}} and CO{sub 3}{sup 2{minus}}, and increases in NO{sub 3}{sup {minus}} and OH{sup {minus}}. All of these predictions are in agreement with the experimental observations. The modeling also indicates that the majority of the Sr, TRU's (or Nd(III)/Eu(III)) analogs, and Fe are tied up with the organic complexants. The Sr and permanganate additions are not predicted to effect these chelate complexes significantly owing to the precipitation of insoluble Mn oxides or SrCO{sub 3}. These insoluble phases maintain low dissolved concentrations of Mn and Sr which do not affect any of the other components tied up with the complexants. It appears that the removal of the Fe and TRU'S during the treatment process is most likely as a result of adsorption or occlusion on/into the Mn oxides or SrCO{sub 3}, not as direct displacement from the complexants into precipitates. Recommendations are made for further studies that are needed to help resolve these issues.

  14. Filtration of a Hanford Site Tank 241-AN-102 Waste Sample with Alternate Sr/TRU Precipitation Conditions at Bench and Pilot Scales

    SciTech Connect

    ZAMECNIK, JR

    2004-05-27

    In support of the design of the Hanford Waste Treatment Plant, the Savannah River Technology Center has conducted crossflow ultrafiltration tests on the bench scale with both a radioactive sample and simulants and at pilot scale with simulants. The waste tested was from Tank 241-AN-102, which underwent isotopic dilution with strontium nitrate to reduce the soluble (superscript 90)Sr concentration, and sodium permanganate precipitation to remove selected transuranic species. Experimental work validated the use of a simulant by comparison of bench scale simulant filtration data with radioactive filtration test data. Tests on a pilot scale were also conducted and showed that the filtration flux in the pilot unit was consistently lower than in the bench scale unit. An alternative precipitation method resulted in less filterable slurries. Several possible explanations for the differences in flux were proposed, including differences in particle size distribution and slurry viscosity (th e term viscosity will be used, although consistency is more correct for non-Newtonian fluids). The experimental data was also fit to an empirical model and several filtration models. The trends in the data generally followed the predictions of the filtration models. Differences in flux between the bench and pilot scales could not be accounted for by the calculated difference in the average wall shear stress.

  15. Unresolved issues for the disposal of remote-handled transuranic waste in the Waste Isolation Pilot Plant

    SciTech Connect

    Silva, M.K.; Neill, R.H.

    1994-09-01

    The purpose of the Waste Isolation Pilot Plant (WIPP) is to dispose of 176,000 cubic meters of transuranic (TRU) waste generated by the defense activities of the US Government. The envisioned inventory contains approximately 6 million cubic feet of contact-handled transuranic (CH TRU) waste and 250,000 cubic feet of remote handled transuranic (RH TRU) waste. CH TRU emits less than 0.2 rem/hr at the container surface. Of the 250,000 cubic feet of RH TRU waste, 5% by volume can emit up to 1,000 rem/hr at the container surface. The remainder of RH TRU waste must emit less than 100 rem/hr. These are major unresolved problems with the intended disposal of RH TRU waste in the WIPP. (1) The WIPP design requires the canisters of RH TRU waste to be emplaced in the walls (ribs) of each repository room. Each room will then be filled with drums of CH TRU waste. However, the RH TRU waste will not be available for shipment and disposal until after several rooms have already been filled with drums of CH TRU waste. RH TRU disposal capacity will be loss for each room that is first filled with CH TRU waste. (2) Complete RH TRU waste characterization data will not be available for performance assessment because the facilities needed for waste handling, waste treatment, waste packaging, and waste characterization do not yet exist. (3) The DOE does not have a transportation cask for RH TRU waste certified by the US Nuclear Regulatory Commission (NRC). These issues are discussed along with possible solutions and consequences from these solutions. 46 refs.

  16. An expert system framework for nondestructive waste assay

    SciTech Connect

    Becker, G.K.

    1996-10-01

    Management and disposition of transuranic (RU) waste forms necessitates determining entrained RU and associated radioactive material quantities as per National RU Waste Characterization Program requirements. Technical justification and demonstration of a given NDA method used to determine RU mass and uncertainty in accordance with program quality assurance is difficult for many waste forms. Difficulties are typically founded in waste NDA methods that employ standards compensation and/or employment of simplifying assumptions on waste form configurations. Capability to determine and justify RU mass and mass uncertainty can be enhanced through integration of waste container data/information using expert system and empirical data-driven techniques with conventional data acquisition and analysis. Presented is a preliminary expert system framework that integrates the waste form data base, alogrithmic techniques, statistical analyses, expert domain knowledge bases, and empirical artificial intelligence modules into a cohesive system. The framework design and bases in addition to module development activities are discussed.

  17. Gamma ray scanner systems for nondestructive assay of heterogeneous waste barrels

    SciTech Connect

    Martz, H.E.; Roberson, G.P.; Decman, D.J.; Camp, D.C.; Levai, F.

    1997-08-01

    Traditional gamma measurement errors are related to non-uniform measurement responses associated with unknown radioactive source and matrix material distributions. These errors can be reduced by application of tomographic techniques that measure these distributions. LLNL has developed two tomographic-based waste assay systems. They use external radioactive sources and tomography-protocol to map the attenuation within a waste barrel as a function of mono-energetic gamma-ray energy in waste containers. Passive tomography is used to localize and identify specific radioactive waste contents within the same waste containers. Reconstruction of the passive data via the active images allows internal waste radioactivities in a barrel to be corrected for any overlying heterogeneous materials, thus yielding an absolute assay of the waste radioactivities. Calibration of both systems requires only point source measurements and are independent of matrix materials.

  18. Fire hazards analysis of transuranic waste storage and assay facility

    SciTech Connect

    Busching, K.R., Westinghouse Hanford

    1996-07-31

    This document analyzes the fire hazards associated with operations at the Central Waste Complex. It provides the analysis and recommendations necessary to ensure compliance with applicable fire codes.

  19. HOLDUP MEASUREMENTS FOR THREE VISUAL EXAMINATION AND TRU REMEDIATION GLOVEBOX FACILITIES AT THE SAVANNAH RIVER SITE

    SciTech Connect

    Dewberry, R; Donald Pak, D

    2007-05-04

    Visual Examination (VE) gloveboxes are used to remediate transuranic waste (TRU) drums at three separate facilities at the Savannah River Site. Noncompliant items are removed before the drums undergo further characterization in preparation for shipment to the Waste Isolation Pilot Plant (WIPP). Maintaining the flow of drums through the remediation process is critical to the program's seven-days-per-week operation. Conservative assumptions are used to ensure that glovebox contamination from this continual operation is below acceptable limits. Holdup measurements using cooled HPGe spectrometers are performed in order to confirm that these assumptions are conservative. {sup 239}Pu is the main nuclide of interest; however, {sup 241}Pu, equilibrium {sup 237}Np/{sup 233}Pa and {sup 238}Pu (if detected) are typically assayed. At the Savannah River National Laboratory (SRNL) facility {sup 243,244,245}Cm are also generally observed and are always reported at either finite levels or at limits of detection. A complete assay at each of the three facilities includes a measure of TRU content in the gloveboxes and HEPA filters in the glovebox exhaust. This paper includes a description of the {gamma}-PHA acquisitions, of the modeling, and of the calculations of nuclide content. Because each of the remediation facilities is unique and ergonomically unfavorable to {gamma}-ray acquisitions, we have constructed custom detector support devices specific to each set of acquisitions. This paper includes a description and photographs of these custom devices. The description of modeling and calculations include determination and application of container and matrix photon energy dependent absorption factors and also determination and application of geometry factors relative to our detector calibration geometry. The paper also includes a discussion of our measurements accuracy using off-line assays of two SRNL HEPA filters. The comparison includes assay of the filters inside of 55-gallon

  20. Waste Inspection Tomography (WIT)

    SciTech Connect

    Bernardi, R.T.

    1995-12-01

    Waste Inspection Tomography (WIT) provides mobile semi-trailer mounted nondestructive examination (NDE) and assay (NDA) for nuclear waste drum characterization. WIT uses various computed tomography (CT) methods for both NDE and NDA of nuclear waste drums. Low level waste (LLW), transuranic (TRU), and mixed radioactive waste can be inspected and characterized without opening the drums. With externally transmitted x-ray NDE techniques, WIT has the ability to identify high density waste materials like heavy metals, define drum contents in two- and three-dimensional space, quantify free liquid volumes through density and x-ray attenuation coefficient discrimination, and measure drum wall thickness. With waste emitting gamma-ray NDA techniques, WIT can locate gamma emitting radioactive sources in two- and three-dimensional space, identify gamma emitting isotopic species, identify the external activity levels of emitting gamma-ray sources, correct for waste matrix attenuation, provide internal activity approximations, and provide the data needed for waste classification as LLW or TRU. The mobile feature of WIT allows inspection technologies to be brought to the nuclear waste drum storage site without the need to relocate drums for safe, rapid, and cost-effective characterization of regulated nuclear waste. The combination of these WIT characterization modalities provides the inspector with an unprecedented ability to non-invasively characterize the regulated contents of waste drums as large as 110 gallons, weighing up to 1,600 pounds. Any objects that fit within these size and weight restrictions can also be inspected on WIT, such as smaller waste bags and drums that are five and thirty-five gallons.

  1. Solid waste retrieval. Phase 1, Operational basis

    SciTech Connect

    Johnson, D.M.

    1994-09-30

    This Document describes the operational requirements, procedures, and options for execution of the retrieval of the waste containers placed in buried storage in Burial Ground 218W-4C, Trench 04 as TRU waste or suspect TRU waste under the activity levels defining this waste in effect at the time of placement. Trench 04 in Burial Ground 218W-4C is totally dedicated to storage of retrievable TRU waste containers or retrievable suspect TRU waste containers and has not been used for any other purpose.

  2. CH-TRU Content Codes (CH-TRUCON)

    SciTech Connect

    Washington TRU Solutions LLC

    2005-10-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  3. Application of PINS and GNAT to the assay of 55-gal containers of radioactive waste

    SciTech Connect

    Gehrke, R.J.; Aryaeinejad, R.; Watts, K.D.; Staples, D.R.; Akers, D.W.

    1994-03-01

    The Portable Isotropic Neutron Spectroscopy (PINS) and Gamma Neutron Assay Technique (GNAT) assay systems that were developed with funding from the office of Research and Development (NN20), were taken to the Stored Waste Examination Pilot Plant (SWEPP) facility at the Radioactive Waste Management Complex (RWMC) and applied to the assay of surrogate and Rocky Flats Plant waste contained in 55-gal drums. PINS, a portable prompt {gamma} neutron activation analysis technique, was able to identify key elements in both the surrogate and real waste so that three-main waste categories: metal, combustible material, and cemented chlorinated sludge wastes could be identified. GNAT, a {gamma}, neutron assay technique for the identification and quantification of fissioning isotopes, was able to identify {sup 240}Pu in surrogate waste in which nine 1-g nuclear accident dosimeters were inserted. GNAT was also able to identify {sup 24O}Pu in real 55-gal waste drums containing 15- and 40-g of plutonium even in the presence of high activity concentrations of {sup 241}Am.

  4. Gamma monitor for assay of radioactive solid-waste shipments

    SciTech Connect

    Crawford, J H

    1982-06-01

    A gamma waste monitor has been developed and evaluated at the Savannah River Plant (SRP). The purpose of the monitor is to improve estimates of the radionuclides in solid wastes arriving at the plant's burial ground. This monitor, a computer-based spectrometer, quantitatively measures many radionuclides in SRP waste, including waste in heavily shielded shipping casks. Radionuclides emitting gamma rays of sufficient energy to penetrate the shipping container walls can be measured directly. Other radionuclides that are beta emitters or which emit gamma photons too weak to penetrate the walls of the waste containers can often be estimated by their association with measurable gamma photons. Development of the monitor was initiated to find a more accurate method of estimating the quantities of radioactive materials accumulated in the burial ground and to ensure compliance with burial limits imposed by SRP technical standards. Another benefit from the monitor is that it provides specific radionuclide data which are essential to environmental impact evaluations and decommissioning planning. The gamma waste monitor is described. (WHK)

  5. Transuranic contaminated waste form characterization and data base

    SciTech Connect

    Kniazewycz, B.G.; McArthur, W.C.

    1980-07-01

    This volume contains appendices A to F. The properties of transuranium (TRU) radionuclides are described. Immobilization of TRU wastes by bituminization, urea-formaldehyde polymers, and cements is discussed. Research programs at DOE facilities engaged in TRU waste characterization and management studies are described.

  6. Matrix effects corrections in DDT assay of {sup 239}Pu with the CTEN instrument

    SciTech Connect

    Hollas, C.L.; Arnone, G.; Brunson, G.; Coop, K.

    1997-11-01

    The accuracy of transuranic (TRU) waste assay using the differential die-away technique depends upon significant corrections to compensate for the effects of the matrix material in which the TRU waste is located. We have used a new instrument, the combined thermal/epithermal neutron (CTEN) instrument for the assay of TRU waste, to develop methods to improve the accuracy of these corrections. Neutrons from a pulsed 14-MeV neutron generator are moderated in the walls of the CTEN cavity and induce fission in the TRU material. The prompt neutrons from these fission events are detected in cadmium-wrapped {sup 3}He neutron detectors. We have developed methods of data acquisition and analysis to extract correlation in the neutron signals resulting from fission during active interrogation. This correlation information, in conjunction with the total number of neutrons detected, is used to determine the fraction of fission neutrons transmitted through the matrix material into the {sup 3}He detectors. This determination allows us to cleanly separate the matrix effects into two processes: matrix modification upon the neutron interrogating flux and matrix modification upon the fraction of fission neutrons transmitted to the neutron detectors. Recent results indicate that for some matrix systems, corrections for position dependent effects within the matrix are possible. 7 refs., 7 figs., 1 tab.

  7. 77 FR 11112 - Proposed Approval of the Central Characterization Project's Remote-Handled Transuranic Waste...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-24

    ... radioactive, remote-handled (RH), transuranic (TRU) waste characterization program implemented by the Central... Compliance Criteria, EPA evaluated the characterization of RH TRU debris waste from SRS-CCP during an... Office (CBFO) program, EPA verified whether DOE could adequately characterize RH TRU waste...

  8. Application of PGNAA to preincineration assay of combustible waste for chlorine

    SciTech Connect

    Gehrke, R.J.; Pawelko, R.J.; Greenwood, R.C.

    1995-12-31

    A prompt gamma neutron activation analysis method is being developed for on-stream pre-incineration assay of low level radioactive combustible waste for it`s chlorine content. The assay system consists of three californium 252 sources and a germanium or scintillation gamma-ray spectrometer.

  9. STRONTIUM & TRANSURANIC (TRU) SEPARATION PROCESS IN THE DOUBLE SHELL TANK (DST) SYSTEM

    SciTech Connect

    JOHNSON; SWANSON; BOECHLER

    2005-06-10

    The supernatants stored in tanks 241-AN-102 (AN-102) and 241-AN-107 (AN-107) contain soluble strontium-90 ({sup 90}Sr) and transuranic (TRU) elements that require removal prior to vitrification to comply with the Waste Treatment and Immobilization Plant (WTP) immobilized low-activity waste (ILAW) specification and with the 1997 agreement with the Nuclear Regulatory Commission on incidental waste. A precipitation process has been developed and tested with tank waste samples and simulants using strontium nitrate (Sr(NO{sub 3}){sub 2}) and sodium permanganate (NaMnO{sub 4}) to separate {sup 90}Sr and TRU from these wastes. This report evaluates removing Sr/TRU from AN-102 and AN-107 supernates in the DST system before delivery to the WTP. The in-tank precipitation is a direct alternative to the baseline WTP process, using the same chemical separations. Implementing the Sr/TRU separation in the DST system beginning in 2012 provides {approx}6 month schedule advantage to the overall mission, without impacting the mission end date or planned SST retrievals.

  10. Waste assay and mass balance for the decontamination and volume reduction system at LANL

    SciTech Connect

    Gruetzmacher, Kathleen M.; Ferran, Scott G.; Garner, Scott E.; Romero, Mike J.; Christensen, Davis V.; Bustos, Roland M.

    2003-07-01

    The Decontamination and Volume Reduction System (DVRS) operated by the Solid Waste Operations (SWO) Group at Los Alamos National Laboratory (LANL) processes large volume, legacy radioactive waste items. Waste boxes, in sizes varying from 4 ft x 4 ft x 8 ft to 10 ft x 12 ft x 40 ft, are assayed prior to entry into the processing building. Inside the building, the waste items are removed from their container, decontaminated and/or size reduced if necessary, and repackaged for shipment to the Waste Isolation Pilot Plant (WIPP) or on-site low-level waste disposal. The repackaged items and any secondary waste produced (e.g., personal protective equipment) are assayed again at the end of the process and a mass balance is done to determine whether there is any significant hold-up material left in the DVRS building. The DVRS building is currently classed as a radiological facility, with a building limit of 0.52 Ci of Pu239 and Am241, and 0.62 Ci of Pu238, the most common radionuclides processed. This requires tight controls on the flow of nuclear material. The large volume of the initial waste packages, the (relatively) small amounts of radioactive material in them, and the tight ceiling on the building inventory require accurate field measurements of the nuclear material. This paper describes the radioactive waste measurement techniques, the computer modeling used to determine the amount of nuclear material present in a waste package, the building inventory database, and the DVRS process itself. Future plans include raising the limit on the nuclear material inventory allowed in the building to accommodate higher activity waste packages. All DOE sites performing decontamination and decommissioning of radioactive process equipment face challenges related to waste assay and inventory issues. This paper describes an ongoing operation, incorporating lessons learned over the life of the project to date.

  11. Assessment of the TLC/Salmonella assay for screening hazardous wastes

    SciTech Connect

    Houk, V.S.; Claxton, L.D.

    1987-09-01

    Using a modified version of the TLC/Salmonella assay developed by Bjorseth et al. (1982), 10 complex hazardous wastes were tested for mutagenic activity. The method couples thin-layer chromatography (TLC) with the Salmonella/mammalian-microsome (Ames) assay for the detection of mutagenic constituents in complex mixtures. Crude hazardous wastes and selected hazardous-waste extracts were fractionated on commercially available cellulose TLC plates. Mutagenicity testing was performed by applying a single overlay of minimal growth agar containing a tester strain of Salmonella and the optional metabolic activation system directly onto the developed chromatogram. Seven of 10 hazardous wastes demonstrated mutagenic activity when tested by the method. To assess the sensitivity of the modified TLC/Salmonella assay, 14 Salmonella mutagens from a wide range of chemical classes and polarities were tested. Eleven of the 14 mutagens were positive in the test system.

  12. Techniques for improving shuffler assay results for 55-gallon waste drums

    SciTech Connect

    Rinard, P.M.; Prettyman, T.H.; Stuenkel, D.

    1994-08-01

    Accurate assays of the fissile contents in waste drums are needed to ensure the most proper and economical handling and disposal of the waste. An improvement of accuracy will mean fewer drums disposed as transuranic waste when they really contain low-level waste, saving both money and burial sites. Shufflers are used for assaying waste drums and are very accurate with nonmoderating matrices (such as iron). In the active mode they count delayed neutrons released after fissions are induced by irradiation neutrons from a {sup 252}Cf source. However, as the hydrogen density from matrices such as paper or gloves increases, the accuracy can suffer without proper attention. The neutron transport and fission probabilities change with the hydrogen density, causing the neutron count rate to vary with the position of the fissile material within the drum. The magnitude of this variation grows with the hydrogen density.

  13. Strategy for the path forward for the National transuranic waste system optimization projects.

    SciTech Connect

    Lott, S. A.; Triay, I. R.; Basabilvazo, George T. ,; Countiss, S.

    2002-01-01

    The Waste Isolatian Pilot Plant (WIPP) opened on March 26,1999, for the permanent disposal of defense-generated transuranic (TRU) waste generated by and temporarily stored at the production sites. With WIPP open, efforts are now focused on achieving the Department of Energy's (DOE'S) strategic vision for WIPP and the National TRU Waste Program (NTP). This vision is to remove all TRU waste from DOE closure sites, to dispose of all legacy TRU waste from DOE sites with an ongoing nuclear mission, and to dispose of all newly generated TRU waste as it is generated.

  14. Transuranic and Low-Level Boxed Waste Form Nondestructive Assay Technology Overview and Assessment

    SciTech Connect

    G. Becker; M. Connolly; M. McIlwain

    1999-02-01

    The Mixed Waste Focus Area (MWFA) identified the need to perform an assessment of the functionality and performance of existing nondestructive assay (NDA) techniques relative to the low-level and transuranic waste inventory packaged in large-volume box-type containers. The primary objectives of this assessment were to: (1) determine the capability of existing boxed waste form NDA technology to comply with applicable waste radiological characterization requirements, (2) determine deficiencies associated with existing boxed waste assay technology implementation strategies, and (3) recommend a path forward for future technology development activities, if required. Based on this assessment, it is recommended that a boxed waste NDA development and demonstration project that expands the existing boxed waste NDA capability to accommodate the indicated deficiency set be implemented. To ensure that technology will be commercially available in a timely fashion, it is recommended this development and demonstration project be directed to the private sector. It is further recommended that the box NDA technology be of an innovative design incorporating sufficient NDA modalities, e.g., passive neutron, gamma, etc., to address the majority of the boxed waste inventory. The overall design should be modular such that subsets of the overall NDA system can be combined in optimal configurations tailored to differing waste types.

  15. Fast facility spent-fuel and waste assay instrument. [Fluorinel Dissolution and Fuel Storage (FAST) Facility

    SciTech Connect

    Eccleston, G.W.; Johnson, S.S.; Menlove, H.O.; Van Lyssel, T.; Black, D.; Carlson, B.; Decker, L.; Echo, M.W.

    1983-01-01

    A delayed-neutron assay instrument was installed in the Fluorinel Dissolution and Fuel Storage Facility at Idaho National Engineering Laboratory. The dual-assay instrument is designed to measure both spent fuel and waste solids that are produced from fuel processing. A set of waste standards, fabricated by Los Alamos using uranium supplied by Exxon Nuclear Idaho Company, was used to calibrate the small-sample assay region of the instrument. Performance testing was completed before installation of the instrument to determine the effects of uranium enrichment, hydrogenous materials, and neutron poisons on assays. The unit was designed to measure high-enriched uranium samples in the presence of large neutron backgrounds. Measurements indicate that the system can assay low-enriched uranium samples with moderate backgrounds if calibrated with proper standards.

  16. TRU VU rig instrumentation. [Final report

    SciTech Connect

    Boone, S.G.

    1993-02-15

    TRU VU was developed in response to the growing need for real time rig instrumentation that interface various rig systems into a common database. TRU VU is a WITS compatible (Wellsite Information Transfer Standard) system that logs drilling data and MWD data into a common database. Real time data as well as historical data can be viewed from up to eight locations on the rig or from numerous locations in communication with the rig. The TRU VU well monitoring package can be configured to operate manned or unmanned depending on the specific requirements of the operator or drilling contractor. TRU VU does not require a drilling recorder and is totally independent of all rig systems. For example, depth is monitored directly from the draw works and can monitor pipe movement while drilling or tripping. Weight on bit is zeroed automatically on each connection and does not require manual input.

  17. Application of expert system technology to nondestructive waste assay - initial prototype model

    SciTech Connect

    Becker, G.K.; Determan, J.C.

    1997-11-01

    Expert system technology has been identified as a technique useful for filling certain types of technology/capability gaps in existing waste nondestructive assay (NDA) applications. In particular, expert system techniques are being investigated with the intent of providing on-line evaluation of acquired data and/or directed acquisition of data in a manner that mimics the logic and decision making process a waste NDA expert would employ. The space from which information and data sources utilized in this process is much expanded with respect to the algorithmic approach typically utilized in waste NDA. Expert system technology provides a mechanism to manage and reason with this expanded information/data set. The material presented in this paper concerns initial studies and a resultant prototype expert system that incorporates pertinent information, and evaluation logic and decision processes, for the purpose of validating acquired waste NDA measurement assays. 6 refs., 6 figs.

  18. Potential Flammable Gas Explosion in the TRU Vent and Purge Machine

    SciTech Connect

    Vincent, A

    2006-04-05

    The objective of the analysis was to determine the failure of the Vent and Purge (V&P) Machine due to potential explosion in the Transuranic (TRU) drum during its venting and/or subsequent explosion in the V&P machine from the flammable gases (e.g., hydrogen and Volatile Organic Compounds [VOCs]) vented into the V&P machine from the TRU drum. The analysis considers: (a) increase in the pressure in the V&P cabinet from the original deflagration in the TRU drum including lid ejection, (b) pressure wave impact from TRU drum failure, and (c) secondary burns or deflagrations resulting from excess, unburned gases in the cabinet area. A variety of cases were considered that maximized the pressure produced in the V&P cabinet. Also, cases were analyzed that maximized the shock wave pressure in the cabinet from TRU drum failure. The calculations were performed for various initial drum pressures (e.g., 1.5 and 6 psig) for 55 gallon TRU drum. The calculated peak cabinet pressures ranged from 16 psig to 50 psig for various flammable gas compositions. The blast on top of cabinet and in outlet duct ranged from 50 psig to 63 psig and 12 psig to 16 psig, respectively, for various flammable gas compositions. The failure pressures of the cabinet and the ducts calculated by structural analysis were higher than the pressure calculated from potential flammable gas deflagrations, thus, assuring that V&P cabinet would not fail during this event. National Fire Protection Association (NFPA) 68 calculations showed that for a failure pressure of 20 psig, the available vent area in the V&P cabinet is 1.7 to 2.6 times the required vent area depending on whether hydrogen or VOCs burn in the V&P cabinet. This analysis methodology could be used to design the process equipment needed for venting TRU waste containers at other sites across the Department of Energy (DOE) Complex.

  19. Solid waste transuranic storage and assay facility indoor air sampling

    SciTech Connect

    Pingel, L.A., Westinghouse Hanford

    1996-08-20

    The purpose of the study is to collect and analyze samples of the indoor air at the Transuranic Storage and Assay Facility (TRUSAF), Westinghouse Hanford. A modified US EPA TO-14 methodology, using gas chromatography/mass spectrography, may be used for the collection and analysis of the samples. The information obtained will be used to estimate the total release of volatile organic compounds from TRUSAF to determine the need for air emmission permits.

  20. Declassification of radioactive liquid wastes generated in radio immune assay [corrected] (RIA) laboratories.

    PubMed

    Sancho, M; Arnal, J M; Villaescusa, J I; Campayo, J M; Verdú, G

    2005-01-01

    Radioactive liquid wastes of low-medium activity level are generated in radio immune assay (RIA) laboratories, which are also potentially infectious because of the pathogens from patient blood. The most common way of managing these wastes consists of a temporal storage, for partial radioactivity decay, followed by management by an authorised company. The object of this work is to study the viability of treating radioactive liquid wastes coming from RIA using membrane techniques in order to reduce their volume, which would mean an improvement from the radiological point of view and a decrease in management costs. This paper describes the results of some experiments carried out with RIA real wastes, by means of processes such as ultrafiltration and reverse osmosis. It has been proved that waste volume can be significantly reduced, obtaining a treated liquid that is free of pathogens and organic matter and with an activity level around the environmental background.

  1. Hanford site transuranic waste certification plan

    SciTech Connect

    GREAGER, T.M.

    1999-05-12

    As a generator of transuranic (TRU) and TRU mixed waste destined for disposal at the Waste Isolation Pilot Plant (WIPP), the Hanford Site must ensure that its TRU waste meets the requirements of U.S. Department of Energy (DOE) Order 5820.2A, ''Radioactive Waste Management, and the Waste Acceptance Criteria for the Waste Isolation Pilot Plant' (DOE 1996d) (WIPP WAC). The WIPP WAC establishes the specific physical, chemical, radiological, and packaging criteria for acceptance of defense TRU waste shipments at WIPP. The WIPP WAC also requires that participating DOE TRU waste generator/treatment/storage sites produce site-specific documents, including a certification plan, that describe their management of TRU waste and TRU waste shipments before transferring waste to WIPP. The Hanford Site must also ensure that its TRU waste destined for disposal at WIPP meets requirements for transport in the Transuranic Package Transporter41 (TRUPACT-11). The U.S. Nuclear Regulatory Commission (NRC) establishes the TRUPACT-I1 requirements in the ''Safety Analysis Report for the TRUPACT-II Shipping Package'' (NRC 1997) (TRUPACT-I1 SARP).

  2. Environmental assessment for transuranic waste work-off plan, Los Alamos National Laboratory. Rough draft: Final report

    SciTech Connect

    Not Available

    1990-10-26

    The Los Alamos National Laboratory (LANL) generates transuranic (TRU) waste in a variety of programs related to national defense. TRU waste is a specific class of radioactive waste requiring permanent isolation. Most defense-related TRU waste will be permanently disposed of in the Waste Isolation Pilot Plant (WIPP). WIPP is a deep geologic repository located in southeastern New Mexico and is now in the testing phase of development. All waste received by Wipp must conform with established Waste Acceptance Criteria (WAC). The purpose of the proposed action is to retrieve stored TRU waste and prepare the waste for shipment to and disposal WIPP. Stored TRU waste LANL is represented by four waste forms. The facilities necessary for work-off activities are tailored to the treatment and preparation of these four waste forms. Preparation activities for newly generated TRU waste are also covered by this action.

  3. Proficiency test for non-destructive assay of 220 liter radioactive waste drums by gamma assay systems

    SciTech Connect

    Van Velzen, L.P.M.; Bruggeman, M.; Botte, J.

    2007-07-01

    The European Network of Testing Facilities for the Quality Checking of Radioactive Waste Packages (ENTRAP) initiated a feasibility study on how to organize in the most cost effective way an international proficiency tests for non-destructive, gamma-ray based, assay of 220 liter radioactive waste drums in the European Union at a regular time interval of 2 or 3 years. This feasibility study addresses all aspects of proficiency testing on radioactive waste packages including the design of a commonly accepted reference 220 liter drum. This design, based on the international response on a send out questionnaire, includes matrixes, radioactive sources; a solution to overcome the tedious and expensive international transport costs of real or even simulated waste packages, general cost estimation for the organization of, and the participation in the proficiency test. The proposed concept for the proficiency testing and the estimated costs are presented. The participation costs of the first proficiency test are mainly determined by the manufacturing of the non-radioactive 220 liter drum ({+-} 55%). Applied reference sources, transport of the drum and reference sources and participation costs in the proficiency test contribute each about {+-} 15%. (authors)

  4. A batch assay to measure microbial hydrogen sulfide production from sulfur-containing solid wastes.

    PubMed

    Sun, Mei; Sun, Wenjie; Barlaz, Morton A

    2016-05-01

    Large volumes of sulfur-containing wastes enter municipal solid waste landfills each year. Under the anaerobic conditions that prevail in landfills, oxidized forms of sulfur, primarily sulfate, are converted to sulfide. Hydrogen sulfide (H2S) is corrosive to landfill gas collection and treatment systems, and its presence in landfill gas often necessitates the installation of expensive removal systems. For landfill operators to understand the cost of managing sulfur-containing wastes, an estimate of the H2S production potential is needed. The objective of this study was to develop and demonstrate a biochemical sulfide potential (BSP) test to measure the amount of H2S produced by different types of sulfur-containing wastes in a relatively fast (30days) and inexpensive (125mL serum bottles) batch assay. This study confirmed the toxic effect of H2S on both sulfate reduction and methane production in batch systems, and demonstrated that removing accumulated H2S by base adsorption was effective for mitigating inhibition. H2S production potentials of coal combustion fly ash, flue gas desulfurization residual, municipal solid waste combustion ash, and construction and demolition waste were determined in BSP assays. After 30days of incubation, most of the sulfate in the wastes was converted to gaseous or aqueous phase sulfide, with BSPs ranging from 0.8 to 58.8mLH2S/g waste, depending on the chemical composition of the samples. Selected samples contained solid phase sulfide which contributed to the measured H2S yield. A 60day incubation in selected samples resulted in 39-86% additional sulfide production. H2S production measured in BSP assays was compared with that measured in simulated landfill reactors and that calculated from chemical analyses. H2S production in BSP assays and in reactors was lower than the stoichiometric values calculated from chemical composition for all wastes tested, demonstrating the importance of assays to estimate the microbial sulfide production

  5. Resource Conservation and Recovery Act, Part B Permit Application [for the Waste Isolation Pilot Plant (WIPP)]. Volume 2, Chapter C, Appendix C1--Chapter C, Appendix C3 (beginning), Revision 3

    SciTech Connect

    Not Available

    1993-03-01

    This volume contains appendices for the following: Rocky Flats Plant and Idaho National Engineering Laboratory waste process information; TRUPACT-II content codes (TRUCON); TRUPACT-II chemical list; chemical compatibility analysis for Rocky Flats Plant waste forms; chemical compatibility analysis for waste forms across all sites; TRU mixed waste characterization database; hazardous constituents of Rocky Flats Transuranic waste; summary of waste components in TRU waste sampling program at INEL; TRU waste sampling program; and waste analysis data.

  6. Proceedings for the nondestructive assay and nondestructive examination waste characterization conference. No. 5

    SciTech Connect

    1997-05-01

    This report contains paper presented at the 5th Nondestructive Assay and nondestructive Examination Waste Characterization conference. Topics included compliance, neutron NDA techniques, gamma NDA techniques, tomographic methods, and NDA modality and information combination techniques. Individual reports have been processed separately for the United States Department of Energy databases.

  7. Development of an enzymatic assay for the determination of cellulose bioavailability in municipal solid waste.

    PubMed

    Rodriguez, Christian; Hiligsmann, Serge; Ongena, Marc; Charlier, Robert; Thonart, Philippe

    2005-10-01

    As there is a constant need to assess the biodegradation potential of refuse disposed of in landfills, we have developed a method to evaluate the biodegradability of cellulosic compounds (cellulose and hemicellulose) in municipal solid waste. This test is based on the quantification of monosaccharides released after the hydrolysis of solid waste samples with an optimised enzyme preparation containing commercially available cellulases and hemicellulases. We show that the amounts of monosaccharides could be related to the biodegradability of the cellulosic material contained in the samples. This enzymatic cellulose degradation test was assayed on 37 samples originating from three Belgian landfills and collected at different depths. As results correlated well with those obtained with a classical biochemical methane potential assay, this new and rapid test is sufficiently reliable to evaluate cellulose bioavailability in waste samples.

  8. Remote-handled transuranic waste study

    SciTech Connect

    1995-10-01

    The Waste Isolation Pilot Plant (WIPP) was developed by the US Department of Energy (DOE) as a research and development facility to demonstrate the safe disposal of transuranic (TRU) radioactive wastes generated from the Nation`s defense activities. The WIPP disposal inventory will include up to 250,000 cubic feet of TRU wastes classified as remote handled (RH). The remaining inventory will include contact-handled (CH) TRU wastes, which characteristically have less specific activity (radioactivity per unit volume) than the RH-TRU wastes. The WIPP Land Withdrawal Act (LWA), Public Law 102-579, requires a study of the effect of RH-TRU waste on long-term performance. This RH-TRU Waste Study has been conducted to satisfy the requirements defined by the LWA and is considered by the DOE to be a prudent exercise in the compliance certification process of the WIPP repository. The objectives of this study include: conducting an evaluation of the impacts of RH-TRU wastes on the performance assessment (PA) of the repository to determine the effects of Rh-TRU waste as a part of the total WIPP disposal inventory; and conducting a comparison of CH-TRU and RH-TRU wastes to assess the differences and similarities for such issues as gas generation, flammability and explosiveness, solubility, and brine and geochemical interactions. This study was conducted using the data, models, computer codes, and information generated in support of long-term compliance programs, including the WIPP PA. The study is limited in scope to post-closure repository performance and includes an analysis of the issues associated with RH-TRU wastes subsequent to emplacement of these wastes at WIPP in consideration of the current baseline design. 41 refs.

  9. Waste management system alternatives for treatment of wastes from spent fuel reprocessing

    SciTech Connect

    McKee, R.W.; Swanson, J.L.; Daling, P.M.; Clark, L.L.; Craig, R.A.; Nesbitt, J.F.; McCarthy, D.; Franklin, A.L.; Hazelton, R.F.; Lundgren, R.A.

    1986-09-01

    This study was performed to help identify a preferred TRU waste treatment alternative for reprocessing wastes with respect to waste form performance in a geologic repository, near-term waste management system risks, and minimum waste management system costs. The results were intended for use in developing TRU waste acceptance requirements that may be needed to meet regulatory requirements for disposal of TRU wastes in a geologic repository. The waste management system components included in this analysis are waste treatment and packaging, transportation, and disposal. The major features of the TRU waste treatment alternatives examined here include: (1) packaging (as-produced) without treatment (PWOT); (2) compaction of hulls and other compactable wastes; (3) incineration of combustibles with cementation of the ash plus compaction of hulls and filters; (4) melting of hulls and failed equipment plus incineration of combustibles with vitrification of the ash along with the HLW; (5a) decontamination of hulls and failed equipment to produce LLW plus incineration and incorporation of ash and other inert wastes into HLW glass; and (5b) variation of this fifth treatment alternative in which the incineration ash is incorporated into a separate TRU waste glass. The six alternative processing system concepts provide progressively increasing levels of TRU waste consolidation and TRU waste form integrity. Vitrification of HLW and intermediate-level liquid wastes (ILLW) was assumed in all cases.

  10. COMPLIANCE FOR HANFORD WASTE RETRIEVAL RADIOACTIVE AIR EMISSIONS

    SciTech Connect

    FM SIMMONS

    2009-06-30

    {sm_bullet} Since 1970, approximately 38,000 suspect transuranic (TRU) and TRU waste cont{approx}iners have been placed in retrievable storage on the Hanford Site in the 200Area's burial grounds. {sm_bullet} TRU waste is defined as waste containing greater than 100 nanocuries/gram of alpha emitting transuranic isotopes with half lives greater than 20 years. {sm_bullet} The United States currentl{approx}permanently disposes of TRU waste at the Waste Isolation Pilot Plant (WIPP).

  11. Nuclear waste management. Quarterly progress report, January-March 1980

    SciTech Connect

    Platt, A.M.; Powell, J.A.

    1980-06-01

    Reported are: high-level waste immobilization, alternative waste forms, nuclear waste materials characterization, TRU waste immobilization, TRU waste decontamination, krypton solidification, thermal outgassing, iodine-129 fixation, unsaturated zone transport, well-logging instrumentation development, mobile organic complexes of fission products, waste management system and safety studies, assessment of effectiveness of geologic isolation systems, waste/rock interactions, engineered barriers, criteria for defining waste isolation, and spent fuel and pool component integrity. (DLC)

  12. Enhancing anaerobic digestion of food waste through biochemical methane potential assays at different substrate: inoculum ratios.

    PubMed

    Hobbs, Shakira R; Landis, Amy E; Rittmann, Bruce E; Young, Michelle N; Parameswaran, Prathap

    2017-06-28

    Food waste has a high energy potential that can be converted into useful energy in the form of methane via anaerobic digestion. Biochemical Methane Potential assays (BMPs) were conducted to quantify the impacts on methane production of different ratios of food waste. Anaerobic digester sludge (ADS) was used as the inoculum, and BMPs were performed at food waste:inoculum ratios of 0.42, 1.42, and 3.0g chemical oxygen demand/g volatile solids (VS). The 1.42 ratio had the highest CH4-COD recovery: 90% of the initial total chemical oxygen demand (TCOD) was from food waste, followed by ratios 0.42 and 3.0 at 69% and 57%, respectively. Addition of food waste above 0.42 caused a lag time for CH4 production that increased with higher ratios, which highlighted the negative impacts of overloading with food waste. The Gompertz equation was able to represent the results well, and it gave lag times of 0, 3.6 and 30days and maximum methane productions of 370, 910, and 1950mL for ratios 0.42, 1.42 and 3.0, respectively. While ratio 3.0 endured a long lag phase and low VSS destruction, ratio 1.42 achieved satisfactory results for all performance criteria. These results provide practical guidance on food-waste-to-inoculum ratios that can lead to optimizing methanogenic yield. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Comparison of solid-phase and eluate assays to gauge the ecotoxicological risk of organic wastes on soil organisms.

    PubMed

    Domene, Xavier; Alcañiz, Josep M; Andrés, Pilar

    2008-02-01

    Development of methodologies to assess the safety of reusing polluted organic wastes in soil is a priority in Europe. In this study, and coupled with chemical analysis, seven organic wastes were subjected to different aquatic and soil bioassays. Tests were carried out with solid-phase waste and three different waste eluates (water, methanol, and dichloromethane). Solid-phase assays were indicated as the most suitable for waste testing not only in terms of relevance for real situations, but also because toxicity in eluates was generally not representative of the chronic effects in solid-phase. No general correlations were found between toxicity and waste pollutant burden, neither in solid-phase nor in eluate assays, showing the inability of chemical methods to predict the ecotoxicological risks of wastes. On the contrary, several physicochemical parameters reflecting the degree of low organic matter stability in wastes were the main contributors to the acute toxicity seen in collembolans and daphnids.

  14. Assay of long-lived radionuclides in low-level wastes from power reactors

    SciTech Connect

    Cline, J.E.; Noyce, J.R.; Coe, L.J.; Wright, K.W.

    1985-04-01

    The 10 CFR Part 61 waste classification system includes several nuclides which are difficult to assay without expensive radiochemical methods. In order for waste generators to classify wastes practically, NRC Staff has recommended the use of correlation factors to scale the difficult-to-measure nuclides with nuclides which can be measured more easily (i.e., gamma emitters such as /sup 60/Co or /sup 137/Cs). In this study, Science Applications International Corporation (SAIC) performed complete radiochemical assays for all the 10 CFR Part 61 waste classification nuclides on over 100 samples. These data, along with almost 800 other samples in the SAIC data base, were used to assess the validity of correlation factors suggested for use in nuclear power plant wastes. Specific generic correlation factors are recommended with other approaches to correlate nuclides for which generic scaling factors are not defensible. The primary nuclide correlations studied were /sup 14/C, /sup 55/Fe, /sup 59/Ni, /sup 63/Ni, and /sup 94/Nb, with /sup 60/Co; /sup 90/Sr, /sup 99/Tc, /sup 129/I, /sup 135/Cs, and /sup 239, 240/Pu with /sup 137/Cs; /sup 238/Pu, /sup 239, 240/Pu, /sup 241/Pu, /sup 241/Am, /sup 242/Cm, and /sup 243, 244/Cm with /sup 144/Ce; and /sup 238/Pu, /sup 241/Pu, /sup 241/Am, /sup 242/Cm and /sup 243, 244/Cm with /sup 239, 240/Pu.

  15. CALIBRATION OF THE CRATED WASTE ASSAY MONITOR (CWAM) FOR DEPLOYMENT AT THE Y-12 PLAN

    SciTech Connect

    S. MELTON; R. ESTEP; E. PETERSON

    2000-08-01

    The Crated Waste Assay Monitor (CWAM) system was designed at Los Alamos National Laboratory to address safeguards and waste measurements issues at the Oak Ridge Y-12 Plant. CWAM utilizes the differential dieaway technique (DDT) to measure {sup 235}U-contaminated waste inside B-25 waste crates. The performance objectives for CWAM were twofold: (1) ensure large quantities of material do not leave the Y-12 Plant via waste boxes, and (2) measure fissile contamination at levels as low as the Tennessee landfill limit of 35 pCi/g. This paper begins with a history of the CWAM project describing the motivation for the redesign effort, original goals set for the project, and the design choices made to achieve these goals. The remainder of the paper presents experimental results from a matrix calibration study that included both passive and active assays on three hydrogenous matrices, two B-25 crates and one SWB, and one metallic B-25 crate. The reduction in spatial variation with multiple interrogation positions for each of the surrogate matrices is shown. Sensitivity values for these matrices are also given both in terms of {sup 235}U mass (g) and activity concentration (pCi/g).

  16. Oak Ridge National Laboratory Transuranic Waste Certification Program

    SciTech Connect

    Smith, J.H.; Bates, L.D.; Box, W.D.; Aaron, W.S.; Setaro, J.A.

    1988-08-01

    The US Department of Energy (DOE) has requested that all DOE facilities handling defense transuranic (TRU) waste develop and implement a program whereby all TRU waste will be contained, stored, and shipped to the Waste Isolation Pilot Plant (WIPP) in accordance with the requirements set forth in the DOE certification documents WIPP-DOE-069, 114, 120, 137, 157, and 158. The program described in this report describes how Oak Ridge National Laboratory (ORNL) intends to comply with these requirements and the techniques and procedures used to ensure that ORNL TRU wastes are certifiable for shipment to WIPP. This document describes the program for certification of newly generated (NG) contact-handled transuranic (CH-TRU) waste. Previsions have been made for addenda, which will extend the coverage of this document to include certification of stored CH-TRU and NG and stored remote-handled transuranic (RH-TRU) waste, as necessary. 24 refs., 11 figs., 4 tabs.

  17. Active and passive CT for waste assay using LaBr3(Ce) detector

    NASA Astrophysics Data System (ADS)

    Roy, Tushar; More, M. R.; Ratheesh, Jilju; Sinha, Amar

    2017-01-01

    An active and passive computed tomography system has been developed that localizes and quantifies 239Pu in a waste drum. The active (transmission) measurement uses an external gamma source and LaBr3(Ce) detector to determine the attenuation map of waste drum contents at different selected energies. The passive (emission) measurement uses multiple LaBr3(Ce) detectors to record the spectra of gamma-rays emitted from within the drum. The active and passive data sets are then coupled to quantitatively assay drum contents for 239Pu.

  18. Waste inspection tomography (WIT)

    SciTech Connect

    Bernardi, R.T.; Han, K.S.

    1994-12-31

    The WIT program will provide an inspection system that offers the nuclear waste evaluator a unique combination of tools for regulatory-driven characterization of low-level waste (LLW), transuranic waste (TRU), and mixed waste drums. WIT provides nondestructive, noninvasive, and environmentally safe inspections using X-ray and gamma ray technologies, with reasonable cost and throughput. Two emission imaging techniques will be employed for characterizing materials in waste containers. The first of these is gamma emission tomography, commonly called single-photon emission computed tomography (SPECT). Rather than using an external radiation source, SPECT uses the emission of radioactive materials within the object of interest for imaging. In this case, emission from actual nuclear waste within a container will provide a three-dimensional image of the radioactive substances in the container. The second emission technique will use high-purity germanium detectors for gamma ray spectroscopy. This technique, called nondestructive assay (NDA), can identify the emitting isotopic species and strength. Work in emission tomography and assay of nuclear waste has been undertaken at Lawrence Livermore National Laboratory using a technique called Passive Tomography. Results from a process development unit are presented.

  19. Safety evaluation for packaging (onsite) for the concrete-shielded RH TRU drum for the 327 Postirradiation Testing Laboratory

    SciTech Connect

    Smith, R.J.

    1998-03-31

    This safety evaluation for packaging authorizes onsite transport of Type B quantities of radioactive material in the Concrete Shielded Remote-Handled Transuranic Waste (RH TRU) Drum per HNF-PRO-154, Responsibilities and Procedures for all Hazardous Material Shipments. The drum will be used for transport of 327 Building legacy waste from the 300 Area to a solid waste storage facility on the Hanford Site.

  20. Investigation of Benefits from U/TRU Recycle - Quantification and Comparison to U/Pu Recycle

    SciTech Connect

    R. Wigeland; T. Taiwo; M. Todosow

    2015-09-01

    adversely affect the ability to reduce HLW volume. The short-term radioactivity and long-term radiotoxicity of the HLW is also affected, which may be of more or less importance depending on the specific geologic disposal environment. To study these potential effects, a range of waste forms and disposal environments were used in the analysis, documenting to what extent the recycle of minor actinides in addition to plutonium may offer further benefit. Another area of investigation concerned the recycle fuel, for the fast reactor and for the thermal reactors they may support. Information to date indicates that U/Pu fuel may be simpler to fabricate and has a much more extensive database than U/TRU fuel, one of the reasons for the increased challenge for developing and deploying a U/TRU fuel cycle, and also indicates that heterogeneous recycle of the minor actinides may be even more difficult as compared to homogeneous recycle. This information was reviewed and updated to reflect the most recent studies for the purpose of informing on all aspects of the differences between U/Pu and U/TRU recycle. The results of all of these investigations will be presented to provide information on the findings concerning the value of U/TRU recycle.

  1. Multi-isotopic transuranic waste interrogation using delayed neutron nondestructive assay and iterative quadratic programming techniques

    NASA Astrophysics Data System (ADS)

    Wu, Cheng-Wei

    1997-11-01

    Nuclear safeguards for Special Nuclear Materials is to protect the nuclear materials against malevolent use and to insure their peaceful usage. The nondestructive assay technique (NDA) offers an efficient and proliferation resistance method for nuclear safeguards technology. NDA techniques were investigated for multi-isotopic transuranic waste interrogation. This work was originally intended for the Integral Fast Reactor (IFR) under development at Argonne National Laboratory. One major feature of the IFR is its integral fuel cycle based on a pyrometallurgical process. More than 99% of transuranics produced in the fuel are returned to the makeup fuel and burned in the reactor. With the long-lived actinides removed from the waste stream, the waste produced will decay sufficiently in 300 years dropping below the cancer risk level of natural uranium ore and easing the perceived waste management problem. The feasibility of using nondestructive assay techniques for the IFR fuel cycle waste interrogation were studied. A special DNNDA experimental device was designed and analysis techniques were developed. The DNNDA technique uses the delayed neutrons emitted after the activation of a 14 MeV neutron source as the characteristic signature for each fissionable isotope. A tantalum/polyethylene filter was employed to enhance the discrimination between the fissile and the fissionable isotopes. Spontaneous fissions from 240Pu were also measured to assist the mass assay. A nonlinear overdetermined system was established based on the DNNDA measurements. An Iterative Quadratic Programming (IQP) method was applied to perform the estimates. The IQP method has several advantages over the linear least squares and Kalman filter methods, it has the flexibility of adding additional constraints, it has superlinear global convergence and it can be utilized for nonlinear problems. The results show that using the IQP method with the DNNDA technique is quite promising for multi-isotopic assay

  2. Recovering lead from cupel waste generated in gold analysis by Pb-Fire assay.

    PubMed

    Cerceau, Cristiane Isaac; Carvalho, Cornélio de Freitas; Rabelo, Ana Carolina Silveira; Dos Santos, Cláudio Gouvea; Gonçalves, Sabrina Mayra Dias; Varejão, Eduardo Vinícius Vieira

    2016-12-01

    Because of its precision and accuracy, Pb-Fire assay is the most employed method for gold analysis in geological materials. At the second stage of the method, namely cupellation, lead is oxidized to PbO which is absorbed by the cupel, leading to metallic gold as a tiny bend at the bottom of the recipient. After cupellation, cupel becomes highly contaminated with lead, making its disposal a serious risk of environmental contamination. In the present work, a leaching process for removing lead from cupel waste is proposed, which allowed for removing 96% of PbO by weight. After a precipitation step, 92.0% of lead was recovered from leachates in the form of PbSO4. Lead in the solid wastes left by the extraction was above the limit established by Brazilian legislation and these were classified as non-hazardous. Finally, secondary effluents generated after the precipitation step presented lead content more than twenty times lower than that of leachates from cupel waste. Tons of cupel waste are annually generated from gold analysis by Pb-Fire assay. Thus, the proposed method can contribute to prevent the discharge of high amounts of lead into the environment. Also, recovery of lead can help to partially meet the industrial demand for lead compounds. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Nuclear waste management. Quarterly progress report, October-December 1979

    SciTech Connect

    Platt, A.M.; Powell, J.A.

    1980-04-01

    Progress and activities are reported on the following: high-level waste immobilization, alternative waste forms, nuclear waste materials characterization, TRU waste immobilization programs, TRU waste decontamination, krypton solidification, thermal outgassing, iodine-129 fixation, monitoring of unsaturated zone transport, well-logging instrumentation development, mobile organic complexes of fission products, waste management system and safety studies, assessment of effectiveness of geologic isolation systems, waste/rock interactions technology, spent fuel and fuel pool integrity program, and engineered barriers. (DLC)

  4. On the road to WIPP: Remote packaging of transuranic waste

    SciTech Connect

    Ledbetter, J.; Field, L.

    1994-12-31

    A remotely operated sysetm was designed for the remote handling of LANL`s transuranic wastes (RH-TRU). The authors have transported 18 canisters filled with RH-TRU to our waste storage facility at TA-54 and placed them in interim storage silos. This is {approx}54 m{sup 3} of RH-TRU waste. This is an excellent technique for handling RH-TRU, and we are working with other groups at LANL to use our system for removing their waste.

  5. Pre-1970 transuranic solid waste at the Hanford Site

    SciTech Connect

    Greenhalgh, W.O.

    1995-05-23

    The document is based on a search of pre-1970 Hanford Solid Waste Records. The available data indicates seven out of thirty-one solid waste burial sites used for pre-1970 waste appear to be Transuranic (TRU). A burial site defined to be TRU contains >100 nCi/gm Transuranic nuclides.

  6. Documentation of TRU biological transport model (BIOTRAN)

    SciTech Connect

    Gallegos, A.F.; Garcia, B.J.; Sutton, C.M.

    1980-01-01

    Inclusive of Appendices, this document describes the purpose, rationale, construction, and operation of a biological transport model (BIOTRAN). This model is used to predict the flow of transuranic elements (TRU) through specified plant and animal environments using biomass as a vector. The appendices are: (A) Flows of moisture, biomass, and TRU; (B) Intermediate variables affecting flows; (C) Mnemonic equivalents (code) for variables; (D) Variable library (code); (E) BIOTRAN code (Fortran); (F) Plants simulated; (G) BIOTRAN code documentation; (H) Operating instructions for BIOTRAN code. The main text is presented with a specific format which uses a minimum of space, yet is adequate for tracking most relationships from their first appearance to their formulation in the code. Because relationships are treated individually in this manner, and rely heavily on Appendix material for understanding, it is advised that the reader familiarize himself with these materials before proceeding with the main text.

  7. Technical Evaluations of Proposed Remote-Handled Transuranic Waste Characterization Requirements at WIPP

    SciTech Connect

    Anastas, G.; Channell, J. K.

    2002-02-26

    Characterization, packaging, transport, handling and disposal of remotely handled transuranic (RH TRU) waste at WIPP will be different than similar operations with contact handled transuranic (CH TRU) waste. This paper presents results of technical evaluations associated with the planned disposal of remotely handled transuranic waste at the Waste Isolation Pilot Plant (WIPP).

  8. The development of an expert system for the characterization of waste assay data

    SciTech Connect

    Bridges, S.; Hodges, J.; Sparrow, C.

    1997-11-01

    Containers of transuranic and low-level alpha contaminated waste generated as a byproduct of Department of Energy defense-related programs must be characterized before their proper disposition can be determined. Nondestructive assay methods are the most desirable means for assessing the mass and activity of the entrained transuranic radionuclides. However, there are other sources of information that may be useful in the characterization of the entrained waste (e.g., container manifests, information about the generation process, and destructive assay techniques performed on representative samples). This paper describes initial work on an expert system being developed to analyze and characterize containerized radiological waste. This system is being developed by scientists at the Mississippi State University Diagnostic and Instrumentation Laboratory (DIAL) in collaboration with scientists at the Idaho National Engineering Laboratory. The DIAL scientists are responsible for (1) the development of techniques to represent and reason with evidence from a variety of sources, and (2) the development of appropriate method(s) to represent and reason with confidence levels associated with that evidence. This paper describes exploratory versions of the expert system developed to evaluate four techniques for representing and reasoning with the confidence in the evidence: MYCIN-style certainty factors, Dempster-Shafer Theory, Bayesian networks, and fuzzy logic. 16 refs., 8 figs., 4 tabs.

  9. Relative performance of a TGS for the assay of drummed waste as function of collimator opening

    SciTech Connect

    Kane, S.C.; Croft, S.; McClay, P.; Venkataraman, R.; Villani, M.F.

    2007-07-01

    Improving the safety, accuracy and overall cost effectiveness of the processes and methods used to characterize and handle radioactive waste is an on-going mission for the nuclear industry. An important contributor to this goal is the development of superior non-destructive assay instruments. The Tomographic Gamma Scanner (TGS) is a case in point. The TGS applies low spatial resolution experimental computed tomography (CT) linear attenuation coefficient maps with three-dimensional high-energy resolution single photon emission reconstructions. The results are presented as quantitative matrix attenuation corrected images and assay values for gamma-emitting radionuclides. Depending on a number of operational factors, this extends the diversity of waste forms that can be assayed, to a given accuracy, to items containing more heterogeneous matrix distributions and less uniform emission activity distributions. Recent advances have significantly extended the capability to a broader range of matrix density and to a wider dynamic range of surface dose rate. Automated systems sense the operational conditions, including the container type, and configure themselves accordingly. The TGS also provides a flexible data acquisition platform and can be used to perform far-field style measurements, classical segmented gamma scanner measurements, or to implement hybrid methods, such as reconstructions that use a priori knowledge to constrain the image reconstruction or the underlying energy dependence of the attenuation. A single, yet flexible, general purpose instrument of this kind adds several tiers of strategic and tactical value to facilities challenged by a diverse and difficult to assay waste streams. The TGS is still in the early phase of industrial uptake. There are only a small number of general purpose TGS systems operating worldwide, most being configured to automatically select between a few configurations appropriate for routine operations. For special investigations

  10. Instrumentation and assay procedures for verification of the radionuclide content of low-level waste packages

    SciTech Connect

    Brodzinski, R.L.

    1983-09-01

    The preferred embodiment of waste package assay instrumentation for verification of the radionuclide content is a high resolution germanium diode gamma-ray spectrometer incorporated in a segmented gamma scanner and a passive neutron interrogation system for measurement of the neutrons emitted spontaneously from a waste package. The selection criteria and rationale for this choice are discussed. Assembly and operation procedures for the instrumentation are recommended, and methods for data acquisition and reduction are given. The choice of radioisotopes for fabrication of calibration standards is /sup 60/Co at approx. 10 mCi/m/sup 3/, /sup 90/Sr at approx. 10 mCi/m/sup 3/, /sup 134/Cs at approx. 14 mCi/m/sup 3/, /sup 137/Cs at approx. 15 mCi/m/sup 3/, and transuranic alpha activity at approx. 10 nCi/g. Suggested matrix materials are given.

  11. Transuranic contaminated waste container characterization and data base. Revision I

    SciTech Connect

    Kniazewycz, B.G.

    1980-05-01

    The Nuclear Regulatory Commission (NRC) is developing regulations governing the management, handling and disposal of transuranium (TRU) radioisotope contaminated wastes as part of the NRC's overall waste management program. In the development of such regulations, numerous subtasks have been identified which require completion before meaningful regulations can be proposed, their impact evaluated and the regulations implemented. This report was prepared to assist in the development of the technical data base necessary to support rule-making actions dealing with TRU-contaminated wastes. An earlier report presented the waste sources, characteristics and inventory of both Department of Energy (DOE) generated and commercially generated TRU waste. In this report a wide variety of waste sources as well as a large TRU inventory were identified. The purpose of this report is to identify the different packaging systems used and proposed for TRU waste and to document their characteristics. This document then serves as part of the data base necessary to complete preparation and initiate implementation of TRU waste container and packaging standards and criteria suitable for inclusion in the present TRU waste management program. It is the purpose of this report to serve as a working document which will be used as appropriate in the TRU Waste Management Program. This report, and those following, will be compatible not only in format, but also in reference material and direction.

  12. Degradation of transuranic waste drums in underground storage at the Hanford Site

    SciTech Connect

    Duncan, D.R.

    1996-05-07

    In situ inspections were performed on tarp-covered 55-gallon drums of transuranic (TRU) waste stored underground at the Hanford Site. These inspections were part of a task to characterize TRU drums for extent of corrosion degradation and uncertainty in TRU designation (inaccuracy in earlier assay determinations may have led to drums that actually were low-level waste to be termed TRU), and to attempt to correlate accuracy of existing records with actual drum contents. Two separate storage trench sites were investigated; a total of 90 drums were inspected with ultrasonic techniques and 104 additional drums were visually inspected. A high-humidity environment in the underground storage trenches had been reported in earlier investigations and was expected to result in substantial corrosion degradation. However, corrosion was much less than expected. Only a small percentage of drums had significant corrosion (with one breach) and the maximum rate was estimated at 0.051 mm/yr (2 mils/yr). The corrosion time of underground exposure was 14 to 15 years. These inspection results should be applicable to other similar environments (this applicability should be restricted to arid climates such as the Hanford Site) where drums are stored underground but shielded from direct soil contact by a tarp or other means. Soil contact would lead to more rapid corrosion.

  13. Degradation of transuranic waste drums in underground storage at the Hanford Site

    SciTech Connect

    Duncan, D.R.; Demiter, J.A.; DeRosa, D.C.

    1996-12-31

    In situ inspections were performed on tarp-covered 55-gallon drums of transuranic (TRU) waste stored underground at the Hanford Site. These inspections were part of a task to characterize TRU drums for extent of corrosion degradation and uncertainty in TRU designation (inaccuracy in earlier assay determinations may have led to drums that actually were low-level waste to be termed TRU), and to attempt to correlate accuracy of existing records with actual drum contents. Two separate storage trench sites were investigated; a total of 90 drums were inspected with ultrasonic techniques and 104 additional drums were visually inspected. A high-humidity environment in the underground storage trenches had been reported in earlier investigations and was expected to result in substantial corrosion degradation. However, corrosion was much less than expected. Only a small percentage of drums had significant corrosion (with one breach) and the maximum rate was estimated at 0.051 mm/yr (2 mils/yr). The corrosion time of underground exposure was 14 to 15 years. These inspection results should be applicable to other similar environments (this applicability should be restricted to arid climates such as the Hanford Site) where drums are stored underground but shielded from direct soil contact by a tarp or other means. Soil contact would lead to more rapid corrosion.

  14. Rendering wastes obtained from gold analysis by the lead-fusion fire-assay method non-hazardous.

    PubMed

    Magalhães, Fernanda Batalha; de Freitas Carvalho, Cornélio; Corrêa Netto Carvalho, Eduardo Lyse; Yoshida, Maria Irene; Gouvêa dos-Santos, Cláudio

    2012-11-15

    The classical method of melting lead by fire-assay (Pb-FA) is the most frequently used analytical technique in gold prospection. The crucible solid waste which is generated in this process is usually characterized by chemical and mineralogical composition, granulometric size distribution, and classified according to Brazilian Environmental Regulations. This study demonstrates how acid leaching can be used to remove lead from waste originally classified as hazardous by treatment with hydrochloric and nitric acids followed by chemical precipitation in sodium metasilicate solution. It is shown that for every 1000 kg of hazardous waste, 995.6 kg of non-harzardous waste can be recovered.

  15. Active and passive computed tomography mixed waste focus area final report

    SciTech Connect

    Jackson, J A; Becker, G K; Camp, D C; Decman, D J; Martz, H E; Roberson, G P

    1998-11-06

    The Mixed Waste Focus Area (MWFA) Characterization Development Strategy delineates an approach to resolve technology deficiencies associated with the characterization of mixed wastes. The intent of this strategy is to ensure the availability of technologies to support the Department of Energy's (DOE) mixed-waste, low-level or transuranic (TRU) contaminated waste characterization management needs. To this end the MWFA has defined and coordinated characterization development programs to ensure that data and test results necessary to evaluate the utility of non-destructive assay technologies are available to meet site contact handled waste management schedules. Requirements used as technology development project benchmarks are based in the National TRU Program Quality Assurance Program Plan. These requirements include the ability to determine total bias and total measurement uncertainty. These parameters must be completely evaluated for waste types to be processed through a given nondestructive waste assay system constituting the foundation of activities undertaken in technology development projects. Once development and testing activities have been completed, Innovative Technology Summary Reports are generated to provide results and conclusions to support EM-30, -40, or -60 end user or customer technology selection. The active and passive computed tomography non-destructive assay system is one of the technologies selected for development by the MWFA. Lawrence Livermore National Laboratory (LLNL) has developed the active and passive computed tomography (A&XT) nondestructive assay (NDA) technology to identify and accurately quantify all detectable radioisotopes in closed containers of waste. This technology will be applicable to all types of waste regardless of their classification-low level, transuranic or mixed. Mixed waste contains radioactivity and hazardous organic species. The scope of our technology is to develop a non-invasive waste-drum scanner that employs

  16. APPLICATION OF NONSPHERICAL FISSILE CONFIGURATION IN WASTE CONTAINERS AT SRS

    SciTech Connect

    Eghbali, D; Michelle Abney, M

    2007-01-03

    Transuranic (TRU) solid waste that has been generated as a result of the production of nuclear material for the United States defense program at the Savannah River Site (SRS) has been stored in more than 30,000 55-gallon drums and carbon steel boxes since 1953. Nearly two thirds of those containers have been processed and shipped to the Waste Isolation Pilot Plant. Among the containers assayed so far, the results indicate several drums with fissile inventories significantly higher (600-1000 fissile grams equivalent (FGE) {sup 239}Pu) than their original assigned values. While part of this discrepancy can be attributed to the past limited assay capabilities, human errors are believed to be the primary contributor. This paper summarizes the application of nonspherical fissile material configuration in waste containers, resulting in less restrictive mass and spacing limits, increased storage capacity, and several administrative controls for handling and storage of waste containers being modified without compromising safety.

  17. Use of limited protocols to evaluate the genotoxicity of hazardous wastes in mammalian cell assays: comparison to Salmonella

    SciTech Connect

    DeMarini, D.M.; Brusick, D.J.; Lewtas, J.

    1987-01-01

    Dichloromethane extracts of four diverse hazardous wastes (coke plant, herbicide manufacturing, pulp and paper, and oil refining) were evaluated for mutagenicity in strains TA98 and TA100 of Salmonella. These extracts also were tested for biological activity in short-term mammalian cell assays, including mutagenicity in L5178Y/TK +/- mouse lymphoma cells, chromosomal aberrations and sister chromatid exchanges in Chinese hamster ovary (CHO) cells, morphological transformation in BALB/c-3T3 cells, and teratogenic potential in mouse limb bud cells. The mammalian cell assays were performed using limited protocols that consisted of a preliminary testing of the extracts for cytotoxicity in CHO cells in order to estimate the appropriate dose range for the other assays. These assays were then performed once with only a few doses of extract; all but the mouse limb bud assay were performed in the presence of metabolic activation. Although all four of the wastes were presumptively positive for either mutation or cytogenetic effects, none of the wastes transformed BALB/c-3T3 cells. Further studies are needed to establish which mammalian cell assays, if any, might be useful complements to the Salmonella assay for the purpose of screening hazardous wastes.

  18. DNA damage in birds after the mining waste spill in southwestern Spain: a Comet assay evaluation.

    PubMed

    Pastor, N; López-Lázaro, M; Tella, J L; Baos, R; Forrero, M G; Hiraldo, F; Cortés, F

    2001-01-01

    In April 1998, an ecological disaster resulting from a massive toxic spill of mining acid waste rich in heavy metals posed a serious threat to the Doñana National Park in southwestern Spain. This especially important protected area is the nesting and breeding site for many endangered bird species; white storks (Ciconia ciconia) and black kites (Milvus migrans) are considered the more representative. The suitability of the Comet assay as a biomarker for genotoxic analysis in environmental biomonitoring has been recently validated in studies using different sentinel organisms such as fish, amphibians, rodents, or mollusks. Birds preying on a variety of invertebrate and vertebrate species in the marshlands are appropriate for evaluating the potential deleterious effects of the toxic spill on wildlife of the Dofiana area. Our study on wetland birds high on the aquatic trophic chain sampled within a few months after the toxic spill in the area around Doñana National Park has shown the accumulation of heavy metals. Fourteen months after the mine waste spill, blood samples from white storks and kites collected in the neighborhood of the park and from control birds at reference areas for comparison were examined by fluorescence image analysis after lymphocyte isolation, and by subsequent alkaline single-cell gel (SCG) electrophoresis, known as the Comet assay. Our results indicate that the exposed birds had a significantly increased level of genotoxic damage compared with control animals from noncontaminated locations.

  19. Bremsstrahlung-Based Imaging and Assays of Radioactive, Mixed and Hazardous Waste

    NASA Astrophysics Data System (ADS)

    Kwofie, J.; Wells, D. P.; Selim, F. A.; Harmon, F.; Duttagupta, S. P.; Jones, J. L.; White, T.; Roney, T.

    2003-08-01

    A new nondestructive accelerator based x-ray fluorescence (AXRF) approach has been developed to identify heavy metals in large-volume samples. Such samples are an important part of the process and waste streams of U.S Department of Energy sites, as well as other industries such as mining and milling. Distributions of heavy metal impurities in these process and waste samples can range from homogeneous to highly inhomogeneous, and non-destructive assays and imaging that can address both are urgently needed. Our approach is based on using high-energy, pulsed bremsstrahlung beams (3-6.5 MeV) from small electron accelerators to produce K-shell atomic fluorescence x-rays. In addition we exploit pair-production, Compton scattering and x-ray transmission measurements from these beams to probe locations of high density and high atomic number. The excellent penetrability of these beams allows assays and images for soil-like samples at least 15 g/cm2 thick, with elemental impurities of atomic number greater than approximately 50. Fluorescence yield of a variety of targets was measured as a function of impurity atomic number, impurity homogeneity, and sample thickness. We report on actual and potential detection limits of heavy metal impurities in a soil matrix for a variety of samples, and on the potential for imaging, using AXRF and these related probes.

  20. Gamma ray scanner systems for nondestructive assay of heterogeneous waste barrels

    SciTech Connect

    Martz, H.E.; Decman, B.J.; Roberson, G.P.; Levai, F.

    1997-03-25

    Traditional gamma safeguards measurements have usually been performed using a segmented gamma scanning (SGS) system. The accuracy of this technique relies on the assumption that the sample matrix and the activity are both uniform for a segment. Waste barrels are often highly heterogeneous, span a wide range of composition and matrix type. The primary sources of error are all directly or indirectly related to a non-uniform measurement response associated with unknown radioactive source spatial distribution and heterogeneity of the matrix. These errors can be significantly reduced by some imaging techniques that measure exact spatial locations of sources and attenuation maps. In this paper we describe a joint R&D effort between the Lawrence Livermore National Laboratory (LLNL) and the Institute of Nuclear Techniques (INT) of the Technical University, Budapest, to compare results obtained by two different gamma-ray nondestructive assay (NDA) systems used for imaging waste barrels. The basic principles are the same, but the approaches are different. Key factors to judge the adequacy of a method are the detection limit and the accuracy. Test drums representing waste to be measured are used to determine basic parameters of these techniques.

  1. Westinghouse Hanford Company plan for certifying newly generated contact-handled transuranic waste

    SciTech Connect

    Lipinski, R.M.

    1994-10-01

    All transuranic (TRU) waste generators are required by US Department of Energy Order 5820.2A to package their TRU waste to comply with the Waste Acceptance Criteria (WAC) for the Waste Isolation Pilot Plant (WIPP). The Westinghouse Hanford Company (WHC) Transuranic Waste Certification Plan was developed to ensure that TRU newly waste generated at WHC meets the WIPP-WAC and/or. The methods used at WHC to package TRU waste are described in sufficient detail to meet WIPP certification or the regulations. This document is organized to provide a brief overview of waste generation operations at WHC, along with details on data management for TRU waste. The methods used to implement this plan are discussed briefly along with the responsibilities and authorities of applicable organizations. This certification plan describes how WHC complies with all applicable regulations and requirements set forth in the latest approved revision of WIPP-DOE-069.

  2. Readiness Assessments for the Shipment of TRU from West Jefferson, Ohio

    SciTech Connect

    Duffy, M. A.

    2003-02-26

    From 1943 through 1986, Battelle Memorial Institute (BMI) performed research and development work at its own facilities for the U.S. Department of Energy (DOE) and its predecessor agencies. The most highly contaminated facilities, comprising BMI's Nuclear Sciences Area, are located on 11 acres in West Jefferson, Ohio. Three buildings in this area were used to study nuclear reactor fuels, fuel element components, reactor designs, and radiochemistry analyses: one building contained nuclear hot cells, a second building contained a critical assembly and radiochemistry laboratory, and a third building once housed a nuclear research reactor. The Columbus Environmental Management Project (CEMP), one of the DOE Ohio Field Office's radioactive cleanup sites, oversees the Battelle Columbus Laboratories Decommissioning Project (BCLDP) for the decontamination and decommissioning (D&D) of BMI's Nuclear Sciences Area. The BCLDP mission is to decontaminate the Nuclear Sciences Area to a condition that is suitable for use without restrictions and to dispose of or store the associated radioactive waste at a suitable DOE-approved facility. During decontamination work, the CEMP is expected to generate approximately 120, 55-gallon drums of transuranic (TRU) waste, or about 20 truckloads. This TRU waste will be transported to DOE's Hanford nuclear facility in Washington State for temporary storage, prior to its ultimate disposal at the Waste Isolation Pilot Plant (WIPP). This paper presents a detailed approach for conducting readiness assessments for TRU waste shipments from any DOE site. It is based on demonstrating satisfaction of the 18 core requirements contained in DOE Order 425.1B, Startup and Restart of Nuclear Facilities, that are derived from the seven guiding principles of DOE's integrated safety management system.

  3. Development, Testing and Validation of a Waste Assay System for the Measurement and Characterisation of Active Spent Fuel Element Debris From UK Magnox Reactors - 12533

    SciTech Connect

    Mason, John A.; Burke, Kevin J.; Looman, Marc R.; Towner, Antony C.N.; Phillips, Martin E.

    2012-07-01

    interferences from radioactive sources and FED in the immediate vicinity of the measurement position. The detector system has been calibrated and high activity radioactive sources of Cs-137, Co-60 and Na-22 have been used to validate the measurement process. The data acquisition and analysis software code has been tested and validated in keeping with the software quality assurance requirements of both ISO:9001-2008 - TICK-IT in the UK and NQA-1. The measurement and analysis system has been comprehensively tested with high activity sources, is flexible and may be applicable to a wide range of remote handled radioactive waste measurement applications. It is due to be installed at Trawsfynydd NPS later this year. This paper describes the Waste Tray Assay System (WTAS) that has been developed for the measurement of Magnox FED waste. The WTAS has been tested with a range of radioactive sources and its operation has been simulated with benchmarked MCNP Monte Carlo calculations. The measurement software has been validated as has the operation of the system for a range of strong radioactive sources. A system based on the design is due for installation and operation in 2012. The system has application to the measurement of Magnox Fuel Element Debris (FED) waste at other Magnox reactor sites. The major design objective of the WTAS that has been achieved is the ability of the assay system to determine the content of Cs-137, and in turn to enable the fissile burden to be assessed using a radionuclide fingerprint, in the presence of higher and highly variable quantities of Co-60, typically from nimonic springs. The approach can be used in other Magnox FED waste configurations where the detector is located above the FED waste sorting tray and where the collimation is fixed below the detector and at a distance above the tray. In this case, which has also been investigated, there are different shielding problems and mechanical support issues. The extensive use of MCNP Monte Carlo modelling to

  4. Software documentation for TRU certification program

    SciTech Connect

    CLINTON, R.

    1999-08-31

    The document provides validation information for software used to support TRU operational activities. Calculations were performed using a spreadsheet application. This document provides information about the usage of the software application, Microsoft{reg_sign} Excel. Microsoft{reg_sign} Excel spreadsheets were used to perform specific calculations to determine the amount of containers to visually examine and to perform analyses on container head-gas data. Contained in this document are definitions of formulas and variables with relation to the Excel codes used. Also, a demonstration is provided using predetermined values to obtain predetermined results.

  5. Preliminary report of the comparison of multiple non-destructive assay techniques on LANL Plutonium Facility waste drums

    SciTech Connect

    Bonner, C.; Schanfein, M.; Estep, R.

    1999-03-01

    Prior to disposal, nuclear waste must be accurately characterized to identify and quantify the radioactive content. The DOE Complex faces the daunting task of measuring nuclear material with both a wide range of masses and matrices. Similarly daunting can be the selection of a non-destructive assay (NDA) technique(s) to efficiently perform the quantitative assay over the entire waste population. In fulfilling its role of a DOE Defense Programs nuclear User Facility/Technology Development Center, the Los Alamos National Laboratory Plutonium Facility recently tested three commercially built and owned, mobile nondestructive assay (NDA) systems with special nuclear materials (SNM). Two independent commercial companies financed the testing of their three mobile NDA systems at the site. Contained within a single trailer is Canberra Industries segmented gamma scanner/waste assay system (SGS/WAS) and neutron waste drum assay system (WDAS). The third system is a BNFL Instruments Inc. (formerly known as Pajarito Scientific Corporation) differential die-away imaging passive/active neutron (IPAN) counter. In an effort to increase the value of this comparison, additional NDA techniques at LANL were also used to measure these same drums. These are comprised of three tomographic gamma scanners (one mobile unit and two stationary) and one developmental differential die-away system. Although not certified standards, the authors hope that such a comparison will provide valuable data for those considering these different NDA techniques to measure their waste as well as the developers of the techniques.

  6. Status of the WAND (Waste Assay for Nonradioactive Disposal) project as of July 1997

    SciTech Connect

    Arnone, G.J.; Foster, L.A.; Foxx, C.L.; Hagan, R.C.; Martin, E.R.; Myers, S.C.; Parker, J.L.

    1998-03-01

    The WAND (Waste Assay for Nonradioactive Disposal) system can scan thought-to-be-clean, low-density waste (mostly paper and plastics) to determine whether the levels of any contaminant radioactivity are low enough to justify their disposal in normal public landfills or similar facilities. Such a screening would allow probably at least half of the large volume of low-density waste now buried at high cost in LANL`s Rad Waste Landfill (Area G at Technical Area 54) to be disposed of elsewhere at a much lower cost. The WAND System consists of a well-shielded bank of six 5-in.-diam. phoswich scintillation detectors; a mechanical conveyor system that carries a 12-in.-wide layer of either shredded material or packets of paper sheets beneath the bank of detectors; the electronics needed to process the outputs of the detectors; and a small computer to control the whole system and to perform the data analysis. WAND system minimum detectable activities (MDAs) for point sources range from {approximately}20 dps for {sup 241}Am to approximately 10 times that value for {sup 239}Pu, with most other nuclides of interest being between those values, depending upon the emission probabilities of the radiations emitted (usually gamma rays and/or x-rays). The system can also detect beta particles that have energies {ge}100 keV, but it is not easy to define an MDA based on beta radiation detection because of the greater absorption of beta particles relative to photons in low Z-materials. The only radioactive nuclides not detectable by the WAND system are pure alpha emitters and very-low-energy beta emitters. At this time, operating procedures and quality assurance procedures are in place and training materials are available to operators. The system is ready to perform useful work; however, it would be both possible and desirable to upgrade the electronic components and the analysis algorithms.

  7. Customer service model for waste tracking at Los Alamos National Laboratory

    SciTech Connect

    Dorries, Alison M

    2011-02-02

    The goal is to transition from five legacy database systems that have reached end-of-life to a single inventory system that supports workflow, data, and reporting for all waste streams. Plutonium Processing Facility (TA-55) Waste Team provides a high quality system that insures safe, efficient and compliant management of all radioactive and hazardous wastes generated, including waste characterization and repackaging of Transuranic Waste (TRU) and TRU mixed waste for shipment to the Waste Isolation Pilot Plant (WIPP).

  8. Nuclear waste management

    NASA Astrophysics Data System (ADS)

    Chikalla, T. D.; Powell, J. A.

    1981-09-01

    Reports and summaries are presented for the following: high-level waste process development; alternative waste forms; TMI zeolite vitrification demonstration program; nuclear waste materials characterization center; TRU waste immobilization; TRU waste decontamination; krypton implantation; thermal outgassing; iodine-129 fixation; NWVP off-gas analysis; monitoring and physical characterization of unsaturated zone transport; well-logging instrumentation development; verification instrument development; mobility of organic complexes of radionuclides in soils; handbook of methods to decrease the generation of low-level waste; waste management system studies; waste management safety studies; assessment of effectiveness of geologic isolation systems; waste/rock interactions technology program; high-level waste form preparation; development of backfill materials; development of structural engineered barriers; disposal charge analysis; and analysis of spent fuel policy implementation.

  9. Precision truing of diamond wheel with sharp edge

    NASA Astrophysics Data System (ADS)

    Ge, Cheng; Guo, Bing; Zhao, QIngliang; Chen, Bing; Wang, Jinhu

    2014-08-01

    Diamond wheel with sharp edge has small contour structures, which can lead to fast wear of wheel in the grinding process. Traditional truing methods are hard to apply to this kind of wheels. Therefore, as for the difficulty of precision truing of diamond wheel with sharp edge, the novel methods for resin and metal bonded diamond wheels with sharp edge are presented, respectively. In this experiment, a conditioning procedure with rare metal alloy block Ta was used to true the resin bonded diamond grinding wheel and in the same way Nb alloy block was utilized to complete rough truing of metal bonded diamond grinding wheel. Then a CNC truing technique with rotational green carbide (GC) truing stick was applied to precise truing of metal bonded diamond grinding wheel. Methods mentioned above were measured in order to evaluate the performance of truing. Geometric features of the wheel sharp edge were duplicated on the organic glass (PMMA) in order to measure and calculate the radius of the sharp edge. The edge radius of trued resin bonded wheel and metal bonded wheel is perceived as an important assessment. The experiments results revealed that the edge radius of 12.45μm for the resin bonded wheel and the edge radius of 30.17μm for the metal bonded wheel could be achieved.

  10. Wire Electrical Discharge Truing of Metal Bond Diamond Grinding Wheels

    SciTech Connect

    McSpadden, SB

    2002-01-24

    Cylindrical wire EDM profile truing of the metal bond diamond wheel for precision form grinding of ceramics is presented in this report. First a corrosion-resistant, precise spindle with the high-electrical current capability for wire EDM truing of grinding wheel was fabricated. An arc profile was adopted in order to determine form tolerances capabilities of this process. Results show the wire EDM process can generate {micro}m-scale precision form on the diamond wheel efficiently. The wheel, after truing, was used to grind silicon nitride. Grinding forces, surface finish of ground components, and wheel wear were measured. The EDM trued wheel showed a reduction in grinding force from that of the stick dressed wheel. Surface finishes between the two truing methods were similar. In the beginning of the grinding, significant wheel wear rate was identified. The subsequent wheel wear rate stabilized and became considerably lower.

  11. Current trends for packaging transuranic waste at Los Alamos National Laboratory (LA-UR-07-4785)

    SciTech Connect

    Goyal, Kapil K.; Carson, Peter H.; Enriquez, Alejandro E.

    2007-07-01

    Transuranic (TRU) waste leaving the Plutonium Facility at Los Alamos National Laboratory (LANL) is packaged using LANL's waste acceptance criteria for onsite storage. Before shipment to the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico, each payload container is subject to rigorous characterization to ensure compliance with WIPP waste acceptance criteria and Department of Transportation regulations. Techniques used for waste characterization include nondestructive examination by WIPP-certified real-time radiography (RTR) and nondestructive assay (NDA) of containers, as well as headspace gas sampling to ensure hydrogen and other flammable gases remain at safe levels during transport. These techniques are performed under a rigorous quality assurance program to confirm that results are accurate and reproducible. If containers are deemed problematic, corrective action is taken before shipment to WIPP. Currently this activity is possible only at the Laboratory's Waste Characterization, Reduction, and Repackaging Facility. To minimize additional waste requiring remediation, WIPP waste acceptance criteria must be applied at the point of waste generation. Additional criteria stem from limitations of RTR or NDA instruments or lack of appropriate sampling and analysis. This paper presents the changes that have been implemented at the Plutonium Facility and gives readers a preview of what LANL expects to accomplish to expeditiously certify and dispose of newly generated TRU waste. (authors)

  12. Process Knowledge Summary Report for Materials and Fuels Complex Contact-Handled Transuranic Debris Waste

    SciTech Connect

    R. P. Grant; P. J. Crane; S. Butler; M. A. Henry

    2010-02-01

    This Process Knowledge Summary Report summarizes the information collected to satisfy the transportation and waste acceptance requirements for the transfer of transuranic (TRU) waste between the Materials and Fuels Complex (MFC) and the Advanced Mixed Waste Treatment Project (AMWTP). The information collected includes documentation that addresses the requirements for AMWTP and the applicable portion of their Resource Conservation and Recovery Act permits for receipt and treatment of TRU debris waste in AMWTP. This report has been prepared for contact-handled TRU debris waste generated by the Idaho National Laboratory at MFC. The TRU debris waste will be shipped to AMWTP for purposes of supercompaction. This Process Knowledge Summary Report includes information regarding, but not limited to, the generation process, the physical form, radiological characteristics, and chemical contaminants of the TRU debris waste, prohibited items, and packaging configuration. This report, along with the referenced supporting documents, will create a defensible and auditable record for waste originating from MFC.

  13. Intrinsic Efficiency Calibration Considering Geometric Factors in Gamma-ray Computed Tomography for Radioactive Waste Assay

    SciTech Connect

    Liu, Zhe; Zhang, Li

    2015-07-01

    In radioactive waste assay with gamma-ray computed tomography, calibration for intrinsic efficiency of the system is important to the reconstruction of radioactivity distribution. Due to the geometric characteristics of the system, the non-uniformity of intrinsic efficiency for gamma-rays with different incident positions and directions are often un-negligible. Intrinsic efficiency curves versus geometric parameters of incident gamma-ray are obtained by Monte-Carlo simulation, and two intrinsic efficiency models are suggested to characterize the intrinsic efficiency determined by relative source-detector position and system geometry in the system matrix. Monte-Carlo simulation is performed to compare the different intrinsic efficiency models. Better reconstruction results of radioactivity distribution are achieved by both suggested models than by the uniform intrinsic efficiency model. And compared to model based on detector position, model based on point response increases reconstruction accuracy as well as complexity and time of calculation. (authors)

  14. Graphics-based site information management at Hanford TRU burial grounds

    SciTech Connect

    Rod, S.R. )

    1992-04-01

    The objective of the project described in this paper is to demonstrate the use of integrated computer graphics and database techniques in managing nuclear waste facilities. The graphics-based site information management system (SIMS) combines a three- dimensional graphic model of the facility with databases which describe the facility's components and waste inventory. The SIMS can create graphic visualization of any site data. The SIMS described here is being used by Westinghouse Hanford Company (WHC) as part of its transuranic (TRU) waste retrieval program at the Hanford Reservation. It is being used to manage an inventory of over 38,000 containers, to validate records, and to help visualize conceptual designs of waste retrieval operations.

  15. Graphics-based site information management at Hanford TRU burial grounds

    SciTech Connect

    Rod, S.R.

    1992-04-01

    The objective of the project described in this paper is to demonstrate the use of integrated computer graphics and database techniques in managing nuclear waste facilities. The graphics-based site information management system (SIMS) combines a three- dimensional graphic model of the facility with databases which describe the facility`s components and waste inventory. The SIMS can create graphic visualization of any site data. The SIMS described here is being used by Westinghouse Hanford Company (WHC) as part of its transuranic (TRU) waste retrieval program at the Hanford Reservation. It is being used to manage an inventory of over 38,000 containers, to validate records, and to help visualize conceptual designs of waste retrieval operations.

  16. Mixed waste characterization, treatment & disposal focus area

    SciTech Connect

    1996-08-01

    The mission of the Mixed Waste Characterization, Treatment, and Disposal Focus Area (referred to as the Mixed Waste Focus Area or MWFA) is to provide treatment systems capable of treating DOE`s mixed waste in partnership with users, and with continual participation of stakeholders, tribal governments, and regulators. The MWFA deals with the problem of eliminating mixed waste from current and future storage in the DOE complex. Mixed waste is waste that contains both hazardous chemical components, subject to the requirements of the Resource Conservation and Recovery Act (RCRA), and radioactive components, subject to the requirements of the Atomic Energy Act. The radioactive components include transuranic (TRU) and low-level waste (LLW). TRU waste primarily comes from the reprocessing of spent fuel and the use of plutonium in the fabrication of nuclear weapons. LLW includes radioactive waste other than uranium mill tailings, TRU, and high-level waste, including spent fuel.

  17. Draft Title 40 CFR 191 compliance certification application for the Waste Isolation Pilot Plant. Volume 3: Appendix BIR Volume 1

    SciTech Connect

    1995-03-31

    The Waste Isolation Pilot Plant (WIPP) Transuranic Waste Baseline Inventory Report (WTWBIR) establishes a methodology for grouping wastes of similar physical and chemical properties, from across the US Department of Energy (DOE) transuranic (TRU) waste system, into a series of ``waste profiles`` that can be used as the basis for waste form discussions with regulatory agencies. The majority of this document reports TRU waste inventories of DOE defense sites. An appendix is included which provides estimates of commercial TRU waste from the West Valley Demonstration Project. The WIPP baseline inventory is estimated using waste streams identified by the DOE TRU waste generator/storage sites, supplemented by information from the Mixed Waste Inventory Report (MWIR) and the 1994 Integrated Data Base (IDB). The sites provided and/or authorized all information in the Waste Stream Profiles except the EPA (hazardous waste) codes for the mixed inventories. These codes were taken from the MWIR (if a WTWBIR mixed waste stream was not in MWIR, the sites were consulted). The IDB was used to generate the WIPP radionuclide inventory. Each waste stream is defined in a waste stream profile and has been assigned a waste matrix code (WMC) by the DOE TRU waste generator/storage site. Waste stream profiles with WMCs that have similar physical and chemical properties can be combined into a waste matrix code group (WMCG), which is then documented in a site-specific waste profile for each TRU waste generator/storage site that contains waste streams in that particular WMCG.

  18. Evaluation of pressure treated wood impact on landfill waste decomposition using a methane yield assay.

    PubMed

    Kim, Hwidong; Townsend, Timothy

    2007-04-01

    Research was conducted to investigate the potential impact of CCA-treated wood and other arsenic-free Cu-based preservative-treated wood on microorganisms, involved in the anaerobic decomposition of waste in landfills. Wood preservatives used included alkaline copper quat (ACQ), copper citrate (CC), copper boron azole (CBA), copper dimethyldithiocarbamate (CDDC), and chromated copper arsenate (CCA). The biochemical methane potential (BMP) assay was used to estimate the possible impacts. The methane yields of mixtures of preservative-treated wood or untreated wood with cellulose (group 1) and these wood samples only (group 2) were determined. An analysis of variance (ANOVA) test found that there were no significant differences among methane yields results in either group 1 or group 2, at the 0.05 level of significance. The results indicate that under the conditions tested, none of the treated wood products evaluated were toxic to the methane-producing organisms. At the end of the assays, test bottle contents were analyzed for Cu, Cr, and As. When the fraction of each metal in the solution (relative to original metal in the wood, leachability %) was examined, As was present at the great extent. The leachability of As was in the range from 15.1% to 21.7% while relatively low leachability (1.7-7.6%) of Cu was observed.

  19. Are Fish and Standardized FETAX Assays Protective Enough for Amphibians? A Case Study on Xenopus laevis Larvae Assay with Biologically Active Substances Present in Livestock Wastes

    PubMed Central

    Martini, Federica; Tarazona, José V.; Pablos, M. Victoria

    2012-01-01

    Biologically active substances could reach the aquatic compartment when livestock wastes are considered for recycling. Recently, the standardized FETAX assay has been questioned, and some researchers have considered that the risk assessment performed on fish could not be protective enough to cover amphibians. In the present study a Xenopus laevis acute assay was developed in order to compare the sensitivity of larvae relative to fish or FETAX assays; veterinary medicines (ivermectin, oxytetracycline, tetracycline, sulfamethoxazole, and trimethoprim) and essential metals (zinc, copper, manganese, and selenium) that may be found in livestock wastes were used for the larvae exposure. Lethal (LC50) and sublethal effects were estimated. Available data in both, fish and FETAX studies, were in general more protective than values found out in the current study, but not in all cases. Moreover, the presence of nonlethal effects, caused by ivermectin, zinc, and copper, suggested that several physiological mechanisms could be affected. Thus, this kind of effects should be deeply investigated. The results obtained in the present study could expand the information about micropollutants from livestock wastes on amphibians. PMID:22629159

  20. Tru-ly Clean - What Does It Mean?

    SciTech Connect

    Hopkins, A.

    2008-07-01

    The evolution and genesis of the definition of transuranic waste (known as TRU) and its application to the cleanup criteria applied to soils contaminated with transuranics, specifically plutonium, has been a matter of discussion at contaminated sites in the United States and elsewhere. Cleanup decisions and the processes that led up to those decisions have varied at several plutonium contaminated sites within the United States and without the pacific region. The sites with radionuclide soil action levels include Bikini and Enewetak Atolls, Republic of the Marshall Islands; Johnston Atoll, Hawaii; the Hanford Site in Washington State; the Nevada Test Site; the Rocky Flats Environmental Technology Site in Colorado; the Chariot Site in north Alaska; and the Maralinga Site in Australia. The soil-action level developed for Rocky Flats by the U.S. Department of Energy, U.S. Environmental Protection Agency, and the Colorado Department of Public Health and Environment for plutonium is one of the higher soil-action levels approved by regulatory agencies that is considered protective for future use of land at a cleanup site. The Republic of the Marshall Islands has adopted a relatively conservative cleanup standard to accommodate the subsistence lifestyle of the islanders, while the Rocky Flats Environmental Technology Site has been transferred to the U.S. Department of the Interior to be used as a fish and wildlife refuge, a land use that resulted in a less conservative plutonium soil cleanup level. (authors)

  1. Defense waste transportation: cost and logistics studies

    SciTech Connect

    Andrews, W.B.; Cole, B.M.; Engel, R.L.; Oylear, J.M.

    1982-08-01

    Transportation of nuclear wastes from defense programs is expected to significantly increase in the 1980s and 1990s as permanent waste disposal facilities come into operation. This report uses models of the defense waste transportation system to quantify potential transportation requirements for treated and untreated contact-handled transuranic (CH-TRU) wastes and high-level defense wastes (HLDW). Alternative waste management strategies in repository siting, waste retrieval and treatment, treatment facility siting, waste packaging and transportation system configurations were examined to determine their effect on transportation cost and hardware requirements. All cost estimates used 1980 costs. No adjustments were made for future changes in these costs relative to inflation. All costs are reported in 1980 dollars. If a single repository is used for defense wastes, transportation costs for CH-TRU waste currently in surface storage and similar wastes expected to be generated by the year 2000 were estimated to be 109 million dollars. Recovery and transport of the larger buried volumes of CH-TRU waste will increase CH-TRU waste transportation costs by a factor of 70. Emphasis of truck transportation and siting of multiple repositories would reduce CH-TRU transportation costs. Transportation of HLDW to repositories for 25 years beginning in 1997 is estimated to cost $229 M in 1980 costs and dollars. HLDW transportation costs could either increase or decrease with the selection of a final canister configuration. HLDW transportation costs are reduced when multiple repositories exist and emphasis is placed on truck transport.

  2. Pu-238 assay performance with the Canberra IQ3 system

    SciTech Connect

    Booth, L.; Gillespie, B.; Seaman, G.

    1997-11-01

    Canberra Industries has recently completed a demonstration project at the Westinghouse Savannah River Site (WSRC) to characterize 55-gallon drums containing Pu-238 contaminated waste. The goal of this project was to detect and quantify Pu-238 contaminated waste. The goal of this project was to detect and quantify Pu-238 waste to detection limits of less than 50 nCi/g using gamma assay techniques. This would permit reclassification of these drums from transuranic (TRU) waste to low-level waste (LLW). The instrument used for this assay was a Canberra IQ3 high sensitivity gamma assay system, mounted in a trailer. The results of the measurements demonstrate achievement of detection levels as low as 1 nCi/g for low density waste drums, and good correlation with known concentrations in several test drums. In addition, the data demonstrates significant advantages for using large area low-energy germanium detectors for achieving the lowest possible MDAs for gamma rays in the 80-250 keV range. 1 fig., 2 tabs.

  3. In-drum vitrification of transuranic waste sludge using microwave energy

    SciTech Connect

    Petersen, R.D.; Johnson, A.J.

    1989-01-01

    Microwave vitrification of transuranic (TRU) waste at the Rocky Flats nuclear weapons plant is being tested using actual TRU waste in a bench-scale system and simulated waste in a pilot system. In 1987, bench-scale testing was completed to determine the effectiveness of in-drum microwave vitrification of simulated precipitation sludge. The equipment used in the bench tests included a 6-kW, 2.45-GHz microwave generator, aluminum cavity, turntable, infrared (IR) thermometer, and screw feeder. Results similar to those achieved in bench-scale testing are reproducible using a 915-MHz microwave system in solidifying simulated TRU sludge. Nine samples have been processed to date. Also, preliminary results using actual TRU waste indicate that the actual waste will behave in a similar way to the surrogate waste used in the 2.45-GHz system. Work is ongoing to complete the TRU waste tests.

  4. Preparation of the First Shipment of Transuranic Waste by the Los Alamos National Laboratory: A Rest Stop on the Road to WIPP

    SciTech Connect

    Allen, G.; Barr, A.; Betts, S.E.; Farr, J.; Foxx, J.; Gavett, M.A.; Janecky, D.R.; Kosiewicz, S.T.; Liebman, C.P.; Montoya, A.; Poths, H.; Rogers, P.S.Z.; Taggart, D.P.; Triay, I.R.; Vigil, G.I.; Vigil, J.J.; Wander, S.G.; Yeamans, D.

    1999-02-01

    The Los Alamos National Laboratory (LANL) achieved a national milestone on the road to shipping transuranic (TRU) waste to the Waste Isolation Pilot Plant (WIPP) when it received certification authority on September 12, 1997. Since that time, LANL has been characterizing a non-mixed TRU waste stream and preparing shipments of this TRU waste for disposal in the WIPP. The paper describes the TRU waste identified as waste stream TA-55-43 Lot No. 01 from LANL Technical Area-55 and the process used to determine that it does not contain hazardous waste regulated by the Resource Conservation Recovery Act (RCRA) or the New Mexico Hazardous Waste Act (HWA). The non-mixed determination is based on the acceptable knowledge (AK) characterization process, which clearly shows that the waste does not exhibit any RCRA characteristics nor meet any RCRA listing descriptions. LANL has certified TRU waste from waste stream TA-55-43 Lot No. 01 and is prepared to certify additional quantities of TRU waste horn other non-mixed TRU waste streams. Assembly and preparation of AK on the processes that generated TRU waste is recognized as a necessary part of the process for having waste ready for shipment to the WIPP.

  5. Genotyping of hepatitis C virus-comparison of three assays.

    PubMed

    Haushofer, Alexander C; Berg, Jörg; Hauer, René; Trubert-Exinger, Doris; Stekel, Herbert G; Kessler, Harald H

    2003-08-01

    Genotyping of hepatitis C virus (HCV) is clinically relevant to epidemiology, prognosis, and therapeutical management of HCV infection. Accuracy and specificity of three assays for HCV genotyping/subtyping were determined. The TruGene HCV 5'NC Genotyping Kit (TruGene), which is a direct sequencing test and two assays based on reversed hybridization, Inno-LiPA HCV II assay and ViennaLab HCV Strip Assay, were compared. Amplification products generated by the Cobas Amplicor HCV Test were used. A total of 100 consecutive HCV RNA positive samples derived from patients with chronic hepatitis C were examined for their genotypes/subtypes by the three assays. Identification of genotypes and subtypes by the TruGene assay as reference test for the Inno-LiPA HCV II assay and the ViennaLab HCV Strip Assay or Inno-LiPA HCV II assay as reference test for the TruGene and the ViennaLab HCV Strip Assay showed similar results for overall accuracies (TruGene as reference test for Inno-LiPA HCV II and ViennaLab HCV Strip Assay, genotypes/subtypes: 100%/95.5% and 97%/92%; Inno-LiPA HCV II as reference test for TruGene and ViennaLab HCV Strip Assay, genotypes/subtypes: 99%/85.9% and 97%/87.9%) and specificities (TruGene as reference test for Inno-LiPA HCV II and ViennaLab HCV Strip Assay, genotypes/subtypes: 100%/97.8% and 99%/97.7%; Inno-LiPA HCV II as reference test for TruGene and ViennaLab HCV Strip Assay, genotypes/subtypes: 100%/99.4% and 99.7%/98%). The three assays were found to be reliable for the detection and discrimination of all HCV genotypes common in Europe and in North America and to be suitable for the routine diagnostic laboratory.

  6. Transuranic waste assay by neutron interrogation and online prompt and delayed neutron measurement

    NASA Astrophysics Data System (ADS)

    Raoux, A.-C.; Lyoussi, A.; Passard, C.; Denis, C.; Loridon, J.; Misraki, J.; Chany, P.

    2003-06-01

    A comprehensive program is currently underway in several laboratories for the development of sensitive and non-destructive techniques for the quantification of transuranics in low and intermediate radioactive waste packages. This paper describes the method being developed to quantify different isotopes separately by using online prompt and delayed neutron measurements from the fission of isotopes such as 235U, 238U, 239Pu and 241Pu. The system uses a new generation 14 MeV pulsed neutron generator the emission of which is about 2×10 9 n s -1. The association of the differential die-away technique technique [W.E. Kunz, J.D. Atencio, J.T. Caldwell, A 1 nCi/g sensitivity transuranic waste assay system using pulsed neutron interrogation, INMM Annual meeting, Palm Beach, Florida. LA-UR-90-1794, CONF-800655-4 (1980)] (Differential Die-away Technique) and the SPHINCS method [Nucl. Instr. and Meth. B 160 (2000) 280-289] (Sequential PHoton Interrogation and Neutron Counting Signatures) allows measurement of the prompt and delayed neutrons from thermal and fast-induced fission after each interrogating pulse. This method is demonstrated by the measurement of uranium and plutonium samples. Samples of U + Pu have also been analysed inside a non-active drum of bituminized coating for the purpose of demonstrating the feasibility of the separation of 235U from 239Pu by this method. Moreover, the influence of 238U and the necessity of correcting its effects have been studied. Finally, the purpose is to determine the best estimated value for each mass of interest associated with its own standard deviation and statistical distribution. Hence a specific method, based on the Monte Carlo trials, has been developed to estimate masses and associated uncertainties for each isotope of interest.

  7. An Alternative to Performing Remote-Handled Transuranic Waste Container Headspace Gas Sampling and Analysis

    SciTech Connect

    Spangler, L. R.; Djordjevic, S. M.; Kehrman, R. F.; Most, W. A.

    2002-02-26

    The Waste Isolation Pilot Plant (WIPP) is operating under a Resource Conservation and Recovery Act (RCRA) Hazardous Waste Facility Permit (HWFP) for contact-handled (CH) transuranic (TRU) waste. The HWFP contains limitations on allowable emissions from waste disposed in the underground. This environmental performance standard imposed on the WIPP consists of limiting volatile organic compound (VOC) emissions from emplaced waste to ensure protection of human health and the environment. The standard is currently met by tracking individual waste container headspace gas concentrations, which are determined by headspace gas sampling and analysis of CH TRU waste containers. The WIPP is seeking a HWFP modification to allow the disposal of remote-handled (RH) TRU waste. Because RH TRU waste is limited to approximately 5% of the waste volume and is emplaced in the disposal room walls, it is possible to bound the potential RH TRU waste contribution to VOC emissions using conservative upper bounds. These conservative upper bounds were developed as an alternative to RH TRU waste canister headspace gas sampling and analysis. The methodology used to perform the calculations used to evaluate VOC emissions from emplaced RH TRU waste canisters applied the same equations as those used to evaluate VOC emissions in the original HWFP application.

  8. Stored Transuranic Waste Management Program at the Idaho National Engineering Laboratory

    SciTech Connect

    Clements, T.L.

    1996-04-01

    Since 1970, INEL has provided interim storage capacity for transuranic (TRU)-contaminated wastes generated by activities supporting US national defense needs. About 60% of the nation`s current inventory of TRU-contaminated waste is stored at INEL, awaiting opening of the Waste Isolation Pilot Plant (WIPP), the designated federal repository. A number of activities are currently underway for enhancing current management capabilities, conducting projects that support local and national TRU management activities, and preparing for production-level waste retrieval, characterization, examination, certification, and shipment of untreated TRU waste to WIPP in April 1998. Implementation of treatment capability is planned in 2003 to achieve disposal of all stored TRU-contaminated waste by a target date of December 31, 2015, but no later than December 31, 2018.

  9. WRAP Module 1 sampling strategy and waste characterization alternatives study

    SciTech Connect

    Bergeson, C.L.

    1994-09-30

    The Waste Receiving and Processing Module 1 Facility is designed to examine, process, certify, and ship drums and boxes of solid wastes that have a surface dose equivalent of less than 200 mrem/h. These wastes will include low-level and transuranic wastes that are retrievably stored in the 200 Area burial grounds and facilities in addition to newly generated wastes. Certification of retrievably stored wastes processing in WRAP 1 is required to meet the waste acceptance criteria for onsite treatment and disposal of low-level waste and mixed low-level waste and the Waste Isolation Pilot Plant Waste Acceptance Criteria for the disposal of TRU waste. In addition, these wastes will need to be certified for packaging in TRUPACT-II shipping containers. Characterization of the retrievably stored waste is needed to support the certification process. Characterization data will be obtained from historical records, process knowledge, nondestructive examination nondestructive assay, visual inspection of the waste, head-gas sampling, and analysis of samples taken from the waste containers. Sample characterization refers to the method or methods that are used to test waste samples for specific analytes. The focus of this study is the sample characterization needed to accurately identify the hazardous and radioactive constituents present in the retrieved wastes that will be processed in WRAP 1. In addition, some sampling and characterization will be required to support NDA calculations and to provide an over-check for the characterization of newly generated wastes. This study results in the baseline definition of WRAP 1 sampling and analysis requirements and identifies alternative methods to meet these requirements in an efficient and economical manner.

  10. RESULTS OF THE PERFORMANCE ASSESSMENT FOR THE CLASSIFIED TRANSURANIC WASTES DISPOSED AT THE NEVADA TEST SITE

    SciTech Connect

    J. COCHRAN; ET AL

    2001-02-01

    Most transuranic (TRU) wastes are destined for the Waste Isolation Pilot Plant (WIPP). However, the TRU wastes from the cleanup of US nuclear weapons accidents are classified for national security reasons and cannot be disposed in WIPP. The US Department of Energy (DOE) sought an alternative disposal method for these ''special case'' TRU wastes and from 1984 to 1987, four Greater Confinement Disposal (GCD) boreholes were used to place these special case TRU wastes a minimum of 21 m (70 ft) below the land surface and a minimum of 200 m (650 ft) above the water table. The GCD boreholes are located in arid alluvium at the DOE's Nevada Test Site (NTS). Because of state regulatory concerns, the GCD boreholes have not been used for waste disposal since 1989. DOE requires that TRU waste disposal facilities meet the US Environmental Protection Agency's (EPA's) requirements for disposal of TRU wastes, which are contained in 40 CFR 191. This EPA standard sets a number of requirements, including probabilistic limits on the cumulative releases of radionuclides to the accessible environment for 10,000 years. The DOE Nevada Operations Office (DOE/NV) has contracted with Sandia National Laboratories (Sandia) to conduct a performance assessment (PA) to determine if the TRU waste emplaced in the GCD boreholes complies with the EPA's requirements. Sandia has completed the PA using all available information and an iterative PA methodology. This paper overviews the PA of the TRU wastes in the GCD boreholes [1]. As such, there are few cited references in this paper and the reader is referred to [1] and [2] for references. The results of the PA are that disposal of TRU wastes in the GCD boreholes easily complies with the EPA's 40 CFR 191 safety standards for disposal of TRU wastes. The PA is undergoing a DOE Headquarters (DOE/HQ) peer review, and the final PA will be released in FY2001 or FY2002.

  11. Nonradioactive air emissions notice of construction for the Waste Receiving And Processing facility

    SciTech Connect

    Not Available

    1993-02-01

    The mission of the Waste Receiving And Processing (WRAP) Module 1 facility (also referred to as WRAP 1) is to examine assay, characterize, treat, and repackage solid radioactive and mixed waste to enable permanent disposal of the wastes in accordance with all applicable regulations. WRAP 1 will contain equipment and facilities necessary for non-destructive examination (NDE) of wastes and to perform a non-destructive examination assay (NDA) of the total radionuclide content of the wastes, without opening the outer container (e.g., 55-gal drum). WRAP 1 will also be equipped to open drums which do not meet waste acceptance and shipping criteria, and to perform limited physical treatment of the wastes to ensure that storage, shipping, and disposal criteria are met. The solid wastes to be handled in the WRAP 1 facility include low level waste (LLW), transuranic (TRU) waste, and transuranic and low level mixed wastes (LLMW). The WRAP 1 facility will only accept contact handler (CH) waste containers. A Best Available Control Technology for Toxics (TBACT) assessment has been completed for the WRAP 1 facility (WHC 1993). Because toxic emissions from the WRAP 1 facility are sufficiently low and do not pose any health or safety concerns to the public, no controls for volatile organic compounds (VOCs), and installation of HEPA filters for particulates satisfy TBACT for the facility.

  12. Solid Waste Processing Center Primary Opening Cells Systems, Equipment and Tools

    SciTech Connect

    Bailey, Sharon A.; Baker, Carl P.; Mullen, O Dennis; Valdez, Patrick LJ

    2006-04-17

    This document addresses the remote systems and design integration aspects of the development of the Solid Waste Processing Center (SWPC), a facility to remotely open, sort, size reduce, and repackage mixed low-level waste (MLLW) and transuranic (TRU)/TRU mixed waste that is either contact-handled (CH) waste in large containers or remote-handled (RH) waste in various-sized packages.

  13. 76 FR 62062 - Proposed Approval of the Central Characterization Project's Remote-Handled Transuranic Waste...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-06

    ... addition, RH containers with different AK pedigree and new or different radionuclide scaling factors that... radioactive, remote-handled (RH), transuranic (TRU) waste characterization program implemented by the Central... Compliance Criteria, EPA evaluated the characterization of RH TRU debris waste from SNL-CCP during...

  14. WIPP Remote Handled Waste Facility: Performance Dry Run Operations

    SciTech Connect

    Burrington, T. P.; Britain, R. M.; Cassingham, S. T.

    2003-02-24

    The Remote Handled (RH) TRU Waste Handling Facility at the Waste Isolation Pilot Plant (WIPP) was recently upgraded and modified in preparation for handling and disposal of RH Transuranic (TRU) waste. This modification will allow processing of RH-TRU waste arriving at the WIPP site in two different types of shielded road casks, the RH-TRU 72B and the CNS 10-160B. Washington TRU Solutions (WTS), the WIPP Management and Operation Contractor (MOC), conducted a performance dry run (PDR), beginning August 19, 2002 and successfully completed it on August 24, 2002. The PDR demonstrated that the RHTRU waste handling system works as designed and demonstrated the handling process for each cask, including underground disposal. The purpose of the PDR was to develop and implement a plan that would define in general terms how the WIPP RH-TRU waste handling process would be conducted and evaluated. The PDR demonstrated WIPP operations and support activities required to dispose of RH-TRU waste in the WIPP underground.

  15. Acceptable knowledge document for INEEL stored transuranic waste -- Rocky Flats Plant waste. Revision 2

    SciTech Connect

    1998-01-23

    This document and supporting documentation provide a consistent, defensible, and auditable record of acceptable knowledge for waste generated at the Rocky Flats Plant which is currently in the accessible storage inventory at the Idaho National Engineering and Environmental Laboratory. The inventory consists of transuranic (TRU) waste generated from 1972 through 1989. Regulations authorize waste generators and treatment, storage, and disposal facilities to use acceptable knowledge in appropriate circumstances to make hazardous waste determinations. Acceptable knowledge includes information relating to plant history, process operations, and waste management, in addition to waste-specific data generated prior to the effective date of the RCRA regulations. This document is organized to provide the reader a comprehensive presentation of the TRU waste inventory ranging from descriptions of the historical plant operations that generated and managed the waste to specific information about the composition of each waste group. Section 2 lists the requirements that dictate and direct TRU waste characterization and authorize the use of the acceptable knowledge approach. In addition to defining the TRU waste inventory, Section 3 summarizes the historical operations, waste management, characterization, and certification activities associated with the inventory. Sections 5.0 through 26.0 describe the waste groups in the inventory including waste generation, waste packaging, and waste characterization. This document includes an expanded discussion for each waste group of potential radionuclide contaminants, in addition to other physical properties and interferences that could potentially impact radioassay systems.

  16. Transuranic waste detection by photon interrogation and on-line delayed neutron counting

    NASA Astrophysics Data System (ADS)

    Lyoussi, A.; Romeyer-Dherbey, J.; Jallu, F.; Payan, E.; Buisson, A.; Nurdin, G.; Allano, J.

    2000-02-01

    A comprehensive program is currently in progress at several laboratories for the development of sensitive, practical, non-destructive assay techniques for the quantification of low-level transuranics (TRUs) in bulk solid wastes. This paper describes the method being developed to assay high density TRU waste packages using photon interrogation. The system uses a pulsed electron beam from an electron linear accelerator to produce high-energy photon bursts from a metallic converter. The photons induce fissions in a TRU waste package which is inside an original neutron separating and counting cavity (NS2C). When fission is induced in trace amounts of TRU contaminants in waste material, it provides “signatures” from fission products that can be used to assay the material before disposal. We give here the results from counting photofission-induced delayed neutrons from 239Pu, 235U and 238U in sample matrices. We counted delayed neutrons emitted after each pulse of the LINAC by using the sequential photon interrogation and neutron counting signatures (SPHINCS) technique which had been developed in the present framework. The SPHINCS method enhances the available counts by a factor of about 20 compared with the counting of delayed neutrons only, after the irradiation period. Furthermore, the use of SPHINCS measurement technique coupled with the NS2C facility improves the signal-to-noise ratio by a factor of about 30. This decreases the detection limit. The electron linear accelerator operates at 15 MeV, 140 mA, and 2.5 μs wide pulse at a 50 and 6.25 Hz rate. The dynamics of photofission and delayed neutron production, NS2C advantages and performances, use of an electron linear accelerator as a particle source, experimental and electronics details, and future experimental works are discussed.

  17. Transuranic waste detection by photon interrogation and on-line delayed neutron counting

    NASA Astrophysics Data System (ADS)

    Lyoussi, A.; Romeyer-Dherbey, J.; Jallu, F.; Payan, E.; Buisson, A.; Nurdin, G.; Allano, J.

    1999-02-01

    A comprehensive program is currently in progress at several laboratories for the development of sensitive, practical, non-destructive assay techniques for the quantification of low-level transuranics (TRUs) in bulk solid wastes. This paper describes the method being developed to assay high density TRU waste packages using photon interrogation. The system uses a pulsed electron beam from an electron linear accelerator to produce high-energy photon bursts from a metallic converter. The photons induce fissions in a TRU waste package which is inside an original neutron separating and counting cavity (NS2C). When fission is induced in trace amounts of TRU contaminants in waste material, it provides "signatures" from fission products that can be used to assay the material before disposal. We give here the results from counting photofission-induced delayed neutrons from 239Pu, 235U and 238U in sample matrices. We counted delayed neutrons emitted after each pulse of the LINAC by using the sequential photon interrogation and neutron counting signatures (SPHINCS) technique which had been developed in the present framework. The SPHINCS method enhances the available counts by a factor of about 20 compared with the counting of delayed neutrons only, after the irradiation period. Furthermore, the use of SPHINCS measurement technique coupled with the NS2C facility improves the signal-to-noise ratio by a factor of about 30. This decreases the detection limit. The electron linear accelerator operates at 15 MeV, 140 mA, and 2.5 μs wide pulse at a 50 and 6.25 Hz rate. The dynamics of photofission and delayed neutron production, NS2C advantages and performances, use of an electron linear accelerator as a particle source, experimental and electronics details, and future experimental works are discussed.

  18. Rheological evaluation of pretreated cladding removal waste

    SciTech Connect

    McCarthy, D.; Chan, M.K.C.; Lokken, R.O.

    1986-01-01

    Cladding removal waste (CRW) contains concentrations of transuranic (TRU) elements in the 80 to 350 nCi/g range. This waste will require pretreatment before it can be disposed of as glass or grout at Hanford. The CRW will be pretreated with a rare earth strike and solids removal by centrifugation to segregate the TRU fraction from the non-TRU fraction of the waste. The centrifuge centrate will be neutralized with sodium hydroxide. This neutralized cladding removal waste (NCRW) is expected to be suitable for grouting. The TRU solids removed by centrifugation will be vitrified. The goal of the Rheological Evaluation of Pretreated Cladding Removal Waste Program was to evaluate those rheological and transport properties critical to assuring successful handling of the NCRW and TRU solids streams and to demonstrate transfers in a semi-prototypic pumping environment. This goal was achieved by a combination of laboratory and pilot-scale evaluations. The results obtained during these evaluations were correlated with classical rheological models and scaled-up to predict the performance that is likely to occur in the full-scale system. The Program used simulated NCRW and TRU solid slurries. Rockwell Hanford Operations (Rockwell) provided 150 gallons of simulated CRW and 5 gallons of simulated TRU solid slurry. The simulated CRW was neutralized by Pacific Northwest Laboratory (PNL). The physical and rheological properties of the NCRW and TRU solid slurries were evaluated in the laboratory. The properties displayed by NCRW allowed it to be classified as a pseudoplastic or yield-pseudoplastic non-Newtonian fluid. The TRU solids slurry contained very few solids. This slurry exhibited the properties associated with a pseudoplastic non-Newtonian fluid.

  19. Nondestructive assay using active and passive computed tomography

    SciTech Connect

    Roberson, G. P. ,LLNL

    1998-07-01

    The United States Department of Energy (DOE) has over 600,000 transuranic (TRU) waste drums temporarily stored at nearly 40 sites within the United States. Contents of these drums must be characterized before they are transported for permanent disposal. Traditional gamma-ray methods used to characterize nuclear waste introduce errors that are related to nonuniform measurement responses associated with unknown radioactive source and matrix material distributions. These errors can be reduced by application of tomographic techniques, that measure these distributions. The Lawrence Livermore National Laboratory (LLNL) has developed two tomographic-based waste assay systems. They use external radioactive sources and tomography-protocol to map the attenuation within a waste drum as a function of mono-energetic gamma-ray energy in waste containers. Passive tomography is used to localize and identify specific radioactive waste contents within the same waste containers. Reconstruction of the passive data via the active images allows internal waste radioactivities in a drum to be corrected for any overlying heterogeneous materials, thus yielding an absolute assay of the waste radioactivities. Calibration of both systems requires only point source measurements and are independent of matrix materials. The first system is housed at LLNL and was developed to study and validate research concepts. The second system is being developed with Bioimaging Research, Inc. (BIR) and is housed within a mobile waste characterization trailer. This system has traveled to three DOE facilities to demonstrate the active and passive computed tomography capability. Both systems have participated in and successfully passed the requirements of formal DOE-sponsored intercomparison studies. The systems have measured approximately 1 to 100 grains of plutonium within a variety of waste matrix materials. Laboratory and field results from these two systems over the past several years show that both systems

  20. T-Rex system for operation in TRU, LLW, and hazardous zones

    SciTech Connect

    Kline, H.M. ); Andreychek, T.P.; Beeson, B.K. . Aero and Naval Systems)

    1993-01-01

    There are a large number of sites around the world containing TRU (transuranic) waste, low level waste (LLW), and hazardous areas that require teleoperated, heavy lift manipulators with long reach and high precision to handle the materials stored there. Teleoperation of the equipment is required to reduce the risk to operating personnel to as-low-as-reasonably-achievable (ALARA) levels. The Transuranic Storage Area Remote Excavator system (T-Rex) is designed to fill this requirement at low cost through the integration of a production front shovel excavator with a control system, local and remote operator control stations, a closed-circuit television system (CCTV), multiple end effectors and a quick-change system. This paper describes the conversion of an off-the-shelf excavator with a hydraulic control system, the integration of an onboard remote control system, vision system, and the design of a remote control station.

  1. Phase 2, Solid waste retrieval strategy

    SciTech Connect

    Johnson, D.M.

    1994-09-29

    Solid TRU retrieval, Phase 1 is scheduled to commence operation in 1998 at 218W-4C-T01 and complete recovery of the waste containers in 2001. Phase 2 Retrieval will recover the remaining buried TRU waste to be retrieved and provide the preliminary characterization by non-destructive means to allow interim storage until processing for disposal. This document reports on researching the characterization documents to determine the types of wastes to be retrieved and where located, waste configurations, conditions, and required methods for retrieval. Also included are discussions of wastes encompassed by Phase 2 for which there are valid reasons to not retrieve.

  2. 1994 Solid waste forecast container volume summary

    SciTech Connect

    Templeton, K.J.; Clary, J.L.

    1994-09-01

    This report describes a 30-year forecast of the solid waste volumes by container type. The volumes described are low-level mixed waste (LLMW) and transuranic/transuranic mixed (TRU/TRUM) waste. These volumes and their associated container types will be generated or received at the US Department of Energy Hanford Site for storage, treatment, and disposal at Westinghouse Hanford Company`s Solid Waste Operations Complex (SWOC) during a 30-year period from FY 1994 through FY 2023. The forecast data for the 30-year period indicates that approximately 307,150 m{sup 3} of LLMW and TRU/TRUM waste will be managed by the SWOC. The main container type for this waste is 55-gallon drums, which will be used to ship 36% of the LLMW and TRU/TRUM waste. The main waste generator forecasting the use of 55-gallon drums is Past Practice Remediation. This waste will be generated by the Environmental Restoration Program during remediation of Hanford`s past practice sites. Although Past Practice Remediation is the primary generator of 55-gallon drums, most waste generators are planning to ship some percentage of their waste in 55-gallon drums. Long-length equipment containers (LECs) are forecasted to contain 32% of the LLMW and TRU/TRUM waste. The main waste generator forecasting the use of LECs is the Long-Length Equipment waste generator, which is responsible for retrieving contaminated long-length equipment from the tank farms. Boxes are forecasted to contain 21% of the waste. These containers are primarily forecasted for use by the Environmental Restoration Operations--D&D of Surplus Facilities waste generator. This waste generator is responsible for the solid waste generated during decontamination and decommissioning (D&D) of the facilities currently on the Surplus Facilities Program Plan. The remaining LLMW and TRU/TRUM waste volume is planned to be shipped in casks and other miscellaneous containers.

  3. CsIX/TRU Grout Feasibility Study

    SciTech Connect

    S. J. Losinski; C. M. Barnes; B. K. Grover

    1998-11-01

    A settlement agreement between the Department of Energy (DOE) and the State of Idaho mandates that liquid waste now stored at the Idaho Nuclear Technology Engineering Center (INTEC - formerly the Idaho Chemical Processing Plant, ICPP) will be calcined by the end of year 2012. This study investigates an alternative treatment of the liquid waste that removes undissolved solids (UDS) by filtration and removes cesium by ion exchange followed by cement-based grouting of the remaining liquid into 55-gal drums. Operations are assumed to be from January 2008 through December 2012. The grouted waste will be contact-handled and will be shipped to the Waste Isolation Pilot Plant (WIPP) in New Mexico for disposal. The small volume of secondary wastes such as the filtered solids and cesium sorbent (resin) would remain in storage at the Idaho National Engineering and Environmental Laboratory for treatment and disposal under another project, with an option to dispose of the filtered solids as a r emote-handled waste at WIPP.

  4. Active and passive computed tomography mixed waste focus area final report

    SciTech Connect

    Roberson, G P

    1998-08-19

    The Mixed Waste Focus Area (MWFA) Characterization Development Strategy delineates an approach to resolve technology deficiencies associated with the characterization of mixed wastes. The intent of this strategy is to ensure the availability of technologies to support the Department of Energy's (DOE) mixed waste low-level or transuranic (TRU) contaminated waste characterization management needs. To this end the MWFA has defined and coordinated characterization development programs to ensure that data and test results necessary to evaluate the utility of non-destructive assay technologies are available to meet site contact handled waste management schedules. Requirements used as technology development project benchmarks are based in the National TRU Program Quality Assurance Program Plan. These requirements include the ability to determine total bias and total measurement uncertainty. These parameters must be completely evaluated for waste types to be processed through a given nondestructive waste assay system constituting the foundation of activities undertaken in technology development projects. Once development and testing activities have been completed, Innovative Technology Summary Reports are generated to provide results and conclusions to support EM-30, -40, or -60 end user/customer technology selection. The Active and Passive Computed Tomography non-destructive assay system is one of the technologies selected for development by the MWFA. Lawrence Livermore National Laboratory's (LLNL) is developing the Active and Passive Computed Tomography (A&PCT) nondestructive assay (NDA) technology to identify and accurately quantify all detectable radioisotopes in closed containers of waste. This technology will be applicable to all types of waste regardless of .their classification; low level, transuranic or provide results and conclusions to support EM-30, -40, or -60 end user/customer technology selection. The Active and Passive Computed Tomography non

  5. Validation of Non-Invasive Waste Assay System (Gamma Box Counter) Performance at AECL Whiteshell Laboratories - 13136

    SciTech Connect

    Attas, E.M.; Bialas, E.; Rhodes, M.J.

    2013-07-01

    Low-level radioactive waste (LLW) in solid form, resulting from decommissioning and operations activities at AECL's Whiteshell Laboratories (WL), is packaged in B-25 and B-1000 standard waste containers and characterized before it is shipped to an on-site interim storage facility, pending AECL decisions on long term management of its LLW. Assay of the waste packages before shipment contributes to an inventory of the interim storage facility and provides data to support acceptance at a future repository. A key characterization step is a gamma spectrometric measurement carried out under standard conditions using an automated, multi-detector Waste Assay System (WAS), purchased from Antech Corporation. A combination of ORTEC gamma acquisition software and custom software is used in this system to incorporate multiple measurements from two collimated high-resolution detectors. The software corrects the intensities of the gamma spectral lines for geometry and attenuation, and generates a table of calculated activities or limits of detection for a user-defined list of radioisotopes that may potentially be present. Validation of WAS performance was a prerequisite to routine operation. Documentation of the validation process provides assurance of the quality of the results produced, which may be needed one or two decades after they were generated. Aspects of the validation included setting up a quality control routine, measurements of standard point sources in reproducible positions, study of the gamma background, optimization of user-selectable software parameters, investigation of the effect of non-uniform distribution of materials and radionuclides, and comparison of results with measurements made using other gamma detector systems designed to assay bulk materials. The following key components of the validation process have been established. A daily quality control routine has been instituted, to verify stability of the gamma detector operation and the background levels

  6. Waste acceptance criteria for the Waste Isolation Pilot Plant. Revision 4

    SciTech Connect

    Not Available

    1991-12-01

    This Revision 4 of the Waste Acceptance Criteria (WAC), WIPP-DOE-069, identifies and consolidates existing criteria and requirements which regulate the safe handling and preparation of Transuranic (TRU) waste packages for transportation to and emplacement in the Waste Isolation Pilot Plant (WIPP). This consolidation does not invalidate any existing certification of TRU waste to the WIPP Operations and Safety Criteria (Revision 3 of WIPP-DOE--069) and/or Transportation: Waste Package Requirements (TRUPACT-II Safety Analysis Report for Packaging [SARP]). Those documents being consolidated, including Revision 3 of the WAC, currently support the Test Phase.

  7. Room closure response to gas generation and mechanical strength of different waste forms in a bedded salt repository

    SciTech Connect

    Mendenhall, F.T.; Stone, C.M.

    1993-05-01

    Finite element calculations of the porosity history of a nuclear waste disposal room in a bedded salt formation have been completed. The analyses include an elastic/secondary creep model for the host halite and a nonlinear consolidation model for the crushed salt backfill. Separate gas generation and constitutive models were used for three distinct waste forms, (1) unaltered defense related CH-TRU waste, (2) shredded and cemented CH-TRU waste, and (3) incinerated and vitrified CH-TRU waste. Solutions were determined for a 2000 year time period starting from the decommissioning of the repository. The resulting room porosities varied from roughly 55% to less than 10%.

  8. The Effect of Congress' Mandate to Create Greater Efficiencies in the Characterization of Transuranic Waste through the Waste Isolation Pilot Plant (WIPP) Hazardous Waste Facility Permit

    SciTech Connect

    Johnson, G.J.; Kehrman, R.F.

    2008-07-01

    Effective December 1, 2003, the U.S. Congress directed the Department of Energy (DOE) to file a permit modification request with the New Mexico Environment Department (NMED) to amend the Hazardous Waste Facility Permit (hereinafter 'the Permit') at the Waste Isolation Pilot Plant (WIPP). This legislation, Section 311 of the 2004 Energy and Water Development Appropriations Act, was designed to increase efficiencies in Transuranic (TRU) waste characterization processes by focusing on only those activities necessary to characterize waste streams, while continuing to protect human health and the environment. Congressionally prescribed changes would impact DOE generator site waste characterization programs and waste disposal operations at WIPP. With this legislative impetus, in early 2004 the DOE and Washington TRU Solutions (WTS), co-permittee under the Permit, submitted a permit modification request to the NMED pursuant to Section 311. After a lengthy process, including extensive public and other stakeholder input, the NMED granted the Permittees' request in October 2006, as part of a modification authorizing disposal of Remote-Handled (RH) TRU waste at WIPP. In conclusion: Implementation of the Permit under the revised Section 311 provisions is still in its early stages. Data are limited, as noted above. In view of these limited data and fluctuations in waste feed due to varying factors, at the current time it is difficult to determine with accuracy the impacts of Section 311 on the costs of characterizing TRU waste. It is safe to say, however, that the there have been many positive impacts flowing from Section 311. The generator sites now have more flexibility in characterizing waste. Also, RH TRU waste is now being disposed at WIPP - which was not possible before the 2006 Permit modification. As previously noted, the RH modification was approved at the same time as the Section 311 modification. Had the Section 311 changes not been implemented, RH TRU waste may not

  9. Apparatus and method for quantitative assay of samples of transuranic waste contained in barrels in the presence of matrix material

    SciTech Connect

    Caldwell, J.T.; Herrera, G.C.; Hastings, R.D.; Shunk, E.R.; Kunz, W.E.

    1987-08-28

    Apparatus and method for performing corrections for matrix material effects on the neutron measurements generated from analysis of transuranic waste drums using the differential-dieaway technique. By measuring the absorption index and the moderator index for a particular drum, correction factors can be determined for the effects of matrix materials on the ''observed'' quantity of fissile and fertile material present therein in order to determine the actual assays thereof. A barrel flux monitor is introduced into the measurement chamber to accomplish these measurements as a new contribution to the differential-dieaway technology. 9 figs.

  10. Apparatus and method for quantitative assay of samples of transuranic waste contained in barrels in the presence of matrix material

    DOEpatents

    Caldwell, J.T.; Herrera, G.C.; Hastings, R.D.; Shunk, E.R.; Kunz, W.E.

    1987-08-28

    Apparatus and method for performing corrections for matrix material effects on the neutron measurements generated from analysis of transuranic waste drums using the differential-dieaway technique. By measuring the absorption index and the moderator index for a particular drum, correction factors can be determined for the effects of matrix materials on the ''observed'' quantity of fissile and fertile material present therein in order to determine the actual assays thereof. A barrel flux monitor is introduced into the measurement chamber to accomplish these measurements as a new contribution to the differential-dieaway technology. 9 figs.

  11. Waste Form Development for the Solidification of PDCF/MOX Liquid Waste Streams

    SciTech Connect

    COZZI, ALEX

    2004-02-18

    At the Savannah River Site, part of the Department of Energy's nuclear materials complex located in South Carolina, cementation has been selected as the solidification method for high-alpha and low-activity waste streams generated in the planned plutonium disposition facilities. A Waste Solidification Building (WSB) that will be used to treat and solidify three radioactive liquid waste streams generated by the Pit Disassembly and Conversion Facility) and the Mixed Oxide Fuel Fabrication Facility is in the preliminary design stage. The WSB is expected to treat a transuranic (TRU) waste stream composed primarily of americium and two low-level waste (LLW) streams. The acidic wastes will be concentrated in the WSB evaporator and neutralized in a cement head tank prior to solidification. A series of TRU mixes were prepared to produce waste forms exhibiting a range of processing and cured properties. The LLW mixes were prepared using the premix from the preferred TRU waste form. All of the waste forms tested passed the Toxicity Characteristic Leaching Procedure. After processing in the WSB, current plans are to dispose of the solidified TRU waste at the Waste Isolation Pilot Plant in New Mexico and the solidified LLW waste at an approved low-level waste disposal facility.

  12. Apparatus and method for quantitative assay of generic transuranic wastes from nuclear reactors

    DOEpatents

    Caldwell, John T.; Kunz, Walter E.; Atencio, James D.

    1984-01-01

    A combination of passive and active neutron measurements which yields quantitative information about the isotopic composition of transuranic wastes from nuclear power or weapons material manufacture reactors is described. From the measurement of prompt and delayed neutron emission and the incidence of two coincidentally emitted neutrons from induced fission of fissile material in the sample, one can quantify .sup.233 U, .sup.235 U and .sup.239 Pu isotopes in waste samples. Passive coincidence counting, including neutron multiplicity measurement and determination of the overall passive neutron flux additionally enables the separate quantitative evaluation of spontaneous fission isotopes such as .sup.240 Pu, .sup.244 Cm and .sup.252 Cf, and the spontaneous alpha particle emitter .sup.241 Am. These seven isotopes are the most important constituents of wastes from nuclear power reactors and once the mass of each isotope present is determined by the apparatus and method of the instant invention, the overall alpha particle activity can be determined to better than 1 nCi/g from known radioactivity data. Therefore, in addition to the quantitative analysis of the waste sample useful for later reclamation purposes, the alpha particle activity can be determined to decide whether "permanent" low-level burial is appropriate for the waste sample.

  13. Apparatus and method for quantitative assay of generic transuranic wastes from nuclear reactors

    DOEpatents

    Caldwell, J.T.; Kunz, W.E.; Atencio, J.D.

    1982-03-31

    A combination of passive and active neutron measurements which yields quantitative information about the isotopic composition of transuranic wastes from nuclear power or weapons material manufacture reactors is described. From the measurement of prompt and delayed neutron emission and the incidence of two coincidentally emitted neutrons from induced fission of fissile material in the sample, one can quantify /sup 233/U, /sup 235/U and /sup 239/Pu isotopes in waste samples. Passive coincidence counting, including neutron multiplicity measurement and determination of the overall passive neutron flux additionally enables the separate quantitative evaluation of spontaneous fission isotopes such as /sup 240/Pu, /sup 244/Cm and /sup 252/Cf, and the spontaneous alpha particle emitter /sup 241/Am. These seven isotopes are the most important constituents of wastes from nuclear power reactors and once the mass of each isotope present is determined by the apparatus and method of the instant invention, the overall alpha particle activity can be determined to better than 1 nCi/g from known radioactivity data. Therefore, in addition to the quantitative analysis of the waste sample useful for later reclamation purposes, the alpha particle activity can be determined to decide whether permanent low-level burial is appropriate for the waste sample.

  14. Low Level and Transuranic Waste Segregation and Low Level Waste Characterization at the 200 Area of the Hanford Site - 12424

    SciTech Connect

    Donohoue, Tom; Martin, E. Ray; Mason, John A.; Blackford, Ty; Estes, Michael; Jasen, William; Cahill, Michael

    2012-07-01

    This paper describes the waste measurement and waste characterization activities carried out by ANTECH Corporation (ANTECH) and CH2M Hill Plateau Remediation Company (CHPRC) at the 200 Area of the Hanford Site under Contracts No. 22394 and No. 40245 for the US Department of Energy (DOE). These include Low Level Waste (LLW) and Transuranic (TRU) Waste segregation and LLW characterization for both 55-gallon (200-litre) drums with gross weight up to 454 kg and 85-gallon over-pack drums. In order to achieve efficient and effective waste drum segregation and assay, ANTECH deployed an automated Gamma Mobile Assay Laboratory (G-MAL) at the trench face in both 200 Area West and East. The unit consists of a modified 40 foot ISO shipping container with an automatic flow through roller conveyor system with internal drum weigh scale, four measurement and drum rotation positions, and four high efficiency high purity Germanium (HPGe) detectors with both detector and shadow shields. The unit performs multiple far-field measurements and is able to segregate drums at levels well below 100 nCi/g. The system is sufficiently sensitive that drums, which are classified as LLW, are characterized at measurement levels that meet the Environmental Restoration Disposal Facility (ERDF) Waste Acceptance Criteria (WAC). With measurement times of between 20 and 30 minutes the unit can classify and characterize over 40 drums in an 8-hour shift. The system is well characterized with documented calibrations, lower limits of detection (LLD) and total measurement uncertainty. The calibrations are confirmed and verified using nationally traceable standards in keeping with the CHPRC measurement requirements. The performance of the system has been confirmed and validated throughout the measurement process by independent CHPRC personnel using traceable standards. All of the measurement and maintenance work has been conducted during the period under a Quality Assurance Plan (QAP) compliant with the

  15. Advanced Safeguards Approaches for New TRU Fuel Fabrication Facilities

    SciTech Connect

    Durst, Philip C.; Ehinger, Michael H.; Boyer, Brian; Therios, Ike; Bean, Robert; Dougan, A.; Tolk, K.

    2007-12-15

    This second report in a series of three reviews possible safeguards approaches for the new transuranic (TRU) fuel fabrication processes to be deployed at AFCF – specifically, the ceramic TRU (MOX) fuel fabrication line and the metallic (pyroprocessing) line. The most common TRU fuel has been fuel composed of mixed plutonium and uranium dioxide, referred to as “MOX”. However, under the Advanced Fuel Cycle projects custom-made fuels with higher contents of neptunium, americium, and curium may also be produced to evaluate if these “minor actinides” can be effectively burned and transmuted through irradiation in the ABR. A third and final report in this series will evaluate and review the advanced safeguards approach options for the ABR. In reviewing and developing the advanced safeguards approach for the new TRU fuel fabrication processes envisioned for AFCF, the existing international (IAEA) safeguards approach at the Plutonium Fuel Production Facility (PFPF) and the conceptual approach planned for the new J-MOX facility in Japan have been considered as a starting point of reference. The pyro-metallurgical reprocessing and fuel fabrication process at EBR-II near Idaho Falls also provided insight for safeguarding the additional metallic pyroprocessing fuel fabrication line planned for AFCF.

  16. RCRA Part B Permit Application for the Idaho National Engineering Laboratory - Volume 5 Radioactive Waste Management Complex

    SciTech Connect

    Pamela R. Cunningham

    1992-07-01

    This section of the Radioactive Waste Management Complex (RWMC) Part B permit application describes the waste characteristics Of the transuranic (TRU) mixed wastes at the RWMC waste management units to be permitted: the Intermediate-Level Transuranic Storage Facility (ILTSF) and the Waste Storage Facility (WSF). The ILTSF is used to store radioactive remote-handled (RH) wastes. The WSF will be used to store radioactive contact-handled (CH) wastes. The Transuranic Storage Area (TSA) was established at the RWMC to provide interim storage of TRU waste. Department of Energy (DOE) Order 5820.2A defines TRU waste as waste contaminated with alpha-emitting transuranium radionuclides with half-lives greater than 20 years in concentrations greater than 100 nanocuries per gram (nCi/g) o f waste material. The TSA serves generators both on and off the Idaho National Engineering Laboratory (INEL). The ILTSF is located at the TSA, and the WSF will be located there also. Most of the wastes managed at the TSA are mixed wastes, which are radioactive wastes regulated under the Atomic Energy Act (AEA) that also contain hazardous materials regulated under the Resource Conservation and Recovery Act (RCRA) and the Idaho Hazardous Waste Management Regulations. These wastes include TRU mixed wastes and some low-level mixed wastes. Accordingly, the TSA is subject to the permitting requirements of RCRA and the Idaho Administrative Procedures Act (IDAPA). Prior to 1982, DOE orders defined TRU wastes as having transuranium radionuclides in concentrations greater than 10 nCi/g, The low-level mixed wastes managed at the TSA are those wastes with 10 to 100 nCi/g of TRU radionuclides that prior to 1982 were considered TRU waste.

  17. Integrated ecological hazard assessment of waste site soil extracts using FETAX and short-term fathead minnow teratogenesis assay

    SciTech Connect

    Fort, D.J.; Stover, E.L.; Bantle, J.A.

    1996-12-31

    Frog Embryo Teratogenesis Assay-Xenopus (FETAX) is a 96-h whole embryo-larval assay designed to detect environmental developmental toxicants for use in ecological hazard assessment. FETAX offers several advantages in integrated biological hazard assessment including, time- and cost-effectiveness, technical ease, and versatility. FETAX has undergone extensive intra- and more recently interlaboratory validation with known mammalian teratogens and non-teratogens. Ecological hazard evaluations of contaminated sediments, waste site soils, and complex surface and groundwaters have also been performed. An integrated hazard assessment study using FETAX, the conventional, Pimephales promelas 7-d teratogenecity test, and an abbreviated P. promelas teratogenecity test utilizing the general FETAX protocol was conducted with specific reference toxicants and aqueous extracts of contaminated hazardous waste site soils. Results from the studies indicated that FETAX can be used as a component of a battery of bioassays designed to assess potential ecological hazard. Furthermore, the generalized FETAX protocol may be useful with other species in evaluating developmental toxicity hazard.

  18. What level of estrogenic activity determined by in vitro assays in municipal waste waters can be considered as safe?

    PubMed

    Jarošová, Barbora; Bláha, Luděk; Giesy, John P; Hilscherová, Klára

    2014-03-01

    In vitro assays are broadly used tools to evaluate the estrogenic activity in Waste Water Treatment Plant (WWTP) effluents and their receiving rivers. Since potencies of individual estrogens to induce in vitro and in vivo responses can differ it is not possible to directly evaluate risks based on in vitro measures of estrogenic activity. Estrone, 17beta-estradiol, 17alfa-ethinylestradiol and to some extent, estriol have been shown to be responsible for the majority of in vitro estrogenic activity of municipal WWTP effluents. Therefore, in the present study safe concentrations of Estrogenic Equivalents (EEQs-SSE) in municipal WWTP effluents were derived based on simplified assumption that the steroid estrogens are responsible for all estrogenicity determined with particular in vitro assays. EEQs-SSEs were derived using the bioassay and testing protocol-specific in vitro potencies of steroid estrogens, in vivo predicted no effect concentration (PNECs) of these compounds, and their relative contributions to the overall estrogenicity detected in municipal WWTP effluents. EEQs-SSEs for 15 individual bioassays varied from 0.1 to 0.4ng EEQ/L. The EEQs-SSEs are supposed to be increased by use of location-specific dilution factors of WWTP effluents entering receiving rivers. They are applicable to municipal wastewater and rivers close to their discharges, but not to industrial waste waters. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Calibration and operation of the PNL Barrel Assayer

    SciTech Connect

    Arthur, R J

    1991-07-01

    Pacific Northwest Laboratory operates a Barrel Assayer to measure the radionuclide content of 208-liter waste drums. This mobile apparatus is designed to provide quantitative information on each radioisotope in a drum and to recognize and locate hot spots within the drum. A lead-collimated intrinsic-germanium detector mounted on a moveable platform vertically scans a rotating drum for gamma-ray activity while 62 stationary {sup 10}BF{sub 3} tubes measure neutrons emitted by transuranic isotopes within the waste. Several approaches have been used to document the controls under which the Barrel Assayer has been operated from February 1989 through December 1990. Resin-filled 208-1 calibration barrels containing known quantities of {sup 60}Co, {sup 137}Cs, and {sup 134}Cs were measured by the Barrel Assayer and found to be well within 25% of the known values. A thorium nitrate standard that served as the secondary, or field, standard verified that the detector has been within calibration during the period from February 1989 through December 1990. In previous testing, 23 waste drums were assayed at several commercial nuclear power plants. Subsequently, aliquots from the top, middle, and bottom of the barrels were analyzed. The ratio of grab-sample concentration to direct-assay concentration averaged {minus}1.6 for one plant and +1.3 for another. Results using the Barrel Assayer were also comparable to those obtained using Safeguards Security's Segmented Gamma-ray Scanner (SGS) system in a cross-calibration experiment performed by a third party on several drums containing TRU wastes. 6 refs., 6 figs., 9 tabs.

  20. Safer Transportation and Disposal of Remote Handled Transuranic Waste - 12033

    SciTech Connect

    Rojas, Vicente; Timm, Christopher M.; Fox, Jerry V.

    2012-07-01

    Since disposal of remote handled (RH) transuranic (TRU) waste at the Waste Isolation Pilot Plant (WIPP) began in 2007, the Department of Energy (DOE) has had difficulty meeting the plans and schedule for disposing this waste. PECOS Management Services, Inc. (PECOS) assessed the feasibility of proposed alternate RH-TRU mixed waste containerisation concepts that would enhance the transportation rate of RH-TRU waste to WIPP and increase the utilization of available WIPP space capacity for RH-TRU waste disposal by either replacing or augmenting current and proposed disposal methods. In addition engineering and operational analyses were conducted that addressed concerns regarding criticality, heat release, and worker exposure to radiation. The results of the analyses showed that the concept, development, and use of a concrete pipe based design for an RH-TRU waste shipping and disposal container could be potentially advantageous for disposing a substantial quantity of RHTRU waste at WIPP in the same manner as contact-handled RH waste. Additionally, this new disposal method would eliminate the hazard associated with repackaging this waste in other containers without the requirement for NRC approval for a new shipping container. (authors)

  1. Experimental and simulated studies for the calibration of a radioactive waste assay system

    NASA Astrophysics Data System (ADS)

    Toma, M.; Sima, O.; Olteanu, C.

    2007-09-01

    The assessment of a radioactive waste drum is generally difficult due to its high volume, the complex and usually unknown distribution of the waste in the drum and its high self-attenuation. To solve these problems, a complex calibration of the system is required. An experimental calibration using the shell-sources method was performed in order to determine the efficiency appropriate for a uniformly distributed source. For this purpose, a calibration drum filled with Portland cement and provided with seven tubes, placed at different distances from its center was used. Monte Carlo calculations using the GESPECOR software were carried out in order to complement experimental calibration. Thus, efficiency values for different geometries were obtained and compared with the experimental values.

  2. Methods of Reducing Bias in Combined Thermal/Epithermal Neutron (CTEN) Assays of Heterogeneous Waste

    SciTech Connect

    Estep, R.J.; Melton, S.; Miko, D.

    1998-11-17

    We examined the effectiveness of two different methods for correcting CTEN passive and active assays for bias due to variations in the source position in different drum types. Both use the same drum-averaged correction determined from a neural network trained to active flux monitor ratios as a starting point. One method then uses a neural network to obtain a spatial correction factor sensitive to the source location. The other method uses emission tomography. Both methods were found to give significantly improved assay accuracy over the drum-averaged correction, although more study is needed to determine which method works better.

  3. Radioactive mixed waste disposal

    SciTech Connect

    Jasen, W.G.; Erpenbeck, E.G.

    1993-02-01

    Various types of waste have been generated during the 50-year history of the Hanford Site. Regulatory changes in the last 20 years have provided the emphasis for better management of these wastes. Interpretations of the Atomic Energy Act of 1954 (AEA), the Resource Conservation and Recovery Act of 1976 (RCRA), and the Hazardous and Solid Waste Amendments (HSWA) have led to the definition of radioactive mixed wastes (RMW). The radioactive and hazardous properties of these wastes have resulted in the initiation of special projects for the management of these wastes. Other solid wastes at the Hanford Site include low-level wastes, transuranic (TRU), and nonradioactive hazardous wastes. This paper describes a system for the treatment, storage, and disposal (TSD) of solid radioactive waste.

  4. HWVP submerged bed scrubber waste treatment by ion exchange at high pH

    SciTech Connect

    Bray, L.A.; Carson, K.J.; Elovich, R.J.; Eakin, D.E.

    1996-03-01

    The Hanford Waste Vitrification Plant (HWVP) is expected to produce aqueous waste streams that will require further processing for cesium, strontium, and transuranic (TRU) removal prior to incorporation into grout. Fluor Daniel, Inc. has recommended that zeolite be added to these waste streams for adsorption of cesium (Cs) and strontium (Sr) following pH adjustment by sodium hydroxide (NAOH) addition. Filtration will then used to remove the TRU elements associated with the process solids and the zeolite containing the Cs and Sr.

  5. Density-functional study of U-TRU-Zr and U-TRU-Mo alloys

    NASA Astrophysics Data System (ADS)

    Landa, Alexander; Soderlind, Per; Turchi, Patrice

    2013-03-01

    The U-Zr and U-Mo alloys proved to be very promising fuels for liquid metal fast breeder reactors. The optimal composition of these alloys is determined from the condition that the fuel could remain stable in the bcc phase (γ-U) in the temperature range of stability of α-U phase. In other words, both Zr and Mo play a role of `` γ-stabilizers'' helping to keep U in the metastable bcc phase upon cooling. In the present study we perform KKR-ASA-CPA and EMTO-CPA calculations of the ground state properties of γ-U-Zr and γ-U-Mo alloys and compare their heats of formation with CALPHAD assessments. Though the U-Zr and U-Mo alloys can be used as nuclear fuels, a fast rector operation on a closed fuel cycle will, due to the nuclear reactions, contain significant amount of TRU elements (Np, Pu, and Am). Above mentioned density-functional theory techniques are extended to study ground-state properties of the bcc-based X-Zr and X-Mo (X = Np, Pu, Am) solid solutions. We discuss how the heat of formation correlates with the charge transfer between the alloy components, and how magnetism influences the deviation from Vegard's law for the equilibrium atomic volume. This work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Work at LLNL was funded by the Laboratory Directed Research and Development Program under project tracking code 12-SI-008.

  6. Progress and Lessons Learned in Transuranic Waste Disposition at The Department of Energy's Advanced Mixed Waste Treatment Project

    SciTech Connect

    J.D. Mousseau; S.C. Raish; F.M. Russo

    2006-05-18

    This paper provides an overview of the Department of Energy's (DOE) Advanced Mixed Waste Treatment Project (AMWTP) located at the Idaho National Laboratory (INL) and operated by Bechtel BWXT Idaho, LLC(BBWI) It describes the results to date in meeting the 6,000-cubic-meter Idaho Settlement Agreement milestone that was due December 31, 2005. The paper further describes lessons that have been learned from the project in the area of transuranic (TRU) waste processing and waste certification. Information contained within this paper would be beneficial to others who manage TRU waste for disposal at the Waste Isolation Pilot Plant (WIPP).

  7. HYDROGEN RETENTION IN METAL WASTE BOXES

    SciTech Connect

    MARUSICH, R.M.

    2004-11-18

    The Hanford Waste Management Project Master Documented Safety Analysis (MDSA) (HNF-14741,2003) identifies derived safety controls to prevent or mitigate the risks of a single- container deflagration during operations requiring moving, venting or opening transuranic (TRU)-waste containers. The issue is whether these safety controls are necessary for operations involving TRU-waste boxes that are being retrieved from burial at the Hanford Site. This paper investigates the potential for a deflagration hazard within these boxes and whether safety controls identified for drum deflagration hazards should be applied to operations involving these boxes.

  8. Advanced conceptual design report solid waste retrieval facility, phase I, project W-113

    SciTech Connect

    Smith, K.E.

    1994-03-21

    Project W-113 will provide the equipment and facilities necessary to retrieve suspect transuranic (TRU) waste from Trench 04 of the 218W-4C burial ground. As part of the retrieval process, waste drums will be assayed, overpacked, vented, head-gas sampled, and x-rayed prior to shipment to the Phase V storage facility in preparation for receipt at the Waste Receiving and Processing Facility (WRAP). Advanced Conceptual Design (ACD) studies focused on project items warranting further definition prior to Title I design and areas where the potential for cost savings existed. This ACD Report documents the studies performed during FY93 to optimize the equipment and facilities provided in relation to other SWOC facilities and to provide additional design information for Definitive Design.

  9. T-Rex system for operation in TRU, LLW, and hazardous zones

    SciTech Connect

    Kline, H.M.; Andreycheck, T.P.; Beeson, B.K.

    1995-01-01

    T-Rex stands for Transuranic Storage Area Remote Excavator that is dedicated to the retrieval of above ground waste containers and overburden at the Radioactive Waste Management Complex (RWMC) located at the Idaho National Engineering Laboratory. There are a number of sites around the world containing (transuranic) (TRU), low level (LLW), and hazardous wastes that requires teleoperated, heavy lift manipulators with long reach and high precision to handle the materials stored there. Remote operation of equipment will reduce the risk to personnel to as-low-as-reasonably-achievable (ALARA) levels. The T-Rex is designed to fulfill this requirement at relatively low cost through the integration of a production front shovel excavator with a control system, local and remote operator control stations, a closed-circuit television system (CCTV), and multiple end effectors with quick changeout capability. This paper describes the conversion of an off-the-shelf excavator to a machine utilizing a modified hydraulic system, an integrated onboard remote control system, CCTV system, collision avoidance system, and a remote control station.

  10. MSFR TRU-burning potential and comparison with an SFR

    SciTech Connect

    Fiorina, C.; Cammi, A.; Franceschini, F.; Krepel, J.

    2013-07-01

    The objective of this work is to evaluate the Molten Salt Fast Reactor (MSFR) potential benefits in terms of transuranics (TRU) burning through a comparative analysis with a sodium-cooled FR. The comparison is based on TRU- and MA-burning rates, as well as on the in-core evolution of radiotoxicity and decay heat. Solubility issues limit the TRU-burning rate to 1/3 that achievable in traditional low-CR FRs (low-Conversion-Ratio Fast Reactors). The softer spectrum also determines notable radiotoxicity and decay heat of the equilibrium actinide inventory. On the other hand, the liquid fuel suggests the possibility of using a Pu-free feed composed only of Th and MA (Minor Actinides), thus maximizing the MA burning rate. This is generally not possible in traditional low-CR FRs due to safety deterioration and decay heat of reprocessed fuel. In addition, the high specific power and the lack of out-of-core cooling times foster a quick transition toward equilibrium, which improves the MSFR capability to burn an initial fissile loading, and makes the MSFR a promising system for a quick (i.e., in a reactor lifetime) transition from the current U-based fuel cycle to a novel closed Th cycle. (authors)

  11. Cleaning up of a nuclear facility: Destocking of Pu radioactive waste and nuclear Non-Destructive Assays

    NASA Astrophysics Data System (ADS)

    Jallu, F.; Allinei, P.-G.; Bernard, Ph.; Loridon, J.; Pouyat, D.; Torreblanca, L.

    2012-07-01

    In view to clean up a nuclear facility located at the CEA, Cadarache, France, three Non Destructive Assay (NDA) methods have been combined to characterize 2714 old, 100 L radioactive waste drums produced between 1980 and 1997. The results of X-ray radiography, passive neutron measurement and gamma-ray spectrometry are used together to extract both the βγ and α activities, and the Pu mass contained in each drum. Those drums will then be re-conditioned and cemented in 870 L containers, in order to be sent to the adequate disposal or interim storage. This paper presents the principle of the three NDA methods, the dedicated measurement setups, and it gives details about the setups, which have been especially designed and developed for that application. Uncertainties are dealt with in the last part of the paper.

  12. Metrological tests of a 200 L calibration source for HPGE detector systems for assay of radioactive waste drums.

    PubMed

    Boshkova, T; Mitev, K

    2016-03-01

    In this work we present test procedures, approval criteria and results from two metrological inspections of a certified large volume (152)Eu source (drum about 200L) intended for calibration of HPGe gamma assay systems used for activity measurement of radioactive waste drums. The aim of the inspections was to prove the stability of the calibration source during its working life. The large volume source was designed and produced in 2007. It consists of 448 identical sealed radioactive sources (modules) apportioned in 32 transparent plastic tubes which were placed in a wooden matrix which filled the drum. During the inspections the modules were subjected to tests for verification of their certified characteristics. The results show a perfect compliance with the NIST basic guidelines for the properties of a radioactive certified reference material (CRM) and demonstrate the stability of the large volume CRM-drum after 7 years of operation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. UTILIZATION OF RISK-BASED METHODOLOGY AND NON-DESTRUCTIVE ASSAY TECHNOLOGIES TO CHARACTERIZE AND DISPOSITION LEGACY LOW-LEVEL RADIOACTIVE WASTE

    SciTech Connect

    Wolf, J

    2004-12-03

    A scaled risk and technology based disposition path was developed to characterize and certify Lawrence Livermore National Laboratory (LLNL) legacy waste (LW) for disposal at Envirocare of Utah and the Nevada Test Site (NTS). A combination of LLNL and commercially provided non-destructive assay (NDA) techniques were utilized to characterize waste and facilitate the safe, efficient and cost-effective characterization and disposition of 490 cubic meters of LW in Fiscal Year (FY) 2004. The approach and technologies described in this paper are adaptable to most waste characterization programs and will be utilized to meet future project milestones.

  14. Simulation studies of the response function of a radioactive waste assay system.

    PubMed

    Gurau, Daniela; Sima, Octavian

    2012-01-01

    A simulation program based on GEANT 3.21 toolkit was developed to simulate the response function of ISOCART (Ortec) gamma-ray spectrometry system applied to radioactive waste drum assessment. In view of studying the effects of possible non-homogeneous radioactivity distribution in the drum, the volume of the drum was fictitiously divided into several spatial domains. The simulation program was applied repeatedly considering each time the source distributed in another domain. In this way the expected spectra in the energy range from 50 to 2000keV as well as the full energy peak and the total efficiencies were obtained for the case when the source is distributed in each domain and also for the case when the source is uniformly distributed in the entire drum. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Characteristics of transuranic waste at Department of Energy sites

    SciTech Connect

    Jensen, R.T.; Wilkinson, F.J. III

    1983-05-01

    This document reports data and information on TRU waste from all DOE generating and storage sites. The geographical location of the sites is shown graphically. There are four major sections in this document. The first three cover the TRU waste groups known as Newly Generated, Stored, and Buried Wastes. Subsections are included under Newly Generated and Stored on contact-handled and remote-handled waste. These classifications of waste are defined, and the current or expected totals of each are given. Figure 1.3 shows the total amount of Buried and Stored TRU waste. Preparation of this document began in 1981, and most of the data are as of December 31, 1980. In a few cases data were reported to December 31, 1981, and these have been noted. The projections in the Newly Generated section were made, for the most part, at the end of 1981.

  16. The design of a high-efficiency neutron counter for waste drums to provide optimized sensitivity for plutonium assay

    SciTech Connect

    Menlove, H.O.; Beddingfield, D.H.; Pickrell, M.M.

    1997-11-01

    An advanced passive neutron counter has been designed to improve the accuracy and sensitivity for the nondestructive assay of plutonium in scrap and waste containers. The High-Efficiency Neutron Counter (HENC) was developed under a Cooperative Research Development Agreement between the Los Alamos National Laboratory and Canberra Industries. The primary goal of the development was to produce a passive assay system for 200-L drums that has detectability limits and multiplicity counting features that are superior to previous systems. A detectability limit figure of merit (FOM) was defined that included the detector efficiency, the neutron die-away time, and the detector`s active volume and density that determine the cosmic-ray background. Monte Carlo neutron calculations were performed to determine the parameters to provide an optimum FOM. The system includes the {sup 252}Cf {open_quotes}add-a-source{close_quotes} feature to improve the accuracy as well as statistical filters to reduce the cosmic-ray spallation neutron background. The final decision gave an efficiency of 32% for plutonium with a detector {sup 3}He tube volume that is significantly smaller than for previous high-efficiency systems for 200-L drums. Because of the high efficiency of the HENC, we have incorporated neutron multiplicity counting for matrix corrections for those cases where the plutonium is localized in nonuniform hydrogenous materials. The paper describes the design and performance testing of the advanced system. 5 refs., 8 figs., 3 tabs.

  17. Transporting transuranic waste to the Waste Isolation Pilot Plant: Risk and cost perspectives

    SciTech Connect

    Biwer, B. M.; Gilette, J. L.; Poch, L. A.; Suermann, J. F.

    1999-02-16

    The Waste Isolation Pilot Plant (WIPP) is an authorized US Department of Energy (DOE) research and development facility constructed near the city of Carlsbad in southeastern New Mexico. The facility is intended to demonstrate the safe disposal of transuranic (TRU) radioactive waste resulting from US defense activities. Under the WIPP Land Withdrawal Act of 1992 (LWA), federal lands surrounding the WIPP facility were withdrawn from all public use and the title of those lands was transferred to the Secretary of Energy. The DOE's TRU waste is stored, and in some cases is still being generated, at 10 large-quantity and 13 small-quantity sites across the US. After applicable certification requirements have been met, the TRU waste at these sites will be sent to the WIPP to initiate the disposal phase of the facility, which according to current planning is projected to last for approximately 35 years.

  18. Audit Report on "Waste Processing and Recovery Act Acceleration Efforts for Contact-Handled Transuranic Waste at the Hanford Site"

    SciTech Connect

    2010-05-01

    The Department of Energy's Office of Environmental Management's (EM), Richland Operations Office (Richland), is responsible for disposing of the Hanford Site's (Hanford) transuranic (TRU) waste, including nearly 12,000 cubic meters of radioactive contact-handled TRU wastes. Prior to disposing of this waste at the Department's Waste Isolation Pilot Plant (WIPP), Richland must certify that it meets WIPP's waste acceptance criteria. To be certified, the waste must be characterized, screened for prohibited items, treated (if necessary) and placed into a satisfactory disposal container. In a February 2008 amendment to an existing Record of Decision (Decision), the Department announced its plan to ship up to 8,764 cubic meters of contact-handled TRU waste from Hanford and other waste generator sites to the Advanced Mixed Waste Treatment Project (AMWTP) at Idaho's National Laboratory (INL) for processing and certification prior to disposal at WIPP. The Department decided to maximize the use of the AMWTP's automated waste processing capabilities to compact and, thereby, reduce the volume of contact-handled TRU waste. Compaction reduces the number of shipments and permits WIPP to more efficiently use its limited TRU waste disposal capacity. The Decision noted that the use of AMWTP would avoid the time and expense of establishing a processing capability at other sites. In May 2009, EM allocated $229 million of American Recovery and Reinvestment Act of 2009 (Recovery Act) funds to support Hanford's Solid Waste Program, including Hanford's contact-handled TRU waste. Besides providing jobs, these funds were intended to accelerate cleanup in the short term. We initiated this audit to determine whether the Department was effectively using Recovery Act funds to accelerate processing of Hanford's contact-handled TRU waste. Relying on the availability of Recovery Act funds, the Department changed course and approved an alternative plan that could increase costs by about $25 million

  19. T-Rex system for operation in TRU, LLW, and hazardous zones. Transuranic storage area-retrieval enclosure program

    SciTech Connect

    Kline, H.M.; Andreychek, T.P.; Beeson, B.K.

    1993-04-01

    There are a large number of sites around the world containing TRU (transuranic) waste, low level waste (LLW), and hazardous areas that require teleoperated, heavy lift manipulators with long reach and high precision to handle the materials stored there. Teleoperation of the equipment is required to reduce the risk to operating personnel to as-low-as-reasonably-achievable (ALARA) levels. The Transuranic Storage Area Remote Excavator system (T-Rex) is designed to fill this requirement at low cost through the integration of a production front shovel excavator with a control system, local and remote operator control stations, a closed-circuit television system (CCTV), multiple end effectors and a quick-change system. This paper describes the conversion of an off-the-shelf excavator with a hydraulic control system, the integration of an onboard remote control system, vision system, and the design of a remote control station.

  20. Assessment of gas flammability in transuranic waste container

    SciTech Connect

    Connolly, M.J.; Loehr, C.A.; Djordjevic, S.M.; Spangler, L.R.

    1995-12-01

    The Safety Analysis Report for the TRUPACT-II Shipping Package [Transuranic Package Transporter-II (TRUPACT-II) SARP] set limits for gas generation rates, wattage limits, and flammable volatile organic compound (VOC) concentrations in transuranic (TRU) waste containers that would be shipped to the Waste Isolation Pilot Plant (WIPP). Based on existing headspace gas data for drums stored at the Idaho National Engineering Laboratory (INEL) and the Rocky Flats Environmental Technology Site (RFETS), over 30 percent of the contact-handled TRU waste drums contain flammable VOC concentrations greater than the limit. Additional requirements may be imposed for emplacement of waste in the WIPP facility. The conditional no-migration determination (NMD) for the test phase of the facility required that flame tests be performed if significant levels of flammable VOCs were present in TRU waste containers. This paper describes an approach for investigating the potential flammability of TRU waste drums, which would increase the allowable concentrations of flammable VOCS. A flammability assessment methodology is presented that will allow more drums to be shipped to WIPP without treatment or repackaging and reduce the need for flame testing on drums. The approach includes experimental work to determine mixture lower explosive limits (MLEL) for the types of gas mixtures observed in TRU waste, a model for predicting the MLEL for mixtures of VOCS, hydrogen, and methane, and revised screening limits for total flammable VOCs concentrations and concentrations of hydrogen and methane using existing drum headspace gas data and the model predictions.

  1. Characterization of past and present waste streams from the 325 Radiochemistry Building

    SciTech Connect

    Pottmeyer, J.A.; Weyns-Rollosson, M.I.; Dicenso, K.D.; DeLorenzo, D.S.; Duncan, D.R.

    1993-12-01

    The purpose of this report is to characterize, as far as possible, the solid waste generated by the 325 Radiochemistry Building since its construction in 1953. Solid waste as defined in this document is any containerized or self-contained material that has been declared waste. This characterization is of particular interest in the planning of transuranic (TRU) waste retrieval operations including the Waste Receiving and Processing (WRAP) Facility. Westinghouse Hanford Company (Westinghouse Hanford) and Battelle Pacific Northwest Laboratory (PNL) activities at Building 325 have generated approximately 4.4% and 2.4%, respectively, of the total volume of TRU waste currently stored at the Hanford Site.

  2. Nuclear waste management. Quarterly progress report, April-June 1981

    SciTech Connect

    Chikalla, T.D.; Powell, J.A.

    1981-09-01

    Reports and summaries are presented for the following: high-level waste process development; alternative waste forms; TMI zeolite vitrification demonstration program; nuclear waste materials characterization center; TRU waste immobilization; TRU waste decontamination; krypton implantation; thermal outgassing; iodine-129 fixation; NWVP off-gas analysis; monitoring and physical characterization of unsaturated zone transport; well-logging instrumentation development; verification instrument development; mobility of organic complexes of radionuclides in soils; handbook of methods to decrease the generation of low-level waste; waste management system studies; waste management safety studies; assessment of effectiveness of geologic isolation systems; waste/rock interactions technology program; high-level waste form preparation; development of backfill materials; development of structural engineered barriers; disposal charge analysis; and analysis of spent fuel policy implementation.

  3. Cross flow filtration of Oak Ridge National Laboratory liquid low-level waste

    SciTech Connect

    Fowler, V.L.; Hewitt, J.D.

    1989-12-01

    A new method for disposal of Oak Ridge National Laboratory liquid low-level radioactive waste is being developed as an alternative to hydrofracture. The acceptability of the final waste form rests in part on the presence or absence of transuranic (TRU) isotopes. Inertial cross flow filtration was used in this study to determine the potential of this method for separation of the TRU isotopes from the bulk liquid stored in the Melton Valley Storage Tanks. 7 refs., 11 figs., 5 tabs.

  4. A national perspective: establishing and implementing a characterization program in the U.S. for remote-handled transuranic waste

    SciTech Connect

    Nelson, Roger; Harris, Alton D. III

    2007-07-01

    The U.S. Department of Energy (DOE) is responsible for waste management from nuclear weapons production and operates the Waste Isolation Pilot Plant (WIPP) for permanent disposal of defense-generated transuranic waste (TRU), as authorized by Congress in 1979. Radioactive waste in the U.S. has historically been managed in one of two ways depending on its penetrating radiation dose rate. Waste with surface dose rates above 200 milli-rem/hour (0.002 sievert/hour) and waste that has been managed remotely (remote-handled). In 1992, Congress passed the WIPP Land Withdrawal Act, which created the regulatory framework under which DOE was to operate the facility, and authorized disposal of waste up to 1,000 rem/hour (10 Sievert/hour). Subsequently, DOE submitted applications to the Environmental Protection Agency (EPA), at the Federal level, for certification to operate WIPP, and to the New Mexico Environment Department (NMED), at the State level, for a hazardous waste permit. Both applications described the characterization methods that DOE proposed to use to ensure only compliant waste was shipped to WIPP. No distinction was employed in these methods concerning the surface dose rate from the waste. During the applications review, both regulatory agencies came to the conclusion in their approval that DOE had not demonstrated that remote-handled transuranic (RH-TRU) waste could be adequately characterized. Therefore, WIPP was only granted approval to begin waste disposal operations of waste with surface dose rates less than 200 milli-rem/hour (0.002 sievert/hour) - or contact-handled transuranic (CH-TRU) waste. Emplacement of CH-TRU waste in WIPP began March 26, 1999. However, WIPP was designed for disposal of both CH- and RH-TRU waste, with the RH-TRU waste in canisters emplaced in the walls of the underground disposal rooms and CH-TRU waste in containers in the associated open drifts. Therefore, as disposal rooms filled with CH-TRU waste, the space along the walls for RH-TRU

  5. Nuclear waste management. Quarterly progress report, July-September 1980

    SciTech Connect

    Chikalla, T.D.

    1980-11-01

    Research is reported on: high-level waste immobilization, alternative waste forms, TRU waste immobilization and decontamination, krypton solidification, thermal outgassing, /sup 129/I fixation, unsaturated zone transport, well-logging instrumentation, waste management system and safety studies, effectiveness of geologic isolation systems, waste/rock interactions, engineered barriers, backfill material, spent fuel storage (criticality), barrier sealing and liners for U mill tailings, and revegetation of inactive U tailings sites. (DLC)

  6. BpTRU(tm) blood pressure monitor for use in a physician's office.

    PubMed

    Allison, C

    2006-08-01

    The BpTRU(tm) is an automated device that takes serial blood pressure (BP) measurements in a physician's office. (1) Preliminary data from non-randomized, uncontrolled trials suggest that the average of five BpTRU measurements, taken while the patient is alone, more reliably reflects "resting" BP compared to manual measurements taken with a stethoscope and sphygmomanometer. (2) BpTRU helps reduce the overestimation of BP due to improper measurement technique, or due to a patient's anxiety in a physician's presence ("white coat" effect). (3) The BpTRU device can improve hypertension management by replacing conventional manual BP measurements, which are often poorly performed and inaccurate. (4) BpTRU is more expensive than the manual manometers used in a physician's office. The serial measurement, taken in a private examining room, requires an average of six to 12 minutes, which could increase the duration of a patient's visit.

  7. The Second Opening of the Waste Isolation Pilot Plant? Review of Salient Characteristics and Unique Operational Considerations for Remote Handled Transuranic Waste

    SciTech Connect

    Anastas, G.; Walker, B.A.

    2003-02-24

    The U.S. Department of Energy (DOE) intends to dispose of remote handled (RH) transuranic (TRU) waste at the Waste Isolation Pilot Plant (WIPP) beginning in 2005. (1) Four principle regulatory agencies are involved in the process of approving the RH TRU waste activities. The DOE is responsible for operational activities. The U. S. Nuclear Regulatory Commission (NRC) approves the design and use of shipping containers. The U.S. Environmental Protection Agency (EPA) is responsible for assuring safe and environmentally effective long-term disposal of the radioactive component of the waste and operational environmental monitoring. The New Mexico Environment Department (NMED) is responsible for the handling and the disposal of the non-radioactive hazardous component of the waste. The Environmental Evaluation Group (EEG) is responsible for performing independent technical oversight of all WIPP activities, and will comment on documents and practices for the various regulated RH TRU waste activities. The DOE has already obtained the necessary approvals from the NRC, and has submitted a Class 3 Modification request to the NMED. On December 16, 2002 the DOE Carlsbad Field Office (CBFO) provided the EPA with a notice of proposed change, in accordance with 40 CFR 194.4 (b) (3), to receive and dispose of remote handled transuranic waste. (2) WIPP procedures for the management of RH TRU waste at the site are being developed. While there are no issues with current NRC Certificates of Compliance for the RH TRU waste shipping containers, it is likely that there will be some controversy over other aspects of the currently planned RH TRU waste program. These issues may include: (1) the published RH TRU waste inventory, (2) the characterization of the radionuclide portion of the waste, for which one planned method is to use dose-to-Curie conversions, and (3) the plans to use bounding estimates for the hazardous portion of the WIPP waste, rather than measuring VOCs on a container

  8. SWEPP Assay System Version 2.0 software design description

    SciTech Connect

    East, L.V.; Marwil, E.S.

    1996-08-01

    The Idaho National Engineering Laboratory (INEL) Stored Waste Examination Pilot Plant (SWEPP) operations staff use nondestructive analysis methods to characterize the radiological contents of contact-handled radioactive waste containers. Containers of waste from Rocky Flats Environmental Technology Site and other Department of Energy (DOE) sites are currently stored at SWEPP. Before these containers can be shipped to the Waste Isolation Pilot Plant (WIPP), SWEPP must verify compliance with storage, shipping, and disposal requirements. This program has been in operation since 1985 at the INEL Radioactive Waste Management Complex (RWMC). One part of the SWEPP program measures neutron emissions from the containers and estimates the mass of plutonium and other transuranic (TRU) isotopes present. A Passive/Active Neutron (PAN) assay system developed at the Los Alamos National Laboratory is used to perform these measurements. A computer program named NEUT2 was originally used to perform the data acquisition and reduction functions for the neutron measurements. This program was originally developed at Los Alamos and extensively modified by a commercial vendor of PAN systems and by personnel at the INEL. NEUT2 uses the analysis methodology outlined, but no formal documentation exists on the program itself. The SWEPP Assay System (SAS) computer program replaced the NEUT2 program in early 1994. The SAS software was developed using an `object model` approach and is documented in accordance with American National Standards Institute (ANSI) and Institute of Electrical and Electronic Engineers (IEEE) standards. The new program incorporates the basic analysis algorithms found in NEUT2. Additional functionality and improvements include a graphical user interface, the ability to change analysis parameters without program code modification, an `object model` design approach and other features for improved flexibility and maintainability.

  9. Accelerating the disposition of transuranic waste from LANL - 9495

    SciTech Connect

    Shepard, Mark D; Stiger, Susan G; Blankenhorn, James A; Rael, George J; Moody, David C

    2009-01-01

    Los Alamos National Laboratory (LANL) was established during World War II with a single mission -- to design and build an atomic bomb. In the 65 years since, nuclear weapons physics, design and engineering have been the Laboratory's primary and sustaining mission. Experimental and process operations -- and associated cleanout and upgrade activities -- have generated a significant inventory of transuranic (TRU) waste that is stored at LANL's Technical Area 54, Material Disposal Area G (MDA G). When the Waste Isolation Pilot Plant (WIPP) opened its doors in 1999, LANL's TRU inventory totaled about 10,200 m{sup 3}, with a plutonium 239-equivalent curie (PE Ci) content of approximately 250,000 curies. By December 2008, a total of about 2,300 m3 (61,000 PE Ci) had been shipped to WIPP from LANL. This has resulted in a net reduction of about 1,000 m{sup 3} of TRU inventory over that time frame. This paper presents progress in dispositioning legacy and newly-generated transuranic waste (TRU) from ongoing missions at the LANL. The plans for, and lessons learned, in dispositioning several hundred high-activity TRU waste drums are reviewed. This waste population was one of the highest risks at LANL. Technical challenges in disposition of the high-activity drums are presented. These provide a preview of challenges to be addressed in dispositioning the remaining 6,800 m{sup 3} of TRU stored above ground and 2,400 m{sup 3} of TRU waste that is 'retrievably' stored below-grade. LANL is using subcontractors for much of this work and has formed a strong partnership with WIPP and its contractor to address this cleanup challenge.

  10. Combustion and fuel loading characteristics of Hanford Site transuranic solid waste

    SciTech Connect

    Greenhalgh, W.O.

    1994-08-08

    The Waste Receiving and Processing (WRAP) Facility is being designed for construction in the north end of the Central Waste Complex. The WRAP Facility will receive, store, and process radioactive solid waste of both transuranic (TRU) and mixed waste (mixed radioactive-chemical waste) categories. Most of the waste is in 208-L (55-gal) steel drums. Other containers such as wood and steel boxes, and various sized drums will also be processed in the facility. The largest volume of waste and the type addressed in this report is TRU in 208-L (55-gal) drums that is scheduled to be processed in the Waste Receiving and Processing Facility Module 1 (WRAP 1). Half of the TRU waste processed by WRAP 1 is expected to be retrieved stored waste and the other half newly generated waste. Both the stored and new waste will be processed to certify it for permanent storage in the Waste Isolation Pilot Plant (WIPP) or disposal. The stored waste will go through a process of retrieval, examination, analysis, segregation, repackaging, relabeling, and documentation before certification and WIPP shipment. Newly generated waste should be much easier to process and certify. However, a substantial number of drums of both retrievable and newly generated waste will require temporary storage and handling in WRAP. Most of the TRU waste is combustible or has combustible components. Therefore, the presence of a substantial volume of drummed combustible waste raises concern about fire safety in WRAP and similar waste drum storage facilities. This report analyzes the fire related characteristics of the expected WRAP TRU waste stream.

  11. Resource Conservation and Recovery Act, Part B permit application [for the Waste Isolation Pilot Plant (WIPP)]. Volume 3, Chapter C, Appendix C3 (conclusion)--Chapter C, Appendix C9: Revision 3

    SciTech Connect

    Roggenthen, D. K.; McFeeters, T. L.; Nieweg, R. G.; Blakeslee, J. J.

    1993-03-01

    This volume contains appendices for the following: results of extraction procedure (EP) toxicity data analyses; summary of headspace gas analysis in Rocky Flats Plant sampling program-FY 1988; waste drum gas generation sampling program at Rocky Flats Plant during FY 1988; TRU waste sampling program waste characterization; summary of headspace gas analyses in TRU waste sampling program; summary of volatile organic compounds analyses in TRU waste sampling program; totals analysis versus toxicity characteristic leaching procedure; Waste Isolation Pilot Plant waste characterization sampling and analysis methods; Waste Isolation Pilot Plant waste characterization analytical methods; data reduction, validation and reporting; examples of waste screening checklists; and Waste Isolation Pilot Plant generator/storage site waste screening and acceptance audit program.

  12. De-Inventory Plan for Transuranic Waste Stored at Area G

    SciTech Connect

    Hargis, Kenneth Marshall; Christensen, Davis V.; Shepard, Mark D.

    2016-06-21

    This report describes the strategy and detailed work plan developed by Los Alamos National Laboratory (LANL) to disposition transuranic (TRU) waste stored at its Area G radioactive waste storage site. The focus at this time is on disposition of 3,706 m3 of TRU waste stored above grade by June 30, 2014, which is one of the commitments within the Framework Agreement: Realignment of Environmental Priorities between the Department of Energy (DOE) National Nuclear Security Administration (NNSA) and the State of New Mexico Environment Department (NMED), Reference 1. A detailed project management schedule has been developed to manage this work and better ensure that all required activities are aligned and integrated. The schedule was developed in conjunction with personnel from the NNSA Los Alamos Site Office (LASO), the DOE Carlsbad Field Office (CBFO), the Central Characterization Project (CCP), and Los Alamos National Security, LLC (LANS). A detailed project management schedule for the remainder of the above grade inventory and the below grade inventory will be developed and incorporated into the De-Inventory Plan by December 31, 2012. This schedule will also include all newly-generated TRU waste received at Area G in FYs 2012 and 2013, which must be removed by no later than December 31, 2014, under the Framework Agreement. The TRU waste stored above grade at Area G is considered to be one of the highest nuclear safety risks at LANL, and the Defense Nuclear Facility Safety Board has expressed concern for the radioactive material at risk (MAR) contained within the above grade TRU waste inventory and has formally requested that DOE reduce the MAR. A large wildfire called the Las Conchas Fire burned extensive areas west of LANL in late June and July 2011. Although there was minimal to no impact by the fire to LANL, the fire heightened public concern and news media attention on TRU waste storage at Area G. After the fire, New Mexico Governor Susana Martinez also

  13. Waste Isolation Pilot Plant Safety Analysis Report

    SciTech Connect

    1995-11-01

    The following provides a summary of the specific issues addressed in this FY-95 Annual Update as they relate to the CH TRU safety bases: Executive Summary; Site Characteristics; Principal Design and Safety Criteria; Facility Design and Operation; Hazards and Accident Analysis; Derivation of Technical Safety Requirements; Radiological and Hazardous Material Protection; Institutional Programs; Quality Assurance; and Decontamination and Decommissioning. The System Design Descriptions`` (SDDS) for the WIPP were reviewed and incorporated into Chapter 3, Principal Design and Safety Criteria and Chapter 4, Facility Design and Operation. This provides the most currently available final engineering design information on waste emplacement operations throughout the disposal phase up to the point of permanent closure. Also, the criteria which define the TRU waste to be accepted for disposal at the WIPP facility were summarized in Chapter 3 based on the WAC for the Waste Isolation Pilot Plant.`` This Safety Analysis Report (SAR) documents the safety analyses that develop and evaluate the adequacy of the Waste Isolation Pilot Plant Contact-Handled Transuranic Wastes (WIPP CH TRU) safety bases necessary to ensure the safety of workers, the public and the environment from the hazards posed by WIPP waste handling and emplacement operations during the disposal phase and hazards associated with the decommissioning and decontamination phase. The analyses of the hazards associated with the long-term (10,000 year) disposal of TRU and TRU mixed waste, and demonstration of compliance with the requirements of 40 CFR 191, Subpart B and 40 CFR 268.6 will be addressed in detail in the WIPP Final Certification Application scheduled for submittal in October 1996 (40 CFR 191) and the No-Migration Variance Petition (40 CFR 268.6) scheduled for submittal in June 1996. Section 5.4, Long-Term Waste Isolation Assessment summarizes the current status of the assessment.

  14. Nuclear waste management. Quarterly progress report, April-June 1980

    SciTech Connect

    Platt, A.M.; Powell, J.A.

    1980-09-01

    The status of the following programs is reported: high-level waste immobilization; alternative waste forms; Nuclear Waste Materials Characterization Center; TRU waste immobilization; TRU waste decontamination; krypton solidification; thermal outgassing; iodine-129 fixation; monitoring and physical characterization of unsaturated zone transport; well-logging instrumentation development; mobility of organic complexes of fission products in soils; waste management system studies; waste management safety studies; assessment of effectiveness of geologic isolation systems; waste/rock interactions technology; systems study on engineered barriers; criteria for defining waste isolation; spent fuel and fuel pool component integrity program; analysis of spent fuel policy implementation; asphalt emulsion sealing of uranium tailings; application of long-term chemical biobarriers for uranium tailings; and development of backfill material.

  15. Nuclear waste management. Quarterly progress report, October through December 1980

    SciTech Connect

    Chikalla, T.D.; Powell, J.A.

    1981-03-01

    Progress reports and summaries are presented under the following headings: high-level waste process development; alternative waste forms; nuclear waste materials characterization center; TRU waste immobilization; TRU waste decontamination; krypton solidification; thermal outgassing; iodine-129 fixation; monitoring and physical characterization of unsaturated zone transport; well-logging instrumentation development; mobility of organic complexes of radionuclides in soils; waste management system studies; waste management safety studies; assessment of effectiveness of geologic isolation systems; waste/rock interactions technology; high level waste form preparation; development of backfill material; development of structural engineered barriers; ONWI disposal charge analysis; spent fuel and fuel component integrity program; analysis of spent fuel policy implementation; analysis of postulated criticality events in a storage array of spent LWR fuel; asphalt emulsion sealing of uranium tailings; liner evaluation for uranium mill tailings; multilayer barriers for sealing of uranium tailings; application of long-term chemical biobarriers for uranium tailings; revegetation of inactive uranium tailing sites; verification instrument development.

  16. Performance of NDA techniques on a vitrified waste form

    SciTech Connect

    Hurd, J.R.; Veazey, G.W.; Prettyman, T.H.; Mercer, D.J.; Ricketts, T.E.; Nakaoka, R.K.

    1997-11-01

    Rocky Flats Environmental Technology Site (RFETS) is currently considering the use of vitrified transuranic (TRU)-waste forms for the final disposition of several waste materials. To date, however, little nondestructive assay (NDA) data have been acquired in the general NDA community to assist in this endeavor. This paper describes the efforts to determine constraints and operating parameters for using NDA instrumentation on vitrified waste. The present study was conducted on a sample composed of a plutonium-contaminated ash, similar to that found in the RFETS inventory, and a borosilicate-based glass. The vitrified waste item was fabricated at Los Alamos National Laboratory (LANL) using methods and equipment similar to those being proposed by RFETS to treat their ash material. The focus of this study centered on the segmented gamma scanner (SGS) with 1/2-inch collimation, a technique that is presently available at RFETS. The accuracy and precision of SGS technology was evaluated, with particular attention to bias issues involving matrix geometry, homogeneity, and attenuation. Tomographic gamma scanning was utilized in the determination of the waste form homogeneity. A thermal neutron technique was also investigated and comparisons made with the gamma results.

  17. Optimizing transuranic waste management-challenges and opportunities.

    SciTech Connect

    Triay, I. R.; Wu, C. F.; Moody, D. C.; Jennings, S. G.

    2002-01-01

    The opening of the Waste Isolation Pilot Plant (WIPP) for disposal of transuranic (TRU) waste in March of 1999, the granting of the Hazardous Waste Facility Permit in November 1999, and over two years of operational experience have demonstrated the Department of Energy's (DOE'S) capability in closing the nuclear energy cycle. While these achievements resolved several scientific, engineering, regulatory and political issues, the DOE has identified a new set of challenges that represent opportunities for improving programmatic efficiency, cost-effectiveness, and operational safety in managing the nation's TRU waste. The DOE has recognized that the complex administrative and regulatory requirements for characterization, transportation and disposal of TRU waste are costly (1). A review by the National Academy of Sciences (NAS) states that these requirements lead to inefficient waste characterization, handling and transportation operations that in turn can lead to unnecessary radiation exposure to workers without a commensurate decrease in risk to the public and the environment (2). This paper provides an overview of the status of the WJPP repository, explains the principles of the proposed commercial business approach, and describes some of the proposed major enhancements of the TRU waste transportation systems. The DOE is developing a remote-handled (RH) waste program to enable emplacement of RH waste at WPP. This program includes appropriate facility modifications and regulatory changes (3).

  18. Transuranic waste baseline inventory report. Revision No. 3

    SciTech Connect

    1996-06-01

    The Transuranic Waste Baseline Inventory Report (TWBIR) establishes a methodology for grouping wastes of similar physical and chemical properties from across the U.S. Department of Energy (DOE) transuranic (TRU) waste system into a series of {open_quotes}waste profiles{close_quotes} that can be used as the basis for waste form discussions with regulatory agencies. The purpose of Revisions 0 and 1 of this report was to provide data to be included in the Sandia National Laboratories/New Mexico (SNL/NM) performance assessment (PA) processes for the Waste Isolation Pilot Plant (WIPP). Revision 2 of the document expanded the original purpose and was also intended to support the WIPP Land Withdrawal Act (LWA) requirement for providing the total DOE TRU waste inventory. The document included a chapter and an appendix that discussed the total DOE TRU waste inventory, including nondefense, commercial, polychlorinated biphenyls (PCB)-contaminated, and buried (predominately pre-1970) TRU wastes that are not planned to be disposed of at WIPP.

  19. Waste Management Program. Technical progress report, Aporil-June 1983

    SciTech Connect

    1984-02-01

    This quarterly report provides current information on operations and development programs for the management of radioactive wastes from operation of the Savannah River Plant. The studies on environmental and safety assessments, process and equipment development, TRU waste, and low-level waste are a part of the Long-Term Waste Management Technology Program. The following studies are reported for the SR Interim Waste Operations Program: surveillance and maintenance, waste concentration, low-level effluent waste, tank replacement/waste transfer, and solid waste storage and related activities.

  20. Parametric study of radionuclide characterization -- Low-level waste. Draft

    SciTech Connect

    Amir, S.J.

    1993-04-01

    The criteria and guidance given in this addendum specifically address the classification of low-level waste at the Hanford Reservation into Category 1, Category 3, and Greater Than Category 3 (GTC3). These categories are developed based on the performance assessment (PA) being conducted for the Hanford Site. The radionuclides and their concentration for each category are listed in the revised Table 1-1 (Attachment 1). The information to classify the waste for US Department of Transportation (DOT) and to classify Transuranic (TRU)/ Non-TRU, Contact Handled (CH)/Remote Handled (RH) waste is given in WHC-EP-0063-3 (WHC 1991).

  1. LWR First Recycle of TRU with Thorium Oxide for Transmutation and Cross Sections

    SciTech Connect

    Andrea Alfonsi; Gilles Youinou

    2012-07-01

    Thorium has been considered as an option to uranium-based fuel, based on considerations of resource utilization (thorium is approximately three times more plentiful than uranium) and as a result of concerns about proliferation and waste management (e.g. reduced production of plutonium, etc.). Since the average composition of natural Thorium is dominated (100%) by the fertile isotope Th-232, Thorium is only useful as a resource for breeding new fissile materials, in this case U-233. Consequently a certain amount of fissile material must be present at the start-up of the reactor in order to guarantee its operation. The thorium fuel can be used in both once-through and recycle options, and in both fast and thermal spectrum systems. The present study has been aimed by the necessity of investigating the option of using reprocessed plutonium/TRU, from a once-through reference LEU scenario (50 GWd/ tIHM), mixed with natural thorium and the need of collect data (mass fractions, cross-sections etc.) for this particular fuel cycle scenario. As previously pointed out, the fissile plutonium is needed to guarantee the operation of the reactor. Four different scenarios have been considered: • Thorium – recycled Plutonium; • Thorium – recycled Plutonium/Neptunium; • Thorium – recycled Plutonium/Neptunium/Americium; • Thorium – recycled Transuranic. The calculations have been performed with SCALE6.1-TRITON.

  2. LWR First Recycle of TRU with Thorium Oxide for Transmutation and Cross Sections

    SciTech Connect

    Andrea Alfonsi; Gilles Youinou; Sonat Sen

    2013-02-01

    Thorium has been considered as an option to uranium-based fuel, based on considerations of resource utilization (thorium is approximately three times more plentiful than uranium) and as a result of concerns about proliferation and waste management (e.g. reduced production of plutonium, etc.). Since the average composition of natural Thorium is dominated (100%) by the fertile isotope Th-232, Thorium is only useful as a resource for breeding new fissile materials, in this case U-233. Consequently a certain amount of fissile material must be present at the start-up of the reactor in order to guarantee its operation. The thorium fuel can be used in both once-through and recycle options, and in both fast and thermal spectrum systems. The present study has been aimed by the necessity of investigating the option of using reprocessed plutonium/TRU, from a once-through reference LEU scenario (50 GWd/ tIHM), mixed with natural thorium and the need of collect data (mass fractions, cross-sections etc.) for this particular fuel cycle scenario. As previously pointed out, the fissile plutonium is needed to guarantee the operation of the reactor. Four different scenarios have been considered: • Thorium – recycled Plutonium; • Thorium – recycled Plutonium/Neptunium; • Thorium – recycled Plutonium/Neptunium/Americium; • Thorium – recycled Transuranic. The calculations have been performed with SCALE6.1-TRITON.

  3. Environmental assessment, finding of no significant impact, and response to comments. Radioactive waste storage

    SciTech Connect

    1996-04-01

    The Department of Energy`s (DOE) Rocky Flats Environmental Technology Site (the Site), formerly known as the Rocky Flats Plant, has generated radioactive, hazardous, and mixed waste (waste with both radioactive and hazardous constituents) since it began operations in 1952. Such wastes were the byproducts of the Site`s original mission to produce nuclear weapons components. Since 1989, when weapons component production ceased, waste has been generated as a result of the Site`s new mission of environmental restoration and deactivation, decontamination and decommissioning (D&D) of buildings. It is anticipated that the existing onsite waste storage capacity, which meets the criteria for low-level waste (LL), low-level mixed waste (LLM), transuranic (TRU) waste, and TRU mixed waste (TRUM) would be completely filled in early 1997. At that time, either waste generating activities must cease, waste must be shipped offsite, or new waste storage capacity must be developed.

  4. Microbial Transformations of TRU and Mixed Wastes: Actinide Speciation and Waste Volume Reduction

    SciTech Connect

    Halada, Gary P.

    2006-06-01

    During the past year, both a graduate student and a visiting summer undergraduate research assistant have conducted experiments concerning interaction of metals with fresh and aged cellulosic materials.

  5. Microbial Transformations of TRU and Mixed Wastes: Actinide Speciation and Waste Volume Reduction

    SciTech Connect

    Halada, Gary P.

    2005-06-01

    Cellosic samples were prepared 1/29/92 at BNL from various sources, including white and brown paper towel, and Kimwipes. The mixed cellulosics were cut into 1 cm x 1 cm squares and transferred to glass serum bottles and various treatments were conducted: unamended (U) samples were filled with nitrogen-purged brine from G-Seep (4.1 M Na+ and 5.1 Cl- with minor amounts of Mg, K, and Ca and 0.3 M sulfate (Brush, 1990)); unamended/inoculated (UI) samples were filled with bacteria-containing surface lake water, sediment, and halite from the underground at the WIPP site; amended/inoculated (AI) samples were inoculated in this fashion and amended with nutrients; and amended/inoculated/excess nitrate (AINO3) samples were inoculated with excess nitrate in the form of KNO3 (5 g L-1 (49.5 mM)). Further information on sample preparation is available. All samples were analyzed by Fourier transform infrared spectroscopy (FTIR) at SBU to identify any transformations in cellulosic material which may have occurred during treatment and storage.

  6. Hot Cell Liners Category of Transuranic Waste Stored Below Ground within Area G

    SciTech Connect

    Jones, Robert Wesley; Hargis, Kenneth Marshall

    2014-09-01

    A large wildfire called the Las Conchas Fire burned large areas near Los Alamos National Laboratory (LANL) in 2011 and heightened public concern and news media attention over transuranic (TRU) waste stored at LANL’s Technical Area 54 (TA-54) Area G waste management facility. The removal of TRU waste from Area G had been placed at a lower priority in budget decisions for environmental cleanup at LANL because TRU waste removal is not included in the March 2005 Compliance Order on Consent (Reference 1) that is the primary regulatory driver for environmental cleanup at LANL. The Consent Order is an agreement between LANL and the New Mexico Environment Department (NMED) that contains specific requirements and schedules for cleaning up historical contamination at the LANL site. After the Las Conchas Fire, discussions were held by the U.S. Department of Energy (DOE) with the NMED on accelerating TRU waste removal from LANL and disposing it at the Waste Isolation Pilot Plant (WIPP). This report summarizes available information on the origin, configuration, and composition of the waste containers within the Hot Cell Liners category; their physical and radiological characteristics; the results of the radioassays; and the justification to reclassify the five containers as LLW rather than TRU waste.

  7. Melter development needs assessment for RWMC buried wastes

    SciTech Connect

    Donaldson, A.D.; Carpenedo, R.J.; Anderson, G.L.

    1992-02-01

    This report presents a survey and initial assessment of the existing state-of-the-art melter technology necessary to thermally treat (stabilize) buried TRU waste, by producing a highly leach resistant glass/ceramic waste form suitable for final disposal. Buried mixed transuranic (TRU) waste at the Idaho National Engineering Laboratory (INEL) represents an environmental hazard requiring remediation. The Environmental Protection Agency (EPA) placed the INEL on the National Priorities List in 1989. Remediation of the buried TRU-contaminated waste via the CERCLA decision process is required to remove INEL from the National Priorities List. A Waste Technology Development (WTD) Preliminary Systems Design and Thermal Technologies Screening Study identified joule-heated and plasma-heated melters as the most probable thermal systems technologies capable of melting the INEL soil and waste to produce the desired final waste form (Iron-Enriched Basalt (IEB) glass/ceramic). The work reported herein then surveys the state of existing melter technology and assesses it within the context of processing INEL buried TRU wastes and contaminated soils. Necessary technology development work is recommended.

  8. Melter development needs assessment for RWMC buried wastes

    SciTech Connect

    Donaldson, A.D.; Carpenedo, R.J.; Anderson, G.L.

    1992-02-01

    This report presents a survey and initial assessment of the existing state-of-the-art melter technology necessary to thermally treat (stabilize) buried TRU waste, by producing a highly leach resistant glass/ceramic waste form suitable for final disposal. Buried mixed transuranic (TRU) waste at the Idaho National Engineering Laboratory (INEL) represents an environmental hazard requiring remediation. The Environmental Protection Agency (EPA) placed the INEL on the National Priorities List in 1989. Remediation of the buried TRU-contaminated waste via the CERCLA decision process is required to remove INEL from the National Priorities List. A Waste Technology Development (WTD) Preliminary Systems Design and Thermal Technologies Screening Study identified joule-heated and plasma-heated melters as the most probable thermal systems technologies capable of melting the INEL soil and waste to produce the desired final waste form [Iron-Enriched Basalt (IEB) glass/ceramic]. The work reported herein then surveys the state of existing melter technology and assesses it within the context of processing INEL buried TRU wastes and contaminated soils. Necessary technology development work is recommended.

  9. Fire hazards analysis for solid waste burial grounds

    SciTech Connect

    McDonald, K.M.

    1995-09-28

    This document comprises the fire hazards analysis for the solid waste burial grounds, including TRU trenches, low-level burial grounds, radioactive mixed waste trenches, etc. It analyzes fire potential, and fire damage potential for these facilities. Fire scenarios may be utilized in future safety analysis work, or for increasing the understanding of where hazards may exist in the present operation.

  10. Foreign programs for the storage of spent nuclear power plant fuels, high-level waste canisters and transuranic wastes

    SciTech Connect

    Harmon, K.M.; Johnson, A.B. Jr.

    1984-04-01

    The various national programs for developing and applying technology for the interim storage of spent fuel, high-level radioactive waste, and TRU wastes are summarized. Primary emphasis of the report is on dry storage techniques for uranium dioxide fuels, but data are also provided concerning pool storage.

  11. Evaluation of anaerobic co-digestion of dairy manure with food wastes via bio-methane potential assay and CSTR reactor.

    PubMed

    Ye, Yulin; Zamalloa, Carlos; Lin, Hongjian; Yan, Mi; Schmidt, David; Hu, Bo

    2015-01-01

    The introduction of food wastes into anaerobic digestion (AD) brings a promising scenario of increasing feedstock availability and overall energy production from AD. This study evaluated the biodegradability and methane potential from co-digestion of two typical food wastes, kitchen waste and chicken fat, with dairy manure. For single substrate, the bio-methane potential assays showed that kitchen waste had the highest methane yield of 352 L-CH4 kg(-1)-VS added, 92% more than dairy manure alone. Chicken fat at the same Volatile Solid (VS) level (2 g L(-1)) inhibited bio-methane production. Addition of kitchen waste and chicken fat to a VS percentage of up to 40% improved overall methane yield by 44% and 34%, respectively. Synergistic effect was observed when either combining two or three substrates as AD feedstock, possibly as a result of increased biodegradability of organic materials in chicken fat and kitchen waste compared with dairy manure. Addition of chicken fat improved methane yield more than kitchen waste. However, addition of chicken fat VS over 0.8 g L(-1) should be cautiously done because it may cause reactor failure due to decrease in pH. The maximum methane yield was 425 L-CH4 kg(-1)-VS, achieved at a VS ratio of 2:2:1 for kitchen waste, chicken fat, and dairy manure. Results from batch AD experiment demonstrated that supplementing dairy manure to chicken fat and/or kitchen waste improved alkalinity of substrate due to the inclusion of more titratable bases in dairy manure, and therefore stabilized the methanogenesis and substantially improved biogas yield. A mixture of substrates of kitchen waste, chicken fat, and dairy manure at a ratio of 1:1:3 was fed to a continuously stirred tank reactor operated at organic loading rates of 3.28, 6.55, and 2.18 g-COD L(-1)-day (hydraulic retention time of 20, 10, and 30 days, respectively) under mesophilic condition, and methane production rate reached 0.65, 0.95, and 0.34 L-CH4 L(-1)-reactor-day.

  12. 76 FR 33277 - Proposed Approval of the Central Characterization Project's Remote-Handled Transuranic Waste...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-08

    ... proposed approval of the radioactive remote-handled (RH) transuranic (TRU) waste characterization program... New Mexico. In accordance with the WIPP Compliance Criteria, EPA evaluated the characterization of RH... 12-13, 2011. By evaluating the waste characterization systems and processes for RH waste that the...

  13. 78 FR 72612 - Criteria for the Certification and Recertification of the Waste Isolation Pilot Plant's...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-03

    ...) Radioactive Waste.'' The proposed changes do not lessen the requirements for complying with the Compliance... WIPP is a disposal system for defense-related transuranic (TRU) radioactive waste. Developed by the DOE, the WIPP is located near Carlsbad in southeastern New Mexico. At the WIPP, radioactive waste...

  14. Physical and Liquid Chemical Simulant Formulations for Transuranic Waste in Hanford Single-Shell Tanks

    SciTech Connect

    Rassat, Scot D.; Bagaasen, Larry M.; Mahoney, Lenna A.; Russell, Renee L.; Caldwell, Dustin D.; Mendoza, Donaldo P.

    2003-07-30

    CH2M HILL Hanford Group, Inc. (CH2M HILL) is in the process of identifying and developing supplemental process technologies to accelerate the tank waste cleanup mission. A range of technologies is being evaluated to allow disposal of Hanford waste types, including transuranic (TRU) process wastes. Ten Hanford single-shell tanks (SSTs) have been identified whose contents may meet the criteria for designation as TRU waste: the B-200 series (241-B-201, -B-202, -B 203, and B 204), the T-200 series (241-T-201, T 202, -T-203, and -T-204), and Tanks 241-T-110 and -T-111. CH2M HILL has requested vendor proposals to develop a system to transfer and package the contact-handled TRU (CH-TRU) waste retrieved from the SSTs for subsequent disposal at the Waste Isolation Pilot Plant (WIPP). Current plans call for a modified ''dry'' retrieval process in which a liquid stream is used to help mobilize the waste for retrieval and transfer through lines and vessels. This retrieval approach requires that a significant portion of the liquid be removed from the mobilized waste sludge in a ''dewatering'' process such as centrifugation prior to transferring to waste packages in a form suitable for acceptance at WIPP. In support of CH2M HILL's effort to procure a TRU waste handling and packaging process, Pacific Northwest National Laboratory (PNNL) developed waste simulant formulations to be used in evaluating the vendor's system. For the SST CH-TRU wastes, the suite of simulants includes (1) nonradioactive chemical simulants of the liquid fraction of the waste, (2) physical simulants that reproduce the important dewatering properties of the waste, and (3) physical simulants that can be used to mimic important rheological properties of the waste at different points in the TRU waste handling and packaging process. To validate the simulant formulations, their measured properties were compared with the limited data for actual TRU waste samples. PNNL developed the final simulant formulations

  15. An Improvement to Low-Level Radioactive Waste Vitrification Processes.

    DTIC Science & Technology

    1986-05-01

    Protection Standards 40 CFR 191 EPA Environmental Standards for (DRAFT) the Management and Disposal of Spent Nuclear Fuel , High-Level and Transuranic ...test activities. In the U.S. Radwaste is subdivided into three categories: High-level Radioactive Wastes (HLW), Transuranic Radioactive Wastes (TRU...and Low-Level Radioactive Wastes (LLW). The Nuclear Regulatory Commission defines4 𔃿 HLW as: (1) Irradiated reactor fuel , (2) liquid wastes resulting

  16. DNA damage induced in mouse tissues by organic wood preserving waste extracts as assayed by 32P-postlabeling.

    PubMed

    Randerath, E; Zhou, G D; Donnelly, K C; Safe, S H; Randerath, K

    1996-01-01

    Numerous wood preserving waste (WPW) sites in the United States pose genotoxic hazards. WPWs consist of complex mixtures containing toxic, including genotoxic, compounds which are derived from the preservatives coal tar creosote and pentachlorophenol (PCP) and other polychlorinated aromatics. The genotoxicity of WPW extracts, which has not been tested in mammals, cannot be evaluated on the basis of data for individual components because of possible compound interactions. Therefore, whole extracts need to be assayed. 32P-postlabeling represents a powerful tool to determine DNA adduct formation by complex genotoxic mixtures, such as cigarette smoke, diesel exhaust, and coke oven and foundry emissions in experimental animals and humans. In the present study, a mouse bioassay was used in combination with 32P-postlabeling to determine DNA adduct formation induced by hexane/acetone extracts of two samples from a WPW site. Female ICR mice were treated dermally with extract corresponding to 3 mg residue or vehicle control once per day for 2 days and killed 24 h later. Skin, lung, liver, kidney, and heart DNA preparations were assayed by nuclease P1-enhanced postlabeling. Adduct profiles were tissue-specific and displayed a multitude of non-polar DNA adducts with levels amounting to one adduct in 1.6 x 10(6) DNA nucleotides in skin (both extracts) and one adduct in 3.2 x 10(7) or 1.2 x 10(7) DNA nucleotides in liver (extract 1 or extract 2). Based on their chromatographic properties, these adducts appeared largely derived from polycyclic aromatic hydrocarbons (PAHs) present in the extracts. One of the major adducts was identified as the 32P-labeled derivative of the reaction product of 7 beta, 8 alpha-dihydroxy-9 alpha, 10 alpha-epoxy-7, 8,9,10-tetrahydrobenzo[a]pyrene (BPDE I) with N2 of deoxyguanosine. Total non-polar DNA adduct levels were highest in skin and lung, amounting to 17.4 and 24.0% of the skin values for extracts 1 and 2, respectively, in lung while the

  17. Results from simulated remote-handled transuranic waste experiments at the Waste Isolation Pilot Plant (WIPP)

    SciTech Connect

    Molecke, M A

    1992-01-01

    Multi-year, simulated remote-handled transuranic waste (RH TRU, nonradioactive) experiments are being conducted underground in the Waste Isolation Pilot-Plant (WIPP) facility. These experiments involve the near-reference (thermal and geometrical) testing of eight full size RH TRU test containers emplaced into horizontal, unlined rock salt boreholes. Half of the test emplacements are partially filled with bentonite/silica-sand backfill material. All test containers were electrically heated at about 115 W/each for three years, then raised to about 300 W/each for the remaining time. Each test borehole was instrumented with a selection of remote-reading thermocouples, pressure gages, borehole vertical-closure gages, and vertical and horizontal borehole-diameter closure gages. Each test emplacements was also periodically opened for visual inspections of brine intrusions and any interactions with waste package materials, materials sampling, manual closure measurements, and observations of borehole changes. Effects of heat on borehole closure rates and near-field materials (metals, backfill, rock salt, and intruding brine) interactions were closely monitored as a function of time. This paper summarizes results for the first five years of in situ test operation with supporting instrumentation and laboratory data and interpretations. Some details of RH TRU waste package materials, designs, and assorted underground test observations are also discussed. Based on the results, the tested RH TRU waste packages, materials, and emplacement geometry in unlined salt boreholes appear to be quite adequate for initial WIPP repository-phase operations.

  18. Preliminary criticality study supporting transuranic waste acceptance into the plasma hearth process

    SciTech Connect

    Slate, L.J.; Santee, G.E. Jr.

    1996-12-31

    This study documents preliminary scoping calculations to address criticality issues associated with the processing of transuranic (TRU) waste and TRU mixed waste in the Plasma Hearth Process (PHP) Test Project. To assess the criticality potential associated with processing TRU waste, the process flow in the PHP is evaluated to identify the stages where criticality could occur. A criticality analysis methodology is then formulated to analyze the criticality potential. Based on these analyses, TRU acceptance criteria can be defined for the PHP. For the current level of analysis, the methodology only assesses the physical system as designed and does not address issues associated with the criticality double contingency principle. The analyses suggest that criticality within the PHP system and within the planned treatment residue (stag) containers does not pose a criticality hazard even when processing waste feed drums containing a quantity of TRU greater than would be reasonably expected. The analyses also indicate that the quantity of TRU that can be processed during each batch is controlled by moving and storage conditions for the resulting slag collection drums.

  19. A little here, a little there, a fairly big problem everywhere: Small quantity site transuranic waste disposition alternatives

    SciTech Connect

    D. Luke; D. Parker; J. Moss; T. Monk; L. Fritz; B. Daugherty; K. Hladek; S. Kosiewicx

    2000-02-27

    Small quantities of transuranic (TRU) waste represent a significant challenge to the waste disposition and facility closure plans of several sites in the Department of Energy (DOE) complex. This paper presents the results of a series of evaluations, using a systems engineering approach, to identify the preferred alternative for dispositioning TRU waste from small quantity sites (SQSs). The TRU waste disposition alternatives evaluation used semi-quantitative data provided by the SQSs, potential receiving sites, and the Waste Isolation Pilot Plant (WIPP) to select and recommend candidate sites for waste receipt, interim storage, processing, and preparation for final disposition of contact-handled (CH) and remote-handled (RH) TRU waste. The evaluations of only four of these SQSs resulted in potential savings to the taxpayer of $33 million to $81 million, depending on whether mobile systems could be used to characterize, package, and certify the waste or whether each site would be required to perform this work. Small quantity shipping sites included in the evaluation included the Battelle Columbus Laboratory (BCL), University of Missouri Research Reactor (MURR), Energy Technology Engineering Center (ETEC), and Mound Laboratory. Candidate receiving sites included the Idaho National Engineering and Environmental Laboratory (INEEL), the Savannah River Site (SRS), Los Alamos National Laboratory (LANL), Oak Ridge (OR), and Hanford. At least 14 additional DOE sites having TRU waste may be able to save significant money if cost savings are similar to the four evaluated thus far.

  20. A Little Here, A Little There, A Fairly Big Problem Everywhere: Small Quantity Site Transuranic Waste Disposition Alternatives

    SciTech Connect

    Luke, Dale Elden; Parker, Douglas Wayne; Moss, J.; Monk, Thomas Hugh; Fritz, Lori Lee; Daugherty, B.; Hladek, K.; Kosiewicx, S.

    2000-03-01

    Small quantities of transuranic (TRU) waste represent a significant challenge to the waste disposition and facility closure plans of several sites in the Department of Energy (DOE) complex. This paper presents the results of a series of evaluations, using a systems engineering approach, to identify the preferred alternative for dispositioning TRU waste from small quantity sites (SQSs). The TRU waste disposition alternatives evaluation used semi-quantitative data provided by the SQSs, potential receiving sites, and the Waste Isolation Pilot Plant (WIPP) to select and recommend candidate sites for waste receipt, interim storage, processing, and preparation for final disposition of contact-handled (CH) and remote-handled (RH) TRU waste. The evaluations of only four of these SQSs resulted in potential savings to the taxpayer of $33 million to $81 million, depending on whether mobile systems could be used to characterize, package, and certify the waste or whether each site would be required to perform this work. Small quantity shipping sites included in the evaluation included the Battelle Columbus Laboratory (BCL), University of Missouri Research Reactor (MURR), Energy Technology Engineering Center (ETEC), and Mound. Candidate receiving sites included the Idaho National Engineering and Environmental Laboratory (INEEL), the Savannah River Site (SRS), Los Alamos National Laboratory (LANL), Oak Ridge (OR), and Hanford. At least 14 additional DOE sites having TRU waste may be able to save significant money if cost savings are similar to the four evaluated thus far.

  1. Test plan for headspace gas sampling of remote-handled transuranic waste containers at Los Alamos National Laboratory

    SciTech Connect

    Field, L.R.; Villarreal, R.

    1998-02-24

    Seventeen remote-handled (RH) transuranic (TRU) waste canisters currently are stored in vertical, underground shafts at Technical Area (TA)-54, Area G, at Los Alamos National Laboratory (LANL). These 17 RH TRU waste canisters are destined to be shipped to the Waste Isolation Pilot Plant (WIPP) for permanent disposal in the geologic repository. As the RH TRU canister is likely to be the final payload container prior to placement into the 72-B cask and shipment to the WIPP, these waste canisters provide a unique opportunity to ascertain representative flammable gas concentrations in packaged RH-TRU waste. Hydrogen, which is produced by the radiolytic decomposition of hydrogenous constituents in the waste matrix, is the primary flammable gas of concern with RH TRU waste. The primary objectives of the experiment that is described by this test plan are to sample and analyze the waste canister headspace gases to determine the concentration of hydrogen in the headspace gas and to calculate the hydrogen gas generation rate for comparison to the applicable maximum allowable hydrogen generation rate (mole/sec) limits. It is a goal of this experiment to determine the headspace gas concentrations of other gases (e.g., oxygen, nitrogen, carbon dioxide, carbon monoxide, and volatile organic compounds (VOCs) with molecular weights less than 60 g/mole) that are produced by radiolysis or present when the waste was packaged. Additionally, the temperature, pressure, and flow rate of the headspace gas will be measured.

  2. Characterization of 618-11 solid waste burial ground, disposed waste, and description of the waste generating facilities

    SciTech Connect

    Hladek, K.L.

    1997-10-07

    The 618-11 (Wye or 318-11) burial ground received transuranic (TRTJ) and mixed fission solid waste from March 9, 1962, through October 2, 1962. It was then closed for 11 months so additional burial facilities could be added. The burial ground was reopened on September 16, 1963, and continued operating until it was closed permanently on December 31, 1967. The burial ground received wastes from all of the 300 Area radioactive material handling facilities. The purpose of this document is to characterize the 618-11 solid waste burial ground by describing the site, burial practices, the disposed wastes, and the waste generating facilities. This document provides information showing that kilogram quantities of plutonium were disposed to the drum storage units and caissons, making them transuranic (TRU). Also, kilogram quantities of plutonium and other TRU wastes were disposed to the three trenches, which were previously thought to contain non-TRU wastes. The site burial facilities (trenches, caissons, and drum storage units) should be classified as TRU and the site plutonium inventory maintained at five kilograms. Other fissile wastes were also disposed to the site. Additionally, thousands of curies of mixed fission products were also disposed to the trenches, caissons, and drum storage units. Most of the fission products have decayed over several half-lives, and are at more tolerable levels. Of greater concern, because of their release potential, are TRU radionuclides, Pu-238, Pu-240, and Np-237. TRU radionuclides also included slightly enriched 0.95 and 1.25% U-231 from N-Reactor fuel, which add to the fissile content. The 618-11 burial ground is located approximately 100 meters due west of Washington Nuclear Plant No. 2. The burial ground consists of three trenches, approximately 900 feet long, 25 feet deep, and 50 feet wide, running east-west. The trenches constitute 75% of the site area. There are 50 drum storage units (five 55-gallon steel drums welded together

  3. Acute toxicity assessment of Polish (waste) water with a microplate-based Hydra attenuata assay: a comparison with the Microtox test.

    PubMed

    Pardos, M; Benninghoff, C; Guéguen, C; Thomas, R; Dobrowolski, J; Dominik, J

    1999-12-15

    The use of Hydra attenuata in acute toxicity assessment is a potentially useful tool in (waste) water biomonitoring. The purpose of this study was to compare the sensitivity of H. attenuata with the extensively used Microtox test on 14 (waste) water samples from the Kraków region (South Poland). To this end, specific morphological changes displayed by the freshwater cnidarian Hydra attenuata (lethal LC50s and sublethal EC50s effects) and bioluminescence of the marine bacteria Vibrio fisheri (Microtox) were compared. Clearly, the Hydra assay was the more sensitive indicator of toxicity. No relationship was found among Hydra toxicological responses and water levels of As, Cd, Co, Cu, Pb and Zn. However, it appeared that toxicity to Hydra might be due to ammonia levels. Additional studies to better circumscribe the tolerance of H. attenuata to 'natural' water characteristics are needed.

  4. Dose Rate Calculation of TRU Metal Ingot in Pyroprocessing - 12202

    SciTech Connect

    Lee, Yoon Hee; Lee, Kunjai

    2012-07-01

    Spent fuel management has been a main problem to be solved for continuous utilization of nuclear energy. Spent fuel management policy of Korea is 'Wait and See'. It is focused on Pyro-process and SFR (Sodium-cooled Fast Reactor) for closed-fuel cycle research and development in Korea. For peaceful use of nuclear facilities, the proliferation resistance has to be proved. Proliferation resistance is one of key constraints in the deployment of advanced nuclear energy systems. Non-proliferation and safeguard issues have been strengthening internationally. Barriers to proliferation are that reduces desirability or attractiveness as an explosive and makes it difficult to gain access to the materials, or makes it difficult to misuse facilities and/or technologies for weapons applications. Barriers to proliferation are classified into intrinsic and extrinsic barriers. Intrinsic barrier is inherent quality of reactor materials or the fuel cycle that is built into the reactor design and operation such as material and technical barriers. As one of the intrinsic measures, the radiation from the material is considered significantly. Therefore the radiation of TRU metal ingot from the pyro-process was calculated using ORIGEN and MCNP code. (authors)

  5. Mechanical compaction of Waste Isolation Pilot Plant simulated waste

    SciTech Connect

    Butcher, B.M. ); Thompson, T.W.; VanBuskirk, R.G.; Patti, N.C. )

    1991-06-01

    The investigation described in this report acquired experimental information about how materials simulating transuranic (TRU) waste compact under axial compressive stress, and used these data to define a model for use in the Waste Isolation Pilot Plant (WIPP) disposal room analyses. The first step was to determine compaction curves for various simultant materials characteristic of TRU waste. Stress-volume compaction curves for various combinations of these materials were than derived to represent the combustible, metallic, and sludge waste categories. Prediction of compaction response in this manner is considered essential for the WIPP program because of the difficulties inherent in working with real (radioactive) waste. Next, full-sized 55-gallon drums of simulated combustible, metallic, and sludge waste were axially compacted. These results provided data that can be directly applied to room consolidation and data for comparison with the predictions obtained in Part 1 of the investigation. Compaction curves, which represent the combustible, metallic, and sludge waste categories, were determined, and a curve for the averaged waste inventory of the entire repository was derived. 9 refs., 31 figs., 12 tabs.

  6. Solid waste 30-year volume summary

    SciTech Connect

    Valero, O.J.; Armacost, L.L.; DeForest, T.J.; Templeton, K.J.; Williams, N.C.

    1994-06-01

    A 30-year forecast of the solid waste volumes to be generated or received at the US Department of Energy Hanford Site is described in this report. The volumes described are low-level mixed waste (LLMW) and transuranic/transuranic mixed (TRU/TRUM) waste that will require treatment, storage, and disposal at Hanford`s Solid Waste Operations Complex (SWOC) during the 30-year period from FY 1994 through FY 2023. The data used to complete this document were collected from onsite and offsite waste generators who currently, or are planning to, ship solid wastes to the Hanford Site. An analysis of the data suggests that over 300,000 m{sup 3} of LLMW and TRU/TRUM waste will be managed at Hanford`s SWOC over the next 30 years. An extensive effort was made this year to collect this information. The 1993 solid waste forecast was used as a starting point, which identified approximately 100,000 m{sup 3} of LLMW and TRU/TRUM waste to be sent to the SWOC. After analyzing the forecast waste volume, it was determined that additional waste was expected from the tank waste remediation system (TWRS), onsite decontamination and decommissioning (D&D) activities, and onsite remedial action (RA) activities. Data presented in this report establish a starting point for solid waste management planning. It is recognized that forecast estimates will vary (typically increasing) as facility planning and missions continue to change and become better defined, but the information presented still provides useful insight into Hanford`s future solid waste management requirements.

  7. Management activities for retrieved and newly generated transuranic waste, Savannah River Plant

    SciTech Connect

    Not Available

    1988-08-01

    The purpose of this Environmental Assessment (EA) is to assess the potential environmental impacts of the retrieval and processing of retrieved and newly generated transuranic (TRU) radioactive waste at the Savannah River Plant (SRP), including the transportation of the processes TRU waste to the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico. A new TRU Waste Facility (TWF) will be constructed at SRP to retrieve and process the SRP TRU waste in interim storage to meet WIPP criteria. This EA has been prepared in compliance with the National Environmental Policy Act (NEPA) of 1969, as amended, and the requirements of the Council of Environmental Quality Regulations for implementing NEPA (40 CFR Parts 1500--1508). The National Environmental Policy Act (NEPA) requires the assessment of environmental consequences of all major federal actions that may affect the quality of the human environment. This document describes the environmental impact of constructing and operating the TWF facility for processing and shipment of the TRU waste to WIPP and considers alternatives to the proposed action. 40 refs., 12 figs., 12 tabs.

  8. Reduced waste generation, FY 1986

    SciTech Connect

    Not Available

    1986-02-01

    The United States Department of Energy is committed to the principles of minimizing the quantity and transuranic content of its transuranium (TRU) waste being generated at its nuclear facilities. The reasons are to reduce costs associated with waste handling and disposal, and also to reduce radiation exposure to workers and risk for radionuclide release to man and the environment. The purpose of this document is to provide the USDOE with a plan of research and development tasks for waste minimization, and is prepared so as to provide the maximum impact on volumes based on cost/benefit factors. The document is to be updated annually or as needed to reflect current and future tasks. The Reduced Waste Generation (RWG) tasks encompass a wide range of activities with the principal goals of (1) preventing the generation of waste and (2) converting TRU waste into low-level wastes (LLW) by sorting or decontamination. Concepts for reducing the volume such as in incineration and compaction are considered within the discipline of Reduced Waste Generation, but are considered as somewhat developed technology with only a need for implementation. 33 refs.

  9. SEPARATION AND EXTRACTION OF PLUTONIUM IN MIXED WASTE

    SciTech Connect

    Arthur E. Desrosiers, ScD, CHP; Robert Kaiser, ScD; Jason Antkowiak; Justin Desrosiers; Josh Jondro; Adam Kulczyk

    2002-12-13

    The Sonatol process uses ultrasonic agitation in fluorinated surfactant solutions to remove radioactive particles from surfaces. Filtering the suspended particles allows the solutions to be reused indefinitely. The current work applies the Sonatol process to the decontamination of heterogeneous legacy Pu-238 waste that exhibits excessive hydrogen gas generation, which prevents transportation of the waste to the Waste Isolation Pilot Plant. Bartlett Services, Inc. (BSI) designed and fabricated a prototype decontamination system within a replica of a Savannah River Site glovebox. In Phase I, BSI conducted cold testing with surrogate waste material to verify that the equipment, operating procedures, and test protocols would support testing with Pu-238 in Phase II. The surrogate waste material is representative of known constituents of legacy job control waste. Two sub-micron sized Pu-238 simulants were added to the surrogate waste so that decontamination could be tested. The first simulant was an Osram Sylvania Phosphor 2284C powder that fluoresces under ultraviolet light. The use of the fluorescent simulant allows rapid, inexpensive system startup testing because residuals can be assayed using a digital camera. The results of digital pixel analysis (DPA) are available immediately and do not require use of licensed material. The second simulant, which was used for integrated cold testing, was a cerium oxide powder that was activated in a research reactor neutron flux and assayed by photon spectroscopy. The surrogate transuranic (TRU) waste material was contaminated with Pu-238 simulants and loaded into the cleaning chamber, where the surrogates were ultrasonically agitated and rinsed. The decontaminated materials were then assayed for surface contamination by DPA to establish optimum operating parameters and provide process quality control. Selected samples were sent to the Massachusetts Institute of Technology for neutron activation analysis (NAA). NAA testing

  10. Contact-Handled Transuranic Waste Acceptance Criteria for the Waste Isolation Pilot Plant

    SciTech Connect

    Washington TRU Solutions LLC

    2005-12-29

    The purpose of this document is to summarize the waste acceptance criteria applicable to the transportation, storage, and disposal of contact-handled transuranic (CH-TRU) waste at the Waste Isolation Pilot Plant (WIPP). These criteria serve as the U.S. Department of Energy's (DOE) primary directive for ensuring that CH-TRU waste is managed and disposed of in a manner that protects human health and safety and the environment.The authorization basis of WIPP for the disposal of CH-TRU waste includes the U.S.Department of Energy National Security and Military Applications of Nuclear EnergyAuthorization Act of 1980 (reference 1) and the WIPP Land Withdrawal Act (LWA;reference 2). Included in this document are the requirements and associated criteriaimposed by these acts and the Resource Conservation and Recovery Act (RCRA,reference 3), as amended, on the CH-TRU waste destined for disposal at WIPP.|The DOE TRU waste sites must certify CH-TRU waste payload containers to thecontact-handled waste acceptance criteria (CH-WAC) identified in this document. Asshown in figure 1.0, the flow-down of applicable requirements to the CH-WAC istraceable to several higher-tier documents, including the WIPP operational safetyrequirements derived from the WIPP CH Documented Safety Analysis (CH-DSA;reference 4), the transportation requirements for CH-TRU wastes derived from theTransuranic Package Transporter-Model II (TRUPACT-II) and HalfPACT Certificates ofCompliance (references 5 and 5a), the WIPP LWA (reference 2), the WIPP HazardousWaste Facility Permit (reference 6), and the U.S. Environmental Protection Agency(EPA) Compliance Certification Decision and approval for PCB disposal (references 7,34, 35, 36, and 37). The solid arrows shown in figure 1.0 represent the flow-down of allapplicable payload container-based requirements. The two dotted arrows shown infigure 1.0 represent the flow-down of summary level requirements only; i.e., the sitesmust reference the regulatory source

  11. A multicentre study of the precision and accuracy of the TruSlice and TruSlice Digital histological dissection devices.

    PubMed

    Orchard, G E; Shams, M; Nwokie, T; Fernando, P; Bulut, C; Quaye, C J; Gabriel, J; Ramji, Z; Georgaki, A; Watt, M; Cole, Z; Stewart, K; McTaggart, V; Padayachy, S; Long, A M; Ogden, A; Andrews, C; Birchall, A; Shams, F; Neesam, H; Haine, N

    2016-10-01

    Five key factors enabling a good surgical grossing technique include a flat uniformly perpendicular specimen cutting face, appropriate immobilisation of the tissue specimen during grossing, good visualisation of the cutting tissue face, sharp cutting knives and the grossing knife action. TruSlice and TruSlice Digital are new innovative tools based on a guillotine configuration. The TruSlice has plastic inserts whilst the TruSlice Digital has an electronic micrometre attached: both features enable these dissection factors to be controlled. The devices were assessed in five hospitals in the UK. A total of 267 fixed tissue samples from 23 tissue types were analysed, principally the breast (n = 32) skin (30), rectum (28), colon (27) and cervix (17). Precision and accuracy were evaluated by measuring the defined thickness, and the consistency of achieving the defined thickness of tissue samples taken respectively. Both parameters were expressed as a total percentage of compliance for the cohort of samples accessed. Overall, the mean (standard deviation) score for precision was 81 (11) % whilst the accuracy score was 82 (11) % (both p < 0.05, chi-squared test), although this varied with type of tissue. Accuracy and precision were strongly correlated (rp = 0.83, p < 0.001). The TruSlice Digital devices offer an assured precision and accuracy performance which is reproducible across an assortment of tissue types. The use of a micrometre to set tissue slice thickness is innovative and should comply with laboratory accreditation requirements, alleviating concerns of how to tackle issues such as the 'measurement of uncertainty' at the grossing bench.

  12. Identification of potential transuranic waste tanks at the Hanford Site

    SciTech Connect

    Colburn, R.P.

    1995-05-05

    The purpose of this document is to identify potential transuranic (TRU) material among the Hanford Site tank wastes for possible disposal at the Waste Isolation Pilot Plant (WIPP) as an alternative to disposal in the high-level waste (HLW) repository. Identification of such material is the initial task in a trade study suggested in WHC-EP-0786, Tank Waste Remediation System Decisions and Risk Assessment (Johnson 1994). The scope of this document is limited to the identification of those tanks that might be segregated from the HLW for disposal as TRU, and the bases for that selection. It is assumed that the tank waste will be washed to remove soluble inert material for disposal as low-level waste (LLW), and the washed residual solids will be vitrified for disposal. The actual recommendation of a disposal strategy for these materials will require a detailed cost/benefit analysis and is beyond the scope of this document.

  13. Production and assay of cellulolytic enzyme activity of Enterobacter cloacae WPL 214 isolated from bovine rumen fluid waste of Surabaya abbatoir, Indonesia

    PubMed Central

    Lokapirnasari, W. P.; Nazar, D. S.; Nurhajati, T.; Supranianondo, K.; Yulianto, A. B.

    2015-01-01

    Aim: This study aims to produce and assay cellulolytic enzyme activity (endo-(1,4)-β-D-glucanase, exo-(1,4)-β-D-glucanase, and β-glucosidase, at optimum temperature and optimum pH) of Enterobacter cloacae WPL 214 isolated from bovine rumen fluid waste of Surabaya Abbatoir, Indonesia. Materials and Methods: To produce enzyme from a single colony of E. cloacae WPL 214, 98 × 1010 CFU/ml of isolates was put into 20 ml of liquid medium and incubated in a shaker incubator for 16 h at 35°C in accordance with growth time and optimum temperature of E. cloacae WPL 214. Further on, culture was centrifuged at 6000 rpm at 4°C for 15 min. Pellet was discarded while supernatant containing cellulose enzyme activity was withdrawn to assay endo-(1,4)-β-D-glucanase, exo-(1,4)-β-D-glucanase, and β-glucosidase. Results: Cellulase enzyme of E. cloacae WPL 214 isolates had endoglucanase activity of 0.09 U/ml, exoglucanase of 0.13 U/ml, and cellobiase of 0.10 U/ml at optimum temperature 35°C and optimum pH 5. Conclusion: E. cloacae WPL 214 isolated from bovine rumen fluid waste produced cellulose enzyme with activity as cellulolytic enzyme of endo-(1,4)-β-D-glucanase, exo-(1,4)-β-D-glucanase and β-glucosidase. PMID:27047099

  14. FY 1996 solid waste integrated life-cycle forecast volume summary - Volume 1 and Volume 2

    SciTech Connect

    Valero, O.J.

    1996-02-22

    Solid waste forecast volumes to be generated or received ;at Westinghouse Hanford Company`s Solid Waste program over the life cycle of the site are described in this report. Previous forecast summary reports have covered only a 30-year period; however, the life-cycle approach was adopted for this FY 1996 report to ensure consistency with waste volumes reported in the 1996 Multi-Year Program Plans (MYPP). The volume data were collected on a life-cycle basis from onsite and offsite waste generators who currently ship or plan to ship solid waste to the Solid Waste program. The volumes described in detail are low-level mixed waste (LLMW) and transuranic/transuranic-mixed (TRU(M)) waste. The volumes reported in this document represent the external volume of the containers selected to ship the waste. Summary level information pertaining to low-level waste (LLW) is described in Appendix B. Hazardous waste volumes are also provided in Appendices E and F but are not described in detail since they will be managed by a commercial facility. Emphasis is placed on LLMW and TRU(M) waste because it will require processing and storage at Hanford Solid Waste`s Central Waste Complex (CORK) prior to final disposal. The LLW will generally be sent directly to disposal. The total baselines volume of LLMW and TRU(M) waste forecast to be received by the Solid Waste program (until 2070) is approximately 100,900 cubic meters. This total waste volume is composed of the following waste categories: 077,080 cubic meters of LLMW; 23,180 cubic meters of TRU(M); 640 cubic meters of greater-than-class III LLMW. This total is about 40% of the total volume reported last year (FY 1995).

  15. Getting waste ready for shipment to the WIPP: integration of characterization and certification activities

    SciTech Connect

    Sinkule, B.; Knudsen, K.; Rogers, P.

    1996-06-01

    The Waste Isolation Pilot Plant (WIPP) Waste Acceptance Criteria (WAC) serve as the primary directive for assuring the safe handling, transportation, and disposal of transuranic (TRU) waste generated at Department of Energy (DOE) sites. The WIPP WAC address fulfillment of WIPP`s operational safety and performance assessment criteria, compliance with Resource Conservation and Recovery Act (RCRA) requirements, and preparation of waste packages that meet all transportation criteria. At individual generator sites, preparation of transuranic waste for final disposal at WIPP includes characterizing the waste to meet the requirements of the transuranic Waste Characterization Quality Assurance Program Plan (QAPP) and certifying waste containers to meet the WIPP WAC and the Transuranic Package Transporter-II Authorized Methods for Payload Control (TRAMPAC). This paper compares the quality assurance and quality control requirements specified in the WIPP WAC, QAPP, and TRAMPAC and discusses the potential to consolidate activities to comply with the TRU waste characterization and certification program requirements.

  16. Development of a numerical experiment technique to solve inverse gamma-ray transport problems with application to nondestructive assay of nuclear waste barrels

    SciTech Connect

    Chang, C.J.; Anghaie, S.

    1998-03-01

    A numerical experimental technique is presented to find an optimum solution to an undetermined inverse gamma-ray transport problem involving the nondestructive assay of radionuclide inventory in a nuclear waste drum. The method introduced is an optimization scheme based on performing a large number of numerical simulations that account for the counting statistics, the nonuniformity of source distribution, and the heterogeneous density of the self-absorbing medium inside the waste drum. The simulation model uses forward projection and backward reconstruction algorithms. The forward projection algorithm uses randomly selected source distribution and a first-flight kernel method to calculate external detector responses. The backward reconstruction algorithm uses the conjugate gradient with nonnegative constraint or the maximum likelihood expectation maximum method to reconstruct the source distribution based on calculated detector responses. Total source activity is determined by summing the reconstructed activity of each computational grid. By conducting 10,000 numerical simulations, the error bound and the associated confidence level for the prediction of total source activity are determined. The accuracy and reliability of the simulation model are verified by performing a series of experiments in a 208-{ell} waste barrel. Density heterogeneity is simulated by using different materials distributed in 37 egg-crate-type compartments simulating a vertical segment of the barrel. Four orthogonal detector positions are used to measure the emerging radiation field from the distributed source. Results of the performed experiments are in full agreement with the estimated error and the confidence level, which are predicted by the simulation model.

  17. DOE's Notification of Planned Change to the EPA 40 CFR Part 194 Certification of the Waste Isolation Pilot Plant: Remote-Handled Transuranic Waste Characterization Plan

    EPA Pesticide Factsheets

    The U.S. Department of Energy's Carlsbad Field Office (DOE/CBFO) provided the U.S. Environmental Protection Agency (EPA) this Notification of Planned Change to accept remote-handled (RH) transuranic (TRU) waste at the Waste Isolation Pilot Plant (WIPP).

  18. WASTE ISOLATION PILOT PLANT (WIPP): THE NATIONS' SOLUTION TO NUCLEAR WASTE STORAGE AND DISPOSAL ISSUES

    SciTech Connect

    Lopez, Tammy Ann

    2014-07-17

    In the southeastern portion of my home state of New Mexico lies the Chihuahauan desert, where a transuranic (TRU), underground disposal site known as the Waste Isolation Pilot Plant (WIPP) occupies 16 square miles. Full operation status began in March 1999, the year I graduated from Los Alamos High School, in Los Alamos, NM, the birthplace of the atomic bomb and one of the nation’s main TRU waste generator sites. During the time of its development and until recently, I did not have a full grasp on the role Los Alamos was playing in regards to WIPP. WIPP is used to store and dispose of TRU waste that has been generated since the 1940s because of nuclear weapons research and testing operations that have occurred in Los Alamos, NM and at other sites throughout the United States (U.S.). TRU waste consists of items that are contaminated with artificial, man-made radioactive elements that have atomic numbers greater than uranium, or are trans-uranic, on the periodic table of elements and it has longevity characteristics that may be hazardous to human health and the environment. Therefore, WIPP has underground rooms that have been carved out of 2,000 square foot thick salt formations approximately 2,150 feet underground so that the TRU waste can be isolated and disposed of. WIPP has operated safely and successfully until this year, when two unrelated events occurred in February 2014. With these events, the safety precautions and measures that have been operating at WIPP for the last 15 years are being revised and improved to ensure that other such events do not occur again.

  19. The usefulness of interferon-gamma release assay for diagnosis of tuberculosis-related uveitis in Korea.

    PubMed

    Ahn, Seong Joon; Kim, Ko Eun; Woo, Se Joon; Park, Kyu Hyung

    2014-06-01

    To evaluate the usefulness of the interferon-gamma release assay (IGRA) for diagnosing tuberculosis (TB)-related uveitis (TRU). Records from 181 patients with ocular signs and symptoms suggestive of TRU and intraocular inflammation of unknown etiology were reviewed. All subjects underwent clinical and laboratory testing, including IGRA, to rule out presence of underlying disease. A diagnosis of presumed TRU was made based on an internist's TB diagnosis and a patient's response to anti-TB therapy. Sensitivity, specificity, and positive predictive values of IGRA for TRU diagnosis were calculated. Clinical characteristics were compared between patients with positive and negative IGRA results. The sensitivity and specificity of IGRA for TRU were 100% and 72.0%, respectively. Mean age, percentage of patients with retinal vasculitis, and the anatomic type of uveitis were significantly different between patients with positive and negative IGRA results (all p ≤ 0.001). Positive IGRA rates and false-positive rates were significantly different between age and anatomic type groups (both p = 0.001). The positive predictive value of the IGRA among patients with intraocular inflammation was high (70%) when all of younger age (≤ 40 years), posterior uveitis, and retinal vasculitis were present. The IGRA is useful for diagnosing TRU in the Korean population, especially when it is used as a screening test. Clinical characteristics, including younger age (≤ 40 years), posterior uveitis, and retinal vasculitis in IGRA-positive patients, increase the likelihood of the patient having TRU.

  20. Grease waste and sewage sludge co-digestion enhancement by thermal hydrolysis: batch and fed-batch assays.

    PubMed

    Cano, R; Nielfa, A; Pérez, A; Bouchy, L; Fdz-Polanco, M

    2014-01-01

    Grease waste (GW) is an adequate substrate for sewage sludge co-digestion since, coming from a waste water treatment plant, it has a high methane potential (489 NmLCH(4)/gVSin); however, no synergistic effect takes place when co-digesting with 52%VS grease. Conversely, thermal hydrolysis (TH) improves the anaerobic digestion of GW (43% higher kinetics) and biological sludge (29% more methane potential). Therefore, the application of TH to a co-digestion process was further studied. First, biochemical methane potential tests showed that the best configuration to implement the TH to the co-digestion process is pretreating the biological sludge alone, providing a 7.5% higher methane production (398 NmLCH(4)/gVSin), 20% faster kinetics and no lag-phase. Its implementation in a fed-batch operation resulted in considerable methane production (363 NmLCH(4)/gVSin) and TH improved the rheology and dewaterability properties of the digestate. This leads to important economical savings when combined with co-digestion, reducing final waste management costs and showing interesting potential for full-scale application.

  1. Reduced waste generation technical work plan

    SciTech Connect

    Not Available

    1987-05-01

    The United States Department of Energy has established policies for avoiding plutonium losses to the waste streams and minimizing the generation of wastes produced at its nuclear facilities. This policy is evidenced in DOE Order 5820.2, which states Technical and administrative controls shall be directed towards reducing the gross volume of TRU waste generated and the amount of radioactivity in such waste.'' To comply with the DOE directive, the Defense Transuranic Waste Program (DTWP) supports and provides funding for specific research and development tasks at the various DOE sites to reduce the generation of waste. This document has been prepared to give an overview of current and past Reduced Waste Generation task activities which are to be based on technical and cost/benefit factors. The document is updated annually, or as needed, to reflect the status of program direction. Reduced Waste Generation (RWG) tasks encompass a wide range of goals which are basically oriented toward (1) avoiding the generation of waste, (2) changing processes or operations to reduce waste, (3) converting TRU waste into LLW by sorting or decontamination, and (4) reducing volumes through operations such as incineration or compaction.

  2. Los Alamos National Laboratory transuranic waste quality assurance project plan. Revision 1

    SciTech Connect

    1997-04-14

    This Transuranic (TRU) Waste Quality Assurance Project Plan (QAPjP) serves as the quality management plan for the characterization of transuranic waste in preparation for certification and transportation. The Transuranic Waste Characterization/Certification Program (TWCP) consists of personnel who sample and analyze waste, validate and report data; and provide project management, quality assurance, audit and assessment, and records management support, all in accordance with established requirements for disposal of TRU waste at the Waste Isolation Pilot Plant (WIPP) facility. This QAPjP addresses how the TWCP meets the quality requirements of the Carlsbad Area Office (CAO) Quality Assurance Program Description (QAPD) and the technical requirements of the Transuranic Waste Characterization Quality Assurance Program Plan (QAPP). The TWCP characterizes and certifies retrievably stored and newly generated TRU waste using the waste selection, testing, sampling, and analytical techniques and data quality objectives (DQOs) described in the QAPP, the Los Alamos National Laboratory Transuranic Waste Certification Plan (Certification Plan), and the CST Waste Management Facilities Waste Acceptance Criteria and Certification [Los Alamos National Laboratory (LANL) Waste Acceptance Criteria (WAC)]. At the present, the TWCP does not address remote-handled (RH) waste.

  3. A Robust Power Remote Manipulator for Use in Waste Sorting, Processing, and Packaging - 12158

    SciTech Connect

    Cole, Matt; Martin, Scott

    2012-07-01

    Disposition of radioactive waste is one of the Department of Energy's (DOE's) highest priorities. A critical component of the waste disposition strategy is shipment of Transuranic (TRU) waste from DOE's Oak Ridge Reservation to the Waste Isolation Plant Project (WIPP) in Carlsbad, New Mexico. This is the mission of the DOE TRU Waste Processing Center (TWPC). The remote-handled TRU waste at the Oak Ridge Reservation is currently in a mixed waste form that must be repackaged in to meet WIPP Waste Acceptance Criteria (WAC). Because this remote-handled legacy waste is very diverse, sorting, size reducing, and packaging will require equipment flexibility and strength that is not possible with standard master-slave manipulators. To perform the wide range of tasks necessary with such diverse, highly contaminated material, TWPC worked with S.A. Technology (SAT) to modify SAT's Power Remote Manipulator (PRM) technology to provide the processing center with an added degree of dexterity and high load handling capability inside its shielded cells. TWPC and SAT incorporated innovative technologies into the PRM design to better suit the operations required at TWPC, and to increase the overall capability of the PRM system. Improving on an already proven PRM system will ensure that TWPC gains the capabilities necessary to efficiently complete its TRU waste disposition mission. The collaborative effort between TWPC and S.A. Technology has yielded an extremely capable and robust solution to perform the wide range of tasks necessary to repackage TRU waste containers at TWPC. Incorporating innovative technologies into a proven manipulator system, these PRMs are expected to be an important addition to the capabilities available to shielded cell operators. The PRMs provide operators with the ability to reach anywhere in the cell, lift heavy objects, perform size reduction associated with the disposition of noncompliant waste. Factory acceptance testing of the TWPC Powered Remote

  4. Intermediate depth burial of classified transuranic wastes in arid alluvium

    SciTech Connect

    Cochran, J.R.; Crowe, B.M.; Di Sanza, F.

    1999-04-01

    Intermediate depth disposal operations were conducted by the US Department of Energy (DOE) at the DOE`s Nevada Test Site (NTS) from 1984 through 1989. These operations emplaced high-specific activity low-level wastes (LLW) and limited quantities of classified transuranic (TRU) wastes in 37 m (120-ft) deep, Greater Confinement Disposal (GCD) boreholes. The GCD boreholes are 3 m (10 ft) in diameter and founded in a thick sequence of arid alluvium. The bottom 15 m (50 ft) of each borehole was used for waste emplacement and the upper 21 m (70 ft) was backfilled with native alluvium. The bottom of each GCD borehole is almost 200 m (650 ft) above the water table. The GCD boreholes are located in one of the most arid portions of the US, with an average precipitation of 13 cm (5 inches) per year. The limited precipitation, coupled with generally warm temperatures and low humidities results in a hydrologic system dominated by evapotranspiration. The US Environmental Protection Agency`s (EPA`s) 40 CFR 191 defines the requirements for protection of human health from disposed TRU wastes. This EPA standard sets a number of requirements, including probabilistic limits on the cumulative releases of radionuclides to the accessible environment for 10,000 years. The DOE Nevada Operations Office (DOE/NV) has contracted with Sandia National Laboratories (Sandia) to conduct a performance assessment (PA) to determine if the TRU wastes emplaced in the GCD boreholes complies with the EPA`s 40 CFR 191 requirements. This paper describes DOE`s actions undertaken to evaluate whether the TRU wastes in the GCD boreholes will, or will not, endanger human health. Based on preliminary modeling, the TRU wastes in the GCD boreholes meet the EPA`s requirements, and are, therefore, protective of human health.

  5. Certification Plan, Radioactive Mixed Waste Hazardous Waste Handling Facility

    SciTech Connect

    Albert, R.

    1992-06-30

    The purpose of this plan is to describe the organization and methodology for the certification of radioactive mixed waste (RMW) handled in the Hazardous Waste Handling Facility at Lawrence Berkeley Laboratory (LBL). RMW is low-level radioactive waste (LLW) or transuranic (TRU) waste that is co-contaminated with dangerous waste as defined in the Westinghouse Hanford Company (WHC) Solid Waste Acceptance Criteria (WAC) and the Washington State Dangerous Waste Regulations, 173-303-040 (18). This waste is to be transferred to the Hanford Site Central Waste Complex and Burial Grounds in Hanford, Washington. This plan incorporates the applicable elements of waste reduction, which include both up-front minimization and end-product treatment to reduce the volume and toxicity of the waste; segregation of the waste as it applies to certification; an executive summary of the Waste Management Quality Assurance Implementing Management Plan (QAIMP) for the HWHF (Section 4); and a list of the current and planned implementing procedures used in waste certification.

  6. Overview of the National Transuranic Waste System.

    SciTech Connect

    Moody, D. C.; Jennings, S. G.; Smith, L.; Triay, I. R.; Basabilvazo, George T. ,

    2002-01-01

    The U.S. Department of Energy's (DOE) Waste Isolation Pilot Plant (WIPP) became a reality with the first receipt of waste in March 1999. The years of planning, certification, and permitting milestones were met and the facility began its' mission of safe disposal of the nations transuranic (TRU) waste. Today, more than 12,000 drum equivalents of TRU waste, are resting safely in bedded salt 2,150 feet (nearly one-half mile) beneath the surface of the New Mexico desert-a rock formation that has not moved since it fonned some 250 million years ago. It took more than 20 years to build, license and open the WIPP as the nation's first deep geologic repository for the permanent disposal of defense-generated TRU waste now stored above ground at 23 sites across the country. As it was throughout those 20 years, safety is the number one priority and most significant achievement as the project moves into its third year of disposal operations.

  7. Westinghouse Hanford Company plan for certifying newly generated contact -- handled transuranic waste. Revision 1

    SciTech Connect

    Lipinski, R.M.; Backlund, E.G.

    1995-09-01

    All transuranic (TRU) waste generators are required by US Department of Energy (DOE) Order 5820.2A to package their TRU waste in order to comply wit the Waste Isolation Pilot Plant (WIPP) -- Waste Acceptance Criteria (WAC) or keep non-certifiable containers segregated. The Westinghouse Hanford Company (WHC) Transuranic Waste Certification Plan was developed to ensure that TRU newly generated waste at WHC meets the DOE Order 5820.2A and the WHC-WAC which includes the State of Washington Department of Ecology -- Washington Administrative Code (DOE-WAC). The metho used at WHC to package TRU waste are described in sufficient detail to meet the regulations. This document is organized to provide a brief overview of waste generation operations at WHC. The methods used to implement this plan are discussed briefly along with the responsibilities and authorities of applicable organizations. This plan describes how WHC complies with all applicable regulations and requirements set forth in the latest approved revision of WHC-EP-0063-4.

  8. Solid Waste Information Management System (SWIMS). Data summary, fiscal year 1980

    NASA Astrophysics Data System (ADS)

    Batchelder, H. M.

    1981-05-01

    The solid waste information management system (SWIMS) maintains computerized records on a master data base. It provides a comprehensive system for cataloging and assembling data into output reports. The SWIMS data base contains information on the transuranic (TRU) and low level waste (LLW) generated, buried, or stored.

  9. Transuranic Waste Burning Potential of Thorium Fuel in a Fast Reactor - 12423

    SciTech Connect

    Wenner, Michael; Franceschini, Fausto; Ferroni, Paolo; Sartori, Alberto; Ricotti, Marco

    2012-07-01

    Westinghouse Electric Company (referred to as 'Westinghouse' in the rest of this paper) is proposing a 'back-to-front' approach to overcome the stalemate on nuclear waste management in the US. In this approach, requirements to further the societal acceptance of nuclear waste are such that the ultimate health hazard resulting from the waste package is 'as low as reasonably achievable'. Societal acceptability of nuclear waste can be enhanced by reducing the long-term radiotoxicity of the waste, which is currently driven primarily by the protracted radiotoxicity of the transuranic (TRU) isotopes. Therefore, a transition to a more benign radioactive waste can be accomplished by a fuel cycle capable of consuming the stockpile of TRU 'legacy' waste contained in the LWR Used Nuclear Fuel (UNF) while generating waste which is significantly less radio-toxic than that produced by the current open U-based fuel cycle (once through and variations thereof). Investigation of a fast reactor (FR) operating on a thorium-based fuel cycle, as opposed to the traditional uranium-based is performed. Due to a combination between its neutronic properties and its low position in the actinide chain, thorium not only burns the legacy TRU waste, but it does so with a minimal production of 'new' TRUs. The effectiveness of a thorium-based fast reactor to burn legacy TRU and its flexibility to incorporate various fuels and recycle schemes according to the evolving needs of the transmutation scenario have been investigated. Specifically, the potential for a high TRU burning rate, high U-233 generation rate if so desired and low concurrent production of TRU have been used as metrics for the examined cycles. Core physics simulations of a fast reactor core running on thorium-based fuels and burning an external TRU feed supply have been carried out over multiple cycles of irradiation, separation and reprocessing. The TRU burning capability as well as the core isotopic content have been characterized