Sample records for assembled small molecules

  1. Bioorthogonal cyclization-mediated in situ self-assembly of small-molecule probes for imaging caspase activity in vivo

    NASA Astrophysics Data System (ADS)

    Ye, Deju; Shuhendler, Adam J.; Cui, Lina; Tong, Ling; Tee, Sui Seng; Tikhomirov, Grigory; Felsher, Dean W.; Rao, Jianghong

    2014-06-01

    Directed self-assembly of small molecules in living systems could enable a myriad of applications in biology and medicine, and already this has been used widely to synthesize supramolecules and nano/microstructures in solution and in living cells. However, controlling the self-assembly of synthetic small molecules in living animals is challenging because of the complex and dynamic in vivo physiological environment. Here we employ an optimized first-order bioorthogonal cyclization reaction to control the self-assembly of a fluorescent small molecule, and demonstrate its in vivo applicability by imaging caspase-3/7 activity in human tumour xenograft mouse models of chemotherapy. The fluorescent nanoparticles assembled in situ were imaged successfully in both apoptotic cells and tumour tissues using three-dimensional structured illumination microscopy. This strategy combines the advantages offered by small molecules with those of nanomaterials and should find widespread use for non-invasive imaging of enzyme activity in vivo.

  2. Imaging enzyme-triggered self-assembly of small molecules inside live cells

    PubMed Central

    Gao, Yuan; Shi, Junfeng; Yuan, Dan; Xu, Bing

    2012-01-01

    Self-assembly of small molecules in water to form nanofibers, besides generating sophisticated biomaterials, promises a simple system inside cells for regulating cellular processes. But lack of a convenient approach for studying the self-assembly of small molecules inside cells hinders the development of such systems. Here we report a method to image enzyme-triggered self-assembly of small molecules inside live cells. After linking a fluorophore to a self-assembly motif to make a precursor, we confirmed by 31P NMR and rheology that enzyme-triggered conversion of the precursor to a hydrogelator results in the formation of a hydrogel via self-assembly. The imaging contrast conferred by the nanofibers of the hydrogelators allowed the evaluation of intracellular self-assembly; the dynamics, and the localization of the nanofibers of the hydrogelators in live cells. This approach explores supramolecular chemistry inside cells and may lead to new insights, processes, or materials at the interface of chemistry and biology. PMID:22929790

  3. Freezing-induced self-assembly of amphiphilic molecules

    NASA Astrophysics Data System (ADS)

    Albouy, P. A.; Deville, S.; Fulkar, A.; Hakouk, K.; Impéror-Clerc, M.; Klotz, M.; Liu, Q.; Marcellini, M.; Perez, J.

    The self-assembly of amphiphilic molecules usually takes place in a liquid phase, near room temperature. Here, using small angle X-ray scattering (SAXS) experiments performed in real time, we show that freezing of aqueous solutions of copolymer amphiphilic molecules can induce self-assembly below 0{\\deg}C.

  4. Freezing-induced self-assembly of amphiphilic molecules.

    PubMed

    Albouy, P A; Deville, S; Fulkar, A; Hakouk, K; Impéror-Clerc, M; Klotz, M; Liu, Q; Marcellini, M; Perez, J

    2017-03-01

    The self-assembly of amphiphilic molecules usually takes place in a liquid phase, near room temperature. Here, using small angle X-ray scattering (SAXS) experiments performed in real time, we show that freezing of aqueous solutions of copolymer amphiphilic molecules can induce self-assembly below 0 °C.

  5. Cancer Theranostic Nanoparticles Self-Assembled from Amphiphilic Small Molecules with Equilibrium Shift-Induced Renal Clearance

    PubMed Central

    Ma, Yuan; Mou, Quanbing; Sun, Mo; Yu, Chunyang; Li, Jianqi; Huang, Xiaohua; Zhu, Xinyuan; Yan, Deyue; Shen, Jian

    2016-01-01

    Nano drug delivery systems have emerged as promising candidates for cancer therapy, whereas their uncertainly complete elimination from the body within specific timescales restricts their clinical translation. Compared with hepatic clearance of nanoparticles, renal excretion of small molecules is preferred to minimize the agent-induced toxicity. Herein, we construct in vivo renal-clearable nanoparticles, which are self-assembled from amphiphilic small molecules holding the capabilities of magnetic resonance imaging (MRI) and chemotherapy. The assembled nanoparticles can accumulate in tumor tissues for their nano-characteristics, while the small molecules dismantled from the nanoparticles can be efficiently cleared by kidneys. The renal-clearable nanoparticles exhibit excellent tumor-inhibition performance as well as low side effects and negligible chronic toxicity. These results demonstrate a potential strategy for small molecular nano drug delivery systems with obvious anticancer effect and low-toxic metabolism pathway for clinical applications. PMID:27446502

  6. Ligand-Receptor Interaction Modulates the Energy Landscape of Enzyme-Instructed Self-Assembly of Small Molecules.

    PubMed

    Haburcak, Richard; Shi, Junfeng; Du, Xuewen; Yuan, Dan; Xu, Bing

    2016-11-30

    The concurrence of enzymatic reaction and ligand-receptor interactions is common for proteins, but rare for small molecules and has yet to be explored. Here we show that ligand-receptor interaction modulates the morphology of molecular assemblies formed by enzyme-instructed assembly of small molecules. While the absence of ligand-receptor interaction allows enzymatic dephosphorylation of a precursor to generate the hydrogelator that self-assembles to form long nanofibers, the presence of the ligand-receptor interaction biases the pathway to form precipitous aggregates containing short nanofibers. While the hydrogelators self-assemble to form nanofibers or nanoribbons that are unable to bind with the ligand (i.e., vancomycin), the addition of surfactant breaks up the assemblies to restore the ligand-receptor interaction. In addition, an excess amount of the ligands can disrupt the nanofibers and result in the precipitates. As the first example of the use of ligand-receptor interaction to modulate the kinetics of enzymatic self-assembly, this work not only provides a solution to evaluate the interaction between aggregates and target molecules but also offers new insight for understanding the emergent behavior of sophisticated molecular systems having multiple and parallel processes.

  7. Controlled Assembly of Biocompatible Metallic Nanoaggregates Using a Small Molecule Crosslinker

    PubMed Central

    Van Haute, Desiree; Longmate, Julia M.; Berlin, Jacob M.

    2015-01-01

    By introducing a capping step and controlling reaction parameters, the assembly of metallic nanoparticle aggregates can be achieved using a small molecule crosslinker. Aggregates can be assembled from particles of varied size and composition and the size of the aggregates can be systematically adjusted. Following cell uptake of 60 nm aggregates, the aggregates are stable and non-toxic to macrophage cells up to 55mM Au. PMID:26208123

  8. Hydrogen bonding directed self-assembly of small-molecule amphiphiles in water.

    PubMed

    Xu, Jiang-Fei; Niu, Li-Ya; Chen, Yu-Zhe; Wu, Li-Zhu; Tung, Chen-Ho; Yang, Qing-Zheng

    2014-08-01

    Compounds comprising one or two quadruply hydrogen bonding units, 2-ureido-4[1H]-pyrimidinone (UPy) and tris(tetraethylene glycol monomethyl ether) moieties, were reported to form highly stable hydrogen-bonded assemblies in water. Compound 1, containing one UPy, assembles into vesicles, and compound 2, containing two UPy units, forms micelles. The aggregates disassemble reversibly when the solution pH is raised to 9.0 or above. The results demonstrate the utility of hydrogen bonding to direct the self-assembly of small-molecule building blocks in aqueous media.

  9. Toward Generalization of Iterative Small Molecule Synthesis

    PubMed Central

    Lehmann, Jonathan W.; Blair, Daniel J.; Burke, Martin D.

    2018-01-01

    Small molecules have extensive untapped potential to benefit society, but access to this potential is too often restricted by limitations inherent to the customized approach currently used to synthesize this class of chemical matter. In contrast, the “building block approach”, i.e., generalized iterative assembly of interchangeable parts, has now proven to be a highly efficient and flexible way to construct things ranging all the way from skyscrapers to macromolecules to artificial intelligence algorithms. The structural redundancy found in many small molecules suggests that they possess a similar capacity for generalized building block-based construction. It is also encouraging that many customized iterative synthesis methods have been developed that improve access to specific classes of small molecules. There has also been substantial recent progress toward the iterative assembly of many different types of small molecules, including complex natural products, pharmaceuticals, biological probes, and materials, using common building blocks and coupling chemistry. Collectively, these advances suggest that a generalized building block approach for small molecule synthesis may be within reach. PMID:29696152

  10. Self-assembled nanoparticle of common food constituents that carries a sparingly soluble small molecule.

    PubMed

    Bhopatkar, Deepak; Feng, Tao; Chen, Feng; Zhang, Genyi; Carignano, Marcelo; Park, Sung Hyun; Zhuang, Haining; Campanella, Osvaldo H; Hamaker, Bruce R

    2015-05-06

    A previously reported nanoparticle formed through the self-assembly of common food constituents (amylose, protein, and fatty acids) was shown to have the capacity to carry a sparingly soluble small molecule (1-naphthol) in a dispersed system. Potentiometric titration showed that 1-naphthol locates in the lumen of the amylose helix of the nanoparticle. This finding was further supported by calorimetric measurements, showing higher enthalpies of dissociation and reassociation in the presence of 1-naphthol. Visually, the 1-naphthol-loaded nanoparticle appeared to be well-dispersed in aqueous solution. Molecular dynamics simulation showed that the self-assembly was favorable, and at 500 ns, the 1-naphthol molecule resided in the helix of the amylose lumen in proximity to the hydrophobic tail of the fatty acid. Thus, sparingly soluble small molecules, such as some nutraceuticals or drugs, could be incorporated and delivered by this soft nanoparticle carrier.

  11. N-terminal aliphatic residues dictate the structure, stability, assembly, and small molecule binding of the coiled-coil region of cartilage oligomeric matrix protein.

    PubMed

    Gunasekar, Susheel K; Asnani, Mukta; Limbad, Chandani; Haghpanah, Jennifer S; Hom, Wendy; Barra, Hanna; Nanda, Soumya; Lu, Min; Montclare, Jin Kim

    2009-09-15

    The coiled-coil domain of cartilage oligomeric matrix protein (COMPcc) assembles into a homopentamer that naturally recognizes the small molecule 1,25-dihydroxyvitamin D(3) (vit D). To identify the residues critical for the structure, stability, oligomerization, and binding to vit D as well as two other small molecules, all-trans-retinol (ATR) and curcumin (CCM), here we perform an alanine scanning mutagenesis study. Ten residues lining the hydrophobic pocket of COMPcc were mutated into alanine; of the mutated residues, the N-terminal aliphatic residues L37, L44, V47, and L51 are responsible for maintaining the structure and function. Furthermore, two polar residues, T40 and Q54, within the N-terminal region when converted into alanine improve the alpha-helical structure, stability, and self-assembly behavior. Helical stability, oligomerization, and binding appear to be linked in a manner in which mutations that abolish helical structure and assembly bind poorly to vit D, ATR, and CCM. These results provide not only insight into COMPcc and its functional role but also useful guidelines for the design of stable, pentameric coiled-coils capable of selectively storing and delivering various small molecules.

  12. Features of Modularly Assembled Compounds That Impart Bioactivity Against an RNA Target

    PubMed Central

    Rzuczek, Suzanne G.; Gao, Yu; Tang, Zhen-Zhi; Thornton, Charles A.; Kodadek, Thomas; Disney, Matthew D.

    2013-01-01

    Transcriptomes provide a myriad of potential RNAs that could be the targets of therapeutics or chemical genetic probes of function. Cell permeable small molecules, however, generally do not exploit these targets, owing to the difficulty in the design of high affinity, specific small molecules targeting RNA. As part of a general program to study RNA function using small molecules, we designed bioactive, modularly assembled small molecules that target the non-coding expanded RNA repeat that causes myotonic dystrophy type 1 (DM1), r(CUG)exp. Herein, we present a rigorous study to elucidate features in modularly assembled compounds that afford bioactivity. Different modular assembly scaffolds were investigated including polyamines, α-peptides, β-peptides, and peptide tertiary amides (PTAs). Based on activity as assessed by improvement of DM1-associated defects, stability against proteases, cellular permeability, and toxicity, we discovered that constrained backbones, namely PTAs, are optimal. Notably, we determined that r(CUG)exp is the target of the optimal PTA in cellular models and that the optimal PTA improves DM1-associated defects in a mouse model. Biophysical analyses were employed to investigate potential sources of bioactivity. These investigations show that modularly assembled compounds have increased residence times on their targets and faster on rates than the RNA-binding modules from which they were derived and faster on rates than the protein that binds r(CUG)exp, the inactivation of which gives rise to DM1-associated defects. These studies provide information about features of small molecules that are programmable for targeting RNA, allowing for the facile optimization of therapeutics or chemical probes against other cellular RNA targets. PMID:24032410

  13. Features of modularly assembled compounds that impart bioactivity against an RNA target.

    PubMed

    Rzuczek, Suzanne G; Gao, Yu; Tang, Zhen-Zhi; Thornton, Charles A; Kodadek, Thomas; Disney, Matthew D

    2013-10-18

    Transcriptomes provide a myriad of potential RNAs that could be the targets of therapeutics or chemical genetic probes of function. Cell-permeable small molecules, however, generally do not exploit these targets, owing to the difficulty in the design of high affinity, specific small molecules targeting RNA. As part of a general program to study RNA function using small molecules, we designed bioactive, modularly assembled small molecules that target the noncoding expanded RNA repeat that causes myotonic dystrophy type 1 (DM1), r(CUG)(exp). Herein, we present a rigorous study to elucidate features in modularly assembled compounds that afford bioactivity. Different modular assembly scaffolds were investigated, including polyamines, α-peptides, β-peptides, and peptide tertiary amides (PTAs). On the basis of activity as assessed by improvement of DM1-associated defects, stability against proteases, cellular permeability, and toxicity, we discovered that constrained backbones, namely, PTAs, are optimal. Notably, we determined that r(CUG)(exp) is the target of the optimal PTA in cellular models and that the optimal PTA improves DM1-associated defects in a mouse model. Biophysical analyses were employed to investigate potential sources of bioactivity. These investigations show that modularly assembled compounds have increased residence times on their targets and faster on rates than the RNA-binding modules from which they were derived. Moreover, they have faster on rates than the protein that binds r(CUG)(exp), the inactivation of which gives rise to DM1-associated defects. These studies provide information about features of small molecules that are programmable for targeting RNA, allowing for the facile optimization of therapeutics or chemical probes against other cellular RNA targets.

  14. Hierarchical Co-Assembly Enhanced Direct Ink Writing.

    PubMed

    Li, Longyu; Zhang, Pengfei; Zhang, Zhiyun; Lin, Qianming; Wu, Yuyang; Cheng, Alexander; Lin, Yunxiao; Thompson, Christina M; Smaldone, Ronald A; Ke, Chenfeng

    2018-04-23

    Integrating intelligent molecular systems into 3D printing materials and transforming their molecular functions to the macroscale with controlled superstructures will unleash great potential for the development of smart materials. Compared to macromolecular 3D printing materials, self-assembled small-molecule-based 3D printing materials are very rare owing to the difficulties of facilitating 3D printability as well as preserving their molecular functions macroscopically. Herein, we report a general approach for the integration of functional small molecules into 3D printing materials for direct ink writing through the introduction of a supramolecular template. A variety of inorganic and organic small-molecule-based inks were 3D-printed, and their superstructures were refined by post-printing hierarchical co-assembly. Through spatial and temporal control of individual molecular events from the nano- to the macroscale, fine-tuned macroscale features were successfully installed in the monoliths. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Targeting cell division: Small-molecule inhibitors of FtsZ GTPase perturb cytokinetic ring assembly and induce bacterial lethality

    PubMed Central

    Margalit, Danielle N.; Romberg, Laura; Mets, Rebecca B.; Hebert, Alan M.; Mitchison, Timothy J.; Kirschner, Marc W.; RayChaudhuri, Debabrata

    2004-01-01

    FtsZ, the ancestral homolog of eukaryotic tubulins, is a GTPase that assembles into a cytokinetic ring structure essential for cell division in prokaryotic cells. Similar to tubulin, purified FtsZ polymerizes into dynamic protofilaments in the presence of GTP; polymer assembly is accompanied by GTP hydrolysis. We used a high-throughput protein-based chemical screen to identify small molecules that target assembly-dependent GTPase activity of FtsZ. Here, we report the identification of five structurally diverse compounds, named Zantrins, which inhibit FtsZ GTPase either by destabilizing the FtsZ protofilaments or by inducing filament hyperstability through increased lateral association. These two classes of FtsZ inhibitors are reminiscent of the antitubulin drugs colchicine and Taxol, respectively. We also show that Zantrins perturb FtsZ ring assembly in Escherichia coli cells and cause lethality to a variety of bacteria in broth cultures, indicating that FtsZ antagonists may serve as chemical leads for the development of new broad-spectrum antibacterial agents. Our results illustrate the utility of small-molecule chemical probes to study FtsZ polymerization dynamics and the feasibility of FtsZ as a novel therapeutic target. PMID:15289600

  16. Prion-like nanofibrils of small molecules (PriSM): A new frontier at the intersection of supramolecular chemistry and cell biology.

    PubMed

    Zhou, Jie; Du, Xuewen; Xu, Bing

    2015-01-01

    Formed by non-covalent interactions and not defined at genetic level, the assemblies of small molecules in biology are complicated and less explored. A common morphology of the supramolecular assemblies of small molecules is nanofibrils, which coincidentally resembles the nanofibrils formed by proteins such as prions. So these supramolecular assemblies are termed as prion-like nanofibrils of small molecules (PriSM). Emerging evidence from several unrelated fields over the past decade implies the significance of PriSM in biology and medicine. This perspective aims to highlight some recent advances of the research on PriSM. This paper starts with description of the intriguing similarities between PriSM and prions, discusses the paradoxical features of PriSM, introduces the methods for elucidating the biological functions of PriSM, illustrates several examples of beneficial aspects of PriSM, and finishes with the promises and current challenges in the research of PriSM. We anticipate that the research of PriSM will contribute to the fundamental understanding at the intersection of supramolecular chemistry and cell biology and ultimately lead to a new paradigm of molecular (or supramolecular) therapeutics for biomedicine.

  17. Prion-like nanofibrils of small molecules (PriSM): A new frontier at the intersection of supramolecular chemistry and cell biology

    PubMed Central

    Zhou, Jie; Du, Xuewen; Xu, Bing

    2015-01-01

    Abstract Formed by non-covalent interactions and not defined at genetic level, the assemblies of small molecules in biology are complicated and less explored. A common morphology of the supramolecular assemblies of small molecules is nanofibrils, which coincidentally resembles the nanofibrils formed by proteins such as prions. So these supramolecular assemblies are termed as prion-like nanofibrils of small molecules (PriSM). Emerging evidence from several unrelated fields over the past decade implies the significance of PriSM in biology and medicine. This perspective aims to highlight some recent advances of the research on PriSM. This paper starts with description of the intriguing similarities between PriSM and prions, discusses the paradoxical features of PriSM, introduces the methods for elucidating the biological functions of PriSM, illustrates several examples of beneficial aspects of PriSM, and finishes with the promises and current challenges in the research of PriSM. We anticipate that the research of PriSM will contribute to the fundamental understanding at the intersection of supramolecular chemistry and cell biology and ultimately lead to a new paradigm of molecular (or supramolecular) therapeutics for biomedicine. PMID:25738892

  18. Electrochemical assembly of organic molecules by the reduction of iodonium salts

    DOEpatents

    Dirk, Shawn M [Albuquerque, NM; Howell, Stephen W [Albuquerque, NM; Wheeler, David R [Albuquerque, NM

    2009-06-23

    Methods are described for the electrochemical assembly of organic molecules on silicon, or other conducting or semiconducting substrates, using iodonium salt precursors. Iodonium molecules do not assemble on conducting surfaces without a negative bias. Accordingly, the iodonium salts are preferred for patterning applications that rely on direct writing with negative bias. The stability of the iodonium molecule to acidic conditions allows them to be used with standard silicon processing. As a directed assembly process, the use of iodonium salts provides for small features while maintaining the ability to work on a surface and create structures on a wafer level. Therefore, the process is amenable for mass production. Furthermore, the assembled monolayer (or multilayer) is chemically robust, allowing for subsequent chemical manipulations and the introduction of various molecular functionalities for various chemical and biological applications.

  19. Single-Molecule Analysis for RISC Assembly and Target Cleavage.

    PubMed

    Sasaki, Hiroshi M; Tadakuma, Hisashi; Tomari, Yukihide

    2018-01-01

    RNA-induced silencing complex (RISC) is a small RNA-protein complex that mediates silencing of complementary target RNAs. Biochemistry has been successfully used to characterize the molecular mechanism of RISC assembly and function for nearly two decades. However, further dissection of intermediate states during the reactions has been warranted to fill in the gaps in our understanding of RNA silencing mechanisms. Single-molecule analysis with total internal reflection fluorescence (TIRF) microscopy is a powerful imaging-based approach to interrogate complex formation and dynamics at the individual molecule level with high sensitivity. Combining this technique with our recently established in vitro reconstitution system of fly Ago2-RISC, we have developed a single-molecule observation system for RISC assembly. In this chapter, we summarize the detailed protocol for single-molecule analysis of chaperone-assisted assembly of fly Ago2-RISC as well as its target cleavage reaction.

  20. Targeting Cullin–RING E3 ubiquitin ligases for drug discovery: structure, assembly and small-molecule modulation

    PubMed Central

    Bulatov, Emil; Ciulli, Alessio

    2015-01-01

    In the last decade, the ubiquitin–proteasome system has emerged as a valid target for the development of novel therapeutics. E3 ubiquitin ligases are particularly attractive targets because they confer substrate specificity on the ubiquitin system. CRLs [Cullin–RING (really interesting new gene) E3 ubiquitin ligases] draw particular attention, being the largest family of E3s. The CRLs assemble into functional multisubunit complexes using a repertoire of substrate receptors, adaptors, Cullin scaffolds and RING-box proteins. Drug discovery targeting CRLs is growing in importance due to mounting evidence pointing to significant roles of these enzymes in diverse biological processes and human diseases, including cancer, where CRLs and their substrates often function as tumour suppressors or oncogenes. In the present review, we provide an account of the assembly and structure of CRL complexes, and outline the current state of the field in terms of available knowledge of small-molecule inhibitors and modulators of CRL activity. A comprehensive overview of the reported crystal structures of CRL subunits, components and full-size complexes, alone or with bound small molecules and substrate peptides, is included. This information is providing increasing opportunities to aid the rational structure-based design of chemical probes and potential small-molecule therapeutics targeting CRLs. PMID:25886174

  1. Fluorescent Phthalocyanine Assembly Distinguishes Chiral Isomers of Different Types of Amino Acids and Sugars.

    PubMed

    Jiang, Yuying; Liu, Chenxi; Wang, Xiqian; Wang, Tianyu; Jiang, Jianzhuang

    2017-07-25

    The functions of some natural supramolecular architectures, such as ribosomes, are dependent on the recognition of different types of chiral biomolecules. However, the recognition of different types of chiral molecules (multiobject chiral recognition), such as amino acids and sugars, by independent and identically artificial supramolecular assembly, was rarely achieved. In this article, simple amphiphilic achiral phthalocyanine was found to form supramolecular chiral assemblies with charged water-soluble polymers upon host-guest interactions at the air/water interface. Among these systems, one identical phthalocyanine/poly(l-lysine) assembly not only can distinguish enantiomers of different amino acids but also can recognize several epimers of monose. The chiral recognitions were achieved by comparing either the steady-state fluorescence intensity or fluorescence quenching rate of phthalocyanine/poly(l-lysine) assemblies, before and after interaction with different small chiral molecules. It was demonstrated that the interactions between poly(l-lysine) and different small chiral molecules could change the aggregation of phthalocyanines. And the sensitivity of fluorescence and the excellent multiobject chiral recognition properties of the phthalocyanine/poly(l-lysine) assembly are dependent on the subtle molecular packing mode and the cooperation of different noncovalent interactions.

  2. Self-Assembled Polystyrene Beads for Templated Covalent Functionalization of Graphitic Substrates Using Diazonium Chemistry.

    PubMed

    Van Gorp, Hans; Walke, Peter; Bragança, Ana M; Greenwood, John; Ivasenko, Oleksandr; Hirsch, Brandon E; De Feyter, Steven

    2018-04-11

    A network of self-assembled polystyrene beads was employed as a lithographic mask during covalent functionalization reactions on graphitic surfaces to create nanocorrals for confined molecular self-assembly studies. The beads were initially assembled into hexagonal arrays at the air-liquid interface and then transferred to the substrate surface. Subsequent electrochemical grafting reactions involving aryl diazonium molecules created covalently bound molecular units that were localized in the void space between the nanospheres. Removal of the bead template exposed hexagonally arranged circular nanocorrals separated by regions of chemisorbed molecules. Small molecule self-assembly was then investigated inside the resultant nanocorrals using scanning tunneling microscopy to highlight localized confinement effects. Overall, this work illustrates the utility of self-assembly principles to transcend length scale gaps in the development of hierarchically patterned molecular materials.

  3. Self-assembled near-infrared dye nanoparticles as a selective protein sensor by activation of a dormant fluorophore.

    PubMed

    Anees, Palapuravan; Sreejith, Sivaramapanicker; Ajayaghosh, Ayyappanpillai

    2014-09-24

    Design of selective sensors for a specific analyte in blood serum, which contains a large number of proteins, small molecules, and ions, is important in clinical diagnostics. While metal and polymeric nanoparticle conjugates have been used as sensors, small molecular assemblies have rarely been exploited for the selective sensing of a protein in blood serum. Herein we demonstrate how a nonspecific small molecular fluorescent dye can be empowered to form a selective protein sensor as illustrated with a thiol-sensitive near-IR squaraine (Sq) dye (λabs= 670 nm, λem= 700 nm). The dye self-assembles to form nonfluorescent nanoparticles (Dh = 200 nm) which selectively respond to human serum albumin (HSA) in the presence of other thiol-containing molecules and proteins by triggering a green fluorescence. This selective response of the dye nanoparticles allowed detection and quantification of HSA in blood serum with a sensitivity limit of 3 nM. Notably, the Sq dye in solution state is nonselective and responds to any thiol-containing proteins and small molecules. The sensing mechanism involves HSA specific controlled disassembly of the Sq nanoparticles to the molecular dye by a noncovalent binding process and its subsequent reaction with the thiol moiety of the protein, triggering the green emission of a dormant fluorophore present in the dye. This study demonstrates the power of a self-assembled small molecular fluorophore for protein sensing and is a simple chemical tool for the clinical diagnosis of blood serum.

  4. Self-assembled nanogaps for molecular electronics.

    PubMed

    Tang, Qingxin; Tong, Yanhong; Jain, Titoo; Hassenkam, Tue; Wan, Qing; Moth-Poulsen, Kasper; Bjørnholm, Thomas

    2009-06-17

    A nanogap for molecular devices was realized using solution-based self-assembly. Gold nanorods were assembled to gold nanoparticle-coated conducting SnO2:Sb nanowires via thiol end-capped oligo(phenylenevinylene)s (OPVs). The molecular gap was easily created by the rigid molecule itself during self-assembly and the gap length was determined by the molecule length. The gold nanorods and gold nanoparticles, respectively covalently bonded at the two ends of the molecule, had very small dimensions, e.g. a width of approximately 20 nm, and hence were expected to minimize the screening effect. The ultra-long conducting SnO2:Sb nanowires provided the bridge to connect one of the electrodes of the molecular device (gold nanoparticle) to the external circuit. The tip of the atomic force microscope (AFM) was contacted onto the other electrode (gold nanorod) for the electrical measurement of the OPV device. The conductance measurement confirmed that the self-assembly of the molecules and the subsequent self-assembly of the gold nanorods was a feasible method for the fabrication of the nanogap of the molecular devices.

  5. Small-Molecule Effectors of Hepatitis B Virus Capsid Assembly Give Insight into Virus Life Cycle▿

    PubMed Central

    Bourne, Christina; Lee, Sejin; Venkataiah, Bollu; Lee, Angela; Korba, Brent; Finn, M. G.; Zlotnick, Adam

    2008-01-01

    The relationship between the physical chemistry and biology of self-assembly is poorly understood, but it will be critical to quantitatively understand infection and for the design of antivirals that target virus genesis. Here we take advantage of heteroaryldihydropyrimidines (HAPs), which affect hepatitis B virus (HBV) assembly, to gain insight and correlate in vitro assembly with HBV replication in culture. Based on a low-resolution crystal structure of a capsid-HAP complex, a closely related series of HAPs were designed and synthesized. These differentially strengthen the association between neighboring capsid proteins, alter the kinetics of assembly, and give rise to aberrant structures incompatible with a functional capsid. The chemical nature of the HAP variants correlated well with the structure of the HAP binding pocket. The thermodynamics and kinetics of in vitro assembly had strong and predictable effects on product morphology. However, only the kinetics of in vitro assembly had a strong correlation with inhibition of HBV replication in HepG2.2.15 cells; there was at best a weak correlation between assembly thermodynamics and replication. The correlation between assembly kinetics and virus suppression implies a competition between successful assembly and misassembly, small molecule induced or otherwise. This is a predictive and testable model for the mechanism of action of assembly effectors. PMID:18684823

  6. Intermolecular artifacts in probe microscope images of C60 assemblies

    NASA Astrophysics Data System (ADS)

    Jarvis, Samuel Paul; Rashid, Mohammad Abdur; Sweetman, Adam; Leaf, Jeremy; Taylor, Simon; Moriarty, Philip; Dunn, Janette

    2015-12-01

    Claims that dynamic force microscopy has the capability to resolve intermolecular bonds in real space continue to be vigorously debated. To date, studies have been restricted to planar molecular assemblies with small separations between neighboring molecules. Here we report the observation of intermolecular artifacts over much larger distances in 2D assemblies of C60 molecules, with compelling evidence that in our case the tip apex is terminated by a C60 molecule (rather than the CO termination typically exploited in ultrahigh resolution force microscopy). The complete absence of directional interactions such as hydrogen or halogen bonding, the nonplanar structure of C60, and the fullerene termination of the tip apex in our case highlight that intermolecular artifacts are ubiquitous in dynamic force microscopy.

  7. Surface-enhanced Raman scattering on molecular self-assembly in nanoparticle-hydrogel composite.

    PubMed

    Miljanić, Snezana; Frkanec, Leo; Biljan, Tomislav; Meić, Zlatko; Zinić, Mladen

    2006-10-24

    Surface-enhanced Raman scattering has been applied to study weak intermolecular interactions between small organic gelling molecules involved in the silver nanoparticle-hydrogel composite formation. Assembly and disassembly of the gelator molecules in close vicinity to embedded silver nanoparticles were followed by changes in Raman intensity of the amide II and carboxyl vibrational bands, whereas the strength of the bands related to benzene modes remained constant. This implied that the gelator molecules were strongly attached to the silver particles through the benzene units, while participating in gel structure organization by intermolecular hydrogen bonding between oxalyl amide and carboxyl groups.

  8. Smart hydrogels from laterally-grafted peptide assembly.

    PubMed

    Li, Wen; Park, Il-soo; Kang, Seong-Kyun; Lee, Myongsoo

    2012-09-11

    Small peptides carrying laterally-grafted azobenzene units self-assemble into photo-responsive hydrogels which are applied as a smart matrix for controlling the dye molecules release. We demonstrate that a delicate balance among peptides interactions plays a pivotal role in the photo-responsive gel-sol transition.

  9. Small-Molecule-Based Self-Assembled Ligands for G-Quadruplex DNA Surface Recognition.

    PubMed

    Rivera-Sánchez, María Del C; García-Arriaga, Marilyn; Hobley, Gerard; Morales-de-Echegaray, Ana V; Rivera, José M

    2017-10-31

    Most drugs are small molecules because of their attractive pharmacokinetics, manageable development and manufacturing, and effective binding into the concave crevices of bio-macromolecules. Despite these features, they often fall short when it comes to effectively recognizing the surfaces of bio-macromolecules. One way to overcome the challenge of biomolecular surface recognition is to develop small molecules that become self-assembled ligands (SALs) prior to binding. Herein, we report SALs made from 8-aryl-2'-deoxyguanosine derivatives forming precise hydrophilic supramolecular G-quadruplexes (SGQs) with excellent size, shape, and charge complementarity to G-quadruplex DNA (QDNA). We show that only those compounds forming SGQs act as SALs, which in turn differentially stabilize QDNAs from selected oncogene promoters and the human telomeric regions. Fluorescence resonance energy-transfer melting assays are consistent with spectroscopic, calorimetric, and light scattering studies, showing the formation of a "sandwichlike" complex QDNA·SGQ·QDNA. These results open the door for the advent of SALs that recognize QDNAs and potentially the surfaces of other bio-macromolecules such as proteins.

  10. From synthesis to function via iterative assembly of N-methyliminodiacetic acid boronate building blocks.

    PubMed

    Li, Junqi; Grillo, Anthony S; Burke, Martin D

    2015-08-18

    The study and optimization of small molecule function is often impeded by the time-intensive and specialist-dependent process that is typically used to make such compounds. In contrast, general and automated platforms have been developed for making peptides, oligonucleotides, and increasingly oligosaccharides, where synthesis is simplified to iterative applications of the same reactions. Inspired by the way natural products are biosynthesized via the iterative assembly of a defined set of building blocks, we developed a platform for small molecule synthesis involving the iterative coupling of haloboronic acids protected as the corresponding N-methyliminodiacetic acid (MIDA) boronates. Here we summarize our efforts thus far to develop this platform into a generalized and automated approach for small molecule synthesis. We and others have employed this approach to access many polyene-based compounds, including the polyene motifs found in >75% of all polyene natural products. This platform further allowed us to derivatize amphotericin B, the powerful and resistance-evasive but also highly toxic last line of defense in treating systemic fungal infections, and thereby understand its mechanism of action. This synthesis-enabled mechanistic understanding has led us to develop less toxic derivatives currently under evaluation as improved antifungal agents. To access more Csp(3)-containing small molecules, we gained a stereocontrolled entry into chiral, non-racemic α-boryl aldehydes through the discovery of a chiral derivative of MIDA. These α-boryl aldehydes are versatile intermediates for the synthesis of many Csp(3) boronate building blocks that are otherwise difficult to access. In addition, we demonstrated the utility of these types of building blocks in accessing pharmaceutically relevant targets via an iterative Csp(3) cross-coupling cycle. We have further expanded the scope of the platform to include stereochemically complex macrocyclic and polycyclic molecules using a linear-to-cyclized strategy, in which Csp(3) boronate building blocks are iteratively assembled into linear precursors that are then cyclized into the cyclic frameworks found in many natural products and natural product-like structures. Enabled by the serendipitous discovery of a catch-and-release protocol for generally purifying MIDA boronate intermediates, the platform has been automated. The synthesis of 14 distinct classes of small molecules, including pharmaceuticals, materials components, and polycyclic natural products, has been achieved using this new synthesis machine. It is anticipated that the scope of small molecules accessible by this platform will continue to expand via further developments in building block synthesis, Csp(3) cross-coupling methodologies, and cyclization strategies. Achieving these goals will enable the more generalized synthesis of small molecules and thereby help shift the rate-limiting step in small molecule science from synthesis to function.

  11. Multicolor emission from large-area porous thin films constructed of nanowires of small organic molecules

    NASA Astrophysics Data System (ADS)

    Wang, Zhe-Chen; Xiao, Wen-Chang; Ding, Xun-Lei; Ma, Yan-Ping; Xue, Wei; He, Sheng-Gui

    2008-12-01

    We describe a facile low-temperature physical vapor deposition approach to fabricate porous network thin films constructed of nanowires of small organic molecules on a large area. Supermolecular assemblies of pyrene nanowires based on a combination of van der Waals forces and π-π stacking tend to hierarchically self-assemble to form uniform porous films using our techniques. The morphology of the films is studied and we also study several reasons influencing the process of assembly such as evaporation temperature, deposition temperature, and different kinds of substrate. The deposition temperature is determined to be the main reason for hierarchical aggregation. Typically prepared films exhibit unique optical properties, that is, multicolor red-green-blue emissions. This novel method can be applied to other organic molecular systems and may be potentially used to place nanoscaled building blocks directly on solid surfaces for fabricating large-area nanostructure-based flat screens.

  12. Giant surfactants provide a versatile platform for sub-10-nm nanostructure engineering

    PubMed Central

    Yu, Xinfei; Yue, Kan; Hsieh, I-Fan; Li, Yiwen; Dong, Xue-Hui; Liu, Chang; Xin, Yu; Wang, Hsiao-Fang; Shi, An-Chang; Newkome, George R.; Chen, Er-Qiang; Zhang, Wen-Bin; Cheng, Stephen Z. D.

    2013-01-01

    The engineering of structures across different length scales is central to the design of novel materials with controlled macroscopic properties. Herein, we introduce a unique class of self-assembling materials, which are built upon shape- and volume-persistent molecular nanoparticles and other structural motifs, such as polymers, and can be viewed as a size-amplified version of the corresponding small-molecule counterparts. Among them, “giant surfactants” with precise molecular structures have been synthesized by “clicking” compact and polar molecular nanoparticles to flexible polymer tails of various composition and architecture at specific sites. Capturing the structural features of small-molecule surfactants but possessing much larger sizes, giant surfactants bridge the gap between small-molecule surfactants and block copolymers and demonstrate a duality of both materials in terms of their self-assembly behaviors. The controlled structural variations of these giant surfactants through precision synthesis further reveal that their self-assemblies are remarkably sensitive to primary chemical structures, leading to highly diverse, thermodynamically stable nanostructures with feature sizes around 10 nm or smaller in the bulk, thin-film, and solution states, as dictated by the collective physical interactions and geometric constraints. The results suggest that this class of materials provides a versatile platform for engineering nanostructures with sub-10-nm feature sizes. These findings are not only scientifically intriguing in understanding the chemical and physical principles of the self-assembly, but also technologically relevant, such as in nanopatterning technology and microelectronics. PMID:23716680

  13. Design, synthesis and selection of DNA-encoded small-molecule libraries.

    PubMed

    Clark, Matthew A; Acharya, Raksha A; Arico-Muendel, Christopher C; Belyanskaya, Svetlana L; Benjamin, Dennis R; Carlson, Neil R; Centrella, Paolo A; Chiu, Cynthia H; Creaser, Steffen P; Cuozzo, John W; Davie, Christopher P; Ding, Yun; Franklin, G Joseph; Franzen, Kurt D; Gefter, Malcolm L; Hale, Steven P; Hansen, Nils J V; Israel, David I; Jiang, Jinwei; Kavarana, Malcolm J; Kelley, Michael S; Kollmann, Christopher S; Li, Fan; Lind, Kenneth; Mataruse, Sibongile; Medeiros, Patricia F; Messer, Jeffrey A; Myers, Paul; O'Keefe, Heather; Oliff, Matthew C; Rise, Cecil E; Satz, Alexander L; Skinner, Steven R; Svendsen, Jennifer L; Tang, Lujia; van Vloten, Kurt; Wagner, Richard W; Yao, Gang; Zhao, Baoguang; Morgan, Barry A

    2009-09-01

    Biochemical combinatorial techniques such as phage display, RNA display and oligonucleotide aptamers have proven to be reliable methods for generation of ligands to protein targets. Adapting these techniques to small synthetic molecules has been a long-sought goal. We report the synthesis and interrogation of an 800-million-member DNA-encoded library in which small molecules are covalently attached to an encoding oligonucleotide. The library was assembled by a combination of chemical and enzymatic synthesis, and interrogated by affinity selection. We describe methods for the selection and deconvolution of the chemical display library, and the discovery of inhibitors for two enzymes: Aurora A kinase and p38 MAP kinase.

  14. Molecular self-assembly for biological investigations and nanoscale lithography

    NASA Astrophysics Data System (ADS)

    Cheunkar, Sarawut

    Small, diffusible molecules when recognized by their binding partners, such as proteins and antibodies, trigger enzymatic activity, cell communication, and immune response. Progress in analytical methods enabling detection, characterization, and visualization of biological dynamics at the molecular level will advance our exploration of complex biological systems. In this dissertation, analytical platforms were fabricated to capture membrane-associated receptors, which are essential proteins in cell signaling pathways. The neurotransmitter serotonin and its biological precursor were immobilized on gold substrates coated with self-assembled monolayers (SAMs) of oligo(ethylene glycol)alkanethiols and their reactive derivatives. The SAM-coated substrates present the biologically selective affinity of immobilized molecules to target native membrane-associated receptors. These substrates were also tested for biospecificity using antibodies. In addition, small-molecule-functionalized platforms, expressing neurotransmitter pharmacophores, were employed to examine kinetic interactions between G-protein-coupled receptors and their associated neurotransmitters. The binding interactions were monitored using a quartz crystal microbalance equipped with liquid-flow injection. The interaction kinetics of G-protein-coupled serotonin 1A receptor and 5-hydroxytyptophan-functionalized surfaces were studied in a real-time, label-free environment. Key binding parameters, such as equilibrium dissociation constants, binding rate constants, and dissociative half-life, were extracted. These parameters are critical for understanding and comparing biomolecular interactions in modern biomedical research. By integrating self-assembly, surface functionalization, and nanofabrication, small-molecule microarrays were created for high-throughput screening. A hybrid soft-lithography, called microcontact insertion printing, was used to pattern small molecules at the dilute scales necessary for highly selective biorecognition. By carefully tuning the polar surface energy of polymeric stamps, problems associated with patterning hydrophilic tether molecules inserted into hydrophilic preformed SAMs are surmounted. The patterned substrates presenting neurotransmitter precursors selectively capture membrane-associated receptors. These advances provide new avenues for fabricating small-molecule arrays. Furthermore, a novel strategy based on a conventional microcontact printing, called chemical lift-off lithography, was invented to overcome the micrometer-scale resolution limits of molecular ink diffusion in soft lithography. Self-assembled monolayers of hydroxyl-terminated alkanethiols, preformed on gold substrates, were selectively removed by oxygen-plasma-treated polymeric stamps in a subtractive stamping process with high pattern fidelity. The covalent interactions formed at the stamp-substrate interface are believed to be responsible for removing not only alkanethiol molecules but also a monolayer of gold atoms from the substrates. A variety of high-resolution patterned features were fabricated, and stamps were cleaned and reused many times without feature deterioration. The remaining SAMs acted as resists for etching exposed gold features. Monolayer backfilling into lifted-off areas enabled patterned protein capture, and 40-nanometer chemical patterns were achieved.

  15. Mechanisms of small molecule–DNA interactions probed by single-molecule force spectroscopy

    PubMed Central

    Almaqwashi, Ali A.; Paramanathan, Thayaparan; Rouzina, Ioulia; Williams, Mark C.

    2016-01-01

    There is a wide range of applications for non-covalent DNA binding ligands, and optimization of such interactions requires detailed understanding of the binding mechanisms. One important class of these ligands is that of intercalators, which bind DNA by inserting aromatic moieties between adjacent DNA base pairs. Characterizing the dynamic and equilibrium aspects of DNA-intercalator complex assembly may allow optimization of DNA binding for specific functions. Single-molecule force spectroscopy studies have recently revealed new details about the molecular mechanisms governing DNA intercalation. These studies can provide the binding kinetics and affinity as well as determining the magnitude of the double helix structural deformations during the dynamic assembly of DNA–ligand complexes. These results may in turn guide the rational design of intercalators synthesized for DNA-targeted drugs, optical probes, or integrated biological self-assembly processes. Herein, we survey the progress in experimental methods as well as the corresponding analysis framework for understanding single molecule DNA binding mechanisms. We discuss briefly minor and major groove binding ligands, and then focus on intercalators, which have been probed extensively with these methods. Conventional mono-intercalators and bis-intercalators are discussed, followed by unconventional DNA intercalation. We then consider the prospects for using these methods in optimizing conventional and unconventional DNA-intercalating small molecules. PMID:27085806

  16. Evolution of a strategy for preparing bioactive small molecules by sequential multicomponent assembly processes, cyclizations, and diversification.

    PubMed

    Sahn, James J; Granger, Brett A; Martin, Stephen F

    2014-10-21

    A strategy for generating diverse collections of small molecules has been developed that features a multicomponent assembly process (MCAP) to efficiently construct a variety of intermediates possessing an aryl aminomethyl subunit. These key compounds are then transformed via selective ring-forming reactions into heterocyclic scaffolds, each of which possesses suitable functional handles for further derivatizations and palladium-catalyzed cross coupling reactions. The modular nature of this approach enables the facile construction of libraries of polycyclic compounds bearing a broad range of substituents and substitution patterns for biological evaluation. Screening of several compound libraries thus produced has revealed a large subset of compounds that exhibit a broad spectrum of medicinally-relevant activities.

  17. Scalable Directed Assembly of Highly Crystalline 2,7-Dioctyl[1]benzothieno[3,2- b][1]benzothiophene (C8-BTBT) Films.

    PubMed

    Chai, Zhimin; Abbasi, Salman A; Busnaina, Ahmed A

    2018-05-30

    Assembly of organic semiconductors with ordered crystal structure has been actively pursued for electronics applications such as organic field-effect transistors (OFETs). Among various film deposition methods, solution-based film growth from small molecule semiconductors is preferable because of its low material and energy consumption, low cost, and scalability. Here, we show scalable and controllable directed assembly of highly crystalline 2,7-dioctyl[1]benzothieno[3,2- b][1]benzothiophene (C8-BTBT) films via a dip-coating process. Self-aligned stripe patterns with tunable thickness and morphology over a centimeter scale are obtained by adjusting two governing parameters: the pulling speed of a substrate and the solution concentration. OFETs are fabricated using the C8-BTBT films assembled at various conditions. A field-effect hole mobility up to 3.99 cm 2 V -1 s -1 is obtained. Owing to the highly scalable crystalline film formation, the dip-coating directed assembly process could be a great candidate for manufacturing next-generation electronics. Meanwhile, the film formation mechanism discussed in this paper could provide a general guideline to prepare other organic semiconducting films from small molecule solutions.

  18. Fabrication and characterization of SPR chips with the modified bovine serum albumin

    NASA Astrophysics Data System (ADS)

    Chen, Xing; Zhang, Lu-lu; Cui, Da-fu

    2016-03-01

    A facile surface plasmon resonance (SPR) chip is developed for small molecule determination and analysis. The SPR chip was prepared based on a self assembling principle, in which the modified bovine serum albumin (BSA) was directly self-assembled onto the bare gold surface. The surface morphology of the chip with the modified BSA was investigated by atomic force microscopy (AFM) and its optical properties were characterized. The surface binding capacity of the bare facile SPR chip with a uniform morphology is 8 times of that of the bare control SPR chip. Based on the experiments of immune reaction between cortisol antibody and cortisol derivative, the sensitivity of the facile SPR chip with the modified BSA is much higher than that of the control SPR chip with the un-modified BSA. The facile SPR chip has been successfully used to detect small molecules. The lowest detection limit is 5 ng/mL with a linear range of 5—100 ng/mL for cortisol analysis. The novel facile SPR chip can also be applied to detect other small molecules.

  19. [The principle and application of the single-molecule real-time sequencing technology].

    PubMed

    Yanhu, Liu; Lu, Wang; Li, Yu

    2015-03-01

    Last decade witnessed the explosive development of the third-generation sequencing strategy, including single-molecule real-time sequencing (SMRT), true single-molecule sequencing (tSMSTM) and the single-molecule nanopore DNA sequencing. In this review, we summarize the principle, performance and application of the SMRT sequencing technology. Compared with the traditional Sanger method and the next-generation sequencing (NGS) technologies, the SMRT approach has several advantages, including long read length, high speed, PCR-free and the capability of direct detection of epigenetic modifications. However, the disadvantage of its low accuracy, most of which resulted from insertions and deletions, is also notable. So, the raw sequence data need to be corrected before assembly. Up to now, the SMRT is a good fit for applications in the de novo genomic sequencing and the high-quality assemblies of small genomes. In the future, it is expected to play an important role in epigenetics, transcriptomic sequencing, and assemblies of large genomes.

  20. Molecular simulations of self-assembling bio-inspired supramolecular systems and their connection to experiments

    PubMed Central

    Patmanidis, Ilias

    2018-01-01

    In bionanotechnology, the field of creating functional materials consisting of bio-inspired molecules, the function and shape of a nanostructure only appear through the assembly of many small molecules together. The large number of building blocks required to define a nanostructure combined with the many degrees of freedom in packing small molecules has long precluded molecular simulations, but recent advances in computational hardware as well as software have made classical simulations available to this strongly expanding field. Here, we review the state of the art in simulations of self-assembling bio-inspired supramolecular systems. We will first discuss progress in force fields, simulation protocols and enhanced sampling techniques using recent examples. Secondly, we will focus on efforts to enable the comparison of experimentally accessible observables and computational results. Experimental quantities that can be measured by microscopy, spectroscopy and scattering can be linked to simulation output either directly or indirectly, via quantum mechanical or semi-empirical techniques. Overall, we aim to provide an overview of the various computational approaches to understand not only the molecular architecture of nanostructures, but also the mechanism of their formation. PMID:29688238

  1. Synaptic and extrasynaptic traces of long-term memory: the ID molecule theory.

    PubMed

    Legéndy, Charles R

    2016-08-01

    It is generally assumed at the time of this writing that memories are stored in the form of synaptic weights. However, it is now also clear that the synapses are not permanent; in fact, synaptic patterns undergo significant change in a matter of hours. This means that to implement the long survival of distant memories (for several decades in humans), the brain must possess a molecular backup mechanism in some form, complete with provisions for the storage and retrieval of information. It is found below that the memory-supporting molecules need not contain a detailed description of mental entities, as had been envisioned in the 'memory molecule papers' from 50 years ago, they only need to contain unique identifiers of various entities, and that this can be achieved using relatively small molecules, using a random code ('ID molecules'). In this paper, the logistics of information flow are followed through the steps of storage and retrieval, and the conclusion reached is that the ID molecules, by carrying a sufficient amount of information (entropy), can effectively control the recreation of complex multineuronal patterns. In illustrations, it is described how ID molecules can be made to revive a selected cell assembly by waking up its synapses and how they cause a selected cell assembly to ignite by sending slow inward currents into its cells. The arrangement involves producing multiple copies of the ID molecules and distributing them at strategic locations at selected sets of synapses, then reaching them through small noncoding RNA molecules. This requires the quick creation of entropy-rich messengers and matching receptors, and it suggests that these are created from each other by small-scale transcription and reverse transcription.

  2. Second-generation DNA-templated macrocycle libraries for the discovery of bioactive small molecules.

    PubMed

    Usanov, Dmitry L; Chan, Alix I; Maianti, Juan Pablo; Liu, David R

    2018-07-01

    DNA-encoded libraries have emerged as a widely used resource for the discovery of bioactive small molecules, and offer substantial advantages compared with conventional small-molecule libraries. Here, we have developed and streamlined multiple fundamental aspects of DNA-encoded and DNA-templated library synthesis methodology, including computational identification and experimental validation of a 20 × 20 × 20 × 80 set of orthogonal codons, chemical and computational tools for enhancing the structural diversity and drug-likeness of library members, a highly efficient polymerase-mediated template library assembly strategy, and library isolation and purification methods. We have integrated these improved methods to produce a second-generation DNA-templated library of 256,000 small-molecule macrocycles with improved drug-like physical properties. In vitro selection of this library for insulin-degrading enzyme affinity resulted in novel insulin-degrading enzyme inhibitors, including one of unusual potency and novel macrocycle stereochemistry (IC 50  = 40 nM). Collectively, these developments enable DNA-templated small-molecule libraries to serve as more powerful, accessible, streamlined and cost-effective tools for bioactive small-molecule discovery.

  3. Supramolecular macrocycles reversibly assembled by Te…O chalcogen bonding

    PubMed Central

    Ho, Peter C.; Szydlowski, Patrick; Sinclair, Jocelyn; Elder, Philip J. W.; Kübel, Joachim; Gendy, Chris; Lee, Lucia Myongwon; Jenkins, Hilary; Britten, James F.; Morim, Derek R.; Vargas-Baca, Ignacio

    2016-01-01

    Organic molecules with heavy main-group elements frequently form supramolecular links to electron-rich centres. One particular case of such interactions is halogen bonding. Most studies of this phenomenon have been concerned with either dimers or infinitely extended structures (polymers and lattices) but well-defined cyclic structures remain elusive. Here we present oligomeric aggregates of heterocycles that are linked by chalcogen-centered interactions and behave as genuine macrocyclic species. The molecules of 3-methyl-5-phenyl-1,2-tellurazole 2-oxide assemble a variety of supramolecular aggregates that includes cyclic tetramers and hexamers, as well as a helical polymer. In all these aggregates, the building blocks are connected by Te…O–N bridges. Nuclear magnetic resonance spectroscopic experiments demonstrate that the two types of annular aggregates are persistent in solution. These self-assembled structures form coordination complexes with transition-metal ions, act as fullerene receptors and host small molecules in a crystal. PMID:27090355

  4. Star PolyMOCs with Diverse Structures, Dynamics, and Functions by Three-Component Assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yufeng; Gu, Yuwei; Keeler, Eric G.

    2016-12-05

    We report star polymer metal–organic cage (polyMOC) materials whose structures, mechanical properties, functionalities, and dynamics can all be precisely tailored through a simple three-component assembly strategy. The star polyMOC network is composed of tetra-arm star polymers functionalized with ligands on the chain ends, small molecule ligands, and palladium ions; polyMOCs are formed via metal–ligand coordination and thermal annealing. The ratio of small molecule ligands to polymer-bound ligands determines the connectivity of the MOC junctions and the network structure. The use of large M12L24 MOCs enables great flexibility in tuning this ratio, which provides access to a rich spectrum of materialmore » properties including tunable moduli and relaxation dynamics.« less

  5. Self-Assembly, Guest Capture, and NMR Spectroscopy of a Metal-Organic Cage in Water

    ERIC Educational Resources Information Center

    Go, Eun Bin; Srisuknimit, Veerasak; Cheng, Stephanie L.; Vosburg, David A.

    2016-01-01

    A green organic-inorganic laboratory experiment has been developed in which students prepare a self-assembling iron cage in D[subscript 2]O at room temperature. The tetrahedral cage captures a small, neutral molecule such as cyclohexane or tetrahydrofuran. [Superscript 1]H NMR analysis distinguishes captured and free guests through diagnostic…

  6. Vesicle-mediated growth of tubular branches and centimeter-long microtubes from a single molecule.

    PubMed

    Abbas, Abdennour; Brimer, Andrew; Tian, Limei; d'Avignon, D André; Hameed, Abdulrahman Shahul; Vittal, Jagadese J; Singamaneni, Srikanth

    2013-08-12

    The mechanism by which small molecules assemble into microscale tubular structures in aqueous solution remains poorly understood, particularly when the initial building blocks are non-amphiphilic molecules and no surfactant is used. It is here shown how a subnanometric molecule, namely p-aminothiophenol (p-ATP), prepared in normal water with a small amount of ethanol, spontaneously assembles into a new class of nanovesicle. Due to Brownian motion, these nanostructures rapidly grow into micrometric vesicles and start budding to yield macroscale tubular branches with a remarkable growth rate of ∼20 μm s⁻¹. A real-time visualization by optical microscopy reveals that tubular growth proceeds by vesicle walk and fusion on the apex (growth cone) and sides of the branches and ultimately leads to the generation of centimeter-long microtubes. This unprecedented growth mechanism is triggered by a pH-activated proton switch and maintained by hydrogen bonding. The vesicle fusion-mediated synthesis suggests that functional microtubes with biological properties can be efficiently prepared with a mixture of appropriate diaminophenyl blocks and the desired macromolecule. The reversibility, timescale, and very high yield (90%) of this synthetic approach make it a valuable model for the investigation of hierarchical and structural transition between organized assemblies with different size scales and morphologies. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Dye-binding assays for evaluation of the effects of small molecule inhibitors on amyloid (aβ) self-assembly.

    PubMed

    Jameson, Laramie P; Smith, Nicholas W; Dzyuba, Sergei V

    2012-11-21

    Dye-binding assays, such as those utilizing Congo red and thioflavin T, are among the most widely used tools to probe the aggregation of amyloidogenic biomolecules and for the evaluation of small molecule inhibitors of amyloid aggregation and fibrillization. A number of recent reports have indicated that these dye-binding assays could be prone to false positive effects when assessing inhibitors' potential toward Aβ peptides, species involved in Alzheimer's disease. Specifically, this review focuses on the application of thioflavin T for determining the efficiency of small molecule inhibitors of Aβ aggregation and addresses potential reasons that might be associated with the false positive effects in an effort to increase reliability of dye-binding assays.

  8. Dye-Binding Assays for Evaluation of the Effects of Small Molecule Inhibitors on Amyloid (Aβ) Self-Assembly

    PubMed Central

    2012-01-01

    Dye-binding assays, such as those utilizing Congo red and thioflavin T, are among the most widely used tools to probe the aggregation of amyloidogenic biomolecules and for the evaluation of small molecule inhibitors of amyloid aggregation and fibrillization. A number of recent reports have indicated that these dye-binding assays could be prone to false positive effects when assessing inhibitors’ potential toward Aβ peptides, species involved in Alzheimer’s disease. Specifically, this review focuses on the application of thioflavin T for determining the efficiency of small molecule inhibitors of Aβ aggregation and addresses potential reasons that might be associated with the false positive effects in an effort to increase reliability of dye-binding assays. PMID:23173064

  9. The Natural Product N-Palmitoyl-l-leucine Selectively Inhibits Late Assembly of Human Spliceosomes*

    PubMed Central

    Effenberger, Kerstin A.; James, Robert C.; Urabe, Veronica K.; Dickey, Bailey J.; Linington, Roger G.; Jurica, Melissa S.

    2015-01-01

    The spliceosome is a dynamic complex of five structural RNAs and dozens of proteins, which assemble together to remove introns from nascent eukaryotic gene transcripts in a process called splicing. Small molecules that target different components of the spliceosome represent valuable research tools to investigate this complicated macromolecular machine. However, the current collection of spliceosome inhibitors is very limited. To expand the toolkit we used a high-throughput in vitro splicing assay to screen a collection of pre-fractions of natural compounds derived from marine bacteria for splicing inhibition. Further fractionation of initial hits generated individual peaks of splicing inhibitors that interfere with different stages of spliceosome assembly. With additional characterization of individual peaks, we identified N-palmitoyl-l-leucine as a new splicing inhibitor that blocks a late stage of spliceosome assembly. Structure-activity relationship analysis of the compound revealed that length of carbon chain is important for activity in splicing, as well as for effects on the cytological profile of cells in culture. Together these results demonstrate that our combination of in vitro splicing analysis with complex natural product libraries is a powerful strategy for identifying new small molecule tools with which to probe different aspects of spliceosome assembly and function. PMID:26408199

  10. Phosphatidylinositol 4,5-Bisphosphate Clusters the Cell Adhesion Molecule CD44 and Assembles a Specific CD44-Ezrin Heterocomplex, as Revealed by Small Angle Neutron Scattering

    DOE PAGES

    Khajeh, Jahan Ali; Ju, Jeong Ho; Gupta, Yogesh K.; ...

    2015-01-08

    The cell adhesion molecule CD44 regulates diverse cellular functions, including cell-cell and cell-matrix interaction, cell motility, migration, differentiation, and growth. In cells, CD44 co-localizes with the membrane-cytoskeleton adapter protein Ezrin, which links the CD44 assembled receptor signaling complexes to the cytoskeletal actin and organizes the spatial and temporal localization of signaling events. Here we report that the cytoplasmic tail of CD44 (CD44ct) is largely disordered and adopts an autoinhibited conformation, which prevents CD44ct from binding directly to activated Ezrin in solution. Binding to the signaling lipid phosphatidylinositol 4,5-biphosphlate (PIP2) disrupts autoinhibition in CD44ct, and activates CD44ct to associate with Ezrin.more » Further, using contrast variation small angle neutron scattering, we show that PIP2 mediates the assembly of a specific hetero-tetramer complex of CD44ct with Ezrin. This study reveals a novel autoregulation mechanism in the cytoplasmic tail of CD44 and the role of PIP2 in mediating the assembly of multimeric CD44ct-Ezrin complexes. We hypothesize that polyvalent electrostatic interactions are responsible for the assembly of multimeric PIP2-CD44-Ezrin complexes.« less

  11. PEG-coumarin nanoaggregates as π-π stacking derived small molecule lipophile containing self-assemblies for anti-tumour drug delivery.

    PubMed

    Behl, Gautam; Kumar, Parveen; Sikka, Manisha; Fitzhenry, Laurence; Chhikara, Aruna

    2018-03-01

    Polymeric self-assemblies formed by non-covalent interactions such as hydrophobic interactions, hydrogen bonding, π-π stacking, host-guest and electrostatic interactions have been utilised widely and exhibit controlled release of encapsulated drug. Beside carrier-carrier interactions, small molecule amphiphiles exhibiting carrier-drug interactions have recently been an area of interest for cancer drug delivery, as most of the hydrophobic anti-tumour drugs are aromatic and exhibit π-π conjugated structure. In the present study PEG-coumarin (PC) conjugates forming self-assembled nanoaggregates were synthesised with PEG (polyethylene glycol) as hydrophilic block and coumarin as small molecule lipophilic segment. Curcumin (CUR) as model conjugated aromatic drug was loaded in to the nanoaggregates via dual hydrophobic and π-π stacking interactions. The interactions between the conjugates and CUR, drug release profile and in vitro anti-tumour efficacy were investigated in detail. CUR-loaded nanoaggregate self-assembly was driven by π-π interactions and a maximum loading level of about 18 wt.% (~60 % encapsulation efficiency) was achieved. The average hydrodynamic diameter (D av ) was in the range of 120-160 nm and a spherical morphology was observed by transmission electron microscopy (TEM). A sustained release of CUR was observed for 90 h. Cytotoxicity evaluation of CUR-loaded nanoaggregates on pancreatic cancer cell lines indicated higher efficacy, IC 50 ~11 and ~15 μM as compared to free CUR, IC 50 ~14 and ~20 μM on human pancreatic carcinoma (MIA PaCa-2) and human pancreatic duct epithelioid carcinoma (PANC-1) cell lines respectively. PC conjugates provided a new strategy of fabricating nanoparticles for drug delivery and may form the basis for the development of advanced biomaterials in near future.

  12. A small molecule nanodrug consisting of amphiphilic targeting ligand-chemotherapy drug conjugate for targeted cancer therapy.

    PubMed

    Mou, Quanbing; Ma, Yuan; Zhu, Xinyuan; Yan, Deyue

    2016-05-28

    Targeted drug delivery is a broadly applicable approach for cancer therapy. However, the nanocarrier-based targeted delivery system suffers from batch-to-batch variation, quality concerns and carrier-related toxicity issues. Thus, to develop a carrier-free targeted delivery system with nanoscale characteristics is very attractive. Here, a novel targeting small molecule nanodrug self-delivery system consisting of targeting ligand and chemotherapy drug was constructed, which combined the advantages of small molecules and nano-assemblies together and showed excellent targeting ability and long blood circulation time with well-defined structure, high drug loading ratio and on-demand drug release behavior. As a proof-of-concept, lactose (Lac) and doxorubicin (DOX) were chosen as the targeting ligand and chemotherapy drug, respectively. Lac and DOX were conjugated through a pH-responsive hydrazone group. For its intrinsic amphiphilic property, Lac-DOX conjugate could self-assemble into nanoparticles in water. Both in vitro and in vivo assays indicated that Lac-DOX nanoparticles exhibited enhanced anticancer activity and weak side effects. This novel active targeting nanodrug delivery system shows great potential in cancer therapy. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. In situ click chemistry: from small molecule discovery to synthetic antibodies

    PubMed Central

    Agnew, Heather D.; Lai, Bert; Lee, Su Seong; Lim, Jaehong; Nag, Arundhati; Pitram, Suresh; Rohde, Rosemary; Heath, James R.

    2013-01-01

    Advances in the fields of proteomics, molecular imaging, and therapeutics are closely linked to the availability of affinity reagents that selectively recognize their biological targets. Here we present a review of Iterative Peptide In Situ Click Chemistry (IPISC), a novel screening technology for designing peptide multiligands with high affinity and specificity. This technology builds upon in situ click chemistry, a kinetic target-guided synthesis approach where the protein target catalyzes the conjugation of two small molecules, typically through the azide–alkyne Huisgen cycloaddition. Integrating this methodology with solid phase peptide libraries enables the assembly of linear and branched peptide multiligands we refer to as Protein Catalyzed Capture Agents (PCC Agents). The resulting structures can be thought of as analogous to the antigen recognition site of antibodies and serve as antibody replacements in biochemical and cell-based applications. In this review, we discuss the recent progress in ligand design through IPISC and related approaches, focusing on the improvements in affinity and specificity as multiligands are assembled by target-catalyzed peptide conjugation. We compare the IPISC process to small molecule in situ click chemistry with particular emphasis on the advantages and technical challenges of constructing antibody-like PCC Agents. PMID:22836343

  14. Chemical reactions directed Peptide self-assembly.

    PubMed

    Rasale, Dnyaneshwar B; Das, Apurba K

    2015-05-13

    Fabrication of self-assembled nanostructures is one of the important aspects in nanoscience and nanotechnology. The study of self-assembled soft materials remains an area of interest due to their potential applications in biomedicine. The versatile properties of soft materials can be tuned using a bottom up approach of small molecules. Peptide based self-assembly has significant impact in biology because of its unique features such as biocompatibility, straight peptide chain and the presence of different side chain functionality. These unique features explore peptides in various self-assembly process. In this review, we briefly introduce chemical reaction-mediated peptide self-assembly. Herein, we have emphasised enzymes, native chemical ligation and photochemical reactions in the exploration of peptide self-assembly.

  15. Chemical Reactions Directed Peptide Self-Assembly

    PubMed Central

    Rasale, Dnyaneshwar B.; Das, Apurba K.

    2015-01-01

    Fabrication of self-assembled nanostructures is one of the important aspects in nanoscience and nanotechnology. The study of self-assembled soft materials remains an area of interest due to their potential applications in biomedicine. The versatile properties of soft materials can be tuned using a bottom up approach of small molecules. Peptide based self-assembly has significant impact in biology because of its unique features such as biocompatibility, straight peptide chain and the presence of different side chain functionality. These unique features explore peptides in various self-assembly process. In this review, we briefly introduce chemical reaction-mediated peptide self-assembly. Herein, we have emphasised enzymes, native chemical ligation and photochemical reactions in the exploration of peptide self-assembly. PMID:25984603

  16. Mechanobiological induction of long-range contractility by diffusing biomolecules and size scaling in cell assemblies

    NASA Astrophysics Data System (ADS)

    Dasbiswas, K.; Alster, E.; Safran, S. A.

    2016-06-01

    Mechanobiological studies of cell assemblies have generally focused on cells that are, in principle, identical. Here we predict theoretically the effect on cells in culture of locally introduced biochemical signals that diffuse and locally induce cytoskeletal contractility which is initially small. In steady-state, both the concentration profile of the signaling molecule as well as the contractility profile of the cell assembly are inhomogeneous, with a characteristic length that can be of the order of the system size. The long-range nature of this state originates in the elastic interactions of contractile cells (similar to long-range “macroscopic modes” in non-living elastic inclusions) and the non-linear diffusion of the signaling molecules, here termed mechanogens. We suggest model experiments on cell assemblies on substrates that can test the theory as a prelude to its applicability in embryo development where spatial gradients of morphogens initiate cellular development.

  17. Polycatenar Ligand Control of the Synthesis and Self-Assembly of Colloidal Nanocrystals.

    PubMed

    Diroll, Benjamin T; Jishkariani, Davit; Cargnello, Matteo; Murray, Christopher B; Donnio, Bertrand

    2016-08-24

    Hydrophobic colloidal nanocrystals are typically synthesized and manipulated with commercially available ligands, and surface functionalization is therefore typically limited to a small number of molecules. Here, we report the use of polycatenar ligands derived from polyalkylbenzoates for the direct synthesis of metallic, chalcogenide, pnictide, and oxide nanocrystals. Polycatenar molecules, branched structures bearing diverging chains in which the terminal substitution pattern, functionality, and binding group can be independently modified, offer a modular platform for the development of ligands with targeted properties. Not only are these ligands used for the direct synthesis of monodisperse nanocrystals, but nanocrystals coated with polycatenar ligands self-assemble into softer bcc superlattices that deviate from conventional harder close-packed structures (fcc or hcp) formed by the same nanocrystals coated with commercial ligands. Self-assembly experiments demonstrate that the molecular structure of polycatenar ligands encodes interparticle spacings and attractions, engineering self-assembly, which is tunable from hard sphere to soft sphere behavior.

  18. Self-assembling chimeric polypeptide-doxorubicin conjugate nanoparticles that abolish tumours after a single injection

    NASA Astrophysics Data System (ADS)

    Andrew Mackay, J.; Chen, Mingnan; McDaniel, Jonathan R.; Liu, Wenge; Simnick, Andrew J.; Chilkoti, Ashutosh

    2009-12-01

    New strategies to self-assemble biocompatible materials into nanoscale, drug-loaded packages with improved therapeutic efficacy are needed for nanomedicine. To address this need, we developed artificial recombinant chimeric polypeptides (CPs) that spontaneously self-assemble into sub-100-nm-sized, near-monodisperse nanoparticles on conjugation of diverse hydrophobic molecules, including chemotherapeutics. These CPs consist of a biodegradable polypeptide that is attached to a short Cys-rich segment. Covalent modification of the Cys residues with a structurally diverse set of hydrophobic small molecules, including chemotherapeutics, leads to spontaneous formation of nanoparticles over a range of CP compositions and molecular weights. When used to deliver chemotherapeutics to a murine cancer model, CP nanoparticles have a fourfold higher maximum tolerated dose than free drug, and induce nearly complete tumour regression after a single dose. This simple strategy can promote co-assembly of drugs, imaging agents and targeting moieties into multifunctional nanomedicines.

  19. Supramolecular catalysis beyond enzyme mimics.

    PubMed

    Meeuwissen, Jurjen; Reek, Joost N H

    2010-08-01

    Supramolecular catalysis - the assembly of catalyst species by harnessing multiple weak intramolecular interactions - has, until recently, been dominated by enzyme-inspired approaches. Such approaches often attempt to create an enzyme-like 'active site' and have concentrated on reactions similar to those catalysed by enzymes themselves. Here, we discuss the application of supramolecular assembly to the more traditional transition metal catalysis and to small-molecule organocatalysis. The modularity of self-assembled multicomponent catalysts means that a relatively small pool of catalyst components can provide rapid access to a large number of catalysts that can be evaluated for industrially relevant reactions. In addition, we discuss how catalyst-substrate interactions can be tailored to direct substrates along particular reaction paths and selectivities.

  20. Molecular Dynamics Studies of Self-Assembling Biomolecules and DNA-functionalized Gold Nanoparticles

    NASA Astrophysics Data System (ADS)

    Cho, Vince Y.

    This thesis is organized as following. In Chapter 2, we use fully atomistic MD simulations to study the conformation of DNA molecules that link gold nanoparticles to form nanoparticle superlattice crystals. In Chapter 3, we study the self-assembly of peptide amphiphiles (PAs) into a cylindrical micelle fiber by using CGMD simulations. Compared to fully atomistic MD simulations, CGMD simulations prove to be computationally cost-efficient and reasonably accurate for exploring self-assembly, and are used in all subsequent chapters. In Chapter 4, we apply CGMD methods to study the self-assembly of small molecule-DNA hybrid (SMDH) building blocks into well-defined cage-like dimers, and reveal the role of kinetics and thermodynamics in this process. In Chapter 5, we extend the CGMD model for this system and find that the assembly of SMDHs can be fine-tuned by changing parameters. In Chapter 6, we explore superlattice crystal structures of DNA-functionalized gold nanoparticles (DNA-AuNP) with the CGMD model and compare the hybridization.

  1. Self-assembling electroactive hydrogels for flexible display technology

    NASA Astrophysics Data System (ADS)

    Jones, Scott L.; Hou Wong, Kok; Thordarson, Pall; Ladouceur, François

    2010-12-01

    We have assessed the potential of self-assembling hydrogels for use in conformal displays. The self-assembling process can be used to alter the transparency of the material to all visible light due to scattering by fibres. The reversible transition is shown to be of low energy by differential scanning calorimetry. For use in technology it is imperative that this transition is controlled electrically. We have thus synthesized novel self-assembling hydrogelator molecules which contain an electroactive group. The well-known redox couple of anthraquinone/anthrahydroquinone has been used as the hydrophobic component for a series of small molecule gelators. They are further functionalized with peptide combinations of L-phenylalanine and glycine to provide the hydrophilic group to complete 'head-tail' models of self-assembling gels. The gelation and electroactive characteristics of the series were assessed. Cyclic voltammetry shows the reversible redox cycle to be only superficially altered by functionalization. Additionally, spectroelectrochemical measurements show a reversible transparency and colour change induced by the redox process.

  2. The Metal Effect on Self-Assembling of Oxalamide Gelators Explored by Mass Spectrometry and DFT Calculations.

    PubMed

    Dabić, Dario; Brkljačić, Lidija; Tandarić, Tana; Žinić, Mladen; Vianello, Robert; Frkanec, Leo; Kobetić, Renata

    2018-01-01

    Gels formed by self-assembly of small organic molecules are of wide interest as dynamic soft materials with numerous possible applications, especially in terms of nanotechnology for functional and responsive biomaterials, biosensors, and nanowires. Four bis-oxalamides were chosen to show if electrospray ionization mass spectrometry (ESI-MS) could be used as a prediction of a good gelator and also to shed light on the gelation processes. By inspecting the gelation of several solvent, we showed that bis(amino acid)oxalamide 1 proved to be the most efficient, also being able of forming the largest observable assemblies in the gas phase. The formation of singly charged assemblies holding from one up to six monomer units is the outcome of the strong intermolecular H-bonds, particularly among terminal carboxyl groups. The variation of solvents from polar aprotic towards polar protic did not have any significant effects on the size of the assemblies. The addition of a salt such as NaOAc or Mg(OAc) 2 , depending on the concentration, altered the assembling. Computational analysis at the DFT level aided in the interpretation of the observed trends and revealed that individual gelator molecules spontaneously assemble to higher aggregates, but the presence of the Na + cation disrupts any gelator organization since it becomes significantly more favorable for gelator molecules to bind Na + cations up to the 3:1 ratio than to self-assemble, being fully in line with experimental observations reported here. Graphical Abstract ᅟ.

  3. The Metal Effect on Self-Assembling of Oxalamide Gelators Explored by Mass Spectrometry and DFT Calculations

    NASA Astrophysics Data System (ADS)

    Dabić, Dario; Brkljačić, Lidija; Tandarić, Tana; Žinić, Mladen; Vianello, Robert; Frkanec, Leo; Kobetić, Renata

    2018-01-01

    Gels formed by self-assembly of small organic molecules are of wide interest as dynamic soft materials with numerous possible applications, especially in terms of nanotechnology for functional and responsive biomaterials, biosensors, and nanowires. Four bis-oxalamides were chosen to show if electrospray ionization mass spectrometry (ESI-MS) could be used as a prediction of a good gelator and also to shed light on the gelation processes. By inspecting the gelation of several solvent, we showed that bis(amino acid)oxalamide 1 proved to be the most efficient, also being able of forming the largest observable assemblies in the gas phase. The formation of singly charged assemblies holding from one up to six monomer units is the outcome of the strong intermolecular H-bonds, particularly among terminal carboxyl groups. The variation of solvents from polar aprotic towards polar protic did not have any significant effects on the size of the assemblies. The addition of a salt such as NaOAc or Mg(OAc)2, depending on the concentration, altered the assembling. Computational analysis at the DFT level aided in the interpretation of the observed trends and revealed that individual gelator molecules spontaneously assemble to higher aggregates, but the presence of the Na+ cation disrupts any gelator organization since it becomes significantly more favorable for gelator molecules to bind Na+ cations up to the 3:1 ratio than to self-assemble, being fully in line with experimental observations reported here. [Figure not available: see fulltext.

  4. Interfacial charge transfer absorption: Application to metal molecule assemblies

    NASA Astrophysics Data System (ADS)

    Creutz, Carol; Brunschwig, Bruce S.; Sutin, Norman

    2006-05-01

    Optically induced charge transfer between adsorbed molecules and a metal electrode was predicted by Hush to lead to new electronic absorption features, but has been only rarely observed experimentally. Interfacial charge transfer absorption (IFCTA) provides information concerning the barriers to charge transfer between molecules and the metal/semiconductor and the magnitude of the electronic coupling and could thus provide a powerful tool for understanding interfacial charge-transfer kinetics. Here, we utilize a previously published model [C. Creutz, B.S. Brunschwig, N. Sutin, J. Phys. Chem. B 109 (2005) 10251] to predict IFCTA spectra of metal-molecule assemblies and compare the literature observations to these predictions. We conclude that, in general, the electronic coupling between molecular adsorbates and the metal levels is so small that IFCTA is not detectable. However, few experiments designed to detect IFCTA have been done. We suggest approaches to optimizing the conditions for observing the process.

  5. Self-Assembly and Nanotechnology: Real-Time, Hands-On, and Safe Experiments for K-12 Students

    ERIC Educational Resources Information Center

    Bagaria, Hitesh G.; Dean, Michelle R.; Nichol, Carolyn A.; Wong, Michael S.

    2011-01-01

    What students and teachers often ask is, how are nano-sized materials made when they are so small? One answer is through the process of self-assembly in which molecules, polymers, and nanoparticles connect to form larger objects of a defined structure and shape. Two hands-on experiments are presented in which students prepare capsules in real time…

  6. Dynamic and Kinetic Assembly Studies of an Icosahedral Virus Capsid

    NASA Astrophysics Data System (ADS)

    Lee, Kelly

    2011-03-01

    Hepatitis B virus has an icosahedrally symmetrical core particle (capsid), composed of either 90 or 120 copies of a dimeric protein building block. We are using time-resolved, solution small-angle X-ray scattering and single-molecule fluorescence microscopy to probe the core particle assembly reaction at the ensemble and individual assembly levels. Our experiments to date reveal the assembly process to be highly cooperative with minimal population of stable intermediate species. Solution conditions, particularly salt concentration, appears to influence the partitioning of assembly products into the two sizes of shells. Funding from NIH R00-GM080352 and University of Washington.

  7. Polymersome Carriers: from Self-Assembly to siRNA and Protein Therapeutics

    PubMed Central

    Christian, David A.; Cai, Shenshen; Bowen, Diana M.; Kim, Younghoon; Pajerowski, J. David; Discher, Dennis E.

    2009-01-01

    Polymersomes are polymer-based vesicular shells that form upon hydration of amphiphilic block copolymers. These high molecular weight amphiphiles impart physicochemical properties that allow polymersomes to stably encapsulate or integrate a broad range of active molecules. This robustness together with recently described mechanisms for controlled breakdown of degradable polymersomes as well as escape from endolysosomes suggests that polymersomes might be usefully viewed as having structure/property/function relationships somewhere between lipid vesicles and viral capsids. Here we summarize the assembly and development of controlled release polymersomes to encapsulate therapeutics ranging from small molecule anti-cancer drugs to siRNA and therapeutic proteins. PMID:18977437

  8. Enzyme-linked small-molecule detection using split aptamer ligation.

    PubMed

    Sharma, Ashwani K; Kent, Alexandra D; Heemstra, Jennifer M

    2012-07-17

    Here we report an aptamer-based analogue of the widely used sandwich enzyme-linked immunosorbent assay (ELISA). This assay utilizes the cocaine split aptamer, which is comprised of two DNA strands that only assemble in the presence of the target small molecule. One split aptamer fragment is immobilized on a microplate, then a test sample is added containing the second split aptamer fragment. If cocaine is present in the test sample, it directs assembly of the split aptamer and promotes a chemical ligation between azide and cyclooctyne functional groups appended to the termini of the split aptamer fragments. Ligation results in covalent attachment of biotin to the microplate and provides a colorimetric output upon conjugation to streptavidin-horseradish peroxidase. Using this assay, we demonstrate detection of cocaine at concentrations of 100 nM-100 μM in buffer and 1-100 μM human blood serum. The detection limit of 1 μM in serum represents an improvement of two orders of magnitude over previously reported split aptamer-based sensors and highlights the utility of covalently trapping split aptamer assembly events.

  9. Comparison of small molecules and oligonucleotides that target a toxic, non-coding RNA.

    PubMed

    Costales, Matthew G; Rzuczek, Suzanne G; Disney, Matthew D

    2016-06-01

    Potential RNA targets for chemical probes and therapeutic modalities are pervasive in the transcriptome. Oligonucleotide-based therapeutics are commonly used to target RNA sequence. Small molecules are emerging as a modality to target RNA structures selectively, but their development is still in its infancy. In this work, we compare the activity of oligonucleotides and several classes of small molecules that target the non-coding r(CCUG) repeat expansion (r(CCUG)(exp)) that causes myotonic dystrophy type 2 (DM2), an incurable disease that is the second-most common cause of adult onset muscular dystrophy. Small molecule types investigated include monomers, dimers, and multivalent compounds synthesized on-site by using RNA-templated click chemistry. Oligonucleotides investigated include phosphorothioates that cleave their target and vivo-morpholinos that modulate target RNA activity via binding. We show that compounds assembled on-site that recognize structure have the highest potencies amongst small molecules and are similar in potency to a vivo-morpholino modified oligonucleotide that targets sequence. These studies are likely to impact the design of therapeutic modalities targeting other repeats expansions that cause fragile X syndrome and amyotrophic lateral sclerosis, for example. Copyright © 2016. Published by Elsevier Ltd.

  10. Inter-subunit electrostatic interactions in ferritin molecule: comparison with inter-molecular interactions in crystals

    NASA Astrophysics Data System (ADS)

    Takahashi, Takuya; Hogyoku, Michiru; Nagayama, Kuniaki

    1996-10-01

    We evaluated the contribution of electrostatic interactions to the stability of macromolecular assembly in a horse L ferritin molecule composed of 24 subunits and the three-dimensional crystal of the ferritin molecules with numerical calculation of Poisson-Boltzmann equation based on dielectric model. The calculation showed that the electrostatic energy both favors the assembly of the 24 subunits and the crystalline assembly of the ferritin molecules (i.e., 24-mers). Short-range interactions less than 5 Å such as salt bridges and hydrogen bonds were important for both the subunit assembly and the crystalline assembly. To elucidate the strong stabilization by electrostatic interactions in both the ferritin 24-mer and its crystal, we analyzed the contribution of individual atoms. It revealed that the stabilization was arising from buried salt bridges or hydrogen bonds, which yielded more than 5 kcal/mol in some interactions. These large electrostatic stabilization and also the unexpected small ionic strength dependence was different from those of bovine pancreatic trypsin inhibitor (BPTI) orthorhombic and pig-insulin cubic crystals previously calculated. We also evaluated changes of the accessible surface area (ASA) and hydration free energy in accordance with the process of the subunit assembly. The change of hydration free energy, which was very large (i.e. ˜ + 100 kcal/mol/subunit) and unfavorable for the assembly, was proportional to the electrostatic hydration energy (i.e. Born energy change in hydration process). Hydrophobic groups were likely to appear more frequently than hydrophilic groups at the subunit interfaces. These results suggest that the molecular structure of the ferritin 24-mer and the crystal structure of the 24-mers were both stabilized by local electrostatic interactions, in particular. We view protein crystals as an extension of the protein oligomer to an infinite number of subunits association.

  11. End Groups of Functionalized Siloxane Oligomers Direct Block-Copolymeric or Liquid-Crystalline Self-Assembly Behavior

    PubMed Central

    2016-01-01

    Monodisperse oligodimethylsiloxanes end-functionalized with the hydrogen-bonding ureidopyrimidinone (UPy) motif undergo phase separation between their aromatic end groups and dimethylsiloxane midblocks to form ordered nanostructures with domain spacings of <5 nm. The self-assembly behavior of these well-defined oligomers resembles that of high degree of polymerization (N)–high block interaction parameter (χ) linear diblock copolymers despite their small size. Specifically, the phase morphology varies from lamellar to hexagonal to body-centered cubic with increasing asymmetry in molecular volume fraction. Mixing molecules with different molecular weights to give dispersity >1.13 results in disorder, showing importance of molecular monodispersity for ultrasmall ordered phase separation. In contrast, oligodimethylsiloxanes end-functionalized with an O-benzylated UPy derivative self-assemble into lamellar nanostructures regardless of volume fraction because of the strong preference of the end groups to aggregate in a planar geometry. Thus, these molecules display more classically liquid-crystalline self-assembly behavior where the lamellar bilayer thickness is determined by the siloxane midblock. Here the lamellar nanostructure is tolerant to molecular polydispersity. We show the importance of end groups in high χ–low N block molecules, where block-copolymer-like self-assembly in our UPy-functionalized oligodimethylsiloxanes relies upon the dominance of phase separation effects over directional end group aggregation. PMID:27054381

  12. Phosphatidylinositol 4,5-Bisphosphate Clusters the Cell Adhesion Molecule CD44 and Assembles a Specific CD44-Ezrin Heterocomplex, as Revealed by Small Angle Neutron Scattering*

    PubMed Central

    Chen, Xiaodong; Khajeh, Jahan Ali; Ju, Jeong Ho; Gupta, Yogesh K.; Stanley, Christopher B.; Do, Changwoo; Heller, William T.; Aggarwal, Aneel K.; Callaway, David J. E.; Bu, Zimei

    2015-01-01

    The cell adhesion molecule CD44 regulates diverse cellular functions, including cell-cell and cell-matrix interaction, cell motility, migration, differentiation, and growth. In cells, CD44 co-localizes with the membrane-cytoskeleton adapter protein Ezrin that links the CD44 assembled receptor signaling complexes to the cytoskeletal actin network, which organizes the spatial and temporal localization of signaling events. Here we report that the cytoplasmic tail of CD44 (CD44ct) is largely disordered. Upon binding to the signaling lipid phosphatidylinositol 4,5-bisphosphate (PIP2), CD44ct clusters into aggregates. Further, contrary to the generally accepted model, CD44ct does not bind directly to the FERM domain of Ezrin or to the full-length Ezrin but only forms a complex with FERM or with the full-length Ezrin in the presence of PIP2. Using contrast variation small angle neutron scattering, we show that PIP2 mediates the assembly of a specific heterotetramer complex of CD44ct with Ezrin. This study reveals the role of PIP2 in clustering CD44 and in assembling multimeric CD44-Ezrin complexes. We hypothesize that polyvalent electrostatic interactions are responsible for the assembly of CD44 clusters and the multimeric PIP2-CD44-Ezrin complexes. PMID:25572402

  13. Phosphatidylinositol 4,5-bisphosphate clusters the cell adhesion molecule CD44 and assembles a specific CD44-Ezrin heterocomplex, as revealed by small angle neutron scattering.

    PubMed

    Chen, Xiaodong; Khajeh, Jahan Ali; Ju, Jeong Ho; Gupta, Yogesh K; Stanley, Christopher B; Do, Changwoo; Heller, William T; Aggarwal, Aneel K; Callaway, David J E; Bu, Zimei

    2015-03-06

    The cell adhesion molecule CD44 regulates diverse cellular functions, including cell-cell and cell-matrix interaction, cell motility, migration, differentiation, and growth. In cells, CD44 co-localizes with the membrane-cytoskeleton adapter protein Ezrin that links the CD44 assembled receptor signaling complexes to the cytoskeletal actin network, which organizes the spatial and temporal localization of signaling events. Here we report that the cytoplasmic tail of CD44 (CD44ct) is largely disordered. Upon binding to the signaling lipid phosphatidylinositol 4,5-bisphosphate (PIP2), CD44ct clusters into aggregates. Further, contrary to the generally accepted model, CD44ct does not bind directly to the FERM domain of Ezrin or to the full-length Ezrin but only forms a complex with FERM or with the full-length Ezrin in the presence of PIP2. Using contrast variation small angle neutron scattering, we show that PIP2 mediates the assembly of a specific heterotetramer complex of CD44ct with Ezrin. This study reveals the role of PIP2 in clustering CD44 and in assembling multimeric CD44-Ezrin complexes. We hypothesize that polyvalent electrostatic interactions are responsible for the assembly of CD44 clusters and the multimeric PIP2-CD44-Ezrin complexes. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Regulation of Corneal Stroma Extracellular Matrix Assembly

    PubMed Central

    Chen, Shoujun; Mienaltowski, Michael J.; Birk, David E.

    2014-01-01

    The transparent cornea is the major refractive element of the eye. A finely controlled assembly of the stromal extracellular matrix is critical to corneal function, as well as in establishing the appropriate mechanical stability required to maintain corneal shape and curvature. In the stroma, homogeneous, small diameter collagen fibrils, regularly packed with a highly ordered hierarchical organization, are essential for function. This review focuses on corneal stroma assembly and the regulation of collagen fibrillogenesis. Corneal collagen fibrillogenesis involves multiple molecules interacting in sequential steps, as well as interactions between keratocytes and stroma matrix components. The stroma has the highest collagen V:I ratio in the body. Collagen V regulates the nucleation of protofibril assembly, thus controlling the number of fibrils and assembly of smaller diameter fibrils in the stroma. The corneal stroma is also enriched in small leucine-rich proteoglycans (SLRPs) that cooperate in a temporal and spatial manner to regulate linear and lateral collagen fibril growth. In addition, the fibril-associated collagens (FACITs) such as collagen XII and collagen XIV have roles in the regulation of fibril packing and inter-lamellar interactions. A communicating keratocyte network contributes to the overall and long-range regulation of stromal extracellular matrix assembly, by creating micro-domains where the sequential steps in stromal matrix assembly are controlled. Keratocytes control the synthesis of extracellular matrix components, which interact with the keratocytes dynamically to coordinate the regulatory steps into a cohesive process. Mutations or deficiencies in stromal regulatory molecules result in altered interactions and deficiencies in both transparency and refraction, leading to corneal stroma pathobiology such as stromal dystrophies, cornea plana and keratoconus. PMID:25819456

  15. Self-Assembly and Nanostructures in Organogels Based on a Bolaform Cholesteryl Imide Compound with Conjugated Aromatic Spacer

    PubMed Central

    Jiao, Ti-Feng; Gao, Feng-Qing; Shen, Xi-Hai; Zhang, Qing-Rui; Zhang, Xian-Fu; Zhou, Jing-Xin; Gao, Fa-Ming

    2013-01-01

    The self-assembly of small functional molecules into supramolecular structures is a powerful approach toward the development of new nanoscale materials and devices. As a class of self-assembled materials, low weight molecular organic gelators, organized in special nanoarchitectures through specific non-covalent interactions, has become one of the hot topics in soft matter research due to their scientific values and many potential applications. Here, a bolaform cholesteryl imide compound with conjugated aromatic spacer was designed and synthesized. The gelation behaviors in 23 solvents were investigated as efficient low-molecular-mass organic gelator. The experimental results indicated that the morphologies and assembly modes of as-formed organogels can be regulated by changing the kinds of organic solvents. Scanning electron microscopy and atomic force microscopy observations revealed that the gelator molecule self-assemble into different aggregates, from wrinkle and belt to fiber with the change of solvents. Spectral studies indicated that there existed different H-bond formations between imide groups and assembly modes. Finally, some rational assembly modes in organogels were proposed and discussed. The present work may give some insight to the design and character of new organogelators and soft materials with special structures. PMID:28788428

  16. Design, Optimization and Application of Small Molecule Biosensor in Metabolic Engineering.

    PubMed

    Liu, Yang; Liu, Ye; Wang, Meng

    2017-01-01

    The development of synthetic biology and metabolic engineering has painted a great future for the bio-based economy, including fuels, chemicals, and drugs produced from renewable feedstocks. With the rapid advance of genome-scale modeling, pathway assembling and genome engineering/editing, our ability to design and generate microbial cell factories with various phenotype becomes almost limitless. However, our lack of ability to measure and exert precise control over metabolite concentration related phenotypes becomes a bottleneck in metabolic engineering. Genetically encoded small molecule biosensors, which provide the means to couple metabolite concentration to measurable or actionable outputs, are highly promising solutions to the bottleneck. Here we review recent advances in the design, optimization and application of small molecule biosensor in metabolic engineering, with particular focus on optimization strategies for transcription factor (TF) based biosensors.

  17. Design, Optimization and Application of Small Molecule Biosensor in Metabolic Engineering

    PubMed Central

    Liu, Yang; Liu, Ye; Wang, Meng

    2017-01-01

    The development of synthetic biology and metabolic engineering has painted a great future for the bio-based economy, including fuels, chemicals, and drugs produced from renewable feedstocks. With the rapid advance of genome-scale modeling, pathway assembling and genome engineering/editing, our ability to design and generate microbial cell factories with various phenotype becomes almost limitless. However, our lack of ability to measure and exert precise control over metabolite concentration related phenotypes becomes a bottleneck in metabolic engineering. Genetically encoded small molecule biosensors, which provide the means to couple metabolite concentration to measurable or actionable outputs, are highly promising solutions to the bottleneck. Here we review recent advances in the design, optimization and application of small molecule biosensor in metabolic engineering, with particular focus on optimization strategies for transcription factor (TF) based biosensors. PMID:29089935

  18. Synthesis and Evaluation of N-phenyl-3-sulfamoyl-benzamide Derivatives as Capsid Assembly Modulators inhibiting Hepatitis B Virus (HBV).

    PubMed

    Vandyck, Koen; Rombouts, Geert; Stoops, Bart; Tahri, Abdellah; Vos, Ann; Verschueren, Wim; Wu, Yiming; Yang, Jingmei; Hou, Fuliang; Huang, Bing; Vergauwen, Karen; Dehertogh, Pascale; Berke, Jan-Martin; Raboisson, Pierre Jean Marie Bernard

    2018-06-15

    Small molecule induced Hepatitis B virus (HBV) capsid assembly modulation is considered an attractive approach for new antiviral therapies against HBV. Here we describe efforts towards the discovery of a HBV capsid assembly modulator in a hit-to-lead optimization, resulting in JNJ-632, a tool compound used to further profile the mode of action. Administration of JNJ-632 (54) in HBV genotype D infected chimeric mice, resulted in a 2.77 log reduction of the HBV DNA viral load.

  19. Multifunctional Nanoparticles Self-Assembled from Small Organic Building Blocks for Biomedicine.

    PubMed

    Xing, Pengyao; Zhao, Yanli

    2016-09-01

    Supramolecular self-assembly shows significant potential to construct responsive materials. By tailoring the structural parameters of organic building blocks, nanosystems can be fabricated, whose performance in catalysis, energy storage and conversion, and biomedicine has been explored. Since small organic building blocks are structurally simple, easily modified, and reproducible, they are frequently employed in supramolecular self-assembly and materials science. The dynamic and adaptive nature of self-assembled nanoarchitectures affords an enhanced sensitivity to the changes in environmental conditions, favoring their applications in controllable drug release and bioimaging. Here, recent significant research advancements of small-organic-molecule self-assembled nanoarchitectures toward biomedical applications are highlighted. Functionalized assemblies, mainly including vesicles, nanoparticles, and micelles are categorized according to their topological morphologies and functions. These nanoarchitectures with different topologies possess distinguishing advantages in biological applications, well incarnating the structure-property relationship. By presenting some important discoveries, three domains of these nanoarchitectures in biomedical research are covered, including biosensors, bioimaging, and controlled release/therapy. The strategies regarding how to design and characterize organic assemblies to exhibit biomedical applications are also discussed. Up-to-date research developments in the field are provided and research challenges to be overcome in future studies are revealed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Optimized Assembly of a Multifunctional RNA-Protein Nanostructure in a Cell-Free Gene Expression System.

    PubMed

    Schwarz-Schilling, Matthaeus; Dupin, Aurore; Chizzolini, Fabio; Krishnan, Swati; Mansy, Sheref S; Simmel, Friedrich C

    2018-04-11

    Molecular complexes composed of RNA molecules and proteins are promising multifunctional nanostructures for a wide variety of applications in biological cells or in artificial cellular systems. In this study, we systematically address some of the challenges associated with the expression and assembly of such hybrid structures using cell-free gene expression systems. As a model structure, we investigated a pRNA-derived RNA scaffold functionalized with four distinct aptamers, three of which bind to proteins, streptavidin and two fluorescent proteins, while one binds the small molecule dye malachite green (MG). Using MG fluorescence and Förster resonance energy transfer (FRET) between the RNA-scaffolded proteins, we assess critical assembly parameters such as chemical stability, binding efficiency, and also resource sharing effects within the reaction compartment. We then optimize simultaneous expression and coassembly of the RNA-protein nanostructure within a single-compartment cell-free gene expression system. We demonstrate expression and assembly of the multicomponent nanostructures inside of emulsion droplets and their aptamer-mediated localization onto streptavidin-coated substrates, plus the successful assembly of the hybrid structures inside of bacterial cells.

  1. Excited-State Dynamics of Dithienylethenes Functionalized for Self-Supramolecular Assembly.

    PubMed

    Hamdi, I; Buntinx, G; Poizat, O; Perrier, A; Le Bras, L; Delbaere, S; Barrau, S; Louati, M; Takeshita, M; Tokushige, K; Takao, M; Aloïse, S

    2018-04-12

    The photoswitching and competitive processes of two photochromic dithienylethenes (DTEs) functionalized at both sides with 2-ureido-4[1H]-pyrimidone (UPy) quadruple hydrogen-bonding recognition patterns have been investigated with NMR experiments, ultrafast spectroscopy, and density functional theory (DFT) calculations. The originality of these molecules is their ability to form large supramolecular assemblies induced by light for the closed form (CF) species while the open form (OF) species exist as small oligomers. Photochromic parameters have been determined and photochemical pathways have been rationalized with clear distinction between the antiparallel (OF-AP) and parallel (OF-P) species. A new photocyclization pathway via triplet manifold has been evidenced. The effect of the supramolecular assembly on the photochemical response is discussed. Unlike the photoreversion process, which is unaffected by supramolecular assembly, rate constants of the photocyclization reaction and intersystem crossing process are sensitive to the presence of small OF oligomers.

  2. Neuronal growth promoting sesquiterpene-neolignans; syntheses and biological studies.

    PubMed

    Cheng, Xu; Harzdorf, Nicole; Khaing, Zin; Kang, Danby; Camelio, Andrew M; Shaw, Travis; Schmidt, Christine E; Siegel, Dionicio

    2012-01-14

    The use of small molecules that can promote neuronal growth represents a promising approach to regenerative science. Along these lines we have developed separate short or modular syntheses of the natural products caryolanemagnolol and clovanemagnolol, small molecules previously shown to promote neuronal growth and induce choline acetyltransferase activity. The postulated biosynthetic pathways, potentially leading to the assembly of these molecules in nature, have guided the laboratory syntheses, allowing the preparation of both natural products in as few as two steps. With synthetic access to the compounds as single enantiomers we have examined clovanemagnolol's ability to promote the growth of embryonic hippocampal and cortical neurons. Clovanemagnolol has been shown to be a potent neurotrophic agent, promoting neuronal growth at concentrations of 10 nM.

  3. Identification of antibiotics using small molecule variable ligand display on gold nanoparticles.

    PubMed

    Bresee, Jamee; Maier, Keith E; Melander, Christian; Feldheim, Daniel L

    2010-10-28

    Here we describe the use of simple 1-pot thiol exchange reactions to generate a library of mixed ligand-coated gold nanoparticles that was screened for antibiotic activity. A library of 120 nanoparticle conjugates was assembled and antibiotic activity toward E. coli was determined and found to depend upon the combination of thiols assembled onto the nanoparticles. The most active conjugate displayed 99.9% growth inhibition at 0.5 μM.

  4. Solvent-free directed patterning of a highly ordered liquid crystalline organic semiconductor via template-assisted self-assembly for organic transistors.

    PubMed

    Kim, Aryeon; Jang, Kwang-Suk; Kim, Jinsoo; Won, Jong Chan; Yi, Mi Hye; Kim, Hanim; Yoon, Dong Ki; Shin, Tae Joo; Lee, Myong-Hoon; Ka, Jae-Won; Kim, Yun Ho

    2013-11-20

    Highly ordered organic semiconductor micropatterns of the liquid-crystalline small molecule 2,7-didecylbenzothienobenzothiophene (C10 -BTBT) are fabricated using a simple method based on template-assisted self-assembly (TASA). The liquid crystallinity of C10 -BTBT allows solvent-free fabrication of high-performance printed organic field-effect transistors (OFETs). © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Self assembled materials: design strategies and drug delivery perspectives.

    PubMed

    Verma, Gunjan; Hassan, P A

    2013-10-28

    Self assembly of small molecules in complex supramolecular structures provides a new avenue in the development of materials for drug delivery applications. Owing to the low aqueous solubility of various drugs, an effective delivery system is often required to reach sufficient drug bioavailability and/or to facilitate clinical use. Micelles, amphiphilic gels, vesicles (liposomes), nanodisks, cubosomes, colloidosomes, tubules, microemulsions, lipid particles, polyelectrolyte capsules etc. are some of the intriguing structures formed via self assembly. As well as enabling improved solubilization, such materials can be tuned to offer a range of other advantages, including controlled or stimuli sensitive drug release, protection from drug hydrolysis and chemical or enzymatic degradation, a reduction in toxicity, improvement of drug availability, prevention of RES uptake or selective targeting to organelles etc. Such multiple functionalities can be brought together by self assembly of different functional molecules. This route offers a cost effective means of developing drug delivery carriers tailored to specific needs. Our current understanding of the microstructure evolution of self assembled materials will go a long way towards designing/selecting molecules to create well defined structures. We believe that most of the potential resources mentioned above are untapped and that there is a need to further strengthen research in this area to fully exploit their potential. Selective cross linking of core or shell, stimuli sensitive amphiphiles, prodrug amphiphiles, antibody coupled amphiphiles etc. are only some of the new approaches for the development of effective drug delivery systems via self assembly.

  6. Regulation of corneal stroma extracellular matrix assembly.

    PubMed

    Chen, Shoujun; Mienaltowski, Michael J; Birk, David E

    2015-04-01

    The transparent cornea is the major refractive element of the eye. A finely controlled assembly of the stromal extracellular matrix is critical to corneal function, as well as in establishing the appropriate mechanical stability required to maintain corneal shape and curvature. In the stroma, homogeneous, small diameter collagen fibrils, regularly packed with a highly ordered hierarchical organization, are essential for function. This review focuses on corneal stroma assembly and the regulation of collagen fibrillogenesis. Corneal collagen fibrillogenesis involves multiple molecules interacting in sequential steps, as well as interactions between keratocytes and stroma matrix components. The stroma has the highest collagen V:I ratio in the body. Collagen V regulates the nucleation of protofibril assembly, thus controlling the number of fibrils and assembly of smaller diameter fibrils in the stroma. The corneal stroma is also enriched in small leucine-rich proteoglycans (SLRPs) that cooperate in a temporal and spatial manner to regulate linear and lateral collagen fibril growth. In addition, the fibril-associated collagens (FACITs) such as collagen XII and collagen XIV have roles in the regulation of fibril packing and inter-lamellar interactions. A communicating keratocyte network contributes to the overall and long-range regulation of stromal extracellular matrix assembly, by creating micro-domains where the sequential steps in stromal matrix assembly are controlled. Keratocytes control the synthesis of extracellular matrix components, which interact with the keratocytes dynamically to coordinate the regulatory steps into a cohesive process. Mutations or deficiencies in stromal regulatory molecules result in altered interactions and deficiencies in both transparency and refraction, leading to corneal stroma pathobiology such as stromal dystrophies, cornea plana and keratoconus. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. The design and fabrication of supramolecular semiconductor nanowires formed by benzothienobenzothiophene (BTBT)-conjugated peptides.

    PubMed

    Khalily, Mohammad Aref; Usta, Hakan; Ozdemir, Mehmet; Bakan, Gokhan; Dikecoglu, F Begum; Edwards-Gayle, Charlotte; Hutchinson, Jessica A; Hamley, Ian W; Dana, Aykutlu; Guler, Mustafa O

    2018-05-31

    π-Conjugated small molecules based on a [1]benzothieno[3,2-b]benzothiophene (BTBT) unit are of great research interest in the development of solution-processable semiconducting materials owing to their excellent charge-transport characteristics. However, the BTBT π-core has yet to be demonstrated in the form of electro-active one-dimensional (1D) nanowires that are self-assembled in aqueous media for potential use in bioelectronics and tissue engineering. Here we report the design, synthesis, and self-assembly of benzothienobenzothiophene (BTBT)-peptide conjugates, the BTBT-peptide (BTBT-C3-COHN-Ahx-VVAGKK-Am) and the C8-BTBT-peptide (C8-BTBT-C3-COHN-Ahx-VVAGKK-Am), as β-sheet forming amphiphilic molecules, which self-assemble into highly uniform nanofibers in water with diameters of 11-13(±1) nm and micron-size lengths. Spectroscopic characterization studies demonstrate the J-type π-π interactions among the BTBT molecules within the hydrophobic core of the self-assembled nanofibers yielding an electrical conductivity as high as 6.0 × 10-6 S cm-1. The BTBT π-core is demonstrated, for the first time, in the formation of self-assembled peptide 1D nanostructures in aqueous media for potential use in tissue engineering, bioelectronics and (opto)electronics. The conductivity achieved here is one of the highest reported to date in a non-doped state.

  8. Superrepression through Altered Corepressor-Activated Protein:Protein Interactions.

    PubMed

    He, Chenlu; Custer, Gregory; Wang, Jingheng; Matysiak, Silvina; Beckett, Dorothy

    2018-02-20

    Small molecules regulate transcription in both eukaryotes and prokaryotes by either enhancing or repressing assembly of transcription regulatory complexes. For allosteric transcription repressors, superrepressor mutants can exhibit increased sensitivity to small molecule corepressors. However, because many transcription regulatory complexes assemble in multiple steps, the superrepressor phenotype can reflect changes in any or all of the individual assembly steps. Escherichia coli biotin operon repression complex assembly, which responds to input biotin concentration, occurs via three coupled equilibria, including corepressor binding, holorepressor dimerization, and binding of the dimer to DNA. A genetic screen has yielded superrepressor mutants that repress biotin operon transcription in vivo at biotin concentrations much lower than those required by the wild type repressor. In this work, isothermal titration calorimetry and sedimentation measurements were used to determine the superrepressor biotin binding and homodimerization properties. The results indicate that, although all variants exhibit biotin binding affinities similar to that measured for BirA wt , five of the six superrepressors show altered homodimerization energetics. Molecular dynamics simulations suggest that the altered dimerization results from perturbation of an electrostatic network that contributes to allosteric activation of BirA for dimerization. Modeling of the multistep repression complex assembly for these proteins reveals that the altered sensitivity of the transcription response to biotin concentration is readily explained solely by the altered superrepressor homodimerization energetics. These results highlight how coupled equilibria enable alterations in a transcription regulatory response to input signal through an indirect mechanism.

  9. The Effect of Small Molecule Additives on the Self-Assembly and Functionality of Protein-Polymer Diblock Copolymers

    NASA Astrophysics Data System (ADS)

    Thomas, Carla; Xu, Liza; Olsen, Bradley

    2013-03-01

    Self-assembly of globular protein-polymer block copolymers into well-defined nanostructures provides a route towards the manufacture of protein-based materials which maintains protein fold and function. The model material mCherry-b-poly(N-isopropyl acrylamide) forms self-assembled nanostructures from aqueous solutions via solvent evaporation. To improve retention of protein functionality when dehydrated, small molecules such as trehalose and glycerol are added in solution prior to solvent removal. With as little as 10 wt% additive, improvements in retained functionality of 20-60% are observed in the solid-state as compared to samples in which no additive is present. Higher additive levels (up to 50%) continue to show improvement until approximately 100% of the protein function is retained. These large gains are hypothesized to originate from the ability of the additives to replace hydrogen bonds normally fulfilled by water. The addition of trehalose in the bulk material also improves the thermal stability of the protein by 15-20 °C, while glycerol decreases the thermal stability. Materials containing up to 50% additives remain microphase separated, and, upon incorporation of additives, nanostructure domain spacing tends to increase, accompanied by order-order transitions.

  10. Size, Shape, and Lateral Correlation of Highly Uniform, Mesoscopic, Self-Assembled Domains of Fluorocarbon-Hydrocarbon Diblocks at the Air/Water Interface: A GISAXS Study.

    PubMed

    Veschgini, Mariam; Abuillan, Wasim; Inoue, Shigeto; Yamamoto, Akihisa; Mielke, Salomé; Liu, Xianhe; Konovalov, Oleg; Krafft, Marie Pierre; Tanaka, Motomu

    2017-10-06

    The shape and size of self-assembled mesoscopic surface domains of fluorocarbon-hydrocarbon (FnHm) diblocks and the lateral correlation between these domains were quantitatively determined from grazing incidence small-angle X-ray scattering (GISAXS). The full calculation of structure and form factors unravels the influence of fluorocarbon and hydrocarbon block lengths on the diameter and height of the domains, and provides the inter-domain correlation length. The diameter of the domains, as determined from the form factor analysis, exhibits a monotonic increase in response to the systematic lengthening of each block, which can be attributed to the increase in van der Waals attraction between molecules. The pair correlation function in real space calculated from the structure factor implies that the inter-domain correlation can reach a distance that is over 25 times larger than the domain's size. The full calculation of the GISAXS signals introduced here opens a potential towards the hierarchical design of mesoscale domains of self-assembled small organic molecules, covering several orders of magnitude in space. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Solution-grown small-molecule organic semiconductor with enhanced crystal alignment and areal coverage for organic thin film transistors

    DOE PAGES

    Bi, Sheng; He, Zhengran; Chen, Jihua; ...

    2015-07-24

    Drop casting of small-molecule organic semiconductors typically forms crystals with random orientation and poor areal coverage, which leads to significant performance variations of organic thin-film transistors (OTFTs). In this study, we utilize the controlled evaporative self-assembly (CESA) method combined with binary solvent system to control the crystal growth. A small-molecule organic semiconductor,2,5-Di-(2-ethylhexyl)-3,6-bis(5"-n-hexyl-2,2',5',2"]terthiophen-5-yl)-pyrrolo[3,4-c]pyrrole-1,4-dione (SMDPPEH), is used as an example to demonstrate the effectiveness of our approach. By optimizing the double solvent ratios, well-aligned SMDPPEH crystals with significantly improved areal coverage were achieved. As a result, the SMDPPEH based OTFTs exhibit a mobility of 1.6 × 10 -2 cm 2/V s, whichmore » is the highest mobility from SMDPPEH ever reported.« less

  12. Remote control of therapeutic T cells through a small molecule-gated chimeric receptor

    PubMed Central

    Wu, Chia-Yung; Roybal, Kole T.; Puchner, Elias M.; Onuffer, James; Lim, Wendell A.

    2016-01-01

    There is growing promise in using engineered cells as therapeutic agents. For example, synthetic Chimeric Antigen Receptors (CARs) can redirect T cells to recognize and eliminate tumor cells expressing specific antigens. Despite promising clinical results, excessive activity and poor control over such engineered T cells can cause severe toxicities. We present the design of “ON-switch” CARs that enable small molecule-control over T cell therapeutic functions, while still retaining antigen specificity. In these split receptors, antigen binding and intracellular signaling components only assemble in the presence of a heterodimerizing small molecule. This titratable pharmacologic regulation could allow physicians to precisely control the timing, location, and dosage of T cell activity, thereby mitigating toxicity. This work illustrates the potential of combining cellular engineering with orthogonal chemical tools to yield safer therapeutic cells that tightly integrate both cell autonomous recognition and user control. PMID:26405231

  13. Remote control of therapeutic T cells through a small molecule-gated chimeric receptor.

    PubMed

    Wu, Chia-Yung; Roybal, Kole T; Puchner, Elias M; Onuffer, James; Lim, Wendell A

    2015-10-16

    There is growing interest in using engineered cells as therapeutic agents. For example, synthetic chimeric antigen receptors (CARs) can redirect T cells to recognize and eliminate tumor cells expressing specific antigens. Despite promising clinical results, these engineered T cells can exhibit excessive activity that is difficult to control and can cause severe toxicity. We designed "ON-switch" CARs that enable small-molecule control over T cell therapeutic functions while still retaining antigen specificity. In these split receptors, antigen-binding and intracellular signaling components assemble only in the presence of a heterodimerizing small molecule. This titratable pharmacologic regulation could allow physicians to precisely control the timing, location, and dosage of T cell activity, thereby mitigating toxicity. This work illustrates the potential of combining cellular engineering with orthogonal chemical tools to yield safer therapeutic cells that tightly integrate cell-autonomous recognition and user control. Copyright © 2015, American Association for the Advancement of Science.

  14. Charge transfer through amino groups-small molecules interface improving the performance of electroluminescent devices

    NASA Astrophysics Data System (ADS)

    Havare, Ali Kemal; Can, Mustafa; Tozlu, Cem; Kus, Mahmut; Okur, Salih; Demic, Şerafettin; Demirak, Kadir; Kurt, Mustafa; Icli, Sıddık

    2016-05-01

    A carboxylic group functioned charge transporting was synthesized and self-assembled on an indium tin oxide (ITO) anode. A typical electroluminescent device [modified ITO/TPD (50 nm)/Alq3 (60 nm)/LiF (2 nm)/(120 nm)] was fabricated to investigate the effect of the amino groups-small molecules interface on the characteristics of the device. The increase in the surface work function of ITO is expected to facilitate the hole injection from the ITO anode to the Hole Transport Layer (HTL) in electroluminescence. The modified electroluminescent device could endure a higher current and showed a much higher luminance than the nonmodified one. For the produced electroluminescent devices, the I-V characteristics, optical characterization and quantum yields were performed. The external quantum efficiency of the modified electroluminescent device is improved as the result of the presence of the amino groups-small molecules interface.

  15. Influence of Electrostatics on Small Molecule Flux through a Protein Nanoreactor.

    PubMed

    Glasgow, Jeff E; Asensio, Michael A; Jakobson, Christopher M; Francis, Matthew B; Tullman-Ercek, Danielle

    2015-09-18

    Nature uses protein compartmentalization to great effect for control over enzymatic pathways, and the strategy has great promise for synthetic biology. In particular, encapsulation in nanometer-sized containers to create nanoreactors has the potential to elicit interesting, unexplored effects resulting from deviations from well-understood bulk processes. Self-assembled protein shells for encapsulation are especially desirable for their uniform structures and ease of perturbation through genetic mutation. Here, we use the MS2 capsid, a well-defined porous 27 nm protein shell, as an enzymatic nanoreactor to explore pore-structure effects on substrate and product flux during the catalyzed reaction. Our results suggest that the shell can influence the enzymatic reaction based on charge repulsion between small molecules and point mutations around the pore structure. These findings also lend support to the hypothesis that protein compartments modulate the transport of small molecules and thus influence metabolic reactions and catalysis in vitro.

  16. Small-molecule kinase inhibitors provide insight into Mps1 cell cycle function.

    PubMed

    Kwiatkowski, Nicholas; Jelluma, Nannette; Filippakopoulos, Panagis; Soundararajan, Meera; Manak, Michael S; Kwon, Mijung; Choi, Hwan Geun; Sim, Taebo; Deveraux, Quinn L; Rottmann, Sabine; Pellman, David; Shah, Jagesh V; Kops, Geert J P L; Knapp, Stefan; Gray, Nathanael S

    2010-05-01

    Mps1, a dual-specificity kinase, is required for the proper functioning of the spindle assembly checkpoint and for the maintenance of chromosomal stability. As Mps1 function has been implicated in numerous phases of the cell cycle, the development of a potent, selective small-molecule inhibitor of Mps1 should facilitate dissection of Mps1-related biology. We describe the cellular effects and Mps1 cocrystal structures of new, selective small-molecule inhibitors of Mps1. Consistent with RNAi studies, chemical inhibition of Mps1 leads to defects in Mad1 and Mad2 establishment at unattached kinetochores, decreased Aurora B kinase activity, premature mitotic exit and gross aneuploidy, without any evidence of centrosome duplication defects. However, in U2OS cells having extra centrosomes (an abnormality found in some cancers), Mps1 inhibition increases the frequency of multipolar mitoses. Lastly, Mps1 inhibitor treatment resulted in a decrease in cancer cell viability.

  17. Target guided synthesis using DNA nano-templates for selectively assembling a G-quadruplex binding c-MYC inhibitor

    NASA Astrophysics Data System (ADS)

    Panda, Deepanjan; Saha, Puja; Das, Tania; Dash, Jyotirmayee

    2017-07-01

    The development of small molecules is essential to modulate the cellular functions of biological targets in living system. Target Guided Synthesis (TGS) approaches have been used for the identification of potent small molecules for biological targets. We herein demonstrate an innovative example of TGS using DNA nano-templates that promote Huisgen cycloaddition from an array of azide and alkyne fragments. A G-quadruplex and a control duplex DNA nano-template have been prepared by assembling the DNA structures on gold-coated magnetic nanoparticles. The DNA nano-templates facilitate the regioselective formation of 1,4-substituted triazole products, which are easily isolated by magnetic decantation. The G-quadruplex nano-template can be easily recovered and reused for five reaction cycles. The major triazole product, generated by the G-quadruplex inhibits c-MYC expression by directly targeting the c-MYC promoter G-quadruplex. This work highlights that the nano-TGS approach may serve as a valuable strategy to generate target-selective ligands for drug discovery.

  18. Supramolecular Disassembly of Facially Amphiphilic Dendrimer Assemblies in Response to Physical, Chemical, and Biological Stimuli

    PubMed Central

    2015-01-01

    Conspectus Supramolecular assemblies formed from spontaneous self-assembly of amphiphilic macromolecules are explored as biomimetic architectures and for applications in areas such as sensing, drug delivery, and diagnostics. Macromolecular assemblies are usually preferred, compared with their simpler small molecule counterparts, due to their low critical aggregate concentrations (CAC) and high thermodynamic stability. This Account focuses on the structural and functional aspects of assemblies formed from dendrimers, specifically facially amphiphilic dendrons that form micelle or inverse micelle type supramolecular assemblies depending on the nature of the solvent medium. The micelle type assemblies formed from facially amphiphilic dendrons sequester hydrophobic guest molecules in their interiors. The stability of these assemblies is dependent on the relative compatibility of the hydrophilic and hydrophobic functionalities with water, often referred to as hydrophilic–lipophilic balance (HLB). Disruption of the HLB, using an external stimulus, could lead to disassembly of the aggregates, which can then be utilized to cause an actuation event, such as guest molecule release. Studying these possibilities has led to (i) a robust and general strategy for stimulus-induced disassembly and molecular release and (ii) the introduction of a new approach to protein-responsive supramolecular disassembly. The latter strategy provides a particularly novel avenue for impacting biomedical applications. Most of the stimuli-sensitive supramolecular assemblies have been designed to be responsive to factors such pH, temperature, and redox conditions. The reason for this interest stems from the fact that certain disease microenvironments have aberrations in these factors. However, these variations are the secondary imbalances in biology. Imbalances in protein activity are the primary reasons for most, if not all, human pathology. There have been no robust strategies in stimulus-responsive assemblies that respond to these variations. The facially amphiphilic dendrimers provide a unique opportunity to explore this possibility. Similarly, the propensity of these molecules to form inverse micelles in apolar solvents and thus bind polar guest molecules, combined with the fact that these assemblies do not thermodynamically equilibrate in biphasic mixtures, was used to predictably simplify peptide mixtures. The structure–property relationships developed from these studies have led to a selective and highly sensitive detection of peptides in complex mixtures. Selectivity in peptide extraction was achieved using charge complementarity between the peptides and the hydrophilic components present in inverse micellar interiors. These findings will have implications in areas such as proteomics and biomarker detection. PMID:24937682

  19. Precise, Self-Limited Epitaxy of Ultrathin Organic Semiconductors and Heterojunctions Tailored by van der Waals Interactions.

    PubMed

    Wu, Bing; Zhao, Yinghe; Nan, Haiyan; Yang, Ziyi; Zhang, Yuhan; Zhao, Huijuan; He, Daowei; Jiang, Zonglin; Liu, Xiaolong; Li, Yun; Shi, Yi; Ni, Zhenhua; Wang, Jinlan; Xu, Jian-Bin; Wang, Xinran

    2016-06-08

    Precise assembly of semiconductor heterojunctions is the key to realize many optoelectronic devices. By exploiting the strong and tunable van der Waals (vdW) forces between graphene and organic small molecules, we demonstrate layer-by-layer epitaxy of ultrathin organic semiconductors and heterostructures with unprecedented precision with well-defined number of layers and self-limited characteristics. We further demonstrate organic p-n heterojunctions with molecularly flat interface, which exhibit excellent rectifying behavior and photovoltaic responses. The self-limited organic molecular beam epitaxy (SLOMBE) is generically applicable for many layered small-molecule semiconductors and may lead to advanced organic optoelectronic devices beyond bulk heterojunctions.

  20. Molecular docking based screening of compounds against VP40 from Ebola virus.

    PubMed

    M Alam El-Din, Hanaa; A Loutfy, Samah; Fathy, Nasra; H Elberry, Mostafa; M Mayla, Ahmed; Kassem, Sara; Naqvi, Asif

    2016-01-01

    Ebola virus causes severe and often fatal hemorrhagic fevers in humans. The 2014 Ebola epidemic affected multiple countries. The virus matrix protein (VP40) plays a central role in virus assembly and budding. Since there is no FDA-approved vaccine or medicine against Ebola viral infection, discovering new compounds with different binding patterns against it is required. Therefore, we aim to identify small molecules that target the Arg 134 RNA binding and active site of VP40 protein. 1800 molecules were retrieved from PubChem compound database based on Structure Similarity and Conformers of pyrimidine-2, 4-dione. Molecular docking approach using Lamarckian Genetic Algorithm was carried out to find the potent inhibitors for VP40 based on calculated ligand-protein pairwise interaction energies. The grid maps representing the protein were calculated using auto grid and grid size was set to 60*60*60 points with grid spacing of 0.375 Ǻ. Ten independent docking runs were carried out for each ligand and results were clustered according to the 1.0 Ǻ RMSD criteria. The post-docking analysis showed that binding energies ranged from -8.87 to 0.6 Kcal/mol. We report 7 molecules, which showed promising ADMET results, LD-50, as well as H-bond interaction in the binding pocket. The small molecules discovered could act as potential inhibitors for VP40 and could interfere with virus assembly and budding process.

  1. Molecular docking based screening of compounds against VP40 from Ebola virus

    PubMed Central

    M Alam El-Din, Hanaa; A. Loutfy, Samah; Fathy, Nasra; H Elberry, Mostafa; M Mayla, Ahmed; Kassem, Sara; Naqvi, Asif

    2016-01-01

    Ebola virus causes severe and often fatal hemorrhagic fevers in humans. The 2014 Ebola epidemic affected multiple countries. The virus matrix protein (VP40) plays a central role in virus assembly and budding. Since there is no FDA-approved vaccine or medicine against Ebola viral infection, discovering new compounds with different binding patterns against it is required. Therefore, we aim to identify small molecules that target the Arg 134 RNA binding and active site of VP40 protein. 1800 molecules were retrieved from PubChem compound database based on Structure Similarity and Conformers of pyrimidine-2, 4-dione. Molecular docking approach using Lamarckian Genetic Algorithm was carried out to find the potent inhibitors for VP40 based on calculated ligand-protein pairwise interaction energies. The grid maps representing the protein were calculated using auto grid and grid size was set to 60*60*60 points with grid spacing of 0.375 Ǻ. Ten independent docking runs were carried out for each ligand and results were clustered according to the 1.0 Ǻ RMSD criteria. The post-docking analysis showed that binding energies ranged from -8.87 to 0.6 Kcal/mol. We report 7 molecules, which showed promising ADMET results, LD-50, as well as H-bond interaction in the binding pocket. The small molecules discovered could act as potential inhibitors for VP40 and could interfere with virus assembly and budding process. PMID:28149054

  2. Supramolecular Nanocomposites Under Confinement: Chiral Optically Active Nanoparticle Assemblies and Beyond

    NASA Astrophysics Data System (ADS)

    Bai, Peter; Yang, Sui; Bao, Wei; Salmeron, Miquel; Zhang, Xiang; Xu, Ting

    2015-03-01

    Block copolymer-based supramolecules provide a versatile platform to direct the self-assembly of nanoparticles (NPs) into precisely controlled nanostructures in bulk and thin film geometries. A supramolecule, PS-b-P4VP(PDP), composed of the small molecule 3-pentadecylphenol (PDP) hydrogen bonded to a diblock copolymer, polystyrene-block-poly(4-vinylpyridine) (PS-b-P4VP), was subjected to 2-D volume confinement in cylindrical anodic aluminum oxide (AAO) membrane pores. TEM and 3-D TEM tomography reveal that the morphologies accessible by the supramolecule and supramolecule/NP composites, such as NP clusters, arrays, stacked rings, and single and double helical ribbons, are significantly different from those in the bulk or thin film. Furthermore, single molecule dark field scattering measurements demonstrate strong chiral optical response of single helical Au NP ribbon nanostructures in the near infrared wavelength regime. These studies demonstrate 2-D confinement to be an effective means to tailor self-assembled NP structure within supramolecule nanocomposites and pave the way for this assembly approach to be applied towards next generation chiral metamaterials and optoelectronic devices.

  3. Pathways for virus assembly around nucleic acids

    PubMed Central

    Perlmutter, Jason D; Perkett, Matthew R

    2014-01-01

    Understanding the pathways by which viral capsid proteins assemble around their genomes could identify key intermediates as potential drug targets. In this work we use computer simulations to characterize assembly over a wide range of capsid protein-protein interaction strengths and solution ionic strengths. We find that assembly pathways can be categorized into two classes, in which intermediates are either predominantly ordered or disordered. Our results suggest that estimating the protein-protein and the protein-genome binding affinities may be sufficient to predict which pathway occurs. Furthermore, the calculated phase diagrams suggest that knowledge of the dominant assembly pathway and its relationship to control parameters could identify optimal strategies to thwart or redirect assembly to block infection. Finally, analysis of simulation trajectories suggests that the two classes of assembly pathways can be distinguished in single molecule fluorescence correlation spectroscopy or bulk time resolved small angle x-ray scattering experiments. PMID:25036288

  4. Molecular insights into early stage aggregation of di-Fmoc-L-lysine in binary mixture of organic solvent and water

    NASA Astrophysics Data System (ADS)

    Huda, Md Masrul; Rai, Neeraj

    Molecular gels are relatively new class of soft materials, which are formed by the supramolecular aggregation of low molecular weight gelators (LMWGs) in organic solvents and/or water. Hierarchical self-assembly of small gelator molecules lead to three-dimensional complex fibrillar networks, which restricts the flow of solvents and results in viscous solid like materials or gels. These gels have drawn significant attentions for their potential applications for drug delivery, tissue engineering, materials for sensors etc. As of now, self-assembly of gelator molecules into one-dimensional fibers is not well understood, although that is very important to design new gelators for desired applications. Here, we present molecular dynamics study that provides molecular level insight into early stage aggregation of selected gelator, di-Fmoc-L-lysine in binary mixture of organic solvent and water. We will present the role of different functional groups of gelator molecule such as aromatic ring, amide, and carboxylic group on aggregation. We will also present the effect of concentrations of gelator and solvent on self-assembly of gelators. This study has captured helical fiber growth and branching of fiber, which is in good agreement with experimental observations.

  5. Coverage dependent molecular assembly of anthraquinone on Au(111)

    NASA Astrophysics Data System (ADS)

    DeLoach, Andrew S.; Conrad, Brad R.; Einstein, T. L.; Dougherty, Daniel B.

    2017-11-01

    A scanning tunneling microscopy study of anthraquinone (AQ) on the Au(111) surface shows that the molecules self-assemble into several structures depending on the local surface coverage. At high coverages, a close-packed saturated monolayer is observed, while at low coverages, mobile surface molecules coexist with stable chiral hexamer clusters. At intermediate coverages, a disordered 2D porous network interlinking close-packed islands is observed in contrast to the giant honeycomb networks observed for the same molecule on Cu(111). This difference verifies the predicted extreme sensitivity [J. Wyrick et al., Nano Lett. 11, 2944 (2011)] of the pore network to small changes in the surface electronic structure. Quantitative analysis of the 2D pore network reveals that the areas of the vacancy islands are distributed log-normally. Log-normal distributions are typically associated with the product of random variables (multiplicative noise), and we propose that the distribution of pore sizes for AQ on Au(111) originates from random linear rate constants for molecules to either desorb from the surface or detach from the region of a nucleated pore.

  6. Coverage dependent molecular assembly of anthraquinone on Au(111).

    PubMed

    DeLoach, Andrew S; Conrad, Brad R; Einstein, T L; Dougherty, Daniel B

    2017-11-14

    A scanning tunneling microscopy study of anthraquinone (AQ) on the Au(111) surface shows that the molecules self-assemble into several structures depending on the local surface coverage. At high coverages, a close-packed saturated monolayer is observed, while at low coverages, mobile surface molecules coexist with stable chiral hexamer clusters. At intermediate coverages, a disordered 2D porous network interlinking close-packed islands is observed in contrast to the giant honeycomb networks observed for the same molecule on Cu(111). This difference verifies the predicted extreme sensitivity [J. Wyrick et al., Nano Lett. 11, 2944 (2011)] of the pore network to small changes in the surface electronic structure. Quantitative analysis of the 2D pore network reveals that the areas of the vacancy islands are distributed log-normally. Log-normal distributions are typically associated with the product of random variables (multiplicative noise), and we propose that the distribution of pore sizes for AQ on Au(111) originates from random linear rate constants for molecules to either desorb from the surface or detach from the region of a nucleated pore.

  7. Evolution of the physicochemical properties of marketed drugs: can history foretell the future?

    PubMed

    Faller, Bernard; Ottaviani, Giorgio; Ertl, Peter; Berellini, Giuliano; Collis, Alan

    2011-11-01

    A set of diverse bioactive molecules, relevant from a medicinal chemistry viewpoint, was assembled and used to navigate the physicochemical property space of new and old, or traditional drugs against a larger set of 12,000 diverse bioactive small molecules. Most drugs on the market only occupy a fraction of the property space of the bioactive molecules, whereas new molecular entities (NMEs) approved since 2002 are moving away from this traditional drug space. In this new territory, semi-empirical rules derived from knowledge accumulated from historic, older molecules are not necessarily valid and different liabilities become more prominent. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Self-assembled Nanofibrils for Immunomodulation

    NASA Astrophysics Data System (ADS)

    Zhao, Fan

    This thesis has been mainly focused on applying self-assembled nanofibrils as unique depots for controlled release to modulate immune system, with two major chapters on modulation of innate immunity in chapter 2 and adaptive immunity in chapter 3, respectively. There are 5 chapters in the thesis. Chapter 1 gives a detailed review on the discovery, synthesis and application of self-assembled nanofibrils of therapeutic agents (termed as "self-delivery drugs"), including bioactive molecules; Chapter 2 demonstrates the supramolecular hydrogel of chemotactic peptides as a prolonged inflammation model through proper molecular engineering; Chapter 3 reports a suppressive antibody response achieved by encapsulation of antigens by supramolecular hydrogel of glycopeptide; Chapter 4 illustrates an example of supramolecular hydrogel formation of molecules with extremely low solubility, based on the fact that many small organic drugs have poor solubility. Chapter 5 used beta-galatosidase as a model to study glycosidase-instructed supramolecular hydrogel formation, with potential to target cancer cells due to their distinct metabolic profile.

  9. Inhibition of HIV-1 Maturation via Small-Molecule Targeting of the Amino-Terminal Domain in the Viral Capsid Protein.

    PubMed

    Wang, Weifeng; Zhou, Jing; Halambage, Upul D; Jurado, Kellie A; Jamin, Augusta V; Wang, Yujie; Engelman, Alan N; Aiken, Christopher

    2017-05-01

    The human immunodeficiency virus type 1 (HIV-1) capsid protein is an attractive therapeutic target, owing to its multifunctionality in virus replication and the high fitness cost of amino acid substitutions in capsids to HIV-1 infectivity. To date, small-molecule inhibitors have been identified that inhibit HIV-1 capsid assembly and/or impair its function in target cells. Here, we describe the mechanism of action of the previously reported capsid-targeting HIV-1 inhibitor, Boehringer-Ingelheim compound 1 (C1). We show that C1 acts during HIV-1 maturation to prevent assembly of a mature viral capsid. However, unlike the maturation inhibitor bevirimat, C1 did not significantly affect the kinetics or fidelity of Gag processing. HIV-1 particles produced in the presence of C1 contained unstable capsids that lacked associated electron density and exhibited impairments in early postentry stages of infection, most notably reverse transcription. C1 inhibited assembly of recombinant HIV-1 CA in vitro and induced aberrant cross-links in mutant HIV-1 particles capable of spontaneous intersubunit disulfide bonds at the interhexamer interface in the capsid lattice. Resistance to C1 was conferred by a single amino acid substitution within the compound-binding site in the N-terminal domain of the CA protein. Our results demonstrate that the binding site for C1 represents a new pharmacological vulnerability in the capsid assembly stage of the HIV-1 life cycle. IMPORTANCE The HIV-1 capsid protein is an attractive but unexploited target for clinical drug development. Prior studies have identified HIV-1 capsid-targeting compounds that display different mechanisms of action, which in part reflects the requirement for capsid function at both the efferent and afferent phases of viral replication. Here, we show that one such compound, compound 1, interferes with assembly of the conical viral capsid during virion maturation and results in perturbations at a specific protein-protein interface in the capsid lattice. We also identify and characterize a mutation in the capsid protein that confers resistance to the inhibitor. This study reveals a novel mechanism by which a capsid-targeting small molecule can inhibit HIV-1 replication. Copyright © 2017 American Society for Microbiology.

  10. Siderophore production and facilitated uptake of iron plutonium in p. putida.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boukhalfa, H.; Lack, J. G.; Reilly, S. D.

    2003-01-01

    Bioremediation is a very attractive alternative for restoration of contaminated soil and ground water . This is particularly true for radionuclide contamination, which tends to be low in concentration and distributed over large surface areas . Microorganisms, through their natural metabolism, produce a large variety of organic molecules of different size and functionality . These molecules interact with contaminants present in the microbe's environment . Through these interactions bio-molecules can solubilize, oxidize, reduce or precipitate major metal contaminant in soils and ground water . We are studying these interaction for actinides and common soil subsurface bacteria . One focus hasmore » been on siderophores, small molecules that have great affinity for hard metal ions, and their potential to affect the distribution and mobility of actinide contaminants . The metal siderophores assembly can be recognized and taken up by micro-organisms through their interference with their iron uptake system . The first step in the active iron transport consists of Fe(III)-siderophore recognition by membrane receptors, which requires specific stereo orientation of the Fe(III)-siderophore complex . Recent investigations have shown that siderophores can form strong complexes with a large variety of toxic metals and may mediate their introduction inside the cell . We have previously shown that a Puhydroxamate siderophore assembly is recognized and taken up by the Microbacterium flavescens (JG-9). However, it is not clear if Pu-siderophore assemblies of other siderophores are also recognized.« less

  11. Self-assembled monolayer and method of making

    DOEpatents

    Fryxell, Glen E [Kennewick, WA; Zemanian, Thomas S [Richland, WA; Liu, Jun [West Richland, WA; Shin, Yongsoon [Richland, WA

    2003-03-11

    According to the present invention, the previously known functional material having a self-assembled monolayer on a substrate has a plurality of assembly molecules each with an assembly atom with a plurality of bonding sites (four sites when silicon is the assembly molecule) wherein a bonding fraction (or fraction) of fully bonded assembly atoms (the plurality of bonding sites bonded to an oxygen atom) has a maximum when made by liquid solution deposition, for example a maximum of 40% when silicon is the assembly molecule, and maximum surface density of assembly molecules was 5 silanes per square nanometer. Note that bonding fraction and surface population are independent parameters. The method of the present invention is an improvement to the known method for making a siloxane layer on a substrate, wherein instead of a liquid phase solution chemistry, the improvement is a supercritical phase chemistry. The present invention has the advantages of greater fraction of oxygen bonds, greater surface density of assembly molecules and reduced time for reaction of about 5 minutes to about 24 hours.

  12. Self-assembled monolayer and method of making

    DOEpatents

    Fryxell, Glen E.; Zemanian, Thomas S.; Liu, Jun; Shin, Yongsoon

    2004-05-11

    According to the present invention, the previously known functional material having a self-assembled monolayer on a substrate has a plurality of assembly molecules each with an assembly atom with a plurality of bonding sites (four sites when silicon is the assembly molecule) wherein a bonding fraction (or fraction) of fully bonded assembly atoms (the plurality of bonding sites bonded to an oxygen atom) has a maximum when made by liquid solution deposition, for example a maximum of 40% when silicon is the assembly molecule, and maximum surface density of assembly molecules was 5 silanes per square nanometer. Note that bonding fraction and surface population are independent parameters. The method of the present invention is an improvement to the known method for making a siloxane layer on a substrate, wherein instead of a liquid phase solution chemistry, the improvement is a supercritical phase chemistry. The present invention has the advantages of greater fraction of oxygen bonds, greater surface density of assembly molecules and reduced time for reaction of about 5 minutes to about 24 hours.

  13. Self-Assembled Monolayer And Method Of Making

    DOEpatents

    Fryxell, Glen E.; Zemanian, Thomas S.; Liu, Jun; Shin, Yongsoon

    2004-06-22

    According to the present invention, the previously known functional material having a self-assembled monolayer on a substrate has a plurality of assembly molecules each with an assembly atom with a plurality of bonding sites (four sites when silicon is the assembly molecule) wherein a bonding fraction (or fraction) of fully bonded assembly atoms (the plurality of bonding sites bonded to an oxygen atom) has a maximum when made by liquid solution deposition, for example a maximum of 40% when silicon is the assembly molecule, and maximum surface density of assembly molecules was 5 silanes per square nanometer. Note that bonding fraction and surface population are independent parameters. The method of the present invention is an improvement to the known method for making a siloxane layer on a substrate, wherein instead of a liquid phase solution chemistry, the improvement is a supercritical phase chemistry. The present invention has the advantages of greater fraction of oxygen bonds, greater surface density of assembly molecules and reduced time for reaction of about 5 minutes to about 24 hours.

  14. Self-Assembled Monolayer And Method Of Making

    DOEpatents

    Fryxell, Glen E.; Zemanian, Thomas S.; Liu, Jun; Shin, Yongsoon

    2005-01-25

    According to the present invention, the previously known functional material having a self-assembled monolayer on a substrate has a plurality of assembly molecules each with an assembly atom with a plurality of bonding sites (four sites when silicon is the assembly molecule) wherein a bonding fraction (or fraction) of fully bonded assembly atoms (the plurality of bonding sites bonded to an oxygen atom) has a maximum when made by liquid solution deposition, for example a maximum of 40% when silicon is the assembly molecule, and maximum surface density of assembly molecules was 5 silanes per square nanometer. Note that bonding fraction and surface population are independent parameters. The method of the present invention is an improvement to the known method for making a siloxane layer on a substrate, wherein instead of a liquid phase solution chemistry, the improvement is a supercritical phase chemistry. The present invention has the advantages of greater fraction of oxygen bonds, greater surface density of assembly molecules and reduced time for reaction of about 5 minutes to about 24 hours.

  15. Preventing Small Molecule Nucleation and Crystallization by Sequestering in a Micelle Corona

    NASA Astrophysics Data System (ADS)

    Li, Ziang; Johnson, Lindsay; Ricarte, Ralm; Yao, Letitia; Hillmyer, Marc; Bates, Frank; Lodge, Timothy

    We exploited a blend of hydroxypropyl methylcellulose acetate succinate and poly(N-isopropylacrylamide) (PNIPAm) to improve the solubility and dissolution of a rapidly crystallizing model drug molecule phenytoin and observed synergistic effect in vitro at constant drug loading by varying the blending ratio. Dynamic and static light scattering experiments showed that PNIPAm self-assembled into micelles in aqueous solution. We believe that adding these PNIPAm micelles inhibited both nucleation and crystal growth of phenytoin based on the polarized light micrographs taken from the dissolution media. The drug-polymer intermolecular interaction was revealed by nuclear Overhauser effect spectroscopy and further quantified by diffusion ordered spectroscopy. We found that the phenytoin molecules were sequestered in aqueous solution by partitioning into the corona of the micelle. The blend strategy through the use of self-assembled micelles showcased in this study offers a new platform for designing advanced excipients for oral drug delivery. This study was funded by The Dow Chemical Company through Agreement 224249AT with the University of Minnesota.

  16. Inhibition of GNNQQNY prion peptide aggregation by trehalose: a mechanistic view.

    PubMed

    Katyal, Nidhi; Deep, Shashank

    2017-07-26

    Deposition of amyloid fibrils is the seminal event in the pathogenesis of numerous neurodegenerative diseases. The formation of this amyloid assembly is the manifestation of a cascade of structural transitions including toxic oligomer formation in the early stages of aggregation. Thus a viable therapeutic strategy involves the use of small molecular ligands to interfere with this assembly. In this perspective, we have explored the kinetics of aggregate formation of the fibril forming GNNQQNY peptide fragment from the yeast prion protein SUP35 using multiple all atom MD simulations with explicit solvent and provided mechanistic insights into the way trehalose, an experimentally known aggregation inhibitor, modulates the aggregation pathway. The results suggest that the assimilation process is impeded by different barriers at smaller and larger oligomeric sizes: the initial one being easily surpassed at higher temperatures and peptide concentrations. The kinetic profile demonstrates that trehalose delays the aggregation process by increasing both these activation barriers, specifically the latter one. It increases the sampling of small-sized aggregates that lack the beta sheet conformation. Analysis reveals that the barrier in the growth of larger stable oligomers causes the formation of multiple stable small oligomers which then fuse together bimolecularly. The PCA of 26 properties was carried out to deconvolute the events within the temporary lag phases, which suggested dynamism in lags involving an increase in interchain contacts and burial of SASA. The predominant growth route is monomer addition, which changes to condensation on account of a large number of depolymerisation events in the presence of trehalose. The favourable interaction of trehalose specifically with the sidechain of the peptide promotes crowding of trehalose molecules in its vicinity - the combination of both these factors imparts the observed behaviour. Furthermore, increasing trehalose concentration leads to faster expulsion of water molecules than interpeptide interactions. These expelled water molecules have larger translational movement, suggesting an entropy factor to favor the assembly process. Different conformations observed under this condition suggest the role of water molecules in guiding the morphology of the aggregates as well. A similar scenario exists on increasing peptide concentration.

  17. Proton Mediated Chemistry and Catalysis in a Self-Assembled Supramolecular Host

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pluth, Michael; Bergman, Robert; Raymond, Kenneth

    2009-04-10

    Synthetic supramolecular host assemblies can impart unique reactivity to encapsulated guest molecules. Synthetic host molecules have been developed to carry out complex reactions within their cavities, despite the fact that they lack the type of specifically tailored functional groups normally located in the analogous active sites of enzymes. Over the past decade, the Raymond group has developed a series of self-assembled supramolecules and the Bergman group has developed and studied a number of catalytic transformations. In this Account, we detail recent collaborative work between these two groups, focusing on chemical catalysis stemming from the encapsulation of protonated guests and expandingmore » to acid catalysis in basic solution. We initially investigated the ability of a water-soluble, self-assembled supramolecular host molecule to encapsulate protonated guests in its hydrophobic core. Our study of encapsulated protonated amines revealed rich host-guest chemistry. We established that self-exchange (that is, in-out guest movement) rates of protonated amines were dependent on the steric bulk of the amine rather than its basicity. The host molecule has purely rotational tetrahedral (T) symmetry, so guests with geminal N-methyl groups (and their attendant mirror plane) were effectively desymmetrized; this allowed for the observation and quantification of the barriers for nitrogen inversion followed by bond rotation. Furthermore, small nitrogen heterocycles, such as N-alkylaziridines, N-alkylazetidines, and N-alkylpyrrolidines, were found to be encapsulated as proton-bound homodimers or homotrimers. We further investigated the thermodynamic stabilization of protonated amines, showing that encapsulation makes the amines more basic in the cavity. Encapsulation raises the effective basicity of protonated amines by up to 4.5 pK{sub a} units, a difference almost as large as that between the moderate and strong bases carbonate and hydroxide. The thermodynamic stabilization of protonated guests was translated into chemical catalysis by taking advantage of the potential for accelerating reactions that take place via positively charged transition states, which could be potentially stabilized by encapsulation. Orthoformates, generally stable in neutral or basic solution, were found to be suitable substrates for catalytic hydrolysis by the assembly. Orthoformates small enough to undergo encapsulation were readily hydrolyzed by the assembly in basic solution, with rate acceleration factors up to 3900 compared with those of the corresponding uncatalyzed reactions. Furthering the analogy to enzymes that obey Michaelis-Menten kinetics, we observed competitive inhibition with the inhibitor NPr{sub 4}{sup +}, thereby confirming that the interior cavity of the assembly was the active site for catalysis. Mechanistic studies revealed that the assembly is required for catalysis and that the rate-limiting step of the reaction involves proton transfer from hydronium to the encapsulated substrate. Encapsulation in the assembly changes the orthoformate hydrolysis from an A-1 mechanism (in which decomposition of the protonated substrate is the rate-limiting step) to an A-S{sub E}2 mechanism (in which proton transfer is the rate-limiting step). The study of hydrolysis in the assembly was next extended to acetals, which were also catalytically hydrolyzed by the assembly in basic solution. Acetal hydrolysis changed from the A-1 mechanism in solution to an A-2 mechanism inside the assembly, where attack of water on the protonated substrate is rate limiting. This work provides rare examples of assembly-catalyzed reactions that proceed with substantial rate accelerations despite the absence of functional groups in the cavity and with mechanisms fully elucidated by quantitative kinetic studies.« less

  18. Pick-up, transport and release of a molecular cargo using a small-molecule robotic arm

    NASA Astrophysics Data System (ADS)

    Kassem, Salma; Lee, Alan T. L.; Leigh, David A.; Markevicius, Augustinas; Solà, Jordi

    2016-02-01

    Modern-day factory assembly lines often feature robots that pick up, reposition and connect components in a programmed manner. The idea of manipulating molecular fragments in a similar way has to date only been explored using biological building blocks (specifically DNA). Here, we report on a wholly artificial small-molecule robotic arm capable of selectively transporting a molecular cargo in either direction between two spatially distinct, chemically similar, sites on a molecular platform. The arm picks up/releases a 3-mercaptopropanehydrazide cargo by formation/breakage of a disulfide bond, while dynamic hydrazone chemistry controls the cargo binding to the platform. Transport is controlled by selectively inducing conformational and configurational changes within an embedded hydrazone rotary switch that steers the robotic arm. In a three-stage operation, 79-85% of 3-mercaptopropanehydrazide molecules are transported in either (chosen) direction between the two platform sites, without the cargo at any time fully dissociating from the machine nor exchanging with other molecules in the bulk.

  19. Pick-up, transport and release of a molecular cargo using a small-molecule robotic arm.

    PubMed

    Kassem, Salma; Lee, Alan T L; Leigh, David A; Markevicius, Augustinas; Solà, Jordi

    2016-02-01

    Modern-day factory assembly lines often feature robots that pick up, reposition and connect components in a programmed manner. The idea of manipulating molecular fragments in a similar way has to date only been explored using biological building blocks (specifically DNA). Here, we report on a wholly artificial small-molecule robotic arm capable of selectively transporting a molecular cargo in either direction between two spatially distinct, chemically similar, sites on a molecular platform. The arm picks up/releases a 3-mercaptopropanehydrazide cargo by formation/breakage of a disulfide bond, while dynamic hydrazone chemistry controls the cargo binding to the platform. Transport is controlled by selectively inducing conformational and configurational changes within an embedded hydrazone rotary switch that steers the robotic arm. In a three-stage operation, 79-85% of 3-mercaptopropanehydrazide molecules are transported in either (chosen) direction between the two platform sites, without the cargo at any time fully dissociating from the machine nor exchanging with other molecules in the bulk.

  20. Synthesis of single-molecule nanocars.

    PubMed

    Vives, Guillaume; Tour, James M

    2009-03-17

    The drive to miniaturize devices has led to a variety of molecular machines inspired by macroscopic counterparts such as molecular motors, switches, shuttles, turnstiles, barrows, elevators, and nanovehicles. Such nanomachines are designed for controlled mechanical motion and the transport of nanocargo. As researchers miniaturize devices, they can consider two complementary approaches: (1) the "top-down" approach, which reduces the size of macroscopic objects to reach an equivalent microscopic entity using photolithography and related techniques and (2) the "bottom-up" approach, which builds functional microscopic or nanoscopic entities from molecular building blocks. The top-down approach, extensively used by the semiconductor industry, is nearing its scaling limits. On the other hand, the bottom-up approach takes advantage of the self-assembly of smaller molecules into larger networks by exploiting typically weak molecular interactions. But self-assembly alone will not permit complex assembly. Using nanomachines, we hope to eventually consider complex, enzyme-like directed assembly. With that ultimate goal, we are currently exploring the control of nanomachines that would provide a basis for the future bottom-up construction of complex systems. This Account describes the synthesis of a class of molecular machines that resemble macroscopic vehicles. We designed these so-called nanocars for study at the single-molecule level by scanning probe microscopy (SPM). The vehicles have a chassis connected to wheel-terminated axles and convert energy inputs such as heat, electric fields, or light into controlled motion on a surface, ultimately leading to transport of nanocargo. At first, we used C(60) fullerenes as wheels, which allowed the demonstration of a directional rolling mechanism of a nanocar on a gold surface by STM. However, because of the low solubility of the fullerene nanocars and the incompatibility of fullerenes with photochemical processes, we developed new p-carborane- and ruthenium-based wheels with greater solubility in organic solvents. Although fullerene wheels must be attached in the final synthetic step, p-carborane- and ruthenium-based wheels do not inhibit organometallic coupling reactions, which allows a more convergent synthesis of molecular machines. We also prepared functional nanotrucks for the transport of atoms and molecules, as well as self-assembling nanocars and nanotrains. Although engineering challenges such as movement over long distance and non-atomically flat surfaces remain, the greatest current research challenge is imaging. The detailed study of nanocars requires complementary single molecule imaging techniques such as STM, AFM, TEM, or single-molecule fluorescence microscopy. Further developments in engineering and synthesis could lead to enzyme-like manipulation and assembly of atoms and small molecules in nonbiological environments.

  1. Self-assembly of tetravalent Goldberg polyhedra from 144 small components

    NASA Astrophysics Data System (ADS)

    Fujita, Daishi; Ueda, Yoshihiro; Sato, Sota; Mizuno, Nobuhiro; Kumasaka, Takashi; Fujita, Makoto

    2016-12-01

    Rational control of the self-assembly of large structures is one of the key challenges in chemistry, and is believed to become increasingly difficult and ultimately impossible as the number of components involved increases. So far, it has not been possible to design a self-assembled discrete molecule made up of more than 100 components. Such molecules—for example, spherical virus capsids—are prevalent in nature, which suggests that the difficulty in designing these very large self-assembled molecules is due to a lack of understanding of the underlying design principles. For example, the targeted assembly of a series of large spherical structures containing up to 30 palladium ions coordinated by up to 60 bent organic ligands was achieved by considering their topologies. Here we report the self-assembly of a spherical structure that also contains 30 palladium ions and 60 bent ligands, but belongs to a shape family that has not previously been observed experimentally. The new structure consists of a combination of 8 triangles and 24 squares, and has the symmetry of a tetravalent Goldberg polyhedron. Platonic and Archimedean solids have previously been prepared through self-assembly, as have trivalent Goldberg polyhedra, which occur naturally in the form of virus capsids and fullerenes. But tetravalent Goldberg polyhedra have not previously been reported at the molecular level, although their topologies have been predicted using graph theory. We use graph theory to predict the self-assembly of even larger tetravalent Goldberg polyhedra, which should be more stable, enabling another member of this polyhedron family to be assembled from 144 components: 48 palladium ions and 96 bent ligands.

  2. RNA encapsidation by SV40-derived nanoparticles follows a rapid two-state mechanism

    PubMed Central

    Kler, Stanislav; Asor, Roi; Li, Chenglei; Ginsburg, Avi; Harries, Daniel; Oppenheim, Ariella; Zlotnick, Adam; Raviv, Uri

    2012-01-01

    Remarkably, uniform virus-like particles self-assemble in a process that appears to follow a rapid kinetic mechanism. The mechanisms by which spherical viruses assemble from hundreds of capsid proteins around nucleic acid, however, are yet unresolved. Using Time-Resolved Small-Angle X-ray Scattering (TR-SAXS) we have been able to directly visualize SV40 VP1 pentamers encapsidating short RNA molecules (500 mers). This assembly process yields T = 1 icosahedral particles comprised of 12 pentamers and one RNA molecule. The reaction is nearly 1/3 complete within 35 milliseconds, following a two–state kinetic process with no detectable intermediates. Theoretical analysis of kinetics, using a master equation, shows that the assembly process nucleates at the RNA and continues by a cascade of elongation reactions in which one VP1 pentamer is added at a time, with a rate of approximately 109 M−1 s−1. The reaction is highly robust and faster than the predicted diffusion limit. The emerging molecular mechanism, which appears to be general to viruses that assemble around nucleic acids, implicates long-ranged electrostatic interactions. The model proposes that the growing nucleo-protein complex acts as an electrostatic antenna that attracts other capsid subunits for the encapsidation process. PMID:22329660

  3. de novo assembly and population genomic survey of natural yeast isolates with the Oxford Nanopore MinION sequencer.

    PubMed

    Istace, Benjamin; Friedrich, Anne; d'Agata, Léo; Faye, Sébastien; Payen, Emilie; Beluche, Odette; Caradec, Claudia; Davidas, Sabrina; Cruaud, Corinne; Liti, Gianni; Lemainque, Arnaud; Engelen, Stefan; Wincker, Patrick; Schacherer, Joseph; Aury, Jean-Marc

    2017-02-01

    Oxford Nanopore Technologies Ltd (Oxford, UK) have recently commercialized MinION, a small single-molecule nanopore sequencer, that offers the possibility of sequencing long DNA fragments from small genomes in a matter of seconds. The Oxford Nanopore technology is truly disruptive; it has the potential to revolutionize genomic applications due to its portability, low cost, and ease of use compared with existing long reads sequencing technologies. The MinION sequencer enables the rapid sequencing of small eukaryotic genomes, such as the yeast genome. Combined with existing assembler algorithms, near complete genome assemblies can be generated and comprehensive population genomic analyses can be performed. Here, we resequenced the genome of the Saccharomyces cerevisiae S288C strain to evaluate the performance of nanopore-only assemblers. Then we de novo sequenced and assembled the genomes of 21 isolates representative of the S. cerevisiae genetic diversity using the MinION platform. The contiguity of our assemblies was 14 times higher than the Illumina-only assemblies and we obtained one or two long contigs for 65 % of the chromosomes. This high contiguity allowed us to accurately detect large structural variations across the 21 studied genomes. Because of the high completeness of the nanopore assemblies, we were able to produce a complete cartography of transposable elements insertions and inspect structural variants that are generally missed using a short-read sequencing strategy. Our analyses show that the Oxford Nanopore technology is already usable for de novo sequencing and assembly; however, non-random errors in homopolymers require polishing the consensus using an alternate sequencing technology. © The Author 2017. Published by Oxford University Press.

  4. de novo assembly and population genomic survey of natural yeast isolates with the Oxford Nanopore MinION sequencer

    PubMed Central

    Istace, Benjamin; Friedrich, Anne; d'Agata, Léo; Faye, Sébastien; Payen, Emilie; Beluche, Odette; Caradec, Claudia; Davidas, Sabrina; Cruaud, Corinne; Liti, Gianni; Lemainque, Arnaud; Engelen, Stefan; Wincker, Patrick; Schacherer, Joseph

    2017-01-01

    Abstract Background: Oxford Nanopore Technologies Ltd (Oxford, UK) have recently commercialized MinION, a small single-molecule nanopore sequencer, that offers the possibility of sequencing long DNA fragments from small genomes in a matter of seconds. The Oxford Nanopore technology is truly disruptive; it has the potential to revolutionize genomic applications due to its portability, low cost, and ease of use compared with existing long reads sequencing technologies. The MinION sequencer enables the rapid sequencing of small eukaryotic genomes, such as the yeast genome. Combined with existing assembler algorithms, near complete genome assemblies can be generated and comprehensive population genomic analyses can be performed. Results: Here, we resequenced the genome of the Saccharomyces cerevisiae S288C strain to evaluate the performance of nanopore-only assemblers. Then we de novo sequenced and assembled the genomes of 21 isolates representative of the S. cerevisiae genetic diversity using the MinION platform. The contiguity of our assemblies was 14 times higher than the Illumina-only assemblies and we obtained one or two long contigs for 65 % of the chromosomes. This high contiguity allowed us to accurately detect large structural variations across the 21 studied genomes. Conclusion: Because of the high completeness of the nanopore assemblies, we were able to produce a complete cartography of transposable elements insertions and inspect structural variants that are generally missed using a short-read sequencing strategy. Our analyses show that the Oxford Nanopore technology is already usable for de novo sequencing and assembly; however, non-random errors in homopolymers require polishing the consensus using an alternate sequencing technology. PMID:28369459

  5. Role of translational entropy in spatially inhomogeneous, coarse-grained models

    NASA Astrophysics Data System (ADS)

    Langenberg, Marcel; Jackson, Nicholas E.; de Pablo, Juan J.; Müller, Marcus

    2018-03-01

    Coarse-grained models of polymer and biomolecular systems have enabled the computational study of cooperative phenomena, e.g., self-assembly, by lumping multiple atomistic degrees of freedom along the backbone of a polymer, lipid, or DNA molecule into one effective coarse-grained interaction center. Such a coarse-graining strategy leaves the number of molecules unaltered. In order to treat the surrounding solvent or counterions on the same coarse-grained level of description, one can also stochastically group several of those small molecules into an effective, coarse-grained solvent bead or "fluid element." Such a procedure reduces the number of molecules, and we discuss how to compensate the concomitant loss of translational entropy by density-dependent interactions in spatially inhomogeneous systems.

  6. Influence of charge on encapsulation and release behavior of small molecules in self-assembled layer-by-layer microcapsules.

    PubMed

    Mandapalli, Praveen K; Labala, Suman; Vanamala, Deekshith; Koranglekar, Manali P; Sakimalla, Lakshmi A; Venuganti, Venkata Vamsi K

    2014-12-01

    The objective of this study is to investigate the influence of charge of model small molecules on their encapsulation and release behavior in layer-by-layer microcapsules (LbL-MC). Poly(styrene sulfonate) and poly(ethylene imine) were sequentially adsorbed on calcium carbonate sacrificial templates to prepare LbL-MC. Model molecules with varying charge, anionic - ascorbic acid, cationic - imatinib mesylate (IM) and neutral - 5-fluorouracil were encapsulated in LbL-MC. Free and encapsulated LbL-MC were characterized using zetasizer, FTIR spectroscope and differential scanning calorimeter. The influence of IM-loaded LbL-MC on cell viability was studied in B16F10 murine melanoma cells. Furthermore, biodistribution of IM-loaded LbL-MC with and without PEGylation was studied in BALB/c mice. Results showed spherical LbL-MC of 3.0 ± 0.4 μm diameter. Encapsulation efficiency of LbL-MC increased linearly (R(2 )= 0.89-0.99) with the increase in solute concentration. Increase in pH from 2 to 6 increased the encapsulation of charged molecules in LbL-MC. Charged molecules showed greater encapsulation efficiency in LbL-MC compared with neutral molecule. In vitro release kinetics showed Fickian and non-Fickian diffusion of small molecules, depending on the nature of molecular interactions with LbL-MC. At 50 μM concentration, free IM showed significantly (p < 0.05) more cytotoxicity compared with IM-loaded LbL-MC. Biodistribution studies showed that PEGylation of LbL-MC decreased the liver and spleen uptake of IM-encapsulated LbL-MC. In conclusion, LbL-MC can be developed as a potential carrier for small molecules depending on their physical and chemical properties.

  7. Superstructure based on β-CD self-assembly induced by a small guest molecule†

    PubMed Central

    De Sousa, Frederico B.; Lima, Ana C.; Denadai, Ângelo M. L.; Anconi, Cleber P. A.; De Almeida, Wagner B.; Novato, Willian T. G.; Dos Santos, Hélio F.; Drum, Chester L.; Langer, Robert

    2014-01-01

    The size, shape and surface chemistry of nanoparticles play an important role in cellular interaction. Thus, the main objective of the present study was the determination of the β-cyclodextrin (β-CD) self-assembly thermodynamic parameters and its structure, aiming to use these assemblies as a possible controlled drug release system. Light scattering measurements led us to obtain the β-CD’s critical aggregation concentration (cac) values, and consequently the thermodynamic parameters of the β-CD spontaneous self-assembly in aqueous solution: ΔaggGo = − 16.31 kJ mol−1, ΔaggHo = − 26.48 kJ mol−1 and TΔaggSo = − 10.53 kJ mol−1 at 298.15 K. Size distribution of the self-assembled nanoparticles below and above cac was 1.5 nm and 60–120 nm, respectively. The number of β-CD molecules per cluster and the second virial coefficient were identified through Debye’s plot and molecular dynamic simulations proposed the three-fold assembly for this system below cac. Ampicillin (AMP) was used as a drug model in order to investigate the key role of the guest molecule in the self-assembly process and the β-CD:AMP supramolecular system was studied in solution, aiming to determine the structure of the supramolecular aggregate. Results obtained in solution indicated that the β-CD’s cac was not affected by adding AMP. Moreover, different complex stoichiometries were identified by nuclear magnetic resonance and isothermal titration calorimetry experiments. PMID:22234498

  8. Self-Assembly of Optical Molecules with Supramolecular Concepts

    PubMed Central

    Okamoto, Ken; Chithra, Parayalil; Richards, Gary J.; Hill, Jonathan P.; Ariga, Katsuhiko

    2009-01-01

    Fabrication of nano-sized objects is one of the most important issues in nanoscience and nanotechnology. Soft nanomaterials with flexible properties have been given much attention and can be obtained through bottom-up processing from functional molecules, where self-assembly based on supramolecular chemistry and designed assembly have become crucial processes and techniques. Among the various functional molecules, dyes have become important materials in certain areas of nanotechnology and their self-assembling behaviors have been actively researched. In this short review, we briefly introduce recent progress in self-assembly of optical molecules and dyes, based mainly on supramolecular concepts. The introduced examples are classified into four categories: self-assembly of (i) low-molecular-weight dyes and (ii) polymeric dyes and dye self-assembly (iii) in nanoscale architectures and (iv) at surfaces. PMID:19564931

  9. A new class of animal collagen masquerading as an insect silk

    PubMed Central

    Sutherland, Tara D.; Peng, Yong Y.; Trueman, Holly E.; Weisman, Sarah; Okada, Shoko; Walker, Andrew A.; Sriskantha, Alagacone; White, Jacinta F.; Huson, Mickey G.; Werkmeister, Jerome A.; Glattauer, Veronica; Stoichevska, Violet; Mudie, Stephen T.; Haritos, Victoria S.; Ramshaw, John A. M.

    2013-01-01

    Collagen is ubiquitous throughout the animal kingdom, where it comprises some 28 diverse molecules that form the extracellular matrix within organisms. In the 1960s, an extracorporeal animal collagen that forms the cocoon of a small group of hymenopteran insects was postulated. Here we categorically demonstrate that the larvae of a sawfly species produce silk from three small collagen proteins. The native proteins do not contain hydroxyproline, a post translational modification normally considered characteristic of animal collagens. The function of the proteins as silks explains their unusual collagen features. Recombinant proteins could be produced in standard bacterial expression systems and assembled into stable collagen molecules, opening the door to manufacture a new class of artificial collagen materials. PMID:24091725

  10. HIV-1 Gag as an Antiviral Target: Development of Assembly and Maturation Inhibitors.

    PubMed

    Spearman, Paul

    2016-01-01

    HIV-1 Gag is the master orchestrator of particle assembly. The central role of Gag at multiple stages of the HIV lifecycle has led to efforts to develop drugs that directly target Gag and prevent the formation and release of infectious particles. Until recently, however, only the catalytic site protease inhibitors have been available to inhibit late stages of HIV replication. This review summarizes the current state of development of antivirals that target Gag or disrupt late events in the retrovirus lifecycle such as maturation of the viral capsid. Maturation inhibitors represent an exciting new series of antiviral compounds, including those that specifically target CA-SP1 cleavage and the allosteric integrase inhibitors that inhibit maturation by a completely different mechanism. Numerous small molecules and peptides targeting CA have been studied in attempts to disrupt steps in assembly. Efforts to target CA have recently gained considerable momentum from the development of small molecules that bind CA and alter capsid stability at the post-entry stage of the lifecycle. Efforts to develop antivirals that inhibit incorporation of genomic RNA or to inhibit late budding events remain in preliminary stages of development. Overall, the development of novel antivirals targeting Gag and the late stages in HIV replication appears much closer to success than ever, with the new maturation inhibitors leading the way.

  11. Dynamic self-assembly of DNA minor groove-binding ligand DB921 into nanotubes triggered by an alkali halide† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7nr03875e

    PubMed Central

    Mizuta, R.; Devos, J. M.; Webster, J.; Ling, W. L.; Narayanan, T.; Round, A.; Munnur, D.; Mossou, E.; Farahat, A. A.; Boykin, D. W.; Wilson, W. D.; Neidle, S.; Schweins, R.; Rannou, P.; Haertlein, M.; Forsyth, V. T.

    2018-01-01

    We describe a novel self-assembling supramolecular nanotube system formed by a heterocyclic cationic molecule which was originally designed for its potential as an antiparasitic and DNA sequence recognition agent. Our structural characterisation work indicates that the nanotubes form via a hierarchical assembly mechanism that can be triggered and tuned by well-defined concentrations of simple alkali halide salts in water. The nanotubes assembled in NaCl have inner and outer diameters of ca. 22 nm and 26 nm respectively, with lengths that reach into several microns. Our results suggest the tubes consist of DB921 molecules stacked along the direction of the nanotube long axis. The tubes are stabilised by face-to-face π–π stacking and ionic interactions between the charged amidinium groups of the ligand and the negative halide ions. The assembly process of the nanotubes was followed using small-angle X-ray and neutron scattering, transmission electron microscopy and ultraviolet/visible spectroscopy. Our data demonstrate that assembly occurs through the formation of intermediate ribbon-like structures that in turn form helices that tighten and compact to form the final stable filament. This assembly process was tested using different alkali–metal salts, showing a strong preference for chloride or bromide anions and with little dependency on the type of cation. Our data further demonstrates the existence of a critical anion concentration above which the rate of self-assembly is greatly enhanced. PMID:29517086

  12. Synthetic inhibitors of bacterial cell division targeting the GTP-binding site of FtsZ.

    PubMed

    Ruiz-Avila, Laura B; Huecas, Sonia; Artola, Marta; Vergoñós, Albert; Ramírez-Aportela, Erney; Cercenado, Emilia; Barasoain, Isabel; Vázquez-Villa, Henar; Martín-Fontecha, Mar; Chacón, Pablo; López-Rodríguez, María L; Andreu, José M

    2013-09-20

    Cell division protein FtsZ is the organizer of the cytokinetic Z-ring in most bacteria and a target for new antibiotics. FtsZ assembles with GTP into filaments that hydrolyze the nucleotide at the association interface between monomers and then disassemble. We have replaced FtsZ's GTP with non-nucleotide synthetic inhibitors of bacterial division. We searched for these small molecules among compounds from the literature, from virtual screening (VS), and from our in-house synthetic library (UCM), employing a fluorescence anisotropy primary assay. From these screens we have identified the polyhydroxy aromatic compound UCM05 and its simplified analogue UCM44 that specifically bind to Bacillus subtilis FtsZ monomers with micromolar affinities and perturb normal assembly, as examined with light scattering, polymer sedimentation, and negative stain electron microscopy. On the other hand, these ligands induce the cooperative assembly of nucleotide-devoid archaeal FtsZ into distinct well-ordered polymers, different from GTP-induced filaments. These FtsZ inhibitors impair localization of FtsZ into the Z-ring and inhibit bacterial cell division. The chlorinated analogue UCM53 inhibits the growth of clinical isolates of antibiotic-resistant Staphylococcus aureus and Enterococcus faecalis. We suggest that these interfacial inhibitors recapitulate binding and some assembly-inducing effects of GTP but impair the correct structural dynamics of FtsZ filaments and thus inhibit bacterial division, possibly by binding to a small fraction of the FtsZ molecules in a bacterial cell, which opens a new approach to FtsZ-based antibacterial drug discovery.

  13. Architecture, Assembly, and Emerging Applications of Branched Functional Polyelectrolytes and Poly(ionic liquid)s.

    PubMed

    Xu, Weinan; Ledin, Petr A; Shevchenko, Valery V; Tsukruk, Vladimir V

    2015-06-17

    Branched polyelectrolytes with cylindrical brush, dendritic, hyperbranched, grafted, and star architectures bearing ionizable functional groups possess complex and unique assembly behavior in solution at surfaces and interfaces as compared to their linear counterparts. This review summarizes the recent developments in the introduction of various architectures and understanding of the assembly behavior of branched polyelectrolytes with a focus on functional polyelectrolytes and poly(ionic liquid)s with responsive properties. The branched polyelectrolytes and poly(ionic liquid)s interact electrostatically with small molecules, linear polyelectrolytes, or other branched polyelectrolytes to form assemblies of hybrid nanoparticles, multilayer thin films, responsive microcapsules, and ion-conductive membranes. The branched structures lead to unconventional assemblies and complex hierarchical structures with responsive properties as summarized in this review. Finally, we discuss prospectives for emerging applications of branched polyelectrolytes and poly(ionic liquid)s for energy harvesting and storage, controlled delivery, chemical microreactors, adaptive surfaces, and ion-exchange membranes.

  14. Supramolecular domains in mixed peptide self-assembled monolayers on gold nanoparticles.

    PubMed

    Duchesne, Laurence; Wells, Geoff; Fernig, David G; Harris, Sarah A; Lévy, Raphaël

    2008-09-01

    Self-organization in mixed self-assembled monolayers of small molecules provides a route towards nanoparticles with complex molecular structures. Inspired by structural biology, a strategy based on chemical cross-linking is introduced to probe proximity between functional peptides embedded in a mixed self-assembled monolayer at the surface of a nanoparticle. The physical basis of the proximity measurement is a transition from intramolecular to intermolecular cross-linking as the functional peptides get closer. Experimental investigations of a binary peptide self-assembled monolayer show that this transition happens at an extremely low molar ratio of the functional versus matrix peptide. Molecular dynamics simulations of the peptide self-assembled monolayer are used to calculate the volume explored by the reactive groups. Comparison of the experimental results with a probabilistic model demonstrates that the peptides are not randomly distributed at the surface of the nanoparticle, but rather self-organize into supramolecular domains.

  15. Liquid Crystalline Assembly of Coil-Rod-Coil Molecules with Lateral Methyl Groups into 3-D Hexagonal and Tetragonal Assemblies

    PubMed Central

    Wang, Zhuoshi; Lan, Yu; Zhong, Keli; Liang, Yongri; Chen, Tie; Jin, Long Yi

    2014-01-01

    In this paper, we report the synthesis and self-assembly behavior of coil-rod-coil molecules, consisting of three biphenyls linked through a vinylene unit as a conjugated rod segment and poly(ethylene oxide) (PEO) with a degree of polymerization (DP) of 7, 12 and 17, incorporating lateral methyl groups between the rod and coil segments as the coil segment. Self-organized investigation of these molecules by means of differential scanning calorimetry (DSC), thermal polarized optical microscopy (POM) and X-ray diffraction (XRD) reveals that the lateral methyl groups attached to the surface of rod and coil segments, dramatically influence the self-assembling behavior in the liquid-crystalline mesophase. Molecule 1 with a relatively short PEO coil length (DP = 7) self-assembles into rectangular and oblique 2-dimensional columnar assemblies, whereas molecules 2 and 3 with DP of 12 and 17 respectively, spontaneously self-organize into unusual 3-dimensional hexagonal close-packed or body-centered tetragonal assemblies. PMID:24699045

  16. Extracting Models in Single Molecule Experiments

    NASA Astrophysics Data System (ADS)

    Presse, Steve

    2013-03-01

    Single molecule experiments can now monitor the journey of a protein from its assembly near a ribosome to its proteolytic demise. Ideally all single molecule data should be self-explanatory. However data originating from single molecule experiments is particularly challenging to interpret on account of fluctuations and noise at such small scales. Realistically, basic understanding comes from models carefully extracted from the noisy data. Statistical mechanics, and maximum entropy in particular, provide a powerful framework for accomplishing this task in a principled fashion. Here I will discuss our work in extracting conformational memory from single molecule force spectroscopy experiments on large biomolecules. One clear advantage of this method is that we let the data tend towards the correct model, we do not fit the data. I will show that the dynamical model of the single molecule dynamics which emerges from this analysis is often more textured and complex than could otherwise come from fitting the data to a pre-conceived model.

  17. Rationally designed small molecules targeting the RNA that causes myotonic dystrophy type 1 are potently bioactive.

    PubMed

    Childs-Disney, Jessica L; Hoskins, Jason; Rzuczek, Suzanne G; Thornton, Charles A; Disney, Matthew D

    2012-05-18

    RNA is an important drug target, but it is difficult to design or discover small molecules that modulate RNA function. In the present study, we report that rationally designed, modularly assembled small molecules that bind the RNA that causes myotonic dystrophy type 1 (DM1) are potently bioactive in cell culture models. DM1 is caused when an expansion of r(CUG) repeats, or r(CUG)(exp), is present in the 3' untranslated region (UTR) of the dystrophia myotonica protein kinase (DMPK) mRNA. r(CUG)(exp) folds into a hairpin with regularly repeating 5'CUG/3'GUC motifs and sequesters muscleblind-like 1 protein (MBNL1). A variety of defects are associated with DM1, including (i) formation of nuclear foci, (ii) decreased translation of DMPK mRNA due to its nuclear retention, and (iii) pre-mRNA splicing defects due to inactivation of MBNL1, which controls the alternative splicing of various pre-mRNAs. Previously, modularly assembled ligands targeting r(CUG)(exp) were designed using information in an RNA motif-ligand database. These studies showed that a bis-benzimidazole (H) binds the 5'CUG/3'GUC motif in r(CUG)(exp.) Therefore, we designed multivalent ligands to bind simultaneously multiple copies of this motif in r(CUG)(exp). Herein, we report that the designed compounds improve DM1-associated defects including improvement of translational and pre-mRNA splicing defects and the disruption of nuclear foci. These studies may establish a foundation to exploit other RNA targets in genomic sequence.

  18. Small-molecule intramimics of formin autoinhibition: a new strategy to target the cytoskeletal remodeling machinery in cancer cells.

    PubMed

    Lash, L Leanne; Wallar, Bradley J; Turner, Julie D; Vroegop, Steven M; Kilkuskie, Robert E; Kitchen-Goosen, Susan M; Xu, H Eric; Alberts, Arthur S

    2013-11-15

    Although the cancer cell cytoskeleton is a clinically validated target, few new strategies have emerged for selectively targeting cell division by modulating the cytoskeletal structure, particularly ways that could avoid the cardiotoxic and neurotoxic effects of current agents such as taxanes. We address this gap by describing a novel class of small-molecule agonists of the mammalian Diaphanous (mDia)-related formins, which act downstream of Rho GTPases to assemble actin filaments, and their organization with microfilaments to establish and maintain cell polarity during migration and asymmetric division. GTP-bound Rho activates mDia family members by disrupting the interaction between the DID and DAD autoregulatory domains, which releases the FH2 domain to modulate actin and microtubule dynamics. In screening for DID-DAD disruptors that activate mDia, we identified two molecules called intramimics (IMM-01 and -02) that were sufficient to trigger actin assembly and microtubule stabilization, serum response factor-mediated gene expression, cell-cycle arrest, and apoptosis. In vivo analysis of IMM-01 and -02 established their ability to slow tumor growth in a mouse xenograft model of colon cancer. Taken together, our work establishes the use of intramimics and mDia-related formins as a new general strategy for therapeutic targeting of the cytoskeletal remodeling machinery of cancer cells. ©2013 AACR

  19. Self-assembly of acetate adsorbates drives atomic rearrangement on the Au(110) surface

    DOE PAGES

    Hiebel, Fanny; Shong, Bonggeun; Chen, Wei; ...

    2016-10-12

    Weak inter-adsorbate interactions are shown to play a crucial role in determining surface structure, with major implications for its catalytic reactivity. This is exemplified here in the case of acetate bound to Au(110), where the small extra energy of the van der Waals interactions among the surface-bound groups drives massive restructuring of the underlying Au. Acetate is a key intermediate in electro-oxidation of CO 2 and a poison in partial oxidation reactions. Metal atom migration originates at surface defects and is likely facilitated by weakened Au–Au interactions due to bonding with the acetate. Even though the acetate is a relativelymore » small molecule, weak intermolecular interaction provides the energy required for molecular self-assembly and reorganization of the metal surface.« less

  20. Self-assembly of acetate adsorbates drives atomic rearrangement on the Au(110) surface

    PubMed Central

    Hiebel, Fanny; Shong, Bonggeun; Chen, Wei; Madix, Robert J.; Kaxiras, Efthimios; Friend, Cynthia M.

    2016-01-01

    Weak inter-adsorbate interactions are shown to play a crucial role in determining surface structure, with major implications for its catalytic reactivity. This is exemplified here in the case of acetate bound to Au(110), where the small extra energy of the van der Waals interactions among the surface-bound groups drives massive restructuring of the underlying Au. Acetate is a key intermediate in electro-oxidation of CO2 and a poison in partial oxidation reactions. Metal atom migration originates at surface defects and is likely facilitated by weakened Au–Au interactions due to bonding with the acetate. Even though the acetate is a relatively small molecule, weak intermolecular interaction provides the energy required for molecular self-assembly and reorganization of the metal surface. PMID:27731407

  1. Resolving the Complexity of Human Skin Metagenomes Using Single-Molecule Sequencing

    PubMed Central

    Tsai, Yu-Chih; Deming, Clayton; Segre, Julia A.; Kong, Heidi H.; Korlach, Jonas

    2016-01-01

    ABSTRACT Deep metagenomic shotgun sequencing has emerged as a powerful tool to interrogate composition and function of complex microbial communities. Computational approaches to assemble genome fragments have been demonstrated to be an effective tool for de novo reconstruction of genomes from these communities. However, the resultant “genomes” are typically fragmented and incomplete due to the limited ability of short-read sequence data to assemble complex or low-coverage regions. Here, we use single-molecule, real-time (SMRT) sequencing to reconstruct a high-quality, closed genome of a previously uncharacterized Corynebacterium simulans and its companion bacteriophage from a skin metagenomic sample. Considerable improvement in assembly quality occurs in hybrid approaches incorporating short-read data, with even relatively small amounts of long-read data being sufficient to improve metagenome reconstruction. Using short-read data to evaluate strain variation of this C. simulans in its skin community at single-nucleotide resolution, we observed a dominant C. simulans strain with moderate allelic heterozygosity throughout the population. We demonstrate the utility of SMRT sequencing and hybrid approaches in metagenome quantitation, reconstruction, and annotation. PMID:26861018

  2. Targeting the r(CGG) repeats that cause FXTAS with modularly assembled small molecules and oligonucleotides.

    PubMed

    Tran, Tuan; Childs-Disney, Jessica L; Liu, Biao; Guan, Lirui; Rzuczek, Suzanne; Disney, Matthew D

    2014-04-18

    We designed small molecules that bind the structure of the RNA that causes fragile X-associated tremor ataxia syndrome (FXTAS), an incurable neuromuscular disease. FXTAS is caused by an expanded r(CGG) repeat (r(CGG)(exp)) that inactivates a protein regulator of alternative pre-mRNA splicing. Our designed compounds modulate r(CGG)(exp) toxicity in cellular models of FXTAS, and pull-down experiments confirm that they bind r(CGG)(exp) in vivo. Importantly, compound binding does not affect translation of the downstream open reading frame (ORF). We compared molecular recognition properties of our optimal compound to oligonucleotides. Studies show that r(CGG)(exp)'s self-structure is a significant energetic barrier for oligonucleotide binding. A fully modified 2'-OMethyl phosphorothioate is incapable of completely reversing an FXTAS-associated splicing defect and inhibits translation of the downstream ORF, which could have deleterious effects. Taken together, these studies suggest that a small molecule that recognizes structure may be more well suited for targeting highly structured RNAs that require strand invasion by a complementary oligonucleotide.

  3. Targeting the r(CGG) Repeats That Cause FXTAS with Modularly Assembled Small Molecules and Oligonucleotides

    PubMed Central

    2015-01-01

    We designed small molecules that bind the structure of the RNA that causes fragile X-associated tremor ataxia syndrome (FXTAS), an incurable neuromuscular disease. FXTAS is caused by an expanded r(CGG) repeat (r(CGG)exp) that inactivates a protein regulator of alternative pre-mRNA splicing. Our designed compounds modulate r(CGG)exp toxicity in cellular models of FXTAS, and pull-down experiments confirm that they bind r(CGG)expin vivo. Importantly, compound binding does not affect translation of the downstream open reading frame (ORF). We compared molecular recognition properties of our optimal compound to oligonucleotides. Studies show that r(CGG)exp’s self-structure is a significant energetic barrier for oligonucleotide binding. A fully modified 2′-OMethyl phosphorothioate is incapable of completely reversing an FXTAS-associated splicing defect and inhibits translation of the downstream ORF, which could have deleterious effects. Taken together, these studies suggest that a small molecule that recognizes structure may be more well suited for targeting highly structured RNAs that require strand invasion by a complementary oligonucleotide. PMID:24506227

  4. Implementation of a protocol for assembling DNA in a Teflon tube

    NASA Astrophysics Data System (ADS)

    Walsh, Edmond J.; Feuerborn, Alexander; Cook, Peter R.

    2017-02-01

    Droplet based microfluidics continues to grow as a platform for chemical and biological reactions using small quantities of fluids, however complex protocols are rarely possible in existing devices. This paper implements a new approach to merging of drops, combined with magnetic bead manipulation, for the creation of ligated double-stranded DNA molecule using "Gibson assembly" chemistry. DNA assembly is initially accomplished through the merging, and mixing, of five drops followed by a thermal cycle. Then, integrating this drop merging method with magnetic beads enable the implementation of amore complete protocol consisting of nine wash steps,merging of four drop, transport of selective reagents between twelve drops using magnetic particles, followed by a thermal cycle and finally the deposition of a purified drop into an Eppendorf for downstream analysis. Gel electrophoresis is used to confirm successful DNA assembly.

  5. Strain-stiffening response in organogels assembled using steroidal biomolecules

    NASA Astrophysics Data System (ADS)

    Tung, Shih-Huang; Raghavan, Srinivasa R.

    2007-03-01

    The phenomenon of strain-stiffening or strain-hardening refers to an increase in the elastic modulus (stiffness) of a material with increasing strain amplitude. While this response is exhibited by many biological materials, including gels of biopolymers such as actin, it is rarely seen in other types of soft matter. Here, we report strain-stiffening in a new class of self- assembled organogels being studied in our laboratory. These gels are formed in nonpolar organic liquids by combining a lipid (lecithin) or two-tailed surfactant (AOT) with a type of naturally occurring steroidal amphiphile called a bile salt. Based on rheological and scattering data, we deduce that the gel structure comprises a network of semiflexible filaments. Interestingly, gels induced by small organic molecules other than bile salts do not show strain-stiffening. We suggest that the bile salt molecules confer an intrinsic stiffness to the filaments in the gel, which is important for strain-stiffening.

  6. In Situ Hot-Spot Assembly as a General Strategy for Probing Single Biomolecules.

    PubMed

    Liu, Huiqiao; Li, Qiang; Li, Mingmin; Ma, Sisi; Liu, Dingbin

    2017-05-02

    Single-molecule detection using surface-enhanced Raman spectroscopy (SERS) has attracted increasing attention in chemical and biomedical analysis. However, it remains a major challenge to probe single biomolecules by means of SERS hot spots owing to the small volume of hot spots and their random distribution on substrates. We here report an in situ hot-spot assembly method as a general strategy for probing single biomolecules. As a proof-of-concept, this proposed strategy was successfully used for the detection of single microRNA-21 (miRNA-21, a potential cancer biomarker) at the single-cell level, showing great capability in differentiating the expression of miRNA-21 in single cancer cells from normal cells. This approach was further extended to single-protein detection. The versatility of the strategy opens an exciting avenue for single-molecule detection of biomarkers of interest and thus holds great promise in a variety of biological and biomedical applications.

  7. Kinetic profile of amyloid formation in the presence of an aromatic inhibitor by nuclear magnetic resonance.

    PubMed

    Liu, Gai; Gaines, Jennifer C; Robbins, Kevin J; Lazo, Noel D

    2012-10-11

    The self-assembly of amyloid proteins into β-sheet rich assemblies is associated with human amyloidoses including Alzheimer's disease, Parkinson's disease, and type 2 diabetes. An attractive therapeutic strategy therefore is to develop small molecules that would inhibit protein self-assembly. Natural polyphenols are potential inhibitors of β-sheet formation. How these compounds affect the kinetics of self-assembly studied by thioflavin T (ThT) fluorescence is not understood primarily because their presence interferes with ThT fluorescence. Here, we show that by plotting peak intensities from nuclear magnetic resonance (NMR) against incubation time, kinetic profiles in the presence of the polyphenol can be obtained from which kinetic parameters of self-assembly can be easily determined. In applying this technique to the self-assembly of the islet amyloid polypeptide in the presence of curcumin, a biphenolic compound found in turmeric, we show that the kinetic profile is atypical in that it shows a prenucleation period during which there is no observable decrease in NMR peak intensities.

  8. Characterization of zein assemblies by ultra-small-angle X-ray scattering

    DOE PAGES

    Uzun, Suzan; Ilavsky, Jan; Padua, Graciela Wild

    2017-03-23

    Zein, a protein of corn, has an amphiphilic molecule capable of self-assembly into distinctly different structures. In this work, ultra-small-angle X-ray scattering (USAXS) was applied to investigate the formation of self-assembled zein structures in binary solvent systems of ethanol and water. Our study included observing structural changes due to aging. Three hierarchical structures were identified in zein-solvent systems, molecular zein 2D films, believed to be formed by zein rods assembled first into one-dimensional fibers and then into two-dimensional films, and 3D spherical aggregates. Aging did not change the size or shape of primary units, but promoted their self-assembly into intermediatemore » 2D structures and shaped 3D structures into well19 defined spheres. We found that the rheological parameters, consistency index (K) and behavior index (n), storage and loss moduli (G’ and G”) were also measured. K and n, changed markedly with aging, from nearly Newtonian low consistency fresh samples to highly viscous pseudoplastic aged samples. G’ and G” increased with aging for all samples reflecting increased interactions among zein self-assembled structures. Furthermore, viscoelastic parameters indicated that zein dispersions formed gels upon aging. It was observed that USAX reported on molecular scale self-assembly processes, while rheological measurements reported on the macroscale interaction between self-assembled particles. Raman spectra suggested that α-helix to β-sheet transformations prompted zein self-assembly, which influenced the size and morphology of molecular assemblies and ultimately the rheological properties of zein dispersions.« less

  9. STM study of C60F18 high dipole moment molecules on Au(111)

    NASA Astrophysics Data System (ADS)

    Bairagi, K.; Bellec, A.; Chumakov, R. G.; Menshikov, K. A.; Lagoute, J.; Chacon, C.; Girard, Y.; Rousset, S.; Repain, V.; Lebedev, A. M.; Sukhanov, L. P.; Svechnikov, N. Yu.; Stankevich, V. G.

    2015-11-01

    Scanning tunneling microscopy and spectroscopy studies of C60F18 molecules deposited on Au(111) are reported and compared to C60 molecules both at liquid helium temperature and room temperature (RT). Whereas adsorption and electronic properties of C60F18 single molecules were studied at low temperature (LT), self-assemblies were investigated at RT. In both cases, the fluorine atoms of the C60F18 molecules are pointed towards the surface. Individual C60F18 molecules on Au(111) have a HOMO-LUMO gap of 2.9 eV. The self-assembled islands exhibit a close-packed hexagonal lattice with amorphous borders. The comparison with C60 molecules clearly demonstrates the influence of the C60F18 electric dipole moment (EDM) on the electronic properties of single molecules and on the thermodynamics of self-assembled islands. Besides, the apparent height value of a separate molecule increases in a self-assembly environment as a result of a depolarization phenomenon.

  10. Self-assembly of myristic acid in the presence of choline hydroxide: effect of molar ratio and temperature.

    PubMed

    Arnould, Audrey; Perez, Adrian A; Gaillard, Cédric; Douliez, Jean-Paul; Cousin, Fabrice; Santiago, Liliana G; Zemb, Thomas; Anton, Marc; Fameau, Anne-Laure

    2015-05-01

    Salt-free catanionic systems based on fatty acids exhibit a broad polymorphism by simply tuning the molar ratio between the two components. For fatty acid combined with organic amino counter-ions, very few data are available on the phase behavior obtained as a function of the molar ratio between the counter-ion and the fatty acid. We investigated the choline hydroxide/myristic acid system by varying the molar ratio, R=n(choline hydroxide)/n(myristic acid), and the temperature. Myristic acid ionization state was determined by coupling pH, conductivity and infra-red spectroscopy measurements. Self-assemblies were characterized by small angle neutron scattering and microscopy experiments. Self-assembly thermal behavior was investigated by differential scanning calorimetry, wide angle X-ray scattering and nuclear magnetic resonance. For R<1, ionized and protonated myristic acid molecules coexisted leading to the formation of facetted self-assemblies and lamellar phases. The melting process between the gel and the fluid state of these bilayers induced a structural change from facetted or lamellar objects to spherical vesicles. For R>1, myristic acid molecules were ionized and formed spherical micelles. Our study highlights that both R and temperature are two key parameters to finely control the self-assembly structure formed by myristic acid in the presence of choline hydroxide. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Self-Assembled Materials Made from Functional Recombinant Proteins.

    PubMed

    Jang, Yeongseon; Champion, Julie A

    2016-10-18

    Proteins are potent molecules that can be used as therapeutics, sensors, and biocatalysts with many advantages over small-molecule counterparts due to the specificity of their activity based on their amino acid sequence and folded three-dimensional structure. However, they also have significant limitations in their stability, localization, and recovery when used in soluble form. These opportunities and challenges have motivated the creation of materials from such functional proteins in order to protect and present them in a way that enhances their function. We have designed functional recombinant fusion proteins capable of self-assembling into materials with unique structures that maintain or improve the functionality of the protein. Fusion of either a functional protein or an assembly domain to a leucine zipper domain makes the materials design strategy modular, based on the high affinity between leucine zippers. The self-assembly domains, including elastin-like polypeptides (ELPs) and defined-sequence random coil polypeptides, can be fused with a leucine zipper motif in order to promote assembly of the fusion proteins into larger structures upon specific stimuli such as temperature and ionic strength. Fusion of other functional domains with the counterpart leucine zipper motif endows the self-assembled materials with protein-specific functions such as fluorescence or catalytic activity. In this Account, we describe several examples of materials assembled from functional fusion proteins as well as the structural characterization, functionality, and understanding of the assembly mechanism. The first example is zipper fusion proteins containing ELPs that assemble into particles when introduced to a model extracellular matrix and subsequently disassemble over time to release the functional protein for drug delivery applications. Under different conditions, the same fusion proteins can self-assemble into hollow vesicles. The vesicles display a functional protein on the surface and can also carry protein, small-molecule, or nanoparticle cargo in the vesicle lumen. To create a material with a more complex hierarchical structure, we combined calcium phosphate with zipper fusion proteins containing random coil polypeptides to produce hybrid protein-inorganic supraparticles with high surface area and porous structure. The use of a functional enzyme created supraparticles with the ability to degrade inflammatory cytokines. Our characterization of these protein materials revealed that the molecular interactions are complex because of the large size of the protein building blocks, their folded structures, and the number of potential interactions including hydrophobic interactions, electrostatic interactions, van der Waals forces, and specific affinity-based interactions. It is difficult or even impossible to predict the structures a priori. However, once the basic assembly principles are understood, there is opportunity to tune the material properties, such as size, through control of the self-assembly conditions. Our future efforts on the fundamental side will focus on identifying the phase space of self-assembly of these fusion proteins and additional experimental levers with which to control and tune the resulting materials. On the application side, we are investigating an array of different functional proteins to expand the use of these structures in both therapeutic protein delivery and biocatalysis.

  12. BioProgrammable One, Two, and Three Dimensional Materials

    DTIC Science & Technology

    2017-01-18

    or three- dimensional architectures. The Mirkin group has used DNA-functionalized nanoparticles as “programmable atom equivalents (PAEs)” as material...with electron beam lithography to simultaneously control material structure at the nano- and macroscopic length scales. The Nguyen group has...synthesized and assembled small molecule-DNA hybrids (SMDHs) as part of programmable atom equivalents . The Rosi group identified design rules for using

  13. Understanding of Protein Synthesis in a Living Cell

    ERIC Educational Resources Information Center

    Mustapha, Y.; Muhammad, S.

    2006-01-01

    The assembly of proteins takes place in the cytoplasm of a cell. There are three main steps. In initiation, far left, all the necessary parts of the process are brought together by a small molecule called a ribosome. During elongation, amino acids, the building blocks of proteins, are joined to one another in a long chain. The sequence in which…

  14. Super-Chelators for Advanced Protein Labeling in Living Cells.

    PubMed

    Gatterdam, Karl; Joest, Eike F; Dietz, Marina S; Heilemann, Mike; Tampé, Robert

    2018-05-14

    Live-cell labeling, super-resolution microscopy, single-molecule applications, protein localization, or chemically induced assembly are emerging approaches, which require specific and very small interaction pairs. The minimal disturbance of protein function is essential to derive unbiased insights into cellular processes. Herein, we define a new class of hexavalent N-nitrilotriacetic acid (hexaNTA) chelators, displaying the highest affinity and stability of all NTA-based small interaction pairs described so far. Coupled to bright organic fluorophores with fine-tuned photophysical properties, the super-chelator probes were delivered into human cells by chemically gated nanopores. These super-chelators permit kinetic profiling, multiplexed labeling of His 6 - and His 12 -tagged proteins as well as single-molecule-based super-resolution imaging. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Communication: Alamethicin can capture lipid-like molecules in the membrane

    NASA Astrophysics Data System (ADS)

    Afanasyeva, Ekaterina F.; Syryamina, Victoria N.; Dzuba, Sergei A.

    2017-01-01

    Alamethicin (Alm) is a 19-mer antimicrobial peptide produced by fungus Trichoderma viride. Above a threshold concentration, Alm forms pores across the membrane, providing a mechanism of its antimicrobial action. Here we show that at a small concentration which is below the threshold value, Alm participates in formation of nanoscale lipid-mediated clusters of guest lipid-like molecules in the membrane. These results are obtained by electron spin echo (ESE) technique—a pulsed version of electron paramagnetic resonance—on spin-labeled stearic acid in a 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine bilayer with Alm added at 1/200 peptide-to-lipid ratio. ESE decay measurements are interpreted assuming that stearic acid molecules in the membrane are assembling around the Alm molecule. One may suggest that this Alm capturing effect on the guest lipid-like molecules could be important for the peptide antimicrobial action.

  16. Nonionic amphiphile nanoarchitectonics: self-assembly into micelles and lyotropic liquid crystals

    NASA Astrophysics Data System (ADS)

    Shrestha, Lok Kumar; Strzelczyk, Karolina Maria; Goswami Shrestha, Rekha; Ichikawa, Kotoko; Aramaki, Kenji; Hill, Jonathan P.; Ariga, Katsuhiko

    2015-05-01

    Amphiphiles, molecules that possess both hydrophilic and hydrophobic moieties, are architecturally simple molecules that can spontaneously self-assemble into complex hierarchical structures from lower to higher dimensions either in the bulk phase or at an interface. Recent developments in multifunctional nanostructure design using the advanced concept of nanoarchitectonics utilize this simple process of assembly. Amphiphilic self-assemblies involving lipids or proteins mimic the structure of biological systems, thus highlighting the necessity of a fundamental physical understanding of amphiphilic self-assembly towards a realization of the complex mechanisms operating in nature. Herein, we describe self-assembled microstructures of biocompatible and biodegradable tetraglycerol lauryl ether (C12G4) nonionic surfactant in an aqueous solvent system. Temperature-composition analyses of equilibrium phases identified by using small-angle x-ray scattering (SAXS) provide strong evidence of various spontaneously self-assembled mesostructures, such as normal micelles (Wm), hexagonal liquid crystal (H1), and reverse micelles (Om). In contrast to conventional poly(oxyethylene) nonionic surfactants, C12G4 did not exhibit the clouding phenomenon at higher temperatures (phase separation was not observed up to 100 °C), demonstrating the greater thermal stability of the self-assembled mesophases. Generalized indirect Fourier transformation (GIFT) evaluation of the SAXS data confirmed the formation of core-shell-type spherical micelles with a maximum dimension ca. 8.7 nm. The shape and size of the C12G4 micelles remained apparently unchanged over a wide range of concentrations (up to 20%), but intermicellar interactions increased and could be described by the Percus-Yevick (PY) theory (after Carnahan and Starling), which provides a very accurate analytical expression for the osmotic pressure of a monodisperse hard sphere.

  17. Cholesterol - a biological compound as a building block in bionanotechnology

    NASA Astrophysics Data System (ADS)

    Hosta-Rigau, Leticia; Zhang, Yan; Teo, Boon M.; Postma, Almar; Städler, Brigitte

    2012-12-01

    Cholesterol is a molecule with many tasks in nature but also a long history in science. This feature article highlights the contribution of this small compound to bionanotechnology. We discuss relevant chemical aspects in this context followed by an overview of its self-assembly capabilities both as a free molecule and when conjugated to a polymer. Further, cholesterol in the context of liposomes is reviewed and its impact ranging from biosensing to drug delivery is outlined. Cholesterol is and will be an indispensable player in bionanotechnology, contributing to the progress of this potent field of research.

  18. Low-dimensional materials for organic electronic applications

    NASA Astrophysics Data System (ADS)

    Beniwal, Sumit

    This thesis explores the self-assembly, surface interactions and electronic properties of functional molecules that have potential applications in electronics. Three classes of molecules - organic ferroelectric, spin-crossover complex, and molecules that assemble into a 2D semiconductor, have been studied through scanning tunneling microscopy and surfacesensitive spectroscopic methods. The scientific goal of this thesis is to understand the self-assembly of these molecules in low-dimensional (2D) configurations and the influence of substrate on their properties.

  19. Molecular dynamics study of di-CF4 based reverse micelles in supercritical CO2.

    PubMed

    Liu, Bing; Tang, Xinpeng; Fang, Wenjing; Li, Xiaoqi; Zhang, Jun; Zhang, Zhiliang; Shen, Yue; Yan, Youguo; Sun, Xiaoli; He, Jianying

    2016-10-26

    Reverse micelles (RMs) in supercritical CO 2 (scCO 2 ) are promising alternatives for organic solvents, especially when both polar and non-polar components are involved. Fluorinated surfactants, particularly double-chain fluorocarbon surfactants, are able to form well-structured RMs in scCO 2 . The inherent self-assembly mechanisms of surfactants in scCO 2 are still subject to discussion. In this study, molecular dynamics simulations are performed to investigate the self-aggregation behavior of di-CF4 based RMs in scCO 2 , and stable and spherical RMs are formed. The dynamics process and the self-assembly structure in the RMs reveal a three-step mechanism to form the RMs, that is, small RMs, rod-like RMs and fusion of the rod-like RMs. Hydrogen-bonds between headgroups and water molecules, and salt bridges linking Na + ions, headgroups and water molecules enhance the interfacial packing efficiency of the surfactant. The results show that di-CF4 molecules have a high surfactant coverage at the RM interface, implying a high CO 2 -philicity. This mainly results from bending of the short chain (C-COO-CH 2 -(CF2) 3 -CF3) due to the flexible carboxyl group. The microscopic insight provided in this study is helpful in understanding surfactant self-assembly phenomena and designing new CO 2 -philic surfactants.

  20. A toxic RNA catalyzes the in cellulo synthesis of its own inhibitor.

    PubMed

    Rzuczek, Suzanne G; Park, HaJeung; Disney, Matthew D

    2014-10-06

    Potent modulators of RNA function can be assembled in cellulo by using the cell as a reaction vessel and a disease-causing RNA as a catalyst. When designing small molecule effectors of function, a balance between permeability and potency must be struck. Low molecular weight compounds are more permeable whereas higher molecular weight compounds are more potent. The advantages of both types of compounds could be synergized if low molecular weight molecules could be transformed into potent, multivalent ligands by a reaction that is catalyzed by binding to a target in cells expressing a genetic defect. It was shown that this approach is indeed viable in cellulo. Small molecule modules with precisely positioned alkyne and azide moieties bind adjacent internal loops in r(CCUG)(exp), the causative agent of myotonic dystrophy type 2 (DM2), and are transformed into oligomeric, potent inhibitors of DM2 RNA dysfunction by a Huisgen 1,3-dipolar cycloaddition reaction, a variant of click chemistry. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. The Molecular Industrial Revolution: Automated Synthesis of Small Molecules.

    PubMed

    Trobe, Melanie; Burke, Martin D

    2018-04-09

    Today we are poised for a transition from the highly customized crafting of specific molecular targets by hand to the increasingly general and automated assembly of different types of molecules with the push of a button. Creating machines that are capable of making many different types of small molecules on demand, akin to that which has been achieved on the macroscale with 3D printers, is challenging. Yet important progress is being made toward this objective with two complementary approaches: 1) Automation of customized synthesis routes to different targets by machines that enable the use of many reactions and starting materials, and 2) automation of generalized platforms that make many different targets using common coupling chemistry and building blocks. Continued progress in these directions has the potential to shift the bottleneck in molecular innovation from synthesis to imagination, and thereby help drive a new industrial revolution on the molecular scale. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Reducing assembly complexity of microbial genomes with single-molecule sequencing.

    PubMed

    Koren, Sergey; Harhay, Gregory P; Smith, Timothy P L; Bono, James L; Harhay, Dayna M; Mcvey, Scott D; Radune, Diana; Bergman, Nicholas H; Phillippy, Adam M

    2013-01-01

    The short reads output by first- and second-generation DNA sequencing instruments cannot completely reconstruct microbial chromosomes. Therefore, most genomes have been left unfinished due to the significant resources required to manually close gaps in draft assemblies. Third-generation, single-molecule sequencing addresses this problem by greatly increasing sequencing read length, which simplifies the assembly problem. To measure the benefit of single-molecule sequencing on microbial genome assembly, we sequenced and assembled the genomes of six bacteria and analyzed the repeat complexity of 2,267 complete bacteria and archaea. Our results indicate that the majority of known bacterial and archaeal genomes can be assembled without gaps, at finished-grade quality, using a single PacBio RS sequencing library. These single-library assemblies are also more accurate than typical short-read assemblies and hybrid assemblies of short and long reads. Automated assembly of long, single-molecule sequencing data reduces the cost of microbial finishing to $1,000 for most genomes, and future advances in this technology are expected to drive the cost lower. This is expected to increase the number of completed genomes, improve the quality of microbial genome databases, and enable high-fidelity, population-scale studies of pan-genomes and chromosomal organization.

  3. Self-assembly patterning of organic molecules on a surface

    DOEpatents

    Pan, Minghu; Fuentes-Cabrera, Miguel; Maksymovych, Petro; Sumpter, Bobby G.; Li, Qing

    2017-04-04

    The embodiments disclosed herein include all-electron control over a chemical attachment and the subsequent self-assembly of an organic molecule into a well-ordered three-dimensional monolayer on a metal surface. The ordering or assembly of the organic molecule may be through electron excitation. Hot-electron and hot-hole excitation enables tethering of the organic molecule to a metal substrate, such as an alkyne group to a gold surface. All-electron reactions may allow a direct control over the size and shape of the self-assembly, defect structures and the reverse process of molecular disassembly from single molecular level to mesoscopic scale.

  4. Silk-based delivery systems of bioactive molecules

    PubMed Central

    Numata, Keiji; Kaplan, David L

    2010-01-01

    Silks are biodegradable, biocompatible, self-assemblying proteins that can also be tailored via genetic engineering to contain specific chemical features, offering utility for drug and gene delivery. Silkworm silk has been used in biomedical sutures for decades and has recently achieved Food and Drug Administration approval for expanded biomaterials device utility. With the diversity and control of size, structure and chemistry, modified or recombinant silk proteins can be designed and utilized in various biomedical application, such as for the delivery of bioactive molecules. This review focuses on the biosynthesis and applications of silk-based multi-block copolymer systems and related silk protein drug delivery systems. The utility of these systems for the delivery of small molecule drugs, proteins and genes are reviewed. PMID:20298729

  5. Small Angle Neutron Scattering (SANS) Studies on the Structural Evolution of Pyromellitamide Self-assembled Gels

    DOE PAGES

    Scott, Jamieson; Tong, Katie; William, Hamilton; ...

    2014-10-31

    The kinetics of aggregation of two pyromellitamide gelators; tetrabutyl- (C4) and tetrahexylpyromellitamide (C6), in deuterated cyclohexane has been investigated by small angle neutron scattering (SANS) for up to six days. The purpose of this study was to improve our understanding of how self-assembled gels are formed. Short-term (< 3 hour) time scales revealed multiple phases with the data for the tetrabutylpyromellitamide C4 indicating one dimensional stacking and aggregation corresponding to a multi-fiber braided cluster arrangement that is about 35 Å in diameter. The corresponding tetrahexylpyromellitamide C6 data suggests that the C6 also forms one-dimensional stacks but that these aggregate tomore » a thicker multi-fiber braided cluster that have a diameter of 61.8 Å. Over a longer period of time, the radius, persistence length and contour length all continue to increase in 6 days after cooling. This data suggests that structural changes in self-assembled gels occur over a period exceeding several days and that fairly subtle changes in the structure (e.g. tail-length) can influence the packing of molecules in self-assembled gels on the single-to-few fiber bundle stage.« less

  6. Small angle neutron scattering (SANS) studies on the structural evolution of pyromellitamide self-assembled gels.

    PubMed

    Jamieson, Scott A; Tong, Katie W K; Hamilton, William A; He, Lilin; James, Michael; Thordarson, Pall

    2014-11-25

    The kinetics of aggregation of two pyromellitamide gelators, tetrabutyl- (C4) and tetrahexyl-pyromellitamide (C6), in deuterated cyclohexane has been investigated by small angle neutron scattering (SANS) for up to 6 days. The purpose of this study was to improve our understanding of how self-assembled gels are formed. Short-term (< 3 h) time scales revealed multiple phases with the data for the tetrabutylpyromellitamide C4, indicating one-dimensional stacking and aggregation corresponding to a multifiber braided cluster arrangement that is about 35 Å in diameter. The corresponding tetrahexylpyromellitamide C6 data suggest that the C6 also forms one-dimensional stacks but that these aggregate to a thicker multifiber braided cluster that has a diameter of about 62 Å. Over a longer period of time, the radius, persistence length, and contour length all continue to increase in 6 days after cooling. These data suggest that structural changes in self-assembled gels occur over a period exceeding several days and that fairly subtle changes in the structure (e.g., tail-length) can influence the packing of molecules in self-assembled gels on the single-to-few fiber bundle stage.

  7. Small Angle Neutron Scattering (SANS) Studies on the Structural Evolution of Pyromellitamide Self-assembled Gels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott, Jamieson; Tong, Katie; William, Hamilton

    The kinetics of aggregation of two pyromellitamide gelators; tetrabutyl- (C4) and tetrahexylpyromellitamide (C6), in deuterated cyclohexane has been investigated by small angle neutron scattering (SANS) for up to six days. The purpose of this study was to improve our understanding of how self-assembled gels are formed. Short-term (< 3 hour) time scales revealed multiple phases with the data for the tetrabutylpyromellitamide C4 indicating one dimensional stacking and aggregation corresponding to a multi-fiber braided cluster arrangement that is about 35 Å in diameter. The corresponding tetrahexylpyromellitamide C6 data suggests that the C6 also forms one-dimensional stacks but that these aggregate tomore » a thicker multi-fiber braided cluster that have a diameter of 61.8 Å. Over a longer period of time, the radius, persistence length and contour length all continue to increase in 6 days after cooling. This data suggests that structural changes in self-assembled gels occur over a period exceeding several days and that fairly subtle changes in the structure (e.g. tail-length) can influence the packing of molecules in self-assembled gels on the single-to-few fiber bundle stage.« less

  8. Self-assembly of star micelle into vesicle in solvents of variable quality: the star micelle retains its core-shell nanostructure in the vesicle.

    PubMed

    Liu, Nijuan; He, Qun; Bu, Weifeng

    2015-03-03

    Intra- and intermolecular interactions of star polymers in dilute solutions are of fundamental importance for both theoretical interest and hierarchical self-assembly into functional nanostructures. Here, star micelles with a polystyrene corona and a small ionic core bearing platinum(II) complexes have been regarded as a model of star polymers to mimic their intra- and interstar interactions and self-assembled behaviors in solvents of weakening quality. In the chloroform/methanol mixture solvents, the star micelles can self-assemble to form vesicles, in which the star micelles shrink significantly and are homogeneously distributed on the vesicle surface. Unlike the morphological evolution of conventional amphiphiles from micellar to vesicular, during which the amphiphilic molecules are commonly reorganized, the star micelles still retain their core-shell nanostructures in the vesicles and the coronal chains of the star micelle between the ionic cores are fully interpenetrated.

  9. Dimerization of the SP1 Region of HIV-1 Gag Induces a Helical Conformation and Association into Helical Bundles: Implications for Particle Assembly.

    PubMed

    Datta, Siddhartha A K; Clark, Patrick K; Fan, Lixin; Ma, Buyong; Harvin, Demetria P; Sowder, Raymond C; Nussinov, Ruth; Wang, Yun-Xing; Rein, Alan

    2016-02-15

    HIV-1 immature particle (virus-like particle [VLP]) assembly is mediated largely by interactions between the capsid (CA) domains of Gag molecules but is facilitated by binding of the nucleocapsid (NC) domain to nucleic acid. We previously investigated the role of SP1, a "spacer" between CA and NC, in VLP assembly. We found that small changes in SP1 drastically disrupt assembly and that a peptide representing the sequence around the CA-SP1 junction is helical at high but not low concentrations. We suggested that by virtue of such a concentration-dependent change, this region could act as a molecular switch to activate HIV-1 Gag for VLP assembly. A leucine zipper domain can replace NC in Gag and still lead to the efficient assembly of VLPs. We find that SP1 mutants also disrupt assembly by these Gag-Zip proteins and have now studied a small fragment of this Gag-Zip protein, i.e., the CA-SP1 junction region fused to a leucine zipper. Dimerization of the zipper places SP1 at a high local concentration, even at low total concentrations. In this context, the CA-SP1 junction region spontaneously adopts a helical conformation, and the proteins associate into tetramers. Tetramerization requires residues from both CA and SP1. The data suggest that once this region becomes helical, its propensity to self-associate could contribute to Gag-Gag interactions and thus to particle assembly. There is complete congruence between CA/SP1 sequences that promote tetramerization when fused to zippers and those that permit the proper assembly of full-length Gag; thus, equivalent interactions apparently participate in VLP assembly and in SP1-Zip tetramerization. Assembly of HIV-1 Gag into virus-like particles (VLPs) appears to require an interaction with nucleic acid, but replacement of its principal nucleic acid-binding domain with a dimerizing leucine zipper domain leads to the assembly of RNA-free VLPs. It has not been clear how dimerization triggers assembly. Results here show that the SP1 region spontaneously switches to a helical state when fused to a leucine zipper and that these helical molecules further associate into tetramers, mediated by interactions between hydrophobic faces of the helices. Thus, the correct juxtaposition of the SP1 region makes it "association competent." Residues from both capsid and SP1 contribute to tetramerization, while mutations disrupting proper assembly in Gag also prevent tetramerization. Thus, this region is part of an associating interface within Gag, and its intermolecular interactions evidently help stabilize the immature Gag lattice. These interactions are disrupted by proteolysis of the CA-SP1 junction during virus maturation. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  10. Dimerization of the SP1 Region of HIV-1 Gag Induces a Helical Conformation and Association into Helical Bundles: Implications for Particle Assembly

    PubMed Central

    Clark, Patrick K.; Fan, Lixin; Ma, Buyong; Harvin, Demetria P.; Sowder, Raymond C.; Nussinov, Ruth; Wang, Yun-Xing

    2015-01-01

    ABSTRACT HIV-1 immature particle (virus-like particle [VLP]) assembly is mediated largely by interactions between the capsid (CA) domains of Gag molecules but is facilitated by binding of the nucleocapsid (NC) domain to nucleic acid. We previously investigated the role of SP1, a “spacer” between CA and NC, in VLP assembly. We found that small changes in SP1 drastically disrupt assembly and that a peptide representing the sequence around the CA-SP1 junction is helical at high but not low concentrations. We suggested that by virtue of such a concentration-dependent change, this region could act as a molecular switch to activate HIV-1 Gag for VLP assembly. A leucine zipper domain can replace NC in Gag and still lead to the efficient assembly of VLPs. We find that SP1 mutants also disrupt assembly by these Gag-Zip proteins and have now studied a small fragment of this Gag-Zip protein, i.e., the CA-SP1 junction region fused to a leucine zipper. Dimerization of the zipper places SP1 at a high local concentration, even at low total concentrations. In this context, the CA-SP1 junction region spontaneously adopts a helical conformation, and the proteins associate into tetramers. Tetramerization requires residues from both CA and SP1. The data suggest that once this region becomes helical, its propensity to self-associate could contribute to Gag-Gag interactions and thus to particle assembly. There is complete congruence between CA/SP1 sequences that promote tetramerization when fused to zippers and those that permit the proper assembly of full-length Gag; thus, equivalent interactions apparently participate in VLP assembly and in SP1-Zip tetramerization. IMPORTANCE Assembly of HIV-1 Gag into virus-like particles (VLPs) appears to require an interaction with nucleic acid, but replacement of its principal nucleic acid-binding domain with a dimerizing leucine zipper domain leads to the assembly of RNA-free VLPs. It has not been clear how dimerization triggers assembly. Results here show that the SP1 region spontaneously switches to a helical state when fused to a leucine zipper and that these helical molecules further associate into tetramers, mediated by interactions between hydrophobic faces of the helices. Thus, the correct juxtaposition of the SP1 region makes it “association competent.” Residues from both capsid and SP1 contribute to tetramerization, while mutations disrupting proper assembly in Gag also prevent tetramerization. Thus, this region is part of an associating interface within Gag, and its intermolecular interactions evidently help stabilize the immature Gag lattice. These interactions are disrupted by proteolysis of the CA-SP1 junction during virus maturation. PMID:26637452

  11. Bottom-up Assembly of Engineered Protein Fibers

    DTIC Science & Technology

    2015-02-15

    Formation and Small Molecule Recognition of Helical Proteins, Advanced Functional materials , (02 2012): 0. doi: Jasmin Hume, Jennifer Sun, Rudy Jacquet...2015 Received Paper 8.00 7.00 Jasmin Hume, Raymond Chen, Rudy Jacquet, Michael Yang, Jin Montclare. Tunable Conformation- Dependent Engineered...Received Book Chapter TOTAL: PERCENT_SUPPORTEDNAME FTE Equivalent: Total Number: Discipline Haresh More 1.00 Jasmin Hume 1.00 Joseph Frezzo 0.10 Rudy

  12. Ferritin-Polymer Conjugates: Grafting Chemistry and Self-Assembly

    DTIC Science & Technology

    2009-10-26

    a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. a...Chemoselective modification of M13 bacteriophage and cell imaging We systematically investigated the chemical modification of three kinds of reactive...tyrosine residues, on M13 surface. The reactivity for each group was identified by conjugation with small fluorescent molecules. Furthermore, the

  13. Reactive polymer multilayers fabricated by covalent layer-by-layer assembly: 1,4-conjugate addition-based approaches to the design of functional biointerfaces.

    PubMed

    Bechler, Shane L; Lynn, David M

    2012-05-14

    We report on conjugate addition-based approaches to the covalent layer-by-layer assembly of thin films and the post-fabrication functionalization of biointerfaces. Our approach is based on a recently reported approach to the "reactive" assembly of covalently cross-linked polymer multilayers driven by the 1,4-conjugate addition of amine functionality in poly(ethyleneimine) (PEI) to the acrylate groups in a small-molecule pentacrylate species (5-Ac). This process results in films containing degradable β-amino ester cross-links and residual acrylate and amine functionality that can be used as reactive handles for the subsequent immobilization of new functionality. Layer-by-layer growth of films fabricated on silicon substrates occurred in a supra-linear manner to yield films ≈ 750 nm thick after the deposition of 80 PEI/5-Ac layers. Characterization by atomic force microscopy (AFM) suggested a mechanism of growth that involves the reactive deposition of nanometer-scale aggregates of PEI and 5-Ac during assembly. Infrared (IR) spectroscopy studies revealed covalent assembly to occur by 1,4-conjugate addition without formation of amide functionality. Additional experiments demonstrated that acrylate-containing films could be postfunctionalized via conjugate addition reactions with small-molecule amines that influence important biointerfacial properties, including water contact angles and the ability of film-coated surfaces to prevent or promote the attachment of cells in vitro. For example, whereas conjugation of the hydrophobic molecule decylamine resulted in films that supported cell adhesion and growth, films treated with the carbohydrate-based motif D-glucamine resisted cell attachment and growth almost completely for up to 7 days in serum-containing media. We demonstrate that this conjugate addition-based approach also provides a means of immobilizing functionality through labile ester linkages that can be used to promote the long-term, surface-mediated release of conjugated species and promote gradual changes in interfacial properties upon incubation in physiological media (e.g., over a period of at least 1 month). These covalently cross-linked films are relatively stable in biological media for prolonged periods, but they begin to physically disintegrate after ≈ 30 days, suggesting opportunities to use this covalent layer-by-layer approach to design functional biointerfaces that ultimately erode or degrade to facilitate elimination.

  14. Computational design of a homotrimeric metalloprotein with a trisbipyridyl core

    DOE PAGES

    Mills, Jeremy H.; Sheffler, William; Ener, Maraia E.; ...

    2016-12-08

    Metal-chelating heteroaryl small molecules have found widespread use as building blocks for coordination-driven, self-assembling nanostructures. The metal-chelating noncanonical amino acid (2,2'-bipyridin-5yl)alanine (Bpy-ala) could, in principle, be used to nucleate specific metalloprotein assemblies if introduced into proteins such that one assembly had much lower free energy than all alternatives. Here in this paper, we describe the use of the Rosetta computational methodology to design a self-assembling homotrimeric protein with [Fe(Bpy-ala) 3] 2+ complexes at the interface between monomers. X-ray crystallographic analysis of the homotrimer showed that the design process had near-atomic-level accuracy: The all-atom rmsd between the design model and crystalmore » structure for the residues at the protein interface is ~1.4 Å. These results demonstrate that computational protein design together with genetically encoded noncanonical amino acids can be used to drive formation of precisely specified metal-mediated protein assemblies that could find use in a wide range of photophysical applications.« less

  15. Computational design of a homotrimeric metalloprotein with a trisbipyridyl core

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mills, Jeremy H.; Sheffler, William; Ener, Maraia E.

    Metal-chelating heteroaryl small molecules have found widespread use as building blocks for coordination-driven, self-assembling nanostructures. The metal-chelating noncanonical amino acid (2,2'-bipyridin-5yl)alanine (Bpy-ala) could, in principle, be used to nucleate specific metalloprotein assemblies if introduced into proteins such that one assembly had much lower free energy than all alternatives. Here in this paper, we describe the use of the Rosetta computational methodology to design a self-assembling homotrimeric protein with [Fe(Bpy-ala) 3] 2+ complexes at the interface between monomers. X-ray crystallographic analysis of the homotrimer showed that the design process had near-atomic-level accuracy: The all-atom rmsd between the design model and crystalmore » structure for the residues at the protein interface is ~1.4 Å. These results demonstrate that computational protein design together with genetically encoded noncanonical amino acids can be used to drive formation of precisely specified metal-mediated protein assemblies that could find use in a wide range of photophysical applications.« less

  16. Interaction between perylene-derivated molecules observed by low temperature scanning tunneling microscopy

    NASA Astrophysics Data System (ADS)

    Vernisse, Loranne; Guillermet, Olivier; Gourdon, André; Coratger, Roland

    2018-03-01

    Derivative perylene molecules deposited on Ag(111) and on NaCl(001) ultrathin layers have been investigated using low temperature STM and NC-AFM. When the metallic substrate is held at ambient temperature during evaporation, the molecules form characteristic trimers on the Ag(111) surface and interact through their polar groups. Close to the steps, the molecules form linear structures and seems to stand side by side. On the other hand, after deposition on a substrate cooled at liquid helium temperature, single molecules are observed both on metal and on NaCl. On the ultrathin insulator layers, the STM images present characteristic contrasts related to the molecular orbitals which favors the localization of aldehyde groups. In this case, the lateral molecular interactions may induce the formation of small assemblies in which the electronic levels are slightly shifted. A possible interpretation of this phenomenon is to take into account polar interactions and charge transfer between neighboring molecules.

  17. Heparin-binding peptide amphiphile supramolecular architectures as platforms for angiogenesis and drug delivery

    NASA Astrophysics Data System (ADS)

    Chow, Lesleyann W.

    A fascinating phenomenon in nature is the self-assembly of molecules into a functional, hierarchical structure. In the past decade, the Stupp Laboratory has developed several classes of self-assembling biomaterials, one of which is the synthetic peptide amphiphile (PA). Self-assembling PAs are attractive and versatile biomolecules that can be customized for specific applications in regenerative medicine. In particular, a heparin-binding peptide amphiphile (HBPA) containing a specific heparin-binding peptide sequence was used here to induce angiogenesis and serve as a delivery vehicle for growth factors and small hydrophobic molecules. Throughout this dissertation, the HBPA/heparin system is used in different architectures for a variety of regenerative medicine applications. In one aspect of this work, hybrid scaffolds made from HBPA/heparin gelled on a poly(L-lactic acid) (PLLA) fiber mesh were used to promote angiogenesis to facilitate pancreatic islet transplantation for the treatment of type 1 diabetes. Delivery of growth factors with HBPA/PLLA scafflolds increased vessel density in vivo and correlated with improved transplant outcomes in a streptozotocin-induced diabetic mouse model. Soluble HBPA nanofiber architectures were also useful for islet transplantation applications. These nanofibers were used at concentrations below gelation to deliver growth factors into the dense islet cell aggregate, promoting cell survival and angiogenesis in vitro. The nanostructures infiltrated the islets and promoted the retention of heparin and growth factors within the islet. Another interesting growth factor release system discussed here is the HBPA membrane structure. HBPA was found to self-assemble with hyaluronic acid, a large biopolymer found in the body, into macroscopic, hierarchically-ordered membranes. Heparin was incorporated into these membranes and affected the membrane's mechanical properties and growth factor release. Human mesenchymal stem cells were also shown to attach and maintain viability on these membranes. Finally, HBPA nanofibers were used to control the release of small hydrophobic molecules. HBPA nanofiber gels released nitric oxide (NO) to inhibit neointimal hyperplasia, a major cause for vascular graft or stent failure. HBPA/heparin gels were shown to prolong the release of NO generated from NO donors, significantly reducing neointimal hyperplasia in injured carotid arteries in vivo.

  18. Ambipolar Small-Molecule:Polymer Blend Semiconductors for Solution-Processable Organic Field-Effect Transistors.

    PubMed

    Kang, Minji; Hwang, Hansu; Park, Won-Tae; Khim, Dongyoon; Yeo, Jun-Seok; Kim, Yunseul; Kim, Yeon-Ju; Noh, Yong-Young; Kim, Dong-Yu

    2017-01-25

    We report on the fabrication of an organic thin-film semiconductor formed using a blend solution of soluble ambipolar small molecules and an insulating polymer binder that exhibits vertical phase separation and uniform film formation. The semiconductor thin films are produced in a single step from a mixture containing a small molecular semiconductor, namely, quinoidal biselenophene (QBS), and a binder polymer, namely, poly(2-vinylnaphthalene) (PVN). Organic field-effect transistors (OFETs) based on QBS/PVN blend semiconductor are then assembled using top-gate/bottom-contact device configuration, which achieve almost four times higher mobility than the neat QBS semiconductor. Depth profile via secondary ion mass spectrometry and atomic force microscopy images indicate that the QBS domains in the films made from the blend are evenly distributed with a smooth morphology at the bottom of the PVN layer. Bias stress test and variable-temperature measurements on QBS-based OFETs reveal that the QBS/PVN blend semiconductor remarkably reduces the number of trap sites at the gate dielectric/semiconductor interface and the activation energy in the transistor channel. This work provides a one-step solution processing technique, which makes use of soluble ambipolar small molecules to form a thin-film semiconductor for application in high-performance OFETs.

  19. Nucleic Acid Nanostructures: Bottom-Up Control of Geometry on the Nanoscale

    PubMed Central

    Seeman, Nadrian C.; Lukeman, Philip S.

    2012-01-01

    DNA may seem an unlikely molecule from which to build nanostructures, but this is not correct. The specificity of interaction that enables DNA to function so successfully as genetic material also enables its use as a smart molecule for construction on the nanoscale. The key to using DNA for this purpose is the design of stable branched molecules, which expand its ability to interact specifically with other nucleic acid molecules. The same interactions used by genetic engineers can be used to make cohesive interactions with other DNA molecules that lead to a variety of new species. Branched DNA molecules are easy to design, and the can assume a variety of structural motifs. These can be used for purposes both of specific construction, such as polyhedra, and for the assembly of topological targets. A variety of two-dimensional periodic arrays with specific patterns have been made. DNA nanomechanical devices have been built with a series of different triggers, small molecules, nucleic acid molecules and proteins. Recently, progress has been made in self-replication of DNA nano-constructs, and in the scaffolding of other species into DNA arrangements. PMID:25152542

  20. Swell Gels to Dumbbell Micelles: Construction of Materials and Nanostructure with Self-assembly

    NASA Astrophysics Data System (ADS)

    Pochan, Darrin

    2007-03-01

    Bionanotechnology, the emerging field of using biomolecular and biotechnological tools for nanostructure or nanotecnology development, provides exceptional opportunity in the design of new materials. Self-assembly of molecules is an attractive materials construction strategy due to its simplicity in application. By considering peptidic or charged synthetic polymer molecules in the bottom-up materials self-assembly design process, one can take advantage of inherently biomolecular attributes; intramolecular folding events, secondary structure, and electrostatic interactions; in addition to more traditional self-assembling molecular attributes such as amphiphilicty, to define hierarchical material structure and consequent properties. Several molecular systems will be discussed. Synthetic block copolymers with charged corona blocks can be assembled in dilute solution containing multivalent organic counterions to produce micelle structures such as toroids. These ring-like micelles are similar to the toroidal bundling of charged semiflexible biopolymers like DNA in the presence of multivalent counterions. Micelle structure can be tuned between toroids, cylinders, and disks simply by using different concentrations or molecular volumes of organic counterion. In addition, these charged blocks can consist of amino acids as monomers producing block copolypeptides. In addition to the above attributes, block copolypeptides provide the control of block secondary structure to further control self-assembly. Design strategies based on small (less than 24 amino acids) beta-hairpin peptides will be discussed. Self-assembly of the peptides is predicated on an intramolecular folding event caused by desired solution properties. Importantly, the intramolecular folding event impart a molecular-level mechanism for environmental responsiveness at the material level (e.g. infinite change in viscosity of a solution to a gel with changes in pH, ionic strength, temperature).

  1. Assembly of Colloidal Materials Using Bioadhesive Interactions

    NASA Technical Reports Server (NTRS)

    Hammer, Daniel A.; Hiddessen, Amy L.; Tohver, Valeria; Crocker, John C.; Weitz, David A.

    2002-01-01

    We have pursued the use of biological crosslinking molecules of several types to make colloidal materials at relatively low volume fraction of colloidal particles. The objective is to make binary alloys of colloidal particles, made of two different colloidal particles coated with complementary biological lock-and-key binding molecules, which assemble due to the biological specificity. The long-term goal is to use low affinity lock-and-key biological interactions, so that the can anneal to form crystalline states. We have used a variety of different surface chemistries in order to make colloidal materials. Our first system involved using selectin-carbohydrate (sialyl-Lewis) interactions; this chemistry is derived from immune system. This chemical interaction is of relatively low affinity, with timescales for dissociation of several seconds. Furthermore, the adhesion mediated by these molecules can be reversed by the chelation of calcium atoms; thus assembled structures can be disassembled reversibly. Our second system employed avidin-biotin chemistry. This well-studied system is of high affinity, and is generally irreversible on a laboratory time-scale. Thus, we would expect selectin-carbohydrate interactions at high molecular density and avidin-biotin interactions to give kinetically-trapped structures; however, at low densities, we would expect significant differences in the structure and dynamics of the two materials, owing to their very different release rates. We have also begun to use a third chemistry - DNA hybridization. By attaching single stranded DNA oligonucleotide chains to beads, we can drive the assembly of colloidal materials by hybridization of complementary DNA chains. It is well known that DNA adenosine-thymine (A-T) and guanine-cytosine (G-C) bases hybridize pairwise with a Gibbs free energy change of 1.7 kcal/mol per base; thus, the energy of the assembly can be modulated by altering the number of complementary bases in the DNA chains. Using these different crosslinking molecules, we have assembled colloidal materials from different-sized colloidal particles, A and B. In the first sets of experiment, we used high densities of adhesion molecules, and 0.96 micron (A) and 5.5 micron (B) diameter particles. The high density of adhesion molecules means that the structures are kinetically trapped in nonequilibrium configurations. The structure of the suspension can be varied by changing the number ratio of the two types of colloidal particles, NA and NB, where A is the smaller particle. With carbohydrate-selectin or avidin-biotin interactions, large NA/NB leads to the formation of colloidal micelles, with the large center B particle surrounded by many smaller A particles. As the ratio NA/NB decreases, the structures become more extended, approaching the formation of macro-Rouse polymers - extended linear chains where A beads are connected with intervening small B linkers.

  2. Modulating the forces between self-assembling molecules to control the shape of vesicles and the mechanics and alignment of nanofiber networks

    NASA Astrophysics Data System (ADS)

    Greenfield, Megan Ann

    One of the great challenges in supramolecular chemistry is the design of molecules that can self-assemble into functional aggregates with well-defined three-dimensional structures and bulk material properties. Since the self-assembly of nanostructures is greatly influenced by both the nature of the self-assembling components and the environmental conditions in which the components assemble, this work explores how changes in the molecular design and the environment affect the properties of self-assembled structures. We first explore how to control the mechanical properties of self-assembled fibrillar networks by changing environmental conditions. We report here on how changing pH, screening ions, and solution temperature affect the gelation, stiffness, and response to deformation of peptide amphiphile gels. Although the morphology of PA gels formed by charge neutralization and salt-mediated charge screening are similar by electron microscopy, rheological measurements indicate that the calcium-mediated ionic bridges in CaCl2-PA gels form stronger intra- and inter-fiber crosslinks than the hydrogen bonds formed by the protonated carboxylic acid residues in HCl-PA gels. In contrast, the structure of PA gels changes drastically when the PA solution is annealed prior to gel formation. Annealed PA solutions are birefringent and can form viscoelastic strings of aligned nanofibers when manually dragged across a thin film of CaCl2. These aligned arrays of PA nanofibers hold great promise in controlling the orientation of cells in three-dimensions. Separately, we applied the principles of molecular design to create buckled membrane nanostructures that mimic the shape of viruses. When oppositely charged amphiphilic molecules are mixed they can form vesicles with a periodic two-dimensional ionic lattice that opposes the membrane's natural curvature and can result in vesicle buckling. Our results demonstrate that a large +3 to -1 charge imbalance between the cationic and anionic head groups of amphiphiles enables their co-assembly into small buckled vesicles. In contrast to previous reports, the structures described here form without the rigorous exclusion of salt and are tolerant to physiological salt concentrations. Our work opens a new path for exploring how ionic laterally correlated domains can influence the morphology of self-assembled nanostructures.

  3. A CE-FL based method for real-time detection of in-capillary self-assembly of the nanoconjugates of polycysteine ligand and quantum dots.

    PubMed

    Wang, Jianhao; Zhu, Zhilan; Qiu, Lin; Wang, Jianpeng; Wang, Xiang; Xiao, Qicai; Xia, Jiang; Liu, Li; Liu, Xiaoqian; Feng, Wei; Wang, Jinmei; Miao, Peng; Gao, Liqian

    2018-07-06

    Small molecules with free thiol groups always show high binding affinity to quantum dots (QDs). However, it is still highly challenging to detect the binding capacity between thiol-containing molecules and QDs inside a capillary. To conquer this limitation, a capillary electrophoresis with fluorescence detection (CE-FL) based assay was proposed and established to investigate the binding capacity between QDs and a poly-thiolated peptide (ATTO 590-DDSSGGCCPGCC, ATTO-C4). Interestingly, the results showed that interval time had a great influence on QDs and ATTO-C4 self-assembly, which can be attributed to longer interval time benefitting the binding of QDs to ATTO-C4. The stability assays on ATTO-C4-QD assembly indicated that high concentration of imidazole or GSH had a high capability of competing with the bound ATTO-C4, evidenced by dramatically dropping of S 625 /S 565 ratio from 0.78 to 0.30 or 0.29. Therefore, all these results above suggested that this novel CE-FL based detection assay could be successfully applied to the binding studies between QDs and thiol-containing biomolecules.

  4. A CE-FL based method for real-time detection of in-capillary self-assembly of the nanoconjugates of polycysteine ligand and quantum dots

    NASA Astrophysics Data System (ADS)

    Wang, Jianhao; Zhu, Zhilan; Qiu, Lin; Wang, Jianpeng; Wang, Xiang; Xiao, Qicai; Xia, Jiang; Liu, Li; Liu, Xiaoqian; Feng, Wei; Wang, Jinmei; Miao, Peng; Gao, Liqian

    2018-07-01

    Small molecules with free thiol groups always show high binding affinity to quantum dots (QDs). However, it is still highly challenging to detect the binding capacity between thiol-containing molecules and QDs inside a capillary. To conquer this limitation, a capillary electrophoresis with fluorescence detection (CE-FL) based assay was proposed and established to investigate the binding capacity between QDs and a poly-thiolated peptide (ATTO 590-DDSSGGCCPGCC, ATTO-C4). Interestingly, the results showed that interval time had a great influence on QDs and ATTO-C4 self-assembly, which can be attributed to longer interval time benefitting the binding of QDs to ATTO-C4. The stability assays on ATTO-C4-QD assembly indicated that high concentration of imidazole or GSH had a high capability of competing with the bound ATTO-C4, evidenced by dramatically dropping of S 625/S 565 ratio from 0.78 to 0.30 or 0.29. Therefore, all these results above suggested that this novel CE-FL based detection assay could be successfully applied to the binding studies between QDs and thiol-containing biomolecules.

  5. A small-molecule switch for Golgi sulfotransferases.

    PubMed

    de Graffenried, Christopher L; Laughlin, Scott T; Kohler, Jennifer J; Bertozzi, Carolyn R

    2004-11-30

    The study of glycan function is a major frontier in biology that could benefit from small molecules capable of perturbing carbohydrate structures on cells. The widespread role of sulfotransferases in modulating glycan function makes them prime targets for small-molecule modulators. Here, we report a system for conditional activation of Golgi-resident sulfotransferases using a chemical inducer of dimerization. Our approach capitalizes on two features shared by these enzymes: their requirement of Golgi localization for activity on cellular substrates and the modularity of their catalytic and localization domains. Fusion of these domains to the proteins FRB and FKBP enabled their induced assembly by the natural product rapamycin. We applied this strategy to the GlcNAc-6-sulfotransferases GlcNAc6ST-1 and GlcNAc6ST-2, which collaborate in the sulfation of L-selectin ligands. Both the activity and specificity of the inducible enzymes were indistinguishable from their WT counterparts. We further generated rapamycin-inducible chimeric enzymes comprising the localization domain of a sulfotransferase and the catalytic domain of a glycosyltransferase, demonstrating the generality of the system among other Golgi enzymes. The approach provides a means for studying sulfate-dependent processes in cellular systems and, potentially, in vivo.

  6. Analysis of correlated domain motions in IgG light chain reveals possible mechanisms of immunological signal transduction.

    PubMed

    Król, Marcin; Roterman, Irena; Piekarska, Barbara; Konieczny, Leszek; Rybarska, Janina; Stopa, Barbara; Spólnik, Paweł

    2005-05-15

    It was shown experimentally that binding of a micelle composed of Congo red molecules to immunological complexes leads to the enhanced stability of the latter, and simultaneously prevents binding of a complement molecule (C1q). The dye binds in a cavity created by the removal of N-terminal polypeptide chain, as observed experimentally in a model system-immunoglobulin G (IgG) light chain dimer. Molecular Dynamics (MD) simulations of three forms of IgG light chain dimer, with and without the dye, were performed to investigate the role of N-terminal fragment and self-assembled ligand in coupling between V and C domains. Root-mean-square distance (RMSD) time profiles show that removal of N-terminal fragment leads to destabilization of V domain. A micelle composed of four self-assembled dye molecules stabilizes and fixes the domain. Analysis of root-mean-square fluctuation (RMSF) values and dynamic cross-correlation matrices (DCCM) reveals that removal of N-terminal fragment results in complete decoupling between V and C domains. Binding of self-assembled Congo red molecules improves the coupling, albeit slightly. The disruption of a small beta-sheet composed of N- and C-terminal fragments of the domain (NC sheet) is the most likely reason for the decoupling. Self-assembled ligand, bound in the place originally occupied by N-terminal fragment, is not able to take over the function of the beta-sheet. Lack of correlation of motions between residues in V and C domains denotes that light chain-Congo red complexes have hampered ability to transmit conformational changes between domains. This is a likely explanation of the lack of complement binding by immunological complexes, which bind Congo red, and supports the idea that the NC sheet is the key structural fragment taking part in immunological signal transduction. Copyright 2005 Wiley-Liss, Inc.

  7. Molecule nanoweaver

    DOEpatents

    Gerald, II; Rex, E [Brookfield, IL; Klingler, Robert J [Glenview, IL; Rathke, Jerome W [Homer Glen, IL; Diaz, Rocio [Chicago, IL; Vukovic, Lela [Westchester, IL

    2009-03-10

    A method, apparatus, and system for constructing uniform macroscopic films with tailored geometric assemblies of molecules on the nanometer scale. The method, apparatus, and system include providing starting molecules of selected character, applying one or more force fields to the molecules to cause them to order and condense with NMR spectra and images being used to monitor progress in creating the desired geometrical assembly and functionality of molecules that comprise the films.

  8. Efficient one-cycle affinity selection of binding proteins or peptides specific for a small-molecule using a T7 phage display pool.

    PubMed

    Takakusagi, Yoichi; Kuramochi, Kouji; Takagi, Manami; Kusayanagi, Tomoe; Manita, Daisuke; Ozawa, Hiroko; Iwakiri, Kanako; Takakusagi, Kaori; Miyano, Yuka; Nakazaki, Atsuo; Kobayashi, Susumu; Sugawara, Fumio; Sakaguchi, Kengo

    2008-11-15

    Here, we report an efficient one-cycle affinity selection using a natural-protein or random-peptide T7 phage pool for identification of binding proteins or peptides specific for small-molecules. The screening procedure involved a cuvette type 27-MHz quartz-crystal microbalance (QCM) apparatus with introduction of self-assembled monolayer (SAM) for a specific small-molecule immobilization on the gold electrode surface of a sensor chip. Using this apparatus, we attempted an affinity selection of proteins or peptides against synthetic ligand for FK506-binding protein (SLF) or irinotecan (Iri, CPT-11). An affinity selection using SLF-SAM and a natural-protein T7 phage pool successfully detected FK506-binding protein 12 (FKBP12)-displaying T7 phage after an interaction time of only 10 min. Extensive exploration of time-consuming wash and/or elution conditions together with several rounds of selection was not required. Furthermore, in the selection using a 15-mer random-peptide T7 phage pool and subsequent analysis utilizing receptor ligand contact (RELIC) software, a subset of SLF-selected peptides clearly pinpointed several amino-acid residues within the binding site of FKBP12. Likewise, a subset of Iri-selected peptides pinpointed part of the positive amino-acid region of residues from the Iri-binding site of the well-known direct targets, acetylcholinesterase (AChE) and carboxylesterase (CE). Our findings demonstrate the effectiveness of this method and general applicability for a wide range of small-molecules.

  9. Single molecule sequencing-guided scaffolding and correction of draft assemblies.

    PubMed

    Zhu, Shenglong; Chen, Danny Z; Emrich, Scott J

    2017-12-06

    Although single molecule sequencing is still improving, the lengths of the generated sequences are inevitably an advantage in genome assembly. Prior work that utilizes long reads to conduct genome assembly has mostly focused on correcting sequencing errors and improving contiguity of de novo assemblies. We propose a disassembling-reassembling approach for both correcting structural errors in the draft assembly and scaffolding a target assembly based on error-corrected single molecule sequences. To achieve this goal, we formulate a maximum alternating path cover problem. We prove that this problem is NP-hard, and solve it by a 2-approximation algorithm. Our experimental results show that our approach can improve the structural correctness of target assemblies in the cost of some contiguity, even with smaller amounts of long reads. In addition, our reassembling process can also serve as a competitive scaffolder relative to well-established assembly benchmarks.

  10. Ribosome Biogenesis in the Yeast Saccharomyces cerevisiae

    PubMed Central

    Woolford, John L.; Baserga, Susan J.

    2013-01-01

    Ribosomes are highly conserved ribonucleoprotein nanomachines that translate information in the genome to create the proteome in all cells. In yeast these complex particles contain four RNAs (>5400 nucleotides) and 79 different proteins. During the past 25 years, studies in yeast have led the way to understanding how these molecules are assembled into ribosomes in vivo. Assembly begins with transcription of ribosomal RNA in the nucleolus, where the RNA then undergoes complex pathways of folding, coupled with nucleotide modification, removal of spacer sequences, and binding to ribosomal proteins. More than 200 assembly factors and 76 small nucleolar RNAs transiently associate with assembling ribosomes, to enable their accurate and efficient construction. Following export of preribosomes from the nucleus to the cytoplasm, they undergo final stages of maturation before entering the pool of functioning ribosomes. Elaborate mechanisms exist to monitor the formation of correct structural and functional neighborhoods within ribosomes and to destroy preribosomes that fail to assemble properly. Studies of yeast ribosome biogenesis provide useful models for ribosomopathies, diseases in humans that result from failure to properly assemble ribosomes. PMID:24190922

  11. Role of Naphthenic Acids in Controlling Self-Aggregation of a Polyaromatic Compound in Toluene.

    PubMed

    Teklebrhan, Robel B; Jian, Cuiying; Choi, Phillip; Xu, Zhenghe; Sjöblom, Johan

    2016-04-14

    In this work, a series of molecular dynamics simulations were performed to investigate the effect of naphthenic acids (NAs) in early stage self-assembly of polyaromatic (PA) molecules in toluene. By exploiting NA molecules of the same polar functional group but different aliphatic/cycloaliphatic nonpolar tails, it was found that irrespective of the presence of the NA molecules in the system, the dominant mode of π-π stacking is a twisted, offset parallel stacking of a slightly larger overlapping area. Unlike large NA molecules, the presence of small NA molecules enhanced the number of π-π stacked PA molecules by suppressing the hydrogen bonding interactions among the PA molecules. Smaller NA molecules were found to have a higher tendency to associate with PA molecules than larger NA molecules. Moreover, the size and distribution of π-π stacking structures were affected to different degrees by changing the size and structural features of the NA molecules in the system. It was further revealed that the association between NA and PA molecules, mainly through hydrogen bonding, creates a favorable local environment for the overlap of PA cores (i.e., π-π stacking growth) by depressing the hydrogen bonding between PA molecules, which results in the removal of some toluene molecules from the vicinity of the PA molecules.

  12. Hybrid error correction and de novo assembly of single-molecule sequencing reads

    PubMed Central

    Koren, Sergey; Schatz, Michael C.; Walenz, Brian P.; Martin, Jeffrey; Howard, Jason; Ganapathy, Ganeshkumar; Wang, Zhong; Rasko, David A.; McCombie, W. Richard; Jarvis, Erich D.; Phillippy, Adam M.

    2012-01-01

    Emerging single-molecule sequencing instruments can generate multi-kilobase sequences with the potential to dramatically improve genome and transcriptome assembly. However, the high error rate of single-molecule reads is challenging, and has limited their use to resequencing bacteria. To address this limitation, we introduce a novel correction algorithm and assembly strategy that utilizes shorter, high-identity sequences to correct the error in single-molecule sequences. We demonstrate the utility of this approach on Pacbio RS reads of phage, prokaryotic, and eukaryotic whole genomes, including the novel genome of the parrot Melopsittacus undulatus, as well as for RNA-seq reads of the corn (Zea mays) transcriptome. Our approach achieves over 99.9% read correction accuracy and produces substantially better assemblies than current sequencing strategies: in the best example, quintupling the median contig size relative to high-coverage, second-generation assemblies. Greater gains are predicted if read lengths continue to increase, including the prospect of single-contig bacterial chromosome assembly. PMID:22750884

  13. Drying Affects the Fiber Network in Low Molecular Weight Hydrogels

    PubMed Central

    2017-01-01

    Low molecular weight gels are formed by the self-assembly of a suitable small molecule gelator into a three-dimensional network of fibrous structures. The gel properties are determined by the fiber structures, the number and type of cross-links and the distribution of the fibers and cross-links in space. Probing these structures and cross-links is difficult. Many reports rely on microscopy of dried gels (xerogels), where the solvent is removed prior to imaging. The assumption is made that this has little effect on the structures, but it is not clear that this assumption is always (or ever) valid. Here, we use small angle neutron scattering (SANS) to probe low molecular weight hydrogels formed by the self-assembly of dipeptides. We compare scattering data for wet and dried gels, as well as following the drying process. We show that the assumption that drying does not affect the network is not always correct. PMID:28631478

  14. Crystal structure of Streptococcus pneumoniae pneumolysin provides key insights into early steps of pore formation

    PubMed Central

    Lawrence, Sara L.; Feil, Susanne C.; Morton, Craig J.; Farrand, Allison J.; Mulhern, Terrence D.; Gorman, Michael A.; Wade, Kristin R.; Tweten, Rodney K.; Parker, Michael W.

    2015-01-01

    Pore-forming proteins are weapons often used by bacterial pathogens to breach the membrane barrier of target cells. Despite their critical role in infection important structural aspects of the mechanism of how these proteins assemble into pores remain unknown. Streptococcus pneumoniae is the world’s leading cause of pneumonia, meningitis, bacteremia and otitis media. Pneumolysin (PLY) is a major virulence factor of S. pneumoniae and a target for both small molecule drug development and vaccines. PLY is a member of the cholesterol-dependent cytolysins (CDCs), a family of pore-forming toxins that form gigantic pores in cell membranes. Here we present the structure of PLY determined by X-ray crystallography and, in solution, by small-angle X-ray scattering. The crystal structure reveals PLY assembles as a linear oligomer that provides key structural insights into the poorly understood early monomer-monomer interactions of CDCs at the membrane surface. PMID:26403197

  15. Electron Microscopic Visualization of Protein Assemblies on Flattened DNA Origami.

    PubMed

    Mallik, Leena; Dhakal, Soma; Nichols, Joseph; Mahoney, Jacob; Dosey, Anne M; Jiang, Shuoxing; Sunahara, Roger K; Skiniotis, Georgios; Walter, Nils G

    2015-07-28

    DNA provides an ideal substrate for the engineering of versatile nanostructures due to its reliable Watson-Crick base pairing and well-characterized conformation. One of the most promising applications of DNA nanostructures arises from the site-directed spatial arrangement with nanometer precision of guest components such as proteins, metal nanoparticles, and small molecules. Two-dimensional DNA origami architectures, in particular, offer a simple design, high yield of assembly, and large surface area for use as a nanoplatform. However, such single-layer DNA origami were recently found to be structurally polymorphous due to their high flexibility, leading to the development of conformationally restrained multilayered origami that lack some of the advantages of the single-layer designs. Here we monitored single-layer DNA origami by transmission electron microscopy (EM) and discovered that their conformational heterogeneity is dramatically reduced in the presence of a low concentration of dimethyl sulfoxide, allowing for an efficient flattening onto the carbon support of an EM grid. We further demonstrated that streptavidin and a biotinylated target protein (cocaine esterase, CocE) can be captured at predesignated sites on these flattened origami while maintaining their functional integrity. Our demonstration that protein assemblies can be constructed with high spatial precision (within ∼2 nm of their predicted position on the platforms) by using strategically flattened single-layer origami paves the way for exploiting well-defined guest molecule assemblies for biochemistry and nanotechnology applications.

  16. Many-molecule encapsulation by an icosahedral shell

    PubMed Central

    Perlmutter, Jason D; Mohajerani, Farzaneh; Hagan, Michael F

    2016-01-01

    We computationally study how an icosahedral shell assembles around hundreds of molecules. Such a process occurs during the formation of the carboxysome, a bacterial microcompartment that assembles around many copies of the enzymes ribulose 1,5-bisphosphate carboxylase/ oxygenase and carbonic anhydrase to facilitate carbon fixation in cyanobacteria. Our simulations identify two classes of assembly pathways leading to encapsulation of many-molecule cargoes. In one, shell assembly proceeds concomitantly with cargo condensation. In the other, the cargo first forms a dense globule; then, shell proteins assemble around and bud from the condensed cargo complex. Although the model is simplified, the simulations predict intermediates and closure mechanisms not accessible in experiments, and show how assembly can be tuned between these two pathways by modulating protein interactions. In addition to elucidating assembly pathways and critical control parameters for microcompartment assembly, our results may guide the reengineering of viruses as nanoreactors that self-assemble around their reactants. DOI: http://dx.doi.org/10.7554/eLife.14078.001 PMID:27166515

  17. Biobased Fat Mimicking Molecular Structuring Agents for Medium-Chain Triglycerides (MCTs) and Other Edible Oils.

    PubMed

    Silverman, Julian R; John, George

    2015-12-09

    To develop sustainable value-added materials from biomass, novel small-molecule sugar ester gelators were synthesized using biocatalysis. The facile one-step regiospecific coupling of the pro-antioxidant raspberry ketone glucoside and unsaturated or saturated long- and medium-chain fatty acids provides a simple approach to tailor the structure and self-assembly of the amphiphilic product. These low molecular weight molecules demonstrated the ability to self-assemble in a variety of solvents and exhibited supergelation, with a minimum gelation concentration of 0.25 wt %, in numerous organic solvents, as well as in a range of natural edible oils, specifically a relatively unstudied group of liquids: natural medium-chain triglyceride oils, notably coconut oil. Spectroscopic analysis details the gelator structure as well as the intermolecular noncovalent interactions, which allow for gelation. X-ray diffraction studies indicate fatty acid chain packing of gelators is similar to that of natural fats, signifying the crystalline nature may lead to desirable textural properties and mouthfeel.

  18. Silk-based delivery systems of bioactive molecules.

    PubMed

    Numata, Keiji; Kaplan, David L

    2010-12-30

    Silks are biodegradable, biocompatible, self-assembling proteins that can also be tailored via genetic engineering to contain specific chemical features, offering utility for drug and gene delivery. Silkworm silk has been used in biomedical sutures for decades and has recently achieved Food and Drug Administration approval for expanded biomaterials device utility. With the diversity and control of size, structure and chemistry, modified or recombinant silk proteins can be designed and utilized in various biomedical application, such as for the delivery of bioactive molecules. This review focuses on the biosynthesis and applications of silk-based multi-block copolymer systems and related silk protein drug delivery systems. The utility of these systems for the delivery of small molecule drugs, proteins and genes is reviewed. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. Multifunctional and biologically active matrices from multicomponent polymeric solutions

    NASA Technical Reports Server (NTRS)

    Kiick, Kristi L. (Inventor); Yamaguchi, Nori (Inventor)

    2010-01-01

    The present invention relates to a biologically active functionalized electrospun matrix to permit immobilization and long-term delivery of biologically active agents. In particular the invention relates to a functionalized polymer matrix comprising a matrix polymer, a compatibilizing polymer and a biomolecule or other small functioning molecule. In certain aspects the electrospun polymer fibers comprise at least one biologically active molecule functionalized with low molecular weight heparin. Examples of active molecules that may be used with the multicomponent polymer of the invention include, for example, a drug, a biopolymer, for example a growth factor, a protein, a peptide, a nucleotide, a polysaccharide, a biological macromolecule or the like. The invention is further directed to the formation of functionalized crosslinked matrices, such as hydrogels, that include at least one functionalized compatibilizing polymer capable of assembly.

  20. The impact of lignin source on its self-assembly in solution

    DOE PAGES

    Ratnaweera, Dilru R.; Saha, Dipendu; Pingali, Sai Venkatesh; ...

    2015-07-30

    Recently, there has been a growing interest in developing value added uses for lignin, including the utilization of lignins as a precursor for carbon materials. Proper understanding of the association behavior of lignins during solution processing provides important structural information that is needed to rationally optimize the use of lignins in industry in a range of value added applications. In this paper, we follow the assembly of lignin molecules from a variety of sources in dimethyl sulfoxide, a good solvent for lignins, using small angle neutron scattering. In order to mimic industrial processing conditions, concentrations of lignins were kept abovemore » the overlap concentration. At small length scales, short lignin segments with ~4–10 monolignol units associate to form rigid rod-like/cylindrical building blocks, where the number of repeat units in a cylindrical segment decreases with increasing lignin concentration. These cylindrical building blocks associate to form aggregates with low cross-linking densities and a random coil or network like structures from highly branched lignin structures. The degree of branching of the base lignin molecule, which varies with source, plays a crucial role in determining their association behavior. Finally, the overall sizes of the aggregates decrease with increasing concentration at low cross-linking densities, whereas the opposite trend is observed for highly branched lignins.« less

  1. Building block synthesis using the polymerase chain assembly method.

    PubMed

    Marchand, Julie A; Peccoud, Jean

    2012-01-01

    De novo gene synthesis allows the creation of custom DNA molecules without the typical constraints of traditional cloning assembly: scars, restriction site incompatibility, and the quest to find all the desired parts to name a few. Moreover, with the help of computer-assisted design, the perfect DNA molecule can be created along with its matching sequence ready to download. The challenge is to build the physical DNA molecules that have been designed with the software. Although there are several DNA assembly methods, this section presents and describes a method using the polymerase chain assembly (PCA).

  2. First-Principles Study of the Self-Assembled Pentacene Molecules on Metal Surfaces

    NASA Astrophysics Data System (ADS)

    Lee, Kyuho; Han, Myung-Joon; Yu, Jaejun

    2003-03-01

    Oriented thin films of organic semiconducting small molecules have received considerable attention as active semiconductors for device applications such as Schottky diodes and thin-film transistors (TFTs). Among these organic materials, pentacene has been found to have the highest mobilities for hole transport. Understanding the formation of self-organized ad-layers of pentacene would contribute to the fabrication of nanostructures and possibly highly oriented pentacene layers by epitaxy for use in electronic devices. To understand the ordering patterns of pentacene ad-layers on metal surfaces, we investigated the energetics between pentacene molecules with and without metal substrates and analyzed its electronic structure. We used a self-consistent first-principles calculation method based on the density functional theory (DFT) within local density approximation (LDA). The localized pseudo-atomic orbitals (PAO) are employed for a real-space numerical basis set, which was suggested by Sankey and Niklewski, and the Troullier-Martins-type pseudo-potential is used. As results, we found that the ordering patterns can be explained by the energetics between pentacene molecules, and the metal substrates appears not to influence too much on the interaction between pentacenes. To investigate the nature of the self-assembled structure, we calculated the total energies of various configurations for the molecule pattern, e.g., side-by-side and head-to-head ordering or on-top stacking. Depending on its direction, extremely different interaction character between two pentacenes is found and explained by its electronic structure analysis.

  3. Impact of model perfume molecules on the self-assembly of anionic surfactant sodium dodecyl 6-benzene sulfonate.

    PubMed

    Bradbury, Robert; Penfold, Jeffrey; Thomas, Robert K; Tucker, Ian M; Petkov, Jordan T; Jones, Craig; Grillo, Isabelle

    2013-03-12

    The impact of two model perfumes with differing degrees of hydrophobicity/hydrophilicity, linalool (LL) and phenylethanol (PE), on the solution structure of anionic surfactant sodium dodecyl 6-benzene sulfonate, LAS-6, has been studied by small angle neutron scattering, SANS. For both types of perfume molecules, complex phase behavior is observed. The phase behavior depends upon the concentration, surfactant/perfume composition, and type of perfume. The more hydrophilic perfume PE promotes the formation of more highly curved structures. At relatively low surfactant concentrations, small globular micelles, L1, are formed. These become perfume droplets, L(sm), stabilized by the surfactant at much higher perfume solution compositions. At higher surfactant concentrations, the tendency of LAS-6 to form more planar structures is evident. The more hydrophobic linalool promotes the formation of more planar structures. Combined with the greater tendency of LAS-6 to form planar structures, this results in the planar structures dominating the phase behavior for the LAS-6/linalool mixtures. For the LAS-6/linalool mixture, the self-assembly is in the form of micelles only at the lowest surfactant and perfume concentrations. Over most of the concentration-composition space explored, the structures are predominantly lamellar, L(α), or vesicle, L(v), or in the form of a lamellar/micellar coexistence. At low and intermediate amounts of LL, a significantly different structure is observed, and the aggregates are in the form of small, relatively monodisperse vesicles (i.e., nanovesicles), L(sv).

  4. Optochemical Control of Protein Localization and Activity within Cell-like Compartments.

    PubMed

    Caldwell, Reese M; Bermudez, Jessica G; Thai, David; Aonbangkhen, Chanat; Schuster, Benjamin S; Courtney, Taylor; Deiters, Alexander; Hammer, Daniel A; Chenoweth, David M; Good, Matthew C

    2018-05-08

    We report inducible dimerization strategies for controlling protein positioning, enzymatic activity, and organelle assembly inside synthetic cell-like compartments upon photostimulation. Using a photocaged TMP-Haloligand compound, we demonstrate small molecule and light-induced dimerization of DHFR and Haloenzyme to localize proteins to a compartment boundary and reconstitute tripartite sfGFP assembly. Using photocaged rapamycin and fragments of split TEV protease fused to FRB and FKBP, we establish optical triggering of protease activity inside cell-size compartments. We apply light-inducible protease activation to initiate assembly of membraneless organelles, demonstrating the applicability of these tools for characterizing cell biological processes in vitro. This modular toolkit, which affords spatial and temporal control of protein function in a minimal cell-like system, represents a critical step toward the reconstitution of a tunable synthetic cell, built from the bottom up.

  5. Stepwise Synthesis of Giant Unilamellar Vesicles on a Microfluidic Assembly Line

    PubMed Central

    2011-01-01

    Among the molecular milieu of the cell, the membrane bilayer stands out as a complex and elusive synthetic target. We report a microfluidic assembly line that produces uniform cellular compartments from droplet, lipid, and oil/water interface starting materials. Droplets form in a lipid-containing oil flow and travel to a junction where the confluence of oil and extracellular aqueous media establishes a flow-patterned interface that is both stable and reproducible. A triangular post mediates phase transfer bilayer assembly by deflecting droplets from oil, through the interface, and into the extracellular aqueous phase to yield a continuous stream of unilamellar phospholipid vesicles with uniform and tunable size. The size of the droplet precursor dictates vesicle size, encapsulation of small-molecule cargo is highly efficient, and the single bilayer promotes functional insertion of a bacterial transmembrane pore. PMID:21309555

  6. Antivirulence Activity of the Human Gut Metabolome

    PubMed Central

    Antunes, L. Caetano M.; McDonald, Julie A. K.; Schroeter, Kathleen; Carlucci, Christian; Ferreira, Rosana B. R.; Wang, Melody; Yurist-Doutsch, Sophie; Hira, Gill; Jacobson, Kevan; Davies, Julian; Allen-Vercoe, Emma

    2014-01-01

    ABSTRACT The mammalian gut contains a complex assembly of commensal microbes termed microbiota. Although much has been learned about the role of these microbes in health, the mechanisms underlying these functions are ill defined. We have recently shown that the mammalian gut contains thousands of small molecules, most of which are currently unidentified. Therefore, we hypothesized that these molecules function as chemical cues used by hosts and microbes during their interactions in health and disease. Thus, a search was initiated to identify molecules produced by the microbiota that are sensed by pathogens. We found that a secreted molecule produced by clostridia acts as a strong repressor of Salmonella virulence, obliterating expression of the Salmonella pathogenicity island 1 as well as host cell invasion. It has been known for decades that the microbiota protects its hosts from invading pathogens, and these data suggest that chemical sensing may be involved in this phenomenon. Further investigations should reveal the exact biological role of this molecule as well as its therapeutic potential. PMID:25073640

  7. New Materials for Supramolecular Nanoscale Devices

    NASA Astrophysics Data System (ADS)

    Jurow, Matthew

    The projects reported here seek to employ the very small---molecules, nanoparticles, films of materials far thinner than a human hair---to create diverse useful systems. We have focused our attention of a class of molecules which strongly absorb light and can be induced to interact with other materials to create devices which can harvest the energy in sunlight, change the way they respond to external stimulus based on the way they are being illuminated, and hopefully in the future make electronic devices more efficient, sustainable, smaller and broadly better. The majority of our most advanced current technologies are made by "top down" fabrication. Large portions of materials which do not demonstrate any of the strange properties which emerge when physical dimensions are severely limited, called bulk materials, are whittled down and painstakingly arranged sometimes one molecule at a time to make microchips and the screens in our cell phones. Another driving force of the research described here is to advance the idea of "self assembly" by which molecules can be designed to interact with each other in such a way that they arrange into a precise manner without needing to be moved one at a time. By advancing our knowledge of self assembled systems, especially those which interact with light, we have strived to make real progress towards new highly applicable functional technologies across many disciplines.

  8. Protein-Templated Fragment Ligations-From Molecular Recognition to Drug Discovery.

    PubMed

    Jaegle, Mike; Wong, Ee Lin; Tauber, Carolin; Nawrotzky, Eric; Arkona, Christoph; Rademann, Jörg

    2017-06-19

    Protein-templated fragment ligation is a novel concept to support drug discovery and can help to improve the efficacy of protein ligands. Protein-templated fragment ligations are chemical reactions between small molecules ("fragments") utilizing a protein's surface as a reaction vessel to catalyze the formation of a protein ligand with increased binding affinity. The approach exploits the molecular recognition of reactive small-molecule fragments by proteins both for ligand assembly and for the identification of bioactive fragment combinations. In this way, chemical synthesis and bioassay are integrated in one single step. This Review discusses the biophysical basis of reversible and irreversible fragment ligations and gives an overview of the available methods to detect protein-templated ligation products. The chemical scope and recent applications as well as future potential of the concept in drug discovery are reviewed. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Self-assembly into soft materials of molecules derived from naturallyoccurring fatty-acids

    NASA Astrophysics Data System (ADS)

    Zhang, Mohan

    The self-assembly of molecular gelators has provided an attractive route for the construction of nanostructured materials with desired functionalities. A well-defined paradigm for the design of molecular gels is needed, but none has yet been established. One of the important challenges to defining this paradigm is the creation of structure-property correlations for gelators at different distance scales. This dissertation centers on gaining additional insights in the relationship between small changes in gelator structures derived from long-chain, naturally-occurring fatty acids and the properties of the corresponding gels. This approach offers a reasonable method to probe the rational design of molecular gelators. (Abstract shortened by ProQuest.).

  10. Organic nanofiber nanosensors

    NASA Astrophysics Data System (ADS)

    Madsen, M.; Schiek, M.; Thomsen, P.; Andersen, N. L.; Lützen, A.; Rubahn, H.-G.

    2007-09-01

    A new way of developing optical nanosensors is presented. Organic nanofibers serve as key elements in these new types of devices, which exploit both the smallness and brightness of the nanoaggregates to make new compact and sensitive optical nanosensors. On the basis of bottom up technology, we functionalize individual molecules, which are then intrinsically sensitive to specific agents. These molecules are used as building blocks for controlled growth of larger nanoscaled aggregates. The aggregates in turn can be used as sensing elements on the meso-scale in the size range from hundred nanometers to a few hundred microns. The organic nanofibers thereby might become a versatile tool within nanosensor technology, allowing sensing on the basis of individual molecules over small aggregates to large assemblies. First experiments of Bovine Serum Albumin (BSA) coupling to para-hexaphenyl (p-6P) nanofibers are presented, which could lead towards a new type of protein sensors. Besides large versatility and sensitivity, the nanofibers benefit from the fact that they can be integrated in devices, either in liquids by the use of microfluidic cavities or all in parallel.

  11. Low Copy Numbers of DC-SIGN in Cell Membrane Microdomains: Implications for Structure and Function

    PubMed Central

    Liu, Ping; Wang, Xiang; Itano, Michelle S.; Neumann, Aaron K.; de Silva, Aravinda M.; Jacobson, Ken; Thompson, Nancy L.

    2014-01-01

    Presently, there are few estimates of the number of molecules occupying membrane domains. Using a total internal reflection fluorescence microscopy (TIRFM) imaging approach, based on comparing the intensities of fluorescently labeled microdomains with those of single fluorophores, we measured the occupancy of DC-SIGN, a C-type lectin, in membrane microdomains. DC-SIGN or its mutants were labeled with primary monoclonal antibodies (mAbs) in either dendritic cells (DCs) or NIH3T3 cells, or expressed as GFP fusions in NIH3T3 cells. The number of DC-SIGN molecules per microdomain ranges from only a few to over 20, while microdomain dimensions range from the diffraction limit to > 1μm. The largest fraction of microdomains, appearing at the diffraction limit, in either immature DCs or 3T3 cells contains only 4-8 molecules of DC-SIGN, consistent with our preliminary super-resolution Blink microscopy estimates. We further show that these small assemblies are sufficient to bind and efficiently internalize a small (~50nm) pathogen, dengue virus, leading to infection of host cells. PMID:24313910

  12. Self-assembling peptide amphiphile nanostructures for cancer therapy

    NASA Astrophysics Data System (ADS)

    Soukasene, Stephen

    The application of nanotechnology to cancer therapy shows great promise for reducing the burden of the disease. By virtue of their size, nanoscale objects preferentially accumulate in tumor tissue through an enhanced permeability and retention (EPR) effect. However, to fully overcome the issues that limit current cancer treatments, viable nanostructures must also impart multifunctionality and be fully compatible with their biological surrounds. The self-assembling peptide amphiphile (PA) materials studied extensively in the Stupp Research Group form very biocompatible high aspect ratio nanostructures that meet these criteria. This thesis investigates the development of PA nanostructures designed to treat cancer. We first look to use the PA as a drug delivery vehicle by entrapping a small hydrophobic anti-cancer drug, camptothecin, in the core of the nanostructures. Using a solvent evaporation technique to load the drug into the PA nanofibers, we are able to improve the aqueous solubility of the molecule by nearly 30-fold. TEM and AFM studies show that entrapment of drug molecules does not disrupt the self-assembled morphology of the nanofiber. In vitro and in vivo studies are also conducted to demonstrate the bioactivity of the drug after its entrapment. As a potential platform for novel therapeutics, we next develop techniques for using light irradiation to trigger self-assembly inside the confined space of liposomes. We encapsulate PA monomers that assemble under acidic conditions along with a photoacid generator inside liposomes. Upon exposure to 254 nm light, the PA monomers self assemble inside the liposome to form nanostructures, which we observe through a quick freeze/deep etch technique that allows us to look inside the liposomes by SEM and TEM. Last of all, the development and discovery of epitopes for targeting PA nanostructures to tumors are explored. Using phage display technology we generate two groups of peptide sequences, one of which can potentially target tumor blood vessel formation, while the other is directed toward the ErbB2 receptor, which is over-expressed in certain aggressive breast cancers. Two peptide sequences from the literature that target breast cancer are also incorporated into PA molecules and we assess their biological affinity in vitro and in vivo.

  13. Molecular switches and motors on surfaces.

    PubMed

    Pathem, Bala Krishna; Claridge, Shelley A; Zheng, Yue Bing; Weiss, Paul S

    2013-01-01

    Molecular switches and motors respond structurally, electronically, optically, and/or mechanically to external stimuli, testing and potentially enabling extreme miniaturization of optoelectronic devices, nanoelectromechanical systems, and medical devices. The assembly of motors and switches on surfaces makes it possible both to measure the properties of individual molecules as they relate to their environment and to couple function between assembled molecules. In this review, we discuss recent progress in assembling molecular switches and motors on surfaces, measuring static and dynamic structures, understanding switching mechanisms, and constructing functional molecular materials and devices. As demonstrative examples, we choose a representative molecule from three commonly studied classes including molecular switches, photochromic molecules, and mechanically interlocked molecules. We conclude by offering perspectives on the future of molecular switches and motors on surfaces.

  14. Roles of the Bacillus anthracis Spore Protein ExsK in Exosporium Maturation and Germination

    DTIC Science & Technology

    2009-12-01

    exosporium maturation and assembly and suggest a novel role for the exosporium in germination. During starvation, bacteria of the genus Bacillus...Bacillus subtilis, the outermost struc- ture is a protective layer called the coat, which guards the spore against reactive small molecules, degradative ...analysis. Generation of anti-ExsK antibodies. Recombinant ExsK was generated and purified using the pET expression system (Novagen) according to the

  15. Engineered Protein Polymers

    DTIC Science & Technology

    2010-05-31

    To investigate the templation of metal nanoparticles as well as soluble metal dependent assembly on the C homopolymer. Grant/Contract Title: (YIP...grey (left). The chemical structures of the small molecules 1,25-dihydroxyvitamin D3, all-trans retinol and curcumin are shown (right). Grant...exhibited strong pentamer bands. Binding to all-trans retinol and curcumin . Variants L37A, L44A, V47A, L51A, I58A and L61A demonstrated dramatic

  16. Fabrication of Organic Thin Film Transistors Using Layer-By-Layer Assembly (Preprint)

    DTIC Science & Technology

    2007-03-01

    thin-film transistors ( TFTs ) have received considerable attention as a low- cost, light-weight, flexible alternative to traditional amorphous silicon...Previous studies have investigated the use of a number of materials for both the active layer and the gate dielectric in various TFT architectures. These...performance. Conjugated small molecules, such as pentacene, or polymers, such as poly(3- hexylthiophene), are commonly used as the active layer in organic TFT

  17. Functional Hydrogel Materials Inspired by Amyloid

    NASA Astrophysics Data System (ADS)

    Schneider, Joel

    2012-02-01

    Protein assembly resulting in the formation of amyloid fibrils, assemblies rich in cross beta-sheet structure, is normally thought of as a deleterious event associated with disease. However, amyloid formation is also involved in a diverse array of normal biological functions such as cell adhesion, melanin synthesis, insect defense mechanism and modulation of water surface tension by fungi and bacteria. These findings indicate that Nature has evolved to take advantage of large, proteinaceous fibrillar assemblies to elicit function. We are designing functional materials, namely hydrogels, from peptides that self-assembled into fibrillar networks, rich in cross beta-sheet structure. These gels can be used for the direct encapsulation and delivery of small molecule-, protein- and cell-based therapeutics. Loaded gels exhibit shear-thinning/self-healing mechanical properties enabling their delivery via syringe. In addition to their use for delivery, we have found that some of these gels display antibacterial activity. Although cytocompatible towards mammalian cells, the hydrogels can kill a broad spectrum of bacteria on contact.

  18. Self-assembled nanoparticles comprising aptide-SN38 conjugates for use in targeted cancer therapy

    NASA Astrophysics Data System (ADS)

    Kim, Hyungjun; Lee, Yonghyun; Kang, Sukmo; Choi, Minsuk; Lee, Soyoung; Kim, Sunghyun; Gujrati, Vipul; Kim, Jinjoo; Jon, Sangyong

    2016-12-01

    Self-assembled nanoparticles (NPs) have been intensively utilized as cancer drug delivery carriers because hydrophobic anticancer drugs may be efficiently loaded into the particle cores. In this study, we synthesized and evaluated the therapeutic index of self-assembled NPs chemically conjugated to a fibronectin extra domain B-specific peptide (APTEDB) and an anticancer agent SN38. The APTEDB-SN38 formed self-assembled structures with a diameter of 58 ± 3 nm in an aqueous solution and displayed excellent drug loading, solubility, and stability properties. A pharmacokinetic study revealed that the blood circulation half-life of SN38 following injection of the APTEDB-SN38 NPs was markedly higher than that of the small molecule CPT-11. The APTEDB-SN38 NPs delivered SN38 to tumor sites by both passive and active targeting. Finally, the APTEDB-SN38 NPs exhibited potent antitumor activities and low toxicities against EDB-expressing tumors (LLC, U87MG) in mice. This system merits further preclinical and clinical investigations for SN38 delivery.

  19. Selective molecular annealing: in situ small angle X-ray scattering study of microwave-assisted annealing of block copolymers.

    PubMed

    Toolan, Daniel T W; Adlington, Kevin; Isakova, Anna; Kalamiotis, Alexis; Mokarian-Tabari, Parvaneh; Dimitrakis, Georgios; Dodds, Christopher; Arnold, Thomas; Terrill, Nick J; Bras, Wim; Hermida Merino, Daniel; Topham, Paul D; Irvine, Derek J; Howse, Jonathan R

    2017-08-09

    Microwave annealing has emerged as an alternative to traditional thermal annealing approaches for optimising block copolymer self-assembly. A novel sample environment enabling small angle X-ray scattering to be performed in situ during microwave annealing is demonstrated, which has enabled, for the first time, the direct study of the effects of microwave annealing upon the self-assembly behavior of a model, commercial triblock copolymer system [polystyrene-block-poly(ethylene-co-butylene)-block-polystyrene]. Results show that the block copolymer is a poor microwave absorber, resulting in no change in the block copolymer morphology upon application of microwave energy. The block copolymer species may only indirectly interact with the microwave energy when a small molecule microwave-interactive species [diethylene glycol dibenzoate (DEGDB)] is incorporated directly into the polymer matrix. Then significant morphological development is observed at DEGDB loadings ≥6 wt%. Through spatial localisation of the microwave-interactive species, we demonstrate targeted annealing of specific regions of a multi-component system, opening routes for the development of "smart" manufacturing methodologies.

  20. Exploring the role of water in molecular recognition: predicting protein ligandability using a combinatorial search of surface hydration sites.

    PubMed

    Vukovic, Sinisa; Brennan, Paul E; Huggins, David J

    2016-09-01

    The interaction between any two biological molecules must compete with their interaction with water molecules. This makes water the most important molecule in medicine, as it controls the interactions of every therapeutic with its target. A small molecule binding to a protein is able to recognize a unique binding site on a protein by displacing bound water molecules from specific hydration sites. Quantifying the interactions of these water molecules allows us to estimate the potential of the protein to bind a small molecule. This is referred to as ligandability. In the study, we describe a method to predict ligandability by performing a search of all possible combinations of hydration sites on protein surfaces. We predict ligandability as the summed binding free energy for each of the constituent hydration sites, computed using inhomogeneous fluid solvation theory. We compared the predicted ligandability with the maximum observed binding affinity for 20 proteins in the human bromodomain family. Based on this comparison, it was determined that effective inhibitors have been developed for the majority of bromodomains, in the range from 10 to 100 nM. However, we predict that more potent inhibitors can be developed for the bromodomains BPTF and BRD7 with relative ease, but that further efforts to develop inhibitors for ATAD2 will be extremely challenging. We have also made predictions for the 14 bromodomains with no reported small molecule K d values by isothermal titration calorimetry. The calculations predict that PBRM1(1) will be a challenging target, while others such as TAF1L(2), PBRM1(4) and TAF1(2), should be highly ligandable. As an outcome of this work, we assembled a database of experimental maximal K d that can serve as a community resource assisting medicinal chemistry efforts focused on BRDs. Effective prediction of ligandability would be a very useful tool in the drug discovery process.

  1. Exploring the role of water in molecular recognition: predicting protein ligandability using a combinatorial search of surface hydration sites

    NASA Astrophysics Data System (ADS)

    Vukovic, Sinisa; Brennan, Paul E.; Huggins, David J.

    2016-09-01

    The interaction between any two biological molecules must compete with their interaction with water molecules. This makes water the most important molecule in medicine, as it controls the interactions of every therapeutic with its target. A small molecule binding to a protein is able to recognize a unique binding site on a protein by displacing bound water molecules from specific hydration sites. Quantifying the interactions of these water molecules allows us to estimate the potential of the protein to bind a small molecule. This is referred to as ligandability. In the study, we describe a method to predict ligandability by performing a search of all possible combinations of hydration sites on protein surfaces. We predict ligandability as the summed binding free energy for each of the constituent hydration sites, computed using inhomogeneous fluid solvation theory. We compared the predicted ligandability with the maximum observed binding affinity for 20 proteins in the human bromodomain family. Based on this comparison, it was determined that effective inhibitors have been developed for the majority of bromodomains, in the range from 10 to 100 nM. However, we predict that more potent inhibitors can be developed for the bromodomains BPTF and BRD7 with relative ease, but that further efforts to develop inhibitors for ATAD2 will be extremely challenging. We have also made predictions for the 14 bromodomains with no reported small molecule K d values by isothermal titration calorimetry. The calculations predict that PBRM1(1) will be a challenging target, while others such as TAF1L(2), PBRM1(4) and TAF1(2), should be highly ligandable. As an outcome of this work, we assembled a database of experimental maximal K d that can serve as a community resource assisting medicinal chemistry efforts focused on BRDs. Effective prediction of ligandability would be a very useful tool in the drug discovery process.

  2. Organic fluorescent dye-based nanomaterials: Advances in the rational design for imaging and sensing applications.

    PubMed

    Svechkarev, Denis; Mohs, Aaron M

    2018-02-25

    Self-assembled fluorescent nanomaterials based on small-molecule organic dyes are gaining increasing popularity in imaging and sensing applications over the past decade. This is primarily due to their ability to combine spectral property tunability and biocompatibility of small molecule organic fluorophores with brightness, chemical, and colloidal stability of inorganic materials. Such a unique combination of features comes with rich versatility of dye-based nanomaterials: from aggregates of small molecules to sophisticated core-shell nanoarchitectures involving hyperbranched polymers. Along with the ongoing discovery of new materials and better ways of their synthesis, it is very important to continue systematic studies of fundamental factors that regulate the key properties of fluorescent nanomaterials: their size, polydispersity, colloidal stability, chemical stability, absorption and emission maxima, biocompatibility, and interactions with biological interfaces. In this review, we focus on the systematic description of various types of organic fluorescent nanomaterials, approaches to their synthesis, and ways to optimize and control their characteristics. The discussion is built on examples from reports on recent advances in design and applications of such materials. Conclusions made from this analysis allow a perspective on future development of fluorescent nanomaterials design for biomedical and related applications. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. Block copolymer templated self-assembly of disk-shaped molecules

    NASA Astrophysics Data System (ADS)

    Aragones, J. L.; Alexander-Katz, A.

    2017-08-01

    Stacking of disk-shaped organic molecules is a promising strategy to develop electronic and photovoltaic devices. Here, we investigate the capability of a soft block copolymer matrix that microphase separates into a cylindrical phase to direct the self-assembly of disk-shaped molecules by means of molecular simulations. We show that two disk molecules confined in the cylinder domain experience a depletion force, induced by the polymer chains, which results in the formation of stacks of disks. This entropic interaction and the soft confinement provided by the matrix are both responsible for the structures that can be self-assembled, which include slanted or columnar stacks. In addition, we evidence the transmission of stresses between the different minority domains of the microphase, which results in the establishment of a long-ranged interaction between disk molecules embedded in different domains; this interaction is of the order of the microphase periodicity and may be exploited to direct assembly of disks at larger scales.

  4. Biomimetic Oxygen-Evolving Photobacteria Based on Amino Acid and Porphyrin Hierarchical Self-Organization.

    PubMed

    Liu, Kai; Zhang, Han; Xing, Ruirui; Zou, Qianli; Yan, Xuehai

    2017-12-26

    Biomimetic organization provides a promising strategy to develop functional materials and understand biological processes. However, how to mimic complex biological systems using simple biomolecular units remains a great challenge. Herein, we design and fabricate a biomimetic cyanobacteria model based on self-integration of small bioinspired molecules, including amphiphilic amino acid, 3,4-dihydroxyphenylalanine (DOPA), and metalloporphyrin and cobalt oxide nanoparticles (Co 3 O 4 NPs), with the assistance of chemical conjugation and molecular self-assembly. The assembled amino acid fiber can be modified by DOPA to form covalently bound DOPA melanin containing hydroxyl and quinone species via Schiff base reaction. The adhering template can further tune the self-assembly of metalloporphyrin and Co 3 O 4 NPs into J-aggregation and dispersive distribution, respectively, mainly via coordination binding. Metalloporphyrin molecules in the resulting hybrid fibers capture light; quinone species accept the excited electrons, and Co 3 O 4 NPs catalyze water oxidation. Thus, the essential components of the photosystem-II protein complex in cyanobacteria are simplified and engineered into a simple framework, still retaining a similar photosynthetic mechanism. In addition, this architecture leads to efficient coupling of antenna, quinone-type reaction center, and photocatalyst, which increases the flux of light energy from antenna to reaction center for charge separation, resulting in enhanced oxygen evolution rate with excellent sustainability.

  5. Hairpin assembly circuit-based fluorescence cooperative amplification strategy for enzyme-free and label-free detection of small molecule.

    PubMed

    Feng, Chunjing; Zhu, Jing; Sun, Jiewei; Jiang, Wei; Wang, Lei

    2015-10-01

    Here, we developed an enzyme-free, label-free, and sensitive fluorescence cooperative amplification strategy based on a hairpin assembly circuit which coupled catalytic hairpin assembly (CHA) with hybridization chain reaction (HCR) for small molecule adenosine. A double-strand DNA probe with aptamer-catalysis strand (Apt-C) and inhibit strand (Inh) was designed for adenosine recognition and signal transduction which was named as Apt-C/Inh. Hairpins H1 and H2 were employed for constructing the CHA, and hairpins H3 and H4 for the HCR. Through the binding of adenosine and the Apt-C, the Inh was released from the Apt-C/Inh. Then the free Apt-C initiated the CHA through successively opening H1 and H2, generating H1/H2 complex and recyclable Apt-C. Next, the released Apt-C entered another CHA cycle, and the H1/H2 complex further initiated the HCR of H3 and H4 which induced the formation of the concatemers of H3/H4 complex. Such a process brought the two ends of hairpins H3 into close proximity, yielding numerous integrated G-quadruplexes which were initially sequestered in the stem and two terminals of H3. Finally, N-methyl mesoporphyrin IX (NMM) was added to generate an enhanced fluorescence signal. In the proposed strategy, driven only by the energy from hybridization, one target could trigger multiple HCR events via CHA-based target-cycle, leading to a remarkable enzyme-free amplification for adenosine. The detection limit could achieve as low as 9.7 × 10(-7) mol L(-1). Furthermore, G-quadruplexes were applied to construct label-free hairpin assembly circuit, which made it more simple and cost-effective. The satisfactory recoveries were obtained when detecting adenosine in spiked human serum and urine samples, demonstrating the feasibility of this detection strategy in biological samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Low-molecular-weight gelators: elucidating the principles of gelation based on gelator solubility and a cooperative self-assembly model.

    PubMed

    Hirst, Andrew R; Coates, Ian A; Boucheteau, Thomas R; Miravet, Juan F; Escuder, Beatriu; Castelletto, Valeria; Hamley, Ian W; Smith, David K

    2008-07-16

    This paper highlights the key role played by solubility in influencing gelation and demonstrates that many facets of the gelation process depend on this vital parameter. In particular, we relate thermal stability ( T gel) and minimum gelation concentration (MGC) values of small-molecule gelation in terms of the solubility and cooperative self-assembly of gelator building blocks. By employing a van't Hoff analysis of solubility data, determined from simple NMR measurements, we are able to generate T calc values that reflect the calculated temperature for complete solubilization of the networked gelator. The concentration dependence of T calc allows the previously difficult to rationalize "plateau-region" thermal stability values to be elucidated in terms of gelator molecular design. This is demonstrated for a family of four gelators with lysine units attached to each end of an aliphatic diamine, with different peripheral groups (Z or Boc) in different locations on the periphery of the molecule. By tuning the peripheral protecting groups of the gelators, the solubility of the system is modified, which in turn controls the saturation point of the system and hence controls the concentration at which network formation takes place. We report that the critical concentration ( C crit) of gelator incorporated into the solid-phase sample-spanning network within the gel is invariant of gelator structural design. However, because some systems have higher solubilities, they are less effective gelators and require the application of higher total concentrations to achieve gelation, hence shedding light on the role of the MGC parameter in gelation. Furthermore, gelator structural design also modulates the level of cooperative self-assembly through solubility effects, as determined by applying a cooperative binding model to NMR data. Finally, the effect of gelator chemical design on the spatial organization of the networked gelator was probed by small-angle neutron and X-ray scattering (SANS/SAXS) on the native gel, and a tentative self-assembly model was proposed.

  7. Morphological Transformation between Nanocoils and Nanoribbons via Defragmentation Structural Rearrangement or Fragmentation-recombination Mechanism

    NASA Astrophysics Data System (ADS)

    Zhang, Yibin; Zheng, Yingxuan; Xiong, Wei; Peng, Cheng; Zhang, Yifan; Duan, Ran; Che, Yanke; Zhao, Jincai

    2016-06-01

    Kinetic control over the assembly pathways towards novel metastable functional materials or far-from-equilibrium systems has been much less studied compared to the thermodynamic equilibrium self-assembly. Herein, we report the distinct morphological transformation between nanocoils and nanoribbons in the self-assembly of unsymmetric perylene diimide (PDI) molecules. We demonstrate that the morphological transformation of the kinetically trapped assemblies into the thermodynamically stable forms proceeds via two distinct mechanisms, i.e., a direct structural rearrangement (molecule 1 or 2) and a fragmentation-recombination mechanism (molecule 4), respectively. The subtle interplay of the steric hindrance of the bulky substituents and the flexibility of the linker structure between the bulky moiety and the perylene core was demonstrated to enable the effective modulation of the energetic landscape of the assemblies and thus modulation of the assembly pathways. Herein, our work presents a new approach to control the self-assembly pathways and thereby can be used to achieve novel far-from-equilibrium systems.

  8. Tunable Gas Sensing Gels by Cooperative Assembly

    PubMed Central

    Hussain, Abid; Semeano, Ana T. S.; Palma, Susana I. C. J.; Pina, Ana S.; Almeida, José; Medrado, Bárbara F.; Pádua, Ana C. C. S.; Carvalho, Ana L.; Dionísio, Madalena; Li, Rosamaria W. C.; Gamboa, Hugo; Ulijn, Rein V.; Gruber, Jonas; Roque, Ana C. A.

    2017-01-01

    The cooperative assembly of biopolymers and small molecules can yield functional materials with precisely tunable properties. Here, the fabrication, characterization, and use of multicomponent hybrid gels as selective gas sensors are reported. The gels are composed of liquid crystal droplets self-assembled in the presence of ionic liquids, which further coassemble with biopolymers to form stable matrices. Each individual component can be varied and acts cooperatively to tune gels’ structure and function. The unique molecular environment in hybrid gels is explored for supramolecular recognition of volatile compounds. Gels with distinct compositions are used as optical and electrical gas sensors, yielding a combinatorial response conceptually mimicking olfactory biological systems, and tested to distinguish volatile organic compounds and to quantify ethanol in automotive fuel. The gel response is rapid, reversible, and reproducible. These robust, versatile, modular, pliant electro-optical soft materials possess new possibilities in sensing triggered by chemical and physical stimuli. PMID:28747856

  9. Hydrogen Bond Induces Hierarchical Self-Assembly in Liquid-Crystalline Block Copolymers.

    PubMed

    Huang, Shuai; Pang, Linlin; Chen, Yuxuan; Zhou, Liming; Fang, Shaoming; Yu, Haifeng

    2018-03-01

    Microphase-separated structures of block copolymers (BCs) with a size of sub-10 nm are usually obtained by hydrogen-bond-induced self-assembly of BCs through doping with small molecules as functional additives. Here, fabrication of hierarchically self-assembled sub-10 nm structures upon microphase separation of amphiphilic liquid-crystalline BCs (LCBCs) at the existence of hydrogen bonds but without any dopants is reported. The newly introduced urethane groups in the side chain of the hydrophobic block of LCBCs interact with the ether groups of the hydrophilic poly(ethylene oxide) (PEO) block, leading to imperfect crystallization of the PEO blocks. Both crystalline and amorphous domains coexist in the separated PEO phase, enabling a lamellar structure to appear inside the PEO nanocylinders. This provides an elegant method to fabricate controllable sub-10 nm microstructures in well-defined polymer systems without the introduction of any dopants. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Making Macroscopic Assemblies of Aligned Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Smalley, Richard E.; Colbert, Daniel T.; Smith, Ken A.; Walters, Deron A.; Casavant, Michael J.; Qin, Xiaochuan; Yakobson, Boris; Hauge, Robert H.; Saini, Rajesh Kumar; Chiung, Wan-Ting; hide

    2005-01-01

    A method of aligning and assembling single-wall carbon nanotubes (SWNTs) to fabricate macroscopic structures has been invented. The method entails suspending SWNTs in a fluid, orienting the SWNTs by use of a magnetic and/or electric field, and then removing the aligned SWNTs from suspension in such a way as to assemble them while maintaining the alignment. SWNTs are essentially tubular extensions of fullerene molecules. It is desirable to assemble aligned SWNTs into macroscopic structures because the common alignment of the SWNTs in such a structure makes it possible to exploit, on a macroscopic scale, the unique mechanical, chemical, and electrical properties that individual oriented SWNTs exhibit at the molecular level. Because of their small size and high electrical conductivity, carbon nanotubes, and especially SWNTs, are useful for making electrical connectors in integrated circuits. Carbon nanotubes can be used as antennas at optical frequencies, and as probes in scanning tunneling microscopes, atomic-force microscopes, and the like. Carbon nanotubes can be used with or instead of carbon black in tires. Carbon nanotubes are useful as supports for catalysts. Ropes of SWNTs are metallic and, as such, are potentially useful in some applications in which electrical conductors are needed - for example, they could be used as additives in formulating electrically conductive paints. Finally, macroscopic assemblies of aligned SWNTs can serve as templates for the growth of more and larger structures of the same type. The great variety of tubular fullerene molecules and of the structures that could be formed by assembling them in various ways precludes a complete description of the present method within the limits of this article. It must suffice to present a typical example of the use of one of many possible variants of the method to form a membrane comprising SWNTs aligned substantially parallel to each other in the membrane plane. The apparatus used in this variant of the method (see figure) includes a reservoir containing SWNTs dispersed in a suspending agent (for example, dimethylformamide) and a reservoir containing a suitable solvent (for example, water mixed with a surfactant). By use of either pressurized gas supplied from upstream or suction from downstream, the suspension of SWNTs and the solvent are forced to mix and flow into a tank. A filter inside the tank contains pores small enough to prevent the passage of most SWNTs, but large enough to allow the passage of molecules of the solvent and suspending agent. The filter is oriented perpendicular to the flow path. A magnetic field parallel to the plane of the filter is applied. The success of the method is based on the tendency of SWNTs to become aligned with their longitudinal axes parallel to an applied magnetic field. The alignment energy of an SWNT increases with the length of the SWNT and the magnetic-field strength. In order to obtain an acceptably small degree of statistical deviation of SWNTs of a given length from alignment with a magnetic field, one must make the field strong enough so that the thermal energy associated with rotation of an SWNT away from alignment is less than the alignment energy.

  11. Mechanosensitive Gold Colloidal Membranes Mediated by Supramolecular Interfacial Self-Assembly.

    PubMed

    Coelho, João Paulo; Mayoral, María José; Camacho, Luis; Martín-Romero, María T; Tardajos, Gloria; López-Montero, Iván; Sanz, Eduardo; Ávila-Brande, David; Giner-Casares, Juan José; Fernández, Gustavo; Guerrero-Martínez, Andrés

    2017-01-25

    The ability to respond toward mechanical stimuli is a fundamental property of biological organisms at both the macroscopic and cellular levels, yet it has been considerably less observed in artificial supramolecular and colloidal homologues. An archetypal example in this regard is cellular mechanosensation, a process by which mechanical forces applied on the cell membrane are converted into biochemical or electrical signals through nanometer-scale changes in molecular conformations. In this article, we report an artificial gold nanoparticle (Au NP)-discrete π-conjugated molecule hybrid system that mimics the mechanical behavior of biological membranes and is able to self-assemble into colloidal gold nanoclusters or membranes in a controlled and reversible fashion by changing the concentration or the mechanical force (pressure) applied. This has been achieved by rational design of a small π-conjugated thiolated molecule that controls, to a great extent, the hierarchy levels involved in Au NP clustering by enabling reversible, cooperative non-covalent (π-π, solvophobic, and hydrogen bonding) interactions. In addition, the Au NP membranes have the ability to entrap and release aromatic guest molecules reversibly (K b = 5.0 × 10 5 M -1 ) for several cycles when subjected to compression-expansion experiments, in close analogy to the behavior of cellular mechanosensitive channels. Not only does our hybrid system represent the first example of a reversible colloidal membrane, but it also can be controlled by a dynamic mechanical stimulus using a new supramolecular surface-pressure-controlled strategy. This approach holds great potential for the development of multiple colloidal assemblies within different research fields.

  12. Functional Redundancy in HIV-1 Viral Particle Assembly

    PubMed Central

    O'Carroll, Ina P.; Crist, Rachael M.; Mirro, Jane; Harvin, Demetria; Soheilian, Ferri; Kamata, Anne; Nagashima, Kunio

    2012-01-01

    Expression of a retroviral Gag protein in mammalian cells leads to the assembly of virus particles. In vitro, recombinant Gag proteins are soluble but assemble into virus-like particles (VLPs) upon addition of nucleic acid. We have proposed that Gag undergoes a conformational change when it is at a high local concentration and that this change is an essential prerequisite for particle assembly; perhaps one way that this condition can be fulfilled is by the cooperative binding of Gag molecules to nucleic acid. We have now characterized the assembly in human cells of HIV-1 Gag molecules with a variety of defects, including (i) inability to bind to the plasma membrane, (ii) near-total inability of their capsid domains to engage in dimeric interaction, and (iii) drastically compromised ability to bind RNA. We find that Gag molecules with any one of these defects still retain some ability to assemble into roughly spherical objects with roughly correct radius of curvature. However, combination of any two of the defects completely destroys this capability. The results suggest that these three functions are somewhat redundant with respect to their contribution to particle assembly. We suggest that they are alternative mechanisms for the initial concentration of Gag molecules; under our experimental conditions, any two of the three is sufficient to lead to some semblance of correct assembly. PMID:22993163

  13. Assembly and diploid architecture of an individual human genome via single-molecule technologies

    PubMed Central

    Pendleton, Matthew; Sebra, Robert; Pang, Andy Wing Chun; Ummat, Ajay; Franzen, Oscar; Rausch, Tobias; Stütz, Adrian M; Stedman, William; Anantharaman, Thomas; Hastie, Alex; Dai, Heng; Fritz, Markus Hsi-Yang; Cao, Han; Cohain, Ariella; Deikus, Gintaras; Durrett, Russell E; Blanchard, Scott C; Altman, Roger; Chin, Chen-Shan; Guo, Yan; Paxinos, Ellen E; Korbel, Jan O; Darnell, Robert B; McCombie, W Richard; Kwok, Pui-Yan; Mason, Christopher E; Schadt, Eric E; Bashir, Ali

    2015-01-01

    We present the first comprehensive analysis of a diploid human genome that combines single-molecule sequencing with single-molecule genome maps. Our hybrid assembly markedly improves upon the contiguity observed from traditional shotgun sequencing approaches, with scaffold N50 values approaching 30 Mb, and we identified complex structural variants (SVs) missed by other high-throughput approaches. Furthermore, by combining Illumina short-read data with long reads, we phased both single-nucleotide variants and SVs, generating haplotypes with over 99% consistency with previous trio-based studies. Our work shows that it is now possible to integrate single-molecule and high-throughput sequence data to generate de novo assembled genomes that approach reference quality. PMID:26121404

  14. Assembly and diploid architecture of an individual human genome via single-molecule technologies.

    PubMed

    Pendleton, Matthew; Sebra, Robert; Pang, Andy Wing Chun; Ummat, Ajay; Franzen, Oscar; Rausch, Tobias; Stütz, Adrian M; Stedman, William; Anantharaman, Thomas; Hastie, Alex; Dai, Heng; Fritz, Markus Hsi-Yang; Cao, Han; Cohain, Ariella; Deikus, Gintaras; Durrett, Russell E; Blanchard, Scott C; Altman, Roger; Chin, Chen-Shan; Guo, Yan; Paxinos, Ellen E; Korbel, Jan O; Darnell, Robert B; McCombie, W Richard; Kwok, Pui-Yan; Mason, Christopher E; Schadt, Eric E; Bashir, Ali

    2015-08-01

    We present the first comprehensive analysis of a diploid human genome that combines single-molecule sequencing with single-molecule genome maps. Our hybrid assembly markedly improves upon the contiguity observed from traditional shotgun sequencing approaches, with scaffold N50 values approaching 30 Mb, and we identified complex structural variants (SVs) missed by other high-throughput approaches. Furthermore, by combining Illumina short-read data with long reads, we phased both single-nucleotide variants and SVs, generating haplotypes with over 99% consistency with previous trio-based studies. Our work shows that it is now possible to integrate single-molecule and high-throughput sequence data to generate de novo assembled genomes that approach reference quality.

  15. In situ amplified electrochemical aptasensing for sensitive detection of adenosine triphosphate by coupling target-induced hybridization chain reaction with the assembly of silver nanotags.

    PubMed

    Zhou, Qian; Lin, Youxiu; Lin, Yuping; Wei, Qiaohua; Chen, Guonan; Tang, Dianping

    2016-01-01

    Biomolecular immobilization and construction of the sensing platform are usually crucial for the successful development of a high-efficiency detection system. Herein we report on a novel and label-free signal-amplified aptasensing for sensitive electrochemical detection of small molecules (adenosine triphosphate, ATP, used in this case) by coupling with target-induced hybridization chain reaction (HCR) and the assembly of electroactive silver nanotags. The system mainly consisted of two alternating hairpin probes, a partial-pairing trigger-aptamer duplex DNA and a capture probe immobilized on the electrode. Upon target ATP introduction, the analyte attacked the aptamer and released the trigger DNA, which was captured by capture DNA immobilized on the electrode to form a newly partial-pairing double-stranded DNA. Thereafter, the exposed domain at trigger DNA could be utilized as the initator strand to open the hairpin probes in sequence, and propagated a chain reaction of hybridization events between two alternating hairpins to form a long nicked double-helix. The electrochemical signal derived from the assembled silver nanotags on the nicked double-helix. Under optimal conditions, the electrochemical aptasensor could exhibit a high sensitivity and a low detection limit, and allowed the detection of ATP at a concentration as low as 0.03 pM. Our design showed a high selectivity for target ATP against its analogs because of the high-specificity ATP-aptamer reaction, and its applicable for monitoring ATP in the spiking serum samples. Improtantly, the distinct advantages of the developed aptasensor make it hold a great potential for the development of simple and robust sensing strategies for the detection of other small molecules by controlling the apatmer sequence. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Small molecule-mediated duplex formation of nucleic acids with 'incompatible' backbones.

    PubMed

    Cafferty, Brian J; Musetti, Caterina; Kim, Keunsoo; Horowitz, Eric D; Krishnamurthy, Ramanarayanan; Hud, Nicholas V

    2016-04-07

    Proflavine, a known intercalator of DNA and RNA, promotes duplex formation by nucleic acids with natural and non-natural backbones that otherwise form duplexes with low thermal stability, and even some that show no sign of duplex formation in the absence of proflavine. These findings demonstrate the potential for intercalators to be used as cofactors for the assembly of rationally designed nucleic acid structures, and could provide fundamental insights regarding intercalation of natural nucleic acid duplexes.

  17. Localizing the Subunit Pool for the Temporally Regulated Polar Pili of Caulobacter crescentus.

    DTIC Science & Technology

    1987-01-01

    was determined that the cellular location for un- assembled was the cell cytoplasm. All cell membranes and regions of muclear material were poorly...to colloidal gold. It was determined that the cellular location for unassembled pilin was the cell cytoplasm. All cell membranes and regions of nuclear...to determine the cellular location of the pilin pool. Because pilin is a small (8000 m.w. ) and hydrophobic molecule (3), problems with 3 non-specific

  18. Self-assembly of core-polyethylene glycol-lipid shell (CPLS) nanoparticles and their potential as drug delivery vehicles

    NASA Astrophysics Data System (ADS)

    Shen, Zhiqiang; Loe, David T.; Awino, Joseph K.; Kröger, Martin; Rouge, Jessica L.; Li, Ying

    2016-08-01

    Herein a new multifunctional formulation, referred to as a core-polyethylene glycol-lipid shell (CPLS) nanoparticle, has been proposed and studied in silico via large scale coarse-grained molecular dynamics simulations. A PEGylated core with surface tethered polyethylene glycol (PEG) chains is used as the starting configuration, where the free ends of the PEG chains are covalently bonded with lipid molecules (lipid heads). A complete lipid bilayer is formed at the surface of the PEGylated particle core upon addition of free lipids, driven by the hydrophobic properties of the lipid tails, leading to the formation of a CPLS nanoparticle. The self-assembly process is found to be sensitive to the grafting density and molecular weight of the tethered PEG chains, as well as the amount of free lipids added. At low grafting densities the assembly of CPLS nanoparticles cannot be accomplished. As demonstrated by simulations, a lipid bud/vesicle can be formed on the surface when an excess amount of free lipids is added at high grafting density. Therefore, the CPLS nanoparticles can only be formed under appropriate conditions of both PEG and free lipids. The CPLS nanoparticle has been recognized to be able to store a large quantity of water molecules, particularly with high molecular weight of PEG chains, indicating its capacity for carrying hydrophilic molecules such as therapeutic biomolecules or imaging agents. Under identical size and surface chemistry conditions of a liposome, it has been observed that the CPLS particle can be more efficiently wrapped by the lipid membrane, indicating its potential for a greater efficiency in delivering its hydrophilic cargo. As a proof-of-concept, the experimental realization of CPLS nanoparticles is explicitly demonstrated in this study. To test the capacity of the CPLS to store small molecule cargo a hydrophilic dye was successfully encapsulated in the particles' water soluble layer. The results of this study show the power and potential of simulation-driven approaches for guiding the design of more efficient nanomaterial delivery platforms.Herein a new multifunctional formulation, referred to as a core-polyethylene glycol-lipid shell (CPLS) nanoparticle, has been proposed and studied in silico via large scale coarse-grained molecular dynamics simulations. A PEGylated core with surface tethered polyethylene glycol (PEG) chains is used as the starting configuration, where the free ends of the PEG chains are covalently bonded with lipid molecules (lipid heads). A complete lipid bilayer is formed at the surface of the PEGylated particle core upon addition of free lipids, driven by the hydrophobic properties of the lipid tails, leading to the formation of a CPLS nanoparticle. The self-assembly process is found to be sensitive to the grafting density and molecular weight of the tethered PEG chains, as well as the amount of free lipids added. At low grafting densities the assembly of CPLS nanoparticles cannot be accomplished. As demonstrated by simulations, a lipid bud/vesicle can be formed on the surface when an excess amount of free lipids is added at high grafting density. Therefore, the CPLS nanoparticles can only be formed under appropriate conditions of both PEG and free lipids. The CPLS nanoparticle has been recognized to be able to store a large quantity of water molecules, particularly with high molecular weight of PEG chains, indicating its capacity for carrying hydrophilic molecules such as therapeutic biomolecules or imaging agents. Under identical size and surface chemistry conditions of a liposome, it has been observed that the CPLS particle can be more efficiently wrapped by the lipid membrane, indicating its potential for a greater efficiency in delivering its hydrophilic cargo. As a proof-of-concept, the experimental realization of CPLS nanoparticles is explicitly demonstrated in this study. To test the capacity of the CPLS to store small molecule cargo a hydrophilic dye was successfully encapsulated in the particles' water soluble layer. The results of this study show the power and potential of simulation-driven approaches for guiding the design of more efficient nanomaterial delivery platforms. Electronic supplementary information (ESI) available: Simulation protocol, simulation results for the self-assembly of CPLS nanoparticles, membrane wrapping and free energy change of grafted PEG polymers. See DOI: 10.1039/C6NR04134E

  19. Analysis of small biomolecules and xenobiotic metabolism using converted graphene-like monolayer plates and laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    Kang, Hyunook; Yun, Hoyeol; Lee, Sang Wook; Yeo, Woon-Seok

    2017-06-01

    We report a method of small molecule analysis using a converted graphene-like monolayer (CGM) plate and laser desorption/ionization time-of-flight mass spectrometry (LDI-TOF MS) without organic matrices. The CGM plate was prepared from self-assembled monolayers of biphenyl-4-thiol on gold using electron beam irradiation followed by an annealing step. The above plate was utilized for the LDI-TOF MS analyses of various small molecules and their mixtures, e.g., amino acids, sugars, fatty acids, oligoethylene glycols, and flavonoids. The CGM plate afforded high signal-to-noise ratios, good limits of detection (1pmol to 10fmol), and reusability for up to 30 cycles. As a practical application, the enzymatic activity of the cytochrome P450 2A6 (CYP2A6) enzyme in human liver microsomes was assessed in the 7-hydroxylation of coumarin using the CGM plate without other purification steps. We believe that the prepared CGM plate can be practically used with the advantages of simplicity, sensitivity, and reusability for the matrix-free analysis of small biomolecules. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Self-assembled molecular magnets on patterned silicon substrates: bridging bio-molecules with nanoelectronics.

    PubMed

    Chang, Chia-Ching; Sun, Kien Wen; Lee, Shang-Fan; Kan, Lou-Sing

    2007-04-01

    The paper reports the methods of preparing molecular magnets and patterning of the molecules on a semiconductor surface. A highly magnetically aligned metallothionein containing Mn and Cd (Mn,Cd-MT-2) is first synthesized, and the molecules are then placed into nanopores prepared on silicon (001) surfaces using electron beam lithography and reactive ion-etching techniques. We have observed the self-assemble growth of the MT molecules on the patterned Si surface such that the MT molecules have grown into rod or ring type three-dimensional nanostructures, depending on the patterned nanostructures on the surface. We also provide scanning electron microscopy, atomic force microscopy, and magnetic force microscope studies of the molecular nanostructures. This engineered molecule shows molecular magnetization and is biocompatible with conventional semiconductors. These features make Mn,Cd-MT-2 a good candidate for biological applications and sensing sources of new nanodevices. Using molecular self-assembly and topographical patterning of the semiconductor substrate, we can close the gap between bio-molecules and nanoelectronics built into the semiconductor chip.

  1. Rotational superstructure in van der Waals heterostructure of self-assembled C 60 monolayer on the WSe 2 surface

    DOE PAGES

    Santos, Elton J. G.; Scullion, Declan; Chu, Ximo S.; ...

    2017-08-23

    Hybrid van der Waals (vdW) heterostructures composed of two-dimensional (2D) layered materials and self-assembled organic molecules are promising systems for electronic and optoelectronic applications with enhanced properties and performance. Control of molecular assembly is therefore paramount to fundamentally understand the nucleation, ordering, alignment, and electronic interaction of organic molecules with 2D materials. Here, we report the formation and detailed study of highly ordered, crystalline monolayers of C 60 molecules self-assembled on the surface of WSe 2 in well-ordered arrays with large grain sizes (~5 μm). Using high-resolution scanning tunneling microscopy (STM), we observe a periodic 2 × 2 superstructure inmore » the C 60 monolayer and identify four distinct molecular appearances. Using vdW-corrected ab initio density functional theory (DFT) simulations, we determine that the interplay between vdW and Coulomb interactions as well as adsorbate–adsorbate and adsorbate–substrate interactions results in specific rotational arrangements of the molecules forming the superstructure. The orbital ordering through the relative positions of bonds in adjacent molecules creates a charge redistribution that links the molecule units in a long-range network. Furthermore, this rotational superstructure extends throughout the self-assembled monolayer and opens a pathway towards engineering aligned hybrid organic/inorganic vdW heterostructures with 2D layered materials in a precise and controlled way.« less

  2. Rotational superstructure in van der Waals heterostructure of self-assembled C 60 monolayer on the WSe 2 surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santos, Elton J. G.; Scullion, Declan; Chu, Ximo S.

    Hybrid van der Waals (vdW) heterostructures composed of two-dimensional (2D) layered materials and self-assembled organic molecules are promising systems for electronic and optoelectronic applications with enhanced properties and performance. Control of molecular assembly is therefore paramount to fundamentally understand the nucleation, ordering, alignment, and electronic interaction of organic molecules with 2D materials. Here, we report the formation and detailed study of highly ordered, crystalline monolayers of C 60 molecules self-assembled on the surface of WSe 2 in well-ordered arrays with large grain sizes (~5 μm). Using high-resolution scanning tunneling microscopy (STM), we observe a periodic 2 × 2 superstructure inmore » the C 60 monolayer and identify four distinct molecular appearances. Using vdW-corrected ab initio density functional theory (DFT) simulations, we determine that the interplay between vdW and Coulomb interactions as well as adsorbate–adsorbate and adsorbate–substrate interactions results in specific rotational arrangements of the molecules forming the superstructure. The orbital ordering through the relative positions of bonds in adjacent molecules creates a charge redistribution that links the molecule units in a long-range network. Furthermore, this rotational superstructure extends throughout the self-assembled monolayer and opens a pathway towards engineering aligned hybrid organic/inorganic vdW heterostructures with 2D layered materials in a precise and controlled way.« less

  3. Multiple hybrid de novo genome assembly of finger millet, an orphan allotetraploid crop

    PubMed Central

    Hatakeyama, Masaomi; Aluri, Sirisha; Balachadran, Mathi Thumilan; Sivarajan, Sajeevan Radha; Patrignani, Andrea; Grüter, Simon; Poveda, Lucy; Shimizu-Inatsugi, Rie; Baeten, John; Francoijs, Kees-Jan; Nataraja, Karaba N; Reddy, Yellodu A Nanja; Phadnis, Shamprasad; Ravikumar, Ramapura L; Schlapbach, Ralph; Sreeman, Sheshshayee M; Shimizu, Kentaro K

    2018-01-01

    Abstract Finger millet (Eleusine coracana (L.) Gaertn) is an important crop for food security because of its tolerance to drought, which is expected to be exacerbated by global climate changes. Nevertheless, it is often classified as an orphan/underutilized crop because of the paucity of scientific attention. Among several small millets, finger millet is considered as an excellent source of essential nutrient elements, such as iron and zinc; hence, it has potential as an alternate coarse cereal. However, high-quality genome sequence data of finger millet are currently not available. One of the major problems encountered in the genome assembly of this species was its polyploidy, which hampers genome assembly compared with a diploid genome. To overcome this problem, we sequenced its genome using diverse technologies with sufficient coverage and assembled it via a novel multiple hybrid assembly workflow that combines next-generation with single-molecule sequencing, followed by whole-genome optical mapping using the Bionano Irys® system. The total number of scaffolds was 1,897 with an N50 length >2.6 Mb and detection of 96% of the universal single-copy orthologs. The majority of the homeologs were assembled separately. This indicates that the proposed workflow is applicable to the assembly of other allotetraploid genomes. PMID:28985356

  4. THE ROLE OF COMPETITION EFFECT IN THE SELF-ASSEMBLY STRUCTURE OF 3,5-DIPHENYLBENZOIC ACID AND 2,2‧:6‧,2″-TERPYRIDINE-4‧-CARBOXYLIC ACID ON Ag(110)

    NASA Astrophysics Data System (ADS)

    Hu, Yufen; Li, Wei; Lu, Yan; Wang, Zhongping; Leng, Xinli; Liao, Qinghua; Liu, Xiaoqing; Wang, Li

    The self-assembly structures of 2,2‧:6‧,2‧‧-terpyridine-4‧-carboxylic acid (C16H11N3O2; YN) molecules and 3,5-diphenylbenzoic acid (C19H14O2; YC) molecules on Ag(110) surface have been investigated by scanning tunneling microscopy (STM) and Density Functional Theory (DFT) calculation. The YC molecules form two different well-organized structures due to the π-π stacking and dipole-dipole interactions. When three C atoms of YC molecules are replaced by three N atoms to form YN molecules, the main driving force to form ordered assembly structures of YN molecule is changed to metal-organic coordination bond and hydrogen bond. The dramatic changes of main driving force between YC/Ag(110) and YN/Ag(110) system demonstrate that the N atoms are apt to form metal-organic coordination bond and hydrogen bond but dipole-dipole interactions and π-π stacking are relative to C atoms. These findings further reveal that the optimization design of organic molecules could vary the main driving force and then lead to the change of the molecular self-assembly structures.

  5. Investigation of biomacromolecular assembly: replacement occurring on proteins

    NASA Astrophysics Data System (ADS)

    Gao, Hong-Wen; Hu, Zhang-Jun; Zhao, Jian-Fu

    2003-07-01

    The non-chemical bond interaction between small molecule and macromolecule coming from the electrostatic attraction obeys the Langmuir assembly. The interaction of 1,5-di(2-hydroxyl-5-sulfophenyl-)-3-cyanoformazan (DSPCF) and three kinds of proteins: bovine serum albumin (BSA), α-globulins (Gb) and ovalbumin (OVA) at pH 1.83 has been investigated and then sodium dodecyl benzene sulfonate (SDBS) was added to replace the DSPCF binding in protein. The microsurface adsorption-spectral correction (MSASC) technique and the break point approach were both used to characterize the aggregates. Results showed that the products: SDBS 99BSA, SDBS 50OVA and SDBS 25Gb at 30 °C and SDBS 90BSA, SDBS 40OVA and SDBS 20Gb at 40 °C are formed.

  6. Biosensing based on magnetically induced self-assembly of particles in magnetic colloids.

    PubMed

    Yang, Ye; Morimoto, Yoshitaka; Takamura, Tsukasa; Sandhu, Adarsh

    2012-03-01

    Superparamagnetic beads and nonmagnetic beads of different sizes were assembled to form a "ring-structure" in a magnetorheological (MR) fluid solution by the application of external magnetic fields. For superparamagnetic beads and non-magnetic beads functionalized with probe and target molecules, respectively, the ring-structure was maintained even after removing the external magnetic field due to biomolecular bonding. Several experiments are described, including the formation process of ring-structures with and without molecular interactions, the accelerating effect of external magnetic fields, and the effect of biotin concentration on the structures of the rings. We define the small nonmagnetic particles as "petals" because the whole structure looks like a flower. The number of remnant ring petals was a function of the concentration of target molecules in the concentration range of 0.0768 ng/ml-3.8419 ng/ml which makes this protocol a promising method for biosensing. Not only was the formation process rapid, but the resulting two-dimensional colloidal system also offers a simple method for reducing reagent consumption and waste generation.

  7. Self-assembly of fatty acids on hydroxylated Al surface and effects of their stability on wettability and nanoscale organization.

    PubMed

    Liascukiene, Irma; Steffenhagen, Marie; Asadauskas, Svajus J; Lambert, Jean-François; Landoulsi, Jessem

    2014-05-27

    The self-assembly of fatty acids (FA) on the surfaces of inorganic materials is a relevant way to control their wetting properties. While the mechanism of adsorption on model flat substrate is well described in the literature, interfacial processes remain poorly documented on nanostructured surfaces. In this study, we report the self-assembly of a variety of FA on a hydroxylated Al surface which exhibits a random nanoscale organization. Our results revealed a peculiar fingerprint due to the FA self-assembly which consists in the formation of aligned nanopatterns in a state of hierarchical nanostructuration, regardless of the molecular structure of the FA (chain length, level of unsaturation). After a significant removal of adsorbed FA using UV/O3 treatment, a complete wetting was reached, and a noticeable disturbance of the surface morphology was observed, evidencing the pivotal role of FA molecules to maintain these nanostructures. The origin of wetting properties was investigated prior to and after conditioning of FA-modified samples taking into account key parameters, namely the surface roughness and its composition. For this purpose, the Wenzel roughness, defined as the third moment of power spectral density, was used, as it is sensitive to high spatial frequency and thus to the obtained hierarchical level of nanostructuration. Our results revealed that no correlation can be made between water contact angles (θ(w)) and the Wenzel roughness. By contrast, θ(w) strongly increased with the amount of -CHx- groups exhibited by adsorbed FA. These findings suggest that the main origin of hydrophobization is the presence of self-assembled molecules and that the surface roughness has only a small contribution to the wettability.

  8. Modeling the self-assembly of functionalized fullerenes on solid surfaces using Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Bubnis, Gregory J.

    Since their discovery 25 years ago, carbon fullerenes have been widely studied for their unique physicochemical properties and for applications including organic electronics and photovoltaics. For these applications it is highly desirable for crystalline fullerene thin films to spontaneously self-assemble on surfaces. Accordingly, many studies have functionalized fullerenes with the aim of tailoring their intermolecular interactions and controlling interactions with the solid substrate. The success of these rational design approaches hinges on the subtle interplay of intermolecular forces and molecule-substrate interactions. Molecular modeling is well-suited to studying these interactions by directly simulating self-assembly. In this work, we consider three different fullerene functionalization approaches and for each approach we carry out Monte Carlo simulations of the self-assembly process. In all cases, we use a "coarse-grained" molecular representation that preserves the dominant physical interactions between molecules and maximizes computational efficiency. The first approach we consider is the traditional gold-thiolate SAM (self-assembled monolayer) strategy which tethers molecules to a gold substrate via covalent sulfur-gold bonds. For this we study an asymmetric fullerene thiolate bridged by a phenyl group. Clusters of 40 molecules are simulated on the Au(111) substrate at different temperatures and surface coverage densities. Fullerenes and S atoms are found to compete for Au(111) surface sites, and this competition prevents self-assembly of highly ordered monolayers. Next, we investigate self-assembled monolayers formed by fullerenes with hydrogen-bonding carboxylic acid substituents. We consider five molecules with different dimensions and symmetries. Monte Carlo cooling simulations are used to find the most stable solid structures of clusters adsorbed to Au(111). The results show cases where fullerene-Au(111) attraction, fullerene close-packing, and hydrogen-bonding interactions can cooperate to guide self-assembly or compete to hinder it. Finally, we consider three bis-fullerene molecules, each with a different "bridging group" covalently joining two fullerenes. To effectively study the competing "standing-up" and "lying-down" morphologies, we use Monte Carlo simulations in conjunction with replica exchange and force field biasing methods. For clusters adsorbed to smooth model surfaces, we determine free energy landscapes and demonstrate their utility for rationalizing and predicting self-assembly.

  9. Mapping small molecule binding data to structural domains

    PubMed Central

    2012-01-01

    Background Large-scale bioactivity/SAR Open Data has recently become available, and this has allowed new analyses and approaches to be developed to help address the productivity and translational gaps of current drug discovery. One of the current limitations of these data is the relative sparsity of reported interactions per protein target, and complexities in establishing clear relationships between bioactivity and targets using bioinformatics tools. We detail in this paper the indexing of targets by the structural domains that bind (or are likely to bind) the ligand within a full-length protein. Specifically, we present a simple heuristic to map small molecule binding to Pfam domains. This profiling can be applied to all proteins within a genome to give some indications of the potential pharmacological modulation and regulation of all proteins. Results In this implementation of our heuristic, ligand binding to protein targets from the ChEMBL database was mapped to structural domains as defined by profiles contained within the Pfam-A database. Our mapping suggests that the majority of assay targets within the current version of the ChEMBL database bind ligands through a small number of highly prevalent domains, and conversely the majority of Pfam domains sampled by our data play no currently established role in ligand binding. Validation studies, carried out firstly against Uniprot entries with expert binding-site annotation and secondly against entries in the wwPDB repository of crystallographic protein structures, demonstrate that our simple heuristic maps ligand binding to the correct domain in about 90 percent of all assessed cases. Using the mappings obtained with our heuristic, we have assembled ligand sets associated with each Pfam domain. Conclusions Small molecule binding has been mapped to Pfam-A domains of protein targets in the ChEMBL bioactivity database. The result of this mapping is an enriched annotation of small molecule bioactivity data and a grouping of activity classes following the Pfam-A specifications of protein domains. This is valuable for data-focused approaches in drug discovery, for example when extrapolating potential targets of a small molecule with known activity against one or few targets, or in the assessment of a potential target for drug discovery or screening studies. PMID:23282026

  10. Hierarchical and non-hierarchical mineralisation of collagen

    PubMed Central

    Liu, Yan; Kim, Young-Kyung; Dai, Lin; Li, Nan; Khan, Sara; Pashley, David H.; Tay, Franklin R.

    2010-01-01

    Biomineralisation of collagen involves functional motifs incorporated in extracellular matrix protein molecules to accomplish the objectives of stabilising amorphous calcium phosphate into nanoprecursors and directing the nucleation and growth of apatite within collagen fibrils. Here we report the use of small inorganic polyphosphate molecules to template hierarchical intrafibrillar apatite assembly in reconstituted collagen in the presence of polyacrylic acid to sequester calcium and phosphate into transient amorphous nanophases. The use of polyphosphate without a sequestration analogue resulted only in randomly-oriented extrafibrillar precipitations along the fibrillar surface. Conversely, the use of polyacrylic acid without a templating analogue resulted only in non-hierarchical intrafibrillar mineralisation with continuous apatite strands instead of discrete crystallites. The ability of using simple non-protein molecules to recapitulate different levels of structural hierarchy in mineralised collagen signifies the ultimate simplicity in Nature’s biomineralisation design principles and challenges the need for using more complex recombinant matrix proteins in bioengineering applications. PMID:21040969

  11. Molecular self assembly and chiral recognition of copper octacyanophthalocyanine on Au(111): Interplay of intermolecular and molecule-substrate interactions.

    NASA Astrophysics Data System (ADS)

    Sk, Rejaul; Dhara, Barun; Miller, Joel; Deshpande, Aparna

    Submolecular resolution scanning tunneling microscopy (STM) of copper octacyanophthalocyanine, CuPc(CN)8, at 77 K demonstrates that these achiral molecules form a two dimensional (2D) tetramer-based self-assembly upon evaporation onto an atomically flat Au(111) substrate. They assemble in two different structurally chiral configurations upon adsorption on Au(111). Scanning tunneling spectroscopy (STS),acquired at 77 K, unveils the HOMO and LUMO energy levels of this self-assembly. Voltage dependent STM images show that each molecule in both the structurally chiral configurations individually becomes chiral by breaking the mirror symmetry due to the enhanced intermolecular dipolar coupling interaction at the LUMO energy while the individual molecules remain achiral at the HOMO energy and within the HOMO-LUMO gap. At the LUMO energy, the handedness of the each chiral molecule is decided by the direction of the dipolar coupling interaction in the tetramer unit cell. This preference for LUMO energy indicates that this chirality is purely electronic in nature and it manifests on top of the organizational chirality that is present in the self-assembly independent of the orbital energy. Supported by IISER Pune and DAE-BRNS, India (Project No. 2011/20/37C/17/BRNS).

  12. The small molecule CS1 inhibits mitosis and sister chromatid resolution in HeLa cells.

    PubMed

    Wu, Xingkang; Li, Zhenyu; Shen, Yuemao

    2018-05-01

    Mitosis, the most dramatic event in the cell cycle, involves the reorganization of virtually all cellular components. Antimitotic agents are useful for dissecting the mechanism of this reorganization. Previously, we found that the small molecule CS1 accumulates cells in G2/M phase [1], but the mechanism of its action remains unknown. Cell cycle analysis, live cell imaging and nuclear staining were used. Chromosomal morphology was detected by chromosome spreading. The effects of CS1 on microtubules were confirmed by tubulin polymerization, colchicine tubulin-binding, cellular tubulin polymerization and immunofluorescence assays and by analysis of microtubule dynamics and molecular modeling. Histone phosphoproteomics was performed using mass spectrometry. Cell signaling cascades were analyzed using immunofluorescence, immunoprecipitation, immunoblotting, siRNA knockdown and chemical inhibition of specific proteins. The small molecule CS1 was shown to be an antimitotic agent. CS1 potently inhibited microtubule polymerization via interaction with the colchicine-binding pocket of tubulin in vitro and inhibited the formation of the spindle apparatus by reducing the bulk of growing microtubules in HeLa cells, which led to activation of the spindle assembly checkpoint (SAC) and mitotic arrest of HeLa cells. Compared with colchicine, CS1 impaired the progression of sister chromatid resolution independent of cohesin dissociation, and this was reversed by the removal of CS1. Additionally, CS1 induced unique histone phosphorylation patterns distinct from those induced by colchicine. CS1 is a unique antimitotic small molecule and a powerful tool with unprecedented value over colchicine that makes it possible to specifically and conditionally perturb mitotic progression. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Two-Way Gold Nanoparticle Label-Free Sensing of Specific Sequence and Small Molecule Targets Using Switchable Concatemers.

    PubMed

    Zhu, Longjiao; Shao, Xiangli; Luo, Yunbo; Huang, Kunlung; Xu, Wentao

    2017-05-19

    A two-way colorimetric biosensor based on unmodified gold nanoparticles (GNPs) and a switchable double-stranded DNA (dsDNA) concatemer have been demonstrated. Two hairpin probes (H1 and H2) were first designed that provided the fuels to assemble the dsDNA concatemers via hybridization chain reaction (HCR). A functional hairpin (FH) was rationally designed to recognize the target sequences. All the hairpins contained a single-stranded DNA (ssDNA) loop and sticky end to prevent GNPs from salt-induced aggregation. In the presence of target sequence, the capture probe blocked in the FH recognizes the target to form a duplex DNA, which causes the release of the initiator probe by FH conformational change. This process then starts the alternate-opening of H1 and H2 through HCR, and dsDNA concatemers grow from the target sequence. As a result, unmodified GNPs undergo salt-induced aggregation because the formed dsDNA concatemers are stiffer and provide less stabilization. A light purple-to-blue color variation was observed in the bulk solution, termed the light-off sensing way. Furthermore, H1 ingeniously inserted an aptamer sequence to generate dsDNA concatemers with multiple small molecule binding sites. In the presence of small molecule targets, concatemers can be disassembled into mixtures with ssDNA sticky ends. A blue-to-purple reverse color variation was observed due to the regeneration of the ssDNA, termed the light-on way. The two-way biosensor can detect both nucleic acids and small molecule targets with one sensing device. This switchable sensing element is label-free, enzyme-free, and sophisticated-instrumentation-free. The detection limits of both targets were below nanomolar.

  14. Identification of Small Molecule Translesion Synthesis Inhibitors That Target the Rev1-CT/RIR Protein-Protein Interaction.

    PubMed

    Sail, Vibhavari; Rizzo, Alessandro A; Chatterjee, Nimrat; Dash, Radha C; Ozen, Zuleyha; Walker, Graham C; Korzhnev, Dmitry M; Hadden, M Kyle

    2017-07-21

    Translesion synthesis (TLS) is an important mechanism through which proliferating cells tolerate DNA damage during replication. The mutagenic Rev1/Polζ-dependent branch of TLS helps cancer cells survive first-line genotoxic chemotherapy and introduces mutations that can contribute to the acquired resistance so often observed with standard anticancer regimens. As such, inhibition of Rev1/Polζ-dependent TLS has recently emerged as a strategy to enhance the efficacy of first-line chemotherapy and reduce the acquisition of chemoresistance by decreasing tumor mutation rate. The TLS DNA polymerase Rev1 serves as an integral scaffolding protein that mediates the assembly of the active multiprotein TLS complexes. Protein-protein interactions (PPIs) between the C-terminal domain of Rev1 (Rev1-CT) and the Rev1-interacting region (RIR) of other TLS DNA polymerases play an essential role in regulating TLS activity. To probe whether disrupting the Rev1-CT/RIR PPI is a valid approach for developing a new class of targeted anticancer agents, we designed a fluorescence polarization-based assay that was utilized in a pilot screen for small molecule inhibitors of this PPI. Two small molecule scaffolds that disrupt this interaction were identified, and secondary validation assays confirmed that compound 5 binds to Rev1-CT at the RIR interface. Finally, survival and mutagenesis assays in mouse embryonic fibroblasts and human fibrosarcoma HT1080 cells treated with cisplatin and ultraviolet light indicate that these compounds inhibit mutagenic Rev1/Polζ-dependent TLS in cells, validating the Rev1-CT/RIR PPI for future anticancer drug discovery and identifying the first small molecule inhibitors of TLS that target Rev1-CT.

  15. Diverse Supramolecular Nanofiber Networks Assembled by Functional Low-Complexity Domains.

    PubMed

    An, Bolin; Wang, Xinyu; Cui, Mengkui; Gui, Xinrui; Mao, Xiuhai; Liu, Yan; Li, Ke; Chu, Cenfeng; Pu, Jiahua; Ren, Susu; Wang, Yanyi; Zhong, Guisheng; Lu, Timothy K; Liu, Cong; Zhong, Chao

    2017-07-25

    Self-assembling supramolecular nanofibers, common in the natural world, are of fundamental interest and technical importance to both nanotechnology and materials science. Despite important advances, synthetic nanofibers still lack the structural and functional diversity of biological molecules, and the controlled assembly of one type of molecule into a variety of fibrous structures with wide-ranging functional attributes remains challenging. Here, we harness the low-complexity (LC) sequence domain of fused in sarcoma (FUS) protein, an essential cellular nuclear protein with slow kinetics of amyloid fiber assembly, to construct random copolymer-like, multiblock, and self-sorted supramolecular fibrous networks with distinct structural features and fluorescent functionalities. We demonstrate the utilities of these networks in the templated, spatially controlled assembly of ligand-decorated gold nanoparticles, quantum dots, nanorods, DNA origami, and hybrid structures. Owing to the distinguishable nanoarchitectures of these nanofibers, this assembly is structure-dependent. By coupling a modular genetic strategy with kinetically controlled complex supramolecular self-assembly, we demonstrate that a single type of protein molecule can be used to engineer diverse one-dimensional supramolecular nanostructures with distinct functionalities.

  16. Simulations of polymorphic icosahedral shells assembling around many cargo molecules

    NASA Astrophysics Data System (ADS)

    Mohajerani, Farzaneh; Perlmutter, Jason; Hagan, Michael

    Bacterial microcompartments (BMCs) are large icosahedral shells that sequester the enzymes and reactants responsible for particular metabolic pathways in bacteria. Although different BMCs vary in size and encapsulate different cargoes, they are constructed from similar pentameric and hexameric shell proteins. Despite recent groundbreaking experiments which visualized the formation of individual BMCs, the detailed assembly pathways and the factors which control shell size remain unclear. In this talk, we describe theoretical and computational models that describe the dynamical encapsulation of hundreds of cargo molecules by self-assembling icosahedral shells. We present phase diagrams and analysis of dynamical simulation trajectories showing how the thermodynamics, assembly pathways, and emergent structures depend on the interactions among shell proteins and cargo molecules. Our model suggests a mechanism for controlling insertion of the 12 pentamers required for a closed shell topology, and the relationship between assembly pathway and BMC size polydispersity. In addition to elucidating how native BMCs assemble,our results establish principles for reengineering BMCs or viral capsids as customizable nanoreactors that can assemble around a programmable set of enzymes and reactants. Supported by NIH R01GM108021 and Brandeis MRSEC DMR-1420382.

  17. Concentration-dependent multiple chirality transition in halogen-bond-driven 2D self-assembly process

    NASA Astrophysics Data System (ADS)

    Miao, Xinrui; Li, Jinxing; Zha, Bao; Miao, Kai; Dong, Meiqiu; Wu, Juntian; Deng, Wenli

    2018-03-01

    The concentration-dependent self-assembly of iodine substituted thienophenanthrene derivative (5,10-DITD) is investigated at the 1-octanic acid/graphite interface using scanning tunneling microscopy. Three kinds of chiral arrangement and transition of 2D molecular assembly mainly driven by halogen bonding is clearly revealed. At high concentration the molecules self-assembled into a honeycomb-like chiral network. Except for the interchain van der Waals forces, this pattern is stabilized by intermolecular continuous Cdbnd O⋯I⋯S halogen bonds in each zigzag line. At moderate concentration, a chiral kite-like nanoarchitecture are observed, in which the Cdbnd O⋯I⋯S and I⋯Odbnd C halogen bonds, along with the molecule-solvent Cdbnd O⋯I⋯H halogen bonds are the dominated forces to determine the structural formation. At low concentration, the molecules form a chiral cyclic network resulting from the solvent coadsorption mainly by molecule-molecule Cdbnd O⋯I⋯S halogen bonds and molecule-solvent Cdbnd O⋯I⋯H halogen bonds. The density of molecular packing becomes lower with the decreasing of the solution concentration. The solution-concentration dependent self-assembly of thienophenanthrene derivative with iodine and ester chain moieties reveals that the type of intermolecular halogen bond and the number of the co-adsorbing 1-octanic acids by molecule-solvent Cdbnd O⋯I⋯H halogen bonds determine the formation and transformation of chirality. This research emphasizes the role of different types of halogen (I) bonds in the controllable supramolecular structures and provides an approach for the fabrication of chirality.

  18. Applying AFM-based nanofabrication for measuring the thickness of nanopatterns: the role of head groups in the vertical self-assembly of omega-functionalized n-alkanethiols.

    PubMed

    Kelley, Algernon T; Ngunjiri, Johnpeter N; Serem, Wilson K; Lawrence, Steve O; Yu, Jing-Jiang; Crowe, William E; Garno, Jayne C

    2010-03-02

    Molecules of n-alkanethiols with methyl head groups typically form well-ordered monolayers during solution self-assembly for a wide range of experimental conditions. However, we have consistently observed that, for either carboxylic acid or thiol-terminated n-alkanethiols, under certain conditions nanografted patterns are generated with a thickness corresponding precisely to a double layer. To investigate the role of head groups for solution self-assembly, designed patterns of omega-functionalized n-alkanethiols were nanografted with systematic changes in concentration. Nanografting is an in situ approach for writing patterns of thiolated molecules on gold surfaces by scanning with an AFM tip under high force, accomplished in dilute solutions of desired ink molecules. As the tip is scanned across the surface of a self-assembled monolayer under force, the matrix molecules are displaced from the surface and are immediately replaced with fresh molecules from solution to generate nanopatterns. In this report, side-by-side comparison of nanografted patterns is achieved for different matrix molecules using AFM images. The chain length and head groups (i.e., carboxyl, hydroxyl, methyl, thiol) were varied for the nanopatterns and matrix monolayers. Interactions such as head-to-head dimerization affect the vertical self-assembly of omega-functionalized n-alkanethiol molecules within nanografted patterns. At certain threshold concentrations, double layers were observed to form when nanografting with head groups of carboxylic acid and dithiols, whereas single layers were generated exclusively for nanografted patterns with methyl and hydroxyl groups, regardless of changes in concentration.

  19. Logical NAND and NOR Operations Using Algorithmic Self-assembly of DNA Molecules

    NASA Astrophysics Data System (ADS)

    Wang, Yanfeng; Cui, Guangzhao; Zhang, Xuncai; Zheng, Yan

    DNA self-assembly is the most advanced and versatile system that has been experimentally demonstrated for programmable construction of patterned systems on the molecular scale. It has been demonstrated that the simple binary arithmetic and logical operations can be computed by the process of self assembly of DNA tiles. Here we report a one-dimensional algorithmic self-assembly of DNA triple-crossover molecules that can be used to execute five steps of a logical NAND and NOR operations on a string of binary bits. To achieve this, abstract tiles were translated into DNA tiles based on triple-crossover motifs. Serving as input for the computation, long single stranded DNA molecules were used to nucleate growth of tiles into algorithmic crystals. Our method shows that engineered DNA self-assembly can be treated as a bottom-up design techniques, and can be capable of designing DNA computer organization and architecture.

  20. Fast kinetics of chromatin assembly revealed by single-molecule videomicroscopy and scanning force microscopy

    PubMed Central

    Ladoux, Benoit; Quivy, Jean-Pierre; Doyle, Patrick; Roure, Olivia du; Almouzni, Geneviève; Viovy, Jean-Louis

    2000-01-01

    Fluorescence videomicroscopy and scanning force microscopy were used to follow, in real time, chromatin assembly on individual DNA molecules immersed in cell-free systems competent for physiological chromatin assembly. Within a few seconds, molecules are already compacted into a form exhibiting strong similarities to native chromatin fibers. In these extracts, the compaction rate is more than 100 times faster than expected from standard biochemical assays. Our data provide definite information on the forces involved (a few piconewtons) and on the reaction path. DNA compaction as a function of time revealed unique features of the assembly reaction in these extracts. They imply a sequential process with at least three steps, involving DNA wrapping as the final event. An absolute and quantitative measure of the kinetic parameters of the early steps in chromatin assembly under physiological conditions could thus be obtained. PMID:11114182

  1. The Molecular Industrial Revolution: Automated Synthesis of Small Molecules

    PubMed Central

    Trobe, Melanie; Burke, Martin D.

    2018-01-01

    The eighteenth and nineteenth centuries marked a sweeping transition from manual to automated manufacturing on the macroscopic scale. This enabled an unmatched period of human innovation that helped drive the Industrial Revolution. The impact on society was transformative, ultimately yielding substantial improvements in living conditions and lifespan in many parts of the world. During the same time period, the first manual syntheses of organic molecules was achieved. Now, two centuries later, we are poised for an analogous transition from highly customized crafting of specific molecular targets by hand to the increasingly general and automated assembly of many different types of molecules with the push of a button. Automation of customized small molecule synthesis pathways is already enabling safer, more reproducible, and readily scalable production of specific targets, and general machines now exist for the synthesis of a wide range of different peptides, oligonucleotides, and oligosaccharides. Creating general machines that are similarly capable of making many different types of small molecules on-demand, akin to that which has been achieved on the macroscopic scale with 3D printers, has proven to be substantially more challenging. Yet important progress is being made toward this potentially transformative objective with two complementary approaches: (1) automation of customized synthesis routes to different targets via machines that enable use of many different reactions and starting materials, and (2) automation of generalized platforms that make many different targets using common coupling chemistry and building blocks. Continued progress in these exciting directions has the potential to shift the bottleneck in molecular innovation from synthesis to imagination, and thereby help drive a new industrial revolution on the molecular scale. PMID:29513400

  2. Coverage induced structural transformations of tetracene on Ag(110)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takasugi, Kazushiro; Yokoyama, Takashi, E-mail: tyoko@yokohama-cu.ac.jp

    2016-03-14

    Self-assembly of tetracene on an anisotropic surface of Ag(110) has been investigated using scanning tunneling microscopy and low-energy electron diffraction. We observe multistage structural transformations of the self-assembled tetracene on Ag(110) as a function of molecular coverages, which are accompanied by the changes in molecular orientations. They are analyzed by a balance between multiple molecule-molecule and anisotropic substrate-molecule interactions.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Yudie; Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031; Liu, Honglin, E-mail: hlliu@iim.ac.cn

    Graphical abstract: - Highlights: • Mercapto groups were grafted to chitosan molecule by a reactive amine reduction. • Functional polymer with well-defined monomer units controls AuNPs assembly. • Assembled morphologies depend on the ratio of AuNPs to thiolate groups. • Microcubes with side length of ∼20 μm was synthesized through a dialysis step. • A edge-to-middle growth mechanism of gold microcubes was observed. - Abstract: The L-cysteine molecules were successfully grafted to the 2-amino group of chitosan by a reactive amine reduction, and the as-synthesized thiolated chitosan (TC) molecules were used as the templates to direct the self-assembly of goldmore » nanoparticles and induce the transformation of these assemblies to gold microcubes through a deep-going dialysis. We found that the ratio of gold nanoparticles to TC molecules could greatly affect the shape of the assembled clusters. Different stages of these clusters and microstructures during the dialysis process were characterized by scanning electron microscope (SEM), and the microcubes with average side length of about 20 μm were successfully synthesized. According to the morphology evolution of the assembly, it could be concluded that the microcubes were formed from external to internal. The SERS area mapping images of microcubes and some clusters were also collected to study the formation mechanism of gold microcubes. Our work demonstrates a simple and highly effective way to assemble gold nanoparticles into microcubes with unique properties.« less

  4. Antifouling Properties of a Self-Assembling Glutamic Acid-Lysine Zwitterionic Polymer Surface Coating.

    PubMed

    Ziemba, Christopher; Khavkin, Maria; Priftis, Dimitris; Acar, Handan; Mao, Jun; Benami, Maya; Gottlieb, Moshe; Tirrell, Matthew; Kaufman, Yair; Herzberg, Moshe

    2018-04-23

    There is a need for the development of antifouling materials to resist adsorption of biomacromolecules. Here we describe the preparation of a novel zwitterionic block copolymer with the potential to prevent or delay the formation of microbial biofilms. The block copolymer comprised a zwitterionic (hydrophilic) section of alternating glutamic acid (negatively charged) and lysine (positively charged) units and a hydrophobic polystyrene section. Cryo-TEM and dynamic-light-scattering (DLS) results showed that, on average, the block copolymer self-assembled into 7-nm-diameter micelles in aqueous solutions (0 to 100 mM NaCl, pH 6). Quartz crystal microbalance with dissipation monitoring (QCM-D), atomic force microscopy (AFM), and contact angle measurements demonstrated that the block copolymer self-assembled into a brush-like monolayer on polystyrene surfaces. The brush-like monolayer produced from a 100 mg/L block copolymer solution exhibited an average distance, d, of approximately 4-8 nm between each block copolymer molecule (center to center). Once the brush-like monolayer self-assembled, it reduced EPS adsorption onto the polystyrene surface by ∼70% (mass), reduced the rate of bacterial attachment by >80%, and inhibited the development of thick biofilms. QCM-D results revealed that the EPS molecules penetrate between the chains of the brush and adsorb onto the polystyrene surface. Additionally, AFM analyses showed that the brush-like monolayer prevents the adhesion of large (> d) hydrophilic colloids onto the surface via hydration repulsion; however, molecules or colloids small enough to fit between the brush polymers (< d) were able to be adsorbed onto the surface via van der Waals interactions. Overall, we found that the penetration of extracellular organelles, as well as biopolymers through the brush, is critical for the failure of the antifouling coating, and likely could be prevented through tuning of the brush density. Stability and biofilm development testing on multiple surfaces (polypropylene, glass, and stainless steel) support practical applications of this novel block copolymer.

  5. Formation of Core-Shell Ethane-Silver Clusters in He Droplets.

    PubMed

    Loginov, Evgeny; Gomez, Luis F; Sartakov, Boris G; Vilesov, Andrey F

    2017-08-17

    Ethane core-silver shell clusters consisting of several thousand particles have been assembled in helium droplets upon capture of ethane molecules followed by Ag atoms. The composite clusters were studied via infrared laser spectroscopy in the range of the C-H stretching vibrations of ethane. The spectra reveal a splitting of the vibrational bands, which is ascribed to interaction with Ag. A rigorous analysis of band intensities for a varying number of trapped ethane molecules and Ag atoms indicates that the composite clusters consist of a core of ethane that is covered by relatively small Ag clusters. This metastable structure is stabilized due to fast dissipation in superfluid helium droplets of the cohesion energy of the clusters.

  6. Chemically modified electrodes by nucleophilic substitution of chlorosilylated platinum oxide surfaces

    NASA Astrophysics Data System (ADS)

    Chen, Chun-Hsien; Hutchison, James H.; Postlethwaite, Timothy A.; Richardson, John N.; Murray, R. W.

    1994-07-01

    Chlorosilylated platinum oxide electrode surfaces can be generated by reaction of SiCl4 vapor with an electrochemically prepared monolayer of platinum oxide. A variety of nucleophilic agents (such as alcohols, amines, thiols, and Grignard reagents) can be used to displace chloride and thereby functionalize the metal surface. Electroactive surfaces prepared with ferrocene methanol as the nucleophile show that derivatization by small molecules can achieve coverages on the order of a full monolayer. Surfaces modified with long-chain alkyl groups efficiently block electrode reactions of redox probes dissolved in the contacting solution, but other electrochemical (double layer capacitance and surface coverage) and contact angle measurements suggest that these molecule films are not highly ordered, self-assembled monolayers.

  7. Tunable drug loading and release from polypeptide multilayer nanofilms

    PubMed Central

    Jiang, Bingbing; Li, Bingyun

    2009-01-01

    Polypeptide multilayer nanofilms were prepared using electrostatic layer-by-layer self-assembly nanotechnology. Small charged drug molecules (eg, cefazolin, gentamicin, and methylene blue) were loaded in polypeptide multilayer nanofilms. Their loading and release were found to be pH-dependent and could also be controlled by changing the number of film layers and drug incubation time, and applying heat-treatment after film formation. Antibioticloaded polypeptide multilayer nanofilms showed controllable antibacterial properties against Staphylococcus aureus. The developed biodegradable polypeptide multilayer nanofilms are capable of loading both positively- and negatively-charged drug molecules and promise to serve as drug delivery systems on biomedical devices for preventing biomedical device-associated infection, which is a significant clinical complication for both civilian and military patients. PMID:19421369

  8. Particle-based simulations of bilayer membranes: self-assembly, structural analysis, and shock-wave damage

    NASA Astrophysics Data System (ADS)

    Steinhauser, Martin O.; Schindler, Tanja

    2017-01-01

    We report on the results of particle-based, coarse-grained molecular dynamics simulations of amphiphilic lipid molecules in aqueous environment where the membrane structures at equilibrium are subsequently exposed to strong shock waves, and their damage is analyzed. The lipid molecules self-assemble from unbiased random initial configurations to form stable bilayer membranes, including closed vesicles. During self-assembly of lipid molecules, we observe several stages of clustering, starting with many small clusters of lipids, gradually merging together to finally form one single bilayer membrane. We find that the clustering of lipids sensitively depends on the hydrophobic interaction h_c of the lipid tails in our model and on temperature T of the system. The self-assembled bilayer membranes are quantitatively analyzed at equilibrium with respect to their degree of order and their local structure. We also show that—by analyzing the membrane fluctuations and using a linearized theory— we obtain area compression moduli K_A and bending stiffnesses κ _B for our bilayer membranes which are within the experimental range of in vivo and in vitro measurements of biological membranes. We also discuss the density profile and the pair correlation function of our model membranes at equilibrium which has not been done in previous studies of particle-based membrane models. Furthermore, we present a detailed phase diagram of our lipid model that exhibits a sol-gel transition between quasi-solid and fluid domains, and domains where no self-assembly of lipids occurs. In addition, we present in the phase diagram the conditions for temperature T and hydrophobicity h_c of the lipid tails of our model to form closed vesicles. The stable bilayer membranes obtained at equilibrium are then subjected to strong shock waves in a shock tube setup, and we investigate the damage in the membranes due to their interaction with shock waves. Here, we find a transition from self-repairing membranes (reducing their damage after impact) and permanent (irreversible) damage, depending on the shock front speed. The here presented idea of using coarse-grained (CG) particle models for soft matter systems in combination with the investigation of shock-wave effects in these systems is a quite new approach.

  9. Single molecule characterization of DNA binding and strand displacement reactions on lithographic DNA origami microarrays.

    PubMed

    Scheible, Max B; Pardatscher, Günther; Kuzyk, Anton; Simmel, Friedrich C

    2014-03-12

    The combination of molecular self-assembly based on the DNA origami technique with lithographic patterning enables the creation of hierarchically ordered nanosystems, in which single molecules are positioned at precise locations on multiple length scales. Based on a hybrid assembly protocol utilizing DNA self-assembly and electron-beam lithography on transparent glass substrates, we here demonstrate a DNA origami microarray, which is compatible with the requirements of single molecule fluorescence and super-resolution microscopy. The spatial arrangement allows for a simple and reliable identification of single molecule events and facilitates automated read-out and data analysis. As a specific application, we utilize the microarray to characterize the performance of DNA strand displacement reactions localized on the DNA origami structures. We find considerable variability within the array, which results both from structural variations and stochastic reaction dynamics prevalent at the single molecule level.

  10. Prion-like Nanofibrils of Small Molecules (PriSM) Selectively Inhibit Cancer Cells by Impeding Cytoskeleton Dynamics*

    PubMed Central

    Kuang, Yi; Long, Marcus J. C.; Zhou, Jie; Shi, Junfeng; Gao, Yuan; Xu, Chen; Hedstrom, Lizbeth; Xu, Bing

    2014-01-01

    Emerging evidence reveals that prion-like structures play important roles to maintain the well-being of cells. Although self-assembly of small molecules also affords prion-like nanofibrils (PriSM), little is known about the functions and mechanisms of PriSM. Previous works demonstrated that PriSM formed by a dipeptide derivative selectively inhibiting the growth of glioblastoma cells over neuronal cells and effectively inhibiting xenograft tumor in animal models. Here we examine the protein targets, the internalization, and the cytotoxicity pathway of the PriSM. The results show that the PriSM selectively accumulate in cancer cells via macropinocytosis to impede the dynamics of cytoskeletal filaments via promiscuous interactions with cytoskeletal proteins, thus inducing apoptosis. Intriguingly, Tau proteins are able to alleviate the effect of the PriSM, thus protecting neuronal cells. This work illustrates PriSM as a new paradigm for developing polypharmacological agents that promiscuously interact with multiple proteins yet result in a primary phenotype, such as cancer inhibition PMID:25157102

  11. Small molecules CK-666 and CK-869 inhibit actin-related protein 2/3 complex by blocking an activating conformational change.

    PubMed

    Hetrick, Byron; Han, Min Suk; Helgeson, Luke A; Nolen, Brad J

    2013-05-23

    Actin-related protein 2/3 (Arp2/3) complex is a seven-subunit assembly that nucleates branched actin filaments. Small molecule inhibitors CK-666 and CK-869 bind to Arp2/3 complex and inhibit nucleation, but their modes of action are unknown. Here, we use biochemical and structural methods to determine the mechanism of each inhibitor. Our data indicate that CK-666 stabilizes the inactive state of the complex, blocking movement of the Arp2 and Arp3 subunits into the activated filament-like (short pitch) conformation, while CK-869 binds to a serendipitous pocket on Arp3 and allosterically destabilizes the short pitch Arp3-Arp2 interface. These results provide key insights into the relationship between conformation and activity in Arp2/3 complex and will be critical for interpreting the influence of the inhibitors on actin filament networks in vivo. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Early nucleation events in the polymerization of actin, probed by time-resolved small-angle x-ray scattering

    PubMed Central

    Oda, Toshiro; Aihara, Tomoki; Wakabayashi, Katsuzo

    2016-01-01

    Nucleators generating new F-actin filaments play important roles in cell activities. Detailed information concerning the events involved in nucleation of actin alone in vitro is fundamental to understanding these processes, but such information has been hard to come by. We addressed the early process of salt-induced polymerization of actin using the time-resolved synchrotron small-angle X-ray scattering (SAXS). Actin molecules in low salt solution maintain a monomeric state by an electrostatic repulsive force between molecules. On mixing with salts, the repulsive force was rapidly screened, causing an immediate formation of many of non-polymerizable dimers. SAXS kinetic analysis revealed that tetramerization gives the highest energetic barrier to further polymerization, and the major nucleation is the formation of helical tetramers. Filaments start to grow rapidly with the formation of pentamers. These findings suggest an acceleration mechanism of actin assembly by a variety of nucleators in cells. PMID:27775032

  13. 3D DNA Crystals and Nanotechnology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paukstelis, Paul; Seeman, Nadrian

    DNA's molecular recognition properties have made it one of the most widely used biomacromolecular construction materials. The programmed assembly of DNA oligonucleotides has been used to create complex 2D and 3D self-assembled architectures and to guide the assembly of other molecules. The origins of DNA nanotechnology are rooted in the goal of assembling DNA molecules into designed periodic arrays, i.e., crystals. Here, we highlight several DNA crystal structures, the progress made in designing DNA crystals, and look at the current prospects and future directions of DNA crystals in nanotechnology.

  14. 3D DNA Crystals and Nanotechnology

    DOE PAGES

    Paukstelis, Paul; Seeman, Nadrian

    2016-08-18

    DNA's molecular recognition properties have made it one of the most widely used biomacromolecular construction materials. The programmed assembly of DNA oligonucleotides has been used to create complex 2D and 3D self-assembled architectures and to guide the assembly of other molecules. The origins of DNA nanotechnology are rooted in the goal of assembling DNA molecules into designed periodic arrays, i.e., crystals. Here, we highlight several DNA crystal structures, the progress made in designing DNA crystals, and look at the current prospects and future directions of DNA crystals in nanotechnology.

  15. Dissection of molecular assembly dynamics by tracking orientation and position of single molecules in live cells

    PubMed Central

    McQuilken, Molly; La Riviere, Patrick J.; Occhipinti, Patricia; Verma, Amitabh; Oldenbourg, Rudolf; Gladfelter, Amy S.; Tani, Tomomi

    2016-01-01

    Regulation of order, such as orientation and conformation, drives the function of most molecular assemblies in living cells but remains difficult to measure accurately through space and time. We built an instantaneous fluorescence polarization microscope, which simultaneously images position and orientation of fluorophores in living cells with single-molecule sensitivity and a time resolution of 100 ms. We developed image acquisition and analysis methods to track single particles that interact with higher-order assemblies of molecules. We tracked the fluctuations in position and orientation of molecules from the level of an ensemble of fluorophores down to single fluorophores. We tested our system in vitro using fluorescently labeled DNA and F-actin, in which the ensemble orientation of polarized fluorescence is known. We then tracked the orientation of sparsely labeled F-actin network at the leading edge of migrating human keratinocytes, revealing the anisotropic distribution of actin filaments relative to the local retrograde flow of the F-actin network. Additionally, we analyzed the position and orientation of septin-GFP molecules incorporated in septin bundles in growing hyphae of a filamentous fungus. Our data indicate that septin-GFP molecules undergo positional fluctuations within ∼350 nm of the binding site and angular fluctuations within ∼30° of the central orientation of the bundle. By reporting position and orientation of molecules while they form dynamic higher-order structures, our approach can provide insights into how micrometer-scale ordered assemblies emerge from nanoscale molecules in living cells. PMID:27679846

  16. Quaterrylene molecules on Ag(111): self-assembly behavior and voltage pulse induced trimer formation.

    PubMed

    He, Yangyong; Cai, Zeying; Shao, Jian; Xu, Li; She, Limin; Zheng, Yue; Zhong, Dingyong

    2018-05-03

    The self-assembly behavior of quaterrylene (QR) molecules on Ag(111) surfaces has been investigated by scanning tunneling microscopy (STM) and density functional theory (DFT) calculations. It is found that the QR molecules are highly mobile on the Ag(111) surface at 78 K. No ordered assembled structure is formed on the surface with a sub-monolayer coverage up to 0.8 monolayer due to the intermolecular repulsive interactions, whereas ordered molecular structures are observed at one monolayer coverage. According to our DFT calculations, charge transfer occurs between the substrate and the adsorbed QR molecule. As a result, out-of-plane dipoles appear at the interface, which are ascribed to the repulsive dipole-dipole interactions between the QR molecules. Furthermore, due to the planar geometry, the QR molecules exhibit relatively low diffusion barriers on Ag(111). By applying a voltage pulse between the tunneling gap, immobilization and aggregation of QR molecules take place, resulting in the formation of a triangle-shaped trimer. Our work demonstrates the ability of manipulating intermolecular repulsive and attractive interactions at the single molecular level.

  17. Multimodal effects of small molecule ROCK and LIMK inhibitors on mitosis, and their implication as anti-leukemia agents.

    PubMed

    Oku, Yusuke; Tareyanagi, Chiaki; Takaya, Shinichi; Osaka, Sayaka; Ujiie, Haruki; Yoshida, Kentaro; Nishiya, Naoyuki; Uehara, Yoshimasa

    2014-01-01

    Accurate chromosome segregation is vital for cell viability. Many cancer cells show chromosome instability (CIN) due to aberrant expression of the genes involved in chromosome segregation. The induction of massive chromosome segregation errors in such cancer cells by small molecule inhibitors is an emerging strategy to kill these cells selectively. Here we screened and characterized small molecule inhibitors which cause mitotic chromosome segregation errors to target cancer cell growth. We screened about 300 chemicals with known targets, and found that Rho-associated coiled-coil kinase (ROCK) inhibitors bypassed the spindle assembly checkpoint (SAC), which delays anaphase onset until proper kinetochore-microtubule interactions are established. We investigated how ROCK inhibitors affect chromosome segregation, and found that they induced microtubule-dependent centrosome fragmentation. Knockdown of ROCK1 and ROCK2 revealed their additive roles in centrosome integrity. Pharmacological inhibition of LIMK also induced centrosome fragmentation similar to that by ROCK inhibitors. Inhibition of ROCK or LIMK hyper-stabilized mitotic spindles and impaired Aurora-A activation. These results suggested that ROCK and LIMK are directly or indirectly involved in microtubule dynamics and activation of Aurora-A. Furthermore, inhibition of ROCK or LIMK suppressed T cell leukemia growth in vitro, but not peripheral blood mononuclear cells. They induced centrosome fragmentation and apoptosis in T cell leukemia cells. These results suggested that ROCK and LIMK can be a potential target for anti-cancer drugs.

  18. Simple and green synthesis of protein-conjugated CdS nanoparticles and spectroscopic study on the interaction between CdS and zein

    NASA Astrophysics Data System (ADS)

    Qin, Dezhi; Zhang, Li; Du, Xian; Wang, Yabo; Zhang, Qiuxia

    2016-09-01

    The present study demonstrates the role of zein molecules in synthesizing CdS nanoassemblies through protein-directed, green synthetic approach. Zein molecules can as capping ligand and stabilizing agent to regulate the nucleation and growth of CdS nanocrystals, and the obtained products are organic-inorganic nanocomposites. The analysis of surface charge and conductivity indicates that strong electrostatic force restricts mobility of ions, which creates a local supersaturation surrounding the binding sites of zein and reduces the activated energy of nucleation. The interaction between Cd2+/CdS and zein molecules was systematically investigated through spectroscopy techniques. Fourier transform infrared (FT-IR) spectra were used to envisage the binding of the functional groups of zein with the surface of CdS nanoparticles. Ultraviolet visible (UV-Vis) and photoluminescence (PL) spectra results show that Cd2+/CdS might interact with the aromatic amino acids of protein molecules and change its chemical microenvironment. The quantum-confined effect of nanocrystals is confirmed by optical absorption spectrum due to the small size (3-5 nm) of CdS particles. The data of circular dichroism (CD) spectra indicate that the formation of CdS nanocrystals could lead to the conformational change of zein molecules. Moreover, the possible mechanism of CdS nanocrystals growth in zein solution was also discussed. The weak interactions such as Van der Waals, hydrophobic forces and hydrogen bonds in zein molecules should play a crucial factor in the self-assembly of small nanoparticles.

  19. Effects of cholesterol on pore formation in lipid bilayers induced by human islet amyloid polypeptide fragments: A coarse-grained molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Xu, Weixin; Wei, Guanghong; Su, Haibin; Nordenskiöld, Lars; Mu, Yuguang

    2011-11-01

    Disruption of the cellular membrane by the amyloidogenic peptide, islet amyloid polypeptide (IAPP), has been considered as one of the mechanisms of β-cell death during type 2 diabetes. The N-terminal region (residues 1-19) of the human version of IAPP is suggested to be primarily responsible for the membrane-disrupting effect of the full-length hIAPP peptide. However, the detailed assembly mode of hIAPP1-19 with membrane remains unclear. To gain insight into the interactions of hIAPP1-19 oligomer with the model membrane, we have employed coarse-grained molecular dynamics self-assembly simulations to study the aggregation of hIAPP1-19 fragments in the binary lipid made of zwitterionic dipalmitoylphosphatidylcholine (DPPC) and anionic dipalmitoylphosphatidylserine (DPPS) in the presence and absence of different levels of cholesterol content. The membrane-destabilizing effect of hIAPP1-19 is found to be modulated by the presence of cholesterol. In the absence of cholesterol, hIAPP1-19 aggregates prefer to locate inside the bilayer, forming pore-like assemblies. While in the presence of cholesterol molecules, the lipid bilayer becomes more ordered and stiff, and the hIAPP1-19 aggregates are dominantly positioned at the bilayer-water interface. The action of cholesterol may suggest a possible way to maintain the membrane integrity by small molecule interference.

  20. Assembly and structural analysis of a covalently closed nano-scale DNA cage

    PubMed Central

    Andersen, Felicie F.; Knudsen, Bjarne; Oliveira, Cristiano Luis Pinto; Frøhlich, Rikke F.; Krüger, Dinna; Bungert, Jörg; Agbandje-McKenna, Mavis; McKenna, Robert; Juul, Sissel; Veigaard, Christopher; Koch, Jørn; Rubinstein, John L.; Guldbrandtsen, Bernt; Hede, Marianne S.; Karlsson, Göran; Andersen, Anni H.; Pedersen, Jan Skov; Knudsen, Birgitta R.

    2008-01-01

    The inherent properties of DNA as a stable polymer with unique affinity for partner molecules determined by the specific Watson–Crick base pairing makes it an ideal component in self-assembling structures. This has been exploited for decades in the design of a variety of artificial substrates for investigations of DNA-interacting enzymes. More recently, strategies for synthesis of more complex two-dimensional (2D) and 3D DNA structures have emerged. However, the building of such structures is still in progress and more experiences from different research groups and different fields of expertise are necessary before complex DNA structures can be routinely designed for the use in basal science and/or biotechnology. Here we present the design, construction and structural analysis of a covalently closed and stable 3D DNA structure with the connectivity of an octahedron, as defined by the double-stranded DNA helices that assembles from eight oligonucleotides with a yield of ∼30%. As demonstrated by Small Angle X-ray Scattering and cryo-Transmission Electron Microscopy analyses the eight-stranded DNA structure has a central cavity larger than the apertures in the surrounding DNA lattice and can be described as a nano-scale DNA cage, Hence, in theory it could hold proteins or other bio-molecules to enable their investigation in certain harmful environments or even allow their organization into higher order structures. PMID:18096620

  1. Self-assembly of a chiral lipid gelator controlled by solvent and speed of gelation.

    PubMed

    Xue, Pengchong; Lu, Ran; Yang, Xinchun; Zhao, Li; Xu, Defang; Liu, Yan; Zhang, Hanzhuang; Nomoto, Hiroyuki; Takafuji, Makoto; Ihara, Hirotaka

    2009-09-28

    Glutamine derivative 1 with two-photon absorbing units has been synthesized and was found to show gelation ability in some solvents. Its self-assembly in the gel phase could be controlled by the solvent and speed of gelation. For example, in DMSO the organogelator self-assembled into H-aggregates with weak exciton coupling between the aromatic moieties. On the other hand, in DMSO/diphenyl ether (1:9, v/v) the molecules formed 1D aggregates, but with strong exciton coupling due to the small distance between the chromophores. Moreover, the formation of these two kinds of aggregates could be adjusted by the ratio of DMSO to diphenyl ether. In DMSO/toluene, DMSO/butanol, DMSO/butyl acetate, and DMSO/acetic acid systems similar results were observed. Therefore, conversion of the packing model occurs irrespective of the nature of the solvent. Notably, a unique sign inversion in the CD spectra could be realized by controlling the speed of gelation in the DMSO/diphenyl ether (1:9, v/v) system. It was found that a low speed of gelation induces the gelator to adopt a packing model with strong pi-pi interactions between the aromatic units. Moreover, the gels, when excited at 800 nm, emit strong green fluorescence and the quantum chemical calculations suggest that intramolecular charge transfer leads to two-photon absorption of the gelator molecule.

  2. Cylindrical micelles of a POSS amphiphilic dendrimer as nano-reactors for polymerization.

    PubMed

    Weng, Jing-Ting; Yeh, Tso-Fan; Samuel, Ashok Zachariah; Huang, Yi-Fan; Sie, Jyun-Hao; Wu, Kuan-Yi; Peng, Chi-How; Hamaguchi, Hiro-O; Wang, Chien-Lung

    2018-02-15

    A low generation amphiphilic dendrimer, POSS-AD, which has a POSS core and eight amphiphilic arms, was synthesized and used as a nano-reactor to produce well-defined polymer nano-cylinders. Confirmed by small-angle X-ray scattering (SAXS), Raman and NMR spectrometry, monodispersed cylindrical micelles that contain a hydrophilic cavity with a diameter of 2.09 nm and a length of 4.26 nm were produced via co-assembling POSS-AD with hydrophilic liquids, such as H 2 O and HEMA in hydrophobic solvents. Taking the HEMA/POSS-AD cylindrical micelles as nano-reactors, polymerization of HEMA within the micelles results in polymer nano-cylinders (POSS-ADNPs) with a diameter of 2.24 nm and a length of 5.02 nm. The study confirmed that despite the inability to maintain specific shape in solution, low generation dendrimers form well-defined nano-containers or nano-reactors, which relies on co-assembling with hydrophilic guest molecules. These nano-reactors are robust enough to maintain their shape during the polymerization of the guest molecules. Polymer nano-cylinders with dimensions less than 10 nm can thus be produced from the HEMA/POSS-AD micelles. Since the chemical structure of low-generation dendrimers and the contents of the co-assembled nano-reactors can be easily adjusted, the concept holds the potential for the further developments of low-generation amphiphilic dendrimers.

  3. Fabrication of Supramolecular Chirality from Achiral Molecules at the Liquid/Liquid Interface Studied by Second Harmonic Generation.

    PubMed

    Lin, Lu; Zhang, Zhen; Guo, Yuan; Liu, Minghua

    2018-01-09

    We present the investigation into the supramolecular chirality of 5-octadecyloxy-2-(2-pyridylazo)phenol (PARC18) at water/1,2-dichloroethane interface by second harmonic generation (SHG). We observe that PARC18 molecules form supramolecular chirality through self-assembly at the liquid/liquid interface although they are achiral molecules. The bulk concentration of PARC18 in the organic phase has profound effects on the supramolecular chirality. By increasing bulk concentration, the enantiomeric excess at the interface first grows and then decreases until it eventually vanishes. Further analysis reveals that the enantiomeric excess is determined by the twist angle of PARC18 molecules at the interface rather than their orientational angle. At lower and higher bulk concentrations, the average twist angle of PARC18 molecules approaches zero, and the assemblies are achiral; whereas at medium bulk concentrations, the average twist angle is nonzero, so that the assemblies show supramolecular chirality. We also estimate the coverage of PARC18 molecules at the interface versus the bulk concentration and fit it to Langmuir adsorption model. The result indicates that PARC18 assemblies show strongest supramolecular chirality in a half-full monolayer. These findings highlight the opportunities for precise control of supramolecular chirality at liquid/liquid interfaces by manipulating the bulk concentration.

  4. Novel multi-biotin grafted poly(lactic acid) and its self-assembling nanoparticles capable of binding to streptavidin

    PubMed Central

    Yan, Hao; Jiang, Weimin; Zhang, Yinxing; Liu, Ying; Wang, Bin; Yang, Li; Deng, Lihong; Singh, Gurinder K; Pan, Jun

    2012-01-01

    Targeted drug delivery requires novel biodegradable, specific binding systems with longer circulation time. The aim of this study was to prepare biotinylated poly(lactic acid) (PLA) nanoparticles (NPs) which can meet regular requirements as well conjugate more biotins in the polymer to provide better binding with streptavidin. A biotin-graft-PLA was synthesized based on previously published biodegradable poly(ethylene glycol) (PEG)-graft-PLA, with one polymer molecule containing three PEG molecules. Newly synthesized biotin-graft-PLA had three biotins per polymer molecule, higher than the previous biotinylated PLA (≤1 biotin per polymer molecule). A PEG with a much lower molecular weight (MW ~1900) than the previous biotinylated PLA (PEG MW ≥ 3800), and thus more biocompatible, was used which supplied good nonspecific protein-resistant property compatible to PEG-graft-PLA, suggesting its possible longer stay in the bloodstream. Biotin-graft-PLA specifically bound to streptavidin and self-assembled into NPs, during which naproxen, a model small molecule (MW 230 Da) and hydrophobic drug, was encapsulated (encapsulation efficiency 51.88%). The naproxen-loaded NPs with particle size and zeta potential of 175 nm and −27.35 mV realized controlled release within 170 hours, comparable to previous studies. The biotin-graft-PLA NPs adhered approximately two-fold more on streptavidin film and on biotin film via a streptavidin arm both in static and dynamic conditions compared with PEG-graft-PLA NPs, the proven nonspecific protein-resistant NPs. The specific binding of biotin-graft-PLA NPs with streptavidin and with biotin using streptavidin arm, as well as its entrapment and controlled release for naproxen, suggest potential applications in targeted drug delivery. PMID:22334778

  5. Design of polymer motifs for nucleic acid recognition and assembly stabilization

    NASA Astrophysics Data System (ADS)

    Zhou, Zhun

    This dissertation describes the synthesis and assembly of bio-functional polymers and the applications of these polymers to drug encapsulation, delivery, and multivalent biomimetic macromolecular recognition between synthetic polymer and nucleic acids. The main content is divided into three parts: (1) polyacidic domains as strongly stabilizing design elements for aqueous phase polyacrylate diblock assembly; (2) small molecule/polymer recognition triggered macromolecular assembly and drug encapsulation; (3) trizaine derivatized polymer as a novel class of "bifacial polymer nucleic acid" (bPoNA) and applications of bPoNA to nanoparticle loading of DNA/RNA, silencing delivery as well as control of aptamer function. Through the studies in part (1) and part (2), it was demonstrated that well-designed polymer motifs are not only able to enhance assemblies driven by non-specific hydrophobic effect, but are also able to direct assemblies based on specific recognitions. In part (3) of this dissertation, this concept was further extended by the design of polyacrylate polymers that are capable of discrete and robust hybridization with nucleic acids. This surprising finding demonstrated both fundamental and practical applications. Overall, these studies provided insights into the rational design elements for improving the bio-functions of synthetic polymers, and significantly expanded the scope of biological applications in which polymers synthesized via controlled radical polymerization may play a role.

  6. Formation of hydroxyl-functionalized stilbenoid molecular sieves at the liquid/solid interface on top of a 1-decanol monolayer.

    PubMed

    Bellec, Amandine; Arrigoni, Claire; Douillard, Ludovic; Fiorini-Debuisschert, Céline; Mathevet, Fabrice; Kreher, David; Attias, André-Jean; Charra, Fabrice

    2014-10-31

    Specific molecular tectons can be designed to form molecular sieves through self-assembly at the solid-liquid interface. After demonstrating a model tecton bearing apolar alkyl chains, we then focus on a modified structure involving asymmetric functionalization of some alkyl chains with polar hydroxyl groups in order to get chemical selectivity in the sieving. As the formation of supramolecular self-assembled networks strongly depends on molecule-molecule, molecule-substrate and molecule-solvent interactions, we compared the tectons' self-assembly on graphite for two types of solvent. We demonstrate the possibility to create hydroxylated stilbenoid molecular sieves by using 1-decanol as a solvent. Interestingly, with this solvent, the porous network is developed on top of a 1-decanol monolayer.

  7. Amyloid β-Peptide 25–35 Self-Assembly and Its Inhibition: A Model Undecapeptide System to Gain Atomistic and Secondary Structure Details of the Alzheimer’s Disease Process and Treatment

    PubMed Central

    2012-01-01

    Combined results of theoretical molecular dynamic simulations and in vitro spectroscopic (circular dichroism and fluorescence) studies are presented, providing the atomistic and secondary structure details of the process by which a selected small molecule may destabilize the β-sheet ordered “amyloid” oligomers formed by the model undecapeptide of amyloid β-peptide 25–35 [Aβ(25–35)]. Aβ(25–35) was chosen because it is the shortest fragment capable of forming large β-sheet fibrils and retaining the toxicity of the full length Aβ(1–40/42) peptides. The conformational transition, that leads to the formation of β-sheet fibrils from soluble unordered structures, was found to depend on the environmental conditions, whereas the presence of myricetin destabilizes the self-assembly and antagonizes this conformational shift. In parallel, we analyzed several molecular dynamics trajectories describing the evolution of five monomer fragments, without inhibitor as well as in the presence of myricetin. Other well-known inhibitors (curcumin and (−)-tetracycline), found to be stronger and weaker Aβ(1–42) aggregation inhibitors, respectively, were also studied. The combined in vitro and theoretical studies of the Aβ(25–35) self-assembly and its inhibition contribute to understanding the mechanism of action of well-known inhibitors and the peptide amino acid residues involved in the interaction leading to a rational drug design of more potent new molecules able to antagonize the self-assembly process. PMID:23173074

  8. Self-folding polymeric containers for encapsulation and delivery of drugs

    PubMed Central

    Fernandes, Rohan; Gracias, David H.

    2012-01-01

    Self-folding broadly refers to self-assembly processes wherein thin films or interconnected planar templates curve, roll-up or fold into three dimensional (3D) structures such as cylindrical tubes, spirals, corrugated sheets or polyhedra. The process has been demonstrated with metallic, semiconducting and polymeric films and has been used to curve tubes with diameters as small as 2 nm and fold polyhedra as small as 100 nm, with a surface patterning resolution of 15 nm. Self-folding methods are important for drug delivery applications since they provide a means to realize 3D, biocompatible, all-polymeric containers with well-tailored composition, size, shape, wall thickness, porosity, surface patterns and chemistry. Self-folding is also a highly parallel process, and it is possible to encapsulate or self-load therapeutic cargo during assembly. A variety of therapeutic cargos such as small molecules, peptides, proteins, bacteria, fungi and mammalian cells have been encapsulated in self-folded polymeric containers. In this review, we focus on self-folding of all-polymeric containers. We discuss the mechanistic aspects of self-folding of polymeric containers driven by differential stresses or surface tension forces, the applications of self-folding polymers in drug delivery and we outline future challenges. PMID:22425612

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uzun, Suzan; Ilavsky, Jan; Padua, Graciela Wild

    Zein, a protein of corn, has an amphiphilic molecule capable of self-assembly into distinctly different structures. In this work, ultra-small-angle X-ray scattering (USAXS) was applied to investigate the formation of self-assembled zein structures in binary solvent systems of ethanol and water. Our study included observing structural changes due to aging. Three hierarchical structures were identified in zein-solvent systems, molecular zein 2D films, believed to be formed by zein rods assembled first into one-dimensional fibers and then into two-dimensional films, and 3D spherical aggregates. Aging did not change the size or shape of primary units, but promoted their self-assembly into intermediatemore » 2D structures and shaped 3D structures into well19 defined spheres. We found that the rheological parameters, consistency index (K) and behavior index (n), storage and loss moduli (G’ and G”) were also measured. K and n, changed markedly with aging, from nearly Newtonian low consistency fresh samples to highly viscous pseudoplastic aged samples. G’ and G” increased with aging for all samples reflecting increased interactions among zein self-assembled structures. Furthermore, viscoelastic parameters indicated that zein dispersions formed gels upon aging. It was observed that USAX reported on molecular scale self-assembly processes, while rheological measurements reported on the macroscale interaction between self-assembled particles. Raman spectra suggested that α-helix to β-sheet transformations prompted zein self-assembly, which influenced the size and morphology of molecular assemblies and ultimately the rheological properties of zein dispersions.« less

  10. Tailoring peptide amphiphiles and their assemblies for biomedical applications

    NASA Astrophysics Data System (ADS)

    Lin, Brian

    Peptide amphiphiles (PAs) are molecules composed of a peptide conjugated to a hydrophobic moiety, commonly a fatty acid. They closely resemble the structure of naturally occurring lipopeptides, produced by microbes as signaling and antimicrobial agents. The amphiphilic nature of PAs in concert with the large number of discovered functional peptides inspired scientists to exploit this molecular architecture for producing synthetic self-assembled bioactive materials. PA assemblies are sought after for a wide breadth of applications including disease therapy, regenerative medicine, and catalysis. However, with PAs, the peptide chemistry is a double-edged sword. The peptide component contributes significantly to both the activity and self-assembly. The physiochemical properties of different PAs lead to unique aggregation stability and morphological characteristics which are unpredictable, a priori. Therefore it is challenging to design bioactive PAs and control their self-assembly, simultaneously. This limitation slows the development of PAs for medical use. In this dissertation, methods to control the self-assembly of PAs and the effects of acylating a functional peptide will be discussed. In one part, efforts to direct the self-assembly of PAs into small spherical aggregates, a morphology infrequently observed, will be described. In another section, a strategy to control the stability of PA assemblies will be discussed. In the last section, a pH-responsive membrane perturbing peptide was modified with fatty acid tails and the properties of the resulting PAs will be presented. This dissertation provides some fundamental insight for the use and design of PA self-assemblies.

  11. β-Hairpin-Mediated Formation of Structurally Distinct Multimers of Neurotoxic Prion Peptides

    PubMed Central

    Gill, Andrew C.

    2014-01-01

    Protein misfolding disorders are associated with conformational changes in specific proteins, leading to the formation of potentially neurotoxic amyloid fibrils. During pathogenesis of prion disease, the prion protein misfolds into β-sheet rich, protease-resistant isoforms. A key, hydrophobic domain within the prion protein, comprising residues 109–122, recapitulates many properties of the full protein, such as helix-to-sheet structural transition, formation of fibrils and cytotoxicity of the misfolded isoform. Using all-atom, molecular simulations, it is demonstrated that the monomeric 109–122 peptide has a preference for α-helical conformations, but that this peptide can also form β-hairpin structures resulting from turns around specific glycine residues of the peptide. Altering a single amino acid within the 109–122 peptide (A117V, associated with familial prion disease) increases the prevalence of β-hairpin formation and these observations are replicated in a longer peptide, comprising residues 106–126. Multi-molecule simulations of aggregation yield different assemblies of peptide molecules composed of conformationally-distinct monomer units. Small molecular assemblies, consistent with oligomers, comprise peptide monomers in a β-hairpin-like conformation and in many simulations appear to exist only transiently. Conversely, larger assemblies are comprised of extended peptides in predominately antiparallel β-sheets and are stable relative to the length of the simulations. These larger assemblies are consistent with amyloid fibrils, show cross-β structure and can form through elongation of monomer units within pre-existing oligomers. In some simulations, assemblies containing both β-hairpin and linear peptides are evident. Thus, in this work oligomers are on pathway to fibril formation and a preference for β-hairpin structure should enhance oligomer formation whilst inhibiting maturation into fibrils. These simulations provide an important new atomic-level model for the formation of oligomers and fibrils of the prion protein and suggest that stabilization of β-hairpin structure may enhance cellular toxicity by altering the balance between oligomeric and fibrillar protein assemblies. PMID:24498083

  12. Characterization and kinetics of surface functionalization and binding of biologically and chemically significant molecules

    NASA Astrophysics Data System (ADS)

    Steiner, Rachel

    The purpose of this project is to investigate intermolecular interactions of organic molecular assemblies. By understanding the structure and physical interactions in these assemblies, we gain insights into practical applications for nanoscale systems built upon these surface structures. It is possible for organic chemists to create many forms of modified organic molecules, functionalizing them with specific reactive end groups. Through surface functionalization, enabling covalent or highly associative binding, it is possible to create ordered molecular assemblies of these molecules. Scientists can study the nature of this structure and the intermolecular interactions through spectroscopic, optical, and scattering experiments. To understand the self-assembly process in molecular systems, we preliminarily created monolayer films on silica substrates with a variety of organic molecules. In particular, we functionalized silica substrates with hydroxyl groups and covalently bound acid chloride functionalized aromatic compounds, with and without an underlying adhesion layer of 3-aminopropyltriethoxysilane. We characterized the monolayer assemblies with ellipsometry, UV-vis absorption spectroscopy, FTIR spectroscopy, and fluorescence/photoemission spectroscopy, obtaining a quantitative measure of the molecular surface coverage. In order to understand the nature of these molecular assemblies, we also pursued an in-depth kinetic study to control and optimize the monolayer formation process. Through use of UV-vis spectroscopy, we determined that the monolayer formation can best be modeled with diffusion-limited Langmuir kinetics. Specifically, we concluded that for anthracene acid chloride in dichloromethane the average diffusion coefficient was 1.6x10-7 cm2/sec. Additionally, we find we are able to achieve surface coverages of approximately 2x1014 molecules/cm2. Having established the ability to create ordered molecular assemblies, through surface functionalization, enabling covalent or highly associative binding, we continued to explore the field of molecular assemblies by studying the binding and structure of molecules to carbon nanostructures. Previous studies have shown that alkyl side chains and aromatic compounds, such as pyrene, will bind non-covalently to the sidewalls of carbon nanotubes through pi-pi interactions. We explored functionalization of carbon nanotubes and graphene by using microscopy to examine the adsorption of biomolecules onto nanotube sidewalls and graphene.

  13. Induced-Dipole-Directed, Cooperative Self-Assembly of a Benzotrithiophene.

    PubMed

    Ikeda, Toshiaki; Adachi, Hiroaki; Fueno, Hiroyuki; Tanaka, Kazuyoshi; Haino, Takeharu

    2017-10-06

    A benzotrithiophene derivative possessing phenylisoxazoles self-assembled to form stacks. The molecule isodesmically self-assembled in chloroform, whereas it self-assembled in a cooperative fashion in decalin and in methylcyclohexane. Thermodynamic studies based on isodesmic, van der Schoot, and Goldstein-Stryer mathematical models revealed that the self-assembly processes are enthalpically driven and entropically opposed. An enthalpy-entropy compensation plot indicates that the assembly processes in chloroform, decalin, and methylcyclohexane are closely related. The enthalpic gains in less-polar solvents are greater than those in more-polar solvents, resulting in the formation of large assemblies in decalin and in methylcyclohexane. The formation of large assemblies leads to cooperative assemblies. The elongation process is enthalpically more favored than the nucleation process, which drives the cooperativity of the self-assembly. DFT calculations suggested that a hexameric assembly is more stable than tetrameric or dimeric assemblies. Cooperative self-assemblies based on intermolecular interactions other than hydrogen bonding have rarely been reported. It is demonstrated herein that van der Waals interactions, including induced dipole-dipole interactions, can drive the cooperative assembly of planar π-conjugated molecules.

  14. Stimuli-responsive cellulose-based nematogels

    NASA Astrophysics Data System (ADS)

    Liu, Qingkun; Smalyukh, Ivan

    Physical properties of composite materials can be pre-engineered by controlling their structure and composition at the mesoscale. Yet, approaches for achieving this are limited and rarely scalable. We introduce a new breed of self-assembled nematogels formed by an orientationally ordered network of thin cellulose nanofibers infiltrated with a thermotropic nematic fluid. The interplay of orientational ordering within the nematic network and that of the small-molecule liquid crystal around it yields a composite with highly tunable optical properties. By means of combining experimental characterization and analytical modeling, we demonstrate sub-milisecond electric switching of transparency and also facile response of the composite to temperature changes and light illumination. Finally, we discuss a host of potential technological uses of these self-assembled nematogel composites, ranging from smart and privacy windows to novel flexible display modes.

  15. Liquid crystalline cellulose-based nematogels

    DOE PAGES

    Liu, Qingkun; Smalyukh, Ivan I.

    2017-08-18

    Physical properties of composite materials can be pre-engineered by controlling their structure and composition at the mesoscale. However, approaches to achieving this are limited and rarely scalable. We introduce a new breed of self-assembled nematogels formed by an orientationally ordered network of thin cellulose nanofibers infiltrated with a thermotropic nematic fluid. The interplay between orientational ordering within the nematic network and that of the small-molecule liquid crystal around it yields a composite with highly tunable optical properties. By means of combining experimental characterization and modeling, we demonstrate submillisecond electric switching of transparency and facile responses of the composite to temperaturemore » changes. Finally, we discuss a host of potential technological uses of these self-assembled nematogel composites, ranging from smart and privacy windows to novel flexible displays.« less

  16. Nanotechnology applications and approaches for neuroregeneration and drug delivery to the central nervous system.

    PubMed

    Silva, Gabriel A

    2010-06-01

    Nanotechnology is the science and engineering concerned with the design, synthesis, and characterization of materials and devices that have a functional organization in at least one dimension on the nanometer (i.e., one billionth of a meter) scale. The potential impact of bottom up self-assembling nanotechnology, custom made molecules that self-assemble or self-organize into higher ordered structures in response to a defined chemical or physical cue, and top down lithographic type technologies where detail is engineered at smaller scales starting from bulk materials, stems from the fact that these nanoengineered materials and devices exhibit emergent mesocale and macroscale chemical and physical properties that are often different than their constituent nanoscale building block molecules or materials. As such, applications of nanotechnology to medicine and biology allow the interaction and integration of cells and tissues with nanoengineered substrates at a molecular (i.e., subcellular) level with a very high degree of functional specificity and control. This review considers applications of nanotechnology aimed at the neuroprotection and functional regeneration of the central nervous system (CNS) following traumatic or degenerative insults, and nanotechnology approaches for delivering drugs and other small molecules across the blood-brain barrier. It also discusses developing platform technologies that may prove to have broad applications to medicine and physiology, including some being developed for rescuing or replacing anatomical and/or functional CNS structures.

  17. Characterization of a Self-Assembled Monolayer of 1-Thio-β-D-Glucose with Electrochemical Surface Enhanced Raman Spectroscopy Using a Nanoparticle Modified Gold Electrode.

    PubMed

    Smith, Scott R; Seenath, Ryan; Kulak, Monika R; Lipkowski, Jacek

    2015-09-15

    Preparation of a nanoparticle modified gold substrate designed for characterization of hydrophilic self-assembled monolayers (SAMs) of 1-thio-β-D-glucose (TG) with electrochemical surface-enhanced Raman spectroscopy (EC-SERS) is presented. Citrate stabilized gold nanoparticles were deposited on a polycrystalline gold electrode and subjected to an electrochemical desorption procedure to completely remove all traces of adsorbed citrate. Complete desorption of citrate was confirmed by recording cyclic voltammetry curves and SERS spectra. The citrate-free nanoparticle modified gold electrode was then incubated in a 1 mg mL(-1) aqueous solution of TG for 16 h prior to being characterized by EC-SERS. The SERS spectra confirmed that at potentials more negative than -0.10 V vs SCE thioglucose forms a monolayer in which the majority of the molecules preserve their lactol ring structure and only a small fraction of molecules appear to be oxidized. At potentials more positive than -0.10 V, the oxidation of TG molecules becomes prominent, and at potentials more positive than 0.20 V vs SCE, the monolayer of TG consists chiefly of oxidized product. The SERS spectra collected in the double layer region suggest the SAM of TG is well hydrated and hence can be used for hydrophilic modifications of a gold surface.

  18. Structural DNA nanotechnology: from design to applications.

    PubMed

    Zadegan, Reza M; Norton, Michael L

    2012-01-01

    The exploitation of DNA for the production of nanoscale architectures presents a young yet paradigm breaking approach, which addresses many of the barriers to the self-assembly of small molecules into highly-ordered nanostructures via construct addressability. There are two major methods to construct DNA nanostructures, and in the current review we will discuss the principles and some examples of applications of both the tile-based and DNA origami methods. The tile-based approach is an older method that provides a good tool to construct small and simple structures, usually with multiply repeated domains. In contrast, the origami method, at this time, would appear to be more appropriate for the construction of bigger, more sophisticated and exactly defined structures.

  19. Multiple hybrid de novo genome assembly of finger millet, an orphan allotetraploid crop.

    PubMed

    Hatakeyama, Masaomi; Aluri, Sirisha; Balachadran, Mathi Thumilan; Sivarajan, Sajeevan Radha; Patrignani, Andrea; Grüter, Simon; Poveda, Lucy; Shimizu-Inatsugi, Rie; Baeten, John; Francoijs, Kees-Jan; Nataraja, Karaba N; Reddy, Yellodu A Nanja; Phadnis, Shamprasad; Ravikumar, Ramapura L; Schlapbach, Ralph; Sreeman, Sheshshayee M; Shimizu, Kentaro K

    2017-09-05

    Finger millet (Eleusine coracana (L.) Gaertn) is an important crop for food security because of its tolerance to drought, which is expected to be exacerbated by global climate changes. Nevertheless, it is often classified as an orphan/underutilized crop because of the paucity of scientific attention. Among several small millets, finger millet is considered as an excellent source of essential nutrient elements, such as iron and zinc; hence, it has potential as an alternate coarse cereal. However, high-quality genome sequence data of finger millet are currently not available. One of the major problems encountered in the genome assembly of this species was its polyploidy, which hampers genome assembly compared with a diploid genome. To overcome this problem, we sequenced its genome using diverse technologies with sufficient coverage and assembled it via a novel multiple hybrid assembly workflow that combines next-generation with single-molecule sequencing, followed by whole-genome optical mapping using the Bionano Irys® system. The total number of scaffolds was 1,897 with an N50 length >2.6 Mb and detection of 96% of the universal single-copy orthologs. The majority of the homeologs were assembled separately. This indicates that the proposed workflow is applicable to the assembly of other allotetraploid genomes. © The Author 2017. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  20. Dynamic Colloidal Molecules Maneuvered by Light-Controlled Janus Micromotors.

    PubMed

    Gao, Yirong; Mou, Fangzhi; Feng, Yizheng; Che, Shengping; Li, Wei; Xu, Leilei; Guan, Jianguo

    2017-07-12

    In this work, we propose and demonstrate a dynamic colloidal molecule that is capable of moving autonomously and performing swift, reversible, and in-place assembly dissociation in a high accuracy by manipulating a TiO 2 /Pt Janus micromotor with light irradiation. Due to the efficient motion of the TiO 2 /Pt Janus motor and the light-switchable electrostatic interactions between the micromotor and colloidal particles, the colloidal particles can be captured and assembled one by one on the fly, subsequently forming into swimming colloidal molecules by mimicking space-filling models of simple molecules with central atoms. The as-demonstrated dynamic colloidal molecules have a configuration accurately controlled and stabilized by regulating the time-dependent intensity of UV light, which controls the stop-and-go motion of the colloidal molecules. The dynamic colloidal molecules are dissociated when the light irradiation is turned off due to the disappearance of light-switchable electrostatic interaction between the motor and the colloidal particles. The strategy for the assembly of dynamic colloidal molecules is applicable to various charged colloidal particles. The simulated optical properties of a dynamic colloidal molecule imply that the results here may provide a novel approach for in-place building functional microdevices, such as microlens arrays, in a swift and reversible manner.

  1. Molecular simulations of assembly of functionalized spherical nanoparticles

    NASA Astrophysics Data System (ADS)

    Seifpour, Arezou

    Precise assembly of nanoparticles is crucial for creating spatially engineered materials that can be used for photonics, photovoltaic, and metamaterials applications. One way to control nanoparticle assembly is by functionalizing the nanoparticle with ligands, such as polymers, DNA, and proteins, that can manipulate the interactions between the nanoparticles in the medium the particles are placed in. This thesis research aims to design ligands to provide a new route to the programmable assembly of nanoparticles. We first investigate using Monte Carlo simulation the effect of copolymer ligands on nanoparticle assembly. We first study a single nanoparticle grafted with many copolymer chains to understand how monomer sequence (e.g. alternating ABAB, or diblock AxBx) and chemistry of the copolymers affect the grafted chain conformation at various particle diameters, grafting densities, copolymer chain lengths, and monomer-monomer interactions in an implicit small molecule solvent. We find that the size of the grafted chain varies non-monotonically with increasing blockiness of the monomer sequence for a small particle diameter. From this first study, we selected the two sequences with the most different chain conformations---alternating and diblock---and studied the effect of the sequence and a range of monomer chemistries of the copolymer on the characteristics of assembly of multiple copolymer-functionalized nanoparticles. We find that the alternating sequence produces nanoclusters that are relatively isotropic, whereas diblock sequence tends to form anisotropic structures that are smaller and more compact when the block closer to the surface is attractive and larger loosely held together clusters when the outer block is attractive. Next, we conduct molecular dynamics simulations to study the effect of DNA ligands on nanoparticle assembly. Specifically we investigate the effect of grafted DNA strand composition (e.g. G/C content, placement and sequence) and bidispersity in DNA strand lengths on the thermodynamics and structure of assembly of functionalized nanoparticles. We find that higher G/C content increases cluster dissociation temperature for smaller particles. Placement of G/C block inward along the strand decreases number of neighbors within the assembled cluster. Finally, increased bidispersity in DNA strand lengths leads a distribution of inter-particle distances in the assembled cluster.

  2. Repressor logic modules assembled by rolling circle amplification platform to construct a set of logic gates

    PubMed Central

    Wei, Hua; Hu, Bo; Tang, Suming; Zhao, Guojie; Guan, Yifu

    2016-01-01

    Small molecule metabolites and their allosterically regulated repressors play an important role in many gene expression and metabolic disorder processes. These natural sensors, though valuable as good logic switches, have rarely been employed without transcription machinery in cells. Here, two pairs of repressors, which function in opposite ways, were cloned, purified and used to control DNA replication in rolling circle amplification (RCA) in vitro. By using metabolites and repressors as inputs, RCA signals as outputs, four basic logic modules were constructed successfully. To achieve various logic computations based on these basic modules, we designed series and parallel strategies of circular templates, which can further assemble these repressor modules in an RCA platform to realize twelve two-input Boolean logic gates and a three-input logic gate. The RCA-output and RCA-assembled platform was proved to be easy and flexible for complex logic processes and might have application potential in molecular computing and synthetic biology. PMID:27869177

  3. Host-guest encapsulation of materials by assembled virus protein cages

    NASA Astrophysics Data System (ADS)

    Douglas, Trevor; Young, Mark

    1998-05-01

    Self-assembled cage structures of nanometre dimensions can be used as constrained environments for the preparation of nanostructured materials, and the encapsulation of guest molecules, with potential applications in drug delivery and catalysis. In synthetic systems the number of subunits contributing to cage structures is typically rather small,. But the protein coats of viruses (virions) commonly comprise hundreds of subunits that self-assemble into a cage for transporting viral nucleic acids. Many virions, moreover, can undergo reversible structural changes that open or close gated pores to allow switchable access to their interior. Here we show that such a virion - that of the cowpea chlorotic mottle virus - can be used as a host for the synthesis of materials. We report the mineralization of two polyoxometalate species (paratungstate and decavanadate) and the encapsulation of an anionic polymer inside this virion, controlled by pH-dependent gating of the virion's pores. The diversity in size and shape of such virus particles make this a versatile strategy for materials synthesis and molecular entrapment.

  4. Monomer-dependent secondary nucleation in amyloid formation.

    PubMed

    Linse, Sara

    2017-08-01

    Secondary nucleation of monomers on the surface of an already existing aggregate that is formed from the same kind of monomers may lead to autocatalytic amplification of a self-assembly process. Such monomer-dependent secondary nucleation occurs during the crystallization of small molecules or proteins and self-assembled materials, as well as in protein self-assembly into fibrous structures. Indications of secondary nucleation may come from analyses of kinetic experiments starting from pure monomers or monomers supplemented with a low concentration of pre-formed aggregates (seeds). More firm evidence requires additional experiments, for example those employing isotope labels to distinguish new aggregates arising from the monomer from those resulting from fragmentation of the seed. In cases of amyloid formation, secondary nucleation leads to the formation of toxic oligomers, and inhibitors of secondary nucleation may serve as starting points for therapeutic developments. Secondary nucleation displays a high degree of structural specificity and may be enhanced by mutations or screening of electrostatic repulsion.

  5. Self assembly of organic nanostructures and dielectrophoretic assembly of inorganic nanowires.

    NASA Astrophysics Data System (ADS)

    Dholakia, Geetha; Kuo, Steven; Allen, E. L.

    2007-03-01

    Self assembly techniques enable the organization of organic molecules into nanostructures. Currently engineering strategies for efficient assembly and routine integration of inorganic nanoscale objects into functional devices is very limited. AC Dielectrophoresis is an efficient technique to manipulate inorganic nanomaterials into higher dimensional structures. We used an alumina template based sol-gel synthesis method for the growth of various metal oxide nanowires with typical diameters of 100-150 nm, ranging in length from 3-10 μm. Here we report the dielectrophoretic assembly of TiO2 nanowires, an important material for photocatalysis and photovoltaics, onto interdigitated devices. Self assembly in organic nanostructures and its dependence on structure and stereochemistry of the molecule and dielectrophoretic field dependence in the assembly of inorganic nanowires will be compared and contrasted. Tunneling spectroscopy and DOS of these nanoscale systems will also be discussed.

  6. Rocket launcher mechanism of collaborative actin assembly defined by single-molecule imaging.

    PubMed

    Breitsprecher, Dennis; Jaiswal, Richa; Bombardier, Jeffrey P; Gould, Christopher J; Gelles, Jeff; Goode, Bruce L

    2012-06-01

    Interacting sets of actin assembly factors work together in cells, but the underlying mechanisms have remained obscure. We used triple-color single-molecule fluorescence microscopy to image the tumor suppressor adenomatous polyposis coli (APC) and the formin mDia1 during filament assembly. Complexes consisting of APC, mDia1, and actin monomers initiated actin filament formation, overcoming inhibition by capping protein and profilin. Upon filament polymerization, the complexes separated, with mDia1 moving processively on growing barbed ends while APC remained at the site of nucleation. Thus, the two assembly factors directly interact to initiate filament assembly and then separate but retain independent associations with either end of the growing filament.

  7. Rocket launcher mechanism of collaborative actin assembly defined by single-molecule imaging

    PubMed Central

    Breitsprecher, Dennis; Jaiswal, Richa; Bombardier, Jeffrey P.; Gould, Christopher J.; Gelles, Jeff; Goode, Bruce L.

    2013-01-01

    Interacting sets of actin assembly factors work together in cells, but the underlying mechanisms have remained obscure. We used triple-color single molecule fluorescence microscopy to image the tumor-suppressor Adenomateous polyposis coli (APC) and the formin mDia1 during filament assembly. Complexes consisting of APC, mDia1, and actin monomers intiated actin filament formation, overcoming inhibition by capping protein and profilin. Upon filament polymerization, the complexes separated, with mDia1 moving processively on growing barbed ends while APC remained at the site of nucleation. Thus, the two assembly factors directly interact to initiate filament assembly, and then separate but retain independent associations with either end of the growing filament. PMID:22654058

  8. Fabrication of sub-diffraction-limit molecular structures by scanning near-field photolithography

    NASA Astrophysics Data System (ADS)

    Ducker, Robert E.; Montague, Matthew T.; Sun, Shuqing; Leggett, Graham J.

    2007-09-01

    Using a scanning near-field optical microscope coupled to a UV laser, an approach we term scanning near-field photolithography (SNP), structures as small as 9 nm (ca. λ/30) may be fabricated in self-assembled monolayers of alkanethiols on gold surfaces. Selective exposure of the adsorbate molecules in the near field leads to photoconversion of the alkylthiolate to a weakly bound alkylsulfonate which may be displaced readily be a contrasting thiol, leading to a chemical pattern, or used as a resist for the selective etching of the underlying metal. A novel ultra-mild etch for gold is reported, and used to etch structures as small as 9 nm. Photopatterning of oligo(ethylene glycol) (OEG) terminated selfassembled monolayers facilitates the fabrication of biomolecular nanostructures. Selective removal of the protein-resistant OEG terminated adsorbates created regions that may be functionalized with a second thiol and derivatized with a biomolecule. Finally, the application of SNP to nanopatterning on oxide surfaces is demonstrated. Selective exposure of monolayers of phosphonic acids adsorbed onto aluminum oxide leads to cleavage of the P-C bond and desorption of the adsorbate molecule. Subsequent etching, using aqueous based, yields structures as small as 100 nm.

  9. Predicting supramolecular self-assembly on reconstructed metal surfaces

    NASA Astrophysics Data System (ADS)

    Roussel, Thomas J.; Barrena, Esther; Ocal, Carmen; Faraudo, Jordi

    2014-06-01

    The prediction of supramolecular self-assembly onto solid surfaces is still challenging in many situations of interest for nanoscience. In particular, no previous simulation approach has been capable to simulate large self-assembly patterns of organic molecules over reconstructed surfaces (which have periodicities over large distances) due to the large number of surface atoms and adsorbing molecules involved. Using a novel simulation technique, we report here large scale simulations of the self-assembly patterns of an organic molecule (DIP) over different reconstructions of the Au(111) surface. We show that on particular reconstructions, the molecule-molecule interactions are enhanced in a way that long-range order is promoted. Also, the presence of a distortion in a reconstructed surface pattern not only induces the presence of long-range order but also is able to drive the organization of DIP into two coexisting homochiral domains, in quantitative agreement with STM experiments. On the other hand, only short range order is obtained in other reconstructions of the Au(111) surface. The simulation strategy opens interesting perspectives to tune the supramolecular structure by simulation design and surface engineering if choosing the right molecular building blocks and stabilising the chosen reconstruction pattern.The prediction of supramolecular self-assembly onto solid surfaces is still challenging in many situations of interest for nanoscience. In particular, no previous simulation approach has been capable to simulate large self-assembly patterns of organic molecules over reconstructed surfaces (which have periodicities over large distances) due to the large number of surface atoms and adsorbing molecules involved. Using a novel simulation technique, we report here large scale simulations of the self-assembly patterns of an organic molecule (DIP) over different reconstructions of the Au(111) surface. We show that on particular reconstructions, the molecule-molecule interactions are enhanced in a way that long-range order is promoted. Also, the presence of a distortion in a reconstructed surface pattern not only induces the presence of long-range order but also is able to drive the organization of DIP into two coexisting homochiral domains, in quantitative agreement with STM experiments. On the other hand, only short range order is obtained in other reconstructions of the Au(111) surface. The simulation strategy opens interesting perspectives to tune the supramolecular structure by simulation design and surface engineering if choosing the right molecular building blocks and stabilising the chosen reconstruction pattern. GA image adapted from refs: (a) Phys. Chem. Chem. Phys., 2001, 3, 3399-3404, with permission from the PCCP Owner Societies, and (b) J. Phys. Chem. C, 2008, 112 (18), 7168-7172, reprinted with permission from the American Chemical Society, copyright © 2008.

  10. Electrons, Photons, and Force: Quantitative Single-Molecule Measurements from Physics to Biology

    PubMed Central

    2011-01-01

    Single-molecule measurement techniques have illuminated unprecedented details of chemical behavior, including observations of the motion of a single molecule on a surface, and even the vibration of a single bond within a molecule. Such measurements are critical to our understanding of entities ranging from single atoms to the most complex protein assemblies. We provide an overview of the strikingly diverse classes of measurements that can be used to quantify single-molecule properties, including those of single macromolecules and single molecular assemblies, and discuss the quantitative insights they provide. Examples are drawn from across the single-molecule literature, ranging from ultrahigh vacuum scanning tunneling microscopy studies of adsorbate diffusion on surfaces to fluorescence studies of protein conformational changes in solution. PMID:21338175

  11. Self-Assemblies of novel molecules, VECAR

    NASA Astrophysics Data System (ADS)

    Shrestha, Bijay; Kim, Hye-Young; Lee, Soojin; Novak, Brian; Moldovan, Dorel

    2015-03-01

    VECAR is a newly synthesized molecule, which is an amphiphilic antioxidant molecule that consists of two molecular groups, vitamin-E and Carnosine, linked by a hydrocarbon chain. The hydrocarbon chain is hydrophobic and both vitamin-E and Carnosine ends are hydrophilic. In the synthesis process, the length of the hydrophobic chain of VECAR molecules can vary from the shortest (n =0) to the longest (n =18), where n indicates the number of carbon atoms in the chain. We conducted MD simulation studies of self-assembly of VECAR molecules in water using GROMACS on LONI HPC resources. Our study shows that there is a strong correlation between the shape and atomistic structure of the self-assembled nano-structures (SANs) and the chain-length (n) of VECAR molecules. We will report the results of data analyses including the atomistic structure of each SANs and the dynamic and energetic mechanisms of their formation as function of time. In summary, both VECAR molecules of chain-length n =18 and 9 form worm-like micelles, which may be used as a drug delivery system. This research is supported by the Louisiana Board of Regents-RCS Grant (LEQSF(2012-15)-RD-A-19).

  12. Cationic antimicrobial polymers and their assemblies.

    PubMed

    Carmona-Ribeiro, Ana Maria; de Melo Carrasco, Letícia Dias

    2013-05-10

    Cationic compounds are promising candidates for development of antimicrobial agents. Positive charges attached to surfaces, particles, polymers, peptides or bilayers have been used as antimicrobial agents by themselves or in sophisticated formulations. The main positively charged moieties in these natural or synthetic structures are quaternary ammonium groups, resulting in quaternary ammonium compounds (QACs). The advantage of amphiphilic cationic polymers when compared to small amphiphilic molecules is their enhanced microbicidal activity. Besides, many of these polymeric structures also show low toxicity to human cells; a major requirement for biomedical applications. Determination of the specific elements in polymers, which affect their antimicrobial activity, has been previously difficult due to broad molecular weight distributions and random sequences characteristic of radical polymerization. With the advances in polymerization control, selection of well defined polymers and structures are allowing greater insight into their structure-antimicrobial activity relationship. On the other hand, antimicrobial polymers grafted or self-assembled to inert or non inert vehicles can yield hybrid antimicrobial nanostructures or films, which can act as antimicrobials by themselves or deliver bioactive molecules for a variety of applications, such as wound dressing, photodynamic antimicrobial therapy, food packing and preservation and antifouling applications.

  13. Cationic Antimicrobial Polymers and Their Assemblies

    PubMed Central

    Carmona-Ribeiro, Ana Maria; de Melo Carrasco, Letícia Dias

    2013-01-01

    Cationic compounds are promising candidates for development of antimicrobial agents. Positive charges attached to surfaces, particles, polymers, peptides or bilayers have been used as antimicrobial agents by themselves or in sophisticated formulations. The main positively charged moieties in these natural or synthetic structures are quaternary ammonium groups, resulting in quaternary ammonium compounds (QACs). The advantage of amphiphilic cationic polymers when compared to small amphiphilic molecules is their enhanced microbicidal activity. Besides, many of these polymeric structures also show low toxicity to human cells; a major requirement for biomedical applications. Determination of the specific elements in polymers, which affect their antimicrobial activity, has been previously difficult due to broad molecular weight distributions and random sequences characteristic of radical polymerization. With the advances in polymerization control, selection of well defined polymers and structures are allowing greater insight into their structure-antimicrobial activity relationship. On the other hand, antimicrobial polymers grafted or self-assembled to inert or non inert vehicles can yield hybrid antimicrobial nanostructures or films, which can act as antimicrobials by themselves or deliver bioactive molecules for a variety of applications, such as wound dressing, photodynamic antimicrobial therapy, food packing and preservation and antifouling applications. PMID:23665898

  14. Graphene quantum dots: effect of size, composition and curvature on their assembly

    DOE PAGES

    Elvati, Paolo; Baumeister, Elizabeth; Violi, Angela

    2017-03-21

    Graphene Quantum Dots (GQDs) are a relatively new class of molecules that have ignited tremendous research interest due to their extraordinary and tunable optical, electrical, chemical and structural properties. In this paper, we report a molecular-level elucidation of the key mechanisms and physical–chemical factors controlling the assembly and stability of nanostructures formed by GQDs in an aqueous environment, using molecular dynamics simulations. We observe the general tendency to form small aggregates and three recurring configurations, one of them with a single layer of water separating two GQDs. The type and characteristics of the structure are mostly determined by the hydrophobicitymore » of the GQDs as well as the steric hindrance of the dangling groups. The composition of the terminal groups plays a key role in determining the configuration of the GQDs, which is also markedly affected by the formation of clusters. Notably, the aggregated GQDs assume strongly correlated shapes and, in some cases, display a radically different conformation distribution compared to single molecules. This cooperative effect prolongs the lifetime of the GQD configurations and can explain the observed persistence of chiral conformations that are only marginally more stable than their specular images.« less

  15. Supramolecular Hydrogelators and Hydrogels: From Soft Matter to Molecular Biomaterials

    PubMed Central

    2015-01-01

    In this review we intend to provide a relatively comprehensive summary of the work of supramolecular hydrogelators after 2004 and to put emphasis particularly on the applications of supramolecular hydrogels/hydrogelators as molecular biomaterials. After a brief introduction of methods for generating supramolecular hydrogels, we discuss supramolecular hydrogelators on the basis of their categories, such as small organic molecules, coordination complexes, peptides, nucleobases, and saccharides. Following molecular design, we focus on various potential applications of supramolecular hydrogels as molecular biomaterials, classified by their applications in cell cultures, tissue engineering, cell behavior, imaging, and unique applications of hydrogelators. Particularly, we discuss the applications of supramolecular hydrogelators after they form supramolecular assemblies but prior to reaching the critical gelation concentration because this subject is less explored but may hold equally great promise for helping address fundamental questions about the mechanisms or the consequences of the self-assembly of molecules, including low molecular weight ones. Finally, we provide a perspective on supramolecular hydrogelators. We hope that this review will serve as an updated introduction and reference for researchers who are interested in exploring supramolecular hydrogelators as molecular biomaterials for addressing the societal needs at various frontiers. PMID:26646318

  16. An improved assembly of the loblolly pine mega-genome using long-read single-molecule sequencing.

    PubMed

    Zimin, Aleksey V; Stevens, Kristian A; Crepeau, Marc W; Puiu, Daniela; Wegrzyn, Jill L; Yorke, James A; Langley, Charles H; Neale, David B; Salzberg, Steven L

    2017-01-01

    The 22-gigabase genome of loblolly pine (Pinus taeda) is one of the largest ever sequenced. The draft assembly published in 2014 was built entirely from short Illumina reads, with lengths ranging from 100 to 250 base pairs (bp). The assembly was quite fragmented, containing over 11 million contigs whose weighted average (N50) size was 8206 bp. To improve this result, we generated approximately 12-fold coverage in long reads using the Single Molecule Real Time sequencing technology developed at Pacific Biosciences. We assembled the long and short reads together using the MaSuRCA mega-reads assembly algorithm, which produced a substantially better assembly, P. taeda version 2.0. The new assembly has an N50 contig size of 25 361, more than three times as large as achieved in the original assembly, and an N50 scaffold size of 107 821, 61% larger than the previous assembly. © The Author 2017. Published by Oxford University Press.

  17. Erratum to: An improved assembly of the loblolly pine mega-genome using long-read single-molecule sequencing.

    PubMed

    Zimin, Aleksey V; Stevens, Kristian A; Crepeau, Marc W; Puiu, Daniela; Wegrzyn, Jill L; Yorke, James A; Langley, Charles H; Neale, David B; Salzberg, Steven L

    2017-10-01

    The 22-gigabase genome of loblolly pine (Pinus taeda) is one of the largest ever sequenced. The draft assembly published in 2014 was built entirely from short Illumina reads, with lengths ranging from 100 to 250 base pairs (bp). The assembly was quite fragmented, containing over 11 million contigs whose weighted average (N50) size was 8206 bp. To improve this result, we generated approximately 12-fold coverage in long reads using the Single Molecule Real Time sequencing technology developed at Pacific Biosciences. We assembled the long and short reads together using the MaSuRCA mega-reads assembly algorithm, which produced a substantially better assembly, P. taeda version 2.0. The new assembly has an N50 contig size of 25 361, more than three times as large as achieved in the original assembly, and an N50 scaffold size of 107 821, 61% larger than the previous assembly. © The Authors 2017. Published by Oxford University Press.

  18. Adsorption behavior of Zn porphyrins on a (1 0 1) face of anatase TiO2

    NASA Astrophysics Data System (ADS)

    Zajac, Lukasz; Bodek, Lukasz; Such, Bartosz

    2018-06-01

    The adsorption behavior of porphyrin molecules on anatase TiO2(1 0 1) has been investigated with scanning tunneling microscopy (STM) in ultra-high vacuum (UHV) at room temperature. At low coverage, the ZnTPP molecules have a tendency to adsorb on the one type of step edges forming molecular chains. Due to relatively high mobility of molecules stable assemblies appear only close to a monolayer coverage. Zn porphyrins in self-assembled molecular domains form a commensurate structure. In-plane rotation of the molecules leads to formation of two domains of different chirality.

  19. Engineering Designed Proteins for Light Capture, Energy Transfer, and Emissive Sensing In Vivo

    NASA Astrophysics Data System (ADS)

    Mancini, Joshua A.

    Proteins that are used for photosynthetic light harvesting and biological signaling are critical to life. These types of proteins act as scaffolds that hold small, sometimes metal-containing organic molecules in precise locations for light absorption and successive use. For signaling proteins, this energy can be used to induce a photoisomerization of the small molecule that can turn on or off a signaling cascade that controls the physiology of an organism. Alternatively, photosynthetic light-harvesting proteins funnel this energy in a directional manner towards a charge separating catalytic component that can change this light energy into chemical energy. The protein environment also serves to tune the photophysical properties of the small molecules. This is seen extensively with the linear tetrapyrroles that are used in both photosynthetic and signaling proteins. Many efforts have been made to harness these natural proteins for societal use, including improving photophysical properties and interfacing capabilities with manmade catalytic components. Several methods of achieving improvement have entailed structurally guided mutation and directed evolution. However, these methods all have their limitations due to the inherent complexity and fragility of the natural proteins. This work presents an alternative more robust method to natural proteins. My thesis states: that man-made proteins, known as maquettes, employing basic rules of protein folding, can be designed to become light harvesting and signaling proteins that can be assembled fully in vivo providing an alternative, robust, and versatile platform for meeting the diverse array of societal "green chemistry" and biomedical needs. This in vivo assembly is carried out by interacting with cyanobacterial protein and pigment machinery, both as stand-alone units and as protein fusions with natural antenna complexes. Additionally, this work offers insight for fast and tight binding of circular and linear tetrapyrroles to the maquettes both in vitro and in vivo. Design principles are also established for increasing the amount of linear tetrapyrrole attachment to the maquette as well as modulating their photophysical properties. Fast and tight binding of cofactors, high cofactor attachment yields, and control of cofactor photophysical properties are all prerequisites for the maquettes to be successful in vivo photosynthetic light harvesting and signaling proteins.

  20. Using Symmetry to Design Self-Assembling Protein Cages and Nanomaterials on the Mid-Nanometer Scale

    NASA Astrophysics Data System (ADS)

    Yeates, Todd

    Self-assembling molecular structures having diverse cellular functions are widespread in nature. Some of the largest and most sophisticated types are built from many copies of the same or similar protein molecules arranged following principles of symmetry. A long-standing engineering goal has been to design novel protein molecules to self-assemble into geometrically specific structures similar to the extraordinary structures that have evolved in Nature. Practical routes to this goal have been developed by using ideas in symmetry to articulate the minimum design requirements for achieving various types of symmetric architectures, including cages, extended two-dimensional layers, and three-dimensional crystalline materials. The key requirement is that two distinct self-associating interfaces, each conferring one element of rotational symmetry, have to be engineered into the protein molecule (or molecules), following particular geometric specifications. The main principle is that combining two separate symmetry elements into a single molecular entity produces a molecule that necessarily assembles into an architecture dictated by a symmetry group that is the product of the two simpler contributing symmetries. Recent experiments have demonstrated success using a variety of symmetry-based strategies. Strategic variations are emerging that differ from each other with respect to biophysical features such as flexibility vs rigidity in the assembled structures, and with respect to design aspects such as whether the protein interfaces are inherited from natural oligomeric proteins or are designed de novo by advanced computational methods. The success of these strategies has been proven by determining crystal structures of several giant, self-assembling protein cages and clusters (10-25 nm in diameter), created by design. The ability to create sophisticated supramolecular structures from designed protein subunits opens the way to broad applications in synthetic biology and nanotechnology.

  1. Morphology and Pattern Control of Diphenylalanine Self-Assembly via Evaporative Dewetting.

    PubMed

    Chen, Jiarui; Qin, Shuyu; Wu, Xinglong; Chu, And Paul K

    2016-01-26

    Self-assembled peptide nanostructures have unique physical and biological properties and promising applications in electrical devices and functional molecular recognition. Although solution-based peptide molecules can self-assemble into different morphologies, it is challenging to control the self-assembly process. Herein, controllable self-assembly of diphenylalanine (FF) in an evaporative dewetting solution is reported. The fluid mechanical dimensionless numbers, namely Rayleigh, Marangoni, and capillary numbers, are introduced to control the interaction between the solution and FF molecules in the self-assembly process. The difference in the film thickness reflects the effects of Rayleigh and Marangoni convection, and the water vapor flow rate reveals the role of viscous fingering in the emergence of aligned FF flakes. By employing dewetting, various FF self-assembled patterns, like concentric and spokelike, and morphologies, like strips and hexagonal tubes/rods, can be produced, and there are no significant lattice structural changes in the FF nanostructures.

  2. Influencing the structure of block copolymer micelles with small molecule additives

    NASA Astrophysics Data System (ADS)

    Robertson, Megan; Singh, Avantika; Cooksey, Tyler; Kidd, Bryce; Piemonte, Rachele; Wang, Shu; Mai Le, Kim; Madsen, Louis

    Amphiphilic block copolymer micelles in water are under broad exploration for drug delivery applications due to their high loading capacity and targeted drug delivery. We aim to understand the kinetic and thermodynamic processes that underlie the self-assembly of diblock copolymer micelle systems. The present work focuses on diblock copolymers containing poly(ethylene oxide) (a hydrophilic polymer) and polycaprolactone (a hydrophobic polymer), which spontaneously self-assemble into spherical micelles in water. Addition of a common good solvent (a co-solvent) for both of the constituting blocks, such as tetrahydrofuran (THF), reduces the interfacial tension at the core-corona interface. We are currently investigating the effect of this phenomenon on the micelle structural properties, using small-angle scattering and nuclear magnetic resonance. We have characterized the hydrodynamic radius, core radius, corona thickness, aggregation number, degree of swelling of the micelle core with the co-solvent, and unimer (free chain) concentration, as a function of the co-solvent concentration. Fundamental knowledge from these studies will inform design of drug delivery systems by allowing us to tailor micelle properties for optimal cargo loading.

  3. Light fluorous-tagged traceless one-pot synthesis of benzimidazoles facilitated by microwave irradiation.

    PubMed

    Tseng, Chih-Chung; Tasi, Cheng-Hsun; Sun, Chung-Ming

    2012-06-01

    A novel protocol for rapid assemble of benzimidazole framework has been demonstrated. This method incorporated with light fluorous-tag provides a convenient method for diversification of benzimidazoles and for easy purification via fluorous solid-phase extraction (F-SPE) in a parallel manner. The key transformation of this study involves in situ reduction of aromatic nitro compound, amide formation, cyclization and aromatization promoted by microwave irradiation in a one-pot fashion. The strategy is envisaged to be applied for the establishment of drug-like small molecule libraries for high throughput screening.

  4. 2-d and 1-d Nanomaterials Construction through Peptide Computational Design and Solution Assembly

    NASA Astrophysics Data System (ADS)

    Pochan, Darrin

    Self-assembly of molecules is an attractive materials construction strategy due to its simplicity in application. By considering peptidic molecules in the bottom-up materials self-assembly design process, one can take advantage of inherently biomolecular attributes; intramolecular folding events, secondary structure, and electrostatic/H-bonding/hydrophobic interactions to define hierarchical material structure and consequent properties. Importantly, while biomimicry has been a successful strategy for the design of new peptide molecules for intermolecular assembly, computational tools have been developed to de novo design peptide molecules required for construction of pre-determined, desired nanostructures and materials. A new system comprised of coiled coil bundle motifs theoretically designed to assemble into designed, one and two-dimensional nanostructures will be introduced. The strategy provides the opportunity for arbitrary nanostructure formation, i.e. structures not observed in nature, with peptide molecules. Importantly, the desired nanostructure was chosen first while the peptides needed for coiled coil formation and subsequent nanomaterial formation were determined computationally. Different interbundle, two-dimensional nanostructures are stabilized by differences in amino acid composition exposed on the exterior of the coiled coil bundles. Computation was able to determine molecules required for different interbundle symmetries within two-dimensional sheets stabilized by subtle differences in amino acid composition of the inherent peptides. Finally, polymers were also created through covalent interactions between bundles that allowed formation of architectures spanning flexible network forming chains to ultra-stiff polymers, all with the same building block peptides. The success of the computational design strategy is manifested in the nanomaterial results as characterized by electron microscopy, scattering methods, and biophysical techniques. Support from NSF DMREF program under awards DMR-1234161 and DMR-1235084.

  5. Carbon nanotubes as templates for polymerized lipid assemblies

    NASA Astrophysics Data System (ADS)

    Thauvin, Cédric; Rickling, Stéphane; Schultz, Patrick; Célia, Hervé; Meunier, Stéphane; Mioskowski, Charles

    2008-12-01

    Amphiphilic molecules-molecules that have both hydrophobic and hydrophilic properties-can self-assemble in water to form diverse structures such as micelles, vesicles and tubes, and these nanostructures can be used for delivering drugs, stabilizing membrane proteins or as nanoreactors. We have previously shown that lipids can self-organize on the surface of single-walled carbon nanotubes into regular ring-shaped assemblies. Here we show that these lipid assemblies can be polymerized and isolated from the nanotube template by application of an electric field. We also demonstrate that these assemblies are monodispersed, water-soluble, and can dissolve various hydrophobic rylene dyes, fullerenes and membrane proteins. The stability of these constructs and their diverse applications will be useful in the fields of cosmetics, medicine and material sciences.

  6. Periodic Assembly of Nanospecies on Repetitive DNA Sequences Generated on Gold Nanoparticles by Rolling Circle Amplification

    NASA Astrophysics Data System (ADS)

    Zhao, Weian; Brook, Michael A.; Li, Yingfu

    Periodical assembly of nanospecies is desirable for the construction of nanodevices. We provide a protocol for the preparation of a gold nanoparticle (AuNP)/DNA scaffold on which nanospecies can be assembled in a periodical manner. AuNP/DNA scaffold is prepared by growing long single-stranded DNA (ssDNA) molecules (typically hundreds of nanometers to a few microns in length) on AuNPs via rolling circle amplification (RCA). Since these long ssDNA molecules contain many repetitive sequence units, complementary DNA-attached nanospecies can be assembled through specific hybridization in a controllable and periodical manner.

  7. Tuning of peptide assembly through force balance adjustment.

    PubMed

    Cao, Meiwen; Cao, Changhai; Zhang, Lijuan; Xia, Daohong; Xu, Hai

    2013-10-01

    Controlled self-assembly of amphiphilic tripeptides into distinct nanostructures is achieved via a controlled design of the molecular architecture. The tripeptide Ac-Phe-Phe-Lys-CONH2 (FFK), hardly soluble in water, forms long amyloid-like tubular structures with the aid of β-sheet hydrogen bonding and aromatic π-π stacking. Substitution of phenylalanine (F) with tyrosine (Y), that is, only a subtle structural variation in adding a hydroxyl group to the phenyl ring, results in great change in molecular self-assembly behavior. When one F is substituted with Y, the resulting molecules of FYK and YFK self-assemble into long thinner fibrils with high propensity for lateral association. When both Fs are substituted with Y, the resulting YYK molecule forms spherical aggregates. Introduction of hydroxyl groups into the molecule modifies aromatic interactions and introduces hydrogen bonding. Moreover, since the driving forces for peptide self-assembly including hydrogen bonding, electrostatic repulsion, and π-π stacking have high interdependence with each other, changes in aromatic interaction induce a Domino effect and cause a shift of force balance to a new state. This leads to significant variations in self-assembly behavior. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Self-similar assemblies of globular whey proteins at the air-water interface: effect of the structure.

    PubMed

    Mahmoudi, Najet; Gaillard, Cédric; Boué, François; Axelos, Monique A V; Riaublanc, Alain

    2010-05-01

    We investigated the structure of heat-induced assemblies of whey globular proteins using small angle neutron scattering (SANS), static and dynamic light scattering (SLS and DLS), and cryogenic transmission electron microscopy (Cryo-TEM). Whey protein molecules self-assemble in fractal aggregates with a structure density depending on the electrostatic interactions. We determined the static and dynamic properties of interfacial layer formed by the protein assemblies, upon adsorption and spreading at the air-water interface using surface film balance and interfacial dilatational rheology. Upon spreading, all whey protein systems show a power-law scaling behavior of the surface pressure versus concentration in the semi-dilute surface concentration regime, with an exponent ranging from 5.5 to 9 depending on the electrostatic interactions and the aggregation state. The dilatational modulus derived from surface pressure isotherms shows a main peak at 6-8 mN/m, generally considered to be the onset of a conformational change in the monolayer, and a second peak or a shoulder at 15 mN/m. Long-time adsorption kinetics give similar results for both the native whey proteins and the corresponding self-similar assemblies, with a systematic effect of the ionic strength. Copyright 2010 Elsevier Inc. All rights reserved.

  9. Designer nanomaterials using chiral self-assembling peptide systems and their emerging benefit for society.

    PubMed

    Luo, Zhongli; Zhang, Shuguang

    2012-07-07

    Chirality is absolutely central in chemistry and biology. The recent findings of chiral self-assembling peptides' remarkable chemical complementarity and structural compatibility make it one of the most inspired designer materials and structures in nanobiotechnology. The emerging field of designer chemistry and biology further explores biological and medical applications of these simple D,L- amino acids through producing marvellous nanostructures under physiological conditions. These self-assembled structures include well-ordered nanofibers, nanotubes and nanovesicles. These structures have been used for 3-dimensional tissue cultures of primary cells and stem cells, sustained release of small molecules, growth factors and monoclonal antibodies, accelerated wound-healing in reparative and regenerative medicine as well as tissue engineering. Recent advances in molecular designs have also led to the development of 3D fine-tuned bioactive tissue culture scaffolds. They are also used to stabilize membrane proteins including difficult G-protein coupled receptors for designing nanobiodevices. One of the self-assembling peptides has been used in human clinical trials for accelerated wound-healings. It is our hope that these peptide materials will open doors for more and diverse clinical uses. The field of chiral self-assembling peptide nanobiotechnology is growing in a number of directions that has led to many surprises in areas of novel materials, synthetic biology, clinical medicine and beyond.

  10. Distinct Adsorption Configurations and Self-Assembly Characteristics of Fibrinogen on Chemically Uniform and Alternating Surfaces including Block Copolymer Nanodomains

    PubMed Central

    2015-01-01

    Understanding protein–surface interactions is crucial to solid-state biomedical applications whose functionality is directly correlated with the precise control of the adsorption configuration, surface packing, loading density, and bioactivity of protein molecules. Because of the small dimensions and highly amphiphilic nature of proteins, investigation of protein adsorption performed on nanoscale topology can shed light on subprotein-level interaction preferences. In this study, we examine the adsorption and assembly behavior of a highly elongated protein, fibrinogen, on both chemically uniform (as-is and buffered HF-treated SiO2/Si, and homopolymers of polystyrene and poly(methyl methacrylate)) and varying (polystyrene-block-poly(methyl methacrylate)) surfaces. By focusing on high-resolution imaging of individual protein molecules whose configurations are influenced by protein–surface rather than protein–protein interactions, fibrinogen conformations characteristic to each surface are identified and statistically analyzed for structural similarities/differences in key protein domains. By exploiting block copolymer nanodomains whose repeat distance is commensurate with the length of the individual protein, we determine that fibrinogen exhibits a more neutral tendency for interaction with both polystyrene and poly(methyl methacrylate) blocks relative to the case of common globular proteins. Factors affecting fibrinogen–polymer interactions are discussed in terms of hydrophobic and electrostatic interactions. In addition, assembly and packing attributes of fibrinogen are determined at different loading conditions. Primary orientations of fibrinogen and its rearrangements with respect to the underlying diblock nanodomains associated with different surface coverage are explained by pertinent protein interaction mechanisms. On the basis of two-dimensional stacking behavior, a protein assembly model is proposed for the formation of an extended fibrinogen network on the diblock copolymer. PMID:24708538

  11. Elucidating Molecular Motion through Structural and Dynamic Filters of Energy-Minimized Conformer Ensembles

    PubMed Central

    2015-01-01

    Complex RNA structures are constructed from helical segments connected by flexible loops that move spontaneously and in response to binding of small molecule ligands and proteins. Understanding the conformational variability of RNA requires the characterization of the coupled time evolution of interconnected flexible domains. To elucidate the collective molecular motions and explore the conformational landscape of the HIV-1 TAR RNA, we describe a new methodology that utilizes energy-minimized structures generated by the program “Fragment Assembly of RNA with Full-Atom Refinement (FARFAR)”. We apply structural filters in the form of experimental residual dipolar couplings (RDCs) to select a subset of discrete energy-minimized conformers and carry out principal component analyses (PCA) to corroborate the choice of the filtered subset. We use this subset of structures to calculate solution T1 and T1ρ relaxation times for 13C spins in multiple residues in different domains of the molecule using two simulation protocols that we previously published. We match the experimental T1 times to within 2% and the T1ρ times to within less than 10% for helical residues. These results introduce a protocol to construct viable dynamic trajectories for RNA molecules that accord well with experimental NMR data and support the notion that the motions of the helical portions of this small RNA can be described by a relatively small number of discrete conformations exchanging over time scales longer than 1 μs. PMID:24479561

  12. Effects of the conjugation of whey proteins with gellan polysaccharides on surfactant-induced competitive displacement from the air-water interface.

    PubMed

    Cai, B; Ikeda, S

    2016-08-01

    Whey proteins can be used to stabilize foams and emulsions against coalescence because of their ability to form viscoelastic films at the interface that resist film rupture on collision between colloidal particles. However, whey proteins are competitively displaced from the interface if small-molecule surfactants are added, leading to destabilization of the entire system. This is because surfactants are more effective in molecular packing at the interface, and they lower interfacial tension to a greater degree than whey proteins do, but their interfacial films are poor in viscoelasticity. We hypothesized that whey proteins would become more resistant to surfactant-induced competitive displacement if they were conjugated with network-forming polysaccharides. The protein moiety of the conjugate would be expected to enable its adsorption to the interface, and the polysaccharide moiety would be expected to form self-assembled networks, strengthening the interfacial film as a whole. In this study, whey proteins were conjugated with gellan polysaccharides using the Maillard reaction. Atomic force microscopy images of interfacial films formed by the whey protein-gellan conjugate at the air-water interface and transferred onto mica sheets using the Langmuir-Blodgett method revealed that gellan did form self-assembled networks at the interface and that interfacial films also contained a large number of unconjugated whey protein molecules. Following the addition of a small-molecule surfactant (Tween 20) to the sub-phase, surface pressure increased, indicating spontaneous adsorption of surfactants to the interface. Atomic force microscopy images showed decreases in interfacial area coverage by whey proteins as surface pressure increased. At a given surface pressure, the interfacial area coverage by whey protein-gellan conjugates was greater than coverage by unconjugated whey proteins, confirming that whey proteins became more resistant to surfactant-induced displacement after conjugation with gellan. Furthermore, gellan molecules added to the sub-phase after the formation of a monolayer of whey proteins at the air-water interface did not adsorb to the interfacial protein film. These results provide a molecular basis for designing interfacial structures to enhance the stability of colloidal systems. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  13. Covalently functionalized noble metal nanoparticles for molecular imprinted polymer biosensors: Synthesis, characterization, and SERS detection

    NASA Astrophysics Data System (ADS)

    Volkert, Anna Allyse

    This dissertation evaluates how gold nanoparticle structure and local environment influence resulting sensor function when using these nanomaterials for complex sample analysis. Molecular imprinted polymers (MIPs), a class of plastic antibodies, are engineered and incorporated into these nanosensors thereby facilitating the quantitative detection of a variety of small molecules when Raman spectroscopy and surface enhanced Raman scattering (SERS) are used for detection. First, homogeneous seeded growth gold nanosphere synthesis is evaluated as a function of ionic double layer composition and thickness. Systematically increasing the citrate concentration during synthesis improves nanomaterial shape homogeneity; however, further elevations of citrate concentration increase the number of internal and/or external atomic defects in the nanomaterials which leads to decreasing solution-phase stability. Next, spherical gold nanoparticles are modified with self-assembled monolayer (SAM), modeled using interfacial energy calculations, and experimental characterized using transmission electron microscopy, NMR, extinction spectroscopy, zeta potential, X-ray photoelectron spectroscopy, and flocculation studies to assess the morphology, surface chemistry, optical properties, surface charge, SAM packing density, and nanoparticle stability, respectively. The number of molecules on the nanostructures increases with increasing ionic strength (by decreasing the electrostatic interfacial energy between assembled molecules) which subsequently promotes nanoparticle stability. Third, plastic antibodies that recognize three drugs commonly used to treat migraines are engineered. These methacrylate-based MIPs are synthesized, extracted, characterized, and used to quantitatively and directly detect over-the-counter drugs in complex samples using Raman microscopy. These results along with numerical approximation methods to estimate drug binding site densities and dissociation constants with the MIPs serve as a foundation for understanding how modest recognition selectivity of MIPs coupled with shifts in the vibrational energy modes from the drugs upon hydrogen binding to the polymer backbone promote sensitive and selective drug detection in complex samples. Finally, nanomaterial incorporation into MIPs for applications in SERS-based biosensors is evaluated. Importantly, gold nanorod concentration increases the detectability of the same drugs using MIPs as pre-concentration and recognition elements. This combination of materials, theory, and applications forms a solid foundation which should aid in the design and development of MIP nanobiosensors for specific and sensitive detection of small molecules in complex matrices.

  14. An automated Genomes-to-Natural Products platform (GNP) for the discovery of modular natural products.

    PubMed

    Johnston, Chad W; Skinnider, Michael A; Wyatt, Morgan A; Li, Xiang; Ranieri, Michael R M; Yang, Lian; Zechel, David L; Ma, Bin; Magarvey, Nathan A

    2015-09-28

    Bacterial natural products are a diverse and valuable group of small molecules, and genome sequencing indicates that the vast majority remain undiscovered. The prediction of natural product structures from biosynthetic assembly lines can facilitate their discovery, but highly automated, accurate, and integrated systems are required to mine the broad spectrum of sequenced bacterial genomes. Here we present a genome-guided natural products discovery tool to automatically predict, combinatorialize and identify polyketides and nonribosomal peptides from biosynthetic assembly lines using LC-MS/MS data of crude extracts in a high-throughput manner. We detail the directed identification and isolation of six genetically predicted polyketides and nonribosomal peptides using our Genome-to-Natural Products platform. This highly automated, user-friendly programme provides a means of realizing the potential of genetically encoded natural products.

  15. Hierarchical CaCO3 chromatography: a stationary phase based on biominerals.

    PubMed

    Sato, Kosuke; Oaki, Yuya; Takahashi, Daisuke; Toshima, Kazunobu; Imai, Hiroaki

    2015-03-23

    In biomineralization, acidic macromolecules play important roles for the growth control of crystals through a specific interaction. Inspired by this interaction, we report on an application of the hierarchical structures in CaCO3 biominerals to a stationary phase of chromatography. The separation and purification of acidic small organic molecules are achieved by thin-layer chromatography and flash chromatography using the powder of biominerals as the stationary phase. The unit nanocrystals and their oriented assembly, the hierarchical structure, are suitable for the adsorption site of the target organic molecules and the flow path of the elution solvents, respectively. The separation mode is ascribed to the specific adsorption of the acidic molecules on the crystal face and the coordination of the functional groups to the calcium ions. The results imply that a new family of stationary phase of chromatography can be developed by the fine tuning of hierarchical structures in CaCO3 materials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Disruption of Chemoreceptor Signaling Arrays by High Levels of CheW, the Receptor-Kinase Coupling Protein

    PubMed Central

    Cardozo, Marcos J.; Massazza, Diego A.; Parkinson, John S.; Studdert, Claudia A.

    2017-01-01

    Summary During chemotactic signaling by Escherichia coli, the small cytoplasmic CheW protein couples the histidine kinase CheA to chemoreceptor control. Although essential for assembly and operation of receptor signaling complexes, CheW in stoichiometric excess disrupts chemotactic behavior. To explore the mechanism of the CheW excess effect, we measured the physiological consequences of high cellular levels of wild-type CheW and of several CheW variants with reduced or enhanced binding affinities for receptor molecules. We found that high levels of CheW interfered with trimer assembly, prevented CheA activation, blocked cluster formation, disrupted chemotactic ability, and elevated receptor methylation levels. The severity of these effects paralleled the receptor binding affinities of the CheW variants. Because trimer formation may be an obligate step in the assembly of ternary signaling complexes and higher-order receptor arrays, we suggest that all CheW excess effects stem from disruption of trimer assembly. We propose that the CheW-binding sites in receptor dimers overlap their trimer contact sites and that high levels of CheW saturate the receptor binding sites, preventing trimer assembly. The CheW-trapped receptor dimers seem to be improved substrates for methyltransferase reactions, but cannot activate CheA or assemble into clusters, processes that are essential for chemotactic signaling. PMID:20487303

  17. Liquid crystal templating as an approach to spatially and temporally organise soft matter.

    PubMed

    van der Asdonk, Pim; Kouwer, Paul H J

    2017-10-02

    Chemistry quickly moves from a molecular science to a systems science. This requires spatial and temporal control over the organisation of molecules and molecular assemblies. Whilst Nature almost by default (transiently) organises her components at multiple different length scales, scientists struggle to realise even relatively straightforward patterns. In the past decades, supramolecular chemistry has taught us the rules to precisely engineer molecular assembly at the nanometre scale. At higher length scales, however, we are bound to top-down nanotechnology techniques to realise order. For soft, biological matter, many of these top-down techniques come with serious limitations since the molecules generally show low susceptibilities to the applied stimuli. A new method is based on liquid crystal templating. In this hierarchical approach, a liquid crystalline host serves as the scaffold to order polymers or assemblies. Being a liquid crystal, the host material can be ordered at many different length scales and on top of that, is highly susceptible to many external stimuli, which can even be used to manipulate the liquid crystal organisation in time. As a result, we anticipate large control over the organisation of the materials inside the liquid crystalline host. Recently, liquid crystal templating was also realised in water. This suddenly makes this tool highly applicable to start organising more delicate biological materials or even small organisms. We review the scope and limitations of liquid crystal templating and look out to where the technique may lead us.

  18. Structural DNA Nanotechnology: From Design to Applications

    PubMed Central

    Zadegan, Reza M.; Norton, Michael L.

    2012-01-01

    The exploitation of DNA for the production of nanoscale architectures presents a young yet paradigm breaking approach, which addresses many of the barriers to the self-assembly of small molecules into highly-ordered nanostructures via construct addressability. There are two major methods to construct DNA nanostructures, and in the current review we will discuss the principles and some examples of applications of both the tile-based and DNA origami methods. The tile-based approach is an older method that provides a good tool to construct small and simple structures, usually with multiply repeated domains. In contrast, the origami method, at this time, would appear to be more appropriate for the construction of bigger, more sophisticated and exactly defined structures. PMID:22837684

  19. Deep-etch visualization of proteins involved in clathrin assembly

    PubMed Central

    1988-01-01

    Assembly proteins were extracted from bovine brain clathrin-coated vesicles with 0.5 M Tris and purified by clathrin-Sepharose affinity chromatography, then adsorbed to mica and examined by freeze-etch electron microscopy. The fraction possessing maximal ability to promote clathrin polymerization, termed AP-2, was found to be a tripartite structure composed of a relatively large central mass flanked by two smaller mirror-symmetric appendages. Elastase treatment quantitatively removed the appendages and clipped 35 kD from the molecule's major approximately 105-kD polypeptides, indicating that the appendages are made from portions of these polypeptides. The remaining central masses no longer promote clathrin polymerization, suggesting that the appendages are somehow involved in the clathrin assembly reaction. The central masses are themselves relatively compact and brick-shaped, and are sufficiently large to contain two copies of the molecule's other major polypeptides (16- and 50-kD), as well as two copies of the approximately 70-kD protease-resistant portions of the major approximately 105-kD polypeptides. Thus the native molecule seems to be a dimeric, bilaterally symmetrical entity. Direct visualization of AP-2 binding to clathrin was accomplished by preparing mixtures of the two molecules in buffers that marginally inhibit AP-2 aggregation and cage assembly. This revealed numerous examples of AP-2 molecules binding to the so-called terminal domains of clathrin triskelions, consistent with earlier electron microscopic evidence that in fully assembled cages, the AP's attach centrally to inwardly-directed terminal domains of the clathrin molecule. This would place AP-2s between the clathrin coat and the enclosed membrane in whole coated vesicles. AP-2s linked to the membrane were also visualized by enzymatically removing the clathrin from brain coated vesicles, using purified 70 kD, uncoating ATPase plus ATP. This revealed several brick-shaped molecules attached to the vesicle membrane by short stalks. The exact stoichiometry of APs to clathrin in such vesicles, before and after uncoating, remains to be determined. PMID:3417785

  20. Role of hydrophobic interactions in the self-assembly of alternating copolymers

    NASA Astrophysics Data System (ADS)

    Malardier-Jugroot, Cecile; Chan, Anita S. W.; Groves, Michael N.

    2010-03-01

    New nanomaterials already play a key role in several emerging technologies. Among the methods used to fabricate new nanomaterials, the most successful in producing precise structure is the bottom-up method. The materials obtained by self-assembly are ordered on different scales and respond and adapt to the presence of other molecules in their environment [1] and can therefore be used as probes, sensors or switches [2]. In this paper, we will describes the self-assembly of amphiphilic alternating copolymers into nanoarchitectures in aqueous solution. To investigate the role of the nature of the hydrophobic groups on the association, the self-assembly of two polymers are compared: poly(isobutylene-alt-maleic anhydride) (IMA) and poly(styrene-alt-maleic anhydride) (SMA) [3, 4]. The theoretical prediction is also compared to experiment and the characterization using Small Angle Neutron Scattering, Dynamic Light Scattering and High Resolution Transmission Electron Microscopy will be presented in detail. [1] S. Zhang, Nature Biotechnology, 21, 10, 1171, 2003. [2] F. Patolsky, et al., Nanomedicine, 1, 51-65, 2006 [3] C. Malardier-Jugroot, et al., J. of Phys. Chem. B, 109(15), 7022-7032, 2005 [4] A.S.W. Chan, et al., Mol. Sim., accepted for publication, 2009.

  1. Grooved nanowires from self-assembling hairpin molecules for solar cells.

    PubMed

    Tevis, Ian D; Tsai, Wei-Wen; Palmer, Liam C; Aytun, Taner; Stupp, Samuel I

    2012-03-27

    One of the challenges facing bulk heterojunction organic solar cells is obtaining organized films during the phase separation of intimately mixed donor and acceptor components. We report here on the use of hairpin-shaped sexithiophene molecules to generate by self-assembly grooved nanowires as the donor component in bulk heterojunction solar cells. Photovoltaic devices were fabricated via spin-casting to produce by solvent evaporation a percolating network of self-assembled nanowires and fullerene acceptors. Thermal annealing was found to increase power conversion efficiencies by promoting domain growth while still maintaining this percolating network of nanostructures. The benefits of self-assembly and grooved nanowires were examined by building devices from a soluble sexithiophene derivative that does not form one-dimensional structures. In these systems, excessive phase separation caused by thermal annealing leads to the formation of defects and lower device efficiencies. We propose that the unique hairpin shape of the self-assembling molecules allows the nanowires as they form to interact well with the fullerenes in receptor-ligand type configurations at the heterojunction of the two domains, thus enhancing device efficiencies by 23%. © 2012 American Chemical Society

  2. Assembling new technologies at the interface of materials science and biology

    NASA Astrophysics Data System (ADS)

    Stendahl, John C.

    Molecular self-assembly can be used to construct advanced materials by taking cues from nature and harnessing noncovalent interactions. This bottom-up approach affords molecular level precision that can cultivate pathways to improved materials function. The graduate research presented in this thesis integrates molecular self-assembly with traditional concepts in chemistry and materials science, with the ultimate goal of developing innovative solutions in technology and medicine. In the field of polymer engineering, self-assembly was used to create supramolecular nanoribbons that, when incorporated into polystyrene, modify its microstructure and significantly enhance its toughness and ductility. In medicine, self-assembly was used to create ordered, chemically functional materials to improve interactions with cells and other constituents of the biological environment. One system that was investigated is based on a triblock molecule in which cholesterol is connected to a lysine dendron by a flexible oligo-(L-lactic acid) spacer. These molecules self-assemble into polar surface coatings on fibrous poly(L-lactic acid) scaffolds that improve the scaffold's wettability and increase its retention of cells during seeding. Another self-assembling system that was investigated for biomedical applications is a family of molecules referred to as peptide amphiphiles (PA's). PA's consist of hydrophobic alkyl tails connected to short, hydrophilic peptides that incorporate biological signaling epitopes. These molecules spontaneously assemble into networks of well-defined nanofibers in aqueous environments, with the signaling epitopes presented in high density on the nanofiber exteriors. Nanofiber assembly is triggered by charge screening on the peptides and is able to produce self-supporting gels in concentrations of less than 1.0 wt.-%. The assembly process and mechanical properties of PA gels was investigated in detail with vibrational spectroscopy and oscillatory rheology. PA nanofibers were used in conjunction with fibrous poly(L-lactic acid] fabrics to create chemically functional scaffolds to facilitate islet cell transplantation. In transplant studies in diabetic mice, the use of scaffolds for islet delivery was shown to significantly improve transplant outcomes over free islet injections. Together, these studies illustrate that molecular self-assembly can be used to create functional materials for a variety of applications. These materials utilize noncovalent interactions to produce supramolecular structures that have important impacts on properties.

  3. The icosahedral RNA virus as a grotto: organizing the genome into stalagmites and stalactites.

    PubMed

    Harvey, Stephen C; Zeng, Yingying; Heitsch, Christine E

    2013-03-01

    There are two important problems in the assembly of small, icosahedral RNA viruses. First, how does the capsid protein select the viral RNA for packaging, when there are so many other candidate RNA molecules available? Second, what is the mechanism of assembly? With regard to the first question, there are a number of cases where a particular RNA sequence or structure--often one or more stem-loops--either promotes assembly or is required for assembly, but there are others where specific packaging signals are apparently not required. With regard to the assembly pathway, in those cases where stem-loops are involved, the first step is generally believed to be binding of the capsid proteins to these "fingers" of the RNA secondary structure. In the mature virus, the core of the RNA would then occupy the center of the viral particle, and the stem-loops would reach outward, towards the capsid, like stalagmites reaching up from the floor of a grotto towards the ceiling. Those viruses whose assembly does not depend on protein binding to stem-loops could have a different structure, with the core of the RNA lying just under the capsid, and the fingers reaching down into the interior of the virus, like stalactites. We review the literature on these alternative structures, focusing on RNA selectivity and the assembly mechanism, and we propose experiments aimed at determining, in a given virus, which of the two structures actually occurs.

  4. Nanoscale superstructures assembled by polymerase chain reaction (PCR): programmable construction, structural diversity, and emerging applications.

    PubMed

    Kuang, Hua; Ma, Wei; Xu, Liguang; Wang, Libing; Xu, Chuanlai

    2013-11-19

    Polymerase chain reaction (PCR) is an essential tool in biotechnology laboratories and is becoming increasingly important in other areas of research. Extensive data obtained over the last 12 years has shown that the combination of PCR with nanoscale dispersions can resolve issues in the preparation DNA-based materials that include both inorganic and organic nanoscale components. Unlike conventional DNA hybridization and antibody-antigen complexes, PCR provides a new, effective assembly platform that both increases the yield of DNA-based nanomaterials and allows researchers to program and control assembly with predesigned parameters including those assisted and automated by computers. As a result, this method allows researchers to optimize to the combinatorial selection of the DNA strands for their nanoparticle conjugates. We have developed a PCR approach for producing various nanoscale assemblies including organic motifs such as small molecules, macromolecules, and inorganic building blocks, such as nanorods (NRs), metal, semiconductor, and magnetic nanoparticles (NPs). We start with a nanoscale primer and then modify that building block using the automated steps of PCR-based assembly including initialization, denaturation, annealing, extension, final elongation, and final hold. The intermediate steps of denaturation, annealing, and extension are cyclic, and we use computer control so that the assembled superstructures reach their predetermined complexity. The structures assembled using a small number of PCR cycles show a lower polydispersity than similar discrete structures obtained by direct hybridization between the nanoscale building blocks. Using different building blocks, we assembled the following structural motifs by PCR: (1) discrete nanostructures (NP dimers, NP multimers including trimers, pyramids, tetramers or hexamers, etc.), (2) branched NP superstructures and heterochains, (3) NP satellite-like superstructures, (4) Y-shaped nanostructures and DNA networks, (5) protein-DNA co-assembly structures, and (6) DNA block copolymers including trimers and pentamers. These results affirm that this method can produce a variety of chemical structures and in yields that are tunable. Using PCR-based preparation of DNA-bridged nanostructures, we can program the assembly of the nanoscale blocks through the adjustment of the primer intensity on the assembled units, the number of PCR cycles, or both. The resulting structures are highly complex and diverse and have interesting dynamics and collective properties. Potential applications of these materials include chirooptical materials, probe fabrication, and environmental and biomedical sensors.

  5. Chemical-controlled Activation of Antiviral Myxovirus Resistance Protein 1.

    PubMed

    Verhelst, Judith; Van Hoecke, Lien; Spitaels, Jan; De Vlieger, Dorien; Kolpe, Annasaheb; Saelens, Xavier

    2017-02-10

    The antiviral myxovirus resistance protein 1 (MX1) is an interferon-induced GTPase that plays an important role in the defense of mammalian cells against influenza A viruses. Mouse MX1 interacts with the influenza ribonucleoprotein complexes (vRNPs) and can prevent the interaction between polymerase basic 2 (PB2) and the nucleoprotein (NP) of influenza A viruses. However, it is unclear whether mouse MX1 disrupts the PB2-NP interaction in the context of pre-existing vRNPs or prevents the assembly of new vRNP components. Here, we describe a conditionally active mouse MX1 variant that only exerts antiviral activity in the presence of a small molecule drug. Once activated, this MX1 construct phenocopies the antiviral and NP binding activity of wild type MX1. The interaction between PB2 and NP is disrupted within minutes after the addition of the small molecule activator. These findings support a model in which mouse MX1 interacts with the incoming influenza A vRNPs and inhibits their activity by disrupting the PB2-NP interaction. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Prion-like nanofibrils of small molecules (PriSM) selectively inhibit cancer cells by impeding cytoskeleton dynamics.

    PubMed

    Kuang, Yi; Long, Marcus J C; Zhou, Jie; Shi, Junfeng; Gao, Yuan; Xu, Chen; Hedstrom, Lizbeth; Xu, Bing

    2014-10-17

    Emerging evidence reveals that prion-like structures play important roles to maintain the well-being of cells. Although self-assembly of small molecules also affords prion-like nanofibrils (PriSM), little is known about the functions and mechanisms of PriSM. Previous works demonstrated that PriSM formed by a dipeptide derivative selectively inhibiting the growth of glioblastoma cells over neuronal cells and effectively inhibiting xenograft tumor in animal models. Here we examine the protein targets, the internalization, and the cytotoxicity pathway of the PriSM. The results show that the PriSM selectively accumulate in cancer cells via macropinocytosis to impede the dynamics of cytoskeletal filaments via promiscuous interactions with cytoskeletal proteins, thus inducing apoptosis. Intriguingly, Tau proteins are able to alleviate the effect of the PriSM, thus protecting neuronal cells. This work illustrates PriSM as a new paradigm for developing polypharmacological agents that promiscuously interact with multiple proteins yet result in a primary phenotype, such as cancer inhibition. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. MPS1 kinase as a potential therapeutic target in medulloblastoma

    PubMed Central

    Alimova, Irina; Ng, June; Harris, Peter; Birks, Diane; Donson, Andrew; Taylor, Michael D.; Foreman, Nicholas K.; Venkataraman, Sujatha; Vibhakar, Rajeev

    2016-01-01

    Medulloblastoma is the most common type of malignant brain tumor that affects children. Although recent advances in chemotherapy and radiation have improved outcomes, high-risk patients perform poorly with significant morbidity. Gene expression profiling has revealed that monopolar spindle 1 (MPS1) (TTK1) is highly expressed in medulloblastoma patient samples compared to that noted in normal cerebellum. MPS1 is a key regulator of the spindle assembly checkpoint (SAC), a mitotic mechanism specifically required for proper chromosomal alignment and segregation. The SAC can be activated in aneuploid cancer cells and MPS1 is overexpressed in many types of cancers. A previous study has demonstrated the effectiveness of inhibiting MPS1 with small-molecule inhibitors, but the role of MPS1 in medulloblastoma is unknown. In the present study, we demonstrated that MPS1 inhibition by shRNA or with a small-molecule drug, NMS-P715, resulted in decreased cell growth, inhibition of clonogenic potential and induction of apoptosis in cells belonging to both the Shh and group 3 medulloblastoma genomic signature. These findings highlight MPS1 as a rational therapeutic target for medulloblastoma. PMID:27633003

  8. MPS1 kinase as a potential therapeutic target in medulloblastoma.

    PubMed

    Alimova, Irina; Ng, June; Harris, Peter; Birks, Diane; Donson, Andrew; Taylor, Michael D; Foreman, Nicholas K; Venkataraman, Sujatha; Vibhakar, Rajeev

    2016-11-01

    Medulloblastoma is the most common type of malignant brain tumor that affects children. Although recent advances in chemotherapy and radiation have improved outcomes, high-risk patients perform poorly with significant morbidity. Gene expression profiling has revealed that monopolar spindle 1 (MPS1) (TTK1) is highly expressed in medulloblastoma patient samples compared to that noted in normal cerebellum. MPS1 is a key regulator of the spindle assembly checkpoint (SAC), a mitotic mechanism specifically required for proper chromosomal alignment and segregation. The SAC can be activated in aneuploid cancer cells and MPS1 is overexpressed in many types of cancers. A previous study has demonstrated the effectiveness of inhibiting MPS1 with small-molecule inhibitors, but the role of MPS1 in medulloblastoma is unknown. In the present study, we demonstrated that MPS1 inhibition by shRNA or with a small-molecule drug, NMS-P715, resulted in decreased cell growth, inhibition of clonogenic potential and induction of apoptosis in cells belonging to both the Shh and group 3 medulloblastoma genomic signature. These findings highlight MPS1 as a rational therapeutic target for medulloblastoma.

  9. Chemical-controlled Activation of Antiviral Myxovirus Resistance Protein 1*

    PubMed Central

    Verhelst, Judith; Van Hoecke, Lien; Spitaels, Jan; De Vlieger, Dorien; Kolpe, Annasaheb

    2017-01-01

    The antiviral myxovirus resistance protein 1 (MX1) is an interferon-induced GTPase that plays an important role in the defense of mammalian cells against influenza A viruses. Mouse MX1 interacts with the influenza ribonucleoprotein complexes (vRNPs) and can prevent the interaction between polymerase basic 2 (PB2) and the nucleoprotein (NP) of influenza A viruses. However, it is unclear whether mouse MX1 disrupts the PB2-NP interaction in the context of pre-existing vRNPs or prevents the assembly of new vRNP components. Here, we describe a conditionally active mouse MX1 variant that only exerts antiviral activity in the presence of a small molecule drug. Once activated, this MX1 construct phenocopies the antiviral and NP binding activity of wild type MX1. The interaction between PB2 and NP is disrupted within minutes after the addition of the small molecule activator. These findings support a model in which mouse MX1 interacts with the incoming influenza A vRNPs and inhibits their activity by disrupting the PB2-NP interaction. PMID:28011636

  10. Identification of benzothiazoles as potential polyglutamine aggregation inhibitors of Huntington's disease by using an automated filter retardation assay

    PubMed Central

    Heiser, Volker; Engemann, Sabine; Bröcker, Wolfgang; Dunkel, Ilona; Boeddrich, Annett; Waelter, Stephanie; Nordhoff, Eddi; Lurz, Rudi; Schugardt, Nancy; Rautenberg, Susanne; Herhaus, Christian; Barnickel, Gerhard; Böttcher, Henning; Lehrach, Hans; Wanker, Erich E.

    2002-01-01

    Preventing the formation of insoluble polyglutamine containing protein aggregates in neurons may represent an attractive therapeutic strategy to ameliorate Huntington's disease (HD). Therefore, the ability to screen for small molecules that suppress the self-assembly of huntingtin would have potential clinical and significant research applications. We have developed an automated filter retardation assay for the rapid identification of chemical compounds that prevent HD exon 1 protein aggregation in vitro. Using this method, a total of 25 benzothiazole derivatives that inhibit huntingtin fibrillogenesis in a dose-dependent manner were discovered from a library of ≈184,000 small molecules. The results obtained by the filter assay were confirmed by immunoblotting, electron microscopy, and mass spectrometry. Furthermore, cell culture studies revealed that 2-amino-4,7-dimethyl-benzothiazol-6-ol, a chemical compound similar to riluzole, significantly inhibits HD exon 1 aggregation in vivo. These findings may provide the basis for a new therapeutic approach to prevent the accumulation of insoluble protein aggregates in Huntington's disease and related glutamine repeat disorders. PMID:12200548

  11. Enhanced sequencing coverage with digital droplet multiple displacement amplification

    PubMed Central

    Sidore, Angus M.; Lan, Freeman; Lim, Shaun W.; Abate, Adam R.

    2016-01-01

    Sequencing small quantities of DNA is important for applications ranging from the assembly of uncultivable microbial genomes to the identification of cancer-associated mutations. To obtain sufficient quantities of DNA for sequencing, the small amount of starting material must be amplified significantly. However, existing methods often yield errors or non-uniform coverage, reducing sequencing data quality. Here, we describe digital droplet multiple displacement amplification, a method that enables massive amplification of low-input material while maintaining sequence accuracy and uniformity. The low-input material is compartmentalized as single molecules in millions of picoliter droplets. Because the molecules are isolated in compartments, they amplify to saturation without competing for resources; this yields uniform representation of all sequences in the final product and, in turn, enhances the quality of the sequence data. We demonstrate the ability to uniformly amplify the genomes of single Escherichia coli cells, comprising just 4.7 fg of starting DNA, and obtain sequencing coverage distributions that rival that of unamplified material. Digital droplet multiple displacement amplification provides a simple and effective method for amplifying minute amounts of DNA for accurate and uniform sequencing. PMID:26704978

  12. Parallel Arrays of Geometric Nanowells for Assembling Curtains of DNA with Controlled Lateral Dispersion

    PubMed Central

    Visnapuu, Mari-Liis; Fazio, Teresa; Wind, Shalom; Greene, Eric C.

    2009-01-01

    The analysis of individual molecules is evolving into an important tool for biological research, and presents conceptually new ways of approaching experimental design strategies. However, more robust methods are required if these technologies are to be made broadly available to the biological research community. To help achieve this goal we have combined nanofabrication techniques with single-molecule optical microscopy for assembling and visualizing curtains comprised of thousands of individual DNA molecules organized at engineered diffusion barriers on a lipid bilayer-coated surface. Here we present an important extension of this technology that implements geometric barrier patterns comprised of thousands of nanoscale wells that can be loaded with single molecules of DNA. We show that these geometric nanowells can be used to precisely control the lateral distribution of the individual DNA molecules within curtains assembled along the edges of the engineered barrier patterns. The individual molecules making up the DNA curtain can be separated from one another by a user-defined distance dictated by the dimensions of the nanowells. We demonstrate the broader utility of these patterned DNA curtains in a novel, real time restriction assay that we refer to as dynamic optical restriction mapping, which can be used to rapidly identify entire sets of cleavage sites within a large DNA molecule. PMID:18788761

  13. Probing Biomolecular Structures and Dynamics of Single Molecules Using In-Gel Alternating-Laser Excitation

    PubMed Central

    Santoso, Yusdi; Kapanidis, Achillefs N.

    2009-01-01

    Gel electrophoresis is a standard biochemical technique used for separating biomolecules on the basis of size and charge. Despite the use of gels in early single-molecule experiments, gel electrophoresis has not been widely adopted for single-molecule fluorescence spectroscopy. We present a novel method that combines gel electrophoresis and single-molecule fluorescence spectroscopy to simultaneously purify and analyze biomolecules in a gel matrix. Our method, in-gel ALEX, uses non-denaturing gels to purify biomolecular complexes of interest from free components, aggregates, and non-specific complexes. The gel matrix also slows down translational diffusion of molecules, giving rise to long, high-resolution time traces without surface immobilization, which allow extended observations of conformational dynamics in a biologically friendly environment. We demonstrated the compatibility of this method with different types of single molecule spectroscopy techniques, including confocal detection and fluorescence-correlation spectroscopy. We demonstrated that in-gel ALEX can be used to study conformational dynamics at the millisecond timescale; by studying a DNA hairpin in gels, we directly observed fluorescence fluctuations due to conformational interconversion between folded and unfolded states. Our method is amenable to the addition of small molecules that can alter the equilibrium and dynamic properties of the system. In-gel ALEX will be a versatile tool for studying structures and dynamics of complex biomolecules and their assemblies. PMID:19863108

  14. Improved Tumor Targeting and Longer Retention Time of NIR Fluorescent Probes Using Bioorthogonal Chemistry.

    PubMed

    Zhang, Xianghan; Wang, Bo; Zhao, Na; Tian, Zuhong; Dai, Yunpeng; Nie, Yongzhan; Tian, Jie; Wang, Zhongliang; Chen, Xiaoyuan

    2017-01-01

    The traditional labeling method for targeted NIR fluorescence probes requires directly covalent-bonded conjugation of targeting domains and fluorophores in vitro . Although this strategy works well, it is not sufficient for detecting or treating cancers in vivo , due to steric hindrance effects that relatively large fluorophore molecules exert on the configurations and physiological functions of specific targeting domains. The copper-free, "click-chemistry"-assisted assembly of small molecules in living systems may enhance tumor accumulation of fluorescence probes by improving the binding affinities of the targeting factors. Here, we employed a vascular homing peptide, GEBP11, as a targeting factor for gastric tumors, and we demonstrate its effectiveness for in vivo imaging via click-chemistry-mediated conjugation with fluorescence molecules in tumor xenograft mouse models. This strategy showed higher binding affinities than those of the traditional conjugation method, and our results showed that the tumor accumulation of click-chemistry-mediated probes are 11-fold higher than that of directly labeled probes. The tracking life was prolonged by 12-fold, and uptake of the probes into the kidney was reduced by 6.5-fold. For lesion tumors of different sizes, click-chemistry-mediated probes can achieve sufficient signal-to-background ratios (3.5-5) for in vivo detection, and with diagnostic sensitivity approximately 3.5 times that of traditional labeling probes. The click-chemistry-assisted detection strategy utilizes the advantages of "small molecule" probes while not perturbing their physiological functions; this enables tumor detection with high sensitivity and specific selectivity.

  15. Single-molecule diffusometry reveals the nucleotide-dependent oligomerization pathways of Nicotiana tabacum Rubisco activase

    NASA Astrophysics Data System (ADS)

    Wang, Quan; Serban, Andrew J.; Wachter, Rebekka M.; Moerner, W. E.

    2018-03-01

    Oligomerization plays an important role in the function of many proteins, but a quantitative picture of the oligomer distribution has been difficult to obtain using existing techniques. Here we describe a method that combines sub-stoichiometric labeling and recently developed single-molecule diffusometry to measure the size distribution of oligomers under equilibrium conditions in solution, one molecule at a time. We use this technique to characterize the oligomerization behavior of Nicotiana tabacum (Nt) Rubisco activase (Nt-Rca), a chaperone-like AAA-plus ATPase essential in regulating carbon fixation during photosynthesis. We directly observed monomers, dimers, and a tetramer/hexamer mixture and extracted their fractional abundance as a function of protein concentration. We show that the oligomerization pathway of Nt-Rca is nucleotide dependent: ATPγS binding strongly promotes tetramer/hexamer formation from dimers and results in a preferred tetramer/hexamer population for concentrations in the 1-10 μM range. Furthermore, we directly observed dynamic assembly and disassembly processes of single complexes in real time and from there estimated the rate of subunit exchange to be ˜0.1 s-1 with ATPγS. On the other hand, ADP binding destabilizes Rca complexes by enhancing the rate of subunit exchange by >2 fold. These observations provide a quantitative starting point to elucidate the structure-function relations of Nt-Rca complexes. We envision the method to fill a critical gap in defining and quantifying protein assembly pathways in the small-oligomer regime.

  16. Single-molecule diffusometry reveals the nucleotide-dependent oligomerization pathways of Nicotiana tabacum Rubisco activase.

    PubMed

    Wang, Quan; Serban, Andrew J; Wachter, Rebekka M; Moerner, W E

    2018-03-28

    Oligomerization plays an important role in the function of many proteins, but a quantitative picture of the oligomer distribution has been difficult to obtain using existing techniques. Here we describe a method that combines sub-stoichiometric labeling and recently developed single-molecule diffusometry to measure the size distribution of oligomers under equilibrium conditions in solution, one molecule at a time. We use this technique to characterize the oligomerization behavior of Nicotiana tabacum (Nt) Rubisco activase (Nt-Rca), a chaperone-like AAA-plus ATPase essential in regulating carbon fixation during photosynthesis. We directly observed monomers, dimers, and a tetramer/hexamer mixture and extracted their fractional abundance as a function of protein concentration. We show that the oligomerization pathway of Nt-Rca is nucleotide dependent: ATPγS binding strongly promotes tetramer/hexamer formation from dimers and results in a preferred tetramer/hexamer population for concentrations in the 1-10 μM range. Furthermore, we directly observed dynamic assembly and disassembly processes of single complexes in real time and from there estimated the rate of subunit exchange to be ∼0.1 s -1 with ATPγS. On the other hand, ADP binding destabilizes Rca complexes by enhancing the rate of subunit exchange by >2 fold. These observations provide a quantitative starting point to elucidate the structure-function relations of Nt-Rca complexes. We envision the method to fill a critical gap in defining and quantifying protein assembly pathways in the small-oligomer regime.

  17. Formation of self-assembled monolayer of curcuminoid molecules on gold surfaces

    NASA Astrophysics Data System (ADS)

    Berlanga, Isadora; Etcheverry-Berríos, Álvaro; Mella, Andy; Jullian, Domingo; Gómez, Victoria Alejandra; Aliaga-Alcalde, Núria; Fuenzalida, Victor; Flores, Marcos; Soler, Monica

    2017-01-01

    We investigated the formation of self-assembled monolayers of two thiophene curcuminoid molecules, 2-thphCCM (1) and 3-thphCCM (2), on polycrystalline gold substrates prepared by immersion of the surfaces in a solution of the molecules during 24 h. The functionalized surfaces were studied by scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS). Despite the fact that both molecules have the same composition and almost the same structure, these molecules exhibit different behavior on the gold surface, which can be explained by the different positions of the sulfur atoms in the terminal aromatic rings. In the case of molecule 1, the complete formation of a SAM can be observed after 24 h of immersion. In the case of molecule 2, the transition from flat-lying to upright configuration on the surface is still in process after 24 h of immersion. This is attributed to the fact that molecule 2 have the sulfur atoms more exposed than molecule 1.

  18. Self-folding polymeric containers for encapsulation and delivery of drugs.

    PubMed

    Fernandes, Rohan; Gracias, David H

    2012-11-01

    Self-folding broadly refers to self-assembly processes wherein thin films or interconnected planar templates curve, roll-up or fold into three dimensional (3D) structures such as cylindrical tubes, spirals, corrugated sheets or polyhedra. The process has been demonstrated with metallic, semiconducting and polymeric films and has been used to curve tubes with diameters as small as 2nm and fold polyhedra as small as 100nm, with a surface patterning resolution of 15nm. Self-folding methods are important for drug delivery applications since they provide a means to realize 3D, biocompatible, all-polymeric containers with well-tailored composition, size, shape, wall thickness, porosity, surface patterns and chemistry. Self-folding is also a highly parallel process, and it is possible to encapsulate or self-load therapeutic cargo during assembly. A variety of therapeutic cargos such as small molecules, peptides, proteins, bacteria, fungi and mammalian cells have been encapsulated in self-folded polymeric containers. In this review, we focus on self-folding of all-polymeric containers. We discuss the mechanistic aspects of self-folding of polymeric containers driven by differential stresses or surface tension forces, the applications of self-folding polymers in drug delivery and we outline future challenges. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. The molecular electronic device and the biochip computer: present status.

    PubMed

    Haddon, R C; Lamola, A A

    1985-04-01

    The idea that a single molecule might function as a self-contained electronic device has been of interest for some time. However, a fully integrated version--the biochip or the biocomputer, in which both production and assembly of molecular electronic components is achieved through biotechnology-is a relatively new concept that is currently attracting attention both within the scientific community and among the general public. In the present article we draw together some of the approaches being considered for the construction of such devices and delineate the revolutionary nature of the current proposals for molecular electronic devices (MEDs) and biochip computers (BCCs). With the silicon semiconductor conductor industry already in place and in view of the continuing successes of the lithographic process it seems appropriate to ask why the highly speculative MED or BCC has engendered such interest. In some respects the answer is paradigmatic as much as it is real. It is perhaps best stated as the promise of the realm of the molecular. Thus it is envisioned that devices will be constructed by assembly of individual molecular electronic components into arrays, thereby engineering from small upward rather than large downward as do current lithographic techniques. An important corollary of the construction technique is that the functional elements of such an array would be individual molecules rather than macroscopic ensembles. These two aspects of the MED/BCC--assembly of molecular arrays and individually accessible functional molecular units--are truly revolutionary. Both require scientific breakthroughs and the necessary principles, quite apart from the technology, remain essentially unknown. It is concluded that the advent of the MED/BCC still lies well before us. The twin criteria of utilization of individual molecules as functional elements and the assembly of such elements remains as elusive as ever. Biology engineers structures on the molecular scale but biomolecules do not seem to be imbued with useful electronic properties. Molecular beam epitaxy and thin-film techniques produce electronic devices but they "engineer down" and are currently unable to generate individual molecular units. The potential of the MED/BCC field is matched only by the obstacles that must be surmounted for its realization.

  20. The molecular electronic device and the biochip computer: present status.

    PubMed Central

    Haddon, R C; Lamola, A A

    1985-01-01

    The idea that a single molecule might function as a self-contained electronic device has been of interest for some time. However, a fully integrated version--the biochip or the biocomputer, in which both production and assembly of molecular electronic components is achieved through biotechnology-is a relatively new concept that is currently attracting attention both within the scientific community and among the general public. In the present article we draw together some of the approaches being considered for the construction of such devices and delineate the revolutionary nature of the current proposals for molecular electronic devices (MEDs) and biochip computers (BCCs). With the silicon semiconductor conductor industry already in place and in view of the continuing successes of the lithographic process it seems appropriate to ask why the highly speculative MED or BCC has engendered such interest. In some respects the answer is paradigmatic as much as it is real. It is perhaps best stated as the promise of the realm of the molecular. Thus it is envisioned that devices will be constructed by assembly of individual molecular electronic components into arrays, thereby engineering from small upward rather than large downward as do current lithographic techniques. An important corollary of the construction technique is that the functional elements of such an array would be individual molecules rather than macroscopic ensembles. These two aspects of the MED/BCC--assembly of molecular arrays and individually accessible functional molecular units--are truly revolutionary. Both require scientific breakthroughs and the necessary principles, quite apart from the technology, remain essentially unknown. It is concluded that the advent of the MED/BCC still lies well before us. The twin criteria of utilization of individual molecules as functional elements and the assembly of such elements remains as elusive as ever. Biology engineers structures on the molecular scale but biomolecules do not seem to be imbued with useful electronic properties. Molecular beam epitaxy and thin-film techniques produce electronic devices but they "engineer down" and are currently unable to generate individual molecular units. The potential of the MED/BCC field is matched only by the obstacles that must be surmounted for its realization. PMID:3856865

  1. Production of solar chemicals: gaining selectivity with hybrid molecule/semiconductor assemblies.

    PubMed

    Hennessey, Seán; Farràs, Pau

    2018-05-29

    Research on the production of solar fuels and chemicals has rocketed over the past decade, with a wide variety of systems proposed to harvest solar energy and drive chemical reactions. In this Feature Article we have focused on hybrid molecule/semiconductor assemblies in both powder and supported materials, summarising recent systems and highlighting the enormous possibilities offered by such assemblies to carry out highly demanding chemical reactions with industrial impact. Of relevance is the higher selectivity obtained in visible light-driven organic transformations when using molecular catalysts compared to photocatalytic materials.

  2. Genetics Home Reference: Stickler syndrome

    MedlinePlus

    ... Stickler syndrome provide instructions for making components of collagens, which are complex molecules that give structure and ... genes impair the production, processing, or assembly of collagen molecules. Defective collagen molecules or reduced amounts of ...

  3. Molecular Studies of Complex Soil Organic Matter Interactions with Metal Ions and Mineral Surfaces using Classical Molecular Dynamics and Quantum Chemistry Methods

    NASA Astrophysics Data System (ADS)

    Andersen, A.; Govind, N.; Laskin, A.

    2017-12-01

    Mineral surfaces have been implicated as potential protectors of soil organic matter (SOM) against decomposition and ultimate mineralization to small molecules which can provide nutrients for plants and soil microbes and can also contribute to the Earth's elemental cycles. SOM is a complex mixture of organic molecules of biological origin at varying degrees of decomposition and can, itself, self-assemble in such a way as to expose some biomolecule types to biotic and abiotic attack while protecting other biomolecule types. The organization of SOM and SOM with mineral surfaces and solvated metal ions is driven by an interplay of van der Waals and electrostatic interactions leading to partitioning of hydrophilic (e.g. sugars) and hydrophobic (e.g., lipids) SOM components that can be bridged with amphiphilic molecules (e.g., proteins). Classical molecular dynamics simulations can shed light on assemblies of organic molecules alone or complexation with mineral surfaces. The role of chemical reactions is also an important consideration in potential chemical changes of the organic species such as oxidation/reduction, degradation, chemisorption to mineral surfaces, and complexation with solvated metal ions to form organometallic systems. For the study of chemical reactivity, quantum chemistry methods can be employed and combined with structural insight provided by classical MD simulations. Moreover, quantum chemistry can also simulate spectroscopic signatures based on chemical structure and is a valuable tool in interpreting spectra from, notably, x-ray absorption spectroscopy (XAS). In this presentation, we will discuss our classical MD and quantum chemistry findings on a model SOM system interacting with mineral surfaces and solvated metal ions.

  4. Synthetic approaches to construct viral capsid-like spherical nanomaterials.

    PubMed

    Matsuura, Kazunori

    2018-06-06

    This feature article describes recent progress in synthetic strategies to construct viral capsid-like spherical nanomaterials using the self-assembly of peptides and/or proteins. By mimicking the self-assembly of spherical viral capsids and clathrin, trigonal peptide conjugates bearing β-sheet-forming peptides, glutathiones, or coiled-coil-forming peptides were developed to construct viral capsid-like particles. β-Annulus peptides from tomato bushy stunt virus self-assembled into viral capsid-like nanocapsules with a size of 30-50 nm, which could encapsulate various guest molecules and be decorated with different molecules on their surface. Rationally designed fusion proteins bearing symmetric assembling units afforded precise viral capsid-like polyhedral assemblies. These synthetic approaches to construct artificial viruses could become useful guidelines to develop novel drug carriers, vaccine platforms, nanotemplates and nanoreactors.

  5. Electrochemical Functionalization of Graphene at the Nanoscale with Self-Assembling Diazonium Salts.

    PubMed

    Xia, Zhenyuan; Leonardi, Francesca; Gobbi, Marco; Liu, Yi; Bellani, Vittorio; Liscio, Andrea; Kovtun, Alessandro; Li, Rongjin; Feng, Xinliang; Orgiu, Emanuele; Samorì, Paolo; Treossi, Emanuele; Palermo, Vincenzo

    2016-07-26

    We describe a fast and versatile method to functionalize high-quality graphene with organic molecules by exploiting the synergistic effect of supramolecular and covalent chemistry. With this goal, we designed and synthesized molecules comprising a long aliphatic chain and an aryl diazonium salt. Thanks to the long chain, these molecules physisorb from solution onto CVD graphene or bulk graphite, self-assembling in an ordered monolayer. The sample is successively transferred into an aqueous electrolyte, to block any reorganization or desorption of the monolayer. An electrochemical impulse is used to transform the diazonium group into a radical capable of grafting covalently to the substrate and transforming the physisorption into a covalent chemisorption. During covalent grafting in water, the molecules retain the ordered packing formed upon self-assembly. Our two-step approach is characterized by the independent control over the processes of immobilization of molecules on the substrate and their covalent tethering, enabling fast (t < 10 s) covalent functionalization of graphene. This strategy is highly versatile and works with many carbon-based materials including graphene deposited on silicon, plastic, and quartz as well as highly oriented pyrolytic graphite.

  6. Oxidative diversification of amino acids and peptides by small-molecule iron catalysis.

    PubMed

    Osberger, Thomas J; Rogness, Donald C; Kohrt, Jeffrey T; Stepan, Antonia F; White, M Christina

    2016-09-08

    Secondary metabolites synthesized by non-ribosomal peptide synthetases display diverse and complex topologies and possess a range of biological activities. Much of this diversity derives from a synthetic strategy that entails pre- and post-assembly oxidation of both the chiral amino acid building blocks and the assembled peptide scaffolds. The vancomycin biosynthetic pathway is an excellent example of the range of oxidative transformations that can be performed by the iron-containing enzymes involved in its biosynthesis. However, because of the challenges associated with using such oxidative enzymes to carry out chemical transformations in vitro, chemical syntheses guided by these principles have not been fully realized in the laboratory. Here we report that two small-molecule iron catalysts are capable of facilitating the targeted C-H oxidative modification of amino acids and peptides with preservation of α-centre chirality. Oxidation of proline to 5-hydroxyproline furnishes a versatile intermediate that can be transformed to rigid arylated derivatives or flexible linear carboxylic acids, alcohols, olefins and amines in both monomer and peptide settings. The value of this C-H oxidation strategy is demonstrated in its capacity for generating diversity: four 'chiral pool' amino acids are transformed to twenty-one chiral unnatural amino acids representing seven distinct functional group arrays; late-stage C-H functionalizations of a single proline-containing tripeptide furnish eight tripeptides, each having different unnatural amino acids. Additionally, a macrocyclic peptide containing a proline turn element is transformed via late-stage C-H oxidation to one containing a linear unnatural amino acid.

  7. Reinforced self-assembly of donor-acceptor π-conjugated molecules to DNA templates by dipole-dipole interactions together with complementary hydrogen bonding interactions for biomimetics.

    PubMed

    Yang, Wanggui; Chen, Yali; Wong, Man Shing; Lo, Pik Kwan

    2012-10-08

    One of the most important criteria for the successful DNA-templated polymerization to generate fully synthetic biomimetic polymers is to design the complementary structural monomers, which assemble to the templates strongly and precisely before carrying polymerization. In this study, water-soluble, laterally thymine-substituted donor-acceptor π-conjugated molecules were designed and synthesized to self-assemble with complementary oligoadenines templates, dA(20) and dA(40), into stable and tubular assemblies through noncovalent interactions including π-π stacking, dipole-dipole interactions, and the complementary adenine-thymine (A-T) hydrogen-bonding. UV-vis, fluorescence, circular dichroism (CD), atomic force microscopy (AFM), and transmission electron microscopy (TEM) techniques were used to investigate the formation of highly robust nanofibrous structures. Our results have demonstrated for the first time that the dipole-dipole interactions are stronger and useful to reinforce the assembly of donor-acceptor π-conjugated molecules to DNA templates and the formation of the stable and robust supramolecular nanofibrous complexes together with the complementary hydrogen bonding interactions. This provides an initial step toward DNA-templated polymerization to create fully synthetic DNA-mimetic polymers for biotechnological applications. This study also presents an opportunity to precisely position donor-acceptor type molecules in a controlled manner and tailor-make advanced materials for various biotechnological applications.

  8. DNA nanotechnology

    NASA Astrophysics Data System (ADS)

    Seeman, Nadrian C.; Sleiman, Hanadi F.

    2018-01-01

    DNA is the molecule that stores and transmits genetic information in biological systems. The field of DNA nanotechnology takes this molecule out of its biological context and uses its information to assemble structural motifs and then to connect them together. This field has had a remarkable impact on nanoscience and nanotechnology, and has been revolutionary in our ability to control molecular self-assembly. In this Review, we summarize the approaches used to assemble DNA nanostructures and examine their emerging applications in areas such as biophysics, diagnostics, nanoparticle and protein assembly, biomolecule structure determination, drug delivery and synthetic biology. The introduction of orthogonal interactions into DNA nanostructures is discussed, and finally, a perspective on the future directions of this field is presented.

  9. Self-assembly of core-polyethylene glycol-lipid shell (CPLS) nanoparticles and their potential as drug delivery vehicles.

    PubMed

    Shen, Zhiqiang; Loe, David T; Awino, Joseph K; Kröger, Martin; Rouge, Jessica L; Li, Ying

    2016-08-21

    Herein a new multifunctional formulation, referred to as a core-polyethylene glycol-lipid shell (CPLS) nanoparticle, has been proposed and studied in silico via large scale coarse-grained molecular dynamics simulations. A PEGylated core with surface tethered polyethylene glycol (PEG) chains is used as the starting configuration, where the free ends of the PEG chains are covalently bonded with lipid molecules (lipid heads). A complete lipid bilayer is formed at the surface of the PEGylated particle core upon addition of free lipids, driven by the hydrophobic properties of the lipid tails, leading to the formation of a CPLS nanoparticle. The self-assembly process is found to be sensitive to the grafting density and molecular weight of the tethered PEG chains, as well as the amount of free lipids added. At low grafting densities the assembly of CPLS nanoparticles cannot be accomplished. As demonstrated by simulations, a lipid bud/vesicle can be formed on the surface when an excess amount of free lipids is added at high grafting density. Therefore, the CPLS nanoparticles can only be formed under appropriate conditions of both PEG and free lipids. The CPLS nanoparticle has been recognized to be able to store a large quantity of water molecules, particularly with high molecular weight of PEG chains, indicating its capacity for carrying hydrophilic molecules such as therapeutic biomolecules or imaging agents. Under identical size and surface chemistry conditions of a liposome, it has been observed that the CPLS particle can be more efficiently wrapped by the lipid membrane, indicating its potential for a greater efficiency in delivering its hydrophilic cargo. As a proof-of-concept, the experimental realization of CPLS nanoparticles is explicitly demonstrated in this study. To test the capacity of the CPLS to store small molecule cargo a hydrophilic dye was successfully encapsulated in the particles' water soluble layer. The results of this study show the power and potential of simulation-driven approaches for guiding the design of more efficient nanomaterial delivery platforms.

  10. Designed Proteins Induce the Formation of Nanocage-containing Extracellular Vesicles

    PubMed Central

    Votteler, Jörg; Ogohara, Cassandra; Yi, Sue; Hsia, Yang; Nattermann, Una; Belnap, David M.; King, Neil P.; Sundquist, Wesley I.

    2017-01-01

    Complex biological processes are often performed by self-organizing nanostructures comprising multiple classes of macromolecules, such as ribosomes (proteins and RNA) or enveloped viruses (proteins, nucleic acids, and lipids). Approaches have been developed for designing self-assembling structures consisting of either nucleic acids1,2 or proteins3–5, but strategies for engineering hybrid biological materials are only beginning to emerge6,7. Here, we describe the design of self-assembling protein nanocages that direct their own release from human cells inside small vesicles in a manner that resembles some viruses. We refer to these hybrid biomaterials as Enveloped Protein Nanocages (EPNs). Robust EPN biogenesis required protein sequence elements that encode three distinct functions: membrane binding, self-assembly, and recruitment of the Endosomal Sorting Complexes Required for Transport (ESCRT) machinery8. A variety of synthetic proteins with these functional elements induced EPN biogenesis, highlighting the modularity and generality of the design strategy. Biochemical and electron cryomicroscopic (cryo-EM) analyses revealed that one design, EPN-01, comprised small (~100 nm) vesicles containing multiple protein nanocages that closely matched the structure of the designed 60-subunit self-assembling scaffold9. EPNs that incorporated the vesicular stomatitis viral glycoprotein (VSV-G) could fuse with target cells and deliver their contents, thereby transferring cargoes from one cell to another. These studies show how proteins can be programmed to direct the formation of hybrid biological materials that perform complex tasks, and establish EPNs as a novel class of designed, modular, genetically-encoded nanomaterials that can transfer molecules between cells. PMID:27919066

  11. Hydrogels constructed via self-assembly of beta-hairpin molecules

    NASA Astrophysics Data System (ADS)

    Ozbas, Bulent

    There is a recent and growing interest in hydrogel materials that are formed via peptide self-assembly for tissue engineering applications. Peptide based materials are excellent candidates for diverse applications in biomedical field due to their responsive behavior and complex self-assembled structures. However, there is very limited information on the self-assembly and resultant network and mechanical properties of these types of hydrogels. The main goal of this dissertation is to investigate the self-assembly mechanism and viscoelastic properties of hydrogels that can be altered by changing solution conditions as well as the primary structure of the peptide. These hydrogels are formed via intramolecular folding and consequent self-assembly of 20 amino acid long beta-hairpin peptide molecules (Max1). The peptide molecules are locally amphiphilic with two linear strands of alternating hydrophobic valine and hydrophilic lysine amino acids connected with a Dproline-LProline turn sequence. Circular dichroism and FTIR spectroscopy show that at physiological conditions peptides are unfolded in the absence of salt. By raising the ionic strength of the solution electrostatic interactions between charged lysines are screened and the peptide arms are forced into a beta-sheet secondary structure stabilized by the turn sequence. These folded molecules intermolecularly assemble via hydrophobic collapse and hydrogen bonding into a three dimensional network. Folding and self-assembly of these molecules can also be triggered by increasing temperature and/or pH of the peptide solution. In addition, the random-coil to beta-sheet transition of the beta-hairpin peptides is pH and, with proper changes in the peptide sequence, thermally reversible. Rheological measurements demonstrate that the resultant supramolecular structure forms an elastic material, whose structure, and thus modulus, can be tuned by magnitude of the stimulus. Hydrogels recover their initial viscoelastic properties after cessation of high magnitude of strain due to the physically crosslinked network structure and strong inter-fibrillar interactions. These interactions can be turned off by either condensing anions or covalently attaching PEG chains on lysine-decorated fibrillar surfaces. TEM, SANS, and rheological data reveal that the elasticity arises from a network consisting of semiflexible fibrillar assemblies that are monodisperse in width. The experimental results are compared with scaling relationships developed for permanently crosslinked semiflexible biopolymer networks. (Abstract shortened by UMI.)

  12. Targeted self-assembly of functionalized carbon nanotubes on tumors

    DOEpatents

    Scheinberg, David A.; McDevitt, Michael R.; Villa, Carlos H.; Mulvey, J. Justin

    2018-05-22

    Provided herein are methods for delivering a molecule in situ to a cell and for treating a cancer via the in situ delivery. The methods comprise contacting or administering to the cell, as two separate components, a morpholino oligonucleotide comprising a targeting moiety followed by a single wall nanotube construct comprising second morpholino oligonucleotides complementary to the first morpholino oligonucleotides and one or both of a therapeutic or diagnostic payload molecule linked to the single wall nanotube construct. Upon self-assembly of a single wall nanotube complex via hybridization of the first morpholino and second complementary morpholino oligonucleotides at the cell, the payload molecule is delivered. Also provided is the two component self-assembly single wall nanotube system and the single wall nanotube construct comprising the second component.

  13. Synthesis, optical properties, and helical self-assembly of a bivaline-containing tetraphenylethene

    NASA Astrophysics Data System (ADS)

    Li, Hongkun; Zheng, Xiaoyan; Su, Huimin; Lam, Jacky W. Y.; Sing Wong, Kam; Xue, Shan; Huang, Xuejiao; Huang, Xuhui; Li, Bing Shi; Tang, Ben Zhong

    2016-01-01

    A chiral tetraphenylethene derivative with two valine-containing attachments (TPE-DVAL), was synthesized by Cu(I)-catalyzed azide-alkyne “click” reaction. The optical properties and self-assembling behaviours of TPE-DVAL were investigated. The molecule is non-emissive and circular dichroism (CD)-silent in solution, but shows strong fluorescence and Cotton effects in the aggregation state, demonstrating aggregation-induced emission (AIE) and CD (AICD) characteristics. TPE-DVAL exhibits good circularly polarized luminescence (CPL) when depositing on the surface of quartz to allow the evaporation of its 1,2-dichloroethane solution. SEM and TEM images of the molecule show that the molecule readily self-assembles into right-handed helical nanofibers upon the evaporation of its solvent of DCE. The molecular alignments and interactions in assembling process are further explored through XRD analysis and computational simulation. The driving forces for the formation of the helical fibers were from the cooperative effects of intermolecular hydrogen bonding, π-π interactions and steric effect.

  14. Self-assembly of (perfluoroalkyl)alkanes on a substrate surface from solutions in supercritical carbon dioxide.

    PubMed

    Gallyamov, Marat O; Mourran, Ahmed; Tartsch, Bernd; Vinokur, Rostislav A; Nikitin, Lev N; Khokhlov, Alexei R; Schaumburg, Kjeld; Möller, Martin

    2006-06-14

    Toroidal self-assembled structures of perfluorododecylnonadecane and perfluorotetradecyloctadecane have been deposited on mica and highly oriented pyrolytic graphite surfaces by exposure of the substrates to solutions of the (pefluoroalkyl)alkanes in supercritical carbon dioxide. Scanning force microscopy (SFM) images have displayed a high degree of regularity of these self-assembled nanoobjects regarding size, shape, and packing in a monolayer. Analysis of SFM images allowed us to estimate that each toroidal domain has an outer diameter of about 50 nm and consists of several thousands of molecules. We propose a simple model explaining the clustering of the molecules to objects with a finite size. The model based on the close-packing principles predicts formation of toroids, whose size is determined by the molecular geometry. Here, we consider the amphiphilic nature of the (perfluoroalkyl)alkane molecules in combination with incommensurable packing parameters of the alkyl- and the perfluoralkyl-segments to be a key factor for such a self-assembly.

  15. Atomic Spectral Methods for Ab Initio Molecular Electronic Energy Surfaces: Transitioning From Small-Molecule to Biomolecular-Suitable Approaches.

    PubMed

    Mills, Jeffrey D; Ben-Nun, Michal; Rollin, Kyle; Bromley, Michael W J; Li, Jiabo; Hinde, Robert J; Winstead, Carl L; Sheehy, Jeffrey A; Boatz, Jerry A; Langhoff, Peter W

    2016-08-25

    Continuing attention has addressed incorportation of the electronically dynamical attributes of biomolecules in the largely static first-generation molecular-mechanical force fields commonly employed in molecular-dynamics simulations. We describe here a universal quantum-mechanical approach to calculations of the electronic energy surfaces of both small molecules and large aggregates on a common basis which can include such electronic attributes, and which also seems well-suited to adaptation in ab initio molecular-dynamics applications. In contrast to the more familiar orbital-product-based methodologies employed in traditional small-molecule computational quantum chemistry, the present approach is based on an "ex-post-facto" method in which Hamiltonian matrices are evaluated prior to wave function antisymmetrization, implemented here in the support of a Hilbert space of orthonormal products of many-electron atomic spectral eigenstates familiar from the van der Waals theory of long-range interactions. The general theory in its various forms incorporates the early semiempirical atoms- and diatomics-in-molecules approaches of Moffitt, Ellison, Tully, Kuntz, and others in a comprehensive mathematical setting, and generalizes the developments of Eisenschitz, London, Claverie, and others addressing electron permutation symmetry adaptation issues, completing these early attempts to treat van der Waals and chemical forces on a common basis. Exact expressions are obtained for molecular Hamiltonian matrices and for associated energy eigenvalues as sums of separate atomic and interaction-energy terms, similar in this respect to the forms of classical force fields. The latter representation is seen to also provide a long-missing general definition of the energies of individual atoms and of their interactions within molecules and matter free from subjective additional constraints. A computer code suite is described for calculations of the many-electron atomic eigenspectra and the pairwise-atomic Hamiltonian matrices required for practical applications. These matrices can be retained as functions of scalar atomic-pair separations and employed in assembling aggregate Hamiltonian matrices, with Wigner rotation matrices providing analytical representations of their angular degrees of freedom. In this way, ab initio potential energy surfaces are obtained in the complete absence of repeated evaluations and transformations of the one- and two-electron integrals at different molecular geometries required in most ab inito molecular calculations, with large Hamiltonian matrix assembly simplified and explicit diagonalizations avoided employing partitioning and Brillouin-Wigner or Rayleigh-Schrödinger perturbation theory. Illustrative applications of the important components of the formalism, selected aspects of the scaling of the approach, and aspects of "on-the-fly" interfaces with Monte Carlo and molecular-dynamics methods are described in anticipation of subsequent applications to biomolecules and other large aggregates.

  16. Programmable colloidal molecules from sequential capillarity-assisted particle assembly

    PubMed Central

    Ni, Songbo; Leemann, Jessica; Buttinoni, Ivo; Isa, Lucio; Wolf, Heiko

    2016-01-01

    The assembly of artificial nanostructured and microstructured materials which display structures and functionalities that mimic nature’s complexity requires building blocks with specific and directional interactions, analogous to those displayed at the molecular level. Despite remarkable progress in synthesizing “patchy” particles encoding anisotropic interactions, most current methods are restricted to integrating up to two compositional patches on a single “molecule” and to objects with simple shapes. Currently, decoupling functionality and shape to achieve full compositional and geometrical programmability remains an elusive task. We use sequential capillarity-assisted particle assembly which uniquely fulfills the demands described above. This is a new method based on simple, yet essential, adaptations to the well-known capillary assembly of particles over topographical templates. Tuning the depth of the assembly sites (traps) and the surface tension of moving droplets of colloidal suspensions enables controlled stepwise filling of traps to “synthesize” colloidal molecules. After deposition and mechanical linkage, the colloidal molecules can be dispersed in a solvent. The template’s shape solely controls the molecule’s geometry, whereas the filling sequence independently determines its composition. No specific surface chemistry is required, and multifunctional molecules with organic and inorganic moieties can be fabricated. We demonstrate the “synthesis” of a library of structures, ranging from dumbbells and triangles to units resembling bar codes, block copolymers, surfactants, and three-dimensional chiral objects. The full programmability of our approach opens up new directions not only for assembling and studying complex materials with single-particle-level control but also for fabricating new microscale devices for sensing, patterning, and delivery applications. PMID:27051882

  17. Single-Molecule Studies of Actin Assembly and Disassembly Factors

    PubMed Central

    Smith, Benjamin A.; Gelles, Jeff; Goode, Bruce L.

    2014-01-01

    The actin cytoskeleton is very dynamic and highly regulated by multiple associated proteins in vivo. Understanding how this system of proteins functions in the processes of actin network assembly and disassembly requires methods to dissect the mechanisms of activity of individual factors and of multiple factors acting in concert. The advent of single-filament and single-molecule fluorescence imaging methods has provided a powerful new approach to discovering actin-regulatory activities and obtaining direct, quantitative insights into the pathways of molecular interactions that regulate actin network architecture and dynamics. Here we describe techniques for acquisition and analysis of single-molecule data, applied to the novel challenges of studying the filament assembly and disassembly activities of actin-associated proteins in vitro. We discuss the advantages of single-molecule analysis in directly visualizing the order of molecular events, measuring the kinetic rates of filament binding and dissociation, and studying the coordination among multiple factors. The methods described here complement traditional biochemical approaches in elucidating actin-regulatory mechanisms in reconstituted filamentous networks. PMID:24630103

  18. Binding Modes of Thioflavin T Molecules to Prion Peptide Assemblies Identified by Using Scanning Tunneling Microscopy

    PubMed Central

    2011-01-01

    The widely used method to monitor the aggregation process of amyloid peptide is thioflavin T (ThT) assay, while the detailed molecular mechanism is still not clear. In this work, we report here the direct identification of the binding modes of ThT molecules with the prion peptide GNNQQNY by using scanning tunneling microscopy (STM). The assembly structures of GNNQQNY were first observed by STM on a graphite surface, and the introduction of ThT molecules to the surface facilitated the STM observations of the adsorption conformations of ThT with peptide strands. ThT molecules are apt to adsorb on the peptide assembly with β-sheet structure and oriented parallel with the peptide strands adopting four different binding modes. This effort could benefit the understanding of the mechanisms of the interactions between labeling species or inhibitory ligands and amyloid peptides, which is keenly needed for developing diagnostic and therapeutic approaches. PMID:22778872

  19. Impact of Supramolecular Aggregation on the Crystallization Kinetics of Organic Compounds from the Supercooled Liquid State.

    PubMed

    Kalra, Arjun; Tishmack, Patrick; Lubach, Joseph W; Munson, Eric J; Taylor, Lynne S; Byrn, Stephen R; Li, Tonglei

    2017-06-05

    Despite numerous challenges in their theoretical description and practical implementation, amorphous drugs are of growing importance to the pharmaceutical industry. One such challenge is to gain molecular level understanding of the propensity of a molecule to form and remain as a glassy solid. In this study, a series of structurally similar diarylamine compounds was examined to elucidate the role of supramolecular aggregation on crystallization kinetics from supercooled liquid state. The structural similarity of the compounds makes it easier to isolate the molecular features that affect crystallization kinetics and glass forming ability of these compounds. To examine the role of hydrogen-bonded aggregation and motifs on crystallization kinetics, a combination of thermal and spectroscopic techniques was employed. Using variable temperature FTIR, Raman, and solid-state NMR spectroscopies, the presence of hydrogen bonding in the melt and glassy state was examined and correlated with observed phase transition behaviors. Spectroscopic results revealed that the formation of hydrogen-bonded aggregates involving carboxylic acid and pyridine nitrogen (acid-pyridine aggregates) between neighboring molecules in the melt state impedes crystallization, while the presence of carboxylic acid dimers (acid-acid dimers) in the melt favors crystallization. This study suggests that glass formation of small molecules is influenced by the type of intermolecular interactions present in the melt state and the kinetics associated with the molecules to assemble into a crystalline lattice. For the compounds that form acid-pyridine aggregates, the formation of energy degenerate chains, produced due to conformational flexibility of the molecules, presents a kinetic barrier to crystallization. The poor crystallization tendency of these aggregates stems from the highly directional hydrogen-bonding interactions needed to form the acid-pyridine chains. Conversely, for the compounds that form acid-acid dimers, the nondirectional van der Waals forces needed to construct a nucleus promote rapid assembly and crystallization.

  20. Micelles for the self-assembly of "off-on-off" fluorescent sensors for pH windows.

    PubMed

    Diaz-Fernandez, Yuri; Foti, Francesco; Mangano, Carlo; Pallavicini, Piersandro; Patroni, Stefano; Perez-Gramatges, Aurora; Rodriguez-Calvo, Simon

    2006-01-11

    A micellar approach is proposed to build a series of systems featuring an "off-on-off" fluorescent window response with changes in pH. The solubilizing properties of micelles are used to self-assemble, in water, plain pyrene with lipophilized pyridine and tertiary amine moieties. Since these components are contained in the small volume of the same micelle, pyrene fluorescence is influenced by the basic moieties: protonated pyridines and free tertiary amines behave as quenchers. Accordingly, fluorescence transitions from the "off" to the "on" state, and viceversa, take place when the pH crosses the pK(a) values of the amine and pyridine fragments. To obtain an "off-on-off" fluorescent response in this investigation we use either a set of dibasic lipophilic molecules (containing covalently linked pyridine and tertiary amine groups) or combinations of separate, lipophilic pyridines and tertiary amines. The use of combinations of dibasic and monobasic lipophilic molecules also gives a window-shaped fluorescence response with changes in pH: it is the highest pyridine pK(a) and the lowest tertiary amine pK(a) that determine the window limits. The pK(a) values of all the examined lipophilic molecules were determined in micelles, and compared with the values found for the same molecules in solvent mixtures in which they are molecularly dispersed. The effect of micellization is to significantly lower the observed protonation constants of the lipophilized species. Moreover, the more lipophilic a molecule is, the lower the observed logK value is. Accordingly, changing the substituents on the basic moieties or modifying their structure, tuning the lipophilicity of the mono- or dibases, and choosing among a large set of possible combination of lipophilized mono- and dibases have allowed us to tune, almost at will, both the width and the position along the pH axis of the obtained fluorescent window.

  1. Directed self-assembly of virus particles at nanoscale chemical templates

    NASA Astrophysics Data System (ADS)

    Chung, Sung-Wook; Cheung, Chin Li; Chatterji, Anju; Lin, Tianwei; Johnson, Jack; de Yoreo, Jim

    2006-03-01

    Because viruses can be site-specifically engineered to present catalytic, electronic, and optical moieties, they are attractive as building blocks for hierarchical nanostructures. We report results using scanned probe nanolithography to direct virus organization into 1D and 2D patterns and in situ AFM investigations of organization dynamics as pattern geometry, inter-viral potential, virus flux, and virus-pattern interaction are varied. Cowpea Mosaic Virus was modified to present surface sites with histidine (His) or cysteine (Cys) groups. Flat gold substrates were patterned with 10-100nm features of alkyl thiols terminated by Ni-NTA or meleimide groups to reversibly and irreversibly bind to the Hys and Cys groups, respectively. We show how assembly kinetics, degree of ordering and cluster-size distribution at these templates depend on the control parameters and present a physical picture of virus assembly at templates that incorporates growth dynamics of small-molecule epitaxial systems and condensation dynamics of colloidal systems. This work was performed under the auspices of the U. S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.

  2. Septins - active GTPases or just GTP-binding proteins?

    PubMed

    Abbey, Megha; Gaestel, Matthias; Menon, Manoj B

    2018-05-10

    Septins are conserved cytoskeletal proteins with unique filament forming capabilities and roles in cytokinesis and cell morphogenesis. Septins undergo hetero-oligomerization and assemble into higher order structures including filaments, rings and cages. Hetero- and homotypic interactions of septin isoforms involve alternating GTPase (G)-domain interfaces and those mediated by N- and C-terminal extensions. While most septins bind GTP, display weak GTP-hydrolysis activity and incorporate guanine nucleotides in their interaction interfaces, studies using GTPase-inactivating mutations have failed to conclusively establish a crucial role for GTPase activity in mediating septin functions. In this mini-review, we will critically assess the role of GTP-binding and -hydrolysis on septin assembly and function. The relevance of G-domain activity will also be discussed in the context of human septin mutations as well as the development of specific small-molecules targeting septin polymerization. As structural determinants of septin oligomer interfaces, G-domains are attractive targets for ligand-based inhibition of septin assembly. Whether such an intervention can predictably alter septin function is a major question for future research. This article is protected by copyright. All rights reserved. © 2018 Wiley Periodicals, Inc.

  3. 9Å structure of the COPI coat reveals that the Arf1 GTPase occupies two contrasting molecular environments

    PubMed Central

    Dodonova, Svetlana O; Aderhold, Patrick; Kopp, Juergen; Ganeva, Iva; Röhling, Simone; Hagen, Wim J H; Sinning, Irmgard; Wieland, Felix; Briggs, John A G

    2017-01-01

    COPI coated vesicles mediate trafficking within the Golgi apparatus and between the Golgi and the endoplasmic reticulum. Assembly of a COPI coated vesicle is initiated by the small GTPase Arf1 that recruits the coatomer complex to the membrane, triggering polymerization and budding. The vesicle uncoats before fusion with a target membrane. Coat components are structurally conserved between COPI and clathrin/adaptor proteins. Using cryo-electron tomography and subtomogram averaging, we determined the structure of the COPI coat assembled on membranes in vitro at 9 Å resolution. We also obtained a 2.57 Å resolution crystal structure of βδ-COP. By combining these structures we built a molecular model of the coat. We additionally determined the coat structure in the presence of ArfGAP proteins that regulate coat dissociation. We found that Arf1 occupies contrasting molecular environments within the coat, leading us to hypothesize that some Arf1 molecules may regulate vesicle assembly while others regulate coat disassembly. DOI: http://dx.doi.org/10.7554/eLife.26691.001 PMID:28621666

  4. Atomic force microscope characterization of self-assembly behaviors of cyclo[8] pyrrole on solid substrates

    NASA Astrophysics Data System (ADS)

    Xu, Hai; Zhao, Siqi; Xiong, Xiang; Jiang, Jinzhi; Xu, Wei; Zhu, Daoben; Zhang, Yi; Liang, Wenjie; Cai, Jianfeng

    2017-04-01

    Cyclo [8] pyrrole (CP) is a porphyrin analogue containing eight α-conjugated pyrrole units which are arranged in a nearly coplanar conformation. The π-π interactions between CP molecules lead to regular aggregations through a solution casting process. Using tapping mode atomic force microscope (AFM), we investigated the morphology of self-assembled aggregates formed by deposition of different CP solutions on different substrates. We found that in the n-butanol solution, nanofibrous structures could be formed on the silicon or mica surface. Interestingly, on the highly oriented pyrolytic graphite (HOPG) surface, or silicon and mica surface with a toluene solution, only irregular spherical structures were identified. The difference in the nanomorphology may be attributed to distinct interactions between molecule-molecule, molecule-solvent and molecule-substrate.

  5. Development of self-assembling nanowires containing electronically active oligothiophenes

    NASA Astrophysics Data System (ADS)

    Tsai, Wei-Wen

    This dissertation discusses the development of conductive one-dimensional nanowires from self-assembling oligothiophene molecules. Self-assembly has been demonstrated to be a promising alternative approach towards high performance, solution processable, and low-cost organic electronics. One of the many challenges in this field is the control of supramolecular morphologies of ordered structures containing pi-conjugated moieties. This research demonstrated several successful strategies to achieve self assembly of conductive nanowires using synergistic interactions combining pi stacking and hydrogen bonding. The first approach used was to develop a hairpin-shaped sexithiophene molecule, which features two arms of the conjugated structure. The diamidocyclohexyl headgroup of this molecule successfully directs the self-assembly from hydrogen bonding among the amides, forming high-aspect-ratio one-dimensional nanowires with well-defined diameters of 3.0 +/- 0.3 nm. The molecular orientation in the nanostructures promotes formation of sexithiophene H and J aggregates that facilitate efficient charge transport. Organic field-effect transistors were fabricated to reveal improved intrinsic hole mobility from films of the nanostructures, 3.46 x 10-6 cm2V-1s-1, which is one order of magnitude higher than films cast from unassembled molecules. Bulk heterojunction solar cells were developed from this molecule and fullerenes utilizing solution-phase fabrication methods. Intimate mix of the molecule and phenyl-C61-butyric acid methyl ester creates structured interfaces for efficient exciton splitting. The charge carrier mobilities of each material are improved by self-assembly in solution and thermal-energy assisted phase separation.The photovoltaic devices achieved the highest open-circuit voltage of 0.62 V, short-circuit current of 1.79 mA/cm2, fill factor of 35%, and power conversion efficiency of 0.48%. Another strategy to one-dimensional nanowires studied here involved the modification of a class of peptide lipids. The tripeptide segments in the molecular structure promote beta-sheet formation in nonpolar organic solvents, which is the main driving force for their self-assembly into 1D nanowires. Left-handed helical nanowires were formed with diameters of 8.9 nm and pitches between 50--150 nm. Substitutions of oligothiophenes lead to unprecedented supercoiling phenomena manifested as the transformation from helical to coiled or curved nanowires. We proposed that the curving of the nanowires is the consequence of relaxation from torsionally strained nanohelices, a process similar to supercoiling of strained DNA double helix. This process is governed by the mismatch in intermolecular distances required for peptide beta-sheets vs. pi-pi interactions of the conjugated segments decorating the periphery of the nanowires. Circular dichroism revealed helical arrangements of the conjugated moieties in these peptide lipids manifesting supercoiling phenomena. Peptide lipids without helical arrangement of the conjugated segments only exhibit helical morphologies. The self-assembly process of peptide lipids also leads to hierarchical assemblies of energetically favored single, double, and triple-helical nanostructures with well-defined dimensions. Self-assembled nanowires from oligothiophene-substituted peptide lipids revealed increased conductivity of 1.39--1.41 x 10-5 S/cm, two orders of magnitude higher than unassembled films and one order of magnitude higher than unsubstituted peptide lipids. The role of the primary beta-helix in controlling supramolecular organization was investigated by varying the chirality of the tripeptide segments, GAA. Four diastereomers of a peptide lipid substituted with p-toluene carboxylates were compared using L or D-alanines. Molecules with all L residues self-assemble into left-handed helical nanofibers with a pitch of 160 +/- 30 nm. Substitution of one or two D-alanines leads to assemblies of cylindrical nanofibers without any twisting, left-handed helices with smaller pitches (40 +/- 6 nm), or aggregates without regular shapes. We believe these effects are steric in nature that changes the beta-sheet sub-structure within the nanofibers. These principles could be utilized as strategies to optimize the morphologies and properties of nanostructures based on these amphiphilic molecules.

  6. Selective C70 encapsulation by a robust octameric nanospheroid held together by 48 cooperative hydrogen bonds

    PubMed Central

    Markiewicz, Grzegorz; Jenczak, Anna; Kołodziejski, Michał; Holstein, Julian J.; Stefankiewicz, Artur R

    2017-01-01

    Self-assembly of multiple building blocks via hydrogen bonds into well-defined nanoconstructs with selective binding function remains one of the foremost challenges in supramolecular chemistry. Here, we report the discovery of a enantiopure nanocapsule that is formed through the self-assembly of eight amino acid functionalised molecules in nonpolar solvents through 48 hydrogen bonds. The nanocapsule is remarkably robust, being stable at low and high temperatures, and in the presence of base, presumably due to the co-operative geometry of the hydrogen bonding motif. Thanks to small pore sizes, large internal cavity and sufficient dynamicity, the nanocapsule is able to recognize and encapsulate large aromatic guests such as fullerenes C60 and C70. The structural and electronic complementary between the host and C70 leads to its preferential and selective binding from a mixture of C60 and C70. PMID:28488697

  7. 2D Organic Materials for Optoelectronic Applications.

    PubMed

    Yang, Fangxu; Cheng, Shanshan; Zhang, Xiaotao; Ren, Xiaochen; Li, Rongjin; Dong, Huanli; Hu, Wenping

    2018-01-01

    The remarkable merits of 2D materials with atomically thin structures and optoelectronic attributes have inspired great interest in integrating 2D materials into electronics and optoelectronics. Moreover, as an emerging field in the 2D-materials family, assembly of organic nanostructures into 2D forms offers the advantages of molecular diversity, intrinsic flexibility, ease of processing, light weight, and so on, providing an exciting prospect for optoelectronic applications. Herein, the applications of organic 2D materials for optoelectronic devices are a main focus. Material examples include 2D, organic, crystalline, small molecules, polymers, self-assembly monolayers, and covalent organic frameworks. The protocols for 2D-organic-crystal-fabrication and -patterning techniques are briefly discussed, then applications in optoelectronic devices are introduced in detail. Overall, an introduction to what is known and suggestions for the potential of many exciting developments are presented. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Neutron studies of paramagnetic fullerenols’ assembly in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Lebedev, V. T.; Szhogina, A. A.; Suyasova, M. V.

    2018-03-01

    Recent results on structural studies of aqueous solutions of water-soluble derivatives of endofullerenes encapsulating 4f- and 3d-elements have been presented. Neutron small angle scattering experiments allowed recognize subtle features of fullerenols assembly as dependent on chemical nature (atomic number) of interior atom, pH-factor and temperature of solutions. It was observed a fractal-type fullerenols’ ordering at the scale of correlation radii ∼ 10-20 nm when molecules with iron atoms are integrated into branched structures at low concentrations (C ≤ 1 % wt.) and organized into globular aggregates at higher amounts (C > 1 % wt.). On the other hand, for Lanthanides captured in carbon cages the supramolecular structures are mostly globular and have larger gyration radii ∼ 30 nm. They demonstrated a good stability in acidic (pH ∼ 3) and neutral (pH ∼ 7) media that is important for forthcoming medical applications.

  9. Gold Aerogels: Three-Dimensional Assembly of Nanoparticles and Their Use as Electrocatalytic Interfaces

    PubMed Central

    2016-01-01

    Three-dimensional (3D) porous metal nanostructures have been a long sought-after class of materials due to their collective properties and widespread applications. In this study, we report on a facile and versatile strategy for the formation of Au hydrogel networks involving the dopamine-induced 3D assembly of Au nanoparticles. Following supercritical drying, the resulting Au aerogels exhibit high surface areas and porosity. They are all composed of porous nanowire networks reflecting in their diameters those of the original particles (5–6 nm) via electron microscopy. Furthermore, electrocatalytic tests were carried out in the oxidation of some small molecules with Au aerogels tailored by different functional groups. The beta-cyclodextrin-modified Au aerogel, with a host–guest effect, represents a unique class of porous metal materials of considerable interest and promising applications for electrocatalysis. PMID:26751502

  10. The Zn12O12 cluster-assembled nanowires as a highly sensitive and selective gas sensor for NO and NO2.

    PubMed

    Yong, Yongliang; Su, Xiangying; Zhou, Qingxiao; Kuang, Yanmin; Li, Xiaohong

    2017-12-13

    Motivated by the recent realization of cluster-assembled nanomaterials as gas sensors, first-principles calculations are carried out to explore the stability and electronic properties of Zn 12 O 12 cluster-assembled nanowires and the adsorption behaviors of environmental gases on the Zn 12 O 12 -based nanowires, including CO, NO, NO 2 , SO 2 , NH 3 , CH 4 , CO 2 , O 2 and H 2 . Our results indicate that the ultrathin Zn 12 O 12 cluster-assembled nanowires are particularly thermodynamic stable at room temperature. The CO, NO, NO 2 , SO 2 , and NH 3 molecules are all chemisorbed on the Zn 12 O 12 -based nanowires with reasonable adsorption energies, but CH 4 , CO 2 , O 2 and H 2 molecules are only physically adsorbed on the nanowire. The electronic properties of the Zn 12 O 12 -based nanowire present dramatic changes after the adsorption of the NO and NO 2 molecules, especially their electric conductivity and magnetic properties, however, the other molecules adsorption hardly change the electric conductivity of the nanowire. Meanwhile, the recovery time of the nanowire sensor at T = 300 K is estimated at 1.5 μs and 16.7 μs for NO and NO 2 molecules, respectively. Furthermore, the sensitivities of NO and NO 2 are much larger than that of the other molecules. Our results thus conclude that the Zn 12 O 12 -based nanowire is a potential candidate for gas sensors with highly sensitivity for NO and NO 2 .

  11. Assembling of G-strands into novel tetra-molecular parallel G4-DNA nanostructures using avidin-biotin recognition.

    PubMed

    Borovok, Natalia; Iram, Natalie; Zikich, Dragoslav; Ghabboun, Jamal; Livshits, Gideon I; Porath, Danny; Kotlyar, Alexander B

    2008-09-01

    We describe a method for the preparation of novel long (hundreds of nanometers), uniform, inter-molecular G4-DNA molecules composed of four parallel G-strands. The only long continuous G4-DNA reported so far are intra-molecular structures made of a single G-strand. To enable a tetra-molecular assembly of the G-strands we developed a novel approach based on avidin-biotin biological recognition. The steps of the G4-DNA production include: (i) Enzymatic synthesis of long poly(dG)-poly(dC) molecules with biotinylated poly(dG)-strand; (ii) Formation of a complex between avidin-tetramer and four biotinylated poly(dG)-poly(dC) molecules; (iii) Separation of the poly(dC) strands from the poly(dG)-strands, which are connected to the avidin; (iv) Assembly of the four G-strands attached to the avidin into tetra-molecular G4-DNA. The average contour length of the formed structures, as measured by AFM, is equal to that of the initial poly(dG)-poly(dC) molecules, suggesting a tetra-molecular mechanism of the G-strands assembly. The height of tetra-molecular G4-nanostructures is larger than that of mono-molecular G4-DNA molecules having similar contour length. The CD spectra of the tetra- and mono-molecular G4-DNA are markedly different, suggesting different structural organization of these two types of molecules. The tetra-molecular G4-DNA nanostructures showed clear electrical polarizability. This suggests that they may be useful for molecular electronics.

  12. Controlled self-assembling structures of ferrocene-dipeptide conjugates composed of Ala-Pro-NHCH2CH2SH chain.

    PubMed

    Moriuchi, Toshiyuki; Nishiyama, Taiki; Tayano, Yoshiki; Hirao, Toshikazu

    2017-12-01

    Bioorganometallic ferrocene-dipeptide conjugates with the Ala-Pro-cysteamine chain, Fc-L-Ala-L-Pro-NHCH 2 CH 2 SH (2) and Fc-L-Ala-D-Pro-NHCH 2 CH 2 SH (4) (Fc=ferrocenoyl), were prepared by the reduction of the ferrocene-dipeptide conjugates, Fc-L-Ala-L-Pro-cystamine-L-Pro-L-Ala-Fc (1) or Fc-L-Ala-D-Pro-cystamine-D-Pro-L-Ala-Fc (3), respectively. Control of the self-assembling structures of the ferrocene-dipeptide conjugates was demonstrated by changing the chirality of the amino acid. The molecular structure of 2 composed of the L-Ala-L-Pro-NHCH 2 CH 2 SH chain confirmed the formation of intramolecular hydrogen bond of N-H⋯N pattern between the NH of cysteamine moiety and the nitrogen of Pro moiety. Furthermore, intermolecular hydrogen bonds between NH (Ala) and CO (Pro of another molecule) and between NH (cysteamine) and CO (the ferrocenoyl moiety of another molecule) were formed, wherein each molecule is connected to four neighboring molecules by continuous intermolecular hydrogen bonds to form the hydrogen-bonded molecular assembling structure. On the contrary, the left-handed helical assembly through an intermolecular hydrogen-bonding network of 15-membered intermolecularly hydrogen-bonded ring between NH (Ala) and CO (the ferrocenoyl moiety of another molecule) and between NH (the cysteamine moiety of another molecule) and CO (Ala) was observed in the crystal packing of 4 composed of the L-Ala-D-Pro-NHCH 2 CH 2 SH chain. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Stoichiometry-Controlled Inversion of Supramolecular Chirality in Nanostructures Co-assembled with Bipyridines.

    PubMed

    Wang, Fang; Feng, Chuan-Liang

    2018-02-01

    To control supramolecular chirality of the co-assembled nanostructures, one of the remaining issues is how stoichiometry of the different molecules involved in co-assembly influence chiral transformation. Through co-assembly of achiral 1,4-bis(pyrid-4-yl)benzene and chiral phenylalanine-glycine derivative hydrogelators, stoichiometry is found to be an effective tool for controlling supramolecular chirality inversion processes. This inversion is mainly mediated by a delicate balance between intermolecular hydrogen bonding interactions and π-π stacking of the two components, which may subtly change the stacking of the molecules, in turn, the self-assembled nanostructures. This study exemplifies a simplistic way to invert the handedness of chiral nanostructures and provide fundamental understanding of the inherent principles of supramolecular chirality. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Self-assembling complexes between binary mixtures of lipids with different linkers and nucleic acids promote universal mRNA, DNA and siRNA delivery.

    PubMed

    Colombani, Thibault; Peuziat, Pauline; Dallet, Laurence; Haudebourg, Thomas; Mével, Mathieu; Berchel, Mathieu; Lambert, Olivier; Habrant, Damien; Pitard, Bruno

    2017-03-10

    Protein expression and RNA interference require efficient delivery of DNA or mRNA and small double stranded RNA into cells, respectively. Although cationic lipids are the most commonly used synthetic delivery vectors, a clear need still exists for a better delivery of various types of nucleic acids molecules to improve their biological activity. To optimize the transfection efficiency, a molecular approach consisting in modifying the chemical structure of a given cationic lipid is usually performed, but an alternative strategy could rely on modulating the supramolecular assembly of lipidic lamellar phases sandwiching the nucleic acids molecules. To validate this new concept, we synthesized on one hand two paromomycin-based cationic lipids, with either an amide or a phosphoramide linker, and on the other hand two imidazole-based neutral lipids, having as well either an amide or a phosphoramide function as linker. Combinations of cationic and helper lipids containing the same amide or phosphoramide linkers led to the formation of homogeneous lamellar phases, while hybrid lamellar phases were obtained when the linkers on the cationic and helper lipids were different. Cryo-transmission electron microscopy and fluorescence experiments showed that liposomes/nucleic acids complexes resulting from the association of nucleic acids with hybrid lamellar phases led to complexes that were more stable in the extracellular compartment compared to those obtained with homogeneous systems. In addition, we observed that the most active supramolecular assemblies for the delivery of DNA, mRNA and siRNA were obtained when the cationic and helper lipids possess linkers of different natures. The results clearly show that this supramolecular strategy modulating the property of the lipidic lamellar phase constitutes a new approach for increasing the delivery of various types of nucleic acid molecules. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Lateral assembly of the immunoglobulin protein SynCAM 1 controls its adhesive function and instructs synapse formation.

    PubMed

    Fogel, Adam I; Stagi, Massimiliano; Perez de Arce, Karen; Biederer, Thomas

    2011-09-16

    Synapses are specialized adhesion sites between neurons that are connected by protein complexes spanning the synaptic cleft. These trans-synaptic interactions can organize synapse formation, but their macromolecular properties and effects on synaptic morphology remain incompletely understood. Here, we demonstrate that the synaptic cell adhesion molecule SynCAM 1 self-assembles laterally via its extracellular, membrane-proximal immunoglobulin (Ig) domains 2 and 3. This cis oligomerization generates SynCAM oligomers with increased adhesive capacity and instructs the interactions of this molecule across the nascent and mature synaptic cleft. In immature neurons, cis assembly promotes the adhesive clustering of SynCAM 1 at new axo-dendritic contacts. Interfering with the lateral self-assembly of SynCAM 1 in differentiating neurons strongly impairs its synaptogenic activity. At later stages, the lateral oligomerization of SynCAM 1 restricts synaptic size, indicating that this adhesion molecule contributes to the structural organization of synapses. These results support that lateral interactions assemble SynCAM complexes within the synaptic cleft to promote synapse induction and modulate their structure. These findings provide novel insights into synapse development and the adhesive mechanisms of Ig superfamily members.

  16. Identification of two inner-membrane proteins required for the transport of lipopolysaccharide to the outer membrane of Escherichia coli

    PubMed Central

    Ruiz, Natividad; Gronenberg, Luisa S.; Kahne, Daniel; Silhavy, Thomas J.

    2008-01-01

    The outer membrane (OM) of most Gram-negative bacteria contains lipopolysaccharide (LPS) in the outer leaflet. LPS, or endotoxin, is a molecule of important biological activities. In the host, LPS elicits a potent immune response, while in the bacterium, it plays a crucial role by establishing a barrier to limit entry of hydrophobic molecules. Before LPS is assembled at the OM, it must be synthesized at the inner membrane (IM) and transported across the aqueous periplasmic compartment. Much is known about the biosynthesis of LPS but, until recently, little was known about its transport and assembly. We applied a reductionist bioinformatic approach that takes advantage of the small size of the proteome of the Gram-negative endosymbiont Blochmannia floridanus to search for novel factors involved in OM biogenesis. This led to the discovery of two essential Escherichia coli IM proteins of unknown function, YjgP and YjgQ, which are required for the transport of LPS to the cell surface. We propose that these two proteins, which we have renamed LptF and LptG, respectively, are the missing transmembrane components of the ABC transporter that, together with LptB, functions to extract LPS from the IM en route to the OM. PMID:18375759

  17. Identification of two inner-membrane proteins required for the transport of lipopolysaccharide to the outer membrane of Escherichia coli.

    PubMed

    Ruiz, Natividad; Gronenberg, Luisa S; Kahne, Daniel; Silhavy, Thomas J

    2008-04-08

    The outer membrane (OM) of most Gram-negative bacteria contains lipopolysaccharide (LPS) in the outer leaflet. LPS, or endotoxin, is a molecule of important biological activities. In the host, LPS elicits a potent immune response, while in the bacterium, it plays a crucial role by establishing a barrier to limit entry of hydrophobic molecules. Before LPS is assembled at the OM, it must be synthesized at the inner membrane (IM) and transported across the aqueous periplasmic compartment. Much is known about the biosynthesis of LPS but, until recently, little was known about its transport and assembly. We applied a reductionist bioinformatic approach that takes advantage of the small size of the proteome of the Gram-negative endosymbiont Blochmannia floridanus to search for novel factors involved in OM biogenesis. This led to the discovery of two essential Escherichia coli IM proteins of unknown function, YjgP and YjgQ, which are required for the transport of LPS to the cell surface. We propose that these two proteins, which we have renamed LptF and LptG, respectively, are the missing transmembrane components of the ABC transporter that, together with LptB, functions to extract LPS from the IM en route to the OM.

  18. Interface engineering in high-performance low-voltage organic thin-film transistors based on 2,7-dialkyl-[1]benzothieno[3,2-b][1]benzothiophenes.

    PubMed

    Amin, Atefeh Y; Reuter, Knud; Meyer-Friedrichsen, Timo; Halik, Marcus

    2011-12-20

    We investigated two different (2,7-dialkyl-[1]benzothieno[3,2-b][1]benzothiophenes; C(n)-BTBT-C(n), where n = 12 or 13) semiconductors in low-voltage operating thin-film transistors. By choosing functional molecules in nanoscaled hybrid dielectric layers, we were able to tune the surface energy and improve device characteristics, such as leakage current and hysteresis. The dipolar nature of the self-assembled molecules led to a shift in the threshold voltage. All devices exhibited high charge carrier mobilities of 0.6-7.0 cm(2) V(-1) s(-1). The thin-film morphology of BTBT was studied by means of atomic force microscopy (AFM), presented a dependency upon the surface energy of the self-assembled monolayer (SAM) hybrid dielectrics but not upon the device performance. The use of C(13)-BTBT-C(13) on hybrid dielectrics of AlO(x) and a F(15)C(18)-phosphonic acid monolayer led to devices with a hole mobility of 1.9 cm(2) V(-1) s(-1) at 3 V, on/off ratio of 10(5), small device-device variation of mobility, and a threshold voltage of only -0.9 V, thus providing excellent characteristics for further integration. © 2011 American Chemical Society

  19. Effective GTP-replacing FtsZ inhibitors and antibacterial mechanism of action.

    PubMed

    Artola, Marta; Ruiz-Avila, Laura B; Vergoñós, Albert; Huecas, Sonia; Araujo-Bazán, Lidia; Martín-Fontecha, Mar; Vázquez-Villa, Henar; Turrado, Carlos; Ramírez-Aportela, Erney; Hoegl, Annabelle; Nodwell, Matthew; Barasoain, Isabel; Chacón, Pablo; Sieber, Stephan A; Andreu, Jose M; López-Rodríguez, María L

    2015-03-20

    Essential cell division protein FtsZ is considered an attractive target in the search for antibacterials with novel mechanisms of action to overcome the resistance problem. FtsZ undergoes GTP-dependent assembly at midcell to form the Z-ring, a dynamic structure that evolves until final constriction of the cell. Therefore, molecules able to inhibit its activity will eventually disrupt bacterial viability. In this work, we report a new series of small molecules able to replace GTP and to specifically inhibit FtsZ, blocking the bacterial division process. These new synthesized inhibitors interact with the GTP-binding site of FtsZ (Kd = 0.4-0.8 μM), display antibacterial activity against Gram-positive pathogenic bacteria, and show selectivity against tubulin. Biphenyl derivative 28 stands out as a potent FtsZ inhibitor (Kd = 0.5 μM) with high antibacterial activity [MIC (MRSA) = 7 μM]. In-depth analysis of the mechanism of action of compounds 22, 28, 33, and 36 has revealed that they act as effective inhibitors of correct FtsZ assembly, blocking bacterial division and thus leading to filamentous undivided cells. These findings provide a compelling rationale for the development of compounds targeting the GTP-binding site as antibacterial agents and open the door to antibiotics with novel mechanisms of action.

  20. Supramolecular organization of the sperm plasma membrane during maturation and capacitation.

    PubMed

    Jones, Roy; James, Peter S; Howes, Liz; Bruckbauer, Andreas; Klenerman, David

    2007-07-01

    In the present study, a variety of high resolution microscopy techniques were used to visualize the organization and motion of lipids and proteins in the sperm's plasma membrane. We have addressed questions such as the presence of diffusion barriers, confinement of molecules to specific surface domains, polarized diffusion and the role of cholesterol in regulating lipid rafts and signal transduction during capacitation. Atomic force microscopy identified a novel region (EqSS) within the equatorial segment of bovine, porcine and ovine spermatozoa that was enriched in constitutively phosphorylated proteins. The EqSS was assembled during epididymal maturation. Fluorescence imaging techniques were then used to follow molecular diffusion on the sperm head. Single lipid molecules were freely exchangeable throughout the plasma membrane and showed no evidence for confinement within domains. Large lipid aggregates, however, did not cross over the boundary between the post-acrosome and equatorial segment suggesting the presence of a molecular filter between these two domains. A small reduction in membrane cholesterol enlarges or increases lipid rafts concomitant with phosphorylation of intracellular proteins. Excessive removal of cholesterol, however, disorganizes rafts with a cessation of phosphorylation. These techniques are forcing a revision of long-held views on how lipids and proteins in sperm membranes are assembled into larger complexes that mediate recognition and fusion with the egg.

  1. De novo assembly and phasing of a Korean human genome.

    PubMed

    Seo, Jeong-Sun; Rhie, Arang; Kim, Junsoo; Lee, Sangjin; Sohn, Min-Hwan; Kim, Chang-Uk; Hastie, Alex; Cao, Han; Yun, Ji-Young; Kim, Jihye; Kuk, Junho; Park, Gun Hwa; Kim, Juhyeok; Ryu, Hanna; Kim, Jongbum; Roh, Mira; Baek, Jeonghun; Hunkapiller, Michael W; Korlach, Jonas; Shin, Jong-Yeon; Kim, Changhoon

    2016-10-13

    Advances in genome assembly and phasing provide an opportunity to investigate the diploid architecture of the human genome and reveal the full range of structural variation across population groups. Here we report the de novo assembly and haplotype phasing of the Korean individual AK1 (ref. 1) using single-molecule real-time sequencing, next-generation mapping, microfluidics-based linked reads, and bacterial artificial chromosome (BAC) sequencing approaches. Single-molecule sequencing coupled with next-generation mapping generated a highly contiguous assembly, with a contig N50 size of 17.9 Mb and a scaffold N50 size of 44.8 Mb, resolving 8 chromosomal arms into single scaffolds. The de novo assembly, along with local assemblies and spanning long reads, closes 105 and extends into 72 out of 190 euchromatic gaps in the reference genome, adding 1.03 Mb of previously intractable sequence. High concordance between the assembly and paired-end sequences from 62,758 BAC clones provides strong support for the robustness of the assembly. We identify 18,210 structural variants by direct comparison of the assembly with the human reference, identifying thousands of breakpoints that, to our knowledge, have not been reported before. Many of the insertions are reflected in the transcriptome and are shared across the Asian population. We performed haplotype phasing of the assembly with short reads, long reads and linked reads from whole-genome sequencing and with short reads from 31,719 BAC clones, thereby achieving phased blocks with an N50 size of 11.6 Mb. Haplotigs assembled from single-molecule real-time reads assigned to haplotypes on phased blocks covered 89% of genes. The haplotigs accurately characterized the hypervariable major histocompatability complex region as well as demonstrating allele configuration in clinically relevant genes such as CYP2D6. This work presents the most contiguous diploid human genome assembly so far, with extensive investigation of unreported and Asian-specific structural variants, and high-quality haplotyping of clinically relevant alleles for precision medicine.

  2. Chiral symmetry breaking during the self-assembly of monolayers from achiral purine molecules.

    PubMed

    Sowerby, S J; Heckl, W M; Petersen, G B

    1996-11-01

    Scanning tunneling microscopy was used to investigate the structure of the two-dimensional adsorbate formed by molecular self-assembly of the purine base, adenine, on the surfaces of the naturally occurring mineral molybdenite and the synthetic crystal highly oriented pyrolytic graphite. Although formed from adenine, which is achiral, the observed adsorbate surface structures were enantiomorphic on molybdenite. This phenomenon suggests a mechanism for the introduction of a localized chiral symmetry break by the spontaneous crystallization of these prebiotically available molecules on inorganic surfaces and may have some role in the origin of biomolecular optical asymmetry. The possibility that purine-pyrimidine arrays assembled on naturally occurring mineral surfaces might act as possible templates for biomolecular assembly is discussed.

  3. Photoswitching in azobenzene self-assembled monolayers capped on zinc oxide: nanodots vs nanorods.

    PubMed

    Shah, Syed Mujtaba; Martini, Cyril; Ackermann, Jörg; Fages, Frédéric

    2012-02-01

    We report the synthesis and spectroscopic characterization of nanohybrid structures consisting of an azobenzene compound grafted on the surface of zinc oxide nanoparticles. Characteristic bathochromic shifts indicate that the azobenzene photochromic molecules self-assemble onto the surface of the nanocrystals. The extent of packing is dependent on the shape of the nanoparticle. ZnO nanorods, with flat facets, enable a tighter organization of the molecules in the self-assembled monolayer than in the case of nanodots that display a more curvated shape. Consistently, the efficiency of photochromic switching of the self-assembled monolayer on ZnO nanoparticles is also shown to be strongly affected by nanoparticle shape. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Detection of trace microcystin-LR on a 20 MHz QCM sensor coated with in situ self-assembled MIPs.

    PubMed

    He, Hao; Zhou, Lianqun; Wang, Yi; Li, Chuanyu; Yao, Jia; Zhang, Wei; Zhang, Qingwen; Li, Mingyu; Li, Haiwen; Dong, Wen-fei

    2015-01-01

    A 20 MHz quartz crystal microbalance (QCM) sensor coated with in situ self-assembled molecularly imprinted polymers (MIPs) was presented for the detection of trace microcystin-LR (MC-LR) in drinking water. The sensor performance obtained using the in situ self-assembled MIPs was compared with traditionally synthesized MIPs on 20 MHz and normal 10 MHz QCM chip. The results show that the response increases by more than 60% when using the in situ self-assembly method compared using the traditionally method while the 20 MHz QCM chip provides four-fold higher response than the 10 MHz one. Therefore, the in situ self-assembled MIPs coated on a high frequency QCM chip was used in the sensor performance test to detect MC-LR in tap water. It showed a limit of detection (LOD) of 0.04 nM which is lower than the safety guideline level (1 nM MC-LR) of drinking water in China. The low sensor response to other analogs indicated the high specificity of the sensor to MC-LR. The sensor showed high stability and low signal variation less than 2.58% after regeneration. The lake water sample analysis shows the sensor is possible for practical use. The combination of the higher frequency QCM with the in situ self-assembled MIPs provides a good candidate for the detection of other small molecules. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Mesoscale Simulation and Machine Learning of Asphaltene Aggregation Phase Behavior and Molecular Assembly Landscapes.

    PubMed

    Wang, Jiang; Gayatri, Mohit A; Ferguson, Andrew L

    2017-05-11

    Asphaltenes constitute the heaviest fraction of the aromatic group in crude oil. Aggregation and precipitation of asphaltenes during petroleum processing costs the petroleum industry billions of dollars each year due to downtime and production inefficiencies. Asphaltene aggregation proceeds via a hierarchical self-assembly process that is well-described by the Yen-Mullins model. Nevertheless, the microscopic details of the emergent cluster morphologies and their relative stability under different processing conditions remain poorly understood. We perform coarse-grained molecular dynamics simulations of a prototypical asphaltene molecule to establish a phase diagram mapping the self-assembled morphologies as a function of temperature, pressure, and n-heptane:toluene solvent ratio informing how to control asphaltene aggregation by regulating external processing conditions. We then combine our simulations with graph matching and nonlinear manifold learning to determine low-dimensional free energy surfaces governing asphaltene self-assembly. In doing so, we introduce a variant of diffusion maps designed to handle data sets with large local density variations, and report the first application of many-body diffusion maps to molecular self-assembly to recover a pseudo-1D free energy landscape. Increasing pressure only weakly affects the landscape, serving only to destabilize the largest aggregates. Increasing temperature and toluene solvent fraction stabilizes small cluster sizes and loose bonding arrangements. Although the underlying molecular mechanisms differ, the strikingly similar effect of these variables on the free energy landscape suggests that toluene acts upon asphaltene self-assembly as an effective temperature.

  6. Sequence-Mandated, Distinct Assembly of Giant Molecules

    DOE PAGES

    Zhang, Wei; Lu, Xinlin; Mao, Jialin; ...

    2017-10-24

    Although controlling the primary structure of synthetic polymers is itself a great challenge, the potential of sequence control for tailoring hierarchical structures remains to be exploited, especially in the creation of new and unconventional phases. A series of model amphiphilic chain-like giant molecules was designed and synthesized by interconnecting both hydrophobic and hydrophilic molecular nanoparticles in precisely defined sequence and composition to investigate their sequence-dependent phase structures. Not only compositional variation changed the self-assembled supramolecular phases, but also specific sequences induce unconventional phase formation, including Frank-Kasper phases. The formation mechanism was attributed to the conformational change driven by the collectivemore » hydrogen bonding and the sequence-mandated topology of the molecules. Lastly, these results show that sequence control in synthetic polymers can have a dramatic impact on polymer properties and self-assembly.« less

  7. Sequence-Mandated, Distinct Assembly of Giant Molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Wei; Lu, Xinlin; Mao, Jialin

    Although controlling the primary structure of synthetic polymers is itself a great challenge, the potential of sequence control for tailoring hierarchical structures remains to be exploited, especially in the creation of new and unconventional phases. A series of model amphiphilic chain-like giant molecules was designed and synthesized by interconnecting both hydrophobic and hydrophilic molecular nanoparticles in precisely defined sequence and composition to investigate their sequence-dependent phase structures. Not only compositional variation changed the self-assembled supramolecular phases, but also specific sequences induce unconventional phase formation, including Frank-Kasper phases. The formation mechanism was attributed to the conformational change driven by the collectivemore » hydrogen bonding and the sequence-mandated topology of the molecules. Lastly, these results show that sequence control in synthetic polymers can have a dramatic impact on polymer properties and self-assembly.« less

  8. Mucin gel assembly is controlled by a collective action of non-mucin proteins, disulfide bridges, Ca2+-mediated links, and hydrogen bonding.

    PubMed

    Meldrum, Oliver W; Yakubov, Gleb E; Bonilla, Mauricio R; Deshmukh, Omkar; McGuckin, Michael A; Gidley, Michael J

    2018-04-11

    Mucus is characterized by multiple levels of assembly at different length scales which result in a unique set of rheological (flow) and mechanical properties. These physical properties determine its biological function as a highly selective barrier for transport of water and nutrients, while blocking penetration of pathogens and foreign particles. Altered integrity of the mucus layer in the small intestine has been associated with a number of gastrointestinal tract pathologies such as Crohn's disease and cystic fibrosis. In this work, we uncover an intricate hierarchy of intestinal mucin (Muc2) assembly and show how complex rheological properties emerge from synergistic interactions between mucin glycoproteins, non-mucin proteins, and Ca 2+ . Using a novel method of mucus purification, we demonstrate the mechanism of assembly of Muc2 oligomers into viscoelastic microscale domains formed via hydrogen bonding and Ca 2+ -mediated links, which require the joint presence of Ca 2+ ions and non-mucin proteins. These microscale domains aggregate to form a heterogeneous yield stress gel-like fluid, the macroscopic rheological properties of which are virtually identical to that of native intestinal mucus. Through proteomic analysis, we short-list potential protein candidates implicated in mucin assembly, thus paving the way for identifying the molecules responsible for the physiologically critical biophysical properties of mucus.

  9. Diversity and Hierarchy in Supramolecular Assemblies of Triphenylalanine: From Laminated Helical Ribbons to Toroids.

    PubMed

    Mayans, Enric; Casanovas, Jordi; Gil, Ana M; Jiménez, Ana I; Cativiela, Carlos; Puiggalí, Jordi; Alemán, Carlos

    2017-04-25

    Microstructures from small phenylalanine-based peptides have attracted great attention lately because these compounds are considered to be a new class of tunable materials. In spite of the extensive studies on uncapped diphenylalanine and tetraphenylalanine peptides, studies on the self-assembly of uncapped triphenylananine (FFF) are very scarce and nonsystematic. In this work, we demonstrate that FFF assemblies can organize in a wide number of well-defined supramolecular structures, which include laminated helical-ribbons, leaflike dendrimers, doughnut-, needle-, and flower-shapes. These organizations are produced by the attractive or repulsive interactions between already formed assemblies and therefore can be controlled through the choice of solvents used as the incubation medium. Thus, the formation of the desired supramolecular structures is regulated through the protonation/deprotonation of the terminal groups, the polarity of the incubation medium, which affects both peptide···solvent interactions and the cavity solvation energy (i.e., solvent···solvent interactions), and the steric interactions between own assemblies that act as building blocks. Finally, the β-sheet disposition in the latter structural motifs has been examined using both theoretical calculations and Fourier transform infrared spectroscopy. Results indicate that FFF molecules can adopt both parallel and antiparallel β-sheets. However, the former one is the most energetically favored because of the formation of π-π stacking interactions between the aromatic rings of hydrogen-bonded strands.

  10. Rational Design of Molecular Gelator - Solvent Systems Guided by Solubility Parameters

    NASA Astrophysics Data System (ADS)

    Lan, Yaqi

    Self-assembled architectures, such as molecular gels, have attracted wide interest among chemists, physicists and engineers during the past decade. However, the mechanism behind self-assembly remains largely unknown and no capability exists to predict a priori whether a small molecule will gelate a specific solvent or not. The process of self-assembly, in molecular gels, is intricate and must balance parameters influencing solubility and those contrasting forces that govern epitaxial growth into axially symmetric elongated aggregates. Although the gelator-gelator interactions are of paramount importance in understanding gelation, the solvent-gelator specific (i.e., H-bonding) and nonspecific (dipole-dipole, dipole-induced and instantaneous dipole induced forces) intermolecular interactions are equally important. Solvent properties mediate the self-assembly of molecular gelators into their self-assembled fibrillar networks. Herein, solubility parameters of solvents, ranging from partition coefficients (logP), to Henry's law constants (HLC), to solvatochromic ET(30) parameters, to Kamlet-Taft parameters (beta, alpha and pi), to Hansen solubility parameters (deltap, deltad, deltah), etc., are correlated with the gelation ability of numerous classes of molecular gelators. Advanced solvent clustering techniques have led to the development of a priori tools that can identify the solvents that will be gelled and not gelled by molecular gelators. These tools will greatly aid in the development of novel gelators without solely relying on serendipitous discoveries.

  11. Dynamics of dissipative self-assembly of particles interacting through oscillatory forces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tagliazucchi, M.; Szleifer, I.

    Dissipative self-assembly is the formation of ordered structures far from equilibrium, which continuously uptake energy and dissipate it into the environment. Due to its dynamical nature, dissipative self-assembly can lead to new phenomena and possibilities of self-organization that are unavailable to equilibrium systems. Understanding the dynamics of dissipative self-assembly is required in order to direct the assembly to structures of interest. In the present work, Brownian dynamics simulations and analytical theory were used to study the dynamics of self-assembly of a mixture of particles coated with weak acids and bases under continuous oscillations of the pH. The pH of themore » system modulates the charge of the particles and, therefore, the interparticle forces oscillate in time. This system produces a variety of self-assembled structures, including colloidal molecules, fibers and different types of crystalline lattices. The most important conclusions of our study are: (i) in the limit of fast oscillations, the whole dynamics (and not only those at the non-equilibrium steady state) of a system of particles interacting through time-oscillating interparticle forces can be described by an effective potential that is the time average of the time-dependent potential over one oscillation period; (ii) the oscillation period is critical to determine the order of the system. In some cases the order is favored by very fast oscillations while in others small oscillation frequencies increase the order. In the latter case, it is shown that slow oscillations remove kinetic traps and, thus, allow the system to evolve towards the most stable non-equilibrium steady state.« less

  12. What Gives an Insulin Hexamer Its Unique Shape and Stability? Role of Ten Confined Water Molecules.

    PubMed

    Mukherjee, Saumyak; Mondal, Sayantan; Deshmukh, Ashish Anilrao; Gopal, Balasubramanian; Bagchi, Biman

    2018-02-08

    Self-assembly of proteins often gives rise to interesting quasi-stable structures that serve important biological purposes. Insulin hexamer is such an assembly. While monomer is the biologically active form of insulin, hexamer serves as the storehouse of the hormone. The hexamer also prevents the formation of higher order aggregates. While several studies explored the role of bivalent metal ions like Zn 2+ , Ca 2+ , etc., in the stabilization of the hexameric form, the role of water molecules has been ignored. We combine molecular dynamics simulations, quantum calculations, and X-ray analyses to discover that a team of approximately 10 water molecules confined inside a barrel-shaped nanocavity at the center of insulin hexamer is one of the major causes that account for the unusual stability of the biomolecular assembly. These cavity water molecules exhibit interesting dynamical features like intermittent escape and reentrance. We find that these water molecules are dynamically slower than the bulk and weave an intricate hydrogen bond network among themselves and with neighboring protein residues to generate a robust backbone at the center of the hexamer that holds the association strongly from inside and maintains the barrel shape.

  13. Electronic Energy Transfer in New Polymer Nanocomposite Assemblies

    DTIC Science & Technology

    1994-07-13

    for public release and sale; its distribution is unlimited. OL AISTfrRACT fMaimunt 20o war*) New light-harvesting thin film supramolecular assemblies...be supression or reduction of exciplex formation between excited donor molecules and ground state acceptor molecules that may lead to nonradiative...nonradiative excited state decay exists other than EET.33 One possibility for this nonradiative and non-EET pathway is exciplex formation between the

  14. The Design of a Molecular Assembly Line Based on Biological Molecules

    DTIC Science & Technology

    2003-06-01

    and will demonstrate how one can construct a purely synthetic analogue of a polyketide synthase . 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF...scaffold in programmed assembly and molecular electronics. It is based on the principles of the biological molecules polyketide synthase and kinesin, and in...stereoselective centers) with any reasonable yield, not including the R&D and process development time. Figure 1.6 shows how a polyketide synthase

  15. DNA nanotechnology for nanophotonic applications.

    PubMed

    Samanta, Anirban; Banerjee, Saswata; Liu, Yan

    2015-02-14

    DNA nanotechnology has touched the epitome of miniaturization by integrating various nanometer size particles with nanometer precision. This enticing bottom-up approach has employed small DNA tiles, large multi-dimensional polymeric structures or more recently DNA origami to organize nanoparticles of different inorganic materials, small organic molecules or macro-biomolecules like proteins, and RNAs into fascinating patterns that are difficult to achieve by other conventional methods. Here, we are especially interested in the self-assembly of nanomaterials that are potentially attractive elements in the burgeoning field of nanophotonics. These materials include plasmonic nanoparticles, quantum dots, fluorescent organic dyes, etc. DNA based self-assembly allows excellent control over distance, orientation and stoichiometry of these nano-elements that helps to engineer intelligent systems that can potentially pave the path for future technology. Many outstanding structures have been fabricated that are capable of fine tuning optical properties, such as fluorescence intensity and lifetime modulation, enhancement of Raman scattering and emergence of circular dichroism responses. Within the limited scope of this review we have tried to give a glimpse of the development of this still nascent but highly promising field to its current status as well as the existing challenges before us.

  16. 8-Anilino-1-naphthalenesulfonate/Layered Double Hydroxide Ultrathin Films: Small Anion Assembly and Its Potential Application as a Fluorescent Biosensor.

    PubMed

    Zhang, Ping; Li, Ling; Zhao, Yun; Tian, Zeyun; Qin, Yumei; Lu, Jun

    2016-09-06

    The fluorescent dye 8-anilino-1-naphthalenesulfonate (ANS) is a widely used fluorescent probe molecule for biochemistry analysis. This paper reported the fabrication of ANS/layered double hydroxide nanosheets (ANS/LDH)n ultrathin films (UTFs) via the layer-by-layer small anion assembly technique based on electrostatic interaction and two possible weak interactions: hydrogen-bond and induced electrostatic interactions between ANS and positive-charged LDH nanosheets. The obtained UTFs show a long-range-ordered periodic layered stacking structure and weak fluorescence in dry air or water, but it split into three narrow strong peaks in a weak polarity environment induced by the two-dimensional (2D) confinement effect of the LDH laminate; the fluorescence intensity increases with decreasing the solvent polarity, concomitant with the blue shift of the emission peaks, which show good sensoring reversibility. Meanwhile, the UTFs exhibit selective fluorescence enhancement to the bovine serum albumin (BSA)-like protein biomolecules, and the rate of fluorescence enhancement with the protein concentration is significantly different with the different protein aggregate states. The (ANS/LDH)n UTF has the potential to be a novel type of biological flourescence sensor material.

  17. Chemical fabrication of heterometallic nanogaps for molecular transport junctions.

    PubMed

    Chen, Xiaodong; Yeganeh, Sina; Qin, Lidong; Li, Shuzhou; Xue, Can; Braunschweig, Adam B; Schatz, George C; Ratner, Mark A; Mirkin, Chad A

    2009-12-01

    We report a simple and reproducible method for fabricating heterometallic nanogaps, which are made of two different metal nanorods separated by a nanometer-sized gap. The method is based upon on-wire lithography, which is a chemically enabled technique used to synthesize a wide variety of nanowire-based structures (e.g., nanogaps and disk arrays). This method can be used to fabricate pairs of metallic electrodes, which exhibit distinct work functions and are separated by gaps as small as 2 nm. Furthermore, we demonstrate that a symmetric thiol-terminated molecule can be assembled into such heterometallic nanogaps to form molecular transport junctions (MTJs) that exhibit molecular diode behavior. Theoretical calculations demonstrate that the coupling strength between gold and sulfur (Au-S) is 2.5 times stronger than that of Pt-S. In addition, the structures form Raman hot spots in the gap, allowing the spectroscopic characterization of the molecules that make up the MTJs.

  18. Single-protein detection in crowded molecular environments in cryo-EM images

    PubMed Central

    Rickgauer, J Peter; Grigorieff, Nikolaus; Denk, Winfried

    2017-01-01

    We present an approach to study macromolecular assemblies by detecting component proteins’ characteristic high-resolution projection patterns, calculated from their known 3D structures, in single electron cryo-micrographs. Our method detects single apoferritin molecules in vitreous ice with high specificity and determines their orientation and location precisely. Simulations show that high spatial-frequency information and—in the presence of protein background—a whitening filter are essential for optimal detection, in particular for images taken far from focus. Experimentally, we could detect small viral RNA polymerase molecules, distributed randomly among binding locations, inside rotavirus particles. Based on the currently attainable image quality, we estimate a threshold for detection that is 150 kDa in ice and 300 kDa in 100 nm thick samples of dense biological material. DOI: http://dx.doi.org/10.7554/eLife.25648.001 PMID:28467302

  19. Nanobiodevices for Biomolecule Analysis and Imaging

    NASA Astrophysics Data System (ADS)

    Yasui, Takao; Kaji, Noritada; Baba, Yoshinobu

    2013-06-01

    Nanobiodevices have been developed to analyze biomolecules and cells for biomedical applications. In this review, we discuss several nanobiodevices used for disease-diagnostic devices, molecular imaging devices, regenerative medicine, and drug-delivery systems and describe the numerous advantages of nanobiodevices, especially in biological, medical, and clinical applications. This review also outlines the fabrication technologies for nanostructures and nanomaterials, including top-down nanofabrication and bottom-up molecular self-assembly approaches. We describe nanopillar arrays and nanowall arrays for the ultrafast separation of DNA or protein molecules and nanoball materials for the fast separation of a wide range of DNA molecules, and we present examples of applications of functionalized carbon nanotubes to obtain information about subcellular localization on the basis of mobility differences between free fluorophores and fluorophore-labeled carbon nanotubes. Finally, we discuss applications of newly synthesized quantum dots to the screening of small interfering RNA, highly sensitive detection of disease-related proteins, and development of cancer therapeutics and diagnostics.

  20. A Supramolecular Ice Growth Inhibitor.

    PubMed

    Drori, Ran; Li, Chao; Hu, Chunhua; Raiteri, Paolo; Rohl, Andrew L; Ward, Michael D; Kahr, Bart

    2016-10-12

    Safranine O, a synthetic dye, was found to inhibit growth of ice at millimolar concentrations with an activity comparable to that of highly evolved antifreeze glycoproteins. Safranine inhibits growth of ice crystals along the crystallographic a-axis, resulting in bipyramidal needles extended along the <0001> directions as well as and plane-specific thermal hysteresis (TH) activity. The interaction of safranine with ice is reversible, distinct from the previously reported behavior of antifreeze proteins. Spectroscopy and molecular dynamics indicate that safranine forms aggregates in aqueous solution at micromolar concentrations. Metadynamics simulations and aggregation theory suggested that as many as 30 safranine molecules were preorganized in stacks at the concentrations where ice growth inhibition was observed. The simulations and single-crystal X-ray structure of safranine revealed regularly spaced amino and methyl substituents in the aggregates, akin to the ice-binding site of antifreeze proteins. Collectively, these observations suggest an unusual link between supramolecular assemblies of small molecules and functional proteins.

  1. Theoretical studies on a carbonaceous molecular bearing: association thermodynamics and dual-mode rolling dynamics† †Electronic supplementary information (ESI) available: Supplementary figures, tables and atomic coordinates of representative geometries. See DOI: 10.1039/c5sc00335k

    PubMed Central

    Nakamura, Kosuke; Hitosugi, Shunpei; Sato, Sota; Tokoyama, Hiroaki; Yamakado, Hideo; Ohno, Koichi

    2015-01-01

    The thermodynamics and dynamics of a carbonaceous molecular bearing comprising a belt-persistent tubular molecule and a fullerene molecule have been investigated using density functional theory (DFT). Among ten representative methods, two DFT methods afforded an association energy that reasonably reproduced the experimental enthalpy of –12.5 kcal mol–1 at the unique curved π-interface. The dynamics of the molecular bearing, which was assembled solely with van der Waals interactions, exhibited small energy barriers with maximum values of 2–3 kcal mol–1 for the rolling motions. The dynamic motions responded sensitively to the steric environment and resulted in two distinct motions, precession and spin, which explained the unique NMR observations that were not clarified in previous experimental studies. PMID:29142679

  2. Engineering an allosteric transcription factor to respond to new ligands.

    PubMed

    Taylor, Noah D; Garruss, Alexander S; Moretti, Rocco; Chan, Sum; Arbing, Mark A; Cascio, Duilio; Rogers, Jameson K; Isaacs, Farren J; Kosuri, Sriram; Baker, David; Fields, Stanley; Church, George M; Raman, Srivatsan

    2016-02-01

    Genetic regulatory proteins inducible by small molecules are useful synthetic biology tools as sensors and switches. Bacterial allosteric transcription factors (aTFs) are a major class of regulatory proteins, but few aTFs have been redesigned to respond to new effectors beyond natural aTF-inducer pairs. Altering inducer specificity in these proteins is difficult because substitutions that affect inducer binding may also disrupt allostery. We engineered an aTF, the Escherichia coli lac repressor, LacI, to respond to one of four new inducer molecules: fucose, gentiobiose, lactitol and sucralose. Using computational protein design, single-residue saturation mutagenesis or random mutagenesis, along with multiplex assembly, we identified new variants comparable in specificity and induction to wild-type LacI with its inducer, isopropyl β-D-1-thiogalactopyranoside (IPTG). The ability to create designer aTFs will enable applications including dynamic control of cell metabolism, cell biology and synthetic gene circuits.

  3. Engineering an allosteric transcription factor to respond to new ligands

    PubMed Central

    Taylor, Noah D; Garruss, Alexander S; Moretti, Rocco; Chan, Sum; Arbing, Mark A; Cascio, Duilio; Rogers, Jameson K; Isaacs, Farren J; Kosuri, Sriram; Baker, David; Fields, Stanley; Church, George M; Raman, Srivatsan

    2016-01-01

    Genetic regulatory proteins inducible by small molecules are useful synthetic biology tools as sensors and switches. Bacterial allosteric transcription factors (aTFs) are a major class of regulatory proteins, but few aTFs have been redesigned to respond to new effectors beyond natural aTF-inducer pairs. Altering inducer specificity in these proteins is difficult because substitutions that affect inducer binding may also disrupt allostery. We engineered an aTF, the Escherichia coli lac repressor, LacI, to respond to one of four new inducer molecules: fucose, gentiobiose, lactitol or sucralose. Using computational protein design, single-residue saturation mutagenesis or random mutagenesis, along with multiplex assembly, we identified new variants comparable in specificity and induction to wild-type LacI with its inducer, isopropyl β-D-1-thiogalactopyranoside (IPTG). The ability to create designer aTFs will enable applications including dynamic control of cell metabolism, cell biology and synthetic gene circuits. PMID:26689263

  4. An Ultimate Stereocontrol in Asymmetric Synthesis of Optically Pure Fully Aromatic Helicenes.

    PubMed

    Šámal, Michal; Chercheja, Serghei; Rybáček, Jiří; Vacek Chocholoušová, Jana; Vacek, Jaroslav; Bednárová, Lucie; Šaman, David; Stará, Irena G; Starý, Ivo

    2015-07-08

    The role of the helicity of small molecules in enantioselective catalysis, molecular recognition, self-assembly, material science, biology, and nanoscience is much less understood than that of point-, axial-, or planar-chiral molecules. To uncover the envisaged potential of helically chiral polyaromatics represented by iconic helicenes, their availability in an optically pure form through asymmetric synthesis is urgently needed. We provide a solution to this problem present since the birth of helicene chemistry in 1956 by developing a general synthetic methodology for the preparation of uniformly enantiopure fully aromatic [5]-, [6]-, and [7]helicenes and their functionalized derivatives. [2 + 2 + 2] Cycloisomerization of chiral triynes combined with asymmetric transformation of the first kind (ultimately controlled by the 1,3-allylic-type strain) is central to this endeavor. The point-to-helical chirality transfer utilizing a traceless chiral auxiliary features a remarkable resistance to diverse structural perturbations.

  5. Reducing assembly complexity of microbial genomes with single-molecule sequencing

    USDA-ARS?s Scientific Manuscript database

    Genome assembly algorithms cannot fully reconstruct microbial chromosomes from the DNA reads output by first or second-generation sequencing instruments. Therefore, most genomes are left unfinished due to the significant resources required to manually close gaps left in the draft assemblies. Single-...

  6. Rapid Growth of Acetylated Aβ(16-20) into Macroscopic Crystals.

    PubMed

    Bortolini, Christian; Klausen, Lasse Hyldgaard; Hoffmann, Søren Vrønning; Jones, Nykola C; Saadeh, Daniela; Wang, Zegao; Knowles, Tuomas P J; Dong, Mingdong

    2018-05-22

    Aberrant assembly of the amyloid-β (Aβ) is responsible for the development of Alzheimer's disease, but can also be exploited to obtain highly functional biomaterials. The short Aβ fragment, KLVFF (Aβ 16-20 ), is crucial for Aβ assembly and considered to be an Aβ aggregation inhibitor. Here, we show that acetylation of KLVFF turns it into an extremely fast self-assembling molecule, reaching macroscopic ( i.e., mm) size in seconds. We show that KLVFF is metastable and that the self-assembly can be directed toward a crystalline or fibrillar phase simply through chemical modification, via acetylation or amidation of the peptide. Amidated KLVFF can form amyloid fibrils; we observed folding events of such fibrils occurring in as little as 60 ms. The ability of single KLVFF molecules to rapidly assemble as highly ordered macroscopic structures makes it a promising candidate for applications as a rapid-forming templating material.

  7. Hierarchical self-assembly of a bow-shaped molecule bearing self-complementary hydrogen bonding sites into extended supramolecular assemblies.

    PubMed

    Ikeda, Masato; Nobori, Tadahito; Schmutz, Marc; Lehn, Jean-Marie

    2005-01-07

    The bow-shaped molecule 1 bearing a self-complementary DAAD-ADDA (D=donor A=acceptor) hydrogen-bonding array generates, in hydrocarbon solvents, highly ordered supramolecular sheet aggregates that subsequently give rise to gels by formation of an entangled network. The process of hierarchical self-assembly of compound 1 was investigated by the concentration and temperature dependence of UV-visible and (1)H NMR spectra, fluorescence spectra, and electron microscopy data. The temperature dependence of the UV-visible spectra indicates a highly cooperative process for the self-assembly of compound 1 in decaline. The electron micrograph of the decaline solution of compound 1 (1.0 mM) revealed supramolecular sheet aggregates forming an entangled network. The selected area electronic diffraction patterns of the supramolecular sheet aggregates were typical for single crystals, indicative of a highly ordered assembly. The results exemplify the generation, by hierarchical self-assembly, of highly organized supramolecular materials presenting novel collective properties at each level of organization.

  8. Crystal Structure of Mycobacterium tuberculosis H37Rv AldR (Rv2779c), a Regulator of the ald Gene: DNA BINDING AND IDENTIFICATION OF SMALL MOLECULE INHIBITORS.

    PubMed

    Dey, Abhishek; Shree, Sonal; Pandey, Sarvesh Kumar; Tripathi, Rama Pati; Ramachandran, Ravishankar

    2016-06-03

    Here we report the crystal structure of M. tuberculosis AldR (Rv2779c) showing that the N-terminal DNA-binding domains are swapped, forming a dimer, and four dimers are assembled into an octamer through crystal symmetry. The C-terminal domain is involved in oligomeric interactions that stabilize the oligomer, and it contains the effector-binding sites. The latter sites are 30-60% larger compared with homologs like MtbFFRP (Rv3291c) and can consequently accommodate larger molecules. MtbAldR binds to the region upstream to the ald gene that is highly up-regulated in nutrient-starved tuberculosis models and codes for l-alanine dehydrogenase (MtbAld; Rv2780). Further, the MtbAldR-DNA complex is inhibited upon binding of Ala, Tyr, Trp and Asp to the protein. Studies involving a ligand-binding site G131T mutant show that the mutant forms a DNA complex that cannot be inhibited by adding the amino acids. Comparative studies suggest that binding of the amino acids changes the relative spatial disposition of the DNA-binding domains and thereby disrupt the protein-DNA complex. Finally, we identified small molecules, including a tetrahydroquinoline carbonitrile derivative (S010-0261), that inhibit the MtbAldR-DNA complex. The latter molecules represent the very first inhibitors of a feast/famine regulatory protein from any source and set the stage for exploring MtbAldR as a potential anti-tuberculosis target. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. John H. Dillon Medal Lecture: Magnetic Field Directed Self-Assembly of Block Copolymers and Surfactant Mesophases

    NASA Astrophysics Data System (ADS)

    Osuji, Chinedum

    2015-03-01

    Molecular self-assembly of block copolymers and small molecule surfactants gives rise to a rich phase behavior as a function of temperature, composition, and other variables. We consider the directed self-assembly of such soft mesophases using magnetic fields, principally through the use of in situ x-ray scattering studies. Field alignment is predicated on a sufficiently large product of magnetic anisotropy and grain size to produce magnetostatic interactions which are substantive relative to thermal forces. We examine the role of field strength on the phase behavior and alignment dynamics of a series of soft mesophases, outlining the possibility to readily create highly ordered functional materials over macroscopic length scales. We show that magnetic fields as large as 10 T have little discernable impact on the stability of block copolymer systems considered, with shifts in order-disorder transition temperatures of roughly 5 mK or smaller. Consequently, directed self-assembly in these systems proceeds by nucleation of randomly aligned grains which thereafter rotate into registry with the field. We highlight the tradeoff between decreasing mobility and increasing anisotropic field interaction that dictates alignment kinetics while transiting from a high temperature disordered state to an ordered system at lower temperatures. NSF support through DMR-0847534 is gratefully acknowledged.

  10. Nanoparticle Superlattice Engineering with DNA

    NASA Astrophysics Data System (ADS)

    Mirkin, Chad

    2012-02-01

    Recent developments in strategies for assembling nanomaterials have allowed us to draw a direct analogy between the assembly of solid state atomic lattices and the construction of nanoparticle superlattices. Herein, we present a set of six design rules for using DNA as a programmable linker to deliberately stabilize nine distinct colloidal crystal structures, with lattice parameters that are tailorable over the 25-150 nm size regime. These rules are analogous to those put forth by Pauling decades ago to explain the relative stability of lattices composed of atoms and small molecules. It is ideal to use DNA as a nanoscale bond to connect nanoparticles to achieve colloidal superlattice structures in this system, since its programmable nature allows for facile control over nanoparticle bond length and strength, and nanoparticle bond selectivity. This assembly method affords simultaneous and independent control over nanoparticle structure, crystallographic symmetry, and lattice parameters with nanometer scale precision. Further, we have developed a phase diagram that predicts the design parameters necessary to achieve a lattice with a given symmetry and lattice parameters a priori. The rules developed in this work present a major advance towards true materials by design, as they effectively separate the identity of a particle core (and thereby its physical properties) from the variables that control its assembly.

  11. Thermophilic Ferritin 24mer Assembly and Nanoparticle Encapsulation Modulated by Interdimer Electrostatic Repulsion.

    PubMed

    Pulsipher, Katherine W; Villegas, Jose A; Roose, Benjamin W; Hicks, Tacey L; Yoon, Jennifer; Saven, Jeffery G; Dmochowski, Ivan J

    2017-07-18

    Protein cage self-assembly enables encapsulation and sequestration of small molecules, macromolecules, and nanomaterials for many applications in bionanotechnology. Notably, wild-type thermophilic ferritin from Archaeoglobus fulgidus (AfFtn) exists as a stable dimer of four-helix bundle proteins at a low ionic strength, and the protein forms a hollow assembly of 24 protomers at a high ionic strength (∼800 mM NaCl). This assembly process can also be initiated by highly charged gold nanoparticles (AuNPs) in solution, leading to encapsulation. These data suggest that salt solutions or charged AuNPs can shield unfavorable electrostatic interactions at AfFtn dimer-dimer interfaces, but specific "hot-spot" residues controlling assembly have not been identified. To investigate this further, we computationally designed three AfFtn mutants (E65R, D138K, and A127R) that introduce a single positive charge at sites along the dimer-dimer interface. These proteins exhibited different assembly kinetics and thermodynamics, which were ranked in order of increasing 24mer propensity: A127R < wild type < D138K ≪ E65R. E65R assembled into the 24mer across a wide range of ionic strengths (0-800 mM NaCl), and the dissociation temperature for the 24mer was 98 °C. X-ray crystal structure analysis of the E65R mutant identified a more compact, closed-pore cage geometry. A127R and D138K mutants exhibited wild-type ability to encapsulate and stabilize 5 nm AuNPs, whereas E65R did not encapsulate AuNPs at the same high yields. This work illustrates designed protein cages with distinct assembly and encapsulation properties.

  12. Construction of nanostructures for selective lithium ion conduction using self-assembled molecular arrays in supramolecular solids

    NASA Astrophysics Data System (ADS)

    Moriya, Makoto

    2017-12-01

    In the development of innovative molecule-based materials, the identification of the structural features in supramolecular solids and the understanding of the correlation between structure and function are important factors. The author investigated the development of supramolecular solid electrolytes by constructing ion conduction paths using a supramolecular hierarchical structure in molecular crystals because the ion conduction path is an attractive key structure due to its ability to generate solid-state ion diffusivity. The obtained molecular crystals exhibited selective lithium ion diffusion via conduction paths consisting of lithium bis(trifluoromethanesulfonyl)amide (LiTFSA) and small molecules such as ether or amine compounds. In the present review, the correlation between the crystal structure and ion conductivity of the obtained molecular crystals is addressed based on the systematic structural control of the ionic conduction paths through the modification of the component molecules. The relationship between the crystal structure and ion conductivity of the molecular crystals provides a guideline for the development of solid electrolytes based on supramolecular solids exhibiting rapid and selective lithium ion conduction.

  13. Albumin binds self-assembling dyes as specific polymolecular ligands.

    PubMed

    Stopa, Barbara; Rybarska, Janina; Drozd, Anna; Konieczny, Leszek; Król, Marcin; Lisowski, Marek; Piekarska, Barbara; Roterman, Irena; Spólnik, Paweł; Zemanek, Grzegorz

    2006-12-15

    Self-assembling dyes with a structure related to Congo red (e.g. Evans blue) form polymolecular complexes with albumin. The dyes, which are lacking a self-assembling property (Trypan blue, ANS) bind as single molecules. The supramolecular character of dye ligands bound to albumin was demonstrated by indicating the complexation of dye molecules outnumbering the binding sites in albumin and by measuring the hydrodynamic radius of albumin which is growing upon complexation of self-assembling dye in contrast to dyes lacking this property. The self-assembled character of Congo red was also proved using it as a carrier introducing to albumin the intercalated nonbonding foreign compounds. Supramolecular, ordered character of the dye in the complex with albumin was also revealed by finding that self-assembling dyes become chiral upon complexation. Congo red complexation makes albumin less resistant to low pH as concluded from the facilitated N-F transition, observed in studies based on the measurement of hydrodynamic radius. This particular interference with protein stability and the specific changes in digestion resulted from binding of Congo red suggest that the self-assembled dye penetrates the central crevice of albumin.

  14. Ordered Nanostructured Amphiphile Self-Assembly Materials from Endogenous Nonionic Unsaturated Monoethanolamide Lipids in Water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sagnella, Sharon M.; Conn, Charlotte E.; Krodkiewska, Irena

    2010-08-23

    The self-assembly, solid state and lyotropic liquid crystalline phase behavior of a series of endogenous n-acylethanolamides (NAEs) with differing degrees of unsaturation, viz., oleoyl monoethanolamide, linoleoyl monoethanolamide, and linolenoyl monoethanolamide, have been examined. The studied molecules are known to possess inherent biological function. Both the monoethanolamide headgroup and the unsaturated hydrophobe are found to be important in dictating the self-assembly behavior of these molecules. In addition, all three molecules form lyotropic liquid crystalline phases in water, including the inverse bicontinuous cubic diamond (Q{sub II}{sup D}) and gyroid (Q{sub II}{sup G}) phases. The ability of the NAE's to form inverse cubicmore » phases and to be dispersed into ordered nanostructured colloidal particles, cubosomes, in excess water, combined with their endogenous nature and natural medicinal properties, makes this new class of soft mesoporous amphiphile self-assembly materials suitable candidates for investigation in a variety of advanced multifunctional applications, including encapsulation and controlled release of therapeutic agents and incorporation of medical imaging agents.« less

  15. A unique structural domain in Methanococcoides burtonii ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) acts as a small subunit mimic

    PubMed Central

    2017-01-01

    The catalytic inefficiencies of the CO2-fixing enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) often limit plant productivity. Strategies to engineer more efficient plant Rubiscos have been hampered by evolutionary constraints, prompting interest in Rubisco isoforms from non-photosynthetic organisms. The methanogenic archaeon Methanococcoides burtonii contains a Rubisco isoform that functions to scavenge the ribulose-1,5-bisphosphate (RuBP) by-product of purine/pyrimidine metabolism. The crystal structure of M. burtonii Rubisco (MbR) presented here at 2.6 Å resolution is composed of catalytic large subunits (LSu) assembled into pentamers of dimers, (L2)5, and differs from Rubiscos from higher plants where LSus are glued together by small subunits (SSu) into hexadecameric L8S8 enzymes. MbR contains a unique 29-amino acid insertion near the C terminus, which folds as a separate domain in the structure. This domain, which is visualized for the first time in this study, is located in a similar position to SSus in L8S8 enzymes between LSus of adjacent L2 dimers, where negatively charged residues coordinate around a Mg2+ ion in a fashion that suggests this domain may be important for the assembly process. The Rubisco assembly domain is thus an inbuilt SSu mimic that concentrates L2 dimers. MbR assembly is ligand-stimulated, and we show that only 6-carbon molecules with a particular stereochemistry at the C3 carbon can induce oligomerization. Based on MbR structure, subunit arrangement, sequence, phylogenetic distribution, and function, MbR and a subset of Rubiscos from the Methanosarcinales order are proposed to belong to a new Rubisco subgroup, named form IIIB. PMID:28154188

  16. A unique structural domain in Methanococcoides burtonii ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) acts as a small subunit mimic.

    PubMed

    Gunn, Laura H; Valegård, Karin; Andersson, Inger

    2017-04-21

    The catalytic inefficiencies of the CO 2 -fixing enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) often limit plant productivity. Strategies to engineer more efficient plant Rubiscos have been hampered by evolutionary constraints, prompting interest in Rubisco isoforms from non-photosynthetic organisms. The methanogenic archaeon Methanococcoides burtonii contains a Rubisco isoform that functions to scavenge the ribulose-1,5-bisphosphate (RuBP) by-product of purine/pyrimidine metabolism. The crystal structure of M. burtonii Rubisco (MbR) presented here at 2.6 Å resolution is composed of catalytic large subunits (LSu) assembled into pentamers of dimers, (L 2 ) 5 , and differs from Rubiscos from higher plants where LSus are glued together by small subunits (SSu) into hexadecameric L 8 S 8 enzymes. MbR contains a unique 29-amino acid insertion near the C terminus, which folds as a separate domain in the structure. This domain, which is visualized for the first time in this study, is located in a similar position to SSus in L 8 S 8 enzymes between LSus of adjacent L 2 dimers, where negatively charged residues coordinate around a Mg 2+ ion in a fashion that suggests this domain may be important for the assembly process. The Rubisco assembly domain is thus an inbuilt SSu mimic that concentrates L 2 dimers. MbR assembly is ligand-stimulated, and we show that only 6-carbon molecules with a particular stereochemistry at the C 3 carbon can induce oligomerization. Based on MbR structure, subunit arrangement, sequence, phylogenetic distribution, and function, MbR and a subset of Rubiscos from the Methanosarcinales order are proposed to belong to a new Rubisco subgroup, named form IIIB. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Oligomeric states of the Shigella translocator protein IpaB provide structural insights into formation of the type III secretion translocon

    PubMed Central

    Dickenson, Nicholas E; Choudhari, Shyamal P; Adam, Philip R; Kramer, Ryan M; Joshi, Sangeeta B; Middaugh, C Russell; Picking, Wendy L; Picking, William D

    2013-01-01

    The Shigella flexneri Type III secretion system (T3SS) senses contact with human intestinal cells and injects effector proteins that promote pathogen entry as the first step in causing life threatening bacillary dysentery (shigellosis). The Shigella Type III secretion apparatus (T3SA) consists of an anchoring basal body, an exposed needle, and a temporally assembled tip complex. Exposure to environmental small molecules recruits IpaB, the first hydrophobic translocator protein, to the maturing tip complex. IpaB then senses contact with a host cell membrane, forming the translocon pore through which effectors are delivered to the host cytoplasm. Within the bacterium, IpaB exists as a heterodimer with its chaperone IpgC; however, IpaB's structural state following secretion is unknown due to difficulties isolating stable protein. We have overcome this by coexpressing the IpaB/IpgC heterodimer and isolating IpaB by incubating the complex in mild detergents. Interestingly, preparation of IpaB with n-octyl-oligo-oxyethylene (OPOE) results in the assembly of discrete oligomers while purification in N,N-dimethyldodecylamine N-oxide (LDAO) maintains IpaB as a monomer. In this study, we demonstrate that IpaB tetramers penetrate phospholipid membranes to allow a size-dependent release of small molecules, suggesting the formation of discrete pores. Monomeric IpaB also interacts with liposomes but fails to disrupt them. From these and additional findings, we propose that IpaB can exist as a tetramer having inherent flexibility, which allows it to cooperatively interact with and insert into host cell membranes. This event may then lay the foundation for formation of the Shigella T3SS translocon pore. PMID:23456854

  18. Segmental Interactions between Polymers and Small Molecules in Batteries and Biofuel Purification

    NASA Astrophysics Data System (ADS)

    Balsara, Nitash

    2015-03-01

    Polymers such as poly(ethylene oxide) (PEO) and poly(dimethyl siloxane) (PDMS) have the potential to play an important role in the emerging clean energy landscape. Mixtures of PEO and lithium salts are the most widely studied non-flammable electrolyte for rechargeable lithium batteries. PDMS membranes are ideally suited for purifying bioethanol and biobutanol from fermentation broths. The ability of PEO and PDMS to function in these applications depends on segmental interactions between the polymeric host and small molecule guests. One experimental approach for studying these interactions is X-ray absorption spectroscopy (XAS). Models for interpreting XAS spectra of amorphous mixtures and charged species such as salts must quantify the effect of segmental interactions on the electronic structure of the atoms of interest (e.g. sulfur). This combination of experiment and theory is used to determine the species formed in during charging and discharging lithium-sulfur batteries; the theoretical specific energy of lithium-sulfur batteries is a factor of four larger than that of current lithium-ion batteries. Selective transport of alcohols in PDMS-containing membranes is controlled by the size, shape, and connectivity of sub-nanometer cavities or free volume that form and disappear spontaneously as the chain segments undergo Brownian motion. We demonstrate that self-assembly of PDMS-containing block copolymers can be used to control segmental relaxation, which, in turn, affects free volume. Positron annihilation was used to determine the size distribution of free volume cavities in the PDMS-containing block copolymers. The effect of this artificial free volume on selective permeation of alcohols formed by fermentation of sugars derived from lignocellulosic biomass is studied. Molecular dynamics simulations are needed to understand the relationship between self-assembly, free volume, and transport in block copolymers.

  19. A Review on Recent Advances in Stabilizing Peptides/Proteins upon Fabrication in Hydrogels from Biodegradable Polymers

    PubMed Central

    Raza, Faisal; Zafar, Hajra; Zhu, Ying; Ren, Yuan; -Ullah, Aftab; Khan, Asif Ullah; He, Xinyi; Han, Han; Aquib, Md; Boakye-Yiadom, Kofi Oti; Ge, Liang

    2018-01-01

    Hydrogels evolved as an outstanding carrier material for local and controlled drug delivery that tend to overcome the shortcomings of old conventional dosage forms for small drugs (NSAIDS) and large peptides and proteins. The aqueous swellable and crosslinked polymeric network structure of hydrogels is composed of various natural, synthetic and semisynthetic biodegradable polymers. Hydrogels have remarkable properties of functionality, reversibility, sterilizability, and biocompatibility. All these dynamic properties of hydrogels have increased the interest in their use as a carrier for peptides and proteins to be released slowly in a sustained manner. Peptide and proteins are remarkable therapeutic agents in today’s world that allow the treatment of severe, chronic and life-threatening diseases, such as diabetes, rheumatoid arthritis, hepatitis. Despite few limitations, hydrogels provide fine tuning of proteins and peptides delivery with enormous impact in clinical medicine. Novels drug delivery systems composed of smart peptides and molecules have the ability to drive self-assembly and form hydrogels at physiological pH. These hydrogels are significantly important for biological and medical fields. The primary objective of this article is to review current issues concerned with the therapeutic peptides and proteins and impact of remarkable properties of hydrogels on these therapeutic agents. Different routes for pharmaceutical peptides and proteins and superiority over other drugs candidates are presented. Recent advances based on various approaches like self-assembly of peptides and small molecules to form novel hydrogels are also discussed. The article will also review the literature concerning the classification of hydrogels on a different basis, polymers used, “release mechanisms” their physical and chemical characteristics and diverse applications. PMID:29346275

  20. SERS active colloidal nanoparticles for the detection of small blood biomarkers using aptamers

    NASA Astrophysics Data System (ADS)

    Marks, Haley; Mabbott, Samuel; Jackson, George W.; Graham, Duncan; Cote, Gerard L.

    2015-03-01

    Functionalized colloidal nanoparticles for SERS serve as a promising multifunctional assay component for blood biomarker detection. Proper design of these nanoprobes through conjugation to spectral tags, protective polymers, and sensing ligands can provide experimental control over the sensitivity, range, reproducibility, particle stability, and integration with biorecognition assays. Additionally, the optical properties and degree of electromagnetic SERS signal enhancement can be altered and monitored through tuning the nanoparticle shape, size, material and the colloid's local surface plasmon resonance (LSPR). Aptamers, synthetic affinity ligands derived from nucleic acids, provide a number of advantages for biorecognition of small molecules and toxins with low immunogenicity. DNA aptamers are simpler and more economical to produce at large scale, are capable of greater specificity and affinity than antibodies, are easily tailored to specific functional groups, can be used to tune inter-particle distance and shift the LSPR, and their intrinsic negative charge can be utilized for additional particle stability.1,2 Herein, a "turn-off" competitive binding assay platform involving two different plasmonic nanoparticles for the detection of the toxin bisphenol A (BPA) using SERS is presented. A derivative of the toxin is immobilized onto a silver coated magnetic nanoparticle (Ag@MNP), and a second solid silver nanoparticle (AgNP) is functionalized with the BPA aptamer and a Raman reporter molecule (RRM). The capture (Ag@MNP) and probe (AgNP) particles are mixed and the aptamer binding interaction draws the nanoparticles closer together, forming an assembly that results in an increased SERS signal intensity. This aptamer mediated assembly of the two nanoparticles results in a 100x enhancement of the SERS signal intensity from the RRM. These pre-bound aptamer/nanoparticle conjugates were then exposed to BPA in free solution and the competitive binding event was monitored by the decrease in SERS intensity.

  1. Improving small-angle X-ray scattering data for structural analyses of the RNA world

    PubMed Central

    Rambo, Robert P.; Tainer, John A.

    2010-01-01

    Defining the shape, conformation, or assembly state of an RNA in solution often requires multiple investigative tools ranging from nucleotide analog interference mapping to X-ray crystallography. A key addition to this toolbox is small-angle X-ray scattering (SAXS). SAXS provides direct structural information regarding the size, shape, and flexibility of the particle in solution and has proven powerful for analyses of RNA structures with minimal requirements for sample concentration and volumes. In principle, SAXS can provide reliable data on small and large RNA molecules. In practice, SAXS investigations of RNA samples can show inconsistencies that suggest limitations in the SAXS experimental analyses or problems with the samples. Here, we show through investigations on the SAM-I riboswitch, the Group I intron P4-P6 domain, 30S ribosomal subunit from Sulfolobus solfataricus (30S), brome mosaic virus tRNA-like structure (BMV TLS), Thermotoga maritima asd lysine riboswitch, the recombinant tRNAval, and yeast tRNAphe that many problems with SAXS experiments on RNA samples derive from heterogeneity of the folded RNA. Furthermore, we propose and test a general approach to reducing these sample limitations for accurate SAXS analyses of RNA. Together our method and results show that SAXS with synchrotron radiation has great potential to provide accurate RNA shapes, conformations, and assembly states in solution that inform RNA biological functions in fundamental ways. PMID:20106957

  2. Tailored Surfaces/Assemblies for Molecular Plasmonics and Plasmonic Molecular Electronics.

    PubMed

    Lacroix, Jean-Christophe; Martin, Pascal; Lacaze, Pierre-Camille

    2017-06-12

    Molecular plasmonics uses and explores molecule-plasmon interactions on metal nanostructures for spectroscopic, nanophotonic, and nanoelectronic devices. This review focuses on tailored surfaces/assemblies for molecular plasmonics and describes active molecular plasmonic devices in which functional molecules and polymers change their structural, electrical, and/or optical properties in response to external stimuli and that can dynamically tune the plasmonic properties. We also explore an emerging research field combining molecular plasmonics and molecular electronics.

  3. Chemical controls on uranyl citrate speciation and the self-assembly of nanoscale macrocycles and sandwich complexes in aqueous solutions.

    PubMed

    Basile, M; Unruh, D K; Gojdas, K; Flores, E; Streicher, L; Forbes, T Z

    2015-03-28

    Uranyl citrate forms trimeric species at pH > 5.5, but exact structural characteristics of these important oligomers have not previously been reported. Crystallization and structural characterization of the trimers suggests the self-assembly of the 3 : 3 and 3 : 2 U : Cit complexes into larger sandwich and macrocyclic molecules. Raman spectroscopy and ESI-MS have been utilized to investigate the relative abundance of these species in solution under varying pH and citrate concentrations. Additional dynamic light scattering experiments indicate that self-assembly of the larger molecules does occur in aqueous solution.

  4. Helically assembled π-conjugated polymers with circularly polarized luminescence.

    PubMed

    Watanabe, Kazuyoshi; Akagi, Kazuo

    2014-08-01

    We review the recent progress in the field of helically assembled π -conjugated polymers, focusing on aromatic conjugated polymers with interchain helical π -stacking that exhibit circularly polarized luminescence (CPL). In Part 1, we discuss optically active polymers with white-colored CPL and the amplification of the circular polarization through liquid crystallinity. In Part 2, we focus on the stimuli-responsive CPL that results from changes in the conformation and aggregation state of π -conjugated molecules and polymers. In Part 3, we discuss the self-assembly of achiral cationic π -conjugated polymers into circularly polarized luminescent supramolecular nanostructures with the aid of other chiral molecules.

  5. Competing Thermodynamic and Dynamic Factors Select Molecular Assemblies on a Gold Surface

    NASA Astrophysics Data System (ADS)

    Haxton, Thomas K.; Zhou, Hui; Tamblyn, Isaac; Eom, Daejin; Hu, Zonghai; Neaton, Jeffrey B.; Heinz, Tony F.; Whitelam, Stephen

    2013-12-01

    Controlling the self-assembly of surface-adsorbed molecules into nanostructures requires understanding physical mechanisms that act across multiple length and time scales. By combining scanning tunneling microscopy with hierarchical ab initio and statistical mechanical modeling of 1,4-substituted benzenediamine (BDA) molecules adsorbed on a gold (111) surface, we demonstrate that apparently simple nanostructures are selected by a subtle competition of thermodynamics and dynamics. Of the collection of possible BDA nanostructures mechanically stabilized by hydrogen bonding, the interplay of intermolecular forces, surface modulation, and assembly dynamics select at low temperature a particular subset: low free energy oriented linear chains of monomers and high free energy branched chains.

  6. Noncovalent Polymerization of Mesogens Crystallizes Lysozyme: Correlation between Nonamphiphilic Lyotropic Liquid Crystal Phase and Protein Crystal Formation

    PubMed Central

    Simon, Karen A.; Shetye, Gauri S.; Englich, Ulrich; Wu, Lei; Luk, Yan-Yeung

    2011-01-01

    Crystallization of proteins is important for fundamental studies and biopharmaceutical development but remains largely an empirical science. Here, we report the use of organic salts that can form a class of unusual non-amphiphilic lyotropic liquid crystals to crystallize the protein lysozyme. Certain non-amphiphilic organic molecules with fused aromatic rings and two charges can assemble into stable thread-like noncovalent polymers that may further form liquid crystal phases in water, traditionally termed chromonic liquid crystals. Using five of these mesogenic molecules as additives to induce protein crystallization, we discover that molecules that can form liquid crystal phases in water are highly effective at inducing the crystal formation of lysozyme, even at concentrations significantly lower than that required for forming liquid crystal phases. This result reveals an example of inducing protein crystallization by the molecular assembly of the additives, and is consistent with a new mechanism by which the strong hydration of an assembly process provides a gradual means to compete for the water molecules to enable solvated proteins to form crystals. PMID:21786812

  7. Fabrication of sophisticated two-dimensional organic nanoarchitectures thought hydrogen bond mediated molecular self assembly

    NASA Astrophysics Data System (ADS)

    Silly, Fabien

    2012-02-01

    Complex supramolecular two-dimensional (2D) networks are attracting considerable interest as highly ordered functional materials for applications in nanotechnology. The challenge consists in tailoring the ordering of one or more molecular species into specific architectures over an extended length scale with molecular precision. Highly organized supramolecular arrays can be obtained through self-assembly of complementary molecules which can interlock via intermolecular interactions. Molecules forming hydrogen bonds (H-bonds) are especially interesting building blocks for creating sophisticated organic architectures due to high selectivity and directionality of these bindings. We used scanning tunnelling microscopy to investigate at the atomic scale the formation of H-bonded 2D organic nanoarchitectures on surfaces. We mixed perylene derivatives having rectangular shape with melamine and DNA base having triangular and non symmetric shape respectively. We observe that molecule substituents play a key role in formation of the multicomponent H-bonded architectures. We show that the 2D self-assembly of these molecules can be tailored by adjusting the temperature and molecular ratio. We used these stimuli to successfully create numerous close-packed and porous 2D multicomponent structures.

  8. Self-assembly of chiral (1R,2S)-ephedrine and (1S,2S)-pseudoephedrine into low-dimensional aluminophosphate materials driven by their amphiphilic nature.

    PubMed

    Bernardo-Maestro, Beatriz; Garrido-Martín, Elisa; López-Arbeloa, Fernando; Pérez-Pariente, Joaquín; Gómez-Hortigüela, Luis

    2018-03-28

    In an attempt to promote the crystallization of chiral inorganic frameworks, we explore the ability of chiral (1R,2S)-ephedrine and its diastereoisomer (1S,2S)-pseudoephedrine to act as organic building blocks for the crystallization of hybrid organo-inorganic aluminophosphate frameworks in the presence of fluoride. These molecules were selected because of their particular molecular asymmetric structure, which enables a rich supramolecular chemistry and a potential chiral recognition phenomenon during crystallization. Up to four new low-dimensional materials have been produced, wherein the organic molecules form an organic bilayer in-between the inorganic networks. We analyze by molecular simulations the trend of these chiral molecules to form these types of framework, which is directly related to their amphiphilic nature that triggers a strong self-assembly through hydrophobic interactions between aromatic rings and hydrophilic interactions with the fluoro-aluminophosphate inorganic units. Such a self-assembly process is strongly dependent on the concentration of the organic molecules.

  9. A Modified Gibson Assembly Method for Cloning Large DNA Fragments with High GC Contents.

    PubMed

    Li, Lei; Jiang, Weihong; Lu, Yinhua

    2018-01-01

    Gibson one-step, isothermal assembly method (Gibson assembly) can be used to efficiently assemble large DNA molecules by in vitro recombination involving a 5'-exonuclease, a DNA polymerase and a DNA ligase. In the past few years, this robust DNA assembly method has been widely applied to seamlessly construct genes, genetic pathways and even entire genomes. Here, we expand this method to clone large DNA fragments with high GC contents, such as antibiotic biosynthetic gene clusters from Streptomyces . Due to the low isothermal condition (50 °C) in the Gibson reaction system, the complementary overlaps with high GC contents are proposed to easily form mismatched linker pairings, which leads to low assembly efficiencies mainly due to vector self-ligation. So, we modified this classic method by the following two steps. First, a pair of universal terminal single-stranded DNA overhangs with high AT contents are added to the ends of the BAC vector. Second, two restriction enzyme sites are introduced into the respective sides of the designed overlaps to achieve the hierarchical assembly of large DNA molecules. The optimized Gibson assembly method facilitates fast acquisition of large DNA fragments with high GC contents from Streptomyces.

  10. Live visualizations of single isolated tubulin protein self-assembly via tunneling current: effect of electromagnetic pumping during spontaneous growth of microtubule.

    PubMed

    Sahu, Satyajit; Ghosh, Subrata; Fujita, Daisuke; Bandyopadhyay, Anirban

    2014-12-03

    As we bring tubulin protein molecules one by one into the vicinity, they self-assemble and entire event we capture live via quantum tunneling. We observe how these molecules form a linear chain and then chains self-assemble into 2D sheet, an essential for microtubule, --fundamental nano-tube in a cellular life form. Even without using GTP, or any chemical reaction, but applying particular ac signal using specially designed antenna around atomic sharp tip we could carry out the self-assembly, however, if there is no electromagnetic pumping, no self-assembly is observed. In order to verify this atomic scale observation, we have built an artificial cell-like environment with nano-scale engineering and repeated spontaneous growth of tubulin protein to its complex with and without electromagnetic signal. We used 64 combinations of plant, animal and fungi tubulins and several doping molecules used as drug, and repeatedly observed that the long reported common frequency region where protein folds mechanically and its structures vibrate electromagnetically. Under pumping, the growth process exhibits a unique organized behavior unprecedented otherwise. Thus, "common frequency point" is proposed as a tool to regulate protein complex related diseases in the future.

  11. Single-molecule sequencing of the desiccation-tolerant grass Oropetium thomaeum.

    PubMed

    VanBuren, Robert; Bryant, Doug; Edger, Patrick P; Tang, Haibao; Burgess, Diane; Challabathula, Dinakar; Spittle, Kristi; Hall, Richard; Gu, Jenny; Lyons, Eric; Freeling, Michael; Bartels, Dorothea; Ten Hallers, Boudewijn; Hastie, Alex; Michael, Todd P; Mockler, Todd C

    2015-11-26

    Plant genomes, and eukaryotic genomes in general, are typically repetitive, polyploid and heterozygous, which complicates genome assembly. The short read lengths of early Sanger and current next-generation sequencing platforms hinder assembly through complex repeat regions, and many draft and reference genomes are fragmented, lacking skewed GC and repetitive intergenic sequences, which are gaining importance due to projects like the Encyclopedia of DNA Elements (ENCODE). Here we report the whole-genome sequencing and assembly of the desiccation-tolerant grass Oropetium thomaeum. Using only single-molecule real-time sequencing, which generates long (>16 kilobases) reads with random errors, we assembled 99% (244 megabases) of the Oropetium genome into 625 contigs with an N50 length of 2.4 megabases. Oropetium is an example of a 'near-complete' draft genome which includes gapless coverage over gene space as well as intergenic sequences such as centromeres, telomeres, transposable elements and rRNA clusters that are typically unassembled in draft genomes. Oropetium has 28,466 protein-coding genes and 43% repeat sequences, yet with 30% more compact euchromatic regions it is the smallest known grass genome. The Oropetium genome demonstrates the utility of single-molecule real-time sequencing for assembling high-quality plant and other eukaryotic genomes, and serves as a valuable resource for the plant comparative genomics community.

  12. Live visualizations of single isolated tubulin protein self-assembly via tunneling current: effect of electromagnetic pumping during spontaneous growth of microtubule

    PubMed Central

    Sahu, Satyajit; Ghosh, Subrata; Fujita, Daisuke; Bandyopadhyay, Anirban

    2014-01-01

    As we bring tubulin protein molecules one by one into the vicinity, they self-assemble and entire event we capture live via quantum tunneling. We observe how these molecules form a linear chain and then chains self-assemble into 2D sheet, an essential for microtubule, —fundamental nano-tube in a cellular life form. Even without using GTP, or any chemical reaction, but applying particular ac signal using specially designed antenna around atomic sharp tip we could carry out the self-assembly, however, if there is no electromagnetic pumping, no self-assembly is observed. In order to verify this atomic scale observation, we have built an artificial cell-like environment with nano-scale engineering and repeated spontaneous growth of tubulin protein to its complex with and without electromagnetic signal. We used 64 combinations of plant, animal and fungi tubulins and several doping molecules used as drug, and repeatedly observed that the long reported common frequency region where protein folds mechanically and its structures vibrate electromagnetically. Under pumping, the growth process exhibits a unique organized behavior unprecedented otherwise. Thus, “common frequency point” is proposed as a tool to regulate protein complex related diseases in the future. PMID:25466883

  13. A new chicken genome assembly provides insight into avian genome structure

    USDA-ARS?s Scientific Manuscript database

    The importance of the Gallus gallus (chicken) as a model organism and agricultural animal merits a continuation of sequence assembly improvement efforts. We present a new version of the chicken genome assembly (Gallus_gallus-5.0; GCA_000002315.3) built from combined long single molecule sequencing t...

  14. Conceptual, self-assembling graphene nanocontainers

    NASA Astrophysics Data System (ADS)

    Boothroyd, Simon; Anwar, Jamshed

    2015-07-01

    We show that graphene nano-sheets, when appropriately functionalised, can form self-assembling nanocontainers which may be opened or closed using a chemical trigger such as pH or polarity of solvent. Conceptual design rules are presented for different container structures, whose ability to form and encapsulate guest molecules is verified by molecular dynamics simulations. The structural simplicity of the graphene nanocontainers offers considerable scope for scaling the capacity, modulating the nature of the internal environment, and defining the trigger for encapsulation or release of the guest molecule(s). This design study will serve to provide additional impetus to developing synthetic approaches for selective functionalisation of graphene.

  15. Optoelectronic functional materials based on alkylated-π molecules: self-assembled architectures and nonassembled liquids.

    PubMed

    Li, Hongguang; Choi, Jiyoung; Nakanishi, Takashi

    2013-05-07

    The engineering of single molecules into higher-order hierarchical assemblies is a current research focus in molecular materials chemistry. Molecules containing π-conjugated units are an important class of building blocks because their self-assembly is not only of fundamental interest, but also the key to fabricating functional systems for organic electronic and photovoltaic applications. Functionalizing the π-cores with "alkyl chains" is a common strategy in the molecular design that can give the system desirable properties, such as good solubility in organic solvents for solution processing. Moreover, the alkylated-π system can regulate the self-assembly behavior by fine-tuning the intermolecular forces. The optimally assembled structures can then exhibit advanced functions. However, while some general rules have been revealed, a comprehensive understanding of the function played by the attached alkyl chains is still lacking, and current methodology is system-specific in many cases. Better clarification of this issue requires contributions from carefully designed libraries of alkylated-π molecular systems in both self-assembly and nonassembly materialization strategies. Here, based on recent efforts toward this goal, we show the power of the alkyl chains in controlling the self-assembly of soft molecular materials and their resulting optoelectronic properties. The design of alkylated-C60 is selected from our recent research achievements, as the most attractive example of such alkylated-π systems. Some other closely related systems composed of alkyl chains and π-units are also reviewed to indicate the universality of the methodology. Finally, as a contrast to the self-assembled molecular materials, nonassembled, solvent-free, novel functional liquid materials are discussed. In doing so, a new journey toward the ultimate organic "soft" materials is introduced, based on alkylated-π molecular design.

  16. Programmed self-assembly of large π-conjugated molecules into electroactive one-dimensional nanostructures

    PubMed Central

    Yamamoto, Yohei

    2012-01-01

    Electroactive one-dimensional (1D) nano-objects possess inherent unidirectional charge and energy transport capabilities along with anisotropic absorption and emission of light, which are of great advantage for the development of nanometer-scale electronics and optoelectronics. In particular, molecular nanowires formed by self-assembly of π-conjugated molecules attract increasing attention for application in supramolecular electronics. This review introduces recent topics related to electroactive molecular nanowires. The nanowires are classified into four categories with respect to the electronic states of the constituent molecules: electron donors, acceptors, donor–acceptor pairs and miscellaneous molecules that display interesting electronic properties. Although many challenges still remain for practical use, state-of-the-art 1D supramolecular nanomaterials have already brought significant advances to both fundamental chemical sciences and technological applications. PMID:27877488

  17. Macrocycles that inhibit the binding between heat shock protein 90 and TPR-containing proteins

    PubMed Central

    Ardi, Veronica C.; Alexander, Leslie D.; Johnson, Victoria; McAlpine, Shelli R.

    2011-01-01

    Heat shock protein 90 (Hsp90) accounts for 1–2% of the total proteins in normal cells and functions as a molecular chaperone that folds, assembles, and stabilizes client proteins. Hsp90 is over-expressed (3–6-fold increase) in stressed cells, including cancer cells, and regulates over 200 client and co-chaperone proteins. Hsp90 client proteins are involved in a plethora of cellular signaling events including numerous growth and apoptotic pathways. Since pathway-specific inhibitors can be problematic in drug-resistant cancers, shutting down multiple pathways at once is a promising approach when developing new therapeutics. Hsp90’s ability to modulate many growth and signaling pathways simultaneously makes this protein an attractive target in the field of cancer therapeutics. Herein we present evidence that a small molecule modulates Hsp90 via binding between the N and middle domain and allosterically inhibiting the binding interaction between Hsp90 and four C-terminal binding client proteins: IP6K2, FKBP38, FKBP52, and HOP. These last three clients contain a tetratricopeptide-repeat (TPR) region, which is known to interact with the MEEVD sequence on the C-terminus of Hsp90. Thus, this small molecule modulates the activity between co-chaperones that contain TPR motifs and Hsp90’s MEEVD region. This mechanism of action is unique from that of all Hsp90 inhibitors currently in clinical trials where these molecules have no effect on proteins that bind to the C-terminus of Hsp90. Further, our small molecule induces a Caspase-3 dependent apoptotic event. Thus, we describe the mechanism of a novel scaffold that is a useful tool for studying cell-signaling events that result when blocking the MEEVD-TPR interaction between Hsp90 and co-chaperone proteins. PMID:21950602

  18. Carbon nanotubes for stabilization of nanostructured lipid particles

    NASA Astrophysics Data System (ADS)

    Gaunt, Nicholas P.; Patil-Sen, Yogita; Baker, Matthew J.; Kulkarni, Chandrashekhar V.

    2014-12-01

    Carbon nanotubes (CNTs) are increasingly studied for innovative biotechnological applications particularly where they are combined with essential biological materials like lipids. Lipids have been used earlier for enhancing the dispersibility of CNTs in aqueous solutions. Here we report a novel application of CNTs for stabilization of internally self-assembled nanostructured lipid particles of 2-5 μm size. Single-walled (pristine) as well as -OH and -COOH functionalized multi-walled CNTs were employed to produce nanostructured emulsions which stayed stable for months and could be re-dispersed after complete dehydration. Concentrations of CNTs employed for stabilization were very low; moreover CNTs were well-decorated with lipid molecules. These features contribute towards reducing their toxicity and improving biocompatibility for biomedical and pharmaceutical applications. Our approach paves the way for future development of combination therapies employing both CNTs and nanostructured lipid self-assembly together as carriers of different drugs.Carbon nanotubes (CNTs) are increasingly studied for innovative biotechnological applications particularly where they are combined with essential biological materials like lipids. Lipids have been used earlier for enhancing the dispersibility of CNTs in aqueous solutions. Here we report a novel application of CNTs for stabilization of internally self-assembled nanostructured lipid particles of 2-5 μm size. Single-walled (pristine) as well as -OH and -COOH functionalized multi-walled CNTs were employed to produce nanostructured emulsions which stayed stable for months and could be re-dispersed after complete dehydration. Concentrations of CNTs employed for stabilization were very low; moreover CNTs were well-decorated with lipid molecules. These features contribute towards reducing their toxicity and improving biocompatibility for biomedical and pharmaceutical applications. Our approach paves the way for future development of combination therapies employing both CNTs and nanostructured lipid self-assembly together as carriers of different drugs. Electronic supplementary information (ESI) available: Concentration series studies with Raman spectroscopy and small angle X-ray diffraction pattern for dry lipid and dehydrated CNT-lipid particles support the article. See DOI: 10.1039/c4nr05593d

  19. Computational studies on self-assembled paclitaxel structures: templates for hierarchical block copolymer assemblies and sustained drug release.

    PubMed

    Guo, Xin D; Tan, Jeremy P K; Kim, Sung H; Zhang, Li J; Zhang, Ying; Hedrick, James L; Yang, Yi Y; Qian, Yu

    2009-11-01

    Paclitaxel-loaded poly(ethylene oxide)-b-poly(lactide) (PEO-b-PLA) systems have been observed to assemble into fiber structures with remarkably different properties using different chirality and molecular weight of PLA segments. In this study, dissipative particle dynamics (DPD) simulations were carried out to elaborate the microstructures and properties of pure paclitaxel and paclitaxel-loaded PEO-b-PLA systems. Paclitaxel molecules formed ribbon or fiber like structures in water. With the addition of PEO-b-PDLA, PEO-b-PLLA and their stereocomplex, paclitaxel acted as a template and polymer molecules assembled around the paclitaxel structure to form core/shell structured fibers having a PEO shell. For PEO19-b-PDLA27 and PEO19-b-PLLA27 systems, PLA segments and paclitaxel molecules were distributed homogeneously in the core of fibers based on the hydrophobic interactions. In the stereocomplex formulation, paclitaxel molecules were more concentrated in the inner PLA stereocomplex core, which led to slower release of paclitaxel. By increasing the length of PLA segments (e.g. 8,16,22 and 27), the crystalline structure of paclitaxel was gradually weakened and destroyed, which was further proved by X-ray diffraction studies. All the simulation results agreed well with experimental data, suggesting that the DPD simulations may provide a powerful tool for designing drug delivery systems.

  20. A mechanistic model of tau amyloid aggregation based on direct observation of oligomers

    NASA Astrophysics Data System (ADS)

    Shammas, Sarah L.; Garcia, Gonzalo A.; Kumar, Satish; Kjaergaard, Magnus; Horrocks, Mathew H.; Shivji, Nadia; Mandelkow, Eva; Knowles, Tuomas P. J.; Mandelkow, Eckhard; Klenerman, David

    2015-04-01

    Protein aggregation plays a key role in neurodegenerative disease, giving rise to small oligomers that may become cytotoxic to cells. The fundamental microscopic reactions taking place during aggregation, and their rate constants, have been difficult to determine due to lack of suitable methods to identify and follow the low concentration of oligomers over time. Here we use single-molecule fluorescence to study the aggregation of the repeat domain of tau (K18), and two mutant forms linked with familial frontotemporal dementia, the deletion mutant ΔK280 and the point mutant P301L. Our kinetic analysis reveals that aggregation proceeds via monomeric assembly into small oligomers, and a subsequent slow structural conversion step before fibril formation. Using this approach, we have been able to quantitatively determine how these mutations alter the aggregation energy landscape.

  1. Controlling the crystalline three-dimensional order in bulk materials by single-wall carbon nanotubes.

    PubMed

    López-Andarias, Javier; López, Juan Luis; Atienza, Carmen; Brunetti, Fulvio G; Romero-Nieto, Carlos; Guldi, Dirk M; Martín, Nazario

    2014-04-29

    The construction of ordered single-wall carbon nanotube soft-materials at the nanoscale is currently an important challenge in science. Here we use single-wall carbon nanotubes as a tool to gain control over the crystalline ordering of three-dimensional bulk materials composed of suitably functionalized molecular building blocks. We prepare p-type nanofibres from tripeptide and pentapeptide-containing small molecules, which are covalently connected to both carboxylic and electron-donating 9,10-di(1,3-dithiol-2-ylidene)-9,10-dihydroanthracene termini. Adding small amounts of single-wall carbon nanotubes to the so-prepared p-nanofibres together with the externally controlled self assembly by charge screening by means of Ca(2+) results in new and stable single-wall carbon nanotube-based supramolecular gels featuring remarkably long-range internal order.

  2. Discovery of DNA viruses in wild-caught mosquitoes using small RNA high throughput sequencing.

    PubMed

    Ma, Maijuan; Huang, Yong; Gong, Zhengda; Zhuang, Lu; Li, Cun; Yang, Hong; Tong, Yigang; Liu, Wei; Cao, Wuchun

    2011-01-01

    Mosquito-borne infectious diseases pose a severe threat to public health in many areas of the world. Current methods for pathogen detection and surveillance are usually dependent on prior knowledge of the etiologic agents involved. Hence, efficient approaches are required for screening wild mosquito populations to detect known and unknown pathogens. In this study, we explored the use of Next Generation Sequencing to identify viral agents in wild-caught mosquitoes. We extracted total RNA from different mosquito species from South China. Small 18-30 bp length RNA molecules were purified, reverse-transcribed into cDNA and sequenced using Illumina GAIIx instrumentation. Bioinformatic analyses to identify putative viral agents were conducted and the results confirmed by PCR. We identified a non-enveloped single-stranded DNA densovirus in the wild-caught Culex pipiens molestus mosquitoes. The majority of the viral transcripts (.>80% of the region) were covered by the small viral RNAs, with a few peaks of very high coverage obtained. The +/- strand sequence ratio of the small RNAs was approximately 7∶1, indicating that the molecules were mainly derived from the viral RNA transcripts. The small viral RNAs overlapped, enabling contig assembly of the viral genome sequence. We identified some small RNAs in the reverse repeat regions of the viral 5'- and 3' -untranslated regions where no transcripts were expected. Our results demonstrate for the first time that high throughput sequencing of small RNA is feasible for identifying viral agents in wild-caught mosquitoes. Our results show that it is possible to detect DNA viruses by sequencing the small RNAs obtained from insects, although the underlying mechanism of small viral RNA biogenesis is unclear. Our data and those of other researchers show that high throughput small RNA sequencing can be used for pathogen surveillance in wild mosquito vectors.

  3. The oxidoreductase ERp57 efficiently reduces partially folded in preference to fully folded MHC class I molecules

    PubMed Central

    Antoniou, Antony N.; Ford, Stuart; Alphey, Magnus; Osborne, Andrew; Elliott, Tim; Powis, Simon J.

    2002-01-01

    The oxidoreductase ERp57 is an integral component of the peptide loading complex of major histocompatibility complex (MHC) class I molecules, formed during their chaperone-assisted assembly in the endoplasmic reticulum. Misfolded MHC class I molecules or those denied suitable peptides are retrotranslocated and degraded in the cytosol. The presence of ERp57 during class I assembly suggests it may be involved in the reduction of intrachain disulfides prior to retrotranslocation. We have studied the ability of ERp57 to reduce MHC class I molecules in vitro. Recombinant ERp57 specifically reduced partially folded MHC class I molecules, whereas it had little or no effect on folded and peptide-loaded MHC class I molecules. Reductase activity was associated with cysteines at positions 56 and 405 of ERp57, the N-terminal residues of the active CXXC motifs. Our data suggest that the reductase activity of ERp57 may be involved during the unfolding of MHC class I molecules, leading to targeting for degradation. PMID:12032078

  4. Challenges and advances in the field of self-assembled membranes.

    PubMed

    van Rijn, Patrick; Tutus, Murat; Kathrein, Christine; Zhu, Leilei; Wessling, Matthias; Schwaneberg, Ulrich; Böker, Alexander

    2013-08-21

    Self-assembled membranes are of vital importance in biological systems e.g. cellular and organelle membranes, however, more focus is being put on synthetic self-assembled membranes not only as an alternative for lipid membranes but also as an alternative for lithographic methods. More investigations move towards self-assembly processes because of the low-cost preparations, structural self-regulation and the ease of creating composite materials and tunable properties. The fabrication of new smart membrane materials via self-assembly is of interest for delivery vessels, size selective separation and purification, controlled-release materials, sensors and catalysts, scaffolds for tissue engineering, low dielectric constant materials for microelectronic devices, antireflective coatings and proton exchange membranes for polymer electrolyte membrane fuel cells. Polymers and nanoparticles offer the most straightforward approaches to create membrane structures. However, alternative approaches using small molecules or composite materials offer novel ultra-thin membranes or multi-functional membranes, respectively. Especially, the composite material membranes are regarded as highly promising since they offer the possibility to combine properties of different systems. The advantages of polymers which provide elastic and flexible yet stable matrices can be combined with nanoparticles being either inorganic, organic or even protein-based which offers pore-size control, catalytic activity or permeation regulation. It is therefore believed that at the interface of different disciplines with each offering different materials or approaches, the most novel and interesting membrane structures are going to be produced. The combinations and approaches presented in this review offer non-conventional self-assembled membrane materials which exhibit a high potential to advance membrane science and find more practical applications.

  5. Mineral Surface-Templated Self-Assembling Systems: Case Studies from Nanoscience and Surface Science towards Origins of Life Research.

    PubMed

    Gillams, Richard J; Jia, Tony Z

    2018-05-08

    An increasing body of evidence relates the wide range of benefits mineral surfaces offer for the development of early living systems, including adsorption of small molecules from the aqueous phase, formation of monomeric subunits and their subsequent polymerization, and supramolecular assembly of biopolymers and other biomolecules. Each of these processes was likely a necessary stage in the emergence of life on Earth. Here, we compile evidence that templating and enhancement of prebiotically-relevant self-assembling systems by mineral surfaces offers a route to increased structural, functional, and/or chemical complexity. This increase in complexity could have been achieved by early living systems before the advent of evolvable systems and would not have required the generally energetically unfavorable formation of covalent bonds such as phosphodiester or peptide bonds. In this review we will focus on various case studies of prebiotically-relevant mineral-templated self-assembling systems, including supramolecular assemblies of peptides and nucleic acids, from nanoscience and surface science. These fields contain valuable information that is not yet fully being utilized by the origins of life and astrobiology research communities. Some of the self-assemblies that we present can promote the formation of new mineral surfaces, similar to biomineralization, which can then catalyze more essential prebiotic reactions; this could have resulted in a symbiotic feedback loop by which geology and primitive pre-living systems were closely linked to one another even before life’s origin. We hope that the ideas presented herein will seed some interesting discussions and new collaborations between nanoscience/surface science researchers and origins of life/astrobiology researchers.

  6. Biomimetic Branched Hollow Fibers Templated by Self-assembled Fibrous Polyvinylpyrrolidone (PVP) Structures in Aqueous Solution

    PubMed Central

    Qiu, Penghe; Mao, Chuanbin

    2010-01-01

    Branched hollow fibers are common in nature, but to form artificial fibers with a similar branched hollow structure is still a challenge. We discovered that polyvinylpyrrolidone (PVP) could self-assemble into branched hollow fibers in an aqueous solution after aging the PVP solution for about two weeks. Based on this finding, we demonstrated two approaches by which the self-assembly of PVP into branched hollow fibers could be exploited to template the formation of branched hollow inorganic fibers. First, inorganic material such as silica with high affinity against the PVP could be deposited on the surface of the branched hollow PVP fibers to form branched hollow silica fibers. To extend the application of PVP self-assembly in templating the formation of hollow branched fibers, we then adopted a second approach where the PVP molecules bound to inorganic nanoparticles (using gold nanoparticles as a model) co-self-assemble with the free PVP molecules in an aqueous solution, resulting in the formation of the branched hollow fibers with the nanoparticles embedded in the PVP matrix constituting the walls of the fibers. Heating the resultant fibers above the glass transition temperature of PVP led to the formation of branched hollow gold fibers. Our work suggests that the self-assembly of the PVP molecules in the solution can serve as a general method for directing the formation of branched hollow inorganic fibers. The branched hollow fibers may find potential applications in microfluidics, artificial blood vessel generation, and tissue engineering. PMID:20158250

  7. Emulating the logic of monoterpenoid alkaloid biogenesis to access a skeletally diverse chemical library.

    PubMed

    Liu, Song; Scotti, John S; Kozmin, Sergey A

    2013-09-06

    We have developed a synthetic strategy that mimics the diversity-generating power of monoterpenoid indole alkaloid biosynthesis. Our general approach goes beyond diversification of a single natural product-like substructure and enables production of a highly diverse collection of small molecules. The reaction sequence begins with rapid and highly modular assembly of the tetracyclic indoloquinolizidine core, which can be chemoselectively processed into several additional skeletally diverse structural frameworks. The general utility of this approach was demonstrated by parallel synthesis of two representative chemical libraries containing 847 compounds with favorable physicochemical properties to enable its subsequent broad pharmacological evaluation.

  8. Differential Toxicity of mDia Formin-Directed Functional Agonists and Antagonists in Developing Zebrafish.

    PubMed

    LeCorgne, Hunter; Tudosie, Andrew M; Lavik, Kari; Su, Robin; Becker, Kathryn N; Moore, Sara; Walia, Yashna; Wisner, Alexander; Koehler, Daniel; Alberts, Arthur S; Williams, Frederick E; Eisenmann, Kathryn M

    2018-01-01

    The mammalian Diaphanous-related (mDia) formins are cytoskeletal regulators that assemble and, in some cases, bundle filamentous actin (F-actin), as well as stabilize microtubules. The development of small molecule antagonists and agonists that interrogate mDia formin function has allowed us to investigate the roles of formins in disease states. A small molecule inhibitor of FH2 domain (SMIFH2) inhibits mDia-dependent actin dynamics and abrogates tumor cell migration and cell division in vitro and ex vivo tissue explants. mDia formin activation with small molecule intramimics IMM01/02 and mDia2-DAD peptides inhibited glioblastoma motility and invasion in vitro and ex vivo rat brain slices. However, SMIFH2, IMMs, and mDia2 DAD efficacy in vivo remains largely unexplored and potential toxicity across a range of developmental phenotypes has not been thoroughly characterized. In this study, we performed an in vivo screen of early life-stage toxicity in Danio rerio zebrafish embryos 2 days post-fertilization (dpf) in response to SMIFH2, IMM01/02, and mDia2 DAD. SMIFH2 at concentrations ≥5-10 μM induced significant defects in developing zebrafish, including shorter body lengths, tail curvature and defective tail cellularity, craniofacial malformations, pericardial edema, absent and/or compromised vasculature function and flow, depressed heart rates and increased mortality. Conversely, IMM and mDia2 DAD peptides were minimally toxic at concentrations up to 10-20 and 50 μM, respectively. SMIFH2's therapeutic potential may therefore be limited by its substantial in vivo toxicity at functional concentrations. mDia formin agonism with IMMs and mDia2 DADs may therefore be a more effective and less toxic anti-invasive therapeutic approach.

  9. Differential Toxicity of mDia Formin-Directed Functional Agonists and Antagonists in Developing Zebrafish

    PubMed Central

    LeCorgne, Hunter; Tudosie, Andrew M.; Lavik, Kari; Su, Robin; Becker, Kathryn N.; Moore, Sara; Walia, Yashna; Wisner, Alexander; Koehler, Daniel; Alberts, Arthur S.; Williams, Frederick E.; Eisenmann, Kathryn M.

    2018-01-01

    The mammalian Diaphanous-related (mDia) formins are cytoskeletal regulators that assemble and, in some cases, bundle filamentous actin (F-actin), as well as stabilize microtubules. The development of small molecule antagonists and agonists that interrogate mDia formin function has allowed us to investigate the roles of formins in disease states. A small molecule inhibitor of FH2 domain (SMIFH2) inhibits mDia-dependent actin dynamics and abrogates tumor cell migration and cell division in vitro and ex vivo tissue explants. mDia formin activation with small molecule intramimics IMM01/02 and mDia2-DAD peptides inhibited glioblastoma motility and invasion in vitro and ex vivo rat brain slices. However, SMIFH2, IMMs, and mDia2 DAD efficacy in vivo remains largely unexplored and potential toxicity across a range of developmental phenotypes has not been thoroughly characterized. In this study, we performed an in vivo screen of early life-stage toxicity in Danio rerio zebrafish embryos 2 days post-fertilization (dpf) in response to SMIFH2, IMM01/02, and mDia2 DAD. SMIFH2 at concentrations ≥5–10 μM induced significant defects in developing zebrafish, including shorter body lengths, tail curvature and defective tail cellularity, craniofacial malformations, pericardial edema, absent and/or compromised vasculature function and flow, depressed heart rates and increased mortality. Conversely, IMM and mDia2 DAD peptides were minimally toxic at concentrations up to 10–20 and 50 μM, respectively. SMIFH2's therapeutic potential may therefore be limited by its substantial in vivo toxicity at functional concentrations. mDia formin agonism with IMMs and mDia2 DADs may therefore be a more effective and less toxic anti-invasive therapeutic approach. PMID:29692731

  10. Constructing a molecular theory of self-assembly: Interplay of ideas from surfactants and block copolymers.

    PubMed

    Nagarajan, Ramanathan

    2017-06-01

    Low molecular weight surfactants and high molecular weight block copolymers display analogous self-assembly behavior in solutions and at interfaces, generating nanoscale structures of different shapes. Understanding the link between the molecular structure of these amphiphiles and their self-assembly behavior has been the goal of theoretical studies. Despite the analogies between surfactants and block copolymers, models predicting their self-assembly behavior have evolved independent of one another, each overlooking the molecular feature considered critical to the other. In this review, we focus on the interplay of ideas pertaining to surfactants and block copolymers in three areas of self-assembly. First, we show how improved free energy models have evolved by applying ideas from surfactants to block copolymers and vice versa, giving rise to a unitary theoretical framework and better predictive capabilities for both classes of amphiphiles. Second we show that even though molecular packing arguments are often used to explain aggregate shape transitions resulting from self-assembly, the molecular packing considerations are more relevant in the case of surfactants whereas free energy criteria are relevant for block copolymers. Third, we show that even though the surfactant and block copolymer aggregates are small nanostructures, the size differences between them is significant enough to make the interfacial effects control the solubilization of molecules in surfactant micelles while the bulk interactions control the solubilization in block copolymer micelles. Finally, we conclude by identifying recent theoretical progress in adapting the micelle model to a wide variety of self-assembly phenomena and the challenges to modeling posed by emerging novel classes of amphiphiles with complex biological, inorganic or nanoparticle moieties. Published by Elsevier B.V.

  11. Electrostatically Driven Assembly of Charged Amphiphiles Forming Crystallized Membranes, Vesicles and Nanofiber Arrays

    NASA Astrophysics Data System (ADS)

    Leung, Cheuk Yui Curtis

    Charged amphiphilic molecules can self-assemble into a large variety of objects including membranes, vesicles and fibers. These micro to nano-scale structures have been drawing increasing attention due to their broad applications, especially in biotechnology and biomedicine. In this dissertation, three self-assembled systems were investigated: +3/-1 self-assembled catanionic membranes, +2/-1 self-assembled catanionic membranes and +1 self-assembled nanofibers. Transmission electron microscopy (TEM) combined with synchrotron small and wide angle x-ray scattering (SAXS and WAXS) were used to characterize the coassembled structures from the mesoscopic to nanometer scale. We designed a system of +3 and -1 ionic amphiphiles that coassemble into crystalline ionic bilayer vesicles with large variety of geometries that resemble polyhedral cellular crystalline shells and archaea wall envelopes. The degree of ionization of the amphiphiles and their intermolecular electrostatic interactions can be controlled by varying pH. The molecular packing of these membranes showed a hexagonal to rectangular-C to hexagonal phase transition with increasing pH, resulting in significant changes to the membrane morphology. A similar mixture of +2 and -1 ionic amphiphiles was also investigated. In addition to varying pH, which controls the headgroup attractions, we also adjust the tail length of the amphiphiles to control the van der Waals interactions between the tails. A 2D phase diagram was developed to show how pH and tail length can be used to control the intermolecular packing within the membranes. Another system of self-assembled nanofiber network formed by positively charged amphiphiles was also studied. These highly charged fibers repel each other and are packed in hexagonal lattice with lattice constant at least eight times of the fiber diameter. The d-spacing and the crystal structure can be controlled by varying the solution concentration and temperature.

  12. Nucleobase-mediated, photocatalytic production of amphiphiles to promote the self-assembly of a simple self-replicating protocell.

    NASA Astrophysics Data System (ADS)

    Monnard, Pierre-Alain; Maurer, Sarah, E.; Albertsen, Anders, N.; Boncella, James, M.; Cape, Jonathan, L.

    Living cells are in many respects the ultimate nanoscale chemical system. Within a very small volume they can produce highly specific useful products by extracting resources and free energy from the environment. They are also self-organized, self-controlled, and capable of self-repair and self-replication. Designing artificial chemical systems (artificial cells or protocells) that would be endowed with these powerful capabilities has been investigated extensively in the recent years. Chemical systems usually studied were based on the encapsulation of a set of genes along with catalytic protein machinery within the self-assembled boundaries of liposome/vesicles. The generated systems have many of the characteristics of a living system, but lack the regulation by genetic information of all protocell functions. Departing from these encapsulated models, we have been attempting to implement a simple, chemical system in which the regulation of the metabolism is truly mediated by information molecules. Our proposed system is composed of a chemical mixture composed of fatty acids that form bilayers (compartment), amphiphilic information molecules (nucleic acids -NA), and metabolic complexes (photosensitizers). Due to the intrinsic properties of all its components, a chemical system will self-assemble into aqueous, colloid mixtures that will be conducive to the metabolic steps, the non-enzymatic polymerization of the information, and the photochemical fatty acid production from its oil-like precursor. The reaction products (e.g., the container molecules) will in turn promote system growth and replication. In this scheme, the NA acts as an information molecule mediating the metabolic catalysis (electron donor/relay system) with a ruthenium metal complex as a cofactor and sensitizer, which is used to convert the hydrophobic precursor container molecules into amphiphiles, thus directly linking protocell metabolism with information. In a first experimental design, NA has been replaced by a single nucleobase, 8-oxoguanine, which is tethered to one bipyridine ligand of the metal center. We report here the following major steps towards this chemical protocell: 1) the spontaneous formation of chemical structures consisting of decanoic acid, its precursor, and the simplified NA-ruthenium complexes. 2) the metabolism mediation by a nucleobase to effectively promote the photochemical amphiphile synthesis. 3) the demonstration of reaction selectivity dependent on the nature of the information molecule since only one specific nucleobase that has the required redox potential allows the metabolism to function. Finally, 4) the photochemical formation of amphiphiles can occur efficiently within a preformed membrane, i.e., the protocell compartment. The next step is the integration of short nucleic acid oligomers as opposed to a single nucleobase as the information material to study their photocatalytic activity mediation and polymerization.

  13. Self-assembled nanostructures of linear arylacetylenes and their aza-substituted analogues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Jia-Ju; Department of Physics and Materials Science and Centre of Super Diamond and Advanced Films; Yang, Xiong-Bo

    2016-06-15

    A series of linear phenylene ethynylene molecules have been synthesized, and aza-substitution has been used as a strategy to fine-tune the properties of the molecules. All the compounds exhibited pure blue emission both in solution and solid state, and fluorescence quantum yields as high as 0.66, 0.63 and 0.82 were found in chloroform solutions. The well-defined nanostructures such as quasi-cubes, cubes and rods were fabricated by self-assembly method from these compounds. The photophysical properties and aggregation behavior of self-assembled structures were analyzed in detail. The morphology as well as photophysical properties of these nanostructures have been tuned with selective requirements.

  14. Molecular transport through nanoporous silicon nitride membranes produced from self-assembling block copolymers.

    PubMed

    Montagne, Franck; Blondiaux, Nicolas; Bojko, Alexandre; Pugin, Raphaël

    2012-09-28

    To achieve fast and selective molecular filtration, membrane materials must ideally exhibit a thin porous skin and a high density of pores with a narrow size distribution. Here, we report the fabrication of nanoporous silicon nitride membranes (NSiMs) at the full wafer scale using a versatile process combining block copolymer (BCP) self-assembly and conventional photolithography/etching techniques. In our method, self-assembled BCP micelles are used as templates for creating sub-100 nm nanopores in a thin low-stress silicon nitride layer, which is then released from the underlying silicon wafer by etching. The process yields 100 nm thick free-standing NSiMs of various lateral dimensions (up to a few mm(2)). We show that the membranes exhibit a high pore density, while still retaining excellent mechanical strength. Permeation experiments reveal that the molecular transport rate across NSiMs is up to 16-fold faster than that of commercial polymeric membranes. Moreover, using dextran molecules of various molecular weights, we also demonstrate that size-based separation can be achieved with a very good selectivity. These new silicon nanosieves offer a relevant technological alternative to commercially available ultra- and microfiltration membranes for conducting high resolution biomolecular separations at small scales.

  15. A Novel System for Visualizing Alphavirus Assembly

    PubMed Central

    Steel, J. Jordan; Geiss, Brian J.

    2015-01-01

    Alphaviruses are small, enveloped RNA viruses that form infectious particles by budding through the cellular plasma membrane. To help visualize and understand the intracellular assembly of alphavirus virions we have developed a bimolecular fluorescence complementation-based system (BiFC) that allows visualization of capsid and E2 subcellular localization and association in live cells. In this system, N- or C-terminal Venus fluorescent protein fragments (VN- and VC-) are fused to the N-terminus of the capsid protein on the Sindbis virus structural polyprotein, which results in the formation of fluorescent capsid-like structures in the absence of viral genomes that associate with the plasma membrane of cells. Mutation of the capsid autoprotease active site blocks structural polyprotein processing and alters the subcellular distribution of capsid fluorescence. Incorporating mCherry into the extracellular domain of the E2 glycoprotein allows the visualization of E2 glycoprotein localization and showed a close association of the E2 and capsid proteins at the plasma membrane as expected. These results suggest that this system is a useful new tool to study alphavirus assembly in live cells and may be useful in identifying molecules that inhibit alphavirus virion formation. PMID:26122073

  16. Adsorption and oligomerization of 1,3-phenylene diisocyanide on Au(111)

    DOE PAGES

    Kestell, John; Walker, Joshua; Bai, Yun; ...

    2016-04-18

    The adsorption and self-assembly of 1,3-phenylene diisocyanide (1,3-PDI) are studied on Au(111) using reflection–adsorption infrared spectroscopy (RAIRS), scanning tunneling microscopy (STM), and temperature-programmed desorption (TPD) supplemented by density functional theory (DFT) calculations and the results compared with the structures formed from 1,4-PDI where it assembled to form –(Au–PDI)– oligomer chains that incorporate gold adatoms. The infrared spectra display a single isocyanide feature consistent with the isocyanide binding to gold adatoms, while DFT calculations confirm that isocyanide binding to gold adatoms is more energetically favorable than binding to the surface. STM images show that 1,3-PDI forms zigzag chains containing hairpin bendsmore » that cause the chains to double back on each other, consistent with the 120° angle between the isocyanide groups. Hexagonal structural motifs are also observed that are proposed to be due to the self-assembly of three isocyanides as well as small structures that are assigned to 1,3-PDI dimers. Furthermore, the results suggest that the formation of gold-containing oligomers from isocyanide-containing molecules is a general phenomenon.« less

  17. Supramolecular Assembly of Comb-like Macromolecules Induced by Chemical Reactions that Modulate the Macromolecular Interactions In Situ.

    PubMed

    Xia, Hongwei; Fu, Hailin; Zhang, Yanfeng; Shih, Kuo-Chih; Ren, Yuan; Anuganti, Murali; Nieh, Mu-Ping; Cheng, Jianjun; Lin, Yao

    2017-08-16

    Supramolecular polymerization or assembly of proteins or large macromolecular units by a homogeneous nucleation mechanism can be quite slow and require specific solution conditions. In nature, protein assembly is often regulated by molecules that modulate the electrostatic interactions of the protein subunits for various association strengths. The key to this regulation is the coupling of the assembly process with a reversible or irreversible chemical reaction that occurs within the constituent subunits. However, realizing this complex process by the rational design of synthetic molecules or macromolecules remains a challenge. Herein, we use a synthetic polypeptide-grafted comb macromolecule to demonstrate how the in situ modulation of interactions between the charged macromolecules affects their resulting supramolecular structures. The kinetics of structural formation was studied and can be described by a generalized model of nucleated polymerization containing secondary pathways. Basic thermodynamic analysis indicated the delicate role of the electrostatic interactions between the charged subunits in the reaction-induced assembly process. This approach may be applicable for assembling a variety of ionic soft matters that are amenable to chemical reactions in situ.

  18. Minimus: a fast, lightweight genome assembler.

    PubMed

    Sommer, Daniel D; Delcher, Arthur L; Salzberg, Steven L; Pop, Mihai

    2007-02-26

    Genome assemblers have grown very large and complex in response to the need for algorithms to handle the challenges of large whole-genome sequencing projects. Many of the most common uses of assemblers, however, are best served by a simpler type of assembler that requires fewer software components, uses less memory, and is far easier to install and run. We have developed the Minimus assembler to address these issues, and tested it on a range of assembly problems. We show that Minimus performs well on several small assembly tasks, including the assembly of viral genomes, individual genes, and BAC clones. In addition, we evaluate Minimus' performance in assembling bacterial genomes in order to assess its suitability as a component of a larger assembly pipeline. We show that, unlike other software currently used for these tasks, Minimus produces significantly fewer assembly errors, at the cost of generating a more fragmented assembly. We find that for small genomes and other small assembly tasks, Minimus is faster and far more flexible than existing tools. Due to its small size and modular design Minimus is perfectly suited to be a component of complex assembly pipelines. Minimus is released as an open-source software project and the code is available as part of the AMOS project at Sourceforge.

  19. Smart Photosensitizer: Tumor-Triggered Oncotherapy by Self-Assembly Photodynamic Nanodots.

    PubMed

    Jia, Yuhua; Li, Jinyu; Chen, Jincan; Hu, Ping; Jiang, Longguang; Chen, Xueyuan; Huang, Mingdong; Chen, Zhuo; Xu, Peng

    2018-05-09

    Clinical photosensitizers suffer from the disadvantages of fast photobleaching and high systemic toxicities because of the off-target photodynamic effects. To address these problems, we report a self-assembled pentalysine-phthalocyanine assembly nanodots (PPAN) fabricated by an amphipathic photosensitizer-peptide conjugate. We triggered the photodynamic therapy effects of photosensitizers by precisely controlling the assembly and disintegration of the nanodots. In physiological aqueous conditions, PPAN exhibited a size-tunable spherical conformation with a highly positive shell of the polypeptides and a hydrophobic core of the π-stacking Pc moieties. The assembly conformation suppressed the fluorescence and the reactive oxygen species generation of the monomeric photosensitizer molecules (mono-Pc) and thus declined the photobleaching and off-target photodynamic effects. However, tumor cells disintegrated PPAN and released the mono-Pc molecules, which exhibited fluorescence for detection and the photodynamic effects for the elimination of the tumor tissues. The molecular dynamics simulations revealed the various assembly configurations of PPAN and illustrated the assembly mechanism. At the cellular level, PPAN exhibited a remarkable phototoxicity to breast cancer cells with the IC 50 values in a low nanomolar range. By using the subcutaneous and orthotopic breast cancer animal models, we also demonstrated the excellent antitumor efficacies of PPAN in vivo.

  20. Stepwise self-assembly of C60 mediated by atomic scale moiré magnifiers

    NASA Astrophysics Data System (ADS)

    Gruznev, D. V.; Matetskiy, A. V.; Bondarenko, L. V.; Utas, O. A.; Zotov, A. V.; Saranin, A. A.; Chou, J. P.; Wei, C. M.; Lai, M. Y.; Wang, Y. L.

    2013-04-01

    Self-assembly of atoms or molecules on a crystal surface is considered one of the most promising methods to create molecular devices. Here we report a stepwise self-assembly of C60 molecules into islands with unusual shapes and preferred sizes on a gold-indium-covered Si(111) surface. Specifically, 19-mer islands prefer a non-compact boomerang shape, whereas hexagonal 37-mer islands exhibit extraordinarily enhanced stability and abundance. The stepwise self-assembly is mediated by the moiré interference between an island with its underlying lattice, which essentially maps out the adsorption-energy landscape of a C60 on different positions of the surface with a lateral magnification factor and dictates the probability for the subsequent attachment of C60 to an island’s periphery. Our discovery suggests a new method for exploiting the moiré interference to dynamically assist the self-assembly of particles and provides an unexplored tactic of engineering atomic scale moiré magnifiers to facilitate the growth of monodispersed mesoscopic structures.

  1. Design, Synthesis, and Self-Assembly of Well-Defined Hybrid Materials Including Polymer Amphiphiles and Giant Tetrahedra Molecules Based on Poss Nanoparticles

    NASA Astrophysics Data System (ADS)

    Huang, Mingjun

    "Bottom-up" techniques-based self-assembly are always attracting people's interests since this technology provides relatively low economic cost and fast route to construct organized structures at different scales. Considering unprecedented benefits from polymer materials, self-assemblies utilizing polymer building blocks have been extensively studied to achieve diverse hierarchical structures and various attractive properties. However, precise controls of chemical primary structures and compositions and exact constructions of hierarchal ordered structures in synthetic polymers are far from being fully appreciated. In this dissertation, a novel approach has been utilized to construct diverse well-defined nano-building blocks, giant molecules, via conjugating different, and functionalized molecular nanoparticles (MNPs) which are shape- and volume-persistent nano-objects with precise molecular structure and specific symmetry. The representative examples of the three basic categories of giant molecules, "giant polyhedra", "giant surfactants", and "giant shape amphiphiles" were discussed in details. First, a class of precisely defined, nanosized giant tetrahedra was constructed by placing different polyhedral oligomeric silsesquioxane (POSS) molecular nanoparticles at the vertices of a rigid tetrahedral framework. Designed symmetry breaking of these giant tetrahedra introduces accurate positional interactions and results in diverse selectively assembled, highly ordered supramolecular lattices including a Frank-Kasper (FK) A15 phase. The FK and quasicrystal phases are originally identified in metal alloys and only sporadically observed in soft matters. It remains unclear how to correlate their stability with the chemical composition and molecular topology in the self-assembling systems. We then for this purpose designed and studied the self-assembly phase transition sequences of four series of hybrid giant surfactants based on hydrophilic POSS cages tethered with one to four polystyrene (PS) tails. With increasing the number of tails, molecular topological variations not only affect phase boundaries in terms of the PS volume fraction, but also open a window to stabilize supramolecular FK and quasicrystal phases in the spherical phase region, demonstrating the critical role of molecular topology in dictating the formation of unconventional supramolecular lattices of "soft" spherical motifs. The FK A15 phase was even surprisingly observed in the giant shape amphiphile molecule, triphenylene-6BPOSS, which has a disk-like flat triphenylene core connected with six hydrophobic POSS cages by sides. Without conical molecular shape, triphenylene-6BPOSS self-assembled and stabilized into supramolecular sphere via pi-pi interactions through a completely different mechanism with precious two cases. These studies indicate that "bottom-up" self-assemble based on well-defined giant molecules approach can be rather powerful to fabricate usually complicated hierarchical structures and open up a wide field of supramolecular self-assembly with unexpected structure and properties.

  2. Characterization of New Materials for Photovoltaic Thin Films: Aggregation Phenomena in Self-Assembled Perylene-Based Diimides

    DTIC Science & Technology

    2005-07-21

    or solution-based methods such as spin casting or drop casting,’ 1ś󈧖 self-assembly,1922 Langmuir - Blodgett techniques,23 or electrochemical methods...and Langmuir - exist. Molecules containing a perylene diimide core have Blodgett techniques.’ 8 In many situations, the molecules also been proposed for...remain soluble in the W. J. Langmuir 1996, 12, 2169. absence of other ionic species. These systems represent (35) Antonietti, M.; Conrad, J. Angew

  3. Self-assembly of heterogeneous supramolecular structures with uniaxial anisotropy.

    PubMed

    Ruiz-Osés, M; Gonzalez-Lakunza, N; Silanes, I; Gourdon, A; Arnau, A; Ortega, J E

    2006-12-28

    Uniaxial anisotropy in two-dimensional self-assembled supramolecular structures is achieved by the coadsorption of two different linear molecules with complementary amine and imide functionalization. The two-dimensional monolayer is defined by a one-dimensional stack of binary chains, which can be forced to line up along steps in vicinal surfaces. The competing driving forces in the self-organization process are discussed in light of the structures observed during single molecule adsorption and coadsorption on flat and vicinal surfaces and the corresponding theoretical calculations.

  4. DNA-nanostructure-assembly by sequential spotting

    PubMed Central

    2011-01-01

    Background The ability to create nanostructures with biomolecules is one of the key elements in nanobiotechnology. One of the problems is the expensive and mostly custom made equipment which is needed for their development. We intended to reduce material costs and aimed at miniaturization of the necessary tools that are essential for nanofabrication. Thus we combined the capabilities of molecular ink lithography with DNA-self-assembling capabilities to arrange DNA in an independent array which allows addressing molecules in nanoscale dimensions. Results For the construction of DNA based nanostructures a method is presented that allows an arrangement of DNA strands in such a way that they can form a grid that only depends on the spotted pattern of the anchor molecules. An atomic force microscope (AFM) has been used for molecular ink lithography to generate small spots. The sequential spotting process allows the immobilization of several different functional biomolecules with a single AFM-tip. This grid which delivers specific addresses for the prepared DNA-strand serves as a two-dimensional anchor to arrange the sequence according to the pattern. Once the DNA-nanoarray has been formed, it can be functionalized by PNA (peptide nucleic acid) to incorporate advanced structures. Conclusions The production of DNA-nanoarrays is a promising task for nanobiotechnology. The described method allows convenient and low cost preparation of nanoarrays. PNA can be used for complex functionalization purposes as well as a structural element. PMID:22099392

  5. Characterization of self-assembled redox polymer and antibody molecules on thiolated gold electrodes.

    PubMed

    Calvo, E J; Danilowicz, C; Lagier, C M; Manrique, J; Otero, M

    2004-05-15

    Multilayer immobilization of antibody and redox polymer molecules on a gold electrode was achieved, as a strategy for the potential development of an amperometric immunosensor. The step-by-step assembly of antibiotin IgG on Os(bpy)(2)ClPyCH(2)NH poly(allylamine) redox polymer (PAH-Os) adsorbed on thiolated gold electrodes was proved by quartz crystal microbalance (QCM) and atomic force microscopy (AFM) experiments, confirming the electrochemical evidence. The increase of redox charge during the layer-by-layer deposition demonstrated that charge propagation within the layers is feasible. The multilayer structure proved to be effective for the molecular recognition of horseradish peroxidase-biotin conjugate (HRP-biotin), as confirmed by the QCM measurements and the electrocatalytic reduction current obtained upon H(2)O(2) addition. The catalytic current resulting from PAH-Os mediation was shown to increase with the number of assembled layers. Furthermore, the inventory of IgG molecules on the supramolecular self-assembled structure and the specific and non-specific binding of HRP-biotin conjugate were confirmed by the QCM transient studies, giving information on the kinetics of IgG deposition and HRP-biotin conjugate binding to the IgG.

  6. Facile Preparation of Internally Self-assembled Lipid Particles Stabilized by Carbon Nanotubes

    PubMed Central

    Patil-Sen, Yogita; Sadeghpour, Amin; Rappolt, Michael; Kulkarni, Chandrashekhar V.

    2016-01-01

    We present a facile method to prepare nanostructured lipid particles stabilized by carbon nanotubes (CNTs). Single-walled (pristine) and multi-walled (functionalized) CNTs are used as stabilizers to produce Pickering type oil-in-water (O/W) emulsions. Lipids namely, Dimodan U and Phytantriol are used as emulsifiers, which in excess water self-assemble into the bicontinuous cubic Pn3m phase. This highly viscous phase is fragmented into smaller particles using a probe ultrasonicator in presence of conventional surfactant stabilizers or CNTs as done here. Initially, the CNTs (powder form) are dispersed in water followed by further ultrasonication with the molten lipid to form the final emulsion. During this process the CNTs get coated with lipid molecules, which in turn are presumed to surround the lipid droplets to form a particulate emulsion that is stable for months. The average size of CNT-stabilized nanostructured lipid particles is in the submicron range, which compares well with the particles stabilized using conventional surfactants. Small angle X-ray scattering data confirms the retention of the original Pn3m cubic phase in the CNT-stabilized lipid dispersions as compared to the pure lipid phase (bulk state). Blue shift and lowering of the intensities in characteristic G and G' bands of CNTs observed in Raman spectroscopy characterize the interaction between CNT surface and lipid molecules. These results suggest that the interactions between the CNTs and lipids are responsible for their mutual stabilization in aqueous solutions. As the concentrations of CNTs employed for stabilization are very low and lipid molecules are able to functionalize the CNTs, the toxicity of CNTs is expected to be insignificant while their biocompatibility is greatly enhanced. Hence the present approach finds a great potential in various biomedical applications, for instance, for developing hybrid nanocarrier systems for the delivery of multiple functional molecules as in combination therapy or polytherapy. PMID:26967650

  7. Facile Preparation of Internally Self-assembled Lipid Particles Stabilized by Carbon Nanotubes.

    PubMed

    Patil-Sen, Yogita; Sadeghpour, Amin; Rappolt, Michael; Kulkarni, Chandrashekhar V

    2016-02-19

    We present a facile method to prepare nanostructured lipid particles stabilized by carbon nanotubes (CNTs). Single-walled (pristine) and multi-walled (functionalized) CNTs are used as stabilizers to produce Pickering type oil-in-water (O/W) emulsions. Lipids namely, Dimodan U and Phytantriol are used as emulsifiers, which in excess water self-assemble into the bicontinuous cubic Pn3m phase. This highly viscous phase is fragmented into smaller particles using a probe ultrasonicator in presence of conventional surfactant stabilizers or CNTs as done here. Initially, the CNTs (powder form) are dispersed in water followed by further ultrasonication with the molten lipid to form the final emulsion. During this process the CNTs get coated with lipid molecules, which in turn are presumed to surround the lipid droplets to form a particulate emulsion that is stable for months. The average size of CNT-stabilized nanostructured lipid particles is in the submicron range, which compares well with the particles stabilized using conventional surfactants. Small angle X-ray scattering data confirms the retention of the original Pn3m cubic phase in the CNT-stabilized lipid dispersions as compared to the pure lipid phase (bulk state). Blue shift and lowering of the intensities in characteristic G and G' bands of CNTs observed in Raman spectroscopy characterize the interaction between CNT surface and lipid molecules. These results suggest that the interactions between the CNTs and lipids are responsible for their mutual stabilization in aqueous solutions. As the concentrations of CNTs employed for stabilization are very low and lipid molecules are able to functionalize the CNTs, the toxicity of CNTs is expected to be insignificant while their biocompatibility is greatly enhanced. Hence the present approach finds a great potential in various biomedical applications, for instance, for developing hybrid nanocarrier systems for the delivery of multiple functional molecules as in combination therapy or polytherapy.

  8. Influence of phosphocholine alkyl chain length on peptide-micelle interactions and micellar size and shape.

    PubMed

    Göbl, Christoph; Dulle, Martin; Hohlweg, Walter; Grossauer, Jörg; Falsone, S Fabio; Glatter, Otto; Zangger, Klaus

    2010-04-08

    The interaction with biological membranes is of functional importance for many peptides and proteins. Structural studies on such membrane-bound biomacromolecules are often carried out in solutions containing small membrane-mimetic assemblies of detergent molecules. To investigate the influence of the hydrophobic chain length on the structure, diffusional and dynamical behavior of a peptide bound to micelles, we studied the binding of three peptides to n-phosphocholines with n ranging from 8 to 16. The peptides studied are the 15 residue antimicrobial peptide CM15, the 25-residue transmembrane helix 7 of yeast V-ATPase (TM7), and the 35-residue bacterial toxin LdrD. To keep the dimension of the peptide-membrane-mimetic assembly small, micelles are typically used when studying membrane-bound peptides and proteins, for example, by solution NMR spectroscopy. Since they are readily available in deuterated form most often sodium-dodecylsulfate (SDS) and dodecylphosphocholine (DPC) are used as the micelle-forming detergent. Using NMR, CD, and SAXS, we found that all phosphocholines studied form spherical micelles in the presence and absence of small bound peptides and the diameters of the micelles are basically unchanged upon peptide binding. The size of the peptide relative to the micelle determines to what extent the secondary structure can form. For small peptides (up to approximately 25 residues) the use of shorter chain phosphocholines is recommended for solution NMR studies due to the favorable spectral quality and since they are as well-structured as in DPC. In contrast, larger peptides are better structured in micelles formed by detergents with chain lengths longer than DPC.

  9. Molecular Self-Assembly in a Poorly Screened Environment: F4TCNQ on Graphene/BN

    PubMed Central

    2015-01-01

    We report a scanning tunneling microscopy and noncontact atomic force microscopy study of close-packed 2D islands of tetrafluorotetracyanoquinodimethane (F4TCNQ) molecules at the surface of a graphene layer supported by boron nitride. While F4TCNQ molecules are known to form cohesive 3D solids, the intermolecular interactions that are attractive for F4TCNQ in 3D are repulsive in 2D. Our experimental observation of cohesive molecular behavior for F4TCNQ on graphene is thus unexpected. This self-assembly behavior can be explained by a novel solid formation mechanism that occurs when charged molecules are placed in a poorly screened environment. As negatively charged molecules coalesce, the local work function increases, causing electrons to flow into the coalescing molecular island and increase its cohesive binding energy. PMID:26482218

  10. Mapping Nanoscale Hotspots with Single-Molecule Emitters Assembled into Plasmonic Nanocavities Using DNA Origami.

    PubMed

    Chikkaraddy, Rohit; Turek, V A; Kongsuwan, Nuttawut; Benz, Felix; Carnegie, Cloudy; van de Goor, Tim; de Nijs, Bart; Demetriadou, Angela; Hess, Ortwin; Keyser, Ulrich F; Baumberg, Jeremy J

    2018-01-10

    Fabricating nanocavities in which optically active single quantum emitters are precisely positioned is crucial for building nanophotonic devices. Here we show that self-assembly based on robust DNA-origami constructs can precisely position single molecules laterally within sub-5 nm gaps between plasmonic substrates that support intense optical confinement. By placing single-molecules at the center of a nanocavity, we show modification of the plasmon cavity resonance before and after bleaching the chromophore and obtain enhancements of ≥4 × 10 3 with high quantum yield (≥50%). By varying the lateral position of the molecule in the gap, we directly map the spatial profile of the local density of optical states with a resolution of ±1.5 nm. Our approach introduces a straightforward noninvasive way to measure and quantify confined optical modes on the nanoscale.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lapidus, Alla L.

    From the date its role in heredity was discovered, DNA has been generating interest among scientists from different fields of knowledge: physicists have studied the three dimensional structure of the DNA molecule, biologists tried to decode the secrets of life hidden within these long molecules, and technologists invent and improve methods of DNA analysis. The analysis of the nucleotide sequence of DNA occupies a special place among the methods developed. Thanks to the variety of sequencing technologies available, the process of decoding the sequence of genomic DNA (or whole genome sequencing) has become robust and inexpensive. Meanwhile the assembly ofmore » whole genome sequences remains a challenging task. In addition to the need to assemble millions of DNA fragments of different length (from 35 bp (Solexa) to 800 bp (Sanger)), great interest in analysis of microbial communities (metagenomes) of different complexities raises new problems and pushes some new requirements for sequence assembly tools to the forefront. The genome assembly process can be divided into two steps: draft assembly and assembly improvement (finishing). Despite the fact that automatically performed assembly (or draft assembly) is capable of covering up to 98% of the genome, in most cases, it still contains incorrectly assembled reads. The error rate of the consensus sequence produced at this stage is about 1/2000 bp. A finished genome represents the genome assembly of much higher accuracy (with no gaps or incorrectly assembled areas) and quality ({approx}1 error/10,000 bp), validated through a number of computer and laboratory experiments.« less

  12. Molecular targets for small-molecule modulators of circadian clocks

    PubMed Central

    He, Baokun; Chen, Zheng

    2016-01-01

    Background Circadian clocks are endogenous timing systems that regulate various aspects of mammalian metabolism, physiology and behavior. Traditional chronotherapy refers to the administration of drugs in a defined circadian time window to achieve optimal pharmacokinetic and therapeutic efficacies. In recent years, substantial efforts have been dedicated to developing novel small-molecule modulators of circadian clocks. Methods Here, we review the recent progress in the identification of molecular targets of small-molecule clock modulators and their efficacies in clock-related disorders. Specifically, we examine the clock components and regulatory factors as possible molecular targets of small molecules, and we review several key clock-related disorders as promising venues for testing the preventive/therapeutic efficacies of these small molecules. Finally, we also discuss circadian regulation of drug metabolism. Results Small molecules can modulate the period, phase and/or amplitude of the circadian cycle. Core clock proteins, nuclear hormone receptors, and clock-related kinases and other epigenetic regulators are promising molecular targets for small molecules. Through these targets small molecules exert protective effects against clock-related disorders including the metabolic syndrome, immune disorders, sleep disorders and cancer. Small molecules can also modulate circadian drug metabolism and response to existing therapeutics. Conclusion Small-molecule clock modulators target clock components or diverse cellular pathways that functionally impinge upon the clock. Target identification of new small-molecule modulators will deepen our understanding of key regulatory nodes in the circadian network. Studies of clock modulators will facilitate their therapeutic applications, alone or in combination, for clock-related diseases. PMID:26750111

  13. Toward a modular multi-material nanoparticle synthesis and assembly strategy via bionanocombinatorics: bifunctional peptides for linking Au and Ag nanomaterials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Briggs, Beverly D.; Palafox-Hernandez, J. Pablo; Li, Yue

    Materials-binding peptides represent a unique avenue towards controlling the shape and size of nanoparticles (NPs) grown under aqueous conditions. Here, employing a bionanocombinatorics approach, two such materials-binding peptides were linked at either end of a photoswitchable spacer, forming a multi-domain materials-binding molecule to control the in situ synthesis and organization of Ag and Au NPs under ambient conditions. These multi-domain molecules retained the peptides’ ability to nucleate, grow, and stabilize Ag and Au NPs in aqueous media. Disordered co-assemblies of the two nanomaterials were observed by TEM imaging of dried samples after sequential growth of the two metals, and showedmore » a clustering behavior that was not observed without both metals and the linker molecules. While TEM evidence indicated the formation of AuNP/AgNP assemblies upon drying, SAXS analysis indicated that no extended assemblies existed in solution, suggesting that sample drying plays an important role in facilitating NP clustering. Molecular simulations and experimental data revealed tunable materials-binding based upon the isomerization state of the photoswitchable unit and metal employed. This work is a first step in generating externally actuated biomolecules with specific material-binding properties that could be used as the building blocks to achieve multi-material switchable NP assemblies.« less

  14. Single-molecule sequencing of the desiccation-tolerant grass Oropetium thomaeum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    VanBuren, Robert; Bryant, Doug; Edger, Patrick P.

    Plant genomes, and eukaryotic genomes in general, are typically repetitive, polyploid and heterozygous, which complicates genome assembly1. The short read lengths of early Sanger and current next-generation sequencing platforms hinder assembly through complex repeat regions, and many draft and reference genomes are fragmented, lacking skewed GC and repetitive intergenic sequences, which are gaining importance due to projects like the Encyclopedia of DNA Elements (ENCODE). Here we report the whole-genome sequencing and assembly of the desiccation-tolerant grass Oropetium thomaeum. Using only single-molecule real-time sequencing, which generates long (>16 kilobases) reads with random errors, we assembled 99% (244 megabases) of the Oropetiummore » genome into 625 contigs with an N50 length of 2.4 megabases. Oropetium is an example of a ‘near-complete’ draft genome which includes gapless coverage over gene space as well as intergenic sequences such as centromeres, telomeres, transposable elements and rRNA clusters that are typically unassembled in draft genomes. Oropetium has 28,466 protein-coding genes and 43% repeat sequences, yet with 30% more compact euchromatic regions it is the smallest known grass genome. As a result, the Oropetium genome demonstrates the utility of single-molecule real-time sequencing for assembling high-quality plant and other eukaryotic genomes, and serves as a valuable resource for the plant comparative genomics community.« less

  15. Single-molecule sequencing of the desiccation-tolerant grass Oropetium thomaeum

    DOE PAGES

    VanBuren, Robert; Bryant, Doug; Edger, Patrick P.; ...

    2015-11-11

    Plant genomes, and eukaryotic genomes in general, are typically repetitive, polyploid and heterozygous, which complicates genome assembly1. The short read lengths of early Sanger and current next-generation sequencing platforms hinder assembly through complex repeat regions, and many draft and reference genomes are fragmented, lacking skewed GC and repetitive intergenic sequences, which are gaining importance due to projects like the Encyclopedia of DNA Elements (ENCODE). Here we report the whole-genome sequencing and assembly of the desiccation-tolerant grass Oropetium thomaeum. Using only single-molecule real-time sequencing, which generates long (>16 kilobases) reads with random errors, we assembled 99% (244 megabases) of the Oropetiummore » genome into 625 contigs with an N50 length of 2.4 megabases. Oropetium is an example of a ‘near-complete’ draft genome which includes gapless coverage over gene space as well as intergenic sequences such as centromeres, telomeres, transposable elements and rRNA clusters that are typically unassembled in draft genomes. Oropetium has 28,466 protein-coding genes and 43% repeat sequences, yet with 30% more compact euchromatic regions it is the smallest known grass genome. As a result, the Oropetium genome demonstrates the utility of single-molecule real-time sequencing for assembling high-quality plant and other eukaryotic genomes, and serves as a valuable resource for the plant comparative genomics community.« less

  16. Acquiring Structural Information on Virus Particles with Charge Detection Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Keifer, David Z.; Motwani, Tina; Teschke, Carolyn M.; Jarrold, Martin F.

    2016-06-01

    Charge detection mass spectrometry (CDMS) is a single-molecule technique particularly well-suited to measuring the mass and charge distributions of heterogeneous, MDa-sized ions. In this work, CDMS has been used to analyze the assembly products of two coat protein variants of bacteriophage P22. The assembly products show broad mass distributions extending from 5 to 15 MDa for A285Y and 5 to 25 MDa for A285T coat protein variants. Because the charge of large ions generated by electrospray ionization depends on their size, the charge can be used to distinguish hollow shells from more compact structures. A285T was found to form T = 4 and T = 7 procapsids, and A285Y makes a small number of T = 3 and T = 4 procapsids. Owing to the decreased stability of the A285Y and A285T particles, chemical cross-linking was required to stabilize them for electrospray CDMS. Graphical Abstract[Figure not available: see fulltext.

  17. First Observation of Photoinduced Magnetization for the Cyano-Bridged 3d 4f Heterobimetallic Assembly Nd(DMF)4(H2O)3(μ-CN)Fe(CN)5ṡH2O (DMF=N,N-Dimethylformamide)

    NASA Astrophysics Data System (ADS)

    Li, Guangming; Akitsu, Takashiro; Sato, Osamu; Einaga, Yasuaki

    2004-12-01

    Photoinduced magnetization of the cyano-bridged 3d 4f hetero-bimetallic assembly Nd (DMF)4(H2O)3(μ-CN)Fe(CN)5ṡH2O (1) (DMF=N,N-dimethylformamide) is described in this paper. The χM T values are enhanced by about 45% after UV light illumination in the temperature range of 5 50 K. We propose that UV light illumination induces a structural distortion in 1. This small structural change is propagated by molecular interactions in the inorganic network. Furthermore, the cooperativity resulting from the molecular interaction functions to increase the activation energy of the relaxation processes, which makes observation of the photoexcited state possible. The flexible network structure through the hydrogen bonds in 1 plays an essential role for the photoinduced phenomenon. This finding may open up a new domain for developing molecule-based magnetic materials.

  18. Design and fabrication of self-assembled thin films

    NASA Astrophysics Data System (ADS)

    Topasna, Daniela M.; Topasna, Gregory A.

    2015-10-01

    Students experience the entire process of designing, fabricating and testing thin films during their capstone course. The films are fabricated by the ionic-self assembled monolayer (ISAM) technique, which is suited to a short class and is relatively rapid, inexpensive and environmentally friendly. The materials used are polymers, nanoparticles, and small organic molecules that, in various combinations, can create films with nanometer thickness and with specific properties. These films have various potential applications such as pH optical sensors or antibacterial coatings. This type of project offers students an opportunity to go beyond the standard lecture and labs and to experience firsthand the design and fabrication processes. They learn new techniques and procedures, as well as familiarize themselves with new instruments and optical equipment. For example, students learn how to characterize the films by using UV-Vis-NIR spectrophotometry and in the process learn how the instruments operate. This work compliments a previous exercise that we introduced where students use MATHCAD to numerically model the transmission and reflection of light from thin films.

  19. Cell-surface engineering by a conjugation-and-release approach based on the formation and cleavage of oxime linkages upon mild electrochemical oxidation and reduction.

    PubMed

    Pulsipher, Abigail; Dutta, Debjit; Luo, Wei; Yousaf, Muhammad N

    2014-09-01

    We report a strategy to rewire cell surfaces for the dynamic control of ligand composition on cell membranes and the modulation of cell-cell interactions to generate three-dimensional (3D) tissue structures applied to stem-cell differentiation, cell-surface tailoring, and tissue engineering. We tailored cell surfaces with bioorthogonal chemical groups on the basis of a liposome-fusion and -delivery method to create dynamic, electroactive, and switchable cell-tissue assemblies through chemistry involving chemoselective conjugation and release. Each step to modify the cell surface: activation, conjugation, release, and regeneration, can be monitored and modulated by noninvasive, label-free analytical techniques. We demonstrate the utility of this methodology by the conjugation and release of small molecules to and from cell surfaces and by the generation of 3D coculture spheroids and multilayered cell tissues that can be programmed to undergo assembly and disassembly on demand. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Transition metal ions mediated tyrosine based short peptide amphiphile nanostructures inhibit bacterial growth.

    PubMed

    Joshi, Khashti Ballabh; Singh, Ramesh; Mishra, Narendra Kumar; Kumar, Vikas; Vinayak, Vandana

    2018-05-17

    We report the design and synthesis of biocompatible small peptide based molecule for the controlled and targeted delivery of the encapsulated bioactive metal ions via transforming their internal nanostructures. Tyrosine based short peptide amphiphile (sPA) was synthesized which self-assembled into β-sheet like secondary structures. The self assembly of the designed sPA was modulated by using different bioactive transition metal ions which is confirmed by spectroscopic and microscopic techniques. These bioactive metal ions conjugated sPA hybrid structures are further used to develop antibacterial materials. It is due to the excellent antibacterial activity of zinc ions that the growth of clinically relevant bacteria such as E. Coli was inhibited in the presence of zinc-sPA conjugate. The bacterial test demonstrated that owing to high biocompatibility with bacterial cell, the designed sPA worked as metal ions delivery agent and therefore it can show great potential in locally addressing bacterial infections. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Top