Science.gov

Sample records for assembled polymer nanowires

  1. Electronic polymers and DNA self-assembled in nanowire transistors.

    PubMed

    Hamedi, Mahiar; Elfwing, Anders; Gabrielsson, Roger; Inganäs, Olle

    2013-02-11

    Aqueous self-assembly of DNA and molecular electronic materials can lead to the creation of innumerable copies of identical devices, and inherently programmed complex nanocircuits. Here self-assembly of a water soluble and highly conducting polymer PEDOT-S with DNA in aqueous conditions is shown. Orientation and assembly of the conducting DNA/PEDOT-S complex into electrochemical DNA nanowire transistors is demonstrated.

  2. Assembly of Ultrathin Gold Nanowires: From Polymer Analogue to Colloidal Block.

    PubMed

    Chen, Yuan; Wang, Yawen; Peng, Jian; Xu, Qingchi; Weng, Jian; Xu, Jun

    2017-03-28

    Ultrathin nanowires (NWs) are considered to be ideal building blocks for the assembly of complex nanostructures toward future nanodevices. The polymer/particle duality of ultrathin NWs plays an important role in the study of solution phase self-assembly behavior of ultrathin NWs; yet it has not been fully exploited. Herein, we demonstrate the effects of the polymer/particle duality of ultrathin NWs on the morphologies of assembled complex nanostructures. The length of ultrathin AuNWs directly correlates with the flexibility of NWs and affects the polymer-like assembly of NWs, while the concentration of surfactants determines interfacial tension and ligand-solvent interactions and affects both polymer-like and colloidal assembly of NWs. By fine-tuning these two factors, ultrathin AuNWs can swing between "soft" and "hard" building blocks, and highly uniform nanorings, nanograins, nanobundles, and superlattice-like nanospheres are obtained. The different assembly behavior of long and short NWs can be considered as two components to construct anisotropic complex nanostructures, in analogy with the fabrication of polymer-inorganic nanoparticle hybrid nanostructures. We synthesized anisotropic structures of Au nanodiamond rings and nanonecklaces by the coassembly of polymer-like long NWs with particle-like short NWs or Au nanoparticles. This strategy could potentially be extended to the organization of anisotropic complex nanostructures with other ultrathin NW systems in the future.

  3. Dynamic Self-Assembly of Gold/Polymer Nanocomposites: pH-Encoded Switching between 1D Nanowires and 3D Nanosponges.

    PubMed

    Zhang, Qi; Xu, Tian-Yi; Zhao, Cai-Xin; Jin, Wei-Hang; Wang, Qian; Qu, Da-Hui

    2017-08-15

    The design of tunable dynamic self-assembly of nanoparticles with switchable assembled dimensions and morphologies is a challenging goal whose realization is vital for the evolution of smart nanomaterials. Herein, we report on chitosan polymer as an effective supramolecular "glue" for aldehyde-modified Au nanoparticles to reversibly modulate the states of self-assembled nanocomposites. By simultaneous integration of dynamic covalent Schiff base interactions and noncovalent hydrogen bonds, the chitosan/Au nanocomposites could reversibly transform their assembled morphologies from one-dimensional nanowires to three-dimensional nanosponges in response to the variation of pH value. Moreover, the obtained nanosponges could be used as an efficient pH-controlled cargo release system. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Polymer-Mediated Self-Assembly of TiO2@Cu2O Core-Shell Nanowire Array for Highly Efficient Photoelectrochemical Water Oxidation.

    PubMed

    Yuan, Weiyong; Yuan, Jia; Xie, Jiale; Li, Chang Ming

    2016-03-09

    Phototoelectrochemical (PEC) water splitting represents a highly promising strategy to convert solar energy to chemical energy in the form of hydrogen, but its performance is severely limited by the water oxidation reaction. We conformally grew an ultrathin and continuous coating of Cu2O on TiO2 nanowire array (NWA) to form a truly core-shell TiO2@Cu2O NWA via a new facile, economical, and scalable polymer-mediated self-assembly approach, in which the polymer serves as a stabilizer, reductant, and linker simultaneously. This heteronanostructure was subsequently directly used as a photoanode for PEC water splitting, showing a photocurrent density of 4.66 mA cm(-2) at 1.23 V vs RHE in 0.5 M Na2SO4 solution and a maximum photoconversion efficiency of 0.71%, both of which are the highest reported for TiO2-based photoanodes measured under the same conditions (neutral conditions and without any sacrificial agent). The superior PEC performance of the TiO2@Cu2O NWA toward water oxidation is primarily due to much enhanced visible light collection and charge separation for high charge carrier density as well as greatly facilitated charge transfer and transport. This work not only offers a novel TiO2@Cu2O core-shell NWA photoanode for highly efficient PEC water oxidation and investigate its enhancement mechanism but also provides scientific insights into the mechanism of the polymer-mediated self-assembly, which can be further extended to fabricate various other core-shell nanoarchitectures for broad applications.

  5. Solution assembly of conjugated polymers

    NASA Astrophysics Data System (ADS)

    Bokel, Felicia A.

    This dissertation focuses on the solution-state polymer assembly of conjugated polymers with specific attention to nano- and molecular-scale morphology. Understanding how to control these structures holds potential for applications in polymer-based electronics. Optimization of conjugated polymer morphology was performed with three objectives: 1) segregation of donor and acceptor materials on the nanometer length-scale, 2) achieving molecular-scale ordering in terms of crystallinity within distinct domains, and 3) maximizing the number and quality of well-defined donor/acceptor interfaces. Chapter 1 introduces the development of a mixed solvent method to create crystalline poly(3-hexyl thiophene) (P3HT) fibrils in solution. Chapter 2 describes fibril purification and approaches to robust and functional fibrils, while chapters 3 and 4 demonstrate the formation of hybrid nanocomposite wires of P3HT and cadmium selenide (CdSe) nanoparticles by two methods: 1) co-crystallization of free and P3HT-grafted CdSe for composite nanowires and 2) direct attachment of CdSe nanoparticles at fibril edges to give superhighway structures. These composite structures show great potential in the application of optoelectronic devices, such as the active layer of solar cells. Finally, ultrafast photophysical characterization of these polymers, using time-resolved photoluminescence and transient absorption, was performed to determine the aggregation types present in suspended fibrils and monitor the formation and decay of charged species in fibrils and donor-acceptor systems.

  6. Optical routing and sensing with nanowire assemblies.

    PubMed

    Sirbuly, Donald J; Law, Matt; Pauzauskie, Peter; Yan, Haoquan; Maslov, Alex V; Knutsen, Kelly; Ning, Cun-Zheng; Saykally, Richard J; Yang, Peidong

    2005-05-31

    The manipulation of photons in structures smaller than the wavelength of light is central to the development of nanoscale integrated photonic systems for computing, communications, and sensing. We assemble small groups of freestanding, chemically synthesized nanoribbons and nanowires into model structures that illustrate how light is exchanged between subwavelength cavities made of three different semiconductors. The coupling strength of the optical linkages formed when nanowires are brought into contact depends both on their volume of interaction and angle of intersection. With simple coupling schemes, lasing nanowires can launch coherent pulses of light through ribbon waveguides that are up to a millimeter in length. Also, interwire coupling losses are low enough to allow light to propagate across several right-angle bends in a grid of crossed ribbons. The fraction of the guided wave traveling outside the wire/ribbon cavities is used to link nanowires through space and to separate colors within multiribbon networks. In addition, we find that nanoribbons function efficiently as waveguides in liquid media and provide a unique means for probing molecules in solution or in proximity to the waveguide surface. Our results lay the spadework for photonic devices based on assemblies of active and passive nanowire elements and presage the use of nanowire waveguides in microfluidics and biology.

  7. The Self- and Directed Assembly of Nanowires

    NASA Astrophysics Data System (ADS)

    Smith, Benjamin David

    This thesis explores the self- and directed assembly of nanowires. Specifically, we examine the driving forces behind nanowire self-assembly and the macro-structures that are formed. Particle-dense, oriented nanowire structures show promise in the fields of photonics, energy, sensing, catalysis, and electronics. Arrays of spherical particles have already found uses in electronic inks, sensing arrays, and many other commercial applications; but, it is a challenge to create specific arrays of morphologically and/or compositionally anisotropic particles. The following chapters illuminate the interactions that drive the assembly of anisotropic particles in high density solutions in the absence of applied fields or solution drying. Special emphasis is placed on the structures that are formed. The properties of micro- and nanoparticles and their assembly are introduced in Chapter 1. In particular, the properties of shape and material anisotropic particles are highlighted, while challenges in producing desired arrays are discussed. In this thesis, metallic nanowires of increasing complexity were used to examine the self-assembly behavior of both shape and material anisotropic particles. Nanowires were synthesized through templated electrodeposition. In this process, porous alumina membranes served as a template in which metal salts were reduced to form particles. Upon template dissolution, billions of nominally identical particles were released. We specifically focused on segmented, metallic nanowires 2-13 mum in length and 180 to 350 nm in diameter. Since these particles have strong van der Waals (VDWs) attractions, an electrostatically repulsive coating was necessary to prevent aggregation; we used small molecule, DNA, or amorphous silica coatings. Nanowires and their coatings were characterized by electron microscopy. In order to study self-assembly behavior, particle-dense aqueous suspensions were placed within an assembly chamber defined by a silicone spacer. The

  8. Assembling silver nanowires using optoelectronic tweezers

    NASA Astrophysics Data System (ADS)

    Zhang, Shuailong; Cooper, Jonathan M.; Neale, Steve L.

    2016-03-01

    Light patterned dielectrophoresis or optoelectronic tweezers (OET) has been proved to be an effective micromanipulation technology for cell separation, cell sorting and control of cell interactions. Apart from being useful for cell biology experiments, the capability of moving small objects accurately also makes OET an attractive technology for other micromanipulation applications. In particular, OET has the potential to be used for efficiently and accurately assembling small optoelectronic/electronic components into circuits. This approach could produce a step change in the size of the smallest components that are routinely assembled; down from the current smallest standard component size of 400×200 μm (0402 metric) to components a few microns across and even nanostructured components. In this work, we have demonstrated the use of OET to manipulate conductive silver nanowires into different patterns. The silver nanowires (typical diameter: 60 nm; typical length: 10 μm) were suspended in a 15 mS/m solution of KCL in water and manipulated by positive dielectrophoresis force generated by OET. A proof-of-concept demonstration was also made to prove the feasibility of using OET to manipulate silver nanowires to form a 150-μm-long conductive path between two isolated electrodes. It can be seen that the resistance between two electrodes was effectively brought down to around 700 Ω after the silver nanowires were assembled and the solution evaporated. Future work in this area will focus on increasing the conductivity of these tracks, encapsulating the assembled silver nanowires to prevent silver oxidation and provide mechanical protection, which can be achieved via 3D printing and inkjet printing technology.

  9. Manufacturing a nanowire-based sensing system via flow-guided assembly in a microchannel array template

    NASA Astrophysics Data System (ADS)

    Chen, Juan; Zu, Yingbo; Rajagopalan, Kartik Kumar; Wang, Shengnian

    2015-06-01

    A novel flow-guided assembly approach is presented to accurately align and position nanowire arrays in pre-defined locations with high throughput and large-scale manufacturing capability. In this approach, a polymer solution is first filled in an array of microfluidic channels. Then a gas flow is introduced to blow out most of the solution while pushing a little leftover against the channel wall for assembly into polymer nanowires. In this way, highly ordered nanowires are conveniently aligned in the flow direction and patterned along both sides of the microchannels. In this study, we demonstrated this flow-guided assembly process by producing millimetre-long nanowires across a 5 × 12 mm area in the same orientation and with basic ‘I-shape’, ‘T-shape’, and ‘cross’ patterns. The assembled polymer nanowires were further converted to conductive carbon nanowires through a standard carbonization process. After being integrated into electronic sensors, high sensitivity was found in model protein sensing tests. This new nanowire manufacturing approach is anticipated to open new doors to the fabrication of nanowire-based sensing systems and serve as good manufacturing practice for its simplicity, low cost, alignment reliability, and high throughput.

  10. Fabrication of patterned polymer nanowire arrays.

    PubMed

    Fang, Hao; Yuan, Dajun; Guo, Rui; Zhang, Su; Han, Ray P S; Das, Suman; Wang, Zhong Lin

    2011-02-22

    A method for the large-scale fabrication of patterned organic nanowire (NW) arrays is demonstrated by the use of laser interference patterning (LIP) in conjunction with inductively coupled plasma (ICP) etching. The NW arrays can be fabricated after a short ICP etching of periodic patterns produced through LIP. Arrays of NWs have been fabricated in UV-absorbent polymers, such as PET (polyethylene terephthalate) and Dura film (76% polyethylene and 24% polycarbonate), through laser interference photon ablation and in UV transparent polymers such as PVA (polyvinyl acetate) and PP (polypropylene) through laser interference lithography of a thin layer of photoresist coated atop the polymer surface. The dependence of the structure and morphology of NWs as a function of initial pattern created by LIP and the laser energy dose in LIP is discussed. The absence of residual photoresist atop the NWs in UV-transparent polymers is confirmed through Raman spectroscopy.

  11. Assembly and magnetic properties of nickel nanoparticles on silicon nanowires

    SciTech Connect

    Picraux, Samuel T; Manandhar, Pradeep; Nazaretski, E; Thompson, J

    2009-01-01

    The directed assembly of magnetic Ni nanoparticles at the tips of silicon nanowires is reported. Using electrodeposition Ni shells of thickness from 10 to 100 nm were selectively deposited on Au catalytic seeds at the ends of nanowires. Magnetic characterization confirms a low coercivity ({approx}115 Oe) ferromagnetic behavior at 300 K. This approach to multifunctional magnetic-semiconducting nanostructure assembly could be extended to electrodeposition of other materials on the nanowire ends, opening up novel ways of device integration. Such magnetically functionalized nanowires offer a new approach to developing novel highly localized magnetic probes for high resolution magnetic resonance force microscopy.

  12. Chirality-Discriminated Conductivity of Metal-Amino Acid Biocoordination Polymer Nanowires.

    PubMed

    Zheng, Jianzhong; Wu, Yijin; Deng, Ke; He, Meng; He, Liangcan; Cao, Jing; Zhang, Xugang; Liu, Yaling; Li, Shunxing; Tang, Zhiyong

    2016-09-27

    Biocoordination polymer (BCP) nanowires are successfully constructed through self-assembly of chiral cysteine amino acids and Cd cations in solution. The varied chirality of cysteine is explored to demonstrate the difference of BCP nanowires in both morphology and structure. More interestingly and surprisingly, the electrical property measurement reveals that, although all Cd(II)/cysteine BCP nanowires behave as semiconductors, the conductivity of the Cd(II)/dl-cysteine nanowires is 4 times higher than that of the Cd(II)/l-cysteine or Cd(II)/d-cysteine ones. The origin of such chirality-discriminated characteristics registered in BCP nanowires is further elucidated by theoretical calculation. These findings demonstrate that the morphology, structure, and property of BCP nanostructures could be tuned by the chirality of the bridging ligands, which will shed light on the comprehension of chirality transcription as well as construction of chirality-regulated functional materials.

  13. Increasing the efficiency of polymer solar cells by silicon nanowires.

    PubMed

    Eisenhawer, B; Sensfuss, S; Sivakov, V; Pietsch, M; Andrä, G; Falk, F

    2011-08-05

    Silicon nanowires have been introduced into P3HT:[60]PCBM solar cells, resulting in hybrid organic/inorganic solar cells. A cell efficiency of 4.2% has been achieved, which is a relative improvement of 10% compared to a reference cell produced without nanowires. This increase in cell performance is possibly due to an enhancement of the electron transport properties imposed by the silicon nanowires. In this paper, we present a novel approach for introducing the nanowires by mixing them into the polymer blend and subsequently coating the polymer/nanowire blend onto a substrate. This new onset may represent a viable pathway to producing nanowire-enhanced polymer solar cells in a reel to reel process.

  14. Sensing properties of assembled Bi2S3 nanowire arrays

    NASA Astrophysics Data System (ADS)

    Kunakova, G.; Meija, R.; Bite, I.; Prikulis, J.; Kosmaca, J.; Varghese, J.; Holmes, J. D.; Erts, Donats

    2015-09-01

    Bismuth sulfide (Bi2S3) nanowires were grown in porous aluminium oxide template and a selective chemical etching was applied to transfer the nanowires to a solution. Well aligned nanowire arrays were assembled on pre-patterned silicon substrates employing dielectrophoresis. Electron beam lithography was used to connect aligned individual nanowires to the common macroelectrode. In order to evaluate the conductometric sensing performance of the Bi2S3 nanowires, current-voltage characteristics were measured at different relative humidity (RH) levels (5-80%) / argon medium. The response of the Bi2S3 nanowires depending of RH is found to be considerably different from those reported for other types of nanowire RH sensor devices.

  15. Effects of polymer surface energy on morphology and properties of silver nanowire fabricated via nanoimprint and E-beam evaporation

    NASA Astrophysics Data System (ADS)

    Zhao, Zhi-Jun; Hwang, Soon Hyoung; Jeon, Sohee; Jung, Joo-Yun; Lee, Jihye; Choi, Dae-Geun; Choi, Jun-Hyuk; Park, Sang-Hu; Jeong, Jun-Ho

    2017-10-01

    In this paper, we demonstrate that use of different nanoimprint resins as a polymer pattern has a significant effect on the morphology of silver (Ag) nanowires deposited via an E-beam evaporator. RM-311 and Ormo-stamp resins are chosen as a polymer pattern to form a line with dimensions of width (100 nm) × space (100 nm) × height (120 nm) by using nanoimprint lithography (NIL). Their contact angles are then measured to evaluate their surface energies. In order to compare the properties of the Ag nanowires deposited on the various polymer patterns with different surface energies, hydrophobic surface treatment of the polymer pattern surface is implemented using self-assembled monolayers. In addition, gold and aluminum nanowires are fabricated for comparison with the Ag nanowires, with the differences in the nanowire morphologies being determined by the different atomic properties. The monocrystalline and polycrystalline structures of the various Ag nanowire formations are observed using transmission electron microscopy. In addition, the melting temperatures and optical properties of four kinds of Ag nanowire morphologies deposited on various polymer patterns are evaluated using a hot plate and an ultraviolet-visible (UV-vis) spectrometer, respectively. The results indicate that the morphology of the Ag nanowire determines the melting temperature and the transmission. We believe that these findings will greatly aid the development of NIL, along with physical evaporation and chemical deposition techniques, and will be widely employed in optics, biology, and surface wettability applications.

  16. Laterally assembled nanowires for ultrathin broadband solar absorbers.

    PubMed

    Song, Kyung-Deok; Kempa, Thomas J; Park, Hong-Gyu; Kim, Sun-Kyung

    2014-05-05

    We studied optical resonances in laterally oriented Si nanowire arrays by conducting finite-difference time-domain simulations. Localized Fabry-Perot and whispering-gallery modes are supported within the cross section of each nanowire in the array and result in broadband light absorption. Comparison of a nanowire array with a single nanowire shows that the current density (J(SC)) is preserved for a range of nanowire morphologies. The J(SC) of a nanowire array depends on the spacing of its constituent nanowires, which indicates that both diffraction and optical antenna effects contribute to light absorption. Furthermore, a vertically stacked nanowire array exhibits significantly enhanced light absorption because of the emergence of coupled cavity-waveguide modes and the mitigation of a screening effect. With the assumption of unity internal quantum efficiency, the J(SC) of an 800-nm-thick cross-stacked nanowire array is 14.0 mA/cm², which yields a ~60% enhancement compared with an equivalent bulk film absorber. These numerical results underpin a rational design strategy for ultrathin solar absorbers based on assembled nanowire cavities.

  17. Aluminum Nanowire Arrays via Directed Assembly.

    PubMed

    Nesbitt, Nathan T; Merlo, Juan M; Rose, Aaron H; Calm, Yitzi M; Kempa, Krzysztof; Burns, Michael J; Naughton, Michael J

    2015-11-11

    Freestanding and vertically-oriented metal nanowire arrays have potential utility in a number of applications, but presently lack a route to fabrication. Template-based techniques, such as electrodeposition into lithographically defined nanopore arrays, have produced well-ordered nanowire arrays with a maximum pitch of about 2 μm; such nanowires, however, tend to cluster due to local attractive forces. Here, we modify this template fabrication method to produce well-ordered, vertically-oriented, freestanding Al nanowire arrays, etched from an underlying Al substrate, with highly tunable pitch. In addition, optical measurements demonstrated that the nanowires support the propagation of surface plasmon polaritons.

  18. Fabrication of Si3N4 nanowire membranes: free standing disordered nanopapers and aligned nanowire assemblies

    NASA Astrophysics Data System (ADS)

    Liu, Haitao; Fang, Minghao; Huang, Zhaohui; Huang, Juntong; Liu, Yan-gai; Wu, Xiaowen

    2016-08-01

    Herein, ultralong silicon nitride nanowires were synthesized via a chemical vapor deposition method by using the low-cost quartz and silicon powder as raw materials. Simple processes were used for the fabrication of disordered and ordered nanowire membranes of pure silicon nitride nanowires. The nanowires in the disordered nanopapers are intertwined with each other to form a paper-like structure which exhibit excellent flame retardancy and mechanical properties. Fourier-transform infrared spectroscopy and thermal gravity analysis were employed to characterize the refractory performance of the disordered nanopapers. Highly ordered nanowire membranes were also assembled through a three-phase assembly approach which make the Si3N4 nanowires have potential use in textured ceramics and semiconductor field. Moreover, the surface nanowires can also be modified to be hydrophobic; this characteristic make the as-prepared nanowires have the potential to be assembled by the more effective Langmuir-Blodgett method and also make the disordered nanopapers possess a super-hydrophobic surface.

  19. Enhanced Photoresponse of Conductive Polymer Nanowires Embedded with Au Nanoparticles.

    PubMed

    Zhang, Junchang; Zhong, Liubiao; Sun, Yinghui; Li, Anran; Huang, Jing; Meng, Fanben; Chandran, Bevita K; Li, Shuzhou; Jiang, Lin; Chen, Xiaodong

    2016-04-20

    A conductive polymer nanowire embedded with a 1D Au nanoparticle chain with defined size, shape, and interparticle distance is fabricated which demonstrates enhanced photoresponse behavior. The precise and controllable positioning of 1D Au nanoparticle chain in the conductive polymer nanowire plays a critical role in modulating the photoresponse behavior by excitation light wavelength or power due to the coupled-plasmon effect of 1D Au nanoparticle chain.

  20. Electrically Conductive Metal Nanowire Polymer Nanocomposites

    NASA Astrophysics Data System (ADS)

    Luo, Xiaoxiong

    This thesis investigates electrically conductive polymer nanocomposites formulated with metal nanowires for electrostatic discharge and electromagnetic interference shielding. Copper nanowires (CuNWs) of an average length of 1.98 mum and diameter of 25 +/- 4 nm were synthesized. The oxidation reaction of the CuNWs in air can be divided into two stages at weight of 111.2% on TGA curves. The isoconversional activation energies determined by Starink method were used to fit the different master plots. Johnson-Mehl-Avrami (JMA) equation gave the best fit. The surface atoms of the CuNWs are the sites for the random nucleation and the crystallite strain in the CuNWs is the driving force for the growth of nuclei mechanism during the oxidation process. To improve the anti-oxidation properties of the CuNWs, silver was coated onto the surface of the CuNWs in Ag-amine solution. The prepared silver coated CuNWs (AgCuNWs) with silver content of 66.52 wt. %, diameter of 28--33 nm exhibited improved anti-oxidation behavior. The electrical resistivity of the AgCuNW/low density polyethylene (LDPE) nanocomposites is lower than that of the CuNW/LDPE nanocomposites with the same volume percentage of fillers. The nanocomposites formulated with CuNWs and polyethylenes (PEs) were compared to study the different interaction between the CuNWs and the different types of PE matrices. The electrical conductivity of the different PE matrices filled with the same concentrations of CuNWs correlated well with the level of the CuNW dispersion. The intermolecular force and entanglement resulting from the different macromolecular structures such as molecular weight and branching played an important role in the dispersion, electrical properties and rheological behaviour of the CuNW/PE nanocomposites. Ferromagnetic polycrystalline nickel nanowires (NiNWs) were synthesized with uniform diameter of ca. 38 nm and an average length of 2.68 mum. The NiNW linear low density polyethylene (LLDPE

  1. Self-Assembled PbSe Nanowire:Perovskite Hybrids.

    PubMed

    Yang, Zhenyu; Yassitepe, Emre; Voznyy, Oleksandr; Janmohamed, Alyf; Lan, Xinzheng; Levina, Larissa; Comin, Riccardo; Sargent, Edward H

    2015-12-02

    Inorganic semiconductor nanowires are of interest in nano- and microscale photonic and electronic applications. Here we report the formation of PbSe nanowires based on directional quantum dot alignment and fusion regulated by hybrid organic-inorganic perovskite surface ligands. All material synthesis is carried out at mild temperatures. Passivation of PbSe quantum dots was achieved via a new perovskite ligand exchange. Subsequent in situ ammonium/amine substitution by butylamine enables quantum dots to be capped by butylammonium lead iodide, and this further drives the formation of a PbSe nanowire superlattice in a two-dimensional (2D) perovskite matrix. The average spacing between two adjacent nanowires agrees well with the thickness of single atomic layer of 2D perovskite, consistent with the formation of a new self-assembled semiconductor nanowire:perovskite heterocrystal hybrid.

  2. Self assembled silicon nanowire Schottky junction assisted by collagen

    NASA Astrophysics Data System (ADS)

    Stievenard, Didier; Sahli, Billel; Coffinier, Yannick; Boukherroub, Rabah; Melnyk, Oleg

    2008-03-01

    We present results on self assembled silicon nanowire Schottky junction assisted by collagen fibrous. The collagen is the principle protein of connective human tissues. It presents the double interest to be a low cost biological material with the possibility to be combed as the DNA molecule. First, the collagen was combed on OTS modified surface with gold electrodes. Second, silicon nanowires were grown on silicon substrate by CVD of silane gas (SiH4) at high temperature (500 C) using a vapor-liquid-solid (VLS) process and gold particles as catalysts. In order to increase electrostatic interaction between the collagen and the nanowires, these latters were chemically modified by mercaptopropylmethoxysilane (MPTS), then chemically oxidized. Therefore, the nanowires were transferred from their substrate into water and a drop of it deposited on the surface. Nanowires are only bound to collagen and in particular, in electrode gaps. The formation of spontaneous Schotkty junction is demonstrated by current-voltage characteristics.

  3. Location deterministic biosensing from quantum-dot-nanowire assemblies

    SciTech Connect

    Liu, Chao; Kim, Kwanoh; Fan, D. L.

    2014-08-25

    Semiconductor quantum dots (QDs) with high fluorescent brightness, stability, and tunable sizes, have received considerable interest for imaging, sensing, and delivery of biomolecules. In this research, we demonstrate location deterministic biochemical detection from arrays of QD-nanowire hybrid assemblies. QDs with diameters less than 10 nm are manipulated and precisely positioned on the tips of the assembled Gold (Au) nanowires. The manipulation mechanisms are quantitatively understood as the synergetic effects of dielectrophoretic (DEP) and alternating current electroosmosis (ACEO) due to AC electric fields. The QD-nanowire hybrid sensors operate uniquely by concentrating bioanalytes to QDs on the tips of nanowires before detection, offering much enhanced efficiency and sensitivity, in addition to the position-predictable rationality. This research could result in advances in QD-based biomedical detection and inspires an innovative approach for fabricating various QD-based nanodevices.

  4. Nanomanufacturing Strategy for Aligned Assembly of Nanowire Arrays

    NASA Astrophysics Data System (ADS)

    Shin, Kyeong-Sik; Chui, Chi On

    2012-05-01

    The work reported here concerns a proposed nanomanufacturing strategy to assemble aligned quasi-one-dimensional nanostructure arrays with intrinsic and concurrent control over the resultant number, pitch, and linewidth. For the first time, a standard lithography and crystallographic etching approach have been combined to synthesize periodic, sublithographic, and line edge roughness (LER)-free surface arrays for selective conjugation of nanowires. Key experimental modules have been developed, including the formation of LER-free substrate arrays, formation of periodically dissimilar surfaces, selective conjugation of nanowires, and stamping transfer of nanowire arrays. In particular, successful assembly of Si nanowires onto periodic Si/SiO x surfaces and subsequent transfer of the resultant aligned Si nanowire arrays onto a different substrate surface have been repeatedly demonstrated. The dependences and probability of nanowire aligned assembly have also been examined. The proposed strategy is based on a wafer-scale and very large-scale integration (VLSI)-compatible philosophy, and alignment to pre-existing features on the target substrate is also inherently allowed as a side benefit. Besides, LER-free features could be created, which arguably enables extreme linewidth scaling with suppressed variations.

  5. Polymer-electrolyte-gated nanowire synaptic transistors for neuromorphic applications

    NASA Astrophysics Data System (ADS)

    Zou, Can; Sun, Jia; Gou, Guangyang; Kong, Ling-An; Qian, Chuan; Dai, Guozhang; Yang, Junliang; Guo, Guang-hua

    2017-09-01

    Polymer-electrolytes are formed by dissolving a salt in polymer instead of water, the conducting mechanism involves the segmental motion-assisted diffusion of ion in the polymer matrix. Here, we report on the fabrication of tin oxide (SnO2) nanowire synaptic transistors using polymer-electrolyte gating. A thin layer of poly(ethylene oxide) and lithium perchlorate (PEO/LiClO4) was deposited on top of the devices, which was used to boost device performances. A voltage spike applied on the in-plane gate attracts ions toward the polymer-electrolyte/SnO2 nanowire interface and the ions are gradually returned after the pulse is removed, which can induce a dynamic excitatory postsynaptic current in the nanowire channel. The SnO2 synaptic transistors exhibit the behavior of short-term plasticity like the paired-pulse facilitation and self-adaptation, which is related to the electric double-effect regulation. In addition, the synaptic logic functions and the logical function transformation are also discussed. Such single SnO2 nanowire-based synaptic transistors are of great importance for future neuromorphic devices.

  6. Fabrication of polymer nanowires via maskless O2 plasma etching.

    PubMed

    Du, Ke; Wathuthanthri, Ishan; Liu, Yuyang; Kang, Yong Tae; Choi, Chang-Hwan

    2014-04-25

    In this paper, we introduce a simple fabrication technique which can pattern high-aspect-ratio polymer nanowire structures of photoresist films by using a maskless one-step oxygen plasma etching process. When carbon-based photoresist materials on silicon substrates are etched by oxygen plasma in a metallic etching chamber, nanoparticles such as antimony, aluminum, fluorine, silicon or their compound materials are self-generated and densely occupy the photoresist polymer surface. Such self-masking effects result in the formation of high-aspect-ratio vertical nanowire arrays of the polymer in the reactive ion etching mode without the necessity of any artificial etch mask. Nanowires fabricated by this technique have a diameter of less than 50 nm and an aspect ratio greater than 20. When such nanowires are fabricated on lithographically pre-patterned photoresist films, hierarchical and hybrid nanostructures of polymer are also conveniently attained. This simple and high-throughput fabrication technique for polymer nanostructures should pave the way to a wide range of applications such as in sensors, energy storage, optical devices and microfluidics systems.

  7. Conducting polymer nanowire arrays for high performance supercapacitors.

    PubMed

    Wang, Kai; Wu, Haiping; Meng, Yuena; Wei, Zhixiang

    2014-01-15

    This Review provides a brief summary of the most recent research developments in the fabrication and application of one-dimensional ordered conducting polymers nanostructure (especially nanowire arrays) and their composites as electrodes for supercapacitors. By controlling the nucleation and growth process of polymerization, aligned conducting polymer nanowire arrays and their composites with nano-carbon materials can be prepared by employing in situ chemical polymerization or electrochemical polymerization without a template. This kind of nanostructure (such as polypyrrole and polyaniline nanowire arrays) possesses high capacitance, superior rate capability ascribed to large electrochemical surface, and an optimal ion diffusion path in the ordered nanowire structure, which is proved to be an ideal electrode material for high performance supercapacitors. Furthermore, flexible, micro-scale, threadlike, and multifunctional supercapacitors are introduced based on conducting polyaniline nanowire arrays and their composites. These prototypes of supercapacitors utilize the high flexibility, good processability, and large capacitance of conducting polymers, which efficiently extend the usage of supercapacitors in various situations, and even for a complicated integration system of different electronic devices.

  8. Large area periodic ferromagnetic nanowires deposited onto a polymer substrate

    NASA Astrophysics Data System (ADS)

    Zighem, F.; Faurie, D.; Belmeguenai, M.; Garcia-Sanchez, A.; Lupo, P.; Adeyeye, A. O.

    2017-07-01

    There are various challenges associated with the fabrication of highly ordered magnetic nanostructures on flexible substrates due to the compatibility with lithography and deposition techniques. In this article, we present a nanofabrication technique to synthesize a large area (5 × 5 mm2) of ferromagnetic nanowires on top of a polymer substrate (Kapton®) using interference lithography and sputtering processes. We have systematically characterized their static and dynamic magnetic behaviors using magneto-optical Kerr magnetometry and broadband ferromagnetic resonance spectroscopy. To evaluate the quality of our approach, we also deposited an identical array of nanowires on Silicon substrates for comparison. The nanowires deposited on the two substrates display similar static and dynamic properties, including the identical magnetization reversal process, number of resonance modes, and comparable damping parameters. The results suggest the good quality of our nanowires and their suitability in future flexible spintronic devices.

  9. Thermodynamics of the adsorption of flexible polymers on nanowires

    SciTech Connect

    Vogel, Thomas; Gross, Jonathan; Bachmann, Michael

    2015-03-14

    Generalized-ensemble simulations enable the study of complex adsorption scenarios of a coarse-grained model polymer near an attractive nanostring, representing an ultrathin nanowire. We perform canonical and microcanonical statistical analyses to investigate structural transitions of the polymer and discuss their dependence on the temperature and on model parameters such as effective wire thickness and attraction strength. The result is a complete hyperphase diagram of the polymer phases, whose locations and stability are influenced by the effective material properties of the nanowire and the strength of the thermal fluctuations. Major structural polymer phases in the adsorbed state include compact droplets attached to or wrapping around the wire, and tubelike conformations with triangular pattern that resemble ideal boron nanotubes. The classification of the transitions is performed by microcanonical inflection-point analysis.

  10. Thermodynamics of the adsorption of flexible polymers on nanowires

    NASA Astrophysics Data System (ADS)

    Vogel, Thomas; Gross, Jonathan; Bachmann, Michael

    2015-03-01

    Generalized-ensemble simulations enable the study of complex adsorption scenarios of a coarse-grained model polymer near an attractive nanostring, representing an ultrathin nanowire. We perform canonical and microcanonical statistical analyses to investigate structural transitions of the polymer and discuss their dependence on the temperature and on model parameters such as effective wire thickness and attraction strength. The result is a complete hyperphase diagram of the polymer phases, whose locations and stability are influenced by the effective material properties of the nanowire and the strength of the thermal fluctuations. Major structural polymer phases in the adsorbed state include compact droplets attached to or wrapping around the wire, and tubelike conformations with triangular pattern that resemble ideal boron nanotubes. The classification of the transitions is performed by microcanonical inflection-point analysis.

  11. Thermodynamics of the adsorption of flexible polymers on nanowires

    SciTech Connect

    Vogel, Thomas; Gross, Jonathan; Bachmann, Michael

    2015-03-09

    Generalized-ensemble simulations enable the study of complex adsorption scenarios of a coarse-grained model polymer near an attractive nanostring, representing an ultrathin nanowire. We perform canonical and microcanonical statistical analyses to investigate structural transitions of the polymer and discuss their dependence on the temperature and on model parameters such as effective wire thickness and attraction strength. The result is a complete hyperphase diagram of the polymer phases, whose locations and stability are influenced by the effective material properties of the nanowire and the strength of the thermal fluctuations. Major structural polymer phases in the adsorbed state include compact droplets attached to or wrapping around the wire, and tubelike conformations with triangular pattern that resemble ideal boron nanotubes. In conclusion, the classification of the transitions is performed by microcanonical inflection-point analysis.

  12. Thermodynamics of the adsorption of flexible polymers on nanowires

    DOE PAGES

    Vogel, Thomas; Gross, Jonathan; Bachmann, Michael

    2015-03-09

    Generalized-ensemble simulations enable the study of complex adsorption scenarios of a coarse-grained model polymer near an attractive nanostring, representing an ultrathin nanowire. We perform canonical and microcanonical statistical analyses to investigate structural transitions of the polymer and discuss their dependence on the temperature and on model parameters such as effective wire thickness and attraction strength. The result is a complete hyperphase diagram of the polymer phases, whose locations and stability are influenced by the effective material properties of the nanowire and the strength of the thermal fluctuations. Major structural polymer phases in the adsorbed state include compact droplets attached tomore » or wrapping around the wire, and tubelike conformations with triangular pattern that resemble ideal boron nanotubes. In conclusion, the classification of the transitions is performed by microcanonical inflection-point analysis.« less

  13. Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers.

    PubMed

    Liu, Wei; Liu, Nian; Sun, Jie; Hsu, Po-Chun; Li, Yuzhang; Lee, Hyun-Wook; Cui, Yi

    2015-04-08

    Solid-state electrolytes provide substantial improvements to safety and electrochemical stability in lithium-ion batteries when compared with conventional liquid electrolytes, which makes them a promising alternative technology for next-generation high-energy batteries. Currently, the low mobility of lithium ions in solid electrolytes limits their practical application. The ongoing research over the past few decades on dispersing of ceramic nanoparticles into polymer matrix has been proved effective to enhance ionic conductivity although it is challenging to form the efficiency networks of ionic conduction with nanoparticles. In this work, we first report that ceramic nanowire fillers can facilitate formation of such ionic conduction networks in polymer-based solid electrolyte to enhance its ionic conductivity by three orders of magnitude. Polyacrylonitrile-LiClO4 incorporated with 15 wt % Li0.33La0.557TiO3 nanowire composite electrolyte exhibits an unprecedented ionic conductivity of 2.4 × 10(-4) S cm(-1) at room temperature, which is attributed to the fast ion transport on the surfaces of ceramic nanowires acting as conductive network in the polymer matrix. In addition, the ceramic-nanowire filled composite polymer electrolyte shows an enlarged electrochemical stability window in comparison to the one without fillers. The discovery in the present work paves the way for the design of solid ion electrolytes with superior performance.

  14. Bottlebrush Polymers: Synthesis, Rheology, and Self-Assembly

    NASA Astrophysics Data System (ADS)

    Dalsin, Samuel J.

    Bottlebrush polymers are comb-like molecules with a high density of side chains grafted along a central backbone. Due to their unique conformational properties, bottlebrush polymers have become attractive candidates for developing new photonic bandgap materials, nanotubes and nanowires, or drug delivery vehicles, to name a few. This dissertation primarily investigates the rheological properties and self-assembly behavior of bottlebrush polymer molecules made using a variety of different polymerization routes. A considerable portion of the work is directed towards the linear rheology of model, polyolefin-based bottlebrush polymers with independently varied branch and backbone lengths. These studies demonstrate how the tight spacing between branch points effectively precludes backbone entanglement in the polymer melts, but it does not inhibit the formation of entanglements among the branched side chains. Furthermore, the relaxation profiles reveal transient scaling behavior in which the dynamics transition from Zimm-like to Rouse-like at increasing relaxation times. These results highlight the distinct conformational character of bottlebrushes at different length scales. The latter parts of this work report on the self-assembly behavior of bottlebrush diblock polymers composed of atactic polypropylene and polystyrene side chains. The diblock samples are analyzed using small-angle X-ray scattering and atomic force microscopy. Nearly all of the samples display strong segregation between the two blocks, owing to the large molar mass of typical bottlebrush polymers. Consequently, only one experimental sample displays an accessible order-disorder transition temperature. The strong segregation is also shown to affect the ability of large bottlebrush diblocks to readily achieve well-ordered nanostructures by self-assembly. Finally, results of the most symmetric (by volume fraction) diblock samples are compared with predictions of a newly developed self-consistent field

  15. Colloidal polymerization of polymer-coated ferromagnetic nanoparticles into cobalt oxide nanowires.

    PubMed

    Keng, Pei Yuin; Kim, Bo Yun; Shim, In-Bo; Sahoo, Rabindra; Veneman, Peter E; Armstrong, Neal R; Yoo, Heemin; Pemberton, Jeanne E; Bull, Mathew M; Griebel, Jared J; Ratcliff, Erin L; Nebesny, Kenneth G; Pyun, Jeffrey

    2009-10-27

    The preparation of polystyrene-coated cobalt oxide nanowires is reported via the colloidal polymerization of polymer-coated ferromagnetic cobalt nanoparticles (PS-CoNPs). Using a combination of dipolar nanoparticle assembly and a solution oxidation of preorganized metallic colloids, interconnected nanoparticles of cobalt oxide spanning micrometers in length were prepared. The colloidal polymerization of PS-CoNPs into cobalt oxide (CoO and Co(3)O(4)) nanowires was achieved by bubbling O(2) into PS-CoNP dispersions in 1,2-dichlorobenzene at 175 degrees C. Calcination of thin films of PS-coated cobalt oxide nanowires afforded Co(3)O(4) metal oxide materials. Transmission electron microscopy (TEM) revealed the formation of interconnected nanoparticles of cobalt oxide with hollow inclusions, arising from a combination of dipolar assembly of PS-CoNPs and the nanoscale Kirkendall effect in the oxidation reaction. Using a wide range of spectroscopic and electrochemical characterization techniques, we demonstrate that cobalt oxide nanowires prepared via this novel methodology were electroactive with potential applications as nanostructured electrodes for energy storage.

  16. Computational design of co-assembling protein-DNA nanowires.

    PubMed

    Mou, Yun; Yu, Jiun-Yann; Wannier, Timothy M; Guo, Chin-Lin; Mayo, Stephen L

    2015-09-10

    Biomolecular self-assemblies are of great interest to nanotechnologists because of their functional versatility and their biocompatibility. Over the past decade, sophisticated single-component nanostructures composed exclusively of nucleic acids, peptides and proteins have been reported, and these nanostructures have been used in a wide range of applications, from drug delivery to molecular computing. Despite these successes, the development of hybrid co-assemblies of nucleic acids and proteins has remained elusive. Here we use computational protein design to create a protein-DNA co-assembling nanomaterial whose assembly is driven via non-covalent interactions. To achieve this, a homodimerization interface is engineered onto the Drosophila Engrailed homeodomain (ENH), allowing the dimerized protein complex to bind to two double-stranded DNA (dsDNA) molecules. By varying the arrangement of protein-binding sites on the dsDNA, an irregular bulk nanoparticle or a nanowire with single-molecule width can be spontaneously formed by mixing the protein and dsDNA building blocks. We characterize the protein-DNA nanowire using fluorescence microscopy, atomic force microscopy and X-ray crystallography, confirming that the nanowire is formed via the proposed mechanism. This work lays the foundation for the development of new classes of protein-DNA hybrid materials. Further applications can be explored by incorporating DNA origami, DNA aptamers and/or peptide epitopes into the protein-DNA framework presented here.

  17. Computational design of co-assembling protein-DNA nanowires

    NASA Astrophysics Data System (ADS)

    Mou, Yun; Yu, Jiun-Yann; Wannier, Timothy M.; Guo, Chin-Lin; Mayo, Stephen L.

    2015-09-01

    Biomolecular self-assemblies are of great interest to nanotechnologists because of their functional versatility and their biocompatibility. Over the past decade, sophisticated single-component nanostructures composed exclusively of nucleic acids, peptides and proteins have been reported, and these nanostructures have been used in a wide range of applications, from drug delivery to molecular computing. Despite these successes, the development of hybrid co-assemblies of nucleic acids and proteins has remained elusive. Here we use computational protein design to create a protein-DNA co-assembling nanomaterial whose assembly is driven via non-covalent interactions. To achieve this, a homodimerization interface is engineered onto the Drosophila Engrailed homeodomain (ENH), allowing the dimerized protein complex to bind to two double-stranded DNA (dsDNA) molecules. By varying the arrangement of protein-binding sites on the dsDNA, an irregular bulk nanoparticle or a nanowire with single-molecule width can be spontaneously formed by mixing the protein and dsDNA building blocks. We characterize the protein-DNA nanowire using fluorescence microscopy, atomic force microscopy and X-ray crystallography, confirming that the nanowire is formed via the proposed mechanism. This work lays the foundation for the development of new classes of protein-DNA hybrid materials. Further applications can be explored by incorporating DNA origami, DNA aptamers and/or peptide epitopes into the protein-DNA framework presented here.

  18. Assembly of Ultrathin Gold Nanowires into Honeycomb Macroporous Pattern Films with High Transparency and Conductivity.

    PubMed

    He, Ying; Chen, Yuan; Xu, Qingchi; Xu, Jun; Weng, Jian

    2017-03-01

    Because of its promising properties, honeycomb macroporous pattern (HMP) film has attracted increasing attention. It has been realized in many artificial nanomaterials, but the formation of these HMPs was attributed to templates or polymer/supermolecule/surfactant assistant assembly. Pure metal HMP film has been difficult to produce using a convenient colloidal template-free method. In this report, a unique template-free approach for preparation of Au HMP film with high transparency and conductivity is presented. Ultrathin Au nanowires, considered a linear polymer analogue, are directly assembled into HMP film on various substrates using a traditional static breath figure method. Subsequent chemical cross-linking and oxygen plasma treatment greatly enhance the stability and conductivity of the HMP film. The resulting HMP film exhibits great potential as an ideal candidate for transparent flexible conductive nanodevices.

  19. Self-assembled diphenylalanine nanowires for cellular studies and sensor applications.

    PubMed

    Sasso, Luigi; Vedarethinam, Indumathi; Emnéus, Jenny; Svendsen, Winnie E; Castillo-León, Jaime

    2012-04-01

    In this paper we present a series of experiments showing that vertical self-assembled diphenylalanine peptide nanowires (PNWs) are a suitable candidate material for cellular biosensing. We grew HeLa and PC12 cells onto PNW modified gold surfaces and observed no hindrance of cell growth caused by the peptide nanostructures; furthermore we studied the properties of PNWs by investigating their influence on the electrochemical behavior of gold electrodes. The PNWs were functionalized with polypyrrole (PPy) by chemical polymerization, therefore creating conducting peptide/polymer nanowire structures vertically attached to a metal electrode. The electroactivity of such structures was characterized by cyclic voltammetry. The PNW/PPy modified electrodes were finally used as amperometric dopamine sensors, yielding a detection limit of 3,1 microM.

  20. Designing and building nanowires: directed nanocrystal self-assembly into radically branched and zigzag PbS nanowires

    NASA Astrophysics Data System (ADS)

    Xu, Fan; Ma, Xin; Gerlein, L. Felipe; Cloutier, Sylvain G.

    2011-07-01

    Lead sulfide nanowires with controllable optoelectronic properties would be promising building blocks for various applications. Here, we report the hot colloidal synthesis of radically branched and zigzag nanowires through self-attachment of star-shaped and octahedral nanocrystals in the presence of multiple surfactants. We obtained high-quality single-crystal nanowires with uniform diameter along the entire length, and the size of the nanowire can be tuned by tailoring the reaction parameters. This slow oriented attachment provides a better understanding of the intricacies of this complex nanocrystal assembly process. Meanwhile, these self-assembled nanowire structures have appealing lateral conformations with narrow side arms or highly faceted edges, where strong quantum confinement can occur. Consequently, the single-crystal nanowire structures exhibit strong photoluminescence in the near-infrared region with a large blue-shift compared to the bulk material.

  1. Size dependent nanomechanics of coil spring shaped polymer nanowires

    PubMed Central

    Ushiba, Shota; Masui, Kyoko; Taguchi, Natsuo; Hamano, Tomoki; Kawata, Satoshi; Shoji, Satoru

    2015-01-01

    Direct laser writing (DLW) via two-photon polymerization (TPP) has been established as a powerful technique for fabrication and integration of nanoscale components, as it enables the production of three dimensional (3D) micro/nano objects. This technique has indeed led to numerous applications, including micro- and nanoelectromechanical systems (MEMS/NEMS), metamaterials, mechanical metamaterials, and photonic crystals. However, as the feature sizes decrease, an urgent demand has emerged to uncover the mechanics of nanosized polymer materials. Here, we fabricate coil spring shaped polymer nanowires using DLW via two-photon polymerization. We find that even the nanocoil springs follow a linear-response against applied forces, following Hooke’s law, as revealed by compression tests using an atomic force microscope. Further, the elasticity of the polymer material is found to become significantly greater as the wire radius is decreased from 550 to 350 nm. Polarized Raman spectroscopy measurements show that polymer chains are aligned in nanowires along the axis, which may be responsible for the size dependence. Our findings provide insight into the nanomechanics of polymer materials fabricated by DLW, which leads to further applications based on nanosized polymer materials. PMID:26612544

  2. Size dependent nanomechanics of coil spring shaped polymer nanowires

    NASA Astrophysics Data System (ADS)

    Ushiba, Shota; Masui, Kyoko; Taguchi, Natsuo; Hamano, Tomoki; Kawata, Satoshi; Shoji, Satoru

    2015-11-01

    Direct laser writing (DLW) via two-photon polymerization (TPP) has been established as a powerful technique for fabrication and integration of nanoscale components, as it enables the production of three dimensional (3D) micro/nano objects. This technique has indeed led to numerous applications, including micro- and nanoelectromechanical systems (MEMS/NEMS), metamaterials, mechanical metamaterials, and photonic crystals. However, as the feature sizes decrease, an urgent demand has emerged to uncover the mechanics of nanosized polymer materials. Here, we fabricate coil spring shaped polymer nanowires using DLW via two-photon polymerization. We find that even the nanocoil springs follow a linear-response against applied forces, following Hooke’s law, as revealed by compression tests using an atomic force microscope. Further, the elasticity of the polymer material is found to become significantly greater as the wire radius is decreased from 550 to 350 nm. Polarized Raman spectroscopy measurements show that polymer chains are aligned in nanowires along the axis, which may be responsible for the size dependence. Our findings provide insight into the nanomechanics of polymer materials fabricated by DLW, which leads to further applications based on nanosized polymer materials.

  3. Size dependent nanomechanics of coil spring shaped polymer nanowires.

    PubMed

    Ushiba, Shota; Masui, Kyoko; Taguchi, Natsuo; Hamano, Tomoki; Kawata, Satoshi; Shoji, Satoru

    2015-11-27

    Direct laser writing (DLW) via two-photon polymerization (TPP) has been established as a powerful technique for fabrication and integration of nanoscale components, as it enables the production of three dimensional (3D) micro/nano objects. This technique has indeed led to numerous applications, including micro- and nanoelectromechanical systems (MEMS/NEMS), metamaterials, mechanical metamaterials, and photonic crystals. However, as the feature sizes decrease, an urgent demand has emerged to uncover the mechanics of nanosized polymer materials. Here, we fabricate coil spring shaped polymer nanowires using DLW via two-photon polymerization. We find that even the nanocoil springs follow a linear-response against applied forces, following Hooke's law, as revealed by compression tests using an atomic force microscope. Further, the elasticity of the polymer material is found to become significantly greater as the wire radius is decreased from 550 to 350 nm. Polarized Raman spectroscopy measurements show that polymer chains are aligned in nanowires along the axis, which may be responsible for the size dependence. Our findings provide insight into the nanomechanics of polymer materials fabricated by DLW, which leads to further applications based on nanosized polymer materials.

  4. Stepwise Self-Assembly of P3HT/CdSe Hybrid Nanowires with Enhanced Photoconductivity.

    PubMed

    Xu, Jingjing; Hu, Jianchen; Liu, Xinfeng; Qiu, Xiaohui; Wei, Zhixiang

    2009-08-18

    A facile approach to prepare poly(3-hexylthiophene) (P3HT)/cadmium selenide quantum dot (CdSe QD) hybrid coaxial nanowires by a stepwise self-assembly process is reported. P3HT nanowires of ≈20 nm diameter are first prepared by self-assembly in a poor solvent such as cyclohexanone, and then as-prepared CdSe QDs are deposited compactly onto the P3HT nanowires by non-covalent interactions between P3HT and CdSe. When illuminated with white light, the hybrid nanowires show enhanced photoconductivity compared with the pristine P3HT nanowires and the blended nanocomposites.

  5. Energy harvesting performance of piezoelectric ceramic and polymer nanowires.

    PubMed

    Crossley, Sam; Kar-Narayan, Sohini

    2015-08-28

    Energy harvesting from ubiquitous ambient vibrations is attractive for autonomous small-power applications and thus considerable research is focused on piezoelectric materials as they permit direct inter-conversion of mechanical and electrical energy. Nanogenerators (NGs) based on piezoelectric nanowires are particularly attractive due to their sensitivity to small-scale vibrations and may possess superior mechanical-to-electrical conversion efficiency when compared to bulk or thin-film devices of the same material. However, candidate piezoelectric nanowires have hitherto been predominantly analyzed in terms of NG output (i.e. output voltage, output current and output power density). Surprisingly, the corresponding dynamical properties of the NG, including details of how the nanowires are mechanically driven and its impact on performance, have been largely neglected. Here we investigate all realizable NG driving contexts separately involving inertial displacement, applied stress T and applied strain S, highlighting the effect of driving mechanism and frequency on NG performance in each case. We argue that, in the majority of cases, the intrinsic high resonance frequencies of piezoelectric nanowires (∼tens of MHz) present no barrier to high levels of NG performance even at frequencies far below resonance (<1 kHz) typically characteristic of ambient vibrations. In this context, we introduce vibrational energy harvesting (VEH) coefficients ηS and ηT, based on intrinsic materials properties, for comparing piezoelectric NG performance under strain-driven and stress-driven conditions respectively. These figures of merit permit, for the first time, a general comparison of piezoelectric nanowires for NG applications that takes into account the nature of the mechanical excitation. We thus investigate the energy harvesting performance of prototypical piezoelectric ceramic and polymer nanowires. We find that even though ceramic and polymer nanowires have been found, in

  6. Composite Layer-by-Layer (LBL) assembly with inorganic nanoparticles and nanowires.

    PubMed

    Srivastava, Sudhanshu; Kotov, Nicholas A

    2008-12-01

    New assembly techniques are required for creating advanced materials with enough structural flexibility to be tuned for specific applications, and to be practical, the techniques must be implemented at relatively low cost. Layer-by-layer (LBL) assembly is a simple, versatile, and significantly inexpensive approach by which nanocomponents of different groups can be combined to coat both macroscopically flat and non-planar (e.g., colloidal core-shell particles) surfaces. Compared with other available assembly methods, LBL assembly is simpler and more universal and allows more precise thickness control at the nanoscale. LBL can be used to combine a wide variety of species--including nanoparticles (NPs), nanosheets, and nanowires (NWs)--with polymers, thus merging the properties of each type of material. This versatility has led to recent exceptional growth in the use of LBL-generated nanocomposites. This Account will focus on the materials and biological applications of introducing inorganic nanocrystals into polymer thin films. Combining inorganic NPs and NWs with organic polymers allows researchers to manipulate the unique properties in the nanomaterial. We describe the LBL assembly technique for introducing metallic NPs into polymers in order to generate a material with combined optomechanical properties. Similarly, LBL assembly of highly luminescent semiconductor NPs like HgTe or CdTe with poly(diallyldimethylammonium chloride) (PDDA) was used to create uniform optical-quality coatings made on optical fibers and tube interiors. In addition, LBL assembly with inorganic nanosheets or clay molecules is reported for fabricating films with strong mechanical and ion transport properties, and the technique can also be employed to prepare Au/TiO(2) core/sheath NWs. The LBL approach not only will be useful for assembly of inorganic nanocrystals with various polymers but can be further applied to introduce specific functions. We discuss how the expanded use of NWs and

  7. Stirring-assisted assembly of nanowires at liquid-solid interfaces

    NASA Astrophysics Data System (ADS)

    Li, Wen-Ze; Wei, Wei; Chen, Jun-Yi; He, Ji-Xiang; Xue, Sheng-Nan; Zhang, Jing; Liu, Xia; Li, Xiang; Fu, Yu; Jiao, Yong-Hua; Zhang, Kai; Liu, Fuchun; Han, En-Hou

    2013-03-01

    The assembly of Ag nanowires on quartz substrates from suspensions of water and ethylene glycol under stirring has been investigated. The introduction of stirring makes a remarkable difference to the assembly morphology. Firstly, the surface coverage of Ag nanowires is increased by a factor of 4 (in water) and 8 (in ethylene glycol) with stirring. Secondly, the Ag nanowires assembled in the stirred ethylene glycol dispersion were highly aligned. The influence of the surface of substrates, solvents and profile of the nanowires on the alignment has been explored, which indicates that stirring is an efficient way to generate nanowire arrays. This study has revealed the great potential of the stirring-assisted assembly technique in producing structurally controlled nanoarchitectures, opening up new opportunities for manufacturing ordered nanomaterials.

  8. Zinc Oxide Nanowire Interphase for Enhanced Lightweight Polymer Fiber Composites

    NASA Technical Reports Server (NTRS)

    Sodano, Henry A.; Brett, Robert

    2011-01-01

    The objective of this work was to increase the interfacial strength between aramid fiber and epoxy matrix. This was achieved by functionalizing the aramid fiber followed by growth of a layer of ZnO nanowires on the fiber surface such that when embedded into the polymer, the load transfer and bonding area could be substantially enhanced. The functionalization procedure developed here created functional carboxylic acid surface groups that chemically interact with the ZnO and thus greatly enhance the strength of the interface between the fiber and the ZnO.

  9. Bridging length scales to measure polymer assembly.

    PubMed

    Kaye, Bryan; Yoo, Tae Yeon; Foster, Peter J; Yu, Che-Hang; Needleman, Daniel J

    2017-03-29

    Time-resolvable quantitative measurements of polymer concentration are very useful to elucidate protein polymerization pathways. There are numerous techniques to measure polymer concentrations in purified protein solutions, but few are applicable in vivo Here we develop a methodology combining microscopy and spectroscopy to overcome the limitations of both approaches for measuring polymer concentration in cells and cell extracts. This technique is based on quantifying the relationship between microscopy and spectroscopy measurements at many locations. We apply this methodology to measure microtubule assembly in tissue culture cells and Xenopus egg extracts using two-photon microscopy with FLIM measurements of FRET. We find that the relationship between FRET and two-photon intensity quantitatively agrees with predictions. Furthermore, FRET and intensity measurements change as expected with changes in acquisition time, labeling ratios, and polymer concentration. Taken together, these results demonstrate that this approach can quantitatively measure microtubule assembly in complex environments. This methodology should be broadly useful for studying microtubule nucleation and assembly pathways of other polymers.

  10. Synthesis and supramolecular assembly of biomimetic polymers

    NASA Astrophysics Data System (ADS)

    Marciel, Amanda Brittany

    A grand challenge in materials chemistry is the synthesis of macromolecules and polymers with precise shapes and architectures. Polymer microstructure and architecture strongly affect the resulting functionality of advanced materials, yet understanding the static and dynamic properties of these complex macromolecules in bulk has been difficult due to their inherit polydispersity. Single molecule studies have provided a wealth of information on linear flexible and semi-flexible polymers in dilute solutions. However, few investigations have focused on industrially relevant complex topologies (e.g., star, comb, hyperbranched polymers) in industrially relevant solution conditions (e.g., semi-dilute, concentrated). Therefore, from this perspective there is a strong need to synthesize precision complex architectures for bulk studies as well as complex architectures compatible with current single molecule techniques to study static and dynamic polymer properties. In this way, we developed a hybrid synthetic strategy to produce branched polymer architectures based on chemically modified DNA. Overall, this approach enables control of backbone length and flexibility, as well as branch grafting density and chemical identity. We utilized a two-step scheme based on enzymatic incorporation of non-natural nucleotides containing bioorthogonal dibenzocyclooctyne (DBCO) functional groups along the main polymer backbone, followed by copper-free "click" chemistry to graft synthetic polymer branches or oligonucleotide branches to the DNA backbone, thereby allowing for the synthesis of a variety of polymer architectures, including three-arm stars, H-polymers, graft block copolymers, and comb polymers for materials assembly and single molecule studies. Bulk materials properties are also affected by industrial processing conditions that alter polymer morphology. Therefore, in an alternative strategy we developed a microfluidic-based approach to assemble highly aligned synthetic

  11. Ag nanowire-assisted low threshold WGM lasing from polymer optical fiber.

    PubMed

    Sebastian, Suneetha; Kailasnath, M; Nampoori, V P N; Asokan, S

    2017-10-01

    Whispering Gallery Mode (WGM) emission has been observed from Ag nanowire doped polymer optical fiber laser. Low threshold lasing and high photostability of the active medium has been noticed with a given concentration of Ag nanowires in the microcavity of the fiber. Quantum yield and lifetime measurements of the dye (active medium) with and without nanowires confirm that presence of nanowires enhance the rate of radiative decay of the fluorophore, thereby providing low pump pulse energy for the excitation of lasing modes in the cavity, as compared with a bare dye-doped polymer fiber laser.

  12. Thermoelectric properties of large-scale Zn3P2 nanowire assemblies.

    PubMed

    Brockway, Lance; Vasiraju, Venkata; Asayesh-Ardakani, Hasti; Shahbazian-Yassar, Reza; Vaddiraju, Sreeram

    2014-04-11

    Gram quantities of both unfunctionalized and 1,4-benzenedithiol (BDT) functionalized zinc phosphide (Zn3P2) nanowire powders, synthesized using direct reaction of zinc and phosphorus, were hot-pressed into highly dense pellets (≥98% of the theoretical density) for the determination of their thermoelectric performance. It was deduced that mechanical flexibility of the nanowires is essential for consolidating them in randomly oriented fashion into dense pellets, without making any major changes to their morphologies. Electrical and thermal transport measurements indicated that the enhanced thermoelectric performance expected of individual Zn3P2 nanowires is still retained within large-scale nanowire assemblies. A maximum reduction of 28% in the thermal conductivity of Zn3P2 resulted from nanostructuring. Use of nanowire morphology also led to enhanced electrical conductivity in Zn3P2. Interface engineering of the nanowires in the pellets, accomplished by hot-pressing BDT functionalized nanowires, resulted in an increase on both the Seebeck coefficient and the electrical conductivity of the nanowire pellets. It is believed that filtering of low energy carriers resulting from the variation of the chemical compositions at the nanowire interfaces is responsible for this phenomenon. Overall, this study indicated that mechanical properties of the nanowires along with the chemical compositions of their surfaces play a hitherto unknown, but vital, role in realizing highly efficient bulk thermoelectric modules based on nanowires.

  13. Thermoelectric properties of large-scale Zn3 P2 nanowire assemblies

    NASA Astrophysics Data System (ADS)

    Brockway, Lance; Vasiraju, Venkata; Asayesh-Ardakani, Hasti; Shahbazian-Yassar, Reza; Vaddiraju, Sreeram

    2014-04-01

    Gram quantities of both unfunctionalized and 1,4-benzenedithiol (BDT) functionalized zinc phosphide (Zn3P2) nanowire powders, synthesized using direct reaction of zinc and phosphorus, were hot-pressed into highly dense pellets (≥98% of the theoretical density) for the determination of their thermoelectric performance. It was deduced that mechanical flexibility of the nanowires is essential for consolidating them in randomly oriented fashion into dense pellets, without making any major changes to their morphologies. Electrical and thermal transport measurements indicated that the enhanced thermoelectric performance expected of individual Zn3P2 nanowires is still retained within large-scale nanowire assemblies. A maximum reduction of 28% in the thermal conductivity of Zn3P2 resulted from nanostructuring. Use of nanowire morphology also led to enhanced electrical conductivity in Zn3P2. Interface engineering of the nanowires in the pellets, accomplished by hot-pressing BDT functionalized nanowires, resulted in an increase on both the Seebeck coefficient and the electrical conductivity of the nanowire pellets. It is believed that filtering of low energy carriers resulting from the variation of the chemical compositions at the nanowire interfaces is responsible for this phenomenon. Overall, this study indicated that mechanical properties of the nanowires along with the chemical compositions of their surfaces play a hitherto unknown, but vital, role in realizing highly efficient bulk thermoelectric modules based on nanowires.

  14. Directed Assembly of Nanofilled Polymer Thin Films

    NASA Astrophysics Data System (ADS)

    Karim, Alamgir

    Facile directed self-assembly (DSA) of multicomponent thin films is important for potential technological applications. This requires a fine control of a complex interplay of processing parameters that need to be properly optimized for different organized structures. This talk will discuss some of our recent success towards realizing tunable DSA of soft matter multicomponent systems involving a dispersion of polymer-grafted nanoparticles in block copolymer or homopolymer matrices. DSA methods for such multicomponent films will be discussed. These include the use of zone-annealing with soft-shear to create highly anisotropic nanoparticle arrays, while direct immersion annealing (DIA) has been used to order nanoparticle filled films by dipping the films into controlled solvent quality solvent mixtures. A recently observed phenomena of confinement driven entropic order and phase segregation of polymer grafted nanoparticles in similar and dissimilar polymer matrices in melt state will be discussed. A high density of nano particles of different types ranging from metallic to inorganic to organic were patterned almost exclusively into channels via topographical soft confinement using entropic forces. Enthalpic interactions between the nanoparticle grafted layer and the polymer matrix could be used as a further handle to tune the directed assembly of the nanoparticles. The phenomena will be discussed in terms of confinement parameters, partition coefficient, free energy gain and entropic versus enthalpic interactions.

  15. Controlled assembly of In2O3 nanowires on electronic circuits using scanning optical tweezers.

    PubMed

    Lee, Song-Woo; Jo, Gunho; Lee, Takhee; Lee, Yong-Gu

    2009-09-28

    In(2)O(3) nanowires can be used effectively as building blocks in the production of electronic circuits used in transparent and flexible electronic devices. The fabrication of these devices requires a controlled assembly of nanowires at crucial places and times. However, this kind of controlled assembly, which results in the fusion of nanowires to circuits, is still very difficult to execute. In this study, we demonstrate the benefits of using various lengths of In(2)O(3) nanowires by using non-contact mechanisms, such as scanning optical tweezers, to place them on designated targets during the fabrication process. Furthermore, these nanowires can be stabilized at both ends of the conducting wires using a focused laser, and later in the process, the annealed technique, so that proper flow of electrons is affected.

  16. Supramolecular assembly in telechelic polymer blends

    NASA Astrophysics Data System (ADS)

    Elliott, R.; Fredrickson, Glenn H.

    2009-10-01

    Equilibrium, supramolecular assembly in melt blends of two species of telechelic polymers with reversible bonding sites at both ends is theoretically investigated. The bonding between polymers, whether between like or dislike chains, is controlled by affinities of chain bonding set by specified bond energies. Low affinities, or low overall bond strength, results in a monodisperse population of unlinked chains while larger affinities cause longer chains to assemble, forming a polydisperse blend. We investigate sequentially blends with only homobonding (like chain), only heterobonding (dislike chain), and finally a mixed homo- and heterobonding melt. In the first case, the effects of longer chain assembly and polydispersity in a homogeneous melt and its bulk demixing transition are explored. In contrast with the homobonding case, large heterobonding affinities cause alternating blocks to assemble into multiblock copolymers, which can lead to mesophases. The weak bonding region between bulk phase separation and mesophase stability is investigated and a novel Lifshitz point is found indicating a region prone to emulsify. Mixed homo- and heterobonding systems are also examined. Polymeric segments of both species are modeled as flexible Gaussian threads and nonspecific interactions between dissimilar blocks are contactlike Flory-Huggins repulsions. The melts are assumed to be incompressible and all calculations are carried out within mean-field theory. A new integral equation formalism is developed for enumerating all linear species in these complex supramolecular systems, and the random phase approximation and numerical self-consistent field theory are invoked in this context to map out a variety of phase diagrams.

  17. Cationic Antimicrobial Polymers and Their Assemblies

    PubMed Central

    Carmona-Ribeiro, Ana Maria; de Melo Carrasco, Letícia Dias

    2013-01-01

    Cationic compounds are promising candidates for development of antimicrobial agents. Positive charges attached to surfaces, particles, polymers, peptides or bilayers have been used as antimicrobial agents by themselves or in sophisticated formulations. The main positively charged moieties in these natural or synthetic structures are quaternary ammonium groups, resulting in quaternary ammonium compounds (QACs). The advantage of amphiphilic cationic polymers when compared to small amphiphilic molecules is their enhanced microbicidal activity. Besides, many of these polymeric structures also show low toxicity to human cells; a major requirement for biomedical applications. Determination of the specific elements in polymers, which affect their antimicrobial activity, has been previously difficult due to broad molecular weight distributions and random sequences characteristic of radical polymerization. With the advances in polymerization control, selection of well defined polymers and structures are allowing greater insight into their structure-antimicrobial activity relationship. On the other hand, antimicrobial polymers grafted or self-assembled to inert or non inert vehicles can yield hybrid antimicrobial nanostructures or films, which can act as antimicrobials by themselves or deliver bioactive molecules for a variety of applications, such as wound dressing, photodynamic antimicrobial therapy, food packing and preservation and antifouling applications. PMID:23665898

  18. A highly flexible platform for nanowire sensor assembly using a combination of optically induced and conventional dielectrophoresis.

    PubMed

    Lin, Yen-Heng; Ho, Kai-Siang; Yang, Chin-Tien; Wang, Jung-Hao; Lai, Chao-Sung

    2014-06-02

    The number and position of assembled nanowires cannot be controlled using most nanowire sensor assembling methods. In this paper, we demonstrate a high-yield, highly flexible platform for nanowire sensor assembly using a combination of optically induced dielectrophoresis (ODEP) and conventional dielectrophoresis (DEP). With the ODEP platform, optical images can be used as virtual electrodes to locally turn on a non-contact DEP force and manipulate a micron- or nano-scale substance suspended in fluid. Nanowires were first moved next to the previously deposited metal electrodes using optical images and, then, were attracted to and arranged in the gap between two electrodes through DEP forces generated by switching on alternating current signals to the metal electrodes. A single nanowire can be assembled within 24 seconds using this approach. In addition, the number of nanowires in a single nanowire sensor can be controlled, and the assembly of a single nanowire on each of the adjacent electrodes can also be achieved. The electrical properties of the assembled nanowires were characterized by IV curve measurement. Additionally, the contact resistance between the nanowires and electrodes and the stickiness between the nanowires and substrates were further investigated in this study.

  19. Dynamic assembly of molecularly imprinted polymer nanoparticles.

    PubMed

    Gong, Haiyue; Hajizadeh, Solmaz; Jiang, Lingdong; Ma, Huiting; Ye, Lei

    2017-09-11

    Manipulation of specific binding and recycling of materials are two important aspects for practical applications of molecularly imprinted polymers. In this work, we developed a new approach to control the dynamic assembly of molecularly imprinted nanoparticles by surface functionalization. Molecularly imprinted polymer nanoparticles with a well-controlled core-shell structure were synthesized using precipitation polymerization. The specific binding sites were created in the core during the first step imprinting reaction. In the second polymerization step, epoxide groups were introduced into the particle shell to act asan intermediate linker to immobilize phenylboronic acids, as well as to introduce cis-diol structures on surface. The imprinted polymer nanoparticles modified with boronic acid and cis-diol structures maintained high molecular binding specificity, and the nanoparticles could be induced to form dynamic particle aggregation that responded to pH variation and chemical stimuli. The possibility of modulating molecular binding and nanoparticle assembly in a mutually independent fashion can be exploited in a number of applications where repeated use of precious nanoparticles is needed. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Self-assembly of semiconductor organogelator nanowires for photoinduced charge separation.

    PubMed

    Wicklein, André; Ghosh, Suhrit; Sommer, Michael; Würthner, Frank; Thelakkat, Mukundan

    2009-05-26

    We investigated an innovative concept of general validity based on an organogel/polymer system to generate donor-acceptor nanostructures suitable for charge generation and charge transport. An electron conducting (acceptor) perylene bisimide organogelator forms nanowires in suitable solvents during gelation process. This phenomenon was utilized for its self-assembly in an amorphous hole conducting (donor) polymer matrix to realize an interpenetrating donor-acceptor interface with inherent morphological stability. The self-assembly and interface generation were carried out either stepwise or in a single-step. Morphology of the donor-acceptor network in thin films obtained via both routes were studied by a combination of scanning electron microscopy and atomic force microscopy. Additionally, photoinduced charge separation and charge transport in these systems were tested in organic solar cells. Fabrication steps of multilayer organogel/polymer photovoltaic devices were optimized with respect to morphology and surface roughness by introducing additional smoothening layers and charge injection/blocking layers. An inverted cell geometry was used here in which electrons are collected at the bottom electrode and holes at the top electrode. The simultaneous preparation of the interface exhibits almost 3-fold improvement in device characteristics compared to the successive method. The device characteristics under AM1.5 spectral conditions and 100 mW/cm(2) for the simultaneous preparation route are short circuit current J(sc) = 0.28 mA cm(-2), open circuit voltage V(OC) = 390 mV, fill factor FF = 38%, and a power conversion efficiency eta = 0.041%.

  1. Fabrication of Conducting Polymer Nanowires using Blockcopolymer Nano-Porous Templates

    NASA Astrophysics Data System (ADS)

    in Lee, Jeong; Anthony, Phillip; Kim, Jin Kon; Ryu, Jae Woong

    2007-03-01

    Nanoporous templates have been used for the fabrication of nanostructured materials that have their potential applications in electronics, optics, magnetism, and energy storage. Here, we showed that nanoporous templates based on polystyrene-block- poly(methyl methacrylate) (PS-b-PMMA) were used for the preparation of high density nanowire arrays of polypyrrole (PPy), poly(3,4-ethlenedioxythiophene) (PEDOT), poly(3- hexyltiophene) (P3HT). We found that these conducting polymer nanowires showed much higher conductivity compared with conducting polymer films. This is because of the chain orientation of conducting polymer nanowires during the growing process inside the confined nanohole. The chain orientation of nanowires along the nanoporous template direction was characterized by HR-TEM, XRD and GI-WAXS.

  2. Nanoparticles in Polymers: Assembly, Rheology and Properties

    NASA Astrophysics Data System (ADS)

    Rao, Yuanqiao

    Inorganic nanoparticles have the potential of providing functionalities that are difficult to realize using organic materials; and nanocomposites is an effective mean to impart processibility and construct bulk materials with breakthrough properties. The dispersion and assembly of nanoparticles are critical to both processibility and properties of the resulting product. In this talk, we will discuss several methods to control the hierarchical structure of nanoparticles in polymers and resulting rheological, mechanical and optical properties. In one example, polymer-particle interaction and secondary microstructure were designed to provide a low viscosity composition comprising exfoliated high aspect ratio clay nanoparticles; in another example, the microstructure control through templates was shown to enable unique thermal mechanical and optical properties. Jeff Munro, Stephanie Potisek, Phillip Hustad; all of the Dow Chemical Company are co-authors.

  3. Redox-exchange induced heterogeneous RuO2-conductive polymer nanowires.

    PubMed

    Gui, Zhe; Duay, Jonathon; Hu, Junkai; Lee, Sang Bok

    2014-06-28

    A redox exchange mechanism between potassium perruthenate (KRuO4) and the functional groups of selected polymers is used here to induce RuO2 into and onto conductive polymer nanowires by simply soaking the polymer nanowire arrays in KRuO4 solution. Conductive polymer nanowire arrays of polypyrrole (PPY) and poly(3,4-ethylenedioxythiophene) (PEDOT) were studied in this work. SEM and TEM results show that the RuO2 material was distributed differently in the PPY and PEDOT nanowire matrices. Energy-dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy were used to confirm the dispersion and formation of RuO2 materials in these polymer nanowires. Cyclic voltammetry and galvanostatic charge-discharge experiments were used to characterize their electrochemical performance. RuO2-polymer samples prepared with a 6 min soaking time in 10 mM KRuO4 solution show a high specific capacitance of 371 F g(-1) and 500 F g(-1) for PEDOT-based and PPY-based composite nanowires, respectively. This is attributed to the high exposure area of the conductive RuO2 and the good conductivity of the polymer matrix. This work demonstrates a simple method to synthesize heterogeneous polymer based-materials through the redox reaction between conductive polymers and high oxidation state transition metal oxide ions. Different heterogeneous nanocomposites were obtained depending on the polymer properties, and high energy storage performance of the metal oxides can be achieved within these heterogeneous nanostructures.

  4. Self-assembled GaN nanowires on diamond.

    PubMed

    Schuster, Fabian; Furtmayr, Florian; Zamani, Reza; Magén, Cesar; Morante, Joan R; Arbiol, Jordi; Garrido, Jose A; Stutzmann, Martin

    2012-05-09

    We demonstrate the nucleation of self-assembled, epitaxial GaN nanowires (NWs) on (111) single-crystalline diamond without using a catalyst or buffer layer. The NWs show an excellent crystalline quality of the wurtzite crystal structure with m-plane faceting, a low defect density, and axial growth along the c-axis with N-face polarity, as shown by aberration corrected annular bright-field scanning transmission electron microscopy. X-ray diffraction confirms single domain growth with an in-plane epitaxial relationship of (10 ̅10)(GaN) [parallel] (01 ̅1)(Diamond) as well as some biaxial tensile strain induced by thermal expansion mismatch. In photoluminescence, a strong and sharp excitonic emission reveals excellent optical properties superior to state-of-the-art GaN NWs on silicon substrates. In combination with the high-quality diamond/NW interface, confirmed by high-resolution transmission electron microscopy measurements, these results underline the potential of p-type diamond/n-type nitride heterojunctions for efficient UV optoelectronic devices.

  5. Self-assembled nanowire array capacitors: capacitance and interface state profile.

    PubMed

    Li, Qiliang; Xiong, Hao D; Liang, Xuelei; Zhu, Xiaoxiao; Gu, Diefeng; Ioannou, Dimitris E; Baumgart, Helmut; Richter, Curt A

    2014-04-04

    Direct characterization of the capacitance and interface states is very important for understanding the electronic properties of a nanowire transistor. However, the capacitance of a single nanowire is too small to precisely measure. In this work we have fabricated metal-oxide-semiconductor capacitors based on a large array of self-assembled Si nanowires. The capacitance and conductance of the nanowire array capacitors are directly measured and the interface state profile is determined by using the conductance method. We demonstrate that the nanowire array capacitor is an effective platform for studying the electronic properties of nanoscale interfaces. This approach provides a useful and efficient metrology for the study of the physics and device properties of nanoscale metal-oxide-semiconductor structures.

  6. Self-assembled nanowire array capacitors: capacitance and interface state profile

    NASA Astrophysics Data System (ADS)

    Li, Qiliang; Xiong, Hao D.; Liang, Xuelei; Zhu, Xiaoxiao; Gu, Diefeng; Ioannou, Dimitris E.; Baumgart, Helmut; Richter, Curt A.

    2014-04-01

    Direct characterization of the capacitance and interface states is very important for understanding the electronic properties of a nanowire transistor. However, the capacitance of a single nanowire is too small to precisely measure. In this work we have fabricated metal-oxide-semiconductor capacitors based on a large array of self-assembled Si nanowires. The capacitance and conductance of the nanowire array capacitors are directly measured and the interface state profile is determined by using the conductance method. We demonstrate that the nanowire array capacitor is an effective platform for studying the electronic properties of nanoscale interfaces. This approach provides a useful and efficient metrology for the study of the physics and device properties of nanoscale metal-oxide-semiconductor structures.

  7. Generalized Redox-Responsive Assembly of Carbon-Sheathed Metallic and Semiconducting Nanowire Heterostructures.

    PubMed

    Choi, Sinho; Kim, Jieun; Hwang, Dae Yeon; Park, Hyungmin; Ryu, Jaegeon; Kwak, Sang Kyu; Park, Soojin

    2016-02-10

    One-dimensional metallic/semiconducting materials have demonstrated as building blocks for various potential applications. Here, we report on a unique synthesis technique for redox-responsive assembled carbon-sheathed metal/semiconducting nanowire heterostructures that does not require a metal catalyst. In our approach, germanium nanowires are grown by the reduction of germanium oxide particles and subsequent self-catalytic growth during the thermal decomposition of natural gas, and simultaneously, carbon sheath layers are uniformly coated on the nanowire surface. This process is a simple, reproducible, size-controllable, and cost-effective process whereby most metal oxides can be transformed into metallic/semiconducting nanowires. Furthermore, the germanium nanowires exhibit stable chemical/thermal stability and outstanding electrochemical performance including a capacity retention of ∼96% after 1200 cycles at the 0.5-1C rate as lithium-ion battery anode.

  8. Polymer-like conformation and growth kinetics of Bi2S3 nanowires.

    PubMed

    Cademartiri, Ludovico; Guerin, Gerald; Bishop, Kyle J M; Winnik, Mitchell A; Ozin, Geoffrey A

    2012-06-06

    One-dimensional inorganic crystals (i.e., crystalline nanowires) are one of the most intensely investigated classes of materials of the past two decades. Despite this intense effort, an important question has yet to be answered: do nanowires display some of the unique characteristics of polymers as their diameter is progressively decreased? This work addresses this question with three remarkable findings on the growth and form of ultrathin Bi(2)S(3) nanowires. (i) Their crystallization in solution is quantitatively describable as a form of living step-growth polymerization: an apparently exclusive combination of addition of "monomer" to the ends of the nanowires and coupling of fully formed nanowires "end-to-end", with negligible termination and initiation. (ii) The rate constants of these two main processes are comparable to those of analogous processes found in polymerization. (iii) The conformation of these nanowires is quantitatively described as a worm-like conformation analytically analogous to that of semiflexible polymers and characterized by a persistence length of 17.5 nm (shorter than that of double-stranded DNA) and contour lengths of hundreds of micrometers (longer than those of most synthetic polymers). These findings do not prove a chemical analogy between crystals and polymers (it is unclear if the monomer is a molecular entity tout court) but demonstrate a physical analogy between crystallization and polymerization. Specifically, they (i) show that the crystallization of ensembles of nanoscale inorganic crystals can be conceptually analogous to polymerization and can be described quantitatively with the same experimental and mathematical tools, (ii) demonstrate that one-dimensional nanocrystals can display topological characteristics of polymers (e.g., worm-like conformation in solution), (iii) establish a unique experimental model system for the investigation of polymer-like topological properties in inorganic crystals, and (iv) provide new

  9. Lithium-Assisted Self-Assembly of Aluminum Carbide Nanowires and Nanoribbons

    SciTech Connect

    Zhang, Hai-Feng; Dohnalkova, Alice ); Wang, Chongmin ); Young, James S. ); Buck, Edgar C. ); Wang, Lai-Sheng

    2001-12-01

    We report on the synthesis and self-assembly of Al4C3 nanowires and nanoribbons using lithium as a catalyst. Large quantities of Al4C3 nanowires (diameters from 5 to 70 nm) and nanoribbons (5-70 nm thick and 20-5600 nm wide) tens of micrometers long were synthesized serendipitously in a solid-state reaction involving Al/C/Li at less than 780 degrees Celsius. High-resolution electron microscopy revealed that the nanowires all grew along the c-axis of hexagonal Al4C3, whereas the nanoribbons all grew within the basal plane. The facile synthesis of the Al4C3 nanowires and nanoribbons suggest similar nanostructures of other carbide and nitride materials may be made using the lithium-assisted self-assembly process.

  10. Highly flexible silver nanowire electrodes for shape-memory polymer light-emitting diodes.

    PubMed

    Yu, Zhibin; Zhang, Qingwu; Li, Lu; Chen, Qi; Niu, Xiaofan; Liu, Jun; Pei, Qibing

    2011-02-01

    Shape-memory polymer light-emitting diodes (PLEDs) using a new silver nanowire/polymer electrode are reported. The electrode can be stretched by up to 16% with only a small increase in sheet resistance. Large deformation shape change and recovery of the PLEDs to various bistable curvatures result in minimal loss of electroluminescence performance.

  11. Thermoelectric transport in hybrid materials incorporating metallic nanowires in polymer matrix

    NASA Astrophysics Data System (ADS)

    Liu, Bin; Lu, Tingyu; Wang, Biao; Liu, Jun; Nakayama, Tsuneyoshi; Zhou, Jun; Li, Baowen

    2017-03-01

    We propose a type of thermoelectric materials incorporating metallic nanowires in insulating polymers. It is shown that the hybridization of poor thermoelectric materials such as metal and polymer can achieve high performance of thermoelectricity. The electrical conductivity of such hybrid materials is controllable by the volume fraction of metallic nanowires which is above a percolation critical value. Meanwhile, the Seebeck coefficient shows a weak dependence on the volume fraction. Low thermal conductivities required for achieving the high figure of merit can be fulfilled from both the low thermal conductivity of polymer and the interfacial thermal resistance between nanowires and polymer. In this regard, we propose the concept "electron-percolation thermal-insulator," providing a guide to design efficient hybrid thermoelectric materials.

  12. Ultrathin W18O49 nanowire assemblies for electrochromic devices.

    PubMed

    Liu, By Jian-Wei; Zheng, Jing; Wang, Jin-Long; Xu, Jie; Li, Hui-Hui; Yu, Shu-Hong

    2013-08-14

    Ordered W18O49 nanowire thin films were fabricated by Langmuir-Blodgett (LB) technique in the presence of poly(vinyl pyrrolidone) coating. The well-organized monolayer of W18O49 nanowires with periodic structures can be readily used as electrochromic sensors, showing reversibly switched electrochromic properties between the negative and positive voltage. Moreover, the electrochromism properties of the W18O49 nanowire films exhibit significant relationship with their thickness. The coloration/bleaching time was around 2 s for the W18O49 nanowire monolayer, which is much faster than the traditional tungsten oxide nanostructures. Moreover, the nanowire devices display excellent stability when color switching continues, which may provide a versatile and promising platform for electrochromism device, smart windows, and other applications.

  13. Growth and characterization of self-assembled epitaxial transition-metal silicide nanowires

    NASA Astrophysics Data System (ADS)

    He, Zhian

    This dissertation involves the growth and microstructure characterization of self-assembled epitaxial silicide nanowires (NWs). It has been discovered that many metal/Si systems (Ti-Si(111), Dy/Si(110), Dy/Si(111), Co/Si(001), Co/Si(110), Co/Si(111), Ni/Si(111), Ni/Si(110), etc.) show self-assembled epitaxial silicide nanowire formation behavior during the ultra-high vacuum (UHV) reactive epitaxy process, in addition to the previously known rare-earth/Si(001) system. Most nanowires have dimensions of approximately 20 nm wide, 5 nm high and 1 um long. The dimensions and densities of the nanowires change considerably with growth temperature, deposition rate, and coverage. Transmission electron microscopy (TEM) reveals that most of these silicide nanowires are defect-free single crystals and form atomically flat interfaces with the Si substrate. Most silicide nanowires (COSi2/Si, NiSi2/Si(110), TiSi 2/Si(111) DYSi2/Si(110), etc.) grow into the Si substrate along inclined Si{111}, forming a V-shaped groove in the Si substrate. In several silicide nanowire systems (DySi2/Si(111), DySi2/S1(001), NiSi2/Si(111), etc.), however, the nanowires grow on top of the substrate. For these systems, the nanowires can be aligned to a single orientation using a stepped substrate. The growth mode (in-growth versus growth on top of the substrate surface) plays a significant role in the formation of nanowires and islands. Growth on the substrate usually produces islands that share the symmetry of the substrate in shape or in structure, whereas in-growth islands show less dependency on the surface symmetry (i.e. they adopt an asymmetric island shape and are less sensitive to surface steps). It has been proven that the silicides do not need to satisfy the requirement as specified in the "classic model" to form nanowires. A new nanowire formation mechanism is proposed in this work. This mechanism requires coherent growth of overlayer islands into the substrate along inclined close

  14. Assembly of gold nanowires by sedimentation from suspension: Experiments and simulation

    PubMed Central

    Triplett, Derek A.; Quimby, Lisa M.; Smith, Benjamin D.; Rodríguez, Darimar Hernández; St. Angelo, Sarah K.; González, Pedro; Keating, Christine D.; Fichthorn, Kristen A.

    2010-01-01

    We investigated the ordering of gold nanowires that settled from aqueous suspension onto a glass substrate due to gravity. The nanowires, ca. 300 nm in cross-sectional diameter and ca. 2, 4, or 7 microns in length, were coated with 2-mercaptoethanesulfonic acid to provide electrostatic repulsion and prevent aggregation. The layer of nanowires in direct contact with the substrate was examined from below using optical microscopy and found to exhibit smectic-like ordering. The extent of smectic ordering depended on nanowire length with the shortest (2 μm) nanowires exhibiting the best ordering. To understand the assembly in this system, we used canonical Monte Carlo simulations to model the two-dimensional ordering of the nanowires on a substrate. We accounted for van der Waals and electrostatic interactions between the nanowires. The simulations reproduced the experimental trends and showed that roughness at the ends of the nanowires, which locally increased electrostatic repulsion, is critical to correctly predicting the experimentally observed smectic ordering. PMID:20544001

  15. Heterojunction photovoltaics using GaAs nanowires and conjugated polymers.

    PubMed

    Ren, Shenqiang; Zhao, Ni; Crawford, Samuel C; Tambe, Michael; Bulović, Vladimir; Gradecak, Silvija

    2011-02-09

    We demonstrate an organic/inorganic solar cell architecture based on a blend of poly(3-hexylthiophene) (P3HT) and narrow bandgap GaAs nanowires. The measured increase of device photocurrent with increased nanowire loading is correlated with structural ordering within the active layer that enhances charge transport. Coating the GaAs nanowires with TiO(x) shells passivates nanowire surface states and further improves the photovoltaic performance. We find that the P3HT/nanowire cells yield power conversion efficiencies of 2.36% under white LED illumination for devices containing 50 wt % of TiO(x)-coated GaAs nanowires. Our results constitute important progress for the use of nanowires in large area solution processed hybrid photovoltaic cells and provide insight into the role of structural ordering in the device performance.

  16. Zinc oxide nanowire interphase for enhanced interfacial strength in lightweight polymer fiber composites.

    PubMed

    Ehlert, Gregory J; Sodano, Henry A

    2009-08-01

    A novel functionalization method for aramid fibers is developed to enhance the bonding of a ZnO nanowire interphase grown on the fiber surface for interfacial strength enhancement. The nanowire interphase functionally grades the typically discrete interface and reduces the stress concentration between the fiber and matrix. The functionalization process is developed to improve the bonding between the ZnO nanowires and the aramid fiber and is validated through Fourier transform IR and X-ray photoelectron spectroscopy studies. Mechanical testing shows significant improvement in the interfacial shear strength with no decrease in the base fiber strength. This is the only technique found in the literature for the growth of a nanowire interphase on polymer fibers for structural enhancement without degrading the in-plane properties of the bulk composite. Furthermore, it is firmly shown that the functionalization process is a necessary condition for enhanced interfacial strength, demonstrating that ZnO nanowires strongly interact with carboxylic acid functional groups.

  17. Nanowires and Nanostructures That Grow Like Polymer Molecules

    SciTech Connect

    Shaw, Santosh; Cademartiri, Ludovico

    2013-09-20

    Unique properties (e.g., rubber elasticity, viscoelasticity, folding, reptation) determine the utility of polymer molecules and derive from their morphology (i.e., one-dimensional connectivity and large aspect ratios) and flexibility. Crystals do not display similar properties because they have smaller aspect ratios, they are rigid, and they are often too large and heavy to be colloidally stable. We argue, with the support of recent experimental studies, that these limitations are not fundamental and that they might be overcome by growth processes that mimic polymerization. Furthermore, we (i) discuss the similarities between crystallization and polymerization, (ii) critically review the existing experimental evidence of polymer-like growth kinetic and behavior in crystals and nanostructures, and (iii) propose heuristic guidelines for the synthesis of “polymer-like” crystals and assemblies. Understanding these anisotropic materials at the boundary between molecules and solids will determine whether we can confer the unique properties of polymer molecules to crystals, expanding them with topology, dynamics, and information and not just tuning them with size.

  18. Ultraviolet photodetection of flexible ZnO nanowire sheets in polydimethylsiloxane polymer

    PubMed Central

    Motta, Nunzio; Lee, Soonil

    2012-01-01

    Summary ZnO nanowires are normally exposed to an oxygen atmosphere to achieve high performance in UV photodetection. In this work we present results on a UV photodetector fabricated using a flexible ZnO nanowire sheet embedded in polydimethylsiloxane (PDMS), a gas-permeable polymer, showing reproducible UV photoresponse and enhanced photoconduction. PDMS coating results in a reduced response speed compared to that of a ZnO nanowire film in air. The rising speed is slightly reduced, while the decay time is prolonged by about a factor of four. We conclude that oxygen molecules diffusing in PDMS are responsible for the UV photoresponse. PMID:23016139

  19. Metal-conductive polymer hybrid nanostructures: preparation and electrical properties of palladium-polyimidazole nanowires

    NASA Astrophysics Data System (ADS)

    Al-Hinai, Mariam; Hassanien, Reda; Watson, Scott M. D.; Wright, Nicholas G.; Houlton, Andrew; Horrocks, Benjamin R.

    2016-03-01

    A simple, convenient method for the formation of hybrid metal/conductive polymer nanostructures is described. Polyimidazole (PIm) has been templated on λ-DNA via oxidative polymerisation of imidazole using FeCl3 to produce conductive PIm/DNA nanowires. The PIm/DNA nanowires were decorated with Pd (Pd/PIm/DNA) by electroless reduction of {{{{PdCl}}}4}2- with NaBH4 in the presence of PIm/DNA; the choice of imidazole was motivated by the potential Pd(II) binding site at the pyridinic N atom. The formation of PIm/DNA and the presence of metallic Pd on Pd/PIm/DNA nanowires were verified by FTIR, UV-vis and XPS spectroscopy techniques. AFM studies show that the nanowires have diameters in the range 5-45 nm with a slightly greater mean diameter (17.1 ± 0.75 nm) for the Pd-decorated nanowires than the PIm/DNA nanowires (14.5 ± 0.89 nm). After incubation for 24 h in the polymerisation solution, the PIm/DNA nanowires show a smooth, uniform morphology, which is retained after decoration with Pd. Using a combination of scanned conductance microscopy, conductive AFM and two-terminal measurements we show that both types of nanowire are conductive and that it is possible to discriminate different possible mechanisms of transport. The conductivity of the Pd/PIm/DNA nanowires, (0.1-1.4 S cm-1), is comparable to the PIm/DNA nanowires (0.37 ± 0.029 S cm-1). In addition, the conductance of Pd/PIm/DNA nanowires exhibits Arrhenius behaviour (E a = 0.43 ± 0.02 eV) as a function of temperature in contrast to simple Pd/DNA nanowires. These results indicate that although the Pd crystallites on Pd/PIm/DNA nanowires decorate the PIm polymer, the major current pathway is through the polymer rather than the Pd.

  20. Metal-conductive polymer hybrid nanostructures: preparation and electrical properties of palladium-polyimidazole nanowires.

    PubMed

    Al-Hinai, Mariam; Hassanien, Reda; Watson, Scott M D; Wright, Nicholas G; Houlton, Andrew; Horrocks, Benjamin R

    2016-03-04

    A simple, convenient method for the formation of hybrid metal/conductive polymer nanostructures is described. Polyimidazole (PIm) has been templated on λ-DNA via oxidative polymerisation of imidazole using FeCl3 to produce conductive PIm/DNA nanowires. The PIm/DNA nanowires were decorated with Pd (Pd/PIm/DNA) by electroless reduction of PdCl4(-2) with NaBH4 in the presence of PIm/DNA; the choice of imidazole was motivated by the potential Pd(II) binding site at the pyridinic N atom. The formation of PIm/DNA and the presence of metallic Pd on Pd/PIm/DNA nanowires were verified by FTIR, UV-vis and XPS spectroscopy techniques. AFM studies show that the nanowires have diameters in the range 5-45 nm with a slightly greater mean diameter (17.1 ± 0.75 nm) for the Pd-decorated nanowires than the PIm/DNA nanowires (14.5 ± 0.89 nm). After incubation for 24 h in the polymerisation solution, the PIm/DNA nanowires show a smooth, uniform morphology, which is retained after decoration with Pd. Using a combination of scanned conductance microscopy, conductive AFM and two-terminal measurements we show that both types of nanowire are conductive and that it is possible to discriminate different possible mechanisms of transport. The conductivity of the Pd/PIm/DNA nanowires, (0.1-1.4 S cm(-1)), is comparable to the PIm/DNA nanowires (0.37 ± 0.029 S cm(-1)). In addition, the conductance of Pd/PIm/DNA nanowires exhibits Arrhenius behaviour (E(a )= 0.43 ± 0.02 eV) as a function of temperature in contrast to simple Pd/DNA nanowires. These results indicate that although the Pd crystallites on Pd/PIm/DNA nanowires decorate the PIm polymer, the major current pathway is through the polymer rather than the Pd.

  1. Room Temperature Sensing Achieved by GaAs Nanowires and oCVD Polymer Coating.

    PubMed

    Wang, Xiaoxue; Ermez, Sema; Goktas, Hilal; Gradečak, Silvija; Gleason, Karen

    2017-04-13

    Novel structures comprised of GaAs nanowire arrays conformally coated with conducting polymers (poly(3,4-ethylenedioxythiophene) (PEDOT) or poly(3,4-ethylenedioxythiophene-co-3-thiophene acetic acid) display both sensitivity and selectivity to a variety of volatile organic chemicals. A key feature is room temperature operation, so that neither a heater nor the power it would consume, is required. It is a distinct difference from traditional metal oxide sensors, which typically require elevated operational temperature. The GaAs nanowires are prepared directly via self-seeded metal-organic chemical deposition, and conducting polymers are deposited on GaAs nanowires using oxidative chemical vapor deposition (oCVD). The range of thickness for the oCVD layer is between 100 and 200 nm, which is controlled by changing the deposition time. X-ray diffraction analysis indicates an edge-on alignment of the crystalline structure of the PEDOT coating layer on GaAs nanowires. In addition, the positive correlation between the improvement of sensitivity and the increasing nanowire density is demonstrated. Furthermore, the effect of different oCVD coating materials is studied. The sensing mechanism is also discussed with studies considering both nanowire density and polymer types. Overall, the novel structure exhibits good sensitivity and selectivity in gas sensing, and provides a promising platform for future sensor design.

  2. Improved Lithium Ionic Conductivity in Composite Polymer Electrolytes with Oxide-Ion Conducting Nanowires.

    PubMed

    Liu, Wei; Lin, Dingchang; Sun, Jie; Zhou, Guangmin; Cui, Yi

    2016-12-27

    Solid Li-ion electrolytes used in all-solid-state lithium-ion batteries (LIBs) are being considered to replace conventional liquid electrolytes that have leakage, flammability, and poor chemical stability issues, which represents one major challenge and opportunity for next-generation high-energy-density batteries. However, the low mobility of lithium ions in solid electrolytes limits their practical applications. Here, we report a solid composite polymer electrolyte with Y2O3-doped ZrO2 (YSZ) nanowires that are enriched with positive-charged oxygen vacancies. The morphologies and ionic conductivities have been studied systemically according to concentration of Y2O3 dopant in the nanowires. In comparison to the conventional filler-free electrolyte with a conductivity of 3.62 × 10(-7) S cm(-1), the composite polymer electrolytes with the YSZ nanowires show much higher ionic conductivity. It indicates that incorporation of 7 mol % of Y2O3-doped ZrO2 nanowires results in the highest ionic conductivity of 1.07 × 10(-5) S cm(-1) at 30 °C. This conductivity enhancement originates from the positive-charged oxygen vacancies on the surfaces of the nanowires that could associate with anions and then release more Li ions. Our work demonstrates a composite polymer electrolyte with oxygen-ion conductive nanowires that could address the challenges of all-solid-state LIBs.

  3. Polymer and biopolymer mediated self-assembly of gold nanoparticles.

    PubMed

    Ofir, Yuval; Samanta, Bappaditya; Rotello, Vincent M

    2008-09-01

    Gold nanoparticle-polymer composites are versatile and diverse functional materials, with applications in optical, electronic and sensing devices. This tutorial review focuses on the use of polymers to control the assembly of gold nanoparticles. Examples of synthetic polymers and biopolymers are provided, as well as applications of the composite materials in sensing and memory devices.

  4. Conducting polymer nanowires for control of local protein concentration in solution

    NASA Astrophysics Data System (ADS)

    Morris, Joshua D.; Thourson, Scott B.; Panta, Krishna R.; Flanders, Bret N.; Payne, Christine K.

    2017-05-01

    Interfacing devices with cells and tissues requires new nanoscale tools that are both flexible and electrically active. We demonstrate the use of PEDOT:PSS conducting polymer nanowires for the local control of protein concentration in water and biological media. We use fluorescence microscopy to compare the localization of serum albumin in response to electric fields generated by narrow (760 nm) and wide (1.5 µm) nanowires. We show that proteins in deionized water can be manipulated over a surprisingly large micron length scale and that this distance is a function of nanowire diameter. In addition, white noise can be introduced during the electrochemical synthesis of the nanowire to induce branches into the nanowire allowing a single device to control multiple nanowires. An analysis of growth speed and current density suggests that branching is due to the Mullins-Sekerka instability, ultimately controlled by the roughness of the nanowire surface. These small, flexible, conductive, and biologically compatible PEDOT:PSS nanowires provide a new tool for the electrical control of biological systems.

  5. Enhancing ionic conductivity in composite polymer electrolytes with well-aligned ceramic nanowires

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Lee, Seok Woo; Lin, Dingchang; Shi, Feifei; Wang, Shuang; Sendek, Austin D.; Cui, Yi

    2017-04-01

    In contrast to conventional organic liquid electrolytes that have leakage, flammability and chemical stability issues, solid electrolytes are widely considered as a promising candidate for the development of next-generation safe lithium-ion batteries. In solid polymer electrolytes that contain polymers and lithium salts, inorganic nanoparticles are often used as fillers to improve electrochemical performance, structure stability, and mechanical strength. However, such composite polymer electrolytes generally have low ionic conductivity. Here we report that a composite polymer electrolyte with well-aligned inorganic Li+-conductive nanowires exhibits an ionic conductivity of 6.05 × 10-5 S cm-1 at 30 ∘C, which is one order of magnitude higher than previous polymer electrolytes with randomly aligned nanowires. The large conductivity enhancement is ascribed to a fast ion-conducting pathway without crossing junctions on the surfaces of the aligned nanowires. Moreover, the long-term structural stability of the polymer electrolyte is also improved by the use of nanowires.

  6. Polymer chain alignment and transistor properties of nanochannel-templated poly(3-hexylthiophene) nanowires

    NASA Astrophysics Data System (ADS)

    Oh, Seungjun; Hayakawa, Ryoma; Pan, Chengjun; Sugiyasu, Kazunori; Wakayama, Yutaka

    2016-08-01

    Nanowires of semiconducting poly(3-hexylthiophene) (P3HT) were produced by a nanochannel-template technique. Polymer chain alignment in P3HT nanowires was investigated as a function of nanochannel widths (W) and polymer chain lengths (L). We found that the ratio between chain length and channel width (L/W) was a key parameter as regards promoting polymer chain alignment. Clear dichroism was observed in polarized ultraviolet-visible (UV-Vis) absorption spectra only at a ratio of approximately L/W = 2, indicating that the L/W ratio must be optimized to achieve uniaxial chain alignment in the nanochannel direction. We speculate that an appropriate L/W ratio is effective in confining the geometries and conformations of polymer chains. This discussion was supported by theoretical simulations based on molecular dynamics. That is, the geometry of the polymer chains, including the distance and tilting angles of the chains in relation to the nanochannel surface, was dominant in determining the longitudinal alignment along the nanochannels. Thus prepared highly aligned polymer nanowire is advantageous for electrical carrier transport and has great potential for improving the device performance of field-effect transistors. In fact, a one-order improvement in carrier mobility was observed in a P3HT nanowire transistor.

  7. Assembly of Poly(3-hexylthiophene)/CdSe Hybrid Nanowires by Cocrystallization

    SciTech Connect

    Bokel, Felica A.; Sudeep, P. K.; Pentzer, Emily; Emrick, Todd; Hayward, Ryan C.

    2011-04-12

    We present a new method to preorganize electron donor and acceptor materials into hybrid nanowire structures, enabled by crystallization of regioregular poly(3-hexylthiophene) (rrP3HT) in solution in the presence of CdSe nanorods functionalized with the same polymer. These well-organized nanocomposite fibers are potentially attractive building blocks for optoelectronic devices and active layers in photovoltaics.

  8. Electric conductivity-tunable transparent flexible nanowire-filled polymer composites: orientation control of nanowires in a magnetic field.

    PubMed

    Nagai, Takayuki; Aoki, Nobuyuki; Ochiai, Yuichi; Hoshino, Katsuyoshi

    2011-07-01

    Cobalt compound nanowires were dispersed in a transparent nonconductive polymer film by merely stirring, and the film's transparency and electrical conductivity were examined. This composite film is a unique system in which the average length of the nanowires exceeds the film's thickness. Even in such a system, a percolation threshold existed for the electric conductivity in the direction of the film thickness, and the value was 0.18 vol%. The electric conductivity value changed from ∼1 × 10(-12) S/cm to ∼1 × 10(-3) S/cm when the volume fraction exceeded the threshold. The electric conductivity apparently followed the percolation model until the volume fraction of the nanowires was about 0.45 vol %. The visible light transmission and electric conductivity of the composite film of about 1 vol % nanowires were 92% and 5 × 10(-3) S/cm, respectively. Moreover, the electric conductivity in the direction parallel to the film surface did not depend on the amount of the dispersed nanowires, and its value was about 1 × 10(-14) S/cm. Even in a weak magnetic field of about 100 mT, the nanowires were aligned in a vertical and parallel direction to the film surface, and the electric conductivity of each aligned composite film was 2.0 × 10(-2) S/cm and 2.1 × 10(-12) S/cm. The relation between the average wire length and the electric conductivity was examined, and the effect of the magnetic alignment on that relation was also examined.

  9. Conductive Polymer Nanowire Gas Sensor Fabricated by Nanoscale Soft Lithography.

    PubMed

    Tang, Ning; Jiang, Yang; Qu, Hemi; Duan, Xuexin

    2017-10-02

    Resistive devices composed of one dimensional nanostructures are promising candidate for next generation gas sensors. However, the large-scale fabrication of nanowires is still a challenge, restricting the commercialization of such type of devices. Here, we reported a highly efficient and facile approach to fabricate poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) nanowire chemiresistive type of gas sensor by nanoscale soft lithography. Well-defined sub-100 nm nanowires are fabricated on silicon substrate which facilitates the device integration. The nanowire chemiresistive gas sensor is demonstrated for NH3 and NO2 detection at room-temperature and shows a limit of detection at ppb level which is compatible with nanoscale PEDOT:PSS gas sensors fabricated with conventional lithography technique. In comparison with PEDOT:PSS thin film gas sensor, the nanowire gas sensor exhibits a higher sensitivity and much faster response to gas molecules. © 2017 IOP Publishing Ltd.

  10. Fabrication of Highly Ordered Polymeric Nanodot and Nanowire Arrays Templated by Supramolecular Assembly Block Copolymer Nanoporous Thin Films.

    PubMed

    Liu, Xikui; Stamm, Manfred

    2009-02-19

    Realizing the vast technological potential of patternable block copolymers requires both the precise controlling of the orientation and long-range ordering, which is still a challenging topic so far. Recently, we have demonstrated that ordered nanoporous thin film can be fabricated from a simple supramolecular assembly approach. Here we will extend this approach and provide a general route to fabricate large areas of highly ordered polymeric nanodot and nanowire arrays. We revealed that under a mixture solvent annealing atmosphere, a near-defect-free nanoporous thin film over large areas can be achieved. Under the direction of interpolymer hydrogen bonding and capillary action of nanopores, this ordered porous nanotemplate can be properly filled with phenolic resin precursor, followed by curation and pyrolysis at middle temperature to remove the nanotemplate, a perfect ordered polymer nanodot arrays replication was obtained. The orientation of the supramolecular assembly thin films can be readily re-aligned parallel to the substrate upon exposure to chloroform vapor, so this facile nanotemplate replica method can be further extend to generate large areas of polymeric nanowire arrays. Thus, we achieved a successful sub-30 nm patterns nanotemplates transfer methodology for fabricating polymeric nanopattern arrays with highly ordered structure and tunable morphologies.

  11. Photonic DNA-Chromophore Nanowire Networks: Harnessing Multiple Supramolecular Assembly Modes

    PubMed Central

    Zhang, Nan; Chu, Xiaozhu; Fathalla, Maher; Jayawickramarajah, Janarthanan

    2013-01-01

    Photonic DNA nanostructures are typically prepared by the assembly of multiple sequences of long DNA strands that are conjugated covalently to various dye molecules. Herein we introduce a non-covalent method for the construction of porphyrin-containing DNA nanowires and their networks that uses the programmed assembly of a single, very short, oligodeoxyribonucleotide sequence. Specifically, our strategy exploits a number of supramolecular binding modalities (including DNA base-pairing, metal-ion coordination, and β-cyclodextrin-adamantane derived host-guest interactions) for simultaneous nanowire assembly and porphyrin incorporation. Furthermore, we also show that the resultant DNA-porphyrin assembly can be further functionalized with a complementary “off-the-shelf” DNA binding dye resulting in photonic structures with broadband absorption and energy transfer capabilities. PMID:23895408

  12. Grooved nanowires from self-assembling hairpin molecules for solar cells.

    PubMed

    Tevis, Ian D; Tsai, Wei-Wen; Palmer, Liam C; Aytun, Taner; Stupp, Samuel I

    2012-03-27

    One of the challenges facing bulk heterojunction organic solar cells is obtaining organized films during the phase separation of intimately mixed donor and acceptor components. We report here on the use of hairpin-shaped sexithiophene molecules to generate by self-assembly grooved nanowires as the donor component in bulk heterojunction solar cells. Photovoltaic devices were fabricated via spin-casting to produce by solvent evaporation a percolating network of self-assembled nanowires and fullerene acceptors. Thermal annealing was found to increase power conversion efficiencies by promoting domain growth while still maintaining this percolating network of nanostructures. The benefits of self-assembly and grooved nanowires were examined by building devices from a soluble sexithiophene derivative that does not form one-dimensional structures. In these systems, excessive phase separation caused by thermal annealing leads to the formation of defects and lower device efficiencies. We propose that the unique hairpin shape of the self-assembling molecules allows the nanowires as they form to interact well with the fullerenes in receptor-ligand type configurations at the heterojunction of the two domains, thus enhancing device efficiencies by 23%.

  13. Development of Hierarchical Polymer@Pd Nanowire-Network: Synthesis and Application as Highly Active Recyclable Catalyst and Printable Conductive Ink.

    PubMed

    Mir, Sajjad Husain; Ochiai, Bungo

    2016-06-01

    A facile one-pot approach for preparing hierarchical nanowire-networks of hollow polymer@Pd nanospheres is reported. First, polymer@Pd hollow nanospheres were produced through metal-complexation-induced phase separation with functionalized graft copolymers and subsequent self-assembly of PdNPs. The nanospheres hierarchically assembled into the nanowire-network upon drying. The Pd nanowire-network served as an active catalyst for Mizoroki-Heck and Suzuki-Miyaura coupling reactions. As low as 500 μmol % Pd was sufficient for quantitative reactions, and the origin of the high activity is ascribed to the highly active sites originating from high-index facets, kinks, and coalesced structures. The catalyst can be recycled via simple filtration and washing, maintaining its high activity owing to the micrometer-sized hierarchical structure of the nanomaterial. The polymer@Pd nanosphere also served as a printable conductive ink for a translucent grid pattern with excellent horizontal conductivity (7.5×10(5) S m(-1)).

  14. Impact of a polystyrene-based passivating interlayer on hybrid polymer/ZnO nanowire heterojunctions

    NASA Astrophysics Data System (ADS)

    Bley, S.; Castro-Carranza, A.; Tansey, E.; Seemann, W.; Gutowski, J.

    2017-06-01

    To improve the quality of hybrid p-polymer/n-zinc oxide (ZnO) nanowire heterojunctions a thin polystyrene (PS)-based passivating interlayer is deposited on plain aqueous-chemically grown ZnO nanowires by spin coating. The structural investigation of the PS-coated nanowires via scanning electron microscopy shows that the concentration of PS in the solution affects the thickness of the PS layer. For vertically aligned nanowires a concentration of 0.125 g in 10 ml toluene is needed to get thin homogeneous passivating layers. Photoluminescence measurements of the PS-coated nanowires show a decrease of the deep-level emission depending on the PS concentration which indicates a passivation on the nanowire surface without affecting the general optical properties of the ZnO. Current-voltage characteristics of these samples show a decreased hysteresis and an increased current with decreasing PS concentration/PS layer thickness. However, a reasonably thin layer reduces the tunnelling through trap states of the ZnO nanowires.

  15. Ultra long SiC nanowires with fluctuating diameters synthesized in a polymer pyrolysis CVD route

    NASA Astrophysics Data System (ADS)

    Li, Gong-Yi; Li, Xiao-Dong; Wang, Hao; Liu, Lin

    2009-12-01

    Large areas of millimeters long β-SiC nanowires with fluctuating diameters were synthesized in a polymer pyrolysis CVD (PPCVD) route. Polycarbosilane was used as the raw material. The morphology and structure of the nanowires were investigated by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The results showed that the nanowires had non-periodically fluctuating diameters in the range of 100-250 nm along the axial direction, and were composed of well crystalline β-SiC along the <111> direction. The vapor-solid (VS) mechanism was employed to interpret the nanowires growth procedure, and the diameter fluctuation was resulted from the varying concentration of the local silane fragments.

  16. Self-assembled single-crystal ferromagnetic iron nanowires formed by decomposition.

    PubMed

    Mohaddes-Ardabili, L; Zheng, H; Ogale, S B; Hannoyer, B; Tian, W; Wang, J; Lofland, S E; Shinde, S R; Zhao, T; Jia, Y; Salamanca-Riba, L; Schlom, D G; Wuttig, M; Ramesh, R

    2004-08-01

    Arrays of perpendicular ferromagnetic nanowires have recently attracted considerable interest for their potential use in many areas of advanced nanotechnology. We report a simple approach to create self-assembled nanowires of alpha-Fe through the decomposition of a suitably chosen perovskite. We illustrate the principle behind this approach using the reaction 2La(0.5)Sr(0.5)FeO(3) --> LaSrFeO(4) + Fe + O(2) that occurs during the deposition of La(0.5)Sr(0.5)FeO(3) under reducing conditions. This leads to the spontaneous formation of an array of single-crystalline alpha-Fe nanowires embedded in LaSrFeO(4) matrix, which grow perpendicular to the substrate and span the entire film thickness. The diameter and spacing of the nanowires are controlled directly by deposition temperature. The nanowires show uniaxial anisotropy normal to the film plane and magnetization close to that of bulk alpha-Fe. The high magnetization and sizable coercivity of the nanowires make them desirable for high-density data storage and other magnetic-device applications.

  17. Nanostructured photovoltaic materials using block polymer assemblies

    NASA Astrophysics Data System (ADS)

    Mastroianni, Sarah Elizabeth

    Despite its potential as an abundant, sustainable alternative to non-renewable energy sources, solar energy currently is underutilized. Photovoltaics, which convert energy from sunlight into electricity, commonly are made from inorganic semiconductor materials that require expensive manufacturing and processing techniques. Alternatively, organic materials can be used to produce flexible and lightweight organic photovoltaic (OPV) devices, which can be prepared using solution-based processing techniques. However, OPV devices are limited by low efficiencies and short lifetimes compared to their inorganic counterparts. In OPV systems, charge carriers are generated in the active layer via the separation of excitons (electron-hole pairs) at interfaces between donor and acceptor materials. Because excitons have a limited diffusion length (˜10 nm), they may recombine before reaching a donor-acceptor interface if domain sizes are large. This exciton recombination can limit device efficiency; thus, the design parameters for improved active layer morphologies include large interfacial areas, small size scales, and continuous conducting pathways. Currently, most OPV devices are prepared by blending donor and acceptor materials in bulk heterojunction (BHJ) devices, often resulting in non-ideal, process-dependent morphologies. Alternatively, the self-assembly of block polymers (BP)s offers a reproducible means to generate nanostructured active layers. The work presented in this dissertation examines the synthetic approaches to preparing BPs containing different electroactive materials: non-conjugated, amorphous poly(vinyl-m-triphenylamine) [PVmTPA] and conjugated poly(3-alkythiophene) [P3AT] p-type materials as well as fullerene-based n-type materials. The synthesis and self-assembly of a model poly(methyl methacrylate)- b-PVmTPA system is presented. This work was extended to synthesize PVmTPA BPs with complementary poly(methyl methacrylate- co-hydroxyethyl methacrylate) [P

  18. Carbonaceous nanowire supports for polymer electrolyte membrane fuel cells

    DOE PAGES

    Garzon, Fernando H.; Wilson, Mahlon S.; Banham, Dustin; ...

    2015-12-03

    Here, carbohydrate-dye combinations were used to form ionically-linked soft templates for the formation of polypyrrole nanowire networks. High yields of nanostructured products were obtained using small amounts of low-cost carbohydrate and dye template materials, the majority of which remained encapsulated within the nanowires. Varying the concentration and the two-part ratio of the templates influenced the length and diameter of the nanofiber segments within the nanowire network. Pyrolysis of the nanowires yielded carbonaceous fibers containing nitrogen heteroatoms, as well as convoluted graphitic domains, well suited for supporting Pt nanoparticles. The resulting high density of nucleation sites enabled the formation of wellmore » dispersed, smaller Pt particles compared to commercial catalysts, despite significantly higher support surface loadings.« less

  19. Carbonaceous nanowire supports for polymer electrolyte membrane fuel cells

    SciTech Connect

    Garzon, Fernando H.; Wilson, Mahlon S.; Banham, Dustin; Ye, Siyu; More, Karren Leslie

    2015-12-03

    Here, carbohydrate-dye combinations were used to form ionically-linked soft templates for the formation of polypyrrole nanowire networks. High yields of nanostructured products were obtained using small amounts of low-cost carbohydrate and dye template materials, the majority of which remained encapsulated within the nanowires. Varying the concentration and the two-part ratio of the templates influenced the length and diameter of the nanofiber segments within the nanowire network. Pyrolysis of the nanowires yielded carbonaceous fibers containing nitrogen heteroatoms, as well as convoluted graphitic domains, well suited for supporting Pt nanoparticles. The resulting high density of nucleation sites enabled the formation of well dispersed, smaller Pt particles compared to commercial catalysts, despite significantly higher support surface loadings.

  20. Compliant silver nanowire-polymer composite electrodes for bistable large strain actuation.

    PubMed

    Yun, Sungryul; Niu, Xiaofan; Yu, Zhibin; Hu, Weili; Brochu, Paul; Pei, Qibing

    2012-03-08

    A new compliant electrode-based on silver nanowire-polymer composite has been developed. The composite electrode has low sheet resistance (as low as 10 Ω/sq), remains conductive (10(2) -10(3) Ω/sq) at strains as high as 140%, and can support Joule heating. The combination of the composite and a bistable electroactive polymer produces electrically-induced, large-strain actuation and relaxation, reversibly without the need of mechanical programming.

  1. Dynamic self-assembly of coordination polymers in aqueous solution.

    PubMed

    Li, Wen; Kim, Yongju; Li, Jingfang; Lee, Myongsoo

    2014-08-07

    The construction of supramolecular polymers has been intensively pursued because the nanostructures formed through weak non-covalent interactions can be triggered by external stimuli leading to smart materials and sensors. Self-assemblies of coordination polymers consisting of metal ions and organic ligands in aqueous solution also provide particular contributions in this area. The main motivation for developing those coordination polymers originates from the value-added combination between metal ions and ligands. This review highlights the recent progress of the dynamic self-assembly of coordination polymers that result from the sophisticated molecular design, towards fabricating stimuli-responsive systems and bio-related materials. Dynamic structural changes and switchable physical properties triggered by various stimuli are summarized. Finally, the outlook for aqueous nanostructures originated from the dynamic self-assembly of coordination polymers is also presented.

  2. Self-assembly of biofunctional polymer on graphene nanoribbons.

    PubMed

    Reuven, Darkeyah G; Suggs, Kelvin; Williams, Michael D; Wang, Xiao-Qian

    2012-02-28

    Graphene's adhesive properties owing to inherent van der Waals interactions become increasingly relevant in the nanoscale regime. Polymer self-assembly via graphene-mediated noncovalent interactions offers a powerful tool for the creation of anisotropic nanopatterned systems. Here, we report the supramolecular self-assembly of biofunctional-modified poly(2-methoxystyrene) on graphene nanoribbons prepared by unzipping multiwalled carbon nanotubes. This approach promotes the glycol-modified polymer to self-assemble into structured nanopatterns with preserved bioactivity. The self-assembly is attributed to enhanced van der Waals interactions and the associated charge transfer from polymer to graphene. These findings demonstrate that the assembly yields a prospective route to novel nanomaterial systems.

  3. Self-assembled quantum dots in a nanowire system for quantum photonics.

    PubMed

    Heiss, M; Fontana, Y; Gustafsson, A; Wüst, G; Magen, C; O'Regan, D D; Luo, J W; Ketterer, B; Conesa-Boj, S; Kuhlmann, A V; Houel, J; Russo-Averchi, E; Morante, J R; Cantoni, M; Marzari, N; Arbiol, J; Zunger, A; Warburton, R J; Fontcuberta i Morral, A

    2013-05-01

    Quantum dots embedded within nanowires represent one of the most promising technologies for applications in quantum photonics. Whereas the top-down fabrication of such structures remains a technological challenge, their bottom-up fabrication through self-assembly is a potentially more powerful strategy. However, present approaches often yield quantum dots with large optical linewidths, making reproducibility of their physical properties difficult. We present a versatile quantum-dot-in-nanowire system that reproducibly self-assembles in core-shell GaAs/AlGaAs nanowires. The quantum dots form at the apex of a GaAs/AlGaAs interface, are highly stable, and can be positioned with nanometre precision relative to the nanowire centre. Unusually, their emission is blue-shifted relative to the lowest energy continuum states of the GaAs core. Large-scale electronic structure calculations show that the origin of the optical transitions lies in quantum confinement due to Al-rich barriers. By emitting in the red and self-assembling on silicon substrates, these quantum dots could therefore become building blocks for solid-state lighting devices and third-generation solar cells.

  4. Molecular Recognition Directed Self-Assembly of Supramolecular Polymers

    DTIC Science & Technology

    1994-06-30

    SUPRAMOLECULAR POLYMERS by V. Percec, J. Heck, G. Johansson, D. Tomazos, M. Kawasumi and G. Ungar Published in the J. Macromol. SOi: Part A: Pure...W.asetaqIom OC JOS0l 4 TITE AN SUBITLES. FUNDING NUMBERS Molecular Recognition Directed Self-Assembly of Suprainolecular Polymers N00014-89--J-1828 6. AUTHOR(S...comparison between various supramolecular (generated via H-bonding, iions) and molecular " polymer backbones" will be made. The present limitations

  5. Symposium LL: Nanowires--Synthesis Properties Assembly and Application

    DTIC Science & Technology

    2010-09-10

    Temperature Growth of Silicon Nanowires using a Copper Catalyst. Vincent Thomas Renard and Vincent Jousseaume; Leti, CEA, Grenoble, France. Metal...the solid phase below the eutectic temperature [5,6]. We show that Copper , which is rarely used as a catalyst for SiNWs [7,8], is a good candidate for...process. The success of growing SiNWs using a Copper catalyst at low temperature opens up new opportunities in terms of applications, in particular in

  6. Magnetic and structural properties of electrochemically self-assembled Fe1-xCox nanowires.

    PubMed

    Menon, L; Bandyopadhyay, S; Liu, Y; Zeng, H; Sellmyer, D J

    2001-06-01

    Fe1-xCox (0 < or = x < or = 1) nanowires have been self-assembled by electrodeposition in porous alumina films. The crystal structure is bee at the Fe end. With increased addition of Co, the crystal structure remains bcc until about 67% addition of Co. At the Co end, the structure is a mixture of hcp and fcc. Magnetic studies show very high coercivities for the Fe-Co alloys in the bcc phase. For Fe0.67Co0.33 nanowires of diameter 9 nm, the coercivity is about 2900 Oe, whereas for Fe0.33Co0.67 nanowires, it is about 2850 Oe. Temperature and size dependence of magnetic properties show no indication of superparamagnetic effects down to wire diameters of 9 nm.

  7. Self-Assembly of Silver Nanowire Ring Structures Driven by the Compressive Force of a Liquid Droplet.

    PubMed

    Seong, Baekhoon; Park, Hyun Sung; Chae, Ilkyeong; Lee, Hyungdong; Wang, Xiaofeng; Jang, Hyung-Seok; Jung, Jaehyuck; Lee, Changgu; Lin, Liwei; Byun, Doyoung

    2017-04-11

    In a nanowire dispersed in liquid droplets, the interplay between the surface tension of the liquid and the elasticity of the nanowire determines the final morphology of the bent or buckled nanowire. Here, we investigate the fabrication of a silver nanowire ring generated as the nanowire encapsulated inside of fine droplets. We used a hybrid aerodynamic and electrostatic atomization method to ensure the generation of droplets with scalable size in the necessary regime for ring formation. We analytically calculate the compressive force of the droplet driven by surface tension as the key mechanism for the self-assembly of ring structures. Thus, for potential large-scale manufacturing, the droplet size provides a convenient parameter to control the realization of ring structures from nanowires.

  8. Titanium dioxide nanowire sensor array integration on CMOS platform using deterministic assembly.

    PubMed

    Gall, Oren Z; Zhong, Xiahua; Schulman, Daniel S; Kang, Myungkoo; Razavieh, Ali; Mayer, Theresa S

    2017-06-30

    Nanosensor arrays have recently received significant attention due to their utility in a wide range of applications, including gas sensing, fuel cells, internet of things, and portable health monitoring systems. Less attention has been given to the production of sensor platforms in the μW range for ultra-low power applications. Here, we discuss how to scale the nanosensor energy demand by developing a process for integration of nanowire sensing arrays on a monolithic CMOS chip. This work demonstrates an off-chip nanowire fabrication method; subsequently nanowires link to a fused SiO2 substrate using electric-field assisted directed assembly. The nanowire resistances shown in this work have the highest resistance uniformity reported to date of 18%, which enables a practical roadmap towards the coupling of nanosensors to CMOS circuits and signal processing systems. The article also presents the utility of optimizing annealing conditions of the off-chip metal-oxides prior to CMOS integration to avoid limitations of thermal budget and process incompatibility. In the context of the platform demonstrated here, directed assembly is a powerful tool that can realize highly uniform, cross-reactive arrays of different types of metal-oxide nanosensors suited for gas discrimination and signal processing systems.

  9. Titanium dioxide nanowire sensor array integration on CMOS platform using deterministic assembly

    NASA Astrophysics Data System (ADS)

    Gall, Oren Z.; Zhong, Xiahua; Schulman, Daniel S.; Kang, Myungkoo; Razavieh, Ali; Mayer, Theresa S.

    2017-06-01

    Nanosensor arrays have recently received significant attention due to their utility in a wide range of applications, including gas sensing, fuel cells, internet of things, and portable health monitoring systems. Less attention has been given to the production of sensor platforms in the μW range for ultra-low power applications. Here, we discuss how to scale the nanosensor energy demand by developing a process for integration of nanowire sensing arrays on a monolithic CMOS chip. This work demonstrates an off-chip nanowire fabrication method; subsequently nanowires link to a fused SiO2 substrate using electric-field assisted directed assembly. The nanowire resistances shown in this work have the highest resistance uniformity reported to date of 18%, which enables a practical roadmap towards the coupling of nanosensors to CMOS circuits and signal processing systems. The article also presents the utility of optimizing annealing conditions of the off-chip metal-oxides prior to CMOS integration to avoid limitations of thermal budget and process incompatibility. In the context of the platform demonstrated here, directed assembly is a powerful tool that can realize highly uniform, cross-reactive arrays of different types of metal-oxide nanosensors suited for gas discrimination and signal processing systems.

  10. Helically assembled π-conjugated polymers with circularly polarized luminescence

    PubMed Central

    Watanabe, Kazuyoshi; Akagi, Kazuo

    2014-01-01

    We review the recent progress in the field of helically assembled π-conjugated polymers, focusing on aromatic conjugated polymers with interchain helical π-stacking that exhibit circularly polarized luminescence (CPL). In Part 1, we discuss optically active polymers with white-colored CPL and the amplification of the circular polarization through liquid crystallinity. In Part 2, we focus on the stimuli-responsive CPL that results from changes in the conformation and aggregation state of π-conjugated molecules and polymers. In Part 3, we discuss the self-assembly of achiral cationic π-conjugated polymers into circularly polarized luminescent supramolecular nanostructures with the aid of other chiral molecules. PMID:27877698

  11. Nonlinear optical studies of aqueous interfaces, polymers, and nanowires

    NASA Astrophysics Data System (ADS)

    Onorato, Robert Michael

    -transfer-to-solvent band and a Langmuir adsorption model are used to determine the affinity of bromide for both the air/water and dodecanol/water interfaces in the molar concentration regime. The Gibbs free energy of adsorption for the former is determined to be -1.4 kJ/mol with a lower 90% confidence limit of -4.1 kJ/mol. For the dodecanol/water interface the data are best fit with a Gibbs free energy of +8 kJ/mol with an estimated a lower limit of -4 kJ/mol. Adsorption of ions to the air/water interface in the millimolar regime is a particularly interesting phenomenon. In Chapter 4, the affinity of sodium chloride and sodium bromide to the air/water interface is probed by UV-SHG. Both salts exhibit a strong adsorption, with free energies greater than -20 kJ/mol. Interestingly, sodium chloride exhibits a stronger affinity for the interface than does sodium iodide, which was previously studied by Poul Peterson. This is counter to both experimental and theoretical results for higher concentrations. It has been predicted that ion adsorption is dictated by strong and opposing electrostatic and entropic forces. The change in order of ion interfacial affinity can be explained by relatively small changes in these forces at different concentrations and ionic strengths. In Chapters 5 and 6, other work using nonlinear optical techniques is described. Coherent anti-Stokes Raman scattering microscopy is a promising tool for chemically selective imaging based on molecular vibrations. While CARS is currently used as a biological imaging tool, many variations are still being developed, perhaps the most important being multiplex CARS microscopy. Multiplex CARS has the advantage of comparing images based on different molecular vibrations without changing the excitation wavelengths. In Chapter 5, I demonstrate both high spectral and spatial resolution multiplex CARS imaging of polymer films using a simple scheme for chirped CARS with a spectral bandwidth of 300 cm-1. In Chapter 6, the nonlinear optical

  12. Dynamic Ad-Dimer Twisting Assisted Nanowire Self-Assembly on Si(001)

    NASA Astrophysics Data System (ADS)

    Wang, Jian-Tao; Wang, E. G.; Wang, D. S.; Mizuseki, H.; Kawazoe, Y.; Naitoh, M.; Nishigaki, S.

    2005-06-01

    Based on ab initio total energy calculation, we show that a dynamic ad-dimer twisting assisted (DATA) process plays a crucial role in facilitating a novel structural reconstruction involving surface and subsurface atoms on Si(001). It leads to self-assembly of long nanowires of group-V elements (Bi, Sb) in the trenches of surface dimer vacancy lines (DVLs) with a characteristic double-dimer configuration. The key to this is the lowering of the kinetic barrier by the DATA process in conjunction with a favorable interaction between ad-dimers and step edges in DVLs. The present results provide an excellent account for experimental observations and reveal the atomistic origin and the dynamic transformation path for nanowire self-assembly on Si(001).

  13. Self-assembled quantum dot structures in a hexagonal nanowire for quantum photonics.

    PubMed

    Yu, Ying; Dou, Xiu-Ming; Wei, Bin; Zha, Guo-Wei; Shang, Xiang-Jun; Wang, Li; Su, Dan; Xu, Jian-Xing; Wang, Hai-Yan; Ni, Hai-Qiao; Sun, Bao-Quan; Ji, Yuan; Han, Xiao-Dong; Niu, Zhi-Chuan

    2014-05-01

    Two types of quantum nanostructures based on self-assembled GaAs quantumdots embedded into GaAs/AlGaAs hexagonal nanowire systems are reported, opening a new avenue to the fabrication of highly efficient single-photon sources, as well as the design of novel quantum optics experiments and robust quantum optoelectronic devices operating at higher temperature, which are required for practical quantum photonics applications.

  14. Self-assembled DNA nanostructures and DNA-templated silver nanowires

    NASA Astrophysics Data System (ADS)

    Park, Sung Ha

    DNA-based nanotechnology has been attractive as a novel assembly method for fabricating nanostructures for the last two decades. Artificially designed, self-assembled DNA nanostructures have been reported with various geometrical structures and functionalities: one- and two-dimensional periodically patterned structures, three-dimensional polyhedra, nanomechanical devices, molecular computers, and organization of other functionalized molecules. This thesis describes self-assembled DNA nanostructures and DNA-templated metallic nanowires. One- and two-dimensional periodically patterned superstructures, such as filaments, lattices, nanoribbons, nanotracks, and nanogrids, utilizing newly conceived two distinct DNA motifs---three helix bundles, and the cross-tiles as well as synthetic double-stranded DNA molecules---will be discussed with unique design schemes and characteristics. DNA complexes have been visualized by high-resolution tapping mode atomic force microscopy under buffer. Their dimensions are shown to be in excellent agreement with designed structures. We have also presented fabrication of size-controllable, fully addressable, and precisely programmable DNA-based nanomatrices, consisting of two different cross-tiles using a novel stepwise assembly technique. Especially in design and construction of functionalized electronic nanodevices, properly fabricated DNA lattices can serve as a precisely controllable and programmable scaffold for organizing functionalized nanomaterials. DNA-templated metallic nanowires are an example demonstration of DNA molecules' scaffold capability and have been considered an interesting research subject for the last decade. Until recently, mostly native lambda-DNA molecules have been used as template for fabricating various metallic nanowires, such as silver, gold, palladium, platinum, and copper. In this thesis, we also present fabrication of metallic silver nanowires templated on artificially designed one-dimensional DNA

  15. Development of multifunctional fiber reinforced polymer composites through ZnO nanowire arrays

    NASA Astrophysics Data System (ADS)

    Malakooti, Mohammad H.; Patterson, Brendan A.; Hwang, Hyun-Sik; Sodano, Henry A.

    2016-04-01

    Piezoelectric nanowires, in particular zinc oxide (ZnO) nanowires, have been vastly used in the fabrication of electromechanical devices to convert wasted mechanical energy into useful electrical energy. Over recent years, the growth of vertically aligned ZnO nanowires on various structural fibers has led to the development of fiber-based nanostructured energy harvesting devices. However, the development of more realistic energy harvesters that are capable of continuous power generation requires a sufficient mechanical strength to withstand typical structural loading conditions. Yet, a durable, multifunctional material system has not been developed thoroughly enough to generate electrical power without deteriorating the mechanical performance. Here, a hybrid composite energy harvester is fabricated in a hierarchical design that provides both efficient power generating capabilities while enhancing the structural properties of the fiber reinforced polymer composite. Through a simple and low-cost process, a modified aramid fabric with vertically aligned ZnO nanowires grown on the fiber surface is embedded between woven carbon fabrics, which serve as the structural reinforcement as well as the top and the bottom electrodes of the nanowire arrays. The performance of the developed multifunctional composite is characterized through direct vibration excitation and tensile strength examination.

  16. Non-resonant Mie scattering: Emergent optical properties of core-shell polymer nanowires

    PubMed Central

    Khudiyev, Tural; Huseyinoglu, Ersin; Bayindir, Mehmet

    2014-01-01

    We provide the in-depth characterization of light-polymer nanowire interactions in the context of an effective Mie scattering regime associated with low refractive index materials. Properties of this regime sharply contrast with these of resonant Mie scattering, and involve the formation of strictly forward-scattered and coupling-free optical fields in the vicinity of core-shell polymer nanowires. Scattering from these optical fields is shown to be non-resonant in nature and independent from incident polarization. In order to demonstrate the potential utility of this scattering regime in one-dimensional (1D) polymeric nanostructures, we fabricate polycarbonate (PC) - polyvinylidene difluoride (PVDF) core-shell nanowires using a novel iterative thermal drawing process that yields uniform and indefinitely long core-shell nanostructures. These nanowires are successfully engineered for novel nanophotonics applications, including size-dependent structural coloration, efficient light capture on thin-film solar cells, optical nano-sensors with ultrahigh sensitivity and a mask-free photolithography method suitable for the straightforward production of 1D nanopatterns. PMID:24714206

  17. Simple assembly of long nanowires through substrate stretching

    NASA Astrophysics Data System (ADS)

    Dong, Jianjin; Mohieddin Abukhdeir, Nasser; Goldthorpe, Irene A.

    2015-12-01

    Although nanowire (NW) alignment has been previously investigated, minimizing limitations such as process complexity and NW breakage, as well as quantifying the quality of alignment, have not been sufficiently addressed. A simple, low cost, large-area, and versatile alignment method is reported that is applicable for NWs either grown on a substrate or synthesized in solution. Metal and semiconductor NWs with average lengths of up to 16 μm are aligned through the stretching of polyvinyl alcohol (PVA) films, which compared to other stretching methods results in superior alignment because of the large stretching ratio of PVA. Poly[oxy(methyl-1,2-ethanediyl)] is employed as lubricant to prevent NW breakage. To quantify NW alignment, a simple and effective image processing method is presented. The alignment process results in an order parameter (S) of NW alignment as high as 0.97.

  18. Hybrid metal–organic chalcogenide nanowires with electrically conductive inorganic core through diamondoid-directed assembly

    SciTech Connect

    Yan, Hao; Hohman, J. Nathan; Li, Fei Hua; Jia, Chunjing; Solis-Ibarra, Diego; Wu, Bin; Dahl, Jeremy E. P.; Carlson, Robert M. K.; Tkachenko, Boryslav A.; Fokin, Andrey A.; Schreiner, Peter R.; Vailionis, Arturas; Kim, Taeho Roy; Devereaux, Thomas P.; Shen, Zhi -Xun; Melosh, Nicholas A.

    2016-12-26

    Controlling inorganic structure and dimensionality through structure-directing agents is a versatile approach for new materials synthesis that has been used extensively for metal–organic frameworks and coordination polymers. However, the lack of ‘solid’ inorganic cores requires charge transport through single-atom chains and/or organic groups, limiting their electronic properties. Here, we report that strongly interacting diamondoid structure-directing agents guide the growth of hybrid metal–organic chalcogenide nanowires with solid inorganic cores having three-atom cross-sections, representing the smallest possible nanowires. The strong van der Waals attraction between diamondoids overcomes steric repulsion leading to a cis configuration at the active growth front, enabling face-on addition of precursors for nanowire elongation. These nanowires have band-like electronic properties, low effective carrier masses and three orders-of-magnitude conductivity modulation by hole doping. Furthermore, this discovery highlights a previously unexplored regime of structure-directing agents compared with traditional surfactant, block copolymer or metal–organic framework linkers.

  19. Hybrid metal-organic chalcogenide nanowires with electrically conductive inorganic core through diamondoid-directed assembly

    NASA Astrophysics Data System (ADS)

    Yan, Hao; Hohman, J. Nathan; Li, Fei Hua; Jia, Chunjing; Solis-Ibarra, Diego; Wu, Bin; Dahl, Jeremy E. P.; Carlson, Robert M. K.; Tkachenko, Boryslav A.; Fokin, Andrey A.; Schreiner, Peter R.; Vailionis, Arturas; Kim, Taeho Roy; Devereaux, Thomas P.; Shen, Zhi-Xun; Melosh, Nicholas A.

    2016-12-01

    Controlling inorganic structure and dimensionality through structure-directing agents is a versatile approach for new materials synthesis that has been used extensively for metal-organic frameworks and coordination polymers. However, the lack of `solid’ inorganic cores requires charge transport through single-atom chains and/or organic groups, limiting their electronic properties. Here, we report that strongly interacting diamondoid structure-directing agents guide the growth of hybrid metal-organic chalcogenide nanowires with solid inorganic cores having three-atom cross-sections, representing the smallest possible nanowires. The strong van der Waals attraction between diamondoids overcomes steric repulsion leading to a cis configuration at the active growth front, enabling face-on addition of precursors for nanowire elongation. These nanowires have band-like electronic properties, low effective carrier masses and three orders-of-magnitude conductivity modulation by hole doping. This discovery highlights a previously unexplored regime of structure-directing agents compared with traditional surfactant, block copolymer or metal-organic framework linkers.

  20. Hybrid metal-organic chalcogenide nanowires with electrically conductive inorganic core through diamondoid-directed assembly.

    PubMed

    Yan, Hao; Hohman, J Nathan; Li, Fei Hua; Jia, Chunjing; Solis-Ibarra, Diego; Wu, Bin; Dahl, Jeremy E P; Carlson, Robert M K; Tkachenko, Boryslav A; Fokin, Andrey A; Schreiner, Peter R; Vailionis, Arturas; Kim, Taeho Roy; Devereaux, Thomas P; Shen, Zhi-Xun; Melosh, Nicholas A

    2017-03-01

    Controlling inorganic structure and dimensionality through structure-directing agents is a versatile approach for new materials synthesis that has been used extensively for metal-organic frameworks and coordination polymers. However, the lack of 'solid' inorganic cores requires charge transport through single-atom chains and/or organic groups, limiting their electronic properties. Here, we report that strongly interacting diamondoid structure-directing agents guide the growth of hybrid metal-organic chalcogenide nanowires with solid inorganic cores having three-atom cross-sections, representing the smallest possible nanowires. The strong van der Waals attraction between diamondoids overcomes steric repulsion leading to a cis configuration at the active growth front, enabling face-on addition of precursors for nanowire elongation. These nanowires have band-like electronic properties, low effective carrier masses and three orders-of-magnitude conductivity modulation by hole doping. This discovery highlights a previously unexplored regime of structure-directing agents compared with traditional surfactant, block copolymer or metal-organic framework linkers.

  1. Hybrid metal–organic chalcogenide nanowires with electrically conductive inorganic core through diamondoid-directed assembly

    DOE PAGES

    Yan, Hao; Hohman, J. Nathan; Li, Fei Hua; ...

    2016-12-26

    Controlling inorganic structure and dimensionality through structure-directing agents is a versatile approach for new materials synthesis that has been used extensively for metal–organic frameworks and coordination polymers. However, the lack of ‘solid’ inorganic cores requires charge transport through single-atom chains and/or organic groups, limiting their electronic properties. Here, we report that strongly interacting diamondoid structure-directing agents guide the growth of hybrid metal–organic chalcogenide nanowires with solid inorganic cores having three-atom cross-sections, representing the smallest possible nanowires. The strong van der Waals attraction between diamondoids overcomes steric repulsion leading to a cis configuration at the active growth front, enabling face-on additionmore » of precursors for nanowire elongation. These nanowires have band-like electronic properties, low effective carrier masses and three orders-of-magnitude conductivity modulation by hole doping. Furthermore, this discovery highlights a previously unexplored regime of structure-directing agents compared with traditional surfactant, block copolymer or metal–organic framework linkers.« less

  2. Hybrid metal-organic chalcogenide nanowires with electrically conductive inorganic core through diamondoid-directed assembly

    NASA Astrophysics Data System (ADS)

    Yan, Hao; Hohman, J. Nathan; Li, Fei Hua; Jia, Chunjing; Solis-Ibarra, Diego; Wu, Bin; Dahl, Jeremy E. P.; Carlson, Robert M. K.; Tkachenko, Boryslav A.; Fokin, Andrey A.; Schreiner, Peter R.; Vailionis, Arturas; Kim, Taeho Roy; Devereaux, Thomas P.; Shen, Zhi-Xun; Melosh, Nicholas A.

    2017-03-01

    Controlling inorganic structure and dimensionality through structure-directing agents is a versatile approach for new materials synthesis that has been used extensively for metal-organic frameworks and coordination polymers. However, the lack of `solid’ inorganic cores requires charge transport through single-atom chains and/or organic groups, limiting their electronic properties. Here, we report that strongly interacting diamondoid structure-directing agents guide the growth of hybrid metal-organic chalcogenide nanowires with solid inorganic cores having three-atom cross-sections, representing the smallest possible nanowires. The strong van der Waals attraction between diamondoids overcomes steric repulsion leading to a cis configuration at the active growth front, enabling face-on addition of precursors for nanowire elongation. These nanowires have band-like electronic properties, low effective carrier masses and three orders-of-magnitude conductivity modulation by hole doping. This discovery highlights a previously unexplored regime of structure-directing agents compared with traditional surfactant, block copolymer or metal-organic framework linkers.

  3. Self-Assembled DNA Templated Nano-wires and Circuits

    NASA Astrophysics Data System (ADS)

    Braun, Erez

    2000-03-01

    The realization that conventional microelectronics is approaching its miniaturization limits has motivated the search for an alternative route based on self-assembled nanometer-scale electronics. We have recently proposed a new approach based on the hybridization of biological and electronic materials (Braun E., Eichen Y., Sivan U. and Ben-Yoseph G., Nature 391, 775 (1998)). The concept relies on a two-step self-assembly process. The inherent molecular recognition capabilities of DNA molecules are first utilized to construct a network that serves as a template for the subsequent assembly of electronic materials into a circuit. The utilization of DNA and its associated enzymatic machinery enables: (a) self-assembly of complex substrates, (b) specific molecular addresses for the localization of electronic materials (e.g., gold colloids) by standard molecular biology techniques, (c) interdevice wiring and (d) bridging the microscopic structures to the macroscopic world. The self-assembly of nanometer scale electronics relies on two complementary developments. First, the ability to convert DNA molecules into thin conductive wires and second, the self-assembly of complex extended DNA templates. Our progress in these two directions will be presented. Regarding the first issue, a physical process resulting in condensation of gold colloids onto DNA molecules enables the assembly of thin gold wires (around 100-200 A wide) having, in principle, unlimited extensions. The second issue is developed in the context of recombinant DNA which allows the self-assembly of precise molecular junctions and networks. Specifically, we use RecA protein, which is the main protein responsible for genetic recombination in E. Coli bacteria, to construct DNA junctions at pre-designed addresses (sequences) on the molecules. The integration of these processes allows advancing nanometer-scale electronics. A realistic fabrication scheme for a room-temperature single-electron transistor

  4. Patterning of conducting polymers using charged self-assembled monolayers.

    PubMed

    Jung, Mi-Hee; Lee, Hyoyoung

    2008-09-02

    We introduce a new approach to pattern conducting polymers by combining oppositely charged conducting polymers on charged self-assembled monolayers (SAMs). The polymer resist pattern behaves as a physical barrier, preventing the formation of SAMs. The patterning processes were carried out using commercially available conducting polymers: a negatively charged PEDOT/PSS (poly(3,4-ethylene-dioxythiophene)/poly(4-stylenesulphonic acid)) and a positively charged polypyrrole (PPy). A bifunctional NH 2 (positively charged) or COOH (negatively charged) terminated alkane thiol or silane was directly self-assembled on a substrate (Au or SiO 2). A suspension of the conducting polymers (PEDOT/PSS and PPy) was then spin-coated on the top surface of the SAMs and allowed to adsorb on the oppositely charged SAMs via an electrostatic driving force. After lift-off of the polymer resist, i.e., poly(methyl methacrylate, PMMA), using acetone, the conducting polymers remained on the charged SAMs surface. Optical microscopy, Auger electron spectroscopy, and atomic force microscopy reveal that the prepared nanolines have low line edge roughness and high line width resolution. Thus, conducting polymer patterns with high resolution could be produced by simply employing charged bifunctional SAMs. It is anticipated that this versatile new method can be applied to device fabrication processes of various nano- and microelectronics.

  5. Design of Self-Assembling Protein-Polymer Conjugates.

    PubMed

    Carter, Nathan A; Geng, Xi; Grove, Tijana Z

    Protein-polymer conjugates are of particular interest for nanobiotechnology applications because of the various and complementary roles that each component may play in composite hybrid-materials. This chapter focuses on the design principles and applications of self-assembling protein-polymer conjugate materials. We address the general design methodology, from both synthetic and genetic perspective, conjugation strategies, protein vs. polymer driven self-assembly and finally, emerging applications for conjugate materials. By marrying proteins and polymers into conjugated bio-hybrid materials, materials scientists, chemists, and biologists alike, have at their fingertips a vast toolkit for material design. These inherently hierarchical structures give rise to useful patterning, mechanical and transport properties that may help realize new, more efficient materials for energy generation, catalysis, nanorobots, etc.

  6. Solution-Processed Donor-Acceptor Polymer Nanowire Network Semiconductors For High-Performance Field-Effect Transistors

    NASA Astrophysics Data System (ADS)

    Lei, Yanlian; Deng, Ping; Li, Jun; Lin, Ming; Zhu, Furong; Ng, Tsz-Wai; Lee, Chun-Sing; Ong, Beng S.

    2016-04-01

    Organic field-effect transistors (OFETs) represent a low-cost transistor technology for creating next-generation large-area, flexible and ultra-low-cost electronics. Conjugated electron donor-acceptor (D-A) polymers have surfaced as ideal channel semiconductor candidates for OFETs. However, high-molecular weight (MW) D-A polymer semiconductors, which offer high field-effect mobility, generally suffer from processing complications due to limited solubility. Conversely, the readily soluble, low-MW D-A polymers give low mobility. We report herein a facile solution process which transformed a lower-MW, low-mobility diketopyrrolopyrrole-dithienylthieno[3,2-b]thiophene (I) into a high crystalline order and high-mobility semiconductor for OFETs applications. The process involved solution fabrication of a channel semiconductor film from a lower-MW (I) and polystyrene blends. With the help of cooperative shifting motion of polystyrene chain segments, (I) readily self-assembled and crystallized out in the polystyrene matrix as an interpenetrating, nanowire semiconductor network, providing significantly enhanced mobility (over 8 cm2V‑1s‑1), on/off ratio (107), and other desirable field-effect properties that meet impactful OFET application requirements.

  7. Solution-Processed Donor-Acceptor Polymer Nanowire Network Semiconductors For High-Performance Field-Effect Transistors

    PubMed Central

    Lei, Yanlian; Deng, Ping; Li, Jun; Lin, Ming; Zhu, Furong; Ng, Tsz-Wai; Lee, Chun-Sing; Ong, Beng S.

    2016-01-01

    Organic field-effect transistors (OFETs) represent a low-cost transistor technology for creating next-generation large-area, flexible and ultra-low-cost electronics. Conjugated electron donor-acceptor (D-A) polymers have surfaced as ideal channel semiconductor candidates for OFETs. However, high-molecular weight (MW) D-A polymer semiconductors, which offer high field-effect mobility, generally suffer from processing complications due to limited solubility. Conversely, the readily soluble, low-MW D-A polymers give low mobility. We report herein a facile solution process which transformed a lower-MW, low-mobility diketopyrrolopyrrole-dithienylthieno[3,2-b]thiophene (I) into a high crystalline order and high-mobility semiconductor for OFETs applications. The process involved solution fabrication of a channel semiconductor film from a lower-MW (I) and polystyrene blends. With the help of cooperative shifting motion of polystyrene chain segments, (I) readily self-assembled and crystallized out in the polystyrene matrix as an interpenetrating, nanowire semiconductor network, providing significantly enhanced mobility (over 8 cm2V−1s−1), on/off ratio (107), and other desirable field-effect properties that meet impactful OFET application requirements. PMID:27091315

  8. Fullerene cluster assisted self-assembly of short DNA strands into semiconducting nanowires.

    PubMed

    Vittala, Sandeepa Kulala; Saraswathi, Sajena Kanangat; Joseph, Joshy

    2017-08-31

    Programmable, hierarchical assembly of DNA nanostructures with the precise organization of functional components have been demonstrated previously with tiled assembly and DNA Origami. However, building organized nanostructures with random oligonucleotide strands remains as an elusive problem. Herein, we describe a simple and general strategy in which nanoclusters of a fullerene derivative act as stapler motifs in bringing ordered nanoscale assembly of short oligonucleotide duplexes into micrometer-sized nanowires. In this approach, the fullerene derivative by virtue of its amphiphilic structure and unique hydrophobic-hydrophilic balance pre-assemble to form 3-5 nm sized clusters in DMSO - phosphate buffer mixture, which further assist the assembly of DNA strands. We demonstrate that the optimum cluster size, availability of DNA anchoring motifs and the nature of the DNA strands control the structure of these nanomaterials. Further, the horizontal conductivity measurements using c-AFM confirmed the charge transport properties of these nanowires. The current strategy could be employed to organize random DNA duplexes and tiles into functional nanostructures and hence open up new avenues in DNA nanotechnology. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Modelling of reversible single chain polymer self-assembly: from the polymer towards the protein limit.

    PubMed

    Danilov, Denis; Barner-Kowollik, Christopher; Wenzel, Wolfgang

    2015-04-07

    The thermodynamic properties of reversible single chain polymer self-assembly are characterized by all-atom simulations. The ensemble of closed chains collapses from multiple conformations for long chains to nearly unique conformations for shorter chains, suggesting that the engineered polymers can fold into stable unique conformations at moderate temperatures.

  10. Highly conductive self-assembled nanoribbons of coordination polymers.

    PubMed

    Welte, Lorena; Calzolari, Arrigo; Di Felice, Rosa; Zamora, Felix; Gómez-Herrero, Julio

    2010-02-01

    Organic molecules can self-assemble into well-ordered structures, but the conductance of these structures is limited, which is a disadvantage for applications in molecular electronics. Conductivity can be improved by using coordination polymers-in which metal centres are incorporated into a molecular backbone-and such structures have been used as molecular wires by self-assembling them into ordered films on metal surfaces. Here, we report electrically conductive nanoribbons of the coordination polymer [Pt(2)I(S(2)CCH(3))(4)](n) self-assembled on an insulating substrate by direct sublimation of polymer crystals. Conductance atomic force microscopy is used to probe the electrical characteristics of a few polymer chains ( approximately 10) within the nanoribbons. The observed currents exceed those previously sustained in organic and metal-organic molecules assembled on surfaces by several orders of magnitude and over much longer distances. These results, and the results of theoretical calculations based on density functional theory, confirm coordination polymers as candidate materials for applications in molecular electronics.

  11. Inorganic Nanowires-Assembled Layered Paper as the Valve for Controlling Water Transportation.

    PubMed

    Chen, Fei-Fei; Zhu, Ying-Jie; Xiong, Zhi-Chao; Sun, Tuan-Wei; Shen, Yue-Qin; Yang, Ri-Long

    2017-03-29

    Layered materials with open interlayer channels enable various applications such as tissue engineering, ionic and molecular sieving, and electrochemical devices. However, most reports focus on the two-dimensional nanosheets-assembled layered materials, whose interlayer spacing is limited at the nanometer scale. Herein, we demonstrate that one-dimensional inorganic nanowires are the ideal building blocks for the construction of layered materials with open interlayer channels as well, which has not aroused much attention before. It is found that the relatively long inorganic nanowires are capable of assembling into free-standing layered paper with open interlayer channels during the filtration process. The spacings of interlayer channels between adjacent layers are up to tens of micrometers, which are much larger than those of the two-dimensional nanosheets-assembled layered materials. But the closed interlayer channels are observed when the relatively short inorganic nanowires are used as building blocks. The mechanism based on the relationship between the structural variation and the nanowires used is proposed, including the surface charge amplified effect, surface charge superimposed effect, and pillarlike supporting effect. According to the proposed mechanism, we have successfully fabricated a series of layered paper sheets whose architectures (including interlayer channels of cross section and pores on the surface) show gradient changes. The as-prepared layered paper sheets are employed as the valves for controlling water transportation. Tunable water transportation is achieved by the synergistic effect between in-plane interlayer channels (horizontal transportation) from the open to the closed states, and through-layer pores (vertical transportation) without surface modification or intercalation of any guest species.

  12. Self-assembled polymer nanocomposites and their networks

    NASA Astrophysics Data System (ADS)

    Patil, Nitin Vikas

    This dissertation describes new routes to synthesize polymer nanocomposite networks via self-assembly. Polymerizable structure directing agents (referred to as surfmers) obtained by end-group functionalization preserves the structure-directing capabilities of the surfactant for templating ordered mesoporous silica particle growth, while simultaneously generating a reactive matrix for polymer network formation through reactive end groups in the presence of intimately mixed mesoporous silicates. A combination of small angle X-ray scattering, surface area, and microscopy experiments on mesoporous silica indicated the structure directing capabilities of surfmers. Free-radical polymerization of the surfmer leads to novel crosslinked nanocomposites networks. Multiple experiments, including gel permeation chromatography, swelling, and solid state NMR experiments on polymer nanocomposites gave evidence of the polymerization of surfmer leading to formation of crosslink networks. Polymer nanocomposites with varied silica content were prepared. Effects of silica content on polymer nanocomposites were studied on rheometer. Results obtained from rheological experiments indicate that the storage (G') and loss modulus (G") increases with increase in the content of mesoporous silica. In this way, the nanocomposites networks obtained via self-assembly shows independent behavior with respect to frequency in rheological experiments. Additionally, this self-assembled route was extended to synthesize biodegradable and biocompatible polymer nanocomposites networks. The nanocomposite networks obtained with 15% of silica content showed the increase in storage modulus by two orders of magnitude in rheological experiments.

  13. Polymer nanowire elastic moduli measured with digital pulsed force mode AFM.

    PubMed

    Shanmugham, Saravanarajan; Jeong, Jonghwa; Alkhateeb, Abdullah; Aston, D Eric

    2005-10-25

    The mechanical bending behavior of polymer nanowires-polypyrrole and poly(3,4-ethylene dioxythiophene-co-styrene sulfonate)-produced by template molding were measured using a new innovation in atomic force microscopy (AFM). Digital pulsed force mode (DPFM) was used to image and simultaneously perform three-point bend tests along nanowires spanning microchannels in silicon. The bending profiles were analyzed for apparent elastic moduli variations along the suspended length of individually isolated nanowires and compared to classic beam deflection models for various geometric and boundary conditions. The elastic moduli calculated from these AFM data are 2-7 times that expected for bulk polymer values (approximately 1-3 GPa), demonstrating an apparent strengthening of nanostructured polymer even for diameters greater than 100 nm--the accepted boundary for nanoscience. Furthermore, detailed analysis of deflection data versus loading location demonstrates the experimental dependence on test geometry and inherent errors in relying solely on midpoint bending measurements or any single loading configuration for nanomechanical testing as well as the significant contribution of nanoindentation effects.

  14. Optimization of VO2 nanowire polymer composite thermochromic films by optical simulation

    NASA Astrophysics Data System (ADS)

    Naoi, Yuki; Amano, Jun

    2016-12-01

    Thermochromic films with high efficiency, transparency, and flexibility are highly desirable for energy-efficient smart window films. Vanadium oxide (VO2)-nanoparticle-embedded flexible polymer composite films are the most promising thermochromic films because of the sharp phase transition of insulating to metallic phases of VO2 at 68 °C with visible transparency and a large change in transmittance at near-infrared wavelengths before and after the metal-insulator phase transition. This paper describes the simulation of high-efficiency thermochromic polymer composite films embedded with VO2 nanoparticles of various sizes to investigate the optimum VO2 nanowire size and length.

  15. Novel polymer nanowire crystals of diketopyrrolopyrrole-based copolymer with excellent charge transport properties.

    PubMed

    Kim, Ji Ho; Lee, Dae Hee; Yang, Da Seul; Heo, Dong Uk; Kim, Kyung Hwan; Shin, Jicheol; Kim, Hyun-Ji; Baek, Kyung-Youl; Lee, Kwangyeol; Baik, Hionsuck; Cho, Min Ju; Choi, Dong Hoon

    2013-08-14

    The first demonstration of polymer nanowire (PNW) crystals based on a diketopyrrolopyrrole-based copolymer (i.e., PDTTDPP), and their application to field-effect transistors (FETs) is reported. Remarkably, transmission electron microscopy and selected area electron diffraction analyses of the PNW reveal its single-crystalline (SC) nature. FETs fabricated of a SC PNW exhibit a maximal charge carrier mobility of ≈7.00 cm(2) V(-1) s(-1) , which is almost one order of magnitude higher than that of the thin-film transistors made of the same polymer (PDTTDPP).

  16. Hierarchical assembly of branched supramolecular polymers from (cyclic Peptide)-polymer conjugates.

    PubMed

    Koh, Ming Liang; Jolliffe, Katrina A; Perrier, Sébastien

    2014-11-10

    We report the synthesis and assembly of (N-methylated cyclic peptide)-polymer conjugates for which the cyclic peptide is attached to either the α- or both α- and ω- end groups of a polymer. A combination of chromatographic, spectroscopic, and scattering techniques reveals that the assembly of the conjugates follows a two-level hierarchy, initially driven by H-bond formation between two N-methylated cyclic peptides, followed by unspecific, noncovalent aggregation of this peptide into small domains that behave as branching points and lead to the formation of branched supramolecular polymers.

  17. Design directed self-assembly of donor-acceptor polymers.

    PubMed

    Marszalek, Tomasz; Li, Mengmeng; Pisula, Wojciech

    2016-09-21

    Donor-acceptor polymers with an alternating array of donor and acceptor moieties have gained particular attention during recent years as active components of organic electronics. By implementation of suitable subunits within the conjugated backbone, these polymers can be made either electron-deficient or -rich. Additionally, their band gap and light absorption can be precisely tuned for improved light-harvesting in solar cells. On the other hand, the polymer design can also be modified to encode the desired supramolecular self-assembly in the solid-state that is essential for an unhindered transport of charge carriers. This review focuses on three major factors playing a role in the assembly of donor-acceptor polymers on surfaces which are (1) nature, geometry and substitution position of solubilizing alkyl side chains, (2) shape of the conjugated polymer defined by the backbone curvature, and (3) molecular weight which determines the conjugation length of the polymer. These factors adjust the fine balance between attractive and repulsive forces and ensure a close polymer packing important for an efficient charge hopping between neighboring chains. On the microscopic scale, an appropriate domain formation with a low density of structural defects in the solution deposited thin film is crucial for the charge transport. The charge carrier transport through such thin films is characterized by field-effect transistors as basic electronic elements.

  18. Fabrication of controllable and stable In2O3 nanowire transistors using an octadecylphosphonic acid self-assembled monolayer

    NASA Astrophysics Data System (ADS)

    Lim, Taekyung; Han, Junebeom; Seo, Keumyoung; Joo, Min-Kyu; Kim, Jae-Sung; Kim, Wung-Yeon; Kim, Gyu-Tae; Ju, Sanghyun

    2015-04-01

    The controllability and stability of nanowire transistor characteristics are essential for the development of low-noise and fast-switching nano-electronic devices. In this study, the positive shift of threshold voltage and the improvement of interface quality on In2O3 nanowire transistors were simultaneously achieved by using octadecylphosphonic acid (OD-PA) self-assembly. Following the chemical bond of OD-PA molecules on the surface of In2O3 nanowires, the threshold voltage was positively shifted to 2.95 V, and the noise amplitude decreased to approximately 87.5%. The results suggest that an OD-PA self-assembled monolayer can be used to manipulate and stabilize the transistor characteristics of nanowire-based memory and display devices that require high-sensitivity, low-noise, and fast-response.

  19. Surface chemistry mediated assembly of polymer-grafted nanorods in solution and polymer matrices

    NASA Astrophysics Data System (ADS)

    Ferrier, Robert Charles, Jr.

    In the dissertation, I investigate ways to assemble nanorods, typically made of gold, in solution and polymer matrices by controlling surface chemistry. Gold nanorods were anisotropically functionalized with polymer on the side and alkane dithiol on the end causing the gold nanorods to spontaneously assemble in solution. The assembly could be tuned by controlling the incubation time which affected the solution absorbance due to plasmon coupling. Linked gold nanorods were cast in polymer thin films and their optical properties were imparted to the film. This anisotropic functionalization method was utilized to placed DNA or peptides on the ends of the gold nanorods allowing for reversibly assembly. In the case of DNA, assembly was reversed upon heating and could be tuned by controlling the concentration of the complimentary DNA strand. In the case of the peptide, assembly was triggered by the presence of Zn 2+ ions and could be reversed by adding in a chelater. Anisotropic modification of the nanorods could also be used to assemble organic semiconductors around the nanorods at specific facets. Here, organic semiconductors rhodamine-B, 5(6)-carboxyfluorescein, and cyanine-3 were assembled onto the surface of gold nanorods. By tuning the surface chemistry the organic semiconductors would assemble around the nanorods in different ways which resulted in unique optical properties. The dispersion of PMMA-grafted mesoscopic iron-oxide rods in polymer matrices was studied by varying the PMMA brush molecular weight (N) polymer matrix molecular weight (P), and polymer matrix type. Here, we found that the ratio of P/N and matrix type had little effect on dispersion of iron-oxide mesorods. N was found to be the main factor that determined dispersion, which is attributed to the large size of the mesorods. Long PS and short PMMA brushes were grafted to gold nanorod surfaces and the dispersion of this system in PS and PMMA was investigated by controlling matrix molecular weight

  20. Ferritin-Polymer Conjugates: Grafting Chemistry and Self-Assembly

    DTIC Science & Technology

    2009-10-26

    polymer core-shell structures by co-assembly. 9 A numbers of BNPs including cowpea mosaic virus, turnip yellow mosaic virus, and bacteriophage P22...Figure 11. Synthetic route for fluorescent crosslinkers. Turnip yellow mosaic virus (TYMV), a plant virus with unique structural and chemical

  1. Fabricating photoswitches and field-effect transistors from self-assembled tetra(2-isopropyl-5-methyphenoxy) copper phthalocyanines nanowires.

    PubMed

    Cheng, Chuanwei; Gao, Junshan; Xu, Guoyue; Zhang, Haiqian; Li, Yingying; Luo, Yan

    2009-05-01

    Tetra(2-isopropyl-5-methyphenoxy) copper phthalocyanine (CuPc) nanowires synthesized by a facile, low temperature self-assembled route, were incorporated into nano-devices: photoswitch and organic field-effect transistor. The devices were capable of switching on/off reversibly and fast by turning the 808 nm infrared light on/off. And the carrier mobility micro of CuPc nanowires incorporated in the devices was -0.02 cm2/V x s. The prelimenary results in this study show the potential application of metal phthalocyanine nanowires in low-cost fabrication of nano photo-electric devices.

  2. Surface directed assembly of conjugated polymers for optoelectronics

    NASA Astrophysics Data System (ADS)

    Liang, Ziqi

    Conjugated polymers combining the optical and electronic properties of semiconductors with advantages of organic materials are being explored as active components in various types of thin-film electronic and optoelectronic devices. The realization of conjugated polymer based electronics and optoelectronics critically depends on developing novel approaches for assembling this new class of materials into a controlled fashion. We have developed new non-photolithographic methods for the spatial deposition of conjugated polymers. As a proof-of-concept of these methods, the well-known luminescent polymer, poly(p-phenylene vinylene) (PPV), has been used as a model structure in our work. One strategy is based on the modification of solid substrates with microcontact-printed self-assembled monolayers (SAMs) that serve as templates for the deposition of PPVs from solution. Conjugated polymer patterns have also been generated by directly stamping of PPVs onto the reactive SAMs-coated substrates. In both methods, PPVs were covalently immobilized onto the supporting surface through the formation of amide bonds, thus rendering great stability of the resulting patterns. Well-defined PPV micropatterns have been fully characterized by UV-vis spectroscopy, atomic force microscopy (AFM), scanning electron microscopy (SEM) and fluorescence optical microscopy. The interaction between PPVs and the underlying surface was analyzed by grazing-angle reflectance Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS). Many applications based on conjugated polymers require the controlled assembly of the polymers as multilayer structures, in which molecules with different functionality can be incorporated into individual layers with precisely controlled thickness. We have developed a series of layer-by-layer (LbL) assembly approaches to multilayer conjugated polymer thin films. Hydrogen-bonding interaction and covalent coupling reaction have been utilized

  3. Enzyme-responsive polymer assemblies constructed through covalent synthesis and supramolecular strategy.

    PubMed

    Ding, Yan; Kang, Yuetong; Zhang, Xi

    2015-01-21

    Enzyme-responsive polymer assemblies have proved to be promising candidates for biomaterials, biomedicine and biosensing. Traditionally, these assemblies are prepared by the self-assembly of polymer building blocks which are covalently conjugated with enzyme-responsive moieties. Moreover, a supramolecular strategy has recently been developed for the preparation of enzyme-responsive polymer assemblies where the enzyme-responsive moieties are non-covalently complexed with the polymer building blocks. In addition, kinetic studies have been conducted on the enzyme-responsive behaviour of the polymer assemblies, which paves the way for tuning the response rate of the assemblies in a controlled manner.

  4. Cationic polymers and their self-assembly for antibacterial applications.

    PubMed

    Deka, Smriti Rekha; Sharma, Ashwani Kumar; Kumar, Pradee

    2015-01-01

    The present article focuses on the amphiphilic cationic polymers as antibacterial agents. These polymers undergo self-assembly in aqueous conditions and impart biological activity by efficiently interacting with the bacterial cell wall, hence, used in preparing chemical disinfectants and biocides. Both cationic charge as well as hydrophobic segments facilitate interactions with the bacterial cell surface and initiate its disruption. The perturbation in transmembrane potential causes leakage of cytosolic contents followed by cell death. Out of two categories of macromolecules, peptide oligomers and cationic polymers, which have extensively been used as antibacterials, we have elaborated on the current advances made in the area of cationic polymer-based (naturally occurring and commonly employed synthetic polymers and their modified analogs) antibacterial agents. The development of polymer-based antibacterials has helped in addressing challenges posed by the drug-resistant bacterial infections. These polymers provide a new platform to combat such infections in the most efficient manner. This review presents concise discussion on the amphiphilic cationic polymers and their modified analogs having low hemolytic activity and excellent antibacterial activity against array of fungi, bacteria and other microorganisms.

  5. Parylene C-on-photoresist (POP): a low temperature spacer scheme for polymer/metal nanowire fabrication

    NASA Astrophysics Data System (ADS)

    Li, Yuanhui; Xie, Quan; Wang, Wei; Zheng, Mingxin; Zhang, Hao; Lei, Yinhua; Zhang, Haixia Alice; Wu, Wengang; Li, Zhihong

    2011-06-01

    This work introduced a novel spacer scheme for polymer/metal nanowire preparation by combining Parylene C and photoresist (Parylene C on photoresist, POP, process), both of which possess a low temperature fabrication essence. Adhesion between the Parylene C and the substrate with photoresist onside was improved by introducing a modified silanization pretreatment. Parylene C filled in an undercut generated by regular lithography on a dual-layered photoresist was left as nanometer-sized residues after an isotropic oxygen plasma etching. Parylene C nanowires with the minimal width down to 200 nm were successfully obtained by this POP-based spacer technique, and were then utilized as the etching mask for ion milling of the metal films beneath to realize corresponding chromium/gold nanowires. The present POP scheme will expand the application of the spacer technique in polymer/metal nanowire fabrication for integrated micro/nanoelectromechanical systems.

  6. Polymer electrolyte membrane assembly for fuel cells

    NASA Technical Reports Server (NTRS)

    Yen, Shiao-Ping S. (Inventor); Kindler, Andrew (Inventor); Yavrouian, Andre (Inventor); Halpert, Gerald (Inventor)

    2000-01-01

    An electrolyte membrane for use in a fuel cell can contain sulfonated polyphenylether sulfones. The membrane can contain a first sulfonated polyphenylether sulfone and a second sulfonated polyphenylether sulfone, wherein the first sulfonated polyphenylether and the second sulfonated polyphenylether sulfone have equivalent weights greater than about 560, and the first sulfonated polyphenylether and the second sulfonated polyphenylether sulfone also have different equivalent weights. Also, a membrane for use in a fuel cell can contain a sulfonated polyphenylether sulfone and an unsulfonated polyphenylether sulfone. Methods for manufacturing a membrane electrode assemblies for use in fuel cells can include roughening a membrane surface. Electrodes and methods for fabricating such electrodes for use in a chemical fuel cell can include sintering an electrode. Such membranes and electrodes can be assembled into chemical fuel cells.

  7. Polymer electrolyte membrane assembly for fuel cells

    NASA Technical Reports Server (NTRS)

    Yen, Shiao-Ping S. (Inventor); Kindler, Andrew (Inventor); Yavrouian, Andre (Inventor); Halpert, Gerald (Inventor)

    2002-01-01

    An electrolyte membrane for use in a fuel cell can contain sulfonated polyphenylether sulfones. The membrane can contain a first sulfonated polyphenylether sulfone and a second sulfonated polyphenylether sulfone, wherein the first sulfonated polyphenylether and the second sulfonated polyphenylether sulfone have equivalent weights greater than about 560, and the first sulfonated polyphenylether and the second sulfonated polyphenylether sulfone also have different equivalent weights. Also, a membrane for use in a fuel cell can contain a sulfonated polyphenylether sulfone and an unsulfonated polyphenylether sulfone. Methods for manufacturing a membrane electrode assemblies for use in fuel cells can include roughening a membrane surface. Electrodes and methods for fabricating such electrodes for use in a chemical fuel cell can include sintering an electrode. Such membranes and electrodes can be assembled into chemical fuel cells.

  8. Composites Formed from Thermoresponsive Polymers and Conductive Nanowires for Transient Electronic Systems.

    PubMed

    Zhang, Xin; Bellan, Leon M

    2017-07-05

    The disintegration of transient electronic systems after a preprogrammed time or a particular stimulus (e.g., water, light, or temperature) is fundamentally linked to the properties and behavior of the materials used for their construction. Herein, we demonstrate that polymers exhibiting lower critical solution temperature (LCST) behavior can work as thermoresponsive substrates for circuitry and that these materials can be coupled with conductive nanowires to form a transient electronics platform with unique, irreversible temperature-responsive behavior. The transient systems formed from composites of LCST polymers and conductive nanowires exhibit stable electrical performance in solution (Tsolution > LCST) for over 24 h until a cooling stimulus triggers a rapid (within 5 min) and gigantic (3-4 orders of magnitude) transition in electrical conductance due to polymer dissolution. Using a parylene mask, we are able to fabricate thermoresponsive electrical components, such as conductive traces and parallel-plate capacitors, demonstrating the versatility of this material and patterning technique. With this unique stimulus-responsive transient system and polymers with LCSTs above room temperature (e.g., poly(N-isopropylacrylamide), methyl cellulose), we have developed a platform in which a circuit requires a source of heat to remain viable and is destroyed and vanishes once this heat source is lost.

  9. Particle-Directed Assembly of Semiflexible Polymer Chains

    NASA Astrophysics Data System (ADS)

    McGovern, Michael; Dorfman, Kevin; Morse, David

    We use molecular dynamics simulations to investigate several models of semiflexible polymers that exhibit an attractive interaction with spherical particles. The organization of semiflexible polymer chains through attractive interactions with spherical particles occurs in several important processes in nature, such as the winding of DNA around histones and counter-ion condensation of charged polymers. The process is also of technological interest in the packaging of DNA for delivery to cells. In this presentation, we will present data on both the phase behavior and the kinetics of self-assembly as a function of the stiffness of the polymers, the attractive potential between the monomers and the particles, and the relative size of the monomers and particles. Our simulations suggest a transition between globular and rod-like aggregates that changes from a gradual to a sudden transition depending on particle size, and that rod formation is a slow, nucleation dependent process.

  10. Bioreceptor-conducting polymer multilayer assemblies for biosensing

    NASA Astrophysics Data System (ADS)

    Samuelson, Lynne A.; Alva, Shridhara; Kumar, Jayant; Kaplan, David L.; Tripathy, Sukant K.

    1998-04-01

    This research focuses on the organized integration of biological receptors and polymers into thin film architectures for biosensing applications. Layer-by-layer electrostatic adsorption was used for the first time to form alternating protein-conducting polymer multilayers. The light-harvesting, phycobiliproteins and the enzyme, alkaline phosphatase were the bioreceptors investigated and sulfonated polystyrene, poly(diallyl dimethyl ammonium chloride) and a new enzymatically polymerized, water soluble, polyaniline were the polymer counterions used for deposition. Spectroscopic characterization was used to determine both multilayer formation and biosensing function of the final bioreceptor-polymer assemblies. These techniques have proven to be simple, chemically mild, and versatile and are expected to find application in the fabrication of ultrathin films for biosensors, opto- electronic devices and biomedical applications.

  11. DNA nanotubes self-assembled from triple-crossover tiles as templates for conductive nanowires

    PubMed Central

    Liu, Dage; Park, Sung Ha; Reif, John H.; LaBean, Thomas H.

    2004-01-01

    DNA-based nanotechnology is currently being developed as a general assembly method for nanopatterned materials that may find use in electronics, sensors, medicine, and many other fields. Here we present results on the construction and characterization of DNA nanotubes, a self-assembling superstructure composed of DNA tiles. Triple-crossover tiles modified with thiol-containing double-stranded DNA stems projected out of the tile plane were used as the basic building blocks. Triple-crossover nanotubes display a constant diameter of ≈25 nm and have been observed with lengths up to 20 μm. We present high-resolution images of the constructs, experimental evidence of their tube-like nature as well as data on metallization of the nanotubes to form nanowires, and electrical conductivity measurements through the nanowires. DNA nanotubes represent a potential breakthrough in the self-assembly of nanometer-scale circuits for electronics layout because they can be targeted to connect at specific locations on larger-scale structures and can subsequently be metallized to form nanometer-scale wires. The dimensions of these nanotubes are also perfectly suited for applications involving interconnection of molecular-scale devices with macroscale components fabricated by conventional photolithographic methods. PMID:14709674

  12. Silicon nanowire charge-trap memory incorporating self-assembled iron oxide quantum dots.

    PubMed

    Huang, Ruo-Gu; Heath, James R

    2012-11-19

    Charge-trap non-volatile memory devices based upon the precise integration of quantum dot storage elements with silicon nanowire field-effect transistors are described. Template-assisted assembly yields an ordered array of FeO QDs within the trenches that separate highly aligned SiNWs, and injected charges are reversibly stored via Fowler-Nordheim tunneling into the QDs. Stored charges shift the transistor threshold voltages, providing the basis for a memory device. Quantum dot size is found to strongly influence memory performance metrics.

  13. The controllable assembly of nanorods, nanowires and microwires of a perylenediimide molecule with photoswitching property

    NASA Astrophysics Data System (ADS)

    Ma, Ying; An, Boxing; Wang, Meng; Shi, Fangxiao; Wang, Qing; Gu, Yaxin; Niu, Wanyang; Fan, Zhaorong; Shang, Yanli; Wang, Dan; Zhao, Cong

    2015-07-01

    By using an electron donor-acceptor molecule that consists of a perylenediimide (PDI) core bonded with two ferrocene (Fc) units, well-defined nanorods, nanowires and microwires of PDI-Fc were formed through simply adjusting the initial concentration of PDI-Fc in dichloromethane or CH2Cl2. Moreover, the two-ended devices based on individual microwire were fabricated. Highly reproducible and sensitive photo response characteristics were demonstrated in the microwire through controlling the white light on and off with different light intensities. The assembly strategy via complementary donors and acceptors is of significance for constructing photoconductive systems and developing novel functional devices.

  14. Aligned and Electrospun Piezoelectric Polymer Fiber Assembly and Scaffold

    NASA Technical Reports Server (NTRS)

    Scott Carnell, Lisa A. (Inventor); Siochi, Emilie J. (Inventor); Holloway, Nancy M. (Inventor); Leong, Kam W. (Inventor); Kulangara, Karina (Inventor)

    2017-01-01

    A method of manufacturing and/or using a scaffold assembly for stem cell culture and tissue engineering applications is disclosed. The scaffold at least partially mimics a native biological environment by providing biochemical, topographical, mechanical and electrical cues by using an electroactive material. The assembly includes at least one layer of substantially aligned, electrospun polymer fiber having an operative connection for individual voltage application. A method of cell tissue engineering and/or stem cell differentiation that uses the assembly seeded with a sample of cells suspended in cell culture media, incubates and applies voltage to one or more layers, and thus produces cells and/or a tissue construct. In another aspect, the invention provides a method of manufacturing the assembly including the steps of providing a first pre-electroded substrate surface; electrospinning a first substantially aligned polymer fiber layer onto the first surface; providing a second pre-electroded substrate surface; electrospinning a second substantially aligned polymer fiber layer onto the second surface; and, retaining together the layered surfaces with a clamp and/or an adhesive compound.

  15. Aligned and Electrospun Piezoelectric Polymer Fiber Assembly and Scaffold

    NASA Technical Reports Server (NTRS)

    Scott-Carnell, Lisa A. (Inventor); Siochi, Emilie J. (Inventor); Holloway, Nancy M. (Inventor); Leong, Kam W. (Inventor); Kulangara, Karina (Inventor)

    2015-01-01

    A scaffold assembly and related methods of manufacturing and/or using the scaffold for stem cell culture and tissue engineering applications are disclosed which at least partially mimic a native biological environment by providing biochemical, topographical, mechanical and electrical cues by using an electroactive material. The assembly includes at least one layer of substantially aligned, electrospun polymer fiber having an operative connection for individual voltage application. A method of cell tissue engineering and/or stem cell differentiation uses the assembly seeded with a sample of cells suspended in cell culture media, incubates and applies voltage to one or more layers, and thus produces cells and/or a tissue construct. In another aspect, the invention provides a method of manufacturing the assembly including the steps of providing a first pre-electroded substrate surface; electrospinning a first substantially aligned polymer fiber layer onto the first surface; providing a second pre-electroded substrate surface; electrospinning a second substantially aligned polymer fiber layer onto the second surface; and, retaining together the layered surfaces with a clamp and/or an adhesive compound.

  16. Functional 2D nanoparticle/polymer array: Interfacial assembly, transfer, characterization, and coupling to photonic crystal cavities

    NASA Astrophysics Data System (ADS)

    Xiong, Shisheng

    We developed a universal, facile and robust method to prepare free-standing, ordered and patternable nanoparticle/polymer monolayer arrays by evaporation-induced self-assembly at a fluid interface. The ultra-thin monolayer nanoparticle/polymer arrays are sufficiently robust that they can be transferred to arbitrary substrates, even with complex topographies. More importantly, the Poly (methyl methacrylate) (PMMA) in the system serves as a photoresist enabling two modes of electron beam (e-beam) nanoparticle patterning. These ultra-thin films of monolayer nanoparticle arrays are of fundamental interest as 2D artificial solids for electronic, magnetic and optical properties and are also of technological interest for a diverse range of applications in micro- and macro-scale devices including photovoltaics, sensors, catalysis, and magnetic storage. By co-assembly with block co-polymers, the nanoparticles were selectively positioned in one specific phase, representing a high throughput route for creating nanoparticle patterns. The self-assembly process was investigated by combined in-situ grazing incidence small angle x-ray scattering (GISAXS) and numerical simulation. By e-beam irradiation of free-standing 2D NP/polymer arrays, anisotropic nanowire arrays have been fabricated. Additionally, preliminary investigation on assembly of binary nanoparticle arrays has also been introduced, serving as promising future directions of interfacial assembly. Controlling the rate of spontaneous emission and thus promoting the photon generation efficiency is a key step toward fabrication of Quantum dot based single-photon sources, and harnessing of light energy from emitters with a broad emitting spectrum. Coupling of photo emitters to photonic cavities without perturbing the optical performance of cavities remains as a challenge in study of Purcell effect based on quantum electrodynamics. Taking advantage of interfacial assembly and transfer, we have achieved controlled deposition

  17. Self-Assembly of Emulsion Droplets into Polymer Chains

    NASA Astrophysics Data System (ADS)

    Bargteil, Dylan; McMullen, Angus; Brujic, Jasna

    We experimentally investigate `beads-on-a-string' models of polymers using the spontaneous assembly of emulsion droplets into linear chains. Droplets functionalized with surface-mobile DNA allow for programmable 'monomers' through which we can influence the three-dimensional structure of the assembled 'polymer'. Such model polymers can be used to study conformational changes of polypeptides and the principles governing protein folding. In our system, we find that droplets bind via complementary DNA strands that are recruited into adhesion patches. Recruitment is driven by the DNA hybridization energy, and is limited by the energy cost of surface deformation and the entropy loss of the mobile linkers, yielding adhesion patches of a characteristic size with a given number of linkers. By tuning the initial surface coverage of linkers, we control valency between the droplets to create linear or branched polymer chains. We additionally control the flexibility of the model polymers by varying the salt concentration and study their dynamics between extended and collapsed states. This system opens the possibility of programming stable three-dimensional structures, such as those found within folded proteins.

  18. Supramolecular assembly of C3 peptidic molecules into helical polymers.

    PubMed

    Dai, Yutang; Zhao, Xin; Su, Xinyan; Li, Guangyu; Zhang, Afang

    2014-08-01

    Self-assembly of C3 discotic molecules bearing dipeptide pendants into helical supramolecular polymers is investigated. The dipeptides are constituted from glycine and alanine with altered sequence, aiming at modulating the steric hindrance and examining the steric effects on the assembly. This steric hindrance effect is further illustrated with a dipeptide formed from glycine and valine, which carries a much larger isopropyl side unit. Their supramolecular polymerization is examined in various organic solvents and at different temperatures. The assembly morphology is directly visualized with atomic force microscopy. It is found that small changes in the dipeptide motifs in combination with solvent structure and the solution concentrations lead to different expression of the supramolecular assembly.

  19. Differentially photo-crosslinked polymers enable self-assembling microfluidics

    PubMed Central

    Jamal, Mustapha; Zarafshar, Aasiyeh M.; Gracias, David H.

    2012-01-01

    An important feature of naturally self-assembled systems such as leaves and tissues is that they are curved and have embedded fluidic channels that enable the transport of nutrients to, or removal of waste from, specific three-dimensional (3D) regions. Here, we report the self-assembly of photopatterned polymers, and consequently microfluidic devices, into curved geometries. We discovered that differentially photo-crosslinked SU-8 films spontaneously and reversibly curved upon film de-solvation and re-solvation. Photolithographic patterning of the SU-8 films enabled the self-assembly of cylinders, cubes, and bidirectionally folded sheets. We integrated polydimethylsiloxane (PDMS) microfluidic channels with these SU-8 films to self-assemble curved microfluidic networks. PMID:22068594

  20. Silicon nanowire growth and transistor fabrication by self-assembling "grow-in-place" approach

    NASA Astrophysics Data System (ADS)

    Shan, Yinghui

    Nanowires have attracted much attention recently owing to their ability to serve as critical building blocks for emerging nanotechnologies. Silicon nanowires (SiNWs) are particularly promising because of the central role of silicon in semiconductor industry. SiNWs would allow device fabrication with high density and their high surface to volume ratio offers high sensitivity. In addition, the possible quantum confinement in SiNWs may further enhance device performances and open windows for exploiting fundamental properties. Intense researches have been carried out in SiNW growth and device fabrication. However, there are still challenges in SiNW growth controls, such as size, number, shape, position, orientation, and inter-wire spacings. To make devices from these SiNWs, post-growth processing steps are needed, such as SiNW collecting, picking, positioning, aligning, and assembling. Due to the extremely small size of SiNWs, there are also challenges in SiNW device fabrication. To solve these challenges in both SiNW growth control and device fabrication, we introduced a novel self-assembling "grow-in-place" approach. Our approach combined vapor-liquid-solid (VLS) nanowire growth mechanism and pre-fabricated nanochannel template. The VLS growth mechanism offers the ability of controlling nanowire size and shape by nanochannel templates. The pre-fabricated nanochannel template guides nanowire growth and offers good SiNW growth control. SiNWs and silicon nanoribbons (SiNRs) with different sizes have been successfully grown in our nanochannel templates. Characterizations on their size, shape, composition, and crystallinity of the SiNW/Rs have confirmed that our "grow-in-place" approach offers good controls on crystalline SiNW/Rs size, shape, number, orientation, position, and inter-wire spacing. So our approach solved the challenges in SiNW growth control. Our grow-in-place approach also solved the challenges in SiNW device fabrication. We introduced two versions of

  1. Heterogeneous Configuration of a Ag Nanowire/Polymer Composite Structure for Selectively Stretchable Transparent Electrodes.

    PubMed

    Kim, Youngmin; Jun, Sungwoo; Ju, Byeong-Kwon; Kim, Jong-Woong

    2017-03-01

    One of the most important aspects that we need to consider in the design of intrinsically stretchable electrodes is that most electronic devices that can be formed on them are not stretchable themselves. This discrepancy can induce severe stress singularities at the interfaces between stiff devices and stretchable electrodes, leading to catastrophic device delamination when the substrate is stretched. Here, we suggest a novel solution to this challenge which involves introducing a photolithography-based rigid-island approach to fabricate the heterogeneous configuration of a silver nanowire (AgNW)/polymer composite structure. For this, we designed two new transparent polymers: a photopatternable polymer that is rigid yet flexible, and a stretchable polymer, both of which have identical acrylate functional groups. Patterning of the rigid polymer and subsequent overcoating of the soft polymer formed rigid island disks embedded in the soft polymer, resulting in a selectively stretchable transparent film. Strong covalent bonds instead of weak physical interactions between the polymers strengthened the cohesive force at the interface of the rigid/soft polymers. Inverted-layer processing with a percolated AgNW network was used to form a heterogeneous AgNW/polymer composite structure that can be used as a selectively stretchable transparent electrode. An optimized structural configuration prevented the resistance of the rigid electrode from varying up to a lateral strain of 70%. A repeated stretch/release test with 60% strain for 5000 cycles did not cause any severe damage to the structure, revealing that the fabricated structure was mechanically stable and reliable.

  2. Monolithic and assembled polymer-ceramic composites for bone regeneration.

    PubMed

    Nandakumar, Anandkumar; Cruz, Célia; Mentink, Anouk; Tahmasebi Birgani, Zeinab; Moroni, Lorenzo; van Blitterswijk, Clemens; Habibovic, Pamela

    2013-03-01

    The rationale for the use of polymer-ceramic composites for bone regeneration stems from the natural composition of bone, with collagen type I and biological apatite as the main organic and inorganic constituents, respectively. In the present study composite materials of PolyActive™ (PA), a poly(ethylene oxide terephthalate)/poly(butylene terephtalate) co-polymer, and hydroxyapatite (HA) at a weight ratio of 85:15 were prepared by rapid prototyping (RP) using two routes. In the first approach pre-extruded composite filaments of PA-HA were processed using three-dimensional fibre deposition (3DF) (conventional composite scaffolds). In the second approach PA scaffolds were fabricated using 3DF and combined with HA pillars produced inside stereolithographic moulds that fitted inside the pores of the PA three-dimensional structure (assembled composite scaffolds). Analysis of calcium and phosphate release in a simulated physiological solution, not containing calcium or phosphate, revealed significantly higher values for the HA pillars compared with other scaffolds. Release in simulated body fluid saturated with respect to HA did not show significant differences among the different scaffolds. Human mesenchymal stromal cells were cultured on polymer (3DF), conventional composite (3DF-HA) and assembled composite (HA assembled in 3DF) scaffolds and assessed for morphology, metabolic activity, DNA amount and gene expression of osteogenic markers using real time quantitative polymerase chain reaction (PCR). Scanning electron microscopy images showed that the cells attached to and infiltrated all the scaffolds. Assembled composites had a higher metabolic activity compared with 3DF-HA scaffolds while no significant differences were observed in DNA amounts. Gene expression of osteopontin in the assembled composite was significantly higher compared with the conventional composites. The strategy of composite fabrication by assembly appears to be a promising alternative to the

  3. Field-directed assembly of nanowires: identifying directors, disruptors and indices to maximize the device yield

    NASA Astrophysics Data System (ADS)

    Sam, Mahshid; Moghimian, Nima; Bhiladvala, Rustom B.

    2015-12-01

    Individually-addressable nano-electro-mechanical (NEMS) devices have been used to demonstrate sensitive mass detection to the single-proton level, as well as neutral-particle mass spectrometry. The cost of individually securing or patterning such devices is proportional to their number or the chip area covered. This limits statistical support for new research, as well as paths to the commercial availability of extraordinarily sensitive instruments. Field-directed assembly of synthesized nanowires addresses this problem and shows potential for low-cost, large-area coverage with NEMS devices. For positive dielectrophoresis (pDEP) as the main assembly director, the space of field, geometric and material parameters is large, with combinations that can serve either as directors or disruptors for directed assembly. We seek parameter values to obtain the best yield, by introducing a rational framework to reduce trial-and-error. We show that sorting the disruptors by severity and eliminating those weakly coupled to the director, allows reduction of the parameter space. The remaining disruptors are then represented compactly by dimensionless parameters. In the example protocol chosen, a single dimensionless parameter, the yield index, allows minimization of disruptors by the choice of frequency. Following this, the voltage may be selected to maximize the yield. Using this framework, we obtained 94% pre-clamped and 88% post-clamped yield over 57000 nanowire sites. Organizing the parameter space using a director-disruptor framework, with economy introduced by non-dimensional parameters, provides a path to controllably decrease the effort and cost of manufacturing nanoscale devices. This should help in the commercialization of individually addressable nanodevices.Individually-addressable nano-electro-mechanical (NEMS) devices have been used to demonstrate sensitive mass detection to the single-proton level, as well as neutral-particle mass spectrometry. The cost of

  4. Microscale Electrospinning of Polymer Nanowires for Sensing Applications

    DTIC Science & Technology

    2005-09-01

    Yes PVA - Poly(vinyl alcohol) PEO - Poly(ethylene oxide) PECH - Poly( epichlorohydrin ) PIB - Poly(isobutylene) PNVP - Poly(n-vinyl pyrrolidone) Figure 3...0.14 Current (Anus) Figure 6: I-V curve for the device of figure 5 Poly( epichlorohydrin ) - PECH is an attractive polymer for chemical sensing due to...four-component array was measured and was distinct for each vapor. Poly( epichlorohydrin ) (PECH), Mw of 700,000 , poly(ethylene Oxide) (PEO) Mw of

  5. Mass production of polymer nano-wires filled with metal nano-particles.

    PubMed

    Lomadze, Nino; Kopyshev, Alexey; Bargheer, Matias; Wollgarten, Markus; Santer, Svetlana

    2017-08-17

    Despite the ongoing progress in nanotechnology and its applications, the development of strategies for connecting nano-scale systems to micro- or macroscale elements is hampered by the lack of structural components that have both, nano- and macroscale dimensions. The production of nano-scale wires with macroscale length is one of the most interesting challenges here. There are a lot of strategies to fabricate long nanoscopic stripes made of metals, polymers or ceramics but none is suitable for mass production of ordered and dense arrangements of wires at large numbers. In this paper, we report on a technique for producing arrays of ordered, flexible and free-standing polymer nano-wires filled with different types of nano-particles. The process utilizes the strong response of photosensitive polymer brushes to irradiation with UV-interference patterns, resulting in a substantial mass redistribution of the polymer material along with local rupturing of polymer chains. The chains can wind up in wires of nano-scale thickness and a length of up to several centimeters. When dispersing nano-particles within the film, the final arrangement is similar to a core-shell geometry with mainly nano-particles found in the core region and the polymer forming a dielectric jacket.

  6. Simulation-assisted self-assembly of multicomponent polymers into hierarchical assemblies with varied morphologies.

    PubMed

    Cai, Chunhua; Li, Yongliang; Lin, Jiaping; Wang, Liquan; Lin, Shaoliang; Wang, Xiao-Song; Jiang, Tao

    2013-07-22

    As you like it: The synthesis of supramolecular hierarchical nanostructures with designed morphologies has been realized through computer-simulation-guided multicomponent assembly of polypeptide-based block copolymers and homopolymers. By adjusting the attraction between hydrophobic polypeptide rods, as well as other parameters such as the molar ratio of copolymers and the rigidity of polymers, a variety of morphologies were obtained.

  7. Solvothermal synthesis, stirring-assisted assembly and photoelectric performance of Te nanowires.

    PubMed

    Zhong, Bin Nian; Fei, Guang Tao; Fu, Wen Biao; Gong, Xin Xin; Gao, Xu Dong; Zhang, Li De

    2016-12-07

    Tellurium nanowires (NWs) are attractive one-dimensional materials for many applications, yet most synthesis processes require hazardous chemical reducing agents and extreme operating conditions. Here we described a solvothermal synthesis of Te NWs using a non-toxic reducing agent, ascorbic acid. Then the Te NWs were assembled into a well-aligned film through a stirring-assisted oil-water-air interface assembly method and a Te NWs photodetector was fabricated which is sensitive to infrared radiation. The photodetector based on the well-aligned Te NWs film had a series of more excellent photoelectric properties than that based on those being randomly oriented. For example, the photoresponsivity of the former is 10(3) times larger, and the response time is 1.15 × 10(3) times shorter, than those of the latter.

  8. Templated Self-Assembly of Ultrathin Gold Nanowires by Nanoimprinting for Transparent Flexible Electronics.

    PubMed

    Maurer, Johannes H M; González-García, Lola; Reiser, Beate; Kanelidis, Ioannis; Kraus, Tobias

    2016-05-11

    We fabricated flexible, transparent, and conductive metal grids as transparent conductive materials (TCM) with adjustable properties by direct nanoimprinting of self-assembling colloidal metal nanowires. Ultrathin gold nanowires (diameter below 2 nm) with high mechanical flexibility were confined in a stamp and readily adapted to its features. During drying, the wires self-assembled into dense bundles that percolated throughout the stamp. The high aspect ratio and the bundling yielded continuous, hierarchical superstructures that connected the entire mesh even at low gold contents. A soft sintering step removed the ligand barriers but retained the imprinted structure. The material exhibited high conductivities (sheet resistances down to 29 Ω/sq) and transparencies that could be tuned by changing wire concentration and stamp geometry. We obtained TCMs that are suitable for applications such as touch screens. Mechanical bending tests showed a much higher bending resistance than commercial ITO: conductivity dropped by only 5.6% after 450 bending cycles at a bending radius of 5 mm.

  9. Assembling and properties of the polymer-particle nanostructured materials

    NASA Astrophysics Data System (ADS)

    Sheparovych, Roman

    Complementary properties of the soft and hard matter explain its common encounter in many natural and manmade applications. A combination of flexible organic macromolecules and hard mineral clusters results in new materials far advantageous than its constituents alone. In this work we study assembling of colloidal nanocrystals and polymers into complex nanostructures. Magnetism, surface wettability and adhesion comprise properties of interest for the obtained nanocomposites. Applying a magnetic field induces a reversible 1D ordering of the magnetically susceptible particles. This property was employed in the fabrication of the permanent chains of magnetite nanocrystals (d=15nm). In the assembling process the aligned particles were bound together using polyelectrolyte macromolecules. The basics of the binding process involved an electrostatic interaction between the positively charged polyelectrolyte and the negative surface of the particles (aqueous environment). Adsorption of the polymer molecules onto several adjacent particles in the aligned 1D aggregate results in the formation of the permanent particulate chains. Positive charges of the adsorbed polyelectrolyte molecules stabilize the dispersion of the obtained nanostructures in water. Magnetization measurements revealed that superparamagnetic nanoparticles, being assembled into 1D ordered structures, attain magnetic coercivity. This effect originates from the magnetostatic interaction between the neighboring magnetite nanocrystals. The preferable dipole alignment of the assembled nanoparticles is directed along the chain axis. Another system studied in this project includes polymer-particle responsive surface coatings. Tethered polymer chains and particles bearing different functionalities change surface properties upon restructuring of the composite layer. When the environment favors polymer swelling (good solvent), the polymer chains segregate to the surface and cover the particles. In the opposite case

  10. Cyclic peptide-polymer complexes and their self-assembly.

    PubMed

    Bélanger, Dominique; Tong, Xia; Soumaré, Sadia; Dory, Yves L; Zhao, Yue

    2009-01-01

    The efficient synthesis of novel chiral cyclic peptides cyclo[NHCHX-CH=CHCH(2)CO(NHCH(2)CH=CHCH(2)CO)(2)] designed to develop hydrogen-bonding interactions with suitable polymers is described. Complexation of a carboxylic acid derivatized cyclic peptide 2 (X = CH(2)OCOCH(2)CH(2)CO(2)H) capable of self-assembling as "endless" tubes, with poly(vinyl alcohol) (PVA) led to a vast weak-interaction network, in which the cyclopeptide developed extensive hydrogen-bonding interactions with the hydroxyl groups of PVA through not only the carboxylic acid, but also its ester carbonyl and amide groups. In aqueous solution, the peptide/PVA complexes self-assemble into long-grain ricelike aggregates compatible with the stacking of cyclic peptides through intercycle hydrogen bonds. Upon casting on silicon wafer, the anisotropic aggregates can coalesce to form filaments tens of micrometers long. The study demonstrates that complexing functionalized cyclic peptides with polymers through hydrogen bonding is a useful approach for using polymers to mediate the self-assembly and self-organization of cyclic peptides.

  11. Bulk ZnO nanorod assemblies fabricated by spin coating of organo-precursor gels on CuO nanowires

    NASA Astrophysics Data System (ADS)

    Uma, Kasimayan; Anathakumar, Soliappan; Viswanath Mangalaraja, R.; Soga, Tetsuo; Jimbo, Takashi

    2013-08-01

    Bulk ZnO nanorod assemblies have been successfully fabricated on CuO nanowires through spin coating of organoprecursor gels. A thin film of CuO nanowires was first generated by direct heating of a metallic Cu-foil at 500 °C in an air atmosphere. A stable colloidal organo-precursor sol synthesized by dissolving equimolar zinc acetate dihydrate and monoethanolamine in 2-methoxyethanol was subsequently repeatedly deposited onto the CuO nanowires by spin coating. The formation of ZnO nanorod assemblies was controlled by varying the number of coatings. The average diameter of the ZnO rods was determined to be ˜600 nm.

  12. Self-Assembly of Globular Protein-Polymer Diblock Copolymers

    NASA Astrophysics Data System (ADS)

    Thomas, C. S.; Olsen, B. D.

    2011-03-01

    The self-assembly of globular protein-polymer diblock copolymers into nanostructured phases is demonstrated as an elegant and simple method for structural control in biocatalysis or bioelectronics. In order to fundamentally investigate self-assembly in these complex block copolymer systems, a red fluorescent protein was expressed in E. coli and site-specifically conjugated to a low polydispersity poly(N-isopropyl acrylamide) (PNIPAM) block using thiol-maleimide coupling to form a well-defined model globular protein-polymer diblock. Functional protein materials are obtained by solvent evaporation and solvent annealing above and below the lower critical solution temperature of PNIPAM in order to access different pathways toward self-assembly. Small angle x-ray scattering and microscopy are used to show that the diblock forms lamellar nanostructures and to explore dependence of nanostructure formation on processing conditions. Circular dichroism and UV-vis show that a large fraction of the protein remains in its folded state after conjugation, and wide angle x-ray scattering demonstrates that diblock copolymer self-assembly changes the protein packing symmetry.

  13. Structure of assemblies of metal nanowires in mesoporous alumina membranes studied by EXAFS, XANES, X-ray diffraction and SAXS.

    PubMed

    Benfield, Robert E; Grandjean, Didier; Dore, John C; Esfahanian, Hamid; Wu, Zhonghua; Kröll, Michael; Geerkens, Marcus; Schmid, Günter

    2004-01-01

    Mesoporous alumina membranes ("anodic aluminium oxide", or "AAO") are made by anodic oxidation of aluminium metal. These membranes contain hexagonal arrays of parallel non-intersecting cylindrical pores perpendicular to the membrane surface. By varying the anodisation voltage, the pore diameters are controllable within the range 5-250 nm. We have used AAO membranes as templates for the electrochemical deposition of metals within the pores to produce nanowires. These represent assemblies of one-dimensional quantum wires with prospective applications in electronic, optoelectronic and magnetic devices. Detailed characterisation of the structures of these nanowire assemblies on a variety of length scales is essential to understand their physical properties and evaluate their possible applications. We have used EXAFS, XANES, WAXS, high energy X-ray diffraction and SAXS to study their structure and bonding. In this paper we report the results of our studies of four different nanowire systems supported in AAO membranes. These are the ferromagnetic metals iron and cobalt, the superconducting metal tin, and the semiconductor gallium nitride. Iron nanowires in pores of diameter over the range 12 nm-72 nm are structurally very similar to bcc bulk iron. They have a strong preferred orientation within the alumina pores. Their XANES shows significant differences from that of bulk iron, showing that the electronic structure of the iron nanowires depends systematically on their diameter. Cobalt nanowires are composed of a mixture of hcp and fcc phases, but the ratio of the two phases does not depend in a simple way on the pore diameter or preparation conditions. In bulk cobalt, the fcc beta-phase is normally stable only at high temperatures. Strong preferred orientation of the c-axis in the pores was found. Tin nanowires in alumina membranes with pores diameters between 12 nm and 72 nm have a tetragonal beta-structure at ambient temperature and also at 80 K. Magnetic

  14. Preparation of conductive gold nanowires in confined environment of gold-filled polymer nanotubes.

    PubMed

    Mitschang, Fabian; Langner, Markus; Vieker, Henning; Beyer, André; Greiner, Andreas

    2015-02-01

    Continuous conductive gold nanofibers are prepared via the "tubes by fiber templates" process. First, poly(l-lactide) (PLLA)-stabilized gold nanoparticles (AuNP) with over 60 wt% gold are synthesized and characterized, including gel permeation chromatography coupled with a diode array detector. Subsequent electrospinning of these AuNP with template PLLA results in composite nanofibers featuring a high gold content of 57 wt%. Highly homogeneous gold nanowires are obtained after chemical vapor deposition of 345 nm of poly(p-xylylene) (PPX) onto the composite fibers followed by pyrolysis of the polymers at 1050 °C. The corresponding heat-induced transition from continuous gold-loaded polymer tubes to smooth gold nanofibers is studied by transmission electron microscopy and helium ion microscopy using both secondary electrons and Rutherford backscattered ions.

  15. Protein biosensors based on polymer nanowires, carbon nanotubes and zinc oxide nanorods.

    PubMed

    Anish Kumar, M; Jung, Soyoun; Ji, Taeksoo

    2011-01-01

    The development of biosensors using electrochemical methods is a promising application in the field of biotechnology. High sensitivity sensors for the bio-detection of proteins have been developed using several kinds of nanomaterials. The performance of the sensors depends on the type of nanostructures with which the biomaterials interact. One dimensional (1-D) structures such as nanowires, nanotubes and nanorods are proven to have high potential for bio-applications. In this paper we review these three different kinds of nanostructures that have attracted much attention at recent times with their great performance as biosensors. Materials such as polymers, carbon and zinc oxide have been widely used for the fabrication of nanostructures because of their enhanced performance in terms of sensitivity, biocompatibility, and ease of preparation. Thus we consider polymer nanowires, carbon nanotubes and zinc oxide nanorods for discussion in this paper. We consider three stages in the development of biosensors: (a) fabrication of biomaterials into nanostructures, (b) alignment of the nanostructures and (c) immobilization of proteins. Two different methods by which the biosensors can be developed at each stage for all the three nanostructures are examined. Finally, we conclude by mentioning some of the major challenges faced by many researchers who seek to fabricate biosensors for real time applications.

  16. Protein Biosensors Based on Polymer Nanowires, Carbon Nanotubes and Zinc Oxide Nanorods

    PubMed Central

    M., Anish Kumar; Jung, Soyoun; Ji, Taeksoo

    2011-01-01

    The development of biosensors using electrochemical methods is a promising application in the field of biotechnology. High sensitivity sensors for the bio-detection of proteins have been developed using several kinds of nanomaterials. The performance of the sensors depends on the type of nanostructures with which the biomaterials interact. One dimensional (1-D) structures such as nanowires, nanotubes and nanorods are proven to have high potential for bio-applications. In this paper we review these three different kinds of nanostructures that have attracted much attention at recent times with their great performance as biosensors. Materials such as polymers, carbon and zinc oxide have been widely used for the fabrication of nanostructures because of their enhanced performance in terms of sensitivity, biocompatibility, and ease of preparation. Thus we consider polymer nanowires, carbon nanotubes and zinc oxide nanorods for discussion in this paper. We consider three stages in the development of biosensors: (a) fabrication of biomaterials into nanostructures, (b) alignment of the nanostructures and (c) immobilization of proteins. Two different methods by which the biosensors can be developed at each stage for all the three nanostructures are examined. Finally, we conclude by mentioning some of the major challenges faced by many researchers who seek to fabricate biosensors for real time applications. PMID:22163892

  17. Multi-functional particle assemblies in polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Jiao, Yang

    Self-assembly into ordered and equilibrium configurations underlie the microphase separation of block copolymers, protein folding and anisotropic aggregation of functionalized nanoparticles. In this project, we explored the assembly of polymer-grafted magnetic nanoparticles in solution and bulk states to combine various properties, such as ionic conductivity, mechanical reinforcement and responsiveness to external flows, within the same sample. The multi-functionality of iron oxide nanoparticles in polymer media is achieved using bottom-up approaches. Starting from the particle core synthesis, many layers of functionalities are added on magnetite (Fe3O4) nanoparticles by i) grafting polystyrene chains at different densities, lengths and elasticity; by ii) functionalizing particles with ionomers; and by iii) attaching charged diblock copolymers onto particles. In these three complex systems, particle nanostructures are investigated to explain the role of interactions between particle-particle, polymer-particle and polymer-polymer. We found that polystyrene-grafted Fe3O4 nanoparticles can form strings, spherical clusters and dispersed structures in polymer matrices by tuning the polymer graft density and grafted chain length. This structural transition has been explained through chain interactions and short-range dipolar interactions. We showed that chain conformation (radius of gyration) interestingly is not influenced within different dispersion states. Small-angle x-ray and neutron scattering results reveal that matrix chains do not govern the formation of strings, but have a significant impact on the size and internal structure of aggregated particles. Our findings showed that spherical aggregates of nanoparticles with low polymer graft densities are similar to interpenetrating networks in which free matrix chains bridge the fractals of particles and control the cluster density. Further, the mechanical properties of these different composite structures under

  18. Nanowires formed by the co-assembly of a negatively charged low-molecular weight gelator and a zwitterionic polythiophene.

    PubMed

    Li, Feng; Palaniswamy, Ganesan; de Jong, Menno R; Aslund, Andreas; Konradsson, Peter; Marcelis, Antonius T M; Sudhölter, Ernst J R; Stuart, Martien A Cohen; Leermakers, Frans A M

    2010-06-21

    Conjugated organic nanowires have been prepared by co-assembling a carboxylate containing low-molecular weight gelator (LMWG) and an amino acid substituted polythiophene derivative (PTT). Upon introducing the zwitterionic polyelectrolyte PTT to a basic molecular solution of the organogelator, the negative charges on the LMWG are compensated by the positive charges of the PTT. As a result, nanowires form through co-assembly. These nanowires are visualized by both transmission electron microscopy (TEM) and atomic force microscopy (AFM). Depending on the concentration and ratio of the components these nanowires can be micrometers long. These measurements further suggest that the aggregates adopt a helical conformation. The morphology of these nanowires are studied with fluorescent confocal laser scanning microscopy (CLSM). The interactions between LMWG and PTT are characterized by steady-state and time-resolved fluorescence spectroscopy studies. The steady-state spectra indicate that the backbone of the PTT adopts a more planar and more aggregated conformation when interacting with LMWG. The time- resolved fluorescence decay studies confirm this interpretation.

  19. Preparing high-density polymer brushes by mechanically assisted polymer assembly (MAPA)

    NASA Astrophysics Data System (ADS)

    Wu, Tao; Efimenko, Kirill; Genzer, Jan

    2001-03-01

    We introduce a novel method of modifying the surface properties of materials. This technique, called MAPA (="mechanically assisted polymer assembly"), is based on: 1) chemically attaching polymerization initiators to the surface of an elastomeric network that has been previously stretched by a certain length, Δx, and 2) growing end-anchored macromolecules using surface initiated ("grafting from") atom transfer living radical polymerization. After the polymerization, the strain is removed from the substrate, which returns to its original size causing the grafted macromolecules to stretch away from the substrate and form a dense polymer brush. We demonstrate the feasibility of the MAPA method by preparing high-density polymer brushes of poly(acryl amide), PAAm. We show that, as expected, the grafting density of the PAAm brushes can be increased by increasing Δx. We demonstrate that polymer brushes with extremely high grafting densities can be successfully prepared by MAPA.

  20. Simulation Methods for Self-Assembled Polymers and Rings

    NASA Astrophysics Data System (ADS)

    Kindt, James T.

    2003-11-01

    New off-lattice grand canonical Monte Carlo simulation methods have been developed and used to model the equilibrium structure and phase diagrams of equilibrium polymers and rings. A scheme called Polydisperse Insertion, Removal, and Resizing (PDIRR) is used to accelerate the equilibration of the size distribution of self-assembled aggregates. This method allows the insertion or removal of aggregates (e.g., chains) containing an arbitrary number of monomers in a single Monte Carlo move, or the re-sizing of an existing aggregate. For the equilibrium polymer model under semi-dilute conditions, a several-fold increase in equilibration rate compared with single-monomer moves is observed, facilitating the study of the isotropic-nematic transition of semiflexible, self-assembled chains. Combined with the pivot-coupled GCMC method for ring simulation, the PDIRR approach also allows the phenomenological simulation of a polydisperse equilibrium phase of rings, 2-dimensional fluid domains, or flat self-assembled disks in three dimensions.

  1. Polymer adsorption-driven self-assembly of nanostructures.

    PubMed

    Chakraborty, A K; Golumbfskie, A J

    2001-01-01

    Driven by prospective applications, there is much interest in developing materials that can perform specific functions in response to external conditions. One way to design such materials is to create systems which, in response to external inputs, can self-assemble to form structures that are functionally useful. This review focuses on the principles that can be employed to design macromolecules that when presented with an appropriate two-dimensional surface, will self-assemble to form nanostructures that may be functionally useful. We discuss three specific examples: (a) biomimetic recognition between polymers and patterned surfaces. (b) control and manipulation of nanomechanical motion generated by biopolymer adsorption and binding, and (c) creation of patterned nanostructuctures by exposing molten diblock copolymers to patterned surfaces. The discussion serves to illustrate how polymer sequence can be manipulated to affect self-assembly characteristics near adsorbing surfaces. The focus of this review is on theoretical and computational work aimed toward elucidating the principles underlying the phenomena pertinent to the three topics noted above. However, synergistic experiments are also described in the appropriate context.

  2. Self-assembled nanowire arrays as three-dimensional nanopores for filtration of DNA molecules.

    PubMed

    Rahong, Sakon; Yasui, Takao; Yanagida, Takeshi; Nagashima, Kazuki; Kanai, Masaki; Meng, Gang; He, Yong; Zhuge, Fuwei; Kaji, Noritada; Kawai, Tomoji; Baba, Yoshinobu

    2015-01-01

    Molecular filtration and purification play important roles for biomolecule analysis. However, it is still necessary to improve efficiency and reduce the filtration time. Here, we show self-assembled nanowire arrays as three-dimensional (3D) nanopores embedded in a microfluidic channel for ultrafast DNA filtration. The 3D nanopore structure was formed by a vapor-liquid-solid (VLS) nanowire growth technique, which allowed us to control pore size of the filtration material by varying the number of growth cycles. λ DNA molecules (48.5 kbp) were filtrated from a mixture of T4 DNA (166 kbp) at the entrance of the 3D nanopore structure within 1 s under an applied electric field. Moreover, we observed single DNA molecule migration of T4 and λ DNA molecules to clarify the filtration mechanism. The 3D nanopore structure has simplicity of fabrication, flexibility of pore size control and reusability for biomolecule filtration. Consequently it is an excellent material for biomolecular filtration.

  3. The controllable assembly of nanorods, nanowires and microwires of a perylenediimide molecule with photoswitching property

    SciTech Connect

    Ma, Ying; An, Boxing; Wang, Meng; Shi, Fangxiao; Wang, Qing; Gu, Yaxin; Niu, Wanyang; Fan, Zhaorong; Shang, Yanli; Wang, Dan; Zhao, Cong

    2015-07-15

    By using an electron donor–acceptor molecule that consists of a perylenediimide (PDI) core bonded with two ferrocene (Fc) units, well-defined nanorods, nanowires and microwires of PDI-Fc were formed through simply adjusting the initial concentration of PDI-Fc in dichloromethane or CH{sub 2}Cl{sub 2}. Moreover, the two-ended devices based on individual microwire were fabricated. Highly reproducible and sensitive photo response characteristics were demonstrated in the microwire through controlling the white light on and off with different light intensities. The assembly strategy via complementary donors and acceptors is of significance for constructing photoconductive systems and developing novel functional devices. - Graphical abstract: The two-ended devices based on individual microwire were fabricated. Highly reproducible and sensitive photo response characteristics were observed by controlling the white light on and off with different light intensities. - Highlights: • An electron donor–acceptor molecule (PDI-Fc) was synthesized. • Well-defined nanorods, nanowires and microwires of PDI-Fc were formed. • The two-ended devices based on individual microwire were fabricated. • Highly reproducible and sensitive photo response characteristics were observed.

  4. Ionic self-assembled wormlike nanowires and their cyclodextrin inclusion-tuned transition.

    PubMed

    Li, Qiuhong; Chen, Xiao; Wang, Xudong; Zhao, Yurong; Ma, Fumin

    2010-08-19

    Wormlike nanowires have been successfully prepared via the ionic self-assembly (ISA) route from the cationic (ferrocenylmethyl)trimethylammonium iodide (FcMI) and the anionic sodium bis(2-ethyl-1-hexyl)sulfosuccinate (AOT). The formed FcM-AOT complexes have been proved to possess a composition of equal molar ratio and show good redox activity also due to the introduction of organic metal ferrocene. These complexes exhibit an ordered hexagonal columnar structure with the lattice spacing D of 2.49 nm. More interestingly, the wormlike nanowires interweave themselves together to form a net-like structure, and some of them are large enough to exhibit a high-order crystal structure. In addition, such an ISA organized aggregate can be changed into vesicles by including the Fc blocks into beta-cyclodextrins to form another supramolecular complex. The supramolecular structure and morphology of the vesicles were characterized by transmission electron microscopy (TEM) and dynamic light scattering (DLS), respectively. Both the complex fabrication and transition mechanisms are discussed and found to be controlled by the inclusion equilibrium and the cooperative binding of noncovalent interactions, including the electrostatic interactions, pi-pi stacking, and amphiphilic hydrophobic association.

  5. Micelle-Induced Self-Assembling Protein Nanowires: Versatile Supramolecular Scaffolds for Designing the Light-Harvesting System.

    PubMed

    Sun, Hongcheng; Zhang, Xiyu; Miao, Lu; Zhao, Linlu; Luo, Quan; Xu, Jiayun; Liu, Junqiu

    2016-01-26

    Organic nanoparticle induced self-assembly of proteins with periodic nanostructures is a promising and burgeoning strategy to develop functional biomimetic nanomaterials. Cricoid proteins afford monodispersed and well-defined hollow centers, and can be used to multivalently interact with geometrically symmetric nanoparticles to form one-dimensional protein nanoarrays. Herein, we report that core-cross-linked micelles can direct cricoid stable protein one (SP1) to self-assembling nanowires through multiple electrostatic interactions. One micelle can act as an organic nanoparticle to interact with two central concaves of SP1 in an opposite orientation to form a sandwich structure, further controlling the assembly direction to supramolecular protein nanowires. The reported versatile supramolecular scaffolds can be optionally manipulated to develop multifunctional integrated or synergistic biomimetic nanomaterials. Artificial light-harvesting nanowires are further developed to mimic the energy transfer process of photosynthetic bacteria for their structural similarity, by means of labeling donor and acceptor chromophores to SP1 rings and spherical micelles, respectively. The absorbing energy can be transferred within the adjacent donors around the ring and shuttling the collected energy to the nearby acceptor chromophore. The artificial light-harvesting nanowires are designed by mimicking the structural characteristic of natural LH-2 complex, which are meaningful in exploring the photosynthesis process in vitro.

  6. Self-assembled polymer MEMS sensors and actuators

    NASA Astrophysics Data System (ADS)

    Hill, Andrea J.; Claus, Richard O.; Lalli, Jennifer H.; Homer, Michelle

    2006-03-01

    This paper describes the use of Metal Rubber TM, which is an electrically-conductive, low modulus, highly-flexible, and optically transparent free-standing or conformal coating nanocomposite material that is fabricated via Electrostatic Self-Assembly (ESA), as a polymer MEMS sensor for actuator materials. ESA is an environmentally-friendly layer-by-layer fabrication technique in which Metal Rubber TM can be tailor designed at the molecular level to function as a sensor and/or electrode for active polymer devices. With its controllable and tailorable properties (such as mechanical modulus [from less than 0.1 MPa to greater than 500 MPa], electrical conductivity, sensitivity to flex and strain (tension and compression), thickness, transmission, glass transition, and more), Metal Rubber TM exhibits massive improvements over traditional stiff electrodes and sensors (with bulky/heavy wire components) that physically constrain the actuator device motion and thus limit productivity. Metal RubberTM shows exceptional potential for use as flexible sensors, electrodes, and interconnect components for many active polymer applications. One example of such is NanoSonic's Metal Rubber TM-Polymer MEMS (MR TM-PMEMS) nanocluster-based corrosion sensor for aircraft coatings that was developed for an Air Force SBIR program. MR TM-PMEMS was tailored via ESA for use as an in-situ sensor of chemical modifications and the breakdown of surface coatings via micro-strain measurements.

  7. Facile synthesis of nucleic acid-polymer amphiphiles and their self-assembly.

    PubMed

    Jia, Fei; Lu, Xueguang; Tan, Xuyu; Zhang, Ke

    2015-05-07

    A solid-phase synthesis for nucleic acid-polymer amphiphiles is developed. Using this strategy, several DNA-b-polymer amphiphiles are synthesized, and their self-assembly in aqueous solution is investigated. This general method can in principle be extended to nearly all polymers synthesized by atom transfer radical polymerization to produce a variety of nucleic acid-polymer conjugates.

  8. Self-assembled hydrogels utilizing polymer-nanoparticle interactions

    NASA Astrophysics Data System (ADS)

    Appel, Eric A.; Tibbitt, Mark W.; Webber, Matthew J.; Mattix, Bradley A.; Veiseh, Omid; Langer, Robert

    2015-02-01

    Mouldable hydrogels that flow on applied stress and rapidly self-heal are increasingly utilized as they afford minimally invasive delivery and conformal application. Here we report a new paradigm for the fabrication of self-assembled hydrogels with shear-thinning and self-healing properties employing rationally engineered polymer-nanoparticle (NP) interactions. Biopolymer derivatives are linked together by selective adsorption to NPs. The transient and reversible interactions between biopolymers and NPs enable flow under applied shear stress, followed by rapid self-healing when the stress is relaxed. We develop a physical description of polymer-NP gel formation that is utilized to design biocompatible gels for drug delivery. Owing to the hierarchical structure of the gel, both hydrophilic and hydrophobic drugs can be entrapped and delivered with differential release profiles, both in vitro and in vivo. The work introduces a facile and generalizable class of mouldable hydrogels amenable to a range of biomedical and industrial applications.

  9. Self-Assembly and Horizontal Orientation Growth of VO2 Nanowires

    PubMed Central

    Cheng, Chun; Guo, Hua; Amini, Abbas; Liu, Kai; Fu, Deyi; Zou, Jian; Song, Haisheng

    2014-01-01

    Single-crystalline vanadium dioxide (VO2) nanostructures have attracted an intense research interest recently because of their unique single-domain metal-insulator phase transition property. Synthesis of these nanostructures in the past was limited in density, alignment, or single-crystallinity. The assembly of VO2 nanowires (NWs) is desirable for a “bottom-up” approach to the engineering of intricate structures using nanoscale building blocks. Here, we report the successful synthesis of horizontally aligned VO2 NWs with a dense growth mode in the [1-100]quartz direction of a polished x-cut quartz surface using a simple vapor transport method. Our strategy of controlled growth of VO2 NWs promisingly paves the way for designing novel metal-insulator transition devices based on VO2 NWs. PMID:24965899

  10. Optimal design of laterally assembled hexagonal silicon nanowires for broadband absorption enhancement in ultrathin solar cells

    NASA Astrophysics Data System (ADS)

    Shahraki, Mojtaba; Salehi, Mohammad Reza; Abiri, Ebrahim

    2015-11-01

    Design approaches to carry out broadband absorption in laterally assembled hexagonal silicon nanowire (NW) solar cells are investigated. Two different methods are proposed to improve the current density of silicon NW solar cells. It is observed that the key to the broadband absorption is disorder and irregularity. The first approach to reach the broadband absorption is using multiple NWs with different geometries. Nevertheless, the maximum enhancement is obtained by introducing irregular NWs. They can support more cavity modes, while scattering by NWs leads to broadening of the absorption spectra. An array of optimized irregular NWs also has preferable features compared to other broadband structures. Using irregular NW arrays, it is possible to improve the absorption enhancement of solar cells without introducing more absorbing material.

  11. Transparent electrodes fabricated via the self-assembly of silver nanowires using a bubble template.

    PubMed

    Tokuno, Takehiro; Nogi, Masaya; Jiu, Jinting; Sugahara, Tohru; Suganuma, Katsuaki

    2012-06-26

    To shore up the demand of transparent electrodes for wide applications such as organic light emitting diodes and solar cells, transparent electrodes are required as an alternative for indium tin oxide electrodes. Herein the self-assembly method with a bubble template paves the way for cost-effective fabrication of transparent electrodes with high conductivity and transparency using self-assembly of silver nanowires (AgNWs) in a bubble template. AgNWs were first dispersed in water that was bubbled with a surfactant and a thickening agent. Furthermore, these AgNWs were assembled by lining along the bubble ridges. When the bubbles containing the AgNWs were sandwiched between two glass substrates, the bubble ridges including the AgNWs formed continuous polygonal structures. Mesh structures were formed on both glass substrates after air-drying. The mesh structures evolved into mesh transparent electrodes following heat-treatment. The AgNW mesh structure exhibited a low sheet resistance of 6.2 Ω/square with a transparency of 84% after heat treatment at 200 °C for 20 min. The performance is higher than that of transparent electrodes with random networks of AgNWs. Furthermore, the conductivity and transparency of the mesh transparent electrodes can be adjusted by changing the amount of the AgNW suspension and the space between the two glass substrates.

  12. Structurally Ordered Nanowire Formation from Co-Assembly of DNA Origami and Collagen-Mimetic Peptides.

    PubMed

    Jiang, Tao; Meyer, Travis A; Modlin, Charles; Zuo, Xiaobing; Conticello, Vincent P; Ke, Yonggang

    2017-10-11

    We describe the co-assembly of two different building units: collagen-mimetic peptides and DNA origami. Two peptides CP(++) and sCP(++) are designed with a sequence comprising a central block (Pro-Hyp-Gly) and two positively charged domains (Pro-Arg-Gly) at both N- and C-termini. Co-assembly of peptides and DNA origami two-layer (TL) nanosheets affords the formation of one-dimensional nanowires with repeating periodicity of ∼10 nm. Structural analyses suggest a face-to-face stacking of DNA nanosheets with peptides aligned perpendicularly to the sheet surfaces. We demonstrate the potential of selective peptide-DNA association between face-to-face and edge-to-edge packing by tailoring the size of DNA nanostructures. This study presents an attractive strategy to create hybrid biomolecular assemblies from peptide- and DNA-based building blocks that takes advantage of the intrinsic chemical and physical properties of the respective components to encode structural and, potentially, functional complexity within readily accessible biomimetic materials.

  13. Layer-by-layer assembly of nanowires for three-dimensional, multifunctional electronics.

    PubMed

    Javey, Ali; Nam, SungWoo; Friedman, Robin S; Yan, Hao; Lieber, Charles M

    2007-03-01

    We report a general approach for three-dimensional (3D) multifunctional electronics based on the layer-by-layer assembly of nanowire (NW) building blocks. Using germanium/silicon (Ge/Si) core/shell NWs as a representative example, ten vertically stacked layers of multi-NW field-effect transistors (FETs) were fabricated. Transport measurements demonstrate that the Ge/Si NW FETs have reproducible high-performance device characteristics within a given device layer, that the FET characteristics are not affected by sequential stacking, and importantly, that uniform performance is achieved in sequential layers 1 through 10 of the 3D structure. Five-layer single-NW FET structures were also prepared by printing Ge/Si NWs from lower density growth substrates, and transport measurements showed similar high-performance characteristics for the FETs in layers 1 and 5. In addition, 3D multifunctional circuitry was demonstrated on plastic substrates with sequential layers of inverter logical gates and floating gate memory elements. Notably, electrical characterization studies show stable writing and erasing of the NW floating gate memory elements and demonstrate signal inversion with larger than unity gain for frequencies up to at least 50 MHz. The ability to assemble reproducibly sequential layers of distinct types of NW-based devices coupled with the breadth of NW building blocks should enable the assembly of increasing complex multilayer and multifunctional 3D electronics in the future.

  14. Self-assembly of hyperbranched polymers and its biomedical applications.

    PubMed

    Zhou, Yongfeng; Huang, Wei; Liu, Jinyao; Zhu, Xinyuan; Yan, Deyue

    2010-11-02

    Hyperbranched polymers (HBPs) are highly branched macromolecules with a three-dimensional dendritic architecture. Due to their unique topological structure and interesting physical/chemical properties, HBPs have attracted wide attention from both academia and industry. In this paper, the recent developments in HBP self-assembly and their biomedical applications have been comprehensively reviewed. Many delicate supramolecular structures from zero-dimension (0D) to three-dimension (3D), such as micelles, fibers, tubes, vesicles, membranes, large compound vesicles and physical gels, have been prepared through the solution or interfacial self-assembly of amphiphilic HBPs. In addition, these supramolecular structures have shown promising applications in the biomedical areas including drug delivery, protein purification/detection/delivery, gene transfection, antibacterial/antifouling materials and cytomimetic chemistry. Such developments promote the interdiscipline researches among surpramolecular chemistry, biomedical chemistry, nano-technology and functional materials.

  15. Bioinspired assembly of nanoplatelets for reinforced polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Huang, Wei-Han; Dou, Xuan; Jiang, Peng

    2011-04-01

    Bio-inspired assembly of platelet particles and polyelectrolytes into ordered layered nanocomposites, which mimic the brick-and-mortar nanostructure found in the nacreous layer of mollusk shells, is of great technological importance in developing light-weight reinforced materials, separation membranes, and gas-barrier coatings. Unfortunately, the widely utilized layer-by-layer self-assembly technology is tedious in creating thick multilayered coatings. Here we report a simple filtration technology that enables the scalable production of inorganic nanoplatelets-polymer nanocomposites with layered structures. Water suspended montmorillonite (MTM) nanoclay platelets are pre-mixed with polyvinyl alcohol (PVA) aqueous solution to make stable colloidal suspensions. By using a simple vacuum filtration setup, ordered layered MTM nanoclay-PVA nanocomposites with controlled thickness can be easily prepared. The resulting selfstanding films exhibit higher tensile strength and toughness than those of natural inorganic-organic nanocomposites including nacre, bone, and dentin.

  16. Role of self-assembled monolayer passivation in electrical transport properties and flicker noise of nanowire transistors.

    PubMed

    Kim, Seongmin; Carpenter, Patrick D; Jean, Rand K; Chen, Haitian; Zhou, Chongwu; Ju, Sanghyun; Janes, David B

    2012-08-28

    Semiconductor nanowires have achieved great attention for integration in next-generation electronics. However, for nanowires with diameters comparable to the Debye length, which would generally be required for one-dimensional operation, surface states degrade the device performance and increase the low-frequency noise. In this study, single In(2)O(3) nanowire transistors were fabricated and characterized before and after surface passivation with a self-assembled monolayer of 1-octadecanethiol (ODT). Electrical characterization of the transistors shows that device performance can be enhanced upon ODT passivation, exhibiting steep subthreshold slope (~64 mV/dec), near zero threshold voltage (~0.6 V), high mobility (~624 cm(2)/V·s), and high on-currents (~40 μA). X-ray photoelectron spectroscopy studies of the ODT-passivated nanowires indicate that the molecules are bound to In(2)O(3) nanowires through the thiol linkages. Device simulations using a rectangular geometry to represent the nanowire indicate that the improvement in subthreshold slope and positive shift in threshold voltage can be explained in terms of reduced interface trap density and changes in fixed charge density. Flicker (low-frequency, 1/f) noise measurements show that the noise amplitude is reduced following passivation. The interface trap density before and after ODT passivation is profiled throughout the band gap energy using the subthreshold current-voltage characteristics and is compared to the values extracted from the low-frequency noise measurements. The results indicate that self-assembled monolayer passivation is a promising optimization technology for the realization of low-power, low-noise, and fast-switching applications such as logic, memory, and display circuitry.

  17. Magnetic Properties of Feni Nanowire Arrays Assembled on Porous AAO Template by AC Electrodeposition

    NASA Astrophysics Data System (ADS)

    Wang, Pangpang; Gao, Lumei; Wang, Liqun; Zhang, Dongyan; Yang, Sen; Song, Xiaoping; Qiu, Zhiyong; Murakami, Ri-Ichi

    FeNi nanowire arrays were fabricated into the pores of porous alumina template by a simple alternating current electrodeposition method in this work. FeNi nanowires with different diameters were obtained depending on the pore size arrangement of alumina templates. FeNi nanowire arrays exhibited obviously magnetic anisotropy, and the easy axis was along the nanowires. When the applied magnetic field was parallel to the nanowires, the coercivity (Hc) and the maximum remnant ratio (Mr/Ms) are considerable higher than those while the magnetic field perpendicular to the nanowires. FeNi nanowires prepared in this work are expected to be utilized as the perpendicular magnetic recording media. The magnetic domain structure and the magnetizing mechanism of FeNi nanowires were also been discussed.

  18. VO2 nanowires assembled into hollow microspheres for high-rate and long-life lithium batteries.

    PubMed

    Niu, Chaojiang; Meng, Jiashen; Han, Chunhua; Zhao, Kangning; Yan, Mengyu; Mai, Liqiang

    2014-05-14

    Development of three-dimensional nanostructures with high surface area and excellent structural stability is an important approach for realizing high-rate and long-life battery electrodes. Here, we report VO2 hollow microspheres showing empty spherical core with radially protruding nanowires, synthesized through a facile and controllable ion-modulating approach. In addition, by controlling the self-assembly of negatively charged C12H25SO4(-) spherical micelles and positively charged VO(2+) ions, six-armed microspindles and random nanowires are also prepared. Compared with them, VO2 hollow microspheres show better electrochemical performance. At high current density of 2 A/g, VO2 hollow microspheres exhibit 3 times higher capacity than that of random nanowires, and 80% of the original capacity is retained after 1000 cycles. The superior performance of VO2 hollow microspheres is because they exhibit high surface area about twice higher than that of random nanowires and also provide an efficient self-expansion and self-shrinkage buffering during lithiation/delithiation, which effectively inhibits the self-aggregation of nanowires. This research indicates that VO2 hollow microspheres have great potential for high-rate and long-life lithium batteries.

  19. High aspect ratio conjugated polymer nanowires for high performance field-effect transistors and phototransistors.

    PubMed

    Um, Hyun Ah; Lee, Dae Hee; Heo, Dong Uk; Yang, Da Seul; Shin, Jicheol; Baik, Hionsuck; Cho, Min Ju; Choi, Dong Hoon

    2015-05-26

    We synthesized a highly crystalline DPP-based polymer, DPPBTSPE, which contained 1,2-bis(5-(thiophen-2-yl)selenophen-2-yl)ethene as a planar and rigid electron donating group. High- and low-molecular weight (MW) DPPBTSPE fractions were collected by Soxhlet extraction and were employed to investigate their unique charge transport properties in macroscopic films and single crystalline polymer nanowire (SC-PNW), respectively. The low-MW polymer could provide well-isolated and high aspect ratio SC-PNWs, in which the direction of π-π stacking was perpendicular to the wire growing axis. The field effect transistors made of SC-PNWs exhibited remarkably high carrier mobility of 24 cm(2) V(-1) s(-1). In addition, phototransistors (PTs) made of SC-PNW showed very high performance in terms of photoresponsivity (R) and photoswitching ratio (P). The average R of the SC PNW-based PTs were in the range of 160-170 A W(-1) and the maximum R was measured at 1920 A W(-1), which is almost three orders higher than that of thin film-based PT device.

  20. Phosphorylcholine substituted polyolefins: New syntheses, solution assemblies, and polymer vesicles

    NASA Astrophysics Data System (ADS)

    Kratz, Katrina A.

    This thesis describes the synthesis and applications of a new series of amphiphilic homopolymers and copolymers consisting of hydrophobic polyolefin backbone and hydrophilic phosphorylcholine (PC) pendant groups. These polymers are synthesized by ring opening metathesis polymerization (ROMP) of a novel PC- cyclooctene monomer, and copolymerization of various functionalized cyclooctene comonomers. Incorporation of different comonomers into the PC-polyolefin backbone affords copolymers with different functionalities, including crosslinkers, fluorophores, and other reactive groups, that tune the range of applications of these polymers, and their hydrophobic/hydrophilic balance. The amphiphilic nature of PC-polyolefins was exploited in oil-water interfacial assembly, providing robust polymer capsules to encapsulate and deliver nanoparticles to damaged regions of a substrate in a project termed `repair-and-go.' In repair-and-go, a flexible microcapsule filled with a solution of nanoparticles probes an imperfection-riddled substrate as it rolls over the surface. The thin capsule wall allows the nanoparticles to escape the capsules and enter into the cracks, driven in part by favorable interactions between the nanoparticle ligands and the cracked surface (i.e., hydrophobic-hydrophobic interactions). The capsules then continue their transport along the surface, filling more cracks and depositing particles into them. The amphiphilic nature of PC-polyolefins was also exploited in aqueous assembly, forming novel polymer vesicles in water. PC-polyolefin vesicles ranged in size from 50 nm to 30 µm. The mechanical properties of PC-polyolefin vesicles were measured by micropipette aspiration techniques, and found to be more robust than conventional liposomes or polymersomes prepared from block copolymers. PC-polyolefin vesicles have potential use in drug delivery; it was found that the cancer drug doxorubicin could be encapsulated efficiently in PC-polyolefin vesicles. In

  1. Bud-like silica nanowires with self-assembled long segmented stems: a novel nanostructure and its growth mechanism.

    PubMed

    Li, Qiang; Chen, Yiqing; Zhang, Xinhua; Liu, Lizhu; Guo, Taibo; Wei, Meiqin; Su, Yong; Jia, Chong

    2010-08-01

    A large quantity of bud-like silica nanowires with self-assembled long segmented stems were synthesized through thermal evaporation via using a piece of Si wafer and the mixture of Ga2O3 and carbon powder as source materials. The segmented stems were assembled from the bottom part of the bud-like silica nanowires with diameter of approximately 0.5 microm and length up to more than 20 microm. The bud-like silica nanowires could have one, two or three segmented stems. Some bud-like silica nanostrutures have a bowl-shaped cavity at their tips, others have a tail growing from their tips. The aligned silica nanowires were found extending from the thin silica shell coating the Ga ball, instead of nucleating and growing from the surface of the Ga ball directly. These interesting results could help us understand the diversity and versatility of the silica nanostructures which can be fabricated, and the knowledge of their growth mechanisms.

  2. Fabrication of Ag nanowire/polymer composite nanocables via direct electrospinning

    NASA Astrophysics Data System (ADS)

    Han, Ming-Chu; He, Hong-Wei; Zhang, Bin; Wang, Xiao-Xiong; Zhang, Jun; You, Ming-Hao; Yan, Shi-Ying; Long, Yun-Ze

    2017-07-01

    1D nanocables consisting of metal core with high conductivity and protective polymer shell are promising for electronic devices. In this paper, silver nanowire/polyvinylidene fluoride (AgNW/PVDF) composite nanocables with excellent thermal stability were successfully fabricated by facile direct electrospinning (e-spinning), in which a slurry of AgNWs were uniformly dispersed into N,N-dimethylformamide/acetone solution containing 20% PVDF to form the e-spinning precursor solution. The decomposed temperature of resultant AgNW/PVDF nanocables is up to 460 °C. Interestingly, the as-spun nanocables exhibit more β phase of PVDF than that of pure PVDF nanofibers. The as-spun AgNW/PVDF nanocables could be applied in fields of antibacterial, ultrathin cables and optoelectronic devices.

  3. Highly efficient and stable Si nanowires array embedded into transparent polymer for visible light photoelectrochemical cell.

    PubMed

    Wang, Hui; Wang, Jian-Tao; Ou, Xue-Mei; Li, Fan; Zhang, Xiao-Hong

    2014-07-04

    Photoelectrochemical (PEC) cell supports a renewable method for solving current environmental and energy issues by combining solar energy collection and photocatalysis in a single semiconductor photoelectrode. However, it is still challenged by visible light photoelectrodes. The present work reports fabricating highly efficient and stable Si nanowires (SiNWs) array as visible light photoelectrodes. It involves embedding SiNWs arrays into a transparent polymer substrate to build an axial carrier collection geometry. We demonstrated that this strategy could significantly strengthen the chemical stability of SiNWs by largely reducing their surface area. Moreover, this device structure can also enhance visible light absorption efficiency through taking advantage of the highly crystalline structure of vapor-liquid-solid (VLS) grown SiNWs. Thus it can double the photodegradation ability of SiNWs.

  4. Si6H12/Polymer Inks for Electrospinning a-Si Nanowire Lithium Ion Battery Anodes

    SciTech Connect

    Schulz, Douglas L.; Hoey, Justin; Smith, Jeremiah; Elangovan, Arumugasamy; Wu, Xiangfa; Akhatov, Iskander; Payne, Scott; Moore, Jayma; Boudjouk, Philip; Pederson, Larry; Xiao, Jie; Zhang, Jiguang

    2010-08-04

    Amorphous silicon nanowires 'a-SiNWs' have been prepared by electrospinning a liquid silane-based precursor. Cyclohexasilane 'Si6H12' was admixed with poly-methyl methacrylate (PMMA) in toluene giving an ink that was electrospun into the Si6H12/PPMA wires with diameters of 50-2000 nm. Raman spectroscopy revealed that thermal treatment at 350 C transforms this deposit into a-SiNWs. These materials were coated with a thin carbon layer and then tested as half-cells where a reasonable plateau in electrochemical cycling was observed after an initial capacity fade. Additionally, porous a-SiNWs were realized when the thermally decomposable binder polypropylene carbonate/polycyclohexene carbonate was used as the polymer carrier.

  5. Solution-processed parallel tandem polymer solar cells using silver nanowires as intermediate electrode.

    PubMed

    Guo, Fei; Kubis, Peter; Li, Ning; Przybilla, Thomas; Matt, Gebhard; Stubhan, Tobias; Ameri, Tayebeh; Butz, Benjamin; Spiecker, Erdmann; Forberich, Karen; Brabec, Christoph J

    2014-12-23

    Tandem architecture is the most relevant concept to overcome the efficiency limit of single-junction photovoltaic solar cells. Series-connected tandem polymer solar cells (PSCs) have advanced rapidly during the past decade. In contrast, the development of parallel-connected tandem cells is lagging far behind due to the big challenge in establishing an efficient interlayer with high transparency and high in-plane conductivity. Here, we report all-solution fabrication of parallel tandem PSCs using silver nanowires as intermediate charge collecting electrode. Through a rational interface design, a robust interlayer is established, enabling the efficient extraction and transport of electrons from subcells. The resulting parallel tandem cells exhibit high fill factors of ∼60% and enhanced current densities which are identical to the sum of the current densities of the subcells. These results suggest that solution-processed parallel tandem configuration provides an alternative avenue toward high performance photovoltaic devices.

  6. Bias dependent crossover from variable range hopping to power law characteristics in the resistivity of polymer nanowires.

    PubMed

    Rahman, Atikur; Sanyal, Milan K

    2010-05-05

    The electronic transport properties of ultra-low doped conducting polymer nanowires exhibit characteristics of a pinned one-dimensional Wigner crystal (1D WC) due to the long range electron-electron interaction at low temperature (<30 K). These wires also show characteristics of three-dimensional variable range hopping (3D VRH) at higher temperature. Here we report a resistivity study of these nanowires as a function of the bias around and above 30 K, to show that a crossover takes place from 3D VRH to power law behavior as the bias voltage or current is increased from a low to a relatively high value. The experimental results for this temperature range show several similarities to the theoretically predicted properties of disordered Lüttinger liquid, though at lower temperature the characteristics of the 1D WC are obtained for these nanowires.

  7. Coherent magnetization reversal and high magnetic coercivity in Co nanowire assemblies

    NASA Astrophysics Data System (ADS)

    Gandha, Kinjal; Mohapatra, Jeotikanta; Liu, J. Ping

    2017-09-01

    Nanowires (NWs) of single crystalline hcp Co with length from 200 to 530 nm and diameter from 8 to 20 nm (corresponding to the aspect ratio from 10 to 66) are synthesized via a solvothermal method by controlling the Co-precursor to amine mole concentration. The increased aspect ratio leads to enhanced coercivity of randomly oriented Co NWs up to an optimum value of 6.7 kOe, for the NWs of average length 200 nm and average diameter 15 nm (aspect ratio ∼13). Alignment of the NWs in a magnetic field leads to further enhanced coercivity up to a doubled value of 12.5 kOe at 300 K. The high magnetic coercivity achieved in the random and aligned assemblies is due to both the magnetocrystalline anisotropy and the shape anisotropy. For a better understanding of the coercivity mechanism of the NWs, angular dependence of the coercivity has been experimentally investigated for the aligned NW assemblies and the corresponding magnetization reversal mode is determined to be a coherent reversal mode according to an analytical simulation based on the Stoner-Wohlfarth model.

  8. Self-assembly of silicon nanowires studied by advanced transmission electron microscopy

    PubMed Central

    Agati, Marta; Amiard, Guillaume; Borgne, Vincent Le; Castrucci, Paola; Dolbec, Richard; De Crescenzi, Maurizio; El Khakani, My Alì

    2017-01-01

    Scanning transmission electron microscopy (STEM) was successfully applied to the analysis of silicon nanowires (SiNWs) that were self-assembled during an inductively coupled plasma (ICP) process. The ICP-synthesized SiNWs were found to present a Si–SiO2 core–shell structure and length varying from ≈100 nm to 2–3 μm. The shorter SiNWs (maximum length ≈300 nm) were generally found to possess a nanoparticle at their tip. STEM energy dispersive X-ray (EDX) spectroscopy combined with electron tomography performed on these nanostructures revealed that they contain iron, clearly demonstrating that the short ICP-synthesized SiNWs grew via an iron-catalyzed vapor–liquid–solid (VLS) mechanism within the plasma reactor. Both the STEM tomography and STEM-EDX analysis contributed to gain further insight into the self-assembly process. In the long-term, this approach might be used to optimize the synthesis of VLS-grown SiNWs via ICP as a competitive technique to the well-established bottom-up approaches used for the production of thin SiNWs. PMID:28326234

  9. Supramolecular Polymer Network-Mediated Self-Assembly of Semicrystalline Polymers with Excellent Crystalline Performance.

    PubMed

    Cheng, Chih-Chia; Chuang, Wei-Tsung; Lee, Duu-Jong; Xin, Zhong; Chiu, Chih-Wei

    2017-03-01

    A novel application of supramolecular interactions within semicrystalline polymers, capable of self-assembling into supramolecular polymer networks via self-complementary multiple hydrogen-bonded complexes, is demonstrated for efficient construction of highly controlled self-organizing hierarchical structures to offer a direct, efficient nucleation pathway resulting in superior crystallization performance. Herein, a novel functionalized poly(ε-caprolactone) containing self-complementary sextuple hydrogen-bonded uracil-diamidopyridine (U-DPy) moieties is successfully developed and demonstrated excellent thermal and viscoelastic properties as well as high dynamic structural stability in the bulk state due to physical cross-linking created by reversible sextuple hydrogen bonding between U-DPy units. Due to the ability to vary the extent of the reversible network by tuning the U-DPy content, this newly developed material can be readily adjusted to obtain the desired crystalline products with specific characteristics. Importantly, incorporating only 0.1% U-DPy resulted in a polymer with a high crystallization rate constant, short crystallization half-time, and much more rapid crystallization kinetics than pristine PCL, indicating a low content of U-DPy moieties provides highly efficient nucleation sites that manipulate the nucleation and growth processes of polymer crystals to promote crystallization and chain alignment in bulk. This new system is suggested as a potential new route to substantially improve the performance of polymer crystallization.

  10. Integrated chemical and biological systems in nanowire structures towards nano-scale sensors

    NASA Astrophysics Data System (ADS)

    Hernandez, Rose M.

    Nanowires composed of metal and conducting polymers with integrated proteins and chemical systems have been investigated as building blocks for next-generation nano-scale sensors and assemblies. These nanowires were fabricated by combining chemical and electrochemical methods of synthesis of gold and conducting polymers in nanopores of anodized alumina membranes. Polymer nanowires were synthesized from buffer solutions as a mean to promote a biocompatible environment for the incorporation of proteins. A variety of proteins were incorporated into the polymer matrix by entrapment during polymerization that imparted the polymer material with biological functionality. Another class of composite nanowires containing electro-active conducting polymer junctions was developed for applications in chemical sensor arrays. The methodologies described in this thesis provide an inexpensive and straightforward approach to the synthesis of anisotropic nanoparticles incorporating a variety of biological and inorganic species that can be integrated to current microelectronic technologies for the development of nano-scale sensor arrays.

  11. Hybrid Thin Films Based Upon Polyoxometalates-Polymer Assembly

    NASA Astrophysics Data System (ADS)

    Qi, Na; Jing, Benxin; Zhu, Yingxi

    2014-03-01

    Block copolymers (BCPs) and polyoxometalates (POMs) have been used individually as building blocks for design and synthesis of novel functional materials. POM nanoclusters, the assemblies of transition metal oxides with well-defined atomic coordination structure, have been recently explored as novel nanomaterials... for catalysis, semiconductors, and even anti-cancer treatment due to their unique chemical, optical and electrical characteristics. We have explored the blending of inorganic POM nanocluster with BCPs into hierarchaically structured inorganic-organic hybrid nanocomposites. Using polystyrene-b-poly(ethylene oxide) (PS-b-PEO) thin films as the template, we have observed that the spatial organization of BCP thin films is modified by molybdenum based POM nanocluster to form 2D in-plane hexagonal ordered or 3D ordered network of POM-BCP assemblies, depending on the concentration ratio of POM to PS-b-PEO. The dielectric properties of such hybrid thin films can be enhanced by embedded POMs but show a strong dependence on the supramolecular structures of POM-polymer complexes. The assembly of nanoclusters in BCP-templated thin films could pave a new path to design new hybrid nanocomposites with uniquely combined functionality and material properties.

  12. Patterning of self-assembled monolayers by phase-shifting mask and its applications in large-scale assembly of nanowires

    NASA Astrophysics Data System (ADS)

    Gao, Fan; Zhang, Dakuan; Wang, Jianyu; Sheng, Yun; Yan, Shancheng; Wang, Xinran; Chen, Kunji; Shen, Jiancang; Pan, Lijia; Zhou, Minmin; Shi, Yi

    2015-01-01

    A nonselective micropatterning method of self-assembled monolayers (SAMs) based on laser and phase-shifting mask (PSM) is demonstrated. Laser beam is spatially modulated by a PSM, and periodic SAM patterns are generated sequentially through thermal desorption. Patterned wettability is achieved with alternating hydrophilic/hydrophobic stripes on octadecyltrichlorosilane monolayers. The substrate is then used to assemble CdS semiconductor nanowires (NWs) from a solution, obtaining well-aligned NWs in one step. Our results show valuably the application potential of this technique in engineering SAMs for integration of functional devices.

  13. Patterning of self-assembled monolayers by phase-shifting mask and its applications in large-scale assembly of nanowires

    SciTech Connect

    Gao, Fan; Zhang, Dakuan; Wang, Jianyu; Sheng, Yun; Wang, Xinran; Chen, Kunji; Zhou, Minmin; Yan, Shancheng; Shen, Jiancang; Pan, Lijia; Shi, Yi

    2015-01-26

    A nonselective micropatterning method of self-assembled monolayers (SAMs) based on laser and phase-shifting mask (PSM) is demonstrated. Laser beam is spatially modulated by a PSM, and periodic SAM patterns are generated sequentially through thermal desorption. Patterned wettability is achieved with alternating hydrophilic/hydrophobic stripes on octadecyltrichlorosilane monolayers. The substrate is then used to assemble CdS semiconductor nanowires (NWs) from a solution, obtaining well-aligned NWs in one step. Our results show valuably the application potential of this technique in engineering SAMs for integration of functional devices.

  14. Synthesis, phase composition, and magnetic properties of iron nanowires prepared in the pores of polymer track-etched membranes

    NASA Astrophysics Data System (ADS)

    Frolov, K. V.; Zagorskii, D. L.; Lyubutin, I. S.; Korotkov, V. V.; Bedin, S. A.; Sulyanov, S. N.; Artemov, V. V.; Mchedlishvili, B. V.

    2014-07-01

    Arrays of iron nanowires prepared by the method of galvanic filling of polymer track-etched membrane pores (matrix synthesis) under different electrolysis modes and electrolyte temperatures have been studied. The conditions of the synthesis have been analyzed. The optimal composition and electrolyte temperature have been found. The phase composition and magnetic properties of nanowires have been studied using the methods of electron microscopy, X-ray diffraction, elemental energy-dispersive microanalysis, and Mössbauer spectroscopy. The average nanowire diameter is 100-200 nm. The length varies from 6 to 10 μm. The surface density is ˜108 cm-2 at the average distance to each other of about 1 μm. It has been established that the basis of nanowires is formed by the metal iron nanocomposite that manifests the magnetic properties of bulk α-Fe. It has been found that the preferred orientation of the magnetization inside the iron nanowires arises for an array prepared at a potential of -750 mV.

  15. Bioinspired design and assembly of platelet reinforced polymer films.

    PubMed

    Bonderer, Lorenz J; Studart, André R; Gauckler, Ludwig J

    2008-02-22

    Although strong and stiff human-made composites have long been developed, the microstructure of today's most advanced composites has yet to achieve the order and sophisticated hierarchy of hybrid materials built up by living organisms in nature. Clay-based nanocomposites with layered structure can reach notable stiffness and strength, but these properties are usually not accompanied by the ductility and flaw tolerance found in the structures generated by natural hybrid materials. By using principles found in natural composites, we showed that layered hybrid films combining high tensile strength and ductile behavior can be obtained through the bottom-up colloidal assembly of strong submicrometer-thick ceramic platelets within a ductile polymer matrix.

  16. Self-assembly of supramolecular triarylamine nanowires in mesoporous silica and biocompatible electrodes thereof

    NASA Astrophysics Data System (ADS)

    Licsandru, Erol-Dan; Schneider, Susanne; Tingry, Sophie; Ellis, Thomas; Moulin, Emilie; Maaloum, Mounir; Lehn, Jean-Marie; Barboiu, Mihail; Giuseppone, Nicolas

    2016-03-01

    Biocompatible silica-based mesoporous materials, which present high surface areas combined with uniform distribution of nanopores, can be organized in functional nanopatterns for a number of applications. However, silica is by essence an electrically insulating material which precludes applications for electro-chemical devices. The formation of hybrid electroactive silica nanostructures is thus expected to be of great interest for the design of biocompatible conducting materials such as bioelectrodes. Here we show that we can grow supramolecular stacks of triarylamine molecules in the confined space of oriented mesopores of a silica nanolayer covering a gold electrode. This addressable bottom-up construction is triggered from solution simply by light irradiation. The resulting self-assembled nanowires act as highly conducting electronic pathways crossing the silica layer. They allow very efficient charge transfer from the redox species in solution to the gold surface. We demonstrate the potential of these hybrid constitutional materials by implementing them as biocathodes and by measuring laccase activity that reduces dioxygen to produce water.Biocompatible silica-based mesoporous materials, which present high surface areas combined with uniform distribution of nanopores, can be organized in functional nanopatterns for a number of applications. However, silica is by essence an electrically insulating material which precludes applications for electro-chemical devices. The formation of hybrid electroactive silica nanostructures is thus expected to be of great interest for the design of biocompatible conducting materials such as bioelectrodes. Here we show that we can grow supramolecular stacks of triarylamine molecules in the confined space of oriented mesopores of a silica nanolayer covering a gold electrode. This addressable bottom-up construction is triggered from solution simply by light irradiation. The resulting self-assembled nanowires act as highly conducting

  17. Directed colloidal assembly and characterization of PZT-polymer composites

    NASA Astrophysics Data System (ADS)

    Smay, James Earl

    Lead zirconate titanate (PZT)-based layers and 3-D structures were directly assembled using two colloidal routes: (1) tape casting and (2) a layer-by-layer robotic deposition technique, known as robocasting. First, concentrated (φsolids > 0.45) suspensions of PZT-5H and a latex emulsion were tape cast with the aid of viscosifier and surfactant additions. Drying stress evolved to a maximum at φ PZT ˜ 0.49, followed by a reduction and a secondary stress rise attributed to latex coalescence. Dielectric and piezoelectric properties of sintered PZT multilayer laminates exhibited good agreement with those for isostatically pressed and sintered samples. Concentrated, weakly gelled suspensions of PZT 95/5 and poly(ethylene) (PE) latices, a fugitive species, were developed as inks for the robotic deposition of monolithic and tri-layered composite structures. Monoliths, with densities of 93.6% and 96.1%, and composites with a 96.1% dense layer between 93.6% regions were fabricated. The structures displayed equivalent electrical properties to cold isostatically pressed parts. The composites withstood repeated saturation polarization switching as well as a 500 MPa hydrostatic pressure-induced poled ferroelectric (FE) to antiferroelectric (AFE) phase transformation. Concentrated (φPZT = 0.47) PZT-5H gels were developed as inks for the robotic deposition of 3-D, mesoscale periodic structures with self-supporting features such as lattices of rod-like elements and v-shaped test structures. The gels exhibited pH dependent viscoelastic properties and Hershel-Bulkley flow behavior. The deflection of as-deposited spanning elements was measured using laser profilometry. Flow modeling and shape evolution data indicated a core-shell architecture as the ink exited the deposition nozzle, which simultaneously provided strength to form spanning elements and good bonding between layers. The core grew rapidly (˜1s) due to the quick recovery of gel structure in these inks. 3-X type PZT-polymer

  18. Selective crystallization of conjugated polymers into nanowires from graphene coated surfaces

    NASA Astrophysics Data System (ADS)

    Acevedo-Cartagena, Daniel; Zhu, Jiaxin; Trabanino, Elvira; Pentzer, Emily; Emrick, Todd; Briseño, Alejandro; Nonnenmann, Stephen; Hayward, Ryan

    Solution-based crystallization of conjugated polymers offers a scalable and attractive route to develop hierarchical structures for organic electronic devices, especially solar cells. The introduction of well-defined nucleation sites into metastable supersaturated solutions provides a way to regulate the crystallization behavior, and therefore the morphology of the material. We focus on metastable solutions of poly(3-hexylthiophene) (P3HT) dissolved in mixtures of m-xylene, a marginal solvent, and chlorobenzene, a good solvent. Appropriate levels of supersaturation are identified to suppress homogenous nucleation of crystals at room temperature, while allowing for crystallization on heterogeneous nucleation sites. We show that in these metastable solutions, P3HT selectively crystallizes on graphene-coated surfaces. Through in situ atomic force microscopy, we confirm that nanowires grow vertically in a face-on orientation from highly oriented pyrolytic graphite and graphene. Moreover, this method can be successfully extended to other conjugated polymers with superior electronic properties, such as poly[2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b] thiophene]. Therefore, this method is a promising route to improve the performance of organic electronics.

  19. Polymer-free Vertical Transfer of Silicon Nanowires and their Application to Energy Storage.

    PubMed

    Kim, Han-Jung; Lee, Jihye; Lee, Sang Eon; Kim, Wanjung; Kim, Hwan Jin; Choi, Dae-Geun; Park, Jong Hyeok

    2013-11-01

    Silicon nanowires (SiNWs) for use as lithium-ion battery (LIB) anode materials have been studied for their one-dimensional (1D) properties and ability to accommodate large volume changes and avoid rapid capacity fading during cycling. Although the vertical transfer of SiNWs from their original substrate onto a conducting electrode is very important, to date, there has been no report of a direct integration method without polymer binders. Here, we propose for the first time a vertical transfer method for SiNWs grown on a Si substrate directly to the current-collecting electrode without using a polymer adhesive for the use as a binder-free LIB anode. The vertical SiNWs produced using a low-cost wafer-scale metal-assisted chemical etching (MaCE) process have been successfully transferred directly to a copper electrode coated with a thin Ag layer by using a simple hot pressing method. When evaluated as an LIB anode without using conventional polymeric binder and a conducting additive, the transferred vertically aligned SiNWs showed a high specific capacity (≈2150 mAh g(-1) ) and excellent rate performance. It is believed that the anode-manufacturing process is simple and fast, thus enabling a large-scale production that is of low-cost, broadly applicable, and provides new avenues for the rational engineering of Si-based electrode materials with enhanced power density and conductivity.

  20. Crystallization-driven assembly of conjugated-polymer-based nanostructures

    SciTech Connect

    Hayward, Ryan C.

    2016-10-15

    The goal of this project has been to improve our ability to simultaneously control the organization, and therefore the opto-electronic properties, of conjugated-polymer based materials across three different length-scales: 1) the molecular scale, in the sense of controlling growth and functionalization of highly crystalline semiconducting organic materials capable of efficient charge transport, 2) the nanoscale, in terms of positioning n- and p-type materials with domain sizes comparable to exciton diffusion lengths (~ 10 nm) to facilitate charge separation, and 3) the colloidal scale, such that well-defined crystalline nanoscale building blocks can be hierarchically organized into device layers. As described in more detail below, the project was successful in generating powerful new approaches to, and improved fundamental understanding of, processing and self-assembly of organic and hybrid semiconducting materials across all three length-scales. Although the goals of the project were formulated with primarily photovoltaic architectures in mind, the outcomes of the project have significant implications for a variety of conjugated-polymer-based devices including field-effect-transistors for sensors and logic devices, as well as potentially thermoelectrics and battery electrode materials. The project has resulted in 10 peer-reviewed publications to date [1-10], with several additional manuscripts currently in preparation.

  1. Self-assembled conjugated polymer spheres as fluorescent microresonators

    PubMed Central

    Tabata, Kenichi; Braam, Daniel; Kushida, Soh; Tong, Liang; Kuwabara, Junpei; Kanbara, Takaki; Beckel, Andreas; Lorke, Axel; Yamamoto, Yohei

    2014-01-01

    Confinement of light inside an active medium cavity can amplify emission. Whispering gallery mode (WGM) is one of mechanisms that amplifies light effectively by confining it inside high-refractive-index microstructures, where light propagates along the circumference of a sphere via total internal reflection. Here we show that isolated single microspheres of 2–10 μm diameter, formed from self-assembly of π-conjugated alternating copolymers, display WGM photoemission induced by laser pumping. The wavelengths of the emission peaks depend sensitively on the sphere size, position of the excitation spot and refractive index of each polymer. The Q-factor increases with increasing sphere diameter and displays a linear correlation with the reciprocal radius, indicating that the small curvature increases the efficacy of the total internal reflection. WGM photoemission from π-conjugated polymer microspheres is unprecedented and may be of high technological impact since the microspheres fulfill the role of fluorophores, high-refractive-index media and resonators simultaneously, in addition to their simple fabrication process. PMID:25082187

  2. Self-Assembled Hydrogels Utilising Polymer-Nanoparticle Interactions

    PubMed Central

    Appel, Eric A.; Tibbitt, Mark W.; Webber, Matthew J.; Mattix, Bradley A.; Veiseh, Omid

    2015-01-01

    Mouldable hydrogels that flow upon applied stress and rapidly self-heal are increasingly utilised as they afford minimally invasive delivery and conformal application. Here we report a new paradigm for the fabrication of self-assembled hydrogels with shear-thinning and self-healing properties employing rationally engineered polymer-nanoparticle interactions. Biopolymer derivatives are linked together by selective adsorption to nanoparticles. The transient and reversible interactions between biopolymers and nanoparticles enable flow under applied shear stress, followed by rapid self-healing when the stress is relaxed. We develop a physical description of polymer-nanoparticle gel formation that is utilised to design biocompatible gels for minimally-invasive drug delivery. Owing to the hierarchical structure of the gel, both hydrophilic and hydrophobic drugs can be entrapped and delivered with differential release profiles, both in vitro and in vivo. The work introduces a facile and generalizable class of mouldable hydrogels amenable to a range of biomedical and industrial applications. PMID:25695516

  3. Recognition-Mediated Assembly of Quantum Dot Polymer Conjugates with Controlled Morphology

    PubMed Central

    Nandwana, Vikas; Subramani, Chandramouleeswaran; Eymur, Serkan; Yeh, Yi-Cheun; Tonga, Gulen Yesilbag; Tonga, Murat; Jeong, Youngdo; Yang, Boqian; Barnes, Michael D.; Cooke, Graeme; Rotello, Vincent M.

    2011-01-01

    We have demonstrated a polymer mediated “bricks and mortar” method for the self-assembly of quantum dots (QDs). This strategy allows QDs to self-assemble into structured aggregates using complementary three-point hydrogen bonding. The resulting nanocomposites have distinct morphologies and inter-particle distances based on the ratio between QDs and polymer. Time resolved photoluminescence measurements showed that the optical properties of the QDs were retained after self-assembly. PMID:22016664

  4. Design of polymer motifs for nucleic acid recognition and assembly stabilization

    NASA Astrophysics Data System (ADS)

    Zhou, Zhun

    This dissertation describes the synthesis and assembly of bio-functional polymers and the applications of these polymers to drug encapsulation, delivery, and multivalent biomimetic macromolecular recognition between synthetic polymer and nucleic acids. The main content is divided into three parts: (1) polyacidic domains as strongly stabilizing design elements for aqueous phase polyacrylate diblock assembly; (2) small molecule/polymer recognition triggered macromolecular assembly and drug encapsulation; (3) trizaine derivatized polymer as a novel class of "bifacial polymer nucleic acid" (bPoNA) and applications of bPoNA to nanoparticle loading of DNA/RNA, silencing delivery as well as control of aptamer function. Through the studies in part (1) and part (2), it was demonstrated that well-designed polymer motifs are not only able to enhance assemblies driven by non-specific hydrophobic effect, but are also able to direct assemblies based on specific recognitions. In part (3) of this dissertation, this concept was further extended by the design of polyacrylate polymers that are capable of discrete and robust hybridization with nucleic acids. This surprising finding demonstrated both fundamental and practical applications. Overall, these studies provided insights into the rational design elements for improving the bio-functions of synthetic polymers, and significantly expanded the scope of biological applications in which polymers synthesized via controlled radical polymerization may play a role.

  5. Salt-induced self-assembly of bacteria on nanowire arrays.

    PubMed

    Sakimoto, Kelsey K; Liu, Chong; Lim, Jongwoo; Yang, Peidong

    2014-09-10

    Studying bacteria-nanostructure interactions is crucial to gaining controllable interfacing of biotic and abiotic components in advanced biotechnologies. For bioelectrochemical systems, tunable cell-electrode architectures offer a path toward improving performance and discovering emergent properties. As such, Sporomusa ovata cells cultured on vertical silicon nanowire arrays formed filamentous cells and aligned parallel to the nanowires when grown in increasing ionic concentrations. Here, we propose a model describing the kinetic and the thermodynamic driving forces of bacteria-nanowire interactions.

  6. Self-assembled rare-earth silicide nanowires on Si(001)

    SciTech Connect

    Nogami, J.; Liu, B. Z.; Katkov, M. V.; Ohbuchi, C.; Birge, Norman O.

    2001-06-15

    This paper presents scanning tunneling microscope images of several rare-earth metal silicides grown on silicon (001). For certain of the metals studied (Dy, Ho), an anisotropy in lattice match with the substrate results in the formation of nanowires. These nanowires have desirable properties such as nanometer lateral dimension, crystalline structure with a low density of defects, and micrometer scale length. Tunneling spectroscopy on the nanowires indicates that they are metallic.

  7. Controlled growth mechanism of poly (3-hexylthiophene) nanowires

    NASA Astrophysics Data System (ADS)

    Kiymaz, D.; Yagmurcukardes, M.; Tomak, A.; Sahin, H.; Senger, R. T.; Peeters, F. M.; Zareie, H. M.; Zafer, C.

    2016-11-01

    Synthesis of 1D-polymer nanowires by a self-assembly method using marginal solvents is an attractive technique. While the formation mechanism is poorly understood, this method is essential in order to control the growth of nanowires. Here we visualized the time-dependent assembly of poly (3-hexyl-thiophene-2,5-diyl) (P3HT) nanowires by atomic force microscopy and scanning tunneling microscopy. The assembly of P3HT nanowires was carried out at room temperature by mixing cyclohexanone (CHN), as a poor solvent, with polymer solution in 1,2-dichlorobenzene (DCB). Both π-π stacking and planarization, obtained at the mix volume ratio of P3HT (in DCB):CHN (10:7), were considered during the investigation. We find that the length of nanowires was determined by the ordering of polymers in the polymer repetition direction. Additionally, our density functional theory calculations revealed that the presence of DCB and CHN molecules that stabilize the structural distortions due to tail group of polymers was essential for the core-wire formation.

  8. Copper(II)-Mediated Self-Assembly of Hairpin Peptides and Templated Synthesis of CuS Nanowires.

    PubMed

    Wang, Chengdong; Sun, Yawei; Wang, Jiqian; Xu, Hai; Lu, Jian R

    2015-09-01

    The self-assembly of peptides and proteins under well-controlled conditions underlies important nanostructuring processes that could be harnessed in practical applications. Herein, the synthesis of a new hairpin peptide containing four histidine residues is reported and the self-assembly process mediated by metal ions is explored. The work involves the combined use of circular dichroism, NMR spectroscopy, UV/Vis spectroscopy, AFM, and TEM to follow the structural and morphological details of the metal-coordination-mediated folding and self-assembly of the peptide. The results indicate that by forming a tetragonal coordination geometry with four histidine residues, copper(II) ions selectively trigger the peptide to fold and then self-assemble into nanofibrils. Furthermore, the copper(II)-bound nanofibrils template the synthesis of CuS nanowires, which display a near-infrared laser-induced thermal effect.

  9. Self-assembly of Nanopatterns on Shape Memory Polymer Substrates

    NASA Astrophysics Data System (ADS)

    Chen, Zhongbi

    Periodic surface nanostructures provide unique acoustic, electronic, optical and mechanical properties, with potential applications to metamaterials, sensors, catalysis, medicine, etc. However, assembling nanometer scale constituents into engineering scale components or devices poses tremendous challenges such as cost reduction and scalability. In this work, we will introduce a novel directed self-assembly method that has the potential to address these challenges by forming unidirectional micro- and nano-wrinkles on engineering scale polymer substrates. The approach utilizes a smart material, shape memory polymer (SMP), as the substrate in a bi-layer thin-film/substrate system. With a specially-designed programming scheme, the SMP substrate can retract in one direction while expand in the perpendicular direction in a heating process. Consequently, the thin film corrugates and the wrinkling patterns are aligned. A parametric study that investigates how the system parameters influence the surface topology will be presented. Besides wrinkles, surface defects that occurred concurrently were also observed. We will present a progressive damage scheme and a microdomain-based model to understand and possibly help preventing the formation of defects. In addition, this work will also address our efforts in shrinking the wrinkle feature size from several microns to the tens of nanometer range. Two methods, through which the minimum wrinkle wavelength was reduced from one micron to 300 nm and further down to 35 nm will be elaborated. Such aligned wrinkles whose wavelength spanning two orders of magnitude from as small as 35 nm to as large as 5 mum will open up avenues for numerous exciting applications. The application of using the self-assembled wrinkled surface as the back-reflector in solar cells to improve the power conversion efficiency will be discussed as a case study. The long-term stability of the wrinkle topology, which is essential to efficiency boost will be

  10. Self-assembly of novel nanowires by thermolysis of fullerene and transition metal thin films

    NASA Astrophysics Data System (ADS)

    Hofmann, S.; Robertson, J.; Ducati, C.; Dunin-Borkowski, R. E.

    2004-05-01

    A wide range of nanomaterials has been grown by thermal treatment of patterned condensed-phase precursors. We present a systematic study of the thermolysis of fullerene, amorphous carbon and transition metal thin films, trying to bridge previously reported results in the high temperature regime (>900 °C) and reporting novel structures for low temperature (<550 °C) processing. The synthesis of crystals of single-walled carbon nanotubes from high temperature annealing of patterned, multilayered fullerene and nickel precursor films, could not be reproduced. A thicker fullerene layer in the presence of nickel was, however, transformed into a web-like carbon network. Low temperature processing of similar precursor patterns on sulfur-containing molybdenum grids resulted in the self-assembly of nickel sulfide nanowires and filled MoS2 nanotubes. Cobalt was found to form cobalt sulfide structures. The strongly oxidizing behaviour of iron resulted in an abundance of needle-like molybdenum oxide crystals. None of the structural formations could be seen for amorphous carbon as a substitutional thin film precursor. Based on the ease of changing precursor materials, this simple, scaleable method addresses many nanomaterials, giving new insight into growth mechanisms as well as offering synthesis control for future applications.

  11. Strategy for the Co-Assembly of Co-Axial Nanotube-Polymer Hybrids.

    PubMed

    Ji, Mingyang; Dawadi, Mahesh B; LaSalla, Alexandria R; Sun, Yuan; Modarelli, David A; Parquette, Jon R

    2017-09-12

    Nanostructured materials having multiple, discrete domains of sorted components are particularly important to create efficient optoelectronics. The construction of multicomponent nanostructures from self-assembled components is exceptionally challenging due to the propensity of noncovalent materials to undergo structural reorganization in the presence of excipient polymers. This work demonstrates that polymer-nanotube composites comprised of a self-assembled nanotube wrapped with two conjugated polymers could be assembled using a layer-by-layer approach. The polymer-nanotube nanostructures arrange polymer layers coaxially on the nanotube surface. Femtosecond transient absorption (TA) studies indicated that the polymer-nanotube composites undergo photoinduced charge separation upon excitation of the NDI chromophore within the nanotube.

  12. Measuring photoluminescence spectra of self-assembly array nanowire of colloidal CdSe quantum dots using scanning near-field optics microscopy

    NASA Astrophysics Data System (ADS)

    Bai, Zhongchen; Hao, Licai; Zhang, Zhengping; Qin, Shuijie

    2016-05-01

    A novel periodic array CdSe nanowire is prepared on a substrate of the porous titanium dioxide by using a self-assembly method of the colloidal CdSe quantum dots (QDs). The experimental results show that the colloidal CdSe QDs have renewedly assembled on its space scale and direction in process of losing background solvent and form the periodic array nanowire. The main peak wavelength of Photoluminescence (PL) spectra, which is measured by using a 100-nm aperture laser beam spot on a scanning near-field optics microscopy, has shifted 60 nm with compared to the colloidal CdSe QDs. Furthermore, we have measured smaller ordered nanometer structure in thin QDs area as well, a 343-nm periodic nanowire in thick QDs area and the colloidal QDs in edge of well-ordered nanowire.

  13. Blood-clotting-inspired reversible polymer-colloid composite assembly in flow

    NASA Astrophysics Data System (ADS)

    Chen, Hsieh; Fallah, Mohammad A.; Huck, Volker; Angerer, Jennifer I.; Reininger, Armin J.; Schneider, Stefan W.; Schneider, Matthias F.; Alexander-Katz, Alfredo

    2013-01-01

    Blood clotting is a process by which a haemostatic plug is assembled at the site of injury. The formation of such a plug, which is essentially a (bio)polymer-colloid composite, is believed to be driven by shear flow in its initial phase, and contrary to our intuition, its assembly is enhanced under stronger flowing conditions. Here, inspired by blood clotting, we show that polymer-colloid composite assembly in shear flow is a universal process that can be tailored to obtain different types of aggregates including loose and dense aggregates, as well as hydrodynamically induced ‘log’-type aggregates. The process is highly controllable and reversible, depending mostly on the shear rate and the strength of the polymer-colloidbinding potential. Our results have important implications for the assembly of polymer-colloid composites, an important challenge of immense technological relevance. Furthermore, flow-driven reversible composite formation represents a new paradigm in non-equilibrium self-assembly.

  14. Blood-clotting-inspired reversible polymer-colloid composite assembly in flow.

    PubMed

    Chen, Hsieh; Fallah, Mohammad A; Huck, Volker; Angerer, Jennifer I; Reininger, Armin J; Schneider, Stefan W; Schneider, Matthias F; Alexander-Katz, Alfredo

    2013-01-01

    Blood clotting is a process by which a haemostatic plug is assembled at the site of injury. The formation of such a plug, which is essentially a (bio)polymer-colloid composite, is believed to be driven by shear flow in its initial phase, and contrary to our intuition, its assembly is enhanced under stronger flowing conditions. Here, inspired by blood clotting, we show that polymer-colloid composite assembly in shear flow is a universal process that can be tailored to obtain different types of aggregates including loose and dense aggregates, as well as hydrodynamically induced 'log'-type aggregates. The process is highly controllable and reversible, depending mostly on the shear rate and the strength of the polymer-colloidbinding potential. Our results have important implications for the assembly of polymer-colloid composites, an important challenge of immense technological relevance. Furthermore, flow-driven reversible composite formation represents a new paradigm in non-equilibrium self-assembly.

  15. Temperature-induced reversible self-assembly of diphenylalanine peptide and the structural transition from organogel to crystalline nanowires.

    PubMed

    Huang, Renliang; Wang, Yuefei; Qi, Wei; Su, Rongxin; He, Zhimin

    2014-01-01

    Controlling the self-assembly of diphenylalanine peptide (FF) into various nanoarchitectures has received great amounts of attention in recent years. Here, we report the temperature-induced reversible self-assembly of diphenylalanine peptide to microtubes, nanowires, or organogel in different solvents. We also find that the organogel in isopropanol transforms into crystalline flakes or nanowires when the temperature increases. The reversible self-assembly in polar solvents may be mainly controlled by electronic and aromatic interactions between the FF molecules themselves, which is associated with the dissociation equilibrium and significantly influenced by temperature. We found that the organogel in the isopropanol solvent made a unique transition to crystalline structures, a process that is driven by temperature and may be kinetically controlled. During the heating-cooling process, FF preferentially self-assembles to metastable nanofibers and organogel. They further transform to thermodynamically stable crystal structures via molecular rearrangement after introducing an external energy, such as the increasing temperature used in this study. The strategy demonstrated in this study provides an efficient way to controllably fabricate smart, temperature-responsive peptide nanomaterials and enriches the understanding of the growth mechanism of diphenylalanine peptide nanostructures.

  16. Temperature-induced reversible self-assembly of diphenylalanine peptide and the structural transition from organogel to crystalline nanowires

    PubMed Central

    2014-01-01

    Controlling the self-assembly of diphenylalanine peptide (FF) into various nanoarchitectures has received great amounts of attention in recent years. Here, we report the temperature-induced reversible self-assembly of diphenylalanine peptide to microtubes, nanowires, or organogel in different solvents. We also find that the organogel in isopropanol transforms into crystalline flakes or nanowires when the temperature increases. The reversible self-assembly in polar solvents may be mainly controlled by electronic and aromatic interactions between the FF molecules themselves, which is associated with the dissociation equilibrium and significantly influenced by temperature. We found that the organogel in the isopropanol solvent made a unique transition to crystalline structures, a process that is driven by temperature and may be kinetically controlled. During the heating-cooling process, FF preferentially self-assembles to metastable nanofibers and organogel. They further transform to thermodynamically stable crystal structures via molecular rearrangement after introducing an external energy, such as the increasing temperature used in this study. The strategy demonstrated in this study provides an efficient way to controllably fabricate smart, temperature-responsive peptide nanomaterials and enriches the understanding of the growth mechanism of diphenylalanine peptide nanostructures. PMID:25520600

  17. A Rational Entry to Cyclic Polymers via Selective Cyclization by Self-Assembly and Topology Transformation of Linear Polymers.

    PubMed

    Aoki, Daisuke; Aibara, Gouta; Uchida, Satoshi; Takata, Toshikazu

    2017-05-24

    A simple and effective synthetic route to cyclic polymers has been developed based on the following sequence: (i) selective cyclization of two self-complementary sec-ammonium-containing crown ether monomers to afford [c2] daisy-chain bifunctional initiators, (ii) living polymerization to afford the corresponding linear polymers, and (iii) a topology transformation of these linear polymers to furnish cyclic polymers. The key step in this sequence is the quantitative cyclization via self-assembly of two crown ether molecules with hydroxyl and sec-ammonium moieties. After the living polymerization, the linear polymers release the daisy-chain assembly to generate a cyclic topology. The specific advantages of the present synthetic protocol, i.e., procedural simplicity and concentration independence, are demonstrated by a gram-scale synthesis.

  18. Self-assembly of conjugated oligomers and polymers at the interface: structure and properties.

    PubMed

    Xu, Lirong; Yang, Liu; Lei, Shengbin

    2012-08-07

    In this review, we give a brief account on the recent scanning tunneling microscopy investigation of interfacial structures and properties of π-conjugated semiconducting oligomers and polymers, either at the solid-air (including solid-vacuum) or at the solid-liquid interface. The structural aspects of the self-assembly of both oligomers and polymers are highlighted. Conjugated oligomers can form well ordered supramolecular assemblies either at the air-solid or liquid-solid interface, thanks to the relatively high mobility and structural uniformity in comparison with polymers. The backbone structure, substitution of side chains and functional groups can affect the assembling behavior significantly, which offers the opportunity to tune the supramolecular structure of these conjugated oligomers at the interface. For conjugated polymers, the large molecular weight limits the mobility on the surface and the distribution in size also prevents the formation of long range ordered supramolecular assembly. The submolecular resolution obtained on the assembling monolayers enables a detailed investigation of the chain folding at the interface, both the structural details and the effect on electronic properties. Besides the ability in studying the assembling structures at the interfaces, STM also provides a reasonable way to evaluate the distribution of the molecular weight of conjugated polymers by statistic of the contour length of the adsorbed polymer chains. Both conjugated oligomers and polymers can form composite assemblies with other materials. The ordered assembly of oligomers can act as a template to controllably disperse other molecules such as coronene or fullerene. These investigations open a new avenue to fine tune the assembling structure at the interface and in turn the properties of the composite materials. To summarize scanning tunneling microscopy has demonstrated its surprising ability in the investigation of the assembling structures and properties of

  19. Effect of waveform of ac voltage on the morphology and crystallinity of electrochemically assembled platinum nanowires.

    PubMed

    Nerowski, Alexander; Pötschke, Markus; Wiesenhütter, Ulrich; Nicolai, Jürgen; Cikalova, Ulana; Dianat, Arezoo; Erbe, Artur; Opitz, Jörg; Bobeth, Manfred; Baraban, Larysa; Cuniberti, Gianaurelio

    2014-05-20

    Here we present electrochemically grown ultrathin platinum nanowires and demonstrate that their morphology and crystalline structure can be tuned by the waveform of the alternating voltage applied to the microelectrodes. The structure of the nanowires was analyzed by scanning and transmission electron microscopy. The voltage signal, applied to grow the nanowires, consisted of several Fourier components of a square-shaped wave. We observed that, depending on the number of Fourier components, the morphology of the nanowires changed from branched dendritic-like patterns to straight wires and the wire crystallinity changed from polycrystalline to highly oriented growth with the [111] direction of platinum crystallites along the nanowire axis. We propose a simple model to explain this intriguing observation.

  20. Cyclic polymers revealing topology effects upon self-assemblies, dynamics and responses.

    PubMed

    Yamamoto, Takuya; Tezuka, Yasuyuki

    2015-10-14

    A variety of single- and multicyclic polymers having programmed chemical structures with guaranteed purity have now become obtainable owing to a number of synthetic breakthroughs achieved in recent years. Accordingly, a broadening range of studies has been undertaken to gain updated insights on fundamental polymer properties of cyclic polymers in either solution or bulk, in either static or dynamic states, and in self-assemblies, leading to unusual properties and functions of polymer materials based on their cyclic topologies. In this article, we review recent studies aiming to achieve distinctive properties and functions by cyclic polymers unattainable by their linear or branched counterparts. We focus, in particular, on selected examples of unprecedented topology effects of cyclic polymers upon self-assemblies, dynamics and responses, to highlight current progress in Topological Polymer Chemistry.

  1. Surface confined assemblies and polymers for sensing and molecular logic

    NASA Astrophysics Data System (ADS)

    de Ruiter, Graham; Altman, Marc; Motiei, Leila; Lahav, Michal; van der Boom, Milko E.

    2013-05-01

    Since the development of molecule-based sensors and the introduction of molecules mimicking the behavior of the AND gate in solution by de Silva in 1993, molecular (Boolean) Logic and Computing (MBLC) has become increasingly popular. The molecular approach toward Boolean logic resulted in intriguing proofs of concepts in solution including logic gates, half-adders, multiplexers, and flip-flop logic circuits. Molecular assemblies can perform diverse logic tasks by reconfiguring their inputs. Our recent research activities focus on MBLC with electrochromic polymers and immobilized polypyridyl complexes on solid support. We have designed a series of coordination-based thin films that are formed linearly by stepwise wet-chemical deposition or by self-propagating molecular assembly. The electrochromic properties of these films can be used for (i) detecting various analytes in solution and in the air, (ii) MBLC, (iii) electron-transfer studies, and (iv) interlayers for efficient inverted bulk-heterojunction solar cells. Our concept toward MBLC with functionalized surfaces is applicable to electrochemical and chemical inputs coupled with optical readout. Using this approach, we demonstrated various logic architectures with redox-active functionalized surfaces. Electrochemically operated sequential logic systems (e.g., flip-flops), multi-valued logic, and multi-state memory have been designed, which can improve computational power without increasing spatial requirements. Applying multi-valued digits in data storage and information processing could exponentially increase memory capacity. Our approach is applicable to highly diverse electrochromic thin films that operate at practical voltages (< 1.5 V).

  2. Performance improvement in flexible polymer solar cells based on modified silver nanowire electrode

    NASA Astrophysics Data System (ADS)

    Wang, Danbei; Zhou, Weixin; Liu, Huan; Ma, Yanwen; Zhang, Hongmei

    2016-08-01

    In this work, an efficient flexible polymer solar cell was achieved by controlling the UV-ozone treatment time of silver nanowires (Ag NWs) used in the electrode and combined with other modification materials. Through optimizing the time of UV-ozone treatment, it is shown that Ag NWs electrode treated by UV-ozone for 10 s improves the power conversion efficiency (PCE) of the device based on the blend of poly(3-hexylthiophene)(P3HT): [6,6]-phenyl C61-butyric acid methyl ester (PC61BM) from 0.76% to 1.34%. After treatment by UV-ozone, Ag NWs electrodes exhibit several promising characteristics, including high optical transparency, low sheet resistance and superior surface work function. As a consequence, the performance of devices utilizing 10 s UV-ozone-treated Ag NWs with PEDOT:PSS or MoO3 as composite anode showed higher PCEs of 2.77% (2.73%) compared with that for Ag NW electrodes without UV-ozone treatment. In addition, a PCE of 5.97% in flexible polymer solar cells based on poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)-benzo[1,2-b:4,5-b0]dithiophene-2,6-diyl-alt-(4-(2-ethylhexyl)-3-fluorothieno[3,4-b]thiophene-)-2-carboxylate-2-6-diyl](PBDTTT-EFT):[6, 6]-phenyl C71-butyric acid methyl ester (PC71BM) as a photoactive layer was obtained.

  3. Performance improvement in flexible polymer solar cells based on modified silver nanowire electrode.

    PubMed

    Wang, Danbei; Zhou, Weixin; Liu, Huan; Ma, Yanwen; Zhang, Hongmei

    2016-08-19

    In this work, an efficient flexible polymer solar cell was achieved by controlling the UV-ozone treatment time of silver nanowires (Ag NWs) used in the electrode and combined with other modification materials. Through optimizing the time of UV-ozone treatment, it is shown that Ag NWs electrode treated by UV-ozone for 10 s improves the power conversion efficiency (PCE) of the device based on the blend of poly(3-hexylthiophene)(P3HT): [6,6]-phenyl C61-butyric acid methyl ester (PC61BM) from 0.76% to 1.34%. After treatment by UV-ozone, Ag NWs electrodes exhibit several promising characteristics, including high optical transparency, low sheet resistance and superior surface work function. As a consequence, the performance of devices utilizing 10 s UV-ozone-treated Ag NWs with PSS or MoO3 as composite anode showed higher PCEs of 2.77% (2.73%) compared with that for Ag NW electrodes without UV-ozone treatment. In addition, a PCE of 5.97% in flexible polymer solar cells based on poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)-benzo[1,2-b:4,5-b0]dithiophene-2,6-diyl-alt-(4-(2-ethylhexyl)-3-fluorothieno[3,4-b]thiophene-)-2-carboxylate-2-6-diyl](PBDTTT-EFT):[6, 6]-phenyl C71-butyric acid methyl ester (PC71BM) as a photoactive layer was obtained.

  4. Failure criterion of silver nanowire electrodes on a polymer substrate for highly flexible devices

    NASA Astrophysics Data System (ADS)

    Kim, Donggyun; Kim, Sung-Hoon; Kim, Jong Hak; Lee, Jae-Chul; Ahn, Jae-Pyoung; Kim, Sang Woo

    2017-04-01

    Nanomechanical characteristics of standalone silver nanowires (Ag NWs) are a key issue for providing a failure criterion of advanced flexible electrodes that are trending towards smaller radius of curvatures (ROCs). Through in-situ tensile and buckling tests of pentagonal Ag NWs, we demonstrated that the intrinsic fracture strain provides a significant criterion to predict the mechanical and electrical failure of Ag NW electrodes under various strain modes, because the decrease in fracture strain limits figure of merit of flexible devices. The Ag NW electrodes on a polymer substrate exhibited a strain-dependent electrical failure owing to the unique deformation characteristics with a size-dependent brittle-to-ductile transition of the five-fold twinned Ag NWs. All the Ag NWs greater than approximately 40 nm in diameter exhibited brittle fracture with a size-independent stress-strain response under tensile and buckling modes, which leads to the electrical failure of flexible electrodes at the almost same threshold ROC. Meanwhile, the higher ductility of Ag NWs less than 40 nm in diameter resulted in much smaller threshold ROCs of the electrodes due to the highly extended fracture strains, which can afford a high degree of freedom for highly flexible devices.

  5. Failure criterion of silver nanowire electrodes on a polymer substrate for highly flexible devices.

    PubMed

    Kim, Donggyun; Kim, Sung-Hoon; Kim, Jong Hak; Lee, Jae-Chul; Ahn, Jae-Pyoung; Kim, Sang Woo

    2017-04-05

    Nanomechanical characteristics of standalone silver nanowires (Ag NWs) are a key issue for providing a failure criterion of advanced flexible electrodes that are trending towards smaller radius of curvatures (ROCs). Through in-situ tensile and buckling tests of pentagonal Ag NWs, we demonstrated that the intrinsic fracture strain provides a significant criterion to predict the mechanical and electrical failure of Ag NW electrodes under various strain modes, because the decrease in fracture strain limits figure of merit of flexible devices. The Ag NW electrodes on a polymer substrate exhibited a strain-dependent electrical failure owing to the unique deformation characteristics with a size-dependent brittle-to-ductile transition of the five-fold twinned Ag NWs. All the Ag NWs greater than approximately 40 nm in diameter exhibited brittle fracture with a size-independent stress-strain response under tensile and buckling modes, which leads to the electrical failure of flexible electrodes at the almost same threshold ROC. Meanwhile, the higher ductility of Ag NWs less than 40 nm in diameter resulted in much smaller threshold ROCs of the electrodes due to the highly extended fracture strains, which can afford a high degree of freedom for highly flexible devices.

  6. A Flexible and Thin Graphene/Silver Nanowires/Polymer Hybrid Transparent Electrode for Optoelectronic Devices.

    PubMed

    Dong, Hua; Wu, Zhaoxin; Jiang, Yaqiu; Liu, Weihua; Li, Xin; Jiao, Bo; Abbas, Waseem; Hou, Xun

    2016-11-16

    A typical thin and fully flexible hybrid electrode was developed by integrating the encapsulation of silver nanowires (AgNWs) network between a monolayer graphene and polymer film as a sandwich structure. Compared with the reported flexible electrodes based on PET or PEN substrate, this unique electrode exhibits the superior optoelectronic characteristics (sheet resistance of 8.06 Ω/□ at 88.3% light transmittance). Meanwhile, the specific up-to-bottom fabrication process could achieve the superflat surface (RMS = 2.58 nm), superthin thickness (∼8 μm thickness), high mechanical robustness, and lightweight. In addition, the strong corrosion resistance and stability for the hybrid electrode were proved. With these advantages, we employ this electrode to fabricate the simple flexible organic light-emitting device (OLED) and perovskite solar cell device (PSC), which exhibit the considerable performance (best PCE of OLED = 2.11 cd/A(2); best PCE of PSC = 10.419%). All the characteristics of the unique hybrid electrode demonstrate its potential as a high-performance transparent electrode candidate for flexible optoelectronics.

  7. Failure criterion of silver nanowire electrodes on a polymer substrate for highly flexible devices

    PubMed Central

    Kim, Donggyun; Kim, Sung-Hoon; Kim, Jong Hak; Lee, Jae-Chul; Ahn, Jae-Pyoung; Kim, Sang Woo

    2017-01-01

    Nanomechanical characteristics of standalone silver nanowires (Ag NWs) are a key issue for providing a failure criterion of advanced flexible electrodes that are trending towards smaller radius of curvatures (ROCs). Through in-situ tensile and buckling tests of pentagonal Ag NWs, we demonstrated that the intrinsic fracture strain provides a significant criterion to predict the mechanical and electrical failure of Ag NW electrodes under various strain modes, because the decrease in fracture strain limits figure of merit of flexible devices. The Ag NW electrodes on a polymer substrate exhibited a strain-dependent electrical failure owing to the unique deformation characteristics with a size-dependent brittle-to-ductile transition of the five-fold twinned Ag NWs. All the Ag NWs greater than approximately 40 nm in diameter exhibited brittle fracture with a size-independent stress-strain response under tensile and buckling modes, which leads to the electrical failure of flexible electrodes at the almost same threshold ROC. Meanwhile, the higher ductility of Ag NWs less than 40 nm in diameter resulted in much smaller threshold ROCs of the electrodes due to the highly extended fracture strains, which can afford a high degree of freedom for highly flexible devices. PMID:28378763

  8. Donor-acceptor alternating copolymer nanowires for highly efficient organic solar cells.

    PubMed

    Lee, Jaewon; Jo, Sae Byeok; Kim, Min; Kim, Heung Gyu; Shin, Jisoo; Kim, Haena; Cho, Kilwon

    2014-10-22

    A donor-acceptor conjugated copolymer enables the formation of nanowire systems that can be successfully introduced into bulk-heterojunction organic solar cells. A simple binary solvent mixture that makes polarity control possible allows kinetic control over the self-assembly of the crystalline polymer into a nanowire structure during the film-forming process. The enhanced photoconductivity of the nanowire-embedded photoactive layer efficiently facilitates photon harvesting in the solar cells. The resultant maximum power conversion efficiency is 8.2% in a conventional single-cell structure, revealing a 60% higher performance than in devices without nanowires.

  9. Self-assembly of cadmium metasilicate nanowires as a broadband optical limiter

    NASA Astrophysics Data System (ADS)

    Zheng, Chan; Dai, Chongchong; Huang, Li; Li, Wei; Chen, Wenzhe

    2016-04-01

    Cadmium metasilicate nanowires (CdSiO3 NWs) have been synthesized through a facile, eco-friendly, low-cost water-ethanol mixed-solution hydrothermal route. The transmission electron microscopy measurements of as-prepared samples indicate that the CdSiO3 NWs with diameters in the range of 10-60 nm and lengths of more than 1 μm were constructed by self-assembly of 5-10-nm CdSiO3 nanoparticles with good crystallinity. The monoclinic phase formation of the sample is studied in detail by X-ray diffraction, Fourier-transform infrared spectroscopy, and thermo gravimetric analysis. The results indicate that a pure monoclinic phase of CdSiO3 can be obtained by a hydrothermal route without further calcinations and SiO4 tetrahedra were the main constituents of the CdSiO3 NWs. The nanosecond optical limiting (OL) effects were characterized by using an open-aperture (OA) Z-scan technique with 4-ns laser pulses at both 532 and 1064 nm. Theses CdSiO3 NWs displayed an excellent OL performance at 532 and 1064 nm, which was better than carbon nanotubes, a benchmark optical limiter. Input-fluence dependent scattering measurements suggested than nonlinear scattering played an important role in the observed optical limiting behavior in CdSiO3 NWs at 532 and 1064 nm. More significantly, the NLO performance in CdSiO3 NWs incorporated solid silica gel glass has been improved in comparison to those dispersed in water. The unique structure and excellent OL property render these CdSiO3 NWs competitors in the realms of optical limiting applications.

  10. Self-assembly based nanometer-scale patterning for nanowire growth

    NASA Astrophysics Data System (ADS)

    Chandramohan, Abhishek; Sibirev, Nikolai; Dubrovskii, Vladimir G.; Mendis, Budhika; Petty, Mike C.; Gallant, Andrew J.; Zeze, Dagou A.

    2015-08-01

    Periodic nanostructure arrays have been ubiquitously exploited lately due to their properties and prospective applications in production of templates for self-induced and gold (Au)-catalysed nanowires (NWs), because this approach is relatively cheap, time-efficient and do not require electron beam lithography. The technique consists creating nanoholes in SiO2 to expose the silicon Si (111) beneath where self-induced NWs can nucleate, while nanodots deposited onto the Si (111) surface serve as catalyst seeds. For Au-catalysed NWs, a monolayer of self-assembled polystyrene nanospheres (PNS 300nm) was created on a 2 inch Si wafer by spin coating and later etched for a short time before a very thin Au-catalyst layer was deposited. In turn, for self-induced, PNS monolayer was created onto a SiO2-Si substrate. A longer etch was required to reduce PNS diameter significantly to leave relatively larger spacing where chromium is blanket deposited. PNS were lifted off by sonicating the samples in toluene produce the periodic arrays of nanodots and nanoholes, respectively. The underlying SiO2 was etched further through the nanoholes to uncover the Si below. 200 nm holes and 30-70 nm dots were demonstrated through the bespoke methods. The patterned substrates served as master templates, subsequently copied using polydimethylsiloxane (PDMS) to produce a flexible stamp for nanoimprint lithography. A bilayer resist lift off process was developed to print the replicated nanodots or nanoholes on large-area substrates onto which III-V NWs can be grown.

  11. Hybrid solar cells with conducting polymers and vertically aligned silicon nanowire arrays: The effect of silicon conductivity

    NASA Astrophysics Data System (ADS)

    Woo, Sungho; Hoon Jeong, Jae; Kun Lyu, Hong; Jeong, Seonju; Hyoung Sim, Jun; Hyun Kim, Wook; Soo Han, Yoon; Kim, Youngkyoo

    2012-08-01

    Organic/inorganic hybrid solar cells, based on vertically aligned n-type silicon nanowires (n-Si NWs) and p-type conducting polymers (PEDOT:PSS), were investigated as a function of Si conductivity. The n-Si NWs were easily prepared from the n-Si wafer by employing a silver nanodot-mediated micro-electrochemical redox reaction. This investigation shows that the photocurrent-to-voltage characteristics of the n-Si NW/PEDOT:PSS cells clearly exhibit a stable rectifying diode behavior. The increase in current density and fill factor using high conductive silicon is attributed to an improved charge transport towards the electrodes achieved by lowering the device's series resistance. Our results also show that the surface area of the nanowire that can form heterojunction domains significantly influences the device performance.

  12. Nanohelices from planar polymer self-assembled in carbon nanotubes.

    PubMed

    Fu, Hongjin; Xu, Shuqiong; Li, Yunfang

    2016-07-21

    The polymer possessing with planar structure can be activated and guided to encapsulate the inner space of SWNT and form a helix through van der Waals interaction and the π-π stacking effect between the polymer and the inner surface of SWNT. The SWNT size, the nanostructure and flexibility of polymer chain are all determine the final structures. The basic interaction between the polymer and the nanotubes is investigated, and the condition and mechanism of the helix-forming are explained particularly. Hybrid polymers improve the ability of the helix formation. This study provides scientific basis for fabricating helical polymers encapsulated in SWNTs and eventually on their applications in various areas.

  13. Nanohelices from planar polymer self-assembled in carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Fu, Hongjin; Xu, Shuqiong; Li, Yunfang

    2016-07-01

    The polymer possessing with planar structure can be activated and guided to encapsulate the inner space of SWNT and form a helix through van der Waals interaction and the π-π stacking effect between the polymer and the inner surface of SWNT. The SWNT size, the nanostructure and flexibility of polymer chain are all determine the final structures. The basic interaction between the polymer and the nanotubes is investigated, and the condition and mechanism of the helix-forming are explained particularly. Hybrid polymers improve the ability of the helix formation. This study provides scientific basis for fabricating helical polymers encapsulated in SWNTs and eventually on their applications in various areas.

  14. Magnetic-field annealing of inverted polymer:fullerene hybrid solar cells with FePt nanowires as additive

    SciTech Connect

    Chen, Chiang-Ting; Chen, Yang-Fang E-mail: yfchen@phys.ntu.edu.tw; Hsu, Fang-Chi E-mail: yfchen@phys.ntu.edu.tw; Li, Cheng-Hung; Chen, Chia-Chun

    2013-12-16

    We demonstrate a facile annealing method to improve the polymer chain ordering of poly(3-hexythiophene) (P3HT):fullerene blend triggered by a small amount of FePt nanowires (FePt NWs). By applying a magnetic field perpendicular to the substrate during the solvent drying process, the resulting P3HT:fullerene:FePt NWs film becomes highly optical anisotropy and exhibits a much stronger X-ray diffraction intensity of P3HT. We hypothesize that the coupling force between the FePt NWs and P3HT can assist the polymer chain alignment leading to an improved device performance. The proposed approach is simple and can be applied to other polymer blend systems as well.

  15. Trigger sequence can influence final morphology in the self-assembly of asymmetric telechelic polymers.

    PubMed

    Kumar, Aatish; Lowe, Christopher P; Cohen Stuart, Martien A; Bolhuis, Peter G

    2016-02-21

    We report on a numerical study of polymer network formation of asymmetric biomimetic telechelic polymers with two reactive ends based on a self-assembling collagen, elastin or silk-like polypeptide sequence. The two reactive ends of the polymer can be activated independently using physicochemical triggers such as temperature and pH. We show, using a simple coarse grained model that the order in which this triggering occurs influences the final morphology. For both of collagen-silk and elastin-silk topologies we find that for relatively short connector chains the morphology of the assembly is greatly influenced by the order of the trigger, whereas for longer chains the equilibrium situation is more easily achieved. Moreover, self-assembly is greatly enhanced at moderate collagen interaction strength, due to facilitated binding and unbinding of the peptides. This finding indicates that both the trigger sequence and strength can be used to steer self-assembly in these biomimetic polymer systems.

  16. Dynamics of nanoparticle assembly from disjointed images of nanoparticle-polymer composites

    NASA Astrophysics Data System (ADS)

    Murthy, Chaitanya R.; Gao, Bo; Tao, Andrea R.; Arya, Gaurav

    2016-02-01

    Understanding how nanoparticles (NPs) diffuse, stick, and assemble into larger structures within polymers is key to the design and fabrication of NP-polymer composites. Here we describe an approach for inferring the dynamic parameters of NP assembly from spatially and temporally disjointed images of composites. The approach involves iterative adjustment of the parameters of a kinetic model of assembly until the computed size statistics of NP clusters match those obtained from high-throughput analysis of the experimental images. Application of this approach to the assembly of shaped, metal NPs in polymer films suggests that NP structures grow via a cluster-cluster aggregation mechanism, where NPs and their clusters diffuse with approximately Stokes-Einstein diffusivity and stick to other NPs or clusters with a probability that depends strongly on the size and shape of the NPs and the molecular weight of the polymer.

  17. Biocompatible or biodegradable hyperbranched polymers: from self-assembly to cytomimetic applications.

    PubMed

    Jin, Haibao; Huang, Wei; Zhu, Xinyuan; Zhou, Yongfeng; Yan, Deyue

    2012-09-21

    Self-assembly of amphiphilic hyperbranched polymers (HBPs) is a newly emerging research area and has attracted increasing attention due to the great advantages in biomedical applications. This tutorial review focuses on the self-assembly of biocompatible or biodegradable amphiphilic HBPs and their cytomimetic applications, and specialities or advantages therein owing to the hyperbranched structure have also been summarized. As shown here, various supramolecular structures including micelles, vesicles, tubes, fibers and films have been prepared through the primary self-assembly processes. The primary self-assemblies can be further assembled into more complex structures through hierachical self-assembly processes. Besides, the hyperbranched polymer vesicles have demonstrated great potential to be used as model membranes to mimic cellular behaviors, such as fusion, fission and cell aggregation. Other biomedical applications of HBPs as well as their self-assemblies are also briefly summarized.

  18. Self-assembled LiFePO4 nanowires with high rate capability for Li-ion batteries.

    PubMed

    Peng, Lele; Zhao, Yu; Ding, Yu; Yu, Guihua

    2014-08-28

    Controlling the dimensions in the nanometer scale of olivine-type LiFePO4 has been regarded as one of the most effective strategies to improve its electrochemical performance for Li-ion batteries. In this communication, we demonstrate a novel LiFePO4 nanoarchitecture, which is composed of self-assembled single-crystalline nanowires and exhibits good rate capability with a reversible capacity of ∼110 mA h g(-1) at a current rate of 30 C, and a stable capacity retention of ∼86% after 1000 cycles at a current rate of 10 C.

  19. Surface Induced nanofiber growth by self-assembly of a silk-elastin-like protein polymer.

    PubMed

    Hwang, Wonseok; Kim, Bo-Hyun; Dandu, Ramesh; Cappello, Joseph; Ghandehari, Hamidreza; Seog, Joonil

    2009-11-03

    Many synthetic and natural peptides are known to self-assemble to form various nanostructures. During the self-assembling process, environmental conditions such as salt concentration, pH, temperature, and surface characteristics play a critical role by influencing intermolecular interactions, and hence the process of self-assembly. Here we studied the self-assembly of a genetically engineered protein polymer composed of silk-like and elastin-like repeats on a mica surface. Silk-elastin-like protein polymers (SELPs) consist of tandem repeats of Gly-Ala-Gly-Ala-Gly-Ser from Bombyx mori (silkworm) and Gly-Val-Gly-Val-Pro from mammalian elastin. At a very low polymer concentration of 1 mug/mL, SELPs self-assembled into nanofibrous structures on a mica surface. Examination using atomic force microscopy (AFM) and dynamic light scattering techniques showed that SELPs self-assembled into nanofibers in the presence of the mica surface but not in the bulk state. Ionic strength had a significant influence on nanofiber growth, indicating the importance of electrostatic interactions between the polymer and the mica surface. At low ionic strength, the kinetics of nanofiber growth showed that the mica surface effectively removed a lag phase by providing nucleating sites, facilitating nanofiber self-assembly of SELPs. Furthermore, self-assembly on additional substrates such as silicon and a hydrophobic pyrolytic carbon surface revealed that the charged hydrophilic surface provides the optimal surface to facilitate self-assembly of SELPs.

  20. Step-edge induced ordered growth: targeting to assemble super long horizontal nanowire alignment in large-scale.

    PubMed

    Sun, Y; Cui, H; Wang, C X

    2013-07-28

    Nowadays, the development of nano-synthesis has turned to controllable design for specific demands in micro-nano device application, to be integrated into functional units more conveniently with low-cost and efficiency principles. In this case, an appropriate approach for directly obtaining horizontally aligned nanowires in a large scale would be of great significance in future micro-nano device integration. Here, on the HOPG surface, we managed to achieve this. The approach is versatile to various kinds of materials. Horizontally aligned nanowires of Al-C based materials, such as Al4C3 and Al4O4C, were achieved. All of the nanowires exhibit a high degree ordered alignments and possess super aspect ratios with uniform widths of about 100 nm and lengths on the millimeter level. We believe the assembly mechanism lies in a step-edge induced ordered growth process, through which quaternary Al-Si-O-C nanoball alignment could also be obtained. It is expected that this method could be beneficial to adjust many useful materials for micro device integration in the future.

  1. Epitaxial self-assembly of binary molecular components into branched nanowire heterostructures for photonic applications.

    PubMed

    Kong, Qinghua; Liao, Qing; Xu, Zhenzhen; Wang, Xuedong; Yao, Jiannian; Fu, Hongbing

    2014-02-12

    We report a sequential epitaxial growth to prepare organic branched nanowire heterostructures (BNwHs) consisting of a microribbon trunk of 1,4-dimethoxy-2,5-di[4'-(cyano)styryl]benzene (COPV) with multiple nanowire branches of 2,4,5-triphenylimidazole (TPI) in a one-pot solution synthesis. The synthesis involves a seeded-growth process, where COPV microribbons are grown first as a trunk followed by a seeded-growth of TPI nanowire branches at the pregrown trunk surfaces. Selected area electron diffraction characterizations reveal that multiple hydrogen-bonding interactions between TPI and COPV components play an essential role in the epitaxial growth as a result of the structural matching between COPV and TPI crystals. A multichannel optical router was successfully realized on the basis of the passive waveguides of COPV green photoluminescence (PL) along TPI nanowire branches in a single organic BNwH.

  2. Self-assembly of supramolecularly engineered polymers and their biomedical applications.

    PubMed

    Wang, Dali; Tong, Gangsheng; Dong, Ruijiao; Zhou, Yongfeng; Shen, Jian; Zhu, Xinyuan

    2014-10-18

    Noncovalent interactions provide a flexible method of engineering various chemical entities with tailored properties. Specific noncovalent interactions between functionalized small molecules, macromolecules or both of them bearing complementary binding sites can be used to engineer supramolecular complexes that display unique structure and properties of polymers, which can be defined as supramolecularly engineered polymers. Due to their dynamic tunable structures and interesting physical/chemical properties, supramolecularly engineered polymers have recently received more and more attention from both academia and industry. In this feature article, we summarize the recent progress in the self-assembly of supramolecularly engineered polymers as well as their biomedical applications. In view of different molecular building units, the supramolecularly engineered polymers can be classified into the following three major types: supramolecularly engineered polymers built by small molecules, supramolecularly engineered polymers built by small molecules and macromolecules, and supramolecularly engineered polymers built by macromolecules, which possess distinct morphologies, definite architectures and specific functions. Owing to the reversible nature of the noncovalent interactions, the supramolecularly engineered polymers have exhibited unique features or advantages in molecular self-assembly, for example, facile preparation and functionalization, controllable morphologies and structures, dynamic self-assembly processes, adjustable performance, and so on. Furthermore, the self-assembled supramolecular structures hold great potential as promising candidates in various biomedical fields, including bioimaging, drug delivery, gene transfection, protein delivery, regenerative medicine and tissue engineering. Such developments in the self-assembly of supramolecularly engineered polymers and their biomedical applications greatly promote the interdiscipline research among

  3. Control of nanomorphology in all-polymer solar cells via assembling nanoaggregation in a mixed solution.

    PubMed

    Yu, Wei; Yang, Dong; Zhu, Xiaoguang; Wang, Xiuli; Tu, Guoli; Fan, Dayong; Zhang, Jian; Li, Can

    2014-02-26

    The formation of interconnected phase-separated domains on sub-20 nm length scale is a key requirement for all-polymer solar cells (all-PSCs) with high efficiency. Herein, we report the application of crystalline poly(3-hexylthiophene) (P3HT) nanowires via an O-dichlorobenzene/hexane mixed solution blended with poly{(9,9-dioctylfluorenyl-2,7-diyl)-alt-[4,7-bis(3-hexylthiophen-5-yl)-2,1,3-benzothiadiazole]-2',2″-diyl} (F8TBT) for the first time. The nanomorphology of P3HT:F8TBT all-PSCs can be controlled by P3HT nanowires. The improved film morphology leads to enhanced light absorption, exciton dissociation, and charge transport in all-PSCs, as confirmed by ultraviolet-visible absorption spectra, X-ray diffraction, transmission electron microscopy, atomic force microscopy, and time-resolved photoluminescence spectra. The P3HT nanowire:F8TBT all-PSCs could achieve a power conversion efficiency of 1.87% and a Voc of 1.35 V, both of which are the highest values for P3HT:F8TBT all-PSCs. This work demonstrates that the semiconductor nanowires fabricated by the mixed solvents method is an efficient solution process approach to controlling the nanomorphology of all-PSCs.

  4. Layer-by-layer assembly synthesis of ZnO/SnO{sub 2} composite nanowire arrays as high-performance anode for lithium-ion batteries

    SciTech Connect

    Wang, Jiazheng; Du, Ning; Zhang, Hui; Yu, Jingxue; Yang, Deren

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer SnO{sub 2} nanoparticles was deposited on ZnO nanoarrays through layer-by-layer assembly. Black-Right-Pointing-Pointer The composite nanowire arrays show improved performance as anode for Li-ion battery. Black-Right-Pointing-Pointer Improved performance was attributed to the combining advantages of each ingredient. -- Abstract: A layer-by-layer approach has been developed to synthesize ZnO/SnO{sub 2} composite nanowire arrays on copper substrate. ZnO nanowire arrays have been first prepared on copper substrate through seed-assisted method, and then, the surface of ZnO nanowires have been modified by the polyelectrolyte. After oxidation-reduction reaction, SnO{sub 2} layer has been deposited onto the surface of ZnO nanowires. The as-synthesized ZnO/SnO{sub 2} composite nanowire arrays have been applied as anode for lithium-ion batteries, which show high reversible capacity and good cycling stability compared to pure ZnO nanowire arrays and SnO{sub 2} nanoparticles. It is believed that the improved performance may be attributed to the high capacity of SnO{sub 2} and the good cycling stability of the array structure on current collector.

  5. Engineered Polymer-Transferrin Conjugates as Self-Assembling Targeted Drug Delivery Systems.

    PubMed

    Makwana, Hiteshri; Mastrotto, Francesca; Magnusson, Johannes Pall; Sleep, Darrell; Hay, Joanna; Nicholls, Karl J; Allen, Stephanie; Alexander, Cameron

    2017-03-28

    Polymer-protein conjugates can be engineered to self-assemble into discrete and well-defined drug delivery systems which combine the advantages of receptor targeting and controlled drug release. We designed specific conjugates of the iron-binding and transport protein, transferrin (Tf), to combine the advantages of this serum-stable protein as a targeting agent for cancer cells with self-assembling polymers to act as carriers of cytotoxic drugs. Tf variants were expressed with cysteine residues at sites spanning different regions of the protein surface and the polymer conjugates grown from these variants were compared with polymer conjugates grown from non-selectively derivatised sites on native Tf. The resulting synthetic biopolymer hybrids were evaluated for self-assembly properties, size and topology, ability to carry an anti-cancer drug (paclitaxel) and cytotoxicity with and without a drug payload in a representative human colon cancer cell line. The results demonstrated that the engineered Tf variant polymer conjugates formed better-defined self-assembled nanoparticles than the non-selectively derivatised conjugates and showed greater efficacy in paclitaxel delivery. A polymer conjugate grown from a specific Tf variant, S415C was found to be taken up rapidly into cancer cells expressing the Tf-receptor, and, while tolerated well by cells in the absence of drugs, was as cytotoxic as free paclitaxel when loaded with the drug. Importantly, the S415C conjugate polymer was not the most active variant in Tf-receptor binding, suggesting that the nanoscale self-assembly of the polymer-protein hybrid is also a key factor in delivery efficacy. The data overall suggest new design rules for polymer-biopolymer hybrids and therapeutic delivery systems which include engineering specific residues for conjugation which mediate nanoscale assembly as well as control of ligand-receptor interactions to target specific cell types.

  6. High yield transfer of ordered nanowire arrays into transparent flexible polymer films.

    PubMed

    Standing, A J; Assali, S; Haverkort, J E M; Bakkers, E P A M

    2012-12-14

    The factors affecting transfer of nanowire arrays from their substrates into flexible PDMS films have been systematically investigated. Experiments were carried out on gallium phosphide nanowires with a standard length of 10 μm with varying pitch (0.2-1.5 μm). The important factors were found to be penetration of the PDMS within the nanowire arrays and the strength/rigidity of the PDMS film. The PDMS penetration between wires in the arrays is affected by both the viscosity of the PDMS solution and the presence of air pockets trapped within nanowire arrays, particularly at small pitches. Dilution with hexane and curing in a vacuum desiccator solve the wire penetration problem, and an increase in cure/base ratio increases the rigidity and strength of the PDMS. The procedures for preparation and deposition of the PDMS solution are optimized and a high yield, up to 95%, of wire transfer across a range of nanowire pitches has been obtained.

  7. Fe-nitrilotriacetic acid coordination polymer nanowires: an effective sensing platform for fluorescence-enhanced nucleic acid detection

    NASA Astrophysics Data System (ADS)

    Zhou, Yunchun; Liu, Qian; Sun, Xuping; Kong, Rongmei

    2017-02-01

    The determination of specific nucleic acid sequences is key in identifying disease-causing pathogens and genetic diseases. In this paper we report the utilization of Fe-nitrilotriacetic acid coordination polymer nanowires as an effective nanoquencher for fluorescence-enhanced nucleic acid detection. The detection is fast and the whole process can be completed within 15 min. This nanosensor shows a low detection limit of 0.2 nM with selectivity down to single-base mismatch. This work provides us with an attractive sensing platform for applications.

  8. Synergy of Two Assembly Languages in DNA Nanostructures: Self-Assembly of Sequence-Defined Polymers on DNA Cages.

    PubMed

    Chidchob, Pongphak; Edwardson, Thomas G W; Serpell, Christopher J; Sleiman, Hanadi F

    2016-04-06

    DNA base-pairing is the central interaction in DNA assembly. However, this simple four-letter (A-T and G-C) language makes it difficult to create complex structures without using a large number of DNA strands of different sequences. Inspired by protein folding, we introduce hydrophobic interactions to expand the assembly language of DNA nanotechnology. To achieve this, DNA cages of different geometries are combined with sequence-defined polymers containing long alkyl and oligoethylene glycol repeat units. Anisotropic decoration of hydrophobic polymers on one face of the cage leads to hydrophobically driven formation of quantized aggregates of DNA cages, where polymer length determines the cage aggregation number. Hydrophobic chains decorated on both faces of the cage can undergo an intrascaffold "handshake" to generate DNA-micelle cages, which have increased structural stability and assembly cooperativity, and can encapsulate small molecules. The polymer sequence order can control the interaction between hydrophobic blocks, leading to unprecedented "doughnut-shaped" DNA cage-ring structures. We thus demonstrate that new structural and functional modes in DNA nanostructures can emerge from the synergy of two interactions, providing an attractive approach to develop protein-inspired assembly modules in DNA nanotechnology.

  9. Supramolecular polymer assembly in aqueous solution arising from cyclodextrin host–guest complexation

    PubMed Central

    Wang, Jie; Qiu, Zhiqiang; Wang, Yiming; Li, Li; Pham, Duc-Truc; Prud’homme, Robert K

    2016-01-01

    Summary The employment of cyclodextrin host–guest complexation to construct supramolecular assemblies with an emphasis on polymer networks is reviewed. The main driving force for this supramolecular assembly is host–guest complexation between cyclodextrin hosts and guest groups either of which may be discrete molecular species or substituents on a polymer backbone. The effects of such complexation on properties at the molecular and macroscopic levels are discussed. It is shown that cyclodextrin complexation may be used to design functional polymer materials with tailorable properties, especially for photo-, pH-, thermo- and redox-responsiveness and self-healing. PMID:26877808

  10. Supramolecular polymer assembly in aqueous solution arising from cyclodextrin host-guest complexation.

    PubMed

    Wang, Jie; Qiu, Zhiqiang; Wang, Yiming; Li, Li; Guo, Xuhong; Pham, Duc-Truc; Lincoln, Stephen F; Prud'homme, Robert K

    2016-01-01

    The employment of cyclodextrin host-guest complexation to construct supramolecular assemblies with an emphasis on polymer networks is reviewed. The main driving force for this supramolecular assembly is host-guest complexation between cyclodextrin hosts and guest groups either of which may be discrete molecular species or substituents on a polymer backbone. The effects of such complexation on properties at the molecular and macroscopic levels are discussed. It is shown that cyclodextrin complexation may be used to design functional polymer materials with tailorable properties, especially for photo-, pH-, thermo- and redox-responsiveness and self-healing.

  11. Langevin dynamics simulation of polymer-assisted virus-like assembly

    PubMed Central

    Mahalik, J. P.; Muthukumar, M.

    2012-01-01

    Starting from a coarse grained representation of the building units of the minute virus of mice and a flexible polyelectrolyte molecule, we have explored the mechanism of assembly into icosahedral structures with the help of Langevin dynamics simulations and the parallel tempering technique. Regular icosahedra with appropriate symmetry form only in a narrow range of temperature and polymer length. Within this region of parameters where successful assembly would proceed, we have systematically investigated the growth kinetics. The assembly of icosahedra is found to follow the classical nucleation and growth mechanism in the absence of the polymer, with the three regimes of nucleation, linear growth, and slowing down in the later stage. The calculated average nucleation time obeys the laws expected from the classical nucleation theory. The linear growth rate is found to obey the laws of secondary nucleation as in the case of lamellar growth in polymer crystallization. The same mechanism is seen in the simulations of the assembly of icosahedra in the presence of the polymer as well. The polymer reduces the nucleation barrier significantly by enhancing the local concentration of subunits via adsorbing them on their backbone. The details of growth in the presence of the polymer are also found to be consistent with the classical nucleation theory, despite the smallness of the assembled structures. PMID:22482588

  12. Nanohelices from planar polymer self-assembled in carbon nanotubes

    PubMed Central

    Fu, Hongjin; Xu, Shuqiong; Li, Yunfang

    2016-01-01

    The polymer possessing with planar structure can be activated and guided to encapsulate the inner space of SWNT and form a helix through van der Waals interaction and the π-π stacking effect between the polymer and the inner surface of SWNT. The SWNT size, the nanostructure and flexibility of polymer chain are all determine the final structures. The basic interaction between the polymer and the nanotubes is investigated, and the condition and mechanism of the helix-forming are explained particularly. Hybrid polymers improve the ability of the helix formation. This study provides scientific basis for fabricating helical polymers encapsulated in SWNTs and eventually on their applications in various areas. PMID:27440493

  13. Hybridization of inorganic nanoparticles and polymers to create regular and reversible self-assembly architectures.

    PubMed

    Zhang, Hao; Liu, Yi; Yao, Dong; Yang, Bai

    2012-09-21

    Inorganic nanoparticles (NPs) with diversified functionalities are promising candidates in future optoelectronic and biomedical applications, which greatly depend on the capability to arrange NPs into higher-order architectures in a controllable way. This issue is considered to be solved by means of self-assembly. NPs can participate in self-assembly in different manners, such as smart self-organization with blended molecules, as the carriers of host molecules for assembly and disassembly with guest molecules, as netpoints to endow the architectures specific functionalities, and so forth. To enhance the structural stability of the as-prepared assembly architectures, polymers have been utilized to create NP-polymer composites. Meanwhile, such a strategy also demonstrates the possibility of integrating the functionalities of NPs and/or polymers by forming regular architectures. The emerging interest in the current optoelectronic and biological areas strongly demands intelligent nanocomposites, which are produced by combination of the excellent functionalities of NPs and the responsiveness of polymers. On the basis of the recent progress in fabricating NP-polymer composites, this critical review summarizes the development of new methods for fabricating regular self-assembly architectures, highlights the reversible assembly and disassembly behavior, and indicates the potential applications.

  14. Hyperbranched polymer vesicles: from self-assembly, characterization, mechanisms, and properties to applications.

    PubMed

    Jiang, Wenfeng; Zhou, Yongfeng; Yan, Deyue

    2015-06-21

    Vesicles, including lipid vesicles, surfactant vesicles, as well as polymer vesicles, have been extensively investigated over the past fifty years. Among them, polymer vesicles have attracted more and more attention because of their low permeability, superior stability and toughness, in addition to the numerous possibilities for tailoring physical, chemical and biological properties. Polymer vesicles are generally fabricated through the self-assembly of amphiphilic polymers with a linear architecture. Recently, as representative polymers with a highly branched three-dimensional architecture, hyperbranched polymers have also exhibited great potential for preparing vesicles. The resultant hyperbranched polymer vesicles, defined as branched-polymersomes (BPs), have shown unique properties, such as giant and easily tuned vesicle sizes, facile functionalization, a special formation mechanism, and appealing solution behaviours. In this tutorial review, ten years of advances in BPs have been summarized since their first discovery in the year 2004, including the syntheses of vesicle-forming hyperbranched polymers, self-assembly methods, self-assembly mechanisms, as well as the special properties. In addition, the cytomimetic, biomedical and other initiatory applications of BPs are also included.

  15. Host-Guest Binding-Site-Tunable Self-Assembly of Stimuli-Responsive Supramolecular Polymers.

    PubMed

    Yao, Hao; Qi, Miao; Liu, Yuyang; Tian, Wei

    2016-06-13

    Despite the remarkable progress made in controllable self-assembly of stimuli-responsive supramolecular polymers (SSPs), a basic issue that has not been consideration to date is the essential binding site. The noncovalent binding sites, which connect the building blocks and endow supramolecular polymers with their ability to respond to stimuli, are expected to strongly affect the self-assembly of SSPs. Herein, the design and synthesis of a dual-stimuli thermo- and photoresponsive Y-shaped supramolecular polymer (SSP2) with two adjacent β-cyclodextrin/azobenzene (β-CD/Azo) binding sites, and another SSP (SSP1) with similar building blocks, but only one β-CD/Azo binding site as a control, are described. Upon gradually increasing the polymer solution temperature or irradiating with UV light, SSP2 self-assemblies with a higher binding-site distribution density; exhibits a flower-like morphology, smaller size, and more stable dynamic aggregation process; and greater controllability for drug-release behavior than those observed with SSP1 self-assemblies. The host-guest binding-site-tunable self-assembly was attributed to the positive cooperativity generated among adjacent binding sites on the surfaces of SSP2 self-assemblies. This work is beneficial for precisely controlling the structural parameters and controlled release function of SSP self-assemblies.

  16. Spectral modifications and polarization dependent coupling in tailored assemblies of quantum dots and plasmonic nanowires.

    PubMed

    Gruber, Christian; Trügler, Andreas; Hohenau, Andreas; Hohenester, Ulrich; Krenn, Joachim R

    2013-09-11

    The coupling of optical emitters with a nanostructured environment is at the heart of nano- and quantum optics. We control this coupling by the lithographic positioning of a few (1-3) quantum dots (QDs) along plasmonic silver nanowires with nanoscale resolution. The fluorescence emission from the QD-nanowire systems is probed spectroscopically, by microscopic imaging and decay time measurements. We find that the plasmonic modes can strongly modulate the fluorescence emission. For a given QD position, the local plasmon field dictates the coupling efficiency, and thus the relative weight of free space radiation and emission into plasmon modes. Simulations performed with a generic few-level model give very good agreement with experiment. Our data imply that the 2D degenerate emission dipole orientation of the QD can be forced to predominantly emit to one polarization component dictated by the nanowire modes.

  17. Self-assembled ZnS nanowire arrays: synthesis, in situ Cu doping and field emission

    NASA Astrophysics Data System (ADS)

    Liu, Baodan; Bando, Yoshio; Jiang, Xin; Li, Chun; Fang, Xiaosheng; Zeng, Haibo; Terao, Takeshi; Tang, Chengchun; Mitome, Masanori; Golberg, Dmitri

    2010-09-01

    Well-aligned single-crystalline ZnS nanowire arrays have been grown on highly conductive Cu substrates through controlling the morphology evolution of self-patterned ZnS nanoparticles. The ZnS nanowires have sharp tips with an average size of ~ 30 nm and a length of ~ 3 µm. Field emission measurements demonstrated that the aligned ZnS nanowires grown on Cu substrates are excellent field emitters having a turn-on field as low as 2.92 V µm - 1 and a field-enhancement factor as high as 3400. The use of highly conductive metal substrate may promote the commercial applications of ZnS-based emitters in flat panel displays and other optoelectronic devices.

  18. Dynamic assembly of polymer nanotube networks via kinesin powered microtubule filaments

    NASA Astrophysics Data System (ADS)

    Paxton, Walter F.; Bouxsein, Nathan F.; Henderson, Ian M.; Gomez, Andrew; Bachand, George D.

    2015-06-01

    We describe for the first time how biological nanomotors may be used to actively self-assemble mesoscale networks composed of diblock copolymer nanotubes. The collective force generated by multiple kinesin nanomotors acting on a microtubule filament is large enough to overcome the energy barrier required to extract nanotubes from polymer vesicles comprised of poly(ethylene oxide-b-butadiene) in spite of the higher force requirements relative to extracting nanotubes from lipid vesicles. Nevertheless, large-scale polymer networks were dynamically assembled by the motors. These networks displayed enhanced robustness, persisting more than 24 h post-assembly (compared to 4-5 h for corresponding lipid networks). The transport of materials in and on the polymer membranes differs substantially from the transport on analogous lipid networks. Specifically, our data suggest that polymer mobility in nanotubular structures is considerably different from planar or 3D structures, and is stunted by 1D confinement of the polymer subunits. Moreover, quantum dots adsorbed onto polymer nanotubes are completely immobile, which is related to this 1D confinement effect and is in stark contrast to the highly fluid transport observed on lipid tubules.We describe for the first time how biological nanomotors may be used to actively self-assemble mesoscale networks composed of diblock copolymer nanotubes. The collective force generated by multiple kinesin nanomotors acting on a microtubule filament is large enough to overcome the energy barrier required to extract nanotubes from polymer vesicles comprised of poly(ethylene oxide-b-butadiene) in spite of the higher force requirements relative to extracting nanotubes from lipid vesicles. Nevertheless, large-scale polymer networks were dynamically assembled by the motors. These networks displayed enhanced robustness, persisting more than 24 h post-assembly (compared to 4-5 h for corresponding lipid networks). The transport of materials in and on

  19. Formation and properties of surface-anchored polymer assemblies with tunable physico-chemical characteristics

    NASA Astrophysics Data System (ADS)

    Wu, Tao

    We describe two new methodologies leading to the formation of novel surface-anchored polymer assemblies on solid substrates. While the main goal is to understand the fundamentals pertaining to the preparation and properties of the surface-bound polymer assemblies (including neutral and chargeable polymers), several examples also are mentioned throughout the Thesis that point out to practical applications of such structures. The first method is based on generating assemblies comprising anchored polymers with a gradual variation of grafting densities on solid substrates. These structures are prepared by first covering the substrate with a molecular gradient of the polymerization initiator, followed by polymerization from these substrate-bound initiator centers ("grafting from"). We apply this technique to prepare grafting density gradients of poly(acryl amide) (PAAm) and poly(acrylic acid) (PAA) on silica-covered substrates. We show that using the grafting density gradient geometry, the characteristics of surface-anchored polymers in both the low grafting density ("mushroom") regime as well as the high grafting density ("brush") regime can be accessed conveniently on a single sample. We use a battery of experimental methods, including Fourier transform infrared spectroscopy (FTIR), Near-edge absorption fine structure spectroscopy (NEXAFS), contact angle, ellipsometry, to study the characteristics of the surface-bound polymer layers. We also probe the scaling laws of neutral polymer as a function of grafting density, and for weak polyelectrolyte, in addition to the grafting density, we study the affect of solution ionic strength and pH values. In the second novel method, which we coined as "mechanically assisted polymer assembly" (MAPA), we form surface anchored polymers by "grafting from" polymerization initiators deposited on elastic surfaces that have been previously extended uniaxially by a certain length increment, Deltax. Upon releasing the strain in the

  20. Solution-state polymer assemblies influence BCS class II drug dissolution and supersaturation maintenance.

    PubMed

    Dalsin, Molly C; Tale, Swapnil; Reineke, Theresa M

    2014-02-10

    Spray dried dispersions (SDDs), solid dispersions of polymer excipients and active pharmaceuticals, are important to the field of oral drug delivery for improving active stability, bioavailability, and efficacy. Herein, we examine the influence of solution-state polymer assemblies on amorphous spray-dried dispersion (SDD) performance with two BCS II model drugs, phenytoin and probucol. These drugs were spray dried with 4 model polymer excipients consisting of poly(ethylene-alt-propylene) (PEP), N,N,-dimethylacrylamide (DMA), or 2-methacrylamido glucopyranose (MAG): amphiphilic diblock ter- and copolymers, PEP-P(DMA-grad-MAG) and PEP-PDMA, and their respective hydrophilic analogues, P(DMA-grad-MAG) and PDMA. Selective and nonselective solvents for the hydrophilic block of the diblock ter- and copolymers were used to induce or repress solution-state assemblies prior to spray drying. Prespray dried solution-state assemblies of these four polymers were probed with dynamic light scattering (DLS) and showed differences in solution assembly size and structure (free polymer versus aggregates versus micelles). Solid-state structures of spray dried dispersions (SDDs) showed a single glass transition event implying a homogeneous mixture of drug/polymer. Crystallization temperatures and enthalpies indicated that the drugs interact mostly with the DMA-containing portions of the polymers. Scanning electron microscopy was used to determine SDD particle size and morphology for the various polymer-drug pairings. In vitro dissolution tests showed excellent performance for one system, spray-dried PEP-PDMA micelles with probucol. Dissolution structures were investigated through DLS to determine drug-polymer aggregates that lead to enhanced SDD performance. Forced aggregation of the polymer into regular micelle structures was found to be a critical factor to increase the dissolution rate and supersaturation maintenance of SDDs, and may be an attractive platform to exploit in excipient

  1. Silver Nanowire/MnO2 Nanowire Hybrid Polymer Nanocomposites: Materials with High Dielectric Permittivity and Low Dielectric Loss.

    PubMed

    Zeraati, Ali Shayesteh; Arjmand, Mohammad; Sundararaj, Uttandaraman

    2017-04-13

    This study reports the fabrication of hybrid nanocomposites based on silver nanowire/manganese dioxide nanowire/poly(methyl methacrylate) (AgNW/MnO2NW/PMMA), using a solution casting technique, with outstanding dielectric permittivity and low dielectric loss. AgNW was synthesized using the hard-template technique, and MnO2NW was synthesized employing a hydrothermal method. The prepared AgNW:MnO2NW (2.0:1.0 vol %) hybrid nanocomposite showed a high dielectric permittivity (64 at 8.2 GHz) and low dielectric loss (0.31 at 8.2 GHz), which are among the best reported values in the literature in the X-band frequency range (8.2-12.4 GHz). The superior dielectric properties of the hybrid nanocomposites were attributed to (i) dimensionality match between the nanofillers, which increased their synergy, (ii) better dispersion state of AgNW in the presence of MnO2NW, (iii) positioning of ferroelectric MnO2NW in between AgNWs, which increased the dielectric permittivity of nanodielectrics, thereby increasing dielectric permittivity of the hybrid nanocomposites, (iv) barrier role of MnO2NW, i.e., cutting off the contact spots of AgNWs and leading to lower dielectric loss, and (v) AgNW aligned structure, which increased the effective surface area of AgNWs, as nanoelectrodes. Comparison of the dielectric properties of the developed hybrid nanocomposites with the literature highlights their great potential for flexible capacitors.

  2. Surface-confined assemblies and polymers for molecular logic.

    PubMed

    de Ruiter, Graham; van der Boom, Milko E

    2011-08-16

    Stimuli responsive materials are capable of mimicking the operation characteristics of logic gates such as AND, OR, NOR, and even flip-flops. Since the development of molecular sensors and the introduction of the first AND gate in solution by de Silva in 1993, Molecular (Boolean) Logic and Computing (MBLC) has become increasingly popular. In this Account, we present recent research activities that focus on MBLC with electrochromic polymers and metal polypyridyl complexes on a solid support. Metal polypyridyl complexes act as useful sensors to a variety of analytes in solution (i.e., H(2)O, Fe(2+/3+), Cr(6+), NO(+)) and in the gas phase (NO(x) in air). This information transfer, whether the analyte is present, is based on the reversible redox chemistry of the metal complexes, which are stable up to 200 °C in air. The concurrent changes in the optical properties are nondestructive and fast. In such a setup, the input is directly related to the output and, therefore, can be represented by one-input logic gates. These input-output relationships are extendable for mimicking the diverse functions of essential molecular logic gates and circuits within a set of Boolean algebraic operations. Such a molecular approach towards Boolean logic has yielded a series of proof-of-concept devices: logic gates, multiplexers, half-adders, and flip-flop logic circuits. MBLC is a versatile and, potentially, a parallel approach to silicon circuits: assemblies of these molecular gates can perform a wide variety of logic tasks through reconfiguration of their inputs. Although these developments do not require a semiconductor blueprint, similar guidelines such as signal propagation, gate-to-gate communication, propagation delay, and combinatorial and sequential logic will play a critical role in allowing this field to mature. For instance, gate-to-gate communication by chemical wiring of the gates with metal ions as electron carriers results in the integration of stand-alone systems: the

  3. Water-repellent ZnO nanowires films obtained by octadecylsilane self-assembled monolayers

    NASA Astrophysics Data System (ADS)

    Badre, C.; Pauporté, T.; Turmine, M.; Dubot, P.; Lincot, D.

    2008-05-01

    Zinc oxide (ZnO) films with well-controlled morphologies have been prepared by electrochemical deposition. A seed layer of nanocrystallites of ZnO was prepared from which ZnO nanowires were grown from a low concentration of ZnCl 2. The nanowires are rough and dense and their superhydrophilicity is enhanced. A treatment with an alkylsilane (octadecylsilane) yields superhydrophobic surfaces with very high advancing and receding contact angles 173°/172° and a very low roll-off angle. Our superhydrophobic films are stable for more than 6 months.

  4. Self-assembled ZnO agave-like nanowires and anomalous superhydrophobicity

    NASA Astrophysics Data System (ADS)

    Yang, Y. H.; Li, Z. Y.; Wang, B.; Wang, C. X.; Chen, D. H.; Yang, G. W.

    2005-09-01

    Thin films of ZnO agave-like nanowires were prepared on amorphous carbon thin layers on silicon substrates using thermal chemical vapour transport and condensation without any metal catalysts. The unusual superhydrophobicity of the fabricated surface was measured; the water contact angle reaches 151.1°. On the basis of experimental and theoretical analyses, it appears likely that the biomimetic microcomposite and nanocomposite surfaces of the prepared thin films of ZnO agave-like nanowires are responsible for the excellent superhydrophobicity.

  5. Microwave-Assisted Rapid Synthesis of Self-Assembled T-Nb2 O5 Nanowires for High-Energy Hybrid Supercapacitors.

    PubMed

    Yang, Huiling; Xu, Henghui; Wang, Libin; Zhang, Lei; Huang, Yunhui; Hu, Xianluo

    2017-03-23

    Recently ion-intercalation hybrid supercapacitors, with high energy density at high power density, have been widely investigated to meet ever-increasing practical demands. Here, a unique hybrid supercapacitor has been designed and fabricated using self-assembled orthorhombic-phase niobium oxide@carbon (T-Nb2 O5 @C) nanowires as an anode and commercially available activated carbon as a cathode. The 3D-interconnected T-Nb2 O5 @C nanowires have been synthesized through a highly efficient microwave-solvothermal method, combined with subsequent thermal treatment. The experimental parameters (e.g., time and temperature) can be easily programmed, and the synthesis time can be significantly shortened, thus enabling the buildup of abundant recipes for the engineering of scaled-up production. The Li-ion intercalation pseudocapacitance electrode, made from the as-formed self-assembled T-Nb2 O5 @C nanowires, shows excellent charge storage and transfer capability. When assembled into a hybrid supercapacitor with a cathode of activated carbon, a high energy density of 60.6 Wh kg(-1) and a high power density of 8.5 kW kg(-1) with outstanding stability are achieved. In virtue of easy optimization and programmability of the synthetic strategy, and the remarkable electrochemical performance, the self-assembled T-Nb2 O5 @C nanowires offer a promising anode for asymmetric hybrid supercapacitors.

  6. Cycling performance and thermal stability of lithium polymer cells assembled with ionic liquid-containing gel polymer electrolytes

    NASA Astrophysics Data System (ADS)

    Yun, Ye Sun; Kim, Jin Hee; Lee, Sang-Young; Shim, Eun-Gi; Kim, Dong-Won

    Gel polymer electrolytes containing 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide and a small amount of additive (vinylene carbonate, fluoroethylene carbonate, and ethylene carbonate) are prepared, and their electrochemical properties are investigated. The cathodic limit of the gel polymer electrolytes can be extended to 0 V vs. Li by the formation of a protective solid electrolyte interphase on the electrode surface. Using these gel polymer electrolytes, lithium metal polymer cells composed of a lithium anode and a LiNi 1/3Co 1/3Mn 1/3O 2 cathode are assembled, and their cycling performances are evaluated at room temperature. The cells show good cycling performance, comparable to that of a cell assembled with gel polymer electrolyte containing standard liquid electrolyte (1.0 M LiPF 6 in ethylene carbonate/diethylene carbonate). Flammability tests and differential scanning calorimetry studies show that the presence of the ionic liquid in the gel polymer electrolyte considerably improves the safety and thermal stability of the cells.

  7. Patterned polymer nanowire arrays as an effective protein immobilizer for biosensing and HIV detection

    NASA Astrophysics Data System (ADS)

    Shen, Yue; Liu, Yingyi; Zhu, Guang; Fang, Hao; Huang, Yunhui; Jiang, Xingyu; Wang, Zhong L.

    2012-12-01

    We report an array of polymeric nanowires for effectively immobilizing biomolecules on biochips owing to the large surface area. The nanowires were fabricated in predesigned patterns using an inductively coupled plasma (ICP) etching process. Microfluidic biochips integrated using the substrates with arrays of nanowires and polydimethylsiloxane channels have been demonstrated to be effective for detecting antigens, and a detection limit of antigens at 0.2 μg mL-1 has been achieved, which is improved by a factor of 50 compared to that based on flat substrates without the nanowires. In addition, the high sensitivity for clinical detection of human immunodeficiency virus (HIV) antibody has also been demonstrated, showing a 20 times enhancement in fluorescent signal intensity between the samples with positive and negative HIV.

  8. Towards controlled polymer brushes via a self-assembly-assisted-grafting-to approach

    PubMed Central

    Zhou, Tian; Qi, Hao; Han, Lin; Barbash, Dmitri; Li, Christopher Y.

    2016-01-01

    Precise synthesis of polymer brushes to modify the surface of nanoparticles and nanodevices for targeted applications has been one of the major focuses in the community for decades. Here we report a self-assembly-assisted-grafting-to approach to synthesize polymer brushes on flat substrates. In this method, polymers are pre-assembled into two-dimensional polymer single crystals (PSCs) with functional groups on the surface. Chemically coupling the PSCs onto solid substrates leads to the formation of polymer brushes. Exquisite control of the chain folding in PSCs allows us to obtain polymer brushes with well-defined grafting density, tethering points and brush conformation. Extremely high grafting density (2.12 chains per nm2) has been achieved in the synthesized single-tethered polymer brushes. Moreover, polymer loop brushes have been successfully obtained using oddly folded PSCs from telechelic chains. Our approach combines some of the important advantages of conventional ‘grafting-to' and ‘grafting-from' methods, and is promising for tailored synthesis of polymer brushes. PMID:27009369

  9. Meso-scale Modeling of Self-assembly of Polymer-Grafted Nanoparticles

    NASA Astrophysics Data System (ADS)

    Mancini, Derrick; Deshmukh, Sanket; Sankaranarayanan, Subramanian

    2015-03-01

    We develop meso-scale models to explore the self-assembly behavior of polymer-grafted nanoparticles. Specifically, we study nanoparticles with grafts of the thermo-sensitive polymer poly(N-isopropylacrylamide) (PNIPAM), which undergoes a coil-to-globule transition across the LCST at around 305 K. The atomic-scale mechanism of the coil-to-globule transition of polymers grafted nanoparticles and their interactions (agglomeration, assembly behavior) with other particles that are in its vicinity is poorly understood, yet knowledge about these interactions would enable designing novel self-assembled materials with well-defined structural and dynamical properties. Additionally, the effects of chemical nature, geometry, and morphology of the nanoparticle surface on the conformational transition of thermo-sensitive polymers is also unknown. We report on 1) development of all-atom models of polymer-grafted nanoparticles to conduct MD simulations at atomic-levels and 2) perform mesoscopic scaling of the conformational dynamics resulting from the atomistic simulations with the aid of coarse-grained or meso-scale models of PNIPAM and its composites. Coarse-grained simulations allow modeling of larger assemblies of polymer-grafted nanoparticles over longer time scales. This research used resources of the Center for Nanoscale Materials and the Argonne Leadership Computing Facility at Argonne National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract DE-AC02-06CH11357.

  10. Understanding Molecular Interactions within Chemically Selective Layered Polymer Assemblies

    SciTech Connect

    Gary J. Blanchard

    2009-06-30

    This work focuses on two broad issues. These are (1) the molecular origin of the chemical selectivity achieved with ultrathin polymer multilayers, and (2) how the viscoelastic properties of the polymer layers are affected by exposure to solvent and analytes. These issues are inter-related, and to understand them we need to design experiments that probe both the energetic and kinetic aspects of interfacial adsorption processes. This project focuses on controling the chemical structure, thickness, morphology and sequential ordering of polymer layers bound to interfaces using maleimide-vinyl ether and closely related alternating copolymerization chemistry and efficient covalent cross-linking reactions that allow for layer-by-layer polymer deposition. This chemistry has been developed during the funding cycle of this Grant. We have measure the equilibrium constants for interactions between specific layers within the polymer interfaces and size-controlled, surface-functionalized gold nanoparticles. The ability to control both size and functionality of gold nanoparticle model analytes allows us to evaluate the average “pore size” that characterizes our polymer films. We have measured the “bulk” viscosity and shear modulus of the ultrathin polymer films as a function of solvent overlayer identity using quartz crystal microbalance complex impedance measurements. We have measured microscopic viscosity at specific locations within the layered polymer interfaces with time-resolved fluorescence lifetime and depolarization techniques. We combine polymer, cross-linking and nanoparticle synthetic expertise with a host of characterization techniques, including QCM gravimetry and complex impedance analysis, steady state and time-resolved spectroscopies.

  11. Performance of polymer nano composite membrane electrode assembly using Alginate as a dopant in polymer electrolyte membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Mulijani, S.

    2016-11-01

    Polymer membrane and composite polymer for membrane electrode assembly (MEAs) are synthesized and studied for usage in direct methanol fuel cell (DMFC). In this study, we prepared 3 type of MEAs, polystyrene (PS), sulfonated polystyrene (SPS) and composite polymer SPS-alginat membrane via catalyst hot pressed method. The performance and properties of prepared MEAs were evaluated and analyzed by impedance spectrometry and scanning electron microscopy (SEM). The result showed that, water up take of MEA composite polymer SPS-alginate was obtained higher than that in SPS and PS. The proton conductivity of MEA-SPS-alginate was also higher than that PS and PSS. SEM characterization revealed that the intimate contact between the carbon catalyst layers (CL) and the membranes, and the uniformly porous structure correlate positively with the MEAs prepared by hot pressed method, exhibiting high performances for DMFC.

  12. Performance of polymer nano composite membrane electrode assembly using Alginate as a dopant in polymer electrolyte membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Mulijani, S.

    2017-01-01

    Polymer membrane and composite polymer for membrane electrode assembly (MEAs) are synthesized and studied for usage in direct methanol fuel cell (DMFC). In this study, we prepared 3 type of MEAs, polystyrene (PS), sulfonated polystyrene (SPS) and composite polymer SPS-alginat membrane via catalyst hot pressed method. The performance and properties of prepared MEAs were evaluated and analyzed by impedance spectrometry and scanning electron microscopy (SEM). The result showed that, water up take of MEA composite polymer SPS-alginate was obtained higher than that in SPS and PS. The proton conductivity of MEA-SPS-alginate was also higher than that PS and PSS. SEM characterization revealed that the intimate contact between the carbon catalyst layers (CL) and the membranes, and the uniformly porous structure correlate positively with the MEAs prepared by hot pressed method, exhibiting high performances for DMFC.

  13. A strategy for tuning achiral main-chain polymers into helical assemblies and chiral memory systems.

    PubMed

    Yang, Dong; Zhao, Yin; Lv, Kai; Wang, Xiufeng; Zhang, Wei; Zhang, Li; Liu, Minghua

    2016-01-28

    A general strategy to tune the achiral main chain polymers into helical nanoassemblies was proposed based on the co-gelation approach. As an example, two achiral main chain polymers, PCz8 and PSi8, were selected, and their co-assembly with an amphiphilic l- or d-glutamide gelator was investigated. Although the polymers could not form gels individually, they could form co-gels with the gelator and the resultant gels exhibited macroscopic supramolecular chirality, which could be confirmed by CD spectra and SEM observations. Moreover, the supramolecular chirality can be memorized even after the gelator molecules were removed. Remarkably, either the gelator-containing or gelator-free chiral polymer assemblies showed circularly polarized luminescence (CPL), which is usually inherent to intrinsic chiral polymers. It was suggested that during the co-gelation, the chirality of the gelator was transferred to and memorized by the achiral polymers. The approach seems to be general and we provided the first example to tune the achiral polymers into helical assemblies through the co-gelation.

  14. Thermally Induced Charge Reversal of Layer-by-Layer Assembled Single-Component Polymer Films.

    PubMed

    Richardson, Joseph J; Tardy, Blaise L; Ejima, Hirotaka; Guo, Junling; Cui, Jiwei; Liang, Kang; Choi, Gwan H; Yoo, Pil J; De Geest, Bruno G; Caruso, Frank

    2016-03-23

    Temperature can be harnessed to engineer unique properties for materials useful in various contexts and has been shown to affect the layer-by-layer (LbL) assembly of polymer thin films and cause physical changes in preassembled polymer thin films. Herein we demonstrate that exposure to relatively low temperatures (≤ 100 °C) can induce physicochemical changes in cationic polymer thin films. The surface charge of polymer films containing primary and secondary amines reverses after heating (from positive to negative), and different characterization techniques are used to show that the change in surface charge is related to oxidation of the polymer that specifically occurs in the thin film state. This charge reversal allows for single-polymer LbL assembly to be performed with poly(allylamine) hydrochloride (PAH) through alternating heat/deposition steps. Furthermore, the negative charge induced by heating reduces the fouling and cell-association of PAH-coated planar and particulate substrates, respectively. This study highlights a unique property of thin films which is relevant to LbL assembly and biofouling and is of interest for the future development of thin polymer films for biomedical systems.

  15. Double-sided brush-shaped TiO2 nanostructure assemblies with highly ordered nanowires for dye-sensitized solar cells.

    PubMed

    Zha, Chenyang; Shen, Liming; Zhang, Xiaoyan; Wang, Yifeng; Korgel, Brian A; Gupta, Arunava; Bao, Ningzhong

    2014-01-08

    We describe a seeded hydrothermal process for the growth of unique double-sided brush-shaped (DSBS) TiO2 nanostructure assemblies consisting of highly ordered rutile nanowires vertically aligned around an annealed TiO2 nanoparticle layer. The annealed TiO2 nanoparticle layer seeds the nanowire growth and also supports the DSBS structure. The morphology of the DSBS TiO2 nanostructure depends on the hydrothermal reaction time. The diameter of the nanowires is about 6.6 nm, and with increasing reaction time from 1 to 8 h the nanowire length increases from 0.6 to 6.2 μm, whereas the thickness of the nanoparticle layer decreases from 4.3 to 2.8 μm. These free-standing nanowire arrays provide large internal surface area, which is essential for minimizing carrier recombination in high performance photovoltaic devices. Furthermore, the nanowire architecture can help increase the rate of charge transport as compared to particulate films because of lower concentration of grain boundaries. The power conversion efficiency of backside (DSBS TiO2/FTO photoanode) illuminated dye-sensitized solar cells fabricated using the DSBS TiO2 nanostructure assembly is found to be depended on the nanowire length. A cell fabricated using 15.2 μm thick nanostructures sensitized by N719 has a short-circuit current density of 12.18 mA cm(-2), 0.78 V open circuit potential, and a 0.59 filling factor, yielding a maximum power conversion efficiency of 5.61% under AM 1.5 illumination.

  16. Self-assembled organic nanowires for high power density lithium ion batteries.

    PubMed

    Luo, Chao; Huang, Ruiming; Kevorkyants, Ruslan; Pavanello, Michele; He, Huixin; Wang, Chunsheng

    2014-03-12

    The electroactive organic materials are promising alternatives to inorganic electrode materials for the new generation of green Li-ion batteries due to their sustainability, environmental benignity, and low cost. Croconic acid disodium salt (CADS) was used as Li-ion battery electrode, and CADS organic wires with different diameters were fabricated through a facile synthetic route using antisolvent crystallization method to overcome the challenges of low electronic conductivity of CADS and lithiation induced strain. The CADS nanowire exhibits much better electrochemical performance than its crystal bulk material and microwire counterpart. CADS nanowire with a diameter of 150 nm delivers a reversible capability of 177 mAh g(-1) at a current density of 0.2 C and retains capacity of 170 mAh g(-1) after 110 charge/discharge cycles. The nanowire structure also remarkably enhances the kinetics of croconic acid disodium salt. The CADS nanowire retains 50% of the 0.1 C capacity even when the current density increases to 6 C. In contrast, the crystal bulk and microwire material completely lose their capacities when the current density merely increases to 2 C. Such a high rate performance of CADS nanowire is attributed to its short ion diffusion pathway and large surface area, which enable fast ion and electron transport in the electrode. The theoretical calculation suggests that lithiation of CADS experiences an ion exchange process. The sodium ions in CADS will be gradually replaced by lithium ions during the lithiation and delithiation of CADS electrode, which is confirmed by inductively coupled plasma test.

  17. Monitoring Protein Capsid Assembly with a Conjugated Polymer Strain Sensor.

    PubMed

    Cingil, Hande E; Storm, Ingeborg M; Yorulmaz, Yelda; te Brake, Diane W; de Vries, Renko; Cohen Stuart, Martien A; Sprakel, Joris

    2015-08-12

    Semiconducting polymers owe their optoelectronic properties to the delocalized electronic structure along their conjugated backbone. Their spectral features are therefore uniquely sensitive to the conformation of the polymer, where mechanical stretching of the chain leads to distinct vibronic shifts. Here we demonstrate how the optomechanical response of conjugated polyelectrolytes can be used to detect their encapsulation in a protein capsid. Coating of the sensor polymers by recombinant coat proteins induces their stretching due to steric hindrance between the proteins. The resulting mechanical planarizations lead to pronounced shifts in the vibronic spectra, from which the process of capsid formation can be directly quantified. These results show how the coupling between vibronic states and mechanical stresses inherent to conjugated polymers can be used to noninvasively measure strains at the nanoscale.

  18. Mussel-inspired Fluoro-Polydopamine Functionalization of Titanium Dioxide Nanowires for Polymer Nanocomposites with Significantly Enhanced Energy Storage Capability

    PubMed Central

    Wang, Guanyao; Huang, Xingyi; Jiang, Pingkai

    2017-01-01

    High-dielectric-constant polymer nanocomposites are demonstrated to show great promise as energy storage materials. However, the large electrical mismatch and incompatibility between nanofillers and polymer matrix usually give rise to significantly reduced breakdown strength and weak energy storage capability. Therefore, rational selection and elaborate functionalization of nanofillers to optimize the performance of polymer nanocomposites are vital. Herein, inspired by adhesive proteins in mussels, a facile modification by fluoro-polydopamine is employed to reinforce the compatibility of TiO2 nanowires in the fluoropolymer matrix. The loading of 2.5 vol % f-DOPA@TiO2 NWs leads to an ultrahigh discharged energy density of 11.48 J cm−3 at 530 MV m−1, more than three times of commercial biaxial-oriented polypropylene (BOPP, 3.56 J cm−3 at 600 MV m−1). A gratifying high energy density of 9.12 J cm−3 has also been obtained with nanofiller loading as high as 15 vol % at 360 MV m−1, which is nearly double to that of pure P(VDF-HFP) (4.76 J cm−3 at 360 MV m−1). This splendid energy storage capability seems to rival or exceed most of previously reported nano-TiO2 based nanocomposites. The methods presented here provide deep insights into the design of polymer nanocomposites for energy storage applications. PMID:28225047

  19. Mussel-inspired Fluoro-Polydopamine Functionalization of Titanium Dioxide Nanowires for Polymer Nanocomposites with Significantly Enhanced Energy Storage Capability.

    PubMed

    Wang, Guanyao; Huang, Xingyi; Jiang, Pingkai

    2017-02-22

    High-dielectric-constant polymer nanocomposites are demonstrated to show great promise as energy storage materials. However, the large electrical mismatch and incompatibility between nanofillers and polymer matrix usually give rise to significantly reduced breakdown strength and weak energy storage capability. Therefore, rational selection and elaborate functionalization of nanofillers to optimize the performance of polymer nanocomposites are vital. Herein, inspired by adhesive proteins in mussels, a facile modification by fluoro-polydopamine is employed to reinforce the compatibility of TiO2 nanowires in the fluoropolymer matrix. The loading of 2.5 vol % f-DOPA@TiO2 NWs leads to an ultrahigh discharged energy density of 11.48 J cm(-3) at 530 MV m(-1), more than three times of commercial biaxial-oriented polypropylene (BOPP, 3.56 J cm(-3) at 600 MV m(-1)). A gratifying high energy density of 9.12 J cm(-3) has also been obtained with nanofiller loading as high as 15 vol % at 360 MV m(-1), which is nearly double to that of pure P(VDF-HFP) (4.76 J cm(-3) at 360 MV m(-1)). This splendid energy storage capability seems to rival or exceed most of previously reported nano-TiO2 based nanocomposites. The methods presented here provide deep insights into the design of polymer nanocomposites for energy storage applications.

  20. Mussel-inspired Fluoro-Polydopamine Functionalization of Titanium Dioxide Nanowires for Polymer Nanocomposites with Significantly Enhanced Energy Storage Capability

    NASA Astrophysics Data System (ADS)

    Wang, Guanyao; Huang, Xingyi; Jiang, Pingkai

    2017-02-01

    High-dielectric-constant polymer nanocomposites are demonstrated to show great promise as energy storage materials. However, the large electrical mismatch and incompatibility between nanofillers and polymer matrix usually give rise to significantly reduced breakdown strength and weak energy storage capability. Therefore, rational selection and elaborate functionalization of nanofillers to optimize the performance of polymer nanocomposites are vital. Herein, inspired by adhesive proteins in mussels, a facile modification by fluoro-polydopamine is employed to reinforce the compatibility of TiO2 nanowires in the fluoropolymer matrix. The loading of 2.5 vol % f-DOPA@TiO2 NWs leads to an ultrahigh discharged energy density of 11.48 J cm-3 at 530 MV m-1, more than three times of commercial biaxial-oriented polypropylene (BOPP, 3.56 J cm-3 at 600 MV m-1). A gratifying high energy density of 9.12 J cm-3 has also been obtained with nanofiller loading as high as 15 vol % at 360 MV m-1, which is nearly double to that of pure P(VDF-HFP) (4.76 J cm-3 at 360 MV m-1). This splendid energy storage capability seems to rival or exceed most of previously reported nano-TiO2 based nanocomposites. The methods presented here provide deep insights into the design of polymer nanocomposites for energy storage applications.

  1. Cooperative self-assembly of porphyrins with polymers possessing bioactive functions.

    PubMed

    Zhao, Lizhi; Qu, Rui; Li, Ang; Ma, Rujiang; Shi, Linqi

    2016-11-15

    Natural porphyrin derivatives possess many interesting functions in biological systems. They are integrated into proteins that are essential for biological activities. Many efforts have been dedicated to mimic the microenvironment and augment the function of porphyrin/protein scaffolds. To achieve such goals, self-assembly has become one of the popular methods to construct porphyrin/protein-mimicking materials owing to its various choices of building blocks and a simple preparation process over chemical modification. Desirable characteristics of building blocks for protein mimicking include high molecular weight, predictable conformations in solution, and appropriate functional residuals. With these aims in mind, polymers are ideal candidates due to their multiple-level hierarchies derived from their chemical and spatial structures. In this review, design strategies for the cooperative self-assembly of porphyrins with polymers and the main efforts towards the implementation of porphyrin/polymer assembly for biomimetic composites with bioactive functions will be addressed.

  2. Bioreducible nanocapsules prepared from the self-assembly of branched polymer in nanodroplet.

    PubMed

    Wang, Long-Hai; Ding, Sheng-Gang; Yan, Jun-Jie; You, Ye-Zi

    2014-02-01

    Though great attention has been paid in constructing well-defined nano-structures via the self-assembly of amphiphilic macromolecules, the self-assembly of non-amphiphilic macromolecules in nanodroplet has drawn less attention up to now. Recently, we prepared a temperature-responsive PEG-based branched polymer with disulfide bonds in its backbone via reversible addition-fragmentation chain transfer (RAFT) polymerization of 2-(2-methoxyethoxy) ethyl methacrylate, oligo(ethylene glycol) methacrylate, and N,N'-cystamine bisacrylamide. Subsequently, we loaded the branched polymer into nanodroplets, and have found that the self-assembly behaviors of this branched poly-mer in the nanodroplet are different from those in common solution. Bioreducible nanocapsules with tunable size can easily formed in nanodroplet even at high concentration.

  3. Microencapsulation of Ascorbic Acid for Cosmetic by Utilizing Self-assembly of Phase Separated Polymer.

    PubMed

    Nakai, Shiro; Nakai, Akito; Michida, Takashi

    2016-01-01

    Micrometer-sized polymer particles encapsulated ascorbic acid (vitamin C; VC) were successfully prepared by the three types of the self-assembling method, those are, phase separation and self-assembly of added polymer at the oil-water interface in emulsion, microsuspension polymerization utilizing the self-assembling of phase separated polymer (SaPSeP) method, and their hybrid method. In the stability study at 50°C for 2 months, the three kinds of capsule particles exhibited effective protection of VC from the interaction with other components in cosmetic consisting of water-in-oil (W/O) emulsion. The encapsulated VC was easily released from the capsule particles by an excess of water. These encapsulation methods will be useful for the stabilization of water-soluble substances in cosmetic consisting of W/O emulsion.

  4. Stabilization of 2D assemblies of silver nanoparticles by spin-coating polymers

    NASA Astrophysics Data System (ADS)

    Hu, Longyu; Pfirman, Aubrie; Chumanov, George

    2015-12-01

    Silver nanoparticles self-assembled on poly(4-vinylpyridine) modified surfaces were spin-coated with poly(methyl methacrylate), poly(butyl methacrylate) and polystyrene from anisole and toluene solutions. The polymers filled the space between the particles thereby providing stabilization of the assemblies against particle aggregation when dried or chemically modified. The polymers did not coat the top surface of the nanoparticles offering the chemical accessibility to the metal surface. This was confirmed by converting the stabilized nanoparticles into silver sulfide and gold clusters. Etching the nanoparticles resulted in crater-like polymeric structures with the cavities extending down to the underlying substrate. Electrochemical reduction of silver inside the craters was performed. The approach can be extended to other nanoparticle assemblies and polymers.

  5. Three-dimensional MoO2 nanotextiles assembled from elongated nanowires as advanced anode for Li ion batteries

    NASA Astrophysics Data System (ADS)

    Xu, Guoqing; Liu, Ping; Ren, Yurong; Huang, Xiaobing; Peng, Zhiguang; Tang, Yougen; Wang, Haiyan

    2017-09-01

    The fabrication of an ideal electrode architecture consisting of robust three dimensional (3D) nanowire networks have gained special interest for energy storage applications owing to the integrated advantages of nanostructures and microstructures. In this work, 3D MoO2 nanotextiles assembled from highly interconnected elongated nanowires are successfully prepared by a facile stirring assisted hydrothermal method and followed by an annealing process. In addition, a methylbenzene/water biphasic reaction system is involved in the hydrothermal process. When used as an anode material in Li ion batteries (LIBs), this robust MoO2 nanotextiles exhibit a high reversible capacity (860.4 mAh g-1 at 300 mA g-1), excellent cycling performance (89% capacity retention after 160 cycles) and rate capability (577 mAh g-1 at 2000 mA g-1). Various synthetic factors to the fabrication of 3D nanotextiles structure are discussed here and this design of 3D network structures may be extended to the preparation of other functional nanomaterials.

  6. Study of (Cyclic Peptide)-Polymer Conjugate Assemblies by Small-Angle Neutron Scattering.

    PubMed

    Koh, Ming Liang; FitzGerald, Paul A; Warr, Gregory G; Jolliffe, Katrina A; Perrier, Sébastien

    2016-12-19

    We present a fundamental study into the self-assembly of (cyclic peptide)-polymer conjugates as a versatile supramolecular motif to engineer nanotubes with defined structure and dimensions, as characterised in solution using small-angle neutron scattering (SANS). This work demonstrates the ability of the grafted polymer to stabilise and/or promote the formation of unaggregated nanotubes by the direct comparison to the unconjugated cyclic peptide precursor. This ideal case permitted a further study into the growth mechanism of self-assembling cyclic peptides, allowing an estimation of the cooperativity. Furthermore, we show the dependency of the nanostructure on the polymer and peptide chemical functionality in solvent mixtures that vary in the ability to compete with the intermolecular associations between cyclic peptides and ability to solvate the polymer shell. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. All-in-one assembly based on 3D-intertangled and cross-jointed architectures of Si/Cu 1D-nanowires for lithium ion batteries

    PubMed Central

    Hwang, Chihyun; Kim, Tae-Hee; Cho, Yoon-Gyo; Kim, Jieun; Song, Hyun-Kon

    2015-01-01

    All-in-one assemblies of separator, electrode and current collector (SECA) for lithium ion batteries are presented by using 1D nanowires of Si and Cu (nwSi and nwCu). Even without binders, integrity of SECA is secured via structural joints based on ductility of Cu as well as entanglement of nwSi and nwCu. By controlling the ratio of the nanowires, the number of contact points and voids accommodating volume expansion of Si active material are tunable. Zero volume expansion and high energy density are simultaneously achievable by the architecture. PMID:25720334

  8. Leveraging symmetry to predict self-assembly of multiple polymers

    NASA Astrophysics Data System (ADS)

    Lin, Milo M.

    2017-09-01

    Protein self-assembly is fundamental to biological function and disease. Experimentally, the atomic-level structure is difficult to obtain and the assembly mechanism is poorly understood. The large number of possible states accessible to such systems limits computational prediction. Here, I introduce a new computational approach that enforces conformational symmetry, whereby all chains in the system adopt the same conformation. Using this approach on a 2D lattice, a designed multi-chain conformation is found more than four orders of magnitude faster than existing approaches. Furthermore, the free energy landscape can be efficiently computed, showing potential for enabling atomistic prediction of protein self-assembly.

  9. Self-Assembly of InAs Nanostructures on the Sidewalls of GaAs Nanowires Directed by a Bi Surfactant

    NASA Astrophysics Data System (ADS)

    Lewis, Ryan B.; Corfdir, Pierre; Herranz, Jesús; Küpers, Hanno; Jahn, Uwe; Brandt, Oliver; Geelhaar, Lutz

    2017-07-01

    Surface energies play a dominant role in the self-assembly of three dimensional (3D) nanostructures. In this letter, we show that using surfactants to modify surface energies can provide a means to externally control nanostructure self-assembly, enabling the synthesis of novel hierarchical nanostructures. We explore Bi as a surfactant in the growth of InAs on the {1-10} sidewall facets of GaAs nanowires. The presence of surface Bi induces the formation of InAs 3D islands by a process resembling the Stranski-Krastanov mechanism, which does not occur in the absence of Bi on these surfaces. The InAs 3D islands nucleate at the corners of the {1-10} facets above a critical shell thickness and then elongate along <110> directions in the plane of the nanowire sidewalls. Exploiting this growth mechanism, we realize a series of novel hierarchical nanostructures, ranging from InAs quantum dots on single {1-10} nanowire facets to zig-zag shaped nanorings completely encircling nanowire cores. Photoluminescence spectroscopy and cathodoluminescence spectral line scans reveal that small surfactant-induced InAs 3D islands behave as optically active quantum dots. This work illustrates how surfactants can provide an unprecedented level of external control over nanostructure self-assembly.

  10. Controlling the adhesion of conducting polymer films with patterned self-assembled monolayers

    SciTech Connect

    Rozsnyai, L.F.; Wrighton, M.S.

    1996-02-01

    A photosensitive self-assembled monolayer (SAM) is selectively irradiated to fabricate a pattern on an Au electrode, and a thin film of aniline or 3-methylthiophene is deposited on it by electopolymerization. Adhesion of the polymer films can be controlled by the monolayer terminal group. Applying tape to the sample and peeling it away selectively removes the conducting polymer film to the tape in a near-micron resolution pattern. 14 refs., 1 fig.

  11. Magnetic properties and Verwey transition of quasi-one-dimensional magnetite nanowire arrays assembled in alumina templates

    NASA Astrophysics Data System (ADS)

    Zhang, Li-Ying; Xue, De-Sheng; Xu, Xue-Fei; Gui, An-Biao

    2005-06-01

    Magnetite (Fe 3O 4) has been successfully assembled into anodic alumina templates by an electrochemical method followed by a heat-treating process. Here, we report on the magnetic properties of these so formed nanowires and the Verwey transition measured by vibrating sample magnetometer and SQUID. A Mössbauer spectrum was collected to verify the magnetic orientation of the wires, and a tilt of the moment of 45° with respect to the wire axis was found. These wires show perpendicular magnetic anisotropy mainly due to the average easy axis of the grains pointing along the wire axis. The temperature dependence of the coercity, remanence, and the magnetization undergo a major change at 50 K, induced by the Verwey transition, which occurs at a temperature much lower than for bulk materials (120 K). The behavior of the magnetization in the vicinity of 50 K as well as its field-dependent properties was interpreted using the magneto-electronic model.

  12. Layer-by-layer assembly of clay-filled polymer nanocomposite thin films

    NASA Astrophysics Data System (ADS)

    Jang, Woo-Sik

    2008-10-01

    A variety of functional thin films can be produced using the layer-by-layer assembly technique. In this work, assemblies of anionic clay and cationic polymer were studied with regard to film growth and gas barrier properties. A simple, yet flexible robotic dipping system, for the preparation of these thin films, was built. The robot alternately dips a substrate into aqueous mixtures with rinsing and drying in between. Thin films of sodium montmorillonite clay and cationic polymer were grown and studied on poly(ethylene terephthalate) film or a silicon wafer. After 30 clay polymer bilayers were deposited, the resulting transparent film had an oxygen transmission rate (OTR) below 0.005 cm3/m2/day/atm. This low OTR, which is unprecedented for a clay-filled polymer composite, is believed to be due to a "brick wall" nanostructure comprised of completely exfoliated clay bricks in polymeric "mortar". The growth of polymer and clay assemblies is then shown to be controlled by altering the pH of polyethylenimine (PEI). Growth, oxygen permeability, and mechanical behavior of clay-PEI assemblies were studied as a function of pH in an effort to tailor the behavior of these thin films. Thicker deposition at high pH resulted in reduced oxygen permeability and lower modulus, which highlights the tailorability of this system.

  13. Drug conjugation to cyclic peptide-polymer self-assembling nanotubes.

    PubMed

    Blunden, Bianca M; Chapman, Robert; Danial, Maarten; Lu, Hongxu; Jolliffe, Katrina A; Perrier, Sébastien; Stenzel, Martina H

    2014-09-26

    We show for the first time how polymeric nanotubes (NTs) based on self-assembled conjugates of polymers and cyclic peptides can be used as an efficient drug carrier. RAPTA-C, a ruthenium-based anticancer drug, was conjugated to a statistical co-polymer based on poly(2-hydroxyethyl acrylate) (pHEA) and poly(2-chloroethyl methacrylate) (pCEMA), which formed the shell of the NTs. Self-assembly into nanotubes (length 200-500 nm) led to structures exhibiting high activity against cancer cells. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. New Metal-organic Polymers Through Subcomponent Self-Assembly

    DTIC Science & Technology

    2012-07-27

    EW REPORT DOCUMENTATION PAGE b. ABSTRACT UU c . THIS PAGE UU 2. REPORT TYPE Final Report 17. LIMITATION OF ABSTRACT UU 15. NUMBER OF PAGES 5d...assemble to express a desired function. This approach is detailed in the attached late draft manuscript, soon to be submitted to J . Am. Chem. Soc... Clegg , Jonathan R. Nitschke, Wenjing Meng. Transformative Binding and Release of Gold Guests from a Self-Assembled Cu8L4 Tube, Angewandte Chemie

  15. The magnetic assembly of polymer colloids in a ferrofluid and its display applications.

    PubMed

    Liu, Jing; Mao, Yiwu; Ge, Jianping

    2012-03-07

    Nonmagnetic polymer colloids have been assembled into colloidal photonic crystals in a ferrofluid by applying an external magnetic field based on the dipole-dipole interactions of "magnetic holes". The photonic crystal disassembles immediately when the magnetic field is removed. The mechanism of assembly can be explained by two simultaneous processes: phase separation and colloidal assembly. In this work, increasing the size of the building blocks still produces colorful photonic crystals due to their 2nd order diffraction. With a larger building block, the magnetic response between the polymer colloids is greatly enhanced so that an instant and reversible assembly/disassembly can be realized in a much weaker magnetic field and lower ferrofluid concentration. Based on these investigations, a magnetically controlled photonic display unit has been fabricated, which works in a weak magnetic field, has stable reflection signals and possesses fast and reversible on/off switching of reflections.

  16. Spinning Hierarchical Gold Nanowire Microfibers by Shear Alignment and Intermolecular Self-Assembly.

    PubMed

    Reiser, Beate; Gerstner, Dominik; Gonzalez-Garcia, Lola; Maurer, Johannes H M; Kanelidis, Ioannis; Kraus, Tobias

    2017-05-23

    Hierarchical structures lend strength to natural fibers made of soft nanoscale building blocks. Intermolecular interactions connect the components at different levels of hierarchy, distribute stresses, and guarantee structural integrity under load. Here, we show that synthetic ultrathin gold nanowires with interacting ligand shells can be spun into biomimetic, free-standing microfibers. A solution spinning process first aligns the wires, then lets their ligand shells interact, and finally converts them into a hierarchical superstructure. The resulting fiber contained 80 vol % organic ligand but was strong enough to be removed from the solution, dried, and mechanically tested. Fiber strength depended on the wire monomer alignment. Shear in the extrusion nozzle was systematically changed to obtain process-structure-property relations. The degree of nanowire alignment changed breaking stresses by a factor of 1.25 and the elongation at break by a factor of 2.75. Plasma annealing of the fiber to form a solid metal shell decreased the breaking stress by 65%.

  17. Dynamic assembly of polymer nanotube networks via kinesin powered microtubule filaments

    DOE PAGES

    Paxton, Walter F.; Bachand, George D.; Gomez, Andrew; ...

    2015-04-24

    In this study, we describe for the first time how biological nanomotors may be used to actively self-assemble mesoscale networks composed of diblock copolymer nanotubes. The collective force generated by multiple kinesin nanomotors acting on a microtubule filament is large enough to overcome the energy barrier required to extract nanotubes from polymer vesicles comprised of poly(ethylene oxide-b-butadiene) in spite of the higher force requirements relative to extracting nanotubes from lipid vesicles. Nevertheless, large-scale polymer networks were dynamically assembled by the motors. These networks displayed enhanced robustness, persisting more than 24 h post-assembly (compared to 4–5 h for corresponding lipid networks).more » The transport of materials in and on the polymer membranes differs substantially from the transport on analogous lipid networks. Specifically, our data suggest that polymer mobility in nanotubular structures is considerably different from planar or 3D structures, and is stunted by 1D confinement of the polymer subunits. Moreover, quantum dots adsorbed onto polymer nanotubes are completely immobile, which is related to this 1D confinement effect and is in stark contrast to the highly fluid transport observed on lipid tubules.« less

  18. Dynamic assembly of polymer nanotube networks via kinesin powered microtubule filaments

    SciTech Connect

    Paxton, Walter F.; Bachand, George D.; Gomez, Andrew; Henderson, Ian M.; Bouxsein, Nathan F.

    2015-04-24

    In this study, we describe for the first time how biological nanomotors may be used to actively self-assemble mesoscale networks composed of diblock copolymer nanotubes. The collective force generated by multiple kinesin nanomotors acting on a microtubule filament is large enough to overcome the energy barrier required to extract nanotubes from polymer vesicles comprised of poly(ethylene oxide-b-butadiene) in spite of the higher force requirements relative to extracting nanotubes from lipid vesicles. Nevertheless, large-scale polymer networks were dynamically assembled by the motors. These networks displayed enhanced robustness, persisting more than 24 h post-assembly (compared to 4–5 h for corresponding lipid networks). The transport of materials in and on the polymer membranes differs substantially from the transport on analogous lipid networks. Specifically, our data suggest that polymer mobility in nanotubular structures is considerably different from planar or 3D structures, and is stunted by 1D confinement of the polymer subunits. Moreover, quantum dots adsorbed onto polymer nanotubes are completely immobile, which is related to this 1D confinement effect and is in stark contrast to the highly fluid transport observed on lipid tubules.

  19. Thermoreversible Morphology and Conductivity of a Conjugated Polymer Network Embedded in Block Copolymer Self-Assemblies

    DOE PAGES

    Han, Youngkyu; Carrillo, Jan-Michael Y.; Zhang, Zhe; ...

    2016-07-19

    Self-assembly of block copolymers provides numerous opportunities to create functional materials, utilizing self-assembled microdomains with a variety of morphology and periodic architectures as templates for functional nanofillers. Here new progress is reported toward the fabrication of thermally responsive and electrically conductive polymeric self-assemblies made from a water-soluble poly(thiophene) derivative with short poly(ethylene oxide) side chains and Pluronic L62 block copolymer solution in water. The structural and electrical properties of conjugated polymer-embedded self-assembled architectures are investigated by combining small-angle neutron and X-ray scattering, coarse-grained molecular dynamics simulations, and impedance spectroscopy. The L62 solution template organizes the conjugated polymers by stably incorporatingmore » them into the hydrophilic domains thus inhibiting aggregation. The changing morphology of L62 during the micellarto- lamellar phase transition defines the embedded conjugated polymer network. As a result, the conductivity is strongly coupled to the structural change of the templating L62 phase and exhibits thermally reversible behavior with no signs of quenching of the conductivity at high temperature. In conclusion, this study shows promise for enabling more flexibility in processing and utilizing water-soluble conjugated polymers in aqueous solutions for self-assembly based fabrication of stimuli-responsive nanostructures and sensory materials.« less

  20. Thermoreversible Morphology and Conductivity of a Conjugated Polymer Network Embedded in Block Copolymer Self-Assemblies

    SciTech Connect

    Han, Youngkyu; Carrillo, Jan-Michael Y.; Zhang, Zhe; Li, Yunchao; Hong, Kunlun; Sumpter, Bobby G.; Ohl, Michael; Paranthaman, Mariappan Parans; Smith, Gregory S.; Do, Changwoo

    2016-07-19

    Self-assembly of block copolymers provides numerous opportunities to create functional materials, utilizing self-assembled microdomains with a variety of morphology and periodic architectures as templates for functional nanofillers. Here new progress is reported toward the fabrication of thermally responsive and electrically conductive polymeric self-assemblies made from a water-soluble poly(thiophene) derivative with short poly(ethylene oxide) side chains and Pluronic L62 block copolymer solution in water. The structural and electrical properties of conjugated polymer-embedded self-assembled architectures are investigated by combining small-angle neutron and X-ray scattering, coarse-grained molecular dynamics simulations, and impedance spectroscopy. The L62 solution template organizes the conjugated polymers by stably incorporating them into the hydrophilic domains thus inhibiting aggregation. The changing morphology of L62 during the micellarto- lamellar phase transition defines the embedded conjugated polymer network. As a result, the conductivity is strongly coupled to the structural change of the templating L62 phase and exhibits thermally reversible behavior with no signs of quenching of the conductivity at high temperature. In conclusion, this study shows promise for enabling more flexibility in processing and utilizing water-soluble conjugated polymers in aqueous solutions for self-assembly based fabrication of stimuli-responsive nanostructures and sensory materials.

  1. Thermoreversible Morphology and Conductivity of a Conjugated Polymer Network Embedded in Block Copolymer Self-Assemblies.

    PubMed

    Han, Youngkyu; Carrillo, Jan-Michael Y; Zhang, Zhe; Li, Yunchao; Hong, Kunlun; Sumpter, Bobby G; Ohl, Michael; Paranthaman, Mariappan Parans; Smith, Gregory S; Do, Changwoo

    2016-09-01

    Self-assembly of block copolymers provides numerous opportunities to create functional materials, utilizing self-assembled microdomains with a variety of morphology and periodic architectures as templates for functional nanofillers. Here new progress is reported toward the fabrication of thermally responsive and electrically conductive polymeric self-assemblies made from a water-soluble poly(thiophene) derivative with short poly(ethylene oxide) side chains and Pluronic L62 block copolymer solution in water. The structural and electrical properties of conjugated polymer-embedded self-assembled architectures are investigated by combining small-angle neutron and X-ray scattering, coarse-grained molecular dynamics simulations, and impedance spectroscopy. The L62 solution template organizes the conjugated polymers by stably incorporating them into the hydrophilic domains thus inhibiting aggregation. The changing morphology of L62 during the micellar-to-lamellar phase transition defines the embedded conjugated polymer network. As a result, the conductivity is strongly coupled to the structural change of the templating L62 phase and exhibits thermally reversible behavior with no signs of quenching of the conductivity at high temperature. This study shows promise for enabling more flexibility in processing and utilizing water-soluble conjugated polymers in aqueous solutions for self-assembly based fabrication of stimuli-responsive nanostructures and sensory materials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Thermoreversible Morphology and Conductivity of a Conjugated Polymer Network Embedded in Block Copolymer Self-Assemblies

    SciTech Connect

    Han, Youngkyu; Carrillo, Jan-Michael Y.; Zhang, Zhe; Li, Yunchao; Hong, Kunlun; Sumpter, Bobby G.; Ohl, Michael; Paranthaman, Mariappan Parans; Smith, Gregory S.; Do, Changwoo

    2016-07-19

    Self-assembly of block copolymers provides numerous opportunities to create functional materials, utilizing self-assembled microdomains with a variety of morphology and periodic architectures as templates for functional nanofillers. Here new progress is reported toward the fabrication of thermally responsive and electrically conductive polymeric self-assemblies made from a water-soluble poly(thiophene) derivative with short poly(ethylene oxide) side chains and Pluronic L62 block copolymer solution in water. The structural and electrical properties of conjugated polymer-embedded self-assembled architectures are investigated by combining small-angle neutron and X-ray scattering, coarse-grained molecular dynamics simulations, and impedance spectroscopy. The L62 solution template organizes the conjugated polymers by stably incorporating them into the hydrophilic domains thus inhibiting aggregation. The changing morphology of L62 during the micellarto- lamellar phase transition defines the embedded conjugated polymer network. As a result, the conductivity is strongly coupled to the structural change of the templating L62 phase and exhibits thermally reversible behavior with no signs of quenching of the conductivity at high temperature. In conclusion, this study shows promise for enabling more flexibility in processing and utilizing water-soluble conjugated polymers in aqueous solutions for self-assembly based fabrication of stimuli-responsive nanostructures and sensory materials.

  3. One-step synthesis and patterning of aligned polymer nanowires on a substrate

    DOEpatents

    Wang, Zhong L [Marietta, GA; Wang, Xudong [Atlanta, GA; Morber, Jenny R [Atlanta, GA; Liu, Jin [Danbury, CT

    2011-11-08

    In a method of making a polymer structure on a substrate a layer of a first polymer, having a horizontal top surface, is applied to a surface of the substrate. An area of the top surface of the polymer is manipulated to create an uneven feature that is plasma etched to remove a first portion from the layer of the first polymer thereby leaving the polymer structure extending therefrom. A light emitting structure includes a conductive substrate from which an elongated nanostructure of a first polymer extends. A second polymer coating is disposed about the nanostructure and includes a second polymer, which includes a material such that a band gap exists between the second polymer coating and the elongated nanostructure. A conductive material coats the second polymer coating. The light emitting structure emits light when a voltage is applied between the conductive substrate and the conductive coating.

  4. Self-assembled growth of GaN nanowires on amorphous Al x O y : from nucleation to the formation of dense nanowire ensembles.

    PubMed

    Sobanska, M; Fernández-Garrido, S; Zytkiewicz, Z R; Tchutchulashvili, G; Gieraltowska, S; Brandt, O; Geelhaar, L

    2016-08-12

    We present a comprehensive description of the self-assembled nucleation and growth of GaN nanowires (NWs) by plasma-assisted molecular beam epitaxy on amorphous Al x O y buffers (a-Al x O y ) prepared by atomic layer deposition. The results are compared with those obtained on nitridated Si(111). Using line-of-sight quadrupole mass spectrometry, we analyze in situ the incorporation of Ga starting from the incubation and nucleation stages till the formation of the final nanowire ensemble and observe qualitatively the same time dependence for the two types of substrates. However, on a-Al x O y the incubation time is shorter and the nucleation faster than on nitridated Si. Moreover, on a-Al x O y we observe a novel effect of decrease in incorporated Ga flux for long growth durations which we explain by coalescence of NWs leading to reduction of the GaN surface area where Ga may reside. Dedicated samples are used to analyze the evolution of surface morphology. In particular, no GaN nuclei are detected when growth is interrupted during the incubation stage. Moreover, for a-Al x O y , the same shape transition from spherical cap-shaped GaN crystallites to the NW-like geometry is found as it is known for nitridated Si. However, while the critical radius for this transition is only slightly larger for a-Al x O y than for nitridated Si, the critical height is more than six times larger for a-Al x O y . Finally, we observe that in fully developed NW ensembles, the substrate no longer influences growth kinetics and the same N-limited axial growth rate is measured on both substrates. We conclude that the same nucleation and growth processes take place on a-Al x O y as on nitridated Si and that these processes are of a general nature. Quantitatively, nucleation proceeds somewhat differently, which indicates the influence of the substrate, but once shadowing limits growth processes to the upper part of the NW ensemble, they are not affected anymore by the type of substrate.

  5. Second harmonic generation on self-assembled GaAs/Au nanowires with thickness gradient

    NASA Astrophysics Data System (ADS)

    Belardini, A.; Leahu, G.; Centini, M.; Li Voti, R.; Fazio, E.; Sibilia, C.; Repetto, D.; Buatier de Mongeot, F.

    2017-05-01

    Here we investigated the SH generation at the wavelength of 400 nm (pump laser at 800 nm, 120 fs pulses) of a "metasurface" composed by an alternation of GaAs nano-grooves and Au nanowires capping portions of flat GaAs. The nano-grooves depth and the Au nanowires thickness gradually vary across the sample. The samples are obtained by ion bombardment at glancing angle on a 150 nm Au mask evaporated on a GaAs plane wafer. The irradiation process erodes anisotropically the surface, creating Au nanowires and, at high ion dose, grooves in the underlying GaAs substrate (pattern transfer). The SHG measurements are performed for different pump linear polarization angle at different positions on the "metasurface" in order to explore the regions with optimal conditions for SHG efficiency. The pump polarization angle is scanned by rotating a half-wave retarder plate. While the output SH signal in reflection is analyzed by setting the polarizer in `s' or `p' configuration in front of the detector. The best polarization condition for SHG is obtained in the configuration where the pump and second harmonic fields are both `p' polarized, and the experiments show a SH polarization dependence of the same symmetry of bulk GaAs. Thus, the presence of gold contributes only as field localization effect, but do not contributes directly as SH generator.

  6. Healable capacitive touch screen sensors based on transparent composite electrodes comprising silver nanowires and a furan/maleimide diels-alder cycloaddition polymer.

    PubMed

    Li, Junpeng; Liang, Jiajie; Li, Lu; Ren, Fengbo; Hu, Wei; Li, Juan; Qi, Shuhua; Pei, Qibing

    2014-12-23

    A healable transparent capacitive touch screen sensor has been fabricated based on a healable silver nanowire-polymer composite electrode. The composite electrode features a layer of silver nanowire percolation network embedded into the surface layer of a polymer substrate comprising an ultrathin soldering polymer layer to confine the nanowires to the surface of a healable Diels-Alder cycloaddition copolymer and to attain low contact resistance between the nanowires. The composite electrode has a figure-of-merit sheet resistance of 18 Ω/sq with 80% transmittance at 550 nm. A surface crack cut on the conductive surface with 18 Ω is healed by heating at 100 °C, and the sheet resistance recovers to 21 Ω in 6 min. A healable touch screen sensor with an array of 8×8 capacitive sensing points is prepared by stacking two composite films patterned with 8 rows and 8 columns of coupling electrodes at 90° angle. After deliberate damage, the coupling electrodes recover touch sensing function upon heating at 80 °C for 30 s. A capacitive touch screen based on Arduino is demonstrated capable of performing quick recovery from malfunction caused by a razor blade cutting. After four cycles of cutting and healing, the sensor array remains functional.

  7. TiO₂ nanowire dispersions in viscous polymer matrix: electrophoretic alignment and optical properties.

    PubMed

    Šutka, Andris; Saal, Kristjan; Kisand, Vambola; Lõhmus, Rünno; Joost, Urmas; Timusk, Martin

    2014-10-17

    The changes in optical properties during TiO₂ nanowire orientation in polydimethylsiloxane (PDMS) matrix under the influence of an electric field are strongly influenced by nanowire (NW) diameter. It was demonstrated for the first time that either positive or negative change in transmittance can be induced by NW alignment parallel to the electric field depending on the NW diameter. These effects can be explained by the interplay between scattering and reflectance. Experimental findings reported could be important for smart window applications for the regulation of visible or even infrared transparency, thus reducing the energy consumption by air conditioning systems in buildings and automobiles in the future.

  8. Facile synthesis of SnO2 nanocrystals coated conducting polymer nanowires for enhanced lithium storage

    NASA Astrophysics Data System (ADS)

    Du, Zhijia; Zhang, Shichao; Jiang, Tao; Wu, Xiaomeng; Zhang, Lan; Fang, Hua

    2012-12-01

    SnO2 nanoparticles uniformly decorated polypyrrole (PPy) nanowires are synthesized by a facile two-step electrochemical reaction method: electropolymerization and electrodeposition. The nanostructured SnO2-PPy hybrids show porous reticular morphology and homogenous distributions. The reticular SnO2-PPy nanowires can increase the electrode/electrolyte interface and accommodate the volume variation of SnO2. When applied as anode materials for lithium ion batteries, the unique nanostructured hybrids deliver meaningfully improved Li+ storage performance with the first reversible capacity of 690 mAh g-1. This facile synthesis procedure can also be simply grafted to other inorganic-organic hybrid composites.

  9. Enhancement of Interface Characteristics of Neural Probe Based on Graphene, ZnO Nanowires, and Conducting Polymer PEDOT.

    PubMed

    Ryu, Mingyu; Yang, Jae Hoon; Ahn, Yumi; Sim, Minkyung; Lee, Kyung Hwa; Kim, Kyungsoo; Lee, Taeju; Yoo, Seung-Jun; Kim, So Yeun; Moon, Cheil; Je, Minkyu; Choi, Ji-Woong; Lee, Youngu; Jang, Jae Eun

    2017-03-29

    In the growing field of brain-machine interface (BMI), the interface between electrodes and neural tissues plays an important role in the recording and stimulation of neural signals. To minimize tissue damage while retaining high sensitivity, a flexible and a smaller electrode with low impedance is required. However, it is a major challenge to reduce electrode size while retaining the conductive characteristics of the electrode. In addition, the mechanical mismatch between stiff electrodes and soft tissues creates damaging reactive tissue responses. Here, we demonstrate a neural probe structure based on graphene, ZnO nanowires, and conducting polymer that provides flexibility and low impedance performance. A hybrid Au and graphene structure was utilized to achieve both flexibility and good conductivity. Using ZnO nanowires to increase the effective surface area drastically decreased the impedance value and enhanced the signal-to-noise ratio (SNR). A poly[3,4-ethylenedioxythiophene] (PEDOT) coating on the neural probe improved the electrical characteristics of the electrode while providing better biocompatibility. In vivo neural signal recordings showed that our neural probe can detect clearer signals.

  10. Electrostatically Directed Self-Assembly of Ultrathin Supramolecular Polymer Microcapsules

    PubMed Central

    Parker, Richard M; Zhang, Jing; Zheng, Yu; Coulston, Roger J; Smith, Clive A; Salmon, Andrew R; Yu, Ziyi; Scherman, Oren A; Abell, Chris

    2015-01-01

    Supramolecular self-assembly offers routes to challenging architectures on the molecular and macroscopic scale. Coupled with microfluidics it has been used to make microcapsules—where a 2D sheet is shaped in 3D, encapsulating the volume within. In this paper, a versatile methodology to direct the accumulation of capsule-forming components to the droplet interface using electrostatic interactions is described. In this approach, charged copolymers are selectively partitioned to the microdroplet interface by a complementary charged surfactant for subsequent supramolecular cross-linking via cucurbit[8]uril. This dynamic assembly process is employed to selectively form both hollow, ultrathin microcapsules and solid microparticles from a single solution. The ability to dictate the distribution of a mixture of charged copolymers within the microdroplet, as demonstrated by the single-step fabrication of distinct core–shell microcapsules, gives access to a new generation of innovative self-assembled constructs. PMID:26213532

  11. Highly Ordered Single Crystalline Nanowire Array Assembled Three-Dimensional Nb3O7(OH) and Nb2O5 Superstructures for Energy Storage and Conversion Applications.

    PubMed

    Zhang, Haimin; Wang, Yun; Liu, Porun; Chou, Shu Lei; Wang, Jia Zhao; Liu, Hongwei; Wang, Guozhong; Zhao, Huijun

    2016-01-26

    Three-dimensional (3D) metal oxide superstructures have demonstrated great potentials for structure-dependent energy storage and conversion applications. Here, we reported a facile hydrothermal method for direct growth of highly ordered single crystalline nanowire array assembled 3D orthorhombic Nb3O7(OH) superstructures and their subsequent thermal transformation into monoclinic Nb2O5 with well preserved 3D nanowire superstructures. The performance of resultant 3D Nb3O7(OH) and Nb2O5 superstructures differed remarkably when used for energy conversion and storage applications. The thermally converted Nb2O5 superstructures as anode material of lithium-ion batteries (LiBs) showed higher capacity and excellent cycling stability compared to the Nb3O7(OH) superstructures, while directly hydrothermal grown Nb3O7(OH) nanowire superstructure film on FTO substrate as photoanode of dye-sensitized solar cells (DSSCs) without the need for further calcination exhibited an overall light conversion efficiency of 6.38%, higher than that (5.87%) of DSSCs made from the thermally converted Nb2O5 film. The high energy application performance of the niobium-based nanowire superstructures with different chemical compositions can be attributed to their large surface area, superior electron transport property, and high light utilization efficiency resulting from a 3D superstructure, high crystallinity, and large sizes. The formation process of 3D nanowire superstructures before and after thermal treatment was investigated and discussed based on our theoretical and experimental results.

  12. Fully solution-processed semitransparent organic solar cells with a silver nanowire cathode and a conducting polymer anode.

    PubMed

    Yim, Jong Hyuk; Joe, Sung-yoon; Pang, Christina; Lee, Kyung Moon; Jeong, Huiseong; Park, Ji-Yong; Ahn, Yeong Hwan; de Mello, John C; Lee, Soonil

    2014-03-25

    We report the fabrication of efficient indium-tin-oxide-free organic solar cells based on poly(3-hexylthiophene-2,5-diyl):[6,6]-phenyl-C61-butyric acid methyl ester (P3HT:PCBM). All layers of the devices from the lowermost silver nanowire cathode to the uppermost conducting polymer anode are deposited from solution and processed at plastic-compatible temperatures<200 °C. Owing to the absence of an opaque metal electrode, the devices are semitransparent with potential applications in power-generating windows and tandem-cells. The measured power conversion efficiencies (PCEs) of 2.3 and 2.0% under cathode- and anode-side illumination, respectively, match previously reported PCE values for equivalent semitransparent organic solar cells using indium tin oxide.

  13. Polymer Chromophore-Catalyst Assembly for Solar Fuel Generation.

    PubMed

    Jiang, Junlin; Sherman, Benjamin D; Zhao, Yan; He, Ru; Ghiviriga, Ion; Alibabaei, Leila; Meyer, Thomas J; Leem, Gyu; Schanze, Kirk S

    2017-06-14

    A polystyrene-based chromophore-catalyst assembly (poly-2) has been synthesized and assembled at a mesoporous metal oxide photoanode. The assembly contains water oxidation catalyst centers based on [Ru(trpy) (phenq)](2+) (Ru-Cat) and [Ru(bpy)3](2+) derivatives (Ru-C) as chromophores (trpy= 2,2';6,2″- terpyridine, phenq = 2-(quinol-8'-yl)-1,10-phenanthroline and bpy = 2,2'-bipyridine). The photophysical and electrochemical properties of the polychromophore-oxidation catalyst assembly were investigated in solution and at the surface of mesoporous metal oxide films. The layer-by-layer (LbL) method was utilized to construct multilayer films with cationic poly-2 and anionic poly(acrylic acid) (PAA) for light-driven photochemical oxidations. Photocurrent measurements of (PAA/poly-2)10 LbL films on mesoporous TiO2 demonstrate light-driven oxidation of phenol and benzyl alcohol in aqueous solution. Interestingly, illumination of (PAA/poly-2)5 LbL films on a fluorine doped SnO2/TiO2 core/shell photoanode in aqueous solution gives rise to an initial photocurrent (∼18.5 μA·cm(-2)) that is in part ascribed to light driven water oxidation.

  14. Polymer self-assembling of light converting microlenses arrays

    NASA Astrophysics Data System (ADS)

    Coppola, S.; Mandracchia, B.; Nasti, G.; Vespini, V.; Pareo, P.; Carbone, L.; Manca, M.; Gigli, G.; Ferraro, P.

    2014-05-01

    In the case of light emitting semiconducting polymers, different techniques have been used for the fabrication of electroluminescent devices. Experiments and characterizations have been carried out at different operating voltages and for voltage dependent emission color also combining the processability of organic materials with efficient luminescence displayed by inorganic nanocrystals (NCs). In fact, the experimental perspective to disperse emitting colloidal NCs into polymers has allowed to further engineer hybrid organic-inorganic materials introducing innovative functionalities as for instance photoluminescence conversion capabilities. This has proved of great interest for novel applications such as the fabrication of photonic crystals and, notably, of innovative solar cells showing enhanced efficiency. Here we report on the fabrication of novel active micro-optical elements made by a mixture of rod-shaped inorganic NCs dispersed into poly-dimethylsiloxane.

  15. Construction of supramolecular hyperbranched polymers via the "tweezering directed self-assembly" strategy.

    PubMed

    Tian, Yu-Kui; Yang, Zhi-Shuai; Lv, Xiao-Qin; Yao, Ri-Sheng; Wang, Feng

    2014-08-28

    A bis-alkynylplatinum(II) terpyridine tweezer-alkynylgold(III) diphenylpyridine guest is shown to maintain the specific complexation in the presence of a B21C7-secondary ammonium salt recognition motif, which facilitates the formation of supramolecular hyperbranched polymers via the "tweezering directed self-assembly" strategy.

  16. A self-assembled ultrathin crystalline polymer film for high performance phototransistors.

    PubMed

    Li, Hui; Wu, Yishi; Wang, Xuedong; Kong, Qinghua; Fu, Hongbing

    2014-09-28

    The π-conjugated polymer, PQBOC8, can be easily assembled into a large-area crystalline ultrathin film at the CHCl3/water interface. A phototransistor based on this ultrathin film showed a large photoresponsivity of 970 A W(-1), and a photocurrent/dark current ratio of 1.36 × 10(4) under a very low white light irradiation.

  17. Assembly of colloidal molecules, polymers, and crystals in acoustic and magnetic fields.

    PubMed

    Yang, Ye; Pham, An T; Cruz, Daniela; Reyes, Christopher; Wiley, Benjamin J; Lopez, Gabriel P; Yellen, Benjamin B

    2015-08-26

    A dynamically adjustable colloidal assembly technique is presented, which combines magnetic and acoustic fields to produce a wide range of colloidal structures, ranging from discrete colloidal molecules, to polymer networks and crystals. The structures can be stabilized and dried, making them suitable for the fabrication of advanced materials.

  18. Dendronized protein polymers: synthesis and self-assembly of monodisperse cylindrical macromolecules.

    PubMed

    Zhuravel, Michael A; Davis, Nicolynn E; Nguyen, SonBinh T; Koltover, Ilya

    2004-08-18

    Monodisperse dendronized protein polymers (DPPs), cylindrical dendrimers containing protein core, can be efficiently produced through a combined modular biosynthetic strategy. These DPP materials possess predictable size, shape, and solubility. In organic solutions, the DPPs self-assemble to form highly ordered liquid crystalline structures with nanoscale order controlled by their exact molecular dimensions.

  19. Macromolecule-induced assembly of coiled-coils in alternating multiblock polymers.

    PubMed

    Sahin, Erinc; Kiick, Kristi L

    2009-10-12

    The bioconjugation of proteins and peptides with synthetic polymers is a promising method for tailoring the chemical, biological, and physical properties of both the polymeric and protein-based components. Here, we describe macromolecular assemblies of polyethylene glycol-coiled-coil alternating multiblock polymers guided by hetero- and homodimeric association of coiled-coils. High molecular weight, alternating block polymers of polyethylene glycol (PEG) and coiled-coil peptides were formed via facile NHS-activated amide bond formation under strictly anhydrous conditions. Confirmation of multiblock formation was assessed via a combination of NMR spectroscopy, size-exclusion chromatography, and electrophoretic analysis. Formation of the alternating multiblock polymers of PEG with coiled-coil peptides through the f-position on the heptads did not impair the ability of the coiled-coils to form heterodimers, as assessed via circular dichroic spectroscopy. Interestingly, the conjugation triggered homooligomer formation in one of the peptides that is monomeric in the absence of PEG. The macromolecular assembly of the homooligomer was characterized via circular dichroic spectroscopy and analytical ultracentrifugation, as well as via dynamic and static light scattering. The assembled structures formed in phosphate buffered saline even at very dilute concentrations of multiblock polymer and exhibited controlled sizes relevant in applications such as drug delivery and controlled release.

  20. Covalently Connected Polymer-Protein Nanostructures Fabricated by a Reactive Self-Assembly Approach.

    PubMed

    Ju, Yuanyuan; Xing, Cheng; Wu, Dongxia; Wu, Yunfang; Wang, Lianyong; Zhao, Hanying

    2017-03-08

    The synthesis of polymer-protein nanostructures opens up a new avenue for the development of new biomaterials. In this research, covalently connected polymer-protein nanostructures were fabricated through a reactive self-assembly approach. Poly(tert-butyl methacrylate-co-pyridyl disulfide methacrylamide) (PtBMA-co-PPDSMA) was synthesized by reversible addition fragmentation chain transfer (RAFT) polymerization. Covalently connected nanostructures (CCNs) with hydrophobic polymer cores and hydrophilic protein coronae were prepared by adding solutions of PtBMA-co-PPDSMA/DMF to aqueous solutions of bovine serum albumin (BSA). The thiol-disulfide exchange reaction between pyridyl disulfide groups on the polymer chains and thiol groups on the protein molecules plays a key role in the fabrication of CCNs. The self-assembly process was investigated by dynamic light scattering (DLS) and stopped-flow techniques. DLS results indicated that the sizes of the CCNs were determined by the initial polymer concentration, the BSA concentration, and the average number of thiol groups on BSA molecules. TEM and sodium dodecyl sulfate polyacrylamide gel electrophoresis were used to analyze the nanostructures. Far-UV circular dichroism results demonstrated that the original folded conformations of BSA molecules were basically maintained in the reactive self-assembly process. Compared with native BSA, the secondary structure and conformation change of coronal BSA induced by urea or thermal treatment were remarkably suppressed. The cytotoxicity assays demonstrated that the CCNs were essentially nontoxic to Hela and COS-7 cells.

  1. Separation of Armchair SWNTs by Using Polymer Conformation Guided Assembly

    DTIC Science & Technology

    2013-08-22

    30 Publications 36 Reference List 38     2 Introduction Single-walled carbon nanotubes (SWNTs) are among the most...with 12, the polymer 15 of linear geometry also forms the donor-acceptor complex resulting in enhanced interactions with graphene or carbon nanotubes .32...Band engineering of oxygen doped single-walled carbon nanotubes , NANOSCALE 2011, 6 2465-2468.  R. Gunasingh; C. Kah; K. Quarles; et al

  2. Acetonitrile mediated facile synthesis and self-assembly of silver vanadate nanowires into 3D spongy-like structure as a cathode material for lithium ion battery

    NASA Astrophysics Data System (ADS)

    Klockner, W.; Yadav, R. M.; Yao, J.; Lei, S.; Aliyan, A.; Wu, J.; Martí, A. A.; Vajtai, R.; Ajayan, P. M.; Denardin, J. C.; Serafini, D.; Melo, F.; Singh, D. P.

    2017-08-01

    We report the facile, one-step acetonitrile-mediated synthesis and self-assembly of β-AgVO3 nanowires into three-dimensional (3D) porous spongy-like hydrogel ( 4 cm diameter) as cathode material for lithium ion battery of high performance and long-term stability. 3D structures made with superlong, very thin, and monoclinic β-AgVO3 nanowires exhibit high specific discharge capacities of 165 mAh g-1 in the first cycle and 100 mAh g-1 at the 50th cycle, with a cyclic capacity retention of 53% at a current density of 50 mA g-1. 3D structures are synthesized by reaction between ammonium vanadate and silver nitrate solution containing 5 mL of acetonitrile followed by a hydrothermal treatment at 200 °C for 12 h. Acetonitrile (used here for the first time in the silver vanadate synthesis) plays an important role in the self-assembly of the silver vanadate nanowires. A tentative growth mechanism for the 3D structure and lithium ions intercalation into β-AgVO3 nanowires has been discussed and described.

  3. Efficient self-assembly in water of long noncovalent polymers by nucleobase analogues.

    PubMed

    Cafferty, Brian J; Gállego, Isaac; Chen, Michael C; Farley, Katherine I; Eritja, Ramon; Hud, Nicholas V

    2013-02-20

    Molecular self-assembly is widely appreciated to result from a delicate balance between several noncovalent interactions and solvation effects. However, current design approaches for achieving self-assembly in water with small, synthetic molecules do not consider all aspects of the hydrophobic effect, in particular the requirement of surface areas greater than 1 nm(2) for an appreciable free energy of hydration. With the concept of a minimum hydrophobic surface area in mind, we designed a system that achieves highly cooperative self-assembly in water. Two weakly interacting low-molecular-weight monomers (cyanuric acid and a modified triaminopyrimidine) are shown to form extremely long supramolecular polymer assemblies that retain water solubility. The complete absence of intermediate assemblies means that the observed equilibrium is between free monomers and supramolecular assemblies. These observations are in excellent agreement with literature values for the free energy of nucleic acid base interactions as well as the calculated free energy penalty for the exposure of hydrophobic structures in water. The results of our study have implications for the design of new self-assembling structures and hydrogel-forming molecules and may provide insights into the origin of the first RNA-like polymers.

  4. Shape origin of self-assembled Ge nanowires grown on Si(113)

    NASA Astrophysics Data System (ADS)

    Bottomley, D. J.; Omi, H.; Ogino, T.

    2000-03-01

    In experiment, it has been observed that the deposition of 5 to 8 ML of Ge on Si(113) at temperatures between 400 and 500 deg C leads to the formation of Ge nanowires about 20 nm wide and 150 nm long, on average, with facetted sides [1]. Here we investigate the origin of this shape using anisotropic linear elasticity theory. We have calculated the stress and strain tensors for Ge on Si(113) assuming a flat film and no intermixing. The stress along the elongated nanowire [33 -2] axis is -6.27 GPa; that along the perpendicular [1 -1 0] axis is -5.75 GPa. There is no shear stress and no stress along [113]. The strain in the surface plane is -3.81%; the strain along [113] is +2.26%. There is a shear strain, which changes the angle between the film’s [113] and [33 -2] axes to 90.95 deg. The results of the calculation enable us to discuss the origin of the nanowire shape. The most obvious hypothesis is that the shape anisotropy arises from stress anisotropy in the film, which promotes anisotropic elastic relaxation. But our results show that the stress is 9% greater along the elongated axis than along the perpendicular axis. Therefore we can state that the shape does not arise from the stress anisotropy. Other possibilities are considered: we consider the most probable cause of the shape anisotropy to be the existence of lower surface free energy facets in the <33 -2> zone than in the <1 -1 0> zone for the (113) surface. [1] H. Omi and T. Ogino, Phys. Rev. B 59, 7521 (1999).

  5. Tuning the Assembly of Spherical Nanoparticles in Semicrystalline Polymers

    NASA Astrophysics Data System (ADS)

    Zhao, Dan; Jestin, Jacques; Zhao, Longxi; Kumar, Sanat K.; Mohammadkhani, Mohammad; Benicewicz, Brian C.

    We propose a simple, novel strategy to controlling nanoparticle (NPs) dispersion states in a semi-crystalline polymer matrix exploiting the kinetics of polymer crystallization. The system consists of poly(methyl methacrylate) grafted spherical silica NPs and poly(ethylene oxide) matrices, which are thermodynamically miscible in the melt. We first show that no remarkable change was observed in the spatial dispersion of NPs upon fast crystallization. However, for slow crystallization, both TEM and X-ray/neutron scattering reveal that the system starts to be organized in a ``layer-by-layer'' architecture, where the NPs are aligned in the amorphous phases intercalated by the crystalline lamellar phases. More importantly, we have found that the resulting ``sheet-like'' NP morphology gives rise to a 2-fold increase in the storage modulus but without compromising the fracture toughness of the neat polymer. These results open pathways for creating in-situ biomimetic hierarchical structures with improved mechanical properties through a simple, single-step crystallization processing, which could lead to new applications for this largest class of commercially relevant polymeric materials.

  6. Quantum phase slips in superconducting Nb nanowire networks deposited on self-assembled Si templates

    NASA Astrophysics Data System (ADS)

    Cirillo, C.; Trezza, M.; Chiarella, F.; Vecchione, A.; Bondarenko, V. P.; Prischepa, S. L.; Attanasio, C.

    2012-10-01

    Robust porous silicon substrates were employed for generating interconnected networks of superconducting ultrathin Nb nanowires. Scanning electron microscopy analysis was performed to investigate the morphology of the samples, which constitute of polycrystalline single wires with grain size of about 10 nm. The samples exhibit nonzero resistance over a broad temperature range below the critical temperature, fingerprint of phase slippage processes. The transport data are satisfactory reproduced by models describing both thermal and quantum fluctuations of the superconducting order parameter in thin homogeneous superconducting wires.

  7. The assembly of supramolecular boxes and coordination polymers based on bis-zinc-salphen building blocks.

    PubMed

    Kuil, Mark; Puijk, Iris M; Kleij, Arjan W; Tooke, Duncan M; Spek, Anthony L; Reek, Joost N H

    2009-01-05

    We report the assembly of supramolecular boxes and coordination polymers based on a rigid bis-zinc(II)-salphen complex and various ditopic nitrogen ligands. The use of the bis-zinc(II)-salphen building block in combination with small ditopic nitrogen ligands gave organic coordination polymers both in solution as well as in the solid state. Molecular modeling shows that supramolecular boxes with small internal cavities can be formed. However, the inability to accommodate solvent molecules (such as toluene) in these cavities explains why coordination polymers are prevailing over well-defined boxes, as it would lead to an energetically unfavorable vacuum. In contrast, for relatively longer ditopic nitrogen ligands, we observed the selective formation of supramolecular box assemblies in all cases studied. The approach can be easily extended to chiral analogues by using chiral ditopic nitrogen ligands.

  8. Morphological Effects on Proton Transport in Self-Assembled Anhydrous Polymers

    NASA Astrophysics Data System (ADS)

    Christensen, Scott; Chen, Yangbin; Thorn, Michael; Versek, Craig; Poe, Ambata; Tuominen, Mark; Thayumanavan, S.; Hayward, Ryan

    2010-03-01

    A critical component of fuel cell technology is efficient proton exchange membranes with the ability to selectively transport protons over micrometer length scales. For polymer membranes, the industry standard Nafion suffers from the need for humidification, preventing efficient operation above the boiling point of water. It would therefore be beneficial to use a solvent free membrane that allows for operation at high temperatures, thus increasing efficiency, lowering cost, and preventing catalyst poisoning. We describe the design and characterization of comb polymers containing amphoteric proton transfer functionalities that self-assemble into organized supramolecular structures. Comparison with analogous polymers lacking organization reveals that these self-assembled structures yield a two- to three-order of magnitude increase in proton conductivity, presumably due to the locally-increased concentration of proton-transport functionalities within the nano-phase separated domains.

  9. Self-assembled monolayers of polythiophene conductive polymers improve biocompatibility and electrical impedance of neural electrodes.

    PubMed

    Widge, Alik S; Jeffries-El, Malika; Cui, Xinyan; Lagenaur, Carl F; Matsuoka, Yoky

    2007-03-15

    There is continued interest in the development of conductive polymer coatings to improve the electrical properties and biocompatibility of electrodes for neural prostheses. We present here a new type of coating, based on mixed self-assembled monolayers (SAMs) of thiolated poly(alkylthiophene)s and functionalized alkanethiols. When assembled as a SAM on electrodes designed for in vitro electrophysiology, these polymers are able to significantly lower electrode impedance at 1 kHz. The same mixed formulation is able to promote the outgrowth of neurites from primary mouse cortical neurons when the alkanethiol component is functionalized with a neural cell adhesion molecule (NCAM) binding antibody. Atomic force microscopy of the SAMs shows that they exert their effect through the well-known mechanism of increasing electrode surface area. These new covalently bound films have the potential to be more robust and are more controllable in their composition than existing electrodeposited conductive polymer coatings.

  10. Halogen-bonded mesogens direct polymer self-assemblies up to millimetre length scale.

    PubMed

    Houbenov, Nikolay; Milani, Roberto; Poutanen, Mikko; Haataja, Johannes; Dichiarante, Valentina; Sainio, Jani; Ruokolainen, Janne; Resnati, Giuseppe; Metrangolo, Pierangelo; Ikkala, Olli

    2014-06-04

    Aligning polymeric nanostructures up to macroscale in facile ways remains a challenge in materials science and technology. Here we show polymeric self-assemblies where nanoscale organization guides the macroscopic alignment up to millimetre scale. The concept is shown by halogen bonding mesogenic 1-iodoperfluoroalkanes to a star-shaped ethyleneglycol-based polymer, having chloride end-groups. The mesogens segregate and stack parallel into aligned domains. This leads to layers at ~10 nm periodicity. Combination of directionality of halogen bonding, mesogen parallel stacking and minimization of interfacial curvature translates into an overall alignment in bulk and films up to millimetre scale. Upon heating, novel supramolecular halogen-bonded polymeric liquid crystallinity is also shown. As many polymers present sites capable of receiving halogen bonding, we suggest generic potential of this strategy for aligning polymer self-assemblies.

  11. Supramolecular star polymers. Increased molecular weight with decreased polydispersity through self-assembly.

    PubMed

    Todd, Eric M; Zimmerman, Steven C

    2007-11-28

    A ditopic structure containing two heterocyclic DeAP units and programmed to self-assemble is used as an initiation unit for the synthesis of polylactide and polystyrene. The resultant polymers self-assemble into higher molecular weight structures with a lower molecular weight distribution. The largest discrete nanoscale polymeric assembly is proposed to be a hexameric star with a molecular weight of ca. 92.7 kDa. All polymeric assemblies generally exhibit PDI values of 1.3 to 1.5, which are lower than the PDI value of the corresponding polymeric arms. A hexameric assembly is stabilized by 30 hydrogen bonds, including six AADD.DDAA contacts. The hexameric star is formed under conditions that are at least partially controlled by kinetics.

  12. Synthesis, characterisation and electrical properties of supramolecular DNA-templated polymer nanowires of 2,5-(bis-2-thienyl)-pyrrole.

    PubMed

    Watson, Scott M D; Hedley, Joseph H; Galindo, Miguel A; Al-Said, Said A F; Wright, Nick G; Connolly, Bernard A; Horrocks, Benjamin R; Houlton, Andrew

    2012-09-17

    Supramolecular polymer nanowires have been prepared by using DNA-templating of 2,5-(bis-2-thienyl)-pyrrole (TPT) by oxidation with FeCl(3) in a mixed aqueous/organic solvent system. Despite the reduced capacity for strong hydrogen bonding in polyTPT compared to other systems, such as polypyrrole, the templating proceeds well. FTIR spectroscopic studies confirm that the resulting material is not a simple mixture and that the two types of polymer interact. This is indicated by shifts in bands associated with both the phosphodiester backbone and the nucleobases. XPS studies further confirm the presence of DNA and TPT, as well as dopant Cl(-) ions. Molecular dynamics simulations on a [{dA(24):dT(24)}/{TPT}(4)] model support these findings and indicate a non-coplanar conformation for oligoTPT over much of the trajectory. AFM studies show that the resulting nanowires typically lie in the 7-8 nm diameter range and exhibit a smooth, continuous, morphology. Studies on the electrical properties of the prepared nanowires by using a combination of scanned conductance microscopy, conductive AFM and variable temperature two-terminal I-V measurements show, that in contrast to similar DNA/polymer systems, the conductivity is markedly reduced compared to bulk material. The temperature dependence of the conductivity shows a simple Arrhenius behaviour consistent with the hopping models developed for redox polymers.

  13. Ultrathin Nanotube/Nanowire Electrodes by Spin-Spray Layer-by-Layer Assembly: A Concept for Transparent Energy Storage.

    PubMed

    Gittleson, Forrest S; Hwang, Daniel; Ryu, Won-Hee; Hashmi, Sara M; Hwang, Jonathan; Goh, Tenghooi; Taylor, André D

    2015-10-27

    Fully integrated transparent devices require versatile architectures for energy storage, yet typical battery electrodes are thick (20-100 μm) and composed of optically absorbent materials. Reducing the length scale of active materials, assembling them with a controllable method and minimizing electrode thickness should bring transparent batteries closer to reality. In this work, the rapid and controllable spin-spray layer-by-layer (SSLbL) method is used to generate high quality networks of 1D nanomaterials: single-walled carbon nanotubes (SWNT) and vanadium pentoxide (V2O5) nanowires for anode and cathode electrodes, respectively. These ultrathin films, deposited with ∼2 nm/bilayer precision are transparent when deposited on a transparent substrate (>87% transmittance) and electrochemically active in Li-ion cells. SSLbL-assembled ultrathin SWNT anodes and V2O5 cathodes exhibit reversible lithiation capacities of 23 and 7 μAh/cm(2), respectively at a current density of 5 μA/cm(2). When these electrodes are combined in a full cell, they retain ∼5 μAh/cm(2) capacity over 100 cycles, equivalent to the prelithiation capacity of the limiting V2O5 cathode. The SSLbL technique employed here to generate functional thin films is uniquely suited to the generation of transparent electrodes and offers a compelling path to realize the potential of fully integrated transparent devices.

  14. Fabrication of microstructured polymer films using breath-figure-templated assembly

    NASA Astrophysics Data System (ADS)

    Srinivasarao, Mohan; Sharma, Vivek; Crne, Matija

    2010-03-01

    Breath figures formed on evaporating polymer solutions exposed to the blast of humid air involve growth and self-assembly of water drops that are non-coalescent. The ordered arrays of nearly monodisperse drops, eventually evaporate away, leaving a microstructured, porous polymer film. We elucidate the mechanism of this breath-figure-templated assembly, by accounting for various transport and thermodynamic processes that control the dynamics of drop nucleation, growth, noncoalescence and self-assembly. The theoretical framework developed in this study allows one to rationalize and predict the structure and size of pores. We provide an exemplary study where we use coat these films with inorganic oxides and mimic the structural color of Papilio palinurus butterfly.

  15. Dissipative particle dynamics simulations of polymer-protected nanoparticle self-assembly.

    PubMed

    Spaeth, Justin R; Kevrekidis, Ioannis G; Panagiotopoulos, Athanassios Z

    2011-11-14

    Dissipative particle dynamics simulations were used to study the effects of mixing time, solute solubility, solute and diblock copolymer concentrations, and copolymer block length on the rapid coprecipitation of polymer-protected nanoparticles. The simulations were aimed at modeling Flash NanoPrecipitation, a process in which hydrophobic solutes and amphiphilic block copolymers are dissolved in a water-miscible organic solvent and then rapidly mixed with water to produce composite nanoparticles. A previously developed model by Spaeth et al. [J. Chem. Phys. 134, 164902 (2011)] was used. The model was parameterized to reproduce equilibrium and transport properties of the solvent, hydrophobic solute, and diblock copolymer. Anti-solvent mixing was modeled using time-dependent solvent-solute and solvent-copolymer interactions. We find that particle size increases with mixing time, due to the difference in solute and polymer solubilities. Increasing the solubility of the solute leads to larger nanoparticles for unfavorable solute-polymer interactions and to smaller nanoparticles for favorable solute-polymer interactions. A decrease in overall solute and polymer concentration produces smaller nanoparticles, because the difference in the diffusion coefficients of a single polymer and of larger clusters becomes more important to their relative rates of collisions under more dilute conditions. An increase in the solute-polymer ratio produces larger nanoparticles, since a collection of large particles has less surface area than a collection of small particles with the same total volume. An increase in the hydrophilic block length of the polymer leads to smaller nanoparticles, due to an enhanced ability of each polymer to shield the nanoparticle core. For unfavorable solute-polymer interactions, the nanoparticle size increases with hydrophobic block length. However, for favorable solute-polymer interactions, nanoparticle size exhibits a local minimum with respect to the

  16. Alignment of human cardiomyocytes on laser patterned biphasic core/shell nanowire assemblies

    NASA Astrophysics Data System (ADS)

    Kiefer, Karin; Lee, Juseok; Haidar, Ayman; Martinez Miró, Marina; Akkan, Cagri Kaan; Veith, Michael; Cenk Aktas, Oral; Abdul-Khaliq, Hashim

    2014-12-01

    The management of end stage heart failure patients is only possible by heart transplantation or by the implantation of artificial hearts as a bridge for later transplantation. However, these therapeutic strategies are limited by a lack of donor hearts and by the associated complications, such as coagulation and infection, due to the used artificial mechanical circulatory assist devices. Therefore, new strategies for myocardial regenerative approaches are under extensive research to produce contractile myocardial tissue in the future to replace non-contractile myocardial ischemic and scarred tissue. Different approaches, such as cell transplantation, have been studied intensively. Although successful approaches have been observed, there are still limitations to the application. It is envisaged that myocardial tissue engineering can be used to help replace infarcted non-contractile tissue. The developed tissue should later mimic the aligned fibrillar structure of the extracellular matrix and provide important guidance cues for the survival, function and the needed orientation of cardiomyocytes. Nanostructured surfaces have been tested to provide a guided direction that cells can follow. In the present study, the cellular adhesion/alignment of human cardiomyocytes and the biocompatibility have been investigated after cultivation on different laser-patterned nanowires compared with unmodified nanowires. As a result, the nanostructured surfaces possessed good biocompatibility before and after laser modification. The laser-induced scalability of the pattern enabled the growth and orientation of the adhered myocardial tissue. Such approaches may be used to modify the surface of potential scaffolds to develop myocardial contractile tissue in the future.

  17. High Modulus Silicates/poly L-Lactic Acid) Based Polymers Assemblies for Potential Applications in Tissue Engineering

    NASA Astrophysics Data System (ADS)

    Ma, Hui; Xu, Ronghua; Xu, Hong; Zhang, Linping; Zhong, Yi; Jiang, Qiuran; Yang, Yiqi; Mao, Zhiping

    2013-05-01

    In this paper, silicates/poly (l-lactic acid)-co-bisphenol A epoxy resin assemblies with high modulus were developed by in situ polymerization of l-lactic acid and surface-modified lamellar vermiculites for potential applications in tissue engineering. These assemblies represented advances in the mechanical properties that can be hardly obtained in other assemblies formed via physical interactions. The covalent grafting of the PLLA based polymers onto the vermiculites surface was confirmed by X-ray photon spectroscopy. The elastic moduli of the assemblies measured by an atomic force microscope were around 7 GPa, and higher than the elastic moduli of the pure polymer (3.2 GPa) and unmodified vermiculites (1.5 GPa), respectively. Images demonstrated that cells proliferated and reached confluence on both the assemblies and pure polymer materials, which indicated that the assemblies exhibited the similar cytocompatibility with pure polymer. With the addition of 5 wt.% assemblies, the polymer and assemblies blended-composites exhibited a 118% improvement in compressive strength and 117% improvement in modulus compared with pure polymer. The present work demonstrated a strategy for the assembly of biomacromolecules and inorganic layers and fabrication of biomaterials high in modulus for tissue engineering applications.

  18. Tuning the sphere-to-rod transition in the self-assembly of thermoresponsive polymer hybrids.

    PubMed

    Lee, Jangwook; Park, Honghyun; Jeong, Eun Ju; Kwark, Young-Je; Lee, Kuen Yong

    2015-12-01

    Nano-scale drug delivery systems have undergone extensive development, and control of size and structure is critical for regulation of their biological responses and therapeutic efficacy. Amphiphilic polymers that form self-assembled structures in aqueous media have been investigated and used for the diagnosis and therapy of various diseases, including cancer. Here, we report the design and fabrication of thermoresponsive polymeric micelles from alginate conjugated with poly(N-isopropylacrylamide) (PNIPAAm). Alginate-PNIPAAm hybrids formed self-aggregated structures in response to temperature changes near body temperature. A structural transition from micellar spheres to rods of alginate-PNIPAAm hybrids was observed depending on the molecular weight of PNIPAAm and the polymer concentration. Additionally, hydrogels with nanofibrous structures were formed by simply increasing the polymer concentration. This approach to controlling the structure of polymer micelles from nanoparticles to fibrous hydrogels may be useful in applications in drug delivery and tissue engineering.

  19. Efficient Organic/Inorganic Hybrid Solar Cell Integrating Polymer Nanowires and Inorganic Nanotetrapods.

    PubMed

    Xu, Weizhe; Tan, Furui; Liu, Xiansheng; Zhang, Weifeng; Qu, Shengchun; Wang, Zhijie; Wang, Zhanguo

    2017-12-01

    Constructing a highly efficient bulk-heterojunction is of critical importance to the hybrid organic/inorganic solar cells. Here in this work, we introduce a novel hybrid architecture containing P3HT nanowire and CdSe nanotetrapod as bicontinuous charge channels for holes and electrons, respectively. Compared to the traditionally applied P3HT molecules, the well crystallized P3HT nanowires qualify an enhanced light absorption at the long wavelength as well as strengthened charge carrier transport in the hybrid active layer. Accordingly, based on efficient dissociation of photogenerated excitons, the interpercolation of these two nano-building blocks allows a photovoltaic conversion efficiency of 1.7% in the hybrid solar cell, up to 42% enhancement compared to the reference solar cell with traditional P3HT molecules as electron donor. Our work provides a promising hybrid structure for efficient organic/inorganic bulk-heterojunction solar cells.

  20. Efficient Organic/Inorganic Hybrid Solar Cell Integrating Polymer Nanowires and Inorganic Nanotetrapods

    NASA Astrophysics Data System (ADS)

    Xu, Weizhe; Tan, Furui; Liu, Xiansheng; Zhang, Weifeng; Qu, Shengchun; Wang, Zhijie; Wang, Zhanguo

    2017-01-01

    Constructing a highly efficient bulk-heterojunction is of critical importance to the hybrid organic/inorganic solar cells. Here in this work, we introduce a novel hybrid architecture containing P3HT nanowire and CdSe nanotetrapod as bicontinuous charge channels for holes and electrons, respectively. Compared to the traditionally applied P3HT molecules, the well crystallized P3HT nanowires qualify an enhanced light absorption at the long wavelength as well as strengthened charge carrier transport in the hybrid active layer. Accordingly, based on efficient dissociation of photogenerated excitons, the interpercolation of these two nano-building blocks allows a photovoltaic conversion efficiency of 1.7% in the hybrid solar cell, up to 42% enhancement compared to the reference solar cell with traditional P3HT molecules as electron donor. Our work provides a promising hybrid structure for efficient organic/inorganic bulk-heterojunction solar cells.

  1. ZnO nanowire based visible-transparent ultraviolet detectors on polymer substrates

    NASA Astrophysics Data System (ADS)

    Yu, Hongbin; Ali Azhar, Ebraheem; Belagodu, Tej; Lim, Swee; Dey, Sandwip

    2012-05-01

    The fabrication and characterization of fully visible-transparent and flexible ultraviolet (UV) detectors, on polyethylene 2,6-naphthalate (PEN) with active channels of zinc oxide nanowires and ohmic indium tin oxide contacts, are reported and discussed. The fabricated detector has an average transmittance of 80% in the visible spectral range and is most responsive at or below 370 nm, the onset of UV light, with a UV/vis rejection ratio of 1.42 × 103. A five orders of magnitude difference in the photocurrent, between UV illumination and dark conditions, are also observed. The single-sided UV response further shows that the PEN substrate performs well as a UV reflector. The noise analysis on the nanowire UV detector indicates a noise equivalent power and detectivity (D*) of 5.88 × 10-13 WHz-0.5 and 2.13 × 109 cm Hz0.5 W-1, respectively.

  2. Composite Polymer Electrolytes with Li7La3Zr2O12 Garnet-Type Nanowires as Ceramic Fillers: Mechanism of Conductivity Enhancement and Role of Doping and Morphology.

    PubMed

    Yang, Ting; Zheng, Jin; Cheng, Qian; Hu, Yan-Yan; Chan, Candace K

    2017-07-05

    Composite polymer solid electrolytes (CPEs) containing ceramic fillers embedded inside a polymer-salt matrix show great improvements in Li(+) ionic conductivity compared to the polymer electrolyte alone. Lithium lanthanum zirconate (Li7La3Zr2O12, LLZO) with a garnet-type crystal structure is a promising solid Li(+) conductor. We show that by incorporating only 5 wt % of the ceramic filler comprising undoped, cubic-phase LLZO nanowires prepared by electrospinning, the room temperature ionic conductivity of a polyacrylonitrile-LiClO4-based composite is increased 3 orders of magnitude to 1.31 × 10(-4) S/cm. Al-doped and Ta-doped LLZO nanowires are also synthesized and utilized as fillers, but the conductivity enhancement is similar as for the undoped LLZO nanowires. Solid-state nuclear magnetic resonance (NMR) studies show that LLZO NWs partially modify the PAN polymer matrix and create preferential pathways for Li(+) conduction through the modified polymer regions. CPEs with LLZO nanoparticles and Al2O3 nanowire fillers are also studied to elucidate the role of filler type (active vs passive), LLZO composition (undoped vs doped), and morphology (nanowire vs nanoparticle) on the CPE conductivity. It is demonstrated that both intrinsic Li(+) conductivity and nanowire morphology are needed for optimal performance when using 5 wt % of the ceramic filler in the CPE.

  3. Effect of polymer brushes on the Self Assembly of 3D Poly(Styrene-Methylmethacrylate) thin films

    NASA Astrophysics Data System (ADS)

    Lwoya, Baraka; Albert, Julie

    2015-03-01

    It would be instrumental to understand the self-assembly capabilities of polymers especially given their industrial capabilities of templating and membrane application .The ability of block copolymers to self assemble into different morphologies is determined by several factor including type of polymer blocks, volume fraction, substrate preference to a polymer and chain architecture . In this paper Poly(Styrene-Methylmethacrylate) (PS-PMMA) was chosen was chosen to further understand the effect polymer brushes on the substrate had on the self assembly of 3D structured PS-PMMA spin coated thin films (30-150 nm). The polymer brushes were grown using surface initiated atomic transfer radical polymerization (SI-ATRP) with the optimal chain length being confirmed by gel permeation chromatography. By using ellipsometer and contact angle measurement the uniformity of the polymer brushes are characterized, while the morphology of the spin coated thin films after thermal annealing would be characterized using atomic force microscopy (AFM).

  4. Directed Self-assembly of Nanoparticles at the Polymer Surface by Highly Compressible Supercritical Carbon Dioxide

    SciTech Connect

    M Asada; P Gin; M Endoh; S Satija; T Taniguchi; T Koga

    2011-12-31

    We report a versatile route for self-assembly of polymer-soluble nanoparticles at the polymer surface using highly compressible supercritical carbon dioxide (scCO{sub 2}). Polystyrene and poly(methyl methacrylate)-based nanocomposite thin films with functionalized polyhedral oligomeric silsesquioxane and phenyl C{sub 61} butyric acid methyl ester nanoparticles were prepared on Si substrates and exposed to scCO{sub 2} at different pressures under the isothermal condition of 36 C. The resultant structures could be then preserved by the vitrification process of the glassy polymers via quick pressure quench to atmospheric pressure and subsequently characterized by using various surface sensitive experimental techniques in air. We found that the surface segregation of these nanoparticles is induced in the close vicinity of P = 8.2 MPa where the excess absorption of the fluid into the polymers maximizes. However, when the film thickness becomes less than about 4R{sub g} thick (where R{sub g} is the radius of polymer gyration), the uniform dispersion of the nanoparticles is favorable instead even at the same CO{sub 2} conditions. We clarify that the phase transition is correlated with the emergence of a concentration gradient of the fluid at the polymer/CO{sub 2} interface and is a general phenomenon for different polymer-nanoparticle interactions.

  5. π-Conjugated polymer anisotropic organogel nanofibrous assemblies for thermoresponsive photonic switches.

    PubMed

    Narasimha, Karnati; Jayakannan, Manickam

    2014-11-12

    The present work demonstrates one of the first examples of π-conjugated photonic switches (or photonic wave plates) based on the tailor-made π-conjugated polymer anisotropic organogel. New semicrystalline segmented π-conjugated polymers are designed with rigid aromatic oligophenylenevinylene π-core and flexible alkyl chain along the polymer backbone. These polymers are found to be self-assembled as semicrystalline or amorphous with respect to the number of carbon atoms in the alkyl units. These semicrystalline polymers produce organogels having nanofibrous morphology of 20 nm thickness with length up to 5 μm. The polymer organogel is aligned in a narrow glass capillary, and this anisotropic gel device is further demonstrated as photonic switches. The glass capillary device behaves as typical λ/4 photonic wave plates upon the illumination of the plane polarized light. The λ/4 photonic switching ability is found to be maximum at θ = 45° angle under the cross polarizers. The orthogonal arrangements of the gel capillaries produce dark and bright spots as on-and-off optical switches. Thermoreversibility of the polymer organogel (also its xerogel) was exploited to construct thermoresponsive photonic switches for the temperature window starting from 25 to 160 °C. The organic photonic switch concept can be adapted to large number of other π-conjugated materials for optical communication and storage.

  6. Thermal stability of electrodeposited platinum nanowires and morphological transformations at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Rauber, M.; Muench, F.; Toimil-Molares, M. E.; Ensinger, W.

    2012-11-01

    Pt nanowires were prepared by template electrodeposition using ion track etched polymer membranes and analysed with respect to their thermal stability. Driven by Rayleigh instability, the polycrystalline Pt nanostructures experienced structural transformations and finally fragmented into linear chains of nanospheres at temperatures much below the melting point of bulk Pt. Morphological changes were systematically studied by electron microscopy and compared with previously reported results on other metal nanowires and theoretical predictions. In addition, nanowires could readily be interconnected to two-dimensional assemblies by taking advantage of the rapid diffusion processes. This study will help to predict the durability of integrated nanowires and contributes to the understanding of thermal-induced transformations for polycrystalline nanowires.

  7. Thermal stability of electrodeposited platinum nanowires and morphological transformations at elevated temperatures.

    PubMed

    Rauber, M; Muench, F; Toimil-Molares, M E; Ensinger, W

    2012-11-30

    Pt nanowires were prepared by template electrodeposition using ion track etched polymer membranes and analysed with respect to their thermal stability. Driven by Rayleigh instability, the polycrystalline Pt nanostructures experienced structural transformations and finally fragmented into linear chains of nanospheres at temperatures much below the melting point of bulk Pt. Morphological changes were systematically studied by electron microscopy and compared with previously reported results on other metal nanowires and theoretical predictions. In addition, nanowires could readily be interconnected to two-dimensional assemblies by taking advantage of the rapid diffusion processes. This study will help to predict the durability of integrated nanowires and contributes to the understanding of thermal-induced transformations for polycrystalline nanowires.

  8. WO3 nanorods created by self-assembly of highly crystalline nanowires under hydrothermal conditions.

    PubMed

    Navarro, Julien R G; Mayence, Arnaud; Andrade, Juliana; Lerouge, Frédéric; Chaput, Frédéric; Oleynikov, Peter; Bergström, Lennart; Parola, Stephane; Pawlicka, Agnieszka

    2014-09-02

    WO3 nanorods and wires were obtained via hydrothermal synthesis using sodium tungstate as a precursor and either oxalic acid, citric acid, or poly(methacrylic acid) as a stabilizing agent. Transmission electron microscopy images showed that the organic acids with different numbers of carboxylic groups per molecule influence the final sizes and stacking nanostructures of WO3 wires. Three-dimensional electron diffraction tomography of a single nanocrystal revealed a hexagonal WO3 structure with preferential growth along the c-axis, which was confirmed by high-resolution transmission electron microscopy. WO3 nanowires were also spin-coated onto an indium tin oxide/glass conducting substrate, resulting in the formation of a film that was characterized by scanning electron microscopy. Finally, cyclic voltammetry measurements performed on the WO3 thin film showed voltammograms typical for the WO3 redox process.

  9. High-power density piezoelectric energy harvesting using radially strained ultrathin trigonal tellurium nanowire assembly.

    PubMed

    Lee, Tae Il; Lee, Sangmin; Lee, Eungkyu; Sohn, Sungwoo; Lee, Yean; Lee, Sujeong; Moon, Geondae; Kim, Dohyang; Kim, Youn Sang; Myoung, Jae Min; Wang, Zhong Lin

    2013-06-04

    A high-yield solution-processed ultrathin (<10 nm) trigonal tellurium (t-Te) nanowire (NW) is introduced as a new class of piezoelectric nanomaterial with a six-fold higher piezoelectric constant compared to conventional ZnO NWs for a high-volume power-density nanogenerator (NG). While determining the energy-harvesting principle in a NG consisting of t-Te NW, it is theoretically and experimentally found that t-Te NW is piezoelectrically activated only by creating strain in its radial direction, along which it has an asymmetric crystal structure. Based upon this mechanism, a NG with a monolayer consisting of well-aligned t-Te NWs and a power density of 9 mW/cm(3) is fabricated.

  10. Morphology and growth mechanism study of self-assembled silicon nanowires synthesized by thermal evaporation

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Fan, X. H.; Xu, L.; Lee, C. S.; Lee, S. T.

    2001-03-01

    Silicon nanowires (SiNWs) grown from `sunflower-seed'- and `mushroom'-shaped particles have been observed by electron microscopies. The SiNWs were synthesized by thermal evaporation of SiO powders without any metal catalysts. The SiNWs grown on the sunflower-seed-shaped particles had sub-branches of SiNWs terminated by Si bulbs. The SiNWs on the mushroom-shaped particles were densely and uniformly distributed on the surface of the mushroom cone. The growth history suggests that these SiNWs were formed by nucleation which originated from the surface of amorphous SiO particle matrixes via phase separation and precipitation followed by growth through oxide-assisted vapor-soild reaction.

  11. Self-assembly of polymers in confined geometrics.

    SciTech Connect

    Curro, John G.; Ye, Yuan; McCoy, John Dwane

    2003-10-01

    Athermal, tethered chains are modeled with Density Functional (DFT) theory for both the explicit solvent and continuum solvent cases. The structure of DFT is shown to reduce to Self-Consistent-Field (SCF) theory in the incompressible limit where there is symmetry between solvent and monomer, and to Single-Chain-Mean-Field (SCMF) theory in the continuum solvent limit. We show that by careful selection of the reference and ideal systems in DFT theory, self-consistent numerical solutions can be obtained, thereby avoiding the single chain Monte Carlo simulation in SCMF theory. On long length scales, excellent agreement is seen between the simplified DFT theory and Molecular Dynamics simulations of both continuum solvents and explicit-molecule solvents. In order to describe the structure of the polymer and solvent near the surface it is necessary to include compressibility effects and the nonlocality of the field.

  12. Energetics and Geometry of FtsZ Polymers: Nucleated Self-Assembly of Single Protofilaments☆

    PubMed Central

    Huecas, Sonia; Llorca, Oscar; Boskovic, Jasminka; Martín-Benito, Jaime; Valpuesta, José María; Andreu, José Manuel

    2008-01-01

    Essential cell division protein FtsZ is an assembling GTPase which directs the cytokinetic ring formation in dividing bacterial cells. FtsZ shares the structural fold of eukaryotic tubulin and assembles forming tubulin-like protofilaments, but does not form microtubules. Two puzzling problems in FtsZ assembly are the nature of protofilament association and a possible mechanism for nucleated self-assembly of single-stranded protofilaments above a critical FtsZ concentration. We assembled two-dimensional arrays of FtsZ on carbon supports, studied linear polymers of FtsZ with cryo-electron microscopy of vitrified unsupported solutions, and formulated possible polymerization models. Nucleated self-assembly of FtsZ from Escherichia coli with GTP and magnesium produces flexible filaments 4–6 nm-wide, only compatible with a single protofilament. This agrees with previous scanning transmission electron microscopy results and is supported by recent cryo-electron tomography studies of two bacterial cells. Observations of double-stranded FtsZ filaments in negative stain may come from protofilament accretion on the carbon support. Preferential protofilament cyclization does not apply to FtsZ assembly. The apparently cooperative polymerization of a single protofilament with identical intermonomer contacts is explained by the switching of one inactive monomer into the active structure preceding association of the next, creating a dimer nucleus. FtsZ behaves as a cooperative linear assembly machine. PMID:18024502

  13. Energetics and geometry of FtsZ polymers: nucleated self-assembly of single protofilaments.

    PubMed

    Huecas, Sonia; Llorca, Oscar; Boskovic, Jasminka; Martín-Benito, Jaime; Valpuesta, José María; Andreu, José Manuel

    2008-03-01

    Essential cell division protein FtsZ is an assembling GTPase which directs the cytokinetic ring formation in dividing bacterial cells. FtsZ shares the structural fold of eukaryotic tubulin and assembles forming tubulin-like protofilaments, but does not form microtubules. Two puzzling problems in FtsZ assembly are the nature of protofilament association and a possible mechanism for nucleated self-assembly of single-stranded protofilaments above a critical FtsZ concentration. We assembled two-dimensional arrays of FtsZ on carbon supports, studied linear polymers of FtsZ with cryo-electron microscopy of vitrified unsupported solutions, and formulated possible polymerization models. Nucleated self-assembly of FtsZ from Escherichia coli with GTP and magnesium produces flexible filaments 4-6 nm-wide, only compatible with a single protofilament. This agrees with previous scanning transmission electron microscopy results and is supported by recent cryo-electron tomography studies of two bacterial cells. Observations of double-stranded FtsZ filaments in negative stain may come from protofilament accretion on the carbon support. Preferential protofilament cyclization does not apply to FtsZ assembly. The apparently cooperative polymerization of a single protofilament with identical intermonomer contacts is explained by the switching of one inactive monomer into the active structure preceding association of the next, creating a dimer nucleus. FtsZ behaves as a cooperative linear assembly machine.

  14. Dendronized Polymers: Synthesis, Characterization, Assembly at Interfaces, and Manipulation.

    PubMed

    Schlüter; Rabe

    2000-03-01

    Dendrimers are presently one of the most intensely studied classes of compounds because of their unusual structure. They can be described as a jungle of entangled branches traversed by winding trails which lead to sweet fruits and bright blossoms. On these trails one can reach the thicket's interior as well as find a way out. Expressed less lyrically, this thicket stands for regularly branched, densely packed structures, and the trails represent voids and channels not filled by bent back branches but by solvent. The fruit and blossoms are photochemically, electrochemically, or synthetically addressable units, catalytically active sites, etc., and the back and forth on the trails stands for transport processes. In a mathematical sense dendrimers are enveloped by an interface, which defines what is either in or out. This interface is shaped like a sphere if the trails are filled to bursting. Otherwise dendrimers are more flattened like amoeba, especially if in contact with a surface. The high density of the functional groups, the expansion of these compounds to a range of several nanometers, the existence of usable "surface" and transport possibilities in and with them have made dendrimers interesting candidates for many applications. This review describes how dendrimer construction and polymer synthesis were combined and used to move from fully or flattened spherical shapes to cylindrical ones. The shape-inducing influence of dendritic substituents can be driven to create nanoobjects with a cylindrical shape, which not only considerably widens the range of applications for the dendrimer class but also opens up new perspectives for supramolecular and polymer chemistry. Because of the sheer size of the described objects and complexity of shape-related properties, research in this area must necessarily be interdisciplinary. This article tries to mirror this by giving special attention not only to synthesis but also the characterization and behavior of these compounds

  15. A general route to nanocrystal kebabs periodically assembled on stretched flexible polymer shish

    PubMed Central

    Xu, Hui; Xu, Yuci; Pang, Xinchang; He, Yanjie; Jung, Jaehan; Xia, Haiping; Lin, Zhiqun

    2015-01-01

    Assembling nanoparticles into one-dimensional (1D) nanostructures with precisely controlled size and shape renders the exploration of new properties and construction of 1D miniaturized devices possible. The physical properties of such nanostructures depend heavily on the size, chemical composition, and surface chemistry of nanoparticle constituents, as well as the close proximity of adjacent nanoparticles within the 1D nanostructure. Chemical synthesis provides an intriguing alternative means of creating 1D nanostructures composed of self-assembled nanoparticles in terms of material diversity, size controllability, shape regularity, and low-cost production. However, this is an area where progress has been slower. We report an unconventional yet general strategy to craft an exciting variety of 1D nanonecklace-like nanostructures comprising uniform functional nanodiscs periodically assembled along a stretched flexible polymer chain by capitalizing on judiciously designed amphiphilic worm-like diblock copolymers as nanoreactors. These nanostructures can be regarded as organic-inorganic shish-kebabs, in which nanodisc kebabs are periodically situated on a stretched polymer shish. Simulations based on self-consistent field theory reveal that the formation of organic-inorganic shish-kebabs is guided by the self-assembled elongated star-like diblock copolymer constituents constrained on the highly stretched polymer chain. PMID:26601151

  16. Polymer-mediated nanorod self-assembly predicted by dissipative particle dynamics simulations.

    PubMed

    Khani, Shaghayegh; Jamali, Safa; Boromand, Arman; Hore, Michael J A; Maia, Joao

    2015-09-14

    Self-assembly of nanoparticles in polymer matrices is an interesting and growing subject in the field of nanoscience and technology. We report herein on modelling studies of the self-assembly and phase behavior of nanorods in a homopolymer matrix, with the specific goal of evaluating the role of deterministic entropic and enthalpic factors that control the aggregation/dispersion in such systems. Grafting polymer brushes from the nanorods is one approach to control/impact their self-assembly capabilities within a polymer matrix. From an energetic point of view, miscible interactions between the brush and the matrix are required for achieving a better dispersibility; however, grafting density and brush length are the two important parameters in dictating the morphology. Unlike in previous computational studies, the present Dissipative Particle Dynamics (DPD) simulation framework is able to both predict dispersion or aggregation of nanorods and determine the self-assembled structure, allowing for the determination of a phase diagram, which takes all of these factors into account. Three types of morphologies are predicted: dispersion, aggregation and partial aggregation. Moreover, favorable enthalpic interactions between the brush and the matrix are found to be essential for expanding the window for achieving a well-dispersed morphology. A three-dimensional phase diagram is mapped on which all the afore-mentioned parameters are taken into account. Additionally, in the case of immiscibility between brushes and the matrix, simulations predict the formation of some new and tunable structures.

  17. The nature of protein interactions governing globular protein-polymer block copolymer self-assembly.

    PubMed

    Lam, Christopher N; Kim, Minkyu; Thomas, Carla S; Chang, Dongsook; Sanoja, Gabriel E; Okwara, Chimdimma U; Olsen, Bradley D

    2014-04-14

    The effects of protein surface potential on the self-assembly of protein-polymer block copolymers are investigated in globular proteins with controlled shape through two approaches: comparison of self-assembly of mCherry-poly(N-isopropylacrylamide) (PNIPAM) bioconjugates with structurally homologous enhanced green fluorescent protein (EGFP)-PNIPAM bioconjugates, and mutants of mCherry with altered electrostatic patchiness. Despite large changes in amino acid sequence, the temperature-concentration phase diagrams of EGFP-PNIPAM and mCherry-PNIPAM conjugates have similar phase transition concentrations. Both materials form identical phases at two different coil fractions below the PNIPAM thermal transition temperature and in the bulk. However, at temperatures above the thermoresponsive transition, mCherry conjugates form hexagonal phases at high concentrations while EGFP conjugates form a disordered micellar phase. At lower concentration, mCherry shows a two-phase region while EGFP forms homogeneous disordered micellar structures, reflecting the effect of changes in micellar stability. Conjugates of four mCherry variants with changes to their electrostatic surface patchiness also showed minimal change in phase behavior, suggesting that surface patchiness has only a small effect on the self-assembly process. Measurements of protein/polymer miscibility, second virial coefficients, and zeta potential show that these coarse-grained interactions are similar between mCherry and EGFP, indicating that coarse-grained interactions largely capture the relevant physics for soluble, monomeric globular protein-polymer conjugate self-assembly.

  18. In Situ Assembly of Ultrathin PtRh Nanowires to Graphene Nanosheets as Highly Efficient Electrocatalysts for the Oxidation of Ethanol.

    PubMed

    Shen, Yi; Gong, Bin; Xiao, Kaijun; Wang, Lei

    2017-02-01

    One-dimensional (1D) anisotropic platinum-based nanowires are promising electrocatalysts in polymer electrolyte membrane fuel cells owing to the inherent structural merits. Herein, we report an in situ growth of ultrathin PtRh nanowires (diameters of 2-3 nm) on graphene nanosheets via the oriented attachment pathway. Mechanistic studies reveal that graphene nanosheets play a critical role in the nucleation and growth of PtRh nanowires. The resulting hybrid of PtRh nanowire decorated graphene nanosheets shows outstanding activity and durability toward ethanol electro-oxidation. It exhibits a specific current density of 2.8 mA cm(-2) and a mass-normalized current density of 1 A mg(-1) metal, which are 5.4 and 3.1 times those of the state-of-the-art Pt/C catalyst, respectively. After 2000 cyclic tests, it maintains 86% of the initial electrochemically active surface area, which is larger than that of 63% obtained from the Pt/C catalyst. The superior performance is attributed to the combination of the advantageous 1D morphological motif with the synergistic effects of PtRh alloys and graphene nanosheet support.

  19. Functionalized soft nanoporous materials through supramolecular assembly of end-functionalized polymer blends.

    PubMed

    Song, Giyoung; Cho, Suk Man; Jung, Hee Joon; Kim, Richard Hahnkee; Bae, Insung; Ahn, Hyungju; Ryu, Du Yeol; Huh, June; Park, Cheolmin

    2012-12-03

    Supramolecular assembly through complementary interaction between molecular subgroups belonging to phase-separating polymer species offers a great opportunity, not only for constructing nanoscale soft templates reminiscent of conventional block copolymer morphologies, but also for tailoring surface properties by facile removal of one of the structure components by cleaving complementary interactions. Herein we report the fabrication of a novel, organic, nanoporous film through supramolecular assembly of two complementarily, end-interacting, mono-end-functionalized polymers under solvent annealing. The film of end-functionalized polymer blends under solvent annealing yielded phase-separated nanodomains that resemble nanoscopically ordered structures of block copolymers, but that are more advantageous due to easily cleavable and exchangeable links between the phase-separated domains. The removal of one of the components of the precursor structure formed from the end-functionalized polymers through cleavage of complementary interactions allowed us to fabricate mono- or multilayered nanoporous structures in which the chemically useful end-functionalities of the remnant polymers are rich on the surface of the pores. The resultant, organic, nanoporous films with tailored surface functionality offer a useful platform for various chemical and biological applications. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Self-assembly of three-dimensional supramolecular polymers through cooperative tetrathiafulvalene radical cation dimerization.

    PubMed

    Tian, Jia; Ding, Yu-Di; Zhou, Tian-You; Zhang, Kang-Da; Zhao, Xin; Wang, Hui; Zhang, Dan-Wei; Liu, Yi; Li, Zhan-Ting

    2014-01-07

    The self-assembly of a new type of three-dimensional (3D) supramolecular polymers from tetrahedral monomers in both organic and aqueous media is described. We have designed and synthesized two tetraphenylmethane derivatives T1 and T2, both of which bear four tetrathiafulvalene (TTF) units. When the TTF units were oxidized to the radical cation TTF(.+) , their pre-organized tetrahedral arrangement remarkably enhanced their intermolecular dimerization, leading to the formation of new 3D spherical supramolecular polymers. The structure of the supramolecular polymers has been inferred on the basis of UV/Vis absorption, electron paramagnetic resonance, cyclic voltammetry, and dynamic light scattering (DLS) analysis, as well as by comparing these properties with those of the self-assembled structures of mono-, di-, and tritopic control compounds. DLS experiments revealed that the spherical supramolecular polymers had hydrodynamic diameters of 68 nm for T1 (75 μM) in acetonitrile and 105 nm for T2 (75 μM) in water/acetonitrile (1:1). The 3D spherical structures of the supramolecular polymers formed in different solvents were also supported by SEM and AFM experiments.

  1. Novel thermoresponsive assemblies of co-grafted natural and synthetic polymers for water purification.

    PubMed

    Paneysar, Joginder Singh; Barton, Stephen; Chandra, Sudeshna; Ambre, Premlata; Coutinho, Evans

    2017-03-01

    Water contamination and its purification are a global problem. The current approach to purify water is reduction of impurities to acceptable levels. One of the ways to achieve this is by use of water-soluble polymers that extract organic and metallic contaminants, from water. This paper presents a blend of composite polymers that eliminates both the contaminants simultaneously by the principle of adsorption at lower critical solution temperature. These composite polymers have been synthesized by grafting poly(N,N-diethylacrylamide), poly(N-isopropylacrylamide) and poly(N-vinylcaprolactam) on-to the natural polymer chitosan or its derivatives, giving smart graft polymeric assemblies (GPAs). One of the graft polymers, GPA-2, exhibits excellent adsorption properties able to remove metal ions like cadmium, cobalt, copper, lead, iron and also organic impurities like chlorophenol and phthalic anhydride. Studies reveal that 6 mg/ml GPA-2 is able to effect a 100% removal of organic impurities - chlorophenol (50 ppm) and phthalic anhydride (70 ppm) - from water, while complete removal of the heavy metal ions (Cu(+2), Co(+2) and Cd(+2)) together at 30 ppm concentration has been achieved with 7.5 mg/ml GPA-2. The reduction in level of impurities along with recyclability and reproducibility in the elimination spectrum makes these assemblies promising materials in water treatment.

  2. Preparation of protein nano-objects by assembly of polymer-grafted proteins.

    PubMed

    Fukui, Yuuka; Sakai, Daiki; Fujimoto, Keiji

    2016-12-01

    We carried out surface-grafting from proteins and their assembling into objects with unique nanostructured materials (nano-objects). To immobilize polymer-initiating sites, amino groups of bovine serum albumin (BSA) were allowed to react with iniferter groups (BSA-i). Then, graft polymerization of N-isopropyl acrylamide (NIPAM) was performed by light-initiated living radical polymerization from immobilized iniferter moieties of BSA-i. The polymer-grafted BSA (BSA-g-PNIPAM) was assembled into nano-objects through the precipitation of PNIPAM graft chains and their sizes and morphologies were tuned by the chain length, the density and the chemical structure of graft polymers in addition to the environmental conditions such as temperature and pH. It was possible to retain the structures of nano-objects by thermal denaturation via heat treatment. Fluorescent substances were encapsulated in particulate nano-objects (nanoparticles) assembled from PNIPAM-g-BSA and their release could be regulated by tuning pH and temperature. Next, further graft polymerization from PNIPAM-grafted BSA was carried out by living radical polymerization of a cationic monomer, N,N-dimethylamino propyl acrylamide methyl chloride quaternary (DMAPAAQ). The grafted polymer was composed of a block copolymer of PNIPAM and a cationic polymer (PDMAPAAQ) and the gel-like nano-object was generated by increasing temperature. In contrast to PNIPAM-g-BSA, it became insoluble even when the temperature decreased, probably due to the electrostatic association between anionic regions of BSA and cationic regions of graft polymers. Coating of BSA-g-P(NIPAM-b-DMAPAAQ) enabled to form a uniform thin layer over a human hair. A free-standing membrane could be obtained by peeling from a water repellent substrate to create a porous membrane.

  3. Solution Self-Assembly of Globular Protein-Polymer Conjugate Block Copolymers

    NASA Astrophysics Data System (ADS)

    Olsen, Bradley

    2014-03-01

    Controlling the nanostructured self-assembly of globular proteins and enzymes can significantly advance the applications of soft materials as catalysts, sensors, and medical materials. However, the incorporation of globular proteins as one block in the block copolymer introduces changes in chain shape, chain entropy, and specific interactions that significantly impact the thermodynamics of self-assembly. Here, we explore the self-assembly of model globular protein-polymer block copolymers in concentrated solutions to form nanostructured materials. A phase diagram as a function of concentration and temperature for a model material mCherry-poly(N-isopropylacrylamide) (PNIPAM) is asymmetric, showing hexagonal cylinders for coil fractions less than 0.5 and a lamellar ordering for coil fractions greater than 0.5, divided by a narrow region of hexagonally perforated lamellae. Order-order transitions as a function of temperature are driven by the thermoresponsive desolvation of PNIPAM. Surprisingly, the materials exhibit reentrant order-disorder transition behavior, such that the conjugate block copolymers are disordered at both low and high concentrations but well-ordered at intermediate concentrations. Changing the polymer chemistry to monomers with different types of hydrogen bonding results in significant changes in the self-assembly, including the observation of a cubic phase that shows the same scattering pattern as the gyroid phase observed in traditional block copolymers. The choice of polymer also has a strong impact on the order-disorder transition concentration, demonstrating that the polymer-protein interaction plays a significant role in governing self-assembly in solution. Consistent with this effect, the order-disorder transition concentration is minimized in symmetric conjugates. Changing the protein from mCherry to myoglobin results in a reduction in ordering, suggesting that the regularity of the protein shape is important. This research was supported by

  4. Controlling self-assembly of DNA-polymer conjugates for applications in imaging and drug delivery.

    PubMed

    Peterson, Amberlyn M; Heemstra, Jennifer M

    2015-01-01

    Amphiphilic supramolecular structures such as micelles and vesicles can be formed through phase-driven self-assembly of monomer units having discrete hydrophilic and hydrophobic blocks. These structures show great promise for use in medical and biological applications, and incorporating DNA as the hydrophilic block of the amphiphilic monomers enables the creation of assemblies that also take advantage of the unique information storage and molecular recognition capabilities of DNA. Recently, significant advances have been made in the synthesis of DNA-polymer conjugates (DPCs), controlling the morphology of DPC assemblies by altering monomer structure, and probing the effect of assembly on DNA stability and hybridization. Together, these investigations have laid the framework for using DPCs in drug delivery, cellular imaging, and other applications in materials science and chemistry. © 2014 Wiley Periodicals, Inc.

  5. Self Assembled Spin Coated and Bulk Films of a Novel Polydiacetylene as Second Order NLO Polymers

    DTIC Science & Technology

    1994-05-31

    T Code: 4132016 W.H. Kim, B. Bihari, R. Moody, N. B. Kodali , J.KumarS.K. Dr. JoAnn Milliken Tripathy. 7. PHI-OUHMING OFH-NIZATION NAMIE(S) AND...Self Assembled Spin Coated and Bulk Films of a Novel Polydiacetylene as Second Order NLO Polymers by W.H. Kim, B. Bihari, R. Moody, N. B. Kodali ...POLYMERS W. H. Kim, B. Bihari+, R. Moody+, N. B. Kodali , J. Kumar+, and S. K. Tripathy, University of Massachusetts-Lowell, Center for Advanced Materials

  6. Controlling self-assembly and ordering of block polymer nanostructures in thin films

    NASA Astrophysics Data System (ADS)

    Luo, Ming

    Block polymers have garnered significant attention in the past few decades due to their ability to self-assemble into a boundless array of structures such as spheres, cylinders, gyroid, and lamellae. The sizes of the periodical structures typically are 5 - 100 nm, making them ideal for emerging nanotechnologies, such as nanolithography, nanotemplating, nanoporous membranes, and photonics devices. Many of these applications require thin film geometries, in which the block polymers form well-ordered nanostructures and precisely controlled domain orientations. Understanding the factors that affect thin film phase behavior and being able to control the nanostructures, domain orientation, and domain ordering in thin film is essential to realizing the full potential of these unique materials. In this dissertation, I describe significant efforts to manipulate the block polymer thin film structures, direct the nanostructure ordering, and understand the connection between the macromolecular molecular structures and the block polymer properties. First, substrate surface modification with chlorosilane was employed to manipulate the nanostructure of poly(styrene- b-isoprene-b-styrene) (SIS) thin films. A morphological transformation from parallel cylinders to hexagonally perforated lamellae (HPL) was identified, in a high-throughput fashion, using gradient methods. The gradient methods are highly adaptable for the possible universal manipulation of thin film nanostructures. Second, rastering solvent vapor annealing - soft shear method was developed and demonstrated as a simple, yet highly effective method to achieve macroscopic alignment of SIS cylinders. This method substantially improves on previous approaches by using simple instrumentation to unlock an array of alignment patterns with a variety of self-assembling polymers and provides feasibility and flexibility for practical industrial production. Next, the interfacial mixing characteristics of tapered block polymer were

  7. Ordered silicon nanowire arrays prepared by an improved nanospheres self-assembly in combination with Ag-assisted wet chemical etching

    NASA Astrophysics Data System (ADS)

    Jia, Guobin; Westphalen, Jasper; Drexler, Jan; Plentz, Jonathan; Dellith, Jan; Dellith, Andrea; Andrä, Gudrun; Falk, Fritz

    2016-04-01

    An improved Langmuir-Blodgett self-assembly process combined with Ag-assisted wet chemical etching for the preparation of ordered silicon nanowire arrays is presented in this paper. The new process is independent of the surface conditions (hydrophilic or hydrophobic) of the substrate, allowing for depositing a monolayer of closely packed polystyrene nanospheres onto any flat surface. A full control of the morphology of the silicon nanowire is achieved. Furthermore, it is observed that the formation of porous-Si at the tips of the nanowires is closely related to the release of Ag nanoparticles from the Ag mask during the etching, which subsequently redeposit on the surface initially free of Ag, and these Ag nanoparticles catalyze the etching of the tips and lead to the porous-Si formation. This finding will help to improve the resulting nano- and microstructures to get them free of pores, and renders it a promising technology for low-cost high throughput fabrication of specific optical devices, photonic crystals, sensors, MEMS, and NEMS by substituting the costly BOSCH process. It is shown that ordered nanowire arrays free of porous structures can be produced if all sources of Ag nanoparticles are excluded, and structures with aspect ratio more than 100 can be produced.

  8. Surfactant self-assembly in oppositely charged polymer networks. Theory.

    PubMed

    Hansson, Per

    2009-10-01

    The interaction of ionic surfactants with polyion networks of opposite charge in an aqueous environment is analyzed theoretically by applying a recent theory of surfactant ion-polyion complex salts (J. Colloid. Int. Sci. 2009, 332, 183). The theory takes into account attractive and repulsive polyion-mediated interactions between the micelles, the deformation of the polymer network, the mixing of micelles, polyion chains, and simple ions with water, and the hydrophobic free energy at the micelle surface. The theory is used to calculate binding isotherms, swelling isotherms, surfactant aggregation numbers, compositions of complexes,and phase structure under various conditions. Factors controlling the gel volume transition and conditions for core/shell phase coexistence are investigated in detail, as well as the influence of salt. In particular, the interplay between electrostatic and elastic interactions is highlighted. Results from theory are compared with experimental data reported in the literature. The agreement is found to be semiquantitative or qualitative. The theory explains both the discrete volume transition observed in systems where the surfactant is in excess over the polyion and the core/shell phase coexistence in systems where the polyion is in excess.

  9. High-performance ambipolar self-assembled Au/Ag nanowire based vertical quantum dot field effect transistor

    NASA Astrophysics Data System (ADS)

    Song, Xiaoxian; Zhang, Yating; Zhang, Haiting; Yu, Yu; Cao, Mingxuan; Che, Yongli; Wang, Jianlong; Dai, Haitao; Yang, Junbo; Ding, Xin; Yao, Jianquan

    2016-10-01

    Most lateral PbSe quantum dot field effect transistors (QD FETs) show a low on current/off current (I on/I off) ratio in charge transport measurements. A new strategy to provide generally better performance is to design PbSe QD FETs with vertical architecture, in which the structure parameters can be tuned flexibly. Here, we fabricated a novel room-temperature operated vertical quantum dot field effect transistor with a channel of 580 nm, where self-assembled Au/Ag nanowires served as source transparent electrodes and PbSe quantum dots as active channels. Through investigating the electrical characterization, the ambipolar device exhibited excellent characteristics with a high I on/I off current ratio of about 1 × 105 and a low sub-threshold slope (0.26 V/decade) in the p-type regime. The all-solution processing vertical architecture provides a convenient way for low cost, large-area integration of the device.

  10. From single atoms to self-assembled quantum single-atomic nanowires: noble metal atoms on black phosphorene monolayers.

    PubMed

    Zhao, X J; Shan, Wen-Wen; He, Hao; Xue, Xinlian; Guo, Z X; Li, S F

    2017-03-15

    Transition metal (TM) nanostructures, such as one dimensional (1D) nanowires with/without substrates, usually possess drastically different properties from their bulk counterparts, due to their distinct stacking and electronic confinement. Correspondingly, it is of great importance to establish the dominant driving force in forming 1D single-metal-atom-wires (SMAWs). Here, with first-principles calculations, taking the black phosphorene (BP) monolayer as a prototype 2D substrate, we investigate the energetic and kinetic properties of all the 5d-TM atoms on the 2D substrate to reveal the mechanism of formation of SMAWs. In contrast to other 5d- and 4d-TMs, noble metal elements Pd and Pt are found to prefer to grow along the trough in an atom-by-atom manner, self-assembling into SMAWs with a significant magic growth behavior. This is due to distinct binding energies and diffusion barriers along the trough, i.e., zig-zag direction, as compared to other directions of the BP. The present findings are valuable in the fabrication and modulation of 1D nanostructures which can be anticipated to possess desirable functionalities for potential applications such as in nanocatalysis, nanosensors, and related areas.

  11. High-performance ambipolar self-assembled Au/Ag nanowire based vertical quantum dot field effect transistor.

    PubMed

    Song, Xiaoxian; Zhang, Yating; Zhang, Haiting; Yu, Yu; Cao, Mingxuan; Che, Yongli; Wang, Jianlong; Dai, Haitao; Yang, Junbo; Ding, Xin; Yao, Jianquan

    2016-10-07

    Most lateral PbSe quantum dot field effect transistors (QD FETs) show a low on current/off current (I on/I off) ratio in charge transport measurements. A new strategy to provide generally better performance is to design PbSe QD FETs with vertical architecture, in which the structure parameters can be tuned flexibly. Here, we fabricated a novel room-temperature operated vertical quantum dot field effect transistor with a channel of 580 nm, where self-assembled Au/Ag nanowires served as source transparent electrodes and PbSe quantum dots as active channels. Through investigating the electrical characterization, the ambipolar device exhibited excellent characteristics with a high I on/I off current ratio of about 1 × 10(5) and a low sub-threshold slope (0.26 V/decade) in the p-type regime. The all-solution processing vertical architecture provides a convenient way for low cost, large-area integration of the device.

  12. Polymer Directed Self-Assembly of pH-Responsive Antioxidant Nanoparticles

    PubMed Central

    Tang, Christina; Amin, Devang; Messersmith, Phillip B.; Anthony, John E.; Prud’homme, Robert K.

    2015-01-01

    We have developed pH-responsive, multifunctional nanoparticles based on encapsulation of an antioxidant, tannic acid (TA), using Flash NanoPrecipitation, a polymer directed self-assembly method. Formation of insoluble coordination complexes of tannic acid and iron during mixing drives nanoparticle assembly. Tuning the core material to polymer ratio, the size of the nanoparticles can be readily tuned between 50 and 265 nm. The resulting nanoparticle is pH-responsive, i.e. stable at pH 7.4 and soluble under acidic conditions due to the nature of the coordination complex. Further, the coordination complex can be coprecipitated with other hydrophobic materials such as therapeutics or imaging agents. For example, coprecipitation with a hydrophobic fluorescent dye creates fluorescent nanoparticles. In vitro, the nanoparticles have low cytotoxicity show antioxidant activity. Therefore, these particles may facilitate intracellular delivery of antioxidants. PMID:25760226

  13. Polymer directed self-assembly of pH-responsive antioxidant nanoparticles.

    PubMed

    Tang, Christina; Amin, Devang; Messersmith, Phillip B; Anthony, John E; Prud'homme, Robert K

    2015-03-31

    We have developed pH-responsive, multifunctional nanoparticles based on encapsulation of an antioxidant, tannic acid (TA), using flash nanoprecipitation, a polymer directed self-assembly method. Formation of insoluble coordination complexes of tannic acid and iron during mixing drives nanoparticle assembly. Tuning the core material to polymer ratio, the size of the nanoparticles can be readily tuned between 50 and 265 nm. The resulting nanoparticle is pH-responsive, i.e., stable at pH 7.4 and soluble under acidic conditions due to the nature of the coordination complex. Further, the coordination complex can be coprecipitated with other hydrophobic materials such as therapeutics or imaging agents. For example, coprecipitation with a hydrophobic fluorescent dye creates fluorescent nanoparticles. In vitro, the nanoparticles have low cytotoxicity and show antioxidant activity. Therefore, these particles may facilitate intracellular delivery of antioxidants.

  14. Assembly of polythiophenes on responsive polymer microgels for the highly selective detection of ammonia gas

    SciTech Connect

    Chang, Aiping; Peng, Yahui; Li, Zezhou; Yu, Xiang; Hong, Kunlun; Zhou, Shuiqin; Wu, Weitai

    2016-04-05

    For this study, a class of smart composite materials based on the assembly of conjugated polymers on responsive polymer microgels has been prepared. We have chosen poly(3-((2-(2-methoxyethoxy)ethoxy)methyl)-thiophene) as the model conjugated polymer and an ammonia-responsive microgel of phenoxazinium-functionalized poly(N-isopropylacrylamide-co-propargyl acrylate) as the model template. Under this design, the composite materials can combine the electrical conductivity of the conjugated polymers and the ammonia recognisability of the ammonia-responsive polymer microgels; the cooperation of these properties allows the reversible control of electrical conductivity by ammonia gas. Those composite materials can not only adapt to ammonia gas, but also convert changes in the concentration of ammonia into conductance, allowing the electrical detection of ammonia gas with high selectivity. This makes the composite materials different from the conductive polymer platforms reported previously, which may also respond to non-ammonia gases and the response induced by non-ammonia gases is close to that induced by ammonia gas. Using these composite materials as sensing materials for the electrical detection of ammonia gas, the detection limit can reach as low as 1.1 ppb. Finally, these features enable their use for the electrical detection of ammonia in breath.

  15. Assembly of polythiophenes on responsive polymer microgels for the highly selective detection of ammonia gas

    DOE PAGES

    Chang, Aiping; Peng, Yahui; Li, Zezhou; ...

    2016-04-05

    For this study, a class of smart composite materials based on the assembly of conjugated polymers on responsive polymer microgels has been prepared. We have chosen poly(3-((2-(2-methoxyethoxy)ethoxy)methyl)-thiophene) as the model conjugated polymer and an ammonia-responsive microgel of phenoxazinium-functionalized poly(N-isopropylacrylamide-co-propargyl acrylate) as the model template. Under this design, the composite materials can combine the electrical conductivity of the conjugated polymers and the ammonia recognisability of the ammonia-responsive polymer microgels; the cooperation of these properties allows the reversible control of electrical conductivity by ammonia gas. Those composite materials can not only adapt to ammonia gas, but also convert changes in the concentrationmore » of ammonia into conductance, allowing the electrical detection of ammonia gas with high selectivity. This makes the composite materials different from the conductive polymer platforms reported previously, which may also respond to non-ammonia gases and the response induced by non-ammonia gases is close to that induced by ammonia gas. Using these composite materials as sensing materials for the electrical detection of ammonia gas, the detection limit can reach as low as 1.1 ppb. Finally, these features enable their use for the electrical detection of ammonia in breath.« less

  16. Controlling the assembly of nanoparticle mixtures with two orthogonal polymer complexation reactions.

    PubMed

    Zhang, Dan; Pelton, Robert

    2012-02-14

    Self-assembly from mixed dispersions of three sizes of monodisperse polystyrene nanoparticles, large (L), medium (M), and small (S), was controlled by coating each particle type with either a monofunctional or bifunctional polymer capable of participating in specific complexation reactions. The complexation reactions were (1) complexation between phenolic polymers and polyethylene glycol (PEG) containing polymers and (2) condensation of phenylboronic acid containing polymers with polyols. These complexation reactions function independently and can be "turned off" independently; phenylboronic acid complexation was reversed by lowering the pH, whereas the interactions of phenolic copolymers with PEG copolymers could be reversed by adding excess PEG homopolymer. The specificity and reversibility of the interactions was demonstrated by the formation of simple binary aggregates from mixtures. The bifunctional copolymers were poly(vinyl phenol-co-diallyldimethyl ammonium chloride), Ph-DADMAC, and poly(3-acrylamide phenylboronic acid-co-PEG methacrylate), PBA-PEG. The monofunctional polymer was polyvinylalcohol, PVA. Ph-DADMAC forms complexes with PBA-PEG (H-bonding) and with anionic surfaces or polymers (electrostatic/polyelectrolyte complexation). PBA-PEG complexes with Ph-DADMAC (H-bonding) and with PVA (boronate ester formation). PVA does not interact with Ph-DADMAC; therefore, PVA coated particles do not deposit onto Ph-DADMAC coated particles.

  17. Markov model-based polymer assembly from force field-parameterized building blocks

    NASA Astrophysics Data System (ADS)

    Durmaz, Vedat

    2015-03-01

    A conventional by hand construction and parameterization of a polymer model for the purpose of molecular simulations can quickly become very work-intensive and time-consuming. Using the example of polyglycerol, I present a polymer decompostion strategy yielding a set of five monomeric residues that are convenient for an instantaneous assembly and subsequent force field simulation of a polyglycerol polymer model. Force field parameters have been developed in accordance with the classical Amber force field. Partial charges of each unit were fitted to the electrostatic potential using quantum-chemical methods and slightly modified in order to guarantee a neutral total polymer charge. In contrast to similarly constructed models of amino acid and nucleotide sequences, the glycerol building blocks may yield an arbitrary degree of bifurcations depending on the underlying probabilistic model. The iterative development of the overall structure as well as the relation of linear to branching units is controlled by a simple Markov model which is presented with few algorithmic details. The resulting polymer is highly suitable for classical explicit water molecular dynamics simulations on the atomistic level after a structural relaxation step. Moreover, the decomposition strategy presented here can easily be adopted to many other (co)polymers.

  18. Atomic-Thick PtNi Nanowires Assembled on Graphene for High-Sensitivity Extracellular Hydrogen Peroxide Sensors.

    PubMed

    Sun, Yingjun; Luo, Mingchuan; Qin, Yingnan; Zhu, Sihao; Li, Yingjie; Xu, Nuoyan; Meng, Xiangxi; Ren, Qiushi; Wang, Lei; Guo, Shaojun

    2017-10-11

    H2O2 sensors with high sensitivity and selectivity are essential for monitoring the normal activities of cells. Inorganic catalytic nanomaterials show the obvious advantage in boosting the sensitivity of H2O2 sensors; however, the H2O2 detection limit of reported inorganic catalysts is still limited, which is not suitable for high-sensitivity detection of H2O2 in real cells. Herein, novel atomic-thick PtNi nanowires (NWs) were synthesized and assembled on reduced graphene oxide (rGO) via an ultrasonic self-assembly method to attain PtNi NWs/rGO composite for boosting the electroanalysis of H2O2. In 0.05 M phosphate-buffered saline (pH 7.4) solution, the as-prepared PtNi NWs/rGO shows an extraordinary performance in quantifying H2O2 in a wide range of concentrations from 1 nM to 5.3 mM. Significantly, the detection limit of PtNi NWs/rGO reaches unprecedented 0.3 nM at an applied potential of -0.6 V (vs Ag/AgCl), which enables the detection of traced amounts of H2O2 released from Raw 264.7 cells. The excellent performance of H2O2 detection on PtNi NWs/rGO is ascribed to the high-density active sites of atomic-thick PtNi NWs.

  19. Simultaneous Nano- and Microscale Control of Nanofibrous Microspheres Self-Assembled from Star-Shaped Polymers.

    PubMed

    Zhang, Zhanpeng; Marson, Ryan L; Ge, Zhishen; Glotzer, Sharon C; Ma, Peter X

    2015-07-08

    Star-shaped polymers with varying arm numbers and arm lengths are synthesized, and self-assembled into microspheres, which are either smooth or fibrous on the nanoscale, and either nonhollow, hollow, or spongy on the microscale. The molecular architecture and functional groups determine the structure on both length scales. This exciting mechanistic discovery guides simultaneous control of both the nano- and microfeatures of the microspheres.

  20. Directed self-assembly of block copolymers for high breakdown strength polymer film capacitors

    SciTech Connect

    Samant, Saumil P.; Grabowski, Christopher A.; Kisslinger, Kim; Yager, Kevin G.; Yuan, Guangcui; Satija, Sushil K.; Durstock, Michael F.; Raghavan, Dharmaraj; Karim, Alamgir

    2016-03-04

    Emerging needs for fast charge/discharge yet high-power, lightweight, and flexible electronics requires the use of polymer-film-based solid-state capacitors with high energy densities. Fast charge/discharge rates of film capacitors on the order of microseconds are not achievable with slower charging conventional batteries, supercapacitors and related hybrid technologies. However, the current energy densities of polymer film capacitors fall short of rising demand, and could be significantly enhanced by increasing the breakdown strength (EBD) and dielectric permittivity (εr) of the polymer films. Co-extruded two-homopolymer component multilayered films have demonstrated much promise in this regard showing higher EBD over that of component polymers. Multilayered films can also help incorporate functional features besides energy storage, such as enhanced optical, mechanical, thermal and barrier properties. In this work, we report accomplishing multilayer, multicomponent block copolymer dielectric films (BCDF) with soft-shear driven highly oriented self-assembled lamellar diblock copolymers (BCP) as a novel application of this important class of self-assembling materials. Results of a model PS-b-PMMA system show ~50% enhancement in EBD of self-assembled multilayer lamellar BCP films compared to unordered as-cast films, indicating that the breakdown is highly sensitive to the nanostructure of the BCP. The enhancement in EBD is attributed to the “barrier effect”, where the multiple interfaces between the lamellae block components act as barriers to the dielectric breakdown through the film. The increase in EBD corresponds to more than doubling the energy storage capacity using a straightforward directed self-assembly strategy. Lastly, this approach opens a new nanomaterial paradigm for designing high energy density dielectric materials.

  1. Directed Self-Assembly of Block Copolymers for High Breakdown Strength Polymer Film Capacitors

    SciTech Connect

    Samant, Saumil P.; Grabowski, Christopher A.; Kisslinger, Kim; Yager, Kevin G.; Yuan, Guangcui; Satija, Sushil K.; Durstock, Michael F.; Raghavan, Dharmaraj; Karim, Alamgir

    2016-03-04

    Emerging needs for fast charge/discharge yet high-power, lightweight, and flexible electronics requires the use of polymer-film-based solid-state capacitors with high energy densities. Fast charge/discharge rates of film capacitors on the order of microseconds are not achievable with slower charging conventional batteries, supercapacitors and related hybrid technologies. However, the current energy densities of polymer film capacitors fall short of rising demand, and could be significantly enhanced by increasing the breakdown strength (EBD) and dielectric permittivity (εr) of the polymer films. Co-extruded two-homopolymer component multilayered films have demonstrated much promise in this regard showing higher EBD over that of component polymers. Multilayered films can also help incorporate functional features besides energy storage, such as enhanced optical, mechanical, thermal and barrier properties. In this work, we report accomplishing multilayer, multicomponent block copolymer dielectric films (BCDF) with soft-shear driven highly oriented self-assembled lamellar diblock copolymers (BCP) as a novel application of this important class of self-assembling materials. Results of a model PS-b-PMMA system show ~50% enhancement in EBD of self-assembled multilayer lamellar BCP films compared to unordered as-cast films, indicating that the breakdown is highly sensitive to the nanostructure of the BCP. The enhancement in EBD is attributed to the “barrier effect”, where the multiple interfaces between the lamellae block components act as barriers to the dielectric breakdown through the film. The increase in EBD corresponds to more than doubling the energy storage capacity using a straightforward directed self-assembly strategy. This approach opens a new nanomaterial paradigm for designing high energy density dielectric materials.

  2. Directed self-assembly of block copolymers for high breakdown strength polymer film capacitors

    DOE PAGES

    Samant, Saumil P.; Grabowski, Christopher A.; Kisslinger, Kim; ...

    2016-03-04

    Emerging needs for fast charge/discharge yet high-power, lightweight, and flexible electronics requires the use of polymer-film-based solid-state capacitors with high energy densities. Fast charge/discharge rates of film capacitors on the order of microseconds are not achievable with slower charging conventional batteries, supercapacitors and related hybrid technologies. However, the current energy densities of polymer film capacitors fall short of rising demand, and could be significantly enhanced by increasing the breakdown strength (EBD) and dielectric permittivity (εr) of the polymer films. Co-extruded two-homopolymer component multilayered films have demonstrated much promise in this regard showing higher EBD over that of component polymers. Multilayeredmore » films can also help incorporate functional features besides energy storage, such as enhanced optical, mechanical, thermal and barrier properties. In this work, we report accomplishing multilayer, multicomponent block copolymer dielectric films (BCDF) with soft-shear driven highly oriented self-assembled lamellar diblock copolymers (BCP) as a novel application of this important class of self-assembling materials. Results of a model PS-b-PMMA system show ~50% enhancement in EBD of self-assembled multilayer lamellar BCP films compared to unordered as-cast films, indicating that the breakdown is highly sensitive to the nanostructure of the BCP. The enhancement in EBD is attributed to the “barrier effect”, where the multiple interfaces between the lamellae block components act as barriers to the dielectric breakdown through the film. The increase in EBD corresponds to more than doubling the energy storage capacity using a straightforward directed self-assembly strategy. Lastly, this approach opens a new nanomaterial paradigm for designing high energy density dielectric materials.« less

  3. Polymer Grafted Nanoparticle Assemblies: From Optical to Mechanical Performance through Clusters, Monolayers and Monoliths

    NASA Astrophysics Data System (ADS)

    Vaia, Richard

    Solution or melt-based fabrication of large area, matrix-free, ordered assemblies of polymer grafted nanoparticles (PGN) will enable additive manufacturing of novel membrane, electronic, and photonic elements. Due to the single component nature of these hybrids, aggregation and phase separation common in blended polymer nanocomposites are avoided. Architecturally, PGNs combine characteristics of colloids, brushes and high molecular weight polymers. Thus the processing-structure-property relationship of the entangled PGN assembly is unique from analogous condensed nano-structures, such as ligand stabilized nanoparticles, hard-sphere colloids, star macromolecules and linear chain - nanoparticle blends. Here in, we will discuss the intermediate character of PGNs with respect to deformability, physical aging, and rapid fabrication of stable, large-area, ordered PGN monolayers. For example, processing via flow coating follows that of classic colloids; however local structure and order within the PGN assembly is determined by the canopy architecture and substrate interactions. From this insight, large-area (cm2), highly-ordered, monolayer polystyrene-Au nanoparticle films that are resistant to de-wetting can be fabricated on substrates with high interface energy (80 mN/m) within seconds using flow-coating and a volatile solvent (THF). Overall these findings imply intriguing parallels between PGN assemblies and other mesoscale ordered polymeric systems including hard-soft block copolymers and semi-crystalline polymers. With the appropriate corona architecture, PGNs afford opportunities to design high inorganic fraction hybrids that retain processibility and enable the creation of films and fibers for next generation optoelectronic applications. Aknowledgement: Justin Che, Christopher A. Grabowski, Yang Jiao, Ming-Siao Hsiao, Kyoungweon Park, Lawrence Drummy.

  4. Directed Self-Assembly of Block Copolymers for High Breakdown Strength Polymer Film Capacitors.

    PubMed

    Samant, Saumil P; Grabowski, Christopher A; Kisslinger, Kim; Yager, Kevin G; Yuan, Guangcui; Satija, Sushil K; Durstock, Michael F; Raghavan, Dharmaraj; Karim, Alamgir

    2016-03-01

    Emerging needs for fast charge/discharge yet high-power, lightweight, and flexible electronics requires the use of polymer-film-based solid-state capacitors with high energy densities. Fast charge/discharge rates of film capacitors on the order of microseconds are not achievable with slower charging conventional batteries, supercapacitors and related hybrid technologies. However, the current energy densities of polymer film capacitors fall short of rising demand, and could be significantly enhanced by increasing the breakdown strength (EBD) and dielectric permittivity (εr) of the polymer films. Co-extruded two-homopolymer component multilayered films have demonstrated much promise in this regard showing higher EBD over that of component polymers. Multilayered films can also help incorporate functional features besides energy storage, such as enhanced optical, mechanical, thermal and barrier properties. In this work, we report accomplishing multilayer, multicomponent block copolymer dielectric films (BCDF) with soft-shear driven highly oriented self-assembled lamellar diblock copolymers (BCP) as a novel application of this important class of self-assembling materials. Results of a model PS-b-PMMA system show ∼50% enhancement in EBD of self-assembled multilayer lamellar BCP films compared to unordered as-cast films, indicating that the breakdown is highly sensitive to the nanostructure of the BCP. The enhancement in EBD is attributed to the "barrier effect", where the multiple interfaces between the lamellae block components act as barriers to the dielectric breakdown through the film. The increase in EBD corresponds to more than doubling the energy storage capacity using a straightforward directed self-assembly strategy. This approach opens a new nanomaterial paradigm for designing high energy density dielectric materials.

  5. Three-dimensional triple hierarchy formed by self-assembly of wax crystals on CuO nanowires for nonwettable surfaces.

    PubMed

    Lee, Jun-Young; Pechook, Sasha; Jeon, Deok-Jin; Pokroy, Boaz; Yeo, Jong-Souk

    2014-04-09

    Novel hierarchical surfaces combining paraffin wax crystals and CuO nanowires are presented. We demonstrate a bioinspired hierarchical wax on nanowire (NW) structures having high water and ethylene glycol repellence. In general, vertically grown nanowire arrays can provide a superhydrophobic surface (SHS) due to extremely high surface roughness but cannot repel ethylene glycol. In this paper, C36H74 and C50H102 waxes are thermally evaporated on the surface of CuO NWs, forming highly ordered, three-dimensional (3D) hierarchical structures via self-assembly of wax crystals. These two and three level hierarchical structures provide perfect self-cleaning characteristics, with water contact angles (CAs) exceeding 170°. Furthermore, C36H74 and C50H102 wax crystals assembled perpendicularly to the longitudinal NW axis form a re-entrant (that is, a multivalued surface topography) curvature enabling high repellence to ethylene glycol (EG) with CAs exceeding 160°. We analyze the wettability dependence on wax crystal size and structure for the optimization of nonwettable hierarchical structured surfaces.

  6. All Nanowire Integrated Sensor Circuitry

    DTIC Science & Technology

    2008-04-01

    of single crystalline nanomaterials. Highly ordered and parallel arrays of optically active CdSe nanowires and high mobility Ge/Si nanowires are...for enabling the fabrication of the all- nanowire sensor circuitry. First, highly aligned CdSe and Ge/Si NW arrays were assembled at pre-defined...FETs (Tl and T2) amplifying the photoresponse of a CdSe nanosensor. (B) Schematic of the all- nanowire optical sensor circuit based on ordered

  7. Conjugated polymer-silicon nanowire array hybrid Schottky diode for solar cell application.

    PubMed

    Zhang, Fute; Song, Tao; Sun, Baoquan

    2012-05-17

    The hybrid Schottky diode based on silicon nanowire arrays (SiNWs) and poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT:PSS) has been fabricated for high performance solar cells. The length of SiNWs on a silicon substrate, which is prepared by metal-assisted chemical etching, can be tuned by adjusting the length of the etching time. In addition, the average distances between the adjacent silicon nanowires can be controlled by changing the immersing time in a saturated PCl(5) solution. The hybrid devices are made from the SiNWs with different wire lengths and various distances between adjacent wires by spin-casting PEDOT:PSS on the silicon substrates. It is found that the length and density play leading roles in the electric output characteristics. The device made from SiNWs with optimum morphology can achieve a power conversion efficiency of 7.3%, which is much improved in comparison with that of the planar one. The measurement of the transient photovoltage decay and the analysis of the current versus voltage curve indicate that the charge recombination process is a dominant factor on the device performance.

  8. Conjugated polymer-silicon nanowire array hybrid Schottky diode for solar cell application

    NASA Astrophysics Data System (ADS)

    Zhang, Fute; Song, Tao; Sun, Baoquan

    2012-05-01

    The hybrid Schottky diode based on silicon nanowire arrays (SiNWs) and poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT:PSS) has been fabricated for high performance solar cells. The length of SiNWs on a silicon substrate, which is prepared by metal-assisted chemical etching, can be tuned by adjusting the length of the etching time. In addition, the average distances between the adjacent silicon nanowires can be controlled by changing the immersing time in a saturated PCl5 solution. The hybrid devices are made from the SiNWs with different wire lengths and various distances between adjacent wires by spin-casting PEDOT:PSS on the silicon substrates. It is found that the length and density play leading roles in the electric output characteristics. The device made from SiNWs with optimum morphology can achieve a power conversion efficiency of 7.3%, which is much improved in comparison with that of the planar one. The measurement of the transient photovoltage decay and the analysis of the current versus voltage curve indicate that the charge recombination process is a dominant factor on the device performance.

  9. Minimal energy packings of weakly semiflexible polymers: Application to targeted self-assembly of nanostructures

    NASA Astrophysics Data System (ADS)

    Harwayne-Gidansky, Jared; Hoy, Robert S.; O'Hern, Corey S.

    2012-02-01

    Using exact enumeration, we characterize how structure, mechanical and thermodynamic stability of minimal energy packings of short ``sticky tangent sphere'' (SHS) polymer chains vary with angular interaction strength kb and equilibrium bond angle θ0. While flexible SHS polymers possess highly degenerate ground states (i. e. many differently ordered ``macrostates'' [1]), angular interactions dramatically break this degeneracy. The macrostate associated with the ground state semiflexible packing changes as kb and θ0 are varied. Further degeneracy breaking arises from angular interactions' influence on packing size, asymmetry, and vibrational entropy. The strength of these effects increases with chain length N. Our exact analysis provides design principles for self-assembly of polymers into a variety of structures that can be tuned by varying N, kb and θ0. [4pt] [1] R. S. Hoy and C. S. O'Hern, Phys. Rev. Lett. 105, 068001 (2010).

  10. Electrospun conjugated polymer nanofibers as miniaturized light sources: control of morphology, optical properties, and assembly

    NASA Astrophysics Data System (ADS)

    Camposeo, A.; Fasano, V.; Moffa, M.; Polini, A.; Di Camillo, D.; Ruggieri, F.; Santucci, S.; Lozzi, L.; Persano, L.; Pisignano, D.

    2014-10-01

    Light-emitting nanostructures made by conjugated polymers show interesting emission and electronic properties. In this work we report on novel approaches for the fabrication and control of light-emitting nanofibers by electrospinning. The shape, size and light-emitting properties of the fibers can be specifically tailored by acting on the composition of the solution used for the electrospinning process, an approach allowing for obtaining fibers ranging from micrometer-sized ribbons to almost cylindrical fibers with diameters down to few hundreds of nanometers. Moreover, following proper process optimization these fibers can also be precisely positioned in ordered arrays by near-field electrospinning, a method that exploits the stable region of the polymer jet. The possibility of precisely shaping the conjugated polymer fibers and of assembling the fiber in ordered arrays, combined with enhanced emission properties, opens interesting perspectives for developing novel emitting flexible nanomaterials suitable for light sourcing and optical sensing.

  11. Kinetic Assembly of Near-IR Active Gold Nanoclusters using Weakly Adsorbing Polymers to Control Size

    PubMed Central

    Tam, Jasmine M.; Murthy, Avinash K.; Ingram, Davis R.; Nguyen, Robin; Sokolov, Konstantin V.; Johnston, Keith P.

    2013-01-01

    Clusters of metal nanoparticles with an overall size less than 100 nm and high metal loadings for strong optical functionality, are of interest in various fields including microelectronics, sensors, optoelectronics and biomedical imaging and therapeutics. Herein we assemble ~5 nm gold particles into clusters with controlled size, as small as 30 nm and up to 100 nm, which contain only small amounts of polymeric stabilizers. The assembly is kinetically controlled with weakly adsorbing polymers, PLA(2K)-b-PEG(10K)-b-PLA(2K) or PEG (MW = 3350), by manipulating electrostatic, van der Waals (VDW), steric, and depletion forces. The cluster size and optical properties are tuned as a function of particle volume fractions and polymer/gold ratios to modulate the interparticle interactions. The close spacing between the constituent gold nanoparticles and high gold loadings (80–85% w/w gold) produce a strong absorbance cross section of ~9×10−15 m2 in the NIR at 700 nm. This morphology results from VDW and depletion attractive interactions that exclude the weakly adsorbed polymeric stabilizer from the cluster interior. The generality of this kinetic assembly platform is demonstrated for gold nanoparticles with a range of surface charges from highly negative to neutral, with the two different polymers. PMID:20361735

  12. Tuning assembly size in Peptide-based supramolecular polymers by modulation of subunit association affinity.

    PubMed

    Oshaben, Kaylyn M; Horne, W Seth

    2014-04-14

    Nature uses proteins and nucleic acids to form a wide array of functional architectures, and scientists have found inspiration from these structures in the rational design of synthetic biomaterials. We have recently shown that a modular subunit consisting of two α-helical coiled coil peptides attached at their midpoints by an organic linking group can spontaneously self-assemble in aqueous solution to form a soluble supramolecular polymer. Here we explore the use of coiled-coil association affinity, readily tuned by amino acid sequence, as a means to predictably alter properties of these supramolecular assemblies. A series of dimeric coiled-coil peptide sequences with identical quaternary folded structures but systematically altered folded stability were designed and biophysically characterized. The sequences were cross-linked to generate a series of branched, self-assembling biomacromolecular subunits. A clear relationship is observed between coiled-coil association affinity and apparent hydrodynamic diameter of the supramolecular polymers formed by these subunits. Our results provide a family of soluble supramolecular polymers of tunable size and well-characterized coiled-coil sequences that add to the library of building blocks available for use in the rational design of protein-based supramolecular biomaterials.

  13. Polymer-Carbon Nanotube Composite Films at the Oil/Water Interface: Assembly and Properties

    NASA Astrophysics Data System (ADS)

    Hoagland, David; Feng, Tao; Russell, Thomas P.

    2015-03-01

    Efficient carbon nanotube assembly at the oil/water interface was achieved by dissolving cationic polymers in the oil phase and oxidized nanotubes in the water phase, the two components spontaneously forming salt bridges to produce a composite interfacial film of nanoscopic thickness. As seen by pendant drop tensiometry, parameters such as carbon nanotube and polymer concentration, pH, polymer molecular weight, and degree of nanotube oxidation all affect assembly strongly, with measured trends to be described and explained. The frequency-dependent elastic and viscous moduli of films in dilation were characterized by interfacial pendant drop rheology. Structural (fast, minutes) and adsorption/desorption (slow, tens of minutes) relaxations were both noted, and at frequencies intermediate to the two, almost insensitive to assembly parameters, the films displayed expected behaviors for 2D critical gels, i.e., at the crossover between fluid and solid. Tan(delta) was frequency-independent over one to two decades of frequency, and the modulus of linear stress relaxation was a power law in time. Films wrinkled by larger (nonlinear) strains recovered over the structural relaxation time. Support: NSF-sponsored UMass MRSEC and the US DoE Office of Basic Energy Science through Contract DE-FG02-04ER46126.

  14. Anisotropic Self-Assembly of Supramolecular Polymers and Plasmonic Nanoparticles at the Liquid-Liquid Interface.

    PubMed

    Armao Iv, Joseph J; Nyrkova, Irina; Fuks, Gad; Osypenko, Artem; Maaloum, Mounir; Moulin, Emilie; Arenal, Raul; Gavat, Odile; Semenov, Alexander; Giuseppone, Nicolas

    2017-02-15

    The study of supramolecular polymers in the bulk, in diluted solution, and at the solid-liquid interface has recently become a major topic of interest, going from fundamental aspects to applications in materials science. However, examples of supramolecular polymers at the liquid-liquid interface are mostly unexplored. Here, we describe the supramolecular polymerization of triarylamine molecules and their light-triggered organization at a chloroform-water interface. The resulting interfacial nematic layer of these 1D supramolecular polymers is further used as a template for the precise alignment of spherical gold nanoparticles coming from the water phase. These hybrid thin films are spontaneously formed in a single process, without chemical prefunctionalization of the metallic nanoparticles, and their ordering is improved by centrifugation. The resulting polymer chains and strings of nanoparticles can be co-aligned with high anisotropy over very large distances. By using a combination of experimental and theoretical investigations, we decipher the full sequence of this oriented self-assembly process. In such a highly anisotropic configuration, electron energy loss spectroscopy reveals that the self-assembled nanoparticles behave as plasmonic waveguides.

  15. Carrier Transport Enhancement in Conjugated Polymers through Interfacial Self-Assembly of Solution-State Aggregates.

    PubMed

    Zhao, Kui; Khan, Hadayat Ullah; Li, Ruipeng; Hu, Hanlin; Amassian, Aram

    2016-08-03

    We demonstrate that local and long-range orders of poly(3-hexylthiophene) (P3HT) semicrystalline films can be synergistically improved by combining chemical functionalization of the substrate with solution-state disentanglement and preaggregation of P3HT in a θ solvent, leading to a very significant enhancement of the field effect carrier mobility. The preaggregation and surface functionalization effects combine to enhance the carrier mobility nearly 100-fold as compared with standard film preparation by spin-coating, and nearly 10-fold increase over the benefits of preaggregation alone. In situ quartz crystal microbalance with dissipation (QCM-D) experiments reveal enhanced deposition of preaggregates on surfaces modified with an alkyl-terminated self-assembled monolayer (SAM) in comparison to unaggregated polymer chains in the same conditions. Additional measurements reveal the combined preaggregation and surface functionalization significantly enhances local order of the conjugated polymer through planarization and extension of the conjugated backbone of the polymer which clearly translate to significant improvements of carrier transport at the semiconductor-dielectric interface in organic thin film transistors. This study points to opportunities in combining complementary routes, such as well-known preaggregation with substrate chemical functionalization, to enhance the polymer self-assembly and improve its interfacial order with benefits for transport properties.

  16. Enhanced performance of blue polymer light-emitting diodes by a self-assembled thin interlayer.

    PubMed

    Kim, Yun Ho; Lee, Wonjoo; Cai, Gangri; Baek, Su Jin; Han, Sung-Hwan; Lee, Soo-Hyoung

    2008-09-01

    High efficiency and long lifetime, blue polymer light-emitting diodes were obtained by adding a thin interlayer, which was fabricated by a layer-by-layer self-assembly technique between poly(3,4-ethylene dioxythiophene)-poly(styrene sulfonic acid) (PEDOT:PSS) hole transporting and emissive polymer layers in the device configuration of indium tin oxide (ITO)/PEDOT:PSS (65 nm)/interlayer (10-30 nm)/emissive polymer (70 nm)/BaF2 (2 nm)/Ca (50 nm)/Al (300 nm). The interlayer, (PPV/PSS)n, consisted of self-assembled multilayers of the conjugated polymer, poly (p-phenylenevinylene) (PPV), and the polyelectrolyte, poly (styrene sulfonic acid) (PSS). Electroluminescence (EL) characteristics such as luminescence and current efficiency of the devices were enhanced by the addition of the interlayer. Furthermore, the devices with interlayer showed longer lifetime than those without interlayer. The maximum device performance was obtained from the device with (PPV/PSS)3 interlayer.

  17. Precisely Assembled Cyclic Gold Nanoparticle Frames by 2D Polymer Single-Crystal Templating.

    PubMed

    Mei, Shan; Qi, Hao; Zhou, Tian; Li, Christopher Y

    2017-07-27

    In recent decades, extensive studies have been devoted to assembling nanoparticles (NPs) into various ordered structures to achieve novel optical properties. However, it still remains a challenging task to assemble NPs into cyclic one-dimensional (1D) shapes, such as rings and frames. Herein, we report a directed assembly method to precisely assemble NPs into well-defined, free-standing frames using polymer single crystals (PSCs) as the template. Preformed poly(ethylene oxide) (PEO) single crystals were used as the template to direct the crystallization of block copolymer (BCP) poly(ethylene oxide)-b-poly(4-vinylpyridine) (PEO-b-P4VP), which directs the gold NPs (AuNPs) to form AuNP frames. By controlling the PSC growth, we were able to, for the first time, precisely tune both the size and width of the AuNP frame. These novel AuNP frames topologically resemble NP nanorings and cyclic polymer chains, and show unique surface plasmon resonance (SPR) behaviors. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Depletion forces drive polymer-like self-assembly in vibrofluidized granular materials†

    PubMed Central

    Nossal, Ralph

    2011-01-01

    Ranging from nano- to granular-scales, control of particle assembly can be achieved by limiting the available free space, for example by increasing the concentration of particles (“crowding”) or through their restriction to 2D environments. It is unclear, however, if self-assembly principles governing thermally-equilibrated molecules can also apply to mechanically-excited macroscopic particles in non-equilibrium steady-state. Here we show that low densities of vibrofluidized steel rods, when crowded by high densities of spheres and confined to quasi-2D planes, can self-assemble into linear polymer-like structures. Our 2D Monte Carlo simulations show similar finite sized aggregates in thermally equilibrated binary mixtures. Using theory and simulations, we demonstrate how depletion interactions create oriented “binding” forces between rigid rods to form these “living polymers.” Unlike rod-sphere mixtures in 3D that can demonstrate well-defined equilibrium phases, our mixtures confined to 2D lack these transitions because lower dimensionality favors the formation of linear aggregates, thus suppressing a true phase transition. The qualitative and quantitative agreement between equilibrium and granular patterning for these mixtures suggests that entropy maximization is the determining driving force for bundling. Furthermore, this study uncovers a previously unknown patterning behavior at both the granular and nanoscales, and may provide insights into the role of crowding at interfaces in molecular assembly. PMID:22039392

  19. Tunable self-assembly of genetically engineered silk--elastin-like protein polymers.

    PubMed

    Xia, Xiao-Xia; Xu, Qiaobing; Hu, Xiao; Qin, Guokui; Kaplan, David L

    2011-11-14

    Silk--elastin-like protein polymers (SELPs), consisting of the repeating units of silk and elastin blocks, combine a set of outstanding physical and biological properties of silk and elastin. Because of the unique properties, SELPs have been widely fabricated into various materials for the applications in drug delivery and tissue engineering. However, little is known about the fundamental self-assembly characteristics of these remarkable polymers. Here we propose a two-step self-assembly process of SELPs in aqueous solution for the first time and report the importance of the ratio of silk-to-elastin blocks in a SELP's repeating unit on the assembly of the SELP. Through precise tuning of the ratio of silk to elastin, various structures including nanoparticles, hydrogels, and nanofibers could be generated either reversibly or irreversibly. This assembly process might provide opportunities to generate innovative smart materials for biosensors, tissue engineering, and drug delivery. Furthermore, the newly developed SELPs in this study may be potentially useful as biomaterials for controlled drug delivery and biomedical engineering.

  20. Self-assembling semiconducting polymers--rods and gels from electronic materials.

    PubMed

    Clark, Andrew P-Z; Shi, Chenjun; Ng, Benny C; Wilking, James N; Ayzner, Alexander L; Stieg, Adam Z; Schwartz, Benjamin J; Mason, Thomas G; Rubin, Yves; Tolbert, Sarah H

    2013-02-26

    In an effort to favor the formation of straight polymer chains without crystalline grain boundaries, we have synthesized an amphiphilic conjugated polyelectrolyte, poly(fluorene-alt-thiophene) (PFT), which self-assembles in aqueous solutions to form cylindrical micelles. In contrast to many diblock copolymer assemblies, the semiconducting backbone runs parallel, not perpendicular, to the long axis of the cylindrical micelle. Solution-phase micelle formation is observed by X-ray and visible light scattering. The micelles can be cast as thin films, and the cylindrical morphology is preserved in the solid state. The effects of self-assembly are also observed through spectral shifts in optical absorption and photoluminescence. Solutions of higher-molecular-weight PFT micelles form gel networks at sufficiently high aqueous concentrations. Rheological characterization of the PFT gels reveals solid-like behavior and strain hardening below the yield point, properties similar to those found in entangled gels formed from surfactant-based micelles. Finally, electrical measurements on diode test structures indicate that, despite a complete lack of crystallinity in these self-assembled polymers, they effectively conduct electricity.

  1. Tunable Self-Assembly of Genetically Engineered Silk-Elastin-Like Protein Polymers

    PubMed Central

    Xia, Xiao-Xia; Xu, Qiaobing; Hu, Xiao; Qin, Guokui; Kaplan, David L.

    2011-01-01

    Silk-elastin-like protein polymers (SELPs), consisting of the repeating units of silk and elastin blocks, combine a set of outstanding physical and biological properties of silk and elastin. Due to the unique properties, SELPs have been widely fabricated into various materials for the applications in drug delivery and tissue engineering. However, little is known about the fundamental self-assembly characteristics of these remarkable polymers. Here we propose a two-step self-assembly process of SELPs in aqueous solution for the first time and report the importance of the ratio of silk to elastin blocks in a SELP’s repeating unit on the assembly of the SELP. Through precise tuning of the ratio of silk to elastin, various structures including nanoparticles, hydrogels and nanofibers could be generated either reversibly or irreversibly. This assembly process might provide opportunities to generate innovative smart materials for biosensors, tissue engineering and drug delivery. Furthermore, the newly developed SELPs in this study may be potentially useful as biomaterials for controlled drug delivery and biomedical engineering. PMID:21955178

  2. Dynamical formation of spatially localized arrays of aligned nanowires in plastic films with magnetic anisotropy.

    PubMed

    Fragouli, Despina; Buonsanti, Raffaella; Bertoni, Giovanni; Sangregorio, Claudio; Innocenti, Claudia; Falqui, Andrea; Gatteschi, Dante; Cozzoli, Pantaleo Davide; Athanassiou, Athanassia; Cingolani, Roberto

    2010-04-27

    We present a simple technique for magnetic-field-induced formation, assembling, and positioning of magnetic nanowires in a polymer film. Starting from a polymer/iron oxide nanoparticle casted solution that is allowed to dry along with the application of a weak magnetic field, nanocomposite films incorporating aligned nanocrystal-built nanowire arrays are obtained. The control of the dimensions of the nanowires and of their localization across the polymer matrix is achieved by varying the duration of the applied magnetic field, in combination with the evaporation dynamics. These multifunctional anisotropic free-standing nanocomposite films, which demonstrate high magnetic anisotropy, can be used in a wide field of technological applications, ranging from sensors to microfluidics and magnetic devices.

  3. Novel 3D nano-antennas of self-assembled zinc oxide on silver nanowires

    NASA Astrophysics Data System (ADS)

    Sanchez, John Eder

    The manipulation of geometrical and structural arrangement of nano-devices, especially nanoantennas (nantennnas), is highly desirable for a precise controlling and monitoring of the multidirectional radiation pattern generated from the active elements on nanoantenna (nantenna) applications. Here we report the epitaxial growing of ZnO nanorods preferentially oriented along the [0001] direction on pentagonal faces (010) of Ag nanowires (Ag/ZnO ). The Ag/ZnO nanosystem, resembling an hierarchal aerial antenna, was obtained using an innovative microwave irradiation process. There, the combination of chemical synthesis along accelerated micro wave irradiation digestion process, allows us to control precisely the morphology and distribution of the Ag/ZnO nanostructure. Because of the high order arrangement exhibited for the nanosystem as well as high rate of reproducibility in the production process, we opted to tested the nanostructures in a set of experiments ranging from the bulk properties down to in-situ nanoscale; in order to gain valuable information from the experiments and with the aim to give a real application to the nanomaterial. In this order, first, we described the far and near electric field generated for the nantenna obtained from electrical radiation patterns resulting from phase map reconstruction using off-axis electron holography. It is important to notice that knowing the properties at nanoscale level, it will give key insight of mechanism through which the metal-semiconductor (Ag-ZnO) behaves in opto-electronic applications. In fact, using electric numerical approximations methods for a finite number of ZnO nanorods on Ag nanowires it was shown that the electric radiation intensities maps match closely the experimental results obtained with electron holography. Additionally, to reinforce the understanding of how the metal-semiconductor (Ag-ZnO) nanostructures could be used as an active element on photo-signal reception/transmitter generation it was

  4. Engineering aqueous fiber assembly into silk-elastin-like protein polymers.

    PubMed

    Zeng, Like; Jiang, Linan; Teng, Weibing; Cappello, Joseph; Zohar, Yitshak; Wu, Xiaoyi

    2014-07-01

    Self-assembled peptide/protein nanofibers are valuable 1D building blocks for creating complex structures with designed properties and functions. It is reported that the self-assembly of silk-elastin-like protein polymers into nanofibers or globular aggregates in aqueous solutions can be modulated by tuning the temperature of the protein solutions, the size of the silk blocks, and the charge of the elastin blocks. A core-sheath model is proposed for nanofiber formation, with the silk blocks in the cores and the hydrated elastin blocks in the sheaths. The folding of the silk blocks into stable cores--affected by the size of the silk blocks and the charge of the elastin blocks--plays a critical role in the assembly of silk-elastin nanofibers. Furthermore, enhanced hydrophobic interactions between the elastin blocks at elevated temperatures greatly influence the nanoscale features of silk-elastin nanofibers.

  5. Self-Assembly of Differently Shaped Protein-Polymer Conjugates through Modification of the Bioconjugation Site.

    PubMed

    Huang, Aaron; Olsen, Bradley D

    2016-08-01

    Self-assembly of protein-polymer block copolymers is an attractive route for preparing biocatalytic materials. To clarify the effect of bioconjugate shape on self-assembly without changing the chemical details of either block, four different conjugation sites are selected on the surface of the model globular protein mCherry at residues 3, 108, 131, and 222 to alter the colloidal shape of the bioconjugate. All four mCherry-b-poly(N-isopropylacrylamide) bioconjugates show qualitatively similar phase diagrams, indicating that self-assembly is robust with respect to changes in conjugation site. However, protein orientation has an effect on the location of the order-disorder transition concentration, and the stability of the disordered micellar phase is shown to be different for each conjugate. Differences in domain spacing also suggest changes in protein orientation within the lamellae. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Homochiral Evolution in Self-Assembled Chiral Polymers and Block Copolymers.

    PubMed

    Wen, Tao; Wang, Hsiao-Fang; Li, Ming-Chia; Ho, Rong-Ming

    2017-03-03

    The significance of chirality transfer is not only involved in biological systems, such as the origin of homochiral structures in life but also in man-made chemicals and materials. How the chiral bias transfers from molecular level (molecular chirality) to helical chain (conformational chirality) and then to helical superstructure or phase (hierarchical chirality) from self-assembly is vital for the chemical and biological processes in nature, such as communication, replication, and enzyme catalysis. In this Account, we summarize the methodologies for the examination of homochiral evolution at different length scales based on our recent studies with respect to the self-assembly of chiral polymers and chiral block copolymers (BCPs*). A helical (H*) phase to distinguish its P622 symmetry from that of normal hexagonally packed cylinder phase was discovered in the self-assembly of BCPs* due to the chirality effect on BCP self-assembly. Enantiomeric polylactide-containing BCPs*, polystyrene-b-poly(l-lactide) (PS-PLLA) and polystyrene-b-poly(d-lactide) (PS-PDLA), were synthesized for the examination of homochiral evolution. The optical activity (molecular chirality) of constituted chiral repeating unit in the chiral polylactide is detected by electronic circular dichroism (ECD) whereas the conformational chirality of helical polylactide chain can be explicitly determined by vibrational circular dichroism (VCD). The H* phases of the self-assembled polylactide-containing BCPs* can be directly visualized by 3D transmission electron microscopy (3D TEM) technique at which the handedness (hierarchical chirality) of the helical nanostructure is thus determined. The results from the ECD, VCD, and 3D TEM for the investigated chirality at different length scales suggest the homochiral evolution in the self-assembly of the BCPs*. For chiral polylactides, twisted lamellae in crystalline banded spherulite can be formed by dense packing scheme and effective interactions upon helical

  7. Controlled evaporative self-assembly of poly(acrylic acid) in a confined geometry for fabricating patterned polymer brushes.

    PubMed

    Men, Yonghong; Xiao, Peng; Chen, Jing; Fu, Jun; Huang, Youju; Zhang, Jiawei; Xie, Zhengchao; Wang, Wenqin; Chen, Tao

    2014-04-29

    A simple yet robust approach was exploited to fabricate large-scaled patterned polymer brushes by combining controlled evaporative self-assembly (CESA) in a confined geometry and self-initiated photografting and photopolymerization (SIPGP). Our method was carried out without any sophisticated instruments, free of lithography, overcoming current difficulties in fabricating polymer patterns by using complex instruments.

  8. Dissipative particle dynamics simulations of polymer-protected nanoparticle self-assembly

    NASA Astrophysics Data System (ADS)

    Spaeth, Justin R.; Kevrekidis, Ioannis G.; Panagiotopoulos, Athanassios Z.

    2011-11-01

    Dissipative particle dynamics simulations were used to study the effects of mixing time, solute solubility, solute and diblock copolymer concentrations, and copolymer block length on the rapid coprecipitation of polymer-protected nanoparticles. The simulations were aimed at modeling Flash NanoPrecipitation, a process in which hydrophobic solutes and amphiphilic block copolymers are dissolved in a water-miscible organic solvent and then rapidly mixed with water to produce composite nanoparticles. A previously developed model by Spaeth et al. [J. Chem. Phys. 134, 164902 (2011)], 10.1063/1.3580293 was used. The model was parameterized to reproduce equilibrium and transport properties of the solvent, hydrophobic solute, and diblock copolymer. Anti-solvent mixing was modeled using time-dependent solvent-solute and solvent-copolymer interactions. We find that particle size increases with mixing time, due to the difference in solute and polymer solubilities. Increasing the solubility of the solute leads to larger nanoparticles for unfavorable solute-polymer interactions and to smaller nanoparticles for favorable solute-polymer interactions. A decrease in overall solute and polymer concentration produces smaller nanoparticles, because the difference in the diffusion coefficients of a single polymer and of larger clusters becomes more important to their relative rates of collisions under more dilute conditions. An increase in the solute-polymer ratio produces larger nanoparticles, since a collection of large particles has less surface area than a collection of small particles with the same total volume. An increase in the hydrophilic block length of the polymer leads to smaller nanoparticles, due to an enhanced ability of each polymer to shield the nanoparticle core. For unfavorable solute-polymer interactions, the nanoparticle size increases with hydrophobic block length. However, for favorable solute-polymer interactions, nanoparticle size exhibits a local minimum with

  9. Low-Temperature All-Solution-Processed Transparent Silver Nanowire-Polymer/AZO Nanoparticles Composite Electrodes for Efficient ITO-Free Polymer Solar Cells.

    PubMed

    Zhang, Xiaoqin; Wu, Jiang; Wang, Jiantai; Yang, Qingqing; Zhang, Baohua; Xie, Zhiyuan

    2016-12-21

    We present a kind of all-solution-processed transparent conductive film comprising of silver nanowire (AgNW), polyvinyl butyral (PVB), and Al-doped ZnO nanoparticles (AZO NPs) composite (APA) by layer-by-layer blade-coating on glass substrate at low temperature. This kind of transparent APA film exhibits high transmittance at a wide range of 400-700 nm. The sheet resistance of the APA film can be as low as 21 Ω sq(-1) with transmittance over 94% at 550 nm. The introduction of PVB significantly improves the APA composite adhesion to glass substrate. The overlaid coating of AZO NPs not only reduces the sheet resistance but also improves the ambient and thermal stability of the APA film. This highly conductive and transparent APA film on glass substrate is employed as the bottom electrode to fabricate high-efficiency polymer solar cells (PSCs). A power conversion efficiency of 8.98% is achieved for the PBDTTT-EFT:PC71BM PSCs employing the APA composite as transparent bottom electrode, close to 9.54% of the control device fabricated on the commercial indium tin oxide substrate. As it can be easily prepared with all-solution-processed blade-coating method at low temperature, this kind of AgNW-based composite film is promising to integrate with roll-to-roll manufacturing of flexible PSCs.

  10. Solvent-responsive self-assembly of amphiphilic invertible polymers determined with SANS.

    PubMed

    Kudina, Olena; Kohut, Ananiy; Tarnavchyk, Ihor; Hevus, Ivan; Voronov, Andriy

    2014-04-01

    Amphiphilic invertible polymers (AIPs) are a new class of macromolecules that self-assemble into micellar structures and rapidly change structure in response to changes in solvent polarity. Using small-angle neutron scattering (SANS) data, we obtained a quantitative description of the invertible micellar assemblies (IMAs). The detailed composition and size of the assemblies (including the effect of temperature) were measured in aqueous and toluene polymer solutions. The results show that the invertible macromolecules self-assemble into cylindrical core-shell micellar structures. The composition of the IMAs in aqueous and toluene solutions was used to reveal the inversion mechanism by changing the polarity of the medium. Our experiments demonstrate that AIP unimers self-assemble into IMAs in aqueous solution, predominantly through interactions between the hydrophobic moieties of macromolecules. The hydrophobic effect (or solvophobic interaction) is the major driving force for self-assembly. When the polarity of the environment is changed from polar to nonpolar, poly(ethylene glycol) (PEG) and aliphatic dicarboxylic acid fragments of AIP macromolecules tend to replace each other in the core and the shell of the IMAs. However, neither the interior nor the exterior of the IMAs consists of fragments of a single component of the macromolecule. In aqueous solution, with the temperature increasing from 15 to 35 °C, the IMAs' mixed core from aliphatic dicarboxylic acid and PEG moieties and PEG-based shell change the structure. As a result of the progressive dehydration of the macromolecules, the hydration level (water content) in the micellar core decreases at 25 °C, followed by dehydrated PEG fragments entering the interior of the IMAs when the temperature increases to 35 °C.

  11. Brownian dynamics of subunit addition-loss kinetics and thermodynamics in linear polymer self-assembly.

    PubMed

    Castle, Brian T; Odde, David J

    2013-12-03

    The structure and free energy of multistranded linear polymer ends evolves as individual subunits are added and lost. Thus, the energetic state of the polymer end is not constant, as assembly theory has assumed. Here we utilize a Brownian dynamics approach to simulate the addition and loss of individual subunits at the polymer tip. Using the microtubule as a primary example, we examined how the structure of the polymer tip dictates the rate at which units are added to and lost from individual protofilaments. We find that freely diffusing subunits arrive less frequently to lagging protofilaments but bind more efficiently, such that there is no kinetic difference between leading and lagging protofilaments within a tapered tip. However, local structure at the nanoscale has up to an order-of-magnitude effect on the rate of addition. Thus, the kinetic on-rate constant, integrated across the microtubule tip (kon,MT), is an ensemble average of the varying individual protofilament on-rate constants (kon,PF). Our findings have implications for both catastrophe and rescue of the dynamic microtubule end, and provide a subnanoscale framework for understanding the mechanism of action of microtubule-associated proteins and microtubule-directed drugs. Although we utilize the specific example of the microtubule here, the findings are applicable to multistranded polymers generally.

  12. Hybrid hydrogels assembled from synthetic polymers and coiled-coil protein domains.

    PubMed

    Wang, C; Stewart, R J; Kopecek, J

    1999-02-04

    Stimuli-sensitive polymer hydrogels, which swell or shrink in response to changes in the environmental conditions, have been extensively investigated and used as 'smart' biomaterials and drug-delivery systems. Most of these responsive hydrogels are prepared from a limited number of synthetic polymers and their derivatives, such as copolymers of (meth)acrylic acid, acrylamide and N-isopropyl acrylamide. Water-soluble synthetic polymers have also been crosslinked with molecules of biological origin, such as oligopeptides and oligodeoxyribonucleotides, or with intact native proteins. Very often there are several factors influencing the relationship between structure and properties in these systems, making it difficult to engineer hydrogels with specified responses to particular stimuli. Here we report a hybrid hydrogel system assembled from water-soluble synthetic polymers and a well-defined protein-folding motif, the coiled coil. These hydrogels undergo temperature-induced collapse owing to the cooperative conformational transition of the coiled-coil protein domain. This system shows that well-characterized water-soluble synthetic polymers can be combined with well-defined folding motifs of proteins in hydrogels with engineered volume-change properties.

  13. From Cooperative Self-Assembly to Water-Soluble Supramolecular Polymers Using Coarse-Grained Simulations.

    PubMed

    Bochicchio, Davide; Pavan, Giovanni M

    2017-01-24

    Supramolecular polymers, formed via noncovalent self-assembly of elementary monomers, are extremely interesting for their dynamic bioinspired properties. In order to understand their behavior, it is necessary to access their dynamics while maintaining high resolution in the treatment of the monomer structure and monomer-monomer interactions, which is typically a difficult task, especially in aqueous solution. Focusing on 1,3,5-benzenetricarboxamide (BTA) water-soluble supramolecular polymers, we have developed a transferable coarse-grained model that allows studying BTA supramolecular polymerization in water, while preserving remarkable consistency with the atomistic models in the description of the key interactions between the monomers (hydrophobic, H-bonding, etc.), self-assembly cooperativity, and amplification of order into the growing fibers. This permitted us to monitor the amplification of the key interactions between the monomers (including H-bonding) in the BTA fibers during the dynamic polymerization process. Our molecular dynamics simulations provide a picture of a stepwise cooperative polymerization mechanism, where initial fast hydrophobic aggregation of the BTA monomers in water is followed by the slower reorganization of these disordered aggregates into ordered directional oligomers. Supramolecular polymer growth then proceeds on a slower time scale. We challenged our models via comparison with the experimental evidence, capturing the effect of temperature variations and subtle changes in the monomer structure on the polymerization and on the properties of the fibers seen in the real systems. This work provides a multiscale spatiotemporal characterization of BTA self-assembly in water and a useful platform to study a variety of BTA-based supramolecular polymers toward structure-property relationships.

  14. Development of Self-Assembled Nanoscale Templates via Microphase Separation Induced by Polymer Brushes

    NASA Astrophysics Data System (ADS)

    Chu, Elza

    Phase separation in soft matter has been the crucial element in generating hybrid materials, such as polymer blends and mixed polymer brushes. This dissertation discusses two methods of developing self-assembled nanoscale templates via microphase separation induced by polymer brush synthesis. This work introduces a novel soft substrate approach with renewable grafting sites where polyacrylamide is "grafted through" chitosan soft substrates. The mechanism of grafting leads to ordered arrays of filament-like nanostructures spanning the chitosan-air interface. Additionally, the chemical composition of the filaments allows for post-chemical modification to change the physical properties of the filaments, and subsequently tailor surfaces for specific application. Unlike traditional materials, multi-functional or "smart" materials, such as binary polymer brushes (BPB) are capable of spontaneously changing the spatial distribution of functional groups and morphology at the surface upon external stimuli. Although promising in principle, the limited range of available complementary polymers with common non-selective solvents confines the diversity of usable materials and restricts any further advancement in the field. This dissertation also covers the fabrication and characterization of responsive nanoscale polystyrene templates or "mosaic" brushes that are capable of changing interfacial composition upon exposure to varying solvent qualities. Using a "mosaic" brush template is a unique approach that allows the fabrication of strongly immiscible polymer BPB without the need for a common solvent. The synthesis of such BPB is exemplified by two strongly immiscible polymers, i.e. polystyrene (polar) and polyacrylamide (non-polar), where polyacrylamide brush is "graft through" a Si-substrate modified with the polystyrene collapsed "mosaic" brush. The surface exhibits solvent-triggered responses, as well as application potential for anti-biofouling.

  15. Hydrophobic self-assembly of a perylenediimide-linked DNA dumbbell into supramolecular polymers.

    PubMed

    Neelakandan, Prakash P; Pan, Zhengzheng; Hariharan, Mahesh; Zheng, Yan; Weissman, Haim; Rybtchinski, Boris; Lewis, Frederick D

    2010-11-10

    The self-assembly of DNA dumbbell conjugates possessing hydrophobic perylenediimide (PDI) linkers separated by an eight-base pair A-tract has been investigated. Cryo-TEM images obtained from dilute solutions of the dumbbell in aqueous buffer containing 100 mM NaCl show the presence of structures corresponding to linear end-to-end assemblies of 10-30 dumbbell monomers. The formation of assemblies of this size is consistent with analysis of the UV-vis and fluorescence spectra of these solutions for the content of PDI monomer and dimer chromophores. Assembly size is dependent upon the concentration of dumbbell and salt as well as the temperature. Kinetic analysis of the assembly process by means of salt-jump stopped-flow measurements shows that it occurs by a salt-triggered isodesmic mechanism in which the rate constants for association and dissociation in 100 mM NaCl are 3.2 × 10(7) M(-1)s(-1) and 1.0 s(-1), respectively, faster than the typical rate constants for DNA hybridization. TEM and AFM images of samples deposited from solutions having higher concentrations of dumbbell and NaCl display branched assemblies with linear regions >1 μm in length and diameters indicative of the formation of small bundles of dumbbell end-to-end assemblies. These observations provide the first example of the use of hydrophobic association for the assembly of small DNA duplex conjugates into supramolecular polymers and larger branched aggregates.

  16. Silicon Nanowire/Polymer Hybrid Solar Cell-Supercapacitor: A Self-Charging Power Unit with a Total Efficiency of 10.5.

    PubMed

    Liu, Ruiyuan; Wang, Jie; Sun, Teng; Wang, Mingjun; Wu, Changsheng; Zou, Haiyang; Song, Tao; Zhang, Xiaohong; Lee, Shuit-Tong; Wang, Zhong Lin; Sun, Baoquan

    2017-07-12

    An integrated self-charging power unit, combining a hybrid silicon nanowire/polymer heterojunction solar cell with a polypyrrole-based supercapacitor, has been demonstrated to simultaneously harvest solar energy and store it. By efficiency enhancement of the hybrid nanowire solar cells and a dual-functional titanium film serving as conjunct electrode of the solar cell and supercapacitor, the integrated system is able to yield a total photoelectric conversion to storage efficiency of 10.5%, which is the record value in all the integrated solar energy conversion and storage system. This system may not only serve as a buffer that diminishes the solar power fluctuations from light intensity, but also pave its way toward cost-effective high efficiency self-charging power unit. Finally, an integrated device based on ultrathin Si substrate is demonstrated to expand its feasibility and potential application in flexible energy conversion and storage devices.

  17. Electrical Characterization of Zn and ZnO Nanowires Grown on PEDOT:PSS Conductive Polymer Thin Films by Physical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Chamberlin, Matthew; Constantin, Costel

    2011-10-01

    Physical vapor deposition (PVD) techniques offer tremendous possibilities for easy fabrication of nanostructure arrays for use in thin film electronics. In this study we examine inorganic/organic heterojunctions produced by growing conductive Zn and semiconductive ZnO nanowire arrays on organic conductive PEDOT:PSS polymer thin films using simple and cost-effective PVD methods. Understanding the electrical properties of these hybrid films are of particular interest for applications in organic electronics. However, traditional systems for measuring conductivity and resistivity of thin films by the Van Der Pauw method prove problematic when dealing with soft polymeric surfaces. We present here electrical studies of ZnO- and Zn-nanowire/PEDOT:PSS heterojunctions using a modified 2-point probe method constructed from inexpensive and easily available materials.

  18. Advances in nanowire bioelectronics

    NASA Astrophysics Data System (ADS)

    Zhou, Wei; Dai, Xiaochuan; Lieber, Charles M.

    2017-01-01

    Semiconductor nanowires represent powerful building blocks for next generation bioelectronics given their attractive properties, including nanometer-scale footprint comparable to subcellular structures and bio-molecules, configurable in nonstandard device geometries readily interfaced with biological systems, high surface-to-volume ratios, fast signal responses, and minimum consumption of energy. In this review article, we summarize recent progress in the field of nanowire bioelectronics with a focus primarily on silicon nanowire field-effect transistor biosensors. First, the synthesis and assembly of semiconductor nanowires will be described, including the basics of nanowire FETs crucial to their configuration as biosensors. Second, we will introduce and review recent results in nanowire bioelectronics for biomedical applications ranging from label-free sensing of biomolecules, to extracellular and intracellular electrophysiological recording.

  19. Electronic structure of self-assembled Si nanowires on Ag(110) surfaces

    NASA Astrophysics Data System (ADS)

    Ohta, Taisuke; Rotenberg, Eli; Horn, Karsten

    2006-03-01

    Much attention has recently been paid to the physics of one- dimensional (1-D) systems, since exotic properties are predicted from basic theoretical consideration. However, it is not easy to realize such one-dimensional systems experimentally. Recently, Leandri et al.[1] have reported the growth of self-assembled 1D linear structures of silicon on Ag(110), perfectly aligned along [-110] direction and 16å wide. We have investigated the electronic structure of such self-assembled Si “nanowires” using angle resolved photoemission spectroscopy. The Si 2p core level line shows two narrow components in agreement with earlier work [1]. Silicon-induced features in the valence band region are observed, most clearly within the band gap of the Ag s-p states. The silicon-induced band exhibits a sizeable dispersion only in the direction along the linear structure, i.e. the [- 110] azimuth of the Ag(110) substrate. Details of the experimentally observed bands will be presented and related to the atomic structure within the 1D structure and its arrangement on the silver substrate. T.O. acknowledges financial support from Max Planck Society. Experiments were performed at the Advanced Light Source, Lawrence Berkeley National Laboratory operated by the U.S. DOE under Contract No. DE-AC03-76SF00098. [1] C. Leandri et al., Self-aligned silicon quantum wires on Ag (110), Surface Science 574 (2005) L9 L15

  20. The influence of self-assembly behavior of nanoparticles on the dielectric polymer composites

    NASA Astrophysics Data System (ADS)

    Lu, Xin; Li, Weiping; Wang, Tingting; Jiang, Long; Luo, Laihui; Hua, Dayin; Zhu, Yuejin

    2013-11-01

    To clearify the influence of the distribution of the conductive nanoparticles on the dielectric properties of the corresponding polymer composites, the microstructure and dielectric character of the composites based on the oleic acid modified ferroferric oxide and polyvinylidene fluoride (PVDF) polymer have been studied experimentally. It is found that these composites exhibit a normal percolative phase transition over the filler content from insulator to conductor, consistent with the classical percolation theory. However, when the percentage of fillers is at a certain value which is below the percolation threshold, these nanoparticles can assemble into a special porous structure in the PVDF matrix, associated with the enhancement of dielectric constant at low frequency. In addition, the controllable dispersion of conducting nanoparticles in a polymer matrix can prevent premature agglomeration at low filling fractions and avoid the appearance of anomalously early percolation. Therefore, the self-assembly behavior of nanoparticles can be beneficial to preparation of the high dielectric constant and low loss composites for the application of electric energy storage.

  1. Stability of self-assembled polymer films investigated by optical laser reflectometry.

    PubMed

    Dejeu, Jérôme; Diziain, Séverine; Dange, Catherine; Membrey, François; Charraut, Daniel; Foissy, Alain

    2008-04-01

    We studied the influence of post-treatment rinsing after the formation of self-assembled polyelectrolyte films made with the weak base poly(allylamine hydrochloride) (PAH) and the strong acid poly(styrene sulfonate) (PSS). The stability of the film was studied using optical fixed-angle laser reflectometry to measure the release of polymeric material and AFM experiments to reveal the change of morphology and thickness. We found that the polymer films were stable upon rinsing when the pH was the same in the solution as that used in the buildup (pH 9). The films released most of the polymeric material when rinsed at higher pH values, but a layer remained that corresponded to a PAH monolayer directly bound with the silica surface. Films containing at least four bilayers were stable upon rinsing at lower pH values, but the stability of thinner films depended on the type of the last polymer deposited. They were stable in the case of PSS as an outermost deposit, but they released a large part of their material in the case of PAH. The stability results were determined using a simple model of the step-by-step assembly of the polymer film described formerly.

  2. The influence of self-assembly behavior of nanoparticles on the dielectric polymer composites

    SciTech Connect

    Lu, Xin; Li, Weiping Wang, Tingting; Jiang, Long; Luo, Laihui; Hua, Dayin; Zhu, Yuejin

    2013-11-15

    To clearify the influence of the distribution of the conductive nanoparticles on the dielectric properties of the corresponding polymer composites, the microstructure and dielectric character of the composites based on the oleic acid modified ferroferric oxide and polyvinylidene fluoride (PVDF) polymer have been studied experimentally. It is found that these composites exhibit a normal percolative phase transition over the filler content from insulator to conductor, consistent with the classical percolation theory. However, when the percentage of fillers is at a certain value which is below the percolation threshold, these nanoparticles can assemble into a special porous structure in the PVDF matrix, associated with the enhancement of dielectric constant at low frequency. In addition, the controllable dispersion of conducting nanoparticles in a polymer matrix can prevent premature agglomeration at low filling fractions and avoid the appearance of anomalously early percolation. Therefore, the self-assembly behavior of nanoparticles can be beneficial to preparation of the high dielectric constant and low loss composites for the application of electric energy storage.

  3. Extreme Activity of Drug Nanocrystals Coated with A Layer of Non-Covalent Polymers from Self-Assembled Boric Acid.

    PubMed

    Zhan, Honglei; Liang, Jun F

    2016-12-09

    Non-covalent polymers have remarkable advantages over synthetic polymers for wide biomedical applications. In this study, non-covalent polymers from self-assembled boric acid were used as the capping reagent to replace synthetic polymers in drug crystallization. Under acidic pH, boric acid self-assembled on the surface of drug nanocrystals to form polymers with network-like structures held together by hydrogen bonds. Coating driven by boric acid self-assembly had negligible effects on drug crystallinity and structure but resulted in drug nanocrystals with excellent dispersion properties that aided in the formation of a more stable suspension. Boric acid coating improved drug stability dramatically by preventing drug molecules from undergoing water hydrolysis in a neutral environment. More importantly, the specific reactivity of orthoboric groups to diols in cell glycocalyx facilitated a rapid cross-membrane translocation of drug nanocrystals, leading to efficient intracellular drug delivery, especially on cancer cells with highly expressed sialic acids. Boric acid coated nanocrystals of camptothecin, an anticancer drug with poor aqueous solubility and stability, demonstrated extreme cytotoxic activity (IC50 < 5.0 μg/mL) to cancer cells compared to synthetic polymer coated CPT nanocrystals and free CPT. Surface coating using non-covalent polymers from self-assembled boric acid will have wide biomedical applications especially in biomaterials and drug delivery field.

  4. Extreme Activity of Drug Nanocrystals Coated with A Layer of Non-Covalent Polymers from Self-Assembled Boric Acid

    NASA Astrophysics Data System (ADS)

    Zhan, Honglei; Liang, Jun F.

    2016-12-01

    Non-covalent polymers have remarkable advantages over synthetic polymers for wide biomedical applications. In this study, non-covalent polymers from self-assembled boric acid were used as the capping reagent to replace synthetic polymers in drug crystallization. Under acidic pH, boric acid self-assembled on the surface of drug nanocrystals to form polymers with network-like structures held together by hydrogen bonds. Coating driven by boric acid self-assembly had negligible effects on drug crystallinity and structure but resulted in drug nanocrystals with excellent dispersion properties that aided in the formation of a more stable suspension. Boric acid coating improved drug stability dramatically by preventing drug molecules from undergoing water hydrolysis in a neutral environment. More importantly, the specific reactivity of orthoboric groups to diols in cell glycocalyx facilitated a rapid cross-membrane translocation of drug nanocrystals, leading to efficient intracellular drug delivery, especially on cancer cells with highly expressed sialic acids. Boric acid coated nanocrystals of camptothecin, an anticancer drug with poor aqueous solubility and stability, demonstrated extreme cytotoxic activity (IC50 < 5.0 μg/mL) to cancer cells compared to synthetic polymer coated CPT nanocrystals and free CPT. Surface coating using non-covalent polymers from self-assembled boric acid will have wide biomedical applications especially in biomaterials and drug delivery field.

  5. Extreme Activity of Drug Nanocrystals Coated with A Layer of Non-Covalent Polymers from Self-Assembled Boric Acid

    PubMed Central

    Zhan, Honglei; Liang, Jun F.

    2016-01-01

    Non-covalent polymers have remarkable advantages over synthetic polymers for wide biomedical applications. In this study, non-covalent polymers from self-assembled boric acid were used as the capping reagent to replace synthetic polymers in drug crystallization. Under acidic pH, boric acid self-assembled on the surface of drug nanocrystals to form polymers with network-like structures held together by hydrogen bonds. Coating driven by boric acid self-assembly had negligible effects on drug crystallinity and structure but resulted in drug nanocrystals with excellent dispersion properties that aided in the formation of a more stable suspension. Boric acid coating improved drug stability dramatically by preventing drug molecules from undergoing water hydrolysis in a neutral environment. More importantly, the specific reactivity of orthoboric groups to diols in cell glycocalyx facilitated a rapid cross-membrane translocation of drug nanocrystals, leading to efficient intracellular drug delivery, especially on cancer cells with highly expressed sialic acids. Boric acid coated nanocrystals of camptothecin, an anticancer drug with poor aqueous solubility and stability, demonstrated extreme cytotoxic activity (IC50 < 5.0 μg/mL) to cancer cells compared to synthetic polymer coated CPT nanocrystals and free CPT. Surface coating using non-covalent polymers from self-assembled boric acid will have wide biomedical applications especially in biomaterials and drug delivery field. PMID:27934922

  6. Nanowire mesh solar fuels generator

    DOEpatents

    Yang, Peidong; Chan, Candace; Sun, Jianwei; Liu, Bin

    2016-05-24

    This disclosure provides systems, methods, and apparatus related to a nanowire mesh solar fuels generator. In one aspect, a nanowire mesh solar fuels generator includes (1) a photoanode configured to perform water oxidation and (2) a photocathode configured to perform water reduction. The photocathode is in electrical contact with the photoanode. The photoanode may include a high surface area network of photoanode nanowires. The photocathode may include a high surface area network of photocathode nanowires. In some embodiments, the nanowire mesh solar fuels generator may include an ion conductive polymer infiltrating the photoanode and the photocathode in the region where the photocathode is in electrical contact with the photoanode.

  7. Decoupling Substrate Surface Interactions in Block Polymer Thin Film Self-Assembly

    NASA Astrophysics Data System (ADS)

    Shelton, Cameron; Epps, Thomas

    2015-03-01

    Understanding the impact of the major factors that affect block polymer (BP) thin film self-assembly is necessary to control nanostructure ordering, orientation, and defect density. In this work, we systematically studied the influence of the substrate surface energy, one of the most significant parameters directing self-assembly, on wetting behavior, through-film interactions, and substrate surface field propagation. Notably, we determined the applicability of decoupled surface energy components (dispersive and polar interactions) as opposed to total surface energy, using a suite of chlorosilane monolayers and UV-ozone degradation to create a library of total, dispersive, and polar surface energy effects. Our experimental results combined with surface chemistry literature indicated repulsive total surface energy interactions are the dominant force at the substrate-polymer interface, whereas attractive decoupled surface energy interactions become significant past the contacting layer. This work represents a thorough analysis of a vital force affecting BP self-assembly as well as a blueprint for the generalized design of substrate surfaces that achieve target BP nanostructure orientations for nanolithography, templating, and nanoporous membrane applications.

  8. Manipulating the ABCs of self-assembly via low-χ block polymer design

    DOE PAGES

    Chang, Alice B.; Bates, Christopher M.; Lee, Byeongdu; ...

    2017-06-06

    Block polymer self-assembly typically translates molecular chain connectivity into mesoscale structure by exploiting incompatible blocks with large interaction parameters (χij). In this report, we demonstrate that the converse approach, encoding low-χ interactions in ABC bottlebrush triblock terpolymers (χAC ≲ 0), promotes organization into a unique mixed-domain lamellar morphology which we designate LAMP. Transmission electron microscopy indicates that LAMP exhibits ACBC domain connectivity, in contrast to conventional three-domain lamellae (LAM3) with ABCB periods. Complementary small angle X-ray scattering experiments reveal a strongly decreasing domain spacing with increasing total molar mass. Self-consistent field theory reinforces these observations and predicts that LAMP ismore » thermodynamically stable below a critical χAC, above which LAM3 emerges. Both experiments and theory expose close analogies to ABA triblock copolymer phase behavior, collectively suggesting that low-χ interactions between chemically similar or distinct blocks intimately influence self-assembly. Furthermore, these conclusions provide new opportunities in block polymer design with potential consequences spanning all self-assembling soft materials.« less

  9. Drying-Mediated Self-Assembly of Highly Ordered Complex Structures: From Polymers to Nanoparticles

    NASA Astrophysics Data System (ADS)

    Lin, Zhiqun

    2009-03-01

    Drying of a sessile drop containing nonvolatile solutes readily self-assembles into a number of concentric ``coffee rings'' by repetitive ``stick-slip'' motion of the three-phase contact line. However, due mainly to lack of control over the evaporation process of the drop, the challenge remains to use evaporative self-assembly to rationally ``synthesize'' ``coffee rings'' of different shapes and sizes of high regularity and fidelity. Here, we report a facile, robust, and one-step evaporation method for producing in a precisely controllable manner versatile microstructures possessing high regularity, dispensing with the need for lithographic techniques and externally applied fields. Polymer or nanocrystal solutions are confined in a simple geometry comprised of a curved surface placed upon a flat substrate. By changing the shape of the upper surface of the imposed geometry, the controlled, evaporative self-assembly of polymer or nanocrystal solutions yields a variety of complex, intriguing, and well-ordered structures over large areas. As such, this method represents a significant advance in creating regularly organized, complex structures with potential applications in microelectronics, optoelectronics, and biotechnology, among other areas.

  10. General strategy for self-assembly of highly oriented nanocrystalline semiconducting polymers with high mobility.

    PubMed

    Luo, Chan; Kyaw, Aung Ko Ko; Perez, Louis A; Patel, Shrayesh; Wang, Ming; Grimm, Bruno; Bazan, Guillermo C; Kramer, Edward J; Heeger, Alan J

    2014-05-14

    Solution processable semiconducting polymers with excellent film forming capacity and mechanical flexibility are considered among the most progressive alternatives to conventional inorganic semiconductors. However, the random packing of polymer chains and the disorder of the polymer matrix typically result in low charge transport mobilities (10(-5)-10(-2) cm(2) V(-1) s(-1)). These low mobilities compromise their performance and development. Here, we present a strategy, by utilizing capillary action, to mediate polymer chain self-assembly and unidirectional alignment on nanogrooved substrates. We designed a sandwich tunnel system separated by functionalized glass spacers to induce capillary action for controlling the polymer nanostructure, crystallinity, and charge transport. Using capillary action, we demonstrate saturation mobilities with average values of 21.3 and 18.5 cm(2) V(-1 )s(-1) on two different semiconducting polymers at a transistor channel length of 80 μm. These values are limited by the source-drain contact resistance, Rc. Using a longer channel length of 140 μm where the contact resistance is less important, we measured μh = 36.3 cm(2) v(-1) s(-1). Extrapolating to infinite channel length where Rc is unimportant, the intrinsic mobility for poly[4-(4,4-dihexadecyl-4H-cyclopenta[1,2-b:5,4-b']dithiophen-2-yl)-alt-[1,2,5]thiadiazolo[3,4-c]pyridine] (Mn = 140 kDa) at this degree of chain alignment and structural order is μh ≈ 47 cm(2 )v(-1) s(-1). Our results create a promising pathway toward high performance, solution processable, and low-cost organic electronics.

  11. Dynamic-template-directed multiscale assembly for large-area coating of highly-aligned conjugated polymer thin films

    DOE PAGES

    Mohammadi, Erfan; Zhao, Chuankai; Meng, Yifei; ...

    2017-07-13

    Solution processable semiconducting polymers have been under intense investigations due to their diverse applications from printed electronics to biomedical devices. However, controlling the macromolecular assembly across length scales during solution coating remains a key challenge, largely due to the disparity in timescales of polymer assembly and high-throughput printing/coating. Herein we propose the concept of dynamic templating to expedite polymer nucleation and the ensuing assembly process, inspired by biomineralization templates capable of surface reconfiguration. Molecular dynamic simulations reveal that surface reconfigurability is key to promoting template–polymer interactions, thereby lowering polymer nucleation barrier. Employing ionic-liquid-based dynamic template during meniscus-guided coating results inmore » highly aligned, highly crystalline donor-acceptor polymer thin films over large area (41cm2) and promoted charge transport along both the polymer backbone and the π-π stacking direction in field-effect transistors. We further demonstrate that the charge transport anisotropy can be reversed by tuning the degree of polymer backbone alignment.« less

  12. Dynamic-template-directed multiscale assembly for large-area coating of highly-aligned conjugated polymer thin films

    NASA Astrophysics Data System (ADS)

    Mohammadi, Erfan; Zhao, Chuankai; Meng, Yifei; Qu, Ge; Zhang, Fengjiao; Zhao, Xikang; Mei, Jianguo; Zuo, Jian-Min; Shukla, Diwakar; Diao, Ying

    2017-07-01

    Solution processable semiconducting polymers have been under intense investigations due to their diverse applications from printed electronics to biomedical devices. However, controlling the macromolecular assembly across length scales during solution coating remains a key challenge, largely due to the disparity in timescales of polymer assembly and high-throughput printing/coating. Herein we propose the concept of dynamic templating to expedite polymer nucleation and the ensuing assembly process, inspired by biomineralization templates capable of surface reconfiguration. Molecular dynamic simulations reveal that surface reconfigurability is key to promoting template-polymer interactions, thereby lowering polymer nucleation barrier. Employing ionic-liquid-based dynamic template during meniscus-guided coating results in highly aligned, highly crystalline donor-acceptor polymer thin films over large area (>1 cm2) and promoted charge transport along both the polymer backbone and the π-π stacking direction in field-effect transistors. We further demonstrate that the charge transport anisotropy can be reversed by tuning the degree of polymer backbone alignment.

  13. Fabrication of TiO2 hierarchical architecture assembled by nanowires with anatase/TiO2(B) phase-junctions for efficient photocatalytic hydrogen production

    NASA Astrophysics Data System (ADS)

    Qiu, Yong; Ouyang, Feng

    2017-05-01

    TiO2 hierarchical architecture assembled by nanowires with anatase/TiO2(B) phase-junctions was prepared by a hydrothermal process followed by calcinations. The optimum calcination treatment (450 °C) not only led to the formation of anatase/TiO2(B) phase-junctions, but also kept the morphology of 1D nanowire and hierarchical architecture well. The T-450 load 0.5 wt% Pt cocatalysts showed the best photocatalytic hydrogen production activity, with a maximum hydrogen production rate of 7808 μmol g-1 h-1. The high photocatalytic activity is ascribed to the combined effects of the following three factors: (1) the hierarchical architecture exhibits better light harvesting; (2) the larger specific surface area provides more surface active sites for the photocatalytic reaction; (3) the 1D nanowires and anatase/TiO2(B) phase-junctions both can enhance the separation of photoinduced electron-hole pairs and inhibit their recombination.

  14. Nanowire-Assembled Hierarchical ZnCo2O4 Microstructure Integrated with a Low-Power Microheater for Highly Sensitive Formaldehyde Detection.

    PubMed

    Long, Hu; Harley-Trochimczyk, Anna; Cheng, Siyi; Hu, Hao; Chi, Won Seok; Rao, Ameya; Carraro, Carlo; Shi, Tielin; Tang, Zirong; Maboudian, Roya

    2016-11-23

    Nanowire-assembled 3D hierarchical ZnCo2O4 microstructure is synthesized by a facile hydrothermal route and a subsequent annealing process. In comparison to simple nanowires, the resulting dandelion-like structure yields more open spaces between nanowires, which allow for better gas diffusion and provide more active sites for gas adsorption while maintaining good electrical conductivity. The hierarchical ZnCo2O4 microstructure is integrated on a low-power microheater platform without using binders or conductive additives. The hierarchical structure of the ZnCo2O4 sensing material provides reliable electrical connection across the sensing electrodes. The resulting sensor exhibits an ultralow detection limit of 3 ppb toward formaldehyde with fast response and recovery as well as good selectivity to CO, H2, and hydrocarbons such as n-pentane, propane, and CH4. The sensor only consumes ∼5.7 mW for continuous operation at 300 °C with good long-term stability. The excellent sensing performance of this hierarchical structure based sensor suggests the advantages of combining such structures with microfabricated heaters for practical low-power sensing applications.

  15. Germanium doping of self-assembled GaN nanowires grown by plasma-assisted molecular beam epitaxy

    SciTech Connect

    Schörmann, Jörg; Hille, Pascal; Schäfer, Markus; Müßener, Jan; Becker, Pascal; Klar, Peter J.; Hofmann, Detlev M.; Teubert, Jörg; Eickhoff, Martin; Kleine-Boymann, Matthias; Rohnke, Marcus; Mata, Maria de la; Arbiol, Jordi

    2013-09-14

    Germanium doping of GaN nanowires grown by plasma-assisted molecular beam epitaxy on Si(111) substrates is studied. Time of flight secondary ion mass spectrometry measurements reveal a constant Ge-concentration along the growth axis. A linear relationship between the applied Ge-flux and the resulting ensemble Ge-concentration with a maximum content of 3.3×10{sup 20} cm{sup −3} is extracted from energy dispersive X-ray spectroscopy measurements and confirmed by a systematic increase of the conductivity with Ge-concentration in single nanowire measurements. Photoluminescence analysis of nanowire ensembles and single nanowires reveals an exciton localization energy of 9.5 meV at the neutral Ge-donor. A Ge-related emission band at energies above 3.475 eV is found that is assigned to a Burstein-Moss shift of the excitonic emission.

  16. Germanium doping of self-assembled GaN nanowires grown by plasma-assisted molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Schörmann, Jörg; Hille, Pascal; Schäfer, Markus; Müßener, Jan; Becker, Pascal; Klar, Peter J.; Kleine-Boymann, Matthias; Rohnke, Marcus; de la Mata, Maria; Arbiol, Jordi; Hofmann, Detlev M.; Teubert, Jörg; Eickhoff, Martin

    2013-09-01

    Germanium doping of GaN nanowires grown by plasma-assisted molecular beam epitaxy on Si(111) substrates is studied. Time of flight secondary ion mass spectrometry measurements reveal a constant Ge-concentration along the growth axis. A linear relationship between the applied Ge-flux and the resulting ensemble Ge-concentration with a maximum content of 3.3×1020 cm-3 is extracted from energy dispersive X-ray spectroscopy measurements and confirmed by a systematic increase of the conductivity with Ge-concentration in single nanowire measurements. Photoluminescence analysis of nanowire ensembles and single nanowires reveals an exciton localization energy of 9.5 meV at the neutral Ge-donor. A Ge-related emission band at energies above 3.475 eV is found that is assigned to a Burstein-Moss shift of the excitonic emission.

  17. Mono- and Bis-Terpyridine-Based Dimer and Metallo-Organic Polymers as Ionic Templates for Preparation of Multi-Metallic Au Nanocluster and Nanowires.

    PubMed

    Liu, Die; Cao, Hongda; Jiang, Zhilong; Wu, Tun; Sun, Xiaoyi; Wang, Pingshan; Moorefield, Charles N; Dai, Liming; Newkome, George R

    2016-03-01

    The preparation of multi-metallic Au nanocluster and nanowires has been achieved using terpyridine-based metallo-organic polymers as multi-ionic templates through a straightforward counterion exchange with aqueous NaAuCl4 followed by a mild reduction in-situ with sodium citrate. The mild reduction of the [TpyFeTpy]2+ x 2[AuCl4]- complex, derived from [TpyFeTpy]2+ x 2Cl- 1 (tpy = 2,2':6',2"-terpyridine), led to the formation of Au nanoclusters (Au NC) with diameters ranging from 7.5-88 nm. Each Au NC alone contained multiple nanoparticles, with diameters ranging from 2.5-4.5 nm. 1,4-bis-terpyridine based metallo-oraganic polymer [-TpyFeTpy-TpyFeTpy-]n(2n+) x [Cl]2n- 2 was found to generate a multi-ionic metallo-polymer with AuCl4- as the counterion, after mild reduction with sodium citrate, resulting in irregular zigzag shaped Au nanowires (Au NW). The prepared Au NW from the di-metallic complex 3 should find applications within electronic devices. Both Au NC and NW were also found to possess excellent catalytic properties.

  18. Effect of Charge Patterning on the Phase Behavior of Polymer Coacervates for Charge Driven Self Assembly

    NASA Astrophysics Data System (ADS)

    Radhakrishna, Mithun; Sing, Charles E.

    Oppositely charged polymers can undergo associative liquid-liquid phase separation when mixed under suitable conditions of ionic strength, temperature and pH to form what are known as `polymeric complex coacervates'. Polymer coacervates find use in diverse array of applications like microencapsulation, drug delivery, membrane filtration and underwater adhesives. The similarity between complex coacervate environments and those in biological systems has also found relevance in areas of bio-mimicry. Our previous works have demonstrated how local charge correlations and molecular connectivity can drastically affect the phase behavior of coacervates. The precise location of charges along the chain therefore dramatically influences the local charge correlations, which consequently influences the phase behavior of coacervates. We investigate the effect of charge patterning along the polymer chain on the phase behavior of coacervates in the framework of the Restricted Primitive Model using Gibbs Ensemble Monte Carlo simulations. Our results show that charge patterning dramatically changes the phase behavior of polymer coacervates, which contrasts with the predictions of the classical Voorn-Overbeek theory. This provides the basis for designing new materials through charge driven self assembly by controlling the positioning of the charged monomers along the chain.

  19. Nonvolatile Transistor Memory with Self-Assembled Semiconducting Polymer Nanodomain Floating Gates.

    PubMed

    Wang, Wei; Kim, Kang Lib; Cho, Suk Man; Lee, Ju Han; Park, Cheolmin

    2016-12-14

    Organic field effect transistor based nonvolatile memory (OFET-NVM) with semiconducting nanofloating gates offers additional benefits over OFET-NVMs with conventional metallic floating gates due to the facile controllability of charge storage based on the energetic structure of the floating gate. In particular, an all-in-one tunneling and floating-gate layer in which the semiconducting polymer nanodomains are self-assembled in the dielectric tunneling layer is promising. In this study, we utilize crystals of a p-type semiconducting polymer in which the crystalline lamellae of the polymer are spontaneously developed and embedded in the tunneling matrix as the nanofloating gate. The widths and lengths of the polymer nanodomains are approximately 20 nm and a few hundred nanometers, respectively. An OFET-NVM containing the crystalline nanofloating gates exhibits memory performance with a large memory window of 10 V, programming/erasing switching endurance for over 500 cycles, and a long retention time of 5000 s. Moreover, the device performance is improved by comixing with an n-type semiconductor; thus, the solution-processed p- and n-type double floating gates capable of storing both holes and electrons allow for the multilevel operation of our OFET-NVM. Four highly reliable levels (two bits per cell) of charge trapping and detrapping are achieved using this OFET-NVM by accurately choosing the programming/erasing voltages.

  20. Single-step assembly of polymer-lipid hybrid nanoparticles for mitomycin C delivery

    PubMed Central

    2014-01-01

    Mitomycin C is one of the most effective chemotherapeutic agents for a wide spectrum of cancers, but its clinical use is still hindered by the mitomycin C (MMC) delivery systems. In this study, the MMC-loaded polymer-lipid hybrid nanoparticles (NPs) were prepared by a single-step assembly (ACS Nano 2012, 6:4955 to 4965) of MMC-soybean phosphatidyhlcholine (SPC) complex (Mol. Pharmaceutics 2013, 10:90 to 101) and biodegradable polylactic acid (PLA) polymers for intravenous MMC delivery. The advantage of the MMC-SPC complex on the polymer-lipid hybrid NPs was that MMC-SPC was used as a structural element to offer the integrity of the hybrid NPs, served as a drug preparation to increase the effectiveness and safety and control the release of MMC, and acted as an emulsifier to facilitate and stabilize the formation. Compared to the PLA NPs/MMC, the PLA NPs/MMC-SPC showed a significant accumulation of MMC in the nuclei as the action site of MMC. The PLA NPs/MMC-SPC also exhibited a significantly higher anticancer effect compared to the PLA NPs/MMC or free MMC injection in vitro and in vivo. These results suggested that the MMC-loaded polymer-lipid hybrid NPs might be useful and efficient drug delivery systems for widening the therapeutic window of MMC and bringing the clinical use of MMC one step closer to reality. PMID:25324707

  1. Dynamic assembly of ultrasoft colloidal networks enables cell invasion within restrictive fibrillar polymers

    NASA Astrophysics Data System (ADS)

    Douglas, Alison M.; Fragkopoulos, Alexandros A.; Gaines, Michelle K.; Lyon, L. Andrew; Fernandez-Nieves, Alberto; Barker, Thomas H.

    2017-01-01

    In regenerative medicine, natural protein-based polymers offer enhanced endogenous bioactivity and potential for seamless integration with tissue, yet form weak hydrogels that lack the physical robustness required for surgical manipulation, making them difficult to apply in practice. The use of higher concentrations of protein, exogenous cross-linkers, and blending synthetic polymers has all been applied to form more mechanically robust networks. Each relies on generating a smaller network mesh size, which increases the elastic modulus and robustness, but critically inhibits cell spreading and migration, hampering tissue regeneration. Here we report two unique observations; first, that colloidal suspensions, at sufficiently high volume fraction (ϕ), dynamically assemble into a fully percolated 3D network within high-concentration protein polymers. Second, cells appear capable of leveraging these unique domains for highly efficient cell migration throughout the composite construct. In contrast to porogens, the particles in our system remain embedded within the bulk polymer, creating a network of particle-filled tunnels. Whereas this would normally physically restrict cell motility, when the particulate network is created using ultralow cross-linked microgels, the colloidal suspension displays viscous behavior on the same timescale as cell spreading and migration and thus enables efficient cell infiltration of the construct through the colloidal-filled tunnels.

  2. Dynamic assembly of ultrasoft colloidal networks enables cell invasion within restrictive fibrillar polymers

    PubMed Central

    Douglas, Alison M.; Fragkopoulos, Alexandros A.; Gaines, Michelle K.; Lyon, L. Andrew; Fernandez-Nieves, Alberto

    2017-01-01

    In regenerative medicine, natural protein-based polymers offer enhanced endogenous bioactivity and potential for seamless integration with tissue, yet form weak hydrogels that lack the physical robustness required for surgical manipulation, making them difficult to apply in practice. The use of higher concentrations of protein, exogenous cross-linkers, and blending synthetic polymers has all been applied to form more mechanically robust networks. Each relies on generating a smaller network mesh size, which increases the elastic modulus and robustness, but critically inhibits cell spreading and migration, hampering tissue regeneration. Here we report two unique observations; first, that colloidal suspensions, at sufficiently high volume fraction (ϕ), dynamically assemble into a fully percolated 3D network within high-concentration protein polymers. Second, cells appear capable of leveraging these unique domains for highly efficient cell migration throughout the composite construct. In contrast to porogens, the particles in our system remain embedded within the bulk polymer, creating a network of particle-filled tunnels. Whereas this would normally physically restrict cell motility, when the particulate network is created using ultralow cross-linked microgels, the colloidal suspension displays viscous behavior on the same timescale as cell spreading and migration and thus enables efficient cell infiltration of the construct through the colloidal-filled tunnels. PMID:28100492

  3. Unconventional multiple ring structure formation from evaporation-induced self-assembly of polymers.

    PubMed

    Bi, Wuguo; Wu, Xiangyang; Yeow, Edwin K L

    2012-07-31

    The formation of multiring deposits of poly(2-vinylpyridine) (P2VP) from the evaporation of a P2VP-(2,6-lutidine + water) drop on a glass substrate does not conform to the conventional pinning-depinning mechanism. Instead, ringlike deposits are formed when the droplet undergoes several cycles of spreading and receding where, for each spreading event, a P2VP ridge is formed at the contact line when the polymer flows toward the outward advancing edge. The complex interplay between an outward solutal-Marangoni flow due to a higher concentration of the polymer at the contact line and an inward solvent-Marangoni flow arising from the differences in volatilities and surface tensions of the pure solvent components plays an important role in enhancing the droplet spreading rate. The newly discovered surface patterning mechanism has important implications in the development of novel techniques for inducing self-assembly of functional materials from evaporating drops.

  4. Aligned nanostructured polymers by magnetic-field-directed self-assembly of a polymerizable lyotropic mesophase.

    PubMed

    Tousley, Marissa E; Feng, Xunda; Elimelech, Menachem; Osuji, Chinedum O

    2014-11-26

    Magnetic-field-directed assembly of lyotropic surfactant mesophases provides a scalable approach for the fabrication of aligned nanoporous polymers by templated polymerization. We develop and characterize a lyotropic liquid crystalline system containing hexagonally packed cylindrical micelles of a polymerizable surfactant in a polymerizable solvent. The system exhibits negative magnetic anisotropy, resulting in the degenerate alignment of cylindrical micelles perpendicular to the magnetic field. Sample rotation during field alignment is used to effectively break this degeneracy and enable the production of uniformly well-aligned mesophases. High-fidelity retentions of the hexagonal structure and alignment were successfully achieved in polymer films produced upon UV exposure of the reactive system. The success of this effort provides a route for the fabrication of aligned nanoporous membranes suitable for highly selective separations, sensing, and templated nanomaterial synthesis.

  5. Assembly of poly(dopamine) films mixed with a nonionic polymer.

    PubMed

    Zhang, Yan; Thingholm, Bo; Goldie, Kenneth N; Ogaki, Ryosuke; Städler, Brigitte

    2012-12-21

    Poly(dopamine) (PDA) coatings have recently attracted considerable interest for a variety of applications. Here, we investigate the film deposition of dopamine mixed with a nonionic polymer (i.e., poly(ethylene glycol) (PEG), poly(vinyl alcohol) (PVA), and poly(N-vinyl pyrrolidone) (PVP)) onto silica substrates using X-ray photoelectron spectroscopy and quartz crystal microbalance. Furthermore, we assess the possibility of coating silica colloids to yield polymer capsules and liposomes with these mixtures. We found that mixed PDA/PEG and PDA/PVA films are deposited without the need for a covalent linker such as an amine or thiol. We also discovered the first material, namely, PVP, that can suppress PDA film assembly. These fundamental findings give further insight into PDA film properties and contribute to establish PDA as a widely applicable coating.

  6. Optically induced mode splitting in self-assembled, high quality-factor conjugated polymer microcavities

    PubMed Central

    Braam, Daniel; Kushida, Soh; Niemöller, Robert; Prinz, Günther M.; Saito, Hitoshi; Kanbara, Takaki; Kuwabara, Junpei; Yamamoto, Yohei; Lorke, Axel

    2016-01-01

    We investigate the whispering gallery modes (WGMs) of self-assembled single microspheres. They consist of a recently developed highly fluorescent π-conjugated copolymer and exhibit excellent optical properties with Q-factors up to 104. Under continuous laser irradiation, we observe a splitting of the highly degenerate spherical WGMs into a multiplet of lines. Comparison with the calculated spectral response of a weakly distorted sphere shows that the optical excitation induces a change of the optical path length in the microcavity so that it resembles a prolate spheroid. The separation of the lines is given by the ellipticity and the azimuthal mode number. Measurements in various gaseous environments suggest that the distortion is caused by light induced oxidation of the polymer. Our findings show that photooxidation can be a beneficial mechanism for in-situ tuning of optically active polymer structures. PMID:26781838

  7. Smart assembly of polymer fibers: lessons from major ampullate spider silk

    NASA Astrophysics Data System (ADS)

    Viney, Christopher

    1996-02-01

    Studies of major ampullate silk (MAS), especially the secretions and fibers produced by the spider Nephila clavipes (golden orb weaver), have yielded several results of potential value to the materials scientist/engineer. There are lessons to be learned about synthesis, processing and microstructural design of high-tensile polymer fibers. The 'smart' aspect of silk production in nature concerns the ability of the spider to rapidly process a concentrated, viscous aqueous solution of silk protein (stored in the gland) into water-insoluble fiber on demand. This process centers on the assembly of a shear-sensitive supramolecular liquid crystalline phase by aggregation of the solubilized globular protein molecules.

  8. Galactosylated Polymer Nano-objects by Polymerization-Induced Self-Assembly, Potential Drug Nanocarriers.

    PubMed

    Semsarilar, Mona; Canton, Irene; Ladmiral, Vincent

    2016-01-01

    Glycopolymer-based nanostructures are invaluable tools to both study biological phenomena and to design future targeted drug delivery systems. Polymerization-induced self-assembly, especially RAFT aqueous dispersion polymerization is a unique method to prepare such polymer nanostructures, as it enables the preparation of very-well-defined morphologies at very high concentrations. Here we describe the implementation of PISA to the synthesis of galactosylated spheres, wormlike micelles and vesicles, and the preliminary results of cell toxicity, cell uptake, and cargo delivering capacity of galactose-decorated vesicles.

  9. Tailoring of self-assembled monolayer for polymer light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Choi, Beomrak; Rhee, Jungsoo; Lee, Hong H.

    2001-09-01

    The choice of a self-assembled monolayer (SAM) is tailored to specifically remove water on an indium-tin oxide electrode and to reduce barrier height for long-term stability of polymer light-emitting diodes. Water, which is a major cause of long-term degradation, is shown to have entirely reversible effects on the power efficiency of the device. It is shown that the use of a SAM for the specific purposes results in a more than an order of magnitude increase in the half lifetime of the device based on poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene].

  10. Synthesis and self-assembly of nearly monodisperse nanoparticles of a naturally occurring polymer.

    PubMed

    Cai, Tong; Hu, Zhibing; Marquez, Manuel

    2004-08-31

    Nearly monodisperse nanoparticles have been synthesized based on a naturally occurring polymer of hydropropylcellulose (HPC) using precipitation polymerization method. It is found that when the polydispersity index value of the HPC nanoparticles is less than 1.10, the HPC particles can self-assemble into an ordered structure, displaying bright colors. UV-visible spectroscopy reveals that the color shifts to a lower wavelength as the interparticle distance decreases following the Bragg diffraction equation. The HPC nanoparticle assembly in water has been further stabilized by covalently bonding neighboring particles to form a three-dimensional network. This network contains a large amount of water similar to a conventional bulk gel but displays colors as a result of its ordered structure.

  11. Temperature-Dependent Multidimensional Self-Assembly of Polyphenylene-Based "Rod-Coil" Graft Polymers.

    PubMed

    Huang, Yinjuan; Mai, Yiyong; Yang, Xiangwen; Beser, Uliana; Liu, Junzhi; Zhang, Fan; Yan, Deyue; Müllen, Klaus; Feng, Xinliang

    2015-09-16

    We present a novel type of "rod-coil" graft copolymer containing a polyphenylene backbone linked with poly(ethylene oxide) (PEO) side chains. Such graft copolymers manifest unprecedented temperature-dependent one-dimensional (1D) and two-dimensional (2D) self-assembly in solution. At 20 °C, which is higher than the crystallization temperature (Tc) of the PEO chains, the achiral graft copolymers self-organize into nanoribbons that twist into ∼30 μm ultralong helices with controlled pitch depending on the grafting ratio of the PEO chains. At 10 °C, which is lower than the Tc, quadrangular multilayer sheets of over 10 μm in lateral size are obtained. To our knowledge, this work presents the first example of controlled self-assembly of graft polymers into 1D helix and 2D sheet superstructures.

  12. Telechelic star polymers as self-assembling units from the molecular to the macroscopic scale.

    PubMed

    Capone, Barbara; Coluzza, Ivan; LoVerso, Federica; Likos, Christos N; Blaak, Ronald

    2012-12-07

    By means of multiscale molecular simulations, we show that telechelic-star polymers are a simple, robust, and tunable system, which hierarchically self-assembles into soft-patchy particles and mechanically stabilizes selected, open crystalline structures. The self-aggregating patchy behavior can be fully controlled by the number of arms per star and by the fraction of attractive monomeric units at the free ends of the arms. Such self-assembled soft-patchy particles while forming, upon augmenting density, gel-like percolating networks, preserve properties as particle size, number, and arrangement of patches per particle. In particular, we demonstrate that the flexibility inherent in the soft-patchy particles brings forward a novel mechanism that leads to the mechanical stability of diamond and simple cubic crystals over a wide range of densities, and for molecular sizes ranging from about 10 nm up to the micrometer scale.

  13. Modular design of domain assembly in porous coordination polymer crystals via reactivity-directed crystallization process.

    PubMed

    Fukushima, Tomohiro; Horike, Satoshi; Kobayashi, Hirokazu; Tsujimoto, Masahiko; Isoda, Seiji; Foo, Maw Lin; Kubota, Yoshiki; Takata, Masaki; Kitagawa, Susumu

    2012-08-15

    The mesoscale design of domain assembly is crucial for controlling the bulk properties of solids. Herein, we propose a modular design of domain assembly in porous coordination polymer crystals via exquisite control of the kinetics of the crystal formation process. Employing precursors of comparable chemical reactivity affords the preparation of homogeneous solid-solution type crystals. Employing precursors of distinct chemical reactivity affords the preparation of heterogeneous phase separated crystals. We have utilized this reactivity-directed crystallization process for the facile synthesis of mesoscale architecture which are either solid-solution or phase-separated type crystals. This approach can be also adapted to ternary phase-separated type crystals from one-pot reaction. Phase-separated type frameworks possess unique gas adsorption properties that are not observed in single-phasic compounds. The results shed light on the importance of crystal formation kinetics for control of mesoscale domains in order to create porous solids with unique cooperative functionality.

  14. Polymer surface interacts with calcium in aqueous media to induce stem cell assembly.

    PubMed

    Hung, Kun-Che; Hsu, Shan-Hui

    2015-10-28

    Bioinspired surface with functional group rearrangement abilities are highly desirable for designing functional materials. Calcium ion (Ca(2+) ) is a pivotal life element and the ion transport is tightly regulated through calcium channels. It is demonstrated here that Ca(2+) can be transported by polymer surface to induce cell assembly. A series of polyurethane materials is synthesized with different abilities to rearrange the surface functional groups in response to aqueous environment. It is observed that surface recruitment of carboxyl and amino groups from the bulk material can interact with Ca(2+) and facilitate its translocation from aqueous media into cells. The surface rearrangement of functional group triggers the calcium trafficking and turns on signals involving cell merging and assembly. This observation provides an insight on adjusting material-calcium interaction to design nature-inspired smart interfaces to induce cell organization and tissue regeneration. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Layer-by-layer assembly of ferrocene-modified linear polyethylenimine redox polymer films.

    PubMed

    DeLuca, Jared L; Hickey, David P; Bamper, Daniel A; Glatzhofer, Daniel T; Johnson, Matthew B; Schmidtke, David W

    2013-07-22

    Herein, both electrostatic and covalent layer-by-layer assembly were used for the construction of multicomposite thin films using a ferrocene-modified linear poly(ethylenimine) redox polymer (Fc-C6-LPEI) as the cationic polyelectrolye, and poly(acrylic acid) (PAA), poly(glutamic acid) (PGA), or glucose oxidase (GOX) as the negative polyelectrolyte. The assembly of the multilayer films was characterized by cyclic voltammetry (CV), UV/Vis spectroscopy, and ellipsometry with the enzymatic response of the films containing GOX being characterized via constant potential amperometry. CV measurements suggested that the successful buildup of multilayer films was dependent upon the nature of the anionic polyelectrolyte used. Electrostatic assembly of films composed of Fc-C6-LPEI and either PAA or PGA produced large oxidation peak current densities of 630 and 670 μA cm(-2), respectively, during cyclic voltammetry. Increased measured absorbance by UV/Vis spectroscopy and increased measured film thicknesses (400-600 nm) by ellipsometry provided additional evidence of successful film formation. In contrast, the films incorporating GOX that were electrostatically assembled surprisingly produced significantly lower electrochemical responses (12 μA cm(-2)), low absorbance values, and reduced film thicknesses (~15 nm), and glucose electro-oxidation current densities less than 1 μA cm(-2), which all suggested unstable or minimal film formation. Subsequently, we developed a covalent layer-by-layer approach to fabricate films of Fc-C6-LPEI/GOX by covalently linking the amine groups of Fc-C6-LPEI to the aldehyde groups of periodate-oxidized glucose oxidase. Covalent assembly of the Fc-C6-LPEI/GOX films produced oxidation peak current densities during cyclic voltammetry of 40 μA cm(-2) and glucose electro-oxidation current densities of 220 μA cm(-2). These films also showed an increase in their thicknesses (~140 nm) relative to the electrostatic GOX films. For the films containing

  16. Self-assembly of DNA origami particles in suspension of non-absorbing depleting polymers

    NASA Astrophysics Data System (ADS)

    Siavashpouri, Mahsa; Zakhary, Mark; Wachauf, Christian; Dietz, Hendrik; Dogic, Zvonimir

    2015-03-01

    The connection between the macroscopic properties of a liquid crystalline material and the microscopic features of the constituent molecules is the essential theme that permeates the field of liquid crystals. Previous studies have shown that monodisperse rod-like colloids such as filamentous bacteriophage self-assemble into 1D twisted ribbons in presence of attractive interactions mediated by non-absorbing polymers. The microscopic properties of the colloidal particles play an important role in determining the physical properties of these mesoscopic assemblages. Using structural DNA nanotechnology, we present the design and structure of DNA origami six-helix bundles with tunable microscopic properties, which can be used as a new building block for the self-assembly of rod-like colloidal particles. We demonstrate that formation of higher order structures from the assembly of colloidal rods is universal. By tuning the chirality, aspect ratio and flexibility of the DNA origami particles we can control the physical properties of the entire self-assembled structures.

  17. L-Proline Functionalized Polymers Prepared by RAFT Polymerization and Their Assemblies as Supported Organocatalysts

    PubMed Central

    Lu, Annhelen; Smart, Thomas P.; Epps, Thomas H.; Longbottom, Deborah A.; O’Reilly, Rachel K.

    2011-01-01

    We have prepared a range of well-defined copolymers of styrene and L-proline functionalized styrene (5–11 kDa) using reversible addition–fragmentation chain transfer (RAFT) polymerization techniques and explored their use in supported catalysis. Upon deprotection of the L-proline functionalities, the solution self-assembly of these copolymers was investigated in mixed solvent systems. The resulting assemblies were characterized by dynamic light scattering, transmission electron microscopy (on graphene oxide substrates, along with cryo-TEM and tomography), and scanning electron microscopy. The application of these functional assemblies as supported catalysts for the aldol condensation reaction was explored using cyclohexanone and 4-nitrobenzaldehyde. The rate and selectivity of solution catalysis in our self-assembled system were comparable to those of L-proline, and a significant advantage of our system was that the polymer support could be utilized at lower catalyst loadings with comparable activity and also could be recycled a number of times while maintaining activity and selectivity. PMID:22053116

  18. Polymer magnetic microactuators fabricated with hot embossing and layer-by-layer nano self-assembly.

    PubMed

    Xue, Wei; Cui, Tianhong

    2007-08-01

    Polymer-based magnetic microactuators have been fabricated with hot embossing technique and layer-by-layer (LbL) nano self-assembly. Silicon molds are fabricated with conventional UV lithography and wet etching techniques. Hot embossing is used to transfer the patterns from silicon molds to polymethylmethacrylate (PMMA) sheets. The overall processing time for the pattern transfer is less than 20 min. Low-cost devices with massive and rapid replication can be fabricated. Six layers of magnetic iron oxide (Fe2O3) nanoparticles are LbL self-assembled on the PMMA surface as the magnetically sensitive material. Positive photoresist PR1813 is used as the sacrificial layer to protect the gold electrode on the back side of the membrane. LbL nano self-assembly technique provides a simple method to obtain the magnetic film with low cost, short processing time, simple fabrication steps at room temperature. The volume of the magnetic material can be precisely controlled by the number of nano-assembled iron oxide layers. The mechanical, electrical, and magnetic properties of the microactuator are characterized by a laser interferometer. The natural frequency of the actuator is approximately 151 Hz; and the maximum deflection amplitude is about 34 nm. At all frequencies, the increase of the magnetic field increases the deflection amplitude which is in agreement with the theoretical equation.

  19. Solution growth of spherulitic rod and platelet calcium phosphate assemblies through polymer-assisted mesoscopic transformations.

    PubMed

    Kosma, Vassiliki A; Beltsios, Konstantinos G

    2013-05-01

    Solution growth of apatite its precursors in the presence of urea commercial gelatin is found to lead, under appropriate conditions, to a rich spectrum of morphologies, among them high aspect ratio needles in uniform sturdy spherulitic assemblies resulting from a herein documented morphological 'Chrysalis Transformation'; the latter transformation involves the growth of parallel arrays of high aspect ratio needles within micron-scale tablets the formation of a radial needle arrangement upon disruption of tablet wrapping. A different level of gelatin leads to the formation of sturdy platelet-based spherulites through another morphological transformation. We also probe the role of four simple synthetic water-soluble polymers; we find that three of them (poly(vinyl alcohol), polyvinylpyrrolidone and polyacrylamide)) also affect substantially the assembly habits of apatite; the effect is similar to that of gelatin but the attained control is less perfect/complete. The case of poly(vinyl alcohol) provides, through variation of the degree of hydrolysis, insights as regards the chain architecture features that might favor morphological transformations. Morphological transformations of particle assemblies documented herein constitute novel ways of generating dense quasi-isotropic reinforcements with high aspect ratio ceramic particles; it becomes possible to tailor calcium phosphate phases at the structural level of crystal assembly.

  20. Enhanced photoelectrochemical biosensing performances for graphene (2D) - Titanium dioxide nanowire (1D) heterojunction polymer conductive nanosponges.

    PubMed

    Muthuchamy, N; Lee, K-P; Gopalan, A-I

    2017-03-15

    In this work, an efficient photoelectrochemical (PEC) biosensing platform has been designed and developed based on graphene (G) through modifying it into an electroconductive polymer nanosponge (EPNS) and with the incorporation of titanium dioxide nanowires (TiO2 NW) (designated as TiO2 (G) NW@EPNS). Functioning as an efficient immobilization matrix for immobilization of the enzyme Cytochrome C (Cyt C), TiO2 (G) NW@EPNS delivers features for an efficient PEC biosensor, such as fast kinetics of direct electron transfer (DET) to the electrode and effective separation of photogenerated holes and electrons. TiO2 (G) NW@EPNS exhibited DET to the electrode with a highly heterogeneous electron transfer rate constant of 6.29±0.002s(-1). The existence of TiO2, G and EPNS in conjunction facilitates DET between the electrode surface and the protein. The fabricated PEC nitrite ion (NO2(-)) biosensor showed superior analytical performances such as wide linear range (0.5-9000µM), lowest detection limit (0.225mM) and excellent specificity for NO2(-) in the presence other interferences at a very low bias potential (-0.11V). This study opens up the feasibility of fabricating a PEC biosensor for any analyte using a matrix comprising of G and a photoactive material and EPNS, because these components synergistically contribute to effective immobilization of on enzyme, DET to the electrode and simple read-out under the light. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. A new type of porous graphite foams and their integrated composites with oxide/polymer core/shell nanowires for supercapacitors: structural design, fabrication, and full supercapacitor demonstrations.

    PubMed

    Xia, Xinhui; Chao, Dongliang; Fan, Zhanxi; Guan, Cao; Cao, Xiehong; Zhang, Hua; Fan, Hong Jin

    2014-03-12

    We attempt to meet the general design requirements for high-performance supercapacitor electrodes by combining the strategies of lightweight substrate, porous nanostructure design, and conductivity modification. We fabricate a new type of 3D porous and thin graphite foams (GF) and use as the light and conductive substrates for the growth of metal oxide core/shell nanowire arrays to form integrated electrodes. The nanowire core is Co3O4, and the shell is a composite of conducting polymer (poly(3,4-ethylenedioxythiophene), PEDOT) and metal oxide (MnO2). To show the advantage of this integrated electrode design (viz., GF + Co3O4/PEDOT-MnO2 core/shell nanowire arrays), three other different less-integrated electrodes are also prepared for comparison. Full supercapacitor devices based on the GF + Co3O4/PEDOT-MnO2 as positive electrodes exhibit the best performance compared to other three counterparts due to an optimal design of structure and a synergistic effect.

  2. Polymer blend lithography: A versatile method to fabricate nanopatterned self-assembled monolayers

    PubMed Central

    Huang, Cheng; Moosmann, Markus; Jin, Jiehong; Heiler, Tobias; Schimmel, Thomas

    2012-01-01

    Summary A rapid and cost-effective lithographic method, polymer blend lithography (PBL), is reported to produce patterned self-assembled monolayers (SAM) on solid substrates featuring two or three different chemical functionalities. For the pattern generation we use the phase separation of two immiscible polymers in a blend solution during a spin-coating process. By controlling the spin-coating parameters and conditions, including the ambient atmosphere (humidity), the molar mass of the polystyrene (PS) and poly(methyl methacrylate) (PMMA), and the mass ratio between the two polymers in the blend solution, the formation of a purely lateral morphology (PS islands standing on the substrate while isolated in the PMMA matrix) can be reproducibly induced. Either of the formed phases (PS or PMMA) can be selectively dissolved afterwards, and the remaining phase can be used as a lift-off mask for the formation of a nanopatterned functional silane monolayer. This “monolayer copy” of the polymer phase morphology has a topographic contrast of about 1.3 nm. A demonstration of tuning of the PS island diameter is given by changing the molar mass of PS. Moreover, polymer blend lithography can provide the possibility of fabricating a surface with three different chemical components: This is demonstrated by inducing breath figures (evaporated condensed entity) at higher humidity during the spin-coating process. Here we demonstrate the formation of a lateral pattern consisting of regions covered with 1H,1H,2H,2H-perfluorodecyltrichlorosilane (FDTS) and (3-aminopropyl)triethoxysilane (APTES), and at the same time featuring regions of bare SiOx. The patterning process could be applied even on meter-sized substrates with various functional SAM molecules, making this process suitable for the rapid preparation of quasi two-dimensional nanopatterned functional substrates, e.g., for the template-controlled growth of ZnO nanostructures [1]. PMID:23019558

  3. Polymer blend lithography: A versatile method to fabricate nanopatterned self-assembled monolayers.

    PubMed

    Huang, Cheng; Moosmann, Markus; Jin, Jiehong; Heiler, Tobias; Walheim, Stefan; Schimmel, Thomas

    2012-01-01

    A rapid and cost-effective lithographic method, polymer blend lithography (PBL), is reported to produce patterned self-assembled monolayers (SAM) on solid substrates featuring two or three different chemical functionalities. For the pattern generation we use the phase separation of two immiscible polymers in a blend solution during a spin-coating process. By controlling the spin-coating parameters and conditions, including the ambient atmosphere (humidity), the molar mass of the polystyrene (PS) and poly(methyl methacrylate) (PMMA), and the mass ratio between the two polymers in the blend solution, the formation of a purely lateral morphology (PS islands standing on the substrate while isolated in the PMMA matrix) can be reproducibly induced. Either of the formed phases (PS or PMMA) can be selectively dissolved afterwards, and the remaining phase can be used as a lift-off mask for the formation of a nanopatterned functional silane monolayer. This "monolayer copy" of the polymer phase morphology has a topographic contrast of about 1.3 nm. A demonstration of tuning of the PS island diameter is given by changing the molar mass of PS. Moreover, polymer blend lithography can provide the possibility of fabricating a surface with three different chemical components: This is demonstrated by inducing breath figures (evaporated condensed entity) at higher humidity during the spin-coating process. Here we demonstrate the formation of a lateral pattern consisting of regions covered with 1H,1H,2H,2H-perfluorodecyltrichlorosilane (FDTS) and (3-aminopropyl)triethoxysilane (APTES), and at the same time featuring regions of bare SiO(x). The patterning process could be applied even on meter-sized substrates with various functional SAM molecules, making this process suitable for the rapid preparation of quasi two-dimensional nanopatterned functional substrates, e.g., for the template-controlled growth of ZnO nanostructures [1].

  4. Redox-switchable supramolecular graft polymer formation via ferrocene-cyclodextrin assembly.

    PubMed

    Szillat, Florian; Schmidt, Bernhard V K J; Hubert, Artur; Barner-Kowollik, Christopher; Ritter, Helmut

    2014-07-01

    The redox switchable formation of very well-defined supramolecular graft polymers in aqueous solution driven by host-guest interactions between ferrocene (Fc) and cyclodextrin (CD) is presented. The Fc-containing acrylic backbone copolymer (PDMA-stat-Fc) is prepared via reversible addition-fragmentation chain transfer (RAFT) copolymerization of N,N-dimethyl-acrylamide (DMA) and the novel monomer N-(ferrocenoylmethyl)acrylamide (NFMA). Via the RAFT process, copolymers containing variable Fc ratios (5-10 mol%) are prepared, affording polymers of molecular masses of close to 11,000 g mol(-1) and molar mass dispersities (Đ) of 1.2. The β-cyclodextrin (β-CD) containing building block is synthesized via RAFT-polymerization, too, in order to afford a polymer with well-defined molecular mass and low dispersity (Mn = 10 300 g mol(-1) , Đ = 1.1), employing a propargyl-functionalized chain transfer agent for the polymerization of N,N-diethylacrylamide (DEA). The polymerization product is subsequently terminated with β-CD via the regiospecific copper (I)-catalyzed 1,3-cycloaddition (PDEA-βCD). Host-guest interactions between Fc and CD lead to the formation of supramolecular graft-polymers, verified via nuclear Overhauser enhancement spectroscopy (NOESY). Importantly, their redox-responsive character is clearly confirmed via cyclic voltammetry (CV). The self-assembly of the statistical Fc-containing lateral polymer chain in aqueous solution leads to mono- and multi-core micelle-aggregates evidenced via TEM. Only diffused cloud-like, non-spherical nanostructures are observed after addition of PDEA-βCD (TEM).

  5. Controlled Segmentation of Metal Nanowire Array by Block Copolymer Lithography and Reversible Ion Loading.

    PubMed

    Mun, Jeong Ho; Cha, Seung Keun; Kim, Ye Chan; Yun, Taeyeong; Choi, Young Joo; Jin, Hyeong Min; Lee, Jae Eun; Jeon, Hyun Uk; Kim, So Youn; Kim, Sang Ouk

    2017-02-20

    Spatial arrangement of 1D nanomaterials may offer enormous opportunities for advanced electronics and photonics. Moreover, morphological complexity and chemical diversity in the nanoscale components may lead to unique properties that are hardly anticipated in randomly distributed homogeneous nanostructures. Here, controlled chemical segmentation of metal nanowire arrays using block copolymer lithography and subsequent reversible metal ion loading are demonstrated. To impose chemical heterogeneity in the nanowires generated by block copolymer lithography, reversible ion loading method highly specific for one particular polymer block is introduced. Reversibility of the metal ion loading enables area-selective localized replacement of metal ions in the self-assembled patterns and creates segmented metal nanowire arrays with different metallic components. Further integration of this method with shear aligning process produces high aligned segmented metal nanowire array with desired local chemical compositions.

  6. Engineering efficient thermoelectrics from large-scale assemblies of doped ZnO nanowires: nanoscale effects and resonant-level scattering.

    PubMed

    Brockway, Lance; Vasiraju, Venkata; Sunkara, Mahendra K; Vaddiraju, Sreeram

    2014-09-10

    Recent studies focusing on enhancing the thermoelectric performance of metal oxides were primarily motivated by their low cost, large availability of the component elements in the earth's crust, and their high stability. So far, these studies indicate that n-type materials, such as ZnO, have much lower thermoelectric performance than their p-type counterparts. Overcoming this limitation requires precisely tuning the thermal and electrical transport through n-type metal oxides. One way to accomplish this is through the use of optimally doped bulk assemblies of ZnO nanowires. In this study, the thermoelectric properties of n-type aluminum and gallium dually doped bulk assembles of ZnO nanowires were determined. The results indicated that a high zT of 0.6 at 1000 °C, the highest experimentally observed for any n-type oxide, is possible. The high performance is attributed to the tailoring of the ZnO phase composition, nanostructuring of the material, and Zn-III band hybridization-based resonant scattering.

  7. Polymer GARD: computer simulation of covalent bond formation in reproducing molecular assemblies.

    PubMed

    Shenhav, Barak; Bar-Even, Arren; Kafri, Ran; Lancet, Doron

    2005-04-01

    The basic Graded Autocatalysis Replication Domain (GARD) model consists of a repertoire of small molecules, typically amphiphiles, which join and leave a non-covalent micelle-like assembly. Its replication behavior is due to occasional fission, followed by a homeostatic growth process governed by the assembly's composition. Limitations of the basic GARD model are its small finite molecular repertoire and the lack of a clear path from a 'monomer world' towards polymer-based living entities. We have now devised an extension of the model (polymer GARD or P-GARD), where a monomer-based GARD serves as a 'scaffold' for oligomer formation, as a result of internal chemical rules. We tested this concept with computer simulations of a simple case of monovalent monomers, whereby more complex molecules (dimers) are formed internally, in a manner resembling biosynthetic metabolism. We have observed events of dimer 'take-over' - the formation of compositionally stable, replication-prone quasi stationary states (composomes) that have appreciable dimer content. The appearance of novel metabolism-like networks obeys a time-dependent power law, reminiscent of evolution under punctuated equilibrium. A simulation under constant population conditions shows the dynamics of takeover and extinction of different composomes, leading to the generation of different population distributions. The P-GARD model offers a scenario whereby biopolymer formation may be a result of rather than a prerequisite for early life-like processes.

  8. Macromolecule-to-amphiphile conversion process of a polyoxometalate-polymer hybrid and assembled hybrid vesicles.

    PubMed

    Xiao, Yu; Han, Yao-Kun; Xia, Nan; Hu, Min-Biao; Zheng, Ping; Wang, Wei

    2012-09-03

    We report our findings on the macromolecule-to-amphiphile conversion process of a polyoxometalate-polymer hybrid and the assembled hybrid vesicles formed by aggregation of the hybrid amphiphile. The polyoxometalate-polymer hybrid is composed of a polyoxometalate (POM) cluster, which is covered by five tetrabutylammonium (Bu(4)N(+)) countercations, and a polystyrene (PS) chain. Through a cation-exchange process the Bu(4)N(+) countercations can be replaced by protons to form a hybrid amphiphile composed of a hydrophilic, protonated POM cluster and a hydrophobic PS chain. By implementing a directed one-dimensional diffusion and analyzing the diffusion data, we confirmed that the diffusion of solvated protons rather than macromolecules or aggregates is the key factor controlling the conversion process. Once the giant hybrid amphiphiles were formed, they immediately assembled into kinetically favored vesicular aggregates. During subsequent annealing these vesicular aggregates were transformed into thermodynamically stable vesicular aggregates with a perfect vesicle structure. The success in the preparation of the POM-containing hybrid vesicles provides us with an opportunity of preparing POM-functionalized vesicles. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Facile Directed Assembly of Hollow Polymer Nanocapsules within Spontaneously Formed Catanionic Surfactant Vesicles

    SciTech Connect

    Kim, Mariya D.; Dergunov, Sergey; Richter, Andrew; Durbin, Jeffrey; Shmakov, Sergey; Jia, Ying; Kenbeilova, Saltanat; Orazbekuly, Yerbolat; Kengpeiil, Aigerim; Lindner, Erno; Pingali, Sai Venkatesh; Urban, Volker S; Weigand, Steven; Pinkhassik, Eugene

    2014-01-01

    Surfactant vesicles containing monomers in the interior of the bilayer were used to template hollow polymer nanocapsules. This study investigated the formation of surfactant/monomer assemblies by two loading methods, concurrent loading and diffusion loading. The assembly process and the resulting aggregates were investigated with dynamic light scattering, small angle neutron scattering, and small-angle X-ray scattering. Acrylic monomers formed vesicles with a mixture of cationic and anionic surfactants in a broad range of surfactant ratios. Regions with predominant formation of vesicles were broader for compositions containing acrylic monomers compared with blank surfactants. This observation supports the stabilization of the vesicular structure by acrylic monomers. Diffusion loading produced monomer-loaded vesicles unless vesicles were composed from surfactants at the ratios close to the boundary of a vesicular phase region on a phase diagram. Both concurrent-loaded and diffusion-loaded surfactant/monomer vesicles produced hollow polymer nanocapsules upon the polymerization of monomers in the bilayer followed by removal of surfactant scaffolds.

  10. Self-organized hierarchical structures in polymer surfaces: self-assembled nanostructures within breath figures.

    PubMed

    Muñoz-Bonilla, Alexandra; Ibarboure, Emmanuel; Papon, Eric; Rodriguez-Hernandez, Juan

    2009-06-02

    Herein we report the preparation of hierarchically micro- and nanostructured polymer surfaces in block copolymer/homopolymer blends. The structural order at different length scales was obtained combining two methodologies, e.g., the breath figures method to produce porous microstructures ("top-down" approach) with block copolymer self-assembly to induce microphase separation at the nanometer length scale ("bottom-up" approach). The interplay of the breath figure formation during the spin-coating and self-assembly of the triblock copolymer allowed the preparation of polymer surfaces having micrometer-sized cavities decorated with nanostructured block copolymers. The system described herein possesses unique characteristics. First, the surface chemical composition can be varied by a surface rearrangement upon annealing either to dry or humid air. Moreover, surface rearrangement is accompanied with structural changes, i.e. both topography and nanostructuration can be reversibly modified upon annealing. In terms of topograghy, a transition between holes and hills was obtained upon soft annealing to water vapor and can be recovered upon annealing to dry air. Finally, the pore nanostructure can be modulated from a micellar array to a lamellar phase when the film is exposed either to air or to tetrahydrofuran vapor.

  11. Phospholipid—polymer amphiphile hybrid assemblies and their interaction with macrophages

    PubMed Central

    Panneerselvam, Karthiga; Lynge, Martin E.; Riber, Camilla Frich; Mena-Hernando, Sofia; Smith, Anton A. A.; Goldie, Kenneth N.; Zelikin, Alexander N.; Städler, Brigitte

    2015-01-01

    Recently, the combination of lipids and block copolymers has become an alternative to liposomes and polymersomes as nano-sized drug carriers. We synthesize novel block copolymers consisting of poly(cholesteryl acrylate) as the hydrophobic core and poly(N-isopropylacrylamide) (PNIPAAm) as the hydrophilic extensions. Their successful phospholipid-assisted assembly into vesicles is demonstrated using the evaporation-hydration method. The preserved thermo-responsive property of the lipid-polymer hybrids is shown by a temperature dependent adsorption behaviour of the vesicles to poly(l lysine) coated surfaces. As expected, the vesicle adsorption is found to be higher at elevated temperatures. The cellular uptake efficiency of hybrids is assessed using macrophages with applied shear stress. The amount of adhering macrophages is affected by the time and level of applied shear stress. Further, it is found that shorter PNIPAAm extensions lead to higher uptake of the assemblies by the macrophages with applied shear stress. No inherent cytotoxicity is observed at the tested conditions. Taken together, this first example of responsive lipid-polymer hybrids, and their positive biological evaluation makes them promising nano-sized drug carrier candidates. PMID:26339330

  12. Polymer mediated layer-by-layer assembly of different shaped gold nanoparticles.

    PubMed

    Budy, Stephen M; Hamilton, Desmond J; Cai, Yuheng; Knowles, Michelle K; Reed, Scott M

    2017-02-01

    Gold nanoparticles (GNPs) have a wide range of properties with potential applications in electronics, optics, catalysis, and sensing. In order to demonstrate that dens