Science.gov

Sample records for assaying quantitative

  1. A quantitative assay for intercellular aggregation

    NASA Technical Reports Server (NTRS)

    Neelamegham, S.; Zygourakis, K.; McIntire, L. V. (Principal Investigator)

    1997-01-01

    In an earlier communication (Munn et al., J Immunol. Methods 166: 11-25, 1993), we presented the initial development of a quantitative assay for monitoring the rates of cellular aggregation based on digital image processing and video microscopy. This study describes some important enhancements and modifications to the procedure. A new index is introduced to characterize the three-dimensional morphology of the aggregates. This index is based on temporal changes in the projected area of the cells and cell aggregates during the course of the experiment. By drawing an analogy with the kinetic theory of gases, we have also introduced a procedure to normalize for variations in cell seeding density among different experiments. In addition, the image analysis technique has been improved by introducing a background subtraction algorithm to remove illumination defects and an adaptive segmentation procedure. These improvements allowed us to completely automate the image analysis procedure, thus minimizing user intervention and improving the reproducibility of the measurements. The enhanced visual assay is evaluated using some recent results from our studies on homotypic lymphocyte aggregation.

  2. Rapid Quantitative Serological Assay of Staphylococcal Enterotoxin B

    PubMed Central

    Weirether, Francis J.; Lewis, Evelyn E.; Rosenwald, Albert J.; Lincoln, Ralph E.

    1966-01-01

    A simple, rapid method, based on the Oudin single diffusion technique, is described for the quantitative assay of staphylococcal enterotoxin B. The method yields reproducible results without close control of such assay variables as temperature, antiserum dilution, and assay time, provided that the ionic strength is maintained above 0.2 n sodium chloride equivalent. PMID:4959985

  3. A Rapid and Quantitative Recombinase Activity Assay

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We present here a comparison between the recombinase systems FLP-FRT and Cre-loxP. A transient excision based dual luciferase expression assay is used for its rapid and repeatable nature. The detection system was designed within an intron to remove the remaining recombinase recognition site and no...

  4. Quantitative Assays for RAS Pathway Proteins and Phosphorylation States

    Cancer.gov

    The NCI CPTAC program is applying its expertise in quantitative proteomics to develop assays for RAS pathway proteins. Targets include key phosphopeptides that should increase our understanding of how the RAS pathway is regulated.

  5. A comparison of protein quantitation assays for biopharmaceutical applications.

    PubMed

    Noble, J E; Knight, A E; Reason, A J; Di Matola, A; Bailey, M J A

    2007-10-01

    Dye-based protein determination assays are widely used to estimate protein concentration, however various reports suggest that the response is dependent on the composition and sequence of the protein, limiting confidence in the resulting concentration estimates. In this study a diverse set of model proteins representing various sizes of protein and covalent modifications, some typical of biopharmaceuticals have been used to assess the utility of dye-based protein concentration assays. The protein concentration assays (Bicinchoninic acid (BCA), Bradford, 3-(4-carboxybenzoyl)quinoline-2-carboxaldehyde (CBQCA), DC, Fluorescamine and Quant-i) were compared to the 'gold standard' assay, quantitative amino acid analysis (AAA). The assays that displayed the lowest variability between proteins, BCA and DC, also generated improved estimates when BSA was used as a standard, when compared to AAA derived concentrations. Assays read out by absorbance tended to display enhanced robustness and repeatability, whereas the fluorescence based assays had wider quantitation ranges and lower limits of detection. Protein modification, in the form of glycosylation and PEGylation, and the addition of excipients, were found to affect the estimation of protein concentration for some of the assays when compared to the unmodified protein. We discuss the suitability and limitations of the selected assays for the estimation of protein concentration in biopharmaceutical applications.

  6. Optimized conditions for a quantitative SELDI TOF MS protein assay.

    PubMed

    Lomas, Lee; Clarke, Charlotte H; Thulasiraman, Vanitha; Fung, Eric

    2012-01-01

    The development of peptide/protein analyte assays for the purpose of diagnostic tests is driven by multiple factors, including sample availability, required throughput, and quantitative reproducibility. Laser Desorption/ionization mass spectrometry methods (LDI-MS) are particularly well suited for both peptide and protein characterization, and combining chromatographic surfaces directly onto the MS probe in the form of surface enhanced laser desorption/ionization (SELDI)-biochips has improved the reproducibility of analyte detection and provided effective relative quantitation. Here, we provide methods for developing reproducible SELDI-based assays by providing a complex artificial protein matrix background within the sample to be analyzed that allows for a common and reproducible ionization background as well as internal normalization standards. Using this approach, quantitative assays can be developed with CVs typically less than 10% across assays and days. Although the method has been extensively and successfully implemented in association with a protein matrix from E. coli, any other source for the complex protein matrix can be considered as long as it adheres to a set of conditions including the following: (1) the protein matrix must not provide interferences with the analyte to be detected, (2) the protein matrix must be sufficiently complex such that a majority of ion current generated from the desorption of the sample comes from the complex protein matrix, and (3) specific and well-resolved protein matrix peaks must be present within the mass range of the analyte of interest for appropriate normalization.

  7. Optimization of a Quantitative Micro-neutralization Assay

    PubMed Central

    Lin, Yipu; Gu, Yan; McCauley, John W.

    2016-01-01

    The micro-neutralization (MN) assay is a standard technique for measuring the infectivity of the influenza virus and the inhibition of virus replication. In this study, we present the protocol of an imaging-based MN assay to quantify the true antigenic relationships between viruses. Unlike typical plaque reduction assays that rely on visible plaques, this assay quantitates the entire infected cell population of each well. The protocol matches the virus type or subtype with the selection of cell lines to achieve maximum infectivity, which enhances sample contrast during imaging and image processing. The introduction of quantitative titration defines the amount of input viruses of neutralization and enables the results from different experiments to be comparable. The imaging setup with a flatbed scanner and free downloadable software makes the approach high throughput, cost effective, user friendly, and easy to deploy in most laboratories. Our study demonstrates that the improved MN assay works well with the current circulating influenza A(H1N1)pdm09, A(H3N2), and B viruses, without being significantly influenced by amino acid substitutions in the neuraminidase (NA) of A(H3N2) viruses. It is particularly useful for the characterization of viruses that either grow to low HA titer and/or undergo an abortive infection resulting in an inability to form plaques in cultured cells. PMID:28060291

  8. Quantitative Microplate Assay for Real-Time Nuclease Kinetics

    PubMed Central

    Langel, Ülo

    2016-01-01

    Utilizing the phenomenon of nucleases exposing oligonucleotide phosphate backbones to phosphatases we present a novel quantitative method for kinetics of nuclease catalysis. Inorganic phosphate released from nuclease products by phosphatases could be quantified in real-time by a fluorescent sensor of inorganic phosphate. Two different nucleases were employed, showing the versatility of this assay for multiple turnover label-free nuclease studies. PMID:27101307

  9. Field-based multiplex and quantitative assay platforms for diagnostics

    NASA Astrophysics Data System (ADS)

    Venkatasubbarao, Srivatsa; Dixon, C. Edward; Chipman, Russell; Scherer, Axel; Beshay, Manal; Kempen, Lothar U.; Chandra Sekhar, Jai Ganesh; Yan, Hong; Puccio, Ava; Okonkwo, David; McClain, Stephen; Gilbert, Noah; Vyawahare, Saurabh

    2011-06-01

    The U.S. military has a continued interest in the development of handheld, field-usable sensors and test kits for a variety of diagnostic applications, such as traumatic brain injury (TBI) and infectious diseases. Field-use presents unique challenges for biosensor design, both for the readout unit and for the biological assay platform. We have developed robust biosensor devices that offer ultra-high sensitivity and also meet field-use needs. The systems under development include a multiplexed quantitative lateral flow test strip for TBI diagnostics, a field test kit for the diagnosis of pathogens endemic to the Middle East, and a microfluidic assay platform with a label-free reader for performing complex biological automated assays in the field.

  10. Single-Cell Based Quantitative Assay of Chromosome Transmission Fidelity

    PubMed Central

    Zhu, Jin; Heinecke, Dominic; Mulla, Wahid A.; Bradford, William D.; Rubinstein, Boris; Box, Andrew; Haug, Jeffrey S.; Li, Rong

    2015-01-01

    Errors in mitosis are a primary cause of chromosome instability (CIN), generating aneuploid progeny cells. Whereas a variety of factors can influence CIN, under most conditions mitotic errors are rare events that have been difficult to measure accurately. Here we report a green fluorescent protein−based quantitative chromosome transmission fidelity (qCTF) assay in budding yeast that allows sensitive and quantitative detection of CIN and can be easily adapted to high-throughput analysis. Using the qCTF assay, we performed genome-wide quantitative profiling of genes that affect CIN in a dosage-dependent manner and identified genes that elevate CIN when either increased (icCIN) or decreased in copy number (dcCIN). Unexpectedly, qCTF screening also revealed genes whose change in copy number quantitatively suppress CIN, suggesting that the basal error rate of the wild-type genome is not minimized, but rather, may have evolved toward an optimal level that balances both stability and low-level karyotype variation for evolutionary adaptation. PMID:25823586

  11. Single-Cell Based Quantitative Assay of Chromosome Transmission Fidelity.

    PubMed

    Zhu, Jin; Heinecke, Dominic; Mulla, Wahid A; Bradford, William D; Rubinstein, Boris; Box, Andrew; Haug, Jeffrey S; Li, Rong

    2015-03-30

    Errors in mitosis are a primary cause of chromosome instability (CIN), generating aneuploid progeny cells. Whereas a variety of factors can influence CIN, under most conditions mitotic errors are rare events that have been difficult to measure accurately. Here we report a green fluorescent protein-based quantitative chromosome transmission fidelity (qCTF) assay in budding yeast that allows sensitive and quantitative detection of CIN and can be easily adapted to high-throughput analysis. Using the qCTF assay, we performed genome-wide quantitative profiling of genes that affect CIN in a dosage-dependent manner and identified genes that elevate CIN when either increased (icCIN) or decreased in copy number (dcCIN). Unexpectedly, qCTF screening also revealed genes whose change in copy number quantitatively suppress CIN, suggesting that the basal error rate of the wild-type genome is not minimized, but rather, may have evolved toward an optimal level that balances both stability and low-level karyotype variation for evolutionary adaptation.

  12. In vivo osteogenesis assay: a rapid method for quantitative analysis.

    PubMed

    Dennis, J E; Konstantakos, E K; Arm, D; Caplan, A I

    1998-08-01

    A quantitative in vivo osteogenesis assay is a useful tool for the analysis of cells and bioactive factors that affect the amount or rate of bone formation. There are currently two assays in general use for the in vivo assessment of osteogenesis by isolated cells: diffusion chambers and porous calcium phosphate ceramics. Due to the relative ease of specimen preparation and reproducibility of results, the porous ceramic assay was chosen for the development of a rapid method for quantitating in vivo bone formation. The ceramic cube implantation technique consists of combining osteogenic cells with 27-mm3 porous calcium phosphate ceramics, implanting the cell-ceramic composites subcutaneously into an immuno-tolerant host, and, after 2-6 weeks, harvesting and preparing the ceramic implants for histologic analysis. A drawback to the analysis of bone formation within these porous ceramics is that the entire cube must be examined to find small foci of bone present in some samples; a single cross-sectional area is not representative. For this reason, image analysis of serial sections from ceramics is often prohibitively time-consuming. Two alternative scoring methodologies were tested and compared to bone volume measurements obtained by image analysis. The two subjective scoring methods were: (1) Bone Scale: the amount of bone within pores of the ceramic implant is estimated on a scale of 0-4 based on the degree of bone fill (0=no bone, 1=up to 25%, 2=25 to 75%, 4=75 to 100% fill); and (2) Percentage Bone: the amount of bone is estimated by determining the percentage of ceramic pores which contain bone. Every tenth section of serially sectioned cubes was scored by each of these methods under double-blind conditions, and the Bone Scale and Percentage Bone results were directly compared to image analysis measurements from identical samples. Correlation coefficients indicate that the Percentage Bone method was more accurate than the Bone Scale scoring method. The Bone Scale

  13. Development and characterization of the NanoOrange protein quantitation assay: a fluorescence-based assay of proteins in solution.

    PubMed

    Jones, Laurie J; Haugland, Richard P; Singer, Victoria L

    2003-04-01

    We developed a sensitive fluorescence assay for the quantitation of proteins in solution using the NanoOrange reagent, a merocyanine dye that produces a large increase in fluorescence quantum yield upon interaction with detergent-coated proteins. The NanoOrange assay allowed for the detection of 10 ng/mL to 10 micrograms/mL protein with a standard fluorometer, offering a broad, dynamic quantitation range and improved sensitivity relative to absorption-based protein solution assays. The protein-to-protein variability of the NanoOrange assay was comparable to those of standard assays, including Lowry, bicinchoninic acid, and Bradford procedures. We also found that the NanoOrange assay is useful for detecting relatively small proteins or large peptides, such as aprotinin and insulin. The assay was somewhat sensitive to the presence of several common contaminants found in protein preparations such as salts and detergents; however, it was insensitive to the presence of reducing agents, nucleic acids, and free amino acids. The simple assay protocol is suitable for automation. Samples are briefly heated in the presence of dye in a detergent-containing diluent, allowed to cool to room temperature, and fluorescence is measured using 485-nm excitation and 590-nm emission wavelengths. Therefore, the NanoOrange assay is well suited for use with standard fluorescence microplate readers, fluorometers, and some laser scanners.

  14. An evaluation of protein assays for quantitative determination of drugs.

    PubMed

    Williams, Katherine M; Arthur, Sarah J; Burrell, Gillian; Kelly, Fionnuala; Phillips, Darren W; Marshall, Thomas

    2003-07-31

    We have evaluated the response of six protein assays [the biuret, Lowry, bicinchoninic acid (BCA), Coomassie Brilliant Blue (CBB), Pyrogallol Red-Molybdate (PRM), and benzethonium chloride (BEC)] to 21 pharmaceutical drugs. The drugs evaluated were analgesics (acetaminophen, aspirin, codeine, methadone, morphine and pethidine), antibiotics (amoxicillin, ampicillin, gentamicin, neomycin, penicillin G and vancomycin), antipsychotics (chlorpromazine, fluphenazine, prochlorperazine, promazine and thioridazine) and water-soluble vitamins (ascorbic acid, niacinamide, pantothenic acid and pyridoxine). The biuret, Lowry and BCA assays responded strongly to most of the drugs tested. The PRM assay gave a sensitive response to the aminoglycoside antibiotics (gentamicin and neomycin) and the antipsychotic drugs. In contrast, the CBB assay showed little response to the aminoglycosides and gave a relatively poor response with the antipsychotics. The BEC assay did not respond significantly to the drugs tested. The response of the protein assays to the drugs was further evaluated by investigating the linearity of the response and the combined response of drug plus protein. The results are discussed with reference to drug interference in protein assays and the development of new methods for the quantification of drugs in protein-free solution.

  15. Calibration of qualitative HBsAg assay results for quantitative HBsAg monitoring.

    PubMed

    Gunning, Hans; Adachi, Dena; Tang, Julian W

    2014-10-01

    Evidence is accumulating that quantitative hepatitis B surface antigen monitoring may be useful in managing patients with chronic HBV infection on certain treatment regimens. Based on these results with the Abbott Architect qualitative and quantitative HBsAg assays, it seems feasible to convert qualitative to quantitative HBsAg values for this purpose.

  16. Comparison of Droplet Digital PCR and Quantitative PCR Assays for Quantitative Detection of Xanthomonas citri Subsp. citri

    PubMed Central

    Yin, Youping; Wang, Zhongkang

    2016-01-01

    Droplet digital polymerase chain reaction (ddPCR) is a novel molecular biology technique providing absolute quantification of target nucleic acids without the need for an external calibrator. Despite its emerging applications in medical diagnosis, there are few reports of its use for the detection of plant pathogens. This work was designed to assess the diagnosis potential of the ddPCR for absolute quantitative detection of Xanthomonas citri subsp. citri, a quarantine plant pathogenic bacterium that causes citrus bacterial canker in susceptible Citrus species. We transferred an established quantitative PCR (qPCR) assay for citrus bacterial canker diagnosis directly to the ddPCR format and compared the performance of the two methods. The qPCR assay has a broader dynamic range compared to the ddPCR assay and the ddPCR assay has a significantly higher degree of sensitivity compared to the qPCR assay. The influence of PCR inhibitors can be reduced considerably in the ddPCR assay because the collection of end-point fluorescent signals and the counting of binomial events (positive or negative droplets) are associated with a Poisson algorithm. The ddPCR assay also shows lower coefficient of variation compared to the qPCR assay especially in low target concentration. The linear association of the measurements by ddPCR and qPCR assays is strong (Pearson correlation = 0.8633; P<0.001). Receiver operating characteristic analysis indicates the ddPCR methodology is a more robust approach for diagnosis of citrus bacterial canker. In summary, the results demonstrated that the ddPCR assay has the potential for the quantitative detection of X. citri subsp. citri with high precision and accuracy as compared with the results from qPCR assay. Further studies are required to evaluate and validate the value of ddPCR technology in the diagnosis of plant disease and quarantine applications. PMID:27427975

  17. Improved assay for quantitating adherence of ruminal bacteria to cellulose.

    PubMed Central

    Rasmussen, M A; White, B A; Hespell, R B

    1989-01-01

    A quantitative technique suitable for the determination of adherence of ruminal bacteria to cellulose was developed. This technique employs adherence of cells to cellulose disks and alleviates the problem of nonspecific cell entrapment within cellulose particles. By using this technique, it was demonstrated that the adherence of Ruminococcus flavefaciens FD1 to cellulose was inhibited by formaldehyde, methylcellulose, and carboxymethyl cellulose. Adherence was unaffected by acid hydrolysates of methylcellulose, glucose, and cellobiose. PMID:2782879

  18. A novel quantitative immunomagnetic reduction assay for Nervous necrosis virus.

    PubMed

    Yang, Shieh Yueh; Wu, Jen Leih; Tso, Chun Hsi; Ngou, Fang Huar; Chou, Hsin Yiu; Nan, Fan Hua; Horng, Herng Er; Lu, Ming Wei

    2012-09-01

    Rapid, sensitive, and automatic detection platforms are among the major approaches of controlling viral diseases in aquaculture. An efficient detection platform permits the monitoring of pathogen spread and helps to enhance the economic benefits of commercial aquaculture. Nervous necrosis virus (NNV), the cause of viral encephalopathy and retinopathy, is among the most devastating aquaculture viruses that infect marine fish species worldwide. In the present study, a highly sensitive magnetoreduction assay was developed for detecting target biomolecules with a primary focus on NNV antigens. A standard curve of the different NNV concentrations that were isolated from infected Malabar grouper (Epinephelus malabaricus) was established before experiments were conducted. The test solution was prepared by homogeneous dispersion of magnetic nanoparticles coated with rabbit anti-NNV antibody. The magnetic nanoparticles in the solution were oscillated by magnetic interaction with multiple externally applied, alternating current magnetic fields. The assay's limit of detection was approximately 2 × 10(1) TCID(50)/ml for NNV. Moreover, the immunomagnetic reduction readings for other aquatic viruses (i.e., 1 × 10(7) TCID(50)/ml for Infectious pancreatic necrosis virus and 1 × 10(6.5) TCID(50)/ml for grouper iridovirus) were below the background noise in the NNV solution, demonstrating the specificity of the new detection platform.

  19. Comparison of quantitative PCR assays for Escherichia coli targeting ribosomal RNA and single copy genes

    EPA Science Inventory

    Aims: Compare specificity and sensitivity of quantitative PCR (qPCR) assays targeting single and multi-copy gene regions of Escherichia coli. Methods and Results: A previously reported assay targeting the uidA gene (uidA405) was used as the basis for comparing the taxono...

  20. Evaluation of a quantitative plasma PCR plate assay for detecting cytomegalovirus infection in marrow transplant recipients.

    PubMed Central

    Gallez-Hawkins, G M; Tegtmeier, B R; ter Veer, A; Niland, J C; Forman, S J; Zaia, J A

    1997-01-01

    A plasma PCR test, using a nonradioactive PCR plate assay, was evaluated for detection of human cytomegalovirus reactivation. This assay was compared to Southern blotting and found to perform well. As a noncompetitive method of quantitation, it was similar to a competitive method for detecting the number of genome copies per milliliter of plasma in marrow transplant recipients. This is a technically simplified assay with potential for adaptation to automation. PMID:9041438

  1. Smartphone based visual and quantitative assays on upconversional paper sensor.

    PubMed

    Mei, Qingsong; Jing, Huarong; Li, You; Yisibashaer, Wuerzha; Chen, Jian; Nan Li, Bing; Zhang, Yong

    2016-01-15

    The integration of smartphone with paper sensors recently has been gain increasing attentions because of the achievement of quantitative and rapid analysis. However, smartphone based upconversional paper sensors have been restricted by the lack of effective methods to acquire luminescence signals on test paper. Herein, by the virtue of 3D printing technology, we exploited an auxiliary reusable device, which orderly assembled a 980nm mini-laser, optical filter and mini-cavity together, for digitally imaging the luminescence variations on test paper and quantitative analyzing pesticide thiram by smartphone. In detail, copper ions decorated NaYF4:Yb/Tm upconversion nanoparticles were fixed onto filter paper to form test paper, and the blue luminescence on it would be quenched after additions of thiram through luminescence resonance energy transfer mechanism. These variations could be monitored by the smartphone camera, and then the blue channel intensities of obtained colored images were calculated to quantify amounts of thiram through a self-written Android program installed on the smartphone, offering a reliable and accurate detection limit of 0.1μM for the system. This work provides an initial demonstration of integrating upconversion nanosensors with smartphone digital imaging for point-of-care analysis on a paper-based platform.

  2. Qualitative and quantitative assays for flagellum-mediated chemotaxis.

    PubMed

    Darias, José Antonio Reyes; García-Fontana, Cristina; Lugo, Andrés Corral; Rico-Jiménez, Miriam; Krell, Tino

    2014-01-01

    A primary driving force during bacterial evolution was the capacity to access compounds necessary for growth and survival. Since the species of the genus Pseudomonas are characterized by metabolic versatility, these bacteria have developed chemotactic behaviors towards a wide range of different compounds. The specificity of a chemotactic response is determined by the chemoreceptor, which is at the beginning of the signaling cascade and to which chemoattractants and chemorepellents bind. The number of chemoreceptor genes of Pseudomonas species is significantly higher than the average number in motile bacteria. Although some of the receptors have been annotated with a function, the cognate signal molecules for the majority of them still need to be identified. Different qualitative and quantitative methods are presented that can be used to study flagellum-mediated taxis.

  3. Rapid method for protein quantitation by Bradford assay after elimination of the interference of polysorbate 80.

    PubMed

    Cheng, Yongfeng; Wei, Haiming; Sun, Rui; Tian, Zhigang; Zheng, Xiaodong

    2016-02-01

    Bradford assay is one of the most common methods for measuring protein concentrations. However, some pharmaceutical excipients, such as detergents, interfere with Bradford assay even at low concentrations. Protein precipitation can be used to overcome sample incompatibility with protein quantitation. But the rate of protein recovery caused by acetone precipitation is only about 70%. In this study, we found that sucrose not only could increase the rate of protein recovery after 1 h acetone precipitation, but also did not interfere with Bradford assay. So we developed a method for rapid protein quantitation in protein drugs even if they contained interfering substances.

  4. Highly Rapid Amplification-Free and Quantitative DNA Imaging Assay

    PubMed Central

    Klamp, Tobias; Camps, Marta; Nieto, Benjamin; Guasch, Francesc; Ranasinghe, Rohan T.; Wiedemann, Jens; Petrášek, Zdeněk; Schwille, Petra; Klenerman, David; Sauer, Markus

    2013-01-01

    There is an urgent need for rapid and highly sensitive detection of pathogen-derived DNA in a point-of-care (POC) device for diagnostics in hospitals and clinics. This device needs to work in a ‘sample-in-result-out’ mode with minimum number of steps so that it can be completely integrated into a cheap and simple instrument. We have developed a method that directly detects unamplified DNA, and demonstrate its sensitivity on realistically sized 5 kbp target DNA fragments of Micrococcus luteus in small sample volumes of 20 μL. The assay consists of capturing and accumulating of target DNA on magnetic beads with specific capture oligonucleotides, hybridization of complementary fluorescently labeled detection oligonucleotides, and fluorescence imaging on a miniaturized wide-field fluorescence microscope. Our simple method delivers results in less than 20 minutes with a limit of detection (LOD) of ~5 pM and a linear detection range spanning three orders of magnitude. PMID:23677392

  5. Interpretation of protein quantitation using the Bradford assay: comparison with two calculation models.

    PubMed

    Ku, Hyung-Keun; Lim, Hyuk-Min; Oh, Kyong-Hwa; Yang, Hyo-Jin; Jeong, Ji-Seon; Kim, Sook-Kyung

    2013-03-01

    The Bradford assay is a simple method for protein quantitation, but variation in the results between proteins is a matter of concern. In this study, we compared and normalized quantitative values from two models for protein quantitation, where the residues in the protein that bind to anionic Coomassie Brilliant Blue G-250 comprise either Arg and Lys (Method 1, M1) or Arg, Lys, and His (Method 2, M2). Use of the M2 model yielded much more consistent quantitation values compared with use of the M1 model, which exhibited marked overestimations against protein standards.

  6. Analytical and clinical performance of a new molecular assay for Epstein-Barr virus DNA quantitation.

    PubMed

    Hübner, Margit; Bozic, Michael; Konrad, Petra M; Grohs, Katharina; Santner, Brigitte I; Kessler, Harald H

    2015-02-01

    Quantitation of EBV DNA has been shown to be a useful tool to identify and monitor patients with immunosuppression and high risk for EBV-associated disease. In this study, the analytical and clinical performance of the new Realquality RS-EBV Kit (AB Analitica, Padova, Italy) was investigated. The clinical performance was compared to that of the EBV R-gene (bioMerieux, Varilhes, France) assay. When the accuracy of the new assay was tested, all results except of one were found to be within ±0.5log10 unit of the expected panel results. Determination of linearity showed a quasilinear curve, the between day imprecision ranged from 18% to 88% and the within run imprecision from 16% to 53%. When 96 clinical EDTA whole blood samples were tested, 77 concordant and 19 discordant results were obtained. When the results for the 69 samples quantifiable with both assays were compared, the new assay revealed a mean 0.31log10 unit higher measurement. The new assay proved to be suitable for the detection and quantitation of EBV DNA in EDTA whole blood in the routine diagnostic laboratory. The variation between quantitative results obtained by the assays used in this study reinforces the use of calibrators traceable to the existing international WHO standard making different assays better comparable.

  7. Development of a quantitative fluorescence-based ligand-binding assay

    PubMed Central

    Breen, Conor J.; Raverdeau, Mathilde; Voorheis, H. Paul

    2016-01-01

    A major goal of biology is to develop a quantitative ligand-binding assay that does not involve the use of radioactivity. Existing fluorescence-based assays have a serious drawback due to fluorescence quenching that accompanies the binding of fluorescently-labeled ligands to their receptors. This limitation of existing fluorescence-based assays prevents the number of cellular receptors under investigation from being accurately measured. We have developed a method where FITC-labeled proteins bound to a cell surface are proteolyzed extensively to eliminate fluorescence quenching and then the fluorescence of the resulting sample is compared to that of a known concentration of the proteolyzed FITC-protein employed. This step enables the number of cellular receptors to be measured quantitatively. We expect that this method will provide researchers with a viable alternative to the use of radioactivity in ligand binding assays. PMID:27161290

  8. Qualitative and Quantitative Assays for Detection and Characterization of Protein Antimicrobials

    PubMed Central

    Farris, M. Heath; Ford, Kara A.; Doyle, Richard C.

    2016-01-01

    Initial evaluations of large microbial libraries for potential producers of novel antimicrobial proteins require both qualitative and quantitative methods to screen for target enzymes prior to investing greater research effort and resources. The goal of this protocol is to demonstrate two complementary assays for conducting these initial evaluations. The microslide diffusion assay provides an initial or simple detection screen to enable the qualitative and rapid assessment of proteolytic activity against an array of both viable and heat-killed bacterial target substrates. As a counterpart, the increased sensitivity and reproducibility of the dye-release assay provides a quantitative platform for evaluating and comparing environmental influences affecting the hydrolytic activity of protein antimicrobials. The ability to label specific heat-killed cell culture substrates with Remazol brilliant blue R dye expands this capability to tailor the dye-release assay to characterize enzymatic activity of interest. PMID:27166738

  9. Evaluation of various real-time reverse transcription quantitative PCR assays for norovirus detection.

    PubMed

    Yoo, Ju Eun; Lee, Cheonghoon; Park, SungJun; Ko, GwangPyo

    2017-02-01

    Human noroviruses are widespread and contagious viruses causing nonbacterial gastroenteritis. Real-time reverse transcription quantitative PCR (real-time RT-qPCR) is currently the gold standard for sensitive and accurate detection for these pathogens and serves as a critical tool in outbreak prevention and control. Different surveillance teams, however, may use different assays and variability in specimen conditions may lead to disagreement in results. Furthermore, the norovirus genome is highly variable and continuously evolving. These issues necessitate the re-examination of the real-time RT-qPCR's robustness in the context of accurate detection as well as the investigation of practical strategies to enhance assay performance. Four widely referenced real-time RT-qPCR assays (Assay A-D) were simultaneously performed to evaluate characteristics such as PCR efficiency, detection limit, as well as sensitivity and specificity with RT-PCR, and to assess the most accurate method for detecting norovirus genogroups I and II. Overall, Assay D was evaluated to be the most precise and accurate assay in this study. A Zen internal quencher, which decreases nonspecific fluorescence during the PCR reaction, was added to Assay D's probe which further improved assay performance. This study compared several detection assays for noroviruses and an improvement strategy based on such comparisons provided useful characterizations of a highly optimized real-time RT-qPCR assay for norovirus detection.

  10. High performance liquid chromatographic assay for the quantitation of total glutathione in plasma

    NASA Technical Reports Server (NTRS)

    Abukhalaf, Imad K.; Silvestrov, Natalia A.; Menter, Julian M.; von Deutsch, Daniel A.; Bayorh, Mohamed A.; Socci, Robin R.; Ganafa, Agaba A.

    2002-01-01

    A simple and widely used homocysteine HPLC procedure was applied for the HPLC identification and quantitation of glutathione in plasma. The method, which utilizes SBDF as a derivatizing agent utilizes only 50 microl of sample volume. Linear quantitative response curve was generated for glutathione over a concentration range of 0.3125-62.50 micromol/l. Linear regression analysis of the standard curve exhibited correlation coefficient of 0.999. Limit of detection (LOD) and limit of quantitation (LOQ) values were 5.0 and 15 pmol, respectively. Glutathione recovery using this method was nearly complete (above 96%). Intra-assay and inter-assay precision studies reflected a high level of reliability and reproducibility of the method. The applicability of the method for the quantitation of glutathione was demonstrated successfully using human and rat plasma samples.

  11. Quantitative kinetics of proteolytic enzymes determined by a surface concentration-based assay using peptide arrays.

    PubMed

    Jung, Se-Hui; Kong, Deok-Hoon; Park, Seoung-Woo; Kim, Young-Myeong; Ha, Kwon-Soo

    2012-08-21

    Peptide arrays have emerged as a key technology for drug discovery, diagnosis, and cell biology. Despite the promise of these arrays, applications of peptide arrays to quantitative analysis of enzyme kinetics have been limited due to the difficulty in obtaining quantitative information of enzymatic reaction products. In this study, we developed a new approach for the quantitative kinetics analysis of proteases using fluorescence-conjugated peptide arrays, a surface concentration-based assay with solid-phase peptide standards using dry-off measurements, and compared it with an applied concentration-based assay. For fabrication of the peptide arrays, substrate peptides of cMMP-3, caspase-3, caspase-9, and calpain-1 were functionalized with TAMRA and cysteine, and were immobilized onto amine-functionalized arrays using a heterobifunctional linker, N-[γ-maleimidobutyloxy]succinimide ester. The proteolytic activities of the four enzymes were quantitatively analyzed by calculating changes induced by enzymatic reactions in the concentrations of peptides bound to array surfaces. In addition, this assay was successfully applied for calculating the Michaelis constant (K(m,surf)) for the four enzymes. Thus, this new assay has a strong potential for use in the quantitative evaluation of proteases, and for drug discovery through kinetics studies including the determination of K(m) and V(max).

  12. Development of a real-time quantitative PCR assay to enumerate Yersinia pestis in fleas.

    PubMed

    Gabitzsch, Elizabeth S; Vera-Tudela, Rommelle; Eisen, Rebecca J; Bearden, Scott W; Gage, Kenneth L; Zeidner, Nordin S

    2008-07-01

    A real-time quantitative polymerase chain reaction (qPCR) assay was developed for Yersina pestis. The qPCR assay was developed utilizing a conserved region of the Y. pestis ferric iron uptake regulator gene (fur) to design primers and a fluorescent (FAM-labeled) TaqMan probe. The assay was optimized using cultured Y. pestis (UG05-0454) and was confirmed to work with strains from 3 Y. pestis biovars. The optimized assay was capable of detecting a single organism of cultured Y. pestis and as little as 300 bacteria in infected flea triturates. This qPCR assay enables rapid enumeration of Y. pestis bacterium in laboratory-infected fleas when compared with conventional serial dilution plating.

  13. Quantitative lipopolysaccharide analysis using HPLC/MS/MS and its combination with the limulus amebocyte lysate assay[S

    PubMed Central

    Pais de Barros, Jean-Paul; Gautier, Thomas; Sali, Wahib; Adrie, Christophe; Choubley, Hélène; Charron, Emilie; Lalande, Caroline; Le Guern, Naig; Deckert, Valérie; Monchi, Mehran; Quenot, Jean-Pierre; Lagrost, Laurent

    2015-01-01

    Quantitation of plasma lipopolysaccharides (LPSs) might be used to document Gram-negative bacterial infection. In the present work, LPS-derived 3-hydroxymyristate was extracted from plasma samples with an organic solvent, separated by reversed phase HPLC, and quantitated by MS/MS. This mass assay was combined with the limulus amebocyte lysate (LAL) bioassay to monitor neutralization of LPS activity in biological samples. The described HPLC/MS/MS method is a reliable, practical, accurate, and sensitive tool to quantitate LPS. The combination of the LAL and HPLC/MS/MS analyses provided new evidence for the intrinsic capacity of plasma lipoproteins and phospholipid transfer protein to neutralize the activity of LPS. In a subset of patients with systemic inflammatory response syndrome, with documented infection but with a negative plasma LAL test, significant amounts of LPS were measured by the HPLC/MS/MS method. Patients with the highest plasma LPS concentration were more severely ill. HPLC/MS/MS is a relevant method to quantitate endotoxin in a sample, to assess the efficacy of LPS neutralization, and to evaluate the proinflammatory potential of LPS in vivo. PMID:26023073

  14. A Direct, Competitive Enzyme-Linked Immunosorbent Assay (ELISA) as a Quantitative Technique for Small Molecules

    ERIC Educational Resources Information Center

    Powers, Jennifer L.; Rippe, Karen Duda; Imarhia, Kelly; Swift, Aileen; Scholten, Melanie; Islam, Naina

    2012-01-01

    ELISA (enzyme-linked immunosorbent assay) is a widely used technique with applications in disease diagnosis, detection of contaminated foods, and screening for drugs of abuse or environmental contaminants. However, published protocols with a focus on quantitative detection of small molecules designed for teaching laboratories are limited. A…

  15. A Multiplexed, Probe-Based Quantitative PCR Assay for DNA of Phytophthora sojae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phytophthora sojae (Kaufm. & Gerd.) causes seed rot, pre- and post-emergence damping off, and sometimes foliar blight in soybean (Glycine max). Crop loss may approach 100% with susceptible cultivars. We report here the development of a unique quantitative PCR assay specific to DNA of P. sojae, and a...

  16. Microplate assay for quantitation of neutral lipids in extracts from microalgae.

    PubMed

    Higgins, Brendan T; Thornton-Dunwoody, Alexander; Labavitch, John M; VanderGheynst, Jean S

    2014-11-15

    Lipid quantitation is widespread in the algae literature, but popular methods such as gravimetry, gas chromatography and mass spectrometry (GC-MS), and Nile red cell staining suffer drawbacks, including poor quantitation of neutral lipids, expensive equipment, and variable results among algae species, respectively. A high-throughput microplate assay was developed that uses Nile red dye to quantify neutral lipids that have been extracted from algae cells. Because the algal extracts contained pigments that quenched Nile red fluorescence, a mild bleach solution was used to destroy pigments, resulting in a nearly linear response for lipid quantities in the range of 0.75 to 40 μg. Corn oil was used as a standard for quantitation, although other vegetable oils displayed a similar response. The assay was tested on lipids extracted from three species of Chlorella and resulted in close agreement with triacylglycerol (TAG) levels determined by thin layer chromatography. The assay was found to more accurately measure algal lipids conducive to biodiesel production and nutrition applications than the widely used gravimetric assay. Assay response was also consistent among different species, in contrast to Nile red cell staining procedures.

  17. Radioimmunofocus assay for quantitation of hepatitis A virus in cell cultures.

    PubMed Central

    Lemon, S M; Binn, L N; Marchwicki, R H

    1983-01-01

    A new method is described for the quantitation of hepatitis A virus in cell cultures, based on the immune autoradiographic detection of foci of infected cells (radioimmunofoci) developing beneath an agarose overlay 14 days after the inoculation of petri dish cultures of continuous African green monkey kidney cells (BS-C-1). The number of foci developing in each culture was linearly related to the dose of hepatitis A virus (either HM-175 or PA-21 strain) inoculated. Focus development was prevented by prior incubation of virus with specific antisera, and the specificity of the radiolabeled antibody reaction was confirmed in competitive blocking experiments. This new assay method retains many of the advantages of conventional plaque assays for virus. Compared with existing end-dilution methods for the quantitation of hepatitis A virus, the radioimmunofocus assay offers greatly improved accuracy and comparable sensitivity, yet is relatively rapid and highly conservative of reagents. Images PMID:6306048

  18. Continuous-flow ATP amplification system for increasing the sensitivity of quantitative bioluminescence assay.

    PubMed

    Satoh, Tetsuya; Shinoda, Yasuharu; Alexandrov, Maxym; Kuroda, Akio; Murakami, Yuji

    2008-08-01

    We constructed a novel ATP amplification reactor using a continuous-flow system, and this allowed us to increase the sensitivity of a quantitative bioluminescence assay by controlling the number of ATP amplification cycles. We previously developed a bioluminescence assay coupled with ATP amplification using a batch system. However, it was difficult to control the number of amplification cycles. In this study, ATP amplification was performed using a continuous-flow system, and significant linear correlations between amplified luminescence and initial ATP concentration were observed. When performing four cycles of continuous-flow ATP amplification, the gradient of amplification was 1.87(N). Whereas the lower quantifiable level was 500 pM without amplification, values as low as 50 pM ATP could be measured after amplification. The sensitivity thus increased 10-fold, with further improvements expected with additional amplification cycles. The continuous-flow system thus effectively increased the sensitivity of the quantitative bioluminescence assay.

  19. Quantitative assay of diphtherial toxin and of immunologically cross-reacting proteins by reversed passive hemagglutination.

    PubMed Central

    Holmes, R K; Perlow, R B

    1975-01-01

    A reversed passive hemagglutination (RPHA) assay for diptherial toxin has been developed. Antitoxic antibodies were isolated from commercially available equine diptherial antitoxin by immunoabsorption using highly purified diphtherial toxin covalently linked to Sepharose 4B. Formalinized, tanned sheep erythrocytes sensitized with the purified antitoxic antibodies are specifically agglutinated by diphtherial toxin but are not agglutinated by extracellular antigens of Corynebacterium diptheriae that are unrelated to toxin. The RPHA assay described can detect less than 20 pg of diphtherial toxin and is comparable in sensitivity to intracutaneous tests for toxin. The RPHA assay was shown to be at least 1,000 times more sensitive than quantitative immunological assays for diptherial toxin performed by single radial immunodiffusion or by one-dimensional double diffusion in agar gels. Fragment A prepared from purified diphtherial toxin and nontoxic mutant proteins that cross-react immunologically with toxin can be assayed directly by RPHA, but the sensitivity of the assay for these proteins is less than for native diphtherial toxin. Inhibition of RPHA was also shown to be a sensitive quantitative method for measuring diptherial antitoxin in vitro. Images PMID:54339

  20. A fluorescence-based quantitative real-time PCR assay for accurate Pocillopora damicornis species identification

    NASA Astrophysics Data System (ADS)

    Thomas, Luke; Stat, Michael; Evans, Richard D.; Kennington, W. Jason

    2016-09-01

    Pocillopora damicornis is one of the most extensively studied coral species globally, but high levels of phenotypic plasticity within the genus make species identification based on morphology alone unreliable. As a result, there is a compelling need to develop cheap and time-effective molecular techniques capable of accurately distinguishing P. damicornis from other congeneric species. Here, we develop a fluorescence-based quantitative real-time PCR (qPCR) assay to genotype a single nucleotide polymorphism that accurately distinguishes P. damicornis from other morphologically similar Pocillopora species. We trial the assay across colonies representing multiple Pocillopora species and then apply the assay to screen samples of Pocillopora spp. collected at regional scales along the coastline of Western Australia. This assay offers a cheap and time-effective alternative to Sanger sequencing and has broad applications including studies on gene flow, dispersal, recruitment and physiological thresholds of P. damicornis.

  1. Analysis of JC virus DNA replication using a quantitative and high-throughput assay.

    PubMed

    Shin, Jong; Phelan, Paul J; Chhum, Panharith; Bashkenova, Nazym; Yim, Sung; Parker, Robert; Gagnon, David; Gjoerup, Ole; Archambault, Jacques; Bullock, Peter A

    2014-11-01

    Progressive Multifocal Leukoencephalopathy (PML) is caused by lytic replication of JC virus (JCV) in specific cells of the central nervous system. Like other polyomaviruses, JCV encodes a large T-antigen helicase needed for replication of the viral DNA. Here, we report the development of a luciferase-based, quantitative and high-throughput assay of JCV DNA replication in C33A cells, which, unlike the glial cell lines Hs 683 and U87, accumulate high levels of nuclear T-ag needed for robust replication. Using this assay, we investigated the requirement for different domains of T-ag, and for specific sequences within and flanking the viral origin, in JCV DNA replication. Beyond providing validation of the assay, these studies revealed an important stimulatory role of the transcription factor NF1 in JCV DNA replication. Finally, we show that the assay can be used for inhibitor testing, highlighting its value for the identification of antiviral drugs targeting JCV DNA replication.

  2. Enzyme-linked immunosorbent assay for quantitation of attachment and ingestion stages of bacterial phagocytosis.

    PubMed Central

    Athamna, A; Ofek, I

    1988-01-01

    Research on phagocytosis of bacteria is often hampered by the inability to distinguish quantitatively between bacteria that have been ingested by phagocytic cells and those which are attached to the surface of the cells. A method using the enzyme-linked immunosorbent assay technique to simply and accurately measure the rate of bacterial ingestion by phagocytic cells is described. The method is based on the ability of antibacterial antibodies to bind to bacteria attached to but not internalized by phagocytic cells. The attached bacteria were quantitated by enzyme-linked immunosorbent assay. Compared with the number of bacteria at zero time (17 bacteria attached per phagocyte) only 10 to 20% of the bacteria remained attached to phagocytic cells after incubation for 30 min at 37 degrees C. The decrease in detected attached bacteria at 37 degrees C was due to internalization of the bacteria by phagocytic cells, since upon disruption of the monolayer, most of the ingested bacteria were recovered, and at 4 degrees C, most of the bacteria remained extracellularly attached. The proposed attachment and ingestion assay is easy to perform, allows the detection of specific attachment of test bacteria, and provides objective quantitation of attached and ingested bacteria. Most importantly, the assay allows testing of ingestion rates of bacteria under many variables on the same day. PMID:2893805

  3. Quantitative methylene blue decolourisation assays as rapid screening tools for assessing the efficiency of catalytic reactions.

    PubMed

    Kruid, Jan; Fogel, Ronen; Limson, Janice Leigh

    2017-05-01

    Identifying the most efficient oxidation process to achieve maximum removal of a target pollutant compound forms the subject of much research. There exists a need to develop rapid screening tools to support research in this area. In this work we report on the development of a quantitative assay as a means for identifying catalysts capable of decolourising methylene blue through the generation of oxidising species from hydrogen peroxide. Here, a previously described methylene blue test strip method was repurposed as a quantitative, aqueous-based spectrophotometric assay. From amongst a selection of metal salts and metallophthalocyanine complexes, monitoring of the decolourisation of the cationic dye methylene blue (via Fenton-like and non-Fenton oxidation reactions) by the assay identified the following to be suitable oxidation catalysts: CuSO4 (a Fenton-like catalyst), iron(II)phthalocyanine (a non-Fenton oxidation catalyst), as well as manganese(II) phthalocyanine. The applicability of the method was examined for the removal of bisphenol A (BPA), as measured by HPLC, during parallel oxidation experiments. The order of catalytic activity was identified as FePc > MnPc > CuSO4 for both BPA and MB. The quantitative MB decolourisation assay may offer a rapid method for screening a wide range of potential catalysts for oxidation processes.

  4. Lactate as a Novel Quantitative Measure of Viability in Schistosoma mansoni Drug Sensitivity Assays

    PubMed Central

    Howe, Stephanie; Zöphel, Dorina; Subbaraman, Harini; Unger, Clemens; Held, Jana; Engleitner, Thomas; Hoffmann, Wolfgang H.

    2014-01-01

    Whole-organism compound sensitivity assays are a valuable strategy in infectious diseases to identify active molecules. In schistosomiasis drug discovery, larval-stage Schistosoma allows the use of a certain degree of automation in the screening of compounds. Unfortunately, the throughput is limited, as drug activity is determined by manual assessment of Schistosoma viability by microscopy. To develop a simple and quantifiable surrogate marker for viability, we targeted glucose metabolism, which is central to Schistosoma survival. Lactate is the end product of glycolysis in human Schistosoma stages and can be detected in the supernatant. We assessed lactate as a surrogate marker for viability in Schistosoma drug screening assays. We thoroughly investigated parameters of lactate measurement and performed drug sensitivity assays by applying schistosomula and adult worms to establish a proof of concept. Lactate levels clearly reflected the viability of schistosomula and correlated with schistosomulum numbers. Compounds with reported potencies were tested, and activities were determined by lactate assay and by microscopy. We conclude that lactate is a sensitive and simple surrogate marker to be measured to determine Schistosoma viability in compound screening assays. Low numbers of schistosomula and the commercial availability of lactate assay reagents make the assay particularly attractive to throughput approaches. Furthermore, standardization of procedures and quantitative evaluation of compound activities facilitate interassay comparisons of potencies and, thus, concerted drug discovery approaches. PMID:25487803

  5. Development of Multiplexed Real-Time Quantitative PCR Assay for Detecting Human Adenoviruses

    PubMed Central

    Huang, Meei-Li; Nguy, Long; Ferrenberg, James; Boeckh, Michael; Cent, Anne; Corey, Lawrence

    2008-01-01

    Adenoviruses (AdV) have been associated with a wide variety of human disease and are increasingly recognized as viral pathogens that can cause significant morbidity and mortality in immunocompromised patients. Early detection of AdV DNA in plasma and sterile fluids has been shown to be useful for identifying patients at risk for invasive AdV disease. Due to the large number of existing Adv types, few real-time quantitative AdV PCR assays published effectively cover all AdV types. We designed a series of AdV PCR primers and probes and empirically multiplexed them into two separate real-time PCR assays to quantitatively detect all 49 serotypes of human AdV (Types 1-49) available from ATCC. We then subsequently multiplexed all the primers and probes into one reaction. The sensitivity of these assays was determined to be less than 10 copies per reaction (500 copies/ml plasma). In a retrospective evaluation we detected all 84 clinical AdV isolates isolated in cell culture from patients undergoing hematopoietic stem cell transplant (HSCT) between 1981 and 1987. Prospective analysis of 46 consecutive clinical samples submitted for adenovirus testing showed greater sensitivity and equal specificity of the AdV PCR than viral culture. This real time PCR assay allows rapid, sensitive and specific quantification of all currently defined adenoviruses into either two or one multiplex assay for clinical samples. PMID:18707838

  6. Quantitative Molecular Assay for Fingerprinting Microbial Communities of Wastewater and Estrogen-Degrading Consortia

    PubMed Central

    Yu, Chang-Ping; Ahuja, Rajiv; Sayler, Gary; Chu, Kung-Hui

    2005-01-01

    A quantitative fingerprinting method, called the real-time terminal restriction fragment length polymorphism (real-time-t-RFLP) assay, was developed for simultaneous determination of microbial diversity and abundance within a complex community. The real-time-t-RFLP assay was developed by incorporating the quantitative feature of real-time PCR and the fingerprinting feature of t-RFLP analysis. The assay was validated by using a model microbial community containing three pure strains, an Escherichia coli strain (gram negative), a Pseudomonas fluorescens strain (gram negative), and a Bacillus thuringiensis strain (gram positive). Subsequently, the real-time-t-RFLP assay was applied to and proven to be useful for environmental samples; the richness and abundance of species in microbial communities (expressed as the number of 16S rRNA gene copies of each ribotype per milliliter) of wastewater and estrogen-degrading consortia (enriched with 17α-estradiol, 17β-estradiol, or estrone) were successfully characterized. The results of this study strongly suggested that the real-time-t-RFLP assay can be a powerful molecular tool for gaining insight into microbial communities in various engineered systems and natural habitats. PMID:15746346

  7. Quantitative analysis of cell proliferation by a dye dilution assay: Application to cell lines and cocultures.

    PubMed

    Chung, Soobin; Kim, Seol-Hee; Seo, Yuri; Kim, Sook-Kyung; Lee, Ji Youn

    2017-04-04

    Cell proliferation represents one of the most fundamental processes in biological systems, thus the quantitative analysis of cell proliferation is important in many biological applications such as drug screening, production of biologics, and assessment of cytotoxicity. Conventional proliferation assays mainly quantify cell number based on a calibration curve of a homogeneous cell population, and therefore are not applicable for the analysis of cocultured cells. Moreover, these assays measure cell proliferation indirectly, based on cellular metabolic activity or DNA content. To overcome these shortcomings, a dye dilution assay employing fluorescent cell tracking dyes that are retained within cells was applied and was diluted proportionally by subsequent cell divisions. Here, it was demonstrated that this assay could be implemented to quantitatively analyze the cell proliferation of different types of cell lines, and to concurrently analyze the proliferation of two types of cell lines in coculture by utilizing cell tracking dyes with different spectral characteristics. The mean division time estimated by the dye dilution assay is compared with the population doubling time obtained from conventional methods and values from literature. Additionally, dye transfer between cocultured cells was investigated and it was found that it is a characteristic of the cells rather than a characteristic of the dye. It was suggested that this method can be easily combined with other flow cytometric analyses of cellular properties, providing valuable information on cell status under diverse conditions. © 2017 International Society for Advancement of Cytometry.

  8. Quantitative fluorometric assay for the measurement of endo-1,4-β-glucanase.

    PubMed

    Mangan, D; McCleary, B V; Liadova, A; Ivory, R; McCormack, N

    2014-08-18

    There is a growing demand for research tools to aid the scientific community in the search for improved cellulase enzymes for the biofuel industry. In this work, we describe a novel fluorometric assay for cellulase (endo-1,4-β-glucanase) which is based on the use of 4,6-O-benzylidene-4-methylumbelliferyl-β-cellotrioside (BzMUG3) in the presence of an ancillary β-glucosidase. This assay can be used quantitatively over a reasonable linear range, or qualitatively as a solution screening tool which may find extensive use in the area of metagenomics.

  9. Quantitative assay of photoinduced DNA strand breaks by real-time PCR.

    PubMed

    Wiczk, Justyna; Westphal, Kinga; Rak, Janusz

    2016-09-05

    Real-time PCR (qPCR) - a modern methodology primarily used for studying gene expression has been employed for the quantitative assay of an important class of DNA damage - single strand breaks. These DNA lesions which may lead to highly cytotoxic double strand breaks were quantified in a model system where double stranded DNA was sensitized to UV photons by labeling with 5-bromo-2'-deoxyuridine. The amount of breaks formed due to irradiation with several doses of 320nm photons was assayed by two independent methods: LC-MS and qPCR. A very good agreement between the relative damage measured by the two completely different analytical tools proves the applicability of qPCR for the quantitative analysis of SSBs. Our results suggest that the popularity of the hitherto underestimated though accurate and site-specific technique of real-time PCR may increase in future DNA damage studies.

  10. Analysis of JC virus DNA replication using a quantitative and high-throughput assay

    SciTech Connect

    Shin, Jong; Phelan, Paul J.; Chhum, Panharith; Bashkenova, Nazym; Yim, Sung; Parker, Robert; Gagnon, David; Gjoerup, Ole; Archambault, Jacques; Bullock, Peter A.

    2014-11-15

    Progressive Multifocal Leukoencephalopathy (PML) is caused by lytic replication of JC virus (JCV) in specific cells of the central nervous system. Like other polyomaviruses, JCV encodes a large T-antigen helicase needed for replication of the viral DNA. Here, we report the development of a luciferase-based, quantitative and high-throughput assay of JCV DNA replication in C33A cells, which, unlike the glial cell lines Hs 683 and U87, accumulate high levels of nuclear T-ag needed for robust replication. Using this assay, we investigated the requirement for different domains of T-ag, and for specific sequences within and flanking the viral origin, in JCV DNA replication. Beyond providing validation of the assay, these studies revealed an important stimulatory role of the transcription factor NF1 in JCV DNA replication. Finally, we show that the assay can be used for inhibitor testing, highlighting its value for the identification of antiviral drugs targeting JCV DNA replication. - Highlights: • Development of a high-throughput screening assay for JCV DNA replication using C33A cells. • Evidence that T-ag fails to accumulate in the nuclei of established glioma cell lines. • Evidence that NF-1 directly promotes JCV DNA replication in C33A cells. • Proof-of-concept that the HTS assay can be used to identify pharmacological inhibitor of JCV DNA replication.

  11. A Data Analysis Pipeline Accounting for Artifacts in Tox21 Quantitative High-Throughput Screening Assays.

    PubMed

    Hsieh, Jui-Hua; Sedykh, Alexander; Huang, Ruili; Xia, Menghang; Tice, Raymond R

    2015-08-01

    A main goal of the U.S. Tox21 program is to profile a 10K-compound library for activity against a panel of stress-related and nuclear receptor signaling pathway assays using a quantitative high-throughput screening (qHTS) approach. However, assay artifacts, including nonreproducible signals and assay interference (e.g., autofluorescence), complicate compound activity interpretation. To address these issues, we have developed a data analysis pipeline that includes an updated signal noise-filtering/curation protocol and an assay interference flagging system. To better characterize various types of signals, we adopted a weighted version of the area under the curve (wAUC) to quantify the amount of activity across the tested concentration range in combination with the assay-dependent point-of-departure (POD) concentration. Based on the 32 Tox21 qHTS assays analyzed, we demonstrate that signal profiling using wAUC affords the best reproducibility (Pearson's r = 0.91) in comparison with the POD (0.82) only or the AC(50) (i.e., half-maximal activity concentration, 0.81). Among the activity artifacts characterized, cytotoxicity is the major confounding factor; on average, about 8% of Tox21 compounds are affected, whereas autofluorescence affects less than 0.5%. To facilitate data evaluation, we implemented two graphical user interface applications, allowing users to rapidly evaluate the in vitro activity of Tox21 compounds.

  12. Small unilamellar vesicles as reagents: a chemically defined, quantitative assay for lectins

    SciTech Connect

    Rando, R.R.

    1981-01-01

    Samll unilamellar vesicles containing synthetic glycolipids can be prepared. These vesicles are aggregated by the appropriate lectin (Orr et al., 1979; Rando and Bangerter, 1979; Slama and Rando, 1980). It is shown here that extent of aggregation of these vesicles as measured by light scattering at 360 nm, is, under certain conditions, linear with amount of lectin added. This forms the basis of a rapid and simple quantitative assay for lectins using the modified vesicles as a defined chemical substrate. The assay is sensitive to lectin concentrations in the low ..mu..g range. The assay is applied here to studies on concanavalin A, Ricinus communis agglutinin and the ..cap alpha..-fucosyl binding lectin from Ulex europaeus (Type I).

  13. Quantitative determination of triglyceride by photoactivated CdSe/ZnS quantum dots through fluorescence assay.

    PubMed

    Huang, Chin-Ping; Li, Yaw-Kuen; Chen, Teng-Ming

    2008-07-01

    The quantitative detection of triglycerides is an important issue for health inspection of metabolic disorders and for food and oil-refining industries. Many methods have been designed to approach this target, in which multiple reactions catalyzed by enzymes are normally coupled consecutively. In this study, we demonstrated a simple assay system containing lipase and photoactivated luminescent CdSe/ZnS quantum dots (QDs) for the quantitative detection of triglycerides. Photoactivated CdSe/ZnS QDs function as a sensitive "indicator" to reveal the minute acidity change of the assay system resulting from the enzymatic hydrolysis of triglycerides. By controlling the initial buffer condition of the assay system at 5, 10, or 20 mM phosphate buffer at pH 8.0, respectively, the quenching ratio of the QDs fluorescence intensity monitored at the maximum photoluminescence showed a linear correlation with the concentration of the examined triglyceride in the range of 0.02-6, 0.2-10, or 2-20 mM, respectively. The assay system also provides a convenient way to estimate triglyceride concentration by visualizing the color change of the QDs fluorescence. As compared to most of the existing methods, the system reported herein possessed many advantages, including simplicity, low cost, high flexibility, and high sensitivity. Furthermore, no complicated chemical modification or enzyme immobilization is needed.

  14. [Comparison of two commercial molecular assays for quantitative measurement of hepatitis B viral DNA].

    PubMed

    Zalewska, Małgorzata; Domagała, Małgorzata; Gładysz, Andrzej

    2003-12-01

    The detection and quantification of hepatitis B virus (HBV) genomes appear to be the most reliable method for monitoring HBV infection and assessing responses to antiviral treatment. For quantitative determination of HBV viremia molecular biology-based assays are used. The aim of this study was to compare and evaluate the performance of two HBV DNA detection and quantification commercial assays: hybrid-capture Digene Hybrid Capture HBV DNA assays and based on competitive polymerase chain reaction (PCR) Cobas Amplicor HBV Monitor Roche Diagnostics. Reproducibility, linearity, sensitivity were determined with 2-fold dilution series of high-titers samples and with 113 sera samples from patients with chronic HBV infection. Within-run and between-run coefficients of variation ranged from 2.4-9.7% for hybrid-capture and from 3.7-15% for PCR-based Monitor. The hybrid-capture and PCR Monitor assays appeared to be linear throughout their range of quantification: 5-2000 pg/ml and 2 x 10(2)-2 x 10(5) copies/ml respectively. The HBV DNA units used in the two assays were not comparable. Hybrid-capture and Monitor gave concordant results with 87 (82.1%) of 106 samples. The assays were both positive with 79 (74.5%) samples and were negative in 7 (7.5%) cases. Hybrid-capture and Monitor gave discordant results in 17 (17.9%) cases. The Monitor Assay was positive in 13 (61.9%) of the 21 samples negative in hybrid-capture. The competitive PCR-based Monitor assay appear to be significantly more sensitive but slightly less reproducible than the hybrid-capture. In the group of patients with seroconversion to anti-HBe PCR method should be used for measurement of viral load. In the presence of HBe antigen concentration of HBV DNA may be tested by hybrid-capture assay. Also these two assays may be used in complementary fashion in the management of HBV infected patients. It seems reasonable to use a hybrid-capture assay first, because its linear range of quantification is extended to high

  15. Real-time PCR assay for rapid qualitative and quantitative detection of Entamoeba histolytica.

    PubMed

    Orosz, Erika; Perkátai, Katalin; Kapusinszky, Beatrix; Farkas, Agnes; Kucsera, István

    2012-12-01

    Simple real-time PCR assay with one set of primer and probe for rapid, sensitive qualitative and quantitative detection of Entamoeba histolytica has been used. Consensus sequences were used to amplify a species-specific region of the 16S rRNA gene, and fluorescence resonance energy transfer hybridization probes were used for detection in a LightCycler platform (Roche). The anchor probe sequence was designed to be a perfect match for the 16S rRNA gene of Entamoeba species, while the acceptor probe sequence was designed for Entamoeba histolytica, which allowed differentiation. The performed characteristics of the real-time PCR assay were compared with ELISA antigen and microscopical detection from 77 samples of individuals with suspected clinical diagnosis of imported E. histolytica infection. Stool and liver abscess pus samples were examined with analytical sensitivity of 5 parasites per PCR reaction. The melting curve means Tms (standard deviation) in clinical isolates were 54°C. The real-time assay was 100% sensitive and specific for differentiation of Entamoeba histolytica, compared with conventional ELISA or microscopy. This real-time PCR assay with melting curve analysis is rapid, and specific for the detection and differentiation of Entamoeba histolytica. The suitability for routine use of this assay in clinical diagnostic laboratories is discussed.

  16. Quantitative rRNA-targeted solution-based hybridization assay using peptide nucleic acid molecular beacons.

    PubMed

    Li, Xu; Morgenroth, Eberhard; Raskin, Lutgarde

    2008-12-01

    The potential of a solution-based hybridization assay using peptide nucleic acid (PNA) molecular beacon (MB) probes to quantify 16S rRNA of specific populations in RNA extracts of environmental samples was evaluated by designing PNA MB probes for the genera Dechloromonas and Dechlorosoma. In a kinetic study with 16S rRNA from pure cultures, the hybridization of PNA MB to target 16S rRNA exhibited a higher final hybridization signal and a lower apparent rate constant than the hybridizations to nontarget 16S rRNAs. A concentration of 10 mM NaCl in the hybridization buffer was found to be optimal for maximizing the difference between final hybridization signals from target and nontarget 16S rRNAs. Hybridization temperatures and formamide concentrations in hybridization buffers were optimized to minimize signals from hybridizations of PNA MB to nontarget 16S rRNAs. The detection limit of the PNA MB hybridization assay was determined to be 1.6 nM of 16S rRNA. To establish proof for the application of PNA MB hybridization assays in complex systems, target 16S rRNA from Dechlorosoma suillum was spiked at different levels to RNA isolated from an environmental (bioreactor) sample, and the PNA MB assay enabled effective quantification of the D. suillum RNA in this complex mixture. For another environmental sample, the quantitative results from the PNA MB hybridization assay were compared with those from clone libraries.

  17. Development of a quantitative recombinase polymerase amplification assay with an internal positive control.

    PubMed

    Crannell, Zachary A; Rohrman, Brittany; Richards-Kortum, Rebecca

    2015-03-30

    It was recently demonstrated that recombinase polymerase amplification (RPA), an isothermal amplification platform for pathogen detection, may be used to quantify DNA sample concentration using a standard curve. In this manuscript, a detailed protocol for developing and implementing a real-time quantitative recombinase polymerase amplification assay (qRPA assay) is provided. Using HIV-1 DNA quantification as an example, the assembly of real-time RPA reactions, the design of an internal positive control (IPC) sequence, and co-amplification of the IPC and target of interest are all described. Instructions and data processing scripts for the construction of a standard curve using data from multiple experiments are provided, which may be used to predict the concentration of unknown samples or assess the performance of the assay. Finally, an alternative method for collecting real-time fluorescence data with a microscope and a stage heater as a step towards developing a point-of-care qRPA assay is described. The protocol and scripts provided may be used for the development of a qRPA assay for any DNA target of interest.

  18. Development of a Quantitative Recombinase Polymerase Amplification Assay with an Internal Positive Control

    PubMed Central

    Richards-Kortum, Rebecca

    2015-01-01

    It was recently demonstrated that recombinase polymerase amplification (RPA), an isothermal amplification platform for pathogen detection, may be used to quantify DNA sample concentration using a standard curve. In this manuscript, a detailed protocol for developing and implementing a real-time quantitative recombinase polymerase amplification assay (qRPA assay) is provided. Using HIV-1 DNA quantification as an example, the assembly of real-time RPA reactions, the design of an internal positive control (IPC) sequence, and co-amplification of the IPC and target of interest are all described. Instructions and data processing scripts for the construction of a standard curve using data from multiple experiments are provided, which may be used to predict the concentration of unknown samples or assess the performance of the assay. Finally, an alternative method for collecting real-time fluorescence data with a microscope and a stage heater as a step towards developing a point-of-care qRPA assay is described. The protocol and scripts provided may be used for the development of a qRPA assay for any DNA target of interest. PMID:25867513

  19. BactQuant: An enhanced broad-coverage bacterial quantitative real-time PCR assay

    PubMed Central

    2012-01-01

    Background Bacterial load quantification is a critical component of bacterial community analysis, but a culture-independent method capable of detecting and quantifying diverse bacteria is needed. Based on our analysis of a diverse collection of 16 S rRNA gene sequences, we designed a broad-coverage quantitative real-time PCR (qPCR) assay—BactQuant—for quantifying 16 S rRNA gene copy number and estimating bacterial load. We further utilized in silico evaluation to complement laboratory-based qPCR characterization to validate BactQuant. Methods The aligned core set of 4,938 16 S rRNA gene sequences in the Greengenes database were analyzed for assay design. Cloned plasmid standards were generated and quantified using a qPCR-based approach. Coverage analysis was performed computationally using >670,000 sequences and further evaluated following the Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) guidelines. Results A bacterial TaqMan® qPCR assay targeting a 466 bp region in V3-V4 was designed. Coverage analysis showed that 91% of the phyla, 96% of the genera, and >80% of the 89,537 species analyzed contained at least one perfect sequence match to the BactQuant assay. Of the 106 bacterial species evaluated, amplification efficiencies ranged from 81 to 120%, with r2-value of >0.99, including species with sequence mismatches. Inter- and intra-run coefficient of variance was <3% and <16% for Ct and copy number, respectively. Conclusions The BactQuant assay offers significantly broader coverage than a previously reported universal bacterial quantification assay BactQuant in vitro performance was better than the in silico predictions. PMID:22510143

  20. A quantitative and high-throughput assay of human papillomavirus DNA replication.

    PubMed

    Gagnon, David; Fradet-Turcotte, Amélie; Archambault, Jacques

    2015-01-01

    Replication of the human papillomavirus (HPV) double-stranded DNA genome is accomplished by the two viral proteins E1 and E2 in concert with host DNA replication factors. HPV DNA replication is an established model of eukaryotic DNA replication and a potential target for antiviral therapy. Assays to measure the transient replication of HPV DNA in transfected cells have been developed, which rely on a plasmid carrying the viral origin of DNA replication (ori) together with expression vectors for E1 and E2. Replication of the ori-plasmid is typically measured by Southern blotting or PCR analysis of newly replicated DNA (i.e., DpnI digested DNA) several days post-transfection. Although extremely valuable, these assays have been difficult to perform in a high-throughput and quantitative manner. Here, we describe a modified version of the transient DNA replication assay that circumvents these limitations by incorporating a firefly luciferase expression cassette in cis of the ori. Replication of this ori-plasmid by E1 and E2 results in increased levels of firefly luciferase activity that can be accurately quantified and normalized to those of Renilla luciferase expressed from a control plasmid, thus obviating the need for DNA extraction, digestion, and analysis. We provide a detailed protocol for performing the HPV type 31 DNA replication assay in a 96-well plate format suitable for small-molecule screening and EC50 determinations. The quantitative and high-throughput nature of the assay should greatly facilitate the study of HPV DNA replication and the identification of inhibitors thereof.

  1. Rapid and Quantitative Assay of Amyloid-Seeding Activity in Human Brains Affected with Prion Diseases

    PubMed Central

    Takatsuki, Hanae; Satoh, Katsuya; Sano, Kazunori; Fuse, Takayuki; Nakagaki, Takehiro; Mori, Tsuyoshi; Ishibashi, Daisuke; Mihara, Ban; Takao, Masaki; Iwasaki, Yasushi; Yoshida, Mari; Atarashi, Ryuichiro; Nishida, Noriyuki

    2015-01-01

    The infectious agents of the transmissible spongiform encephalopathies are composed of amyloidogenic prion protein, PrPSc. Real-time quaking-induced conversion can amplify very small amounts of PrPSc seeds in tissues/body fluids of patients or animals. Using this in vitro PrP-amyloid amplification assay, we quantitated the seeding activity of affected human brains. End-point assay using serially diluted brain homogenates of sporadic Creutzfeldt–Jakob disease patients demonstrated that 50% seeding dose (SD50) is reached approximately 1010/g brain (values varies 108.79–10.63/g). A genetic case (GSS-P102L) yielded a similar level of seeding activity in an autopsy brain sample. The range of PrPSc concentrations in the samples, determined by dot-blot assay, was 0.6–5.4 μg/g brain; therefore, we estimated that 1 SD50 unit was equivalent to 0.06–0.27 fg of PrPSc. The SD50 values of the affected brains dropped more than three orders of magnitude after autoclaving at 121°C. This new method for quantitation of human prion activity provides a new way to reduce the risk of iatrogenic prion transmission. PMID:26070208

  2. Quantitative serine protease assays based on formation of copper(II)-oligopeptide complexes.

    PubMed

    Ding, Xiaokang; Yang, Kun-Lin

    2015-01-07

    A quantitative protease assay based on the formation of a copper-oligopeptide complex is developed. In this assay, when a tripeptide GGH fragment is cleaved from an oligopeptide chain by serine proteases, the tripeptide quickly forms a pink GGH/Cu(2+) complex whose concentration can be determined quantitatively by using UV-Vis spectroscopy. Therefore, activities of serine proteases can be determined from the formation rate of the GGH/Cu(2+) complex. This principle can be used to detect the presence of serine protease in a real-time manner, or measure proteolytic activities of serine protease cleaving different oligopeptide substrates. For example, by using this assay, we demonstrate that trypsin, a model serine protease, is able to cleave two oligopeptides GGGGKGGH () and GGGGRGGH (). However, the specificity constant (kcat/Km) for is higher than that of (6.4 × 10(3) mM(-1) min(-1)vs. 1.3 × 10(3) mM(-1) min(-1)). This result shows that trypsin is more specific toward arginine (R) than lysine (K) in the oligopeptide sequence.

  3. A quantitative ELISA assay for the fragile x mental retardation 1 protein.

    PubMed

    Iwahashi, Christine; Tassone, Flora; Hagerman, Randi J; Yasui, Dag; Parrott, George; Nguyen, Danh; Mayeur, Greg; Hagerman, Paul J

    2009-07-01

    Non-coding (CGG-repeat) expansions in the fragile X mental retardation 1 (FMR1) gene result in a spectrum of disorders involving altered neurodevelopment (fragile X syndrome), neurodegeneration (late-onset fragile X-associated tremor/ataxia syndrome), or primary ovarian insufficiency. While reliable and quantitative assays for the number of CGG repeats and FMR1 mRNA levels are now available, there has been no scalable, quantitative assay for the FMR1 protein (FMRP) in non-transformed cells. Using a combination of avian and murine antibodies to FMRP, we developed a sensitive and highly specific sandwich enzyme-linked immunosorbent assay (ELISA) for FMRP in peripheral blood lymphocytes. This ELISA method is capable of quantifying FMRP levels throughout the biologically relevant range of protein concentrations and is specific for the intact FMRP protein. Moreover, the ELISA is well-suited for replicate protein determinations across serial dilutions in non-transformed cells and is readily scalable for large sample numbers. The FMRP ELISA is potentially a powerful tool in expanding our understanding of the relationship between FMRP levels and the various FMR1-associated clinical phenotypes.

  4. A universal, high recovery assay for protein quantitation through temperature programmed liquid chromatography (TPLC).

    PubMed

    Orton, Dennis J; Doucette, Alan A

    2013-03-15

    As an alternative to direct UV absorbance measurements, estimation of total protein concentration is typically conducted through colorimetric reagent assays. However, for protein-limited applications, the proportion of the sample sacrificed to the assay becomes increasingly significant. This work demonstrates a method for quantitation of protein samples with high recovery. Temperature programmed liquid chromatography (TPLC) with absorbance detection at 214nm permits accurate estimation of total protein concentration from samples containing as little as 0.75μg. The method incorporates a temperature gradient from 25 to 80°C to facilitate elution of total protein into a single fraction. Analyte recovery, as measured from 1 and 10μg protein extracts of Escherichia coli, is shown to exceed 93%. Extinction coefficients at 214nm were calculated across the human proteome, providing a relative standard deviation of 21% (versus 42% at 280nm), suggesting absorbance values at 214nm provide a more consistent measure of protein concentration. These results translate to a universal protein detection strategy exhibiting a coefficient of variation below 10%. Together with the sensitivity and tolerance to contaminants, TPLC with UV detection is a favorable alternative to colorimetric assay for total protein quantitation, particularly in sample-limited applications.

  5. Development of a Quantitative Bead Capture Assay for Soluble IL-7 Receptor Alpha in Human Plasma

    PubMed Central

    Faucher, Sylvie; Crawley, Angela M.; Decker, Wendy; Sherring, Alice; Bogdanovic, Dragica; Ding, Tao; Bergeron, Michele; Angel, Jonathan B.; Sandstrom, Paul

    2009-01-01

    Background IL-7 is an essential cytokine in T-cell development and homeostasis. It binds to the IL-7R receptor, a complex of the IL-7Rα (CD127) and common γ (CD132) chains. There is significant interest in evaluating the expression of CD127 on human T-cells as it often decreased in medical conditions leading to lymphopenia. Previous reports showed the usefulness of CD127 as a prognostic marker in viral infections such as HIV, CMV, EBV and HCV. A soluble CD127 (sCD127) is released in plasma and may contribute to disease pathogenesis through its control on IL-7 activities. Measuring sCD127 is important to define its role and may complement existing markers used in lymphopenic disease management. We describe a new quantitative assay for the measurement of sCD127 in plasma and report sCD127 concentrations in healthy adults. Methodology/Principal Findings We developed a quantitative bead-based sCD127 capture assay. Polyclonal CD127-specific antibodies were chosen for capture and a biotinylated monoclonal anti-CD127 antibody was selected for detection. The assay can detect native sCD127 and recombinant sCD127 which served as the calibrator. The analytical performance of the assay was characterized and the concentration and stability of plasma sCD127 in healthy adults was determined. The assay's range was 3.2–1000 ng/mL. The concentration of plasma sCD127 was 164±104 ng/mL with over a log variation between subjects. Individual sCD127 concentrations remained stable when measured serially during a period of up to one year. Conclusions/Significance This is the first report on the quantification of plasma sCD127 in a population of healthy adults. Soluble CD127 plasma concentrations remained stable over time in a given individual and sCD127 immunoreactivity was resistant to repeated freeze-thaw cycles. This quantitative sCD127 assay is a valuable tool for defining the potential role of sCD127 in lymphopenic diseases. PMID:19690616

  6. Naked-eye quantitative aptamer-based assay on paper device.

    PubMed

    Zhang, Yun; Gao, Dong; Fan, Jinlong; Nie, Jinfang; Le, Shangwang; Zhu, Wenyuan; Yang, Jiani; Li, Jianping

    2016-04-15

    This work initially describes the design of low-cost, naked-eye quantitative aptamer-based assays by using microfluidic paper-based analytical device (μPAD). Two new detection motifs are proposed for quantitative μPAD measurement without using external electronic readers, which depend on the length of colored region in a strip-like μPAD and the number of colorless detection microzones in a multi-zone μPAD. The length measuring method is based on selective color change of paper from colorless to blue-black via formation of iodine-starch complex. The counting method is conducted on the basis of oxidation-reduction reaction between hydrogen peroxide and potassium permanganate. Their utility is well demonstrated with sensitive, specific detection of adenosine as a model analyte with the naked eye in buffer samples and undiluted human serum. These equipment-free quantitative methods proposed thus hold great potential for the development of more aptamer-based assays that are simple, cost-efficient, portable, and user-friendly for various point-of-care applications particularly in resource-constrained environments.

  7. Rapid and quantitative detection of C-reactive protein based on quantum dots and immunofiltration assay

    PubMed Central

    Zhang, Pengfei; Bao, Yan; Draz, Mohamed Shehata; Lu, Huiqi; Liu, Chang; Han, Huanxing

    2015-01-01

    Convenient and rapid immunofiltration assays (IFAs) enable on-site “yes” or “no” determination of disease markers. However, traditional IFAs are commonly qualitative or semi-quantitative and are very limited for the efficient testing of samples in field diagnostics. Here, we overcome these limitations by developing a quantum dots (QDs)-based fluorescent IFA for the quantitative detection of C-reactive proteins (CRP). CRP, the well-known diagnostic marker for acute viral and bacterial infections, was used as a model analyte to demonstrate performance and sensitivity of our developed QDs-based IFA. QDs capped with both polyethylene glycol (PEG) and glutathione were used as fluorescent labels for our IFAs. The presence of the surface PEG layer, which reduced the non-specific protein interactions, in conjunction with the inherent optical properties of QDs, resulted in lower background signal, increased sensitivity, and ability to detect CRP down to 0.79 mg/L with only 5 µL serum sample. In addition, the developed assay is simple, fast and can quantitatively detect CRP with a detection limit up to 200 mg/L. Clinical test results of our QD-based IFA are well correlated with the traditional latex enhance immune-agglutination aggregation. The proposed QD-based fluorescent IFA is very promising, and potentially will be adopted for multiplexed immunoassay and in field point-of-care test. PMID:26491289

  8. Rapid and quantitative detection of C-reactive protein based on quantum dots and immunofiltration assay.

    PubMed

    Zhang, Pengfei; Bao, Yan; Draz, Mohamed Shehata; Lu, Huiqi; Liu, Chang; Han, Huanxing

    2015-01-01

    Convenient and rapid immunofiltration assays (IFAs) enable on-site "yes" or "no" determination of disease markers. However, traditional IFAs are commonly qualitative or semi-quantitative and are very limited for the efficient testing of samples in field diagnostics. Here, we overcome these limitations by developing a quantum dots (QDs)-based fluorescent IFA for the quantitative detection of C-reactive proteins (CRP). CRP, the well-known diagnostic marker for acute viral and bacterial infections, was used as a model analyte to demonstrate performance and sensitivity of our developed QDs-based IFA. QDs capped with both polyethylene glycol (PEG) and glutathione were used as fluorescent labels for our IFAs. The presence of the surface PEG layer, which reduced the non-specific protein interactions, in conjunction with the inherent optical properties of QDs, resulted in lower background signal, increased sensitivity, and ability to detect CRP down to 0.79 mg/L with only 5 µL serum sample. In addition, the developed assay is simple, fast and can quantitatively detect CRP with a detection limit up to 200 mg/L. Clinical test results of our QD-based IFA are well correlated with the traditional latex enhance immune-agglutination aggregation. The proposed QD-based fluorescent IFA is very promising, and potentially will be adopted for multiplexed immunoassay and in field point-of-care test.

  9. Quantitative Microplate-Based Growth Assay for Determination of Antifungal Susceptibility of Histoplasma capsulatum Yeasts

    PubMed Central

    Goughenour, Kristie D.; Balada-Llasat, Joan-Miquel

    2015-01-01

    Standardized methodologies for determining the antifungal susceptibility of fungal pathogens is central to the clinical management of invasive fungal disease. Yeast-form fungi can be tested using broth macrodilution and microdilution assays. Reference procedures exist for Candida species and Cryptococcus yeasts; however, no standardized methods have been developed for testing the antifungal susceptibility of yeast forms of the dimorphic systemic fungal pathogens. For the dimorphic fungal pathogen Histoplasma capsulatum, susceptibility to echinocandins differs for the yeast and the filamentous forms, which highlights the need to employ Histoplasma yeasts, not hyphae, in antifungal susceptibility tests. To address this, we developed and optimized methodology for the 96-well microtiter plate-based measurement of Histoplasma yeast growth in vitro. Using optical density, the assay is quantitative for fungal growth with a dynamic range greater than 30-fold. Concentration and assay reaction time parameters were also optimized for colorimetric (MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] reduction) and fluorescent (resazurin reduction) indicators of fungal vitality. We employed this microtiter-based assay to determine the antifungal susceptibility patterns of multiple clinical isolates of Histoplasma representing different phylogenetic groups. This methodology fulfills a critical need for the ability to monitor the effectiveness of antifungals on Histoplasma yeasts, the morphological form present in mammalian hosts and, thus, the form most relevant to disease. PMID:26246483

  10. Analysis of JC virus DNA replication using a quantitative and high-throughput assay

    PubMed Central

    Shin, Jong; Phelan, Paul J.; Chhum, Panharith; Bashkenova, Nazym; Yim, Sung; Parker, Robert; Gagnon, David; Gjoerup, Ole; Archambault, Jacques; Bullock, Peter A.

    2015-01-01

    Progressive Multifocal Leukoencephalopathy (PML) is caused by lytic replication of JC virus (JCV) in specific cells of the central nervous system. Like other polyomaviruses, JCV encodes a large T-antigen helicase needed for replication of the viral DNA. Here, we report the development of a luciferase-based, quantitative and high-throughput assay of JCV DNA replication in C33A cells, which, unlike the glial cell lines Hs 683 and U87, accumulate high levels of nuclear T-ag needed for robust replication. Using this assay, we investigated the requirement for different domains of T-ag, and for specific sequences within and flanking the viral origin, in JCV DNA replication. Beyond providing validation of the assay, these studies revealed an important stimulatory role of the transcription factor NF1 in JCV DNA replication. Finally, we show that the assay can be used for inhibitor testing, highlighting its value for the identification of antiviral drugs targeting JCV DNA replication. PMID:25155200

  11. Multiple reaction monitoring and multiple reaction monitoring cubed based assays for the quantitation of apolipoprotein F.

    PubMed

    Kumar, Abhinav; Gangadharan, Bevin; Zitzmann, Nicole

    2016-10-15

    Apolipoprotein F (APO-F) is a novel low abundance liver fibrosis biomarker and its concentration decreases in human serum and plasma across liver fibrosis stages. Current antibody based assays for APO-F suffer from limitations such as unspecific binding, antibody availability and undetectable target if the protein is degraded; and so an antibody-free assay has the potential to be a valuable diagnostic tool. We report an antibody-free, rapid, sensitive, selective and robust LC-MS/MS (MRM and MRM(3)) method for the detection and quantitation of APO-F in healthy human plasma. With further analysis of clinical samples, this LC-MS based method could be established as the first ever antibody-free biomarker assay for liver fibrosis. We explain the use of Skyline software for peptide selection and the creation of a reference library to aid in true peak identification of endogenous APO-F peptides in digests of human plasma without protein or peptide enrichment. Detection of a glycopeptide using MRM-EPI mode and reduction of interferences using MRM3 are explained. The amount of APO-F in human plasma from a healthy volunteer was determined to be 445.2ng/mL, the coefficient of variation (CV) of precision for 20 injections was <12% and the percentage error of each point along the calibration curve was calculated to be <8%, which is in line with the assay requirements for clinical samples.

  12. Impedance Analysis of Colloidal Gold Nanoparticles in Chromatography Paper for Quantitation of an Immunochromatographic Assay.

    PubMed

    Hori, Fumitaka; Harada, Yuji; Kuretake, Tatsumi; Uno, Shigeyasu

    2016-01-01

    A detection method of gold nanoparticles in chromatography paper has been developed for a simple, cost-effective and reliable quantitation of immunochromatographic strip test. The time courses of the solution resistance in chromatography paper with the gold nanoparticles solution are electrochemically measured by chrono-impedimetry. The dependence of the solution resistance on the concentration of gold nanoparticles has been successfully observed. The main factor to increase the solution resistance may be obstruction of the ion transport due to the presence of gold nanoparticles. The existence of gold nanoparticles with 1.92 × 10(9) particles/mL in an indistinctly-colored chromatography paper is also identified by a solution resistance measurement. This indicates that the solution resistance assay has the potential to lower the detection limit of the conventional qualitative assay.

  13. Identifying Kinase Substrates via a Heavy ATP Kinase Assay and Quantitative Mass Spectrometry

    PubMed Central

    Müller, André C.; Giambruno, Roberto; Weißer, Juliane; Májek, Peter; Hofer, Alexandre; Bigenzahn, Johannes W.; Superti-Furga, Giulio; Jessen, Henning J.; Bennett, Keiryn L.

    2016-01-01

    Mass spectrometry-based in vitro kinase screens play an essential role in the discovery of kinase substrates, however, many suffer from biological and technical noise or necessitate genetically-altered enzyme-cofactor systems. We describe a method that combines stable γ-[18O2]-ATP with classical in vitro kinase assays within a contemporary quantitative proteomic workflow. Our approach improved detection of known substrates of the non-receptor tyrosine kinase ABL1; and identified potential, new in vitro substrates. PMID:27346722

  14. Applications and challenges in using LC-MS/MS assays for quantitative doping analysis.

    PubMed

    Wang, Zhanliang; Lu, Jianghai; Zhang, Yinong; Tian, Ye; Yuan, Hong; Xu, Youxuan

    2016-06-01

    LC-MS/MS is useful for qualitative and quantitative analysis of 'doped' biological samples from athletes. LC-MS/MS-based assays at low-mass resolution allow fast and sensitive screening and quantification of targeted analytes that are based on preselected diagnostic precursor-product ion pairs. Whereas LC coupled with high-resolution/high-accuracy MS can be used for identification and quantification, both have advantages and challenges for routine analysis. Here, we review the literature regarding various quantification methods for measuring prohibited substances in athletes as they pertain to World Anti-Doping Agency regulations.

  15. Timed ELISA: an alternative approach to quantitative enzyme-linked immunosorbent assay.

    PubMed

    Muller, R

    1997-10-01

    As the uses for ELISA (enzyme-linked immunosorbent assay) increase, so does the need for a quantitative procedure that does not require a spectrophotometer or other expensive equipment. 'Timed ELISA' employs an 'iodine clock' as the final step such that quantitative measurements may be made using a stopwatch. Catalase, coupled to the primary antibody, reduces the concentration of H2O2 available to generate iodine in the clock reaction. Iodine stains the starch component blue, but catalase prolongs the time taken for the change in colour to be observed. After the time delay occurs the transition to full colour development is extremely rapid (< 1 s) at all analyte concentrations, allowing clear definition of the end point. The performance of Timed ELISA is similar to that obtained using a horseradish peroxidase-conjugated system employing the customary spectrophotometric determination.

  16. Importance of Purity Evaluation and the Potential of Quantitative 1H NMR as a Purity Assay

    PubMed Central

    2015-01-01

    In any biomedical and chemical context, a truthful description of chemical constitution requires coverage of both structure and purity. This qualification affects all drug molecules, regardless of development stage (early discovery to approved drug) and source (natural product or synthetic). Purity assessment is particularly critical in discovery programs and whenever chemistry is linked with biological and/or therapeutic outcome. Compared with chromatography and elemental analysis, quantitative NMR (qNMR) uses nearly universal detection and provides a versatile and orthogonal means of purity evaluation. Absolute qNMR with flexible calibration captures analytes that frequently escape detection (water, sorbents). Widely accepted structural NMR workflows require minimal or no adjustments to become practical 1H qNMR (qHNMR) procedures with simultaneous qualitative and (absolute) quantitative capability. This study reviews underlying concepts, provides a framework for standard qHNMR purity assays, and shows how adequate accuracy and precision are achieved for the intended use of the material. PMID:25295852

  17. A CAPS-based binding assay provides semi-quantitative validation of protein-DNA interactions.

    PubMed

    Xie, Yongyao; Zhang, Yaling; Zhao, Xiucai; Liu, Yao-Guang; Chen, Letian

    2016-02-15

    Investigation of protein-DNA interactions provides crucial information for understanding the mechanisms of gene regulation. Current methods for studying protein-DNA interactions, such as DNaseI footprinting or gel shift assays, involve labeling DNA with radioactive or fluorescent tags, making these methods costly, laborious, and potentially damaging to the environment. Here, we describe a novel cleaved amplified polymorphic sequence (CAPS)-based binding assay (CBA), which is a label-free method that can simplify the semi-quantitative validation of protein-DNA interactions. The CBA tests the interaction between a protein and its target DNA, based on the CAPS pattern produced due to differences in the accessibility of a restriction endonuclease site (intrinsic or artificial) in amplified DNA in the presence and absence of the protein of interest. Thus, the CBA can produce a semi-quantitative readout of the interaction strength based on the dose of the binding protein. We demonstrate the principle and feasibility of CBA using B3, MADS3 proteins and the corresponding RY or CArG-box containing DNAs.

  18. A parallel and quantitative cell migration assay using a novel multi-well-based device.

    PubMed

    Quan, Qianghua; Zhang, Shuwen; Wang, Xudong; Ouyang, Qi; Wang, Yugang; Yang, Gen; Luo, Chunxiong

    2016-12-01

    Cell migration assays for different chemical environments are important for both scientists and clinicians searching for new therapeutics. In this study, we developed a multi-well-based microfluidic chip that has multiple units for different conditions. In each unit, cells can be patterned and then released to observe their migration. Automatic image analysis and model-based data processing were developed to describe the integrated cell migration assay precisely and quickly. As a demonstration, the migration behaviors of two types of cells in eight chemical conditions were studied. The results showed that supplementation with transforming growth factor-β(TGF-β) significantly promoted the migration of MCF-7 and MCF-10 A cells compared to several growth factors, such as Epidermal Growth Factor(EGF) and basic fibroblast growth factor(bFGF), as well as a control sample. Cells can migrate particularly fast with two or more mixed supplementary factors, such as TGF-β + bFGF + EGF, which indicated a synergy effect. Thus, this chip could be used to quantitatively observe cancer cell migration and demonstrated great potential for use in quantitative migration studies and chemical screening.

  19. Flow Cytometry and Transplantation-Based Quantitative Assays for Satellite Cell Self-Renewal and Differentiation.

    PubMed

    Arpke, Robert W; Kyba, Michael

    2016-01-01

    In response to muscle damage, satellite cells proliferate and undertake both differentiation and self-renewal, generating new functional muscle tissue and repopulating this new muscle with stem cells for future injury responses. For many questions relating to the physiological regulation of satellite cells, quantitative readouts of self-renewal and differentiation can be very useful. There is a particular need for a quantitative assay for satellite cell self-renewal that does not rely solely upon sectioning, staining and counting cells in sections. In this chapter, we provide detailed methods for quantifying the self-renewal and differentiation potential of a given population of satellite cells using an assay involving transplantation into injured, regenerating muscle together with specific markers for donor cell identity and state of differentiation. In particular, using the Pax7-ZsGreen transgene as a marker of satellite cell state, self-renewal can be quantified by FACS on transplanted muscle to actually count the total number of resident satellite cells at time points following transplantation.

  20. Quantitative human chorionic gonadotropin analysis. I. Comparison of an immunoradiometric assay and a radioimmunoassay

    SciTech Connect

    Shapiro, A.I.; Wu, T.F.; Ballon, S.C.; Lamb, E.J.

    1984-01-01

    An immunoradiometric assay (IRMA) for the quantitative analysis of human chorionic gonadotropin (hCG) was evaluated for specificity, sensitivity, accuracy and precision. The results were compared with those of the conventional radioimmunoassay (RIA) used in our laboratory. The IRMA is a solid-phase, double-antibody immunoassay that sandwiches the intact hCG molecule between the two antibodies. It has specificity, accuracy, and precision which are similar to those of the RIA. The RIA is based upon the assumptions that the antigenicity of the tracer is not altered by the iodination process and that the antibody reacts equally with all of the antigens, including the radiolabeled antigen. The IRMA does not use radiolabeled antigens and thus is free of the assumptions made in the conventional RIA. The IRMA may be more accurate at the lower limits of the assay because it does not require logarithmic transformations. Since the IRMA does not measure the free beta-subunit of hCG, it cannot be endorsed as the sole technique to quantitate hCG in patients with gestational trophoblastic neoplasia until the significance of the free beta-subunit in these patients is determined.

  1. Enzyme-linked immunosorbent assay for detection and quantitation of capsular antigen of Haemophilus influenzae type b.

    PubMed Central

    Crosson, F J; Winkelstein, J A; Moxon, E R

    1978-01-01

    An enzyme-linked immunosorbent assay was developed to detect the presence of the ribose-ribitol phosphate capsular antigen of Haemophilus influenzae type b in laboratory and clinical specimens. The assay is simple, sensitive, specific, and quantitative and should prove to be of value in the diagnosis and management of H. influenzae infections. PMID:310425

  2. Duplex TaqMan real-time PCR assay for quantitative detection of Pantoea stewartii subsp. stewartii and Stenocarpella maydis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A new TaqMan real-time PCR assay was developed for the simultaneous quantitative detection of two seedborne maize pathogens in a single assay. Pantoea stewartii subsp. stewartii (Pnss) (syn. Erwinia stewartii) is the causal agent of Stewart's bacterial wilt and leaf blight of maize. Stewart's wilt i...

  3. Migration and interaction tracking for quantitative analysis of phagocyte-pathogen confrontation assays.

    PubMed

    Brandes, Susanne; Dietrich, Stefanie; Hünniger, Kerstin; Kurzai, Oliver; Figge, Marc Thilo

    2017-02-01

    Invasive fungal infections are emerging as a significant health risk for humans. The innate immune system is the first line of defense against invading micro-organisms and involves the recruitment of phagocytes, which engulf and kill pathogens, to the site of infection. To gain a quantitative understanding of the interplay between phagocytes and fungal pathogens, live-cell imaging is a modern approach to monitor the dynamic process of phagocytosis in time and space. However, this requires the processing of large amounts of video data that is tedious to be performed manually. Here, we present a novel framework, called AMIT (algorithm for migration and interaction tracking), that enables automated high-throughput analysis of multi-channel time-lapse microscopy videos of phagocyte-pathogen confrontation assays. The framework is based on our previously developed segmentation and tracking framework for non-rigid cells in brightfield microscopy (Brandes et al., 2015). We here present an advancement of this framework to segment and track different cell types in different video channels as well as to track the interactions between different cell types. For the confrontation assays of polymorphonuclear neutrophils (PMNs) and Candida glabrata considered in this work, the main focus lies on the correct detection of phagocytic events. To achieve this, we introduced different PMN states and a state-transition model that represents the basic principles of phagocyte-pathogen interactions. The framework is validated by a direct comparison of the automatically detected phagocytic activity of PMNs to a manual analysis and by a qualitative comparison with previously published analyses (Duggan et al., 2105; Essig et al., 2015). We demonstrate the potential of our algorithm by comprehensive quantitative and multivariate analyses of confrontation assays involving human PMNs and the fungus C. glabrata.

  4. Detection of yellow fever virus: a comparison of quantitative real-time PCR and plaque assay.

    PubMed

    Bae, Hi-Gung; Nitsche, Andreas; Teichmann, Anette; Biel, Stefan S; Niedrig, Matthias

    2003-06-30

    Yellow fever virus quantitation is performed routinely by cultivation of virus containing samples using susceptible cells. Counting of the resulting plaques provides a marker for the number of infectious particles present in the sample. This assay usually takes up to 5 days before results are obtained and must be carried out under L2 or L3 laboratory conditions, depending on the yellow fever virus strain used. For clinical diagnosis of yellow fever virus infections the cell culture-based approach takes too long and is of limited practical relevance. Recently, due to its considerable sensitivity, PCR has become a promising method for virus detection. However, whilst PCR can detect virus-specific nucleic acids, it does not allow conclusions to be drawn regarding the infectious potential of the virus detected. Nonetheless, for diagnostic purposes, a rapid, specific and sensitive virus PCR is preferable. Therefore, two independent yellow fever virus-specific real-time PCR assays were established and compared the viral RNA loads to the results of a traditional plaque assay. The estimated ratio of yellow fever virus genomes to infectious particles was between 1000:1 and 5000:1; both approaches displayed a comparable precision of <45%. A significant correlation between genome number as determined by real-time PCR and the corresponding number of plaques in paired samples was found with a Pearson coefficient of correlation of r=0.88 (P<0.0001).

  5. Development of a Quantitative BRET Affinity Assay for Nucleic Acid-Protein Interactions

    PubMed Central

    Vickers, Timothy A.; Crooke, Stanley T.

    2016-01-01

    Protein-nucleic acid interactions play a crucial role in the regulation of diverse biological processes. Elucidating the roles that protein-nucleic acid complexes play in the regulation of transcription, translation, DNA replication, repair and recombination, and RNA processing continues to be a crucial aspect of understanding of cell biology and the mechanisms of disease. In addition, proteins have been demonstrated to interact with antisense oligonucleotide therapeutics in a sequence and chemistry dependent manner, influencing ASO potency and distribution in cells and in vivo. While many assays have been developed to measure protein-nucleic acid interactions, many suffer from lack of throughput and sensitivity, or challenges with protein purification and scalability. In this report we present a new BRET assay for the analysis of DNA-protein interactions which makes use of an extremely bright luciferase as a tag for the binding protein, along with a long-wavelength fluorophore conjugated to the nucleic acid. The resulting assay is high throughput, sensitive, does not require protein purification, and even allows for quantitative characterization of these interactions within the biologically relevant context of whole cells. PMID:27571227

  6. A Caco-2 cell-based quantitative antioxidant activity assay for antioxidants.

    PubMed

    Wan, Hongxia; Liu, Dong; Yu, Xiangying; Sun, Haiyan; Li, Yan

    2015-05-15

    A Caco-2 cell-based antioxidant activity (CAA) assay for quantitative evaluation of antioxidants was developed by optimizing seeding density and culture time of Caco-2 cells, incubation time and concentration of fluorescent probe (2',7'-dichlorofluorescin diacetate, DCFH-DA), incubation way and incubation time of antioxidants (pure phytochemicals) and DCFH-DA with cells, and detection time of fluorescence. Results showed that the CAA assay was of good reproducibility and could be used to evaluate the antioxidant activity of antioxidants at the following conditions: seeding density of 5 × 10(4)/well, cell culture time of 24h, co-incubation of 60 μM DCFH-DA and pure phytochemicals with Caco-2 cells for 20 min and fluorescence recorded for 90 min. Additionally, a significant correlation was observed between CAA values and rat plasma ORAC values following the intake of antioxidants for selected pure phytochemicals (R(2) = 0.815, p < 0.01), demonstrating the good biological relevance of CAA assay.

  7. Development, validation and quantitative assessment of an enzymatic assay suitable for small molecule screening and profiling: A case-study.

    PubMed

    Sancenon, Vicente; Goh, Wei Hau; Sundaram, Aishwarya; Er, Kai Shih; Johal, Nidhi; Mukhina, Svetlana; Carr, Grant; Dhakshinamoorthy, Saravanakumar

    2015-06-01

    The successful discovery and subsequent development of small molecule inhibitors of drug targets relies on the establishment of robust, cost-effective, quantitative, and physiologically relevant in vitro assays that can support prolonged screening and optimization campaigns. The current study illustrates the process of developing and validating an enzymatic assay for the discovery of small molecule inhibitors using alkaline phosphatase from bovine intestine as model target. The assay development workflow includes an initial phase of optimization of assay materials, reagents, and conditions, continues with a process of miniaturization and automation, and concludes with validation by quantitative measurement of assay performance and signal variability. The assay is further evaluated for dose-response and mechanism-of-action studies required to support structure-activity-relationship studies. Emphasis is placed on the most critical aspects of assay optimization and other relevant considerations, including the technology, assay materials, buffer constituents, reaction conditions, liquid handling equipment, analytical instrumentation, and quantitative assessments. Examples of bottlenecks encountered during assay development and strategies to address them are provided.

  8. Development of Conventional and Real-Time Quantitative PCR Assays for Diagnosis and Monitoring of Scabies

    PubMed Central

    Wong, Samson S. Y.; Poon, Rosana W. S.; Chau, Sandy; Wong, Sally C. Y.; To, Kelvin K. W.; Cheng, Vincent C. C.; Fung, Kitty S. C.

    2015-01-01

    Scabies remains the most prevalent, endemic, and neglected ectoparasitic infestation globally and can cause institutional outbreaks. The sensitivity of routine microscopy for demonstration of Sarcoptes scabiei mites or eggs in skin scrapings is only about 50%. Except for three studies using conventional or two-tube nested PCR on a small number of cases, no systematic study has been performed to improve the laboratory diagnosis of this important infection. We developed a conventional and a real-time quantitative PCR (qPCR) assay based on the mitochondrial cytochrome c oxidase subunit 1 (cox1) gene of S. scabiei. The cox1 gene is relatively well conserved, with its sequence having no high levels of similarity to the sequences of other human skin mites, pathogenic zoonotic mites, or common house dust mite species. This mitochondrial gene is also present in large quantities in arthropod cells, potentially improving the sensitivity of a PCR-based assay. In our study, both assays were specific and were more sensitive than microscopy in diagnosing scabies, with positive and negative predictive values of 100%. The S. scabiei DNA copy number in the microscopy-positive specimens was significantly higher than that in the microscopy-negative specimens (median S. scabiei DNA copy number, 3.604 versus 2.457 log10 copies per reaction; P = 0.0213). In the patient with crusted scabies, the qPCR assay performed on lesional skin swabs instead of scrapings revealed that the parasite DNA load took about 2 weeks to become negative after treatment. The utility of using lesional skin swabs as an alternative sample for diagnosis of scabies by PCR should be further evaluated. PMID:25903566

  9. Development and Evaluation of a Quantitative PCR Assay Targeting Sandhill Crane (Grus canadensis) Fecal Pollution

    PubMed Central

    Ryu, Hodon; Lu, Jingrang; Vogel, Jason; Elk, Michael; Chávez-Ramírez, Felipe; Ashbolt, Nicholas

    2012-01-01

    While the microbial water quality in the Platte River is seasonally impacted by excreta from migrating cranes, there are no methods available to study crane fecal contamination. Here we characterized microbial populations in crane feces using phylogenetic analysis of 16S rRNA gene fecal clone libraries. Using these sequences, a novel crane quantitative PCR (Crane1) assay was developed, and its applicability as a microbial source tracking (MST) assay was evaluated by determining its host specificity and detection ability in environmental waters. Bacteria from crane excreta were dominated by bacilli and proteobacteria, with a notable paucity of sequences homologous to Bacteroidetes and Clostridia. The Crane1 marker targeted a dominant clade of unclassified Lactobacillales sequences closely related to Catellicoccus marimammalium. The host distribution of the Crane1 marker was relatively high, being positive for 69% (66/96) of the crane excreta samples tested. The assay also showed high host specificity, with 95% of the nontarget fecal samples (i.e., n = 553; 20 different free-range hosts) being negative. Of the presumed crane-impacted water samples (n = 16), 88% were positive for the Crane1 assay, whereas none of the water samples not impacted by cranes were positive (n = 165). Bayesian statistical models of the Crane1 MST marker demonstrated high confidence in detecting true-positive signals and a low probability of false-negative signals from environmental water samples. Altogether, these data suggest that the newly developed marker could be used in environmental monitoring studies to study crane fecal pollution dynamics. PMID:22492437

  10. Quantitative methods of measuring the sensitivity of the mouse sperm morphology assay

    SciTech Connect

    Moore, D.H.; Bennett, D.E.; Kranzler, D.; Wyrobek, A.J.

    1982-09-01

    In this study murine sperm were subjected to graded doses of X irradiation (0 to 120 rad) to determine whether quantitative measurements made on enlarged photographs of the sperm heads are related to radiation dose. We found that the Mahalanobis distance statistic, when used to measure distance in a multivariate space from a control group of measurements, could be used to classify sperm as normal or abnormal. The percent classified as abnormal by this method was found to be linearly related to dose. The results suggest that sensitivity of the murine sperm assay can be improved by selecting an optimal set of measurements. This improvement can reduce the doubling dose from approximately 70 rad to 10 to 15 rad while keeping the percentage of abnormal sperm in control mice at 3%, equal to the current visual method.

  11. Quantitative real-time PCR assay for Clostridium septicum in poultry gangrenous dermatitis associated samples.

    PubMed

    Neumann, A P; Dunham, S M; Rehberger, T G; Siragusa, G R

    2010-08-01

    Clostridium septicum is a spore-forming anaerobe frequently implicated in cases of gangrenous dermatitis (GD) and other spontaneously occurring myonecrotic infections of poultry. Although C. septicum is readily cultured from diseased tissues it can be difficult to enumerate due to its tendency to swarm over the surface of agar plates. In this study a quantitative real-time PCR assay was developed in order to more accurately measure the levels of C. septicum in healthy as well as GD associated poultry samples. The assay was specifically designed to target the C. septicum alpha toxin gene, csa, which is, to our knowledge, carried by all strains of C. septicum and has been shown to be essential for virulence. Genomic DNAs from a diverse collection of bacterial species, including closely related Clostridium chauvoei, Clostridium carnis, Clostridium tertium as well as several strains of Clostridium perfringens, all failed to produce a positive reaction. An approximate reproducible limit of detection in spiked extracts of at least 10(3) cfu/g of C. septicum was observed for a variety of different sample types. C. septicum levels in broiler chicken field samples estimated from the results of qPCR were statistically correlated to culture based enumerations obtained from those same tissues.

  12. Development of Quantitative Real-time PCR Assays for Different Clades of “Candidatus Accumulibacter”

    NASA Astrophysics Data System (ADS)

    Zhang, An Ni; Mao, Yanping; Zhang, Tong

    2016-05-01

    We designed novel quantitative real-time polymerase chain reaction (qPCR) primers for the polyphosphate kinase 1 (ppk1) gene, targeting eight individual “Candidatus Accumulibacter” (referred to as Accumulibacter) clades. An evaluation of primer sets was conducted regarding the coverage, specificity, and PCR efficiency. (i) All primer sets were designed to cover all available sequences of the target clade. (ii) The phylogenetic analysis of the sequences retrieved from the qPCR products by each primer set demonstrated a high level of specificity. (iii) All calibration curves presented high PCR efficiencies in the range of 85–112% (R2 = 0.962–0.998). In addition, the possible interference of non-target amplicons was individually examined using the qPCR assay for 13 Accumulibacter clades, which were either undetected or showed negligible detection. With the primers designed by other research groups, a highly selective and sensitive qPCR-based method was developed to quantify all Accumulibacter clades, with the exception of Clade IE, in one assay, which enables more comprehensive insights into the community dynamics. The applicability to environmental samples was demonstrated by profiling the Accumulibacter clades in activated sludge samples of nine full-scale wastewater treatment plants.

  13. A quantitative assay for assessing the effects of DNA lesions on transcription.

    PubMed

    You, Changjun; Dai, Xiaoxia; Yuan, Bifeng; Wang, Jin; Wang, Jianshuang; Brooks, Philip J; Niedernhofer, Laura J; Wang, Yinsheng

    2012-10-01

    Most mammalian cells in nature are quiescent but actively transcribing mRNA for normal physiological processes; thus, it is important to investigate how endogenous and exogenous DNA damage compromises transcription in cells. Here we describe a new competitive transcription and adduct bypass (CTAB) assay to determine the effects of DNA lesions on the fidelity and efficiency of transcription. Using this strategy, we demonstrate that the oxidatively induced lesions 8,5'-cyclo-2'-deoxyadenosine (cdA) and 8,5'-cyclo-2'-deoxyguanosine (cdG) and the methylglyoxal-induced lesion N(2)-(1-carboxyethyl)-2'-deoxyguanosine (N(2)-CEdG) strongly inhibited transcription in vitro and in mammalian cells. In addition, cdA and cdG, but not N(2)-CEdG, induced transcriptional mutagenesis in vitro and in vivo. Furthermore, when located on the template DNA strand, all examined lesions were primarily repaired by transcription-coupled nucleotide excision repair in mammalian cells. This newly developed CTAB assay should be generally applicable for quantitatively assessing how other DNA lesions affect DNA transcription in vitro and in cells.

  14. Development of Quantitative Real-time PCR Assays for Different Clades of “Candidatus Accumulibacter”

    PubMed Central

    Zhang, An Ni; Mao, Yanping; Zhang, Tong

    2016-01-01

    We designed novel quantitative real-time polymerase chain reaction (qPCR) primers for the polyphosphate kinase 1 (ppk1) gene, targeting eight individual “Candidatus Accumulibacter” (referred to as Accumulibacter) clades. An evaluation of primer sets was conducted regarding the coverage, specificity, and PCR efficiency. (i) All primer sets were designed to cover all available sequences of the target clade. (ii) The phylogenetic analysis of the sequences retrieved from the qPCR products by each primer set demonstrated a high level of specificity. (iii) All calibration curves presented high PCR efficiencies in the range of 85–112% (R2 = 0.962–0.998). In addition, the possible interference of non-target amplicons was individually examined using the qPCR assay for 13 Accumulibacter clades, which were either undetected or showed negligible detection. With the primers designed by other research groups, a highly selective and sensitive qPCR-based method was developed to quantify all Accumulibacter clades, with the exception of Clade IE, in one assay, which enables more comprehensive insights into the community dynamics. The applicability to environmental samples was demonstrated by profiling the Accumulibacter clades in activated sludge samples of nine full-scale wastewater treatment plants. PMID:27142574

  15. Development of quantitative and high-throughput assays of polyomavirus and papillomavirus DNA replication.

    PubMed

    Fradet-Turcotte, Amélie; Morin, Geneviève; Lehoux, Michaël; Bullock, Peter A; Archambault, Jacques

    2010-03-30

    Polyoma- and papillomaviruses genome replication is initiated by the binding of large T antigen (LT) and of E1 and E2, respectively, at the viral origin (ori). Replication of an ori-containing plasmid occurs in cells transiently expressing these viral proteins and is typically quantified by Southern blotting or PCR. To facilitate the study of SV40 and HPV31 DNA replication, we developed cellular assays in which transient replication of the ori-plasmid is quantified using a firefly luciferase gene located in cis to the ori. Under optimized conditions, replication of the SV40 and HPV31 ori-plasmids resulted in a 50- and 150-fold increase in firefly luciferase levels, respectively. These results were validated using replication-defective mutants of LT, E1 and E2 and with inhibitors of DNA replication and cell-cycle progression. These quantitative and high-throughput assays should greatly facilitate the study of SV40 and HPV31 DNA replication and the identification of small-molecule inhibitors of this process.

  16. Quantitative, competitive PCR assay for HIV-1 using a microplate-based detection system.

    PubMed

    Guenthner, P C; Hart, C E

    1998-05-01

    We have developed a quantitative competitive PCR (QC-PCR) assay in a microplate format for quantifying human immunodeficiency virus Type 1 (HIV-1) DNA or RNA in a broad range of source materials. Our QC-PCR assay is a modification of technique originally described by Piatak et al. (1993), which is based on the presence of a competitive internal standard containing an internal 80-bp deletion of HIV-1 gag target sequence. For improved detection and quantification of the wild-type and internal-standard PCR products in a microplate format, we introduced a non-HIV, 31-bp insert into the internal standard as a probe hybridization site that does not cross-hybridize with wild-type HIV-1 products. By using a primer pair in which one primer is biotinylated, QC-PCRs can be bound to a streptavidin-coated microplate, denatured and probed with a digoxigenin (Dig)-labeled, wild-type or internal-standard probe. The hybridized Dig-labeled probes are detected with an anti-Dig antibody conjugated to detector molecules for luminometry (aequorin) or optical densitometry (peroxidase), yielding results that are quantifiable over the range of 100-10,000 copies of HIV gag. Tested source materials for HIV-1 DNA or RNA quantification include plasma, vaginal lavage and cultured cells. The application of the QC-PCR assay using the microplate format affords a convenient and cost-effective method for quantifying HIV-1 proviral and viral loads from a variety of body fluids, cells and tissues.

  17. Quantum-dot submicrobead-based immunochromatographic assay for quantitative and sensitive detection of zearalenone.

    PubMed

    Duan, Hong; Chen, Xuelan; Xu, Wei; Fu, Jinhua; Xiong, Yonghua; Wang, Andrew

    2015-01-01

    Mycotoxin pollutants are commonly related to cereal products and cause fatal threats in food safety, and therefore require simple and sensitive detection. In this work, quantum-dot (QD) submicrobeads (QBs) were synthesized by encapsulating CdSe/ZnS QDs using the microemulsion technique. The resultant QBs, with approximately 2800 times brighter luminescence than the corresponding QDs, were explored as novel fluorescent probes in the immunochromatographic assay (ICA) for sensitive and quantitative detection of zearalenone (ZEN) in corns. Various parameters that influenced the sensitivity and stability of QB-based ICA (QB-ICA) were investigated and optimized. The optimal QB-ICA exhibits good dynamic linear detection for ZEN over the range of 0.125 ng/mL to 10 ng/mL with a median inhibitory concentration of 1.01±0.09 ng/mL (n=3). The detection limits for ZEN in a standard solution and real corn sample (dilution ratio of 1:30) are 0.0625 ng/mL and 3.6 µg/kg, respectively, which is much better than that of a previously reported gold nanoparticle-based ICA method. Forty-six natural corn samples are assayed using both QB-ICA and enzyme-linked immunosorbent assay. The two methods show a highly significant correlation (R(2)=0.92). Nine ZEN-contaminated samples were further confirmed with liquid chromatography-tandem mass spectrometry (LC-MS/MS), and the QB-ICA results also exhibited good agreement with LC-MS/MS method. In brief, this work demonstrates that QB-ICA is capable of rapid, sensitive screening of toxins in food analysis, and shows great promise for point-of-care testing of other analytes.

  18. Characterization of a method for quantitating food consumption for mutation assays in Drosophila

    SciTech Connect

    Thompson, E.D.; Reeder, B.A.; Bruce, R.D. )

    1991-01-01

    Quantitation of food consumption is necessary when determining mutation responses to multiple chemical exposures in the sex-linked recessive lethal assay in Drosophila. One method proposed for quantitating food consumption by Drosophila is to measure the incorporation of 14C-leucine into the flies during the feeding period. Three sources of variation in the technique of Thompson and Reeder have been identified and characterized. First, the amount of food consumed by individual flies differed by almost 30% in a 24 hr feeding period. Second, the variability from vial to vial (each containing multiple flies) was around 15%. Finally, the amount of food consumed in identical feeding experiments performed over the course of 1 year varied nearly 2-fold. The use of chemical consumption values in place of exposure levels provided a better means of expressing the combined mutagenic response. In addition, the kinetics of food consumption over a 3 day feeding period for exposures to cyclophosphamide which produce lethality were compared to non-lethal exposures. Extensive characterization of lethality induced by exposures to cyclophosphamide demonstrate that the lethality is most likely due to starvation, not chemical toxicity.

  19. Quantitative Analysis of Small-Subunit rRNA Genes in Mixed Microbial Populations via 5′-Nuclease Assays

    PubMed Central

    Suzuki, Marcelino T.; Taylor, Lance T.; DeLong, Edward F.

    2000-01-01

    Few techniques are currently available for quantifying specific prokaryotic taxa in environmental samples. Quantification of specific genotypes has relied mainly on oligonucleotide hybridization to extracted rRNA or intact rRNA in whole cells. However, low abundance and cellular rRNA content limit the application of these techniques in aquatic environments. In this study, we applied a newly developed quantitative PCR assay (5′-nuclease assay, also known as TaqMan) to quantify specific small-subunit (SSU) rRNA genes (rDNAs) from uncultivated planktonic prokaryotes in Monterey Bay. Primer and probe combinations for quantification of SSU rDNAs at the domain and group levels were developed and tested for specificity and quantitative reliability. We examined the spatial and temporal variations of SSU rDNAs from Synechococcus plus Prochlorococcus and marine Archaea and compared the results of the quantitative PCR assays to those obtained by alternative methods. The 5′-nuclease assays reliably quantified rDNAs over at least 4 orders of magnitude and accurately measured the proportions of genes in artificial mixtures. The spatial and temporal distributions of planktonic microbial groups measured by the 5′-nuclease assays were similar to the distributions estimated by quantitative oligonucleotide probe hybridization, whole-cell hybridization assays, and flow cytometry. PMID:11055900

  20. Mass spectrometry assay as an alternative to the enzyme-linked immunosorbent assay test for biomarker quantitation in ecotoxicology: application to vitellogenin in Crustacea (Gammarus fossarum).

    PubMed

    Simon, Romain; Jubeaux, Guillaume; Chaumot, Arnaud; Lemoine, Jérôme; Geffard, Olivier; Salvador, Arnaud

    2010-07-30

    Vitellogenin (Vg) is a widespread biomarker for measuring exposure to endocrine disruptors. Vg quantification is usually done by using the ELISA test (enzyme-linked immunosorbent assay). Since this test is specific to a target protein, it can rarely be used with other species due to low cross-reactivity across species. Therefore alternative analytical methods have to be considered as the development of a specific and sensitive ELISA test for each new target is time-consuming and may prove unsuccessful. This paper focuses on the development of a quantitative assay by liquid chromatography tandem mass spectrometry (LC-MS/MS) of vitelogenin in an invertebrate (Gammarus fossarum) for which no ELISA kit is available. The linearity of the method was within the concentration range 2.5-25,000pg/mL and the limit of detection was estimated at 0.75pg/mL of Vg. This method has been demonstrated to be an alternative to existing immunological methods for quantifying Vg in invertebrates due to its greater sensitivity, specificity and reproducibility (intra- and inter-assay below 15%). This assay was applied for Vg determination in female G. fossarum following exposure to a known endocrine disruptor, methyl farnesoate, in crustaceans. The availability of a quantitative G. fossarum LC-MS/MS assay should open the way for further studies to evaluate xenoestrogen effects in aquatic male G. fossarum.

  1. Comparison of colorimetric assays with quantitative amino acid analysis for protein quantification of Generalized Modules for Membrane Antigens (GMMA).

    PubMed

    Rossi, Omar; Maggiore, Luana; Necchi, Francesca; Koeberling, Oliver; MacLennan, Calman A; Saul, Allan; Gerke, Christiane

    2015-01-01

    Genetically induced outer membrane particles from Gram-negative bacteria, called Generalized Modules for Membrane Antigens (GMMA), are being investigated as vaccines. Rapid methods are required for estimating the protein content for in-process assays during production. Since GMMA are complex biological structures containing lipid and polysaccharide as well as protein, protein determinations are not necessarily straightforward. We compared protein quantification by Bradford, Lowry, and Non-Interfering assays using bovine serum albumin (BSA) as standard with quantitative amino acid (AA) analysis, the most accurate currently available method for protein quantification. The Lowry assay has the lowest inter- and intra-assay variation and gives the best linearity between protein amount and absorbance. In all three assays, the color yield (optical density per mass of protein) of GMMA was markedly different from that of BSA with a ratio of approximately 4 for the Bradford assay, and highly variable between different GMMA; and approximately 0.7 for the Lowry and Non-Interfering assays, highlighting the need for calibrating the standard used in the colorimetric assay against GMMA quantified by AA analysis. In terms of a combination of ease, reproducibility, and proportionality of protein measurement, and comparability between samples, the Lowry assay was superior to Bradford and Non-Interfering assays for GMMA quantification.

  2. Multicolor bioluminescence boosts malaria research: quantitative dual-color assay and single-cell imaging in Plasmodium falciparum parasites.

    PubMed

    Cevenini, Luca; Camarda, Grazia; Michelini, Elisa; Siciliano, Giulia; Calabretta, Maria Maddalena; Bona, Roberta; Kumar, T R Santha; Cara, Andrea; Branchini, Bruce R; Fidock, David A; Roda, Aldo; Alano, Pietro

    2014-09-02

    New reliable and cost-effective antimalarial drug screening assays are urgently needed to identify drugs acting on different stages of the parasite Plasmodium falciparum, and particularly those responsible for human-to-mosquito transmission, that is, the P. falciparum gametocytes. Low Z' factors, narrow dynamic ranges, and/or extended assay times are commonly reported in current gametocyte assays measuring gametocyte-expressed fluorescent or luciferase reporters, endogenous ATP levels, activity of gametocyte enzymes, or redox-dependent dye fluorescence. We hereby report on a dual-luciferase gametocyte assay with immature and mature P. falciparum gametocyte stages expressing red and green-emitting luciferases from Pyrophorus plagiophthalamus under the control of the parasite sexual stage-specific pfs16 gene promoter. The assay was validated with reference antimalarial drugs and allowed to quantitatively and simultaneously measure stage-specific drug effects on parasites at different developmental stages. The optimized assay, requiring only 48 h incubation with drugs and using a cost-effective luminogenic substrate, significantly reduces assay cost and time in comparison to state-of-the-art analogous assays. The assay had a Z' factor of 0.71 ± 0.03, and it is suitable for implementation in 96- and 384-well microplate formats. Moreover, the use of a nonlysing D-luciferin substrate significantly improved the reliability of the assay and allowed one to perform, for the first time, P. falciparum bioluminescence imaging at single-cell level.

  3. A rapid colorimetric assay for the quantitation of the viability of free-living larvae of nematodes in vitro.

    PubMed

    James, Catherine E; Davey, Mary W

    2007-09-01

    With increasing drug resistance in gastrointestinal parasites, identification of new anthelmintics is essential. The non-parasitic nematode Caenorhabditis elegans is used extensively as a model to identify drug targets and potential novel anthelmintics because it can be readily cultured in vitro. Traditionally, the assessment of worm viability has relied on labour-intensive developmental and behavioral assays. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide-formazan (MTT-formazan) colorimetric assay uses metabolic activity as a marker of viability in mammalian cell culture systems and has been applied for use with filarial nematodes. In the present study, this assay has been optimized and validated to rapidly assess the viability of C. elegans after drug treatment. Living, but not dead, C. elegans take up MTT and reduce it to the blue formazan, providing visual, qualitative, and quantitative assessment of viability. MTT at a concentration of 5 mg/ml with 3 h incubation was optimal for detecting changes in viability with drug treatment. We have applied this assay to quantitate the effects of ivermectin and short-chain alcohols on the viability of C. elegans. This assay is also applicable to first-stage larvae of the parasitic nematode Haemonchus contortus. The advantage of this assay is the rapid quantitation in screening drugs to identify potential anthelmintics.

  4. Electron paramagnetic resonance method for the quantitative assay of ketoconazole in pharmaceutical preparations.

    PubMed

    Morsy, Mohamed A; Sultan, Salah M; Dafalla, Hatim

    2009-08-15

    In this study, electron paramagnetic resonance (EPR) is used, for the first time, as an analytical tool for the quantitative assay of ketoconazole (KTZ) in drug formulations. The drug was successfully characterized by the prominent signals by two radical species produced as a result of its oxidation with 400 microg/mL cerium(IV) in 0.10 mol dm(-3) sulfuric acid. The EPR signal of the reaction mixture was measured in eight capillary tubes housed in a 4 mm EPR sample tube. The radical stability was investigated by obtaining multi-EPR scans of each KTZ sample solution at time intervals of 2.5 min of the reaction mixing time. The plot of the disappearance of the radical species show that the disappearance is apparently of zero order. The zero-time intercept of the EPR signal amplitude, which should be proportional to the initial radical concentration, is linear in the sample concentration in the range between 100 and 400 microg/mL, with a correlation coefficient, r, of 0.999. The detection limit was determined to be 11.7 +/- 2.5 microg/mL. The method newly adopted was fully validated following the United States Pharmacopeia (USP) monograph protocol in both the generic and the proprietary forms. The method is very accurate, such that we were able to measure the concentration at confidence levels of 99.9%. The method was also found to be suitable for the assay of KTZ in its tablet and cream pharmaceutical preparations, as no interferences were encountered from excipients of the proprietary drugs. High specificity, simplicity, and rapidity are the merits of the present method compared to the previously reported methods.

  5. Bacteroides gingivalis-Actinomyces viscosus cohesive interactions as measured by a quantitative binding assay

    SciTech Connect

    Schwarz, S.; Ellen, R.P.; Grove, D.A.

    1987-10-01

    There is limited evidence, mostly indirect, to suggest that the adherence of Bacteroides gingivalis to teeth may be enhanced by the presence of gram-positive dental plaque bacteria like Actinomyces viscosus. The purpose of this study was to carry out direct quantitative assessments of the cohesion of B gingivalis and A. viscosus by using an in vitro assay modeled on the natural sequence in which these two species colonize the teeth. The assay allowed comparisons to be made of the adherence of /sup 3/H-labeled B. gingivalis 2561 and 381 to saliva-coated hydroxyapatite beads (S-HA) and A. viscosus WVU627- or T14V-coated S-HA (actinobeads) in equilibrium and kinetics binding studies. A series of preliminary binding studies with 3H-labeled A. viscosus and parallel studies by scanning electron microscopy with unlabeled A. viscosus were conducted to establish a protocol by which actinobeads suitable for subsequent Bacteroides adherence experiments could be prepared. By scanning electron microscopy, the actinobeads had only small gaps of exposed S-HA between essentially irreversibly bound A. viscosus cells. Furthermore, B. gingivalis cells appeared to bind preferentially to the Actinomyces cells instead of the exposed S-HA. B. gingivalis binding to both S-HA and actinobeads was saturable with at least 2 X 10(9) to 3 X 10(9) cells per ml, and equilibrium with saturating concentrations was reached within 10 to 20 min. B. gingivalis always bound in greater numbers to the actinobeads than to S-HA. These findings provide direct measurements supporting the concept that cohesion with dental plaque bacteria like A. viscosus may foster the establishment of B. gingivalis on teeth by enhancing its adherence.

  6. Botulinum Neurotoxins: Qualitative and Quantitative Analysis Using the Mouse Phrenic Nerve Hemidiaphragm Assay (MPN).

    PubMed

    Bigalke, Hans; Rummel, Andreas

    2015-11-25

    The historical method for the detection of botulinum neurotoxin (BoNT) is represented by the mouse bioassay (MBA) measuring the animal survival rate. Since the endpoint of the MBA is the death of the mice due to paralysis of the respiratory muscle, an ex vivo animal replacement method, called mouse phrenic nerve (MPN) assay, employs the isolated N. phrenicus-hemidiaphragm tissue. Here, BoNT causes a dose-dependent characteristic decrease of the contraction amplitude of the indirectly stimulated muscle. Within the EQuATox BoNT proficiency 13 test samples were analysed using the MPN assay by serial dilution to a bath concentration resulting in a paralysis time within the range of calibration curves generated with BoNT/A, B and E standards, respectively. For serotype identification the diluted samples were pre-incubated with polyclonal anti-BoNT/A, B or E antitoxin or a combination of each. All 13 samples were qualitatively correctly identified thereby delivering superior results compared to single in vitro methods like LFA, ELISA and LC-MS/MS. Having characterized the BoNT serotype, the final bath concentrations were calculated using the calibration curves and then multiplied by the respective dilution factor to obtain the sample concentration. Depending on the source of the BoNT standards used, the quantitation of ten BoNT/A containing samples delivered a mean z-score of 7 and of three BoNT/B or BoNT/E containing samples z-scores <2, respectively.

  7. A Quantitative Toxicogenomics Assay for High-throughput and Mechanistic Genotoxicity Assessment and Screening of Environmental Pollutants.

    PubMed

    Lan, Jiaqi; Gou, Na; Rahman, Sheikh Mokhles; Gao, Ce; He, Miao; Gu, April Z

    2016-03-15

    The ecological and health concern of mutagenicity and carcinogenicity potentially associated with an overwhelmingly large and ever-increasing number of chemicals demands for cost-effective and feasible method for genotoxicity screening and risk assessment. This study proposed a genotoxicity assay using GFP-tagged yeast reporter strains, covering 38 selected protein biomarkers indicative of all the seven known DNA damage repair pathways. The assay was applied to assess four model genotoxic chemicals, eight environmental pollutants and four negative controls across six concentrations. Quantitative molecular genotoxicity end points were derived based on dose response modeling of a newly developed integrated molecular effect quantifier, Protein Effect Level Index (PELI). The molecular genotoxicity end points were consistent with multiple conventional in vitro genotoxicity assays, as well as with in vivo carcinogenicity assay results. Further more, the proposed genotoxicity end point PELI values quantitatively correlated with both comet assay in human cell and carcinogenicity potency assay in mice, providing promising evidence for linking the molecular disturbance measurements to adverse outcomes at a biological relevant level. In addition, the high-resolution DNA damaging repair pathway alternated protein expression profiles allowed for chemical clustering and classification. This toxicogenomics-based assay presents a promising alternative for fast, efficient and mechanistic genotoxicity screening and assessment of drugs, foods, and environmental contaminants.

  8. Development of a Rapid Real-Time PCR Assay for Quantitation of Pneumocystis carinii f. sp. carinii

    PubMed Central

    Larsen, Hans Henrik; Kovacs, Joseph A.; Stock, Frida; Vestereng, Vibeke H.; Lundgren, Bettina; Fischer, Steven H.; Gill, Vee J.

    2002-01-01

    A method for reliable quantification of Pneumocystis carinii in research models of P. carinii pneumonia (PCP) that is more convenient and reproducible than microscopic enumeration of organisms would greatly facilitate investigations of this organism. We developed a rapid quantitative touchdown (QTD) PCR assay for detecting P. carinii f. sp. carinii, the subspecies of P. carinii commonly used in research models of PCP. The assay was based on the single-copy dihydrofolate reductase gene and was able to detect <5 copies of a plasmid standard per tube. It was reproducibly quantitative (r = 0.99) over 6 log values for standards containing ≥5 copies/tube. Application of the assay to a series of 10-fold dilutions of P. carinii organisms isolated from rat lung demonstrated that it was reproducibly quantitative over 5 log values (r = 0.99). The assay was applied to a recently reported in vitro axenic cultivation system for P. carinii and confirmed our microscopy findings that no organism multiplication had occurred during culture. For all cultures analyzed, QTD PCR assays showed a decrease in P. carinii DNA that exceeded the expected decrease due to dilution of the inoculum upon transfer. In conclusion, a rapid, sensitive, and reproducible quantitative PCR assay for P. carinii f. sp. carinii has been developed and is applicable to in vivo as well as in vitro systems. The assay should prove useful for conducting studies in which quantification of organism burden or growth assessment is critical, such as in vitro antimicrobic susceptibility testing or in vivo immunopathological experiments. PMID:12149363

  9. Evaluation of assays for the identification and quantitation of muconic acid, a benzene metabolite in human urine

    SciTech Connect

    Bartczak, A.; Kline, S.A.; Yu, R.; Weisel, C.P.; Goldstein, B.D.; Witz, G.; Bechtold, W.E.

    1994-12-31

    Muconic acid (MA) is a urinary metabolite of benzene and has been used as a biomarker of exposure to benzene in humans exposed to levels as low as 1 ppm. We have modified a high-pressure liquid chromatography (HPLC) based assay for urinary MA by the use of a diode array detector. This modification increases the specificity of the HPLC-based assay by identifying false positives. In addition, we have developed a gas chromatography (GC) based assay that uses a flame ionization detector (GC-FID). Both assays identified and quantified MA in human urine at concentrations greater than 40-50 ng/ml. Assay precision was within 10% relative standard deviation for MA concentrations above 90 ng/ml using the HPLC assay and above 40 ng/ml using the GC-FID assay. Quantitative accuracy of the assays was evaluated by determining MA in human urine samples using both methods and also a gas chromatography-mass spectrometry (GC-MS) procedure. Numerical correlation among the three assays was good at MA concentrations above 100 ng/ml. 26 refs., 3 figs., 2 tabs.

  10. Edesign: Primer and Enhanced Internal Probe Design Tool for Quantitative PCR Experiments and Genotyping Assays.

    PubMed

    Kimura, Yasumasa; Soma, Takahiro; Kasahara, Naoko; Delobel, Diane; Hanami, Takeshi; Tanaka, Yuki; de Hoon, Michiel J L; Hayashizaki, Yoshihide; Usui, Kengo; Harbers, Matthias

    2016-01-01

    Analytical PCR experiments preferably use internal probes for monitoring the amplification reaction and specific detection of the amplicon. Such internal probes have to be designed in close context with the amplification primers, and may require additional considerations for the detection of genetic variations. Here we describe Edesign, a new online and stand-alone tool for designing sets of PCR primers together with an internal probe for conducting quantitative real-time PCR (qPCR) and genotypic experiments. Edesign can be used for selecting standard DNA oligonucleotides like for instance TaqMan probes, but has been further extended with new functions and enhanced design features for Eprobes. Eprobes, with their single thiazole orange-labelled nucleotide, allow for highly sensitive genotypic assays because of their higher DNA binding affinity as compared to standard DNA oligonucleotides. Using new thermodynamic parameters, Edesign considers unique features of Eprobes during primer and probe design for establishing qPCR experiments and genotyping by melting curve analysis. Additional functions in Edesign allow probe design for effective discrimination between wild-type sequences and genetic variations either using standard DNA oligonucleotides or Eprobes. Edesign can be freely accessed online at http://www.dnaform.com/edesign2/, and the source code is available for download.

  11. Quantitative lateral flow strip assays as User-Friendly Tools To Detect Biomarker Profiles For Leprosy

    PubMed Central

    van Hooij, Anouk; Tjon Kon Fat, Elisa M.; Richardus, Renate; van den Eeden, Susan J. F.; Wilson, Louis; de Dood, Claudia J.; Faber, Roel; Alam, Korshed; Richardus, Jan Hendrik; Corstjens, Paul L. A. M.; Geluk, Annemieke

    2016-01-01

    Leprosy is a debilitating, infectious disease caused by Mycobacterium leprae. Despite the availability of multidrug therapy, transmission is unremitting. Thus, early identification of M. leprae infection is essential to reduce transmission. The immune response to M. leprae is determined by host genetics, resulting in paucibacillary (PB) and multibacillary (MB) leprosy associated with dominant cellular or humoral immunity, respectively. This spectral pathology of leprosy compels detection of immunity to M. leprae to be based on multiple, diverse biomarkers. In this study we have applied quantitative user friendly lateral flow assays (LFAs) for four immune markers (anti-PGL-I antibodies, IL-10, CCL4 and IP-10) for whole blood samples from a longitudinal BCG vaccination field-trial in Bangladesh. Different biomarker profiles, in contrast to single markers, distinguished M. leprae infected from non-infected test groups, patients from household contacts (HHC) and endemic controls (EC), or MB from PB patients. The test protocol presented in this study merging detection of innate, adaptive cellular as well as humoral immunity, thus provides a convenient tool to measure specific biomarker profiles for M. leprae infection and leprosy utilizing a field-friendly technology. PMID:27682181

  12. A quantitative multiplexed mass spectrometry assay for studying the kinetic of residue-specific histone acetylation.

    PubMed

    Kuo, Yin-Ming; Henry, Ryan A; Andrews, Andrew J

    2014-12-01

    Histone acetylation is involved in gene regulation and, most importantly, aberrant regulation of histone acetylation is correlated with major human diseases. Although many lysine acetyltransferases (KATs) have been characterized as being capable of acetylating multiple lysine residues on histones, how different factors such as enzyme complexes or external stimuli (e.g. KAT activators or inhibitors) alter KAT specificity remains elusive. In order to comprehensively understand how the homeostasis of histone acetylation is maintained, a method that can quantitate acetylation levels of individual lysines on histones is needed. Here we demonstrate that our mass spectrometry (MS)-based method accomplishes this goal. In addition, the high throughput, high sensitivity, and high dynamic range of this method allows for effectively and accurately studying steady-state kinetics. Based on the kinetic parameters from in vitro enzymatic assays, we can determine the specificity and selectivity of a KAT and use this information to understand what factors influence histone acetylation. These approaches can be used to study the enzymatic mechanisms of histone acetylation as well as be adapted to other histone modifications. Understanding the post-translational modification of individual residues within the histones will provide a better picture of chromatin regulation in the cell.

  13. Broadband reflectance spectroscopy for establishing a quantitative metric of vascular leak using the Miles assay

    NASA Astrophysics Data System (ADS)

    McMurdy, John; Reichner, Jonathan; Mathews, Zara; Markey, Mary; Intwala, Sunny; Crawford, Gregory

    2009-09-01

    Monitoring the physiological effects of biological mediators on vascular permeability is important for identifying potential targets for antivascular leak therapy. This therapy is relevant to treatments for pulmonary edema and other disorders. Current methods of quantifying vascular leak are in vitro and do not allow repeated measurement of the same animal. Using an in vivo diffuse reflectance optical method allows pharmacokinetic analysis of candidate antileak molecules. Here, vascular leak is assessed in mice and rats by using the Miles assay and introducing irritation both topically using mustard oil and intradermally using vascular endothelial growth factor (VEGF). The severity of the leak is assessed using broadband diffuse reflectance spectroscopy with a fiber reflectance probe. Postprocessing techniques are applied to extract an artificial quantitative metric of leak from reflectance spectra at vascular leak sites on the skin of the animal. This leak metric is calculated with respect to elapsed time from irritation in both mustard oil and VEGF treatments on mice and VEGF treatments on rats, showing a repeatable increase in leak metric with leak severity. Furthermore, effects of pressure on the leak metric are observed to have minimal effect on the reflectance spectra, while spatial positioning showed spatially nonuniform leak sites.

  14. Real-time quantitative PCR assay for monitoring of nervous necrosis virus infection in grouper aquaculture.

    PubMed

    Kuo, Hsiao-Che; Wang, Ting-Yu; Chen, Peng-Peng; Chen, Young-Mao; Chuang, Hui-Ching; Chen, Tzong-Yueh

    2011-03-01

    Viral nervous necrosis caused by nervous necrosis virus (NNV) exacts a high mortality and results in huge economic losses in grouper aquaculture in Taiwan. The present study developed a real-time quantitative PCR (qPCR) method for NNV monitoring. The assay showed a strong linear correlation (r(2) = 0.99) between threshold cycle (C(T)) and RNA quantities, which allowed identification of infected groupers by the C(T) value and could be exploited to warn of NNV infection prior to an outbreak in grouper fish farms. Real-time qPCR also confirmed the copious content of NNV in grouper fin, similar to that in primary tissues; the result was verified by using in situ reverse transcription-PCR (RT-PCR). This indicated that grouper fin was a suitable sample for NNV detection, in a manner that could be relatively benign to the fish. The rapid spread of NNV infection to the entire population of affected farms was evident. The developed real-time qPCR method is rapid, highly sensitive, and applicable to routine high-throughput detection of large numbers of samples and has potential as a suitable tool for diagnostic, epidemiological, and genetic studies of grouper aquaculture.

  15. Improved HF183 quantitative real-time PCR assay for characterization of human fecal pollution in ambient surface water samples

    EPA Science Inventory

    Real-time quantitative PCR assays that target the human-associated HF183 bacterial cluster are considered to be some of the top performing methods for the characterization of human fecal pollution in ambient surface waters. In response, the United States Environmental Protectio...

  16. Multi-laboratory comparison of quantitative PCR assays for detection and quantification of Fusarium virguliforme from soybean roots and soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accurate identification and quantification of Fusarium virguliforme, the cause of sudden death syndrome (SDS) in soybean, within root tissue and soil are important tasks. Several quantitative PCR (qPCR) assays have been developed but there are no reports comparing their use in sensitive and specific...

  17. QUANTITATIVE ENZYME-LINKED IMMUNOSORBENT ASSAY FOR DETERMINATION OF POLYCHLORINATED BIPHENYLS IN ENVIRONMENTAL SOIL AND SEDIMENT SAMPLES

    EPA Science Inventory

    An enzyme-linked immunosorbent assay (ELISA) for the quantitative determination of Aroclors 1242, 1248, 1254, and 1260 in soil and sediments was developed and its performance compared with that of gas chromatography (GC). The detection limits for Aroclors 1242 and 1248 in soil ar...

  18. The rapid quantitation of the filamentous blue-green alga plectonema boryanum by the luciferase assay for ATP

    NASA Technical Reports Server (NTRS)

    Bush, V. N.

    1974-01-01

    Plectonema boryanum is a filamentous blue green alga. Blue green algae have a procaryotic cellular organization similar to bacteria, but are usually obligate photoautotrophs, obtaining their carbon and energy from photosynthetic mechanism similar to higher plants. This research deals with a comparison of three methods of quantitating filamentous populations: microscopic cell counts, the luciferase assay for ATP and optical density measurements.

  19. Improved HF183 quantitative real-time PCR assay for characterization of human fecal pollution in ambient surface water samples

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Real-time quantitative PCR assays that target the human-associated HF183 bacterial cluster have been found to be some of the top performing methods for the characterization of human fecal pollution in ambient surface waters. The United States Environmental Protection Agency is planning to conduct a ...

  20. Development of a non invasion real-time PCR assay for the quantitation of chicken parvovirus in fecal swabs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The present study describes the development of a real time Taqman polymerase chain reaction (PCR) assay using a fluorescent labeled probe for the detection and quantitation of chicken parvovirus (ChPV) in feces. The primers and probes were designed based on the nucleotide sequence of the non struct...

  1. Multilaboratory Comparison of Quantitative PCR Assays for Detection and Quantification of Fusarium virguliforme from Soybean Roots and Soil.

    PubMed

    Kandel, Yuba R; Haudenshield, James S; Srour, Ali Y; Islam, Kazi Tariqul; Fakhoury, Ahmad M; Santos, Patricia; Wang, Jie; Chilvers, Martin I; Hartman, Glen L; Malvick, Dean K; Floyd, Crystal M; Mueller, Daren S; Leandro, Leonor F S

    2015-12-01

    The ability to accurately detect and quantify Fusarium virguliforme, the cause of sudden death syndrome (SDS) in soybean, in samples such as plant root tissue and soil is extremely valuable for accurate disease diagnoses and to address research questions. Numerous quantitative real-time polymerase chain reaction (qPCR) assays have been developed for this pathogen but their sensitivity and specificity for F. virguliforme have not been compared. In this study, six qPCR assays were compared in five independent laboratories using the same set of DNA samples from fungi, plants, and soil. Multicopy gene-based assays targeting the ribosomal DNA intergenic spacer (IGS) or the mitochondrial small subunit (mtSSU) showed relatively high sensitivity (limit of detection [LOD] = 0.05 to 5 pg) compared with a single-copy gene (FvTox1)-based assay (LOD = 5 to 50 pg). Specificity varied greatly among assays, with the FvTox1 assay ranking the highest (100%) and two IGS assays being slightly less specific (95 to 96%). Another IGS assay targeting four SDS-causing fusaria showed lower specificity (70%), while the two mtSSU assays were lowest (41 and 47%). An IGS-based assay showed consistently highest sensitivity (LOD = 0.05 pg) and specificity and inclusivity above 94% and, thus, is suggested as the most useful qPCR assay for F. virguliforme diagnosis and quantification. However, specificity was also above 94% in two other assays and their selection for diagnostics and research will depend on objectives, samples, and materials used. These results will facilitate both fundamental and disease management research pertinent to SDS.

  2. Bench-top validation testing of selected immunological and molecular Renibacterium salmoninarum diagnostic assays by comparison with quantitative bacteriological culture

    USGS Publications Warehouse

    Elliott, D.G.; Applegate, L.J.; Murray, A.L.; Purcell, M.K.; McKibben, C.L.

    2013-01-01

    No gold standard assay exhibiting error-free classification of results has been identified for detection of Renibacterium salmoninarum, the causative agent of salmonid bacterial kidney disease. Validation of diagnostic assays for R. salmoninarum has been hindered by its unique characteristics and biology, and difficulties in locating suitable populations of reference test animals. Infection status of fish in test populations is often unknown, and it is commonly assumed that the assay yielding the most positive results has the highest diagnostic accuracy, without consideration of misclassification of results. In this research, quantification of R. salmoninarum in samples by bacteriological culture provided a standardized measure of viable bacteria to evaluate analytical performance characteristics (sensitivity, specificity and repeatability) of non-culture assays in three matrices (phosphate-buffered saline, ovarian fluid and kidney tissue). Non-culture assays included polyclonal enzyme-linked immunosorbent assay (ELISA), direct smear fluorescent antibody technique (FAT), membrane-filtration FAT, nested polymerase chain reaction (nested PCR) and three real-time quantitative PCR assays. Injection challenge of specific pathogen-free Chinook salmon, Oncorhynchus tshawytscha (Walbaum), with R. salmoninarum was used to estimate diagnostic sensitivity and specificity. Results did not identify a single assay demonstrating the highest analytical and diagnostic performance characteristics, but revealed strengths and weaknesses of each test.

  3. A rapid quantitative assay for the detection of mammalian heparanase activity.

    PubMed Central

    Freeman, C; Parish, C R

    1997-01-01

    Heparan sulphate (HS) is an important component of the extracellular matrix and the vasculature basal laminar which functions as a barrier to the extravasation of metastatic and inflammatory cells. Cleavage of HS by endoglycosidase or heparanase activity produced by invading cells may assist in the disassembly of the extracellular matrix and basal laminar, and thereby facilitate cell migration. Heparanase activity has previously been shown to be related to the metastatic potential of murine and human melanoma cell lines [Nakajima, Irimura and Nicolson (1988) J. Cell. Biochem. 36, 157-167]. To determine heparanase activity, porcine mucosal HS was partially de-N-acetylated and re-N-acetylated with [3H]acetic anhydride to yield a radiolabelled substrate. This procedure prevented the masking of, or possible formation of, new heparanase-sensitive cleavage sites as has been observed with previous methods of radiolabelling. Heparanase activity in a variety of tissues and cell homogenates including human platelets, colonic carcinoma cells, umbilical vein endothelial cells and rat mammary adenocarcinoma cells (both metastatic and non-metastatic variants) and liver homogenates all degraded the substrate in a stepwise fashion from 18.5 to approximately 13, 8 and finally to 4.5 kDa fragments, as assessed by gel-filtration analysis, confirming the substrate as suitable for the detection of heparanase activity present in a variety of cells and tissues. A rapid quantitative assay was developed with the HS substrate using a novel method for separating degradation products from the substrate by taking advantage of the decreased affinity of the heparanase-cleaved products for the HS-binding plasma protein chicken histidine-rich glycoprotein (cHRG). Incubation mixtures were applied to cHRG-Sepharose columns, with unbound material corresponding to heparanase-degradation products. Heparanase activity was determined for a variety of human, rat and murine cell and tissue homogenates. The

  4. A highly reproducible quantitative viral outgrowth assay for the measurement of the replication-competent latent HIV-1 reservoir.

    PubMed

    Fun, Axel; Mok, Hoi Ping; Wills, Mark R; Lever, Andrew M

    2017-02-24

    Cure of Human Immunodeficiency Virus (HIV) infection remains elusive due to the persistence of HIV in a latent reservoir. Strategies to eradicate latent infection can only be evaluated with robust, sensitive and specific assays to quantitate reactivatable latent virus. We have taken the standard peripheral blood mononuclear cell (PBMC) based viral outgrowth methodology and from it created a logistically simpler and more highly reproducible assay to quantify replication-competent latent HIV in resting CD4(+) T cells, both increasing accuracy and decreasing cost and labour. Purification of resting CD4(+) T cells from whole PBMC is expedited and achieved in 3 hours, less than half the time of conventional protocols. Our indicator cell line, SupT1-CCR5 cells (a clonal cell line expressing CD4, CXCR4 and CCR5) provides a readily available standardised readout. Reproducibility compares favourably to other published assays but with reduced cost, labour and assay heterogeneity without compromising sensitivity.

  5. A highly reproducible quantitative viral outgrowth assay for the measurement of the replication-competent latent HIV-1 reservoir

    PubMed Central

    Fun, Axel; Mok, Hoi Ping; Wills, Mark R.; Lever, Andrew M.

    2017-01-01

    Cure of Human Immunodeficiency Virus (HIV) infection remains elusive due to the persistence of HIV in a latent reservoir. Strategies to eradicate latent infection can only be evaluated with robust, sensitive and specific assays to quantitate reactivatable latent virus. We have taken the standard peripheral blood mononuclear cell (PBMC) based viral outgrowth methodology and from it created a logistically simpler and more highly reproducible assay to quantify replication-competent latent HIV in resting CD4+ T cells, both increasing accuracy and decreasing cost and labour. Purification of resting CD4+ T cells from whole PBMC is expedited and achieved in 3 hours, less than half the time of conventional protocols. Our indicator cell line, SupT1-CCR5 cells (a clonal cell line expressing CD4, CXCR4 and CCR5) provides a readily available standardised readout. Reproducibility compares favourably to other published assays but with reduced cost, labour and assay heterogeneity without compromising sensitivity. PMID:28233807

  6. Laboratory Assay of Brood Care for Quantitative Analyses of Individual Differences in Honey Bee (Apis mellifera) Affiliative Behavior

    PubMed Central

    Shpigler, Hagai Y.; Robinson, Gene E.

    2015-01-01

    Care of offspring is a form of affiliative behavior that is fundamental to studies of animal social behavior. Insects do not figure prominently in this topic because Drosophila melanogaster and other traditional models show little if any paternal or maternal care. However, the eusocial honey bee exhibits cooperative brood care with larvae receiving intense and continuous care from their adult sisters, but this behavior has not been well studied because a robust quantitative assay does not exist. We present a new laboratory assay that enables quantification of group or individual honey bee brood “nursing behavior” toward a queen larva. In addition to validating the assay, we used it to examine the influence of the age of the larva and the genetic background of the adult bees on nursing performance. This new assay also can be used in the future for mechanistic analyses of eusociality and comparative analyses of affilative behavior with other animals. PMID:26569402

  7. Inhibitory Activity of Human Immunodeficiency Virus Aspartyl Protease Inhibitors against Encephalitozoon intestinalis Evaluated by Cell Culture-Quantitative PCR Assay

    PubMed Central

    Menotti, Jean; Santillana-Hayat, Maud; Cassinat, Bruno; Sarfati, Claudine; Derouin, Francis; Molina, Jean-Michel

    2005-01-01

    Immune reconstitution might not be the only factor contributing to the low prevalence of microsporidiosis in human immunodeficiency virus (HIV)-infected patients treated with protease inhibitors, as these drugs may exert a direct inhibitory effect against fungi and protozoa. In this study, we developed a cell culture-quantitative PCR assay to quantify Encephalitozoon intestinalis growth in U-373-MG human glioblastoma cells and used this assay to evaluate the activities of six HIV aspartyl protease inhibitors against E. intestinalis. A real-time quantitative PCR assay targeted the E. intestinalis small-subunit rRNA gene. HIV aspartyl protease inhibitors were tested over serial concentrations ranging from 0.2 to 10 mg/liter, with albendazole used as a control. Ritonavir, lopinavir, and saquinavir were able to inhibit E. intestinalis growth, with 50% inhibitory concentrations of 1.5, 2.2, and 4.6 mg/liter, respectively, whereas amprenavir, indinavir, and nelfinavir had no inhibitory effect. Pepstatin A, a reference aspartyl protease inhibitor, could also inhibit E. intestinalis growth, suggesting that HIV protease inhibitors may act through the inhibition of an E. intestinalis-encoded aspartyl protease. These results showed that some HIV protease inhibitors can inhibit E. intestinalis growth at concentrations that are achievable in vivo and that the real-time quantitative PCR assay that we used is a valuable tool for the in vitro assessment of the activities of drugs against E. intestinalis. PMID:15917534

  8. Evaluation of a PCR assay for quantitation of Rickettsia rickettsii and closely related spotted fever group rickettsiae.

    PubMed

    Eremeeva, Marina E; Dasch, Gregory A; Silverman, David J

    2003-12-01

    A spotted fever rickettsia quantitative PCR assay (SQ-PCR) was developed for the detection and enumeration of Rickettsia rickettsii and other closely related spotted fever group rickettsiae. The assay is based on fluorescence detection of SYBR Green dye intercalation in a 154-bp fragment of the rOmpA gene during amplification by PCR. As few as 5 copies of the rOmpA gene of R. rickettsii can be detected. SQ-PCR is suitable for quantitation of R. rickettsii and 10 other genotypes of spotted fever group rickettsiae but not for R. akari, R. australis, R. bellii, or typhus group rickettsiae. The sensitivity of SQ-PCR was comparable to that of a plaque assay using centrifugation for inoculation. The SQ-PCR assay was applied successfully to the characterization of rickettsial stock cultures, the replication of rickettsiae in cell culture, the recovery of rickettsial DNA following different methods of extraction, and the quantitation of rickettsial loads in infected animal tissues, clinical samples, and ticks.

  9. Improved HF183 Quantitative Real-Time PCR Assay for Characterization of Human Fecal Pollution in Ambient Surface Water Samples

    PubMed Central

    Green, Hyatt C.; Haugland, Richard A.; Varma, Manju; Millen, Hana T.; Borchardt, Mark A.; Field, Katharine G.; Walters, William A.; Knight, R.; Sivaganesan, Mano; Kelty, Catherine A.

    2014-01-01

    Quantitative real-time PCR (qPCR) assays that target the human-associated HF183 bacterial cluster within members of the genus Bacteroides are among the most widely used methods for the characterization of human fecal pollution in ambient surface waters. In this study, we show that a current TaqMan HF183 qPCR assay (HF183/BFDrev) routinely forms nonspecific amplification products and introduce a modified TaqMan assay (HF183/BacR287) that alleviates this problem. The performance of each qPCR assay was compared in head-to-head experiments investigating limits of detection, analytical precision, predicted hybridization to 16S rRNA gene sequences from a reference database, and relative marker concentrations in fecal and sewage samples. The performance of the modified HF183/BacR287 assay is equal to or improves upon that of the original HF183/BFDrev assay. In addition, a qPCR chemistry designed to combat amplification inhibition and a multiplexed internal amplification control are included. In light of the expanding use of PCR-based methods that rely on the detection of extremely low concentrations of DNA template, such as qPCR and digital PCR, the new TaqMan HF183/BacR287 assay should provide more accurate estimations of human-derived fecal contaminants in ambient surface waters. PMID:24610857

  10. Qualitative and Quantitative Assays of Transposition and Homologous Recombination of the Retrotransposon Tf1 in Schizosaccharomyces pombe.

    PubMed

    Sangesland, Maya; Atwood-Moore, Angela; Rai, Sudhir K; Levin, Henry L

    2016-01-01

    Transposition and homologous recombination assays are valuable genetic tools to measure the production and integration of cDNA from the long terminal repeat (LTR) retrotransposon Tf1 in the fission yeast (Schizosaccharomyces pombe). Here we describe two genetic assays, one that measures the transposition activity of Tf1 by monitoring the mobility of a drug resistance marked Tf1 element expressed from a multi-copy plasmid and another assay that measures homologous recombination between Tf1 cDNA and the expression plasmid. While the transposition assay measures insertion of full-length Tf1 cDNA mediated by the transposon integrase, the homologous recombination assay measures levels of cDNA present in the nucleus and is independent of integrase activity. Combined, these assays can be used to systematically screen large collections of strains to identify mutations that specifically inhibit the integration step in the retroelement life cycle. Such mutations can be identified because they reduce transposition activity but nevertheless have wild-type frequencies of homologous recombination. Qualitative assays of yeast patches on agar plates detect large defects in integration and recombination, while the quantitative approach provides a precise method of determining integration and recombination frequencies.

  11. DEVELOPMENT OF SEMI-QUANTITATIVE PCR ASSAYS FOR THE DETECTION AND ENUMERATION OF GAMBIERDISCUS SPECIES (GONYAULACALES, DINOPHYCEAE)(1).

    PubMed

    Vandersea, Mark W; Kibler, Steven R; Holland, William C; Tester, Patricia A; Schultz, Thomas F; Faust, Maria A; Holmes, Michael J; Chinain, Mirelle; Wayne Litaker, R

    2012-08-01

    Ciguatera fish poisoning (CFP) is a serious health problem in tropical regions and is caused by the bioaccumulation of lipophilic toxins produced by dinoflagellates in the genus Gambierdiscus. Gambierdiscus species are morphologically similar and are difficult to distinguish from one another even when using scanning electron microscopy. Improved identification and detection methods that are sensitive and rapid are needed to identify toxic species and investigate potential distribution and abundance patterns in relation to incidences of CFP. This study presents the first species-specific, semi-quantitative polymerase chain reaction (qPCR) assays that can be used to address these questions. These assays are specific for five Gambierdiscus species and one undescribed ribotype. The assays utilized a SYBR green format and targeted unique sequences found within the SSU, ITS, and the D1/D3 LSU ribosomal domains. Standard curves were constructed using known concentrations of cultured cells and 10-fold serial dilutions of rDNA PCR amplicons containing the target sequence for each specific assay. Assay sensitivity and accuracy were tested using DNA extracts purified from known concentrations of multiple Gambierdiscus species. The qPCR assays were used to assess Gambierdiscus species diversity and abundance in samples collected from nearshore areas adjacent to Ft. Pierce and Jupiter, Florida USA. The results indicated that the practical limit of detection for each assay was 10 cells per sample. Most interestingly, the qPCR analysis revealed that as many as four species of Gambierdiscus were present in a single macrophyte sample.

  12. Strand-Specific Quantitative Reverse Transcription-Polymerase Chain Reaction Assay for Measurement of Arenavirus Genomic and Antigenomic RNAs

    PubMed Central

    Haist, Kelsey; Ziegler, Christopher; Botten, Jason

    2015-01-01

    Arenaviruses are bi-segmented, single-stranded RNA viruses that cause significant human disease. The manner in which they regulate the replication of their genome is not well-understood. This is partly due to the absence of a highly sensitive assay to measure individual species of arenavirus replicative RNAs. To overcome this obstacle, we designed a quantitative reverse transcription (RT)-PCR assay for selective quantitation of each of the lymphocytic choriomeningitis virus (LCMV) genomic or antigenomic RNAs. During the course of assay design, we identified a nonspecific priming phenomenon whereby, in the absence of an RT primer, cDNAs complementary to each of the LCMV replicative RNA species are generated during RT. We successfully circumvented this nonspecific priming event through the use of biotinylated primers in the RT reaction, which permitted affinity purification of primer-specific cDNAs using streptavidin-coated magnetic beads. As proof of principle, we used the assay to map the dynamics of LCMV replication at acute and persistent time points and to determine the quantities of genomic and antigenomic RNAs that are incorporated into LCMV particles. This assay can be adapted to measure total S or L segment-derived viral RNAs and therefore represents a highly sensitive diagnostic platform to screen for LCMV infection in rodent and human tissue samples and can also be used to quantify virus-cell attachment. PMID:25978311

  13. A mechanistic analysis of the quantitation of α-hydroxy ketones by the bicinchoninic acid assay.

    PubMed

    Weiser, Jennifer R; Ricapito, Nicole G; Yueh, Alice; Weiser, Ellen L; Putnam, David

    2012-11-15

    A new class of compounds amenable to quantification by the bicinchoninic acid (BCA) assay was identified, allowing an expansion of compounds quantifiable within the assay's capacity. In this article, we demonstrate that compounds containing the α-hydroxy ketone structure are easily measured under standard BCA assay conditions. A nonchromophore analyte containing the α-hydroxy ketone structure, 1,3-dihydroxypropan-2-one (commonly known as dihydroxyacetone), and various structural derivatives were explored on an equimolar basis in the BCA assay. Combined with earlier studies exploring α-hydroxy ketones within copper oxidation systems, the data support the mechanism of this class of compound's ability to enolize through an enediol intermediate to generate a strong signal in the BCA assay. This new quantification technique also highlights the potential for α-hydroxy ketones to interfere with other analytes quantified by the BCA assay.

  14. Quantitative PCR Assays for Detecting Loach Minnow (Rhinichthys cobitis) and Spikedace (Meda fulgida) in the Southwestern United States

    PubMed Central

    Carim, Kellie J.; Paroz, Yvette M.; McKelvey, Kevin S.; Young, Michael K.; Schwartz, Michael K.

    2016-01-01

    Loach minnow (Rhinichthys cobitis) and spikedace (Meda fulgida) are legally protected with the status of Endangered under the U.S. Endangered Species Act and are endemic to the Gila River basin of Arizona and New Mexico. Efficient and sensitive methods for monitoring these species’ distributions are critical for prioritizing conservation efforts. We developed quantitative PCR assays for detecting loach minnow and spikedace DNA in environmental samples. Each assay reliably detected low concentrations of target DNA without detection of non-target species, including other cyprinid fishes with which they co-occur. PMID:27583576

  15. Development of a high-throughput quantitative assay for detecting herpes simplex virus DNA in clinical samples.

    PubMed

    Ryncarz, A J; Goddard, J; Wald, A; Huang, M L; Roizman, B; Corey, L

    1999-06-01

    We have developed a high-throughput, semiautomated, quantitative fluorescence-based PCR assay to detect and type herpes simplex virus (HSV) DNA in clinical samples. The detection assay, which uses primers to the type-common region of HSV glycoprotein B (gB), was linear from <10 to 10(8) copies of HSV DNA/20 microl of sample. Among duplicate samples in reproducibility runs, the assay showed less than 5% variability. We compared the fluorescence-based PCR assay with culture and gel-based liquid hybridization system with 335 genital tract specimens from HSV type 2 (HSV-2)-seropositive persons attending a research clinic and 380 consecutive cerebrospinal fluid (CSF) samples submitted to a diagnostic virology laboratory. Among the 162 culture-positive genital tract specimens, TaqMan PCR was positive for 157 (97%) specimens, whereas the quantitative-competitive PCR was positive for 144 (89%) specimens. Comparisons of the mean titer of HSV DNA detected by the two assays revealed that the mean titer detected by the gel-based system was slightly higher (median, 1 log). These differences in titers were in part related to the fivefold difference in the amount of HSV DNA used in the amplicon standards with the two assays. Among the 380 CSF samples, 42 were positive by both assays, 13 were positive only by the assay with the agarose gel, and 3 were positive only by the assay with the fluorescent probe. To define the subtype of HSV DNA detected in the screening assay, we also designed one set of primers which amplifies the gG regions of both types of HSV and probes which are specific to either HSV-1 (gG1) or HSV-2 (gG2). These probes were labeled with different fluorescent dyes (6-carboxyfluorescein for gG2 and 6-hexachlorofluorescein for gG1) to enable detection in a single PCR. In mixing experiments the probes discriminated the correct subtype in mixtures with up to a 7-log-higher concentration of the opposite subtype. The PCR typing results showed 100% concordance with the

  16. Development of a High-Throughput Quantitative Assay for Detecting Herpes Simplex Virus DNA in Clinical Samples

    PubMed Central

    Ryncarz, Alexander J.; Goddard, James; Wald, Anna; Huang, Meei-Li; Roizman, Bernard; Corey, Lawrence

    1999-01-01

    We have developed a high-throughput, semiautomated, quantitative fluorescence-based PCR assay to detect and type herpes simplex virus (HSV) DNA in clinical samples. The detection assay, which uses primers to the type-common region of HSV glycoprotein B (gB), was linear from <10 to 108 copies of HSV DNA/20 μl of sample. Among duplicate samples in reproducibility runs, the assay showed less than 5% variability. We compared the fluorescence-based PCR assay with culture and gel-based liquid hybridization system with 335 genital tract specimens from HSV type 2 (HSV-2)-seropositive persons attending a research clinic and 380 consecutive cerebrospinal fluid (CSF) samples submitted to a diagnostic virology laboratory. Among the 162 culture-positive genital tract specimens, TaqMan PCR was positive for 157 (97%) specimens, whereas the quantitative-competitive PCR was positive for 144 (89%) specimens. Comparisons of the mean titer of HSV DNA detected by the two assays revealed that the mean titer detected by the gel-based system was slightly higher (median, 1 log). These differences in titers were in part related to the fivefold difference in the amount of HSV DNA used in the amplicon standards with the two assays. Among the 380 CSF samples, 42 were positive by both assays, 13 were positive only by the assay with the agarose gel, and 3 were positive only by the assay with the fluorescent probe. To define the subtype of HSV DNA detected in the screening assay, we also designed one set of primers which amplifies the gG regions of both types of HSV and probes which are specific to either HSV-1 (gG1) or HSV-2 (gG2). These probes were labeled with different fluorescent dyes (6-carboxyfluorescein for gG2 and 6-hexachlorofluorescein for gG1) to enable detection in a single PCR. In mixing experiments the probes discriminated the correct subtype in mixtures with up to a 7-log-higher concentration of the opposite subtype. The PCR typing results showed 100% concordance with the results

  17. Using quantitative reverse transcriptase PCR and cell culture plaque assays to determine resistance of Toxoplasma gondii oocysts to chemical sanitizers.

    PubMed

    Villegas, Eric N; Augustine, Swinburne A J; Villegas, Leah Fohl; Ware, Michael W; See, Mary Jean; Lindquist, H D Alan; Schaefer, Frank W; Dubey, J P

    2010-06-01

    Toxoplasma gondii oocysts are highly resistant to many chemical sanitizers. Methods used to determine oocyst infectivity have relied primarily on mouse, chicken, and feline bioassays. Although considered gold standards, they only provide a qualitative assessment of oocyst viability. In this study, two alternative approaches were developed to quantitate viable T. gondii oocysts following treatment with several common sanitizers. The first is a quantitative reverse transcriptase real-time PCR (RT-qPCR) assay targeting the ACT1 and SporoSAG genes to enumerate viable T. gondii oocysts. RT-qPCR C(T) values between Wescodyne(R), acidified ethanol, or heat treated oocysts were not significantly different as compared with untreated controls. By contrast, treatment with formalin or Clorox(R) resulted in a 2-log(10) reduction in C(T) values. An in vitro T. gondii oocyst plaque assay (TOP-assay) was also developed to measure oocyst viability. This assay used a combination of bead milling and bile digestion, followed by culturing the excysted sporozoites in a confluent fibroblast cell monolayer. Results showed that no significant reduction in sporozoite viability was detected in acidified ethanol or Wescodyne(R) treated oocysts while at least a 2-log(10) reduction in plaques formed was observed with Clorox(R) treated oocysts. Moreover, formalin or heat treatment of oocysts resulted in at least a 5-log(10) reduction in plaques formed. This study demonstrates that an mRNA-based PCR viability assay targeting the ACT1 or SporoSAG genes is a relatively rapid technique compared to in vitro and in vivo assays. In addition, the TOP-assay proved very effective and sensitive at quantifying oocyst viability when compared with animal bioassays.

  18. A competitive and reversible deactivation approach to catalysis-based quantitative assays

    PubMed Central

    Koide, Kazunori; Tracey, Matthew P.; Bu, Xiaodong; Jo, Junyong; Williams, Michael J.; Welch, Christopher J.

    2016-01-01

    Catalysis-based signal amplification makes optical assays highly sensitive and widely useful in chemical and biochemical research. However, assays must be fine-tuned to avoid signal saturation, substrate depletion and nonlinear performance. Furthermore, once stopped, such assays cannot be restarted, limiting the dynamic range to two orders of magnitude with respect to analyte concentrations. In addition, abundant analytes are difficult to quantify under catalytic conditions due to rapid signal saturation. Herein, we report an approach in which a catalytic reaction competes with a concomitant inactivation of the catalyst or consumption of a reagent required for signal generation. As such, signal generation proceeds for a limited time, then autonomously and reversibly stalls. In two catalysis-based assays, we demonstrate restarting autonomously stalled reactions, enabling accurate measurement over five orders of magnitude, including analyte levels above substrate concentration. This indicates that the dynamic range of catalysis-based assays can be significantly broadened through competitive and reversible deactivation. PMID:26891765

  19. Development and application of a quantitative real-time PCR assay to detect feline leukemia virus RNA.

    PubMed

    Torres, Andrea N; O'Halloran, Kevin P; Larson, Laurie J; Schultz, Ronald D; Hoover, Edward A

    2008-05-15

    We previously defined four categories of feline leukemia virus (FeLV) infection, designated as abortive, regressive, latent, and progressive. To determine if detectable viral DNA is transcriptionally active in the absence of antigenemia, we developed and validated a real-time viral RNA qPCR assay. This assay proved to be highly sensitive, specific, reproducible, and allowed reliable quantitation. We then applied this methodology, together with real-time DNA qPCR and p27 capsid antigen capture ELISA, to examine cats challenged with FeLV. We found that circulating viral RNA and DNA levels were highly correlated and the assays were almost in perfect agreement. This indicates that the vast majority of viral DNA is transcriptionally active, even in the absence of antigenemia. The real-time qPCR assays are more sensitive than the most commonly used FeLV diagnostic assay, the p27 capsid antigen capture ELISA. Application of qPCR assays may add greater depth in understanding of FeLV-host relationships.

  20. Real-time quantitative PCR assays for detection and monitoring of pathogenic human viruses in immunosuppressed pediatric patients.

    PubMed

    Watzinger, F; Suda, M; Preuner, S; Baumgartinger, R; Ebner, K; Baskova, L; Niesters, H G M; Lawitschka, A; Lion, T

    2004-11-01

    A panel of 23 real-time PCR assays based on TaqMan technology has been developed for the detection and monitoring of 16 different viruses and virus families including human polyomaviruses BK virus and JC virus, human herpesviruses 6, 7, and 8, human adenoviruses, herpes simplex viruses 1 and 2, varicella-zoster virus, cytomegalovirus, Epstein-Barr virus, parvovirus B19, influenza A and B viruses, parainfluenza viruses 1 to 3, enteroviruses, and respiratory syncytial virus. The test systems presented have a broad dynamic range and display high sensitivity, reproducibility, and specificity. Moreover, the assays allow precise quantification of viral load in a variety of clinical specimens. The ability to use uniform PCR conditions for all assays permits simultaneous processing and detection of many different viruses, thus economizing the diagnostic work. Our observations based on more than 50,000 assays reveal the potential of the real-time PCR tests to facilitate early diagnosis of infection and to monitor the kinetics of viral proliferation and the response to treatment. We demonstrate that, in immunosuppressed patients with invasive virus infections, surveillance by the assays described may permit detection of increasing viral load several days to weeks prior to the onset of clinical symptoms. In virus infections for which specific treatment is available, the quantitative PCR assays presented provide reliable diagnostic tools for timely initiation of appropriate therapy and for rapid assessment of the efficacy of antiviral treatment strategies.

  1. Characterization of vitellogenin gene expression in round goby (Neogobius melanostomus) using a quantitative polymerase chain reaction assay.

    PubMed

    Bowley, Lucas A; Alam, Farhana; Marentette, Julie R; Balshine, Sigal; Wilson, Joanna Y

    2010-12-01

    A growing concern over endocrine disruption in aquatic species has prompted the development of molecular assays to monitor environmental impacts. This study describes the development of quantitative polymerase chain reaction (qPCR) assays to characterize the expression of two vitellogenin (Vtg) genes in the invasive round goby (Neogobius melanostomus). Fragments from the 18SrRNA (housekeeping gene), Vtg II, and Vtg III genes were cloned and sequenced. The qPCR assays were developed to detect hepatic Vtg expression in goby. The assays detected induction of both Vtg genes in nonreproductive males following a two-week laboratory exposure to 17β-estradiol (≥1 mg/kg i.p. injection). The assays were applied to goby from Hamilton Harbour, Lake Ontario (Canada), including those from sites where feminization and intersex of goby has been documented. Both Vtg genes had significantly higher expression in females compared to males. Male reproductive goby adopt either parental or sneaker tactics; Vtg II expression was higher in sneaker than in parental males but parental and nonreproductive males did not differ from each other. The Vtg III expression was significantly higher in sneaker males followed by parental males and nonreproductive males, respectively. The Vtg II and III expression in nonreproductive males was elevated in the contaminated site with documented intersex. This assay provides an important tool for the use of an invasive species in monitoring endocrine disruption in the Great Lakes region.

  2. Improved Methods for Capture, Extraction, and Quantitative Assay of Environmental DNA from Asian Bigheaded Carp (Hypophthalmichthys spp.)

    PubMed Central

    Turner, Cameron R.; Miller, Derryl J.; Coyne, Kathryn J.; Corush, Joel

    2014-01-01

    Indirect, non-invasive detection of rare aquatic macrofauna using aqueous environmental DNA (eDNA) is a relatively new approach to population and biodiversity monitoring. As such, the sensitivity of monitoring results to different methods of eDNA capture, extraction, and detection is being investigated in many ecosystems and species. One of the first and largest conservation programs with eDNA-based monitoring as a central instrument focuses on Asian bigheaded carp (Hypophthalmichthys spp.), an invasive fish spreading toward the Laurentian Great Lakes. However, the standard eDNA methods of this program have not advanced since their development in 2010. We developed new, quantitative, and more cost-effective methods and tested them against the standard protocols. In laboratory testing, our new quantitative PCR (qPCR) assay for bigheaded carp eDNA was one to two orders of magnitude more sensitive than the existing endpoint PCR assays. When applied to eDNA samples from an experimental pond containing bigheaded carp, the qPCR assay produced a detection probability of 94.8% compared to 4.2% for the endpoint PCR assays. Also, the eDNA capture and extraction method we adapted from aquatic microbiology yielded five times more bigheaded carp eDNA from the experimental pond than the standard method, at a per sample cost over forty times lower. Our new, more sensitive assay provides a quantitative tool for eDNA-based monitoring of bigheaded carp, and the higher-yielding eDNA capture and extraction method we describe can be used for eDNA-based monitoring of any aquatic species. PMID:25474207

  3. Improved methods for capture, extraction, and quantitative assay of environmental DNA from Asian bigheaded carp (Hypophthalmichthys spp.).

    PubMed

    Turner, Cameron R; Miller, Derryl J; Coyne, Kathryn J; Corush, Joel

    2014-01-01

    Indirect, non-invasive detection of rare aquatic macrofauna using aqueous environmental DNA (eDNA) is a relatively new approach to population and biodiversity monitoring. As such, the sensitivity of monitoring results to different methods of eDNA capture, extraction, and detection is being investigated in many ecosystems and species. One of the first and largest conservation programs with eDNA-based monitoring as a central instrument focuses on Asian bigheaded carp (Hypophthalmichthys spp.), an invasive fish spreading toward the Laurentian Great Lakes. However, the standard eDNA methods of this program have not advanced since their development in 2010. We developed new, quantitative, and more cost-effective methods and tested them against the standard protocols. In laboratory testing, our new quantitative PCR (qPCR) assay for bigheaded carp eDNA was one to two orders of magnitude more sensitive than the existing endpoint PCR assays. When applied to eDNA samples from an experimental pond containing bigheaded carp, the qPCR assay produced a detection probability of 94.8% compared to 4.2% for the endpoint PCR assays. Also, the eDNA capture and extraction method we adapted from aquatic microbiology yielded five times more bigheaded carp eDNA from the experimental pond than the standard method, at a per sample cost over forty times lower. Our new, more sensitive assay provides a quantitative tool for eDNA-based monitoring of bigheaded carp, and the higher-yielding eDNA capture and extraction method we describe can be used for eDNA-based monitoring of any aquatic species.

  4. Ultrasensitive and quantitative gold nanoparticle-based immunochromatographic assay for detection of ochratoxin A in agro-products.

    PubMed

    Majdinasab, Marjan; Sheikh-Zeinoddin, Mahmoud; Soleimanian-Zad, Sabihe; Li, Peiwu; Zhang, Qi; Li, Xin; Tang, Xiaoqian

    2015-01-01

    In most cases of mycotoxin detection, quantitation is critical while immunochromatographic strip tests are qualitative in nature. Moreover, the sensitivity of this technique is questioned. In order to overcome these limitations, an ultrasensitive and quantitative immunochromatographic assay (ICA) for rapid and sensitive quantitation of ochratoxin A (OTA) was developed. The assay was based on a competitive format and its sensitivity was improved by using a sensitive and selective OTA monoclonal antibody (OTA-mAb). The visible ICA results were obtained within 15 min, and in addition to visual examination, they were read by the rapid color intensity portable strip reader. The visual and computational detection limits (vLOD and cLOD, respectively) for ochratoxin A were 0.2 and 0.25 ng mL(-1), respectively. These values were lower than those reported by previous studies in a range 5-2500 folds. For validation, contaminated samples including wheat, maize, rice and soybean were assayed by ICA and a standard high performance liquid chromatography (HPLC). The results were in good agreement for both ICA and HPLC methods. The average recoveries of the HPLC were in the range 72-120% while the ICA values were from 76 to 104%, confirming the accuracy and sensitivity of this method.

  5. Robust in vitro assay system for quantitative analysis of parasitic root-knot nematode infestation using Lotus japonicus.

    PubMed

    Amin, Arshana N N; Hayashi, Shuhei; Bartlem, Derek G

    2014-08-01

    Root-knot nematodes are sedentary endoparasites that induce permanent infestation sites inside the roots of a broad range of crop plants. The development of effective control strategies require understanding the root-knot nematode parasitic process, however, the key molecular determinants for host manipulation during infestation remain elusive. One limiting factor has been the lack of a standardized conventional method for quantitative measurement of host parasitism by root-knot nematodes, particularly one that enables efficient downstream analyses and is free from other biological sources of variability. We report here a robust, highly reproducible system for quantitative analysis of all stages of root-knot nematode infestation using the legume Lotus japonicus as the plant host. This system provides a high quality nematode inoculum that maintains consistency in juvenile age and viability even between independently prepared populations. An optimized root transformation protocol was also developed for L. japonicus to facilitate downstream molecular studies in conjunction with the quantitative assay. Hairy root transformation efficiencies up to 91% were achieved. Root-knot nematodes formed egg masses at the root surface of both intact plants and transgenic hairy root cultures within eight weeks, confirming the assay conditions support an efficient completion of the infestation cycle. The in vitro assay system described here is compatible with other plant hosts and will benefit agricultural biotechnology research as it now enables specific high-throughput screening of nematode resistance traits together with subsequent mechanistic elucidation of the causative factors.

  6. Fluorescence-based quantitative scratch wound healing assay demonstrating the role of MAPKAPK-2/3 in fibroblast migration.

    PubMed

    Menon, Manoj B; Ronkina, Natalia; Schwermann, Jessica; Kotlyarov, Alexey; Gaestel, Matthias

    2009-12-01

    The scratch wound healing assay is a sensitive method to characterize cell proliferation and migration, but it is difficult to be quantitatively evaluated. Therefore, we developed an infrared fluorescence detection-based real-time assay for sensitive and accurate quantification of cell migration in vitro. The method offers sensitivity, simplicity, and the potential for integration into automated large-scale screening studies. A live cell staining lipophilic tracer-1,1'-dioctadecyl-3,3,3',3'-tetramethyl indotricarbocyanine iodide (DiR)-is used for accurate imaging of wound closure in a simple 96-well scratch assay. Scratches are made on prestained confluent cell monolayers using a pipette tip and scanned at different time intervals using a fluorescent scanner. Images are analyzed using Image J software and the migration index is calculated. Effect of cell number, time after scratch and software settings are analyzed. The method is validated by showing concentration- and time-dependent effects of cytochalasin-D on fibroblast migration. Using this assay, we quantitatively evaluate the role of the MAPK-activated protein kinases MK2 and MK3 in fibroblast migration. First, the migratory phenotype of MK2-deficient MEFs is analyzed in a retroviral rescue model. In addition, migration of MK2/3-double-deficient cells is determined and the ability of MK3 to rescue cell migration in MK2/3-double-deficient fibroblasts is demonstrated.

  7. A multiplex calibrated real-time PCR assay for quantitation of DNA of EBV-1 and 2.

    PubMed

    Gatto, Francesca; Cassina, Giulia; Broccolo, Francesco; Morreale, Giuseppe; Lanino, Edoardo; Di Marco, Eddi; Vardas, Efthiya; Bernasconi, Daniela; Buttò, Stefano; Principi, Nicola; Esposito, Susanna; Scarlatti, Gabriella; Lusso, Paolo; Malnati, Mauro S

    2011-12-01

    Accurate and highly sensitive tests for the diagnosis of active Epstein-Barr virus (EBV) infection are essential for the clinical management of individuals infected with EBV. A calibrated quantitative real-time PCR assay for the measurement of EBV DNA of both EBV-1 and 2 subtypes was developed, combining the detection of the EBV DNA and a synthetic DNA calibrator in a multiplex PCR format. The assay displays a wide dynamic range and a high degree of accuracy even in the presence of 1μg of human genomic DNA. This assay measures with the same efficiency EBV DNA from strains prevalent in different geographic areas. The clinical sensitivity and specificity of the system were evaluated by testing 181 peripheral blood mononuclear cell (PBMCs) and plasma specimens obtained from 21 patients subjected to bone marrow transplantation, 70 HIV-seropositive subjects and 23 healthy controls. Patients affected by EBV-associated post-transplant lymphoprolipherative disorders had the highest frequency of EBV detection and the highest viral load. Persons infected with HIV had higher levels of EBV DNA load in PBMCs and a higher frequency of EBV plasma viremia compared to healthy controls. In conclusion, this new assay provides a reliable high-throughput method for the quantitation of EBV DNA in clinical samples.

  8. TaqMan real-time quantitative PCR assay for detection of fluoroquinolone-resistant Neisseria gonorrhoeae.

    PubMed

    Zhao, LiHong; Zhao, ShuPing

    2012-12-01

    It is noted that more than 99 % of fluoroquinolone resistance in Neisseria gonorrhoeae (QRNG) specimens have been shown to have the mutation of Ser91/Phe in the gyrA gene. In order to detect QRNG isolates as quickly as possible, the real-time TaqMan quantitative PCR assay was established for detection of the point mutation of Ser91/Phe in gyrA gene. The standard curve was generated automatically on ABI Prism PE7500. The correlation coefficient (r) of the standard curve was -0.9984 (R(2) = 0.9968), indicating a quietly precise log-linear relationship between the concentration of target DNA and the Ct value. Presently, correlated, cultured antimicrobial susceptibility testing of N. gonorrhoeae isolates continues to be the gold standard method for the detection of antimicrobial resistance. Comparison to the correlated, cultured antimicrobial susceptibility testing, the sensitivity and specificity of the established TaqMan assay for the detection of the QRNG specimens were 100 and 99 %, respectively. The TaqMan assay also allows for rapid detection of QRNG isolates without complex laboratory techniques. Therefore, real-time TaqMan quantitative PCR assay is a rapid, simple, highly sensitive, highly specific, and easy-to-perform method for the detection of the QRNG specimens. It can be applied as a quick screening method for QRNG isolates to help clinical determination of optimal treatment prescription.

  9. Performance Assessment of Human and Cattle Associated Quantitative Real-time PCR Assays - slides

    EPA Science Inventory

    The presentation overview is (1) Single laboratory performance assessment of human- and cattle associated PCR assays and (2) A Field Study: Evaluation of two human fecal waste management practices in Ohio watershed.

  10. Diagnostic significance and clinical impact of quantitative assays for diagnosis of human cytomegalovirus infection/disease in immunocompromised patients.

    PubMed

    Gerna, G; Percivalle, E; Baldanti, F; Sarasini, A; Zavattoni, M; Furione, M; Torsellini, M; Revello, M G

    1998-07-01

    In recent years several assays have been developed for quantitation of human cytomegalovirus (HCMV) in blood of immunocompromised (transplanted and AIDS) patients. It is currently agreed that the only reliable indication of the degree of dissemination of HCMV infection/disease is the measurement of HCMV in blood. Diagnosis of HCMV end-organ disease (organ localizations) often does not benefit from quantitation of virus in blood, but requires detection and quantification of virus in samples taken locally. The most important and clinically useful diagnostic assays for HCMV quantitation in blood are: i) viremia, quantifying infectious HCMV carried by peripheral blood leukocytes (PBL); ii) pp65-antigenemia, quantifying the number of PBL positive for HCMV pp65 in the nucleus; iii) circulating cytomegalic endothelial cell (CEC) viremia (CEC-viremia) measuring the number of circulating CEC carrying infectious HCMV (during the antigenemia assay); iv) leuko- and plasma-DNAemia, quantifying the number of HCMV genome equivalents present in PBL or plasma, respectively, by quantitative polymerase chain reaction (Q-PCR). Other less widely used assays are: i) determination of immediate early and late gene transcripts (mRNA) to detect active viral infection; ii) in situ hybridization to detect viral nucleic acid (DNA or RNA) in tissue sections or cell smears; iii) in situ PCR to detect a low DNA copy number in single cells. Monitoring of HCMV infection/disease in transplant recipients and AIDS patients has established threshold values for different assays above which HCMV-related clinical symptoms are likely to appear. These values are approximately 10 for viremia, 100 for antigenemia and 1,000 GE for leukoDNAemia, and are valid for both solid organ and bone marrow transplant recipients as well as AIDS patients, whereas presence of even a single circulating CEC is sufficient to suggest the presence of a disseminated HCMV infection with potential organ involvement. Monitoring of

  11. A versatile electrowetting-based digital microfluidic platform for quantitative homogeneous and heterogeneous bio-assays

    NASA Astrophysics Data System (ADS)

    Vergauwe, Nicolas; Witters, Daan; Ceyssens, Frederik; Vermeir, Steven; Verbruggen, Bert; Puers, Robert; Lammertyn, Jeroen

    2011-05-01

    Electrowetting-on-dielectric (EWOD) lab-on-a-chip systems have already proven their potential within a broad range of bio-assays. Nevertheless, research on the analytical performance of those systems is limited, yet crucial for a further breakthrough in the diagnostic field. Therefore, this paper presents the intrinsic possibilities of an EWOD lab-on-a-chip as a versatile platform for homogeneous and heterogeneous bio-assays with high analytical performance. Both droplet dispensing and splitting cause variations in droplet size, thereby directly influencing the assay's performance. The extent to which they influence the performance is assessed by a theoretical sensitivity analysis, which allows the definition of a basic framework for the reduction of droplet size variability. Taking advantage of the optimized droplet manipulations, both homogeneous and heterogeneous bio-assays are implemented in the EWOD lab-on-a-chip to demonstrate the analytical capabilities and versatility of the device. A fully on-chip enzymatic assay is realized with high analytical performance. It demonstrates the promising capabilities of an EWOD lab-on-a-chip in food-related and medical applications, such as nutritional and blood analyses. Further, a magnetic bio-assay for IgE detection using superparamagnetic nanoparticles is presented whereby the nanoparticles are used as solid carriers during the bio-assay. Crucial elements are the precise manipulation of the superparamagnetic nanoparticles with respect to dispensing and separation. Although the principle of using nano-carriers is demonstrated for protein detection, it can be easily extended to a broader range of bio-related applications like DNA sensing. In heterogeneous bio-assays the chip surface is actively involved during the execution of the bio-assay. Through immobilization of specific biological compounds like DNA, proteins and cells a reactive chip surface is realized, which enhances the bio-assay performance. To demonstrate

  12. Development and evaluation of a real-time PCR assay for the quantitative detection of Theileria annulata in cattle

    PubMed Central

    2012-01-01

    Background The tick-borne apicomplexan bovine parasite Theileria annulata is endemic in many tropical and temperate areas, including Minorca (Balearic Islands, Spain). Real-time PCR is widely used for the detection of piroplasms but quantification is not commonly considered. Results We developed a real-time quantitative PCR (qPCR) assay for the detection and quantification of T. annulata that included an internal amplification control (IAC) to monitor for the presence of potential inhibitors. Specificity, sensitivity, precision, linear range and PCR efficiency were calculated and different methods for transformation of quantification cycle (Cq) values into quantities (Q) were evaluated. The assay was able to detect (100% probability) and quantify (linear response) 100 gene copies, and clinical sensitivity was set at 10 T. annulata per μl of blood. The assay was then validated on 141 bovine blood samples analyzed in parallel by a Luminex® suspension array, showing the utility of the qPCR assay developed here for the detection and quantification of the parasite in field conditions. Once validated it was used to monitor T. annulata parasitaemia throughout a year in 8 carrier animals from a farm in Minorca. Conclusions The developed qPCR assay offers a reliable and simple way to quantify T. annulata infection loads, which could prove crucial in studying the role of carrier animals as a source of the infection, or assessing the efficacy of treatment and control measures. PMID:22889141

  13. Japanese reference panel of blood specimens for evaluation of hepatitis C virus RNA and core antigen quantitative assays.

    PubMed

    Murayama, Asako; Sugiyama, Nao; Watashi, Koichi; Masaki, Takahiro; Suzuki, Ryosuke; Aizaki, Hideki; Mizuochi, Toshiaki; Wakita, Takaji; Kato, Takanobu

    2012-06-01

    An accurate and reliable quantitative assay for hepatitis C virus (HCV) is essential for measuring viral propagation and the efficacy of antiviral therapy. There is a growing need for domestic reference panels for evaluation of clinical assay kits because the performance of these kits may vary with region-specific genotypes or polymorphisms. In this study, we established a reference panel by selecting 80 donated blood specimens in Japan that tested positive for HCV. Using this panel, we quantified HCV viral loads using two HCV RNA kits and five core antigen (Ag) kits currently available in Japan. The data from the two HCV RNA assay kits showed excellent correlation. All RNA titers were distributed evenly across a range from 3 to 7 log IU/ml. Although the data from the five core Ag kits also correlated with RNA titers, the sensitivities of individual kits were not sufficient to quantify viral load in all samples. As calculated by the correlation with RNA titers, the theoretical lower limits of detection by these core Ag assays were higher than those for the detection of RNA. Moreover, in several samples in our panel, core Ag levels were underestimated compared to RNA titers. Sequence analysis in the HCV core region suggested that polymorphisms at amino acids 47 to 49 of the core Ag were responsible for this underestimation. The panel established in this study will be useful for estimating the quality of currently available and upcoming HCV assay kits; such quality control is essential for clinical usage of these kits.

  14. NEW TARGET AND CONTROL ASSAYS FOR QUANTITATIVE POLYMERASE CHAIN REACTION (QPCR) ANALYSIS OF ENTEROCOCCI IN WATER

    EPA Science Inventory

    Enterococci are frequently monitored in water samples as indicators of fecal pollution. Attention is now shifting from culture based methods for enumerating these organisms to more rapid molecular methods such as QPCR. Accurate quantitative analyses by this method requires highly...

  15. Comparison of NucliSens and Roche Monitor Assays for Quantitation of Levels of Human Immunodeficiency Virus Type 1 RNA in Plasma

    PubMed Central

    Dyer, John R.; Pilcher, Christopher D.; Shepard, Robin; Schock, Jody; Eron, Joseph J.; Fiscus, Susan A.

    1999-01-01

    We compared the performance of Organon Teknika’s NucliSens and Roche Diagnostic Systems’ Monitor quantitative human immunodeficiency type 1 RNA assays. Both had similar linearity and sensitivity over most of the dynamic range of the assays, although the Monitor assay was superior at the low range of RNA values while the NucliSens assay was more consistent at higher RNA values. NucliSens generally showed less interassay variability. PMID:9889240

  16. Assaying estrogenicity by quantitating the expression levels of endogenous estrogen-regulated genes.

    PubMed

    Jørgensen, M; Vendelbo, B; Skakkebaek, N E; Leffers, H

    2000-05-01

    Scientific evidence suggests that humans and wildlife species may experience adverse health consequences from exposure to environmental chemicals that interact with the endocrine system. Reliable short-term assays are needed to identify hormone-disrupting chemicals. In this study we demonstrate that the estrogenic activity of a chemical can be evaluated by assaying induction or repression of endogenous estrogen-regulated "marker genes" in human breast cancer MCF-7 cells. We included four marker genes in the assay--pS2, transforming growth factor beta3 (TGFbeta3), monoamine oxidase A, and [alpha]1-antichymotrypsin--and we evaluated estrogenic activity for 17beta-estradiol (E(2)), diethylstilbestrol, [alpha]-zearalanol, nonylphenol, genistein, methoxychlor, endosulphan, o,p-DDE, bisphenol A, dibutylphthalate, 4-hydroxy tamoxifen, and ICI 182.780. All four marker genes responded strongly to the three high-potency estrogens (E(2), diethylstilbestrol, and [alpha]-zearalanol), whereas the potency of the other chemicals was 10(3)- to 10(6)-fold lower than that of E(2). There were some marker gene-dependent differences in the relative potencies of the tested chemicals. TGFbeta3 was equally sensitive to the three high-potency estrogens, whereas the sensitivity to [alpha]-zearalanol was approximately 10-fold lower than the sensitivity to E(2) and diethylstilbestrol when assayed with the other three marker genes. The potency of nonylphenol was equal to that of genistein when assayed with pS2 and TGFbeta3, but 10- to 100-fold higher/lower with monoamine oxidase A and [alpha]1-antichymotrypsin, respectively. The results are in agreement with results obtained by other methods and suggest that an assay based on endogenous gene expression may offer an attractive alternative to other E-SCREEN methods.

  17. A radiometric assay for bacterial growth detection and quantitative antibiotic testing

    SciTech Connect

    Boonkitticharoen, V.; Kirchner, P.T.; Ehrhardt, J.C.

    1984-01-01

    Buddemeyer's two-compartment radiometric assay for bacterial growth using respired C-14 carbon dioxide promised major advantages over other available methods, but limitations of the technique have restricted its application. Through a systemic study of relevant physical and chemical factors the authors sought to improve the assay for earlier detection of bacterial growth and to extend its use to measurement of antibiotic drug susceptibility and potency. A 35-fold improvement in count rate response was achieved by a) reversing growth and detector chambers to permit rigorous agitation, b) increasing NaOH quantity and using a supersaturated PPO solution, and c) adding detergent to stabilize NaOH-PPO contact. Bacterial growth may be detected as early as 1/2 hour after inoculation. For rapidly growing bacteria the growth rate constant is defined as the slope of the growth curve (log count rate vs. time). The validity of the growth behavior was verified by measuring growth at several inoculum sizes over 3 orders of magnitude using standard strains of S. aureus and E. coli. The growth rate constant proved to be independent of inoculum size. To test the merit of the system as an antibiotic assay, E. coli were exposed to doses of spectinomycin hydrochloride in the range which yielded a nonlinear dose-response relation by a turbidity assay. The test, however, showed a linear relation between growth rate constant and antibiotic dose. The results clearly indicate the radiometric growth rate assay to be a rapid, valid and objective assay for bacterial growth and antibiotic sensitivity.

  18. Quantitative real-time RT-PCR assay for research studies on enterovirus infections in the central nervous system.

    PubMed

    Volle, Romain; Nourrisson, Céline; Mirand, Audrey; Regagnon, Christel; Chambon, Martine; Henquell, Cécile; Bailly, Jean-Luc; Peigue-Lafeuille, Hélène; Archimbaud, Christine

    2012-10-01

    Human enteroviruses are the most frequent cause of aseptic meningitis and are involved in other neurological infections. Qualitative detection of enterovirus genomes in cerebrospinal fluid is a prerequisite in diagnosing neurological diseases. The pathogenesis of these infections is not well understood and research in this domain would benefit from the availability of a quantitative technique to determine viral load in clinical specimens. This study describes the development of a real-time RT-qPCR assay using hydrolysis TaqMan probe and a competitive RNA internal control. The assay has high specificity and can be used for a large sample of distinct enterovirus strains and serotypes. The reproducible limit of detection was estimated at 1875 copies/ml of quantitative standards composed of RNA transcripts obtained from a cloned echovirus 30 genome. Technical performance was unaffected by the introduction of a competitive RNA internal control before RNA extraction. The mean enterovirus RNA concentration in an evaluation series of 15 archived cerebrospinal fluid specimens was determined at 4.78 log(10)copies/ml for the overall sample. The sensitivity and reproducibility of the real time RT-qPCR assay used in combination with the internal control to monitor the overall specimen process make it a valuable tool with applied research into enterovirus infections.

  19. Endotoxin Detection in Pharmaceuticals and Medical Devices with Kinetic-QCL, a Kinetic-Quantitative Chromogenic Limulus Amebocyte Lysate Assay.

    PubMed

    Berzofsky, Ronald N.

    1995-01-01

    The observation that endotoxin caused gelation in extracts of Limulus amebocytes has been expanded to the development of an in vitro kinetic, quantitative chromogenic LAL assay (Kinetic-QCL) for the detection of endotoxin in aqueous fluids. Within the last 15 years, the use of Limulus amebocyte lysate to detect and control the presence of pyrogenic substances in pharmaceuticals and medical devices has gained wide international acceptance. Both the United States and European Pharmacopoeias contain descriptions of and requirements for the LAL Bacterial Endotoxin Test. Both pharmacopoeias have begun to remove the rabbit pyrogen test requirement in a majority of drug monographs and have substituted endotoxin limits to be determined by LAL. The use of LAL has proved invaluable in controlling the level of endotoxin in finished product. The endotoxin contribution of raw materials and packaging material can be monitored as well. In-process testing at critical production steps can identify additional sources of endotoxin contamination, and depyrogenation processes can be validated by quantitating the degradation of endotoxin challenges. The speed, reproducibility, sensitivity, and economics of the Kinetic-QCL assay, in conjunction with the ppropriate equipment and software, over both the in vivo rabbit pyrogen test and the more traditional LAL gel-clot assay allow a more in-depth approach to the control of endotoxin in pharmaceuticals and medical devices.

  20. Development and Validation of a Highly Accurate Quantitative Real-Time PCR Assay for Diagnosis of Bacterial Vaginosis

    PubMed Central

    Smith, William L.; Chadwick, Sean G.; Toner, Geoffrey; Mordechai, Eli; Adelson, Martin E.; Aguin, Tina J.; Sobel, Jack D.

    2016-01-01

    Bacterial vaginosis (BV) is the most common gynecological infection in the United States. Diagnosis based on Amsel's criteria can be challenging and can be aided by laboratory-based testing. A standard method for diagnosis in research studies is enumeration of bacterial morphotypes of a Gram-stained vaginal smear (i.e., Nugent scoring). However, this technique is subjective, requires specialized training, and is not widely available. Therefore, a highly accurate molecular assay for the diagnosis of BV would be of great utility. We analyzed 385 vaginal specimens collected prospectively from subjects who were evaluated for BV by clinical signs and Nugent scoring. We analyzed quantitative real-time PCR (qPCR) assays on DNA extracted from these specimens to quantify nine organisms associated with vaginal health or disease: Gardnerella vaginalis, Atopobium vaginae, BV-associated bacteria 2 (BVAB2, an uncultured member of the order Clostridiales), Megasphaera phylotype 1 or 2, Lactobacillus iners, Lactobacillus crispatus, Lactobacillus gasseri, and Lactobacillus jensenii. We generated a logistic regression model that identified G. vaginalis, A. vaginae, and Megasphaera phylotypes 1 and 2 as the organisms for which quantification provided the most accurate diagnosis of symptomatic BV, as defined by Amsel's criteria and Nugent scoring, with 92% sensitivity, 95% specificity, 94% positive predictive value, and 94% negative predictive value. The inclusion of Lactobacillus spp. did not contribute sufficiently to the quantitative model for symptomatic BV detection. This molecular assay is a highly accurate laboratory tool to assist in the diagnosis of symptomatic BV. PMID:26818677

  1. A comparison of quantitative-competitive and realtime PCR assays using an identical target sequence to detect Epstein-Barr virus viral load in the peripheral blood.

    PubMed

    Xu, Shushen; Green, Michael; Kingsley, Laurence; Webber, Steven; Rowe, David

    2006-11-01

    Monitoring the load of Epstein-Barr virus (EBV) in the peripheral blood by quantitative PCR has been accepted as a useful tool for predicting the onset of EBV related diseases, confirming an EBV disease diagnosis and following the response to treatment interventions. In the present study, the use of a realtime polymerase chain reaction (rt-PCR) assay developed for unpurified cell preparations was examined and the results of the realtime assay were compared to an EBV quantitative-competitive PCR assay (QC-PCR). Both assays use the same target sequence and the same method for determining the standard value for the copy number of EBV genomes present. A comparison of 572 PCR results reveals that the realtime assay gave 5-10-fold higher values than the QC-PCR. Fifty-one results (8.9%) were discordant between the two sets of data. The most commonly encountered discordant result was detection of low amounts of EBV DNA by the rt-PCR assay that were not detected in specimens by QC-PCR. The two assays had a high degree of correlation across the range of load detection allowing clinically relevant threshold values determined in the QC-PCR assay to be inferred for the rt-PCR assay. External normalization of the rt-PCR assay was determined to be an important tool for monitoring the quality and/or quantity of human DNA in the starting material. rt-PCR assays with unpurified cell lysates compare favorably with quantitative-competitive assays and when normalized offer real advantages in specimen preparation, assay manipulations and reproducibility over both quantitative-competitive assays and realtime assays that require purified nucleic acid inputs.

  2. Commercially available antibodies can be applied in quantitative multiplexed peptide immunoaffinity enrichment targeted mass spectrometry assays

    PubMed Central

    Schoenherr, Regine M.; Zhao, Lei; Ivey, Richard G.; Voytovich, Uliana J.; Kennedy, Jacob; Yan, Ping; Lin, Chenwei; Whiteaker, Jeffrey R.; Paulovich, Amanda G.

    2016-01-01

    Immunoaffinity enrichment of peptides coupled to multiple reaction monitoring-mass spectrometry (immuno-MRM) enables highly specific, sensitive, and precise quantification of peptides and post-translational modifications. Major obstacles to developing a large number of immuno-MRM assays are the poor availability of monoclonal antibodies (mAbs) validated for immunoaffinity enrichment of peptides and the cost and lead time of developing the antibodies de novo. Although many thousands of mAbs are commercially offered, few have been tested for application to immunoaffinity enrichment of peptides. In this study we tested the success rate of using commercially available mAbs for peptide immuno-MRM assays. We selected 105 commercial mAbs (76 targeting non-modified “pan” epitopes, 29 targeting phosphorylation) to proteins associated with the DNA damage response network. We found that 8 of the 76 pan (11%) and 5 of the 29 phospho-specific mAbs (17%) captured tryptic peptides (detected by LC-MS/MS) of their protein targets from human cell lysates. Seven of these mAbs were successfully used to configure and analytically characterize immuno-MRM assays. By applying selection criteria upfront, the results indicate that a screening success rate of up to 24% is possible, establishing the feasibility of screening a large number of catalog antibodies to provide readily-available assay reagents. PMID:27094115

  3. A rapid, quantitative assay for measuring alkaline phosphatase activity in osteoblastic cells in vitro.

    PubMed

    Sabokbar, A; Millett, P J; Myer, B; Rushton, N

    1994-10-01

    Alkaline phosphatase (ALP) is the most widely recognized biochemical marker for osteoblast activity. Although its precise function is poorly understood, it is believed to play a role in skeletal mineralization. The aim of this study was to develop an assay suitable for measuring the activity of this enzyme in microtiter plate format. Using the well-characterized osteoblast-like cell line Saos-2, this paper describes an optimized biochemical assay suitable for measuring ALP activity in tissue culture samples. We have determined that a p-nitrophenyl phosphate substrate concentration of 9 mM provides highest enzyme activities. We have found that cell concentration, and hence enzyme concentration, affects both the kinetics and precision of the assay. We also tested several methods of enzyme solubilization and found that freeze-thawing the membrane fractions twice at -70 degrees C/37 degrees C or freeze-thawing once with sonication yielded highest enzyme activities. The activity of the enzyme decreased by 10% after 7 days storage. This assay provides a sensitive and reproducible method that is ideally suited for measuring ALP activity in isolated osteoblastic cells, although sample preparation and storage can influence results.

  4. Characterization of Diversity in Toxicity Mechanism Using In Vitro Cytotoxicity Assays in Quantitative High Throughput Screening

    PubMed Central

    Huang, Ruili; Southall, Noel; Cho, Ming-Hsuang; Xia, Menghang; Inglese, James; Austin, Christopher P.

    2009-01-01

    Assessing the potential health risks of environmental chemical compounds is an expensive undertaking which has motivated the development of new alternatives to traditional in vivo toxicological testing. One approach is to stage the evaluation, beginning with less expensive and higher throughput in vitro testing before progressing to more definitive trials. In vitro testing can be used to generate a hypothesis about a compound's mechanism of action, which can then be used to design an appropriate in vivo experiment. Here we begin to address the question of how to design such a battery of in vitro cell-based assays by combining data from two different types of assays, cell viability and caspase activation, with the aim of elucidating mechanism of action. Because caspase activation is a transient event during apoptosis, it is not possible to design a single end-point assay protocol that would identify all instances of compound-induced caspase activation. Nevertheless, useful information about compound mechanism of action can be obtained from these assays in combination with cell viability data. Unsupervised clustering in combination with Dunn's cluster validity index is a robust method for identifying mechanisms of action without requiring any a priori knowledge about mechanisms of toxicity. The performance of this clustering method is evaluated by comparing the clustering results against literature annotations of compound mechanisms. PMID:18281954

  5. A Call for Nominations of Quantitative High-Throughput Screening Assays from Relevant Human Toxicity Pathways

    EPA Science Inventory

    The National Research Council of the United States National Academies of Science has recently released a document outlining a long-range vision and strategy for transforming toxicity testing from largely whole animal-based testing to one based on in vitro assays. “Toxicity Testin...

  6. Bayer Immuno 1 PSA Assay: an automated, ultrasensitive method to quantitate total PSA in serum.

    PubMed

    Morris, D L; Dillon, P W; Very, D L; Ng, P; Kish, L; Goldblatt, J L; Bruzek, D J; Chan, D W; Ahmed, M S; Witek, D; Fritsche, H A; Smith, C; Schwartz, D; Schwartz, M K; Noteboom, J L; Vessella, R L; Yeung, K K; Allard, W J

    1998-01-01

    The Bayer Immuno 1 PSA Assay measures total PSA in human serum and demonstrates excellent performance with an interassay CV < or = 3.4% and a biological detection limit of 0.03 microgram/L. No significant interference from common hormonal and chemotherapeutic drugs, kallikrein, prostatic acid phosphatase, and trypsin, or elevated levels of total bilirubin, hemoglobin, triglycerides, and IgG was observed. The 95th percentile values for healthy individuals increased with age from 3.0 micrograms/L for males 50-59 years and 3.3 micrograms/L for males 60-69 years, to 4.6 micrograms/L for males > or = 70 years. Clinical studies with retrospective samples demonstrated correspondence between serial measurements of PSA and clinical outcome for 98% of 159 prostate cancer patients. Clinical sensitivity for patients with clinical evidence of disease, untreated at the time of specimen draw, increased with increasing stage from 77.5-100%. Specificity of 60-70% for BPH and other benign urogenital diseases was consistent with previous findings. Bayer Immuno 1 PSA Assay values for 2131 specimens from healthy subjects and patients with prostate cancer, BPH, and other malignant and nonmalignant diseases correlated well with the Abbott IMx PSA Assay over the range 0.0-6,238 micrograms/L (Y = 1.10 x + 0.02). The Bayer Immuno 1 PSA Assay provides automated ultrasensitive, precise, and equimolar measurement of total PSA in human serum.

  7. A Quantitative Polymerase Chain Reaction Assay for the Detection and Quantification of Epizootic Epitheliotropic Disease Virus (EEDV; Salmonid Herpesvirus 3).

    PubMed

    Glenney, Gavin W; Barbash, Patricia A; Coll, John A

    2016-03-01

    Epizootic epitheliotropic disease virus (EEDV; salmonid herpesvirus [SalHV3]; family Alloherpesviridae) causes a systemic disease of juvenile and yearling Lake Trout Salvelinus namaycush. No cell lines are currently available for the culture and propagation of EEDV, so primary diagnosis is limited to PCR and electron microscopy. To better understand the pervasiveness of EEDV (carrier or latent state of infection) in domesticated and wild Lake Trout populations, we developed a sensitive TaqMan quantitative PCR (qPCR) assay to detect the presence of the EEDV terminase gene in Lake Trout tissues. This assay was able to detect a linear standard curve over nine logs of plasmid dilution and was sensitive enough to detect single-digit copies of EEDV. The efficiency of the PCR assay was 99.4 ± 0.06% (mean ± SD), with a 95% confidence limit of 0.0296 (R(2) = 0.994). Methods were successfully applied to collect preliminary data from a number of species and water bodies in the states of Pennsylvania, New York, and Vermont, indicating that EEDV is more common in wild fish than previously known. In addition, through the development of this qPCR assay, we detected EEDV in a new salmonid species, the Cisco Coregonus artedi. The qPCR assay was unexpectedly able to detect two additional herpesviruses, the Atlantic Salmon papillomatosis virus (ASPV; SalHV4) and the Namaycush herpesvirus (NamHV; SalHV5), which both share high sequence identity with the EEDV terminase gene. With these unexpected findings, we subsequently designed three primer sets to confirm initial TaqMan qPCR assay positives and to differentiate among EEDV, ASPV, and NamHV by detecting the glycoprotein genes via SYBR Green qPCR. Received April 20, 2015; accepted November 10, 2015.

  8. A Versatile Panel of Reference Gene Assays for the Measurement of Chicken mRNA by Quantitative PCR

    PubMed Central

    Maier, Helena J.; Van Borm, Steven; Young, John R.; Fife, Mark

    2016-01-01

    Quantitative real-time PCR assays are widely used for the quantification of mRNA within avian experimental samples. Multiple stably-expressed reference genes, selected for the lowest variation in representative samples, can be used to control random technical variation. Reference gene assays must be reliable, have high amplification specificity and efficiency, and not produce signals from contaminating DNA. Whilst recent research papers identify specific genes that are stable in particular tissues and experimental treatments, here we describe a panel of ten avian gene primer and probe sets that can be used to identify suitable reference genes in many experimental contexts. The panel was tested with TaqMan and SYBR Green systems in two experimental scenarios: a tissue collection and virus infection of cultured fibroblasts. GeNorm and NormFinder algorithms were able to select appropriate reference gene sets in each case. We show the effects of using the selected genes on the detection of statistically significant differences in expression. The results are compared with those obtained using 28s ribosomal RNA, the present most widely accepted reference gene in chicken work, identifying circumstances where its use might provide misleading results. Methods for eliminating DNA contamination of RNA reduced, but did not completely remove, detectable DNA. We therefore attached special importance to testing each qPCR assay for absence of signal using DNA template. The assays and analyses developed here provide a useful resource for selecting reference genes for investigations of avian biology. PMID:27537060

  9. Development of species-, strain- and antibiotic biosynthesis-specific quantitative PCR assays for Pantoea agglomerans as tools for biocontrol monitoring.

    PubMed

    Braun-Kiewnick, Andrea; Lehmann, Andreas; Rezzonico, Fabio; Wend, Chris; Smits, Theo H M; Duffy, Brion

    2012-09-01

    Pantoea agglomerans is a cosmopolitan plant epiphytic bacterium that includes some of the most effective biological antagonists against the fire blight pathogen Erwinia amylovora, a major threat to pome fruit production worldwide. Strain E325 is commercially available as Bloomtime Biological™ in the USA and Canada. New quantitative PCR (qPCR) assays were developed for species- and strain -specific detection in the environment, and for detection of indigenous strains carrying the biocontrol antibacterial peptide biosynthesis gene paaA. The qPCR assays were highly specific, efficient and sensitive, detecting fewer than three cells per reaction or 700 colony forming units per flower, respectively. The qPCR assays were tested on field samples, giving first indications to the incidence of P. agglomerans E325 related strains, total P. agglomerans and pantocin A producing bacteria in commercial orchards. These assays will facilitate monitoring the environmental behavior of biocontrol P. agglomerans after orchard application for disease protection, proprietary strain-tracking, and streamlined screening for discovery of new biocontrol strains.

  10. Simultaneous quantitation of nicotinamide riboside, nicotinamide mononucleotide and nicotinamide adenine dinucleotide in milk by a novel enzyme-coupled assay.

    PubMed

    Ummarino, Simone; Mozzon, Massimo; Zamporlini, Federica; Amici, Adolfo; Mazzola, Francesca; Orsomando, Giuseppe; Ruggieri, Silverio; Raffaelli, Nadia

    2017-04-15

    Nicotinamide riboside, the most recently discovered form of vitamin B3, and its phosphorylated form nicotinamide mononucleotide, have been shown to be potent supplements boosting intracellular nicotinamide adenine dinucleotide (NAD) levels, thus preventing or ameliorating metabolic and mitochondrial diseases in mouse models. Here we report for the first time on the simultaneous quantitation of nicotinamide riboside, nicotinamide mononucleotide and NAD in milk by means of a fluorometric, enzyme-coupled assay. Application of this assay to milk from different species revealed that the three vitamers were present in human and donkey milk, while being selectively distributed in the other milks. Human milk was the richest source of nicotinamide mononucleotide. Overall, the three vitamers accounted for a significant fraction of total vitamin B3 content. Pasteurization did not affect the bovine milk content of nicotinamide riboside, whereas UHT processing fully destroyed the vitamin. In human milk, NAD levels were significantly affected by the lactation time.

  11. INTERNAL AMPLIFICATION CONTROL FOR USE IN QUANTITATIVE POLYMERASE CHAIN REACTION FECAL INDICATOR BACTERIA ASSAYS

    EPA Science Inventory

    Quantitative polymerase chain reaction (QPCR) can be used as a rapid method for detecting fecal indicator bacteria. Because false negative results can be caused by PCR inhibitors that co-extract with the DNA samples, an internal amplification control (IAC) should be run with eac...

  12. Evaluation of Quantitative Real-Time PCR Assays for Detection of Citrus Greening

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Citrus huanglongbing (HLB), or citrus greening, is a serious and industry-limiting disease. Preliminary diagnoses can be made through visual symptoms, and greater certainty can be achieved through quantitative real-time PCR (qPCR). Several qPCR procedures are available including those by designed by...

  13. Evaluation of quantitative assays for the identification of direct signal transducer and activator of transcription 3 (STAT3) inhibitors.

    PubMed

    Furtek, Steffanie L; Matheson, Christopher J; Backos, Donald S; Reigan, Philip

    2016-11-22

    In many forms of cancer the signal transducer and activator of transcription 3 (STAT3) transcription factor remains constitutively active, driving cancer survival and progression. The critical role of STAT3 in tumorigenesis has prompted a campaign of drug discovery programs to identify small molecules that disrupt the function of STAT3, with more recent efforts focusing on direct STAT3 inhibition. There are two target binding sites for direct STAT3 inhibitors: the SH2 dimerization domain and the DNA-binding domain. An in vitro fluorescence polarization assay, using recombinant STAT3 protein, has successfully identified compounds that target the SH2 domain; however, no assay has been reported to identify inhibitors that bind the DNA-binding domain. The lack of such a quantitative assay has limited the identification and development of STAT3 DNA-binding domain inhibitors. Here, we report a modified DNA-binding ELISA to incorporate recombinant STAT3 protein to evaluate small molecules that prevent STAT3-DNA binding. The concomitant use of the ELISA and fluorescence polarization assay enables the classification of direct STAT3 inhibitors by their site of action. Our data provide further support that niclosamide inhibits STAT3 through interaction with the DNA-binding domain. Furthermore, the ELISA can support medicinal chemistry efforts by identifying DNA-binding domain inhibitors and allowing the determination of an IC50 value, supporting the ranking of inhibitors and development of structure-activity relationships. Therefore, we propose a tandem evaluation approach to identify small molecules that target the SH2 domain or the DNA-binding domain of STAT3, which allows for quantitative evaluation of candidate STAT3 inhibitors.

  14. Quantitative Profiling of Protein Tyrosine Kinases in Human Cancer Cell Lines by Multiplexed Parallel Reaction Monitoring Assays*

    PubMed Central

    Kim, Hye-Jung; Lin, De; Lee, Hyoung-Joo; Li, Ming; Liebler, Daniel C.

    2016-01-01

    Protein tyrosine kinases (PTKs) play key roles in cellular signal transduction, cell cycle regulation, cell division, and cell differentiation. Dysregulation of PTK-activated pathways, often by receptor overexpression, gene amplification, or genetic mutation, is a causal factor underlying numerous cancers. In this study, we have developed a parallel reaction monitoring-based assay for quantitative profiling of 83 PTKs. The assay detects 308 proteotypic peptides from 54 receptor tyrosine kinases and 29 nonreceptor tyrosine kinases in a single run. Quantitative comparisons were based on the labeled reference peptide method. We implemented the assay in four cell models: 1) a comparison of proliferating versus epidermal growth factor-stimulated A431 cells, 2) a comparison of SW480Null (mutant APC) and SW480APC (APC restored) colon tumor cell lines, and 3) a comparison of 10 colorectal cancer cell lines with different genomic abnormalities, and 4) lung cancer cell lines with either susceptibility (11–18) or acquired resistance (11–18R) to the epidermal growth factor receptor tyrosine kinase inhibitor erlotinib. We observed distinct PTK expression changes that were induced by stimuli, genomic features or drug resistance, which were consistent with previous reports. However, most of the measured expression differences were novel observations. For example, acquired resistance to erlotinib in the 11–18 cell model was associated not only with previously reported up-regulation of MET, but also with up-regulation of FLK2 and down-regulation of LYN and PTK7. Immunoblot analyses and shotgun proteomics data were highly consistent with parallel reaction monitoring data. Multiplexed parallel reaction monitoring assays provide a targeted, systems-level profiling approach to evaluate cancer-related proteotypes and adaptations. Data are available through Proteome eXchange Accession PXD002706. PMID:26631510

  15. Evaluation of quantitative assays for the identification of direct signal transducer and activator of transcription 3 (STAT3) inhibitors

    PubMed Central

    Furtek, Steffanie L.; Matheson, Christopher J.; Backos, Donald S.; Reigan, Philip

    2016-01-01

    In many forms of cancer the signal transducer and activator of transcription 3 (STAT3) transcription factor remains constitutively active, driving cancer survival and progression. The critical role of STAT3 in tumorigenesis has prompted a campaign of drug discovery programs to identify small molecules that disrupt the function of STAT3, with more recent efforts focusing on direct STAT3 inhibition. There are two target binding sites for direct STAT3 inhibitors: the SH2 dimerization domain and the DNA-binding domain. An in vitro fluorescence polarization assay, using recombinant STAT3 protein, has successfully identified compounds that target the SH2 domain; however, no assay has been reported to identify inhibitors that bind the DNA-binding domain. The lack of such a quantitative assay has limited the identification and development of STAT3 DNA-binding domain inhibitors. Here, we report a modified DNA-binding ELISA to incorporate recombinant STAT3 protein to evaluate small molecules that prevent STAT3-DNA binding. The concomitant use of the ELISA and fluorescence polarization assay enables the classification of direct STAT3 inhibitors by their site of action. Our data provide further support that niclosamide inhibits STAT3 through interaction with the DNA-binding domain. Furthermore, the ELISA can support medicinal chemistry efforts by identifying DNA-binding domain inhibitors and allowing the determination of an IC50 value, supporting the ranking of inhibitors and development of structure-activity relationships. Therefore, we propose a tandem evaluation approach to identify small molecules that target the SH2 domain or the DNA-binding domain of STAT3, which allows for quantitative evaluation of candidate STAT3 inhibitors. PMID:27793003

  16. A sensitive liquid chromatography/mass spectrometry-based assay for quantitation of amino-containing moieties in lipid A

    PubMed Central

    Kalhorn, Thomas F.; Kiavand, Anahita; Cohen, Ilana E.; Nelson, Amanda K.; Ernst, Robert K.

    2009-01-01

    A novel sensitive liquid chromatography/mass spectrometry-based assay was developed for the quantitation of aminosugars, including 2-amino-2-deoxyglucose (glucosamine, GlcN), 2-amino-2-deoxygalactose (galactosamine, GalN), and 4-amino-4-deoxyarabinose (aminoarabinose, AraN), and for ethanolamine (EtN), present in lipid A. This assay enables the identification and quantitation of all amino-containing moieties present in lipopolysaccharide or lipid A from a single sample. The method was applied to the analysis of lipid A (endotoxin) isolated from a variety of biosynthetic and regulatory mutants of Salmonella enterica serovar Typhimurium and Francisella tularensis subspecies novicida. Lipid A is treated with trifluoroacetic acid to liberate and deacetylate individual aminosugars and mass tagged with 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate, which reacts with primary and secondary amines. The derivatives are separated using reversed-phase chromatography and analyzed using a single quadrupole mass spectrometer to detect quantities as small as 20 fmol. GalN was detected only in Francisella and AraN only in Salmonella, while GlcN was detected in lipid A samples from both species of bacteria. Additionally, we found an approximately 10-fold increase in the level of AraN in lipid A isolated from Salmonella grown in magnesium-limited versus magnesium-replete conditions. Salmonella with defined mutations in lipid A synthesis and regulatory genes were used to further validate the assay. Salmonella with null mutations in the phoP, pmrE, and prmF genes were unable to add AraN to their lipid A, while Salmonella with constitutively active phoP and pmrA exhibited AraN modification of lipid A even in the normally repressive magnesium-replete growth condition. The described assay produces excellent repeatability and reproducibility for the detection of amino-containing moieties in lipid A from a variety of bacterial sources. PMID:19130491

  17. Duplex Quantitative PCR Assay for Detection of Haemophilus influenzae That Distinguishes Fucose- and Protein D-Negative Strains

    PubMed Central

    de Gier, Camilla; Pickering, Janessa L.; Richmond, Peter C.; Thornton, Ruth B.

    2016-01-01

    We have developed a specific Haemophilus influenzae quantitative PCR (qPCR) that also identifies fucose-negative and protein D-negative strains. Analysis of 100 H. influenzae isolates, 28 Haemophilus haemolyticus isolates, and 14 other bacterial species revealed 100% sensitivity (95% confidence interval [CI], 96% to 100%) and 100% specificity (95% CI, 92% to 100%) for this assay. The evaluation of 80 clinical specimens demonstrated a strong correlation between semiquantitative culture and the qPCR (P < 0.001). PMID:27335148

  18. QIAD assay for quantitating a compound’s efficacy in elimination of toxic Aβ oligomers

    PubMed Central

    Brener, Oleksandr; Dunkelmann, Tina; Gremer, Lothar; van Groen, Thomas; Mirecka, Ewa A.; Kadish, Inga; Willuweit, Antje; Kutzsche, Janine; Jürgens, Dagmar; Rudolph, Stephan; Tusche, Markus; Bongen, Patrick; Pietruszka, Jörg; Oesterhelt, Filipp; Langen, Karl-Josef; Demuth, Hans-Ulrich; Janssen, Arnold; Hoyer, Wolfgang; Funke, Susanne A.; Nagel-Steger, Luitgard; Willbold, Dieter

    2015-01-01

    Strong evidence exists for a central role of amyloid β-protein (Aβ) oligomers in the pathogenesis of Alzheimer’s disease. We have developed a fast, reliable and robust in vitro assay, termed QIAD, to quantify the effect of any compound on the Aβ aggregate size distribution. Applying QIAD, we studied the effect of homotaurine, scyllo-inositol, EGCG, the benzofuran derivative KMS88009, ZAβ3W, the D-enantiomeric peptide D3 and its tandem version D3D3 on Aβ aggregation. The predictive power of the assay for in vivo efficacy is demonstrated by comparing the oligomer elimination efficiency of D3 and D3D3 with their treatment effects in animal models of Alzheimer´s disease. PMID:26394756

  19. Development of MRM-based assays for the absolute quantitation of plasma proteins.

    PubMed

    Kuzyk, Michael A; Parker, Carol E; Domanski, Dominik; Borchers, Christoph H

    2013-01-01

    Multiple reaction monitoring (MRM), sometimes called selected reaction monitoring (SRM), is a directed tandem mass spectrometric technique performed on to triple quadrupole mass spectrometers. MRM assays can be used to sensitively and specifically quantify proteins based on peptides that are specific to the target protein. Stable-isotope-labeled standard peptide analogues (SIS peptides) of target peptides are added to enzymatic digests of samples, and quantified along with the native peptides during MRM analysis. Monitoring of the intact peptide and a collision-induced fragment of this peptide (an ion pair) can be used to provide information on the absolute peptide concentration of the peptide in the sample and, by inference, the concentration of the intact protein. This technique provides high specificity by selecting for biophysical parameters that are unique to the target peptides: (1) the molecular weight of the peptide, (2) the generation of a specific fragment from the peptide, and (3) the HPLC retention time during LC/MRM-MS analysis. MRM is a highly sensitive technique that has been shown to be capable of detecting attomole levels of target peptides in complex samples such as tryptic digests of human plasma. This chapter provides a detailed description of how to develop and use an MRM protein assay. It includes sections on the critical "first step" of selecting the target peptides, as well as optimization of MRM acquisition parameters for maximum sensitivity of the ion pairs that will be used in the final method, and characterization of the final MRM assay.

  20. A filter microplate assay for quantitative analysis of DNA binding proteins using fluorescent DNA.

    PubMed

    Yang, William C; Swartz, James R

    2011-08-15

    We present a rapid method for quantifying the apparent DNA binding affinity and capacity of recombinant transcription factors (TFs). We capture His6-tagged TFs using nickel-nitrilotriacetic acid (Ni-NTA) agarose and incubate the immobilized TFs with fluorescently labeled cognate DNA probes. After washing, the strength of the fluorescence signal indicates the extent of DNA binding. The assay was validated using two pluripotency-regulating TFs: SOX2 and NANOG. Using competitive binding analysis with nonlabeled competitor DNA, we show that SOX2 and NANOG specifically bind to their consensus sequences. We also determined the apparent affinity of SOX2 and NANOG for their consensus sequences to be 54.2±9 and 44.0±6nM, respectively, in approximate agreement with literature values. Our assay does not require radioactivity, but radioactively labeling the TFs enables the measurement of absolute amounts of immobilized SOX2 and NANOG and, hence, a DNA-to-protein binding ratio. SOX2 possesses a 0.95 DNA-to-protein binding ratio, whereas NANOG possesses a 0.44 ratio, suggesting that most of the SOX2 and approximately half of the NANOG are competent for DNA binding. Alternatively, the NANOG dimer may be capable of binding only one DNA target. This flexible DNA binding assay enables the analysis of crude or purified samples with or without radioactivity.

  1. Improved PCR assay for the species-specific identification and quantitation of Legionella pneumophila in water.

    PubMed

    Cho, Min Seok; Ahn, Tae-Young; Joh, Kiseong; Lee, Eui Seok; Park, Dong Suk

    2015-11-01

    Legionellosis outbreak is a major global health care problem. However, current Legionella risk assessments may be compromised by uncertainties in Legionella detection methods, infectious dose, and strain infectivity. These limitations may place public health at significant risk, leading to significant monetary losses in health care. However, there are still unmet needs for its rapid identification and monitoring of legionellae in water systems. Therefore, in the present study, a primer set was designed based on a LysR-type transcriptional regulator (LTTR) family protein gene of Legionella pneumophila subsp. pneumophila str. Philadelphia 1 because it was found that this gene is structurally diverse among species through BLAST searches. The specificity of the primer set was evaluated using genomic DNA from 6 strains of L. pneumophila, 5 type strains of other related Legionella species, and other 29 reference pathogenic bacteria. The primer set used in the PCR assay amplified a 264-bp product for only targeted six strains of L. pneumophila. The assay was also able to detect at least 1.39 × 10(3) copies/μl of cloned amplified target DNA using purified DNA or 7.4 × 10(0) colony-forming unit per reaction when using calibrated cell suspension. In addition, the sensitivity and specificity of this assay were confirmed by successful detection of Legionella pneumophila in environmental water samples.

  2. Comparison of various assays to quantitate macrophage activation by biological response modifiers

    SciTech Connect

    Schultz, R.M.; Nanda, S.; Altom, M.G.

    1984-01-01

    Macrophages treated with various compounds that enhance host antitumor resistance exhibit measurable changes in metabolism, function, and surface antigens. In this study, murine peptone-induced peritoneal macrophages were stimulated in vitro by bacterial lipopolysaccharide (LPS), muramyl dipeptide (MDP), and poly I.poly C. They were subsequently compared in their ability to release superoxide and act as tumoristatic and tumoricidal effector cells. Superoxide generation was assayed by the reduction of ferricytochrome C. All three compounds failed to induce significant O/sub 2/- release, unless the cells were also treated with phorbol myristate acetate (PMA). MDP was most active in potentiating the PMA response. In the tumor growth inhibition assay, cytostatic activity was comparable for all three compounds and did not exceed 32 percent. The combination of subthreshold levels of these compounds and hybridoma-derived MAF acted synergistically to induce potent cytostatic activity. In the chromium release assay, LPS and poly I.poly C rendered macrophages cytolytic for P815 target cells at concentrations greater than or equal to 1 microgram/ml. In contrast, significant cytolysis was observed with MDP only at 100 micrograms/ml. Defining precisely the effect of various biological response modifiers on several parameters of macrophage function may facilitate use of these agents in cancer therapy.

  3. Total protein quantitation using the bicinchoninic acid assay and gradient elution moving boundary electrophoresis.

    PubMed

    Kralj, Jason G; Munson, Matthew S; Ross, David

    2014-07-01

    We investigated the ability of gradient elution moving boundary electrophoresis (GEMBE) with capacitively coupled contactless conductivity detection (C(4) D) to assay total protein concentration using the bicinchoninic acid (BCA) reaction. We chose this format because GEMBE-C(4) D behaves as a concentration dependent detection system, unlike optical methods that also rely on pathlength (due to Beer's law). This system tolerates proteins well compared with other capillary electrophoretic methods, allowing the capillary to be reused without coatings or additional hydroxide wash steps. The typical reaction protocol was modified by reducing the pH slightly from 11.25 to 9.4, which enabled elimination of tartrate from the reagents. We estimated that copper (I) could be detected at approximately 3.0 μmol/L, which agrees with similar GEMBE and CZE systems utilizing C(4) D. Under conditions similar to the BCA "micro method" assay, we determined the LOD for three common proteins (insulin, BSA, and bovine gamma globulin) and found that they agree well with the existing spectroscopic detection methods. Further, we investigated how long reaction times impact the LOD and found that the conversion was proportional to log(time). This indicated that little sensitivity is gained by extending the reaction past 1 h. Hence, GEMBE provides an alternative platform for total protein assays while maintaining the excellent sensitivity of the optical-based methods.

  4. Quantitative colorimetric assay for total protein applied to the red wine Pinot noir.

    PubMed

    Smith, Mark R; Penner, Mike H; Bennett, Samuel E; Bakalinsky, Alan T

    2011-07-13

    A standard method for assaying protein in red wine is currently lacking. The method described here is based on protein precipitation followed by dye binding quantification. Improvements over existing approaches include minimal sample processing prior to protein precipitation with cold trichloroacetic acid/acetone and quantification based on absorbance relative to a commercially available standard representative of proteins likely to be found in wine, the yeast mannoprotein invertase. The precipitation method shortened preparation time relative to currently published methods and the mannoprotein standard yielded values comparable to those obtained by micro-Kjeldahl analysis. The assay was used to measure protein in 48 Pinot noir wines from 6 to 32 years old. The protein content of these wines was found to range from 50 to 102 mg/L with a mean value of 70 mg/L. The availability of a simple and relatively rapid procedure for assaying protein provides a practical tool to quantify a wine component that has been overlooked in routine analyses of red wines.

  5. A versatile quantitation platform based on platinum nanoparticles incorporated volumetric bar-chart chip for highly sensitive assays.

    PubMed

    Wang, Yuzhen; Zhu, Guixian; Qi, Wenjin; Li, Ying; Song, Yujun

    2016-11-15

    Platinum nanoparticles incorporated volumetric bar-chart chip (PtNPs-V-Chip) is able to be used for point-of-care tests by providing quantitative and visualized readout without any assistance from instruments, data processing, or graphic plotting. To improve the sensitivity of PtNPs-V-Chip, hybridization chain reaction was employed in this quantitation platform for highly sensitive assays that can detect as low as 16 pM Ebola Virus DNA, 0.01ng/mL carcinoembryonic antigen (CEA), and the 10 HER2-expressing cancer cells. Based on this amplified strategy, a 100-fold decrease of detection limit was achieved for DNA by improving the number of platinum nanoparticle catalyst for the captured analyte. This quantitation platform can also distinguish single base mismatch of DNA hybridization and observe the concentration threshold of CEA. The new strategy lays the foundation for this quantitation platform to be applied in forensic analysis, biothreat detection, clinical diagnostics and drug screening.

  6. Apparatus and method for quantitative assay of generic transuranic wastes from nuclear reactors

    DOEpatents

    Caldwell, John T.; Kunz, Walter E.; Atencio, James D.

    1984-01-01

    A combination of passive and active neutron measurements which yields quantitative information about the isotopic composition of transuranic wastes from nuclear power or weapons material manufacture reactors is described. From the measurement of prompt and delayed neutron emission and the incidence of two coincidentally emitted neutrons from induced fission of fissile material in the sample, one can quantify .sup.233 U, .sup.235 U and .sup.239 Pu isotopes in waste samples. Passive coincidence counting, including neutron multiplicity measurement and determination of the overall passive neutron flux additionally enables the separate quantitative evaluation of spontaneous fission isotopes such as .sup.240 Pu, .sup.244 Cm and .sup.252 Cf, and the spontaneous alpha particle emitter .sup.241 Am. These seven isotopes are the most important constituents of wastes from nuclear power reactors and once the mass of each isotope present is determined by the apparatus and method of the instant invention, the overall alpha particle activity can be determined to better than 1 nCi/g from known radioactivity data. Therefore, in addition to the quantitative analysis of the waste sample useful for later reclamation purposes, the alpha particle activity can be determined to decide whether "permanent" low-level burial is appropriate for the waste sample.

  7. Apparatus and method for quantitative assay of generic transuranic wastes from nuclear reactors

    DOEpatents

    Caldwell, J.T.; Kunz, W.E.; Atencio, J.D.

    1982-03-31

    A combination of passive and active neutron measurements which yields quantitative information about the isotopic composition of transuranic wastes from nuclear power or weapons material manufacture reactors is described. From the measurement of prompt and delayed neutron emission and the incidence of two coincidentally emitted neutrons from induced fission of fissile material in the sample, one can quantify /sup 233/U, /sup 235/U and /sup 239/Pu isotopes in waste samples. Passive coincidence counting, including neutron multiplicity measurement and determination of the overall passive neutron flux additionally enables the separate quantitative evaluation of spontaneous fission isotopes such as /sup 240/Pu, /sup 244/Cm and /sup 252/Cf, and the spontaneous alpha particle emitter /sup 241/Am. These seven isotopes are the most important constituents of wastes from nuclear power reactors and once the mass of each isotope present is determined by the apparatus and method of the instant invention, the overall alpha particle activity can be determined to better than 1 nCi/g from known radioactivity data. Therefore, in addition to the quantitative analysis of the waste sample useful for later reclamation purposes, the alpha particle activity can be determined to decide whether permanent low-level burial is appropriate for the waste sample.

  8. Tracking the Invasion of Small Numbers of Cells in Paper-Based Assays with Quantitative PCR.

    PubMed

    Truong, Andrew S; Lochbaum, Christian A; Boyce, Matthew W; Lockett, Matthew R

    2015-11-17

    Paper-based scaffolds are an attractive material for culturing mammalian cells in a three-dimensional environment. There are a number of previously published studies, which utilize these scaffolds to generate models of aortic valves, cardiac ischemia and reperfusion, and solid tumors. These models have largely relied on fluorescence imaging and microscopy to quantify cells in the scaffolds. We present here a polymerase chain reaction (PCR)-based method, capable of quantifying multiple cell types in a single culture with the aid of DNA barcodes: unique sequences of DNA introduced to the genome of individual cells or cell types through lentiviral transduction. PCR-based methods are highly specific and are amenable to high-throughput and multiplexed analyses. To validate this method, we engineered two different breast cancer lines to constitutively express either a green or red fluorescent protein. These cells lines allowed us to directly compare the ability of fluorescence imaging (of the fluorescent proteins) and qPCR (of the unique DNA sequences of the fluorescent proteins) to quantify known numbers of cells in the paper based-scaffolds. We also used both methods to quantify the distribution of these breast cell lines in homotypic and heterotypic invasion assays. In the paper-based invasion assays, a single sheet of paper containing cells suspended in a hydrogel was sandwiched between sheets of paper containing only hydrogel. The stack was incubated, and the cells invaded the adjacent layers. The individual sheets of the invasion assay were then destacked and the number of cells in each layer quantified. Our results show both methods can accurately detect cell populations of greater than 500 cells. The qPCR method can repeatedly and accurately detect as few as 50 cells, allowing small populations of highly invasive cells to be detected and differentiated from other cell types.

  9. Effects of Ureaplasma diversum on bovine oviductal explants: quantitative measurement using a calmodulin assay.

    PubMed Central

    Smits, B; Rosendal, S; Ruhnke, H L; Plante, C; O'Brien, P J; Miller, R B

    1994-01-01

    Calmodulin (CAM) acts as an intracellular regulator of calcium, an important mediator of many cell processes. We used the CAM assay and electron microscopy to investigate the effects of Ureaplasma diversum on bovine oviductal explants obtained aseptically from slaughtered cows. A stock suspension of U. diversum (treated specimens) and sterile broth (controls) was added to replicates of cultured explants and incubated at 38 degrees C in an atmosphere of 5.5% CO2 for 48 hours. Explants were examined for ciliary activity, extracellular CAM loss, and for histological and ultrastructural changes. Explants and their culture media were examined for changes in CAM concentration. All experiments were replicated three times. In addition, U. diversum, medium and broth were assayed for CAM content. The concentrations of CAM in explants and media changed significantly (p < 0.05) in samples which were inoculated with U. diversum when compared to controls. The controls and infected specimens did not differ histologically or ultrastructurally, but U. diversum was seen to be closely associated with infected explant tissue. In view of this close affinity it is assumed the loss of CAM from the oviductal cells was causally related, but this was not proven. The failure to show cell membrane injury on light and electron microscopic examination was probably related to the short duration of the experiment and may only point out the sensitivity of the CAM assay in detecting early cell membrane injury. Compromise in characteristics of the medium to support both, the viability of oviductal cells and U. diversum limited the experimental time to 48 hours.(ABSTRACT TRUNCATED AT 250 WORDS) Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 5. Fig. 6. PMID:8004536

  10. Rapid and quantitative detection of 4(5)-methylimidazole in caramel colours: A novel fluorescent-based immunochromatographic assay.

    PubMed

    Wu, Xinlan; Huang, Minghui; Yu, Shujuan; Kong, Fansheng

    2016-01-01

    A novel fluorescence-based immunochromatographic assay (ICA) for rapid detecting 4(5)-methylimidazole (4-MI) is presented in this study. In our work, the conjugates of fluorescent microspheres (FMs) and 4-MI monoclonal antibody were used as probe for ICA. Under optimal conditions, a standard curve of ICA-based detection of 4-MI was developed, linear detection ranged from 0.50 to 32.0 mg/L. The cross-reactivities were observed less than 3.93% by detecting 6 selected structural analogues of 4-MI. The recoveries of 4-MI in caramels detection were ranged from 82.85% to 102.31%, with the coefficient of variation (n = 3) below 9.06%. Quantitative comparison of the established fluorescence-based ICA with high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) and indirect competitive enzyme-linked immunosorbent assay (ic-ELISA) analysis of real caramel colour samples indicated a good correlation among the methods. Therefore, our developed fluorescence-based ICA method shows great potential for simple, rapid, sensitive, and cost-effective quantitative detection of 4-MI in food safety control.

  11. High-Throughput Electrophoretic Mobility Shift Assays for Quantitative Analysis of Molecular Binding Reactions

    PubMed Central

    2015-01-01

    We describe a platform for high-throughput electrophoretic mobility shift assays (EMSAs) for identification and characterization of molecular binding reactions. A photopatterned free-standing polyacrylamide gel array comprised of 8 mm-scale polyacrylamide gel strips acts as a chassis for 96 concurrent EMSAs. The high-throughput EMSAs was employed to assess binding of the Vc2 cyclic-di-GMP riboswitch to its ligand. In optimizing the riboswitch EMSAs on the free-standing polyacrylamide gel array, three design considerations were made: minimizing sample injection dispersion, mitigating evaporation from the open free-standing polyacrylamide gel structures during electrophoresis, and controlling unit-to-unit variation across the large-format free-standing polyacrylamide gel array. Optimized electrophoretic mobility shift conditions allowed for 10% difference in mobility shift baseline resolution within 3 min. The powerful 96-plex EMSAs increased the throughput to ∼10 data/min, notably more efficient than either conventional slab EMSAs (∼0.01 data/min) or even microchannel based microfluidic EMSAs (∼0.3 data/min). The free-standing polyacrylamide gel EMSAs yielded reliable quantification of molecular binding and associated mobility shifts for a riboswitch–ligand interaction, thus demonstrating a screening assay platform suitable for riboswitches and potentially a wide range of RNA and other macromolecular targets. PMID:25233437

  12. Immunoradiometric assay for quantitation of Dirofilaria immitis antigen in dogs with heartworm infections

    SciTech Connect

    Hamilton, R.G.; Scott, A.L.

    1984-10-01

    An immunoradiometric assay (IRMA) was developed, optimized, and validated for detection of parasite-specific antigen in sera from hosts with filarial infections, using Dirofilaria immitis in dogs as a model. The precision, reproducibility, and parallelism of the IRMA were examined, using precision profile analysis. The IRMA had acceptable precision and reproducibility (less than 15% intra-assay coefficient of variation (CV)) over a working range of 10 to 2000 ng of D immitis-antigen (AG)/ml. The IRMA parallelism (agreement between dilutions) was acceptable (less than 10% interdilutional CV) with laboratory-spiked D immitis AG sera containing no D immitis-antibody (AB). However, it was not acceptable (greater than 20% interdilutional CV) for analysis of sera from naturally infected dogs containing D immitis AB, probably due to dissociation of immune-complexed AG with increasing serum dilution. Nonparallelism limited the accuracy of binding data interpolation from the standard curve. Specificity of the IRMA was enhanced by preabsorption of the radiolabeled detection antibody with Toxocara canis AG before use. Varying amounts of D immitis AG (22 to 1000 ng/ml) were detected in 42% (20/48) of microfilaremic dogs. The presence of AG-specific AB at concentrations as low as 1 microgram/ml reduced the ability of the IRMA to detect D immitis AG. Factors that influence the accuracy and sensitivity of immunoassays for circulating filarial antigens are discussed.

  13. A fluorescent assay to quantitatively measure in vitro acyl CoA:diacylglycerol acyltransferase activity.

    PubMed

    McFie, Pamela J; Stone, Scot J

    2011-09-01

    Triacylglycerols (TG) are the major storage form of energy in eukaryotic organisms and are synthesized primarily by acyl CoA:1,2-diacylglycerol acyltransferase (DGAT) enzymes. In vitro DGAT activity has previously been quantified by measuring the incorporation of either radiolabeled fatty acyl CoA or diacylglycerol (DG) into TG. We developed a modified acyltransferase assay using a fluorescent fatty acyl CoA substrate to accurately quantify in vitro DGAT activity. In the modified assay, radioactive fatty acyl CoA is replaced with fluorescent NBD-palmitoyl CoA, which is used as a substrate by DGAT with DG to produce NBD-TG. After extraction with organic solvents and separation by thin layer chromatography, NBD-TG formation can be detected and accurately quantified using a fluorescent imaging system. We demonstrate that this method can be adapted to detect other acyltransferase activities. Because NBD-palmitoyl CoA is commercially available at a much lower cost compared with radioactive acyl CoA substrates, it is a more economical alternative to radioactive tracers. In addition, the exposure of laboratory personnel to radioactivity is greatly reduced.

  14. A novel quantitative kinase assay using bacterial surface display and flow cytometry.

    PubMed

    Henriques, Sónia Troeira; Thorstholm, Louise; Huang, Yen-Hua; Getz, Jennifer A; Daugherty, Patrick S; Craik, David J

    2013-01-01

    The inhibition of tyrosine kinases is a successful approach for the treatment of cancers and the discovery of kinase inhibitor drugs is the focus of numerous academic and pharmaceutical laboratories. With this goal in mind, several strategies have been developed to measure kinase activity and to screen novel tyrosine kinase inhibitors. Nevertheless, a general non-radioactive and inexpensive approach, easy to implement and adapt to a range of applications, is still missing. Herein, using Bcr-Abl tyrosine kinase, an oncogenic target and a model protein for cancer studies, we describe a novel cost-effective high-throughput screening kinase assay. In this approach, named the BacKin assay, substrates displayed on a Bacterial cell surface are incubated with Kinase and their phosphorylation is examined and quantified by flow cytometry. This approach has several advantages over existing approaches, as using bacteria (i.e. Escherichia coli) to display peptide substrates provides a self renewing solid support that does not require laborious chemical strategies. Here we show that the BacKin approach can be used for kinetic and mechanistic studies, as well as a platform to characterize and identify small-molecule or peptide-based kinase inhibitors with potential applications in drug development.

  15. Development and Validation of a Highly Accurate Quantitative Real-Time PCR Assay for Diagnosis of Bacterial Vaginosis.

    PubMed

    Hilbert, David W; Smith, William L; Chadwick, Sean G; Toner, Geoffrey; Mordechai, Eli; Adelson, Martin E; Aguin, Tina J; Sobel, Jack D; Gygax, Scott E

    2016-04-01

    Bacterial vaginosis (BV) is the most common gynecological infection in the United States. Diagnosis based on Amsel's criteria can be challenging and can be aided by laboratory-based testing. A standard method for diagnosis in research studies is enumeration of bacterial morphotypes of a Gram-stained vaginal smear (i.e., Nugent scoring). However, this technique is subjective, requires specialized training, and is not widely available. Therefore, a highly accurate molecular assay for the diagnosis of BV would be of great utility. We analyzed 385 vaginal specimens collected prospectively from subjects who were evaluated for BV by clinical signs and Nugent scoring. We analyzed quantitative real-time PCR (qPCR) assays on DNA extracted from these specimens to quantify nine organisms associated with vaginal health or disease:Gardnerella vaginalis,Atopobium vaginae, BV-associated bacteria 2 (BVAB2, an uncultured member of the orderClostridiales),Megasphaeraphylotype 1 or 2,Lactobacillus iners,Lactobacillus crispatus,Lactobacillus gasseri, andLactobacillus jensenii We generated a logistic regression model that identifiedG. vaginalis,A. vaginae, andMegasphaeraphylotypes 1 and 2 as the organisms for which quantification provided the most accurate diagnosis of symptomatic BV, as defined by Amsel's criteria and Nugent scoring, with 92% sensitivity, 95% specificity, 94% positive predictive value, and 94% negative predictive value. The inclusion ofLactobacillusspp. did not contribute sufficiently to the quantitative model for symptomatic BV detection. This molecular assay is a highly accurate laboratory tool to assist in the diagnosis of symptomatic BV.

  16. Quantitative analysis of energy metabolic pathways in MCF-7 breast cancer cells by selected reaction monitoring assay.

    PubMed

    Drabovich, Andrei P; Pavlou, Maria P; Dimitromanolakis, Apostolos; Diamandis, Eleftherios P

    2012-08-01

    To investigate the quantitative response of energy metabolic pathways in human MCF-7 breast cancer cells to hypoxia, glucose deprivation, and estradiol stimulation, we developed a targeted proteomics assay for accurate quantification of protein expression in glycolysis/gluconeogenesis, TCA cycle, and pentose phosphate pathways. Cell growth conditions were selected to roughly mimic the exposure of cells in the cancer tissue to the intermittent hypoxia, glucose deprivation, and hormonal stimulation. Targeted proteomics assay allowed for reproducible quantification of 76 proteins in four different growth conditions after 24 and 48 h of perturbation. Differential expression of a number of control and metabolic pathway proteins in response to the change of growth conditions was found. Elevated expression of the majority of glycolytic enzymes was observed in hypoxia. Cancer cells, as opposed to near-normal MCF-10A cells, exhibited significantly increased expression of key energy metabolic pathway enzymes (FBP1, IDH2, and G6PD) that are known to redirect cellular metabolism and increase carbon flux through the pentose phosphate pathway. Our quantitative proteomic protocol is based on a mass spectrometry-compatible acid-labile detergent and is described in detail. Optimized parameters of a multiplex selected reaction monitoring (SRM) assay for 76 proteins, 134 proteotypic peptides, and 401 transitions are included and can be downloaded and used with any SRM-compatible mass spectrometer. The presented workflow is an integrated tool for hypothesis-driven studies of mammalian cells as well as functional studies of proteins, and can greatly complement experimental methods in systems biology, metabolic engineering, and metabolic transformation of cancer cells.

  17. Quantitative Serology Assays for Determination of Antibody Responses to Ebola Virus Glycoprotein and Matrix Protein in Nonhuman Primates and Humans

    PubMed Central

    Vu, Hong; Shulenin, Sergey; Grolla, Allen; Audet, Jonathan; He, Shihua; Kobinger, Gary; Unfer, Robert C.; Warfield, Kelly L.; Aman, M. Javad; Holtsberg, Frederick W.

    2016-01-01

    The West Africa Ebola virus disease (EVD) outbreak has reached unprecedented magnitude and caused worldwide concerns for the spread of this deadly virus. Recent findings in nonhuman primates (NHPs) demonstrate that antibodies can be protective against EVD. However, the role of antibody response in vaccine-mediated protection is not fully understood. To address these questions quantitative serology assays are needed for measurement of the antibody response to key Ebola virus (EBOV) proteins. Serology enzyme-linked immunosorbent assays (ELISA’s), using a reference detection antibody, were developed in order to standardize the quantitation of antibody levels in vaccinated NHPs or in humans exposed to EBOV or immunized with an EBOV vaccine. Critical reagents were generated to support the development of the serology ELISAs. Recombinant EBOV matrix protein (VP40) was expressed in E. coli and purified. Two variants of the glycoprotein (GP), the ectodomain lacking the transmembrane domain (GPΔTM), and an engineered GP lacking the mucin-like domain (GPΔmuc) were expressed and purified from mammalian cell systems. Using these proteins, three ELISA methods were developed and optimized for reproducibility and robustness, including stability testing of critical reagents. The assay was used to determine the antibody response against VP40, GPΔTM, and GPΔmuc in a NHP vaccine study using EBOV virus-like particles (VLP) vaccine expressing GP, VP40 and the nucleoprotein. Additionally, these ELISAs were used to successfully detect antibody responses to VP40, GPΔTM and GPΔmuc in human sera from EBOV infected individuals. PMID:26681387

  18. Quantitative serology assays for determination of antibody responses to Ebola virus glycoprotein and matrix protein in nonhuman primates and humans.

    PubMed

    Vu, Hong; Shulenin, Sergey; Grolla, Allen; Audet, Jonathan; He, Shihua; Kobinger, Gary; Unfer, Robert C; Warfield, Kelly L; Aman, M Javad; Holtsberg, Frederick W

    2016-02-01

    The West Africa Ebola virus disease (EVD) outbreak has reached unprecedented magnitude and caused worldwide concerns for the spread of this deadly virus. Recent findings in nonhuman primates (NHPs) demonstrate that antibodies can be protective against EVD. However, the role of antibody response in vaccine-mediated protection is not fully understood. To address these questions quantitative serology assays are needed for measurement of the antibody response to key Ebola virus (EBOV) proteins. Serology enzyme-linked immunosorbent assays (ELISA's), using a reference detection antibody, were developed in order to standardize the quantitation of antibody levels in vaccinated NHPs or in humans exposed to EBOV or immunized with an EBOV vaccine. Critical reagents were generated to support the development of the serology ELISAs. Recombinant EBOV matrix protein (VP40) was expressed in Escherichia coli and purified. Two variants of the glycoprotein (GP), the ectodomain lacking the transmembrane domain (GPΔTM), and an engineered GP lacking the mucin-like domain (GPΔmuc) were expressed and purified from mammalian cell systems. Using these proteins, three ELISA methods were developed and optimized for reproducibility and robustness, including stability testing of critical reagents. The assay was used to determine the antibody response against VP40, GPΔTM, and GPΔmuc in a NHP vaccine study using EBOV virus-like particles (VLP) vaccine expressing GP, VP40 and the nucleoprotein. Additionally, these ELISAs were used to successfully detect antibody responses to VP40, GPΔTM and GPΔmuc in human sera from EBOV infected individuals.

  19. Quantitative determination of recombinant bovine somatotropin in commercial shrimp feed using a competitive enzyme-linked immunosorbent assay.

    PubMed

    Munro, James L; Boon, Virginia A

    2010-02-10

    Recombinant bovine somatotropin (rbST), also known as growth hormone, is used to enhance production and development of animals within the agriculture and aquaculture industries. Its use is controversial because of its potential effects on human and animal health. To screen for rbST in shrimp feed, a competitive enzyme-linked immunosorbent assay (ELISA) with an inhibition step was developed. Sample and rbST antibody (rabbit anti-rbST) were incubated at room temperature for 30 min. Subsequently, this competitive reaction was transferred to a microplate coated with rbST, using goat antirabbit IgG linked with horseradish peroxidise as the secondary antibody. Substrates for peroxidise were added, and the absorbance at 410 nm was determined. The applicability of the method was assessed using rbST extracted from "spiked" shrimp feed samples. The assay was reproducible and linear with R(2) values greater than 0.98 over the standard curve range of 20-500 microg/g. The intra- and interday precisions expressed as relative standard deviations were 3.4 and 5.3%, respectively. The mean recovery from 15 spiked feed samples was 105%. This assay will be a valuable tool for quantitative detection of rbST by both governments and commercial companies and can be modified for other types of feed.

  20. A quantitative reverse transcriptase polymerase chain reaction-based assay to detect carcinoma cells in peripheral blood.

    PubMed Central

    Helfrich, W.; ten Poele, R.; Meersma, G. J.; Mulder, N. H.; de Vries, E. G.; de Leij, L.; Smit, E. F.

    1997-01-01

    The presence of tumour cells in the circulation may predict disease recurrence and metastasis. To improve on existing methods of cytological or immunocytological detection, we have developed a sensitive and quantitative technique for the detection of carcinoma cells in blood, using the reverse transcriptase polymerase chain reaction (RT-PCR) identifying transcripts of the pancarcinoma-associated tumour marker EGP-2 (KSA or 17-1A antigen). The amount of EGP2 mRNA was quantified using an internal recombinant competitor RNA standard with known concentration and which is both reversely transcribed and co-amplified in the same reaction, allowing for a reliable assessment of the initial amount of EGP2 mRNA in the sample. Calibration studies, seeding blood with MCF-7 breast carcinoma cells, showed that the assay can detect ten tumour cells among 1.0 x 10(6) leucocytes. The PCR assay revealed that normal bone marrow expresses low levels of EGP2 mRNA, although immunocytochemistry with the anti-EGP2 MAb MOC31 could not identify any positively stained cell. Analyses using this RT-PCR assay may prove to have applications to the assessment of circulating tumour cells in clinical samples. Images Figure 3 Figure 4 PMID:9218728

  1. Quantitative real-time PCR (qPCR) assay for human-dog-cat species identification and nuclear DNA quantification.

    PubMed

    Kanthaswamy, S; Premasuthan, A; Ng, J; Satkoski, J; Goyal, V

    2012-03-01

    In the United States, human forensic evidence collected from crime scenes is usually comingled with biomaterial of canine and feline origins. Knowledge of the concentration of nuclear DNA extracted from a crime scene biological sample and the species from which the sample originated is essential for DNA profiling. The ability to accurately detect and quantify target DNA in mixed-species samples is crucial when target DNA may be overwhelmed by non-target DNA. We have designed and evaluated a species-specific (human, dog and cat) nuclear DNA identification assay based on the TaqMan(®) quantitative real-time PCR (qPCR) technology that can simultaneously detect and measure minute quantities of DNA specific to either humans, dogs and/or cats. The fluorogenic triplex assay employs primers and hydrolysis probes that target the human TH01 locus as well as the dog and cat Melanocortin 1 Receptor (MC1R) sequences in a species-specific manner. We also demonstrate that the assay is a highly sensitive, reliable and robust method for identifying and quantifying mixed-species templates of human-dog-cat origin with as little as 0.4 pg of human and cat nuclear DNA, respectively, and 4.0 pg of dog nuclear DNA.

  2. Development and validation of a real-time quantitative PCR assay to detect Xanthomonas axonopodis pv. allii from onion seed.

    PubMed

    Robène, Isabelle; Perret, Marion; Jouen, Emmanuel; Escalon, Aline; Maillot, Marie-Véronique; Chabirand, Aude; Moreau, Aurélie; Laurent, Annie; Chiroleu, Frédéric; Pruvost, Olivier

    2015-07-01

    Bacterial blight of onion is an emerging disease threatening world onion production. The causal agent Xanthomonas axonopodis pv. allii is seed transmitted and a reliable and sensitive tool is needed to monitor seed exchanges. A triplex quantitative real-time PCR assay was developed targeting two X. axonopodis pv. allii-specific markers and an internal control chosen in 5.8S rRNA gene from Alliaceae. Amplification of at least one marker indicates the presence of the bacterium in seed extracts. This real-time PCR assay detected all the 79 X. axonopodis pv. allii strains tested and excluded 85.2% of the 135 non-target strains and particularly all 39 saprophytic and pathogenic bacteria associated with onion. Cross-reactions were mainly obtained for strains assigned to nine phylogenetically related X. axonopodis pathovars. The cycle cut-off was estimated statistically at 36.3 considering a risk of false positive of 1%. The limit of detection obtained in at least 95% of the time (LOD 95%) was 5×10(3) CFU/g (colony forming unit/g). The sensitivity threshold was found to be 1 infected seed in 32,790 seeds. This real-time PCR assay should be useful for preventing the long-distance spread of X. axonopodis pv. allii via contaminated seed lots and determining the epidemiology of the bacterium.

  3. Development of a Chip Assay and Quantitative PCR for Detecting Microcystin Synthetase E Gene Expression ▿ †

    PubMed Central

    Sipari, Hanna; Rantala-Ylinen, Anne; Jokela, Jouni; Oksanen, Ilona; Sivonen, Kaarina

    2010-01-01

    The chip and quantitative real-time PCR (qPCR) assays were optimized to study the expression of microcystin biosynthesis genes (mcy) with RNA samples extracted from cyanobacterial strains and environmental water samples. Both microcystin-producing Anabaena and Microcystis were identified in Lake Tuusulanjärvi samples. Microcystis transcribed the mcyE genes throughout the summer of 2006, while expression by Anabaena became evident later in August and September. Active mcyE gene expression was also detectable when microcystin concentrations were very low. Detection of Anabaena mcyE transcripts by qPCR, as well as certain cyanobacterial 16S rRNAs with the chip assay, showed slightly reduced sensitivity compared with the DNA analyses. In contrast, even groups undetectable or present in low quantities as determined by microscopy could be identified with the chip assay from DNA samples. The methods introduced add to the previously scarce repertoire of applications for mcy expression profiling in environmental samples and enable in situ studies of regulation of microcystin synthesis in response to environmental factors. PMID:20400558

  4. Quantitative High Throughput Screening Using a Live Cell cAMP Assay Identifies Small Molecule Agonists of the TSH Receptor

    PubMed Central

    Titus, Steve; Neumann, Susanne; Zheng, Wei; Southall, Noel; Michael, Sam; Klumpp, Carleen; Yasgar, Adam; Shinn, Paul; Thomas, Craig J.; Inglese, Jim; Gershengorn, Marvin C.; Austin, Christopher P.

    2009-01-01

    The thyroid stimulating hormone receptor (TSHR) belongs to the glycoprotein hormone receptor subfamily of seven-transmembrane spanning receptors. TSHR is expressed in thyroid follicular cells and is activated by TSH, which regulates growth and function of these cells. Recombinant TSH is used in diagnostic screens for thyroid cancer, especially in patients after thyroid cancer surgery. Currently, no selective small molecule agonist of the TSHR is available. To screen for novel TSHR agonists, we miniaturized a cell-based cAMP assay into 1536-well plate format. This assay uses a HEK293 cell line stably expressing the TSHR and a cyclic nucleotide gated ion channel (CNG), which functions as a biosensor. From a quantitative high-throughput screen of 73,180 compounds in parallel with a parental cell line (without the TSHR), 276 primary active compounds were identified. The activities of the selected active compounds were further confirmed in an orthogonal HTRF cAMP-based assay. 49 compounds in several structural classes have been confirmed as small molecule TSHR agonists that will serve as starting compounds for chemical optimization and studies of thyroid physiology in health and disease. PMID:18216391

  5. A Novel Qualitative and Quantitative Biofilm Assay Based on 3D Soft Tissue.

    PubMed

    Hakonen, Bodil; Lönnberg, Linnea K; Larkö, Eva; Blom, Kristina

    2014-01-01

    The lack of predictable in vitro methods to analyze antimicrobial activity could play a role in the development of resistance to antibiotics. Current used methods analyze planktonic cells but for the method to be clinically relevant, biofilm in in vivo like conditions ought to be studied. Hence, our group has developed a qualitative and quantitative method with in vivo like 3D tissue for prediction of antimicrobial activity in reality. Devices (wound dressings) were applied on top of Pseudomonas aeruginosa inoculated Muller-Hinton (MH) agar or 3D synthetic soft tissues (SST) and incubated for 24 hours. The antibacterial activity was then analyzed visually and by viable counts. On MH agar two out of three silver containing devices showed zone of inhibitions (ZOI) and on SST, ZOI were detected for all three. Corroborating results were found upon evaluating the bacterial load in SST and shown to be silver concentration dependent. In conclusion, a novel method was developed combining visual rapid screening and quantitative evaluation of the antimicrobial activity in both tissue and devices. It uses tissue allowing biofilm formation thus mimicking reality closely. These conditions are essential in order to predict antimicrobial activity of medical devices in the task to prevent device related infections.

  6. Quantitative microplate assay for studying mesenchymal stromal cell-induced neuropoiesis.

    PubMed

    Aizman, Irina; McGrogan, Michael; Case, Casey C

    2013-03-01

    Transplanting mesenchymal stromal cells (MSCs) or their derivatives in a neurodegenerative environment is believed to be beneficial because of the trophic support, migratory guidance, and neurogenic stimuli they provide. There is a growing need for in vitro models of mesenchymal-neural cell interactions to enable identification of mediators of the MSC activity and quantitative assessment of neuropoietic potency of MSC preparations. Here, we characterize a microplate-format coculture system in which primary embryonic rat cortex cells are directly cocultured with human MSCs on cell-derived extracellular matrix (ECM) in the absence of exogenous growth factors. In this system, expression levels of the rat neural stem/early progenitor marker nestin, as well as neuronal and astrocytic markers, directly depended on MSC dose, whereas an oligodendrogenic marker exhibited a biphasic MSC-dose response, as measured using species-specific quantitative reverse transcription-polymerase chain reaction in total cell lysates and confirmed using immunostaining. Both neural cell proliferation and differentiation contributed to the MSC-mediated neuropoiesis. ECM's heparan sulfate proteoglycans were essential for the growth of the nestin-positive cell population. Neutralization studies showed that MSC-derived fibroblast growth factor 2 was a major and diffusible inducer of rat nestin, whereas MSC-derived bone morphogenetic proteins (BMPs), particularly, BMP4, were astrogenesis mediators, predominantly acting in a coculture setting. This system enables analysis of multifactorial MSC-neural cell interactions and can be used for elucidating the neuropoietic potency of MSCs and their derivative preparations.

  7. Quantification Bias Caused by Plasmid DNA Conformation in Quantitative Real-Time PCR Assay

    PubMed Central

    Lin, Chih-Hui; Chen, Yu-Chieh; Pan, Tzu-Ming

    2011-01-01

    Quantitative real-time PCR (qPCR) is the gold standard for the quantification of specific nucleic acid sequences. However, a serious concern has been revealed in a recent report: supercoiled plasmid standards cause significant over-estimation in qPCR quantification. In this study, we investigated the effect of plasmid DNA conformation on the quantification of DNA and the efficiency of qPCR. Our results suggest that plasmid DNA conformation has significant impact on the accuracy of absolute quantification by qPCR. DNA standard curves shifted significantly among plasmid standards with different DNA conformations. Moreover, the choice of DNA measurement method and plasmid DNA conformation may also contribute to the measurement error of DNA standard curves. Due to the multiple effects of plasmid DNA conformation on the accuracy of qPCR, efforts should be made to assure the highest consistency of plasmid standards for qPCR. Thus, we suggest that the conformation, preparation, quantification, purification, handling, and storage of standard plasmid DNA should be described and defined in the Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) to assure the reproducibility and accuracy of qPCR absolute quantification. PMID:22194997

  8. A Quantitative Fluorescence-Based Assay for Assessing LIM Domain-Peptide Interactions.

    PubMed

    Robertson, Neil O; Shah, Manan; Matthews, Jacqueline M

    2016-10-10

    We have developed Förster resonance energy transfer (FRET)-based experiments for measuring the binding affinity, off-rates, and inferred on-rates for interactions between a family of transcriptional regulators and their intrinsically disordered binding partners. It was difficult to evaluate these interactions previously, as the transcriptional regulators are obligate binding proteins that aggregate in the absence of a binding partner. The assays rely on fusion constructs where binding domains are linked by a flexible tether containing a specific protease site, with fluorescent proteins at either end that display FRET when the complex is formed. Loss of FRET is monitored after cutting the tether followed by dilution or competition with a non-fluorescent peptide. These methods allowed a wide range of binding affinities (10(-9) -10(-5)  m) to be determined. Our data indicate that interactions of closely related proteins can have surprisingly different binding properties.

  9. Optimization in multidimensional gas chromatography applying quantitative analysis via a stable isotope dilution assay.

    PubMed

    Schmarr, Hans-Georg; Slabizki, Petra; Legrum, Charlotte

    2013-08-01

    Trace level analyses in complex matrices benefit from heart-cut multidimensional gas chromatographic (MDGC) separations and quantification via a stable isotope dilution assay. Minimization of the potential transfer of co-eluting matrix compounds from the first dimension ((1)D) separation into the second dimension separation requests narrow cut-windows. Knowledge about the nature of the isotope effect in the separation of labeled and unlabeled compounds allows choosing conditions resulting in at best a co-elution situation in the (1)D separation. Since the isotope effect strongly depends on the interactions of the analytes with the stationary phase, an appropriate separation column polarity is mandatory for an isotopic co-elution. With 3-alkyl-2-methoxypyrazines and an ionic liquid stationary phase as an example, optimization of the MDGC method is demonstrated and critical aspects of narrow cut-window definition are discussed.

  10. Comparison between Culture and a Multiplex Quantitative Real-Time Polymerase Chain Reaction Assay Detecting Ureaplasma urealyticum and U. parvum

    PubMed Central

    Frølund, Maria; Björnelius, Eva; Lidbrink, Peter; Ahrens, Peter; Jensen, Jørgen Skov

    2014-01-01

    A novel multiplex quantitative real-time polymerase chain reaction (qPCR) for simultaneous detection of U. urealyticum and U. parvum was developed and compared with quantitative culture in Shepard's 10 C medium for ureaplasmas in urethral swabs from 129 men and 66 women, and cervical swabs from 61 women. Using culture as the gold standard, the sensitivity of the qPCR was 96% and 95% for female urethral and cervical swabs, respectively. In male urethral swabs the sensitivity was 89%. The corresponding specificities were 100%, 87% and 99%. The qPCR showed a linear increasing DNA copy number with increasing colour-changing units. Although slightly less sensitive than culture, this multiplex qPCR assay detecting U. urealyticum and U. parvum constitutes a simple and fast alternative to the traditional methods for identification of ureaplasmas and allows simultaneous species differentiation and quantitation in clinical samples. Furthermore, specimens overgrown by other bacteria using the culture method can be evaluated in the qPCR. PMID:25047036

  11. Quantitative molecular diagnostic assays of grain washes for Claviceps purpurea are correlated with visual determinations of ergot contamination

    PubMed Central

    Comte, Alexia; Gräfenhan, Tom; Links, Matthew G.; Hemmingsen, Sean M.

    2017-01-01

    We examined the epiphytic microbiome of cereal grain using the universal barcode chaperonin-60 (cpn60). Microbial community profiling of seed washes containing DNA extracts prepared from field-grown cereal grain detected sequences from a fungus identified only to Class Sordariomycetes. To identify the fungal sequence and to improve the reference database, we determined cpn60 sequences from field-collected and reference strains of the ergot fungus, Claviceps purpurea. These data allowed us to identify this fungal sequence as deriving from C. purpurea, and suggested that C. purpurea DNA is readily detectable on agricultural commodities, including those for which ergot was not identified as a grading factor. To get a sense of the prevalence and level of C. purpurea DNA in cereal grains, we developed a quantitative PCR assay based on the fungal internal transcribed spacer (ITS) and applied it to 137 samples from the 2014 crop year. The amount of Claviceps DNA quantified correlated strongly with the proportion of ergot sclerotia identified in each grain lot, although there was evidence that non-target organisms were responsible for some false positives with the ITS-based assay. We therefore developed a cpn60-targeted loop-mediated isothermal amplification assay and applied it to the same grain wash samples. The time to positive displayed a significant, inverse correlation to ergot levels determined by visual ratings. These results indicate that both laboratory-based and field-adaptable molecular diagnostic assays can be used to detect and quantify pathogen load in bulk commodities using cereal grain washes. PMID:28257512

  12. A Quantitative Flurometric Assay for the Measurement of Antibody to Pasteurella haemolytica in Cattle

    PubMed Central

    Confer, A.W.; Fox, J.C.; Newman, P.R.; Lawson, G.W.; Corstvet, R.E.

    1983-01-01

    A rapid, simple fluorometric method is described for measuring antibody to Pasteurella haemolytica in sera of cattle. Various antigen preparations were compared for the test including live, formalin-killed and phenol-killed P. haemolytica. A preparation composed of formalin-killed organisms from a 22 hour culture gave consistent results and was used in the studies. The test was reproduciable with percent coefficients of variation for fluorescent signal unit values on ten or more replicate samples ranging from 5.7 to 28.0. Sera from calves vaccinated by aerosol exposure to live P. haemolytica had up to a five-fold increase in antibody titer as measured by the flurometric method test during a 21 day period. Fluorometric method titers were comparable to those obtained by the indirect bacterial agglutination test. There was no seroconversion to P. haemolytica in calves vaccinated by aerosol exposure of P. multocida. The major advantages of the fluorometric method test over conventional methods are that the assay does not require serial dilutions of serum samples and thus limits time and effort to determine antibody titers. PMID:6339016

  13. Re-examination of chromogenic quantitative assays for determining flavonoid content.

    PubMed

    Ho, Yu-Chi; Yu, Hui-Tzu; Su, Nan-Wei

    2012-03-14

    Flavonoids in plants have gained worldwide attention because of their benefits for human health. This study compared three analytical procedures commonly used for determining flavonoid content in plant samples in terms of chromogenic relationships and the reaction products of different flavonoid structures by means of using flavonoid standards with flavone, flavonol, flavanone, flavanol, and isoflavone and analytes such as phenolic acids commonly found in plant extracts. Procedure A produced a stable color reaction between 3-hydroxy-4-keto-flavonoids (flavonols) and 5-hydroxyflavones and was highly sensitive. Procedure B produced color reactions among most of the flavonoids, but the reaction products had different colors and faded over time. Procedure B also produced a color reaction with caffeic and chlorogenic acid. Procedure C was the most sensitive. It produced a color reaction and, like procedure A, could be used to quantify flavonols and 5-hydroxyflavones, but also showed color reaction toward caffeic and chlorogenic acid. On the basis of the results, the current three procedures are not satisfactory for determining all of the types of flavonoid. Two issues needed to be clarified before a promising determination of flavonoid content could be performed with chromogenic assays. The first is a survey of the literature to screen the possible predominant component of flavonoid in analytes. The other is guided by the predominant flavonoid; a promising calibration curve for flavonoid detection can be established on the basis of the selection of an appropriate method and a chemical standard with an equivalent dose response to the predominant flavonoid.

  14. Statistical inference for the within-device precision of quantitative measurements in assay validation.

    PubMed

    Liu, Jen-Pei; Lu, Li-Tien; Liao, C T

    2009-09-01

    Intermediate precision is one of the most important characteristics for evaluation of precision in assay validation. The current methods for evaluation of within-device precision recommended by the Clinical Laboratory Standard Institute (CLSI) guideline EP5-A2 are based on the point estimator. On the other hand, in addition to point estimators, confidence intervals can provide a range for the within-device precision with a probability statement. Therefore, we suggest a confidence interval approach for assessment of the within-device precision. Furthermore, under the two-stage nested random-effects model recommended by the approved CLSI guideline EP5-A2, in addition to the current Satterthwaite's approximation and the modified large sample (MLS) methods, we apply the technique of generalized pivotal quantities (GPQ) to derive the confidence interval for the within-device precision. The data from the approved CLSI guideline EP5-A2 illustrate the applications of the confidence interval approach and comparison of results between the three methods. Results of a simulation study on the coverage probability and expected length of the three methods are reported. The proposed method of the GPQ-based confidence intervals is also extended to consider the between-laboratories variation for precision assessment.

  15. Rapid agarose gel electrophoretic mobility shift assay for quantitating protein: RNA interactions.

    PubMed

    Ream, Jennifer A; Lewis, L Kevin; Lewis, Karen A

    2016-10-15

    Interactions between proteins and nucleic acids are frequently analyzed using electrophoretic mobility shift assays (EMSAs). This technique separates bound protein:nucleic acid complexes from free nucleic acids by electrophoresis, most commonly using polyacrylamide gels. The current study utilizes recent advances in agarose gel electrophoresis technology to develop a new EMSA protocol that is simpler and faster than traditional polyacrylamide methods. Agarose gels are normally run at low voltages (∼10 V/cm) to minimize heating and gel artifacts. In this study we demonstrate that EMSAs performed using agarose gels can be run at high voltages (≥20 V/cm) with 0.5 × TB (Tris-borate) buffer, allowing for short run times while simultaneously yielding high band resolution. Several parameters affecting band and image quality were optimized for the procedure, including gel thickness, agarose percentage, and applied voltage. Association of the siRNA-binding protein p19 with its target RNA was investigated using the new system. The agarose gel and conventional polyacrylamide gel methods generated similar apparent binding constants in side-by-side experiments. A particular advantage of the new approach described here is that the short run times (5-10 min) reduce opportunities for dissociation of bound complexes, an important concern in non-equilibrium nucleic acid binding experiments.

  16. Assessment of Legionella pneumophila in recreational spring water with quantitative PCR (Taqman) assay.

    PubMed

    Shen, Shu-Min; Chou, Ming-Yuan; Hsu, Bing-Mu; Ji, Wen-Tsai; Hsu, Tsui-Kang; Tsai, Hsiu-Feng; Huang, Yu-Li; Chiu, Yi-Chou; Kao, Erl-Shyh; Kao, Po-Min; Fan, Cheng-Wei

    2015-07-01

    Legionella spp. are common in various natural and man-made aquatic environments. Recreational hot spring is frequently reported as an infection hotspot because of various factors such as temperature and humidity. Although polymerase chain reaction (PCR) had been used for detecting Legionella, several inhibitors such as humic substances, calcium, and melanin in the recreational spring water may interfere with the reaction thus resulting in risk underestimation. The purpose of this study was to compare the efficiencies of conventional and Taqman quantitative PCR (qPCR) on detecting Legionella pneumophila in spring facilities and in receiving water. In the results, Taqman PCR had much better efficiency on specifying the pathogen in both river and spring samples. L. pneumophila was detected in all of the 27 river water samples and 45 of the 48 hot spring water samples. The estimated L. pneumophela concentrations ranged between 1.0 × 10(2) and 3.3 × 10(5) cells/l in river water and 72.1-5.7 × 10(6) cells/l in hot spring water. Total coliforms and turbidity were significantly correlated with concentrations of L. pneumophila in positive water samples. Significant difference was also found in water temperature between the presence/absence of L. pneumophila. Our results suggest that conventional PCR may be not enough for detecting L. pneumophila particularly in the aquatic environments full of reaction inhibitors.

  17. Quantitative analysis of lab-to-lab variability in Caco-2 permeability assays.

    PubMed

    Lee, Jong Bong; Zgair, Atheer; Taha, Dhiaa A; Zang, Xiaowei; Kagan, Leonid; Kim, Tae Hwan; Kim, Min Gi; Yun, Hwi-Yeol; Fischer, Peter M; Gershkovich, Pavel

    2017-01-12

    In this study, Caco-2 permeability results from different laboratories were compared. Six different sets of apparent permeability coefficient (Papp) values reported in the literature were compared to experimental Papp obtained in our laboratory. The differences were assessed by determining the root mean square error (RMSE) values between the datasets, which reached levels as high as 0.581 for the training set compounds, i.e. ten compounds with known effective human permeability (Peff). The consequences of these differences in Papp for prediction of oral drug absorption were demonstrated by introducing the Papp into the absorption and pharmacokinetics simulation software application GastroPlus™ for prediction of the fraction absorbed (Fa) in humans using calibrated "user-defined permeability models". The RMSE were calculated to assess the differences between the simulated Fa and experimental values reported in the literature. The RMSE for Fa simulated with the permeability model calibrated using experimental Papp from our laboratory was 0.128. When the calibration was performed using Papp from literature datasets, the RMSE values for Fa were higher in all cases except one. This study shows quantitative lab-to-lab variability of Caco-2 permeability results and the potential consequences this can have in the use of these results for predicting intestinal absorption of drugs.

  18. Assessment of Legionella pneumophila in recreational spring water with quantitative PCR (Taqman) assay

    PubMed Central

    Shen, Shu-Min; Chou, Ming-Yuan; Ji, Wen-Tsai; Hsu, Tsui-Kang; Tsai, Hsiu-Feng; Huang, Yu-Li; Chiu, Yi-Chou; Kao, Erl-Shyh; Kao, Po-Min; Fan, Cheng-Wei

    2015-01-01

    Legionella spp. are common in various natural and man-made aquatic environments. Recreational hot spring is frequently reported as an infection hotspot because of various factors such as temperature and humidity. Although polymerase chain reaction (PCR) had been used for detecting Legionella, several inhibitors such as humic substances, calcium, and melanin in the recreational spring water may interfere with the reaction thus resulting in risk underestimation. The purpose of this study was to compare the efficiencies of conventional and Taqman quantitative PCR (qPCR) on detecting Legionella pneumophila in spring facilities and in receiving water. In the results, Taqman PCR had much better efficiency on specifying the pathogen in both river and spring samples. L. pneumophila was detected in all of the 27 river water samples and 45 of the 48 hot spring water samples. The estimated L. pneumophela concentrations ranged between 1.0 × 102 and 3.3 × 105 cells/l in river water and 72.1–5.7 × 106 cells/l in hot spring water. Total coliforms and turbidity were significantly correlated with concentrations of L. pneumophila in positive water samples. Significant difference was also found in water temperature between the presence/absence of L. pneumophila. Our results suggest that conventional PCR may be not enough for detecting L. pneumophila particularly in the aquatic environments full of reaction inhibitors. PMID:26184706

  19. Odorant Screening and Quantitation of Thiols in Carmenere Red Wine by Gas Chromatography-Olfactometry and Stable Isotope Dilution Assays.

    PubMed

    Pavez, Carolina; Agosin, Eduardo; Steinhaus, Martin

    2016-05-04

    The sensory impact of thiols in Vitis vinifera 'Carmenere' red wines was evaluated. For this purpose, aroma extract dilution analysis was applied to the thiols isolated from a Carmenere red wine by affinity chromatography with a mercurated agarose gel. Results revealed the presence of four odorants, identified as 2-furanylmethanethiol, 3-sulfanylhexyl acetate, 3-sulfanyl-1-hexanol, and 2-methyl-3-sulfanyl-1-butanol, with the latter being described here for the first time in Carmenere red wines. Quantitation of the four thiols in the Carmenere wine screened by aroma extract dilution analysis and in three additional Carmenere wines by stable isotope dilution assays resulted in concentrations above the respective orthonasal odor detection threshold values. Triangle tests applied to wine model solutions with and without the addition of the four thiols showed significant differences, thus suggesting that the compounds do have the potential to influence the overall aroma of red wine.

  20. Quantitative assay and subcellular distribution of enzymes acting on dolichyl phosphate in rat liver

    PubMed Central

    Ravoet, A; Amar-Costesec, A; Godelaine, D; Beaufay, H

    1981-01-01

    To establish on a quantitative basis the subcellular distribution of the enzymes that glycosylate dolichyl phosphate in rat liver, preliminary kinetic studies on the transfer of mannose, glucose, and N-acetylglucosamine-1-phosphate from the respective (14)C- labeled nucleotide sugars to exogenous dolichyl phosphate were conducted in liver microsomes. Mannosyltransferase, glucosyltransferase, and, to a lesser extent, N- acetylglucosamine-phosphotransferase were found to be very unstable at 37 degrees C in the presence of Triton X-100, which was nevertheless required to disperse the membranes and the lipid acceptor in the aqueous reaction medium. The enzymes became fairly stable in the range of 10-17 degrees C and the reactions then proceeded at a constant velocity for at least 15 min. Conditions under which the reaction products are formed in amount proportional to that of microsomes added are described. For N- acetylglucosaminephosphotransferase it was necessary to supplement the incubation medium with microsomal lipids. Subsequently, liver homogenates were fractionated by differential centrifugation, and the microsome fraction, which contained the bulk of the enzymes glycosylating dolichyl phosphate, was analyzed by isopycnic centrifugation in a sucrose gradient without any previous treatment, or after addition of digitonin. The centrifugation behavior of these enzymes was compared to that of a number of reference enzymes for the endoplasmic reticulum, the golgi complex, the plasma membranes, and mitochondria. It was very simily to that of enzymes of the endoplasmic reticulum, especially glucose-6-phosphatase. Subcellular preparations enriched in golgi complex elements, plasma membranes, outer membranes of mitochondira, or mitoplasts showed for the transferases acting on dolichyl phosphate relative activities similar to that of glucose- 6-phosphatase. It is concluded that glycosylations of dolichyl phosphate into mannose, glucose, and N-acetylglucosamine-1

  1. Development of a sensitive E-screen assay for quantitative analysis of estrogenic activity in municipal sewage plant effluents.

    PubMed

    Körner, W; Hanf, V; Schuller, W; Kempter, C; Metzger, J; Hagenmaier, H

    1999-01-12

    A simplified proliferation test with human estrogen receptor-positive MCF-7 breast cancer cells (E-screen assay) was optimized and validated for the sensitive quantitative determination of total estrogenic activity in effluent samples from municipal sewage plants. After solid phase extraction of 1 l sewage on either 0.2 g polystyrene copolymer (ENV+) or 1 g RP-C18 material and removal of the solvent, analysis of the extracts in the E-screen assay could be performed without any clean-up step. This was even possible with untreated sewage. Parallel extraction of four sewage samples on both different solid phase materials gave comparable quantitative results in the E-screen. A blank sample did not induce cell proliferation. As additive behaviour of the estrogenic response of single compounds was proven for two different mixtures each containing three xenoestrogens, total estrogenic activity in the sewage samples, expressed as 17 beta-estradiol equivalent concentration (EEQ), could be calculated comparing the EC50 values of the samples with those of the positive control 17 beta-estradiol. The detection limit of the E-screen method was 0.05 pmol EEQ/l (0.014 ng EEQ/l), the limit of quantification 0.25-0.5 pmol EEQ/l (0.07-0.14 ng EEQ/l). In total, extracts of nine effluent and one influent sample from five different municipal sewage plants in South Germany were analyzed in the E-screen. All samples strongly induced cell proliferation in a dose-dependent manner which was completely inhibited by coincubation with 5 nM of the estrogen receptor-antagonist ICI 182,780. The proliferative effect relative to the positive control 17 beta-estradiol (RPE) was between 30 and 101%. 17 beta-Estradiol equivalent concentrations were between 2.5 and 25 ng/l indicating a significant input of estrogenic substances via sewage treatment plants into rivers.

  2. Quantitative polymerase chain reaction (PCR) assays for a bacterial thiaminase I gene and the thiaminase-producing bacterium Paenibacillus thiaminolyticus.

    USGS Publications Warehouse

    Richter, C.A.; Wright-Osment, Maureen K.; Zajicek, J.L.; Honeyfield, D.C.; Tillitt, D.E.

    2009-01-01

    The thiaminase I enzyme produced by the gram-positive bacterium Paenibacillus thiaminolyticus isolated from the viscera of Lake Michigan alewives Alosa pseudoharengus is currently the only defined source of the thiaminase activity linked to thiamine (vitamin B1) deficiency in early mortality syndrome (EMS) in the larvae of Great Lakes salmonines. Diets of alewife or isolated strains of P. thiaminolyticus mixed in a semipurified diet and fed to lake trout Salvelinus namaycush have been shown to produce EMS in fry. We utilized quantitative polymerase chain reaction (Q-PCR) to aid in studies of the sources of P. thiaminolyticus and thiaminase I. Quantitative PCR assays were established to detect the thiaminase I gene of P. thiaminolyticus, the 16S rRNA gene from most species of bacteria, and the 16S rRNA gene specifically from P. thiaminolyticus and a few closely related taxa. The Q-PCR assays are linear over at least six orders of magnitude and can detect the thiaminase I gene of P. thiaminolyticus from as few as 1,000 P. thiaminolyticus cells/g of sample or the Paenibacillus 16S rRNA gene from as few as 100 P. thiaminolyticus cells/g of sample. The initial results from alewife viscera samples with high thiaminase activity yielded unexpectedly low densities of P. thiaminolyticus cells; Paenibacillus thiaminolyticus was detectable in 2 of 6 alewife viscera tested at densities on the order of 100 cells/g out of 100,000,000 total bacterial cells/g. The low numbers of P. thiaminolyticus detected suggest that alewives contain additional non-P. thiaminolyticus sources of thiaminase activity.

  3. A quantitative assay for reductive metabolism of a pesticide in fish using electrochemistry coupled with liquid chromatography tandem mass spectrometry.

    PubMed

    Bussy, Ugo; Chung-Davidson, Yu-Wen; Li, Ke; Li, Weiming

    2015-04-07

    This is the first study to use electrochemistry to generate a nitro reduction metabolite as a standard for a liquid chromatography-mass spectrometry-based quantitative assay. This approach is further used to quantify 3-trifluoromethyl-4-nitrophenol (TFM) reductive metabolism. TFM is a widely used pesticide for the population control of sea lamprey (Petromyzon marinus), an invasive species of the Laurentian Great Lakes. Three animal models, sea lamprey, lake sturgeon (Acipenser fulvescens), and rainbow trout (Oncorhynchus mykiss), were selected to evaluate TFM reductive metabolism because they have been known to show differential susceptibilities to TFM toxicity. Amino-TFM (aTFM; 3-trifluoromethyl-4-aminophenol) was the only reductive metabolite identified through liquid chromatography-high-resolution mass spectrometry screening of liver extracts incubated with TFM and was targeted for electrochemical synthesis. After synthesis and purification, aTFM was used to develop a quantitative assay of the reductive metabolism of TFM through liquid chromatography and tandem mass spectrometry. The concentrations of aTFM were measured from TFM-treated cellular fractions, including cytosolic, nuclear, membrane, and mitochondrial protein extracts. Sea lamprey extracts produced the highest concentrations (500 ng/mL) of aTFM. In addition, sea lamprey and sturgeon cytosolic extracts showed concentrations of aTFM substantially higher than those of rainbow trout. However, other fractions of lake sturgeon extracts tend to show aTFM concentrations similar to those of rainbow trout but not with sea lamprey. These data suggest that the level of reductive metabolism of TFM may be associated with the sensitivities of the animals to this particular pesticide.

  4. PCR Bias in Ecological Analysis: a Case Study for Quantitative Taq Nuclease Assays in Analyses of Microbial Communities†

    PubMed Central

    Becker, Sven; Böger, Peter; Oehlmann, Ralfh; Ernst, Anneliese

    2000-01-01

    Succession of ecotypes, physiologically diverse strains with negligible rRNA sequence divergence, may explain the dominance of small, red-pigmented (phycoerythrin-rich) cyanobacteria in the autotrophic picoplankton of deep lakes (C. Postius and A. Ernst, Arch. Microbiol. 172:69–75, 1999). In order to test this hypothesis, it is necessary to determine the abundance of specific ecotypes or genotypes in a mixed background of phylogenetically similar organisms. In this study, we examined the performance of Taq nuclease assays (TNAs), PCR-based assays in which the amount of an amplicon is monitored by hydrolysis of a labeled oligonucleotide (TaqMan probe) when hybridized to the amplicon. High accuracy and a 7-order detection range made the real-time TNA superior to the corresponding end point technique. However, in samples containing mixtures of homologous target sequences, quantification can be biased due to limited specificity of PCR primers and probe oligonucleotides and due to accumulation of amplicons that are not detected by the TaqMan probe. A decrease in reaction efficiency, which can be recognized by direct monitoring of amplification, provides experimental evidence for the presence of such a problem and emphasizes the need for real-time technology in quantitative PCR. Use of specific primers and probes and control of amplification efficiency allow correct quantification of target DNA in the presence of an up to 104-fold excess of phylogenetically similar DNA and of an up to 107-fold excess of dissimilar DNA. PMID:11055948

  5. Quantitative PCR Assay for Mycobacterium pseudoshottsii and Mycobacterium shottsii and Application to Environmental Samples and Fishes from the Chesapeake Bay▿

    PubMed Central

    Gauthier, D. T.; Reece, K. S.; Xiao, J.; Rhodes, M. W.; Kator, H. I.; Latour, R. J.; Bonzek, C. F.; Hoenig, J. M.; Vogelbein, W. K.

    2010-01-01

    Striped bass (Morone saxatilis) in the Chesapeake Bay are currently experiencing a very high prevalence of mycobacteriosis associated with newly described Mycobacterium species, Mycobacterium pseudoshottsii and M. shottsii. The ecology of these mycobacteria outside the striped bass host is currently unknown. In this work, we developed quantitative real-time PCR assays for M. pseudoshottsii and M. shottsii and applied these assays to DNA extracts from Chesapeake Bay water and sediment samples, as well as to tissues from two dominant prey of striped bass, Atlantic menhaden (Brevoortia tyrannus) and bay anchovy (Anchoa mitchilli). Mycobacterium pseudoshottsii was found to be ubiquitous in water samples from the main stem of the Chesapeake Bay and was also present in water and sediments from the Rappahannock River, Virginia. M. pseudoshottsii was also detected in menhaden and anchovy tissues. In contrast, M. shottsii was not detected in water, sediment, or prey fish tissues. In conjunction with its nonpigmented phenotype, which is frequently found in obligately pathogenic mycobacteria of humans, this pattern of occurrence suggests that M. shottsii may be an obligate pathogen of striped bass. PMID:20656856

  6. Visualization of the Charcoal Agar Resazurin Assay for Semi-quantitative, Medium-throughput Enumeration of Mycobacteria

    PubMed Central

    Gold, Ben; Lopez Quezada, Landys; Glasheen, Jou; Ballinger, Elaine; Somersan-Karakaya, Selin; Warrier, Thulasi; Nathan, Carl

    2016-01-01

    There is an urgent need to discover and progress anti-infectives that shorten the duration of tuberculosis (TB) treatment. Mycobacterium tuberculosis, the etiological agent of TB, is refractory to rapid and lasting chemotherapy due to the presence of bacilli exhibiting phenotypic drug resistance. The charcoal agar resazurin assay (CARA) was developed as a tool to characterize active molecules discovered by high-throughput screening campaigns against replicating and non-replicating M. tuberculosis. Inclusion of activated charcoal in bacteriologic agar medium helps mitigate the impact of compound carry-over, and eliminates the requirement to pre-dilute cells prior to spotting on CARA microplates. After a 7-10 day incubation period at 37 °C, the reduction of resazurin by mycobacterial microcolonies growing on the surface of CARA microplate wells permits semi-quantitative assessment of bacterial numbers via fluorometry. The CARA detects approximately a 2-3 log10 difference in bacterial numbers and predicts a minimal bactericidal concentration leading to ≥99% bacterial kill (MBC≥99). The CARA helps determine whether a molecule is active on bacilli that are replicating, non-replicating, or both. Pilot experiments using the CARA facilitate the identification of which concentration of test agent and time of compound exposure require further evaluation by colony forming unit (CFU) assays. In addition, the CARA can predict if replicating actives are bactericidal or bacteriostatic. PMID:28060290

  7. Universal real-time PCR assay for quantitation and size evaluation of residual cell DNA in human viral vaccines.

    PubMed

    André, Murielle; Reghin, Sylviane; Boussard, Estelle; Lempereur, Laurent; Maisonneuve, Stéphane

    2016-05-01

    Residual host cellular DNA (rcDNA) is one of the principal risk associated with continuous cell lines derived medicines such as viral vaccines. To assess rcDNA degradation, we suggest two quantitative real-time PCR assays designed to separately quantify target sequences shorter and longer than the 200 bp risk limit, the relative abundance of both targets reflecting the extent of rcDNA fragmentation. The conserved multicopy ribosomal 18S RNA gene was targeted to detect host cell templates from most mammalian cell substrates commonly used in the manufacture of human viral vaccines. The detection range of the method was assessed on purified DNA templates from different animal origins. The standard calibrator origin and structural conformation were shown crucial to achieve accurate quantification. Artificial mixtures of PCR products shorter and longer than 200 bp were used as a model to check the ability of the assay to estimate the fragment size distribution. The method was successfully applied to a panel of Vero cell derived vaccines and could be used as a universal method for determination of both content and size distribution of rcDNA in vaccines.

  8. A Dual Electrochemical Sensor Based on a Test-strip Assay for the Quantitative Determination of Albumin and Creatinine.

    PubMed

    Yasukawa, Tomoyuki; Kiba, Yuya; Mizutani, Fumio

    2015-01-01

    A dual-electrochemical sensor based on a test-strip assay with immunochemistry and enzyme reactions has been developed for the determination of albumin and creatinine. Each nitrocellulose membrane with an immobilization area of an anti-albumin antibody or three enzymes was prepared in the device with three working electrodes for measuring albumin, creatinine, and ascorbic acid, as well as an Ag/AgCl electrode used as a counter/pseudo-reference electrode. The reactions of three enzymes were initiated by flowing a solution containing creatinine to detect an oxidation current of hydrogen peroxide. A sandwich-type immunocomplex was formed by albumin and antibody labeled with glucose oxidase (GOx). Captured GOx catalyzed the reduction of Fe(CN)6(3-) to Fe(CN)6(4-), which was oxidized electrochemically to determine the captured albumin. The responses for creatinine and albumin increased with the concentrations in millimolar order and over the range 18.75 - 150 μg mL(-1), respectively. The present sensor would be a distinct demonstration for producing quantitative dual-assays for various biomolecules used for clinical diagnoses.

  9. Establishment of a 10-Plex Quantitative Fluorescent-PCR Assay for rapid diagnosis of sex chromosome aneuploidies.

    PubMed

    Xie, Xingmei; Liang, Qiaoyi

    2014-01-01

    Sex chromosome aneuploidies occur commonly in the general population, with an incidence of 1 in 400 newborns. However, no tests specifically targeting sex chromosomes have been carried out in prenatal diagnosis or newborn screening, resulting in late recognition of these diseases. In this study, a rapid diagnostic method for sex chromosome aneuploidies was established using Quantitative Fluorescent-PCR (QF-PCR). Ten markers were included in one multiplex QF-PCR assay, including two sex determination genes (AMXY and SRY), five X-linked short tandem repeats (STRs; DXS1053, DXS981, DXS6809, DXS1187, and DXS8377), one X/Y-common STR (X22), and two autosomal STRs (D13S305 and D21S11). Retrospective tests of 70 cases with known cytogenetic results indicated that the 10-plex QF-PCR assay could well determine sex chromosome copy numbers by both allelic peak numbers and a sex chromosome dosage calculation with the autosomal STRs as internal controls. Prospective comparison with cytogenetic karyotyping on 534 cases confirmed that the 10-plex QF-PCR assay could be well employed for sex chromosome aneuploidy diagnosis in at least the Chinese Han population. This is the first QF-PCR test for the diagnosis of sex chromosome aneuploidies in the Chinese population. This test is superior to previous designs by including up to 8 sex-linked markers covering different parts of sex chromosomes as well as employing internal controls for copy number dosage calculation in a single PCR reaction. Due to simple technique and data analysis, as well as easy implementation within routine clinical services, this method is of great clinical application value and could be widely applied.

  10. Real-time PCR-based assay for quantitative detection of Hematodinium sp. in the blue crab Callinectes sapidus.

    PubMed

    Nagle, L; Place, A R; Schott, E J; Jagus, R; Messick, G; Pitula, J S

    2009-03-09

    Hematodinium sp. is a parasitic dinoflagellate infecting the blue crab Callinectes sapidus and other crustaceans. PCR-based assays are currently being used to identify infections in crabs that would have been undetectable by traditional microscopic examination. We therefore sought to define the limits of quantitative PCR (qPCR) detection within the context of field collection protocols. We present a qPCR assay based on the Hematodinium sp. 18S rRNA gene that can detect 10 copies of the gene per reaction. Analysis of a cell dilution series vs. defined numbers of a cloned Hematodinium sp. 18S rRNA gene suggests a copy number of 10,000 per parasite and predicts a sensitivity of 0.001 cell equivalents. In practice, the assays are based on analysis of 1% of the DNA extracted from 200 microl of serum, yielding a theoretical detection limit of 5 cells ml(-1) hemolymph, assuming that 1 cell is present per sample. When applied to a limited field survey of blue crabs collected in Maryland coastal bays from May to August 2005, 24 of 128 crabs (18.8%) were identified as positive for Hematodinium sp. infection using qPCR. In comparison, only 6 of 128 crabs (4.7%) were identified as positive using traditional hemolymph microscopic examination. The qPCR method also detected the parasite in gill, muscle, heart and hepatopancreas tissues, with 17.2% of the crabs showing infection in at least one of these tissues. Importantly, it is now possible to enumerate parasites within defined quantities of crab tissue, which permits collection of more detailed information on the epizootiology of the pathogen.

  11. A novel real-time PCR assay for quantitative analysis of methylated alleles (QAMA): analysis of the retinoblastoma locus.

    PubMed

    Zeschnigk, Michael; Böhringer, Stefan; Price, Elizabeth Ann; Onadim, Zerrin; Masshöfer, Lars; Lohmann, Dietmar R

    2004-09-07

    Altered methylation patterns have been found to play a role in developmental disorders, cancer and aging. Increasingly, changes in DNA methylation are used as molecular markers of disease. Therefore, there is a need for reliable and easy to use techniques to detect and measure DNA methylation in research and routine diagnostics. We have established a novel quantitative analysis of methylated alleles (QAMA) which is essentially a major improvement over a previous method based on real-time PCR (MethyLight). This method is based on real-time PCR on bisulfite-treated DNA. A significant advantage over conventional MethyLight is gained by the use of TaqMan probes based on minor groove binder (MGB) technology. Their improved sequence specificity facilitates relative quantification of methylated and unmethylated alleles that are simultaneously amplified in single tube. This improvement allows precise measurement of the ratio of methylated versus unmethylated alleles and cuts down potential sources of inter-assay variation. Therefore, fewer control assays are required. We have used this novel technical approach to identify hypermethylation of the CpG island located in the promoter region of the retinoblastoma (RB1) gene and found that QAMA facilitates reliable and fast measurement of the relative quantity of methylated alleles and improves handling of diagnostic methylation analysis. Moreover, the simplified reaction setup and robustness inherent to the single tube assay facilitates high-throughput methylation analysis. Because the high sequence specificity inherent to the MGB technology is widely used to discriminate single nucleotide polymorphisms, QAMA potentially can be used to discriminate the methylation status of single CpG dinucleotides.

  12. Quantitation of 5-Methyltetrahydrofolic Acid in Dried Blood Spots and Dried Plasma Spots by Stable Isotope Dilution Assays

    PubMed Central

    Kopp, Markus; Rychlik, Michael

    2015-01-01

    Because of minimal data available on folate analysis in dried matrix spots (DMSs), we combined the advantages of stable isotope dilution assays followed by LC-MS/MS analysis with DMS sampling to develop a reliable method for the quantitation of plasma 5-methyltetrahydrofolic acid in dried blood spots (DBSs) and dried plasma spots (DPSs) as well as for the quantitation of whole blood 5-methyltetrahydrofolic acid in DBSs. We focused on two diagnostically conclusive parameters exhibited by the plasma and whole blood 5-methyltetrahydrofolic acid levels that reflect both temporary and long-term folate status. The method is performed using the [2H4]-labeled isotopologue of the vitamin as the internal standard, and three steps are required for the extraction procedure. Elution of the punched out matrix spots was performed using stabilization buffer including Triton X-100 in a standardized ultrasonication treatment followed by enzymatic digestion (whole blood only) and solid-phase extraction with SAX cartridges. This method is sensitive enough to quantify 27 nmol/L whole blood 5-methyltetrahydrofolic acid in DBSs and 6.3 and 4.4 nmol/L plasma 5-methyltetrahydrofolic acid in DBSs and DPSs, respectively. The unprecedented accurate quantification of plasma 5-methyltetrahydrofolic acid in DBSs was achieved by thermal treatment prior to ultrasonication, inhibiting plasma conjugase activity. Mass screenings are more feasible and easier to facilitate for this method in terms of sample collection and storage compared with conventional clinical sampling for the assessment of folate status. PMID:26605791

  13. Detection limits of quantitative and digital PCR assays and their influence in presence-absence surveys of environmental DNA

    USGS Publications Warehouse

    Hunter, Margaret; Dorazio, Robert M.; Butterfield, John S.; Meigs-Friend, Gaia; Nico, Leo; Ferrante, Jason

    2017-01-01

    A set of universal guidelines is needed to determine the limit of detection (LOD) in PCR-based analyses of low concentration DNA. In particular, environmental DNA (eDNA) studies require sensitive and reliable methods to detect rare and cryptic species through shed genetic material in environmental samples. Current strategies for assessing detection limits of eDNA are either too stringent or subjective, possibly resulting in biased estimates of species’ presence. Here, a conservative LOD analysis grounded in analytical chemistry is proposed to correct for overestimated DNA concentrations predominantly caused by the concentration plateau, a nonlinear relationship between expected and measured DNA concentrations. We have used statistical criteria to establish formal mathematical models for both quantitative and droplet digital PCR. To assess the method, a new Grass Carp (Ctenopharyngodon idella) TaqMan assay was developed and tested on both PCR platforms using eDNA in water samples. The LOD adjustment reduced Grass Carp occupancy and detection estimates while increasing uncertainty – indicating that caution needs to be applied to eDNA data without LOD correction. Compared to quantitative PCR, digital PCR had higher occurrence estimates due to increased sensitivity and dilution of inhibitors at low concentrations. Without accurate LOD correction, species occurrence and detection probabilities based on eDNA estimates are prone to a source of bias that cannot be reduced by an increase in sample size or PCR replicates. Other applications also could benefit from a standardized LOD such as GMO food analysis, and forensic and clinical diagnostics.

  14. Quantitative in vitro assay to measure neutrophil adhesion to activated primary human microvascular endothelial cells under static conditions.

    PubMed

    Wilhelmsen, Kevin; Farrar, Katherine; Hellman, Judith

    2013-08-23

    The vascular endothelium plays an integral part in the inflammatory response. During the acute phase of inflammation, endothelial cells (ECs) are activated by host mediators or directly by conserved microbial components or host-derived danger molecules. Activated ECs express cytokines, chemokines and adhesion molecules that mobilize, activate and retain leukocytes at the site of infection or injury. Neutrophils are the first leukocytes to arrive, and adhere to the endothelium through a variety of adhesion molecules present on the surfaces of both cells. The main functions of neutrophils are to directly eliminate microbial threats, promote the recruitment of other leukocytes through the release of additional factors, and initiate wound repair. Therefore, their recruitment and attachment to the endothelium is a critical step in the initiation of the inflammatory response. In this report, we describe an in vitro neutrophil adhesion assay using calcein AM-labeled primary human neutrophils to quantitate the extent of microvascular endothelial cell activation under static conditions. This method has the additional advantage that the same samples quantitated by fluorescence spectrophotometry can also be visualized directly using fluorescence microscopy for a more qualitative assessment of neutrophil binding.

  15. Quantitation of 5-Methyltetrahydrofolic Acid in Dried Blood Spots and Dried Plasma Spots by Stable Isotope Dilution Assays.

    PubMed

    Kopp, Markus; Rychlik, Michael

    2015-01-01

    Because of minimal data available on folate analysis in dried matrix spots (DMSs), we combined the advantages of stable isotope dilution assays followed by LC-MS/MS analysis with DMS sampling to develop a reliable method for the quantitation of plasma 5-methyltetrahydrofolic acid in dried blood spots (DBSs) and dried plasma spots (DPSs) as well as for the quantitation of whole blood 5-methyltetrahydrofolic acid in DBSs. We focused on two diagnostically conclusive parameters exhibited by the plasma and whole blood 5-methyltetrahydrofolic acid levels that reflect both temporary and long-term folate status. The method is performed using the [2H4]-labeled isotopologue of the vitamin as the internal standard, and three steps are required for the extraction procedure. Elution of the punched out matrix spots was performed using stabilization buffer including Triton X-100 in a standardized ultrasonication treatment followed by enzymatic digestion (whole blood only) and solid-phase extraction with SAX cartridges. This method is sensitive enough to quantify 27 nmol/L whole blood 5-methyltetrahydrofolic acid in DBSs and 6.3 and 4.4 nmol/L plasma 5-methyltetrahydrofolic acid in DBSs and DPSs, respectively. The unprecedented accurate quantification of plasma 5-methyltetrahydrofolic acid in DBSs was achieved by thermal treatment prior to ultrasonication, inhibiting plasma conjugase activity. Mass screenings are more feasible and easier to facilitate for this method in terms of sample collection and storage compared with conventional clinical sampling for the assessment of folate status.

  16. A two-step real-time PCR assay for quantitation and genotyping of human parvovirus 4.

    PubMed

    Väisänen, E; Lahtinen, A; Eis-Hübinger, A M; Lappalainen, M; Hedman, K; Söderlund-Venermo, M

    2014-01-01

    Human parvovirus 4 (PARV4) of the family Parvoviridae was discovered in a plasma sample of a patient with an undiagnosed acute infection in 2005. Currently, three PARV4 genotypes have been identified, however, with an unknown clinical significance. Interestingly, these genotypes seem to differ in epidemiology. In Northern Europe, USA and Asia, genotypes 1 and 2 have been found to occur mainly in persons with a history of injecting drug use or other parenteral exposure. In contrast, genotype 3 appears to be endemic in sub-Saharan Africa, where it infects children and adults without such risk behaviour. In this study, a novel straightforward and cost-efficient molecular assay for both quantitation and genotyping of PARV4 DNA was developed. The two-step method first applies a single-probe pan-PARV4 qPCR for screening and quantitation of this relatively rare virus, and subsequently, only the positive samples undergo a real-time PCR-based multi-probe genotyping. The new qPCR-GT method is highly sensitive and specific regardless of the genotype, and thus being suitable for studying the clinical impact and occurrence of the different PARV4 genotypes.

  17. Detection limits of quantitative and digital PCR assays and their influence in presence-absence surveys of environmental DNA.

    PubMed

    Hunter, Margaret E; Dorazio, Robert M; Butterfield, John S S; Meigs-Friend, Gaia; Nico, Leo G; Ferrante, Jason A

    2017-03-01

    A set of universal guidelines is needed to determine the limit of detection (LOD) in PCR-based analyses of low-concentration DNA. In particular, environmental DNA (eDNA) studies require sensitive and reliable methods to detect rare and cryptic species through shed genetic material in environmental samples. Current strategies for assessing detection limits of eDNA are either too stringent or subjective, possibly resulting in biased estimates of species' presence. Here, a conservative LOD analysis grounded in analytical chemistry is proposed to correct for overestimated DNA concentrations predominantly caused by the concentration plateau, a nonlinear relationship between expected and measured DNA concentrations. We have used statistical criteria to establish formal mathematical models for both quantitative and droplet digital PCR. To assess the method, a new Grass Carp (Ctenopharyngodon idella) TaqMan assay was developed and tested on both PCR platforms using eDNA in water samples. The LOD adjustment reduced Grass Carp occupancy and detection estimates while increasing uncertainty-indicating that caution needs to be applied to eDNA data without LOD correction. Compared to quantitative PCR, digital PCR had higher occurrence estimates due to increased sensitivity and dilution of inhibitors at low concentrations. Without accurate LOD correction, species occurrence and detection probabilities based on eDNA estimates are prone to a source of bias that cannot be reduced by an increase in sample size or PCR replicates. Other applications also could benefit from a standardized LOD such as GMO food analysis and forensic and clinical diagnostics.

  18. Quantitative evaluation of pork adulteration in raw ground beef by radial immunodiffusion and enzyme-linked immunosorbent assay.

    PubMed

    Martin, D R; Chan, J; Chiu, J Y

    1998-12-01

    Quantitative estimates are important to establish whether pork adulteration in ground beef is accidental or intentional. A standard agar gel radial immunodiffusion (RID) test using forensic-grade antiserum to porcine albumin and an enzyme-linked immunosorbent assay (ELISA) using forensic-grade anti-porcine glycoprotein immunoglobulin were used to determine from 1 to 75% raw pork in raw ground beef. The RID test, which incorporated 1.5% anti-pork serum in 1% immunodiffusion agar, formed precipitin rings with pork albumin in agar wells. A linear standard curve was obtained by plotting the diffusion area against standard pork concentrations ranging from 0 to 80%. For the ELISA the endpoint optical density increased linearly versus log % pork between 0.0625% and 2% pork. In spiked samples, the RID test had a detection limit of 3 to 5%, a coefficient of variation (CV) of 22%, and a recovery of 105%. The ELISA had a detection limit of 1%, a CV of 18%, and a recovery of 114%. The mean recovery from the spiked samples by the ELISA and RID test was not significantly different (P > 0.05) from the known sample amounts. Quantitation by RID of 28 ground beef samples (27 of which were DTEK ELISA-positive for pork adulteration) revealed a wide range of pork content, with values as high as 48%.

  19. Quantitation of Gingerols in Human Plasma by Newly Developed Stable Isotope Dilution Assays and Assessment of Their Immunomodulatory Potential.

    PubMed

    Schoenknecht, Carola; Andersen, Gaby; Schmidts, Ines; Schieberle, Peter

    2016-03-23

    In a pilot study with two volunteers, the main pungent and bioactive ginger (Zingiber officinale Roscoe) compounds, the gingerols, were quantitated in human plasma after ginger tea consumption using a newly established HPLC-MS/MS(ESI) method on the basis of stable isotope dilution assays. Limits of quantitation for [6]-, [8]-, and [10]-gingerols were determined as 7.6, 3.1, and 4.0 nmol/L, respectively. The highest plasma concentrations of [6]-, [8]-, and [10]-gingerols (42.0, 5.3, and 4.8 nmol/L, respectively) were reached 30-60 min after ginger tea intake. Incubation of activated human T lymphocytes with gingerols increased the intracellular Ca(2+) concentration as well as the IFN-γ secretion by about 20-30%. This gingerol-induced increase of IFN-γ secretion could be blocked by the specific TRPV1 antagonist SB-366791. The results of the present study point to an interaction of gingerols with TRPV1 in activated T lymphocytes leading to an augmentation of IFN-γ secretion.

  20. A Quantitative Toxicogenomics Assay Reveals the Evolution and Nature of Toxicity during the Transformation of Environmental Pollutants

    PubMed Central

    2015-01-01

    The incomplete mineralization of contaminants of emerging concern (CECs) during the advanced oxidation processes can generate transformation products that exhibit toxicity comparable to or greater than that of the original contaminant. In this study, we demonstrated the application of a novel, fast, and cost-effective quantitative toxicogenomics-based approach for the evaluation of the evolution and nature of toxicity along the electro-Fenton oxidative degradation of three representative CECs whose oxidative degradation pathways have been relatively well studied, bisphenol A, triclosan, and ibuprofen. The evolution of toxicity as a result of the transformation of parent chemicals and production of intermediates during the course of degradation are monitored, and the quantitative toxicogenomics assay results revealed the dynamic toxicity changes and mechanisms, as well as their association with identified intermediates during the electro-Fenton oxidation process of the selected CECs. Although for the three CECs, a majority (>75%) of the parent compounds disappeared at the 15 min reaction time, the nearly complete elimination of toxicity required a minimal 30 min reaction time, and they seem to correspond to the disappearance of identified aromatic intermediates. Bisphenol A led to a wide range of stress responses, and some identified transformation products containing phenolic or quinone group, such as 1,4-benzoquinone and hydroquinone, likely contributed to the transit toxicity exhibited as DNA stress (genotoxicity) and membrane stress during the degradation. Triclosan is known to cause severe oxidative stress, and although the oxidative damage potential decreased concomitantly with the disappearance of triclosan after a 15 min reaction, the sustained toxicity associated with both membrane and protein stress was likely attributed at least partially to the production of 2,4-dichlorophenol that is known to cause the production of abnormal proteins and affect the cell

  1. A Novel Stopped-Flow Assay for Quantitating Carbonic-Anhydrase Activity and Assessing Red-Blood-Cell Hemolysis

    PubMed Central

    Zhao, Pan; Geyer, R. Ryan; Boron, Walter F.

    2017-01-01

    We report a novel carbonic-anhydrase (CA) assay and its use for quantitating red-blood-cell (RBC) lysis during stopped-flow (SF) experiments. We combine two saline solutions, one containing HEPES/pH 7.03 and the other, ~1% CO2/44 mM HCO3-/pH 8.41, to generate an out-of-equilibrium CO2/HCO3- solution containing ~0.5% CO2/22 HCO3-/pH ~7.25 (10°C) in the SF reaction cell. CA catalyzes relaxation of extracellular pH to ~7.50: HCO3- + H+ → CO2 + H2O. Proof-of-concept studies (no intact RBCs) show that the pH-relaxation rate constant (kΔpH)—measured via pyranine fluorescence—rises linearly with increases in [bovine CAII] or [murine-RBC lysate]. The y-intercept (no CA) was kΔpH = 0.0183 s−1. Combining increasing amounts of murine-RBC lysate with ostensibly intact RBCs (pre-SF hemolysis ≅0.4%)—fixing total [hemoglobin] at 2.5 μM in the reaction cell to simulate hemolysis from ostensibly 0 to 100%—causes kΔpH to increase linearly. This y-intercept (0% lysate/100% ostensibly intact RBCs) was kΔpH = 0.0820 s−1, and the maximal kΔpH (100% lysate/0% intact RBCs) was 1.304 s−1. Thus, mean percent hemolysis in the reaction cell was ~4.9%. Phenol-red absorbance assays yield indistinguishable results. The increase from 0.4 to 4.9% presumably reflects mechanical RBC disruption during rapid mixing. In all fluorescence studies, the CA blocker acetazolamide reduces kΔpH to near-uncatalyzed values, implying that all CA activity is extracellular. Our lysis assay is simple, sensitive, and precise, and will be valuable for correcting for effects of lysis in physiological SF experiments. The underlying CA assay, applied to blood plasma, tissue-culture media, and organ perfusates could assess lysis in a variety of applications.

  2. Quantitative analysis of the relative mutagenicity of five chemical constituents of tobacco smoke in the mouse lymphoma assay.

    PubMed

    Guo, Xiaoqing; Heflich, Robert H; Dial, Stacey L; Richter, Patricia A; Moore, Martha M; Mei, Nan

    2016-05-01

    Quantifying health-related biological effects, like genotoxicity, could provide a way of distinguishing between tobacco products. In order to develop tools for using genotoxicty data to quantitatively evaluate the risk of tobacco products, we tested five carcinogens found in cigarette smoke, 4-aminobiphenyl (4-ABP), benzo[a]pyrene (BaP), cadmium (in the form of CdCl2), 2-amino-3,4-dimethyl-3H-imidazo[4,5-f]quinoline (MeIQ) and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), in the mouse lymphoma assay (MLA). The resulting mutagenicity dose responses were analyzed by various quantitative approaches and their strengths and weaknesses for distinguishing responses in the MLA were evaluated. L5178Y/Tk (+/-) 3.7.2C mouse lymphoma cells were treated with four to seven concentrations of each chemical for 4h. Only CdCl2 produced a positive response without metabolic activation (S9); all five chemicals produced dose-dependent increases in cytotoxicity and mutagenicity with S9. The lowest dose exceeding the global evaluation factor, the benchmark dose producing a 10%, 50%, 100% or 200% increase in the background frequency (BMD10, BMD50, BMD100 and BMD200), the no observed genotoxic effect level (NOGEL), the lowest observed genotoxic effect level (LOGEL) and the mutagenic potency expressed as a mutant frequency per micromole of chemical, were calculated for all the positive responses. All the quantitative metrics had similar rank orders for the agents' ability to induce mutation, from the most to least potent as CdCl2(-S9) > BaP(+S9) > CdCl2(+S9) > MeIQ(+S9) > 4-ABP(+S9) > NNK(+S9). However, the metric values for the different chemical responses (i.e. the ratio of the greatest value to the least value) for the different chemicals ranged from 16-fold (BMD10) to 572-fold (mutagenic potency). These results suggest that data from the MLA are capable of discriminating the mutagenicity of various constituents of cigarette smoke, and that quantitative analyses are available

  3. Quantitative PCR assay for detection and enumeration of ciguatera-causing dinoflagellate Gambierdiscus spp. (Gonyaulacales) in coastal areas of Japan.

    PubMed

    Nishimura, Tomohiro; Hariganeya, Naohito; Tawong, Wittaya; Sakanari, Hiroshi; Yamaguchi, Haruo; Adachi, Masao

    2016-02-01

    In Japan, ciguatera fish poisoning (CFP) has been increasingly reported not only in subtropical areas but also in temperate areas in recent years, causing a serious threat to human health. Ciguatera fish poisoning is caused by the consumption of fish that have accumulated toxins produced by an epiphytic/benthic dinoflagellate, genus Gambierdiscus. Previous studies revealed the existence of five Gambierdiscus species/phylotypes in Japan: Gambierdiscus australes, Gambierdiscus scabrosus, Gambierdiscus sp. type 2, Gambierdiscus sp. type 3, and Gambierdiscus (Fukuyoa) cf. yasumotoi. Among these, G. australes, G. scabrosus, and Gambierdiscus sp. type 3 strains exhibited toxicities in mice, whereas Gambierdiscus sp. type 2 strains did not show any toxicity. Therefore, it is important to monitor the cell abundance and dynamics of these species/phylotypes to identify and characterize CFP outbreaks in Japan. Because it is difficult to differentiate these species/phylotypes by observation under a light microscope, development of a rapid and reliable detection and enumeration method is needed. In this study, a quantitative PCR assay was developed using a TaqMan probe that targets unique SSU rDNA sequences of four Japanese Gambierdiscus species/phylotypes and incorporates normalization with DNA recovery efficiency. First, we constructed standard curves with high linearity (R(2)=1.00) and high amplification efficiency (≥1.98) using linearized plasmids that contained SSU rDNA of the target species/phylotypes. The detection limits for all primer and probe sets were approximately 10 gene copies. Further, the mean number of SSU rDNA copies per cell of each species/phylotype was determined from single cells in culture and from those in environmental samples using the qPCR assay. Next, the number of cells of each species/phylotype in the mixed samples, which were spiked with cultured cells of the four species/phylotypes, was calculated by division of the total number of rDNA copies

  4. Qualitative and quantitative results of interferon-γ release assays for monitoring the response to anti-tuberculosis treatment

    PubMed Central

    Park, I-Nae; Shim, Tae Sun

    2017-01-01

    Background/Aims The usefulness of interferon-γ release assays (IGRAs) in monitoring to responses to anti-tuberculosis (TB) treatment is controversial. We compared the results of two IGRAs before and after anti-TB treatment in same patients with active TB. Methods From a retrospective review, we selected patients with active TB who underwent repeated QuantiFERON-TB Gold (QFN-Gold, Cellestis Limited) and T-SPOT.TB (Oxford Immunotec) assays before and after anti-TB treatment with first-line drugs. Both tests were performed prior to the start of anti-TB treatment or within 1 week after the start of anti-TB treatment and after completion of treatment. Results A total of 33 active TB patients were included in the study. On the QFN-Gold test, at baseline, 23 cases (70%) were early secreted antigenic target 6-kDa protein 6 (ESAT-6) or culture filtrate protein 10 (CFP-10) positive. On the T-SPOT. TB test, at baseline, 31 cases (94%) were ESAT-6 or CFP-10 positive. Most of patients remained both test-positive after anti-TB treatment. Although changes in interferon-γ release responses over time were highly variable in both tests, there was a mean decline of 27 and 24 spot-forming counts for ESAT-6 and CFP-10, respectively on the T-SPOT.TB test (p < 0.05 for all). Conclusions Although limited by the small number of patients and a short-term follow-up, there was significant decline in the quantitative result of the T-SPOT. TB test with treatment. However, both commercial IGRAs may not provide evidence regarding the cure of disease in Korea, a country where the prevalence of TB is within the intermediate range. PMID:27951621

  5. Studies of plant colonisation by closely related Bacillus amyloliquefaciens biocontrol agents using strain specific quantitative PCR assays.

    PubMed

    Johansson, Anna H; Bejai, Sarosh; Niazi, Adnan; Manzoor, Shahid; Bongcam-Rudloff, Erik; Meijer, Johan

    2014-12-01

    Certain strains of Bacillus amyloliquefaciens can colonize plants and improve growth and stress management. In order to study these effects, bacterial growth dynamics on plants and in the rhizosphere are of interest calling for specific analytical tools. For that purpose, quantitative real-time PCR (qPCR) assays were developed in order to differentiate among three closely related B. amyloliquefaciens subsp. plantarum strains (UCMB5033, UCMB5036, UCMB5113) and to determine their levels with high accuracy. Oligonucleotide primers were designed for strain unique gene sequences and used for SYBR green based qPCR analysis. Standard curves covered a wide linear range (10(6)) of DNA amounts with the lowest detection level at 50 fg. Post-reaction melting curve analysis showed only a single product. Accurate threshold cycles were obtained, even in the presence of high excess of related Bacillus strains and total bacterial DNA from soil. Analysis of Bacillus colonisation after seed treatment of two oilseed rape cultivars (Oase and Ritz) grown on agar support showed a time dependent effect but that the bacteria mostly were found on root tissues and little on green tissues. The colonisation on plants grown in soil varied among the Bacillus strains where Oase seemed to house more bacteria than Ritz. Applied as a mixture, all three Bacillus strains co-existed on the roots of plants grown in soil. The qPCR assay in combination with other techniques will be a powerful tool to study plant interactions of these B. amyloliquefaciens biocontrol agents to further understand the requirements for successful interactions and improvement of plant properties.

  6. Detection of nonhemagglutinating influenza a(h3) viruses by enzyme-linked immunosorbent assay in quantitative influenza virus culture.

    PubMed

    van Baalen, C A; Els, C; Sprong, L; van Beek, R; van der Vries, E; Osterhaus, A D M E; Rimmelzwaan, G F

    2014-05-01

    To assess the efficacy of novel antiviral drugs against influenza virus in clinical trials, it is necessary to quantify infectious virus titers in respiratory tract samples from patients. Typically, this is achieved by inoculating virus-susceptible cells with serial dilutions of clinical specimens and detecting the production of progeny virus by hemagglutination, since influenza viruses generally have the capacity to bind and agglutinate erythrocytes of various species through their hemagglutinin (HA). This readout method is no longer adequate, since an increasing number of currently circulating influenza A virus H3 subtype (A[H3]) viruses display a reduced capacity to agglutinate erythrocytes. Here, we report the magnitude of this problem by analyzing the frequency of HA-deficient A(H3) viruses detected in The Netherlands from 1999 to 2012. Furthermore, we report the development and validation of an alternative method for monitoring the production of progeny influenza virus in quantitative virus cultures, which is independent of the capacity to agglutinate erythrocytes. This method is based on the detection of viral nucleoprotein (NP) in virus culture plates by enzyme-linked immunosorbent assay (ELISA), and it produced results similar to those of the hemagglutination assay using strains with good HA activity, including A/Brisbane/059/07 (H1N1), A/Victoria/210/09 (H3N2), other seasonal A(H1N1), A(H1N1)pdm09, and the majority of A(H3) virus strains isolated in 2009. In contrast, many A(H3) viruses that have circulated since 2010 failed to display HA activity, and infectious virus titers were determined only by detecting NP. The virus culture ELISA described here will enable efficacy testing of new antiviral compounds in clinical trials during seasons in which nonhemagglutinating influenza A viruses circulate.

  7. Sperm-macrophage interaction in the mouse: a quantitative assay in vitro using 111indium oxine-labeled sperm

    SciTech Connect

    Olive, D.L.; Weinberg, J.B.; Haney, A.F.

    1987-12-01

    The role of reproductive tract macrophages in contraception and reproductive failure has become widely recognized. However, in vitro analysis of sperm phagocytosis by macrophages has relied upon a semi-quantitative method of sperm counting that is of limited accuracy and reproducibility. We have developed an assay using murine sperm labeled with /sup 111/indium oxine, and results indicate the labeling to be rapid and efficient. Incorporation of /sup 111/indium into sperm increased the dose and sperm concentration and reached 90% maximal uptake after 15 min incubation, with maximal uptake occurring at 30 min. No decrease in sperm motility was noted with levels of oxine in excess of those required for significant labeling. Maximal labeling efficiency occurred in phosphate-buffered saline (PBS), with Dulbecco's modified Eagle's medium (DMEM) + 10% adult bovine serum (ABS) producing significantly less uptake. Label dissociation was detectable in PBS at room temperature, but at 37 degrees C in DMEM + 10% ABS, loss of label occurred at a rate of 23.5%/h. Addition of labeled sperm to murine macrophage monolayers under optimal conditions resulted in uptake of /sup 111/indium by macrophages, while free label was unincorporated. Results indicated assay specificity for macrophage-limited uptake, with insignificant label uptake by nonphagocytic murine fibroblasts and better sensitivity than sperm counting. Macrophages from Bacillus Calmette-Guerin (BCG)-infected mice resulted in a decrease in sperm uptake. Female macrophages showed greater capacity for sperm uptake than those of the male mouse. These initial studies demonstrated the utility of this model system in enhancing the understanding of sperm-macrophage interaction in the female reproductive tract.

  8. Immunochromatographic assay for quantitative and sensitive detection of hepatitis B virus surface antigen using highly luminescent quantum dot-beads.

    PubMed

    Shen, Jun; Zhou, Yaofeng; Fu, Fen; Xu, Hengyi; Lv, Jiaofeng; Xiong, Yonghua; Wang, Andrew

    2015-09-01

    Hepatitis B virus infection is one of the major causes of hepatitis, liver cirrhosis and liver cancer. In this study, we used highly luminescent quantum dot-beads (QBs) as signal amplification probes in the sandwich immunochromatographic assay (ICA) for ultrasensitive and quantitative detection of hepatitis B virus surface antigen (HBsAg) in human serum. Various parameters that influenced the sensitivity and stability of the QB-based ICA (QB-ICA) sensor were investigated. Two linear independent regression equations for detection of serum HBsAg were expressed with Y=0.3361X-0.0059 (R(2)=0.9983) for low HBsAg concentrations between 75 pg mL(-1) and 4.8 ng mL(-1), and Y=0.8404 X-2.9364 (R(2)=0.9939) for high HBsAg concentrations in the range from 4.8 ng mL(-1) to 75 ng mL(-1). The detection limit of the proposed ICA sensor achieved was 75 pg mL(-1), which is much higher than that of the routinely-used gold nanoparticle based ICA. The intra- and inter-assays recovery rates for spiked serum samples at HBsAg concentrations of 75 pg mL(-1), 3.75 ng mL(-1) and 18.75 ng mL(-1) ranged from 90.14% to 97.6%, and coefficients of variation were all below 7%, indicating that the QB-ICA sensor has an acceptable accuracy for HBsAg detection. Additionally, the quantitative method developed showed no false positive results in an analysis of 49 real HBsAg-negative serum samples, and exhibited excellent agreement (R(2)=0.9209) with a commercial chemiluminescence immunoassay kit in identifying 47 HBsAg-positive serum samples. In summary, due to its high fluorescence intensity, the sandwich QB-ICA sensor is a very promising point-of-care test for rapid, simple and ultrasensitive detection of HBsAg, as well as other disease-related protein biomarkers.

  9. A novel method for the quantitation of gingerol glucuronides in human plasma or urine based on stable isotope dilution assays.

    PubMed

    Schoenknecht, Carola; Andersen, Gaby; Schieberle, Peter

    2016-11-15

    The bio-active compounds of ginger (Zingiber officinale Roscoe), the gingerols, are gaining considerable attention due to their numerous beneficial health effects. In order to elucidate the physiological relevance of the ascribed effects their bioavailability has to be determined taking their metabolization into account. To quantitate in vivo generated [6]-, [8]- and [10]-gingerol glucuronides in human plasma and urine after ginger tea consumption, a simultaneous and direct liquid chromatography-tandem mass spectrometry method based on stable isotope dilution assays was established and validated. The respective references as well as the isotopically labeled substances were synthesized and characterized by mass spectrometry and NMR. Selective isolation of gingerol glucuronides from human plasma and urine by a mixed-phase anion-exchange SPE method led to recovery rates between 80.8 and 98.2%. LC-MS/MS analyses in selected reaction monitoring modus enabled a highly sensitive quantitation of gingerol glucuronides with LoQs between 3.9-9.8nmol/L in plasma and 39.3-161.1nmol/L in urine. The method precision in plasma and urine varied in the range±15%, whereas the intra-day accuracy in plasma and urine showed values between 78 and 122%. The developed method was then applied to a pilot study in which two volunteers consumed one liter ginger tea. Pharmacokinetic parameters like the maximum concentration (cmax), the time to reach cmax (tmax), area under the curve (AUC), elimination rate constant (kel) and elimination half-life (t1/2) were calculated from the concentration-time curve of each gingerol glucuronide. The obtained results will enable more detailed investigation of gingerol glucuronides as bioactives in their physiologically relevant concentrations.

  10. Development and validation of a real-time PCR assay for a novel HTLV-1 tax sequence detection and proviral load quantitation.

    PubMed

    Castro, Gonzalo M; Balangero, Marcos C; Maturano, Eduardo; Mangeaud, Arnaldo; Gallego, Sandra V

    2013-05-01

    A quantitative real-time PCR (qPCR) assay using SYBR Green dye was established in order to detect and quantify the proviral DNA of HTLV-1 in peripheral blood mononuclear cells (PBMCs). Primers were designed, and the assay was standardized to amplify a novel, conserved HTLV-1 tax region. Proviral load was normalized to the amount of cellular DNA by quantitation of the human albumin gene. Firstly, the qPCR was assessed determining the specificity, sensitivity, dynamic range and intra- and inter-assay reproducibility of the technique. The limit of detection as determined by PROBIT analysis using dilutions of the standard was 2.97 copies. The assay had an excellent dynamic range from 10⁵ to 10¹ copies per reaction and good intra- and inter-assay reproducibility, CVs less than 2%. Secondly, the performance of the qPCR was tested on 40 HTLV-1 seropositive individuals. Proviral load for HTLV-1 carriers ranged from 2.2×10² to more than 8.3×10⁴ copies/10⁶ PBMCs. The high sensitivity and wide dynamic range allowed the determination of a broad range of HTLV-1 proviral loads in infected individuals. This assay is a valuable alternative diagnostic tool when current available serological assays are insufficient. In addition, it will facilitate the study of the relationship between proviral load and pathogenesis.

  11. Quantitation of odor-active compounds in rye flour and rye sourdough using stable isotope dilution assays.

    PubMed

    Kirchhoff, Eva; Schieberle, Peter

    2002-09-11

    Application of the aroma extract dilution analysis on a flavor distillate prepared from freshly ground rye flour (type 1150) revealed 1-octen-3-one (mushroom-like), methional (cooked potato), and (E)-2-nonenal (fatty, green) with the highest flavor dilution (FD) factors among the 26 odor-active volatiles identified. Quantitative measurements performed by stable isotope dilution assays and a comparison to the odor thresholds of selected odorants in starch suggested methional, (E)-2-nonenal, and hexanal as contributors to the flour aroma, because their concentrations exceeded their odor thresholds by factors >100. Application of the same approach on a rye sourdough prepared from the same batch of flour revealed 3-methylbutanal, vanillin, 3-methylbutanoic acid, methional, (E,E)-2,4-decadienal, 2,3-butanedione, and acetic acid as important odorants; their concentrations exceeded their odor thresholds in water and starch by factors >100. A comparison of the concentrations of 20 odorants in rye flour and the sourdough made therefrom indicated that flour, besides the fermentation process, is an important source of aroma compounds in dough. However, 3-methylbutanol, acetic acid, and 2,3-butanedione were much increased during fermentation, whereas (E,E)-2,4-decadienal and 2-methylbutanal were decreased. Similar results were obtained for five different flours and sourdoughs, respectively, although the amounts of some odorants in the flour and the sourdough differed significantly within batches.

  12. Development of a multiplex quantitative fluorescent PCR assay for identification of rearrangements in the AZFb and AZFc regions.

    PubMed

    Zhang, Jun; Li, Pei-qiong; Yu, Qi-hong; Chen, Hua-yun; Li, Juan; He, Yun-shao

    2008-06-01

    The azoospermia factor b (AZFb) and azoospermia factor c (AZFc) regions in the human Y chromosome consist of five palindromes constructed from six distinct families of amplicons and are prone to rearrangement. Partial deletion and duplication in the region can cause azoospermia or oligozoospermia and male infertility. The aim of the study was to establish a quantitative fluorescent PCR (QF-PCR) assay to classify AZFb and AZFc rearrangements. A single pair of fluorescent primers was designed to amplify simultaneously the amplicon in AZFc and the length-variant homologous sequences outside of the region as control. Since the copy number of the control sequences is fixed in the human genome, dosage of the target could be easily obtained through comparing the height of the fluorescent peaks between the target and the control after amplification with limited PCR cycles. Most types of rearrangements in AZFb and AZFc regions could be classified with QF-PCR containing four such primer pairs. Eleven types of rearrangement in AZFb and AZFc regions were well discriminated with QF-PCR. In conclusion, QF-PCR is a simple and reliable method to detect rearrangements in AZFb and AZFc.

  13. Specificity of quantitative latex agglutination assay for D-dimer in exclusion of pulmonary embolism in the emergency department.

    PubMed

    Stein, Paul D; Matta, Fadi; Sabra, Michel J; Tana, Christopher; Gough, Andrew; Chabala, Steve; Kakish, Edward; Tworek, Joseph

    2014-11-01

    We assessed the prevalence of elevated quantitative latex agglutination assay for D-dimer in patients in the emergency department in whom pulmonary embolism (PE) was excluded. D-dimer was normal (<230 ng/mL) in 435 (83%) of the 522 patients. D-dimer was normal in 88% of the patients with musculoskeletal or related chest pain, 74% with pleurisy or pleuritic chest pain, and 85% with upper respiratory tract infection. D-dimer was 230 to 500 ng/mL in 65 (75%) of the 87 in whom D-dimer was elevated. Clinical probability was low in 31 (48%) of the 65 patients with D-dimer levels of 230 to 500 ng/mL. D-dimer was 230 to 500 ng/mL and clinical probability was low in 31 (36%) of the 87 patients who had computed tomographic (CT) angiograms because of elevated D-dimer. Negative likelihood ratio for PE is sufficiently low that PE can be excluded with reasonable certainty in such patients. Tailoring cutoff value to 500 ng/mL in patients with low clinical probability would have reduced CT angiograms by 36%.

  14. Identification of Reference Genes for Quantitative Real Time PCR Assays in Aortic Tissue of Syrian Hamsters with Bicuspid Aortic Valve

    PubMed Central

    Rueda-Martínez, Carmen; Fernández, M. Carmen; Soto-Navarrete, María Teresa; Jiménez-Navarro, Manuel; Durán, Ana Carmen; Fernández, Borja

    2016-01-01

    Bicuspid aortic valve (BAV) is the most frequent congenital cardiac malformation in humans, and appears frequently associated with dilatation of the ascending aorta. This association is likely the result of a common aetiology. Currently, a Syrian hamster strain with a relatively high (∼40%) incidence of BAV constitutes the only spontaneous animal model of BAV disease. The characterization of molecular alterations in the aorta of hamsters with BAV may serve to identify pathophysiological mechanisms and molecular markers of disease in humans. In this report, we evaluate the expression of ten candidate reference genes in aortic tissue of hamsters in order to identify housekeeping genes for normalization using quantitative real time PCR (RT-qPCR) assays. A total of 51 adult (180–240 days old) and 56 old (300–440 days old) animals were used. They belonged to a control strain of hamsters with normal, tricuspid aortic valve (TAV; n = 30), or to the affected strain of hamsters with TAV (n = 45) or BAV (n = 32). The expression stability of the candidate reference genes was determined by RT-qPCR using three statistical algorithms, GeNorm, NormFinder and Bestkeeper. The expression analyses showed that the most stable reference genes for the three algorithms employed were Cdkn1β, G3pdh and Polr2a. We propose the use of Cdkn1β, or both Cdkn1β and G3pdh as reference genes for mRNA expression analyses in Syrian hamster aorta. PMID:27711171

  15. Generation of a recombinant classical swine fever virus stably expressing the firefly luciferase gene for quantitative antiviral assay.

    PubMed

    Shen, Liang; Li, Yongfeng; Chen, Jianing; Li, Chao; Huang, Junhua; Luo, Yuzi; Sun, Yuan; Li, Su; Qiu, Hua-Ji

    2014-09-01

    Classical swine fever (CSF), caused by classical swine fever virus (CSFV), is a highly contagious swine disease leading to significant economic losses worldwide. Vaccines are widely used to control the disease, and no CSFV-specific antivirals are currently available. To facilitate anti-CSFV molecule discovery, we developed a reporter virus CSFV-N(pro)Fluc stably expressing the firefly luciferase (Fluc) gene in the N(pro) gene. The reporter virus enabled more sensitive and convenient detection of the N(pro) protein expression and the viral replication by luciferase reporter assay than by traditional methods. The CSFV N(pro) protein was detectable as early as 4.5h post-infection. As a proof-of-concept for its utility in rapid antiviral screening, this reporter virus was used to quantify anti-CSFV neutralizing antibodies of 50 swine sera and to assess 12 small interfering RNAs targeting different regions of the CSFV genome. The results were comparable to those obtained by traditional methods. Taken together, the reporter virus CSFV-N(pro)Fluc represents a useful tool for rapid and quantitative screening and evaluation of antivirals against CSFV.

  16. Evaluation of an enzyme-linked immunosorbent assay for quantitation of antibodies to Junin virus in human sera.

    PubMed

    García Franco, S; Ambrosio, A M; Feuillade, M R; Maiztegui, J I

    1988-01-01

    An enzyme-linked immunosorbent assay (ELISA) was evaluated for the quantitation of anti-Junin virus (JV) antibodies, in 83 selected cases of Argentine haemorrhagic fever (AHF). Serum samples were studied in two groups to facilitate comparative analysis; the first group was ELISA with indirect immunofluorescence (IF) test, in the second ELISA with plaque reduction neutralization test (PRINT). From the results obtained by using ELISA and IF on the same serum samples, a clear tendency of ELISA to demonstrate seroconversion for JV earlier and at higher frequency than IF test was noted. Simultaneous titration of specific antibodies by ELISA and PRNT tests rendered significantly correlated titers (r = 0.81), both methods being equivalently specific (100%). The demonstration of specific antibodies by ELISA in two cases that were undetected by the PRNT test resulted in a higher sensitivity index for ELISA than for PRNT (100% vs 97%). It is concluded that ELISA could efficiently replace IF and PRNT tests for the diagnosis of AHF.

  17. Real-Time Quantitative PCR Assay for Monitoring of Nervous Necrosis Virus Infection in Grouper Aquaculture▿†

    PubMed Central

    Kuo, Hsiao-Che; Wang, Ting-Yu; Chen, Peng-Peng; Chen, Young-Mao; Chuang, Hui-Ching; Chen, Tzong-Yueh

    2011-01-01

    Viral nervous necrosis caused by nervous necrosis virus (NNV) exacts a high mortality and results in huge economic losses in grouper aquaculture in Taiwan. The present study developed a real-time quantitative PCR (qPCR) method for NNV monitoring. The assay showed a strong linear correlation (r2 = 0.99) between threshold cycle (CT) and RNA quantities, which allowed identification of infected groupers by the CT value and could be exploited to warn of NNV infection prior to an outbreak in grouper fish farms. Real-time qPCR also confirmed the copious content of NNV in grouper fin, similar to that in primary tissues; the result was verified by using in situ reverse transcription-PCR (RT-PCR). This indicated that grouper fin was a suitable sample for NNV detection, in a manner that could be relatively benign to the fish. The rapid spread of NNV infection to the entire population of affected farms was evident. The developed real-time qPCR method is rapid, highly sensitive, and applicable to routine high-throughput detection of large numbers of samples and has potential as a suitable tool for diagnostic, epidemiological, and genetic studies of grouper aquaculture. PMID:21233077

  18. Development of a quantitative loop-mediated isothermal amplification (qLAMP) assay for the detection of Magnaporthe oryzae airborne inoculum in turf ecosystems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Grey Leaf Spot (GLS) is a detrimental disease of perennial ryegrass caused by a host-specialized form of Magnaporthe oryzae (Mot). In order to improve turf management, a quantitative loop-mediated isothermal amplification (LAMP) assay coupled with a simple spore trap is being developed to monitor GL...

  19. Factors That Contribute to Assay Variation in Quantitative Analysis of Sex Steroid Hormones Using Liquid and Gas Chromatography-Mass Spectrometry

    ERIC Educational Resources Information Center

    Xu, Xia; Veenstra, Timothy D.

    2012-01-01

    The list of physiological events in which sex steroids play a role continues to increase. To decipher the roles that sex steroids play in any condition requires high quality cohorts of samples and assays that provide highly accurate quantitative measures. Liquid and gas chromatography coupled with mass spectrometry (LC-MS and GC-MS) have…

  20. Investigation of a redox-sensitive predictive model of mouse embryonic stem cells differentiation using quantitative nuclease protection assays and glutathione redox status

    EPA Science Inventory

    Investigation of a redox-sensitive predictive model of mouse embryonic stem cell differentiation via quantitative nuclease protection assays and glutathione redox status Chandler KJ,Hansen JM, Knudsen T,and Hunter ES 1. U.S. Environmental Protection Agency, Research Triangl...

  1. Development and Comparison of SYBR Green Quantitative Real-time PCR Assays for Detection and Enumeration of Sulfate-reducing Bacteria in Stored Swine Manure

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A quantitative real-time polymerase chain reaction (PCR) assay for sulfate-reducing bacteria (SRB) was developed that targeted the dissimilatory sulfite reductase gene (dsrA). Degenerate primer sets were developed to detect three different groups of SRB in stored swine manure using a SYBR Green qua...

  2. The applicability of TaqMan-based quantitative real-time PCR assays for detecting and enumeratIng Cryptosporidium spp. oocysts in the environment

    EPA Science Inventory

    Molecular detection methods such as PCR have been extensively used to type Cryptosporidium oocysts detected in the environment. More recently, studies have developed quantitative real-time PCR assays for detection and quantification of microbial contaminants in water as well as ...

  3. Quantitative estimation of diphtheria and tetanus toxoids. 5. Comparative assays in mice and in guinea-pigs of two diphtheria toxoid preparations.

    PubMed

    Lyng, J; Heron, I

    1991-10-01

    Two freeze-dried international reference diphtheria toxoids of different origin were compared in biological assays in guinea-pigs and mice under different adjuvant conditions. When the antigenic content in the two toxoids was used as denominator for determination of relative potency, that is to say quantitation of immunogenic power per unit amount of antigen, the design of the animal assay proved to have a major influence. Similar observations have been made previously also for tetanus vaccines. It is concluded that diphtheria vaccines as well as tetanus vaccines can hardly be quantitated unambiguously using the currently recommended potency assays in animals. A new scheme for control of toxoid vaccine production is suggested, with more emphasis on the control of the bulk purified toxoid, which would make the release of final products more simple and rapid.

  4. Development and evaluation of SYBR Green-I based quantitative PCR assays for herpes simplex virus type 1 whole transcriptome analysis.

    PubMed

    Garvey, Cathryn E; McGowin, Chris L; Foster, Timothy P

    2014-06-01

    There is an emerging need for viral gene specific quantitative PCR (qPCR) assays that validate and complement whole transcriptome level technologies, including microarray and next generation sequencing. Therefore, a compilation of qPCR assays that represented the breadth of the entire Herpes simplex virus type 1 (HSV-1) genome were developed and evaluated. SYBR Green-I-based quantitation of each of the 74 HSV-1 lytic genes enabled accurate and reproducible detection of viral genes using a minimal number of reaction conditions. The amplification specificity of these assays for HSV-1 target genes was confirmed by amplicon size and purity determination on agarose gels, melt temperature dissociation curve analysis, and direct DNA sequencing of amplified products. Analysis of representative target genes demonstrated that these assays accurately and reproducibly quantified target gene expression across a wide and linear range of detection. In addition, minimal intra- and inter-assay variability was observed with significant well-to-well and plate-to-plate/assay-to-assay precision. To evaluate the utility of the developed qPCR assay system, kinetic profiles of viral gene expression were determined for an array of representative genes from all HSV-1 transcriptional gene classes. Collectively, these data demonstrate that the compiled optimized qPCR assays is a scalable and cost-effective method to assess HSV-1 gene expression with broad application potential, including investigation of pathogenesis and antiviral therapies. In addition, they can be employed to validate and complement evolving technologies for genome-wide transcriptome analysis.

  5. A quantitative multiplex nuclease protection assay reveals immunotoxicity gene expression profiles in the rabbit model for vaginal drug safety evaluation

    SciTech Connect

    Fichorova, Raina N.; Mendonca, Kevin; Yamamoto, Hidemi S.; Murray, Ryan; Chandra, Neelima; Doncel, Gustavo F.

    2015-06-15

    Any vaginal product that alters the mucosal environment and impairs the immune barrier increases the risk of sexually transmitted infections, especially HIV infection, which thrives on mucosal damage and inflammation. The FDA-recommended rabbit vaginal irritation (RVI) model serves as a first line selection tool for vaginal products; however, for decades it has been limited to histopathology scoring, insufficient to select safe anti-HIV microbicides. In this study we incorporate to the RVI model a novel quantitative nuclease protection assay (qNPA) to quantify mRNA levels of 25 genes representing leukocyte differentiation markers, toll-like receptors (TLR), cytokines, chemokines, epithelial repair, microbicidal and vascular markers, by designing two multiplex arrays. Tissue sections were obtained from 36 rabbits (6 per treatment arm) after 14 daily applications of a placebo gel, saline, 4% nonoxynol-9 (N-9), and three combinations of the anti-HIV microbicides tenofovir (TFV) and UC781 in escalating concentrations (highest: 10% TFV + 2.5%UC781). Results showed that increased expression levels of toll-like receptor (TLR)-4, interleukin (IL)-1β, CXCL8, epithelial membrane protein (EMP)-1 (P < 0.05), and decreased levels of TLR2 (P < 0.05), TLR3 and bactericidal permeability increasing protein (BPI) (P < 0.001) were associated with cervicovaginal mucosal alteration (histopathology). Seven markers showed a significant linear trend predicting epithelial damage (up with CD4, IL-1β, CXCL8, CCL2, CCL21, EMP1 and down with BPI). Despite the low tissue damage RVI scores, the high-dose microbicide combination gel caused activation of HIV host cells (SLC and CD4) while N-9 caused proinflammatory gene upregulation (IL-8 and TLR4) suggesting a potential for increasing risk of HIV via different mechanisms depending on the chemical nature of the test product. - Highlights: • A transcriptome nuclease protection assay assessed microbicides for vaginal safety. • Biomarkers were

  6. A quantitative reverse-transcriptase PCR assay for the assessment of drug activities against intracellular Theileria annulata schizonts

    PubMed Central

    Hostettler, Isabel; Müller, Joachim; Stephens, Chad E.; Haynes, Richard; Hemphill, Andrew

    2014-01-01

    Intracellular schizonts of the apicomplexans Theileria annulata and Theileria parva immortalize bovine leucocytes thereby causing fatal immunoproliferative diseases. Buparvaquone, a hydroxynaphthoquinone related to parvaquone, is the only drug available against Theileria. The drug is only effective at the onset of infection and emerging resistance underlines the need for identifying alternative compounds. Current drug assays employ monitoring of proliferation of infected cells, with apoptosis of the infected host cell as a read-out, but it is often unclear whether active compounds directly impair the viability of the parasite or primarily induce host cell death. We here report on the development of a quantitative reverse transcriptase real time PCR method based on two Theileria genes, tasp and tap104, which are both expressed in schizonts. Upon in vitro treatment of T. annulata infected bovine monocytes with buparvaquone, TaSP and Tap104 mRNA expression levels significantly decreased in relation to host cell actin already within 4 h of drug exposure, while significant differences in host cell proliferation were detectable only after 48–72 h. TEM revealed marked alterations of the schizont ultrastructure already after 2 h of buparvaquone treatment, while the host cell remained unaffected. Expression of TaSP and Tap104 proteins showed a marked decrease only after 24 h. Therefore, the analysis of expression levels of mRNA coding for TaSP and Tap104 allows to directly measuring impairment of parasite viability. We subsequently applied this method using a series of compounds affecting different targets in other apicomplexan parasites, and show that monitoring of TaSP- and Tap104 mRNA levels constitutes a suitable tool for anti-theilerial drug development. PMID:25516828

  7. A quantitative reverse-transcriptase PCR assay for the assessment of drug activities against intracellular Theileria annulata schizonts.

    PubMed

    Hostettler, Isabel; Müller, Joachim; Stephens, Chad E; Haynes, Richard; Hemphill, Andrew

    2014-12-01

    Intracellular schizonts of the apicomplexans Theileria annulata and Theileria parva immortalize bovine leucocytes thereby causing fatal immunoproliferative diseases. Buparvaquone, a hydroxynaphthoquinone related to parvaquone, is the only drug available against Theileria. The drug is only effective at the onset of infection and emerging resistance underlines the need for identifying alternative compounds. Current drug assays employ monitoring of proliferation of infected cells, with apoptosis of the infected host cell as a read-out, but it is often unclear whether active compounds directly impair the viability of the parasite or primarily induce host cell death. We here report on the development of a quantitative reverse transcriptase real time PCR method based on two Theileria genes, tasp and tap104, which are both expressed in schizonts. Upon in vitro treatment of T. annulata infected bovine monocytes with buparvaquone, TaSP and Tap104 mRNA expression levels significantly decreased in relation to host cell actin already within 4 h of drug exposure, while significant differences in host cell proliferation were detectable only after 48-72 h. TEM revealed marked alterations of the schizont ultrastructure already after 2 h of buparvaquone treatment, while the host cell remained unaffected. Expression of TaSP and Tap104 proteins showed a marked decrease only after 24 h. Therefore, the analysis of expression levels of mRNA coding for TaSP and Tap104 allows to directly measuring impairment of parasite viability. We subsequently applied this method using a series of compounds affecting different targets in other apicomplexan parasites, and show that monitoring of TaSP- and Tap104 mRNA levels constitutes a suitable tool for anti-theilerial drug development.

  8. Quantitation of viable Coxiella burnetii in milk using an integrated cell culture-polymerase chain reaction (ICC-PCR) assay.

    PubMed

    Stewart, Diana; Shieh, Y-Carol; Tortorello, Mary; Kukreja, Ankush; Shazer, Arlette; Schlesser, Joseph

    2015-11-01

    The obligate intracellular pathogen Coxiella burnetii has long been considered the most heat resistant pathogen in raw milk, making it the reference pathogen for determining pasteurisation conditions for milk products. New milk formulations and novel non-thermal processes require validation of effectiveness which requires a more practical method for analysis than using the currently used animal model for assessing Coxiella survival. Also, there is an interest in better characterising thermal inactivation of Coxiella in various milk formulations. To avoid the use of the guinea pig model for evaluating Coxiella survival, an Integrated Cell Culture-PCR (ICC-PCR) method was developed for determining Coxiella viability in milk. Vero cell cultures were directly infected from Coxiella-contaminated milk in duplicate 24-well plates. Viability of the Coxiella in milk was shown by a ≥ 0.5 log genome equivalent (ge)/ml increase in the quantity of IS111a gene from the baseline post-infection (day 0) level after 9-11 d propagation. Coxiella in skim, 2%, and whole milk, and half and half successfully infected Vero cells and increased in number by at least 2 logs using a 48-h infection period followed by 9-d propagation time. As few as 125 Coxiella ge/ml in whole milk was shown to infect and propagate at least 2 logs in the optimised ICC-PCR assay, though variable confirmation of propagation was shown for as low as 25 Coxiella ge/ml. Applicability of the ICC-PCR method was further proven in an MPN format to quantitate the number of viable Coxiella remaining in whole milk after 60 °C thermal treatment at 0, 20, 40, 60 and 90 min.

  9. A quantitative multiplex nuclease protection assay reveals immunotoxicity gene expression profiles in the rabbit model for vaginal drug safety evaluation.

    PubMed

    Fichorova, Raina N; Mendonca, Kevin; Yamamoto, Hidemi S; Murray, Ryan; Chandra, Neelima; Doncel, Gustavo F

    2015-06-15

    Any vaginal product that alters the mucosal environment and impairs the immune barrier increases the risk of sexually transmitted infections, especially HIV infection, which thrives on mucosal damage and inflammation. The FDA-recommended rabbit vaginal irritation (RVI) model serves as a first line selection tool for vaginal products; however, for decades it has been limited to histopathology scoring, insufficient to select safe anti-HIV microbicides. In this study we incorporate to the RVI model a novel quantitative nuclease protection assay (qNPA) to quantify mRNA levels of 25 genes representing leukocyte differentiation markers, toll-like receptors (TLR), cytokines, chemokines, epithelial repair, microbicidal and vascular markers, by designing two multiplex arrays. Tissue sections were obtained from 36 rabbits (6 per treatment arm) after 14 daily applications of a placebo gel, saline, 4% nonoxynol-9 (N-9), and three combinations of the anti-HIV microbicides tenofovir (TFV) and UC781 in escalating concentrations (highest: 10% TFV+2.5%UC781). Results showed that increased expression levels of toll-like receptor (TLR)-4, interleukin (IL)-1β, CXCL8, epithelial membrane protein (EMP)-1 (P<0.05), and decreased levels of TLR2 (P<0.05), TLR3 and bactericidal permeability increasing protein (BPI) (P<0.001) were associated with cervicovaginal mucosal alteration (histopathology). Seven markers showed a significant linear trend predicting epithelial damage (up with CD4, IL-1β, CXCL8, CCL2, CCL21, EMP1 and down with BPI). Despite the low tissue damage RVI scores, the high-dose microbicide combination gel caused activation of HIV host cells (SLC and CD4) while N-9 caused proinflammatory gene upregulation (IL-8 and TLR4) suggesting a potential for increasing risk of HIV via different mechanisms depending on the chemical nature of the test product.

  10. Characterization of the rRNA locus of Pfiesteria piscicida and development of standard and quantitative PCR-based detection assays targeted to the nontranscribed spacer.

    PubMed

    Saito, Keiko; Drgon, Tomás; Robledo, José A F; Krupatkina, Danara N; Vasta, Gerardo R

    2002-11-01

    Pfiesteria piscicida is a heterotrophic dinoflagellate widely distributed along the middle Atlantic shore of the United States and associated with fish kills in the Neuse River (North Carolina) and the Chesapeake Bay (Maryland and Virginia). We constructed a genomic DNA library from clonally cultured P. piscicida and characterized the nontranscribed spacer (NTS), small subunit, internal transcribed spacer 1 (ITS1), 5.8S region, ITS2, and large subunit of the rRNA gene cluster. Based on the P. piscicida ribosomal DNA sequence, we developed a PCR-based detection assay that targets the NTS. The assay specificity was assessed by testing clonal P. piscicida and Pfiesteria shumwayae, 35 additional dinoflagellate species, and algal prey (Rhodomonas sp.). Only P. piscicida and nine presumptive P. piscicida isolates tested positive. All PCR-positive products yielded identical sequences for P. piscicida, suggesting that the PCR-based assay is species specific. The assay can detect a single P. piscicida zoospore in 1 ml of water, 10 resting cysts in 1 g of sediment, or 10 fg of P. piscicida DNA in 1 micro g of heterologous DNA. An internal standard for the PCR assay was constructed to identify potential false-negative results in testing of environmental sediment and water samples and as a competitor for the development of a quantitative competitive PCR assay format. The specificities of both qualitative and quantitative PCR assay formats were validated with >200 environmental samples, and the assays provide simple, rapid, and accurate methods for the assessment of P. piscicida in water and sediments.

  11. Development of an event-specific hydrolysis probe quantitative real-time polymerase chain reaction assay for Embrapa 5.1 genetically modified common bean (Phaseolus vulgaris).

    PubMed

    Treml, Diana; Venturelli, Gustavo L; Brod, Fábio C A; Faria, Josias C; Arisi, Ana C M

    2014-12-10

    A genetically modified (GM) common bean event, namely Embrapa 5.1, resistant to the bean golden mosaic virus (BGMV), was approved for commercialization in Brazil. Brazilian regulation for genetically modified organism (GMO) labeling requires that any food containing more than 1% GMO be labeled. The event-specific polymerase chain reaction (PCR) method has been the primary trend for GMO identification and quantitation because of its high specificity based on the flanking sequence. This work reports the development of an event-specific assay, named FGM, for Embrapa 5.1 detection and quantitation by use of SYBR Green or hydrolysis probe. The FGM assay specificity was tested for Embrapa 2.3 event (a noncommercial GM common bean also resistant to BGMV), 46 non-GM common bean varieties, and other crop species including maize, GM maize, soybean, and GM soybean. The FGM assay showed high specificity to detect the Embrapa 5.1 event. Standard curves for the FGM assay presented a mean efficiency of 95% and a limit of detection (LOD) of 100 genome copies in the presence of background DNA. The primers and probe developed are suitable for the detection and quantitation of Embrapa 5.1.

  12. Gold nanoparticle-based RT-PCR and real-time quantitative RT-PCR assays for detection of Japanese encephalitis virus

    NASA Astrophysics Data System (ADS)

    Huang, Su-Hua; Yang, Tsuey-Ching; Tsai, Ming-Hong; Tsai, I.-Shou; Lu, Huang-Chih; Chuang, Pei-Hsin; Wan, Lei; Lin, Ying-Ju; Lai, Chih-Ho; Lin, Cheng-Wen

    2008-10-01

    Virus isolation and antibody detection are routinely used for diagnosis of Japanese encephalitis virus (JEV) infection, but the low level of transient viremia in some JE patients makes JEV isolation from clinical and surveillance samples very difficult. We describe the use of gold nanoparticle-based RT-PCR and real-time quantitative RT-PCR assays for detection of JEV from its RNA genome. We tested the effect of gold nanoparticles on four different PCR systems, including conventional PCR, reverse-transcription PCR (RT-PCR), and SYBR green real-time PCR and RT-PCR assays for diagnosis in the acute phase of JEV infection. Gold nanoparticles increased the amplification yield of the PCR product and shortened the PCR time compared to the conventional reaction. In addition, nanogold-based real-time RT-PCR showed a linear relationship between Ct and template amount using ten-fold dilutions of JEV. The nanogold-based RT-PCR and real-time quantitative RT-PCR assays were able to detect low levels (1-10 000 copies) of the JEV RNA genomes extracted from culture medium or whole blood, providing early diagnostic tools for the detection of low-level viremia in the acute-phase infection. The assays described here were simple, sensitive, and rapid approaches for detection and quantitation of JEV in tissue cultured samples as well as clinical samples.

  13. A Quantitative Real-Time RT-PCR Assay for the Detection of Venezuelan equine encephalitis virus Utilizing a Universal Alphavirus Control RNA.

    PubMed

    Vina-Rodriguez, Ariel; Eiden, Martin; Keller, Markus; Hinrichs, Winfried; Groschup, Martin H

    2016-01-01

    Venezuelan equine encephalitis virus (VEEV) is an Alphavirus from the family Togaviridae that causes epizootic outbreaks in equids and humans in Central and South America. So far, most studies use conventional reverse transcriptase PCR assays for the detection of the different VEEV subtypes. Here we describe the development of a TaqMan quantitative real-time reverse transcriptase PCR assay for the specific detection and quantitation of all VEEV subtypes which uses in parallel a universal equine encephalitis virus control RNA carrying target sequences of the three equine encephalitis viruses. The control RNA was used to generate standard curves for the calculation of copy numbers of viral genome of Eastern equine encephalitis virus (EEEV), Western equine encephalitis virus (WEEV), and VEEV. The new assay provides a reliable high-throughput method for the detection and quantitation of VEEV RNA in clinical and field samples and allows a rapid differentiation from potentially cocirculating EEEV and WEEV strains. The capability to detect all known VEEV variants was experimentally demonstrated and makes this assay suitable especially for the surveillance of VEEV.

  14. A Quantitative Real-Time RT-PCR Assay for the Detection of Venezuelan equine encephalitis virus Utilizing a Universal Alphavirus Control RNA

    PubMed Central

    Vina-Rodriguez, Ariel; Eiden, Martin; Keller, Markus; Hinrichs, Winfried

    2016-01-01

    Venezuelan equine encephalitis virus (VEEV) is an Alphavirus from the family Togaviridae that causes epizootic outbreaks in equids and humans in Central and South America. So far, most studies use conventional reverse transcriptase PCR assays for the detection of the different VEEV subtypes. Here we describe the development of a TaqMan quantitative real-time reverse transcriptase PCR assay for the specific detection and quantitation of all VEEV subtypes which uses in parallel a universal equine encephalitis virus control RNA carrying target sequences of the three equine encephalitis viruses. The control RNA was used to generate standard curves for the calculation of copy numbers of viral genome of Eastern equine encephalitis virus (EEEV), Western equine encephalitis virus (WEEV), and VEEV. The new assay provides a reliable high-throughput method for the detection and quantitation of VEEV RNA in clinical and field samples and allows a rapid differentiation from potentially cocirculating EEEV and WEEV strains. The capability to detect all known VEEV variants was experimentally demonstrated and makes this assay suitable especially for the surveillance of VEEV. PMID:28042576

  15. Quantitative Validation of the Presto Blue Metabolic Assay for Online Monitoring of Cell Proliferation in a 3D Perfusion Bioreactor System.

    PubMed

    Sonnaert, Maarten; Papantoniou, Ioannis; Luyten, Frank P; Schrooten, Jan Ir

    2015-06-01

    As the fields of tissue engineering and regenerative medicine mature toward clinical applications, the need for online monitoring both for quantitative and qualitative use becomes essential. Resazurin-based metabolic assays are frequently applied for determining cytotoxicity and have shown great potential for monitoring 3D bioreactor-facilitated cell culture. However, no quantitative correlation between the metabolic conversion rate of resazurin and cell number has been defined yet. In this work, we determined conversion rates of Presto Blue, a resazurin-based metabolic assay, for human periosteal cells during 2D and 3D static and 3D perfusion cultures. Our results showed that for the evaluated culture systems there is a quantitative correlation between the Presto Blue conversion rate and the cell number during the expansion phase with no influence of the perfusion-related parameters, that is, flow rate and shear stress. The correlation between the cell number and Presto Blue conversion subsequently enabled the definition of operating windows for optimal signal readouts. In conclusion, our data showed that the conversion of the resazurin-based Presto Blue metabolic assay can be used as a quantitative readout for online monitoring of cell proliferation in a 3D perfusion bioreactor system, although a system-specific validation is required.

  16. Quantitative Validation of the Presto Blue™ Metabolic Assay for Online Monitoring of Cell Proliferation in a 3D Perfusion Bioreactor System

    PubMed Central

    Sonnaert, Maarten; Papantoniou, Ioannis; Luyten, Frank P.

    2015-01-01

    As the fields of tissue engineering and regenerative medicine mature toward clinical applications, the need for online monitoring both for quantitative and qualitative use becomes essential. Resazurin-based metabolic assays are frequently applied for determining cytotoxicity and have shown great potential for monitoring 3D bioreactor-facilitated cell culture. However, no quantitative correlation between the metabolic conversion rate of resazurin and cell number has been defined yet. In this work, we determined conversion rates of Presto Blue™, a resazurin-based metabolic assay, for human periosteal cells during 2D and 3D static and 3D perfusion cultures. Our results showed that for the evaluated culture systems there is a quantitative correlation between the Presto Blue conversion rate and the cell number during the expansion phase with no influence of the perfusion-related parameters, that is, flow rate and shear stress. The correlation between the cell number and Presto Blue conversion subsequently enabled the definition of operating windows for optimal signal readouts. In conclusion, our data showed that the conversion of the resazurin-based Presto Blue metabolic assay can be used as a quantitative readout for online monitoring of cell proliferation in a 3D perfusion bioreactor system, although a system-specific validation is required. PMID:25336207

  17. Optimization and validation of DNA extraction and real-time PCR assay for the quantitative measurement of residual host cell DNA in biopharmaceutical products.

    PubMed

    Hu, B; Sellers, J; Kupec, J; Ngo, W; Fenton, S; Yang, T-Y; Grebanier, A

    2014-01-01

    Host cell DNA contamination occurs during the production of biopharmaceuticals and must be controlled and monitored for the purity and safety of the drug products. A sodium iodide-based DNA extraction and a subsequent real time PCR assay were developed and validated for the quantitative measurement of residual host cell DNA impurity in monoclonal antibody therapeutic products. A sodium iodide-based commercial kit was optimized for the removal of interfering matrices. Several incubation steps from the kit protocol were combined and a neutralization buffer was introduced to protein digestion step to eliminate any precipitation from the detergent. The elimination of the two washing steps significantly reduced assay variability from loss of DNA pellets. The optimized DNA extraction procedure can recover DNA close to 100% for DNA concentrations from 10 to 100,000pg/mL. Of the published sequences of repetitive interspersed nuclear elements, we identified a nucleotide mismatch from the published CHO probe. Correction of this nucleotide increased DNA amplification by a thousand fold. The optimized assay was further validated for the quantitation of residual CHO DNA according to ICH guidelines with preset assay acceptance criteria. The method met all assay acceptance criteria and was found linear, accurate and precise for the quantitation of residual CHO in the linear range of 10-100,000pg DNA/mL. LOQ was measured at 10pg DNA/mL and LOD at 1pg DNA/mL. No matrix interference to our validated assay was detected from bioreactor harvest, Protein A eluate or eluate from ion exchange columns.

  18. Comparison of Quantitative PCR and Droplet Digital PCR Multiplex Assays for Two Genera of Bloom-Forming Cyanobacteria, Cylindrospermopsis and Microcystis

    PubMed Central

    Te, Shu Harn; Chen, Enid Yingru

    2015-01-01

    The increasing occurrence of harmful cyanobacterial blooms, often linked to deteriorated water quality and adverse public health effects, has become a worldwide concern in recent decades. The use of molecular techniques such as real-time quantitative PCR (qPCR) has become increasingly popular in the detection and monitoring of harmful cyanobacterial species. Multiplex qPCR assays that quantify several toxigenic cyanobacterial species have been established previously; however, there is no molecular assay that detects several bloom-forming species simultaneously. Microcystis and Cylindrospermopsis are the two most commonly found genera and are known to be able to produce microcystin and cylindrospermopsin hepatotoxins. In this study, we designed primers and probes which enable quantification of these genera based on the RNA polymerase C1 gene for Cylindrospermopsis species and the c-phycocyanin beta subunit-like gene for Microcystis species. Duplex assays were developed for two molecular techniques—qPCR and droplet digital PCR (ddPCR). After optimization, both qPCR and ddPCR assays have high linearity and quantitative correlations for standards. Comparisons of the two techniques showed that qPCR has higher sensitivity, a wider linear dynamic range, and shorter analysis time and that it was more cost-effective, making it a suitable method for initial screening. However, the ddPCR approach has lower variability and was able to handle the PCR inhibition and competitive effects found in duplex assays, thus providing more precise and accurate analysis for bloom samples. PMID:26025892

  19. Comparison of Quantitative PCR and Droplet Digital PCR Multiplex Assays for Two Genera of Bloom-Forming Cyanobacteria, Cylindrospermopsis and Microcystis.

    PubMed

    Te, Shu Harn; Chen, Enid Yingru; Gin, Karina Yew-Hoong

    2015-08-01

    The increasing occurrence of harmful cyanobacterial blooms, often linked to deteriorated water quality and adverse public health effects, has become a worldwide concern in recent decades. The use of molecular techniques such as real-time quantitative PCR (qPCR) has become increasingly popular in the detection and monitoring of harmful cyanobacterial species. Multiplex qPCR assays that quantify several toxigenic cyanobacterial species have been established previously; however, there is no molecular assay that detects several bloom-forming species simultaneously. Microcystis and Cylindrospermopsis are the two most commonly found genera and are known to be able to produce microcystin and cylindrospermopsin hepatotoxins. In this study, we designed primers and probes which enable quantification of these genera based on the RNA polymerase C1 gene for Cylindrospermopsis species and the c-phycocyanin beta subunit-like gene for Microcystis species. Duplex assays were developed for two molecular techniques-qPCR and droplet digital PCR (ddPCR). After optimization, both qPCR and ddPCR assays have high linearity and quantitative correlations for standards. Comparisons of the two techniques showed that qPCR has higher sensitivity, a wider linear dynamic range, and shorter analysis time and that it was more cost-effective, making it a suitable method for initial screening. However, the ddPCR approach has lower variability and was able to handle the PCR inhibition and competitive effects found in duplex assays, thus providing more precise and accurate analysis for bloom samples.

  20. Imaging and quantitative analysis of tritium-labelled cells in lymphocyte proliferation assays using microchannel plate detectors originally developed for X-ray astronomy.

    PubMed

    Lees, J E; Hales, J M

    2001-01-01

    Microchannel plate detectors have been used in many astronomical X-ray telescopes. Recently we have begun to use similar detectors to image electron emission from radiolabelled biological assays. Here we show how a microchannel plate (MCP) detector can be used to image tritium uptake in T lymphocyte proliferation assays. Quantitative analysis using the MCP detector has the same sensitivity and speed as conventional liquid scintillation counter (LSC) analysis whilst obviating the need for scintillation fluid. In addition the system permits the imaging of whole plate harvests from a range of plate sizes. Here we present data obtained with 96-well plates and Terasaki plates.

  1. Development and Evaluation of Up-Converting Phosphor Technology-Based Lateral Flow Assay for Quantitative Detection of NT-proBNP in Blood

    PubMed Central

    Hao, Qingfang; Zou, Deyong; Zhang, Xiaoli; Zhang, Liping; Li, Hongmei; Qiao, Yong; Zhao, Huansheng; Zhou, Lei

    2017-01-01

    A newly assay, up-converting phosphor technology-based lateral flow (UPT-LF) assay, was developed for rapid and quantitative detection of N-terminal fragment of B-type natriuretic peptide precursor (NT-proBNP), one of the most important serum molecular maker of heat failure, in plasma samples as a point of care testing (POCT) method for diagnosis of acute heart failure. Human plasma from 197 patients with acute heart failure and 200 healthy controls was assessed using the UPT-LF assay, in a comparison with a Roche Elecsys assay. The limit of detection of the UPT-LF assay, with a coefficient of variation (CV) of less than 15%, was 116 ng/L, which is lower than the clinical diagnosis cutoff (150 ng/mL). The linear range was 50–35,000 ng/L. The CVs were less than 10% for both UPT-LF and Roche Elecsys assays for plasma samples under different storages, demonstrating the good stability and reproducibility. There are certain linear correlations between the results of UPT-LF and Roche Elecsys assay for EDTA-K2 and heparin-anticoagulated plasma, as well as for serum samples. For UPT-LF assay, there is a significant correlation between the values derived from analysis of EDTA-K2 and heparin-anticoagulated plasma samples (R = 0.995). No statistically significant difference was found between serum and plasma samples for UPT-LF assay. Our results demonstrate that NT-proBNP levels in healthy adults are elevated with age and had a relationship with sex, and with the age increase the NT-proBNP levels of females are significantly higher than those of males (p<0.01). The UPT-LF assay has a high reproducibility, stability, sensitivity, specificity, and is consistent with Roche Elecsys assay, and therefore it could be used as a POCT method for the quantitative detection of NT-proBNP in blood for clinical diagnosis and research of acute heart failure. PMID:28151978

  2. Detection of a Molecular Biomarker for Zygomycetes by Quantitative PCR Assays of Plasma, Bronchoalveolar Lavage, and Lung Tissue in a Rabbit Model of Experimental Pulmonary Zygomycosis▿

    PubMed Central

    Kasai, Miki; Harrington, Susan M.; Francesconi, Andrea; Petraitis, Vidmantas; Petraitiene, Ruta; Beveridge, Mara G.; Knudsen, Tena; Milanovich, Jeffery; Cotton, Margaret P.; Hughes, Johanna; Schaufele, Robert L.; Sein, Tin; Bacher, John; Murray, Patrick R.; Kontoyiannis, Dimitrios P.; Walsh, Thomas J.

    2008-01-01

    We developed two real-time quantitative PCR (qPCR) assays, targeting the 28S rRNA gene, for the diagnosis of zygomycosis caused by the most common, clinically significant Zygomycetes. The amplicons of the first qPCR assay (qPCR-1) from Rhizopus, Mucor, and Rhizomucor species were distinguished through melt curve analysis. The second qPCR assay (qPCR-2) detected Cunninghamella species using a different primer/probe set. For both assays, the analytic sensitivity for the detection of hyphal elements from germinating sporangiospores in bronchoalveolar lavage (BAL) fluid and lung tissue homogenates from rabbits was 1 to 10 sporangiospores/ml. Four unique and clinically applicable models of invasive pulmonary zygomycosis served as surrogates of human infections, facilitating the validation of these assays for potential diagnostic utility. For qPCR-1, 5 of 98 infarcted lung specimens were positive by qPCR and negative by quantitative culture (qCx). None were qCx positive only. Among 23 BAL fluid samples, all were positive by qPCR, while 22 were positive by qCx. qPCR-1 detected Rhizopus and Mucor DNA in 20 (39%) of 51 serial plasma samples as early as day 1 postinoculation. Similar properties were observed for qPCR-2, which showed greater sensitivity than qCx for BAL fluid (100% versus 67%; P = 0.04; n = 15). The assay detected Cunninghamella DNA in 18 (58%) of 31 serial plasma samples as early as day 1 postinoculation. These qPCR assays are sensitive and specific for the detection of Rhizopus, Mucor, Rhizomucor, and Cunninghamella species and can be used for the study and detection of infections caused by these life-threatening pathogens. PMID:18845827

  3. A quantitative real-time PCR assay for the identification and enumeration of Alexandrium cysts in marine sediments

    NASA Astrophysics Data System (ADS)

    Erdner, D. L.; Percy, L.; Keafer, B.; Lewis, J.; Anderson, D. M.

    2010-02-01

    Harmful algal blooms (HABs) are a global problem that affects both human and ecosystem health. One of the most serious and widespread HAB poisoning syndromes is paralytic shellfish poisoning, commonly caused by Alexandrium spp. dinoflagellates. Like many toxic dinoflagellates, Alexandrium produces resistant resting cysts as part of its life cycle. These cysts play a key role in bloom initiation and decline, as well as dispersal and colonization of new areas. Information on cyst numbers and identity is essential for understanding and predicting blooms, yet comprehensive cyst surveys are extremely time- and labor-intensive. Here we describe the development and validation of a quantitative real-time PCR (qPCR) technique for the enumeration of cysts of A. tamarense of the toxic North American/Group I ribotype. The method uses a cloned fragment of the large subunit ribosomal RNA gene as a standard for cyst quantification, with an experimentally determined conversion factor of 28,402±6152 LSU ribosomal gene copies per cyst. Tests of DNA extraction and PCR efficiency show that mechanical breakage is required for adequate cyst lysis, and that it was necessary to dilute our DNA extracts 50-fold in order to abolish PCR inhibition from compounds co-extracted from the sediment. The resulting assay shows a linear response over 6 orders of magnitude and can reliably quantify ≥10 cysts/cm 3 sediment. For method validation, 129 natural sediment samples were split and analyzed in parallel, using both the qPCR and primulin-staining techniques. Overall, there is a significant correlation ( p<0.001) between the cyst abundances determined by the two methods, although the qPCR counts tend to be lower than the primulin values. This underestimation is less pronounced in those samples collected from the top 1 cm of sediment, and more pronounced in those derived from the next 1-3 cm of the core. These differences may be due to the condition of the cysts in the different layers, as the

  4. Assay of S for Quantitation of PEG and TNF Ligated Au Nanoparticles using ID-HR-MC-ICP-MS

    NASA Astrophysics Data System (ADS)

    Mann, J. L.; Vocke, R. D.; Newman, J. D.; Kelly, W. R.

    2009-12-01

    The use of nanomaterials in medicine has recently increased with the discovery that these materials can deliver drugs to specific sites within the body. An active area of nanomedicine involves the use of gold nanoparticles (AuNPs) as a delivery platform for anti-cancer agents such as tumor necrosis factor-α (TNF-α). TNF-α molecules attack the blood vessels in a tumor causing them to hemorrhage profusely. TNF-α is also highly toxic to normal cells, making targeted delivery to the tumor site crucial. AuNPs ensure the ligated TNF-α is delivered to its appropriate target, mitigating systemic toxicity. Additionally, coating AuNPs with the surface modifier polyethylene glycol (PEG) promotes bioavailability and biodistribution of TNF-α by preventing protein binding and bodily uptake thereby increasing the lifetime in the bloodstream. The FDA will likely mandate all nanotechnologies of this sort undergo quality control to ensure the nanoplatforms are modified with approximately the same number of drug molecules and other surface modifiers. Quality control methods, such as visible spectroscopy, can be used to qualitatively assess the total amounts of TNF-α and PEG on AuNPs, however, these methods need to be validated via calibration by an absolute technique. The sulfur content can be used as a proxy for both PEG and TNF-α concentrations because of the presence of at least one thiol in each of the ligands. The goal of this work was to provide a benchmark for future spectroscopic results by providing an accurate assessment of the TNF-α and PEG concentrations through the accurate quantitation of S. The sulfur concentration was assayed using isotope dilution (ID) combined with high resolution multi-collector inductively coupled plasma mass spectrometry (HR-MC-ICPMS). The measurement of S using ICPMS instrumentation is challenging because 1) molecular interferences (e.g. oxides, nitrides, and hydrides) exist on each of the S isotopes and 2) the need to perform the

  5. The Applicability of TaqMan-Based Quantitative Real-Time PCR Assays for Detecting and Enumerating Cryptosporidium spp. Oocysts in the Environment

    PubMed Central

    Staggs, Sarah E.; Beckman, Erin M.; Keely, Scott P.; Mackwan, Reena; Ware, Michael W.; Moyer, Alan P.; Ferretti, James A.; Sayed, Abu; Xiao, Lihua; Villegas, Eric N.

    2013-01-01

    Quantitative real-time polymerase chain reaction (qPCR) assays to detect Cryptosporidium oocysts in clinical samples are increasingly being used to diagnose human cryptosporidiosis, but a parallel approach for detecting and identifying Cryptosporidium oocyst contamination in surface water sources has yet to be established for current drinking water quality monitoring practices. It has been proposed that Cryptosporidium qPCR-based assays could be used as viable alternatives to current microscopic-based detection methods to quantify levels of oocysts in drinking water sources; however, data on specificity, analytical sensitivity, and the ability to accurately quantify low levels of oocysts are limited. The purpose of this study was to provide a comprehensive evaluation of TaqMan-based qPCR assays, which were developed for either clinical or environmental investigations, for detecting Cryptosporidium oocyst contamination in water. Ten different qPCR assays, six previously published and four developed in this study were analyzed for specificity and analytical sensitivity. Specificity varied between all ten assays, and in one particular assay, which targeted the Cryptosporidium 18S rRNA gene, successfully detected all Cryptosporidium spp. tested, but also cross-amplified T. gondii, fungi, algae, and dinoflagellates. When evaluating the analytical sensitivity of these qPCR assays, results showed that eight of the assays could reliably detect ten flow-sorted oocysts in reagent water or environmental matrix. This study revealed that while a qPCR-based detection assay can be useful for detecting and differentiating different Cryptosporidium species in environmental samples, it cannot accurately measure low levels of oocysts that are typically found in drinking water sources. PMID:23805235

  6. Development of quantitative PCR assays targeting the 16S rRNA genes of Enterococcus spp. and their application to the identification of enterococcus species in environmental samples.

    PubMed

    Ryu, Hodon; Henson, Michael; Elk, Michael; Toledo-Hernandez, Carlos; Griffith, John; Blackwood, Denene; Noble, Rachel; Gourmelon, Michèle; Glassmeyer, Susan; Santo Domingo, Jorge W

    2013-01-01

    The detection of environmental enterococci has been determined primarily by using culture-based techniques that might exclude some enterococcal species as well as those that are nonculturable. To address this, the relative abundances of enterococci were examined by challenging fecal and water samples against a currently available genus-specific assay (Entero1). To determine the diversity of enterococcal species, 16S rRNA gene-based group-specific quantitative PCR (qPCR) assays were developed and evaluated against eight of the most common environmental enterococcal species. Partial 16S rRNA gene sequences of 439 presumptive environmental enterococcal strains were analyzed to study further the diversity of enterococci and to confirm the specificities of group-specific assays. The group-specific qPCR assays showed relatively high amplification rates with targeted species (>98%), although some assays cross-amplified with nontargeted species (1.3 to 6.5%). The results with the group-specific assays also showed that different enterococcal species co-occurred in most fecal samples. The most abundant enterococci in water and fecal samples were Enterococcus faecalis and Enterococcus faecium, although we identified more water isolates as Enterococcus casseliflavus than as any of the other species. The prevalence of the Entero1 marker was in agreement with the combined number of positive signals determined by the group-specific assays in most fecal samples, except in gull feces. On the other hand, the number of group-specific assay signals was lower in all water samples tested, suggesting that other enterococcal species are present in these samples. While the results highlight the value of genus- and group-specific assays for detecting the major enterococcal groups in environmental water samples, additional studies are needed to determine further the diversity, distributions, and relative abundances of all enterococcal species found in water.

  7. Serum virus neutralization assay for detection and quantitation of serum neutralizing antibodies to influenza A virus in swine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The serum virus neutralization (SVN) assay is a serological test to detect the presence and magnitude of functional systemic antibodies that prevent infectivity of a virus. The SVN assay is a highly sensitive and specific test that may be applied to influenza A viruses (IAV) in swine to measure the ...

  8. Layer plate CAS assay for the quantitation of siderophore production and determination of exudation patterns for fungi.

    PubMed

    Andrews, Megan Y; Santelli, Cara M; Duckworth, Owen W

    2016-02-01

    The chrome azurol S (CAS) assay measures the chelating activity of siderophores, but its application (especially to fungi) is limited by toxicity issues. In this note, we describe a modified version of the CAS assay that is suitable for quantifying siderophore exudation for microorganisms, including fungi.

  9. A quantitative, facile, and high-throughput image-based cell migration method is a robust alternative to the scratch assay.

    PubMed

    Gough, Wendy; Hulkower, Keren I; Lynch, Renee; McGlynn, Patrick; Uhlik, Mark; Yan, Lei; Lee, Jonathan A

    2011-02-01

    Cell migration is a key phenotype for a number of therapeutically important biological responses, including angiogenesis. A commonly used method to assess cell migration is the scratch assay, which measures the movement of cells into a wound made by physically scoring a confluent cell monolayer to create an area devoid of cells. Although this method has been adequate for qualitative characterization of migration inhibitors, it does not provide the highly reproducible results required for quantitative compound structure-activity relationship evaluation because of the inconsistent size and placement of the wound area within the microplate well. The Oris™ Cell Migration Assay presents a superior alternative to the scratch assay, permitting formation of precisely placed and homogeneously sized cell-free areas into which migration can occur without releasing factors from wounded or dead cells or damaging the underlying extracellular matrix. Herein the authors compare results from the scratch and Oris™ cell migration assays using an endothelial progenitor cell line and the Src kinase inhibitor dasatinib. They find that using the Acumen™ Explorer laser microplate cytometer in combination with the Oris™ Cell Migration Assay plate provides a robust, efficient, and cost-effective cell migration assay exhibiting excellent signal to noise, plate uniformity, and statistical validation metrics.

  10. Histochemical technique: a general method for quantitative enzyme assays of single cell extracts with a time resolution of seconds and a reading precision of femtomoles

    SciTech Connect

    Outlaw, W.H. Jr.; Springer, S.A.; Tarczynski, M.C.

    1985-03-01

    Biochemists who study single cells have been constrained by the lack of a general methodology of high time resolution and high measurement sensitivity for quantitatively assaying enzyme activities using natural substrates in solution. The methods the authors describe will remove this limitation. In brief, nanogram tissue samples are dissected from frozen-dried tissue. The samples are extracted in microdroplets of assay cocktail. The enzyme activity, indicated fluorometrically by the oxidation/reduction of NAD(P), is followed in real time on a computer display. With these methods, assays of pyruvate orthophosphate dikinase on samples enriched in bundlesheath cells and mesophyll cells of Flaveria brownii yielded the predictable results. Assays of this enzyme in guard cells dissected from Vicia faba leaflets gave results like those recently reported by another laboratory for protoplasts derived from these cells. The results of assays by this method and by enzymic cycling for NAD(P) triose-P dehydrogenase were comparable. Phosphoenolpyruvate carboxylase, the most extensively studied enzyme activity, was present at high levels in guard cells, which has been demonstrated previously in other reports based on diverse assay approaches.

  11. Identification of the major capsid protein of erythrocytic necrosis virus (ENV) and development of quantitative real-time PCR assays for quantification of ENV DNA

    USGS Publications Warehouse

    Purcell, Maureen K.; Pearman-Gillman, Schuyler; Thompson, Rachel L.; Gregg, Jacob L.; Hart, Lucas M.; Winton, James R.; Emmenegger, Eveline J.; Hershberger, Paul K.

    2016-01-01

    Viral erythrocytic necrosis (VEN) is a disease of marine and anadromous fish that is caused by the erythrocytic necrosis virus (ENV), which was recently identified as a novel member of family Iridoviridae by next-generation sequencing. Phylogenetic analysis of the ENV DNA polymerase grouped ENV with other erythrocytic iridoviruses from snakes and lizards. In the present study, we identified the gene encoding the ENV major capsid protein (MCP) and developed a quantitative real-time PCR (qPCR) assay targeting this gene. Phylogenetic analysis of the MCP gene sequence supported the conclusion that ENV does not group with any of the currently described iridovirus genera. Because there is no information regarding genetic variation of the MCP gene across the reported host and geographic range for ENV, we also developed a second qPCR assay for a more conserved ATPase-like gene region. The MCP and ATPase qPCR assays demonstrated good analytical and diagnostic sensitivity and specificity based on samples from laboratory challenges of Pacific herring Clupea pallasii. The qPCR assays had similar diagnostic sensitivity and specificity as light microscopy of stained blood smears for the presence of intraerythrocytic inclusion bodies. However, the qPCR assays may detect viral DNA early in infection prior to the formation of inclusion bodies. Both qPCR assays appear suitable for viral surveillance or as a confirmatory test for ENV in Pacific herring from the Salish Sea.

  12. Evaluation of quantitative polymerase chain reaction assays targeting Mycobacterium avium, M. intracellulare, and M. avium subspecies paratuberculosis in drinking water biofilms.

    PubMed

    Chern, Eunice C; King, Dawn; Haugland, Richard; Pfaller, Stacy

    2015-03-01

    Mycobacterium avium (MA), Mycobacterium intracellulare (MI), and Mycobacterium avium subsp. paratuberculosis (MAP) are difficult to culture due to their slow growing nature. A quantitative polymerase chain reaction (qPCR) method for the rapid detection of MA, MI, and MAP can be used to provide data supporting drinking water biofilms as potential sources of human exposure. The aim of this study was to characterize two qPCR assays targeting partial 16S rRNA gene sequences of MA and MI and use these assays, along with two previously reported MAP qPCR assays (IS900 and Target 251), to investigate Mycobacterium occurrence in kitchen faucet biofilms. MA and MI qPCR assays demonstrated 100% specificity and sensitivity when evaluated against 18 non-MA complex, 76 MA, and 17 MI isolates. Both assays detected approximately 1,000 cells from a diluted cell stock inoculated on a sampling swab 100% of the time. DNA analysis by qPCR indicated that 35.3, 56.9 and 11.8% of the 51 kitchen faucet biofilm samples collected contained MA, MI, and MAP, respectively. This study introduces novel qPCR assays designed to specifically detect MA and MI in biofilm. Results support the use of qPCR as an alternative to culture for detection and enumeration of MA, MI, and MAP in microbiologically complex samples.

  13. Identification of the major capsid protein of erythrocytic necrosis virus (ENV) and development of quantitative real-time PCR assays for quantification of ENV DNA.

    PubMed

    Purcell, Maureen K; Pearman-Gillman, Schuyler; Thompson, Rachel L; Gregg, Jacob L; Hart, Lucas M; Winton, James R; Emmenegger, Eveline J; Hershberger, Paul K

    2016-07-01

    Viral erythrocytic necrosis (VEN) is a disease of marine and anadromous fish that is caused by the erythrocytic necrosis virus (ENV), which was recently identified as a novel member of family Iridoviridae by next-generation sequencing. Phylogenetic analysis of the ENV DNA polymerase grouped ENV with other erythrocytic iridoviruses from snakes and lizards. In the present study, we identified the gene encoding the ENV major capsid protein (MCP) and developed a quantitative real-time PCR (qPCR) assay targeting this gene. Phylogenetic analysis of the MCP gene sequence supported the conclusion that ENV does not group with any of the currently described iridovirus genera. Because there is no information regarding genetic variation of the MCP gene across the reported host and geographic range for ENV, we also developed a second qPCR assay for a more conserved ATPase-like gene region. The MCP and ATPase qPCR assays demonstrated good analytical and diagnostic sensitivity and specificity based on samples from laboratory challenges of Pacific herring Clupea pallasii The qPCR assays had similar diagnostic sensitivity and specificity as light microscopy of stained blood smears for the presence of intraerythrocytic inclusion bodies. However, the qPCR assays may detect viral DNA early in infection prior to the formation of inclusion bodies. Both qPCR assays appear suitable for viral surveillance or as a confirmatory test for ENV in Pacific herring from the Salish Sea.

  14. Large-Scale Interlaboratory Study to Develop, Analytically Validate and Apply Highly Multiplexed, Quantitative Peptide Assays to Measure Cancer-Relevant Proteins in Plasma*

    PubMed Central

    Abbatiello, Susan E.; Schilling, Birgit; Mani, D. R.; Zimmerman, Lisa J.; Hall, Steven C.; MacLean, Brendan; Albertolle, Matthew; Allen, Simon; Burgess, Michael; Cusack, Michael P.; Gosh, Mousumi; Hedrick, Victoria; Held, Jason M.; Inerowicz, H. Dorota; Jackson, Angela; Keshishian, Hasmik; Kinsinger, Christopher R.; Lyssand, John; Makowski, Lee; Mesri, Mehdi; Rodriguez, Henry; Rudnick, Paul; Sadowski, Pawel; Sedransk, Nell; Shaddox, Kent; Skates, Stephen J.; Kuhn, Eric; Smith, Derek; Whiteaker, Jeffery R.; Whitwell, Corbin; Zhang, Shucha; Borchers, Christoph H.; Fisher, Susan J.; Gibson, Bradford W.; Liebler, Daniel C.; MacCoss, Michael J.; Neubert, Thomas A.; Paulovich, Amanda G.; Regnier, Fred E.; Tempst, Paul; Carr, Steven A.

    2015-01-01

    There is an increasing need in biology and clinical medicine to robustly and reliably measure tens to hundreds of peptides and proteins in clinical and biological samples with high sensitivity, specificity, reproducibility, and repeatability. Previously, we demonstrated that LC-MRM-MS with isotope dilution has suitable performance for quantitative measurements of small numbers of relatively abundant proteins in human plasma and that the resulting assays can be transferred across laboratories while maintaining high reproducibility and quantitative precision. Here, we significantly extend that earlier work, demonstrating that 11 laboratories using 14 LC-MS systems can develop, determine analytical figures of merit, and apply highly multiplexed MRM-MS assays targeting 125 peptides derived from 27 cancer-relevant proteins and seven control proteins to precisely and reproducibly measure the analytes in human plasma. To ensure consistent generation of high quality data, we incorporated a system suitability protocol (SSP) into our experimental design. The SSP enabled real-time monitoring of LC-MRM-MS performance during assay development and implementation, facilitating early detection and correction of chromatographic and instrumental problems. Low to subnanogram/ml sensitivity for proteins in plasma was achieved by one-step immunoaffinity depletion of 14 abundant plasma proteins prior to analysis. Median intra- and interlaboratory reproducibility was <20%, sufficient for most biological studies and candidate protein biomarker verification. Digestion recovery of peptides was assessed and quantitative accuracy improved using heavy-isotope-labeled versions of the proteins as internal standards. Using the highly multiplexed assay, participating laboratories were able to precisely and reproducibly determine the levels of a series of analytes in blinded samples used to simulate an interlaboratory clinical study of patient samples. Our study further establishes that LC

  15. Developing a quantitative in vivo tissue reconstitution assay to assess the relative potency of candidate populations of mouse oesophageal epithelial cells.

    PubMed

    Croagh, Daniel; Redvers, Rick; Phillips, Wayne A; Kaur, Pritinder

    2012-01-01

    Proliferation in mouse oesophageal epithelial cells is confined to the basal layer of the epithelium. Within this population, it is possible to discriminate different sub-populations using a combination of cell kinetic studies and functional assays. In particular, it is possible to distinguish basal epithelial cells, which are post-mitotic and destined to leave the basal layer and differentiate compared with those cells that remain in the cycling pool. Within the cycling basal population, there appears to be a hierarchy with respect to the rate of cell turnover which may reflect a hierarchy of "stemness", although it has not been possible to demonstrate functional differences between these populations using current in vivo tissue reconstitution assays. The aim of this chapter is to describe the development of a quantitative in vivo tissue reconstitution assay to assess the potency of candidate stem cell populations within the mouse oesophageal epithelium.

  16. Quantitation of IgE and carcinoembryonic antigen (CEA) by optical beam deflection (OBD) measurement of dot-immunobinding assay patterns visualized by an ELISA technique.

    PubMed

    Matsuzawa, S; Kimura, H; Tu, C Y; Kitamori, T; Sawada, T

    1993-05-05

    Dot-immunobinding assays of IgE and CEA were performed by a conventional dot-ELISA technique with diaminobenzidine staining, and the quantitative results were compared by densitometry and a new, spectroscopic, optical beam deflection (OBD) method using the same membrane. It was possible with the OBD method to detect quantities of these substances at least ten times smaller than with densitometry. Better intra-assay reproducibility for IgE and CEA measurements was obtained by the OBD method. The measurable ranges of the OBD method was broader than that of densitometry, because dark bands caused OBD in proportion to their color densities. When the dot-immunobinding assay with OBD measurement for CEA was also compared with a microtube ELISA using biotin-avidin conjugates, the sensitivities and reproducibilities of the two methods were found to be similar, with a correlation coefficient of 0.991.

  17. Development and evaluation of a new kinetic assay for the quantitation of fibronectin gelatin-binding activity.

    PubMed

    Gelder, F B; Brown, S T; Moore, C A

    1985-10-01

    A new rapid and sensitive kinetic assay that measures the gelatin-binding activity of fibronectin has been developed. This assay is based on the rate of fibronectin-mediated aggregation of covalently coupled latex-gelatin particles. The addition of human plasma and serum resulted in aggregation rates proportional to the concentration of fibronectin in the test sample. This assay was inhibited by the addition of gelatin, demonstrating substrate specificity. This new assay requires 50 microliter of sample and can be performed within 5 minutes. Particle aggregation rates were affected by pH, heparin, and coupled gelatin concentration per milligram of latex. Maximum aggregation rates were observed at pH 8.0. Heparin was not an absolute requirement for particle aggregation but enhanced rates up to 1 U heparin/ml with little additive effect at greater concentrations. Heparin had a relatively greater effect on assays performed in acidic buffers. The concentration of gelatin per milligram of latex was rate limiting up to approximately 50 micrograms gelatin/mg latex with little change in aggregation rates at higher concentrations. Good correlation between total antigenic fibronectin (electroimmunoassay) and fibronectin gelatin-binding activity (latex-gelatin kinetic aggregation assay) was demonstrated in plasma from normal blood donors. This new assay will allow further definition of the relationship between fibronectin gelatin-binding activity and antigenic fibronectin in normal and pathophysiologic states.

  18. Development and validation of a real-time quantitative PCR assay for rapid identification of Bacillus anthracis in environmental samples.

    PubMed

    Irenge, Léonid M; Durant, Jean-François; Tomaso, Herbert; Pilo, Paola; Olsen, Jaran S; Ramisse, Vincent; Mahillon, Jacques; Gala, Jean-Luc

    2010-11-01

    A real-time polymerase chain reaction (PCR) assay was developed for rapid identification of Bacillus anthracis in environmental samples. These samples often harbor Bacillus cereus bacteria closely related to B. anthracis, which may hinder its specific identification by resulting in false positive signals. The assay consists of two duplex real-time PCR: the first PCR allows amplification of a sequence specific of the B. cereus group (B. anthracis, B. cereus, Bacillus thuringiensis, Bacillus weihenstephanensis, Bacillus pseudomycoides, and Bacillus mycoides) within the phosphoenolpyruvate/sugar phosphotransferase system I gene and a B. anthracis specific single nucleotide polymorphism within the adenylosuccinate synthetase gene. The second real-time PCR assay targets the lethal factor gene from virulence plasmid pXO1 and the capsule synthesis gene from virulence plasmid pXO2. Specificity of the assay is enhanced by the use of minor groove binding probes and/or locked nucleic acids probes. The assay was validated on 304 bacterial strains including 37 B. anthracis, 67 B. cereus group, 54 strains of non-cereus group Bacillus, and 146 Gram-positive and Gram-negative bacteria strains. The assay was performed on various environmental samples spiked with B. anthracis or B. cereus spores. The assay allowed an accurate identification of B. anthracis in environmental samples. This study provides a rapid and reliable method for improving rapid identification of B. anthracis in field operational conditions.

  19. Evaluation and subsequent optimizations of the quantitative AmpliSens Florocenosis/Bacterial vaginosis-FRT multiplex real-time PCR assay for diagnosis of bacterial vaginosis.

    PubMed

    Rumyantseva, Tatiana; Shipitsyna, Elena; Guschin, Alexander; Unemo, Magnus

    2016-12-01

    Traditional microscopy-based methods for diagnosis of bacterial vaginosis (BV) are underutilized in many settings, and molecular techniques may provide opportunities for rapid, objective, and accurate BV diagnosis. This study evaluated the quantitative AmpliSens Florocenosis/Bacterial vaginosis-FRT multiplex real-time PCR (Florocenosis-BV) assay. Vaginal samples from a previous study including unselected female subjects (n = 163) and using Amsel criteria and 454 pyrosequencing for BV diagnosis were examined with the Florocenosis-BV test and additionally tested for the presence and quantity of Gardnerella vaginalis clades 3 and 4. The Florocenosis-BV assay demonstrated 100% and 98% sensitivity compared with the Amsel criteria and 454 pyrosequencing, respectively, with 91% specificity. The modified Florocenosis-BV assay (detecting also G. vaginalis clades 3 and 4) resulted in 100% sensitivity vs the Amsel criteria and 454 pyrosequencing with specificity of 86% and 88%, respectively. Further optimizations of thresholds for the quantitative parameters used in the kit resulted in 99-100% accuracy vs Amsel criteria and 454 pyrosequencing for selected parameters. The Florocenosis-BV assay is an objective, accurate, sensitive, and specific method for BV diagnosis; however, the performance of the test can be further improved with some minor optimizations.

  20. Quantitative detection of pork in commercial meat products by TaqMan® real-time PCR assay targeting the mitochondrial D-loop region.

    PubMed

    Kim, Miju; Yoo, Insuk; Lee, Shin-Young; Hong, Yeun; Kim, Hae-Yeong

    2016-11-01

    The TaqMan® real-time PCR assay using the mitochondrial D-loop region was developed for the quantitative detection of pork in processed meat products. The newly designed primers and probe specifically amplified pork without any cross-reactivity with non-target animal species. The limit of detection of the real-time PCR assay was 0.1pg of heat-treated pork meat and 0.1% (w/w) pork meat in beef and chicken meat mixtures. The quantitative real-time PCR assay was applied to analyze the pork meat content in 22 commercial processed meat products including jerkies, press hams, sausages, hamburger patties and steaks, grilled short rib patties, and nuggets. The developed real-time PCR method was able to detect pork meat in various types of processed meat products that declared the use of pork meat on their label. All processed meat products that declared no use of pork meat showed a negative result in the assay. The method developed in this study showed sensitivity and specificity in the quantification of pork meat in commercial processed meat products.

  1. Development of a quantitative real-time PCR assay for sapovirus in children under 5-years-old in Regina Margherita Hospital of Turin, Italy.

    PubMed

    Bergallo, Massimiliano; Galliano, Ilaria; Montanari, Paola; Brusin, Martina Rosa; Finotti, Serena; Paderi, Giulia; Gabiano, Clara

    2017-04-01

    Gastroenteritis is a common disease in children. It is characterized by diarrhea, vomiting, abdominal pain, and fever. Sapovirus (SaV) is a causative agent of acute gastroenteritis, but it causes milder illness than do rotavirus and norovirus. There is high variability in the analytical performance of quantitative PCR-based assays among clinical laboratories. This study developed a reverse transcription real-time PCR method to detect SaV in fecal specimens collected from children under 5-years-old with acute gastroenteritis. Of 137 episodes of acute gastroenteritis, 15 (10.9%) were associated with SaV genomic detection, with a median viral load of 6.6(log10) ± 7.1(log10) genomes/mg fecal specimens. There was a significant difference in detection rate between males and females (9.48% (13/15) vs. 1.46% (2/15), p = 0.0232). Among the 15 SaV-positive cases, 6 were also positive for rotavirus. Viral RNA recovery rate ranged from 46% to 77% in the manual RNAzol protocol and from 31% to 90% in the automated Maxwell protocol. We also studied whether human genomic DNA influences the sensitivity of the assay: its presence caused a decrease in PCR sensitivity. The development of a laboratory-designed real-time PCR TaqMan assay for quantitative detection of SaV and the optimization and standardization of this assay, using stools of children with acute gastroenteritis, are described.

  2. Quantitative digital image analysis of chromogenic assays for high throughput screening of alpha-amylase mutant libraries.

    PubMed

    Shankar, Manoharan; Priyadharshini, Ramachandran; Gunasekaran, Paramasamy

    2009-08-01

    An image analysis-based method for high throughput screening of an alpha-amylase mutant library using chromogenic assays was developed. Assays were performed in microplates and high resolution images of the assay plates were read using the Virtual Microplate Reader (VMR) script to quantify the concentration of the chromogen. This method is fast and sensitive in quantifying 0.025-0.3 mg starch/ml as well as 0.05-0.75 mg glucose/ml. It was also an effective screening method for improved alpha-amylase activity with a coefficient of variance of 18%.

  3. Accurate, quantitative assays for the hydrolysis of soluble type I, II, and III /sup 3/H-acetylated collagens by bacterial and tissue collagenases

    SciTech Connect

    Mallya, S.K.; Mookhtiar, K.A.; Van Wart, H.E.

    1986-11-01

    Accurate and quantitative assays for the hydrolysis of soluble /sup 3/H-acetylated rat tendon type I, bovine cartilage type II, and human amnion type III collagens by both bacterial and tissue collagenases have been developed. The assays are carried out at any temperature in the 1-30/sup 0/C range in a single reaction tube and the progress of the reaction is monitored by withdrawing aliquots as a function of time, quenching with 1,10-phenanthroline, and quantitation of the concentration of hydrolysis fragments. The latter is achieved by selective denaturation of these fragments by incubation under conditions described in the previous paper of this issue. The assays give percentages of hydrolysis of all three collagen types by neutrophil collagenase that agree well with the results of gel electrophoresis experiments. The initial rates of hydrolysis of all three collagens are proportional to the concentration of both neutrophil or Clostridial collagenases over a 10-fold range of enzyme concentrations. All three assays can be carried out at collagen concentrations that range from 0.06 to 2 mg/ml and give linear double reciprocal plots for both tissue and bacterial collagenases that can be used to evaluate the kinetic parameters K/sub m/ and k/sub cat/ or V/sub max/. The assay developed for the hydrolysis of rat type I collagen by neutrophil collagenase is shown to be more sensitive by at least one order of magnitude than comparable assays that use rat type I collagen fibrils or gels as substrate.

  4. Escherichia coli and Enterococcus spp. in rainwater tank samples: comparison of culture-based methods and 23S rRNA gene quantitative PCR assays.

    PubMed

    Ahmed, W; Richardson, K; Sidhu, J P S; Toze, S

    2012-10-16

    In this study, culture-based methods and quantitative PCR (qPCR) assays were compared with each other for the measurement of Escherichia coli and Enterococcus spp. in water samples collected from rainwater tanks in Southeast Queensland, Australia. Among the 50 rainwater tank samples tested, 26 (52%) and 46 (92%) samples yielded E. coli numbers as measured by EPA Method 1603 and E. coli 23S rRNA gene qPCR assay, respectively. Similarly, 49 (98%) and 47 (94%) samples yielded Enterococcus spp. numbers as measured by EPA Method 1600 and Enterococcus spp. 23S rRNA gene qPCR assay, respectively. The mean E. coli (2.49 ± 0.85) log(10) and Enterococcus spp. (2.72 ± 0.32) log(10) numbers as measured by qPCR assays were significantly (P < 0001) different than E. coli (0.91 ± 0.80) log(10) and Enterococcus spp. (1.86 ± 0.60) log(10) numbers as measured by culture-based method. Weak but significant correlations were observed between both EPA Method 1603 and the E. coli qPCR assay (r = 0.47, P = 0.0009), and EPA Method 1600 and the Enterococcus spp. qPCR assay (r = 0.42, P = 0.002). Good qualitative agreement was found between the culture-based method and the Enterococcus spp. qPCR assay in terms of detecting fecal pollution in water samples from the studied rainwater tanks. More research studies, however, are needed to shed some light on the discrepancies associated with the culture-based methods and qPCR assays for measuring fecal indicator bacteria.

  5. Detection of the pandemic H1N1/2009 influenza A virus by a highly sensitive quantitative real-time reverse-transcription polymerase chain reaction assay.

    PubMed

    Yang, Zhu; Mao, Guoliang; Liu, Yujun; Chen, Yuan-Chuan; Liu, Chengjing; Luo, Jun; Li, Xihan; Zen, Ke; Pang, Yanjun; Wu, Jianguo; Liu, Fenyong

    2013-02-01

    A quantitative real time reverse-transcription polymerase chain reaction (qRT-PCR) assay with specific primers recommended by the World Health Organization (WHO) has been widely used successfully for detection and monitoring of the pandemic H1N1/2009 influenza A virus. In this study, we report the design and characterization of a novel set of primers to be used in a qRT-PCR assay for detecting the pandemic H1N1/2009 virus. The newly designed primers target three regions that are highly conserved among the hemagglutinin (HA) genes of the pandemic H1N1/2009 viruses and are different from those targeted by the WHO-recommended primers. The qRT-PCR assays with the newly designed primers are highly specific, and as specific as the WHO-recommended primers for detecting pandemic H1N1/2009 viruses and other influenza viruses including influenza B viruses and influenza A viruses of human, swine, and raccoon dog origin. Furthermore, the qRT-PCR assays with the newly designed primers appeared to be at least 10-fold more sensitive than those with the WHO-recommended primers as the detection limits of the assays with our primers and the WHO-recommended primers were 2.5 and 25 copies of target RNA per reaction, respectively. When tested with 83 clinical samples, 32 were detected to be positive using the qRT-PCR assays with our designed primers, while only 25 were positive by the assays with the WHO-recommended primers. These results suggest that the qRT-PCR system with the newly designed primers represent a highly sensitive assay for diagnosis of the pandemic H1N1/2009 virus infection.

  6. Detection of hemoplasma infection of goats by use of a quantitative polymerase chain reaction assay and risk factor analysis for infection.

    PubMed

    Johnson, Kathy A; do Nascimento, Naíla C; Bauer, Amy E; Weng, Hsin-Yi; Hammac, G Kenitra; Messick, Joanne B

    2016-08-01

    OBJECTIVE To develop and validate a real-time quantitative PCR (qPCR) assay for the detection and quantification of Mycoplasma ovis in goats and investigate the prevalence and risk factors for hemoplasma infection of goats located in Indiana. ANIMALS 362 adult female goats on 61 farms. PROCEDURES Primers were designed for amplification of a fragment of the dnaK gene of M ovis by use of a qPCR assay. Blood samples were collected into EDTA-containing tubes for use in total DNA extraction, blood film evaluation, and determination of PCV. Limit of detection, intra-assay variability, interassay variability, and specificity of the assay were determined. RESULTS Reaction efficiency of the qPCR assay was 94.45% (R(2), 0.99; slope, -3.4623), and the assay consistently detected as few as 10 copies of plasmid/reaction. Prevalence of infection in goats on the basis of results for the qPCR assay was 18.0% (95% confidence interval, 14% to 22%), with infected goats ranging from 1 to 14 years old, whereby 61% (95% confidence interval, 47% to 73%) of the farms had at least 1 infected goat. Bacterial load in goats infected with M ovis ranged from 1.05 × 10(3) target copies/mL of blood to 1.85 × 10(5) target copies/mL of blood; however, no bacteria were observed on blood films. Production use of a goat was the only risk factor significantly associated with hemoplasma infection. CONCLUSIONS AND CLINICAL RELEVANCE The qPCR assay was more sensitive for detecting hemoplasma infection than was evaluation of a blood film, and production use of a goat was a risk factor for infection.

  7. Validation of a quantitative real-time PCR assay for HTLV-1 proviral load in peripheral blood mononuclear cells.

    PubMed

    Rosadas, Carolina; Cabral-Castro, Mauro Jorge; Vicente, Ana Carolina Paulo; Peralta, José Mauro; Puccioni-Sohler, Marzia

    2013-11-01

    The objective of this study was to validate a TaqMan real-time PCR assay for HTLV-1 proviral load detection in peripheral blood mononuclear cells. TARL-2 cells were used to generate a standard curve. Peripheral blood mononuclear cell gDNA from 27 seropositive and 23 seronegative samples was analyzed. The sensitivity, specificity, accuracy, precision, dynamic range of the standard curve and qPCR efficiency were evaluated. All of the positive samples amplified the target gene. All of the negative samples amplified only the control gene (β-actin). The assay presented 100% specificity and sensibility. The intra- and inter-assay variability was 2.4% and 2.2%, respectively. The qPCR efficiency, slope and correlation coefficients (r2) were all acceptable. The limit of detection was 1 copy/rxn. This assay can reliably quantify HTLV-1 proviral load.

  8. An optimized microplate assay system for quantitative evaluation of plant cell wall-degrading enzyme activity of fungal culture extracts.

    PubMed

    King, Brian C; Donnelly, Marie K; Bergstrom, Gary C; Walker, Larry P; Gibson, Donna M

    2009-03-01

    Developing enzyme cocktails for cellulosic biomass hydrolysis complementary to current cellulase systems is a critical step needed for economically viable biofuels production. Recent genomic analysis indicates that some plant pathogenic fungi are likely a largely untapped resource in which to prospect for novel hydrolytic enzymes for biomass conversion. In order to develop high throughput screening assays for enzyme bioprospecting, a standardized microplate assay was developed for rapid analysis of polysaccharide hydrolysis by fungal extracts, incorporating biomass substrates. Fungi were grown for 10 days on cellulose- or switchgrass-containing media to produce enzyme extracts for analysis. Reducing sugar released from filter paper, Avicel, corn stalk, switchgrass, carboxymethylcellulose, and arabinoxylan was quantified using a miniaturized colorimetric assay based on 3,5-dinitrosalicylic acid. Significant interactions were identified among fungal species, growth media composition, assay substrate, and temperature. Within a small sampling of plant pathogenic fungi, some extracts had crude activities comparable to or greater than T. reesei, particularly when assayed at lower temperatures and on biomass substrates. This microplate assay system should prove useful for high-throughput bioprospecting for new sources of novel enzymes for biofuel production.

  9. Detection limits and cost comparisons of human- and gull-associated conventional and quantitative PCR assays in artificial and environmental waters

    USGS Publications Warehouse

    Riedel, Timothy E.; Zimmer-Faust, Amity G.; Thulsiraj, Vanessa; Madi, Tania; Hanley, Kaitlyn T.; Ebentier, Darcy L.; Byappanahalli, Muruleedhara N.; Layton, Blythe; Raith, Meredith; Boehm, Alexandria B.; Griffith, John F.; Holden, Patricia A.; Shanks, Orin C.; Weisberg, Stephen B.; Jay, Jennifer A.

    2014-01-01

    Some molecular methods for tracking fecal pollution in environmental waters have both PCR and quantitative PCR (qPCR) assays available for use. To assist managers in deciding whether to implement newer qPCR techniques in routine monitoring programs, we compared detection limits (LODs) and costs of PCR and qPCR assays with identical targets that are relevant to beach water quality assessment. For human-associated assays targeting Bacteroidales HF183 genetic marker, qPCR LODs were 70 times lower and there was no effect of target matrix (artificial freshwater, environmental creek water, and environmental marine water) on PCR or qPCR LODs. The PCR startup and annual costs were the lowest, while the per reaction cost was 62% lower than the Taqman based qPCR and 180% higher than the SYBR based qPCR. For gull-associated assays, there was no significant difference between PCR and qPCR LODs, target matrix did not effect PCR or qPCR LODs, and PCR startup, annual, and per reaction costs were lower. Upgrading to qPCR involves greater startup and annual costs, but this increase may be justified in the case of the human-associated assays with lower detection limits and reduced cost per sample.

  10. Rapid and Quantitative Detection of Leifsonia xyli subsp. xyli in Sugarcane Stalk Juice Using a Real-Time Fluorescent (TaqMan) PCR Assay

    PubMed Central

    Fu, Hua-Ying; Sun, Sheng-Ren; Wang, Jin-Da; Ahmad, Kashif; Wang, Heng-Bo; Chen, Ru-Kai

    2016-01-01

    Ratoon stunting disease (RSD) of sugarcane, one of the most important diseases seriously affecting the productivity of sugarcane crops, was caused by the bacterial agent Leifsonia xyli subsp. xyli (Lxx). A TaqMan probe-based real-time quantitative polymerase chain reaction (qPCR) assay was established in this study for the quantification of Lxx detection in sugarcane stalk juice. A pair of PCR primers (Pat1-QF/Pat1-QR) and a fluorogenic probe (Pat1-QP) targeting the Part1 gene of Lxx were used for the qPCR assay. The assay had a detection limit of 100 copies of plasmid DNA and 100 fg of Lxx genomic DNA, which was 100-fold more sensitive than the conventional PCR. Fifty (28.7%) of 174 stalk juice samples from two field trials were tested to be positive by qPCR assay, whereas, by conventional PCR, only 12.1% (21/174) were tested to be positive with a published primer pair CxxITSf#5/CxxITSr#5 and 15.5% (27/174) were tested to be positive with a newly designed primer pair Pat1-F2/Pat1-R2. The new qPCR assay can be used as an alternative to current diagnostic methods for Lxx, especially when dealing with certificating a large number of healthy cane seedlings and determining disease incidence accurately in commercial fields. PMID:27725937

  11. Detection limits and cost comparisons of human- and gull-associated conventional and quantitative PCR assays in artificial and environmental waters.

    PubMed

    Riedel, Timothy E; Zimmer-Faust, Amity G; Thulsiraj, Vanessa; Madi, Tania; Hanley, Kaitlyn T; Ebentier, Darcy L; Byappanahalli, Muruleedhara; Layton, Blythe; Raith, Meredith; Boehm, Alexandria B; Griffith, John F; Holden, Patricia A; Shanks, Orin C; Weisberg, Stephen B; Jay, Jennifer A

    2014-04-01

    Some molecular methods for tracking fecal pollution in environmental waters have both PCR and quantitative PCR (qPCR) assays available for use. To assist managers in deciding whether to implement newer qPCR techniques in routine monitoring programs, we compared detection limits (LODs) and costs of PCR and qPCR assays with identical targets that are relevant to beach water quality assessment. For human-associated assays targeting Bacteroidales HF183 genetic marker, qPCR LODs were 70 times lower and there was no effect of target matrix (artificial freshwater, environmental creek water, and environmental marine water) on PCR or qPCR LODs. The PCR startup and annual costs were the lowest, while the per reaction cost was 62% lower than the Taqman based qPCR and 180% higher than the SYBR based qPCR. For gull-associated assays, there was no significant difference between PCR and qPCR LODs, target matrix did not effect PCR or qPCR LODs, and PCR startup, annual, and per reaction costs were lower. Upgrading to qPCR involves greater startup and annual costs, but this increase may be justified in the case of the human-associated assays with lower detection limits and reduced cost per sample.

  12. A simple, specific high-throughput enzyme-linked immunosorbent assay (ELISA) for quantitative determination of melatonin in cell culture medium.

    PubMed

    Li, Ye; Cassone, Vincent M

    2015-09-01

    A simple, specific, high-throughput enzyme-linked immunosorbent assay (ELISA) for quantitative determination of melatonin was developed for directly measuring melatonin in cell culture medium with 10% FBS. This assay adopts a commercial monoclonal melatonin antibody and melatonin-HRP conjugate, so it can be applied in multiple labs rapidly with low cost compared with commercial RIA and ELISA kits. In addition, the procedure is much simpler with only four steps: 1) sample/conjugate incubation, 2) plate washing, 3) TMB color reaction and 4) reading of results. The standards of the assay cover a wide working range from 100 pg/mL to 10 ng/mL. The sensitivity was 68 pg/mL in cell culture medium with 10% FBS and 26 pg/mL in PBS with as little as 25 μL sample volume. The recovery of melatonin from cell culture medium was 101.0%. The principal cross-reacting compound was 5-methoxytryptophol (0.1%). The variation coefficients of the assay, within and between runs, ranged between 6.68% and 15.76% in cell culture medium. The mean linearity of a series diluted cell culture medium sample was 105% (CV=5%), ranging between 98% and 111%, y=5.5263x+0.0646, R(2)=0.99. The assay enables small research and teaching labs to reliably measure this important neurohormone.

  13. Quantitative prediction of in vivo profiles of CYP3A4 induction in humans from in vitro results with a reporter gene assay.

    PubMed

    Kozawa, Masanari; Honma, Masashi; Suzuki, Hiroshi

    2009-06-01

    Although primary human hepatocytes are commonly used for induction studies, the evaluation method is associated with several problems. More recently, a reporter gene assay has been suggested to be an alternative, although the contribution of only transfected nuclear receptors can be evaluated. The aim of the present study was to establish a method by which the extent of in vivo CYP3A4 induction in humans can be quantitatively predicted based on in vitro results with a reporter gene assay. From previous reports, we calculated in vivo induction ratios (R(in vivo)) caused by prototypical inducers based on the alterations in the hepatic intrinsic clearance of probe drugs. Next, we derived equations by which these R(in vivo) values can be predicted from the results of a reporter gene assay. To use the data obtained from a reporter gene assay, rifampicin was used as a reference drug. The correction coefficient (CC), which is used to quantitatively correlate the activity of inducers between in vitro and in vivo situations, was calculated by comparing the predicted data with the observed R(in vivo) values for rifampicin. With the calculated CC value, good correlations were found between the predicted and observed R(in vivo) values for other inducers such as phenobarbital, phenytoin, and omeprazole. Taken together, with the equations derived in the present study, we have been able to predict the extent of in vivo induction of human CYP3A4 by inducers in a time-dependent and quantitative manner from in vitro data.

  14. The Relevance of a Novel Quantitative Assay to Detect up to 40 Major Streptococcus pneumoniae Serotypes Directly in Clinical Nasopharyngeal and Blood Specimens

    PubMed Central

    Albrich, Werner C.; van der Linden, Mark P. G.; Bénet, Thomas; Chou, Monidarin; Sylla, Mariam; Barreto Costa, Patricia; Richard, Nathalie; Klugman, Keith P.; Endtz, Hubert P.; Paranhos-Baccalà, Gláucia; Telles, Jean-Noël

    2016-01-01

    For epidemiological and surveillance purposes, it is relevant to monitor the distribution and dynamics of Streptococcus pneumoniae serotypes. Conventional serotyping methods do not provide rapid or quantitative information on serotype loads. Quantitative serotyping may enable prediction of the invasiveness of a specific serotype compared to other serotypes carried. Here, we describe a novel, rapid multiplex real-time PCR assay for identification and quantification of the 40 most prevalent pneumococcal serotypes and the assay impacts in pneumonia specimens from emerging and developing countries. Eleven multiplex PCR to detect 40 serotypes or serogroups were optimized. Quantification was enabled by reference to standard dilutions of known bacterial load. Performance of the assay was evaluated to specifically type and quantify S. pneumoniae in nasopharyngeal and blood samples from adult and pediatric patients hospitalized with pneumonia (n = 664) from five different countries. Serogroup 6 was widely represented in nasopharyngeal specimens from all five cohorts. The most frequent serotypes in the French, South African, and Brazilian cohorts were 1 and 7A/F, 3 and 19F, and 14, respectively. When both samples were available, the serotype in blood was always present as carriage with other serotypes in the nasopharynx. Moreover, the ability of a serotype to invade the bloodstream may be linked to its nasopharyngeal load. The mean nasopharyngeal concentration of the serotypes that moved to the blood was 3 log-fold higher than the ones only found in the nasopharynx. This novel, rapid, quantitative assay may potentially predict some of the S. pneumoniae serotypes invasiveness and assessment of pneumococcal serotype distribution. PMID:26986831

  15. Evaluation of Various Campylobacter-Specific Quantitative PCR (qPCR) Assays for Detection and Enumeration of Campylobacteraceae in Irrigation Water and Wastewater via a Miniaturized Most-Probable-Number–qPCR Assay

    PubMed Central

    Banting, Graham S.; Braithwaite, Shannon; Scott, Candis; Kim, Jinyong; Jeon, Byeonghwa; Ashbolt, Nicholas; Ruecker, Norma; Tymensen, Lisa; Charest, Jollin; Pintar, Katarina; Checkley, Sylvia

    2016-01-01

    ABSTRACT Campylobacter spp. are the leading cause of bacterial gastroenteritis worldwide, and water is increasingly seen as a risk factor in transmission. Here we describe a most-probable-number (MPN)–quantitative PCR (qPCR) assay in which water samples are centrifuged and aliquoted into microtiter plates and the bacteria are enumerated by qPCR. We observed that commonly used Campylobacter molecular assays produced vastly different detection rates. In irrigation water samples, detection rates varied depending upon the PCR assay and culture method used, as follows: 0% by the de Boer Lv1-16S qPCR assay, 2.5% by the Van Dyke 16S and Jensen glyA qPCR assays, and 75% by the Linton 16S endpoint PCR when cultured at 37°C. Primer/probe specificity was the major confounder, with Arcobacter spp. routinely yielding false-positive results. The primers and PCR conditions described by Van Dyke et al. (M. I. Van Dyke, V. K. Morton, N. L. McLellan, and P. M. Huck, J Appl Microbiol 109:1053–1066, 2010, http://dx.doi.org/10.1111/j.1365-2672.2010.04730.x) proved to be the most sensitive and specific for Campylobacter detection in water. Campylobacter occurrence in irrigation water was found to be very low (<2 MPN/300 ml) when this Campylobacter-specific qPCR was used, with the most commonly detected species being C. jejuni, C. coli, and C. lari. Campylobacters in raw sewage were present at ∼102/100 ml, with incubation at 42°C required for reducing microbial growth competition from arcobacters. Overall, when Campylobacter prevalence and/or concentration in water is reported using molecular methods, considerable validation is recommended when adapting methods largely developed for clinical applications. Furthermore, combining MPN methods with molecular biology-based detection algorithms allows for the detection and quantification of Campylobacter spp. in environmental samples and is potentially suited to quantitative microbial risk assessment for improved public health disease

  16. Development and Validation of a Quantitative PCR Assay Using Multiplexed Hydrolysis Probes for Detection and Quantification of Theileria orientalis Isolates and Differentiation of Clinically Relevant Subtypes

    PubMed Central

    Bogema, D. R.; Deutscher, A. T.; Fell, S.; Collins, D.; Eamens, G. J.

    2015-01-01

    Theileria orientalis is an emerging pathogen of cattle in Asia, Australia, and New Zealand. This organism is a vector-borne hemoprotozoan that causes clinical disease characterized by anemia, abortion, and death, as well as persistent subclinical infections. Molecular methods of diagnosis are preferred due to their sensitivity and utility in differentiating between pathogenic and apathogenic genotypes. Conventional PCR (cPCR) assays for T. orientalis detection and typing are laborious and do not provide an estimate of parasite load. Current real-time PCR assays cannot differentiate between clinically relevant and benign genotypes or are only semiquantitative without a defined clinical threshold. Here, we developed and validated a hydrolysis probe quantitative PCR (qPCR) assay which universally detects and quantifies T. orientalis and identifies the clinically associated Ikeda and Chitose genotypes (UIC assay). Comparison of the UIC assay results with previously validated universal and genotype-specific cPCR results demonstrated that qPCR detects and differentiates T. orientalis with high sensitivity and specificiy. Comparison of quantitative results based on percent parasitemia, determined via blood film analysis and packed cell volume (PCV) revealed significant positive and negative correlations, respectively. One-way analysis of variance (ANOVA) indicated that blood samples from animals with clinical signs of disease contained statistically higher concentrations of T. orientalis DNA than animals with subclinical infections. We propose clinical thresholds to assist in classifying high-, moderate-, and low-level infections and describe how parasite load and the presence of the Ikeda and Chitose genotypes relate to disease. PMID:25588653

  17. Development of a Quantitative Real-Time RT-PCR Assay for the Detection of MAGE-A3-Positive Tumors.

    PubMed

    Gruselle, Olivier; Coche, Thierry; Louahed, Jamila

    2015-07-01

    Melanoma antigen A3 (MAGE-A3) is a member of the MAGE family of tumor antigens and a relevant candidate for use in cancer immunotherapy. However, not all tumors express MAGE-A3, and closely related members of the MAGE family can be co-expressed with MAGE-A3 in the same tumor. Therefore, in the frame of MAGE-A3 clinical trials, it appeared necessary to evaluate tumors for MAGE-A3 expression with a highly specific quantitative assay to select patients who are eligible for anti-MAGE-A3 immunotherapy treatment. Herein, we describe the development and validation of a quantitative real-time RT-PCR (RT-qPCR) assay for the determination of MAGEA3 gene expression in tumor tissues. In the early phases of development, the designed primers and probe were not able to distinguish between MAGE-A3 and MAGE-A6. To ensure the specificity for MAGE-A3 over MAGE-A6, our strategy was to use a 5'-nuclease probe (or hydrolysis probe). The final assay was shown to be specific and linear within the analytical range, with an acceptable CV for repeatability and intermediate precision. When compared with a reference semiquantitative RT-PCR assay, the two methods were in good agreement, with only 4.23% of the samples giving discordant results. In conclusion, we have developed a MAGE-A3-specific RT-qPCR assay, compatible with a high-throughput setting for the estimation of MAGEA3 gene expression in present and future clinical trials.

  18. Planar Supported Membranes with Mobile SNARE Proteins and Quantitative Fluorescence Microscopy Assays to Study Synaptic Vesicle Fusion

    PubMed Central

    Kiessling, Volker; Liang, Binyong; Kreutzberger, Alex J. B.; Tamm, Lukas K.

    2017-01-01

    Synaptic vesicle membrane fusion, the process by which neurotransmitter gets released at the presynaptic membrane is mediated by a complex interplay between proteins and lipids. The realization that the lipid bilayer is not just a passive environment where other molecular players like SNARE proteins act, but is itself actively involved in the process, makes the development of biochemical and biophysical assays particularly challenging. We summarize in vitro assays that use planar supported membranes and fluorescence microscopy to address some of the open questions regarding the molecular mechanisms of SNARE-mediated membrane fusion. Most of the assays discussed in this mini-review were developed in our lab over the last 15 years. We emphasize the sample requirements that we found are important for the successful application of these methods. PMID:28360838

  19. Development of a quantitative PCR assay for rapid detection of Lactobacillus plantarum and Lactobacillus fermentum in cocoa bean fermentation.

    PubMed

    Schwendimann, Livia; Kauf, Peter; Fieseler, Lars; Gantenbein-Demarchi, Corinne; Miescher Schwenninger, Susanne

    2015-08-01

    To monitor dominant species of lactic acid bacteria during cocoa bean fermentation, i.e. Lactobacillus plantarum and Lactobacillus fermentum, a fast and reliable culture-independent qPCR assay was developed. A modified DNA isolation procedure using a commercial kit followed by two species-specific qPCR assays resulted in 100% sensitivity for L. plantarum and L. fermentum. Kruskal-Wallis and post-hoc analyses of data obtained from experiments with cocoa beans that were artificially spiked with decimal concentrations of L. plantarum and L. fermentum strains allowed the calculation of a regression line suitable for the estimation of both species with a detection limit of 3 to 4 Log cells/g cocoa beans. This process was successfully tested for efficacy through the analyses of samples from laboratory-scale cocoa bean fermentations with both the qPCR assay and a culture-dependent method which resulted in comparable results.

  20. Development of a Quantitative PCR Assay for Differentiating the Agent of Heartwater Disease, Ehrlichia ruminantium, from the Panola Mountain Ehrlichia.

    PubMed

    Sayler, K A; Loftis, A D; Mahan, S M; Barbet, A F

    2016-12-01

    Panola Mountain Ehrlichia (PME) is an emerging Ehrlichia sp. reported in ten US states. Based on the sequence homology of all known genes, PME is closely related to Ehrlichia ruminantium (ER), the causative agent of heartwater. Heartwater is an economically important tick-borne disease of cattle, sheep and goats responsible for stock losses in sub-Saharan Africa. Unfortunately, ER was imported to the Caribbean islands in the 19th century, and the presence of this foreign animal disease in the Caribbean poses a threat to the US mainland. If introduced, a heartwater outbreak would cause massive losses of naïve livestock. The serologic assay of choice to diagnose heartwater is cross-reactive with Ehrlichia spp., including PME, as we demonstrate here, which would confound disease surveillance in the event of a heartwater outbreak. The purpose of this study was to develop a diagnostic assay capable of rapidly distinguishing between these pathogens. Using synthetic MAP-1B peptides for ER and PME, we tested the cross-reactivity of this assay using sera from infected livestock. The MAP-1B ELISA cannot distinguish between animals infected with PME and ER. Therefore, a dual-plex Taqman(™) qPCR assay targeting the groEL gene of PME and ER was developed and validated. Primers were designed that are conserved among all known strains of ER, allowing for the amplification of strains from the Caribbean and Africa. The assay is highly sensitive (10 copies of DNA) and specific. This assay distinguishes between infection with PME and ER and will be a valuable tool in the event of heartwater outbreak on the US mainland, or for epidemiological studies involving either disease-causing organism.

  1. Development and application of a quantitative real-time PCR assay for rapid detection of the multifaceted yeast Kazachstania servazzii in food.

    PubMed

    Spanoghe, Martin; Godoy Jara, Mario; Rivière, John; Lanterbecq, Deborah; Gadenne, Martine; Marique, Thierry

    2017-04-01

    The beneficial contributions of Kazachstania servazzii are well-established in various food processes. This yeast also contributes in the spoilage of finished packaged food due to abundant gas production. In particular, an occurrence of K. servazzii was recently positively correlated with the formation of severe package swelling of some prepared fresh pizzas. To circumscribe this concern, a quantitative SYBR green real-time PCR assay based on a newly designed specific primer pair targeting the ribosomal ITS1-5.8S-ITS2 region of K. servazzii was developed. The quantification was enabled using a standard curve created from serially diluted plasmids containing the target sequence of the K. servazzii strain. A validation of the assay was achieved by enumeration of K. servazzii DNA copies from artificially infected culture broths containing non-contaminated pizza substrates. The newly developed method was then tested on total DNA extracted from packaged fresh pizzas, in which certain lots were swollen and thus suspected of containing K. servazzii. This study highlights that this newly developed quantitative assay is not only sufficiently sensitive, specific and reliable to be functionally used in food control as a routine method of detection, but also promising in specific studies that seek to further characterize the dynamic of this yeast in some increasingly popular food processes.

  2. Simultaneous detection and quantitation of Chikungunya, dengue and West Nile viruses by multiplex RT-PCR assays and dengue virus typing using high resolution melting.

    PubMed

    Naze, F; Le Roux, K; Schuffenecker, I; Zeller, H; Staikowsky, F; Grivard, P; Michault, A; Laurent, P

    2009-12-01

    Chikungunya (CHIKV), Dengue (DENV) and West Nile (WNV) viruses are arthropod-borne viruses that are able to emerge or re-emerge in many regions due to climatic changes and increase in travel. Since these viruses produce similar clinical signs it is important for physicians and epidemiologists to differentiate them rapidly. A molecular method was developed for their detection and quantitation in plasma samples and a DENV typing technique were developed. The method consisted in performing two multiplex real-time one-step RT-PCR assays, to detect and quantify the three viruses. Both assays were conducted in a single run, from a single RNA extract containing a unique coextracted and coamplified composite internal control. The quantitation results were close to the best detection thresholds obtained with simplex RT-PCR techniques. The differentiation of DENV types was performed using a High Resolution Melting technique. The assays enable the early diagnosis of the three arboviruses during viremia, including cases of coinfection. The method is rapid, specific and highly sensitive with a potential for clinical diagnosis and epidemiological surveillance. A DENV positive sample can be typed conveniently using the High Resolution Melting technique using the same apparatus.

  3. Validated LC-MS/MS assay for the quantitative determination of vardenafil in human plasma and its application to a pharmacokinetic study.

    PubMed

    Lake, Simon T; Altman, Phillip M; Vaisman, Jack; Addison, Russell S

    2010-08-01

    A sensitive high-performance liquid chromatography-tandem mass spectrometric (HPLC-MS/MS) assay has been developed for the quantitative analysis of vardenafil in human plasma. Vardenafil and the internal standard, alprazolam, were extracted from 0.2 mL aliquots of alkalinized plasma by a single solvent extraction into hexane : dichloromethane. Reversed-phase chromatographic separation was affected by gradient elution with mobile phases consisting of 10 mM ammonium formate pH 7.0 (solvent A) and methanol (100%, solvent B), delivered at a flow rate of 0.4 mL/min. The analytes were detected by using an electrospray ion source on a 4000 QTrap triple quadrupole mass spectrometer operating in positive ionization mode. The mass transitions were m/z 489.3 --> 312.2 for vardenafil and m/z 309.2 --> 281.0 for alprazolam. The assay was linear over the concentration range of 0.2-100 ng/mL, with correlation coefficients > or = 0.995. The intra- and inter-day precision was less than 5.4% in terms of relative standard deviation and the accuracy was within 12.7% in terms of relative error. The lower limit of quantitation was set at 0.2 ng/mL. The high sensitivity and acceptable performance of the assay allowed its application to the analysis of plasma samples obtained following the oral administration of vardenafil to healthy male volunteers in a pharmacokinetic study.

  4. Development of a one-step SYBR Green I real-time RT-PCR assay for the detection and quantitation of Araraquara and Rio Mamore hantavirus.

    PubMed

    Machado, Alex Martins; de Souza, William Marciel; de Pádua, Michelly; da Silva Rodrigues Machado, Aline Rafaela; Figueiredo, Luiz Tadeu Moraes

    2013-09-19

    Hantaviruses are members of the family Bunyaviridae and are an emerging cause of disease worldwide with high lethality in the Americas. In Brazil, the diagnosis for hantaviruses is based on immunologic techniques associated with conventional RT-PCR. A novel one-step SYBR Green real-time RT-PCR was developed for the detection and quantitation of Araraquara (ARAV) and Rio Mamore hantavirus (RIOMV). The detection limit of assay was 10 copies/μL of RNA in vitro transcribed of segment S. The specificity of assay was evaluated by melting curve analysis, which showed that the Araraquara virus amplified product generated a melt peak at 80.83 ± 0.89 °C without generating primer-dimers or non-specific products. The assay was more sensitive than conventional RT-PCR and we detected two samples undetected by conventional RT-PCR. The one-step SYBR Green real-time quantitative RT-PCR is specific, sensible and reproducible, which makes it a powerful tool in both diagnostic applications and general research of ARAV and RIOMV and possibly other Brazilian hantaviruses.

  5. A Rapid Fluorescence Assay for Danofloxacin in Beef Muscle. Effect of Muscle Type on Limit of Quantitation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A simple, rapid fluorescence screening assay was applied to the analysis of beef muscle for danofloxacin at the U.S. tolerance level of 200 ng/g. Muscle samples were homogenized in acetic acid/acetonitrile, the resultant mixture centrifuged, and fluorescence of the supernatants was then measured. ...

  6. Two quantitative real-time PCR assays for the detection of penaeid shrimp and blue crab, crustacean shellfish allergens.

    PubMed

    Eischeid, Anne C; Kim, Bang-hyun; Kasko, Sasha M

    2013-06-19

    Food allergen detection methods must be able to specifically detect minute quantities of an allergenic food in a complex food matrix. One technique that can be used is real-time PCR. For the work described here, real-time PCR assays were developed to detect penaeid shrimp and blue crab, crustacean shellfish allergens. The method was tested using shrimp meat and crab meat spiked into several types of foods, including canned soups, deli foods, meat, seafood, and prepared seafood products. Foods were spiked with either shrimp or crab at levels ranging from 0.1 to 10⁶ parts per million (ppm) and analyzed either raw or cooked by a variety of methods. Real-time PCR data were used to generate linear standard curves, and assays were evaluated with respect to linear range and reaction efficiency. Results indicate that both assays performed well in a variety of food types. High reaction efficiencies were achieved across a linear range of 6-8 orders of magnitude. Limits of detection were generally between 0.1 and 1 ppm. Cooking methods used to simulate thermal processing of foods had little effect on assay performance. This work demonstrates that real-time PCR can be a valuable tool in the detection of crustacean shellfish.

  7. Single-Tubed Wild-Type Blocking Quantitative PCR Detection Assay for the Sensitive Detection of Codon 12 and 13 KRAS Mutations

    PubMed Central

    Duan, Guang-Jie; Shi, Yan; Deng, Guo-Hong; Xia, Han; Xu, Han-Qing; Zhao, Na; Fu, Wei-Ling; Huang, Qing

    2015-01-01

    The high degree of intra-tumor heterogeneity has meant that it is important to develop sensitive and selective assays to detect low-abundance KRAS mutations in metastatic colorectal carcinoma (mCRC) patients. As a major potential source of tumor DNA in the aforementioned genotyping assays, it was necessary to conduct an analysis on both the quality and quantity of DNA extracted from formalin-fixed paraffin-embedded (FFPE). Therefore, four commercial FFPE DNA extraction kits were initially compared with respect to their ability to facilitate extraction of amplifiable DNA. The results showed that TrimGen kits showed the greatest performance in relation to the quality and quantity of extracted FFPE DNA solutions. Using DNA extracted by TrimGen kits as a template for tumor genotyping, a real-time wild-type blocking PCR (WTB-PCR) assay was subsequently developed to detect the aforementioned KRAS mutations in mCRC patients. The results showed that WTB-PCR facilitated the detection of mutated alleles at a ratio of 1:10,000 (i.e. 0.01%) wild-type alleles. When the assay was subsequently used to test 49 mCRC patients, the results showed that the mutation detection levels of the WTB-PCR assay (61.8%; 30/49) were significantly higher than that of traditional PCR (38.8%; 19/49). Following the use of the real-time WTB-PCR assay, the ΔCq method was used to quantitatively analyze the mutation levels associated with KRAS in each FFPE sample. The results showed that the mutant levels ranged from 53.74 to 0.12% in the patients analyzed. In conclusion, the current real-time WTB-PCR is a rapid, simple, and low-cost method that permits the detection of trace amounts of the mutated KRAS gene. PMID:26701781

  8. Distribution of Human-Specific Bacteroidales and Fecal Indicator Bacteria in an Urban Watershed Impacted by Sewage Pollution, Determined Using RNA- and DNA-Based Quantitative PCR Assays

    PubMed Central

    Kapoor, Vikram; Pitkänen, Tarja; Ryu, Hodon; Elk, Michael

    2014-01-01

    The identification of fecal pollution sources is commonly carried out using DNA-based methods. However, there is evidence that DNA can be associated with dead cells or present as “naked DNA” in the environment. Furthermore, it has been shown that rRNA-targeted reverse transcription-quantitative PCR (RT-qPCR) assays can be more sensitive than rRNA gene-based qPCR assays since metabolically active cells usually contain higher numbers of ribosomes than quiescent cells. To this end, we compared the detection frequency of host-specific markers and fecal bacteria using RNA-based RT-qPCR and DNA-based qPCR methods for water samples collected in sites impacted by combined sewer overflows. As a group, fecal bacteria were more frequently detected in most sites using RNA-based methods. Specifically, 8, 87, and 85% of the samples positive for general enterococci, Enterococcus faecalis, and Enterococcus faecium markers, respectively, were detected using RT-qPCR, but not with the qPCR assay counterpart. On average, two human-specific Bacteroidales markers were not detected when using DNA in 12% of the samples, while they were positive for all samples when using RNA (cDNA) as the template. Moreover, signal intensity was up to three orders of magnitude higher in RT-qPCR assays than in qPCR assays. The human-specific Bacteroidales markers exhibited moderate correlation with conventional fecal indicators using RT-qPCR results, suggesting the persistence of nonhuman sources of fecal pollution or the presence of false-positive signals. In general, the results from this study suggest that RNA-based assays can increase the detection sensitivity of fecal bacteria in urban watersheds impacted with human fecal sources. PMID:25326295

  9. Development and Validation of a Quantitative, One-Step, Multiplex, Real-Time Reverse Transcriptase PCR Assay for Detection of Dengue and Chikungunya Viruses

    PubMed Central

    Myers, Todd; Guevara, Carolina; Jungkind, Donald; Williams, Maya; Houng, Huo-Shu

    2016-01-01

    Dengue virus (DENV) and chikungunya virus (CHIKV) are important human pathogens with common transmission vectors and similar clinical presentations. Patient care may be impacted by the misdiagnosis of DENV and CHIKV in areas where both viruses cocirculate. In this study, we have developed and validated a one-step multiplex reverse transcriptase PCR (RT-PCR) to simultaneously detect, quantify, and differentiate between four DENV serotypes (pan-DENV) and chikungunya virus. The assay uses TaqMan technology, employing two forward primers, three reverse primers, and four fluorophore-labeled probes in a single-reaction format. Coextracted and coamplified RNA was used as an internal control (IC), and in vitro-transcribed DENV and CHIKV RNAs were used to generate standard curves for absolute quantification. The diagnostic 95% limits of detection (LOD) within the linear range were 50 and 60 RNA copies/reaction for DENV (serotypes 1 to 4) and CHIKV, respectively. Our assay was able to detect 53 different strains of DENV, representing four serotypes, and six strains of CHIKV. No cross-reactivity was observed with related flaviviruses and alphaviruses, To evaluate diagnostic sensitivity and specificity, 89 clinical samples positive or negative for DENV (serotypes 1 to 4) and CHIKV by the standard virus isolation method were tested in our assay. The multiplex RT-PCR assay showed 95% sensitivity and 100% specificity for DENV and 100% sensitivity and specificity for CHIKV. With an assay turnaround time of less than 2 h, including extraction of RNA, the multiplex quantitative RT-PCR assay provides rapid diagnosis for the differential detection of two clinically indistinguishable diseases, whose geographical occurrence is increasingly overlapping. PMID:27098955

  10. Determination of the kinetic parameters for phospholipase C (Bacillus cereus) on different phospholipid substrates using a chromogenic assay based on the quantitation of inorganic phosphate.

    PubMed

    Hergenrother, P J; Martin, S F

    1997-08-15

    The kinetic parameters of the phosphatidylcholine-preferring phospholipase C from Bacillus cereus (PLCBc) have been evaluated for phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine substrates with a new assay based on the quantitation of inorganic phosphate (Pi). Treatment of the phosphomonoester product of the PLCBc-catalyzed hydrolysis of these phospholipids with alkaline phosphatase releases Pi. This Pi forms a complex with ammonium molybdate that is then reduced by ascorbic acid to provide a blue molybdenum chromogen with an absorbance maximum at 700 nm. This highly sensitive assay may be used to determine accurately less than 5 nmol of Pi in solution. Performing the assay in 96-well plates provides a rapid and convenient method to evaluate a variety of phospholipids as substrates for PLCBc. The assay has been utilized to ascertain the kinetic constants for the PLCBc-catalyzed hydrolysis of 1,2-dihexanoyl-sn-glycero-3-phosphocholine, 1,2-dihexanoyl-sn-glycero-3-phosphoethanolamine, and 1,2-dihexanoyl-sn-glycero-3-phospho-L-serine. It is found that these compounds are substrates for the enzyme with their VmaxS being in the order of phosphatidylcholine > phosphatidylethanolamine > phosphatidylserine.

  11. [Method validation according to ISO 15189 and SH GTA 04: application for the extraction of DNA and its quantitative evaluation by a spectrophotometric assay].

    PubMed

    Harlé, Alexandre; Lion, Maëva; Husson, Marie; Dubois, Cindy; Merlin, Jean-Louis

    2013-01-01

    According to the French legislation on medical biology (January 16th, 2010), all biological laboratories must be accredited according to ISO 15189 for at least 50% of their activities before the end of 2016. The extraction of DNA from a sample of interest, whether solid or liquid is one of the critical steps in molecular biology and specifically in somatic or constitutional genetic. The extracted DNA must meet a number of criteria such quality and also be in sufficient concentration to allow molecular biology assays such as the detection of somatic mutations. This paper describes the validation of the extraction and purification of DNA using chromatographic column extraction and quantitative determination by spectrophotometric assay, according to ISO 15189 and the accreditation technical guide in Human Health SH-GTA-04.

  12. [Accuracy of a real-time polymerase-chain-reaction assay for a quantitative estimation of genetically modified sources in food products].

    PubMed

    Abramov, D D; Trofimov, D Iu; Rebrikov, D V

    2006-01-01

    The accuracy of a real-time polymerase-chain-reaction assay for genetically modified sources in food products was determined using two official test systems (kits) of primers and samples. These kits were recommended by the Federal Center of State Sanitary and Epidemiological Surveillance (Russian Ministry of Health) and the European Commission. We used the following three models of thermocyclers: iCycler iQ (BioRad, United States), Rotor-Gene 3000 (Corbett Research, Australia), and DT-322 (DNA-Technology, Russia). Studies of samples that contained 1% genetically modified sources showed that the error of a quantitative assay for genetically modified sources in food products corresponds to 20-30% and does not depend on the kit type and the thermocycler model used.

  13. Real-time quantitative PCR assay with Taqman(®) probe for rapid detection of MCR-1 plasmid-mediated colistin resistance.

    PubMed

    Chabou, S; Leangapichart, T; Okdah, L; Le Page, S; Hadjadj, L; Rolain, J-M

    2016-09-01

    Here we report the development of two rapid real-time quantitative PCR assays with TaqMan(®) probes to detect the MCR-1 plasmid-mediated colistin resistance gene from bacterial isolates and faecal samples from chickens. Specificity and sensitivity of the assay were 100% on bacterial isolates including 18 colistin-resistant isolates carrying the mcr-1 gene (six Klebsiella pneumoniae and 12 Escherichia coli) with a calibration curve that was linear from 10(1) to 10(8) DNA copies. Five out of 833 faecal samples from chickens from Algeria were positive, from which three E. coli strains were isolated and confirmed to harbour the mcr-1 gene by standard PCR and sequencing.

  14. Quantitative real time polymerase chain reaction assays for the sensitive detection of Besnoitia besnoiti infection in cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bovine besnoitiosis, an economically important disease in cattle in many countries of Africa and Asia, has re-emerged in Europe. Sensitive and quantitative DNA detection methods are needed to determine whether serologically positive animals are infectious and to examine the role of vectors (e.g. ha...

  15. Nanoluciferase as a novel quantitative protein fusion tag: Application for overexpression and bioluminescent receptor-binding assays of human leukemia inhibitory factor.

    PubMed

    He, Sheng-Xiang; Song, Ge; Shi, Jia-Ping; Guo, Yu-Qi; Guo, Zhan-Yun

    2014-11-01

    Nanoluciferase (NanoLuc) is a newly developed small luciferase reporter with the brightest bioluminescence reported to date. In the present work, we developed NanoLuc as a novel quantitative protein fusion tag for efficient overexpression in Escherichia coli and ultrasensitive bioluminescent assays using human leukemia inhibitory factor (LIF) as a model protein. LIF is an interleukin 6 family cytokine that elicits pleiotropic effects on a diverse range of cells by activating a heterodimeric LIFR/gp130 receptor. Recombinant preparation of the biologically active LIF protein is quite difficult due to its hydrophobic nature and three disulfide bonds. Using the novel NanoLuc-fusion approach, soluble 6×His-NanoLuc-LIF fusion protein was efficiently overexpressed in E. coli and enzymatically converted to monomeric mature LIF. Both the mature LIF and the NanoLuc-fused LIF had high biological activities in a leukemia M1 cell proliferation inhibition assay and in a STAT3 signaling activation assay. The NanoLuc-fused LIF retained high binding affinities with the overexpressed LIFR (Kd = 1.4 ± 0.4 nM, n = 3), the overexpressed LIFR/gp130 (Kd = 115 ± 8 pM, n = 3), and the endogenously expressed LIFR/gp130 (Kd = 33.1 ± 3.2 pM, n = 3), with a detection limit of less than 10 receptors per cell. Thus, the novel NanoLuc-fusion strategy not only provided an efficient approach for preparation of recombinant LIF protein but also provided a novel ultrasensitive bioluminescent tracer for ligand-receptor interaction studies. The novel NanoLuc-fusion approach could be extended to other proteins for both efficient sample preparation and various bioluminescent quantitative assays in future studies.

  16. Limulus amoebocyte lysate assay for detection and quantitation of endotoxin in a small-volume parenteral product.

    PubMed Central

    Tsuji, K; Steindler, K A; Harrison, S J

    1980-01-01

    A Limulus amoebocyte lysate gel-clotting method for the determination of endotoxin in a small-volume parenteral product has been described. Sample dilution with 0.1 M potassium phosphate monobasic buffer (pH 8.0) effectively eliminated assay interference, whereas dilution with water did not. The threshold pyrogenic dose for Escherichia coli EC-2 and O127:B8 endotoxins was determined to be 1.0 ng of endotoxin per kg of body weight. Not more than 1.0 ng of endotoxin (the threshold pyrogenic dose) per the highest recommended human dose or the USP pyrogen test dose per kg of body weight, whichever dose is more stringent, is a logical limit for the quantity of bacterial endotoxin in small-volume parenteral products. Excellent correlation was attained when this criterion was used to compare the Limulus amoebocyte lysate assay with the USP pyrogen test. PMID:6448582

  17. Quantitative detection of serum HBV DNA levels employing a new S gene based cPCR assay.

    PubMed

    Changotra, H; Sehajpal, P K

    2005-03-01

    Hepatitis B virus (HBV) infection is a major public health problem and a leading cause of chronic hepatitis, cirrhosis and hepatocellular carcinoma. Worldwide, there are about 350 million carriers of this pathogen and India bears the second highest carrier pool in the world. Early diagnosis and measurement of viral load in hepatitis B patients is very helpful for the better management of this disease. The existing methods for viral quantification are either cumbersome or expensive. Since viral replication correlate well with HBV DNA levels a new sensitive, reliable and cost effective competitive PCR assay has been developed for quantifying the viral load in the serum of hepatitis B patients. The S gene based cPCR assay was able to detect as low as 100 genome equivalent/ml of HBV DNA from human serum and was applied to determine viral load among inactive and chronic hepatitis B carriers demonstrating the usefulness of the developed test.

  18. Development of quantitative microscopy-based assays for evaluating dynamics of living cultures of mouse spermatogonial stem/progenitor cells.

    PubMed

    Heim, Crystal N; Fanslow, Danielle A; Dann, Christina Tenenhaus

    2012-10-01

    Spermatogonial stem cell (SSC) self-renewal and differentiation are required for continuous production of spermatozoa and long-term fertility. Studying SSCs in vivo remains challenging because SSCs are rare cells and definitive molecular markers for their identification are lacking. The development of a method for propagating SSCs in vitro greatly facilitated analysis of SSCs. The cultured cells grow as clusters of a dynamic mixture of "true" stem cells and differentiating progenitor cells. Cells in the stem/progenitor culture system share many properties with spermatogonia in vivo; however, to fully exploit it as a model for spermatogonial development, new assays are needed that account for the dynamic heterogeneity inherent in the culture system. Here, assays were developed for quantifying dynamics of cultures of stem/progenitor cells that expressed histone-green fluorescent protein (GFP). First, we built on published results showing that cluster formation in vitro reliably predicts the relative number of SSCs. The GFP-based in vitro cluster assay allows quantification of SSCs with significantly fewer resources than a transplantation assay. Second, we compared the dynamics of differentiation in two experimental paradigms by imaging over a 17-day time frame. Finally, we performed short-term live imaging and observed cell migration, coordinated cell proliferation, and cell death resembling that of spermatogonia in the testes. The methods that we present provide a foundation for the use of fluorescent reporters in future microscopy-based high-throughput screens by using living spermatogonial stem/progenitor cultures applicable to toxicology, contraceptive discovery, and identification of regulators of self-renewal and differentiation.

  19. LC-MS/MS assay for the quantitation of the tyrosine kinase inhibitor neratinib in human plasma.

    PubMed

    Kiesel, Brian F; Parise, Robert A; Wong, Alvin; Keyvanjah, Kiana; Jacobs, Samuel; Beumer, Jan H

    2017-02-05

    Neratinib is an orally available tyrosine kinase inhibitor targeting HER2 (ERBB2) and EGFR (ERBB). It is being clinically evaluated for the treatment of breast and other solid tumors types as a single agent or in combination with other chemotherapies. In support of several phase I/II clinical trials investigating neratinib combinations, we developed and validated a novel LC-MS/MS assay for the quantification of neratinib in 100μL of human plasma with a stable isotopic internal standard. Analytes were extracted from plasma using protein precipitation and evaporation of the resulting supernatant followed by resuspension. Chromatographic separation was achieved using an Acquity UPLC BEH Shield RP18 column and a gradient methanol-water mobile phase containing 10% ammonium acetate. An ABI 4000 mass spectrometer and electrospray positive mode ionization were used for detection. The assay was linear from 2 to 1,000ng/mL and proved to be accurate (98.9-106.5%) and precise (<6.2%CV), and met the FDA guidance for bioanalytical method validation. This LC-MS/MS assay will be an essential tool to further define the pharmacokinetics of neratinib.

  20. Multiplex Quantitative PCR Assays for the Detection and Quantification of the Six Major Non-O157 Escherichia coli Serogroups in Cattle Feces.

    PubMed

    Shridhar, P B; Noll, L W; Shi, X; An, B; Cernicchiaro, N; Renter, D G; Nagaraja, T G; Bai, J

    2016-01-01

    Shiga toxin-producing Escherichia coli (STEC) serogroups O26, O45, O103, O111, O121, and O145, called non-O157 STEC, are important foodborne pathogens. Cattle, a major reservoir, harbor the organisms in the hindgut and shed them in the feces. Although limited data exist on fecal shedding, concentrations of non-O157 STEC in feces have not been reported. The objectives of our study were (i) to develop and validate two multiplex quantitative PCR (mqPCR) assays, targeting O-antigen genes of O26, O103, and O111 (mqPCR-1) and O45, O121, and O145 (mqPCR-2); (ii) to utilize the two assays, together with a previously developed four-plex qPCR assay (mqPCR-3) targeting the O157 antigen and three virulence genes (stx1, stx2, and eae), to quantify seven serogroups and three virulence genes in cattle feces; and (iii) to compare the three mqPCR assays to a 10-plex conventional PCR (cPCR) targeting seven serogroups and three virulence genes and culture methods to detect seven E. coli serogroups in cattle feces. The two mqPCR assays (1 and 2) were shown to be specific to the target genes, and the detection limits were 4 and 2 log CFU/g of pure culture-spiked fecal samples, before and after enrichment, respectively. A total of 576 fecal samples collected from a feedlot were enriched in E. coli broth and were subjected to quantification (before enrichment) and detection (after enrichment). Of the 576 fecal samples subjected, before enrichment, to three mqPCR assays for quantification, 175 (30.4%) were quantifiable (≥4 log CFU/g) for at least one of the seven serogroups, with O157 being the most common serogroup. The three mqPCR assays detected higher proportions of postenriched fecal samples (P > 0.01) as positive for one or more serogroups compared with cPCR and culture methods. This is the first study to assess the applicability of qPCR assays to detect and quantify six non-O157 serogroups in cattle feces and to generate data on fecal concentration of the six serogroups.

  1. Development of quantitative real-time PCR assays for detection and quantification of surrogate biological warfare agents in building debris and leachate.

    PubMed

    Saikaly, Pascal E; Barlaz, Morton A; de Los Reyes, Francis L

    2007-10-01

    Evaluation of the fate and transport of biological warfare (BW) agents in landfills requires the development of specific and sensitive detection assays. The objective of the current study was to develop and validate SYBR green quantitative real-time PCR (Q-PCR) assays for the specific detection and quantification of surrogate BW agents in synthetic building debris (SBD) and leachate. Bacillus atrophaeus (vegetative cells and spores) and Serratia marcescens were used as surrogates for Bacillus anthracis (anthrax) and Yersinia pestis (plague), respectively. The targets for SYBR green Q-PCR assays were the 16S-23S rRNA intergenic transcribed spacer (ITS) region and recA gene for B. atrophaeus and the gyrB, wzm, and recA genes for S. marcescens. All assays showed high specificity when tested against 5 ng of closely related Bacillus and Serratia nontarget DNA from 21 organisms. Several spore lysis methods that include a combination of one or more of freeze-thaw cycles, chemical lysis, hot detergent treatment, bead beat homogenization, and sonication were evaluated. All methods tested showed similar threshold cycle values. The limit of detection of the developed Q-PCR assays was determined using DNA extracted from a pure bacterial culture and DNA extracted from sterile water, leachate, and SBD samples spiked with increasing quantities of surrogates. The limit of detection for B. atrophaeus genomic DNA using the ITS and B. atrophaeus recA Q-PCR assays was 7.5 fg per PCR. The limits of detection of S. marcescens genomic DNA using the gyrB, wzm, and S. marcescens recA Q-PCR assays were 7.5 fg, 75 fg, and 7.5 fg per PCR, respectively. Quantification of B. atrophaeus vegetative cells and spores was linear (R(2) > 0.98) over a 7-log-unit dynamic range down to 10(1) B. atrophaeus cells or spores. Quantification of S. marcescens (R(2) > 0.98) was linear over a 6-log-unit dynamic range down to 10(2) S. marcescens cells. The developed Q-PCR assays are highly specific and sensitive

  2. A novel CMOS image sensor system for quantitative loop-mediated isothermal amplification assays to detect food-borne pathogens.

    PubMed

    Wang, Tiantian; Kim, Sanghyo; An, Jeong Ho

    2017-02-01

    Loop-mediated isothermal amplification (LAMP) is considered as one of the alternatives to the conventional PCR and it is an inexpensive portable diagnostic system with minimal power consumption. The present work describes the application of LAMP in real-time photon detection and quantitative analysis of nucleic acids integrated with a disposable complementary-metal-oxide semiconductor (CMOS) image sensor. This novel system works as an amplification-coupled detection platform, relying on a CMOS image sensor, with the aid of a computerized circuitry controller for the temperature and light sources. The CMOS image sensor captures the light which is passing through the sensor surface and converts into digital units using an analog-to-digital converter (ADC). This new system monitors the real-time photon variation, caused by the color changes during amplification. Escherichia coli O157 was used as a proof-of-concept target for quantitative analysis, and compared with the results for Staphylococcus aureus and Salmonella enterica to confirm the efficiency of the system. The system detected various DNA concentrations of E. coli O157 in a short time (45min), with a detection limit of 10fg/μL. The low-cost, simple, and compact design, with low power consumption, represents a significant advance in the development of a portable, sensitive, user-friendly, real-time, and quantitative analytic tools for point-of-care diagnosis.

  3. Interlaboratory comparison of three microbial source tracking quantitative polymerase chain reaction (qPCR) assays from fecal-source and environmental samples

    USGS Publications Warehouse

    Stelzer, Erin A.; Strickler, Kriston M.; Schill, William B.

    2012-01-01

    During summer and early fall 2010, 15 river samples and 6 fecal-source samples were collected in West Virginia. These samples were analyzed by three laboratories for three microbial source tracking (MST) markers: AllBac, a general fecal indicator; BacHum, a human-associated fecal indicator; and BoBac, a ruminant-associated fecal indicator. MST markers were analyzed by means of the quantitative polymerase chain reaction (qPCR) method. The aim was to assess interlaboratory precision when the three laboratories used the same MST marker and shared deoxyribonucleic acid (DNA) extracts of the samples, but different equipment, reagents, and analyst experience levels. The term assay refers to both the markers and the procedure differences listed above. Interlaboratory precision was best for all three MST assays when using the geometric mean absolute relative percent difference (ARPD) and Friedman's statistical test as a measure of interlaboratory precision. Adjustment factors (one for each MST assay) were calculated using results from fecal-source samples analyzed by all three laboratories and applied retrospectively to sample concentrations to account for differences in qPCR results among labs using different standards and procedures. Following the application of adjustment factors to qPCR results, ARPDs were lower; however, statistically significant differences between labs were still observed for the BacHum and BoBac assays. This was a small study and two of the MST assays had 52 percent of samples with concentrations at or below the limit of accurate quantification; hence, more testing could be done to determine if the adjustment factors would work better if the majority of sample concentrations were above the quantification limit.

  4. The development of quick, robust, quantitative phenotypic assays for describing the host–nonhost landscape to stripe rust

    PubMed Central

    Dawson, Andrew M.; Bettgenhaeuser, Jan; Gardiner, Matthew; Green, Phon; Hernández-Pinzón, Inmaculada; Hubbard, Amelia; Moscou, Matthew J.

    2015-01-01

    Nonhost resistance is often conceptualized as a qualitative separation from host resistance. Classification into these two states is generally facile, as they fail to fully describe the range of states that exist in the transition from host to nonhost. This poses a problem when studying pathosystems that cannot be classified as either host or nonhost due to their intermediate status relative to these two extremes. In this study, we investigate the efficacy of the Poaceae-stripe rust (Puccinia striiformis Westend.) interaction for describing the host–nonhost landscape. First, using barley (Hordeum vulgare L.) and Brachypodium distachyon (L.) P. Beauv. We observed that macroscopic symptoms of chlorosis and leaf browning were associated with hyphal colonization by P. striiformis f. sp. tritici, respectively. This prompted us to adapt a protocol for visualizing fungal structures into a phenotypic assay that estimates the percent of leaf colonized. Use of this assay in intermediate host and intermediate nonhost systems found the frequency of infection decreases with evolutionary divergence from the host species. Similarly, we observed that the pathogen’s ability to complete its life cycle decreased faster than its ability to colonize leaf tissue, with no incidence of pustules observed in the intermediate nonhost system and significantly reduced pustule formation in the intermediate host system as compared to the host system, barley-P. striiformis f. sp. hordei. By leveraging the stripe rust pathosystem in conjunction with macroscopic and microscopic phenotypic assays, we now hope to dissect the genetic architecture of intermediate host and intermediate nonhost resistance using structured populations in barley and B. distachyon. PMID:26579142

  5. Quantitative UPLC-MS/MS assay of urinary 2,8-dihydroxyadenine for diagnosis and management of adenine phosphoribosyltransferase deficiency.

    PubMed

    Thorsteinsdottir, Margret; Thorsteinsdottir, Unnur A; Eiriksson, Finnur F; Runolfsdottir, Hrafnhildur L; Agustsdottir, Inger M Sch; Oddsdottir, Steinunn; Sigurdsson, Baldur B; Hardarson, Hordur K; Kamble, Nilesh R; Sigurdsson, Snorri Th; Edvardsson, Vidar O; Palsson, Runolfur

    2016-11-15

    Adenine phosphoribosyltransferase (APRT) deficiency is a hereditary disorder that leads to excessive urinary excretion of 2,8-dihydroxyadenine (DHA), causing nephrolithiasis and chronic kidney disease. Treatment with allopurinol or febuxostat reduces DHA production and attenuates the renal manifestations. Assessment of DHA crystalluria by urine microscopy is used for therapeutic monitoring, but lacks sensitivity. We report a high-throughput assay based on ultra-performance liquid chromatography coupled to tandem mass spectrometry (UPLC-MS/MS) for quantification of urinary DHA. The UPLC-MS/MS assay was optimized by a chemometric approach for absolute quantification of DHA, utilizing isotopically labeled DHA as an internal standard. Experimental screening was conducted with D-optimal design and optimization of the DHA response was performed with central composite face design and related to the peak area of DHA using partial least square regression. Acceptable precision and accuracy of the DHA concentration were obtained over a calibration range of 100 to 5000ng/mL on three different days. The intra- and inter-day accuracy and precision coefficients of variation were well within ±15% for quality control samples analyzed in replicates of six at three concentration levels. Absolute quantification of DHA in urine samples from patients with APRT deficiency was achieved wihtin 6.5min. Measurement of DHA in 24h urine samples from three patients with APRT deficiency, diluted 1:15 (v/v) with 10mM ammonium hydroxide (NH4OH), yielded a concentration of 3021, 5860 and 10563ng/mL and 24h excretion of 816, 1327 and 1649mg, respectively. A rapid and robust UPLC-MS/MS assay for absolute quantification of DHA in urine was successfully developed. We believe this method will greatly facilitate diagnosis and management of patients with APRT deficiency.

  6. Quantitative analysis of steroid hormones in human hair using a column-switching LC-APCI-MS/MS assay.

    PubMed

    Gao, Wei; Stalder, Tobias; Foley, Paul; Rauh, Manfred; Deng, Huihua; Kirschbaum, Clemens

    2013-06-01

    The analysis of steroid hormones in hair is increasingly used in the field of stress-related research to obtain a retrospective index of integrated long-term hormone secretion. Here, most laboratories have so far relied on immunochemical assays originally developed for salivary analyses. Although these assays are fast and easy to perform, they have a reduced reliability and specificity due to cross-reactivity with other substances and are limited to the detection of one hormone at a time. Here, we report the development of a LC-MS/MS-based method for simultaneous identification of endogenous concentrations of seven steroid hormones (cortisol, cortisone, testosterone, progesterone, corticosterone, dehydroepiandrosterone (DHEA) and androstenedione) in human hair. Hair samples were washed with isopropanol and steroid hormones were extracted from 10mg whole, nonpulverized hair by methanol incubation. A column switching strategy for on-line solid phase extraction (SPE) was applied, followed by analyte detection on an AB Sciex API 5000 QTrap mass spectrometer. Results indicated linearity of the method for all steroids over ranges of 0.09-90pg/mg (0.9-900pg/mg for DHEA) with correlation coefficients ranging between 0.9995 and 0.9999. Intra- and inter-assay coefficients of variation were between 3.7 and 9.1%. The limits of quantification (LOQ) were below (or equal to) 0.1pg/mg for all steroids, except of DHEA for which the LOQ was 0.9pg/mg. An analysis of 30 natural hair samples (15 men/15 women) using this method confirmed that all steroid hormones could be quantified at endogenous levels in each individual. In addition, the use of whole hair samples and on-line SPE resulted in a significant reduction in sample throughput times, increasing the applicability of this method for research questions where a larger number of samples needs to be processed.

  7. Kinetic Modeling of ABCG2 Transporter Heterogeneity: A Quantitative, Single-Cell Analysis of the Side Population Assay

    PubMed Central

    Prasanphanich, Adam F.; White, Douglas E.; Gran, Margaret A.

    2016-01-01

    The side population (SP) assay, a technique used in cancer and stem cell research, assesses the activity of ABC transporters on Hoechst staining in the presence and absence of transporter inhibition, identifying SP and non-SP cell (NSP) subpopulations by differential staining intensity. The interpretation of the assay is complicated because the transporter-mediated mechanisms fail to account for cell-to-cell variability within a population or adequately control the direct role of transporter activity on staining intensity. We hypothesized that differences in dye kinetics at the single-cell level, such as ABCG2 transporter-mediated efflux and DNA binding, are responsible for the differential cell staining that demarcates SP/NSP identity. We report changes in A549 phenotype during time in culture and with TGFβ treatment that correlate with SP size. Clonal expansion of individually sorted cells re-established both SP and NSPs, indicating that SP membership is dynamic. To assess the validity of a purely kinetics-based interpretation of SP/NSP identity, we developed a computational approach that simulated cell staining within a heterogeneous cell population; this exercise allowed for the direct inference of the role of transporter activity and inhibition on cell staining. Our simulated SP assay yielded appropriate SP responses for kinetic scenarios in which high transporter activity existed in a portion of the cells and little differential staining occurred in the majority of the population. With our approach for single-cell analysis, we observed SP and NSP cells at both ends of a transporter activity continuum, demonstrating that features of transporter activity as well as DNA content are determinants of SP/NSP identity. PMID:27851764

  8. 16S rRNA-based assays for quantitative detection of universal, human-, cow-, and dog-specific fecal Bacteroidales: a Bayesian approach.

    PubMed

    Kildare, Beverly J; Leutenegger, Christian M; McSwain, Belinda S; Bambic, Dustin G; Rajal, Veronica B; Wuertz, Stefan

    2007-08-01

    We report the design and validation of new TaqMan((R)) assays for microbial source tracking based on the amplification of fecal 16S rRNA marker sequences from uncultured cells of the order Bacteroidales. The assays were developed for the detection and enumeration of non-point source input of fecal pollution to watersheds. The quantitative "universal"Bacteroidales assay BacUni-UCD detected all tested stool samples from human volunteers (18 out of 18), cat (7 out of 7), dog (8 out of 8), seagull (10/10), cow (8/8), horse (8/8), and wastewater effluent (14/14). The human assay BacHum-UCD discriminated fully between human and cow stool samples but did not detect all stool samples from human volunteers (12/18). In addition, there was 12.5% detection of dog stool (1/8), but no cross-reactivity with cat, horse, or seagull fecal samples. In contrast, all wastewater samples were positive for the BacHum-UCD marker, supporting its designation as 100% sensitive for mixed-human source identification. The cow-specific assay BacCow-UCD fully discriminated between cow and human stool samples. There was 38% detection of horse stool (3/8), but no cross-specificity with any of the other animal stool samples tested. The dog assay BacCan-UCD discriminated fully between dog and cow stool or seagull guano samples and detected 62.5% stool samples from dogs (5/8). There was some cross-reactivity with 22.2% detection of human stool (4/18), 14.3% detection of cat stool (1/7), and 28.6% detection of wastewater samples (4/14). After validation using stool samples, single-blind tests were used to further demonstrate the efficacy of the developed markers; all assays were sensitive, reproducible, and accurate in the quantification of mixed fecal sources present in aqueous samples. Finally, the new assays were compared with previously published sequences, which showed the new methodologies to be more specific and sensitive. Using Bayes' Theorem, we calculated the conditional probability that the

  9. An in vitro demonstration of oestrogenicity with potential for exploitation as a quantitative assay for oestrogenic potency.

    PubMed

    Pugh, D M; Sumano, H S

    1986-01-01

    The pre-implantation embryo of the mouse undergoes a histochemically detectable change in the properties of its trophoblastic cell-surface coat in the immediate pre-implantation period. This change is oestrogen-dependent in vivo and can be induced in vitro in a concentration-dependent manner by oestradiol-17 beta. There is evidence that this coat change is of functional importance in the process of implantation, and its demonstration is of potential value as the basis of an in vitro assay of oestrogenicity.

  10. Apparatus and method for quantitative assay of samples of transuranic waste contained in barrels in the presence of matrix material

    DOEpatents

    Caldwell, J.T.; Herrera, G.C.; Hastings, R.D.; Shunk, E.R.; Kunz, W.E.

    1987-08-28

    Apparatus and method for performing corrections for matrix material effects on the neutron measurements generated from analysis of transuranic waste drums using the differential-dieaway technique. By measuring the absorption index and the moderator index for a particular drum, correction factors can be determined for the effects of matrix materials on the ''observed'' quantity of fissile and fertile material present therein in order to determine the actual assays thereof. A barrel flux monitor is introduced into the measurement chamber to accomplish these measurements as a new contribution to the differential-dieaway technology. 9 figs.

  11. Quantitative TaqMan® real-time PCR assays for gene expression normalisation in feline tissues

    PubMed Central

    2009-01-01

    Background Gene expression analysis is an important tool in contemporary research, with real-time PCR as the method of choice for quantifying transcription levels. Co-analysis of suitable reference genes is crucial for accurate expression normalisation. Reference gene expression may vary, e.g., among species or tissues; thus, candidate genes must be tested prior to use in expression studies. The domestic cat is an important study subject in both medical research and veterinary medicine. The aim of the present study was to develop TaqMan® real-time PCR assays for eight potential reference genes and to test their applicability for feline samples, including blood, lymphoid, endocrine, and gastrointestinal tissues from healthy cats, and neoplastic tissues from FeLV-infected cats. Results RNA extraction from tissues was optimised for minimal genomic DNA (gDNA) contamination without use of a DNase treatment. Real-time PCR assays were established and optimised for v-abl Abelson murine leukaemia viral oncogene homolog (ABL), β-actin (ACTB), β-2-microglobulin (B2M), β-glucuronidase (GUSB), hydroxymethyl-bilane synthase (HMBS), hypoxanthine phosphoribosyltransferase (HPRT), ribosomal protein S7 (RPS7), and tryptophan 5-monooxygenase activation protein, zeta polypeptide (YWHAZ). The presence of pseudogenes was confirmed for four of the eight investigated genes (ACTB, HPRT, RPS7, and YWHAZ). The assays were tested together with previously developed TaqMan® assays for feline glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and the universal 18S rRNA gene. Significant differences were found among the expression levels of the ten candidate reference genes, with a ~106-fold expression difference between the most abundant (18S rRNA) and the least abundant genes (ABL, GUSB, and HMBS). The expression stability determined by the geNorm and NormFinder programs differed significantly. Using the ANOVA-based NormFinder program, RPS7 was the most stable gene in the tissues studied

  12. Development and validation of a LC-MS/MS assay for quantitation of plasma citrulline for application to animal models of the acute radiation syndrome across multiple species.

    PubMed

    Jones, Jace W; Tudor, Gregory; Bennett, Alexander; Farese, Ann M; Moroni, Maria; Booth, Catherine; MacVittie, Thomas J; Kane, Maureen A

    2014-07-01

    The potential risk of a radiological catastrophe highlights the need for identifying and validating potential biomarkers that accurately predict radiation-induced organ damage. A key target organ that is acutely sensitive to the effects of irradiation is the gastrointestinal (GI) tract, referred to as the GI acute radiation syndrome (GI-ARS). Recently, citrulline has been identified as a potential circulating biomarker for radiation-induced GI damage. Prior to biologically validating citrulline as a biomarker for radiation-induced GI injury, there is the important task of developing and validating a quantitation assay for citrulline detection within the radiation animal models used for biomarker validation. Herein, we describe the analytical development and validation of citrulline detection using a liquid chromatography tandem mass spectrometry assay that incorporates stable-label isotope internal standards. Analytical validation for specificity, linearity, lower limit of quantitation, accuracy, intra- and interday precision, extraction recovery, matrix effects, and stability was performed under sample collection and storage conditions according to the Guidance for Industry, Bioanalytical Methods Validation issued by the US Food and Drug Administration. In addition, the method was biologically validated using plasma from well-characterized mouse, minipig, and nonhuman primate GI-ARS models. The results demonstrated that circulating citrulline can be confidently quantified from plasma. Additionally, circulating citrulline displayed a time-dependent response for radiological doses covering GI-ARS across multiple species.

  13. Development of an in vitro high content imaging assay for quantitative assessment of CAR-dependent mouse, rat, and human primary hepatocyte proliferation.

    PubMed

    Soldatow, Valerie; Peffer, Richard C; Trask, O Joseph; Cowie, David E; Andersen, Melvin E; LeCluyse, Edward; Deisenroth, Chad

    2016-10-01

    Rodent liver tumors promoted by constitutive androstane receptor (CAR) activation are known to be mediated by key events that include CAR-dependent gene expression and hepatocellular proliferation. Here, an in vitro high content imaging based assay was developed for quantitative assessment of nascent DNA synthesis in primary hepatocyte cultures from mouse, rat, and human species. Detection of DNA synthesis was performed using direct DNA labeling with the nucleoside analog 5-ethynyl-2'-deoxyuridine (EdU). The assay was multiplexed to enable direct quantitation of DNA synthesis, cytotoxicity, and cell count endpoints. An optimized defined medium cocktail was developed to sensitize hepatocytes to cell cycle progression. The baseline EdU response to defined medium was greatest for mouse, followed by rat, and then human. Hepatocytes from all three species demonstrated CAR activation in response to the CAR agonists TCPOBOP, CITCO, and phenobarbital based on increased gene expression for Cyp2b isoforms. When evaluated for a proliferation phenotype, TCPOBOP and CITCO exhibited significant dose-dependent increases in frequency of EdU labeling in mouse and rat hepatocytes that was not observed in hepatocytes from three human donors. The observed species differences are consistent with CAR activators inducing a proliferative response in rodents, a key event in the liver tumor mode of action that is not observed in humans.

  14. A Powerful New Quantitative Genetics Platform, Combining Caenorhabditis elegans High-Throughput Fitness Assays with a Large Collection of Recombinant Strains

    PubMed Central

    Andersen, Erik C.; Shimko, Tyler C.; Crissman, Jonathan R.; Ghosh, Rajarshi; Bloom, Joshua S.; Seidel, Hannah S.; Gerke, Justin P.; Kruglyak, Leonid

    2015-01-01

    The genetic variants underlying complex traits are often elusive even in powerful model organisms such as Caenorhabditis elegans with controlled genetic backgrounds and environmental conditions. Two major contributing factors are: (1) the lack of statistical power from measuring the phenotypes of small numbers of individuals, and (2) the use of phenotyping platforms that do not scale to hundreds of individuals and are prone to noisy measurements. Here, we generated a new resource of 359 recombinant inbred strains that augments the existing C. elegans N2xCB4856 recombinant inbred advanced intercross line population. This new strain collection removes variation in the neuropeptide receptor gene npr-1, known to have large physiological and behavioral effects on C. elegans and mitigates the hybrid strain incompatibility caused by zeel-1 and peel-1, allowing for identification of quantitative trait loci that otherwise would have been masked by those effects. Additionally, we optimized highly scalable and accurate high-throughput assays of fecundity and body size using the COPAS BIOSORT large particle nematode sorter. Using these assays, we identified quantitative trait loci involved in fecundity and growth under normal growth conditions and after exposure to the herbicide paraquat, including independent genetic loci that regulate different stages of larval growth. Our results offer a powerful platform for the discovery of the genetic variants that control differences in responses to drugs, other aqueous compounds, bacterial foods, and pathogenic stresses. PMID:25770127

  15. A rapid, quantitative assay for direct detection of microRNAs and other small RNAs using splinted ligation

    PubMed Central

    Maroney, Patricia A.; Chamnongpol, Sangpen; Souret, Frédéric; Nilsen, Timothy W.

    2007-01-01

    The discovery and characterization of microRNAs (miRNAs) and other families of short RNAs has led to a rapid expansion of research directed at elucidating their expression patterns and regulatory functions. Here, we describe a convenient, sensitive, and straightforward method to detect and quantitate specific miRNA levels in unfractionated total RNA samples. The method, based on splinted ligation, does not require specialized equipment or any amplification step, and is significantly faster and more sensitive than Northern blotting. We demonstrate that the method can be used to detect various classes of small regulatory RNAs from different organisms. PMID:17456563

  16. High Specificity of a Quantitative PCR Assay Targeting a Saxitoxin Gene for Monitoring Toxic Algae Associated with Paralytic Shellfish Toxins in the Yellow Sea

    PubMed Central

    Gao, Yan; Murray, Shauna A.; Chen, Jian-Hua; Kang, Zhen-Jun; Zhang, Qing-Chun; Kong, Fan-Zhou; Zhou, Ming-Jiang

    2015-01-01

    The identification of core genes involved in the biosynthesis of saxitoxin (STX) offers a great opportunity to detect toxic algae associated with paralytic shellfish toxins (PST). In the Yellow Sea (YS) in China, both toxic and nontoxic Alexandrium species are present, which makes it a difficult issue to specifically monitor PST-producing toxic algae. In this study, a quantitative PCR (qPCR) assay targeting sxtA4, a domain in the sxt gene cluster that encodes a unique enzyme involved in STX biosynthesis, was applied to analyze samples collected from the YS in spring of 2012. The abundance of two toxic species within the Alexandrium tamarense species complex, i.e., A. fundyense and A. pacificum, was also determined with TaqMan-based qPCR assays, and PSTs in net-concentrated phytoplankton samples were analyzed with high-performance liquid chromatography coupled with a fluorescence detector. It was found that the distribution of the sxtA4 gene in the YS was consistent with the toxic algae and PSTs, and the quantitation results of sxtA4 correlated well with the abundance of the two toxic species (r = 0.857). These results suggested that the two toxic species were major PST producers during the sampling season and that sxtA-based qPCR is a promising method to detect toxic algae associated with PSTs in the YS. The correlation between PST levels and sxtA-based qPCR results, however, was less significant (r = 0.552), implying that sxtA-based qPCR is not accurate enough to reflect the toxicity of PST-producing toxic algae. The combination of an sxtA-based qPCR assay and chemical means might be a promising method for monitoring toxic algal blooms. PMID:26231652

  17. [Multicenter evaluation of h-FABP semi-quantitative assay (Cardio Detect) in central laboratory: the point in acute myocardial infarction diagnosis].

    PubMed

    Lefèvre, G; Fayet, J-M; Graïne, H; Berny, C; Maupas-Schwalm, F; Capolaghi, B; Morin, C

    2007-01-01

    The diagnostic performance of heart-Fatty Acid Binding Protein (h-FABP) (semi-quantitative CardioDetect test) and cardiac troponin I (TnIc) blood assays were compared in one hundred patients presenting with suspicion of acute coronary syndrome. Final patient diagnosis was "acute myocardial infarction" in 36 cases, "non ST myocardial infarction" in 25 cases and "non ischemic pathologies" in 39 cases. h-FABP results were positive in 26 patients, negative in 57 patients and ambiguous in 17 patients, the latter corresponding to the final diagnosis of "acute myocardial infarction" in 5 cases, "non ST myocardial infarction" in 2 cases and "non ischemic pathologies " in 10 cases. At admission, h-FABP and TnIc exhibiteda sensitivity of 54% an 66%, respectively and a specificity of 86% and 95%, respectively. Positive and negative predictive values were 81% and 64% for h-FABP, respectively and 92% and 75% for cTnI, respectively. h-FABP and cTnI demonstrated a similar diagnostic efficiency if admission delay is less than 4 hours after onset of chest pain (area under ROC curve TnIc = 0.767 +/- 0.091 ; area under ROC curve h-FABP = 0.622 +/- 0.109 ; p = 0.144). On the contrary, cTnI assay demonstrated a better efficiency than h-FABP (p< 0.005) for patients admitted in a delay of 4 to 12 hours after the onset of chest pain. If chosen cTnI cut-off corresponded to the recent consensus definition used for monitoring acute coronary syndrome patients, h-FABP semi-quantitative assay realized within central laboratory did not demonstrated a better diagnostic efficiency than cTnI.

  18. Allele Specific Locked Nucleic Acid Quantitative PCR (ASLNAqPCR): An Accurate and Cost-Effective Assay to Diagnose and Quantify KRAS and BRAF Mutation

    PubMed Central

    Morandi, Luca; de Biase, Dario; Visani, Michela; Cesari, Valentina; De Maglio, Giovanna; Pizzolitto, Stefano; Pession, Annalisa; Tallini, Giovanni

    2012-01-01

    The use of tyrosine kinase inhibitors (TKIs) requires the testing for hot spot mutations of the molecular effectors downstream the membrane-bound tyrosine kinases since their wild type status is expected for response to TKI therapy. We report a novel assay that we have called Allele Specific Locked Nucleic Acid quantitative PCR (ASLNAqPCR). The assay uses LNA-modified allele specific primers and LNA-modified beacon probes to increase sensitivity, specificity and to accurately quantify mutations. We designed primers specific for codon 12/13 KRAS mutations and BRAF V600E, and validated the assay with 300 routine samples from a variety of sources, including cytology specimens. All were analyzed by ASLNAqPCR and Sanger sequencing. Discordant cases were pyrosequenced. ASLNAqPCR correctly identified BRAF and KRAS mutations in all discordant cases and all had a mutated/wild type DNA ratio below the analytical sensitivity of the Sanger method. ASLNAqPCR was 100% specific with greater accuracy, positive and negative predictive values compared with Sanger sequencing. The analytical sensitivity of ASLNAqPCR is 0.1%, allowing quantification of mutated DNA in small neoplastic cell clones. ASLNAqPCR can be performed in any laboratory with real-time PCR equipment, is very cost-effective and can easily be adapted to detect hot spot mutations in other oncogenes. PMID:22558339

  19. Development of a Rapid, Sensitive, and Field-Deployable Razor Ex BioDetection System and Quantitative PCR Assay for Detection of Phymatotrichopsis omnivora Using Multiple Gene Targets

    PubMed Central

    Arif, M.; Marek, S. M.; Melcher, U.

    2013-01-01

    A validated, multigene-based method using real-time quantitative PCR (qPCR) and the Razor Ex BioDetection system was developed for detection of Phymatotrichopsis omnivora. This soilborne fungus causes Phymatotrichopsis root rot of cotton, alfalfa, and other dicot crops in the southwestern United States and northern Mexico, leading to significant crop losses and limiting the range of crops that can be grown in soils where the fungus is established. It is on multiple lists of regulated organisms. Because P. omnivora is difficult to isolate, accurate and sensitive culture-independent diagnostic tools are needed to confirm infections by this fungus. Specific PCR primers and probes were designed based on P. omnivora nucleotide sequences of the genes encoding rRNA internal transcribed spacers, beta-tubulin, and the second-largest subunit of RNA polymerase II (RPB2). PCR products were cloned and sequenced to confirm their identity. All primer sets allowed early detection of P. omnivora in infected but asymptomatic plants. A modified rapid DNA purification method, which facilitates a quick (∼30-min) on-site assay capability for P. omnivora detection, was developed. Combined use of three target genes increased the assay accuracy and broadened the range of detection. To our knowledge, this is the first report of a multigene-based, field-deployable, rapid, and reliable identification method for a fungal plant pathogen and should serve as a model for the development of field-deployable assays of other phytopathogens. PMID:23354717

  20. A One-Step Real-Time RT-PCR Assay for the Detection and Quantitation of Sugarcane Streak Mosaic Virus.

    PubMed

    Fu, Wei-Lin; Sun, Sheng-Ren; Fu, Hua-Ying; Chen, Ru-Kai; Su, Jin-Wei; Gao, San-Ji

    2015-01-01

    Sugarcane mosaic disease is caused by the Sugarcane streak mosaic virus (SCSMV; genus Poacevirus, family Potyviridae) which is common in some Asian countries. Here, we established a protocol of a one-step real-time quantitative reverse transcription PCR (real-time qRT-PCR) using the TaqMan probe for the detection of SCSMV in sugarcane. Primers and probes were designed within the conserved region of the SCSMV coat protein (CP) gene sequences. Standard single-stranded RNA (ssRNA) generated by PCR-based gene transcripts of recombinant pGEM-CP plasmid in vitro and total RNA extracted from SCSMV-infected sugarcane were used as templates of qRT-PCR. We further performed a sensitivity assay to show that the detection limit of the assay was 100 copies of ssRNA and 2 pg of total RNA with good reproducibility. The values obtained were approximately 100-fold more sensitive than those of the conventional RT-PCR. A higher incidence (68.6%) of SCSMV infection was detected by qRT-PCR than that (48.6%) with conventional RT-PCR in samples showing mosaic symptoms. SCSMV-free samples were verified by infection with Sugarcane mosaic virus (SCMV) or Sorghum mosaic virus (SrMV) or a combination of both. The developed qRT-PCR assay may become an alternative molecular tool for an economical, rapid, and efficient detection and quantification of SCSMV.

  1. Dichloro-dihydro-fluorescein diacetate (DCFH-DA) assay: a quantitative method for oxidative stress assessment of nanoparticle-treated cells.

    PubMed

    Aranda, A; Sequedo, L; Tolosa, L; Quintas, G; Burello, E; Castell, J V; Gombau, L

    2013-03-01

    No consensus exists on how to address possible toxicity of nanomaterials as they interfere with most in vitro screening tests based on colorimetric and fluorimetric probes such as the dichloro-dihydro-fluorescein diacetate (DCFH-DA) assay for detection of oxidative species. In the present research, nanomaterial interaction with DCFH-DA was studied in relation to its nature and/or assay conditions (cell-based and time exposure) by incubating Rhodamine (Rhd)-labeled 25nm and 50nm silica (SiO2), naked and oleic acid coated magnetite, (Fe3O4) and maghemite (Fe2O3) iron oxide, titanium dioxide (TiO2) and poly(ethylene oxide)-poly(lactide/glycolide) acid (PLGA-PEO) nanoparticles (NPs) with metabolically active rat hepatocytes for 4 and 24-h periods. Data indicated that nanoparticle uptake correlated with quenching of dye fluorescence emission. In spite of their masking effect, the oxidative potential of NPs could be detected at a limited threshold concentration when exposed for periods of time longer than those frequently used for this test. However, changes in the experimental conditions did not systematically result in free radical formation for all nanomaterials tested. Overall data indicate that despite the quenching effect of nanoparticles on DCFH-DA assay, it can be considered as a useful tool for quantitative measurement of NPs-induced oxidative stress by minor modifications of standardized protocols.

  2. Development of an Escherichia coli K12-specific quantitative polymerase chain reaction assay and DNA isolation suited to biofilms associated with iron drinking water pipe corrosion products.

    PubMed

    Lu, Jingrang; Gerke, Tammie L; Buse, Helen Y; Ashbolt, Nicholas J

    2014-12-01

    A quantitative polymerase chain reaction assay (115 bp amplicon) specific to Escherichia coli K12 with an ABI(TM) internal control was developed based on sequence data encoding the rfb gene cluster. Assay specificity was evaluated using three E. coli K12 strains (ATCC W3110, MG1655 & DH1), 24 non-K12 E. coli and 23 bacterial genera. The biofilm detection limit was 10(3) colony-forming units (CFU) E. coli K12 mL(-1), but required a modified protocol, which included a bio-blocker Pseudomonas aeruginosa with ethylenediaminetetraacetic acid buffered to pH 5 prior to cell lysis/DNA extraction. The novel protocol yielded the same sensitivity for drinking water biofilms associated with Fe3O4 (magnetite)-coated SiO2 (quartz) grains and biofilm-surface iron corrosion products from a drinking water distribution system. The novel DNA extraction protocol and specific E. coli K12 assay are sensitive and robust enough for detection and quantification within iron drinking water pipe biofilms, and are particularly well suited for studying enteric bacterial interactions within biofilms.

  3. Development of a quantitative PCR assay for monitoring Streptococcus agalactiae colonization and tissue tropism in experimentally infected tilapia.

    PubMed

    Su, Y-L; Feng, J; Li, Y-W; Bai, J-S; Li, A-X

    2016-02-01

    Streptococcus agalactiae has become one of the most important emerging pathogens in the aquaculture industry and has resulted in large economic losses for tilapia farms in China. In this study, three pairs of specific primers were designed and tested for their specificities and sensitivities in quantitative real-time polymerase chain reactions (qPCRs) after optimization of the annealing temperature. The primer pair IGS-s/IGS-a, which targets the 16S-23S rRNA intergenic spacer region, was finally chosen, having a detection limit of 8.6 copies of S. agalactiae DNA in a 20 μL reaction mixture. Bacterial tissue tropism was demonstrated by qPCR in Oreochromis niloticus 5 days post-injection with a virulent S. agalactiae strain. Bacterial loads were detected at the highest level in brain, followed by moderately high levels in kidney, heart, spleen, intestines, and eye. Significantly lower bacterial loads were observed in muscle, gill and liver. In addition, significantly lower bacterial loads were observed in the brain of convalescent O. niloticus 14 days post-injection with several different S. agalactiae strains. The qPCR for the detection of S. agalactiae developed in this study provides a quantitative tool for investigating bacterial tissue tropism in infected fish, as well as for monitoring bacterial colonization in convalescent fish.

  4. Nested-PCR and TaqMan real-time quantitative PCR assays for human adenoviruses in environmental waters.

    PubMed

    Huang, Wen-Chien; Chou, Yi-Pen; Kao, Po-Min; Hsu, Tsui-Kang; Su, Hung-Chang; Ho, Ying-Ning; Yang, Yi-Chun; Hsu, Bing-Mu

    2016-01-01

    Human adenovirus (HAdV) infections can occur throughout the year. Cases of HAdV-associated respiratory disease have been more common in the late winter, spring, and early summer. In this study, to provide viral pollution data for further epidemiological studies and governmental actions, the presence of HAdV in the aquatic environment was quantitatively surveyed in the summer. This study was conducted to compare the efficiencies of nested-PCR (polymerase chain reaction) and qPCR (quantitative PCR) for detecting HAdV in environmental waters. A total of 73 water samples were collected from Puzi River in Taiwan and subjected to virus concentration methods. In the results, qPCR had much better efficiency for specifying the pathogen in river sample. HAdV41 was detected most frequently in the river water sample (10.9%). The estimated HAdV concentrations ranged between 6.75 × 10(2) and 2.04 × 10(9) genome copies/L. Significant difference was also found in heterotrophic plate counts, conductivity, water temperature, and water turbidity between presence/absence of HAdV. HAdV in the Puzi River may pose a significant health risk.

  5. Transcriptome discovery in non-model wild fish species for the development of quantitative transcript abundance assays

    USGS Publications Warehouse

    Hahn, Cassidy M.; Iwanowicz, Luke R.; Cornman, Robert S.; Mazik, Patricia M.; Blazer, Vicki S.

    2016-01-01

    Environmental studies increasingly identify the presence of both contaminants of emerging concern (CECs) and legacy contaminants in aquatic environments; however, the biological effects of these compounds on resident fishes remain largely unknown. High throughput methodologies were employed to establish partial transcriptomes for three wild-caught, non-model fish species; smallmouth bass (Micropterus dolomieu), white sucker (Catostomus commersonii) and brown bullhead (Ameiurus nebulosus). Sequences from these transcriptome databases were utilized in the development of a custom nCounter CodeSet that allowed for direct multiplexed measurement of 50 transcript abundance endpoints in liver tissue. Sequence information was also utilized in the development of quantitative real-time PCR (qPCR) primers. Cross-species hybridization allowed the smallmouth bass nCounter CodeSet to be used for quantitative transcript abundance analysis of an additional non-model species, largemouth bass (Micropterus salmoides). We validated the nCounter analysis data system with qPCR for a subset of genes and confirmed concordant results. Changes in transcript abundance biomarkers between sexes and seasons were evaluated to provide baseline data on transcript modulation for each species of interest.

  6. Comparative quantitation for the protein content of diphtheria and tetanus toxoids by DC protein assay and Kjeldahl method.

    PubMed

    Doshi, J B; Ravetkar, S D; Ghole, V S; Rehani, K

    2003-09-01

    DPT, a combination vaccine against diphtheria, tetanus and pertussis is available since many years and still continued in the national immunisation schedule of many countries. Although highly potent, reactions to DPT vaccine are well known, mainly attributed to the factors like Pertussis component, aluminum adjuvant and lower purity of tetanus and diphtheria toxoids. The latter most important aspect has become a matter of concern, specially for the preparation of next generation combination vaccines with more number of antigens in combination with DPT. Purity of toxoid is expressed as Lf (Limes flocculation) per mg of protein nitrogen. The Kjeldahl method (KM) of protein nitrogen estimation suggested by WHO and British Pharmacopoeia is time consuming and less specific. Need has been felt to explore an alternative method which is quick and more specific for toxoid protein determination. DC (detergent compatible) protein assay, an improved Lowry's method, has been found to be much more advantageous than Kjeldahl method.

  7. Quantitative determination of dopamine in human plasma by a highly sensitive LC-MS/MS assay: Application in preterm neonates.

    PubMed

    Zhang, Daping; Wu, Lei; Chow, Diana S-L; Tam, Vincent H; Rios, Danielle R

    2016-01-05

    The determination of dopamine facilitates better understanding of the complex brain disorders in the central nervous system and the regulation of endocrine system, cardiovascular functions and renal functions in the periphery. The purpose of this study was to develop a highly sensitive and reliable assay for the quantification of dopamine in human neonate plasma. Dopamine was extracted from human plasma by strong cation exchange (SCX) solid phase extraction (SPE), and subsequently derivatized with propionic anhydride. The derivatized analyte was separated by a Waters Acquity UPLC BEH C18 column using gradient elution at 0.4 ml/min with mobile phases A (0.2% formic acid in water [v/v]) and B (MeOH-ACN [v/v, 30:70]). Analysis was performed under positive electrospray ionization tandem mass spectrometer (ESI-MS/MS) in the multiple reaction monitoring (MRM) mode. The stable and relatively non-polar nature of the derivatized analyte enables reliable quantification of dopamine in the range of 10-1000 pg/ml using 200 μl of plasma sample. The method was validated with intra-day and inter-day precision less than 7%, and the intra-day and inter-day accuracy of 91.9-101.9% and 92.3-102.6%, respectively. The validated assay was applied to quantify dopamine levels in two preterm neonate plasma samples. In conclusion, a sensitive and selective LC-MS/MS method has been developed and validated, and successfully used for the determination of plasma dopamine levels in preterm neonates.

  8. LC–MS/MS assay for quantitation of enalapril and enalaprilat in plasma for bioequivalence study in Indian subjects

    PubMed Central

    Halder, Dhiman; Dan, Shubhasis; Pal, Murari Mohun; Biswas, Easha; Chatterjee, Nilendra; Sarkar, Pradipta; Halder, Umesh Chandra; Pal, Tapan Kumar

    2017-01-01

    Background: Enalapril (EPL) is an angiotensin-converting enzyme inhibitor for the treatment of hypertension and chronic heart failure. Enalaprilat (EPLT) is an active metabolite that contributes to the overall activity of EPL. Aim: To quantitate EPL along with its metabolite EPLT using LC–MS/MS, a bioanalytical method was developed and validated with tolbutamide in human plasma using a protein precipitation technique. Results: The sensitive and selective method has an LLOQ of 1 ng/ml with a linearity range of 1–500 ng/ml for both EPL and EPLT using 300 µl of plasma without any matrix effect. Conclusion: Linearity, specificity, accuracy, precision and stability, as well as its application to the analysis of plasma samples after oral administration of 20 mg of EPL maleate in healthy volunteers demonstrate applicability to bioavailability/bioequivalence studies. PMID:28344828

  9. Quantitative keratinocyte assay detects two biological activities of human papillomavirus DNA and identifies viral types associated with cervical carcinoma.

    PubMed Central

    Schlegel, R; Phelps, W C; Zhang, Y L; Barbosa, M

    1988-01-01

    Keratinocytes electroporated with human papillomavirus (HPV) DNA (HPV-6, 11, 16 and 18) exhibited an increased cellular proliferation which was quantitated as microcolony and macrocolony formation. However, only macrocolonies induced by HPV-16 or HPV-18 DNA (the two viral types most commonly found in human cervical carcinomas) gave rise to proliferating, poorly-stratified colonies when grown in the presence of serum and calcium. Hydrocortisone increased the frequency of these differentiation-resistant colonies, and studies showed that they were immortalized, contained one copy of viral DNA per cell, expressed three discrete species of viral RNA and synthesized the viral E7 protein. HPV-induced cellular proliferation and altered differentiation are therefore separable events and may represent the activity of different viral genes. Images PMID:2460337

  10. Spectrophotometric method for the quantitative assay of N-hydroxysulfosuccinimide esters including extinction coefficients and reaction kinetics.

    PubMed

    Presentini, Rivo

    2017-05-15

    A quantitative spectrophotometric method has been developed for the analysis of N-hydroxysulfosuccinimide (sulfo-NHS), a chromophore with a maximum absorbance at 268 nm. The extinction coefficients were determined between pH 6.0 and 8.0 and found to vary in a nonlinear manner. This spectrophotometric profile is not present in its esters which however release an equimolar amount of sulfo-NHS when they react with nucleophilic groups or hydrolyze in aqueous solution. This fact facilitates the determination in solution of the concentration and purity of bis(sulfosuccinimidyl) suberate (BS3) used as a model, as well as the examination of hydrolysis and aminolysis half-lives in different reaction conditions, these parameters being valuable in optimization of the use of the active esters.

  11. Development and validation of a liquid chromatography-tandem mass spectrometric assay for quantitative analyses of triptans in hair.

    PubMed

    Vandelli, Daniele; Palazzoli, Federica; Verri, Patrizia; Rustichelli, Cecilia; Marchesi, Filippo; Ferrari, Anna; Baraldi, Carlo; Giuliani, Enrico; Licata, Manuela; Silingardi, Enrico

    2016-04-01

    Triptans are specific drugs widely used for acute treatment of migraine, being selective 5HT1B/1D receptor agonists. A proper assumption of triptans is very important for an effective treatment; nevertheless patients often underuse, misuse, overuse or use triptans inconsistently, i.e., not following the prescribed therapy. Drug analysis in hair can represent a powerful tool for monitoring the compliance of the patient to the therapy, since it can greatly increase the time-window of detection compared to analyses in biological fluids, such as plasma or urine. In the present study, a liquid chromatography-tandem mass spectrometric (LC-MS/MS) method has been developed and validated for the quantitative analysis in human hair of five triptans commonly prescribed in Italy: almotriptan (AL), eletriptan (EP), rizatriptan (RIZ), sumatriptan (SUM) and zolmitriptan (ZP). Hair samples were decontaminated and incubated overnight in diluted hydrochloric acid; the extracts were purified by mixed-mode SPE cartridges and analyzed by LC-MS/MS under gradient elution in positive multiple reaction monitoring (MRM) mode. The procedure was fully validated in terms of selectivity, linearity, limit of detection (LOD) and lower limit of quantitation (LLOQ), accuracy, precision, carry-over, recovery, matrix effect and dilution integrity. The method was linear in the range 10-1000pg/mg hair, with R(2) values of at least 0.990; the validated LLOQ values were in the range 5-7pg/mg hair. The method offered satisfactory precision (RSD <10%), accuracy (90-110%) and recovery (>85%) values. The validated procedure was applied on 147 authentic hair samples from subjects being treated in the Headache Centre of Modena University Hospital in order to verify the possibility of monitoring the corresponding hair levels for the taken triptans.

  12. Pentaplexed Quantitative Real-Time PCR Assay for the Simultaneous Detection and Quantification of Botulinum Neurotoxin-Producing Clostridia in Food and Clinical Samples▿

    PubMed Central

    Kirchner, Sebastian; Krämer, K. Melanie; Schulze, Martin; Pauly, Diana; Jacob, Daniela; Gessler, Frank; Nitsche, Andreas; Dorner, Brigitte G.; Dorner, Martin B.

    2010-01-01

    Botulinum neurotoxins are produced by the anaerobic bacterium Clostridium botulinum and are divided into seven distinct serotypes (A to G) known to cause botulism in animals and humans. In this study, a multiplexed quantitative real-time PCR assay for the simultaneous detection of the human pathogenic C. botulinum serotypes A, B, E, and F was developed. Based on the TaqMan chemistry, we used five individual primer-probe sets within one PCR, combining both minor groove binder- and locked nucleic acid-containing probes. Each hydrolysis probe was individually labeled with distinguishable fluorochromes, thus enabling discrimination between the serotypes A, B, E, and F. To avoid false-negative results, we designed an internal amplification control, which was simultaneously amplified with the four target genes, thus yielding a pentaplexed PCR approach with 95% detection probabilities between 7 and 287 genome equivalents per PCR. In addition, we developed six individual singleplex real-time PCR assays based on the TaqMan chemistry for the detection of the C. botulinum serotypes A, B, C, D, E, and F. Upon analysis of 42 C. botulinum and 57 non-C. botulinum strains, the singleplex and multiplex PCR assays showed an excellent specificity. Using spiked food samples we were able to detect between 103 and 105 CFU/ml, respectively. Furthermore, we were able to detect C. botulinum in samples from several cases of botulism in Germany. Overall, the pentaplexed assay showed high sensitivity and specificity and allowed for the simultaneous screening and differentiation of specimens for C. botulinum A, B, E, and F. PMID:20435756

  13. Second-generation Cobas AmpliPrep/Cobas TaqMan HCV quantitative test for viral load monitoring: a novel dual-probe assay design.

    PubMed

    Zitzer, Heike; Heilek, Gabrielle; Truchon, Karine; Susser, Simone; Vermehren, Johannes; Sizmann, Dorothea; Cobb, Bryan; Sarrazin, Christoph

    2013-02-01

    Hepatitis C virus (HCV) RNA viral load (VL) monitoring is a well-established diagnostic tool for the management of chronic hepatitis C patients. HCV RNA VL results are used to make treatment decisions with the goal of therapy to achieve an undetectable VL result. Therefore, a sensitive assay with high specificity in detecting and accurately quantifying HCV RNA across genotypes is critical. Additionally, a lower sample volume requirement is desirable for the laboratory and the patient. This study evaluated the performance characteristics of a second-generation real-time PCR assay, the Cobas AmpliPrep/Cobas TaqMan HCV quantitative test, version 2.0 (CAP/CTM HCV test, v2.0), designed with a novel dual-probe approach and an optimized automated extraction and amplification procedure. The new assay demonstrated a limit of detection and lower limit of quantification of 15 IU/ml across all HCV genotypes and was linear from 15 to 100,000,000 IU/ml with high accuracy (<0.2-log(10) difference) and precision (standard deviation of 0.04 to 0.22 log(10)). A specificity of 100% was demonstrated with 600 HCV-seronegative specimens without cross-reactivity or interference. Correlation to the Cobas AmpliPrep/Cobas TaqMan HCV test (version 1) was good (n = 412 genotype 1 to 6 samples, R(2) = 0.88; R(2) = 0.94 without 105 genotype 4 samples). Paired plasma and serum samples showed similar performance (n = 25, R(2) = 0.99). The sample input volume was reduced from 1 to 0.65 ml in the second version. The CAP/CTM HCV test, v2.0, demonstrated excellent performance and sensitivity across all HCV genotypes with a smaller sample volume. The new HCV RNA VL assay has performance characteristics that make it suitable for use with currently available direct-acting antiviral agents.

  14. Development and application of a quantitative PCR assay targeting Catellicoccus marimammalium for assessing gull-associated fecal contamination at Lake Erie beaches.

    PubMed

    Lee, Cheonghoon; Marion, Jason W; Lee, Jiyoung

    2013-06-01

    Gulls represent one of the major fecal contamination sources responsible for the degradation of water quality at Lake Erie beaches. For assessing gull-associated fecal contamination, a real-time quantitative PCR assay (qPCR) targeting 16S rRNA gene sequences from Catellicoccus marimammalium, which are abundant in gull feces, was developed and evaluated by comparing assay results with beach survey data that included gull counting, and quantifying densities of Escherichia coli and human-associated fecal markers at two Lake Erie beaches. In evaluating the specificity and sensitivity of the qPCR assay with animal and wastewater samples, C. marimammalium was detected in most gull fecal samples (80.7%), some chicken fecal samples (24.1%), but was not readily detected from other fecal samples of animals and humans, and wastewater. Among 66 Lake Erie water samples collected in 2010, C. marimammalium was frequently detected from Villa Angela (36.4%) and Headlands beaches (57.6%). C. marimammalium densities were not associated with E. coli densities or sanitary survey data. E. coli counts were likely driven by other sources, such as human, rather than gulls at the study sites. The presumption that human contamination influenced E. coli counts was supported by more frequent detection of the human-specific Bacteroides gyrB marker (gyrB) at Villa Angela (33.3%) than Headlands (6.1%). Since E. coli may not be an effective indicator for assessing gull-related fecal contamination at these beaches, where contamination sources are mixed, our novel qPCR assay can be useful for understanding fecal source contributions from gulls not explained by gull abundance or E. coli densities.

  15. Pentaplexed quantitative real-time PCR assay for the simultaneous detection and quantification of botulinum neurotoxin-producing clostridia in food and clinical samples.

    PubMed

    Kirchner, Sebastian; Krämer, K Melanie; Schulze, Martin; Pauly, Diana; Jacob, Daniela; Gessler, Frank; Nitsche, Andreas; Dorner, Brigitte G; Dorner, Martin B

    2010-07-01

    Botulinum neurotoxins are produced by the anaerobic bacterium Clostridium botulinum and are divided into seven distinct serotypes (A to G) known to cause botulism in animals and humans. In this study, a multiplexed quantitative real-time PCR assay for the simultaneous detection of the human pathogenic C. botulinum serotypes A, B, E, and F was developed. Based on the TaqMan chemistry, we used five individual primer-probe sets within one PCR, combining both minor groove binder- and locked nucleic acid-containing probes. Each hydrolysis probe was individually labeled with distinguishable fluorochromes, thus enabling discrimination between the serotypes A, B, E, and F. To avoid false-negative results, we designed an internal amplification control, which was simultaneously amplified with the four target genes, thus yielding a pentaplexed PCR approach with 95% detection probabilities between 7 and 287 genome equivalents per PCR. In addition, we developed six individual singleplex real-time PCR assays based on the TaqMan chemistry for the detection of the C. botulinum serotypes A, B, C, D, E, and F. Upon analysis of 42 C. botulinum and 57 non-C. botulinum strains, the singleplex and multiplex PCR assays showed an excellent specificity. Using spiked food samples we were able to detect between 10(3) and 10(5) CFU/ml, respectively. Furthermore, we were able to detect C. botulinum in samples from several cases of botulism in Germany. Overall, the pentaplexed assay showed high sensitivity and specificity and allowed for the simultaneous screening and differentiation of specimens for C. botulinum A, B, E, and F.

  16. Bending amplitude - a new quantitative assay of C. elegans locomotion: identification of phenotypes for mutants in genes encoding muscle focal adhesion components.

    PubMed

    Nahabedian, John F; Qadota, Hiroshi; Stirman, Jeffrey N; Lu, Hang; Benian, Guy M

    2012-01-01

    The nematode Caenorhabditis elegans uses striated muscle in its body wall for locomotion. The myofilament lattice is organized such that all the thin filament attachment structures (dense bodies, analogous to Z-disks) and thick filament organizing centers (M-lines) are attached to the muscle cell membrane. Thus, the force of muscle contraction is transmitted through these structures and allows locomotion of the worm. Dense bodies and M-lines are compositionally similar to focal adhesions and costameres, and are based on integrin and associated proteins. Null mutants for many of the newly discovered dense body and M-line proteins do not have obvious locomotion defects when observed casually, or when assayed by counting the number of times a worm moves back and forth in liquid. We hypothesized that many of these proteins, located as they are in muscle focal adhesions, function in force transmission, but we had not used an appropriate or sufficiently sensitive assay to reveal this function. Recently, we have developed a new quantitative assay of C. elegans locomotion that measures the maximum bending amplitude of an adult worm as it moves backwards. The assay had been used to reveal locomotion defects for null mutants of genes encoding ATN-1 (α-actinin) and PKN-1 (protein kinase N). Here, we describe the details of this method, and apply it to 21 loss of function mutants in 17 additional genes, most of which encode components of muscle attachment structures. As compared to wild type, mutants in 11 genes were found to have less ability to bend, and mutants in one gene were found to have greater ability to bend. Loss of function mutants for eight proteins had been reported to have normal locomotion (ZYX-1 (zyxin), ALP-1 (Enigma), DIM-1, SCPL-1), or locomotion that was not previously investigated (FRG-1 (FRG1), KIN-32 (focal adhesion kinase), LIM-8), or had only slightly decreased locomotion (PFN-3 (profilin)).

  17. Ultra-low Flow Liquid Chromatography Assay with Ultraviolet (UV) Detection for Piperine Quantitation in Human Plasma

    PubMed Central

    Kakarala, Madhuri; Dubey, Shiv Kumar; Tarnowski, Malloree; Cheng, Connie; Liyanage, Samadhi; Strawder, Terrence; Tazi, Karim; Sen, Ananda; Djuric, Zora; Brenner, Dean E.

    2015-01-01

    A robust and sensitive ultra-low flow liquid chromatography (UFLC) method that can reproducibly, at reasonable cost, detect low concentrations of piperine from human plasma is necessary. Piperine in plasma was separated and quantified by a gradient method using ultraviolet detection at a maximal absorbance wavelength of 340 nm. An aliquot was injected onto a reversed-phase column Waters SymmetryShield, 2.1 × 100 mm, 3.5 μm, C18 column, attached to a Waters absorbosphere, 4.6 × 30 mm, C18 guard column and eluted with a mobile phase containing a mixture of acetonitrile/water/ acetic acid (25:74.9:0.1, v/v/v) on line A and acetonitrile/acetic acid (99.9:0.1, v/v) on line B. The flow rate was 0.3 mL/min. The gradient method consisted of an opening condition of 20% pump B, with a linear increase to 37% pump B over 8 min, then a linear increase to 100% pump B at 11 min, 2 min at 100% pump B, and then a return to the opening condition (20% pump B) via a linear gradient over 2 min, followed by 5 min re-equilibration at opening conditions. The total run time was 20 min for each sample. All samples were processed protected from ambient light to avoid isomerization of piperine. The plasma assay was linear with R = 0.9995, with a lower limit of detection [signal-to-noise (S/N) > 5:1] of 100 pg of piperine loaded into the analytical system with acceptable accuracy and precision. Extraction recoveries of piperine from human plasma were 88% for quality control high (QCH), 93% for quality control medium (QCM), and 90% for quality control low (QCL), and the matrix effect was <12%. Piperine was quantifiable from a 50 mg oral dose given to human volunteers. A UFLC method for the rapid assay of human plasma with sensitivity to detect as low as 5 ng/mL piperine was developed. The method sensitivity equals that of liquid chromatography/tandem mass spectrometry (LC/MSMS) methods with much less cost. PMID:20465211

  18. Absolute Quantitation of Met Using Mass Spectrometry for Clinical Application: Assay Precision, Stability, and Correlation with MET Gene Amplification in FFPE Tumor Tissue

    PubMed Central

    Catenacci, Daniel V. T.; Liao, Wei-Li; Thyparambil, Sheeno; Henderson, Les; Xu, Peng; Zhao, Lei; Rambo, Brittany; Hart, John; Xiao, Shu-Yuan; Bengali, Kathleen; Uzzell, Jamar; Darfler, Marlene; Krizman, David B.; Cecchi, Fabiola; Bottaro, Donald P.; Karrison, Theodore; Veenstra, Timothy D.; Hembrough, Todd; Burrows, Jon

    2014-01-01

    Background Overexpression of Met tyrosine kinase receptor is associated with poor prognosis. Overexpression, and particularly MET amplification, are predictive of response to Met-specific therapy in preclinical models. Immunohistochemistry (IHC) of formalin-fixed paraffin-embedded (FFPE) tissues is currently used to select for ‘high Met’ expressing tumors for Met inhibitor trials. IHC suffers from antibody non-specificity, lack of quantitative resolution, and, when quantifying multiple proteins, inefficient use of scarce tissue. Methods After describing the development of the Liquid-Tissue-Selected Reaction Monitoring-mass spectrometry (LT-SRM-MS) Met assay, we evaluated the expression level of Met in 130 FFPE gastroesophageal cancer (GEC) tissues. We assessed the correlation of SRM Met expression to IHC and mean MET gene copy number (GCN)/nucleus or MET/CEP7 ratio by fluorescence in situ hybridization (FISH). Results Proteomic mapping of recombinant Met identified 418TEFTTALQR426 as the optimal SRM peptide. Limits of detection (LOD) and quantitation (LOQ) for this peptide were 150 and 200 amol/µg tumor protein, respectively. The assay demonstrated excellent precision and temporal stability of measurements in serial sections analyzed one year apart. Expression levels of 130 GEC tissues ranged (<150 amol/µg to 4669.5 amol/µg. High correlation was observed between SRM Met expression and both MET GCN and MET/CEP7 ratio as determined by FISH (n = 30; R2 = 0.898). IHC did not correlate well with SRM (n = 44; R2 = 0.537) nor FISH GCN (n = 31; R2 = 0.509). A Met SRM level of ≥1500 amol/µg was 100% sensitive (95% CI 0.69–1) and 100% specific (95% CI 0.92–1) for MET amplification. Conclusions The Met SRM assay measured the absolute Met levels in clinical tissues with high precision. Compared to IHC, SRM provided a quantitative and linear measurement of Met expression, reliably distinguishing between non-amplified and amplified MET

  19. Quantitative measurement of HbA1c by an immunoturbidimetric assay compared to a standard HPLC method.

    PubMed

    Hamwi, A; Schweiger, C R; Veitl, M; Schmid, R

    1995-07-01

    Determination of hemoglobin A1c (HbA1c) is one of the most important monitoring procedures for long-term control of diabetes mellitus. Several analytical methods have been developed for the measurement of glycohemoglobin (GHb). Those most frequently used are ion-exchange chromatography for HbA1c and affinity chromatography for total GHb. In this study, a new turbidimetric immunoassay for HbA1c (Boehringer Mannheim, Germany) was evaluated that was performed on a Hitachi 911 clinical chemistry analyzer (Boehringer Mannheim). Good linearity in the range of 5% to 15% HbA1c, within-run and between-run coefficients of variation ranging from 2.4% to 5.9% were obtained. Results of 179 diabetic and nondiabetic patients showed good correlation to those of a routine HPLC method (r = 0.96). In addition, HbA2, HbS, and HbF in samples from nondiabetic patients were not detected by the immunoturbimetric assay and the "labile" HbA1c fraction (Schiff base) did not interfere with the new test.

  20. Development of a quantitative immunocapture real-time PCR assay for detecting structurally intact adenoviral particles in water.

    PubMed

    Ogorzaly, Leslie; Bonot, Sébastien; Moualij, Benaissa El; Zorzi, Willy; Cauchie, Henry-Michel

    2013-12-01

    Development of rapid, sensitive and specific methods for detection of infectious enteric viruses in water is challenging but crucial for gaining reliable information for risk assessment. An immunocapture real-time PCR (IC-qPCR) was designed to detect jointly the two major viral particle components, i.e. the capsid protein and the viral genome. Targeting both constituents helps circumventing the technical limits of cell culture approaches and the inability of PCR based methods to predict the infectious status. Two waterborne pathogenic virus models, human adenovirus types 2 and 41, were chosen for this study. IC-qPCR showed a detection limit of 10MPNCU/reaction with a dynamic range from 10(2) to 10(6)MPNCU/reaction. Sensitivity was thus 100-fold higher compared to ELISA-based capture employing the same anti-hexon antibodies. After optimisation, application on environmental water samples was validated, and specificity towards the targeted virus types was obtained through the qPCR step. Heat-treated pure samples as well as surface water samples brought evidence that this method achieves detection of encapsidated viral genomes while excluding free viral genome amplification. As a consequence, adenovirus concentrations estimated by IC-qPCR were below those calculated by direct qPCR. The results demonstrate that the IC-qPCR method is a sensitive and rapid tool for detecting, in a single-tube assay, structurally intact and thus potentially infectious viral particles in environmental samples.

  1. A Quick Assay for the Quantitation of Deoxynivalenol in Grain Samples by Liquid Chromatography with UV Detection.

    PubMed

    Vega, Victor A; Young, Michelle; Dorsey, LaTisha

    2015-01-01

    A quick and effective extraction of deoxynivalenol (DON) in food samples is described. The samples were extracted using 80% acetonitrile-water solution, followed by a second extraction using an 80% methanol-water solution. The extract was then subjected to an immunoaffinity column (IAC) cleanup. Quantification of isolated analyte was obtained by LC with UV detection at 220 nm. LC-UV parameters were optimized with a C18 LC column resulting in a 6 min run time. Certified reference materials (CRMs) of three different matrixes at three different levels were analyzed. Wheat, barley, and corn samples containing 0.5, 1.0, and 1.9 mg/kg, respectively, were analyzed. Recoveries from all CRM samples were calculated using an external standard curve (Figure 1) and ranged from 80 to 102%. Confirmation of DON in the sample extracts was accomplished using LC/MS. This method provides a rapid, specific, and robust assay for the analysis of DON with an uncertainty measurement of 12.2% and method detention limit of less than 0.125 mg/kg. Other methods that do not use an IAC produce dirty extracts that sometimes require washing the chromatographic column after each sample injection. The method presented here does not require washing the column, which leads to faster LC analysis time/sample.

  2. Identification and quantitative detection of Legionella spp. in various aquatic environments by real-time PCR assay.

    PubMed

    Kao, Po-Min; Tung, Min-Che; Hsu, Bing-Mu; Chiu, Yi-Chou; She, Cheng-Yu; Shen, Shu-Min; Huang, Yu-Li; Huang, Wen-Chien

    2013-09-01

    In this study, a SYBR green quantitative real-time PCR was developed to quantify and detect the Legionella spp. in various environmental water samples. The water samples were taken from watershed, water treatment plant, and thermal spring area in Taiwan. Legionella was detected in 13.6 % (24/176), and the detection rate for river water, raw drinking water, and thermal spring water was 10, 21.4, and 16.6 %, respectively. Using real-time PCR, concentration of Legionella spp. in detected samples ranged between 9.75 × 10(4) and 3.47 × 10(5) cells/L in river water, 6.92 × 10(4) and 4.29 × 10(5) cells/L in raw drinking water, and 5.71 × 10(4) and 2.12 × 10(6) cells/L for thermal spring water samples. The identified species included Legionella pneumophila (20.8 %), Legionella jordanis (4.2 %), Legionella nautarum (4.2 %), Legionella sp. (4.2 %), and uncultured Legionella sp. (66.6 %). The presence of L. pneumophila in aquatic environments suggested a potential public health threat that must be further examined.

  3. A new quantitative PCR multiplex assay for rapid analysis of chromosome 17p11.2-12 duplications and deletions leading to HMSN/HNPP.

    PubMed

    Thiel, Christian T; Kraus, Cornelia; Rauch, Anita; Ekici, Arif B; Rautenstrauss, Bernd; Reis, André

    2003-02-01

    A 1.4-Mb tandem duplication, including the gene for peripheral myelin protein 22 (PMP22) in chromosome 17p11.2-12 is responsible for 70% of the cases of the demyelinating type 1 of Charcot-Marie-Tooth disease or hereditary motor and sensory neuropathy I (CMT1A/HMSN I). A reciprocal deletion of this CMT1A region causes the hereditary neuropathy with liability to pressure palsies (HNPP). The CMT1A duplication increases the PMP22 gene dosage from two to three, the HNPP deletion reduces the gene dosage from two to one. Currently, routine diagnosis of HMSN/HNPP patients is mainly performed with polymorphic markers in-between the repetitive elements flanking the CMT1A region. These show quantitative and/or qualitative changes in case of a CMT1A duplication and a homozygous allele pattern in case of HNPP deletion. In HNPP patients the deletion is usually confirmed by fluorescence in situ hybridisation (FISH). We now developed a reliable, single tube real-time quantitative PCR assay for rapid determination of PMP22 gene dosage directly. This method involves a multiplex reaction using FAM labelled Taqman-probe with TAMRA quencher derived from PMP22 exon 3 and a VIC labelled probe with non-fluorescent quencher from exon 12 of the albumin gene as internal reference. Copy number of the PMP22 gene was determined by the comparative threshold cycle method (deltadeltaCt). Each sample was run in quadruplicate and analysed at two different threshold levels. The level giving the smallest standard deviation was scored. We evaluated this method through the retrospective analysis of 252 HMSN patients with known genotype and could confirm the previous findings in 99% of cases. Two patients were wrongly diagnosed with microsatellite analysis while quantitative real-time PCR identified the correct genotype, as confirmed by FISH. Thus, this method shows superior sensitivity to microsatellite analysis and has the additional advantage of being a fast and uniform assay for quantitative

  4. Kinetics of staphylococcal opsonization, attachment, ingestion and killing by human polymorphonuclear leukocytes: a quantitative assay using [3H]thymidine labeled bacteria.

    PubMed

    Verhoef, J; Peterson, P K; Quie, P G

    1977-01-01

    A method has been developed for studying quantitatively the separate processes of bacterial opsonization, phagocytosis, and killing by human polymorphonuclear leukocytes using [3H]thymidine labeled Staphylococcus aureus. Phagocytosis is determined by assaying for leukocytes-associated radioactivity after differential centrifugation and washing the leukocytes. Opsonization is studied by incubating bacteria with an opsonic source for varying durations and then adding leukocytes. By treatment of samples with the muralytic enzyme, lysostaphin, the attachment and ingestion phases of phagocytosis can be separated. Sampling for colony forming units after disruption of the leukocytes permits the measurement of bacterial killing. Using this method, differences in the kinetics of staphylococcal opsonization by normal and C2 deficient sera were defined, opsonic influences on the attachment and ingestion phases of pH agocytosis were delineated, and the influences of different opsonins and leukocyte populations on killing were determined.

  5. A quantitative analysis for the ADP-ribosylation activity of pertussis toxin: an enzymatic-HPLC coupled assay applicable to formulated whole cell and acellular pertussis vaccine products.

    PubMed

    Cyr, T; Menzies, A J; Calver, J; Whitehouse, L W

    2001-06-01

    The majority of the biological effects of pertussis toxin (PT) are the result of a toxin-catalyzed transfer of an adenosine diphosphate-ribose (ADP-ribose) moiety from NAD(+)to the alpha-subunits of a subset of signal-transducing guanine-nucleotide-binding proteins (G-proteins). This generally leads to an uncoupling of the modified G-protein from the corresponding receptor and the loss of effector regulation. This assay is based on the PT S1 subunit enzymatic transfer of ADP-ribose from NAD to the cysteine moiety of a fluorescent tagged synthetic peptide homologous to the 20 amino acid residue carboxyl-terminal sequence of the alpha-subunit of the G(i3)protein. The tagged peptide and the ADP-ribosylated product were characterized by HPLC/MS and MS/MS for structure confirmation. Quantitation of this characterized ADP-ribosylated fluorescently tagged peptide was by HPLC fluorescence using Standard Addition methodology. The assay was linear over a five hr incubation period at 20 degrees C at PT concentrations between 0.0625 and 4.0 microg/ml and the sensitivity of the assay could be increased several fold by increasing the incubation time to 24 h. Purified S1 subunit of PT exhibited 68.1+/-10.1% of the activity of the intact toxin on a molar basis, whereas the pertussis toxin B oligomer, the genetically engineered toxoid, (PT-9K/129G), and several of the other components of the Bordetella pertussis organism possessed little (<0.6%) or no detectable ribosylation activity. Commonly used pertussis vaccine reference materials, US PV Lot #11, BRP PV 66/303, and BRP PV 88/522, were assayed by this method against Bordetella pertussis Toxin Standard 90/518 and demonstrated to contain, respectively, 0.323+/-0.007, 0.682+/-0.045, and 0.757+/-0.006 microg PT/ml (Mean+/-SEM) or in terms of microg/vial: 3.63, 4.09 and 4.54, respectively. A survey of several multivalent pertussis vaccine products formulated with both whole cell as well as acellular components indicated that

  6. Succession patterns of fungi associated to wound-induced agarwood in wild Aquilaria malaccensis revealed from quantitative PCR assay.

    PubMed

    Mohamed, Rozi; Jong, Phai Lee; Nurul Irdayu, Ismail

    2014-09-01

    Aquilaria malaccensis produces agarwood in response to wounding and fungal attack. However, information is limited regarding Aquilaria's interaction with its diverse fungal community. In this study, time-related changes of three natural fungal colonizers in two wounded wild A. malaccensis were tracked, beginning a few hours after wounding up to 12 months. Using species-specific primers derived from their nrITS sequences in quantitative real-time PCR (qPCR), we quantified the amount of Cunninghamella bainieri, Fusarium solani and Lasiodiplodia theobromae. Because time is a major factor affecting agarwood quantity and quality, 14 wood samples were collected at different time points, i.e., 0-18 h, 2-13 days, 2-18 weeks, and 6-12 months after wounding. qPCR data revealed that the abundance of the three species decreased over time. The fungi were detected in high numbers during the first few hours and days after wounding (40- to 25,000-fold higher levels compared with initial counts) and in low numbers (<1- to 3,200-fold higher than initially) many months later. Consistent with its role in defense response, the accumulation of secondary metabolites at the wounding site could have caused the decline in fungal abundance. Succession patterns of the two trees were not identical, indicating that fungal populations may have been affected by tree environment and wound microclimate. Our results are important for understanding the diversity of microbial community in wild Aquilaria species and their association to wound-induced agarwood formation. Fungi could be secondary triggers to agarwood production in situations where trees are wounded in attempt to induce agarwood.

  7. A duplex real-time PCR assay for the quantitative detection of Naegleria fowleri in water samples.

    PubMed

    Behets, Jonas; Declerck, Priscilla; Delaedt, Yasmine; Verelst, Lieve; Ollevier, Frans

    2007-01-01

    A fast and accurate duplex real-time PCR (qPCR) was developed to detect and quantify the human pathogenic amoeba Naegleria fowleri in water samples. In this study, primers and probe based on the Mp2Cl5 gene were designed to amplify and quantify N. fowleri DNA in a single duplex reaction. The qPCR detection limit (DL) corresponds to the minimum DNA quantity showing significant fluorescence with at least 90% of the positive controls in a duplex reaction. Using fluorescent Taqman technology the qPCR was found to be 100% specific for N. fowleri with a DL of 3 N. fowleri cell equivalents and a PCR efficiency of 99%. The quantification limit (QL) was 16 N. fowleri cell equivalents (corresponded with 320 N. fowleri cell equivalents l(-1) water sample) in a duplex qPCR reaction and corresponds to the lowest DNA quantity amplifiable with a coefficient of variation less than 25%. To detect inhibition an exogenous internal positive control (IPC) was included in each PCR reaction preventing false negative results. Comparison of qPCR and most probable number (MPN) culture results confirms that the developed qPCR is well suited for rapid and quantitative detection of this human pathogen in real water samples. Nevertheless 'low contamination levels' of water samples (<200 N. fowleri cells l(-1)) still require culture method analyses. When other thermophilic Naegleria are very dominant, the MPN culture method could result in an underestimation in the real number of N. fowleri and some caution is necessary to interpret the data. The N. fowleri qPCR could be a useful tool to study further competitive phenomena between thermophilic Naegleria strains.

  8. Development of a sequence-characterized amplified region marker-targeted quantitative PCR assay for strain-specific detection of Oenococcus oeni during wine malolactic fermentation.

    PubMed

    Solieri, Lisa; Giudici, Paolo

    2010-12-01

    Control over malolactic fermentation (MLF) is a difficult goal in winemaking and needs rapid methods to monitor Oenococcus oeni malolactic starters (MLS) in a stressful environment such as wine. In this study, we describe a novel quantitative PCR (QPCR) assay enabling the detection of an O. oeni strain during MLF without culturing. O. oeni strain LB221 was used as a model to develop a strain-specific sequence-characterized amplified region (SCAR) marker derived from a discriminatory OPA20-based randomly amplified polymorphic DNA (RAPD) band. The 5' and 3' flanking regions and the copy number of the SCAR marker were characterized using inverse PCR and Southern blotting, respectively. Primer pairs targeting the SCAR sequence enabled strain-specific detection without cross amplification of other O. oeni strains or wine species of lactic acid bacteria (LAB), acetic acid bacteria (AAB), and yeasts. The SCAR-QPCR assay was linear over a range of cell concentrations (7 log units) and detected as few as 2.2 × 10(2) CFU per ml of red wine with good quantification effectiveness, as shown by the correlation of QPCR and plate counting results. Therefore, the cultivation-independent monitoring of a single O. oeni strain in wine based on a SCAR marker represents a rapid and effective strain-specific approach. This strategy can be adopted to develop easy and rapid detection techniques for monitoring the implantation of inoculated O. oeni MLS on the indigenous LAB population, reducing the risk of unsuccessful MLF.

  9. Genomic matrix attachment region and chromosome conformation capture quantitative real time PCR assays identify novel putative regulatory elements at the imprinted Dlk1/Gtl2 locus.

    PubMed

    Braem, Caroline; Recolin, Bénédicte; Rancourt, Rebecca C; Angiolini, Christopher; Barthès, Pauline; Branchu, Priscillia; Court, Franck; Cathala, Guy; Ferguson-Smith, Anne C; Forné, Thierry

    2008-07-04

    We previously showed that genomic imprinting regulates matrix attachment region activities at the mouse Igf2 (insulin-like growth factor 2) locus and that these activities are functionally linked to neighboring differentially methylated regions (DMRs). Here, we investigate the similarly structured Dlk1/Gtl2 imprinted domain and show that in the mouse liver, the G/C-rich intergenic germ line-derived DMR, a sequence involved in domain-wide imprinting, is highly retained within the nuclear matrix fraction exclusively on the methylated paternal copy, reflecting its differential function on that chromosome. Therefore, not only "classical" A/T-rich matrix attachment region (MAR) sequences but also other important regulatory DNA elements (such as DMRs) can be recovered from genomic MAR assays following a high salt treatment. Interestingly, the recovery of one A/T-rich sequence (MAR4) from the "nuclear matrix" fraction is strongly correlated with gene expression. We show that this element possesses an intrinsic activity that favors transcription, and using chromosome conformation capture quantitative real time PCR assays, we demonstrate that the MAR4 interacts with the intergenic germ line-derived DMR specifically on the paternal allele but not with the Dlk1/Gtl2 promoters. Altogether, our findings shed a new light on gene regulation at this locus.

  10. Development of a combined in vitro cell culture--quantitative PCR assay for evaluating the disinfection performance of pulsed light for treating the waterborne enteroparasite Giardia lamblia.

    PubMed

    Garvey, Mary; Stocca, Alessia; Rowan, Neil

    2014-09-01

    Giardia lamblia is a flagellated protozoan parasite that is recognised as a frequent cause of water-borne disease in humans and animals. We report for the first time on the use of a combined in vitro HCT-8 cell culture-quantitative PCR assay for evaluating the efficacy of using pulsed UV light for treating G. lamblia parasites. Findings showed that current methods that are limited to using vital stains before and after cyst excystation are not appropriate for monitoring or evaluating cyst destruction post PUV-treatments. Use of the human ileocecal HCT-8 cell line was superior to that of the human colon Caco-2 cell line for in vitro culture and determining PUV sensitivity of treated cysts. G. lamblia cysts were also shown to be more resistant to PUV irradiation compared to treating similar numbers of Cryptosporidium parvum oocysts. These observations also show that the use of this HCT-8 cell culture assay may replace use of animal models for determining disinfection performances of PUV for treating both C. parvum and G. lamblia.

  11. A Quantitative High-Throughput 96-well plate Fluorescence Assay for Mechanism-Based Inactivators of Cytochromes P450 Exemplified using CYP2B6

    PubMed Central

    Kenaan, Cesar; Zhang, Haoming; Hollenberg, Paul F.

    2010-01-01

    Mechanism-based inactivators such as bergamottin are useful chemical tools for identifying the roles of specific active-site amino acid residues in the reactions catalyzed by the cytochromes P450 (CYPs or P450s) that are responsible for the metabolism of a wide variety of drugs and endogenous substrates. In clinical settings mechanism-based inactivation of P450s involved in xenobiotic metabolism has the potential to lead to adverse drug-drug interactions and assays to identify and characterize drug candidates as P450 inactivators are important in drug discovery and development. Here we present a quantitative high-throughput protocol for investigating cytochrome P450 mechanism-based inactivators using the example of CYP2B6 and bergamottin to illustrate the finer points of this protocol. This protocol details the adaptation of a 7-ethoxytrifluoromethyl coumarin (7-EFC) O-deethylation fluorescence activity assay to a 96-well microtiter plate format and uses a plate-reader to detect the fluorescence of the product. Compared to previous methods, this protocol requires less P450 and takes significantly less time while greatly increasing throughput. The protocol as written takes approximately two hours to complete. The principles and procedures outlined in this protocol can be easily adapted to other inactivators, P450 isoforms, substrates and plate-readers. PMID:20885377

  12. Development and optimization of a quantitative cell culture infectivity assay for the microsporidium Encephalitozoon intestinalis and application to ultraviolet light inactivation.

    PubMed

    John, David E; Nwachuku, Nena; Pepper, Ian L; Gerba, Charles P

    2003-02-01

    Microsporidia are unique parasites recognized as a major cause of intestinal illness among immunocompromised patients and occasionally in otherwise healthy hosts. These organisms have been detected in water and are likely transmitted by the fecal-oral route. The most common human pathogenic microsporidia for which cell culture methods have been established is Encephalitozoon intestinalis. This study describes the development of a quantitative cell culture infectivity assay for E. intestinalis and its application to assess inactivation by ultraviolet (UV) light irradiation. The method described here employs calcofluor white, a fluorescent brightener that targets the chitin spore wall, to visualize groups of developing spores in order to confirm infectivity. Serial dilutions of the spore suspension were seeded into tissue culture well slides containing RK-13 cells. Slides were then rinsed, fixed in methanol and stained with calcofluor white and examined microscopically. Large masses of developing spores were easily visible on infected cell monolayers. Positive and negative wells at each dilution step were used to quantify the number of infectious spores in the original suspension using a most-probable-number (MPN) statistical analysis. This assay was used to evaluate the disinfecting potential of ultraviolet light on E. intestinalis spores in water. The ultraviolet dose required for a 3-log(10) or 99.9% reduction in the number of infective spores was determined to be 8.43 mW s/cm(2).

  13. Quantitative bioanalysis of antibody-conjugated payload in monkey plasma using a hybrid immuno-capture LC-MS/MS approach: Assay development, validation, and a case study.

    PubMed

    Liu, Ang; Kozhich, Alexander; Passmore, David; Gu, Huidong; Wong, Richard; Zambito, Frank; Rangan, Vangipuram S; Myler, Heather; Aubry, Anne-Françoise; Arnold, Mark E; Wang, Jian

    2015-10-01

    Antibody drug conjugates (ADCs) are complex molecules composed of two pharmacologically distinct components, the cytotoxic payload and the antibody. The measurement of the payload molecules that are attached to the antibody in vivo is important for the evaluation of the safety and efficacy of ADCs, and can also provide distinct information compared to the antibody-related analytes. However, analyzing the antibody-conjugated payload is challenging and in some cases may not be feasible. The in vivo change in drug antibody ratio (DAR), due to deconjugation, biotransformation or other clearance phenomena, generates unique and additional challenges for ADC analysis in biological samples. Here, we report a novel hybrid approach with immuno-capture of the ADC, payload cleavage by specific enzyme, and LC-MS/MS of the cleaved payload to quantitatively measure the concentration of payload molecules still attached to the antibody via linker in plasma. The ADC reference material used for the calibration curve is not likely to be identical to the ADC measured in study samples due to the change in DAR distribution over the PK time course. The assay clearly demonstrated that there was no bias in the measurement of antibody-conjugated payload for ADC with varying DAR, which thus allowed accurate quantification even when the DAR distribution dynamically changes in vivo. This hybrid assay was fully validated based on a combination of requirements for both chromatographic and ligand binding methods, and was successfully applied to support a GLP safety study in monkeys.

  14. Evaluation of a Quantitative Real-Time PCR Assay to Measure HIV-Specific Mucosal CD8+ T Cell Responses in the Cervix

    PubMed Central

    Chege, Duncan; Chai, Yijie; Huibner, Sanja; McKinnon, Lyle; Wachihi, Charles; Kimani, Makubo; Jaoko, Walter; Kimani, Joshua; Ball, T. Blake; Plummer, Francis A.

    2010-01-01

    Several candidate HIV vaccines aim to induce virus-specific cellular immunity particularly in the genital tract, typically the initial site of HIV acquisition. However, standardized and sensitive methods for evaluating HIV-specific immune responses at the genital level are lacking. Therefore we evaluated real-time quantitative PCR (qPCR) as a potential platform to measure these responses. β-Actin and GAPDH were identified as the most stable housekeeping reference genes in peripheral blood mononuclear cells (PBMCs) and cervical mononuclear cells (CMCs) respectively and were used for normalizing transcript mRNA expression. HIV-specific cellular T cell immune responses to a pool of optimized CD8+ HIV epitopes (HIV epitope pool) and Staphylococcal enterotoxin B (SEB) superantigen control were assayed in HIV infected PBMC by qPCR, with parallel assessment of cytokine protein production. Peak HIV-specific mRNA expression of IFNγ, IL-2 and TNFα occurred after 3, 5 and 12 hours respectively. PBMCs were titrated to cervical appropriate cell numbers to determine minimum required assay input cell numbers; qPCR retained sensitivity with input of at least 2.5×104 PBMCs. This optimized qPCR assay was then used to assess HIV-specific cellular T cell responses in cytobrush-derived cervical T cells from HIV positive individuals. SEB induced IFNγ mRNA transcription was detected in CMCs and correlated positively with IFNγ protein production. However, qPCR was unable to detect HIV-induced cytokine mRNA production in the cervix of HIV-infected women despite robust detection of gene induction in PBMCs. In conclusion, although qPCR can be used to measure ex vivo cellular immune responses to HIV in blood, HIV-specific responses in the cervix may fall below the threshold of qPCR detection. Nonetheless, this platform may have a potential role in measuring mitogen-induced immune responses in the genital tract. PMID:20949096

  15. Coupling Spore Traps and Quantitative PCR Assays for Detection of the Downy Mildew Pathogens of Spinach (Peronospora effusa) and Beet (P. schachtii)

    PubMed Central

    Klosterman, Steven J.; Anchieta, Amy; McRoberts, Neil; Koike, Steven T.; Subbarao, Krishna V.; Voglmayr, Hermann; Choi, Young-Joon; Thines, Marco; Martin, Frank N.

    2016-01-01

    Downy mildew of spinach (Spinacia oleracea), caused by Peronospora effusa, is a production constraint on production worldwide, including in California, where the majority of U.S. spinach is grown. The aim of this study was to develop a real-time quantitative polymerase chain reaction (qPCR) assay for detection of airborne inoculum of P. effusa in California. Among oomycete ribosomal DNA (rDNA) sequences examined for assay development, the highest nucleotide sequence identity was observed between rDNA sequences of P. effusa and P. schachtii, the cause of downy mildew on sugar beet and Swiss chard in the leaf beet group (Beta vulgaris subsp. vulgaris). Single-nucleotide polymorphisms were detected between P. effusa and P. schachtii in the 18S rDNA regions for design of P. effusa- and P. schachtii-specific TaqMan probes and reverse primers. An allele-specific probe and primer amplification method was applied to determine the frequency of both P. effusa and P. schachtii rDNA target sequences in pooled DNA samples, enabling quantification of rDNA of P. effusa from impaction spore trap samples collected from spinach production fields. The rDNA copy numbers of P. effusa were, on average, ≈3,300-fold higher from trap samples collected near an infected field compared with those levels recorded at a site without a nearby spinach field. In combination with disease-conducive weather forecasting, application of the assays may be helpful to time fungicide applications for disease management. PMID:24964150

  16. Detection and quantitation of toxic shock syndrome toxin 1 in vitro and in vivo by noncompetitive enzyme-linked immunosorbent assay.

    PubMed Central

    Rosten, P M; Bartlett, K H; Chow, A W

    1987-01-01

    Toxic shock syndrome toxin 1 (TSST-1), an exotoxin produced by many Staphylococcus aureus strains, is implicated as the prime causal agent of toxic shock syndrome (TSS). A sensitive and specific noncompetitive enzyme-linked immunosorbent assay (ELISA) capable of detecting TSST-1 at concentrations from 0.5 to 16 ng/ml was developed. This assay did not detect other staphylococcal enterotoxins including A, B, C1, C2, C3, D, and E. Possible interactions with protein A were readily eliminated by pretreatment of test samples with 10% normal rabbit serum. The assay was adapted for rapid screening of TSST-1 production by S. aureus isolates in culture supernatants in vitro and for detection of TSST-1 in vaginal washings of TSS patients and healthy controls in vivo. All 35 S. aureus isolates confirmed to be TSST positive by Ouchterlony immunodiffusion and 59 of 60 isolates confirmed to be TSST-1 negative gave concordant results by ELISA. Interestingly, toxigenic S. aureus strains isolated from TSS patients quantitatively produced significantly more TSST-1 in vitro compared with toxigenic control strains (P less than 0.05, Mann-Whitney rank sum test). TSST-1 could be detected by ELISA in three of four vaginal washings collected within 3 days of hospitalization from three women with acute menstrual TSS, compared with 0 of 17 washings from nine TSS patients hospitalized longer than 3 days (P = 0.003, Fisher's exact test) and 1 of 15 washings from 14 healthy control women (P = 0.016). This noncompetitive ELISA should be particularly useful for rapid screening of TSST-1 production by S. aureus isolates, for the purification and biochemical characterization of TSST-1, and for human and animal studies of the pathogenesis of TSS. PMID:3818927

  17. Development of an internal control for evaluation and standardization of a quantitative PCR assay for detection of Helicobacter pylori in drinking water.

    PubMed

    Sen, Keya; Schable, Nancy A; Lye, Dennis J

    2007-11-01

    Due to metabolic and morphological changes that can prevent Helicobacter pylori cells in water from growing on conventional media, an H. pylori-specific TaqMan quantitative PCR (qPCR) assay was developed that uses a 6-carboxyfluorescein-labeled probe (A. E. McDaniels, L. Wymer, C. Rankin, and R. Haugland, Water Res. 39:4808-4816, 2005). However, proper internal controls are needed to provide an accurate estimate of low numbers of H. pylori in drinking water. In this study, the 135-bp amplicon described by McDaniels et al. was modified at the probe binding region, using PCR mutagenesis. The fragment was incorporated into a single-copy plasmid to serve as a PCR-positive control and cloned into Escherichia coli to serve as a matrix spike. It was shown to have a detection limit of five copies, using a VIC dye-labeled probe. A DNA extraction kit was optimized that allowed sampling of an entire liter of water. Water samples spiked with the recombinant E. coli cells were shown to behave like H. pylori cells in the qPCR assay. The recombinant E. coli cells were optimized to be used at 10 cells/liter of water, where they were shown not to compete with 5 to 3,000 cells of H. pylori in a duplex qPCR assay. Four treated drinking water samples spiked with H. pylori (100 cells) demonstrated similar cycle threshold values if the chlorine disinfectant was first neutralized by sodium thiosulfate.

  18. Development of a quantitative real-time polymerase chain reaction assay to target a novel group of ammonia-producing bacteria found in poultry litter.

    PubMed

    Rothrock, M J; Cook, K L; Lovanh, N; Warren, J G; Sistani, K

    2008-06-01

    Ammonia production in poultry houses has serious implications for flock health and performance, nutrient value of poultry litter, and energy costs for running poultry operations. In poultry litter, the conversion of organic N (uric acid and urea) to NH(4)-N is a microbially mediated process. The urease enzyme is responsible for the final step in the conversion of urea to NH(4)-N. Cloning and analysis of 168 urease sequences from extracted genomic DNA from poultry litter samples revealed the presence of a novel, dominant group of ureolytic microbes (representing 90% of the urease clone library). Specific primers and a probe were designed to target this novel poultry litter urease producer (PLUP) group, and a new quantitative real-time PCR assay was developed. The assay allowed for the detection of 10(2) copies of target urease sequences per PCR reaction (approximately 1 x 10(4) cells per gram of poultry litter), and the reaction was linear over 8 orders of magnitude. Our PLUP group was present only in poultry litter and was not present in environmental samples from diverse agricultural settings. This novel PLUP group represented between 0.1 to 3.1% of the total microbial populations (6.0 x 10(6) to 2.4 x 10(8) PLUP cells per gram of litter) from diverse poultry litter types. The PLUP cell concentrations were directly correlated to the total cell concentrations in the poultry litter and were found to be influenced by the physical parameters of the litters (bedding material, moisture content, pH), as well as the NH(4)-N content of the litters, based on principal component analysis. Chemical parameters (organic N, total N, total C) were not found to be influential in the concentrations of our PLUP group in the diverse poultry litters Future applications of this assay could include determining the efficacy of current NH(4)-N-reducing litter amendments or in designing more efficient treatment protocols.

  19. Development of stable isotope dilution assays for the simultaneous quantitation of biogenic amines and polyamines in foods by LC-MS/MS.

    PubMed

    Mayr, Christine M; Schieberle, Peter

    2012-03-28

    Microbial amino acid metabolism may lead to substantial amounts of biogenic amines in either spontaneously fermented or spoiled foods. For products manufactured with starter cultures, it has been suggested that certain strains may produce higher amounts of such amines than others; however, to support efforts of food manufacturers in mitigating amine formation, reliable methods for amine quantitation are needed. Using 10 isotopically labeled biogenic amines as the internal standards, stable isotope dilution assays were developed for the quantitation of 12 biogenic amines and of the 2 polyamines, spermine and spermidine, in one LC-MS/MS run. Application of the method to several foods revealed high concentrations of, for example, tyramine and putrescine in salami and fermented cabbage, whereas histamine was highest in Parmesan cheese and fermented cabbage. On the other hand, ethanolamine was highest in red wine and Parmesan cheese. The results suggest that different amino acid decarboxylases are active in the respective foods depending on the microorganisms present. The polyamine spermine was highest in salami and tuna.

  20. Re-evaluation of dioxygenase gene phylogeny for the development and validation of a quantitative assay for environmental aromatic hydrocarbon degraders

    PubMed Central

    Meynet, Paola; Head, Ian M.; Werner, David; Davenport, Russell J.

    2015-01-01

    Rieske non-heme iron oxygenases enzymes have been widely studied, as they catalyse essential reactions initiating the bacterial degradation of organic compounds, for instance aromatic hydrocarbons. The genes encoding these enzymes offer a potential target for studying aromatic hydrocarbon-degrading organisms in the environment. However, previously reported primer sets that target dioxygenase gene sequences or the common conserved Rieske centre of aromatics dioxygenases have limited specificity and/or target non-dioxygenase genes. In this work, an extensive database of dioxygenase α-subunit gene sequences was constructed, and primer sets targeting the conserved Rieske centre were developed. The high specificity of the primers was confirmed by polymerase chain reaction analysis, agarose gel electrophoresis and sequencing. Quantitative polymerase chain reaction (qPCR) assays were also developed and optimized, following MIQE guidelines (Minimum Information for Publication of Quantitative Real-Time PCR Experiments). Comparison of the qPCR quantification of dioxygenases in spiked sediment samples and in pure cultures demonstrated an underestimation of the Ct value, and the requirement for a correction factor at gene abundances below 108 gene copies per g of sediment. Externally validated qPCR provides a valuable tool to monitor aromatic hydrocarbon degrader population abundances at contaminated sites. PMID:25944871

  1. Development of a quantitation method to assay both lyoniresinol enantiomers in wines, spirits, and oak wood by liquid chromatography-high resolution mass spectrometry.

    PubMed

    Cretin, Blandine N; Dubourdieu, Denis; Marchal, Axel

    2016-05-01

    Wine taste balance evolves during oak aging by the release of volatile and non-volatile compounds from wood. Among them, an enantiomer of lyoniresinol, (+)-lyoniresinol, has been shown to exhibit bitterness. To evaluate the impact of (+)-lyoniresinol on wine taste, a two-step quantitation method was developed and validated. First, (±)-lyoniresinol was assayed in wines, spirits, and oak wood macerates by C-18 liquid chromatography-high resolution mass spectrometry (LC-HRMS). Then, the lyoniresinol enantiomeric ratio was determined by chiral LC-HRMS in order to calculate the (+)-lyoniresinol content. In red and white wines, the average concentrations of (+)-lyoniresinol were 1.9 and 0.8 mg/L, respectively. The enantiomer proportions were not affected by bottle aging, and lyoniresinol appeared to remain stable over time. The sensory study of (+)-lyoniresinol established its perception threshold at 0.46 mg/L in wine. All the commercial wines quantitated were above this perception threshold, demonstrating its impact on wine taste by an increase in bitterness. In spirits, (+)-lyoniresinol ranged from 2.0 to 10.0 mg/L and was found to be released continuously during oak aging. Finally, neither botanical origin nor toasting was found to significantly affect the (+)-lyoniresinol content of oak wood. Graphical abstract From oak wood to wine: evaluation of the influence of (+)-lyoniresinol on the bitterness of wines and spirits.

  2. Development and Validation of a Multiplexed Protein Quantitation Assay for the Determination of Three Recombinant Proteins in Soybean Tissues by Liquid Chromatography with Tandem Mass Spectrometry.

    PubMed

    Hill, Ryan C; Oman, Trent J; Shan, Guomin; Schafer, Barry; Eble, Julie; Chen, Cynthia

    2015-08-26

    Currently, traditional immunochemistry technologies such as enzyme-linked immunosorbent assays (ELISA) are the predominant analytical tool used to measure levels of recombinant proteins expressed in genetically engineered (GE) plants. Recent advances in agricultural biotechnology have created a need to develop methods capable of selectively detecting and quantifying multiple proteins in complex matrices because of increasing numbers of transgenic proteins being coexpressed or "stacked" to achieve tolerance to multiple herbicides or to provide multiple modes of action for insect control. A multiplexing analytical method utilizing liquid chromatography with tandem mass spectrometry (LC-MS/MS) has been developed and validated to quantify three herbicide-tolerant proteins in soybean tissues: aryloxyalkanoate dioxygenase (AAD-12), 5-enol-pyruvylshikimate-3-phosphate synthase (2mEPSPS), and phosphinothricin acetyltransferase (PAT). Results from the validation showed high recovery and precision over multiple analysts and laboratories. Results from this method were comparable to those obtained with ELISA with respect to protein quantitation, and the described method was demonstrated to be suitable for multiplex quantitation of transgenic proteins in GE crops.

  3. Validation and Application of a Commercial Quantitative Real-Time Reverse Transcriptase-PCR Assay in Investigation of a Large Dengue Virus Outbreak in Southern Taiwan

    PubMed Central

    Tsai, Huey-Pin; Tsai, You-Yuan; Lin, I-Ting; Kuo, Pin-Hwa; Chang, Kung-Chao; Chen, Jung-Chin; Ko, Wen-Chien; Wang, Jen-Ren

    2016-01-01

    Background Accurate, rapid, and early diagnosis of dengue virus (DENV) infections is essential for optimal clinical care. Here, we evaluated the efficacy of the quantitative real-time PCR (qRT-PCR)-LightMix dengue virus EC kit for DENV detection using samples from a dengue outbreak in Taiwan in 2015. Methods Sera from patients with suspected DENV infection were analyzed and compared using the LightMix kit, a Dengue NS1 Ag + Ab Combo kit for detection of NS1 antigen and DENV-specific IgM and IgG antibodies, and an “in-house” qualitative DENV-specific RT-PCR assay. Results A total of 8,989, 8,954, and 1581 samples were subjected to NS1 antigen detection, IgM and IgG detection, and LightMix assays, respectively. The LightMix assay yielded a linear curve for viral loads (VL) between 102 and 106 copies/reaction, and the minimum detection limits for DENV serotype 1 (DENV1) and DENV2, DENV3, and DENV4 were 1, 10, and 100 focus forming units (FFU)/mL, respectively. There was 88.9% concordance between the results obtained using the NS1 antigen combo kit and by LightMix analysis, and the diagnostic sensitivity and specificity of the two methods were 89.4 and 100%, and 84.7 and 100%, respectively. Notably, fatal cases were attributed to DENV2 infection, and 79.5% (27/34) of these cases occurred in patients ≥ 71 years of age. Among these older patients, 82.3% (14/17) were NS1/IgM/IgG (+/-/-), exhibiting VLs between 106–109 copies/mL, which was markedly higher than the rate observed in the other age groups. Conclusions The LightMix assay was effective for early diagnosis of DENV infection. Our data indicate that high VLs during primary infection in elderly patients may be a positive predictor for severe illness, and may contribute to high mortality rates. PMID:27732593

  4. Discrimination of Aspergillosis, Mucormycosis, Fusariosis, and Scedosporiosis in Formalin-Fixed Paraffin-Embedded Tissue Specimens by Use of Multiple Real-Time Quantitative PCR Assays.

    PubMed

    Salehi, Elham; Hedayati, Mohammad T; Zoll, Jan; Rafati, Haleh; Ghasemi, Maryam; Doroudinia, Atosa; Abastabar, Mahdi; Tolooe, Ali; Snelders, Eveline; van der Lee, Henrich A; Rijs, Antonius J M M; Verweij, Paul E; Seyedmousavi, Seyedmojtaba; Melchers, Willem J G

    2016-11-01

    In a retrospective multicenter study, 102 formalin-fixed paraffin-embedded (FFPE) tissue specimens with histopathology results were tested. Two 4- to 5-μm FFPE tissue sections from each specimen were digested with proteinase K, followed by automated nucleic acid extraction. Multiple real-time quantitative PCR (qPCR) assays targeting the internal transcribed spacer 2 (ITS2) region of ribosomal DNA, using fluorescently labeled primers, was performed to identify clinically important genera and species of Aspergillus, Fusarium, Scedosporium, and the Mucormycetes The molecular identification was correlated with results from histological examination. One of the main findings of our study was the high sensitivity of the automated DNA extraction method, which was estimated to be 94%. The qPCR procedure that was evaluated identified a range of fungal genera/species, including Aspergillus fumigatus, Aspergillus flavus, Aspergillus terreus, Aspergillus niger, Fusarium oxysporum, Fusarium solani, Scedosporium apiospermum, Rhizopus oryzae, Rhizopus microsporus, Mucor spp., and Syncephalastrum Fusarium oxysporum and F. solani DNA was amplified from five specimens from patients initially diagnosed by histopathology as having aspergillosis. Aspergillus flavus, S. apiospermum, and Syncephalastrum were detected from histopathological mucormycosis samples. In addition, examination of four samples from patients suspected of having concomitant aspergillosis and mucormycosis infections resulted in the identification of two A. flavus isolates, one Mucor isolate, and only one sample having both R. oryzae and A. flavus Our results indicate that histopathological features of molds may be easily confused in tissue sections. The qPCR assay used in this study is a reliable tool for the rapid and accurate identification of fungal pathogens to the genus and species levels directly from FFPE tissues.

  5. Correlation Between Pneumocystis jirovecii Mitochondrial Genotypes and High and Low Fungal Loads Assessed by Single Nucleotide Primer Extension Assay and Quantitative Real-Time PCR.

    PubMed

    Alanio, Alexandre; Olivi, Martine; Cabaret, Odile; Foulet, Françoise; Bellanger, Anne-Pauline; Millon, Laurence; Berceanu, Ana; Cordonnier, Catherine; Costa, Jean-Marc; Bretagne, Stéphane

    2015-01-01

    We designed a single nucleotide primer extension (SNaPshot) assay for Pneumocystis jirovecii genotyping, targeting mt85 SNP of the mitochondrial large subunit ribosomal RNA locus, to improve minority allele detection. We then analyzed 133 consecutive bronchoalveolar lavage (BAL) fluids tested positive for P. jirovecii DNA by quantitative real-time PCR, obtained from two hospitals in different locations (Hospital 1 [n = 95] and Hospital 2 [n = 38]). We detected three different alleles, either singly (mt85C: 39.1%; mt85T: 24.1%; mt85A: 9.8%) or together (27%), and an association between P. jirovecii mt85 genotype and the patient's place of hospitalization (p = 0.011). The lowest fungal loads (median = 0.82 × 10(3) copies/μl; range: 15-11 × 10(3) ) were associated with mt85A and the highest (median = 1.4 × 10(6) copies/μl; range: 17 × 10(3) -1.3 × 10(7) ) with mt85CTA (p = 0.010). The ratios of the various alleles differed between the 36 mixed-genotype samples. In tests of serial BALs (median: 20 d; range 4-525) from six patients with mixed genotypes, allele ratio changes were observed five times and genotype replacement once. Therefore, allele ratio changes seem more frequent than genotype replacement when using a SNaPshot assay more sensitive for detecting minority alleles than Sanger sequencing. Moreover, because microscopy detects only high fungal loads, the selection of microscopy-positive samples may miss genotypes associated with low loads.

  6. Quantitative analysis of cytochrome P450 isoforms in human liver microsomes by the combination of proteomics and chemical probe-based assay.

    PubMed

    Liu, Xidong; Hu, Lianghai; Ge, Guangbo; Yang, Bo; Ning, Jing; Sun, Shixin; Yang, Ling; Pors, Klaus; Gu, Jingkai

    2014-08-01

    Cytochrome P450 (CYP) is one of the most important drug-metabolizing enzyme families, which participates in the biotransformation of many endogenous and exogenous compounds. Quantitative analysis of CYP expression levels is important when studying the efficacy of new drug molecules and assessing drug-drug interactions in drug development. At present, chemical probe-based assay is the most widely used approach for the evaluation of CYP activity although there are cross-reactions between the isoforms with high sequence homologies. Therefore, quantification of each isozyme is highly desired in regard to meeting the ever-increasing requirements for carrying out pharmacokinetics and personalized medicine in the academic, pharmaceutical, and clinical setting. Herein, an absolute quantification method was employed for the analysis of the seven isoforms CYP1A2, 2B6, 3A4, 3A5, 2C9, 2C19, and 2E1 using a proteome-derived approach in combination with stable isotope dilution assay. The average absolute amount measured from twelve human liver microsomes samples were 39.3, 4.3, 54.0, 4.6, 10.3, 3.0, and 9.3 (pmol/mg protein) for 1A2, 2B6, 3A4, 3A5, 2C9, 2C19, and 2E1, respectively. Importantly, the expression level of CYP3A4 showed high correlation (r = 0.943, p < 0.0001) with the functional activity, which was measured using bufalin-a highly selective chemical probe we have developed. The combination of MRM identification and analysis of the functional activity, as in the case of CYP3A4, provides a protocol which can be extended to other functional enzyme studies with wide application in pharmaceutical research.

  7. Optimization and qualification of a quantitative reversed-phase HPLC method for hemagglutinin in influenza preparations and its comparative evaluation with biochemical assays.

    PubMed

    Lorbetskie, Barry; Wang, Jun; Gravel, Caroline; Allen, Cynthia; Walsh, Mike; Rinfret, Aline; Li, Xuguang; Girard, Michel

    2011-04-18

    A previously described reversed-phase HPLC (RP-HPLC) method based on fast separations on a non-porous silica stationary phase [1] was optimized and qualified for the quantitative determination of hemagglutinin (HA) in influenza vaccine preparations. Optimization of the gradient elution conditions led to improved separation of the HA1 subunit from other vaccine constituents. The sensitivity of the method was significantly increased by using native fluorescence detection, resulting in an approximately 10-fold increase as compared to UV-vis detection. This enabled the elimination of the concentration step described in the original method and allowed direct analysis of vaccine preparations. The method was qualified for linearity, range, limit of detection, limit of quantitation and precision. Overall, it was found to be linear over the range of 2.5-100 μg HA/mL for all subtypes examined. This range covered 50-150% of the concentration found for individual strains in seasonal influenza vaccines and in the pandemic H1N1 vaccine. The limit of detection and limit of quantitation for each subtype were found to be suitable for the method's intended purpose and compared well to values found by the single radial immunodiffusion (SRID). The repeatability of the method gave RSD values below 5% for both retention time and peak areas. As expected for intermediate precision, larger RSD values for peak area were obtained but were below 10% and deemed acceptable. The RP-HPLC results were compared to Western blot analysis using a HA universal antibody for a set of 15 monovalent A/California H1N1 preparations and showed good correlation. Similarly, the quantitative nature of the RP-HPLC method was assessed in relation to the SRID assay currently used for the determination of the HA content in bulk antigen and final vaccine preparations. Thus, for a series of 23 monovalent A/Brisbane/59/2007 H1N1 bulks, ranging between 12.7 and 15.9 μg HA/mL by SRID, the RP-HPLC values were found to

  8. Disruption of TgPHIL1 alters specific parameters of Toxoplasma gondii motility measured in a quantitative, three-dimensional live motility assay.

    PubMed

    Leung, Jacqueline M; Rould, Mark A; Konradt, Christoph; Hunter, Christopher A; Ward, Gary E

    2014-01-01

    T. gondii uses substrate-dependent gliding motility to invade cells of its hosts, egress from these cells at the end of its lytic cycle and disseminate through the host organism during infection. The ability of the parasite to move is therefore critical for its virulence. T. gondii engages in three distinct types of gliding motility on coated two-dimensional surfaces: twirling, circular gliding and helical gliding. We show here that motility in a three-dimensional Matrigel-based environment is strikingly different, in that all parasites move in irregular corkscrew-like trajectories. Methods developed for quantitative analysis of motility parameters along the smoothed trajectories demonstrate a complex but periodic pattern of motility with mean and maximum velocities of 0.58 ± 0.07 µm/s and 2.01 ± 0.17 µm/s, respectively. To test how a change in the parasite's crescent shape might affect trajectory parameters, we compared the motility of Δphil1 parasites, which are shorter and wider than wild type, to the corresponding parental and complemented lines. Although comparable percentages of parasites were moving for all three lines, the Δphil1 mutant exhibited significantly decreased trajectory lengths and mean and maximum velocities compared to the parental parasite line. These effects were either partially or fully restored upon complementation of the Δphil1 mutant. These results show that alterations in morphology may have a significant impact on T. gondii motility in an extracellular matrix-like environment, provide a possible explanation for the decreased fitness of Δphil1 parasites in vivo, and demonstrate the utility of the quantitative three-dimensional assay for studying parasite motility.

  9. Qualitative and quantitative analyses of Epstein-Barr virus early antigen diffuse component by western blotting enzyme-linked immunosorbent assay with a monoclonal antibody.

    PubMed Central

    Lin, J C; Choi, E I; Pagano, J S

    1985-01-01

    We report the use of monoclonal antibody against the early antigen diffuse component (anti-EA-D) of Epstein-Barr virus (EBV) to analyze, both qualitatively and quantitatively, the expression of EA-D in various human lymphoblastoid cell lines activated by chemical inducers. The kinetics of synthesis of EA-D in P3HR-1, B95-8, and Ramos/AW cells were similar in that they all reached the peak of synthesis on day 5 after induction. Surprisingly, no expression of EA-D was found in induced BJAB/GC, an EBV-genome-containing cell line. EBV-negative cell lines, BJAB and Ramos, were negative for EA-D. Raji cells had no detectable EA-D but responded rapidly to induction, reaching a peak on day 3. Superinfection of Raji cells also resulted in marked induction of EA-D, which reached a plateau between 8 to 12 h postinfection. Western blotting coupled with the enzyme-linked immunosorbent assay was employed to identify polypeptides representing EA-D. A family of four polypeptides with molecular weights of 46,000 (46K protein), 49,000, 52,000, and 55,000 were identified to be reactive with monoclonal anti-EA-D antiserum. The pattern of EA-D polypeptides expressed in each cell line was different. Of particular interest was the expression of a large quantity of 46K protein both in induced Raji and P3HR-1 cells, but not in superinfected Raji cells. A 49K doublet was expressed in activated p3HR-1, B95-8, and Ramos/AW cells and in superinfected Raji cells. In addition, two distinct 52K and 55K polypeptides were expressed in induced Ramos/AW and superinfected Raji cells. However, none of these EA-D polypeptides was detectable in BJAB/GC, BJAB, Ramos, and mock-infected Raji cells. To approximate relative concentrations of EA-D in cell extracts, we employed the enzyme-linked immunosorbent assay and immunoblot dot methods by using one of the purified EA-D components to construct a standard curve. Depending upon the cell lines, it was estimated that ca. 1 to 3% (determined by the enzyme

  10. Development and validation of a SYBR Green real-time PCR assay for rapid and quantitative detection of goose interferons and proinflammatory cytokines.

    PubMed

    Zhou, Hao; Chen, Shun; Qi, Yulin; Wang, Mingshu; Jia, Renyong; Zhu, Dekang; Liu, Mafeng; Liu, Fei; Chen, Xiaoyue; Cheng, Anchun

    2015-10-01

    Real time quantitative polymerase chain reaction (RT-qPCR) based on SYBR-Green I binding is a quick, reliable, and easy method for analyzing small amounts of mRNA. Viral pathogens are recognized at the time of infection by pattern recognition receptors; thus, the inflammatory cytokines (IL1β, IL6, and IL18) and antiviral cytokines (IFNα, IFNγ) are secreted by innate immune cells and induced to respond to the pathogens. The objective of this study was to develop an effective and sensitive RT-qPCR assay for the rapid and accurate quantification of goose cytokines: IFNα, IFNγ, IL1β, IL6, and IL18. Subsequently, the established methods were employed to detect the immune response in agonist-stimulated goose spleen cells in vitro. These data indicated that the established RT-qPCR is a reliable method for determining relative gene expression. The results revealed that Imiquimod led to the significant upregulation of goose IFNα (P < 0.01), IFNγ (P < 0.01), IL1β (P < 0.01), IL6 (P < 0.01), and IL18 (P < 0.05). The established methods are important for scientific research and clinical applications, which require rapid and accurate results in a short period of time. The technique can potentially be used in the further research of goose molecular immunology, which will help us understand the interactions between hosts and pathogens.

  11. Quantitative characterization of chitosan in the skin by Fourier-transform infrared spectroscopic imaging and ninhydrin assay: application in transdermal sciences.

    PubMed

    Nawaz, A; Wong, T W

    2016-07-01

    The chitosan has been used as the primary excipient in transdermal particulate dosage form design. Its distribution pattern across the epidermis and dermis is not easily accessible through chemical assay and limited to radiolabelled molecules via quantitative autoradiography. This study explored Fourier-transform infrared spectroscopy imaging technique with built-in microscope as the means to examine chitosan molecular distribution over epidermis and dermis with the aid of histology operation. Fourier-transform infrared spectroscopy skin imaging was conducted using chitosan of varying molecular weights, deacetylation degrees, particle sizes and zeta potentials, obtained via microwave ligation of polymer chains at solution state. Both skin permeation and retention characteristics of chitosan increased with the use of smaller chitosan molecules with reduced acetyl content and size, and increased positive charge density. The ratio of epidermal to dermal chitosan content decreased with the use of these chitosan molecules as their accumulation in dermis (3.90% to 18.22%) was raised to a greater extent than epidermis (0.62% to 1.92%). A larger dermal chitosan accumulation nonetheless did not promote the transdermal polymer passage more than the epidermal chitosan. A small increase in epidermal chitosan content apparently could fluidize the stratum corneum and was more essential to dictate molecular permeation into dermis and systemic circulation. The histology technique aided Fourier-transform infrared spectroscopy imaging approach introduces a new dimension to the mechanistic aspect of chitosan in transdermal delivery.

  12. Monoclonal antibody passive hemagglutination and capture enzyme-linked immunosorbent assays for direct detection and quantitation of F41 and K99 fimbrial antigens in enterotoxigenic Escherichia coli.

    PubMed Central

    Raybould, T J; Crouch, C F; Acres, S D

    1987-01-01

    Production of diarrhea in neonatal calves by enterotoxigenic Escherichia coli depends on its ability to attach to the epithelial cells of the intestine via surface adhesins called pili or fimbriae and to secrete enterotoxins. The most important of these fimbriae are designated K99 and F41. We produced and characterized a murine monoclonal antibody specific to F41. This monoclonal antibody and a K99-specific monoclonal antibody were used to develop sensitive and specific passive hemagglutination and capture enzyme-linked immunosorbent assays (ELISAs) for detection and quantitation of F41 and K99 antigens in E. coli cultures and culture supernatants. The capture ELISA systems exhibited excellent sensitivity and specificity, whereas the passive hemagglutination systems appeared to be oversensitive. The ability of the capture ELISAs to detect K99 and F41 fimbrial antigens in fecal specimens from calves was evaluated. Fimbrial antigens were detected in six of six specimens from scouring calves but not in four of four specimens from nonscouring calves. PMID:2880866

  13. Pharmacological profile of brain-derived neurotrophic factor (BDNF) splice variant translation using a novel drug screening assay: a "quantitative code".

    PubMed

    Vaghi, Valentina; Polacchini, Alessio; Baj, Gabriele; Pinheiro, Vera L M; Vicario, Annalisa; Tongiorgi, Enrico

    2014-10-03

    The neurotrophin brain-derived neurotrophic factor (BDNF) is a key regulator of neuronal development and plasticity. BDNF is a major pharmaceutical target in neurodevelopmental and psychiatric disorders. However, pharmacological modulation of this neurotrophin is challenging because BDNF is generated by multiple, alternatively spliced transcripts with different 5'- and 3'UTRs. Each BDNF mRNA variant is transcribed independently, but translation regulation is unknown. To evaluate the translatability of BDNF transcripts, we developed an in vitro luciferase assay in human neuroblastoma cells. In unstimulated cells, each BDNF 5'- and 3'UTR determined a different basal translation level of the luciferase reporter gene. However, constructs with either a 5'UTR or a 3'UTR alone showed poor translation modulation by BDNF, KCl, dihydroxyphenylglycine, AMPA, NMDA, dopamine, acetylcholine, norepinephrine, or serotonin. Constructs consisting of the luciferase reporter gene flanked by the 5'UTR of one of the most abundant BDNF transcripts in the brain (exons 1, 2c, 4, and 6) and the long 3'UTR responded selectively to stimulation with the different receptor agonists, and only transcripts 2c and 6 were increased by the antidepressants desipramine and mirtazapine. We propose that BDNF mRNA variants represent "a quantitative code" for regulated expression of the protein. Thus, to discriminate the efficacy of drugs in stimulating BDNF synthesis, it is appropriate to use variant-specific in vitro screening tests.

  14. A Quick Assay for the Quantitation of Fumonisin B1 and B2 in Maize Samples by Liquid Chromatography and Mass Spectrometry.

    PubMed

    Vega, Victor A

    2016-05-01

    A quick and effective extraction of fumonisin B1 (FB1) and B2 (FB2) in corn samples is described. The samples were extracted with an 80% acetonitrile-water solution, followed by a second extraction using an 80% methanol-water solution. The extract was then subjected to an immunoaffinity column for cleanup. Quantitation was then obtained by LC/MS. LC/MS parameters were optimized resulting in a 3 min run time. Corn certified reference materials (CRMs) at three different levels were analyzed. For the lowest level, a corn CRM sample containing 0.6 ppm of FB1 and 0.1 ppm of FB2 was analyzed. For the midlevel, analysis of a corn CRM sample containing 1.2 ppm FB1 and 0.3 ppm FB2 was conducted. A sample containing 3.6 ppm FB1 and 0.8 ppm FB2 was also analyzed. All recoveries were calculated using an external standard curve. Recoveries from all CRM samples ranged from 70 to 110%. Confirmation for both analytes in the sample extracts at each level was accomplished by comparing MS/MS spectra of the samples against those of the standards. This method provides a rapid, specific, robust, and easily controlled assay for the analysis of fumonisin in corn samples.

  15. Quantitation using a stable isotope dilution assay (SIDA) and thresholds of taste-active pyroglutamyl decapeptide ethyl esters (PGDPEs) in sake.

    PubMed

    Hashizume, Katsumi; Ito, Toshiko; Igarashi, Shinya

    2017-03-01

    A stable isotope dilution assay (SIDA) for two taste-active pyroglutamyl decapeptide ethyl esters (PGDPE1; (pGlu)LFGPNVNPWCOOC2H5, PGDPE2; (pGlu)LFNPSTNPWCOOC2H5) in sake was developed using deuterated isotopes and high-resolution mass spectrometry. Recognition thresholds of PGDPEs in sake were estimated as 3.8 μg/L for PGDPE1 and 8.1 μg/L for PGDPE2, evaluated using 11 student panelists aged in their twenties. Quantitated concentrations in 18 commercial sake samples ranged from 0 to 27 μg/L for PGDPE1 and from 0 to 202 μg/L for PGDPE2. The maximum levels of PGDPE1 and PGDPE2 in the sake samples were approximately 8 and 25 times higher than the estimated recognition thresholds, respectively. The results indicated that PGDPEs may play significant sensory roles in the sake. The level of PGDPEs in unpasteurized sake samples decreased during storage for 50 days at 6 °C, suggesting PGDPEs may be enzymatically decomposed.

  16. Effects of Holding Time, Storage, and the Preservation of Samples on Sample Integrity for the Detection of Fecal Indicator Bacteria by Quantitative Polymerase Chain Reaction (qPCR)-based assays.

    EPA Science Inventory

    The purpose of this project was to answer questions related to storage of samples to be analyzed by the quantitative polymerase chain reaction (qPCR)-based assays for fecal indicator bacteria. The project was divided into two parts. The first part was to determine if filters th...

  17. HDL cholesterol quantitation by phosphotungstate-Mg2+ and by dextran sulfate-Mn2+-polyethylene glycol precipitation, both with enzymic cholesterol assay compared with the lipid research method.

    PubMed

    Warnick, G R; Mayfield, C; Benderson, J; Chen, J S; Albers, J J

    1982-11-01

    Two methods using commercial kits for high density lipoprotein (HDL) cholesterol quantitation were compared with the Lipid Research Clinics (LRC) procedures. HDL cholesterol quantitations on 50 patient specimens by the Lancer HDL cholesterol Rapid Stat Kit (Lancer) with phosphotungstate-Mg2+ precipitation and enzymic cholesterol assay averaged 424 mg/L, and by a method with dextran sulfate-Mn2+-polyethylene glycol (dextran sulfate) precipitation and enzymic cholesterol assay averaged 474 mg/L. By comparison, the LRC method (heparin-Mn2+ precipitation combined with a Liebermann-Burchard reagent cholesterol assay) averaged 478 mg/L. Supernates obtained by the three precipitation methods had similar cholesterol values when analyzed by the LRC assay, suggesting that the observed differences were primarily due to differences between the cholesterol assays. Results were consistent with underestimation by the enzymic assay of cholesterol in the supernates, offset by a positive interference of Mn2+ in the dextran sulfate-produced supernates. Among-day CVs of 4-5% were observed for the Lancer method, and 6-7% for the dextran sulfate method. Sedimentation of precipitates in hypertriglyceridemic specimens was excellent by both methods.

  18. Identification of quantitative trait loci (QTL) for resistance to Fusarium crown rot (Fusarium pseudograminearum) in multiple assay environments in the Pacific Northwestern US.

    PubMed

    Poole, G J; Smiley, R W; Paulitz, T C; Walker, C A; Carter, A H; See, D R; Garland-Campbell, K

    2012-06-01

    Fusarium crown rot (FCR), caused by Fusarium pseudograminearum and F. culmorum, reduces wheat (Triticum aestivum L.) yields in the Pacific Northwest (PNW) of the US by as much as 35%. Resistance to FCR has not yet been discovered in currently grown PNW wheat cultivars. Several significant quantitative trait loci (QTL) for FCR resistance have been documented on chromosomes 1A, 1D, 2B, 3B, and 4B in resistant Australian cultivars. Our objective was to identify QTL and tightly linked SSR markers for FCR resistance in the partially resistant Australian spring wheat cultivar Sunco using PNW isolates of F. pseudograminerarum in greenhouse and field based screening nurseries. A second objective was to compare heritabilities of FCR resistance in multiple types of disease assaying environments (seedling, terrace, and field) using multiple disease rating methods. Two recombinant inbred line (RIL) mapping populations were derived from crosses between Sunco and PNW spring wheat cultivars Macon and Otis. The Sunco/Macon population comprised 219 F(6):F(7) lines and the Sunco/Otis population comprised 151 F(5):F(6) lines. Plants were inoculated with a single PNW F. pseudograminearum isolate (006-13) in growth room (seedling), outdoor terrace (adult) and field (adult) assays conducted from 2008 through 2010. Crown and lower stem tissues of seedling and adult plants were rated for disease severity on several different scales, but mainly on a numeric scale from 0 to 10 where 0 = no discoloration and 10 = severe disease. Significant QTL were identified on chromosomes 2B, 3B, 4B, 4D, and 7A with LOD scores ranging from 3 to 22. The most significant and consistent QTL across screening environments was located on chromosome 3BL, inherited from the PNW cultivars Macon and Otis, with maximum LOD scores of 22 and 9 explaining 36 and 23% of the variation, respectively for the Sunco/Macon and Sunco/Otis populations. The SSR markers Xgwm247 and Xgwm299 flank these QTL and are being

  19. Development of a quantitative real time PCR assay to detect and enumerate Escherichia coli O157 and O26 serogroups in bovine recto-anal swabs.

    PubMed

    Lawal, Dolapo; Burgess, Catherine; McCabe, Evonne; Whyte, Paul; Duffy, Geraldine

    2015-07-01

    Escherichia coli O157 and O26 shedding patterns in cattle are known to vary widely. To address gaps in the understanding of the underlying factors which impact on shedding dynamics, sensitive and rapid quantitative methods which can be applied in surveillance studies on cattle are required. Current approaches for enumeration of verocytotoxigenic E. coli (VTEC) in cattle faeces are based on direct plating onto selective agars, most probable number (MPN) or real time PCR applied directly to faecal samples, all of which have limitations in terms of the labour involved or their sensitivity. The objective of this study was to develop a sensitive real time quantitative PCR assay, to quantify O157 and O26 in bovine recto-anal junction (RAJ) swabs. The approach was to target serogroup specific genes rfbE and wzx, and to couple a short enrichment, with the use of a standard calibration curve relating real time PCR cycle threshold (Ct) values against the initial concentration of the pathogen in the sample. Following initial experiments in broth culture, a 5h enrichment in modified tryptone soya broth with novobiocin (20 mg/l) (mTSBn) was found to be optimal, and a linear correlation between inocula (Log10 1 to 6 CFU ml(-1)) and the PCR Ct values for both E. coli O157 (R(2)=0.99, rsd=0.58) and E. coli O26 (R(2)=0.99, rsd=0.44) was confirmed. The developed method was then applied to bovine RAJ swab samples (n=153), which were inoculated with E. coli O157 or O26 (Log10 1 to 7 CFU swab(-1)). Calibration curves yielded correlations for E. coli O157 of R(2)=0.86, rsd=0.72 and for O26 (R(2)=0.88, rsd=0.69). In conclusion, a sensitive method for detection and enumeration of two significant VTEC serogroups in bovine RAJ samples has been developed and validated, and will support studies on the bovine shedding dynamics of these pathogens in cattle.

  20. /sup 125/I-Fibrin deposition in contact sensitivity reactions in the mouse. Sensitivity of the assay for quantitating reactions after active or passive sensitization

    SciTech Connect

    Mekori, Y.A.; Dvorak, H.F.; Galli, S.J.

    1986-03-15

    The clotting associated with delayed hypersensitivity (DH) responses in the mouse by sensitizing the animals to the contactant oxazolone (Ox), and then administering /sup 125/I-guinea pig fibrinogen i.v. 10 to 30 min before antigen challenge 5 days later. Early (4 to 8 hr) contact sensitivity (CS) responses in immunized mice were barely detectable by three conventional measures of CS, but the total /sup 125/I-cpm in ears challenged with hapten was 3.6 to 4.5 x that in control ears challenged with vehicle alone; moreover, the amount of urea-insoluble cpm (cross-linked /sup 125/I-fibrin-associated cpm) in the reactions to Ox was 6.5-fold to 8.2-fold that present in the control reactions. In 24 hr reactions that were near peak intensity by measurements of ear swelling, ear weight ratios, and ratios of /sup 125/I-5-iodo-2-deoxyuridine-labeled leukocyte infiltration, the cpm in antigen-challenged ears exceeded that in control ears by 13-fold to 53-fold. In addition, antigen-challenged ears contained 27 to 300 x the urea-insoluble cpm present in control ears. /sup 125/I-Fibrin deposition was not a specific characteristic of CS reactions, because a small amount of urea-insoluble reactivity was also detected in some reactions to Ox in native mice. Nevertheless, the assay was exquisitely sensitive and readily detected quantitative differences between the immunologically specific and nonspecific reactions at very early intervals after challenge or with suboptimal doses of antigen.

  1. Quantitative relationship between anticapsular antibody measured by enzyme-linked immunosorbent assay or radioimmunoassay and protection of mice against challenge with Streptococcus pneumoniae serotype 4.

    PubMed Central

    Musher, D M; Johnson, B; Watson, D A

    1990-01-01

    We have recently shown that a substantial proportion of antibody to pneumococcal polysaccharide as measured by enzyme-linked immunosorbent assay (ELISA) or radioimmunoassay is removed by adsorption with pneumococcal cell wall polysaccharide (CWPS). The present study was undertaken to validate the hypothesis that only serotype-specific antibody that remains after adsorption with CWPS provides protection against pneumococcal infection. Serum samples were obtained from human subjects before and after they had been vaccinated with pneumococcal polysaccharide vaccine. Antibody to Streptococcus pneumoniae serotype 4 was measured by ELISA without adsorption or after adsorption of serum with CWPS. Groups of mice were injected with graded doses of serum and then challenged intraperitoneally with 10, 100, or 1,000 50% lethal doses (LD50) of S. pneumoniae serotype 4. Without adsorption, prevaccination sera from five healthy adults appeared to contain up to 33 micrograms of antibody to S. pneumoniae serotype 4 antigen per ml; adsorption with CWPS removed all detectable antibody, and pretreating mice with up to 0.1 ml of these sera (less than or equal to 3.3 micrograms of antibody) failed to protect them against challenge with 100 LD50. In contrast, postvaccination sera contained 2.9 to 30 micrograms of antibody per ml that was not removed by adsorption. Diluting sera to administer desired amounts of serotype-specific immunoglobulin G showed a significant relationship between protection and antibody remaining after adsorption (P less than 0.05 by linear regression analysis); 150 ng was uniformly protective against 1,000 LD50, and 50 ng was protective against 100 LD50. These studies have, for the first time, quantitated the amount of serotype-specific antibody that protects mice against challenge with S. pneumoniae type 4. In light of these observations, it is necessary to reassess current concepts regarding the presence of antipneumococcal antibody in the unvaccinated

  2. Development of quantitative real-time PCR assays for fathead minnow (Pimephales promelas) gonadotropin ß subunit mRNAs to support endocrine disruptor research.

    SciTech Connect

    Villeneuve, Daniel L.; Miracle, Ann L.; Jensen, Kathleen M.; Degitz, Sigmund J.; Kahl, Michael D.; Korte, Joseph J.; Greene, Katie J.; Blake, Lindsey S.; Linnum, Ann; Ankley, Gerald T.

    2007-03-01

    Fathead minnows (Pimephales promelas) are one of the most widely-used small fish models for regulatory ecotoxicology testing and research related to endocrine disrupting chemicals (EDCs). In this study, we isolated and sequenced cDNAs for fathead minnow follicle-stimulating hormone-like and luteinizing hormone-like β (FSHβ and LHβ) and glycoprotein α (GPα) subunits. Quantitative real-time PCR assays for measuring gonadotropin (GtH) β subunit transcripts were developed and used to examine “baseline” transcript levels over a range of age classes and reproductive states encompassed in EDC testing. In females, FSHβ and LHβ transcripts were greater in 4-5 month old than in younger fish and were significantly correlated with one another across all age classes examined. In males, FSHβ transcripts were greatest in 2-3 month old fish and were inversely correlated with various measures of testis development including, gonadal-somatic index (GSI), and histological stage. Overall, the pattern of GtHβ expression over age classes associated with gonad development was similar to that reported for other asynchronous-spawning fish. Despite significant changes in female GSI, gonad stage, and plasma vitellogenin within 24 h of spawning, GtHβ transcript levels in fish that had spawned within the preceding 24 h were not significantly different from those in fish that were 2-3 days post-spawn and expected to spawn within the next 24 h based on spawning history. Results of this study provide insights related to the role of GtHs in fathead minnow reproductive development and function. Additionally they provide useful “baseline” data needed to design and interpret effective experiments for studying direct and indirect effects of EDCs on GtH subunit mRNA expression, which will facilitate a greater understanding of integrated system-wide responses of the fathead minnow brain-pituitary-gonadal axis to stressors including EDCs.

  3. Development of a high-throughput β-Gal-based neutralization assay for quantitation of herpes simplex virus-neutralizing antibodies in human samples.

    PubMed

    Baccari, Amy; Cooney, Michael; Blevins, Tamara P; Morrison, Lynda A; Larson, Shane; Skoberne, Mojca; Belshe, Robert B; Flechtner, Jessica B; Long, Deborah

    2016-07-19

    Measurement of neutralizing antibodies against herpes simplex virus (HSV) is important for evaluation of candidate vaccines. The established plaque-reduction neutralization assay is time consuming, labor intensive, and difficult to validate and transfer. Here, we describe the characterization of a HSV-neutralization assay based on the expression of a reporter gene, β-galactosidase (β-Gal). Using previously constructed HSV-β-Gal recombinant viruses, HSV-2/Gal and HSV-1/tk12, we developed a colorimetric β-Gal-based neutralization assay that is sensitive and highly reproducible, and performed in less than 48h. HSV-1 and HSV-2 neutralizing titers measured by the β-Gal-based neutralization assay were equivalent to those obtained by a plaque reduction neutralization assay. Intra- and inter-assay precision studies demonstrated that the β-Gal-based assay was repeatable and yielded low and acceptable variation. In addition, comparison of HSV-2 neutralizing antibody (NAb) titers measured in two independent laboratories by two unique β-Gal-based assays showed a highly significant correlation (r=0.9499, p<0.0001) between the two assays. The new assay will serve as an important tool both for preclinical and clinical trials of new HSV vaccines.

  4. Rapid Estimation of Numbers of Fecal Bacteroidetes by Use of a Quantitative PCR Assay for 16S rRNA Genes

    PubMed Central

    Dick, Linda K.; Field, Katharine G.

    2004-01-01

    Assessment of health risk associated with fecal pollution requires a reliable fecal indicator and a rapid quantification method. We report the development of a Taq nuclease assay for enumeration of 16S rRNA genes of Bacteroidetes. Sensitivity and correlation with standard fecal indicators provide experimental evidence for application of the assay in monitoring fecal pollution. PMID:15345463

  5. Bioluminescence Methods for Assaying Kinases in Quantitative High-Throughput Screening (qHTS) Format Applied to Yes1 Tyrosine Kinase, Glucokinase, and PI5P4Kα Lipid Kinase.

    PubMed

    Davis, Mindy I; Auld, Douglas S; Inglese, James

    2016-01-01

    Assays in which the detection of a biological phenomenon is coupled to the production of bioluminescence by luciferase have gained widespread use. As firefly luciferases (FLuc) and kinases share a common substrate (ATP), coupling of a kinase to FLuc allows for the amount of ATP remaining following a kinase reaction to be assessed by quantitating the amount of luminescence produced. Alternatively, the amount of ADP produced by the kinase reaction can be coupled to FLuc through a two-step process. This chapter describes the bioluminescent assays that were developed for three classes of kinases (lipid, protein, and metabolic kinases) and miniaturized to 1536-well format, enabling their use for quantitative high-throughput (qHTS) of small-molecule libraries.

  6. Quantitative Assessment of Destruxins from Strawberry and Maize in the Lower Parts per Billion Range: Combination of a QuEChERS-Based Extraction Protocol with a Fast and Selective UHPLC-QTOF-MS Assay.

    PubMed

    Taibon, Judith; Sturm, Sonja; Seger, Christoph; Strasser, Hermann; Stuppner, Hermann

    2015-06-17

    The entomopathogenic fungus Metarhizium brunneum is widely applied as a biological pest control agent. Consequently, its use has to be accompanied by a risk management approach, which includes the need to monitor the fate of its bioactive metabolites in the environment, for example, in treated crops. A fast and selective UHPLC-QTOF-MS method was developed to monitor the presence of secreted destruxins in two model food plants for the application of this fungal biocontrol agent, namely, strawberry and maize. The liquid chromatography-mass spectrometric assay for destruxin trace analysis is combined with a novel QuEChERS-based extraction protocol. The whole assay was optimized for the application in these crops, and it allows quantitative analysis of the major M. brunneum metabolites destruxin A, 1, destruxin B, 2, and destruxin E, 3, down to the parts per billion range. In strawberry, limits of quantitation (LOQs) were found to be <2.0 ppb for all analytes; in maize LOQs were found to be <3.2 ppb for destruxin A and destruxin B. Destruxin E showed a distinctive loss of recovery in maize and was excluded from further quantitative analysis in this crop. For both crops assay linearities ranged from the LOQs to 100 ppb, interassay repeatabilities (RSD) were found to be better than 16.4%, and accuracies ranged from 83.5 to 105.3% (assessed at four spiking levels between 5 and 75 ppb).

  7. Development of SYBR Green and TaqMan quantitative real-time PCR assays for hepatopancreatic parvovirus (HPV) infecting Penaeus monodon in India.

    PubMed

    Yadav, Reena; Paria, Anutosh; Mankame, Smruti; Makesh, M; Chaudhari, Aparna; Rajendran, K V

    2015-12-01

    Hepatopancreatic parvovirus (HPV) infects Penaeus monodon and causes mortality in the larval stages. Further, it has been implicated in the growth retardation in cultured P. monodon. Though different geographical isolates of HPV show large sequence variations, a sensitive PCR assay specific to Indian isolate has not yet been reported. Here, we developed a sensitive SYBR Green-based and TaqMan real-time PCR for the detection and quantification of the virus. A 441-bp PCR amplicon was cloned in pTZ57 R/T vector and the plasmid copy number was estimated. A 10-fold serial dilution of the plasmid DNA from 1 × 10(9) copies to 1 copy was prepared and used as the standard. The primers were tested initially using the standard on a conventional PCR format to determine the linearity of detection. The standards were further tested on real-time PCR format using SYBR Green and TaqMan chemistry and standard curves were generated based on the Ct values from three well replicates for each dilution. The assays were found to be sensitive, specific and reproducible with a wide dynamic range (1 × 10(9) to 10 copies) with coefficient of regression (R(2)) > 0.99, calculated average slope -3.196 for SYBR Green assay whereas, for TaqMan assay it was >0.99 and -3.367, respectively. The intra- and inter-assay variance of the Ct values ranged from 0.26% to 0.94% and 0.12% to 0.81%, respectively, for SYBR Green assay, and the inter-assay variance of the Ct values for TaqMan assay ranged from 0.07% to 1.93%. The specificity of the assays was proved by testing other DNA viruses of shrimp such as WSSV, IHHNV and MBV. Standardized assays were further tested to detect and quantify HPV in the post-larvae of P. monodon. The result was further compared with conventional PCR to test the reproducibility of the test. The assay was also used to screen Litopeneaus vannamei, Macrobrachium rosenbergii and Scylla serrata for HPV.

  8. Binding Assays for the Quantitative Detection of P. Brevis Polyether Neurotoxins in Biological Samples and Antibodies as Therapeutic Aids for Polyether Marine Intoxication

    DTIC Science & Technology

    1990-03-15

    Recommendations 27 VII. Literature Cited 28 I!. [i• Figure 1. Structures of the Brevetoxins 5 Figure 2. Non-Competitive Brevetoxin-Antibody- Protein A Urease ...Barracuda. 20 Figure 9. Toxin- Urease Assay 23 Figure 10. Toxin-Peroxidase Assay 23 Figure 11. Non-Competitive Peroxidase-Linked Sandwich Immuunoassay 24...8217. Thus, the greatest flexibility is gained employing such techniques, and many different variations may be developed to oset defined :riteria. 9 i Urease 2

  9. Development of a novel HAC-based “gain of signal” quantitative assay for measuring chromosome instability (CIN) in cancer cells

    PubMed Central

    Kim, Jung-Hyun; Lee, Hee-Sheung; Lee, Nicholas C. O.; Goncharov, Nikolay V.; Kumeiko, Vadim; Masumoto, Hiroshi; Earnshaw, William C.; Kouprina, Natalay; Larionov, Vladimir

    2016-01-01

    Accumulating data indicates that chromosome instability (CIN) common to cancer cells can be used as a target for cancer therapy. At present the rate of chromosome mis-segregation is quantified by laborious techniques such as coupling clonal cell analysis with karyotyping or fluorescence in situ hybridization (FISH). Recently, a novel assay was developed based on the loss of a non-essential human artificial chromosome (HAC) carrying a constitutively expressed EGFP transgene (“loss of signal” assay). Using this system, anticancer drugs can be easily ranked on by their effect on HAC loss. However, it is problematic to covert this “loss of signal” assay into a high-throughput screen to identify drugs and mutations that increase CIN levels. To address this point, we re-designed the HAC-based assay. In this new system, the HAC carries a constitutively expressed shRNA against the EGFP transgene integrated into human genome. Thus, cells that inherit the HAC display no green fluorescence, while cells lacking the HAC do. We verified the accuracy of this “gain of signal” assay by measuring the level of CIN induced by known antimitotic drugs and added to the list of previously ranked CIN inducing compounds, two newly characterized inhibitors of the centromere-associated protein CENP-E, PF-2771 and GSK923295 that exhibit the highest effect on chromosome instability measured to date. The “gain of signal” assay was also sensitive enough to detect increase of CIN after siRNA depletion of known genes controlling mitotic progression through distinct mechanisms. Hence this assay can be utilized in future experiments to uncover novel human CIN genes, which will provide novel insight into the pathogenesis of cancer. Also described is the possible conversion of this new assay into a high-throughput screen using a fluorescence microplate reader to characterize chemical libraries and identify new conditions that modulate CIN level. PMID:26943579

  10. CPTAC Assay Portal: a repository of targeted proteomic assays

    SciTech Connect

    Whiteaker, Jeffrey R.; Halusa, Goran; Hoofnagle, Andrew N.; Sharma, Vagisha; MacLean, Brendan; Yan, Ping; Wrobel, John; Kennedy, Jacob; Mani, DR; Zimmerman, Lisa J.; Meyer, Matthew R.; Mesri, Mehdi; Rodriguez, Henry; Abbateillo, Susan E.; Boja, Emily; Carr, Steven A.; Chan, Daniel W.; Chen, Xian; Chen, Jing; Davies, Sherri; Ellis, Matthew; Fenyo, David; Hiltket, Tara; Ketchum, Karen; Kinsinger, Christopher; Kuhn, Eric; Liebler, Daniel; Lin, De; Liu, Tao; Loss, Michael; MacCoss, Michael; Qian, Weijun; Rivers, Robert; Rodland, Karin D.; Ruggles, Kelly; Scott, Mitchell; Smith, Richard D.; Thomas, Stefani N.; Townsend, Reid; Whiteley, Gordon; Wu, Chaochao; Zhang, Hui; Zhang, Zhen; Paulovich, Amanda G.

    2014-06-27

    To address these issues, the Clinical Proteomic Tumor Analysis Consortium (CPTAC) of the National Cancer Institute (NCI) has launched an Assay Portal (http://assays.cancer.gov) to serve as a public repository of well-characterized quantitative, MS-based, targeted proteomic assays. The purpose of the CPTAC Assay Portal is to facilitate widespread adoption of targeted MS assays by disseminating SOPs, reagents, and assay characterization data for highly characterized assays. A primary aim of the NCI-supported portal is to bring together clinicians or biologists and analytical chemists to answer hypothesis-driven questions using targeted, MS-based assays. Assay content is easily accessed through queries and filters, enabling investigators to find assays to proteins relevant to their areas of interest. Detailed characterization data are available for each assay, enabling researchers to evaluate assay performance prior to launching the assay in their own laboratory.

  11. Evaluation and validation of a real-time PCR assay for detection and quantitation of human adenovirus 14 from clinical samples.

    PubMed

    Metzgar, David; Skochko, Greg; Gibbins, Carl; Hudson, Nolan; Lott, Lisa; Jones, Morris S

    2009-09-17

    In 2007, the Centers for Disease Control and Prevention (CDC) reported that Human adenovirus type 14 (HAdV-14) infected 106 military personnel and was responsible for the death of one U.S. soldier at Lackland Air Force Base in Texas. Identification of the responsible adenovirus, which had not previously been seen in North America and for which rapid diagnostic tools were unavailable, required retrospective analysis at reference laboratories. Initial quarantine measures were also reliant on relatively slow traditional PCR analysis at other locations. To address this problem, we developed a real-time PCR assay that detects a 225 base pair sequence in the HAdV-14a hexon gene. Fifty-one oropharyngeal swab specimens from the Naval Health Research Center, San Diego, CA and Advanced Diagnostic Laboratory, Lackland AFB, TX were used to validate the new assay. The described assay detected eight of eight and 19 of 19 confirmed HAdV-14a clinical isolates in two separate cohorts from respiratory disease outbreaks. The real-time PCR assay had a wide dynamic range, detecting from 10(2) to 10(7) copies of genomic DNA per reaction. The assay did not cross-react with other adenoviruses, influenza, respiratory syncytial virus, or common respiratory tract bacteria. The described assay is easy to use, sensitive and specific for HAdV-14a in clinical throat swab specimens, and very rapid since turnaround time is less than four hours to obtain an answer.

  12. Quantitative multiplex real-time PCR assay for shrimp allergen: comparison of commercial master mixes and PCR platforms in rapid cycling.

    PubMed

    Eischeid, Anne C; Kasko, Sasha M

    2015-01-01

    Real-time PCR has been used widely in numerous fields. In food safety, it has been applied to detection of microbes and other contaminants, including food allergens. Interest in rapid (fast) cycling real-time PCR has grown because it yields results in less time than does conventional cycling. However, fast cycling can adversely affect assay performance. Here we report on tests of commercial master mixes specifically designed for fast real-time PCR using a shrimp allergen assay we previously developed and validated. The objective of this work was to determine whether specialized commercial master mixes lead to improved assay performance in rapid cycling. Real-time PCR assays were carried out using four different master mixes and two different rapid cycling protocols. Results indicated that specialized master mixes did yield quality results. In many cases, linear ranges spanned up to 7 orders of magnitude, R(2) values were at least 0.95, and reaction efficiencies were within or near the optimal range of 90 to 110%. In the faster of the two rapid cycling protocols tested, assay performance and PCR amplification were markedly better for the shorter PCR product. In conclusion, specialized commercial master mixes were effective as part of rapid cycling protocols, but conventional cycling as used in our previous work is more reliable for the shrimp assay tested.

  13. Development and Characterization of Probe-Based Real Time Quantitative RT-PCR Assays for Detection and Serotyping of Foot-And-Mouth Disease Viruses Circulating in West Eurasia.

    PubMed

    Jamal, Syed M; Belsham, Graham J

    2015-01-01

    Rapid and accurate diagnosis of foot-and-mouth disease (FMD) and virus serotyping are of paramount importance for control of this disease in endemic areas where vaccination is practiced. Ideally this virus characterization should be achieved without the need for virus amplification in cell culture. Due to the heterogeneity of FMD viruses (FMDVs) in different parts of the world, region specific diagnostic tests are required. In this study, hydrolysable probe-based real time reverse transcription quantitative polymerase chain reaction (RT-qPCR) assays were developed for specific detection and serotyping of the FMDVs currently circulating in West Eurasia. These assays were evaluated, in parallel with pan-FMDV diagnostic assays and earlier serotype-specific assays, using field samples originating from Pakistan and Afghanistan containing FMD viruses belonging to different sublineages of O-PanAsia, A-Iran05 and Asia-1 (Group-II and Group-VII (Sindh-08)). In addition, field samples from Iran and Bulgaria, containing FMDVs belonging to the O-PanAsiaANT-10 sublineage were also tested. Each of the three primer/probe sets was designed to be specific for just one of the serotypes O, A and Asia-1 of FMDV and detected the RNA from the target viruses with cycle threshold (CT) values comparable with those obtained with the serotype-independent pan-FMDV diagnostic assays. No cross-reactivity was observed in these assays between the heterotypic viruses circulating in the region. The assays reported here have higher diagnostic sensitivity (100% each for serotypes O and Asia-1, and 92% [95% CI = 81.4-100%] for serotype A positive samples) and specificity (100% each for serotypes O, A and Asia-1 positive samples) for the viruses currently circulating in West Eurasia compared to the serotyping assays reported earlier. Comparisons of the sequences of the primers and probes used in these assays and the corresponding regions of the circulating viruses provided explanations for the poor

  14. Development of SYBR green-based real-time PCR and duplex nested PCR assays for quantitation and differential detection of species- or type-specific porcine Torque teno viruses.

    PubMed

    Huang, Y W; Dryman, B A; Harrall, K K; Vaughn, E M; Roof, M B; Meng, X J

    2010-12-01

    Porcine Torque teno virus (TTV), a single-stranded circular DNA virus, has been incriminated in swine diseases recently. Multiple infection with porcine TTV species 1 (PTTV1) and species 2 (PTTV2), each consisting of two types (PTTV1a and 1b) or subtypes (PTTV2b and 2c), in a single pig had been reported by our group previously. The present study described three novel assays for quantitation and differential detection of porcine TTV. First, we developed two SYBR green-based real-time PCR assays to quantify viral loads of two porcine TTV species, respectively. The PTTV1- and PTTV2-specific real-time PCR primer sequences were selected to target conserved regions identified by multiple alignments of ten available porcine TTV full-length genomes. Furthermore, by coupling the two singleplex PCR assays, a duplex real-time PCR assay followed by melting curve analysis was established for simultaneous detection and differentiation of PTTV1 and PTTV2. In addition, a type-specific duplex nested PCR was also developed to simultaneously detect and distinguish between the two types, PTTV1a and 1b, in PTTV1 species. These assays provide rapid and practical tools for molecular diagnosis of species- or type-specific porcine TTV.

  15. Development and Validation of TaqMan Real-Time Polymerase Chain Reaction Assays for the Quantitative and Differential Detection of Wild-Type Infectious Laryngotracheitis Viruses from a Glycoprotein G-Deficient Candidate Vaccine Strain.

    PubMed

    Shil, Niraj K; Legione, Alistair R; Markham, Philip F; Noormohammadi, Amir H; Devlin, Joanne M

    2015-03-01

    Infectious laryngotracheitis (ILT) is a significant upper respiratory tract disease of chickens with a worldwide distribution. Differentiating between wild-type and vaccine strains of ILT virus (ILTV) would be useful for enhancing disease control, and in the early stages of a disease outbreak molecular diagnostic tools for the detection and differentiation of the circulating virus could be applied. This study developed TaqMan real-time PCR (qPCR) assays to detect and differentiate the glycoprotein G (gG)-deficient (ΔgG) ILTV candidate vaccine strain of ILTV from ILTV strains that contain the gG gene. The gG+ve and gG-ve ILTV TaqMan assays were used in individual and multiplex format to detect, differentiate, and quantitate ILTV DNA in laboratory and clinical samples. The assays were highly sensitive and highly specific, with a detection limit of 10 viral template copies for each assay. Low interassay coefficients of variation were recorded (0.021-0.042 and 0.013-0.039) for gG+ve and gG-ve TaqMan assays, respectively. The multiplex assay was successfully used to examine the replication kinetics of wild-type and ΔgG strains of ILTV in cultured leghorn male hepatoma cells and embryonated hen eggs under coinfection conditions. The results showed that the TaqMan qPCR assay, along with the ΔgG ILTV vaccine, has the potential to be used in a "Differentiating Infected from Vaccinated Animals" strategy for the control and eradication of ILT.

  16. Evaluation and Validation of a Real-Time PCR Assay for Detection and Quantitation of Human Adenovirus 14 from Clinical Samples

    DTIC Science & Technology

    2009-09-01

    copies of genomic DNA per reaction. The assay did not cross-react with other adenoviruses, influenza , respiratory syncytial virus, or common respiratory...unable to Figure 1. Alignment of species HAdV-B Hexon sequences which span the HAdV-14 primers and TaqMan probe. Note that the HAdV- 14a and HAdV-14p...assay: Adenovirus strains HAdV-14 (VR-15), -3 (VR- 3), -4 (VR-1572), -7 (VR-7), -11 (VR-12), -21 (VR-256), Haemoph- ilus influenza , Influenza A virus

  17. Quantitative Correlation of in Vivo Properties with in Vitro Assay Results: The in Vitro Binding of a Biotin–DNA Analogue Modifier with Streptavidin Predicts the in Vivo Avidin-Induced Clearability of the Analogue-Modified Antibody

    PubMed Central

    Dou, Shuping; Virostko, John; Greiner, Dale L.; Powers, Alvin C.; Liu, Guozheng

    2016-01-01

    Quantitative prediction of in vivo behavior using an in vitro assay would dramatically accelerate pharmaceutical development. However, studies quantitatively correlating in vivo properties with in vitro assay results are rare because of the difficulty in quantitatively understanding the in vivo behavior of an agent. We now demonstrate such a correlation as a case study based on our quantitative understanding of the in vivo chemistry. In an ongoing pretargeting project, we designed a trifunctional antibody (Ab) that concomitantly carried a biotin and a DNA analogue (hereafter termed MORF). The biotin and the MORF were fused into one structure prior to conjugation to the Ab for the concomitant attachment. Because it was known that avidin-bound Ab molecules leave the circulation rapidly, this design would theoretically allow complete clearance by avidin. The clearability of the trifunctional Ab was determined by calculating the blood MORF concentration ratio of avidin-treated Ab to non-avidin-treated Ab using mice injected with these compounds. In theory, any compromised clearability should be due to the presence of impurities. In vitro, we measured the biotinylated percentage of the Ab-reacting (MORF-biotin)⊃-NH2 modifier, by addition of streptavidin to the radiolabeled (MORF-biotin)⊃-NH2 samples and subsequent high-performance liquid chromatography (HPLC) analysis. On the basis of our previous quantitative understanding, we predicted that the clearability of the Ab would be equal to the biotinylation percentage measured via HPLC. We validated this prediction within a 3% difference. In addition to the high avidin-induced clearability of the trifunctional Ab (up to ~95%) achieved by the design, we were able to predict the required quality of the (MORF-biotin)⊃-NH2 modifier for any given in vivo clearability. This approach may greatly reduce the steps and time currently required in pharmaceutical development in the process of synthesis, chemical analysis, in

  18. Quantitative Correlation of in Vivo Properties with in Vitro Assay Results: The in Vitro Binding of a Biotin-DNA Analogue Modifier with Streptavidin Predicts the in Vivo Avidin-Induced Clearability of the Analogue-Modified Antibody.

    PubMed

    Dou, Shuping; Virostko, John; Greiner, Dale L; Powers, Alvin C; Liu, Guozheng

    2015-08-03

    Quantitative prediction of in vivo behavior using an in vitro assay would dramatically accelerate pharmaceutical development. However, studies quantitatively correlating in vivo properties with in vitro assay results are rare because of the difficulty in quantitatively understanding the in vivo behavior of an agent. We now demonstrate such a correlation as a case study based on our quantitative understanding of the in vivo chemistry. In an ongoing pretargeting project, we designed a trifunctional antibody (Ab) that concomitantly carried a biotin and a DNA analogue (hereafter termed MORF). The biotin and the MORF were fused into one structure prior to conjugation to the Ab for the concomitant attachment. Because it was known that avidin-bound Ab molecules leave the circulation rapidly, this design would theoretically allow complete clearance by avidin. The clearability of the trifunctional Ab was determined by calculating the blood MORF concentration ratio of avidin-treated Ab to non-avidin-treated Ab using mice injected with these compounds. In theory, any compromised clearability should be due to the presence of impurities. In vitro, we measured the biotinylated percentage of the Ab-reacting (MORF-biotin)⊃-NH2 modifier, by addition of streptavidin to the radiolabeled (MORF-biotin)⊃-NH2 samples and subsequent high-performance liquid chromatography (HPLC) analysis. On the basis of our previous quantitative understanding, we predicted that the clearability of the Ab would be equal to the biotinylation percentage measured via HPLC. We validated this prediction within a 3% difference. In addition to the high avidin-induced clearability of the trifunctional Ab (up to ∼95%) achieved by the design, we were able to predict the required quality of the (MORF-biotin)⊃-NH2 modifier for any given in vivo clearability. This approach may greatly reduce the steps and time currently required in pharmaceutical development in the process of synthesis, chemical analysis, in

  19. Quantitation of inhibition of DNA methylation of the retinoic acid receptor beta gene by 5-Aza-2'-deoxycytidine in tumor cells using a single-nucleotide primer extension assay.

    PubMed

    Bovenzi, V; Momparler, R L

    2000-05-15

    The expression of several cancer-related genes has been reported to be silenced by DNA methylation of their promoter region. 5-Aza-2'-deoxycytidine (5-AZA-CdR), a potent and specific inhibitor of DNA methylation, can reactivate the in vitro expression of these genes. In future clinical trials in tumor therapy with 5-AZA-CdR a method to quantitate its inhibition of methylation of specific tumor suppressor genes would provide important data for the analysis of the therapeutic efficacy of this analogue. We have modified the methylation-sensitive single-nucleotide primer extension assay reported by Gonzalgo and Jones (Nucleic Acids Res. 25, 2529-2531, 1997). Genomic DNA was treated with bisulfite and a fragment of the promoter region of the human retinoic acid receptor beta (RARbeta) gene, a tumor suppressor gene, was amplified using seminested PCR. Using two different primers we quantitated the inhibition of methylation produced by 5-AZA-CdR at two specific CpG sites in the RARbeta promoter in a human colon and a breast carcinoma cell line. The results obtained with the modified assay show a precise and reproducible quantitation of inhibition of DNA methylation produced by 5-AZA-CdR in tumor cells.

  20. Co-occurrence of estrogenic and antiestrogenic activities in wastewater: quantitative evaluation of balance by in vitro ERα reporter gene assay and chemical analysis.

    PubMed

    Ihara, Masaru; Ihara, Mariko O; Kumar, Vimal; Narumiya, Masanori; Hanamoto, Seiya; Nakada, Norihide; Yamashita, Naoyuki; Miyagawa, Shinichi; Iguchi, Taisen; Tanaka, Hiroaki

    2014-06-03

    Endocrine-disrupting chemicals are exogenous substances that alter the function of the endocrine system, with adverse health effects on organisms or their progeny. In vitro estrogen receptor (ER) reporter gene assays have long been used to measure estrogenic activity in wastewater. Nevertheless, there is still uncertainty about their usefulness in environmental monitoring on account of a discrepancy between the estrogenic response of the in vitro assay and concentrations of estrogenic compounds determined by chemical analysis. Here, we measured estrogenic and antiestrogenic activities in wastewater by ERα reporter gene assay. All samples were simultaneously analyzed for estrone, 17β-estradiol, estriol, and 17α-ethynylestradiol, and the concentrations were used to predict estrogenic activity. All samples in which measured estrogenic activity was significantly lower than predicted showed strong antiestrogenic activity. In addition, we confirmed that the fraction that did not have antiestrogenic activity showed stronger estrogenic activity than the unfractionated wastewater extract. These results indicate that antiestrogenic compounds in wastewater suppress the activity of natural estrogens, and the reporter gene assay represents the net activity.

  1. Development and validation of quantitative real-time polymerase chain reaction assays to detect elephant endotheliotropic herpesviruses-2, 3, 4, 5, and 6.

    PubMed

    Stanton, Jeffrey J; Nofs, Sally A; Peng, Rongsheng; Hayward, Gary S; Ling, Paul D

    2012-12-01

    Elephant endotheliotropic herpesviruses (EEHVs) can cause lethal hemorrhagic disease in both African and Asian elephants. At least seven EEHV types have been described, and sensitive real-time PCR tests have been developed for EEHV1A and 1B, which are associated with the majority of characterized Asian elephant deaths. Despite growing knowledge of the different EEHV types, the prevalence of each type within African and Asian elephants remains to be determined and there is considerable need for diagnostic tests to detect and discriminate between each EEHV species for clinical management of African and Asian elephants that develop illness from one or more of these viruses. To begin to address these issues, we developed real-time PCR assays for EEHV2, 3, 4, 5, and 6. Overall, each assay had robust PCR efficiency, a dynamic linear range over 5log(10) concentrations, a limit of detection of 10 copies/test reaction with 100% sensitivity, and low intra- and inter-assay variability. Each assay proved to be specific for the EEHV targets for which it was designed, with the exception of EEHV3 and EEHV4, which was expected because of greater DNA sequence similarity between these two EEHV species than the others. These new tools will be useful for conducting surveys of EEHV prevalence within captive and range country elephants, for diagnostic testing of elephants with suspected EEHV-associated disease, and for managing the treatment of elephants with EEHV-induced illness.

  2. Binary Classification of a Large Collection of Environmental Chemicals from Estrogen Receptor Assays by Quantitative Structure-Activity Relationship and Machine Learning Methods

    EPA Science Inventory

    ABSTRACT: There are thousands of environmental chemicals subject to regulatory decisions for endocrine disrupting potential. A promising approach to manage this large universe of untested chemicals is to use a prioritization filter that combines in vitro assays with in silico QSA...

  3. Analytical Validation of a Highly Quantitative, Sensitive, Accurate, and Reproducible Assay (HERmark®) for the Measurement of HER2 Total Protein and HER2 Homodimers in FFPE Breast Cancer Tumor Specimens

    PubMed Central

    Larson, Jeffrey S.; Goodman, Laurie J.; Tan, Yuping; Defazio-Eli, Lisa; Paquet, Agnes C.; Cook, Jennifer W.; Rivera, Amber; Frankson, Kristi; Bose, Jolly; Chen, Lili; Cheung, Judy; Shi, Yining; Irwin, Sarah; Kiss, Linda D. B.; Huang, Weidong; Utter, Shannon; Sherwood, Thomas; Bates, Michael; Weidler, Jodi; Parry, Gordon; Winslow, John; Petropoulos, Christos J.; Whitcomb, Jeannette M.

    2010-01-01

    We report here the results of the analytical validation of assays that measure HER2 total protein (H2T) and HER2 homodimer (H2D) expression in Formalin Fixed Paraffin Embedded (FFPE) breast cancer tumors as well as cell line controls. The assays are based on the VeraTag technology platform and are commercially available through a central CAP-accredited clinical reference laboratory. The accuracy of H2T measurements spans a broad dynamic range (2-3 logs) as evaluated by comparison with cross-validating technologies. The measurement of H2T expression demonstrates a sensitivity that is approximately 7–10 times greater than conventional immunohistochemistry (IHC) (HercepTest). The HERmark assay is a quantitative assay that sensitively and reproducibly measures continuous H2T and H2D protein expression levels and therefore may have the potential to stratify patients more accurately with respect to response to HER2-targeted therapies than current methods which rely on semiquantitative protein measurements (IHC) or on indirect assessments of gene amplification (FISH). PMID:21151530

  4. Development and Validation of LNA-Based Quantitative Real-Time PCR Assays for Detection and Identification of the Root-Knot Nematode Meloidogyne enterolobii in Complex DNA Backgrounds.

    PubMed

    Kiewnick, Sebastian; Frey, Jürg E; Braun-Kiewnick, Andrea

    2015-09-01

    Meloidogyne enterolobii is a quarantine root-knot nematode posing a major threat to agricultural production systems worldwide. It attacks many host plants, including important agricultural crops, ornamentals, and trees. M. enterolobii is a highly virulent and pathogenic root-knot nematode species, able to reproduce on plants resistant to other Meloidogyne spp. Significant crop damage has been reported in Asia, South America, Africa, the United States, France, and greenhouses in Switzerland. To identify potential introduction pathways and ensure appropriate phytosanitary measures and management strategies, accurate detection and identification tools are needed. Therefore, two real-time quantitative polymerase chain reaction (PCR) assays based on the second intergenic spacer region of the ribosomal DNA cistron and the cytochrome oxidase c subunit I (COI) gene using locked nucleic acid probes were developed and validated for fast and reliable detection and identification of M. enterolobii. Analytical specificity was confirmed with 16 M. enterolobii populations, 16 populations of eight closely related Meloidogyne spp., and four species from other nematode genera. Optimizing and testing the assays on two real-time PCR platforms revealed an analytical sensitivity of one juvenile in a background of 1,000 nematodes and the intended limit of detection of one juvenile per 100 ml of soil. Both assays performed equally well, with the COI-based assay showing a slightly better performance concerning detection of M. enterolobii target DNA in complex DNA backgrounds.

  5. Identification of quantitative trait loci (QTL) for resistance to Fusarium crown rot (Fusarium pseudograminearum) in multiple assay environments in the Pacific Northwestern US

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium crown rot (FCR), caused by F. pseudograminearum and F. culmorum, reduces wheat (Triticum aestivum L.) yields in the Pacific Northwest (PNW) of the U.S. by as much as 35%. Resistance to FCR has not yet been discovered in currently grown PNW wheat cultivars. Several significant quantitative t...

  6. Detection limits and cost comparisons of human- and gull-associated conventional and quantitative PCR assays in artificial and environmental waters

    EPA Science Inventory

    Modern techniques for tracking fecal pollution in environmental waters require investing in DNA-based methods to determine the presence of specific fecal sources. To help water quality managers decide whether to employ routine polymerase chain reaction (PCR) or quantitative PC...

  7. Quantification of Fusarium solani f. sp. glycines Isolates in Soybean Roots by Colony-forming Unit Assays and Real-time Quantitative PCR

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium solani f. sp. glycines (FSG; syn. F. virguliforme Akoi, O’Donnell, Homma & Lattanzi) is a soil-borne fungus that infects soybean roots and causes sudden death syndrome (SDS) a widespread and destructive soybean disease. The goal of this study was to develop and used a real-time quantitative...

  8. Development and qualification of a high sensitivity, high throughput Q-PCR assay for quantitation of residual host cell DNA in purification process intermediate and drug substance samples.

    PubMed

    Zhang, Wei; Wu, Meng; Menesale, Emily; Lu, Tongjun; Magliola, Aeona; Bergelson, Svetlana

    2014-11-01

    Methods of high sensitivity, accuracy and throughput are needed for quantitation of low level residual host cell DNA in purification process intermediates and drug substances of therapeutic proteins. In this study, we designed primer/probe sets targeting repetitive Alu repeats or Alu-equivalent sequences in the human, Chinese hamster and murine genomes. When used in quantitative polymerase chain reactions (Q-PCRs), these primer/probe sets showed high species specificity and gave significantly higher sensitivity compared to those targeting the low copy number GAPDH gene. This allowed for detection of residual host cell DNA of much lower concentrations and, for some samples, eliminated the need for DNA extraction. By combining the high sensitivity Alu Q-PCR with high throughput automated DNA extraction using an automated MagMAX magnetic particle processor, we successfully developed and qualified a highly accurate, specific, sensitive and efficient method for the quantitation of residual host cell DNA in process intermediates and drug substances of multiple therapeutic proteins purified from cells of multiple species. Compared to the previous method using manual DNA extraction and primer/probe sets targeting the GAPDH gene, this new method increased our DNA extraction throughput by over sevenfold, and lowered the lower limit of quantitation by up to eightfold.

  9. Quantitative Detection and Resolution of BRAF V600 Status in Colorectal Cancer Using Droplet Digital PCR and a Novel Wild-Type Negative Assay.

    PubMed

    Bidshahri, Roza; Attali, Dean; Fakhfakh, Kareem; McNeil, Kelly; Karsan, Aly; Won, Jennifer R; Wolber, Robert; Bryan, Jennifer; Hughesman, Curtis; Haynes, Charles

    2016-03-01

    A need exists for robust and cost-effective assays to detect a single or small set of actionable point mutations, or a complete set of clinically informative mutant alleles. Knowledge of these mutations can be used to alert the clinician to a rare mutation that might necessitate more aggressive clinical monitoring or a personalized course of treatment. An example is BRAF, a (proto)oncogene susceptible to either common or rare mutations in codon V600 and adjacent codons. We report a diagnostic technology that leverages the unique capabilities of droplet digital PCR to achieve not only accurate and sensitive detection of BRAF(V600E) but also all known somatic point mutations within the BRAF V600 codon. The simple and inexpensive two-well droplet digital PCR assay uses a chimeric locked nucleic acid/DNA probe against wild-type BRAF and a novel wild-type-negative screening paradigm. The assay shows complete diagnostic accuracy when applied to formalin-fixed, paraffin-embedded tumor specimens from metastatic colorectal cancer patients deficient for Mut L homologue-1.

  10. Development of a real-time quantitative PCR assay using a TaqMan minor groove binder probe for the detection of α-lactalbumin in food.

    PubMed

    Xiao, Guan; Qin, Cai; Wenju, Zhang; Qin, Chen

    2016-03-01

    Here, we report the development of a real-time PCR assay using a TaqMan minor groove binder (MGB, Genecore, NCBI: AF249896.1, 806-820) probe and primer sets designed to recognize the α-lactalbumin gene from the cow (Bos taurus). We evaluated the efficacy of this assay for detecting and quantifying cow α-lactalbumin in commercial foods. Our results demonstrated that the developed method was highly sensitive and showed high specificity for cow milk, with consistent detection of 0.05 ng of bovine DNA. We tested 42 commercial food samples with or without cow milk listed as an ingredient by using the developed assay. Among the 42 samples, 26 products that listed milk as an ingredient and 3 products might contain milk showed positive signals, whereas the other 9 products that did not contain milk and 4 products that might contain milk tested negative. Therefore, this method could be widely used for the detection of cow milk allergens in food.

  11. Development and validation of a multiplex reverse transcription quantitative PCR (RT-qPCR) assay for the rapid detection of Citrus tristeza virus, Citrus psorosis virus, and Citrus leaf blotch virus.

    PubMed

    Osman, Fatima; Hodzic, Emir; Kwon, Sun-Jung; Wang, Jinbo; Vidalakis, Georgios

    2015-08-01

    A single real-time multiplex reverse transcription quantitative polymerase chain reaction (RT-qPCR) assay for the simultaneous detection of Citrus tristeza virus (CTV), Citrus psorosis virus (CPsV), and Citrus leaf blotch virus (CLBV) was developed and validated using three different fluorescently labeled minor groove binding qPCR probes. To increase the detection reliability, coat protein (CP) genes from large number of different isolates of CTV, CPsV and CLBV were sequenced and a multiple sequence alignment was generated with corresponding CP sequences from the GenBank and a robust multiplex RT-qPCR assay was designed. The capacity of the multiplex RT-qPCR assay in detecting the viruses was compared to singleplex RT-qPCR designed specifically for each virus and was assessed using multiple virus isolates from diverse geographical regions and citrus species as well as graft-inoculated citrus plants infected with various combination of the three viruses. No significant difference in detection limits was found and specificity was not affected by the inclusion of the three assays in a multiplex RT-qPCR reaction. Comparison of the viral load for each virus using singleplex and multiplex RT-qPCR assays, revealed no significant differences between the two assays in virus detection. No significant difference in Cq values was detected when using one-step and two-step multiplex RT-qPCR detection formats. Optimizing the RNA extraction technique for citrus tissues and testing the quality of the extracted RNA using RT-qPCR targeting the cytochrome oxidase citrus gene as an RNA specific internal control proved to generate better diagnostic assays. Results showed that the developed multiplex RT-qPCR can streamline viruses testing of citrus nursery stock by replacing three separate singleplex assays, thus reducing time and labor while retaining the same sensitivity and specificity. The three targeted RNA viruses are regulated pathogens for California's mandatory "Section 3701

  12. Development and validation of an UPLC-Q/TOF-MS assay for the quantitation of neopanaxadiol in beagle dog plasma: Application to a pharmacokinetic study.

    PubMed

    Geng, Cong; Wang, Chun-Hong; Hu, Hong; Gao, Xiao-Ping; Gong, Ai-Hua; Lin, Ying-Wei; Fan, Xiu-Shuang; Li, Heng; Yin, Jian-Yuan

    2016-10-27

    Neopanaxadiol (NPD), the main panaxadiol constituent of Panax ginseng C. A. Meyer (Araliaceae), has been regarded as the active component for the treatment of Alzheimer's disease. However, few references are available about pharmacokinetic evaluation for NPD. Accordingly, a rapid and sensitive method for quantitative analysis of NPD in beagle dog plasma based on ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry was developed and validated. Analytes were extracted from plasma by liquid-liquid extraction and chromatographic separation was achieved on an Agilent Zorbax Stable Bond C18 column. Detection was performed in the positive ion mode using multiple reaction monitoring of the transitions both at m/z 461.4 → 425.4 for NPD and internal standard of panaxadiol. All validation parameters, such as lower limit of quantitation, linearity, specificity, precision, accuracy, extraction recovery, matrix effect and stability, were within acceptable ranges and the method was appropriate for multitude sample determination. After oral intake, NPD was slowly absorbed and eliminated from circulatory blood system and corresponding plasma exposure was low. Application of this quantitative method will yield the first pharmacokinetic profile after oral administration of NPD to beagle dog. The information obtained here will be useful to understand the pharmacological effects of NPD.

  13. Molecular sensitivity threshold of wet mount and an immunochromatographic assay evaluated by quantitative real-time PCR for diagnosis of Trichomonas vaginalis infection in a low-risk population of childbearing women.

    PubMed

    Leli, Christian; Castronari, Roberto; Levorato, Lucia; Luciano, Eugenio; Pistoni, Eleonora; Perito, Stefano; Bozza, Silvia; Mencacci, Antonella

    2016-06-01

    Vaginal trichomoniasis is a sexually transmitted infection caused by Trichomonas vaginalis, a flagellated protozoan. Diagnosi