Science.gov

Sample records for assembling spatially explicit

  1. Spatially explicit analyses unveil density dependence.

    PubMed Central

    Veldtman, Ruan; McGeoch, Melodie A.

    2004-01-01

    Density-dependent processes are fundamental in the understanding of species population dynamics. Whereas the benefits of considering the spatial dimension in population biology are widely acknowledged, the implications of doing so for the statistical detection of spatial density dependence have not been examined. The outcome of traditional tests may therefore differ from those that include ecologically relevant locational information on both the prey species and natural enemy. Here, we explicitly incorporate spatial information on individual counts when testing for density dependence between an insect herbivore and its parasitoids. The spatially explicit approach used identified significant density dependence more frequently and in different instances than traditional methods. The form of density dependence detected also differed between methods. These results demonstrate that the explicit consideration of patch location in density-dependence analyses is likely to significantly alter current understanding of the prevalence and form of spatial density dependence in natural populations. PMID:15590593

  2. Uncertainty in spatially explicit animal dispersal models

    USGS Publications Warehouse

    Mooij, Wolf M.; DeAngelis, Donald L.

    2003-01-01

    Uncertainty in estimates of survival of dispersing animals is a vexing difficulty in conservation biology. The current notion is that this uncertainty decreases the usefulness of spatially explicit population models in particular. We examined this problem by comparing dispersal models of three levels of complexity: (1) an event-based binomial model that considers only the occurrence of mortality or arrival, (2) a temporally explicit exponential model that employs mortality and arrival rates, and (3) a spatially explicit grid-walk model that simulates the movement of animals through an artificial landscape. Each model was fitted to the same set of field data. A first objective of the paper is to illustrate how the maximum-likelihood method can be used in all three cases to estimate the means and confidence limits for the relevant model parameters, given a particular set of data on dispersal survival. Using this framework we show that the structure of the uncertainty for all three models is strikingly similar. In fact, the results of our unified approach imply that spatially explicit dispersal models, which take advantage of information on landscape details, suffer less from uncertainly than do simpler models. Moreover, we show that the proposed strategy of model development safeguards one from error propagation in these more complex models. Finally, our approach shows that all models related to animal dispersal, ranging from simple to complex, can be related in a hierarchical fashion, so that the various approaches to modeling such dispersal can be viewed from a unified perspective.

  3. Spatially explicit modeling in ecology: A review

    USGS Publications Warehouse

    DeAngelis, Donald L.; Yurek, Simeon

    2017-01-01

    The use of spatially explicit models (SEMs) in ecology has grown enormously in the past two decades. One major advancement has been that fine-scale details of landscapes, and of spatially dependent biological processes, such as dispersal and invasion, can now be simulated with great precision, due to improvements in computer technology. Many areas of modeling have shifted toward a focus on capturing these fine-scale details, to improve mechanistic understanding of ecosystems. However, spatially implicit models (SIMs) have played a dominant role in ecology, and arguments have been made that SIMs, which account for the effects of space without specifying spatial positions, have an advantage of being simpler and more broadly applicable, perhaps contributing more to understanding. We address this debate by comparing SEMs and SIMs in examples from the past few decades of modeling research. We argue that, although SIMs have been the dominant approach in the incorporation of space in theoretical ecology, SEMs have unique advantages for addressing pragmatic questions concerning species populations or communities in specific places, because local conditions, such as spatial heterogeneities, organism behaviors, and other contingencies, produce dynamics and patterns that usually cannot be incorporated into simpler SIMs. SEMs are also able to describe mechanisms at the local scale that can create amplifying positive feedbacks at that scale, creating emergent patterns at larger scales, and therefore are important to basic ecological theory. We review the use of SEMs at the level of populations, interacting populations, food webs, and ecosystems and argue that SEMs are not only essential in pragmatic issues, but must play a role in the understanding of causal relationships on landscapes.

  4. Spatially explicit modelling of cholera epidemics

    NASA Astrophysics Data System (ADS)

    Finger, F.; Bertuzzo, E.; Mari, L.; Knox, A. C.; Gatto, M.; Rinaldo, A.

    2013-12-01

    Epidemiological models can provide crucial understanding about the dynamics of infectious diseases. Possible applications range from real-time forecasting and allocation of health care resources to testing alternative intervention mechanisms such as vaccines, antibiotics or the improvement of sanitary conditions. We apply a spatially explicit model to the cholera epidemic that struck Haiti in October 2010 and is still ongoing. The dynamics of susceptibles as well as symptomatic and asymptomatic infectives are modelled at the scale of local human communities. Dissemination of Vibrio cholerae through hydrological transport and human mobility along the road network is explicitly taken into account, as well as the effect of rainfall as a driver of increasing disease incidence. The model is calibrated using a dataset of reported cholera cases. We further model the long term impact of several types of interventions on the disease dynamics by varying parameters appropriately. Key epidemiological mechanisms and parameters which affect the efficiency of treatments such as antibiotics are identified. Our results lead to conclusions about the influence of different intervention strategies on the overall epidemiological dynamics.

  5. Spatially confined assembly of nanoparticles.

    PubMed

    Jiang, Lin; Chen, Xiaodong; Lu, Nan; Chi, Lifeng

    2014-10-21

    The ability to assemble NPs into ordered structures that are expected to yield collective physical or chemical properties has afforded new and exciting opportunities in the field of nanotechnology. Among the various configurations of nanoparticle assemblies, two-dimensional (2D) NP patterns and one-dimensional (1D) NP arrays on surfaces are regarded as the ideal assembly configurations for many technological devices, for example, solar cells, magnetic memory, switching devices, and sensing devices, due to their unique transport phenomena and the cooperative properties of NPs in assemblies. To realize the potential applications of NP assemblies, especially in nanodevice-related applications, certain key issues must still be resolved, for example, ordering and alignment, manipulating and positioning in nanodevices, and multicomponent or hierarchical structures of NP assemblies for device integration. Additionally, the assembly of NPs with high precision and high levels of integration and uniformity for devices with scaled-down dimensions has become a key and challenging issue. Two-dimensional NP patterns and 1D NP arrays are obtained using traditional lithography techniques (top-down strategies) or interfacial assembly techniques (bottom-up strategies). However, a formidable challenge that persists is the controllable assembly of NPs in desired locations over large areas with high precision and high levels of integration. The difficulty of this assembly is due to the low efficiency of small features over large areas in lithography techniques or the inevitable structural defects that occur during the assembly process. The combination of self-assembly strategies with existing nanofabrication techniques could potentially provide effective and distinctive solutions for fabricating NPs with precise position control and high resolution. Furthermore, the synergistic combination of spatially mediated interactions between nanoparticles and prestructures on surfaces may play

  6. Maximum sustainable yields from a spatially-explicit harvest model.

    PubMed

    Takashina, Nao; Mougi, Akihiko

    2015-10-21

    Spatial heterogeneity plays an important role in complex ecosystem dynamics, and therefore is also an important consideration in sustainable resource management. However, little is known about how spatial effects can influence management targets derived from a non-spatial harvest model. Here, we extended the Schaefer model, a conventional non-spatial harvest model that is widely used in resource management, to a spatially-explicit harvest model by integrating environmental heterogeneities, as well as species exchange between patches. By comparing the maximum sustainable yields (MSY), one of the central management targets in resource management, obtained from the spatially extended model with that of the conventional model, we examined the effect of spatial heterogeneity. When spatial heterogeneity exists, we found that the Schaefer model tends to overestimate the MSY, implying potential for causing overharvesting. In addition, by assuming a well-mixed population in the heterogeneous environment, we showed analytically that the Schaefer model always overestimate the MSY, regardless of the number of patches existing. The degree of overestimation becomes significant when spatial heterogeneity is marked. Collectively, these results highlight the importance of integrating the spatial structure to conduct sustainable resource management.

  7. A spatially explicit Bayesian framework for cognitive schooling behaviours

    PubMed Central

    Grünbaum, Daniel

    2012-01-01

    Social aggregations such as schools, swarms, flocks and herds occur across a broad diversity of animal species, strongly impacting ecological and evolutionary dynamics of these species and their predators, prey and competitors. The mechanisms through which individual-level responses to neighbours generate group-level characteristics have been extensively investigated both experimentally and using mathematical models. Models of social groups typically adopt a ‘zone’ approach, in which individuals’ movement responses to neighbours are functions of instantaneous relative position. Empirical studies have demonstrated that most social animals such as fish exhibit well-developed spatial memory and other advanced cognitive capabilities. However, most models of social grouping do not explicitly include spatial memory, largely because a tractable framework for modelling acquisition of and response to historical spatial information has been lacking. Using fish schooling as a focal example, this study presents a framework for including cognitive responses to spatial memory in models of social aggregation. The framework utilizes Bayesian estimation parameters that are continuously distributed in time and space as proxies for animals’ spatial memory. The result is a hybrid Lagrangian–Eulerian model in which the effects of cognitive state and behavioural responses to historical spatial data on individual-, group- and population-level distributions of social animals can be explicitly investigated. PMID:24312727

  8. Spatially explicit spectral analysis of point clouds and geospatial data

    USGS Publications Warehouse

    Buscombe, Daniel D.

    2015-01-01

    The increasing use of spatially explicit analyses of high-resolution spatially distributed data (imagery and point clouds) for the purposes of characterising spatial heterogeneity in geophysical phenomena necessitates the development of custom analytical and computational tools. In recent years, such analyses have become the basis of, for example, automated texture characterisation and segmentation, roughness and grain size calculation, and feature detection and classification, from a variety of data types. In this work, much use has been made of statistical descriptors of localised spatial variations in amplitude variance (roughness), however the horizontal scale (wavelength) and spacing of roughness elements is rarely considered. This is despite the fact that the ratio of characteristic vertical to horizontal scales is not constant and can yield important information about physical scaling relationships. Spectral analysis is a hitherto under-utilised but powerful means to acquire statistical information about relevant amplitude and wavelength scales, simultaneously and with computational efficiency. Further, quantifying spatially distributed data in the frequency domain lends itself to the development of stochastic models for probing the underlying mechanisms which govern the spatial distribution of geological and geophysical phenomena. The software packagePySESA (Python program for Spatially Explicit Spectral Analysis) has been developed for generic analyses of spatially distributed data in both the spatial and frequency domains. Developed predominantly in Python, it accesses libraries written in Cython and C++ for efficiency. It is open source and modular, therefore readily incorporated into, and combined with, other data analysis tools and frameworks with particular utility for supporting research in the fields of geomorphology, geophysics, hydrography, photogrammetry and remote sensing. The analytical and computational structure of the toolbox is

  9. Spatially explicit spectral analysis of point clouds and geospatial data

    NASA Astrophysics Data System (ADS)

    Buscombe, Daniel

    2016-01-01

    The increasing use of spatially explicit analyses of high-resolution spatially distributed data (imagery and point clouds) for the purposes of characterising spatial heterogeneity in geophysical phenomena necessitates the development of custom analytical and computational tools. In recent years, such analyses have become the basis of, for example, automated texture characterisation and segmentation, roughness and grain size calculation, and feature detection and classification, from a variety of data types. In this work, much use has been made of statistical descriptors of localised spatial variations in amplitude variance (roughness), however the horizontal scale (wavelength) and spacing of roughness elements is rarely considered. This is despite the fact that the ratio of characteristic vertical to horizontal scales is not constant and can yield important information about physical scaling relationships. Spectral analysis is a hitherto under-utilised but powerful means to acquire statistical information about relevant amplitude and wavelength scales, simultaneously and with computational efficiency. Further, quantifying spatially distributed data in the frequency domain lends itself to the development of stochastic models for probing the underlying mechanisms which govern the spatial distribution of geological and geophysical phenomena. The software package PySESA (Python program for Spatially Explicit Spectral Analysis) has been developed for generic analyses of spatially distributed data in both the spatial and frequency domains. Developed predominantly in Python, it accesses libraries written in Cython and C++ for efficiency. It is open source and modular, therefore readily incorporated into, and combined with, other data analysis tools and frameworks with particular utility for supporting research in the fields of geomorphology, geophysics, hydrography, photogrammetry and remote sensing. The analytical and computational structure of the toolbox is described

  10. Integrating remote sensing and spatially explicit epidemiological modeling

    NASA Astrophysics Data System (ADS)

    Finger, Flavio; Knox, Allyn; Bertuzzo, Enrico; Mari, Lorenzo; Bompangue, Didier; Gatto, Marino; Rinaldo, Andrea

    2015-04-01

    Spatially explicit epidemiological models are a crucial tool for the prediction of epidemiological patterns in time and space as well as for the allocation of health care resources. In addition they can provide valuable information about epidemiological processes and allow for the identification of environmental drivers of the disease spread. Most epidemiological models rely on environmental data as inputs. They can either be measured in the field by the means of conventional instruments or using remote sensing techniques to measure suitable proxies of the variables of interest. The later benefit from several advantages over conventional methods, including data availability, which can be an issue especially in developing, and spatial as well as temporal resolution of the data, which is particularly crucial for spatially explicit models. Here we present the case study of a spatially explicit, semi-mechanistic model applied to recurring cholera outbreaks in the Lake Kivu area (Democratic Republic of the Congo). The model describes the cholera incidence in eight health zones on the shore of the lake. Remotely sensed datasets of chlorophyll a concentration in the lake, precipitation and indices of global climate anomalies are used as environmental drivers. Human mobility and its effect on the disease spread is also taken into account. Several model configurations are tested on a data set of reported cases. The best models, accounting for different environmental drivers, and selected using the Akaike information criterion, are formally compared via cross validation. The best performing model accounts for seasonality, El Niño Southern Oscillation, precipitation and human mobility.

  11. A spatially explicit risk approach to support marine spatial planning in the German EEZ.

    PubMed

    Gimpel, Antje; Stelzenmüller, Vanessa; Cormier, Roland; Floeter, Jens; Temming, Axel

    2013-05-01

    An ecosystem approach to marine spatial planning (MSP) promotes sustainable development by organizing human activities in a geo-spatial and temporal context. (1) This study develops and tests a spatially explicit risk assessment to support MSP. Using the German exclusive economic zone (EEZ) of the North Sea as a case study area, current and future spatial management scenarios are assessed. (2) Different tools are linked in order to carry out a comprehensive spatial risk assessment of current and future spatial management scenarios for ecologic and economic ecosystem components, i.e. Pleuronectes platessa nursery grounds. With the identification of key inputs and outputs the suitability of each tool is tested. (3) Here, the procedure as well as the main findings of the spatially explicit risk approach are summarised to demonstrate the applicability of the framework and the need for an ecosystem approach to risk management techniques using geo-spatial tools.

  12. Parameter and uncertainty estimation for mechanistic, spatially explicit epidemiological models

    NASA Astrophysics Data System (ADS)

    Finger, Flavio; Schaefli, Bettina; Bertuzzo, Enrico; Mari, Lorenzo; Rinaldo, Andrea

    2014-05-01

    Epidemiological models can be a crucially important tool for decision-making during disease outbreaks. The range of possible applications spans from real-time forecasting and allocation of health-care resources to testing alternative intervention mechanisms such as vaccines, antibiotics or the improvement of sanitary conditions. Our spatially explicit, mechanistic models for cholera epidemics have been successfully applied to several epidemics including, the one that struck Haiti in late 2010 and is still ongoing. Calibration and parameter estimation of such models represents a major challenge because of properties unusual in traditional geoscientific domains such as hydrology. Firstly, the epidemiological data available might be subject to high uncertainties due to error-prone diagnosis as well as manual (and possibly incomplete) data collection. Secondly, long-term time-series of epidemiological data are often unavailable. Finally, the spatially explicit character of the models requires the comparison of several time-series of model outputs with their real-world counterparts, which calls for an appropriate weighting scheme. It follows that the usual assumption of a homoscedastic Gaussian error distribution, used in combination with classical calibration techniques based on Markov chain Monte Carlo algorithms, is likely to be violated, whereas the construction of an appropriate formal likelihood function seems close to impossible. Alternative calibration methods, which allow for accurate estimation of total model uncertainty, particularly regarding the envisaged use of the models for decision-making, are thus needed. Here we present the most recent developments regarding methods for parameter and uncertainty estimation to be used with our mechanistic, spatially explicit models for cholera epidemics, based on informal measures of goodness of fit.

  13. Compensatory heterogeneity in spatially explicit capture-recapture data.

    PubMed

    Efford, M G; Mowat, G

    2014-05-01

    Spatially explicit capture-recapture methods, used widely to estimate the abundance of large carnivores, allow for movement within home ranges during sampling. Probability of detection is a decreasing function of distance from the home range center, with one parameter for magnitude and another for spatial scale. Sex-based and other differences in home range size potentially cause heterogeneity in individual detection and bias in estimates of density. The two parameters of detection have hitherto been treated as independent, but we suggest that an inverse relation is expected when detection probability depends on time spent near the detector. Variation in the spatial scale of detection is then compensated by reciprocal variation in the magnitude parameter. We define a net measure of detection ("single-detector sampling area," a(0)), and show by simulation that its coefficient of variation (CV) is a better predictor of bias than the CV of either component or the sum of their squared CVs. In an example using the grizzly bear Ursus arctos, the estimated sex variation in a(0) was small despite large variation in each component. From the simulations, the relative bias of density estimates was generally negligible (< 5%) when CV(a(0)) < 30%. Parameterization of the detection model in terms of a(0) and spatial scale can be more parsimonious and significantly aids the biological interpretation of detection parameters.

  14. Spatially explicit shallow landslide susceptibility mapping over large areas

    USGS Publications Warehouse

    Bellugi, Dino; Dietrich, William E.; Stock, Jonathan D.; McKean, Jim; Kazian, Brian; Hargrove, Paul

    2011-01-01

    Recent advances in downscaling climate model precipitation predictions now yield spatially explicit patterns of rainfall that could be used to estimate shallow landslide susceptibility over large areas. In California, the United States Geological Survey is exploring community emergency response to the possible effects of a very large simulated storm event and to do so it has generated downscaled precipitation maps for the storm. To predict the corresponding pattern of shallow landslide susceptibility across the state, we have used the model Shalstab (a coupled steady state runoff and infinite slope stability model) which susceptibility spatially explicit estimates of relative potential instability. Such slope stability models that include the effects of subsurface runoff on potentially destabilizing pore pressure evolution require water routing and hence the definition of upslope drainage area to each potential cell. To calculate drainage area efficiently over a large area we developed a parallel framework to scale-up Shalstab and specifically introduce a new efficient parallel drainage area algorithm which produces seamless results. The single seamless shallow landslide susceptibility map for all of California was accomplished in a short run time, and indicates that much larger areas can be efficiently modelled. As landslide maps generally over predict the extent of instability for any given storm. Local empirical data on the fraction of predicted unstable cells that failed for observed rainfall intensity can be used to specify the likely extent of hazard for a given storm. This suggests that campaigns to collect local precipitation data and detailed shallow landslide location maps after major storms could be used to calibrate models and improve their use in hazard assessment for individual storms.

  15. Spatially explicit assessment of estuarine fish after Deepwater ...

    EPA Pesticide Factsheets

    Evaluating long- term contaminant effects on wildlife populations depends on spatial information about habitat quality, heterogeneity in contaminant exposure, and sensitivities and distributions of species integrated into a systems modeling approach. Rarely is this information readily available, making it difficult to determine the applicability of realistic models to quantify population- level risks. To evaluate the trade- offs between data demands and increased specificity of spatially explicit models for population- level risk assessments, we developed a model for a standard toxicity test species, the sheepshead minnow (Cyprinodon variegatus), exposed to oil contamination following the Deepwater Horizon oil spill and compared the output with various levels of model complexity to a standard risk quotient approach. The model uses habitat and fish occupancy data collected over five sampling periods throughout 2008–2010 in Pensacola and Choctawhatchee Bays, Florida, USA, to predict species distribution, field- collected and publically available data on oil distribution and concentration, and chronic toxicity data from laboratory assays applied to a matrix population model. The habitat suitability model established distribution of fish within Barataria Bay, Louisiana, USA, and the population model projected the dynamics of the species in the study area over a 5- yr period (October 2009–September 2014). Vital rates were modified according to estimated co

  16. Global spatially explicit CO2 emission metrics for forest bioenergy.

    PubMed

    Cherubini, Francesco; Huijbregts, Mark; Kindermann, Georg; Van Zelm, Rosalie; Van Der Velde, Marijn; Stadler, Konstantin; Strømman, Anders Hammer

    2016-02-02

    Emission metrics aggregate climate impacts of greenhouse gases to common units such as CO2-equivalents (CO2-eq.). Examples include the global warming potential (GWP), the global temperature change potential (GTP) and the absolute sustained emission temperature (aSET). Despite the importance of biomass as a primary energy supplier in existing and future scenarios, emission metrics for CO2 from forest bioenergy are only available on a case-specific basis. Here, we produce global spatially explicit emission metrics for CO2 emissions from forest bioenergy and illustrate their applications to global emissions in 2015 and until 2100 under the RCP8.5 scenario. We obtain global average values of 0.49 ± 0.03 kgCO2-eq. kgCO2(-1) (mean ± standard deviation) for GWP, 0.05 ± 0.05 kgCO2-eq. kgCO2(-1) for GTP, and 2.14·10(-14) ± 0.11·10(-14) °C (kg yr(-1))(-1) for aSET. We explore metric dependencies on temperature, precipitation, biomass turnover times and extraction rates of forest residues. We find relatively high emission metrics with low precipitation, long rotation times and low residue extraction rates. Our results provide a basis for assessing CO2 emissions from forest bioenergy under different indicators and across various spatial and temporal scales.

  17. Spatially-explicit models of global tree density

    NASA Astrophysics Data System (ADS)

    Glick, Henry B.; Bettigole, Charlie; Maynard, Daniel S.; Covey, Kristofer R.; Smith, Jeffrey R.; Crowther, Thomas W.

    2016-08-01

    Remote sensing and geographic analysis of woody vegetation provide means of evaluating the distribution of natural resources, patterns of biodiversity and ecosystem structure, and socio-economic drivers of resource utilization. While these methods bring geographic datasets with global coverage into our day-to-day analytic spheres, many of the studies that rely on these strategies do not capitalize on the extensive collection of existing field data. We present the methods and maps associated with the first spatially-explicit models of global tree density, which relied on over 420,000 forest inventory field plots from around the world. This research is the result of a collaborative effort engaging over 20 scientists and institutions, and capitalizes on an array of analytical strategies. Our spatial data products offer precise estimates of the number of trees at global and biome scales, but should not be used for local-level estimation. At larger scales, these datasets can contribute valuable insight into resource management, ecological modelling efforts, and the quantification of ecosystem services.

  18. Spatially-explicit models of global tree density

    PubMed Central

    Glick, Henry B.; Bettigole, Charlie; Maynard, Daniel S.; Covey, Kristofer R.; Smith, Jeffrey R.; Crowther, Thomas W.

    2016-01-01

    Remote sensing and geographic analysis of woody vegetation provide means of evaluating the distribution of natural resources, patterns of biodiversity and ecosystem structure, and socio-economic drivers of resource utilization. While these methods bring geographic datasets with global coverage into our day-to-day analytic spheres, many of the studies that rely on these strategies do not capitalize on the extensive collection of existing field data. We present the methods and maps associated with the first spatially-explicit models of global tree density, which relied on over 420,000 forest inventory field plots from around the world. This research is the result of a collaborative effort engaging over 20 scientists and institutions, and capitalizes on an array of analytical strategies. Our spatial data products offer precise estimates of the number of trees at global and biome scales, but should not be used for local-level estimation. At larger scales, these datasets can contribute valuable insight into resource management, ecological modelling efforts, and the quantification of ecosystem services. PMID:27529613

  19. Global spatially explicit CO2 emission metrics for forest bioenergy

    NASA Astrophysics Data System (ADS)

    Cherubini, Francesco; Huijbregts, Mark; Kindermann, Georg; van Zelm, Rosalie; van der Velde, Marijn; Stadler, Konstantin; Strømman, Anders Hammer

    2016-02-01

    Emission metrics aggregate climate impacts of greenhouse gases to common units such as CO2-equivalents (CO2-eq.). Examples include the global warming potential (GWP), the global temperature change potential (GTP) and the absolute sustained emission temperature (aSET). Despite the importance of biomass as a primary energy supplier in existing and future scenarios, emission metrics for CO2 from forest bioenergy are only available on a case-specific basis. Here, we produce global spatially explicit emission metrics for CO2 emissions from forest bioenergy and illustrate their applications to global emissions in 2015 and until 2100 under the RCP8.5 scenario. We obtain global average values of 0.49 ± 0.03 kgCO2-eq. kgCO2-1 (mean ± standard deviation) for GWP, 0.05 ± 0.05 kgCO2-eq. kgCO2-1 for GTP, and 2.14·10-14 ± 0.11·10-14 °C (kg yr-1)-1 for aSET. We explore metric dependencies on temperature, precipitation, biomass turnover times and extraction rates of forest residues. We find relatively high emission metrics with low precipitation, long rotation times and low residue extraction rates. Our results provide a basis for assessing CO2 emissions from forest bioenergy under different indicators and across various spatial and temporal scales.

  20. Spatial working memory interferes with explicit, but not probabilistic cuing of spatial attention.

    PubMed

    Won, Bo-Yeong; Jiang, Yuhong V

    2015-05-01

    Recent empirical and theoretical work has depicted a close relationship between visual attention and visual working memory. For example, rehearsal in spatial working memory depends on spatial attention, whereas adding a secondary spatial working memory task impairs attentional deployment in visual search. These findings have led to the proposal that working memory is attention directed toward internal representations. Here, we show that the close relationship between these 2 constructs is limited to some but not all forms of spatial attention. In 5 experiments, participants held color arrays, dot locations, or a sequence of dots in working memory. During the memory retention interval, they performed a T-among-L visual search task. Crucially, the probable target location was cued either implicitly through location probability learning or explicitly with a central arrow or verbal instruction. Our results showed that whereas imposing a visual working memory load diminished the effectiveness of explicit cuing, it did not interfere with probability cuing. We conclude that spatial working memory shares similar mechanisms with explicit, goal-driven attention but is dissociated from implicitly learned attention.

  1. Global spatially explicit CO2 emission metrics for forest bioenergy

    PubMed Central

    Cherubini, Francesco; Huijbregts, Mark; Kindermann, Georg; Van Zelm, Rosalie; Van Der Velde, Marijn; Stadler, Konstantin; Strømman, Anders Hammer

    2016-01-01

    Emission metrics aggregate climate impacts of greenhouse gases to common units such as CO2-equivalents (CO2-eq.). Examples include the global warming potential (GWP), the global temperature change potential (GTP) and the absolute sustained emission temperature (aSET). Despite the importance of biomass as a primary energy supplier in existing and future scenarios, emission metrics for CO2 from forest bioenergy are only available on a case-specific basis. Here, we produce global spatially explicit emission metrics for CO2 emissions from forest bioenergy and illustrate their applications to global emissions in 2015 and until 2100 under the RCP8.5 scenario. We obtain global average values of 0.49 ± 0.03 kgCO2-eq. kgCO2−1 (mean ± standard deviation) for GWP, 0.05 ± 0.05 kgCO2-eq. kgCO2−1 for GTP, and 2.14·10−14 ± 0.11·10−14 °C (kg yr−1)−1 for aSET. We explore metric dependencies on temperature, precipitation, biomass turnover times and extraction rates of forest residues. We find relatively high emission metrics with low precipitation, long rotation times and low residue extraction rates. Our results provide a basis for assessing CO2 emissions from forest bioenergy under different indicators and across various spatial and temporal scales. PMID:26830755

  2. Improvement, Verification, and Refinement of Spatially-Explicit Exposure Models in Risk Assessment - FishRand Spatially-Explicit Bioaccumulation Model Demonstration

    DTIC Science & Technology

    2015-08-01

    Germany.  von Stackelberg, K., 2010. Spatially-Explicit Bioaccumulation Modeling. Presented at the Society for Environmental Toxicology and Chemistry ...Explicit Bioaccumulation Modeling. Presented at the Society for Environmental Toxicology and Chemistry Annual Meeting, November 2010, Portland, OR... Environmental Response, Compensation, and Liability Act CERCLIS Comprehensive Environmental Response, Compensation, and Liability Information System

  3. Testing the semi-explicit assembly solvation model in the SAMPL3 community blind test

    NASA Astrophysics Data System (ADS)

    Kehoe, Charles W.; Fennell, Christopher J.; Dill, Ken A.

    2012-05-01

    We report here a test of the Semi-Explicit Assembly (SEA) model in the solvation free energy category of the SAMPL3 blind prediction event (summer 2011). We tested how dependent the SEA results are on the chosen force field by performing calculations with both the General Amber and OPLS force fields. We compared our SEA results with full molecular dynamics simulations in explicit solvent. Of the 20 submissions, our SEA/OPLS results gave the second smallest RMS errors in free energies compared to experiments. SEA gives results that are very similar to those of its underlying force field and explicit solvent model. Hence, while the SEA water modeling approach is much faster than explicit solvent simulations, its predictions appear to be just as accurate.

  4. A spatially explicit estimate of avoided forest loss.

    PubMed

    Honey-Rosés, Jordi; Baylis, Kathy; Ramírez, M Isabel

    2011-10-01

    With the potential expansion of forest conservation programs spurred by climate-change agreements, there is a need to measure the extent to which such programs achieve their intended results. Conventional methods for evaluating conservation impact tend to be biased because they do not compare like areas or account for spatial relations. We assessed the effect of a conservation initiative that combined designation of protected areas with payments for environmental services to conserve over wintering habitat for the monarch butterfly (Danaus plexippus) in Mexico. To do so, we used a spatial-matching estimator that matches covariates among polygons and their neighbors. We measured avoided forest loss (avoided disturbance and deforestation) by comparing forest cover on protected and unprotected lands that were similar in terms of accessibility, governance, and forest type. Whereas conventional estimates of avoided forest loss suggest that conservation initiatives did not protect forest cover, we found evidence that the conservation measures are preserving forest cover. We found that the conservation measures protected between 200 ha and 710 ha (3-16%) of forest that is high-quality habitat for monarch butterflies, but had a smaller effect on total forest cover, preserving between 0 ha and 200 ha (0-2.5%) of forest with canopy cover >70%. We suggest that future estimates of avoided forest loss be analyzed spatially to account for how forest loss occurs across the landscape. Given the forthcoming demand from donors and carbon financiers for estimates of avoided forest loss, we anticipate our methods and results will contribute to future studies that estimate the outcome of conservation efforts.

  5. Elucidating spatially explicit behavioral landscapes in the Willow Flycatcher

    USGS Publications Warehouse

    Bakian, Amanda V.; Sullivan, Kimberly A.; Paxton, Eben H.

    2012-01-01

    Animal resource selection is a complex, hierarchical decision-making process, yet resource selection studies often focus on the presence and absence of an animal rather than the animal's behavior at resource use locations. In this study, we investigate foraging and vocalization resource selection in a population of Willow Flycatchers, Empidonax traillii adastus, using Bayesian spatial generalized linear models. These models produce “behavioral landscapes” in which space use and resource selection is linked through behavior. Radio telemetry locations were collected from 35 adult Willow Flycatchers (n = 14 males, n = 13 females, and n = 8 unknown sex) over the 2003 and 2004 breeding seasons at Fish Creek, Utah. Results from the 2-stage modeling approach showed that habitat type, perch position, and distance from the arithmetic mean of the home range (in males) or nest site (in females) were important factors influencing foraging and vocalization resource selection. Parameter estimates from the individual-level models indicated high intraspecific variation in the use of the various habitat types and perch heights for foraging and vocalization. On the population level, Willow Flycatchers selected riparian habitat over other habitat types for vocalizing but used multiple habitat types for foraging including mountain shrub, young riparian, and upland forest. Mapping of observed and predicted foraging and vocalization resource selection indicated that the behavior often occurred in disparate areas of the home range. This suggests that multiple core areas may exist in the home ranges of individual flycatchers, and demonstrates that the behavioral landscape modeling approach can be applied to identify spatially and behaviorally distinct core areas. The behavioral landscape approach is applicable to a wide range of animal taxa and can be used to improve our understanding of the spatial context of behavior and resource selection.

  6. Landscape equivalency analysis: methodology for estimating spatially explicit biodiversity credits.

    PubMed

    Bruggeman, Douglas J; Jones, Michael L; Lupi, Frank; Scribner, Kim T

    2005-10-01

    We propose a biodiversity credit system for trading endangered species habitat designed to minimize and reverse the negative effects of habitat loss and fragmentation, the leading cause of species endangerment in the United States. Given the increasing demand for land, approaches that explicitly balance economic goals against conservation goals are required. The Endangered Species Act balances these conflicts based on the cost to replace habitat. Conservation banking is a means to manage this balance, and we argue for its use to mitigate the effects of habitat fragmentation. Mitigating the effects of land development on biodiversity requires decisions that recognize regional ecological effects resulting from local economic decisions. We propose Landscape Equivalency Analysis (LEA), a landscape-scale approach similar to HEA, as an accounting system to calculate conservation banking credits so that habitat trades do not exacerbate regional ecological effects of local decisions. Credits purchased by public agencies or NGOs for purposes other than mitigating a take create a net investment in natural capital leading to habitat defragmentation. Credits calculated by LEA use metapopulation genetic theory to estimate sustainability criteria against which all trades are judged. The approach is rooted in well-accepted ecological, evolutionary, and economic theory, which helps compensate for the degree of uncertainty regarding the effects of habitat loss and fragmentation on endangered species. LEA requires application of greater scientific rigor than typically applied to endangered species management on private lands but provides an objective, conceptually sound basis for achieving the often conflicting goals of economic efficiency and long-term ecological sustainability.

  7. Spatially explicit methodology for coordinated manure management in shared watersheds.

    PubMed

    Sharara, Mahmoud; Sampat, Apoorva; Good, Laura W; Smith, Amanda S; Porter, Pamela; Zavala, Victor M; Larson, Rebecca; Runge, Troy

    2017-05-01

    Increased clustering and consolidation of livestock production systems has been linked to adverse impacts on water quality. This study presents a methodology to optimize manure management within a hydrologic region to minimize agricultural phosphorus (P) loss associated with winter manure application. Spatial and non-spatial data representing livestock, crop, soil, terrain and hydrography were compiled to determine manure P production rates, crop P uptake, existing manure storage capabilities, and transportation distances. Field slope, hydrologic soil group (HSG), and proximity to waterbodies were used to classify crop fields according to their runoff risk for winter-applied manure. We use these data to construct a comprehensive optimization model that identifies optimal location, size, and transportation strategy to achieve environmental and economic goals. The environmental goal was the minimization of daily hauling of manure to environmentally sensitive crop fields, i.e., those classified as high P-loss fields, whereas the economic goal was the minimization of the transportation costs across the entire study area. A case study encompassing two contiguous 10-digit hydrologic unit subwatersheds (HUC-10) in South Central Wisconsin, USA was developed to demonstrate the proposed methodology. Additionally, scenarios representing different management decisions (storage facility maximum volume, and project capital) and production conditions (increased milk production and 20-year future projection) were analyzed to determine their impact on optimal decisions.

  8. Spatially explicit data: stewardship and ethical challenges in science.

    PubMed

    Hartter, Joel; Ryan, Sadie J; Mackenzie, Catrina A; Parker, John N; Strasser, Carly A

    2013-09-01

    Scholarly communication is at an unprecedented turning point created in part by the increasing saliency of data stewardship and data sharing. Formal data management plans represent a new emphasis in research, enabling access to data at higher volumes and more quickly, and the potential for replication and augmentation of existing research. Data sharing has recently transformed the practice, scope, content, and applicability of research in several disciplines, in particular in relation to spatially specific data. This lends exciting potentiality, but the most effective ways in which to implement such changes, particularly for disciplines involving human subjects and other sensitive information, demand consideration. Data management plans, stewardship, and sharing, impart distinctive technical, sociological, and ethical challenges that remain to be adequately identified and remedied. Here, we consider these and propose potential solutions for their amelioration.

  9. Spatially Explicit Data: Stewardship and Ethical Challenges in Science

    PubMed Central

    Hartter, Joel; Ryan, Sadie J.; MacKenzie, Catrina A.; Parker, John N.; Strasser, Carly A.

    2013-01-01

    Scholarly communication is at an unprecedented turning point created in part by the increasing saliency of data stewardship and data sharing. Formal data management plans represent a new emphasis in research, enabling access to data at higher volumes and more quickly, and the potential for replication and augmentation of existing research. Data sharing has recently transformed the practice, scope, content, and applicability of research in several disciplines, in particular in relation to spatially specific data. This lends exciting potentiality, but the most effective ways in which to implement such changes, particularly for disciplines involving human subjects and other sensitive information, demand consideration. Data management plans, stewardship, and sharing, impart distinctive technical, sociological, and ethical challenges that remain to be adequately identified and remedied. Here, we consider these and propose potential solutions for their amelioration. PMID:24058292

  10. Program SPACECAP: software for estimating animal density using spatially explicit capture-recapture models

    USGS Publications Warehouse

    Gopalaswamy, Arjun M.; Royle, J. Andrew; Hines, James E.; Singh, Pallavi; Jathanna, Devcharan; Kumar, N. Samba; Karanth, K. Ullas

    2012-01-01

    1. The advent of spatially explicit capture-recapture models is changing the way ecologists analyse capture-recapture data. However, the advantages offered by these new models are not fully exploited because they can be difficult to implement. 2. To address this need, we developed a user-friendly software package, created within the R programming environment, called SPACECAP. This package implements Bayesian spatially explicit hierarchical models to analyse spatial capture-recapture data. 3. Given that a large number of field biologists prefer software with graphical user interfaces for analysing their data, SPACECAP is particularly useful as a tool to increase the adoption of Bayesian spatially explicit capture-recapture methods in practice.

  11. Spatially explicit multimedia fate models for pollutants in Europe: state of the art and perspectives.

    PubMed

    Pistocchi, A; Sarigiannis, D A; Vizcaino, P

    2010-08-15

    A review by Hollander et al. (in preparation), discusses the relative potentials, advantages and shortcomings of spatial and non spatial models of chemical fate, highlighting that spatially explicit models may be needed for specific purposes. The present paper reviews the state of the art in spatially explicit chemical fate and transport modeling in Europe. We summarize the three main approaches currently adopted in spatially explicit modeling, namely (1) multiple box models, (2) numerical solutions of simultaneous advection-dispersion equations (ADE) in air, soil and water, and (3) the development of meta-models. As all three approaches experience limitations, we describe in further detail geographic information system (GIS)-based modeling as an alternative approach allowing a simple, yet spatially explicit description of chemical fate. We review the input data needed, and the options available for their retrieval at the European scale. We also discuss the importance of, and limitations in model evaluation. We observe that the high uncertainty in chemical emissions and physico-chemical behavior in the environment make realistic simulations difficult to obtain. Therefore we envisage a shift in model use from process simulation to hypothesis testing, in which explaining the discrepancies between observed and computed chemical concentrations in the environment takes importance over prediction per se. This shift may take advantage of using simple models in GIS with residual uses of complex models for detailed studies. It also calls for tighter joint interpretation of models and spatially distributed monitoring datasets, and more refined spatial representation of environmental drivers such as landscape and climate variables, and better emission estimates. In summary, we conclude that the problem is not "how to compute" (i.e. emphasis on numerical methods, spatial/temporal discretization, quantitative uncertainty and sensitivity analysis...) but "what to compute" (i

  12. A spatial explicit strategy reduces error but interferes with sensorimotor adaptation

    PubMed Central

    Benson, Bryan L.; Anguera, Joaquin A.

    2011-01-01

    Although sensorimotor adaptation is typically thought of as an implicit form of learning, it has been shown that participants who gain explicit awareness of the nature of the perturbation during adaptation exhibit more learning than those who do not. With rare exceptions, however, explicit awareness is typically polled at the end of the study. Here, we provided participants with either an explicit spatial strategy or no instructions before learning. Early in learning, explicit instructions greatly reduced movement errors but also resulted in increased trial-to-trial variability and longer reaction times. Late in adaptation, performance was indistinguishable between the explicit and implicit groups, but the mechanisms underlying performance improvements remained fundamentally different, as revealed by catch trials. The progression of implicit recalibration in the explicit group was modulated by the use of an explicit strategy: these participants showed a lower level of recalibration as well as decreased aftereffects. This phenomenon may be due to the reduced magnitude of errors made to the target during adaptation or inhibition of implicit learning mechanisms by explicit processing. PMID:21451054

  13. Modeling trends from North American breeding bird survey data: a spatially explicit approach.

    PubMed

    Bled, Florent; Sauer, John; Pardieck, Keith; Doherty, Paul; Royle, J Andrew

    2013-01-01

    Population trends, defined as interval-specific proportional changes in population size, are often used to help identify species of conservation interest. Efficient modeling of such trends depends on the consideration of the correlation of population changes with key spatial and environmental covariates. This can provide insights into causal mechanisms and allow spatially explicit summaries at scales that are of interest to management agencies. We expand the hierarchical modeling framework used in the North American Breeding Bird Survey (BBS) by developing a spatially explicit model of temporal trend using a conditional autoregressive (CAR) model. By adopting a formal spatial model for abundance, we produce spatially explicit abundance and trend estimates. Analyses based on large-scale geographic strata such as Bird Conservation Regions (BCR) can suffer from basic imbalances in spatial sampling. Our approach addresses this issue by providing an explicit weighting based on the fundamental sample allocation unit of the BBS. We applied the spatial model to three species from the BBS. Species have been chosen based upon their well-known population change patterns, which allows us to evaluate the quality of our model and the biological meaning of our estimates. We also compare our results with the ones obtained for BCRs using a nonspatial hierarchical model (Sauer and Link 2011). Globally, estimates for mean trends are consistent between the two approaches but spatial estimates provide much more precise trend estimates in regions on the edges of species ranges that were poorly estimated in non-spatial analyses. Incorporating a spatial component in the analysis not only allows us to obtain relevant and biologically meaningful estimates for population trends, but also enables us to provide a flexible framework in order to obtain trend estimates for any area.

  14. Modeling trends from North American Breeding Bird Survey data: a spatially explicit approach

    USGS Publications Warehouse

    Bled, Florent; Sauer, John R.; Pardieck, Keith L.; Doherty, Paul; Royle, J. Andy

    2013-01-01

    Population trends, defined as interval-specific proportional changes in population size, are often used to help identify species of conservation interest. Efficient modeling of such trends depends on the consideration of the correlation of population changes with key spatial and environmental covariates. This can provide insights into causal mechanisms and allow spatially explicit summaries at scales that are of interest to management agencies. We expand the hierarchical modeling framework used in the North American Breeding Bird Survey (BBS) by developing a spatially explicit model of temporal trend using a conditional autoregressive (CAR) model. By adopting a formal spatial model for abundance, we produce spatially explicit abundance and trend estimates. Analyses based on large-scale geographic strata such as Bird Conservation Regions (BCR) can suffer from basic imbalances in spatial sampling. Our approach addresses this issue by providing an explicit weighting based on the fundamental sample allocation unit of the BBS. We applied the spatial model to three species from the BBS. Species have been chosen based upon their well-known population change patterns, which allows us to evaluate the quality of our model and the biological meaning of our estimates. We also compare our results with the ones obtained for BCRs using a nonspatial hierarchical model (Sauer and Link 2011). Globally, estimates for mean trends are consistent between the two approaches but spatial estimates provide much more precise trend estimates in regions on the edges of species ranges that were poorly estimated in non-spatial analyses. Incorporating a spatial component in the analysis not only allows us to obtain relevant and biologically meaningful estimates for population trends, but also enables us to provide a flexible framework in order to obtain trend estimates for any area.

  15. Software System Design for Large Scale, Spatially-explicit Agroecosystem Modeling

    SciTech Connect

    Wang, Dali; Nichols, Dr Jeff A; Kang, Shujiang; Post, Wilfred M; Liu, Sumang

    2012-01-01

    Recently, site-based agroecosystem model has been applied at regional and state level to enable comprehensive analyses of environmental sustainability of food and biofuel production. Those large-scale, spatially-explicit simulations present computational challenges in software systems design. Herein, we describe our software system design for large-scale, spatially-explicit agroecosystem modeling and data analysis. First, we describe the software design principles in three major phases: data preparation, high performance simulation, and data management and analysis. Then, we use a case study at a regional intensive modeling area (RIMA) to demonstrate our system implementation and capability.

  16. Computing solvent-induced forces in the solvation approach called Semi Explicit Assembly

    NASA Astrophysics Data System (ADS)

    Brini, Emiliano; Hummel, Michelle H.; Coutsias, Evangelos A.; Fennell, Christopher J.; Dill, Ken A.

    2014-03-01

    Many biologically relevant processes (e.g. protein folding) are often too big and slow to be simulated by computer methods that model atomically detailed water. Faster physical models of water are needed. We have developed an approach called Semi Explicit Assembly (SEA) [C.J. Fennell, C.W. Kehoe, K.A. Dill, PNAS, 108, 3234 (2011)]. It is physical because it uses pre-simulations of explicit-solvent models, and it is fast because at runtime, we just combine the pre-simulated results in rapid computations. SEA has also now been proven physically accurate in two blind tests called SAMPL. Here, we describe the computation of solvation forces in SEA, so that this solvation procedure can be incorporated into standard molecular dynamics codes. We describe experimental tests.

  17. Implicit and Explicit Gender Beliefs in Spatial Ability: Stronger Stereotyping in Boys than Girls

    PubMed Central

    Vander Heyden, Karin M.; van Atteveldt, Nienke M.; Huizinga, Mariette; Jolles, Jelle

    2016-01-01

    Sex differences in spatial ability are a seriously debated topic, given the importance of spatial ability for success in the fields of science, technology, engineering, and mathematics (STEM) and girls' underrepresentation in these domains. In the current study we investigated the presence of stereotypic gender beliefs on spatial ability (i.e., “spatial ability is for boys”) in 10- and 12-year-old children. We used both an explicit measure (i.e., a self-report questionnaire) and an implicit measure (i.e., a child IAT). Results of the explicit measure showed that both sexes associated spatial ability with boys, with boys holding more male stereotyped attitudes than girls. On the implicit measure, boys associated spatial ability with boys, while girls were gender-neutral. In addition, we examined the effects of gender beliefs on spatial performance, by experimentally activating gender beliefs within a pretest—instruction—posttest design. We compared three types of instruction: boys are better, girls are better, and no sex differences. No effects of these gender belief instructions were found on children's spatial test performance (i.e., mental rotation and paper folding). The finding that children of this age already have stereotypic beliefs about the spatial capacities of their own sex is important, as these beliefs may influence children's choices for spatial leisure activities and educational tracks in the STEM domain. PMID:27507956

  18. Implicit and Explicit Gender Beliefs in Spatial Ability: Stronger Stereotyping in Boys than Girls.

    PubMed

    Vander Heyden, Karin M; van Atteveldt, Nienke M; Huizinga, Mariette; Jolles, Jelle

    2016-01-01

    Sex differences in spatial ability are a seriously debated topic, given the importance of spatial ability for success in the fields of science, technology, engineering, and mathematics (STEM) and girls' underrepresentation in these domains. In the current study we investigated the presence of stereotypic gender beliefs on spatial ability (i.e., "spatial ability is for boys") in 10- and 12-year-old children. We used both an explicit measure (i.e., a self-report questionnaire) and an implicit measure (i.e., a child IAT). Results of the explicit measure showed that both sexes associated spatial ability with boys, with boys holding more male stereotyped attitudes than girls. On the implicit measure, boys associated spatial ability with boys, while girls were gender-neutral. In addition, we examined the effects of gender beliefs on spatial performance, by experimentally activating gender beliefs within a pretest-instruction-posttest design. We compared three types of instruction: boys are better, girls are better, and no sex differences. No effects of these gender belief instructions were found on children's spatial test performance (i.e., mental rotation and paper folding). The finding that children of this age already have stereotypic beliefs about the spatial capacities of their own sex is important, as these beliefs may influence children's choices for spatial leisure activities and educational tracks in the STEM domain.

  19. DEFINING RECOVERY GOALS AND STRATEGIES FOR ENDANGERED SPECIES USING SPATIALLY-EXPLICIT POPULATION MODELS

    EPA Science Inventory

    We used a spatially explicit population model of wolves (Canis lupus) to propose a framework for defining rangewide recovery priorities and finer-scale strategies for regional reintroductions. The model predicts that Yellowstone and central Idaho, where wolves have recently been ...

  20. Spatially explicit watershed modeling: tracking water, mercury and nitrogen in multiple systems under diverse conditions

    EPA Science Inventory

    Environmental decision-making and the influences of various stressors, such as landscape and climate changes on water quantity and quality, requires the application of environmental modeling. Spatially explicit environmental and watershed-scale models using GIS as a base framewor...

  1. On Spatially Explicit Models of Cholera Epidemics: Hydrologic controls, environmental drivers, human-mediated transmissions (Invited)

    NASA Astrophysics Data System (ADS)

    Rinaldo, A.; Bertuzzo, E.; Mari, L.; Righetto, L.; Gatto, M.; Casagrandi, R.; Rodriguez-Iturbe, I.

    2010-12-01

    A recently proposed model for cholera epidemics is examined. The model accounts for local communities of susceptibles and infectives in a spatially explicit arrangement of nodes linked by networks having different topologies. The vehicle of infection (Vibrio cholerae) is transported through the network links which are thought of as hydrological connections among susceptible communities. The mathematical tools used are borrowed from general schemes of reactive transport on river networks acting as the environmental matrix for the circulation and mixing of water-borne pathogens. The results of a large-scale application to the Kwa Zulu (Natal) epidemics of 2001-2002 will be discussed. Useful theoretical results derived in the spatially-explicit context will also be reviewed (like e.g. the exact derivation of the speed of propagation for traveling fronts of epidemics on regular lattices endowed with uniform population density). Network effects will be discussed. The analysis of the limit case of uniformly distributed population density proves instrumental in establishing the overall conditions for the relevance of spatially explicit models. To that extent, it is shown that the ratio between spreading and disease outbreak timescales proves the crucial parameter. The relevance of our results lies in the major differences potentially arising between the predictions of spatially explicit models and traditional compartmental models of the SIR-like type. Our results suggest that in many cases of real-life epidemiological interest timescales of disease dynamics may trigger outbreaks that significantly depart from the predictions of compartmental models. Finally, a view on further developments includes: hydrologically improved aquatic reservoir models for pathogens; human mobility patterns affecting disease propagation; double-peak emergence and seasonality in the spatially explicit epidemic context.

  2. Spatial Working Memory Interferes with Explicit, but Not Probabilistic Cuing of Spatial Attention

    ERIC Educational Resources Information Center

    Won, Bo-Yeong; Jiang, Yuhong V.

    2015-01-01

    Recent empirical and theoretical work has depicted a close relationship between visual attention and visual working memory. For example, rehearsal in spatial working memory depends on spatial attention, whereas adding a secondary spatial working memory task impairs attentional deployment in visual search. These findings have led to the proposal…

  3. Reenvisioning cross-sectional at-a-station hydraulic geometry as spatially explicit hydraulic topography

    NASA Astrophysics Data System (ADS)

    Gonzalez, R. L.; Pasternack, G. B.

    2015-10-01

    Transect-based hydraulic geometry is well established but depends on a complex set of subjective fieldwork and computational decisions that sometimes go unexplained. As a result, it is ripe for reenvisioning in the light of the emergence of meter-scale, spatially explicit data and algorithmic geospatial analysis. This study developed and evaluated a new spatially explicit method for analyzing discharge-dependent hydraulics coined 'hydraulic topography' that not only increases accuracy but also eliminates several sample- and assumption-based inconsistencies. Using data and hydrodynamic simulations from the regulated, gravel-cobble-bed lower Yuba River in California, power functions were fitted to discharge-dependent average width, depth, and depth-weighted velocity for three spatial scales and then their corresponding exponents and coefficients were compared across scales and against ones computed using traditional approaches. Average hydraulic values from cross sections at the segment scale spanned up to 1.5 orders of magnitude for a given discharge. Transect-determined exponents for reach-scale depth and velocity relations were consistently over- and underestimated, respectively, relative to the hydraulic topography benchmark. Overall, 73% of cross-sectional power regression parameters assessed fell between 10 and 50 absolute percent error with respect to the spatially explicit hydraulic topography baseline. Although traditional transect-based sampling may be viable for certain uses, percent errors of this magnitude could compromise engineering applications in river management and training works.

  4. Heteroskedasticity as a leading indicator of desertification in spatially explicit data

    PubMed Central

    Seekell, David A; Dakos, Vasilis

    2015-01-01

    Regime shifts are abrupt transitions between alternate ecosystem states including desertification in arid regions due to drought or overgrazing. Regime shifts may be preceded by statistical anomalies such as increased autocorrelation, indicating declining resilience and warning of an impending shift. Tests for conditional heteroskedasticity, a type of clustered variance, have proven powerful leading indicators for regime shifts in time series data, but an analogous indicator for spatial data has not been evaluated. A spatial analog for conditional heteroskedasticity might be especially useful in arid environments where spatial interactions are critical in structuring ecosystem pattern and process. We tested the efficacy of a test for spatial heteroskedasticity as a leading indicator of regime shifts with simulated data from spatially extended vegetation models with regular and scale-free patterning. These models simulate shifts from extensive vegetative cover to bare, desert-like conditions. The magnitude of spatial heteroskedasticity increased consistently as the modeled systems approached a regime shift from vegetated to desert state. Relative spatial autocorrelation, spatial heteroskedasticity increased earlier and more consistently. We conclude that tests for spatial heteroskedasticity can contribute to the growing toolbox of early warning indicators for regime shifts analyzed with spatially explicit data. PMID:26078855

  5. Testing the semi-explicit assembly model of aqueous solvation in the SAMPL4 challenge.

    PubMed

    Li, Libo; Dill, Ken A; Fennell, Christopher J

    2014-03-01

    Here, we test a method, called semi-explicit assembly (SEA), that computes the solvation free energies of molecules in water in the SAMPL4 blind test challenge. SEA was developed with the intention of being as accurate as explicit-solvent models, but much faster to compute. It is accurate because it uses pre-simulations of simple spheres in explicit solvent to obtain structural and thermodynamic quantities, and it is fast because it parses solute free energies into regionally additive quantities. SAMPL4 provided us the opportunity to make new tests of SEA. Our tests here lead us to the following conclusions: (1) The newest version, called Field-SEA, which gives improved predictions for highly charged ions, is shown here to perform as well as the earlier versions (dipolar and quadrupolar SEA) on this broad blind SAMPL4 test set. (2) We find that both the past and present SEA models give solvation free energies that are as accurate as TIP3P. (3) Using a new approach for force field parameter optimization, we developed improved hydroxyl parameters that ensure consistency with neat-solvent dielectric constants, and found that they led to improved solvation free energies for hydroxyl-containing compounds in SAMPL4. We also learned that these hydroxyl parameters are not just fixing solvent exposed oxygens in a general sense, and therefore do not improve predictions for carbonyl or carboxylic-acid groups. Other such functional groups will need their own independent optimizations for potential improvements. Overall, these tests in SAMPL4 indicate that SEA is an accurate, general and fast new approach to computing solvation free energies.

  6. ANOSPEX: A Stochastic, Spatially Explicit Model for Studying Anopheles Metapopulation Dynamics

    PubMed Central

    Oluwagbemi, Olugbenga O.; Fornadel, Christen M.; Adebiyi, Ezekiel F.; Norris, Douglas E.; Rasgon, Jason L.

    2013-01-01

    Anopheles mosquitoes transmit malaria, a major public health problem among many African countries. One of the most effective methods to control malaria is by controlling the Anopheles mosquito vectors that transmit the parasites. Mathematical models have both predictive and explorative utility to investigate the pros and cons of different malaria control strategies. We have developed a C++ based, stochastic spatially explicit model (ANOSPEX; AnophelesSpatially-Explicit) to simulate Anopheles metapopulation dynamics. The model is biologically rich, parameterized by field data, and driven by field-collected weather data from Macha, Zambia. To preliminarily validate ANOSPEX, simulation results were compared to field mosquito collection data from Macha; simulated and observed dynamics were similar. The ANOSPEX model will be useful in a predictive and exploratory manner to develop, evaluate and implement traditional and novel strategies to control malaria, and for understanding the environmental forces driving Anopheles population dynamics. PMID:23861847

  7. Spatially explicit global population scenarios consistent with the Shared Socioeconomic Pathways

    NASA Astrophysics Data System (ADS)

    Jones, B.; O'Neill, B. C.

    2016-08-01

    The projected size and spatial distribution of the future population are important drivers of global change and key determinants of exposure and vulnerability to hazards. Spatial demographic projections are widely used as inputs to spatial projections of land use, energy use, and emissions, as well as to assessments of the impacts of extreme events, sea level rise, and other climate-related outcomes. To date, however, there are very few global-scale, spatially explicit population projections, and those that do exist are often based on simple scaling or trend extrapolation. Here we present a new set of global, spatially explicit population scenarios that are consistent with the new Shared Socioeconomic Pathways (SSPs) developed to facilitate global change research. We use a parameterized gravity-based downscaling model to produce projections of spatial population change that are quantitatively consistent with national population and urbanization projections for the SSPs and qualitatively consistent with assumptions in the SSP narratives regarding spatial development patterns. We show that the five SSPs lead to substantially different spatial population outcomes at the continental, national, and sub-national scale. In general, grid cell-level outcomes are most influenced by national-level population change, second by urbanization rate, and third by assumptions about the spatial style of development. However, the relative importance of these factors is a function of the magnitude of the projected change in total population and urbanization for each country and across SSPs. We also demonstrate variation in outcomes considering the example of population existing in a low-elevation coastal zone under alternative scenarios.

  8. Using a spatially explicit analysis model to evaluate spatial variation of corn yield

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Spatial irrigation of agricultural crops using site-specific variable-rate irrigation (VRI) systems is beginning to have wide-spread acceptance. However, optimizing the management of these VRI systems to conserve natural resources and increase profitability requires an understanding of the spatial ...

  9. Locally adaptive, spatially explicit projection of US population for 2030 and 2050

    PubMed Central

    McKee, Jacob J.; Rose, Amy N.; Bright, Edward A.; Huynh, Timmy; Bhaduri, Budhendra L.

    2015-01-01

    Localized adverse events, including natural hazards, epidemiological events, and human conflict, underscore the criticality of quantifying and mapping current population. Building on the spatial interpolation technique previously developed for high-resolution population distribution data (LandScan Global and LandScan USA), we have constructed an empirically informed spatial distribution of projected population of the contiguous United States for 2030 and 2050, depicting one of many possible population futures. Whereas most current large-scale, spatially explicit population projections typically rely on a population gravity model to determine areas of future growth, our projection model departs from these by accounting for multiple components that affect population distribution. Modeled variables, which included land cover, slope, distances to larger cities, and a moving average of current population, were locally adaptive and geographically varying. The resulting weighted surface was used to determine which areas had the greatest likelihood for future population change. Population projections of county level numbers were developed using a modified version of the US Census’s projection methodology, with the US Census’s official projection as the benchmark. Applications of our model include incorporating multiple various scenario-driven events to produce a range of spatially explicit population futures for suitability modeling, service area planning for governmental agencies, consequence assessment, mitigation planning and implementation, and assessment of spatially vulnerable populations. PMID:25605882

  10. Spatially Explicit Forest Characteristics of Europe Integrating NFI and Remote Sensing Data

    NASA Astrophysics Data System (ADS)

    Moreno, A. L. S.; Neumann, M.; Hasenauer, H.

    2015-12-01

    Seeing the forest through the trees in Europe is easier said than done. European forest data is nationally collected using different methodologies and sampling techniques. This data can be difficult to obtain, and if made available often lacks spatial information and might only be provided in the local language. This makes analyzing forests in Europe difficult. The reporting systems of Food and Agriculture Organization (FAO) and the European Forestry Institute (EFI) permit several acquisition and calculation methodologies which lead to difficulties in comparing country level data. We have collected spatially explicit national forest inventory (NFI) data from 13 countries in Europe and harmonized these datasets. Using this data along with remote sensing data products we have derived spatially explicit forest characteristics maps of Europe on a 0.017o resolution representing the time period 2000-2010. We have created maps for every NFI variable in our dataset including carbon stock, forest age, forest height, volume, basal area, etc. Cross-validating this data shows that this method produces accurate results for most variables while variables pertaining to forest cover type have lower accuracy. This data is in line with data from FAO and EFI in most cases. However, our dataset allows us to identify large incongruities quickly in FAO and EFI data. Our spatially explicit data is also accurate at predicting forest characteristics in areas where we have no NFI data. This data set provides a consistent harmonized view of the state of European forests in a way hitherto not possible, giving researchers the ability to analyze forests spatially across the entire continent. This method can also be useful for those researching areas that have little or no NFI data or areas where data acquisition is difficult or impossible. This data can also quickly give policy makers a greater view of how forest management practices have shaped our current European forests.

  11. Spatially explicit multi-criteria decision analysis for managing vector-borne diseases

    PubMed Central

    2011-01-01

    The complex epidemiology of vector-borne diseases creates significant challenges in the design and delivery of prevention and control strategies, especially in light of rapid social and environmental changes. Spatial models for predicting disease risk based on environmental factors such as climate and landscape have been developed for a number of important vector-borne diseases. The resulting risk maps have proven value for highlighting areas for targeting public health programs. However, these methods generally only offer technical information on the spatial distribution of disease risk itself, which may be incomplete for making decisions in a complex situation. In prioritizing surveillance and intervention strategies, decision-makers often also need to consider spatially explicit information on other important dimensions, such as the regional specificity of public acceptance, population vulnerability, resource availability, intervention effectiveness, and land use. There is a need for a unified strategy for supporting public health decision making that integrates available data for assessing spatially explicit disease risk, with other criteria, to implement effective prevention and control strategies. Multi-criteria decision analysis (MCDA) is a decision support tool that allows for the consideration of diverse quantitative and qualitative criteria using both data-driven and qualitative indicators for evaluating alternative strategies with transparency and stakeholder participation. Here we propose a MCDA-based approach to the development of geospatial models and spatially explicit decision support tools for the management of vector-borne diseases. We describe the conceptual framework that MCDA offers as well as technical considerations, approaches to implementation and expected outcomes. We conclude that MCDA is a powerful tool that offers tremendous potential for use in public health decision-making in general and vector-borne disease management in particular

  12. Counting Cats: Spatially Explicit Population Estimates of Cheetah (Acinonyx jubatus) Using Unstructured Sampling Data.

    PubMed

    Broekhuis, Femke; Gopalaswamy, Arjun M

    2016-01-01

    Many ecological theories and species conservation programmes rely on accurate estimates of population density. Accurate density estimation, especially for species facing rapid declines, requires the application of rigorous field and analytical methods. However, obtaining accurate density estimates of carnivores can be challenging as carnivores naturally exist at relatively low densities and are often elusive and wide-ranging. In this study, we employ an unstructured spatial sampling field design along with a Bayesian sex-specific spatially explicit capture-recapture (SECR) analysis, to provide the first rigorous population density estimates of cheetahs (Acinonyx jubatus) in the Maasai Mara, Kenya. We estimate adult cheetah density to be between 1.28 ± 0.315 and 1.34 ± 0.337 individuals/100km2 across four candidate models specified in our analysis. Our spatially explicit approach revealed 'hotspots' of cheetah density, highlighting that cheetah are distributed heterogeneously across the landscape. The SECR models incorporated a movement range parameter which indicated that male cheetah moved four times as much as females, possibly because female movement was restricted by their reproductive status and/or the spatial distribution of prey. We show that SECR can be used for spatially unstructured data to successfully characterise the spatial distribution of a low density species and also estimate population density when sample size is small. Our sampling and modelling framework will help determine spatial and temporal variation in cheetah densities, providing a foundation for their conservation and management. Based on our results we encourage other researchers to adopt a similar approach in estimating densities of individually recognisable species.

  13. On Spatially Explicit Models of Epidemic and Endemic Cholera: The Haiti and Lake Kivu Case Studies.

    NASA Astrophysics Data System (ADS)

    Rinaldo, A.; Bertuzzo, E.; Mari, L.; Finger, F.; Casagrandi, R.; Gatto, M.; Rodriguez-Iturbe, I.

    2014-12-01

    The first part of the Lecture deals with the predictive ability of mechanistic models for the Haitian cholera epidemic. Predictive models of epidemic cholera need to resolve at suitable aggregation levels spatial data pertaining to local communities, epidemiological records, hydrologic drivers, waterways, patterns of human mobility and proxies of exposure rates. A formal model comparison framework provides a quantitative assessment of the explanatory and predictive abilities of various model settings with different spatial aggregation levels. Intensive computations and objective model comparisons show that parsimonious spatially explicit models accounting for spatial connections have superior explanatory power than spatially disconnected ones for short-to intermediate calibration windows. In general, spatially connected models show better predictive ability than disconnected ones. We suggest limits and validity of the various approaches and discuss the pathway towards the development of case-specific predictive tools in the context of emergency management. The second part deals with approaches suitable to describe patterns of endemic cholera. Cholera outbreaks have been reported in the Democratic Republic of the Congo since the 1970s. Here we employ a spatially explicit, inhomogeneous Markov chain model to describe cholera incidence in eight health zones on the shore of lake Kivu. Remotely sensed datasets of chlorophyll a concentration in the lake, precipitation and indices of global climate anomalies are used as environmental drivers in addition to baseline seasonality. The effect of human mobility is also modelled mechanistically. We test several models on a multi-year dataset of reported cholera cases. Fourteen models, accounting for different environmental drivers, are selected in calibration. Among these, the one accounting for seasonality, El Nino Southern Oscillation, precipitation and human mobility outperforms the others in cross-validation.

  14. Counting Cats: Spatially Explicit Population Estimates of Cheetah (Acinonyx jubatus) Using Unstructured Sampling Data

    PubMed Central

    Broekhuis, Femke; Gopalaswamy, Arjun M.

    2016-01-01

    Many ecological theories and species conservation programmes rely on accurate estimates of population density. Accurate density estimation, especially for species facing rapid declines, requires the application of rigorous field and analytical methods. However, obtaining accurate density estimates of carnivores can be challenging as carnivores naturally exist at relatively low densities and are often elusive and wide-ranging. In this study, we employ an unstructured spatial sampling field design along with a Bayesian sex-specific spatially explicit capture-recapture (SECR) analysis, to provide the first rigorous population density estimates of cheetahs (Acinonyx jubatus) in the Maasai Mara, Kenya. We estimate adult cheetah density to be between 1.28 ± 0.315 and 1.34 ± 0.337 individuals/100km2 across four candidate models specified in our analysis. Our spatially explicit approach revealed ‘hotspots’ of cheetah density, highlighting that cheetah are distributed heterogeneously across the landscape. The SECR models incorporated a movement range parameter which indicated that male cheetah moved four times as much as females, possibly because female movement was restricted by their reproductive status and/or the spatial distribution of prey. We show that SECR can be used for spatially unstructured data to successfully characterise the spatial distribution of a low density species and also estimate population density when sample size is small. Our sampling and modelling framework will help determine spatial and temporal variation in cheetah densities, providing a foundation for their conservation and management. Based on our results we encourage other researchers to adopt a similar approach in estimating densities of individually recognisable species. PMID:27135614

  15. Spatially-explicit bioaccumulation modeling in aquatic environments: Results from two demonstration sites.

    PubMed

    von Stackelberg, Katherine; Williams, Marc A; Clough, Jonathan; Johnson, Mark S

    2017-03-11

    Bioaccumulation models quantify the relationship between sediment and water exposure concentrations and resulting tissue levels of chemicals in aquatic organisms, and represent a key link in the suite of tools used to support decision making at contaminated sediment sites. Predicted concentrations in the aquatic food web provide exposure estimates for human health and ecological risk assessments, which, in turn, provide risk-based frameworks for evaluating potential remedial activities and other management alternatives based on the fish consumption pathway. Despite the widespread use of bioaccumulation models to support remedial decision-making, concerns remain about the predictive power of these models. A review of the available literature finds the increased mathematical complexity of typical bioaccumulation model applications is not matched by the deterministic exposure concentrations used to drive the models. We tested a spatially explicit exposure model (FishRand) at two nominally contaminated sites and compared results to estimates of bioaccumulation based on conventional, non-spatial techniques and monitoring data. Differences in predicted fish tissue concentrations across applications were evident, although these demonstration sites were only mildly contaminated and would not warrant management actions on the basis of fish consumption. Nonetheless, predicted tissue concentrations based on the spatially-explicit exposure characterization consistently outperformed conventional, non-spatial techniques across a variety of model performance metrics. These results demonstrate the improved predictive power as well as greater flexibility in evaluating the impacts of food web exposure and fish foraging behavior in a heterogeneous exposure environment. This article is protected by copyright. All rights reserved.

  16. A Hybrid Wetland Map for China: A Synergistic Approach Using Census and Spatially Explicit Datasets

    PubMed Central

    Ma, Kun; You, Liangzhi; Liu, Junguo; Zhang, Mingxiang

    2012-01-01

    Wetlands play important ecological, economic, and cultural roles in societies around the world. However, wetland degradation has become a serious ecological issue, raising the global sustainability concern. An accurate wetland map is essential for wetland management. Here we used a fuzzy method to create a hybrid wetland map for China through the combination of five existing wetlands datasets, including four spatially explicit wetland distribution data and one wetland census. Our results show the total wetland area is 384,864 km2, 4.08% of China’s national surface area. The hybrid wetland map also shows spatial distribution of wetlands with a spatial resolution of 1 km. The reliability of the map is demonstrated by comparing it with spatially explicit datasets on lakes and reservoirs. The hybrid wetland map is by far the first wetland mapping that is consistent with the statistical data at the national and provincial levels in China. It provides a benchmark map for research on wetland protection and management. The method presented here is applicable for not only wetland mapping but also for other thematic mapping in China and beyond. PMID:23110105

  17. A hybrid wetland map for China: a synergistic approach using census and spatially explicit datasets.

    PubMed

    Ma, Kun; You, Liangzhi; Liu, Junguo; Zhang, Mingxiang

    2012-01-01

    Wetlands play important ecological, economic, and cultural roles in societies around the world. However, wetland degradation has become a serious ecological issue, raising the global sustainability concern. An accurate wetland map is essential for wetland management. Here we used a fuzzy method to create a hybrid wetland map for China through the combination of five existing wetlands datasets, including four spatially explicit wetland distribution data and one wetland census. Our results show the total wetland area is 384,864 km(2), 4.08% of China's national surface area. The hybrid wetland map also shows spatial distribution of wetlands with a spatial resolution of 1 km. The reliability of the map is demonstrated by comparing it with spatially explicit datasets on lakes and reservoirs. The hybrid wetland map is by far the first wetland mapping that is consistent with the statistical data at the national and provincial levels in China. It provides a benchmark map for research on wetland protection and management. The method presented here is applicable for not only wetland mapping but also for other thematic mapping in China and beyond.

  18. Interference-free acquisition of overlapping sequences in explicit spatial memory.

    PubMed

    Eggert, Thomas; Drever, Johannes; Straube, Andreas

    2014-04-01

    Some types of human sequential memory, e.g. the acquisition of a new composition by a trained musician, seem to be very efficient in extending the length of a memorized sequence and in flexible reuse of known subsequences in a newly acquired sequential context. This implies that interference between known and newly acquired subsequences can be avoided even when learning a sequence which is a partial mutation of a known sequence. It is known that established motor sequences do not have such flexibility. Using learning of deferred imitation, the current study investigates the flexibility of explicit spatial memory by quantifying the interferences between successively acquired, partially overlapping sequences. After learning a spatial sequence on day 1, this sequence was progressively modified on day 2. On day 3, a retention test was performed with both the initial and the modified sequence. The results show that subjects performed very well on day 1 and day 2. No spatial interference between changed and unchanged targets was observed during the stepwise progressive modification of the reproduced sequence. Surprisingly, subjects performed well on both sequences on day 3. Comparison with a control experiment without intermediate mutation training showed that the initial training on day 1 did not proactively interfere with the retention of the modified sequence on day 3. Vice versa, the mutation training on day 2 did not interfere retroactively with the retention of the original sequence as tested on day 3. The results underline the flexibility in acquiring explicit spatial memory.

  19. Spatially explicit cholera model: effects of population, water resources and health conditions distributions.

    NASA Astrophysics Data System (ADS)

    Bertuzzo, E.; Casagrandi, R.; Gatto, M.; Rodriguez-Iturbe, I.; Rinaldo, A.

    2009-04-01

    Cholera epidemics are still a major public health concern to date in many areas of the world. In order to understand and forecast cholera outbreaks, one of the most important factors is the role played by the environmental matrix in which the disease spreads. The environmental matrix is constituted by different human communities and their interconnections. Each community is characterized by its spatial position, population size, water resources availability and hygiene conditions. By implementing a spatially explicit cholera model we seek the effects on epidemic dynamics of: i) the topology and metrics of the pathogens pathways that connect different communities; ii) the spatial distribution of the population size; and iii) the spatial distributions of water resources and public health conditions, and how they vary with population size. We further extend the model by deriving the speed of propagation of traveling fronts in the case of uniformly distributed systems for different topologies: one and two dimensional lattices and river networks. The derivation of the spreading celerity proves instrumental in establishing the overall conditions for the relevance of spatially explicit models. The conditions are sought by comparison between spreading and disease timescales. Consider a cholera epidemic that starts from a point and spreads throughout a finite size system, it is possible to identify two different timescales: i) the spreading timescale, that is the time needed for the disease to spread and involve all the communities in the system; and ii) the epidemic timescale, defined by the duration of the epidemic in a single community. While the latter mainly depends on biological factors, the former is controlled also by the geometry of the environmental matrix. If the epidemics timescales are comparable or larger than pathogens' spreading timescales, one expects that the spatial variability does not play a role and the system may be approximated by a well

  20. Fire in the Brazilian Amazon: A Spatially Explicit Model for Policy Impact Analysis

    NASA Technical Reports Server (NTRS)

    Arima, Eugenio Y.; Simmons, Cynthia S.; Walker, Robert T.; Cochrane, Mark A.

    2007-01-01

    This article implements a spatially explicit model to estimate the probability of forest and agricultural fires in the Brazilian Amazon. We innovate by using variables that reflect farmgate prices of beef and soy, and also provide a conceptual model of managed and unmanaged fires in order to simulate the impact of road paving, cattle exports, and conservation area designation on the occurrence of fire. Our analysis shows that fire is positively correlated with the price of beef and soy, and that the creation of new conservation units may offset the negative environmental impacts caused by the increasing number of fire events associated with early stages of frontier development.

  1. Locally-Adaptive, Spatially-Explicit Projection of U.S. Population for 2030 and 2050

    SciTech Connect

    McKee, Jacob J.; Rose, Amy N.; Bright, Eddie A.; Huynh, Timmy N.; Bhaduri, Budhendra L.

    2015-02-03

    Localized adverse events, including natural hazards, epidemiological events, and human conflict, underscore the criticality of quantifying and mapping current population. Moreover, knowing the spatial distribution of future population allows for increased preparation in the event of an emergency. Building on the spatial interpolation technique previously developed for high resolution population distribution data (LandScan Global and LandScan USA), we have constructed an empirically-informed spatial distribution of the projected population of the contiguous U.S. for 2030 and 2050. Whereas most current large-scale, spatially explicit population projections typically rely on a population gravity model to determine areas of future growth, our projection model departs from these by accounting for multiple components that affect population distribution. Modelled variables, which included land cover, slope, distances to larger cities, and a moving average of current population, were locally adaptive and geographically varying. The resulting weighted surface was used to determine which areas had the greatest likelihood for future population change. Population projections of county level numbers were developed using a modified version of the U.S. Census s projection methodology with the U.S. Census s official projection as the benchmark. Applications of our model include, but are not limited to, suitability modelling, service area planning for governmental agencies, consequence assessment, mitigation planning and implementation, and assessment of spatially vulnerable populations.

  2. Locally-Adaptive, Spatially-Explicit Projection of U.S. Population for 2030 and 2050

    DOE PAGES

    McKee, Jacob J.; Rose, Amy N.; Bright, Eddie A.; ...

    2015-02-03

    Localized adverse events, including natural hazards, epidemiological events, and human conflict, underscore the criticality of quantifying and mapping current population. Moreover, knowing the spatial distribution of future population allows for increased preparation in the event of an emergency. Building on the spatial interpolation technique previously developed for high resolution population distribution data (LandScan Global and LandScan USA), we have constructed an empirically-informed spatial distribution of the projected population of the contiguous U.S. for 2030 and 2050. Whereas most current large-scale, spatially explicit population projections typically rely on a population gravity model to determine areas of future growth, our projection modelmore » departs from these by accounting for multiple components that affect population distribution. Modelled variables, which included land cover, slope, distances to larger cities, and a moving average of current population, were locally adaptive and geographically varying. The resulting weighted surface was used to determine which areas had the greatest likelihood for future population change. Population projections of county level numbers were developed using a modified version of the U.S. Census s projection methodology with the U.S. Census s official projection as the benchmark. Applications of our model include, but are not limited to, suitability modelling, service area planning for governmental agencies, consequence assessment, mitigation planning and implementation, and assessment of spatially vulnerable populations.« less

  3. Graph-based analysis of connectivity in spatially-explicit population models: HexSim and the Connectivity Analysis Toolkit

    EPA Science Inventory

    Background / Question / Methods Planning for the recovery of threatened species is increasingly informed by spatially-explicit population models. However, using simulation model results to guide land management decisions can be difficult due to the volume and complexity of model...

  4. Forward-in-Time, Spatially Explicit Modeling Software to Simulate Genetic Lineages Under Selection

    PubMed Central

    Currat, Mathias; Gerbault, Pascale; Di, Da; Nunes, José M.; Sanchez-Mazas, Alicia

    2015-01-01

    SELECTOR is a software package for studying the evolution of multiallelic genes under balancing or positive selection while simulating complex evolutionary scenarios that integrate demographic growth and migration in a spatially explicit population framework. Parameters can be varied both in space and time to account for geographical, environmental, and cultural heterogeneity. SELECTOR can be used within an approximate Bayesian computation estimation framework. We first describe the principles of SELECTOR and validate the algorithms by comparing its outputs for simple models with theoretical expectations. Then, we show how it can be used to investigate genetic differentiation of loci under balancing selection in interconnected demes with spatially heterogeneous gene flow. We identify situations in which balancing selection reduces genetic differentiation between population groups compared with neutrality and explain conflicting outcomes observed for human leukocyte antigen loci. These results and three previously published applications demonstrate that SELECTOR is efficient and robust for building insight into human settlement history and evolution. PMID:26949332

  5. Spatial-explicit modeling of social vulnerability to malaria in East Africa

    PubMed Central

    2014-01-01

    Background Despite efforts in eradication and control, malaria remains a global challenge, particularly affecting vulnerable groups. Despite the recession in malaria cases, previously malaria free areas are increasingly confronted with epidemics as a result of changing environmental and socioeconomic conditions. Next to modeling transmission intensities and probabilities, integrated spatial methods targeting the complex interplay of factors that contribute to social vulnerability are required to effectively reduce malaria burden. We propose an integrative method for mapping relative levels of social vulnerability in a spatially explicit manner to support the identification of intervention measures. Methods Based on a literature review, a holistic risk and vulnerability framework has been developed to guide the assessment of social vulnerability to water-related vector-borne diseases (VBDs) in the context of changing environmental and societal conditions. Building on the framework, this paper applies spatially explicit modeling for delineating homogeneous regions of social vulnerability to malaria in eastern Africa, while taking into account expert knowledge for weighting the single vulnerability indicators. To assess the influence of the selected indicators on the final index a local sensitivity analysis is carried out. Results Results indicate that high levels of malaria vulnerability are concentrated in the highlands, where immunity within the population is currently low. Additionally, regions with a lack of access to education and health services aggravate vulnerability. Lower values can be found in regions with relatively low poverty, low population pressure, low conflict density and reduced contributions from the biological susceptibility domain. Overall, the factors characterizing vulnerability vary spatially in the region. The vulnerability index reveals a high level of robustness in regard to the final choice of input datasets, with the exception of the

  6. Examining the role of individual movement in promoting coexistence in a spatially explicit prisoner's dilemma.

    PubMed

    Burgess, Andrew E F; Lorenzi, Tommaso; Schofield, Pietà G; Hubbard, Stephen F; Chaplain, Mark A J

    2017-02-27

    The emergence of cooperation is a major conundrum of evolutionary biology. To unravel this evolutionary riddle, several models have been developed within the theoretical framework of spatial game theory, focussing on the interactions between two general classes of player, "cooperators" and "defectors". Generally, explicit movement in the spatial domain is not considered in these models, with strategies moving via imitation or through colonisation of neighbouring sites. We present here a spatially explicit stochastic individual-based model in which pure cooperators and defectors undergo random motion via diffusion and also chemotaxis guided by the gradient of a semiochemical. Individual movement rules are derived from an underlying system of reaction-diffusion-taxis partial differential equations which describes the dynamics of the local number of individuals and the concentration of the semiochemical. Local interactions are governed by the payoff matrix of the classical prisoner's dilemma, and accumulated payoffs are translated into offspring. We investigate the cases of both synchronous and non-synchronous generations. Focussing on an ecological scenario where defectors are parasitic on cooperators, we find that random motion and semiochemical sensing bring about self-generated patterns in which resident cooperators and parasitic defectors can coexist in proportions that fluctuate about non-zero values. Remarkably, coexistence emerges as a genuine consequence of the natural tendency of cooperators to aggregate into clusters, without the need for them to find physical shelter or outrun the parasitic defectors. This provides further evidence that spatial clustering enhances the benefits of mutual cooperation and plays a crucial role in preserving cooperative behaviours.

  7. SEHR-ECHO v1.0: a Spatially Explicit Hydrologic Response model for ecohydrologic applications

    NASA Astrophysics Data System (ADS)

    Schaefli, B.; Nicótina, L.; Imfeld, C.; Da Ronco, P.; Bertuzzo, E.; Rinaldo, A.

    2014-11-01

    This paper presents the Spatially Explicit Hydrologic Response (SEHR) model developed at the Laboratory of Ecohydrology of the Ecole Polytechnique Fédérale de Lausanne for the simulation of hydrological processes at the catchment scale. The key concept of the model is the formulation of water transport by geomorphologic travel time distributions through gravity-driven transitions among geomorphic states: the mobilization of water (and possibly dissolved solutes) is simulated at the subcatchment scale and the resulting responses are convolved with the travel paths distribution within the river network to obtain the hydrologic response at the catchment outlet. The model thus breaks down the complexity of the hydrologic response into an explicit geomorphological combination of dominant spatial patterns of precipitation input and of hydrologic process controls. Nonstationarity and nonlinearity effects are tackled through soil moisture dynamics in the active soil layer. We present here the basic model set-up for precipitation-runoff simulation and a detailed discussion of its parameter estimation and of its performance for the Dischma River (Switzerland), a snow-dominated catchment with a small glacier cover.

  8. Spatially explicit decision support for selecting translocation areas for Mojave desert tortoises

    USGS Publications Warehouse

    Heaton, Jill S.; Nussear, Kenneth E.; Esque, Todd C.; Inman, Richard D.; Davenport, Frank; Leuteritz, Thomas E.; Medica, Philip A.; Strout, Nathan W.; Burgess, Paul A.; Benvenuti, Lisa

    2008-01-01

    Spatially explicit decision support systems are assuming an increasing role in natural resource and conservation management. In order for these systems to be successful, however, they must address real-world management problems with input from both the scientific and management communities. The National Training Center at Fort Irwin, California, has expanded its training area, encroaching U.S. Fish and Wildlife Service critical habitat set aside for the Mojave desert tortoise (Gopherus agassizii), a federally threatened species. Of all the mitigation measures proposed to offset expansion, the most challenging to implement was the selection of areas most feasible for tortoise translocation. We developed an objective, open, scientifically defensible spatially explicit decision support system to evaluate translocation potential within the Western Mojave Recovery Unit for tortoise populations under imminent threat from military expansion. Using up to a total of 10 biological, anthropogenic, and/or logistical criteria, seven alternative translocation scenarios were developed. The final translocation model was a consensus model between the seven scenarios. Within the final model, six potential translocation areas were identified.

  9. [Applicability analysis of spatially explicit model of leaf litter in evergreen broad-leaved forests].

    PubMed

    Zhao, Qing-Qing; Liu, He-Ming; Jonard, Mathieu; Wang, Zhang-Hua; Wang, Xi-Hua

    2014-11-01

    The spatially explicit model of leaf litter can help to understand its dispersal process, which is very important to predict the distribution pattern of leaves on the surface of the earth. In this paper, the spatially explicit model of leaf litter was developed for 20 tree species using litter trap data from the mapped forest plot in an evergreen broad-leaved forest in Tiantong, Zhejiang Pro- vince, eastern China. Applicability of the model was analyzed. The model assumed an allometric equation between diameter at breast height (DBH) and leaf litter amount, and the leaf litter declined exponentially with the distance. Model parameters were estimated by the maximum likelihood method. Results showed that the predicted and measured leaf litter amounts were significantly correlated, but the prediction accuracies varied widely for the different tree species, averaging at 49.3% and ranging from 16.0% and 74.0%. Model qualities of tree species significantly correlated with the standard deviations of the leaf litter amount per trap, DBH of the tree species and the average leaf dry mass of tree species. There were several ways to improve the forecast precision of the model, such as installing the litterfall traps according to the distribution of the tree to cover the different classes of the DBH and distance apart from the parent trees, determining the optimal dispersal function of each tree species, and optimizing the existing dispersal function.

  10. Using spatially explicit surveillance models to provide confidence in the eradication of an invasive ant

    PubMed Central

    Ward, Darren F.; Anderson, Dean P.; Barron, Mandy C.

    2016-01-01

    Effective detection plays an important role in the surveillance and management of invasive species. Invasive ants are very difficult to eradicate and are prone to imperfect detection because of their small size and cryptic nature. Here we demonstrate the use of spatially explicit surveillance models to estimate the probability that Argentine ants (Linepithema humile) have been eradicated from an offshore island site, given their absence across four surveys and three surveillance methods, conducted since ant control was applied. The probability of eradication increased sharply as each survey was conducted. Using all surveys and surveillance methods combined, the overall median probability of eradication of Argentine ants was 0.96. There was a high level of confidence in this result, with a high Credible Interval Value of 0.87. Our results demonstrate the value of spatially explicit surveillance models for the likelihood of eradication of Argentine ants. We argue that such models are vital to give confidence in eradication programs, especially from highly valued conservation areas such as offshore islands. PMID:27721491

  11. Large-scale, spatially-explicit test of the refuge strategy for delaying insecticide resistance

    PubMed Central

    Carrière, Yves; Ellers-Kirk, Christa; Hartfield, Kyle; Larocque, Guillaume; Degain, Ben; Dutilleul, Pierre; Dennehy, Timothy J.; Marsh, Stuart E.; Crowder, David W.; Li, Xianchun; Ellsworth, Peter C.; Naranjo, Steven E.; Palumbo, John C.; Fournier, Al; Antilla, Larry; Tabashnik, Bruce E.

    2012-01-01

    The refuge strategy is used worldwide to delay the evolution of pest resistance to insecticides that are either sprayed or produced by transgenic Bacillus thuringiensis (Bt) crops. This strategy is based on the idea that refuges of host plants where pests are not exposed to an insecticide promote survival of susceptible pests. Despite widespread adoption of this approach, large-scale tests of the refuge strategy have been problematic. Here we tested the refuge strategy with 8 y of data on refuges and resistance to the insecticide pyriproxyfen in 84 populations of the sweetpotato whitefly (Bemisia tabaci) from cotton fields in central Arizona. We found that spatial variation in resistance to pyriproxyfen within each year was not affected by refuges of melons or alfalfa near cotton fields. However, resistance was negatively associated with the area of cotton refuges and positively associated with the area of cotton treated with pyriproxyfen. A statistical model based on the first 4 y of data, incorporating the spatial distribution of cotton treated and not treated with pyriproxyfen, adequately predicted the spatial variation in resistance observed in the last 4 y of the study, confirming that cotton refuges delayed resistance and treated cotton fields accelerated resistance. By providing a systematic assessment of the effectiveness of refuges and the scale of their effects, the spatially explicit approach applied here could be useful for testing and improving the refuge strategy in other crop–pest systems. PMID:22215605

  12. Spatially explicit inference for open populations: estimating demographic parameters from camera-trap studies.

    PubMed

    Gardner, Beth; Reppucci, Juan; Lucherini, Mauro; Royle, J Andrew

    2010-11-01

    We develop a hierarchical capture-recapture model for demographically open populations when auxiliary spatial information about location of capture is obtained. Such spatial capture-recapture data arise from studies based on camera trapping, DNA sampling, and other situations in which a spatial array of devices records encounters of unique individuals. We integrate an individual-based formulation of a Jolly-Seber type model with recently developed spatially explicit capture-recapture models to estimate density and demographic parameters for survival and recruitment. We adopt a Bayesian framework for inference under this model using the method of data augmentation which is implemented in the software program WinBUGS. The model was motivated by a camera trapping study of Pampas cats Leopardus colocolo from Argentina, which we present as an illustration of the model in this paper. We provide estimates of density and the first quantitative assessment of vital rates for the Pampas cat in the High Andes. The precision of these estimates is poor due likely to the sparse data set. Unlike conventional inference methods which usually rely on asymptotic arguments, Bayesian inferences are valid in arbitrary sample sizes, and thus the method is ideal for the study of rare or endangered species for which small data sets are typical.

  13. Hydroclimatology of dual-peak annual cholera incidence: Insights from a spatially explicit model

    NASA Astrophysics Data System (ADS)

    Bertuzzo, E.; Mari, L.; Righetto, L.; Gatto, M.; Casagrandi, R.; Rodriguez-Iturbe, I.; Rinaldo, A.

    2012-03-01

    Cholera incidence in some regions of the Indian subcontinent may exhibit two annual peaks although the main environmental drivers that have been linked to the disease (e.g., sea surface temperature, zooplankton abundance, river discharge) peak once per year during the summer. An empirical hydroclimatological explanation relating cholera transmission to river flows and to the disease spatial spreading has been recently proposed. We specifically support and substantiate mechanistically such hypothesis by means of a spatially explicit model of cholera transmission. Our framework directly accounts for the role of a model river network in transporting and redistributing cholera bacteria among human communities as well as for spatial and temporal annual fluctuations of river flows. The model is forced by seasonal environmental drivers, namely river flow, temperature and chlorophyll concentration in the coastal environment, a proxy for Vibrio cholerae concentration. Our results show that these drivers may suffice to generate dual-peak cholera prevalence patterns for proper combinations of timescales involved in pathogen transport, hydrologic variability and disease unfolding. The model explains the possible occurrence of spatial patterns of cholera incidence characterized by a spring peak confined to coastal areas and a fall peak involving inland regions. Our modeling framework suggests insights on how environmental drivers concert the generation of complex spatiotemporal infections and proposes an explanation for the different cholera patterns (dual or single annual peaks) exhibited by regions that share similar hydroclimatological forcings.

  14. Spatially explicit inference for open populations: estimating demographic parameters from camera-trap studies

    USGS Publications Warehouse

    Gardner, Beth; Reppucci, Juan; Lucherini, Mauro; Royle, J. Andrew

    2010-01-01

    We develop a hierarchical capture–recapture model for demographically open populations when auxiliary spatial information about location of capture is obtained. Such spatial capture–recapture data arise from studies based on camera trapping, DNA sampling, and other situations in which a spatial array of devices records encounters of unique individuals. We integrate an individual-based formulation of a Jolly-Seber type model with recently developed spatially explicit capture–recapture models to estimate density and demographic parameters for survival and recruitment. We adopt a Bayesian framework for inference under this model using the method of data augmentation which is implemented in the software program WinBUGS. The model was motivated by a camera trapping study of Pampas cats Leopardus colocolo from Argentina, which we present as an illustration of the model in this paper. We provide estimates of density and the first quantitative assessment of vital rates for the Pampas cat in the High Andes. The precision of these estimates is poor due likely to the sparse data set. Unlike conventional inference methods which usually rely on asymptotic arguments, Bayesian inferences are valid in arbitrary sample sizes, and thus the method is ideal for the study of rare or endangered species for which small data sets are typical.

  15. Ecological and evolutionary consequences of explicit spatial structure in exploiter-victim systems

    NASA Astrophysics Data System (ADS)

    Klopfer, Eric David

    One class of spatial model which has been widely used in ecology has been termed "pseudo-spatial models" and classically employs various types of aggregation in studying the coexistence of competing parasitoids. Yet, little is known about the relative effects of each of these aggregation behaviors. Thus, in Chapter 1 I chose to examine three types of aggregation and explore their relative strengths in promoting coexistence of two competing parasitoids. A striking shortcoming of spatial models in ecology to date is that there is a relative lack of use of spatial models to investigate problems on the evolutionary as opposed to ecological time scale. Consequently, in Chapter 2 I chose to start with a classic problem of evolutionary time scale--the evolution of virulence and predation rates. Debate about this problem has continued through several decades, yet many instances are not adequately explained by current models. In this study I explored the effect of explicit spatial structure on exploitation rates by comparing a cellular automata (CA) exploiter-victim model which incorporates local dynamics to a metapopulation model which does not include such dynamics. One advantage of CA models is that they are defined by simple rules rather than the often complex equations of other types of spatial models. This is an extremely useful attribute when one wants to convey results of models to an audience with an applied bent that is often uncomfortable with hard-to-understand equations. Thus, in Chapter 3, through the use of CA models I show that there are spatial phenomena which alter the impact of introduced predators and that these phenomena are potentially important in the implementation of biocontrol programs. The relatively recent incorporation of spatial models into the ecological literature has left most ecologists and evolutionary biologists without the ability to understand, let alone employ, spatial models in evolutionary problems. In order to give the next

  16. Relative contributions of spatial weighting, explicit knowledge and proprioception to hand localisation during positional ambiguity.

    PubMed

    Bellan, Valeria; Gilpin, Helen R; Stanton, Tasha R; Dagsdóttir, Lilja K; Gallace, Alberto; Lorimer Moseley, G

    2017-02-01

    When vision and proprioception are rendered incongruent during a hand localisation task, vision is initially weighted more than proprioception in determining location, and proprioception gains more weighting over time. However, it is not known whether, under these incongruency conditions, particular areas of space are also weighted more heavily than others, nor whether explicit knowledge of the sensory incongruence (i.e. disconfirming the perceived location of the hand) modulates the effect. Here, we hypothesised that both non-informative inputs coming from one side of space and explicit knowledge of sensory incongruence would modulate perceived location of the limb. Specifically, we expected spatial weighting to shift hand localisation towards the weighted area of space, and we expected greater weighting of proprioceptive input once perceived location was demonstrated to be inaccurate. We manipulated spatial weighting using an established auditory cueing paradigm (Experiment 1, n = 18) and sensory incongruence using the 'disappearing hand trick' (Experiment 2, n = 9). Our first hypothesis was not supported-spatial weighting did not modulate hand localisation. Our second hypothesis was only partially supported-disconfirmation of hand position did lead to more accurate localisations, even if participants were still unaware of their hand position. This raised the possibility that rather than disconfirmation, a simple movement of the hand in view could update the sensory-motor system, by immediately increasing the weighting of proprioceptive input relative to visual input. This third hypothesis was then confirmed (Experiment 3, n = 9). These results suggest that hand localisation is robust in the face of differential weighting of space, but open to modulation in a modality-specific manner, when one sense (vision) is rendered inaccurate.

  17. A spatially explicit reconstruction of forest cover in China over 1700-2000

    NASA Astrophysics Data System (ADS)

    He, Fanneng; Li, Shicheng; Zhang, Xuezhen

    2015-08-01

    The spatially explicit reconstruction of historical forest plays an important role in understanding human modifications of land surfaces and its environmental effects. Based on an analysis of the forest change history of China, we devised a reconstruction method for the historical forest cover in China. The core idea of the method is that the lands with high suitability for cultivation will be cultivated and deforested first, spreading to marginal lands with lower suitability for cultivation. By determining the possible maximum distribution extent of the forest, as well as devising the land suitability for cultivation assessment model and provincial forest area allocation model, we created 10 km forest cover maps of China for the years 1700 to 2000 with 10 year intervals. By comparison with satellite-based data in 2000, we found that the grids within 25% differences account for as much as 66.07% of all grids. The comparison with the historical documents-based data in northeast China indicated that the number of counties within 30% relative differences is 99, accounting for 74.44% of all counties. Therefore, the forest area allocation model we devised can accurately reproduce the spatial patterns of historical forest cover in China. Our reconstruction indicates that from 1700 to the 1960s, the deforestation mainly occurred in southwest China, the hilly regions of south China, the southeast of Gansu province, and northeast China; from the 1960s to 2000, the reforestation occurred in most traditional forested regions of China, particularly in the Tibet Plateau, hilly regions of south China and the Greater Khingan Mountains. The spatially explicit forest cover data sets we reconstructed can be used in global or regional climatic models to study the impact of land cover change on climate change.

  18. Mapping of soil organic carbon stocks for spatially explicit assessments of climate change mitigation potential

    NASA Astrophysics Data System (ADS)

    Vågen, Tor-Gunnar; Winowiecki, Leigh A.

    2013-03-01

    Current methods for assessing soil organic carbon (SOC) stocks are generally not well suited for understanding variations in SOC stocks in landscapes. This is due to the tedious and time-consuming nature of the sampling methods most commonly used to collect bulk density cores, which limits repeatability across large areas, particularly where information is needed on the spatial dynamics of SOC stocks at scales relevant to management and for spatially explicit targeting of climate change mitigation options. In the current study, approaches were explored for (i) field-based estimates of SOC stocks and (ii) mapping of SOC stocks at moderate to high resolution on the basis of data from four widely contrasting ecosystems in East Africa. Estimated SOC stocks for 0-30 cm depth varied both within and between sites, with site averages ranging from 2 to 8 kg m-2. The differences in SOC stocks were determined in part by rainfall, but more importantly by sand content. Results also indicate that managing soil erosion is a key strategy for reducing SOC loss and hence in mitigation of climate change in these landscapes. Further, maps were developed on the basis of satellite image reflectance data with multiple R-squared values of 0.65 for the independent validation data set, showing variations in SOC stocks across these landscapes. These maps allow for spatially explicit targeting of potential climate change mitigation efforts through soil carbon sequestration, which is one option for climate change mitigation and adaptation. Further, the maps can be used to monitor the impacts of such mitigation efforts over time.

  19. Explicit off-line criteria for stable accurate time filtering of strongly unstable spatially extended systems.

    PubMed

    Majda, Andrew J; Grote, Marcus J

    2007-01-23

    Many contemporary problems in science involve making predictions based on partial observation of extremely complicated spatially extended systems with many degrees of freedom and physical instabilities on both large and small scales. Various new ensemble filtering strategies have been developed recently for these applications, and new mathematical issues arise. Here, explicit off-line test criteria for stable accurate discrete filtering are developed for use in the above context and mimic the classical stability analysis for finite difference schemes. First, constant coefficient partial differential equations, which are randomly forced and damped to mimic mesh scale energy spectra in the above problems are developed as off-line filtering test problems. Then mathematical analysis is used to show that under natural suitable hypothesis the time filtering algorithms for general finite difference discrete approximations to an sxs partial differential equation system with suitable observations decompose into much simpler independent s-dimensional filtering problems for each spatial wave number separately; in other test problems, such block diagonal models rigorously provide upper and lower bounds on the filtering algorithm. In this fashion, elementary off-line filtering criteria can be developed for complex spatially extended systems. The theory is illustrated for time filters by using both unstable and implicit difference scheme approximations to the stochastically forced heat equation where the combined effects of filter stability and model error are analyzed through the simpler off-line criteria.

  20. Spatially Explicit Models to Investigate Geographic Patterns in the Distribution of Forensic STRs: Application to the North-Eastern Mediterranean

    PubMed Central

    Messina, Francesco; Finocchio, Andrea; Akar, Nejat; Loutradis, Aphrodite; Michalodimitrakis, Emmanuel I.; Brdicka, Radim; Jodice, Carla

    2016-01-01

    Human forensic STRs used for individual identification have been reported to have little power for inter-population analyses. Several methods have been developed which incorporate information on the spatial distribution of individuals to arrive at a description of the arrangement of diversity. We genotyped at 16 forensic STRs a large population sample obtained from many locations in Italy, Greece and Turkey, i.e. three countries crucial to the understanding of discontinuities at the European/Asian junction and the genetic legacy of ancient migrations, but seldom represented together in previous studies. Using spatial PCA on the full dataset, we detected patterns of population affinities in the area. Additionally, we devised objective criteria to reduce the overall complexity into reduced datasets. Independent spatially explicit methods applied to these latter datasets converged in showing that the extraction of information on long- to medium-range geographical trends and structuring from the overall diversity is possible. All analyses returned the picture of a background clinal variation, with regional discontinuities captured by each of the reduced datasets. Several aspects of our results are confirmed on external STR datasets and replicate those of genome-wide SNP typings. High levels of gene flow were inferred within the main continental areas by coalescent simulations. These results are promising from a microevolutionary perspective, in view of the fast pace at which forensic data are being accumulated for many locales. It is foreseeable that this will allow the exploitation of an invaluable genotypic resource, assembled for other (forensic) purposes, to clarify important aspects in the formation of local gene pools. PMID:27898725

  1. Spatially explicit models for inference about density in unmarked or partially marked populations

    USGS Publications Warehouse

    Chandler, Richard B.; Royle, J. Andrew

    2013-01-01

    Recently developed spatial capture–recapture (SCR) models represent a major advance over traditional capture–recapture (CR) models because they yield explicit estimates of animal density instead of population size within an unknown area. Furthermore, unlike nonspatial CR methods, SCR models account for heterogeneity in capture probability arising from the juxtaposition of animal activity centers and sample locations. Although the utility of SCR methods is gaining recognition, the requirement that all individuals can be uniquely identified excludes their use in many contexts. In this paper, we develop models for situations in which individual recognition is not possible, thereby allowing SCR concepts to be applied in studies of unmarked or partially marked populations. The data required for our model are spatially referenced counts made on one or more sample occasions at a collection of closely spaced sample units such that individuals can be encountered at multiple locations. Our approach includes a spatial point process for the animal activity centers and uses the spatial correlation in counts as information about the number and location of the activity centers. Camera-traps, hair snares, track plates, sound recordings, and even point counts can yield spatially correlated count data, and thus our model is widely applicable. A simulation study demonstrated that while the posterior mean exhibits frequentist bias on the order of 5–10% in small samples, the posterior mode is an accurate point estimator as long as adequate spatial correlation is present. Marking a subset of the population substantially increases posterior precision and is recommended whenever possible. We applied our model to avian point count data collected on an unmarked population of the northern parula (Parula americana) and obtained a density estimate (posterior mode) of 0.38 (95% CI: 0.19–1.64) birds/ha. Our paper challenges sampling and analytical conventions in ecology by demonstrating

  2. A spatially explicit model for an Allee effect: why wolves recolonize so slowly in Greater Yellowstone.

    PubMed

    Hurford, Amy; Hebblewhite, Mark; Lewis, Mark A

    2006-11-01

    A reduced probability of finding mates at low densities is a frequently hypothesized mechanism for a component Allee effect. At low densities dispersers are less likely to find mates and establish new breeding units. However, many mathematical models for an Allee effect do not make a distinction between breeding group establishment and subsequent population growth. Our objective is to derive a spatially explicit mathematical model, where dispersers have a reduced probability of finding mates at low densities, and parameterize the model for wolf recolonization in the Greater Yellowstone Ecosystem (GYE). In this model, only the probability of establishing new breeding units is influenced by the reduced probability of finding mates at low densities. We analytically and numerically solve the model to determine the effect of a decreased probability in finding mates at low densities on population spread rate and density. Our results suggest that a reduced probability of finding mates at low densities may slow recolonization rate.

  3. MOAB: a spatially explicit, individual-based expert system for creating animal foraging models

    USGS Publications Warehouse

    Carter, J.; Finn, John T.

    1999-01-01

    We describe the development, structure, and corroboration process of a simulation model of animal behavior (MOAB). MOAB can create spatially explicit, individual-based animal foraging models. Users can create or replicate heterogeneous landscape patterns, and place resources and individual animals of a goven species on that landscape to simultaneously simulate the foraging behavior of multiple species. The heuristic rules for animal behavior are maintained in a user-modifiable expert system. MOAB can be used to explore hypotheses concerning the influence of landscape patttern on animal movement and foraging behavior. A red fox (Vulpes vulpes L.) foraging and nest predation model was created to test MOAB's capabilities. Foxes were simulated for 30-day periods using both expert system and random movement rules. Home range size, territory formation and other available simulation studies. A striped skunk (Mephitis mephitis L.) model also was developed. The expert system model proved superior to stochastic in respect to territory formation, general movement patterns and home range size.

  4. A Spatially Explicit Model of Synchronization in Fiddler Crab Waving Displays

    PubMed Central

    Araujo, Sabrina Borges Lino; Rorato, Ana C.; Perez, Daniela M.; Pie, Marcio R.

    2013-01-01

    Fiddler crabs (Uca spp., Decapoda: Ocypodidae) are commonly found forming large aggregations in intertidal zones, where they perform rhythmic waving displays with their greatly enlarged claws. While performing these displays, fiddler crabs often synchronize their behavior with neighboring males, forming the only known synchronized visual courtship displays involving reflected light and moving body parts. Despite being one of the most conspicuous aspects of fiddler crab behavior, little is known about the mechanisms underlying synchronization of male displays. In this study we develop a spatially explicit model of fiddler crab waving displays using coupled logistic map equations. We explored two alternative models in which males either direct their attention at random angles or preferentially toward neighbors. Our results indicate that synchronization is possible over a fairly large region of parameter space. Moreover, our model was capable of generating local synchronization neighborhoods, as commonly observed in fiddler crabs under natural conditions. PMID:23483905

  5. A spatially explicit model of synchronization in fiddler crab waving displays.

    PubMed

    Araujo, Sabrina Borges Lino; Rorato, Ana C; Perez, Daniela M; Pie, Marcio R

    2013-01-01

    Fiddler crabs (Uca spp., Decapoda: Ocypodidae) are commonly found forming large aggregations in intertidal zones, where they perform rhythmic waving displays with their greatly enlarged claws. While performing these displays, fiddler crabs often synchronize their behavior with neighboring males, forming the only known synchronized visual courtship displays involving reflected light and moving body parts. Despite being one of the most conspicuous aspects of fiddler crab behavior, little is known about the mechanisms underlying synchronization of male displays. In this study we develop a spatially explicit model of fiddler crab waving displays using coupled logistic map equations. We explored two alternative models in which males either direct their attention at random angles or preferentially toward neighbors. Our results indicate that synchronization is possible over a fairly large region of parameter space. Moreover, our model was capable of generating local synchronization neighborhoods, as commonly observed in fiddler crabs under natural conditions.

  6. Interactions between spatially explicit conservation and management measures: implications for the governance of marine protected areas.

    PubMed

    Cárcamo, P Francisco; Gaymer, Carlos F

    2013-12-01

    Marine protected areas are not established in an institutional and governance vacuum and managers should pay attention to the wider social-ecological system in which they are immersed. This article examines Islas Choros-Damas Marine Reserve, a small marine protected area located in a highly productive and biologically diverse coastal marine ecosystem in northern Chile, and the interactions between human, institutional, and ecological dimensions beyond those existing within its boundaries. Through documents analysis, surveys, and interviews, we described marine reserve implementation (governing system) and the social and natural ecosystem-to-be-governed. We analyzed the interactions and the connections between the marine reserve and other spatially explicit conservation and/or management measures existing in the area and influencing management outcomes and governance. A top-down approach with poor stakeholder involvement characterized the implementation process. The marine reserve is highly connected with other spatially explicit measures and with a wider social-ecological system through various ecological processes and socio-economic interactions. Current institutional interactions with positive effects on the management and governance are scarce, although several potential interactions may be developed. For the study area, any management action must recognize interferences from outside conditions and consider some of them (e.g., ecotourism management) as cross-cutting actions for the entire social-ecological system. We consider that institutional interactions and the development of social networks are opportunities to any collective effort aiming to improve governance of Islas Choros-Damas marine reserve. Communication of connections and interactions between marine protected areas and the wider social-ecological system (as described in this study) is proposed as a strategy to improve stakeholder participation in Chilean marine protected areas.

  7. Interactions Between Spatially Explicit Conservation and Management Measures: Implications for the Governance of Marine Protected Areas

    NASA Astrophysics Data System (ADS)

    Cárcamo, P. Francisco; Gaymer, Carlos F.

    2013-12-01

    Marine protected areas are not established in an institutional and governance vacuum and managers should pay attention to the wider social-ecological system in which they are immersed. This article examines Islas Choros-Damas Marine Reserve, a small marine protected area located in a highly productive and biologically diverse coastal marine ecosystem in northern Chile, and the interactions between human, institutional, and ecological dimensions beyond those existing within its boundaries. Through documents analysis, surveys, and interviews, we described marine reserve implementation (governing system) and the social and natural ecosystem-to-be-governed. We analyzed the interactions and the connections between the marine reserve and other spatially explicit conservation and/or management measures existing in the area and influencing management outcomes and governance. A top-down approach with poor stakeholder involvement characterized the implementation process. The marine reserve is highly connected with other spatially explicit measures and with a wider social-ecological system through various ecological processes and socio-economic interactions. Current institutional interactions with positive effects on the management and governance are scarce, although several potential interactions may be developed. For the study area, any management action must recognize interferences from outside conditions and consider some of them (e.g., ecotourism management) as cross-cutting actions for the entire social-ecological system. We consider that institutional interactions and the development of social networks are opportunities to any collective effort aiming to improve governance of Islas Choros-Damas marine reserve. Communication of connections and interactions between marine protected areas and the wider social-ecological system (as described in this study) is proposed as a strategy to improve stakeholder participation in Chilean marine protected areas.

  8. Predicting Fish Growth Potential and Identifying Water Quality Constraints: A Spatially-Explicit Bioenergetics Approach

    NASA Astrophysics Data System (ADS)

    Budy, Phaedra; Baker, Matthew; Dahle, Samuel K.

    2011-10-01

    Anthropogenic impairment of water bodies represents a global environmental concern, yet few attempts have successfully linked fish performance to thermal habitat suitability and fewer have distinguished co-varying water quality constraints. We interfaced fish bioenergetics, field measurements, and Thermal Remote Imaging to generate a spatially-explicit, high-resolution surface of fish growth potential, and next employed a structured hypothesis to detect relationships among measures of fish performance and co-varying water quality constraints. Our thermal surface of fish performance captured the amount and spatial-temporal arrangement of thermally-suitable habitat for three focal species in an extremely heterogeneous reservoir, but interpretation of this pattern was initially confounded by seasonal covariation of water residence time and water quality. Subsequent path analysis revealed that in terms of seasonal patterns in growth potential, catfish and walleye responded to temperature, positively and negatively, respectively; crappie and walleye responded to eutrophy (negatively). At the high eutrophy levels observed in this system, some desired fishes appear to suffer from excessive cultural eutrophication within the context of elevated temperatures whereas others appear to be largely unaffected or even enhanced. Our overall findings do not lead to the conclusion that this system is degraded by pollution; however, they do highlight the need to use a sensitive focal species in the process of determining allowable nutrient loading and as integrators of habitat suitability across multiple spatial and temporal scales. We provide an integrated approach useful for quantifying fish growth potential and identifying water quality constraints on fish performance at spatial scales appropriate for whole-system management.

  9. Spatially Explicit Modeling Reveals Cephalopod Distributions Match Contrasting Trophic Pathways in the Western Mediterranean Sea

    PubMed Central

    Puerta, Patricia; Hunsicker, Mary E.; Quetglas, Antoni; Álvarez-Berastegui, Diego; Esteban, Antonio; González, María; Hidalgo, Manuel

    2015-01-01

    Populations of the same species can experience different responses to the environment throughout their distributional range as a result of spatial and temporal heterogeneity in habitat conditions. This highlights the importance of understanding the processes governing species distribution at local scales. However, research on species distribution often averages environmental covariates across large geographic areas, missing variability in population-environment interactions within geographically distinct regions. We used spatially explicit models to identify interactions between species and environmental, including chlorophyll a (Chla) and sea surface temperature (SST), and trophic (prey density) conditions, along with processes governing the distribution of two cephalopods with contrasting life-histories (octopus and squid) across the western Mediterranean Sea. This approach is relevant for cephalopods, since their population dynamics are especially sensitive to variations in habitat conditions and rarely stable in abundance and location. The regional distributions of the two cephalopod species matched two different trophic pathways present in the western Mediterranean Sea, associated with the Gulf of Lion upwelling and the Ebro river discharges respectively. The effects of the studied environmental and trophic conditions were spatially variant in both species, with usually stronger effects along their distributional boundaries. We identify areas where prey availability limited the abundance of cephalopod populations as well as contrasting effects of temperature in the warmest regions. Despite distributional patterns matching productive areas, a general negative effect of Chla on cephalopod densities suggests that competition pressure is common in the study area. Additionally, results highlight the importance of trophic interactions, beyond other common environmental factors, in shaping the distribution of cephalopod populations. Our study presents a valuable

  10. Hydroclimatology of Dual-Peak Annual Cholera Incidence: Insights from a Spatially Explicit Model

    NASA Astrophysics Data System (ADS)

    Bertuzzo, E.; Mari, L.; Righetto, L.; Gatto, M.; Casagrandi, R.; Rodriguez-Iturbe, I.; Rinaldo, A.

    2012-12-01

    Cholera incidence in some regions of the Indian subcontinent may exhibit two annual peaks although the main environmental drivers that have been linked to the disease (e.g. sea surface temperature, zooplankton abundance, river discharge) peak once per year during the summer. An empirical hydroclimatological explanation relating cholera transmission to river flows and to the disease spatial spreading has been recently proposed. We specifically support and substantiate mechanistically such hypothesis by means of a spatially explicit model of cholera transmission. Our framework directly accounts for the role of the river network in transporting and redistributing cholera bacteria among human communities as well as for spatial and temporal annual fluctuations of precipitation and river flows. To single out the single out the hydroclimatologic controls on the prevalence patterns in a non-specific geographical context, we first apply the model to Optimal Channel Networks as a general model of hydrological networks. Moreover, we impose a uniform distribution of population. The model is forced by seasonal environmental drivers, namely precipitation, temperature and chlorophyll concentration in the coastal environment, a proxy for Vibrio cholerae concentration. Our results show that these drivers may suffice to generate dual-peak cholera prevalence patterns for proper combinations of timescales involved in pathogen transport, hydrologic variability and disease unfolding. The model explains the possible occurrence of spatial patterns of cholera incidence characterized by a spring peak confined to coastal areas and a fall peak involving inland regions. We then proceed applying the model to the specific settings of Bay of Bengal accounting for the actual river networks (derived from digital terrain map manipulations), the proper distribution of population (estimated from downscaling of census data based on remotely sensed features) and precipitation patterns. Overall our

  11. Spatially Explicit Modeling Reveals Cephalopod Distributions Match Contrasting Trophic Pathways in the Western Mediterranean Sea.

    PubMed

    Puerta, Patricia; Hunsicker, Mary E; Quetglas, Antoni; Álvarez-Berastegui, Diego; Esteban, Antonio; González, María; Hidalgo, Manuel

    2015-01-01

    Populations of the same species can experience different responses to the environment throughout their distributional range as a result of spatial and temporal heterogeneity in habitat conditions. This highlights the importance of understanding the processes governing species distribution at local scales. However, research on species distribution often averages environmental covariates across large geographic areas, missing variability in population-environment interactions within geographically distinct regions. We used spatially explicit models to identify interactions between species and environmental, including chlorophyll a (Chla) and sea surface temperature (SST), and trophic (prey density) conditions, along with processes governing the distribution of two cephalopods with contrasting life-histories (octopus and squid) across the western Mediterranean Sea. This approach is relevant for cephalopods, since their population dynamics are especially sensitive to variations in habitat conditions and rarely stable in abundance and location. The regional distributions of the two cephalopod species matched two different trophic pathways present in the western Mediterranean Sea, associated with the Gulf of Lion upwelling and the Ebro river discharges respectively. The effects of the studied environmental and trophic conditions were spatially variant in both species, with usually stronger effects along their distributional boundaries. We identify areas where prey availability limited the abundance of cephalopod populations as well as contrasting effects of temperature in the warmest regions. Despite distributional patterns matching productive areas, a general negative effect of Chla on cephalopod densities suggests that competition pressure is common in the study area. Additionally, results highlight the importance of trophic interactions, beyond other common environmental factors, in shaping the distribution of cephalopod populations. Our study presents a valuable

  12. Spatially explicit models, generalized reproduction numbers and the prediction of patterns of waterborne disease

    NASA Astrophysics Data System (ADS)

    Rinaldo, A.; Gatto, M.; Mari, L.; Casagrandi, R.; Righetto, L.; Bertuzzo, E.; Rodriguez-Iturbe, I.

    2012-12-01

    Metacommunity and individual-based theoretical models are studied in the context of the spreading of infections of water-borne diseases along the ecological corridors defined by river basins and networks of human mobility. The overarching claim is that mathematical models can indeed provide predictive insight into the course of an ongoing epidemic, potentially aiding real-time emergency management in allocating health care resources and by anticipating the impact of alternative interventions. To support the claim, we examine the ex-post reliability of published predictions of the 2010-2011 Haiti cholera outbreak from four independent modeling studies that appeared almost simultaneously during the unfolding epidemic. For each modeled epidemic trajectory, it is assessed how well predictions reproduced the observed spatial and temporal features of the outbreak to date. The impact of different approaches is considered to the modeling of the spatial spread of V. cholera, the mechanics of cholera transmission and in accounting for the dynamics of susceptible and infected individuals within different local human communities. A generalized model for Haitian epidemic cholera and the related uncertainty is thus constructed and applied to the year-long dataset of reported cases now available. Specific emphasis will be dedicated to models of human mobility, a fundamental infection mechanism. Lessons learned and open issues are discussed and placed in perspective, supporting the conclusion that, despite differences in methods that can be tested through model-guided field validation, mathematical modeling of large-scale outbreaks emerges as an essential component of future cholera epidemic control. Although explicit spatial modeling is made routinely possible by widespread data mapping of hydrology, transportation infrastructure, population distribution, and sanitation, the precise condition under which a waterborne disease epidemic can start in a spatially explicit setting is

  13. Graph theory as a proxy for spatially explicit population models in conservation planning.

    PubMed

    Minor, Emily S; Urban, Dean L

    2007-09-01

    Spatially explicit population models (SEPMs) are often considered the best way to predict and manage species distributions in spatially heterogeneous landscapes. However, they are computationally intensive and require extensive knowledge of species' biology and behavior, limiting their application in many cases. An alternative to SEPMs is graph theory, which has minimal data requirements and efficient algorithms. Although only recently introduced to landscape ecology, graph theory is well suited to ecological applications concerned with connectivity or movement. This paper compares the performance of graph theory to a SEPM in selecting important habitat patches for Wood Thrush (Hylocichla mustelina) conservation. We use both models to identify habitat patches that act as population sources and persistent patches and also use graph theory to identify patches that act as stepping stones for dispersal. Correlations of patch rankings were very high between the two models. In addition, graph theory offers the ability to identify patches that are very important to habitat connectivity and thus long-term population persistence across the landscape. We show that graph theory makes very similar predictions in most cases and in other cases offers insight not available from the SEPM, and we conclude that graph theory is a suitable and possibly preferable alternative to SEPMs for species conservation in heterogeneous landscapes.

  14. Exploring behavior of an unusual megaherbivore: A spatially explicit foraging model of the hippopotamus

    USGS Publications Warehouse

    Lewison, R.L.; Carter, J.

    2004-01-01

    Herbivore foraging theories have been developed for and tested on herbivores across a range of sizes. Due to logistical constraints, however, little research has focused on foraging behavior of megaherbivores. Here we present a research approach that explores megaherbivore foraging behavior, and assesses the applicability of foraging theories developed on smaller herbivores to megafauna. With simulation models as reference points for the analysis of empirical data, we investigate foraging strategies of the common hippopotamus (Hippopotamus amphibius). Using a spatially explicit individual based foraging model, we apply traditional herbivore foraging strategies to a model hippopotamus, compare model output, and then relate these results to field data from wild hippopotami. Hippopotami appear to employ foraging strategies that respond to vegetation characteristics, such as vegetation quality, as well as spatial reference information, namely distance to a water source. Model predictions, field observations, and comparisons of the two support that hippopotami generally conform to the central place foraging construct. These analyses point to the applicability of general herbivore foraging concepts to megaherbivores, but also point to important differences between hippopotami and other herbivores. Our synergistic approach of models as reference points for empirical data highlights a useful method of behavioral analysis for hard-to-study megafauna. ?? 2003 Elsevier B.V. All rights reserved.

  15. Spatially explicit rangeland erosion monitoring using high-resolution digital aerial imagery

    USGS Publications Warehouse

    Gillan, Jeffrey K.; Karl, Jason W.; Barger, Nichole N.; Elaksher, Ahmed; Duniway, Michael C.

    2016-01-01

    Nearly all of the ecosystem services supported by rangelands, including production of livestock forage, carbon sequestration, and provisioning of clean water, are negatively impacted by soil erosion. Accordingly, monitoring the severity, spatial extent, and rate of soil erosion is essential for long-term sustainable management. Traditional field-based methods of monitoring erosion (sediment traps, erosion pins, and bridges) can be labor intensive and therefore are generally limited in spatial intensity and/or extent. There is a growing effort to monitor natural resources at broad scales, which is driving the need for new soil erosion monitoring tools. One remote-sensing technique that can be used to monitor soil movement is a time series of digital elevation models (DEMs) created using aerial photogrammetry methods. By geographically coregistering the DEMs and subtracting one surface from the other, an estimate of soil elevation change can be created. Such analysis enables spatially explicit quantification and visualization of net soil movement including erosion, deposition, and redistribution. We constructed DEMs (12-cm ground sampling distance) on the basis of aerial photography immediately before and 1 year after a vegetation removal treatment on a 31-ha Piñon-Juniper woodland in southeastern Utah to evaluate the use of aerial photography in detecting soil surface change. On average, we were able to detect surface elevation change of ± 8−9cm and greater, which was sufficient for the large amount of soil movement exhibited on the study area. Detecting more subtle soil erosion could be achieved using the same technique with higher-resolution imagery from lower-flying aircraft such as unmanned aerial vehicles. DEM differencing and process-focused field methods provided complementary information and a more complete assessment of soil loss and movement than any single technique alone. Photogrammetric DEM differencing could be used as a technique to

  16. Density-dependent home-range size revealed by spatially explicit capture–recapture

    USGS Publications Warehouse

    Efford, M.G.; Dawson, Deanna K.; Jhala, Y.V.; Qureshi, Q.

    2016-01-01

    The size of animal home ranges often varies inversely with population density among populations of a species. This fact has implications for population monitoring using spatially explicit capture–recapture (SECR) models, in which both the scale of home-range movements σ and population density D usually appear as parameters, and both may vary among populations. It will often be appropriate to model a structural relationship between population-specific values of these parameters, rather than to assume independence. We suggest re-parameterizing the SECR model using kp = σp √Dp, where kp relates to the degree of overlap between home ranges and the subscript p distinguishes populations. We observe that kp is often nearly constant for populations spanning a range of densities. This justifies fitting a model in which the separate kp are replaced by the single parameter k and σp is a density-dependent derived parameter. Continuous density-dependent spatial variation in σ may also be modelled, using a scaled non-Euclidean distance between detectors and the locations of animals. We illustrate these methods with data from automatic photography of tigers (Panthera tigris) across India, in which the variation is among populations, from mist-netting of ovenbirds (Seiurus aurocapilla) in Maryland, USA, in which the variation is within a single population over time, and from live-trapping of brushtail possums (Trichosurus vulpecula) in New Zealand, modelling spatial variation within one population. Possible applications and limitations of the methods are discussed. A model in which kp is constant, while density varies, provides a parsimonious null model for SECR. The parameter k of the null model is a concise summary of the empirical relationship between home-range size and density that is useful in comparative studies. We expect deviations from this model, particularly the dependence of kp on covariates, to be biologically interesting.

  17. Anthropogenic and natural methane fluxes in Switzerland synthesized within a spatially-explicit inventory

    NASA Astrophysics Data System (ADS)

    Hiller, R. V.; Bretscher, D.; DelSontro, T.; Diem, T.; Eugster, W.; Henneberger, R.; Hobi, S.; Hodson, E.; Imer, D.; Kreuzer, M.; Künzle, T.; Merbold, L.; Niklaus, P. A.; Rihm, B.; Schellenberger, A.; Schroth, M. H.; Schubert, C. J.; Siegrist, H.; Stieger, J.; Buchmann, N.; Brunner, D.

    2013-09-01

    We present the first high-resolution (500 m × 500 m) gridded methane (CH4) emission inventory for Switzerland, which integrates the national emission totals reported to the United Nations Framework Convention on Climate Change (UNFCCC) and recent CH4 flux studies conducted by research groups across Switzerland. In addition to anthropogenic emissions, we also include natural and semi-natural CH4 fluxes, i.e., emissions from lakes and reservoirs, wetlands, wild animals as well as uptake by forest soils. National CH4 emissions were disaggregated using detailed geostatistical information on source locations and their spatial extent and process- or area-specific emission factors. In Switzerland, the highest CH4 emissions in 2011 originated from the agricultural sector (150 Gg CH4 yr-1), mainly produced by ruminants and manure management, followed by emissions from waste management (15 Gg CH4 yr-1) mainly from landfills and the energy sector (12 Gg CH4 yr-1), which was dominated by emissions from natural gas distribution. Compared to the anthropogenic sources, emissions from natural and semi-natural sources were relatively small (6 Gg CH4 yr-1), making up only 3 % of the total emissions in Switzerland. CH4 fluxes from agricultural soils were estimated to be not significantly different from zero (between -1.5 and 0 Gg CH4 yr-1), while forest soils are a CH4 sink (approx. -2.8 Gg CH4 yr-1), partially offsetting other natural emissions. Estimates of uncertainties are provided for the different sources, including an estimate of spatial disaggregation errors deduced from a comparison with a global (EDGAR v4.2) and a European CH4 inventory (TNO/MACC). This new spatially-explicit emission inventory for Switzerland will provide valuable input for regional scale atmospheric modeling and inverse source estimation.

  18. Anthropogenic and natural methane fluxes in Switzerland synthesized within a spatially explicit inventory

    NASA Astrophysics Data System (ADS)

    Hiller, R. V.; Bretscher, D.; DelSontro, T.; Diem, T.; Eugster, W.; Henneberger, R.; Hobi, S.; Hodson, E.; Imer, D.; Kreuzer, M.; Künzle, T.; Merbold, L.; Niklaus, P. A.; Rihm, B.; Schellenberger, A.; Schroth, M. H.; Schubert, C. J.; Siegrist, H.; Stieger, J.; Buchmann, N.; Brunner, D.

    2014-04-01

    We present the first high-resolution (500 m × 500 m) gridded methane (CH4) emission inventory for Switzerland, which integrates 90 % of the national emission totals reported to the United Nations Framework Convention on Climate Change (UNFCCC) and recent CH4 flux studies conducted by research groups across Switzerland. In addition to anthropogenic emissions, we also include natural and semi-natural CH4 fluxes, i.e., emissions from lakes and reservoirs, wetlands, wild animals as well as uptake by forest soils. National CH4 emissions were disaggregated using detailed geostatistical information on source locations and their spatial extent and process- or area-specific emission factors. In Switzerland, the highest CH4 emissions in 2011 originated from the agricultural sector (150 Gg CH4 yr-1), mainly produced by ruminants and manure management, followed by emissions from waste management (15 Gg CH4 yr-1) mainly from landfills and the energy sector (12 Gg CH4 yr-1), which was dominated by emissions from natural gas distribution. Compared with the anthropogenic sources, emissions from natural and semi-natural sources were relatively small (6 Gg CH4 yr-1), making up only 3% of the total emissions in Switzerland. CH4 fluxes from agricultural soils were estimated to be not significantly different from zero (between -1.5 and 0 Gg CH4 yr-1), while forest soils are a CH4 sink (approx. -2.8 Gg CH4 yr-1), partially offsetting other natural emissions. Estimates of uncertainties are provided for the different sources, including an estimate of spatial disaggregation errors deduced from a comparison with a global (EDGAR v4.2) and an European (TNO/MACC) CH4 inventory. This new spatially explicit emission inventory for Switzerland will provide valuable input for regional-scale atmospheric modeling and inverse source estimation.

  19. Spatially explicit modeling of habitat dynamics and fish population persistence in an intermittent lowland stream.

    PubMed

    Perry, George L W; Bond, Nicholas R

    2009-04-01

    In temperate and arid climate zones many streams and rivers flow intermittently, seasonally contracting to a sequence of isolated pools or waterholes over the dry period, before reconnecting in the wetter parts of the year. This seasonal drying process is central to our understanding of the population dynamics of aquatic organisms such as fish and invertebrates in these systems. However, there is a dearth of empirical data on the temporal dynamics of such populations. We describe a spatially explicit individual-based model (SEIBM) of fish population dynamics in such systems, which we use to explore the long-term population viability of the carp gudgeon Hypseleotris spp. in a lowland stream in southeastern Australia. We explicitly consider the impacts of interannual variability in stream flow, for example, due to drought, on habitat availability and hence population persistence. Our results support observations that these populations are naturally highly variable, with simulated fish population sizes typically varying over four orders of magnitude within a 50-year simulation run. The most sensitive parameters in the model relate to the amount of water (habitat) in the system: annual rainfall, seepage loss from the pools, and the carrying capacity (number of individuals per cubic meter) of the pools as they dry down. It seems likely that temporal source sink dynamics allow the fish populations to persist in these systems, with good years (high rainfall and brief cease-to-flow [CTF] periods) buffering against periods of drought. In dry years during which the stream may contract to very low numbers of pools, each of these persistent pools becomes crucial for the persistence of the population in the system. Climate change projections for this area suggest decreases in rainfall and increased incidence of drought; under these environmental conditions the long-term persistence of these fish populations is uncertain.

  20. Spatially explicit neutral models for population genetics and community ecology: Extensions of the Neyman-Scott clustering process.

    PubMed

    Shimatani, Ichiro K

    2010-02-01

    Spatially explicit models relating to plant populations have developed little since Felsenstein (1975) pointed out that if limited seed dispersal causes clustering of individuals, such models cannot reach an equilibrium. This paper aims to resolve this issue by modifying the Neyman-Scott cluster point process. The new point processes are dynamic models with random immigration, and the continuous increase in the clustering of individuals stops at some level. Hence, an equilibrium state is achieved, and new individual-based spatially explicit neutral coalescent models are established. By fitting the spatial structure at equilibrium to individual spatial distribution data, we can indirectly estimate seed dispersal and effective population density. These estimates are improved when genetic data are available, and become even more sophisticated if spatial distribution and genetic data pertaining to the offspring are also available.

  1. A hydrologically explicit, spatially exact, classification of landforms for Canada at 1:500,000 scale.

    NASA Astrophysics Data System (ADS)

    MacMillan, Robert A.; Geng, Xiaoyuan; Smith, Scott; Zawadzka, Joanna; Hengl, Tom

    2016-04-01

    A new approach for classifying landform types has been developed and applied to all of Canada using a 250 m DEM. The resulting LandMapR classification has been designed to provide a stable and consistent spatial fabric to act as initial proto-polygons to be used in updating the current 1:1 M scale Soil Landscapes of Canada map to 1:500,000 scale. There is a desire to make the current SLC polygon fabric more consistent across the country, more correctly aligned to observable hydrological and landscape features, more spatially exact, more detailed and more interpretable. The approach is essentially a modification of the Hammond (1954) criteria for classifying macro landform types as implemented for computerized analysis by Dikau (1989, 1991) and Brabyn (1998). The major modification is that the key input variables of local relief and relative position in the landscape are computed for specific hillslopes that occur between individual, explicitly defined, channels and divides. While most approaches, including Dikau et al., (1991) and SOTER (Dobos et al., 2005) compute relative relief and landscape position within a neighborhood analysis window (NAW) of some fixed size (9,600 m and 1 km respectively) the LandMapR method assesses these variables based on explicit analysis of flow paths between locally defined divides and channels (or lakes). We have modified the Hammond criteria by splitting the lowest relief class of 0-30 m into 4 classes of 0-0 m, 0-1 m, 1-10 m and 10-30 m) in order to be able to better differentiate subtle landform features in areas of low relief. Essentially this enables recognition of lakes and open water (0 relief and 0 slope), shorelines and littoral zones (0-1 m), nearly flat, low-relief landforms (1-10 m) and low relief undulating plains (10-30 m). We also modified the Hammond approach for separating upper versus lower landform positions used to differentiate flat areas in uplands from flat lowlands. We instead differentiate 3 relative slope

  2. Remote Sensing of Vegetation Nitrogen Content for Spatially Explicit Carbon and Water Cycle Estimation

    NASA Astrophysics Data System (ADS)

    Zhang, Y. L.; Miller, J. R.; Chen, J. M.

    2009-05-01

    Foliage nitrogen concentration is a determinant of photosynthetic capacity of leaves, thereby an important input to ecological models for estimating terrestrial carbon and water budgets. Recently, spectrally continuous airborne hyperspectral remote sensing imagery has proven to be useful for retrieving an important related parameter, total chlorophyll content at both leaf and canopy scales. Thus remote sensing of vegetation biochemical parameters has promising potential for improving the prediction of global carbon and water balance patterns. In this research, we explored the feasibility of estimating leaf nitrogen content using hyperspectral remote sensing data for spatially explicit estimation of carbon and water budgets. Multi-year measurements of leaf biochemical contents of seven major boreal forest species were carried out in northeastern Ontario, Canada. The variation of leaf chlorophyll and nitrogen content in response to various growth conditions, and the relationship between them,were investigated. Despite differences in plant type (deciduous and evergreen), leaf age, stand growth conditions and developmental stages, leaf nitrogen content was strongly correlated with leaf chlorophyll content on a mass basis during the active growing season (r2=0.78). With this general correlation, leaf nitrogen content was estimated from leaf chlorophyll content at an accuracy of RMSE=2.2 mg/g, equivalent to 20.5% of the average measured leaf nitrogen content. Based on this correlation and a hyperspectral remote sensing algorithm for leaf chlorophyll content retrieval, the spatial variation of leaf nitrogen content was inferred from the airborne hyperspectral remote sensing imagery acquired by Compact Airborne Spectrographic Imager (CASI). A process-based ecological model Boreal Ecosystem Productivity Simulator (BEPS) was used for estimating terrestrial carbon and water budgets. In contrast to the scenario with leaf nitrogen content assigned as a constant value without

  3. Spatially explicit scenario analysis for reconciling agricultural expansion, forest protection, and carbon conservation in Indonesia.

    PubMed

    Koh, Lian Pin; Ghazoul, Jaboury

    2010-06-15

    Palm oil is the world's most important vegetable oil in terms of production quantity. Indonesia, the world's largest palm-oil producer, plans to double its production by 2020, with unclear implications for the other national priorities of food (rice) production, forest and biodiversity protection, and carbon conservation. We modeled the outcomes of alternative development scenarios and show that every single-priority scenario had substantial tradeoffs associated with other priorities. The exception was a hybrid approach wherein expansion targeted degraded and agricultural lands that are most productive for oil palm, least suitable for food cultivation, and contain the lowest carbon stocks. This approach avoided any loss in forest or biodiversity and substantially ameliorated the impacts of oil-palm expansion on carbon stocks (limiting net loss to 191.6 million tons) and annual food production capacity (loss of 1.9 million tons). Our results suggest that the environmental and land-use tradeoffs associated with oil-palm expansion can be largely avoided through the implementation of a properly planned and spatially explicit development strategy.

  4. Life cycle impact assessment of terrestrial acidification: modeling spatially explicit soil sensitivity at the global scale.

    PubMed

    Roy, Pierre-Olivier; Deschênes, Louise; Margni, Manuele

    2012-08-07

    This paper presents a novel life cycle impact assessment (LCIA) approach to derive spatially explicit soil sensitivity indicators for terrestrial acidification. This global approach is compatible with a subsequent damage assessment, making it possible to consistently link the developed midpoint indicators with a later endpoint assessment along the cause-effect chain-a prerequisite in LCIA. Four different soil chemical indicators were preselected to evaluate sensitivity factors (SFs) for regional receiving environments at the global scale, namely the base cations to aluminum ratio, aluminum to calcium ratio, pH, and aluminum concentration. These chemical indicators were assessed using the PROFILE geochemical steady-state soil model and a global data set of regional soil parameters developed specifically for this study. Results showed that the most sensitive regions (i.e., where SF is maximized) are in Canada, northern Europe, the Amazon, central Africa, and East and Southeast Asia. However, the approach is not bereft of uncertainty. Indeed, a Monte Carlo analysis showed that input parameter variability may induce SF variations of up to over 6 orders of magnitude for certain chemical indicators. These findings improve current practices and enable the development of regional characterization models to assess regional life cycle inventories in a global economy.

  5. Landscape-based spatially explicit species index models for everglades restoration

    USGS Publications Warehouse

    Curnutt, J.L.; Comiskey, J.; Nott, M.P.; Gross, L.J.

    2000-01-01

    As part of the effort to restore the ???10 000-km2 Everglades drainage in southern Florida, USA, we developed spatially explicit species index (SESI) models of a number of species and species groups. In this paper we describe the methodology and results of three such models: those for the Cape Sable Seaside Sparrow and the Snail Kite, and the species group model of long-legged wading birds. SESI models are designed to produce relative comparisons of one management alternative to a base scenario or to another alternative. The model outputs do not provide an exact quantitative prediction of future biotic group responses, but rather, when applying the same input data and different hydrologic plans, the models provide the best available means to compare the relative response of the biotic groups. We compared four alternative hydrologic management scenarios to a base scenario (i.e., predicted conditions assuming that current water management practices continue). We ranked the results of the comparisons for each set of models. No one scenario was beneficial to all species; however, they provide a uniform assessment, based on the best available observational information, of relative species responses to alternative water-management plans. As such, these models were used extensively in the restoration planning.

  6. Spatially explicit forest characteristics of Europe through integrating Forest Inventory and Remotely sensed data

    NASA Astrophysics Data System (ADS)

    Moreno, Adam; Neumann, Mathias; Hasenauer, Hubert

    2015-04-01

    Carbon stock estimates are critical for any carbon trading scheme or climate change mitigation strategy. Understanding the carbon allocation and the structure of its ecosystem further help scientists and policy makers develop realistic plans for utilizing these systems. Forests play an important role in global carbon storage. Therefore it is imperative to include forests in any climate change mitigation and/or carbon trading scheme. Currently there is no estimate of forest carbon stocks and allocation nor forest structure maps throughout Europe. We compiled National Forest Inventory (NFI) data from 12 European countries. We integrated the NFI data with Net Primary Production data (NPP) from Moderate Resolution Imaging Spectroradiometer (MODIS), tree height data from Light Detection and Ranging (LIDAR) data from the Geosciences Laser Altimeter System (GLAS) instrument, and various other spatially explicit data sets. Through this process of integration of terrestrial and space based data we produced wall-to-wall forest characteristics maps of Europe. These maps include forest age, basal area, average diameter at breast height, total carbon, carbon allocation (stem, branches, leaves, roots), and other characteristics derived from forest inventory data. These maps cover Europe - including countries without terrestrial data - and give one coherent harmonized data set of current forest structure and carbon storage on a 16x16km resolution. The methodology presented here has the potential to be used world-wide in regions with data limitations or with limited access to data.

  7. Cholera in the Lake Kivu region (DRC): Integrating remote sensing and spatially explicit epidemiological modeling

    NASA Astrophysics Data System (ADS)

    Finger, Flavio; Knox, Allyn; Bertuzzo, Enrico; Mari, Lorenzo; Bompangue, Didier; Gatto, Marino; Rodriguez-Iturbe, Ignacio; Rinaldo, Andrea

    2014-07-01

    Mathematical models of cholera dynamics can not only help in identifying environmental drivers and processes that influence disease transmission, but may also represent valuable tools for the prediction of the epidemiological patterns in time and space as well as for the allocation of health care resources. Cholera outbreaks have been reported in the Democratic Republic of the Congo since the 1970s. They have been ravaging the shore of Lake Kivu in the east of the country repeatedly during the last decades. Here we employ a spatially explicit, inhomogeneous Markov chain model to describe cholera incidence in eight health zones on the shore of the lake. Remotely sensed data sets of chlorophyll a concentration in the lake, precipitation and indices of global climate anomalies are used as environmental drivers in addition to baseline seasonality. The effect of human mobility is also modelled mechanistically. We test several models on a multiyear data set of reported cholera cases. The best fourteen models, accounting for different environmental drivers, and selected using the Akaike information criterion, are formally compared via proper cross validation. Among these, the one accounting for seasonality, El Niño Southern Oscillation, precipitation and human mobility outperforms the others in cross validation. Some drivers (such as human mobility and rainfall) are retained only by a few models, possibly indicating that the mechanisms through which they influence cholera dynamics in the area will have to be investigated further.

  8. Methods used to parameterize the spatially-explicit components of a state-and-transition simulation model

    USGS Publications Warehouse

    Sleeter, Rachel; Acevedo, William; Soulard, Christopher E.; Sleeter, Benjamin M.

    2015-01-01

    Spatially-explicit state-and-transition simulation models of land use and land cover (LULC) increase our ability to assess regional landscape characteristics and associated carbon dynamics across multiple scenarios. By characterizing appropriate spatial attributes such as forest age and land-use distribution, a state-and-transition model can more effectively simulate the pattern and spread of LULC changes. This manuscript describes the methods and input parameters of the Land Use and Carbon Scenario Simulator (LUCAS), a customized state-and-transition simulation model utilized to assess the relative impacts of LULC on carbon stocks for the conterminous U.S. The methods and input parameters are spatially explicit and describe initial conditions (strata, state classes and forest age), spatial multipliers, and carbon stock density. Initial conditions were derived from harmonization of multi-temporal data characterizing changes in land use as well as land cover. Harmonization combines numerous national-level datasets through a cell-based data fusion process to generate maps of primary LULC categories. Forest age was parameterized using data from the North American Carbon Program and spatially-explicit maps showing the locations of past disturbances (i.e. wildfire and harvest). Spatial multipliers were developed to spatially constrain the location of future LULC transitions. Based on distance-decay theory, maps were generated to guide the placement of changes related to forest harvest, agricultural intensification/extensification, and urbanization. We analyze the spatially-explicit input parameters with a sensitivity analysis, by showing how LUCAS responds to variations in the model input. This manuscript uses Mediterranean California as a regional subset to highlight local to regional aspects of land change, which demonstrates the utility of LUCAS at many scales and applications.

  9. Integral assessment of floodplains as a basis for spatially-explicit flood loss forecasts

    NASA Astrophysics Data System (ADS)

    Zischg, Andreas Paul; Mosimann, Markus; Weingartner, Rolf

    2016-04-01

    A key aspect of disaster prevention is flood discharge forecasting which is used for early warning and therefore as a decision support for intervention forces. Hereby, the phase between the issued forecast and the time when the expected flood occurs is crucial for an optimal planning of the intervention. Typically, river discharge forecasts cover the regional level only, i.e. larger catchments. However, it is important to note that these forecasts are not useable directly for specific target groups on local level because these forecasts say nothing about the consequences of the predicted flood in terms of affected areas, number of exposed residents and houses. For this, on one hand simulations of the flooding processes and on the other hand data of vulnerable objects are needed. Furthermore, flood modelling in a high spatial and temporal resolution is required for robust flood loss estimation. This is a resource-intensive task from a computing time point of view. Therefore, in real-time applications flood modelling in 2D is not suited. Thus, forecasting flood losses in the short-term (6h-24h in advance) requires a different approach. Here, we propose a method to downscale the river discharge forecast to a spatially-explicit flood loss forecast. The principal procedure is to generate as many flood scenarios as needed in advance to represent the flooded areas for all possible flood hydrographs, e.g. very high peak discharges of short duration vs. high peak discharges with high volumes. For this, synthetic flood hydrographs were derived from the hydrologic time series. Then, the flooded areas of each scenario were modelled with a 2D flood simulation model. All scenarios were intersected with the dataset of vulnerable objects, in our case residential, agricultural and industrial buildings with information about the number of residents, the object-specific vulnerability, and the monetary value of the objects. This dataset was prepared by a data-mining approach. For each

  10. SPATIALLY EXPLICIT MICRO-LEVEL MODELLING OF LAND USE CHANGE AT THE RURAL-URBAN INTERFACE. (R828012)

    EPA Science Inventory

    This paper describes micro-economic models of land use change applicable to the rural–urban interface in the US. Use of a spatially explicit micro-level modelling approach permits the analysis of regional patterns of land use as the aggregate outcomes of many, disparate...

  11. Spatially explicit modeling of conflict zones between wildlife and snow sports: prioritizing areas for winter refuges.

    PubMed

    Braunisch, Veronika; Patthey, Patrick; Arlettaz, Raphaël

    2011-04-01

    Outdoor winter recreation exerts an increasing pressure upon mountain ecosystems, with unpredictable, free-ranging activities (e.g., ski mountaineering, snowboarding, and snowshoeing) representing a major source of stress for wildlife. Mitigating anthropogenic disturbance requires the spatially explicit prediction of the interference between the activities of humans and wildlife. We applied spatial modeling to localize conflict zones between wintering Black Grouse (Tetrao tetrix), a declining species of Alpine timberline ecosystems, and two free-ranging winter sports (off-piste skiing [including snow-boarding] and snowshoeing). Track data (snow-sports and birds' traces) obtained from aerial photographs taken over a 585-km transect running along the timberline, implemented within a maximum entropy model, were used to predict the occurrence of snow sports and Black Grouse as a function of landscape characteristics. By modeling Black Grouse presence in the theoretical absence of free-ranging activities and ski infrastructure, we first estimated the amount of habitat reduction caused by these two factors. The models were then extrapolated to the altitudinal range occupied by Black Grouse, while the spatial extent and intensity of potential conflict were assessed by calculating the probability of human-wildlife co-occurrence. The two snow-sports showed different distribution patterns. Skiers' occurrence was mainly determined by ski-lift presence and a smooth terrain, while snowshoers' occurrence was linked to hiking or skiing routes and moderate slopes. Wintering Black Grouse avoided ski lifts and areas frequented by free-ranging snow sports. According to the models, Black Grouse have faced a substantial reduction of suitable wintering habitat along the timberline transect: 12% due to ski infrastructure and another 16% when adding free-ranging activities. Extrapolating the models over the whole study area results in an overall habitat loss due to ski infrastructure of

  12. A risk assessment example for soil invertebrates using spatially explicit agent-based models.

    PubMed

    Reed, Melissa; Alvarez, Tania; Chelinho, Sónia; Forbes, Valery; Johnston, Alice; Meli, Mattia; Voss, Frank; Pastorok, Rob

    2016-01-01

    Current risk assessment methods for measuring the toxicity of plant protection products (PPPs) on soil invertebrates use standardized laboratory conditions to determine acute effects on mortality and sublethal effects on reproduction. If an unacceptable risk is identified at the lower tier, population-level effects are assessed using semifield and field trials at a higher tier because modeling methods for extrapolating available lower-tier information to population effects have not yet been implemented. Field trials are expensive, time consuming, and cannot be applied to variable landscape scenarios. Mechanistic modeling of the toxicological effects of PPPs on individuals and their responses combined with simulation of population-level response shows great potential in fulfilling such a need, aiding ecologically informed extrapolation. Here, we introduce and demonstrate the potential of 2 population models for ubiquitous soil invertebrates (collembolans and earthworms) as refinement options in current risk assessment. Both are spatially explicit agent-based models (ABMs), incorporating individual and landscape variability. The models were used to provide refined risk assessments for different application scenarios of a hypothetical pesticide applied to potato crops (full-field spray onto the soil surface [termed "overall"], in-furrow, and soil-incorporated pesticide applications). In the refined risk assessment, the population models suggest that soil invertebrate populations would likely recover within 1 year after pesticide application, regardless of application method. The population modeling for both soil organisms also illustrated that a lower predicted average environmental concentration in soil (PECsoil) could potentially lead to greater effects at the population level, depending on the spatial heterogeneity of the pesticide and the behavior of the soil organisms. Population-level effects of spatial-temporal variations in exposure were elucidated in the

  13. Hydroclimatology of Dual Peak Cholera Incidence in Bengal Region: Inferences from a Spatial Explicit Model

    NASA Astrophysics Data System (ADS)

    Bertuzzo, E.; Mari, L.; Righetto, L.; Casagrandi, R.; Gatto, M.; Rodriguez-Iturbe, I.; Rinaldo, A.

    2010-12-01

    The seasonality of cholera and its relation with environmental drivers are receiving increasing interest and research efforts, yet they remain unsatisfactorily understood. A striking example is the observed annual cycle of cholera incidence in the Bengal region which exhibits two peaks despite the main environmental drivers that have been linked to the disease (air and sea surface temperature, zooplankton density, river discharge) follow a synchronous single-peak annual pattern. A first outbreak, mainly affecting the coastal regions, occurs in spring and it is followed, after a period of low incidence during summer, by a second, usually larger, peak in autumn also involving regions situated farther inland. A hydroclimatological explanation for this unique seasonal cycle has been recently proposed: the low river spring flows favor the intrusion of brackish water (the natural environment of the causative agent of the disease) which, in turn, triggers the first outbreak. The summer rising river discharges have a temporary dilution effect and prompt the repulsion of contaminated water which lowers the disease incidence. However, the monsoon flooding, together with the induced crowding of the population and the failure of the sanitation systems, can possibly facilitate the spatial transmission of the disease and promote the autumn outbreak. We test this hypothesis using a mechanistic, spatially explicit model of cholera epidemic. The framework directly accounts for the role of the river network in transporting and redistributing cholera bacteria among human communities as well as for the annual fluctuation of the river flow. The model is forced with the actual environmental drivers of the region, namely river flow and temperature. Our results show that these two drivers, both having a single peak in the summer, can generate a double peak cholera incidence pattern. Besides temporal patterns, the model is also able to qualitatively reproduce spatial patterns characterized

  14. Spatially Explicit Simulation of Mesotopographic Controls on Peatland Hydrology and Carbon Fluxes

    NASA Astrophysics Data System (ADS)

    Sonnentag, O.; Chen, J. M.; Roulet, N. T.

    2006-12-01

    A number of field carbon flux measurements, paleoecological records, and model simulations have acknowledged the importance of northern peatlands in terrestrial carbon cycling and methane emissions. An important parameter in peatlands that influences both net primary productivity, the net gain of carbon through photosynthesis, and decomposition under aerobic and anaerobic conditions, is the position of the water table. Biological and physical processes involved in peatland carbon dynamics and their hydrological controls operate at different spatial scales. The highly variable hydraulic characteristics of the peat profile and the overall shape of the peat body as defined by its surface topography at the mesoscale (104 m2) are of major importance for peatland water table dynamics. Common types of peatlands include bogs with a slightly domed centre. As a result of the convex profile, their water supply is restricted to atmospheric inputs, and water is mainly shed by shallow subsurface flow. From a modelling perspective the influence of mesotopographic controls on peatland hydrology and thus carbon balance requires that process-oriented models that examine the links between peatland hydrology, ecosystem functioning, and climate must incorporate some form of lateral subsurface flow consideration. Most hydrological and ecological modelling studies in complex terrain explicitly account for the topographic controls on lateral subsurface flow through digital elevation models. However, modelling studies in peatlands often employ simple empirical parameterizations of lateral subsurface flow, neglecting the influence of peatlands low relief mesoscale topography. Our objective is to explicitly simulate the mesotopographic controls on peatland hydrology and carbon fluxes using the Boreal Ecosystem Productivity Simulator (BEPS) adapted to northern peatlands. BEPS is a process-oriented ecosystem model in a remote sensing framework that takes into account peatlands multi

  15. Spatially explicit exposure assessment for small streams in catchments of the orchard growing region `Lake Constance

    NASA Astrophysics Data System (ADS)

    Golla, B.; Bach, M.; Krumpe, J.

    2009-04-01

    1. Introduction Small streams differ greatly from the standardised water body used in the context of aquatic risk assessment for the regulation of plant protection products in Germany. The standard water body is static, with a depth of 0.3 m and a width of 1.0 m. No dilution or water replacement takes place. Spray drift happens always in direction to the water body. There is no variability in drift deposition rate (90th percentile spray drift deposition values [2]). There is no spray drift filtering by vegetation. The application takes place directly adjacent to the water body. In order to establish a more realistic risk assessment procedure the Federal Office for Consumer Protection and Food Safety (BVL) and the Federal Environment Agency (UBA) aggreed to replace deterministic assumptions with data distributions and spatially explicit data and introduce probabilistic methods [3, 4, 5]. To consider the spatial and temporal variability in the exposure situations of small streams the hydraulic and morphological characteristics of catchments need to be described as well as the spatial distribution of fields treated with pesticides. As small streams are the dominant type of water body in most German orchard regions, we use the growing region Lake Constance as pilot region. 2. Materials and methods During field surveys we derive basic morphological parameters for small streams in the Lake Constance region. The mean water width/depth ratio is 13 with a mean depth of 0.12 m. The average residence time is 5.6 s/m (n=87) [1]. Orchards are mostly located in the upper parts of the catchments. Based on an authoritative dataset on rivers and streams of Germany (ATKIS DLM25) we constructed a directed network topology for the Lake Constance region. The gradient of the riverbed is calculated for river stretches of > 500 m length. The network for the pilot region consists of 2000 km rivers and streams. 500 km stream length are located within a distance of 150 m to orchards. Within

  16. A spatially explicit decision support model for restoration of forest bird habitat

    USGS Publications Warehouse

    Twedt, D.J.; Uihlein, W.B.; Elliott, A.B.

    2006-01-01

    The historical area of bottomland hardwood forest in the Mississippi Alluvial Valley has been reduced by >75%. Agricultural production was the primary motivator for deforestation; hence, clearing deliberately targeted higher and drier sites. Remaining forests are highly fragmented and hydrologically altered, with larger forest fragments subject to greater inundation, which has negatively affected many forest bird populations. We developed a spatially explicit decision support model, based on a Partners in Flight plan for forest bird conservation, that prioritizes forest restoration to reduce forest fragmentation and increase the area of forest core (interior forest >1 km from 'hostile' edge). Our primary objective was to increase the number of forest patches that harbor >2000 ha of forest core, but we also sought to increase the number and area of forest cores >5000 ha. Concurrently, we targeted restoration within local (320 km2) landscapes to achieve >60% forest cover. Finally, we emphasized restoration of higher-elevation bottomland hardwood forests in areas where restoration would not increase forest fragmentation. Reforestation of 10% of restorable land in the Mississippi Alluvial Valley (approximately 880,000 ha) targeted at priorities established by this decision support model resulted in approximately 824,000 ha of new forest core. This is more than 32 times the amount of core forest added through reforestation of randomly located fields (approximately 25,000 ha). The total area of forest core (1.6 million ha) that resulted from targeted restoration exceeded habitat objectives identified in the Partners in Flight Bird Conservation Plan and approached the area of forest core present in the 1950s.

  17. Spatially Explicit Modelling of the Belgian Major Endurance Event ‘The 100 km Dodentocht’

    PubMed Central

    Van Nieuland, Steffie; Baetens, Jan M.; De Baets, Bernard

    2016-01-01

    ‘The 100 km Dodentocht’, which takes place annually and has its start in Bornem, Belgium, is a long distance march where participants have to cover a 100 km trail in at most 24 hours. The approximately 11 000 marchers per edition are tracked by making use of passive radio-frequency-identification (RFID). These tracking data were analyzed to build a spatially explicit marching model that gives insights into the dynamics of the event and allows to evaluate the effect of changes in the starting procedure of the event. For building the model, the empirical distribution functions (edf) of the marching speeds at every section of the trail in between two consecutive checkpoints and of the checkpoints where marchers retire, are determined, taking into account age, gender, and marching speeds at previous sections. These distribution functions are then used to sample the consecutive speeds and retirement, and as such to simulate the times when individual marchers pass by the consecutive checkpoints. We concluded that the data-driven model simulates the event reliably. Furthermore, we tested three scenarios to reduce the crowdiness along the first part of the trail and in this way were able to conclude that either the start should be moved to a location outside the town center where the streets are at least 25% wider, or that the marchers should start in two groups at two different locations, and that these groups should ideally merge at about 20 km after the start. The crowdiness at the start might also be reduced by installing a bottleneck at the start in order to limit the number of marchers that can pass per unit of time. Consequently, the operating hours of the consecutive checkpoints would be longer. The developed framework can likewise be used to analyze and improve the operation of other endurance events if sufficient tracking data are available. PMID:27764202

  18. A spatially explicit estimate of the prewhaling abundance of the endangered North Atlantic right whale.

    PubMed

    Monsarrat, Sophie; Pennino, M Grazia; Smith, Tim D; Reeves, Randall R; Meynard, Christine N; Kaplan, David M; Rodrigues, Ana S L

    2016-08-01

    The North Atlantic right whale (NARW) (Eubalaena glacialis) is one of the world's most threatened whales. It came close to extinction after nearly a millennium of exploitation and currently persists as a population of only approximately 500 individuals. Setting appropriate conservation targets for this species requires an understanding of its historical population size, as a baseline for measuring levels of depletion and progress toward recovery. This is made difficult by the scarcity of records over this species' long whaling history. We sought to estimate the preexploitation population size of the North Atlantic right whale and understand how this species was distributed across its range. We used a spatially explicit data set on historical catches of North Pacific right whales (NPRWs) (Eubalaena japonica) to model the relationship between right whale relative density and the environment during the summer feeding season. Assuming the 2 right whale species select similar environments, we projected this model to the North Atlantic to predict how the relative abundance of NARWs varied across their range. We calibrated these relative abundances with estimates of the NPRW total prewhaling population size to obtain high and low estimates for the overall NARW population size prior to exploitation. The model predicted 9,075-21,328 right whales in the North Atlantic. The current NARW population is thus <6% of the historical North Atlantic carrying capacity and has enormous potential for recovery. According to the model, in June-September NARWs concentrated in 2 main feeding areas: east of the Grand Banks of Newfoundland and in the Norwegian Sea. These 2 areas may become important in the future as feeding grounds and may already be used more regularly by this endangered species than is thought.

  19. Spatially explicit simulation of peatland hydrology and carbon dioxide exchange: Influence of mesoscale topography

    NASA Astrophysics Data System (ADS)

    Sonnentag, O.; Chen, J. M.; Roulet, N. T.; Ju, W.; Govind, A.

    2008-06-01

    Carbon dynamics in peatlands are controlled, in large part, by their wetness as defined by water table depth and volumetric liquid soil moisture content. A common type of peatland is raised bogs that typically have a multiple-layer canopy of vascular plants over a Sphagnum moss ground cover. Their convex form restricts water supply to precipitation and water is shed toward the margins, usually by lateral subsurface flow. The hydraulic gradient for lateral subsurface flow is governed by the peat surface topography at the mesoscale (˜200 m to 5 km). To investigate the influence of mesoscale topography on wetness, evapotranspiration (ET), and gross primary productivity (GPP) in a bog during the snow-free period, we compare the outputs of a further developed version of the daily Boreal Ecosystem Productivity Simulator (BEPS) with observations made at the Mer Bleue peatland, located near Ottawa, Canada. Explicitly considering mesoscale topography, simulated total ET and GPP correlate well with measured ET (r = 0.91) and derived gross ecosystem productivity (GEP; r = 0.92). Both measured ET and derived GEP are simulated similarly well when mesoscale topography is neglected, but daily simulated values are systematically underestimated by about 10% and 12% on average, respectively, due to greater wetness resulting from the lack of lateral subsurface flow. Owing to the differences in moss surface conductances of water vapor and carbon dioxide with increasing moss water content, the differences in the spatial patterns of simulated total ET and GPP are controlled by the mesotopographic position of the moss ground cover.

  20. Human Mobility Patterns and Cholera Epidemics: a Spatially Explicit Modeling Approach

    NASA Astrophysics Data System (ADS)

    Mari, L.; Bertuzzo, E.; Righetto, L.; Casagrandi, R.; Gatto, M.; Rodriguez-Iturbe, I.; Rinaldo, A.

    2010-12-01

    Cholera is an acute enteric disease caused by the ingestion of water or food contaminated by the bacterium Vibrio cholerae. Although most infected individuals do not develop severe symptoms, their stool may contain huge quantities of V.~cholerae cells. Therefore, while traveling or commuting, asymptomatic carriers can be responsible for the long-range dissemination of the disease. As a consequence, human mobility is an alternative and efficient driver for the spread of cholera, whose primary propagation pathway is hydrological transport through river networks. We present a multi-layer network model that accounts for the interplay between epidemiological dynamics, hydrological transport and long-distance dissemination of V.~cholerae due to human movement. In particular, building on top of state-of-the-art spatially explicit models for cholera spread through surface waters, we describe human movement and its effects on the propagation of the disease by means of a gravity-model approach borrowed from transportation theory. Gravity-like contact processes have been widely used in epidemiology, because they can satisfactorily depict human movement when data on actual mobility patterns are not available. We test our model against epidemiological data recorded during the cholera outbreak occurred in the KwaZulu-Natal province of South Africa during years 2000--2001. We show that human mobility does actually play an important role in the formation of the spatiotemporal patterns of cholera epidemics. In particular, long-range human movement may determine inter-catchment dissemination of V.~cholerae cells, thus in turn explaining the emergence of epidemic patterns that cannot be produced by hydrological transport alone. We also show that particular attention has to be devoted to study how heterogeneously distributed drinking water supplies and sanitation conditions may affect cholera transmission.

  1. A spatially explicit model for the future progression of the current Haiti cholera epidemic

    NASA Astrophysics Data System (ADS)

    Bertuzzo, E.; Mari, L.; Righetto, L.; Gatto, M.; Casagrandi, R.; Rodriguez-Iturbe, I.; Rinaldo, A.

    2011-12-01

    As a major cholera epidemic progresses in Haiti, and the figures of the infection, up to July 2011, climb to 385,000 cases and 5,800 deaths, the development of general models to track and predict the evolution of the outbreak, so as to guide the allocation of medical supplies and staff, is gaining notable urgency. We propose here a spatially explicit epidemic model that accounts for the dynamics of susceptible and infected individuals as well as the redistribution of textit{Vibrio cholera}, the causative agent of the disease, among different human communities. In particular, we model two spreading pathways: the advection of pathogens through hydrologic connections and the dissemination due to human mobility described by means of a gravity-like model. To this end the country has been divided into hydrologic units based on drainage directions derived from a digital terrain model. Moreover the population of each unit has been estimated from census data downscaled to 1 km x 1 km resolution via remotely sensed geomorphological information (LandScan texttrademark project). The model directly account for the role of rainfall patterns in driving the seasonality of cholera outbreaks. The two main outbreaks in fact occurred during the rainy seasons (October and May) when extensive floodings severely worsened the sanitation conditions and, in turn, raised the risk of infection. The model capability to reproduce the spatiotemporal features of the epidemic up to date grants robustness to the foreseen future development. In this context, the duration of acquired immunity, a hotly debated topic in the scientific community, emerges as a controlling factor for progression of the epidemic in the near future. The framework presented here can straightforwardly be used to evaluate the effectiveness of alternative intervention strategies like mass vaccinations, clean water supply and educational campaigns, thus emerging as an essential component of the control of future cholera

  2. Programmable DNA scaffolds for spatially-ordered protein assembly

    NASA Astrophysics Data System (ADS)

    Chandrasekaran, Arun Richard

    2016-02-01

    Ever since the notion of using DNA as a material was realized, it has been employed in the construction of complex structures that facilitate the assembly of nanoparticles or macromolecules with nanometer-scale precision. Specifically, tiles fashioned from DNA strands and DNA origami sheets have been shown to be suitable as scaffolds for immobilizing proteins with excellent control over their spatial positioning. Supramolecular assembly of proteins into periodic arrays in one or more dimensions is one of the most challenging aspects in the design of scaffolds for biomolecular investigations and macromolecular crystallization. This review provides a brief overview of how various biomolecular interactions with high degree of specificity such as streptavidin-biotin, antigen-antibody, and aptamer-protein interactions have been used to fabricate linear and multidimensional assemblies of structurally intact and functional proteins. The use of DNA-binding proteins as adaptors, polyamide recognition on DNA scaffolds and oligonucleotide linkers for protein assembly are also discussed.Ever since the notion of using DNA as a material was realized, it has been employed in the construction of complex structures that facilitate the assembly of nanoparticles or macromolecules with nanometer-scale precision. Specifically, tiles fashioned from DNA strands and DNA origami sheets have been shown to be suitable as scaffolds for immobilizing proteins with excellent control over their spatial positioning. Supramolecular assembly of proteins into periodic arrays in one or more dimensions is one of the most challenging aspects in the design of scaffolds for biomolecular investigations and macromolecular crystallization. This review provides a brief overview of how various biomolecular interactions with high degree of specificity such as streptavidin-biotin, antigen-antibody, and aptamer-protein interactions have been used to fabricate linear and multidimensional assemblies of structurally

  3. Spatially Explicit Estimates of Suspended Sediment and Bedload Transport Rates for Western Oregon and Northwestern California

    NASA Astrophysics Data System (ADS)

    O'Connor, J. E.; Wise, D. R.; Mangano, J.; Jones, K.

    2015-12-01

    Empirical analyses of suspended sediment and bedload transport gives estimates of sediment flux for western Oregon and northwestern California. The estimates of both bedload and suspended load are from regression models relating measured annual sediment yield to geologic, physiographic, and climatic properties of contributing basins. The best models include generalized geology and either slope or precipitation. The best-fit suspended-sediment model is based on basin geology, precipitation, and area of recent wildfire. It explains 65% of the variance for 68 suspended sediment measurement sites within the model area. Predicted suspended sediment yields range from no yield from the High Cascades geologic province to 200 tonnes/ km2-yr in the northern Oregon Coast Range and 1000 tonnes/km2-yr in recently burned areas of the northern Klamath terrain. Bed-material yield is similarly estimated from a regression model based on 22 sites of measured bed-material transport, mostly from reservoir accumulation analyses but also from several bedload measurement programs. The resulting best-fit regression is based on basin slope and the presence/absence of the Klamath geologic terrane. For the Klamath terrane, bed-material yield is twice that of the other geologic provinces. This model explains more than 80% of the variance of the better-quality measurements. Predicted bed-material yields range up to 350 tonnes/ km2-yr in steep areas of the Klamath terrane. Applying these regressions to small individual watersheds (mean size; 66 km2 for bed-material; 3 km2 for suspended sediment) and cumulating totals down the hydrologic network (but also decreasing the bed-material flux by experimentally determined attrition rates) gives spatially explicit estimates of both bed-material and suspended sediment flux. This enables assessment of several management issues, including the effects of dams on bedload transport, instream gravel mining, habitat formation processes, and water-quality. The

  4. Plant community assembly at small scales: Spatial vs. environmental factors in a European grassland

    NASA Astrophysics Data System (ADS)

    Horn, Sebastian; Hempel, Stefan; Ristow, Michael; Rillig, Matthias C.; Kowarik, Ingo; Caruso, Tancredi

    2015-02-01

    Dispersal limitation and environmental conditions are crucial drivers of plant species distribution and establishment. As these factors operate at different spatial scales, we asked: Do the environmental factors known to determine community assembly at broad scales operate at fine scales (few meters)? How much do these factors account for community variation at fine scales? In which way do biotic and abiotic interactions drive changes in species composition? We surveyed the plant community within a dry grassland along a very steep gradient of soil characteristics like pH and nutrients. We used a spatially explicit sampling design, based on three replicated macroplots of 15 × 15, 12 × 12 and 12 × 12 m in extent. Soil samples were taken to quantify several soil properties (carbon, nitrogen, plant available phosphorus, pH, water content and dehydrogenase activity as a proxy for overall microbial activity). We performed variance partitioning to assess the effect of these variables on plant composition and statistically controlled for spatial autocorrelation via eigenvector mapping. We also applied null model analysis to test for non-random patterns in species co-occurrence using randomization schemes that account for patterns expected under species interactions. At a fine spatial scale, environmental factors explained 18% of variation when controlling for spatial autocorrelation in the distribution of plant species, whereas purely spatial processes accounted for 14% variation. Null model analysis showed that species spatially segregated in a non-random way and these spatial patterns could be due to a combination of environmental filtering and biotic interactions. Our grassland study suggests that environmental factors found to be directly relevant in broad scale studies are present also at small scales, but are supplemented by spatial processes and more direct interactions like competition.

  5. SEHR-ECHO v1.0: a Spatially-Explicit Hydrologic Response model for ecohydrologic applications

    NASA Astrophysics Data System (ADS)

    Schaefli, Bettina; Nicótina, Ludovico; Da Ronco, Pierfrancesco; Bertuzzo, Enrico; Rinaldo, Andrea

    2015-04-01

    We present here the SEHR-ECHO model, which stands for Spatially Explicit Hydrologic Response (SEHR) model developed at the Laboratory of Ecohydrology (ECHO) of the Ecole Polytechnique Fédérale de Lausanne. The model is being developed for the spatially-explicit simulation of streamflow and transport processes at the catchment scale. The key concept of the model is the formulation of water transport by geomorphologic travel time distributions: the mobilization of water (and possibly dissolved solutes) is simulated at the subcatchment scale and the resulting responses are convolved with the travel paths distribution within the river network to obtain the hydrologic response at the catchment outlet. The Matlab source code of the current version for alpine streamflow simulation is already freely available. A truly free open source version using Python will become available in the future.

  6. SPATIALLY-EXPLICIT BAT IMPACT SCREENING TOOL FOR WIND TURBINE SITING

    SciTech Connect

    Versar, Inc.; Exponent, Inc.

    2013-10-28

    As the U.S. seeks to increase energy production from renewable energy sources, development of wind power resources continues to grow. One of the most important ecological issues restricting wind energy development, especially the siting of wind turbines, is the potential adverse effect on bats. High levels of bat fatality have been recorded at a number of wind energy facilities, especially in the eastern United States. The U.S. Department of Energy contracted with Versar, Inc., and Exponent to develop a spatially-explicit site screening tool to evaluate the mortality of bats resulting from interactions (collisions or barotrauma) with wind turbines. The resulting Bat Vulnerability Assessment Tool (BVAT) presented in this report integrates spatial information about turbine locations, bat habitat features, and bat behavior as it relates to possible interactions with turbines. A model demonstration was conducted that focuses on two bat species, the eastern red bat (Lasiurus borealis) and the Indiana bat (Myotis sodalis). The eastern red bat is a relatively common tree-roosting species that ranges broadly during migration in the Eastern U.S., whereas the Indiana bat is regional species that migrates between a summer range and cave hibernacula. Moreover, Indiana bats are listed as endangered, and so the impacts to this species are of particular interest. The model demonstration used conditions at the Mountaineer Wind Energy Center (MWEC), which consists of 44 wind turbines arranged in a linear array near Thomas, West Virginia (Tucker County), to illustrate model functions and not to represent actual or potential impacts of the facility. The turbines at MWEC are erected on the ridge of Backbone Mountain with a nacelle height of 70 meters and a collision area of 72 meters (blade height) or 4,071 meters square. The habitat surrounding the turbines is an Appalachian mixed mesophytic forest. Model sensitivity runs showed that bat mortality in the model was most sensitive to

  7. A Spatially Explicit Dual-Isotope Approach to Map Regions of Plant-Plant Interaction after Exotic Plant Invasion

    PubMed Central

    Hellmann, Christine; Werner, Christiane; Oldeland, Jens

    2016-01-01

    Understanding interactions between native and invasive plant species in field settings and quantifying the impact of invaders in heterogeneous native ecosystems requires resolving the spatial scale on which these processes take place. Therefore, functional tracers are needed that enable resolving the alterations induced by exotic plant invasion in contrast to natural variation in a spatially explicit way. 15N isoscapes, i.e., spatially referenced representations of stable nitrogen isotopic signatures, have recently provided such a tracer. However, different processes, e.g. water, nitrogen or carbon cycles, may be affected at different spatial scales. Thus multi-isotope studies, by using different functional tracers, can potentially return a more integrated picture of invader impact. This is particularly true when isoscapes are submitted to statistical methods suitable to find homogeneous subgroups in multivariate data such as cluster analysis. Here, we used model-based clustering of spatially explicit foliar δ15N and δ13C isoscapes together with N concentration of a native indicator species, Corema album, to map regions of influence in a Portuguese dune ecosystem invaded by the N2-fixing Acacia longifolia. Cluster analysis identified regions with pronounced alterations in N budget and water use efficiency in the native species, with a more than twofold increase in foliar N, and δ13C and δ15N enrichment of up to 2‰ and 8‰ closer to the invader, respectively. Furthermore, clusters of multiple functional tracers indicated a spatial shift from facilitation through N addition in the proximity of the invader to competition for resources other than N in close contact. Finding homogeneous subgroups in multi-isotope data by means of model-based cluster analysis provided an effective tool for detecting spatial structure in processes affecting plant physiology and performance. The proposed method can give an objective measure of the spatial extent of influence of

  8. CDFISH: an individual-based, spatially-explicit, landscape genetics simulator for aquatic species in complex riverscapes

    USGS Publications Warehouse

    Erin L. Landguth,; Muhlfeld, Clint C.; Luikart, Gordon

    2012-01-01

    We introduce Cost Distance FISHeries (CDFISH), a simulator of population genetics and connectivity in complex riverscapes for a wide range of environmental scenarios of aquatic organisms. The spatially-explicit program implements individual-based genetic modeling with Mendelian inheritance and k-allele mutation on a riverscape with resistance to movement. The program simulates individuals in subpopulations through time employing user-defined functions of individual migration, reproduction, mortality, and dispersal through straying on a continuous resistance surface.

  9. Adapting the semi-explicit assembly solvation model for estimating water-cyclohexane partitioning with the SAMPL5 molecules

    NASA Astrophysics Data System (ADS)

    Brini, Emiliano; Paranahewage, S. Shanaka; Fennell, Christopher J.; Dill, Ken A.

    2016-11-01

    We describe here some tests we made in the SAMPL5 communal event of `Semi-Explicit Assembly' (SEA), a recent method for computing solvation free energies. We combined the prospective tests of SAMPL5 with followup retrospective calculations, to improve two technical aspects of the field variant of SEA. First, SEA uses an approximate analytical surface around the solute on which a water potential is computed. We have improved and simplified the mathematical model of that surface. Second, some of the solutes in SAMPL5 were large enough to need a way to treat solvating waters interacting with `buried atoms', i.e. interior atoms of the solute. We improved SEA with a buried-atom correction. We also compare SEA to Thermodynamic Integration molecular dynamics simulations, so that we can sort out force field errors.

  10. Mapping of the CO2 and anthropogenic heat emission under spatially explicit urban land use scenarios

    NASA Astrophysics Data System (ADS)

    Nakamichi, K.; Yamagata, Y.; Seya, H.

    2010-12-01

    possible range of future land use change. The first one is a compact city scenario and the second one is a dispersion scenario. In the compact city scenario, we assumed that commuting to work by cars would be prohibited. In the dispersion scenario, we assumed that all workers would work in their own houses and the time of commuting to work would be zero. The spatially explicit emissions are mapped by using Geographical Information System (GIS). As for the CO2 emission, this study focuses on the analysis of the tendency from the viewpoint of both direct and indirect emission. As a result, people would live in suburbs in the second scenario, and the emissions would increase. It is concluded that the results shows the importance of low-carbon city as compact city. Moreover, the anthropogenic heat emission estimated in this study can used as the input parameters for the climate models. The developed system can be used for analyzing the implications of urban planning and carbon management scenarios.

  11. Exploring spatial change and gravity center movement for ecosystem services value using a spatially explicit ecosystem services value index and gravity model.

    PubMed

    He, Yingbin; Chen, Youqi; Tang, Huajun; Yao, Yanmin; Yang, Peng; Chen, Zhongxin

    2011-04-01

    Spatially explicit ecosystem services valuation and change is a newly developing area of research in the field of ecology. Using the Beijing region as a study area, the authors have developed a spatially explicit ecosystem services value index and implemented this to quantify and spatially differentiate ecosystem services value at 1-km grid resolution. A gravity model was developed to trace spatial change in the total ecosystem services value of the Beijing study area from a holistic point of view. Study results show that the total value of ecosystem services for the study area decreased by 19.75% during the period 1996-2006 (3,226.2739 US$×10(6) in 1996, 2,589.0321 US$×10(6) in 2006). However, 27.63% of the total area of the Beijing study area increased in ecosystem services value. Spatial differences in ecosystem services values for both 1996 and 2006 are very clear. The center of gravity of total ecosystem services value for the study area moved 32.28 km northwestward over the 10 years due to intensive human intervention taking place in southeast Beijing. The authors suggest that policy-makers should pay greater attention to ecological protection under conditions of rapid socio-economic development and increase the area of green belt in the southeastern part of Beijing.

  12. A Spatially Explicit and Seasonally Varying Cholera Prevalence Model With Distributed Macro-Scale Environmental and Hydroclimatic Forcings

    NASA Astrophysics Data System (ADS)

    Akanda, A. S.; Jutla, A. S.; Eltahir, E. A.; Islam, S.

    2011-12-01

    Despite major advances in the ecological and microbiological understanding of the bacterium Vibrio cholerae, the role of underlying large-scale processes in the progression of the cholera disease in space and time is not well understood. Here, we present a spatially explicit and seasonally varying coupled hydroclimatology-epidemiology model for understanding regional scale cholera prevalence in response to large scale hydroclimatic and environmental forcings. Our results show that environmental cholera transmission can be modulated by two spatially and seasonally distinct mechanisms - influenced by dry and wet season hydrologic determinants. The model is applied to the Ganges-Brahmaputra-Meghna Basin areas in Bangladesh to simulate spatially explicit cholera prevalence rates, and validated with long-term cholera data from Dhaka and shorter-term records from regional surveillance locations. The model reproduces the variability of cholera prevalence at monthly, seasonal, and interannual timescales and highlights the role of asymmetric large scale hydroclimatic processes as the dominant controls. Our findings have important implications for formulating effective cholera intervention strategies, and for understanding the impacts of changing climate patterns on seasonal cholera transmission.

  13. Deconstructing Building Blocks: Preschoolers' Spatial Assembly Performance Relates to Early Mathematical Skills

    ERIC Educational Resources Information Center

    Verdine, Brian N.; Golinkoff, Roberta M.; Hirsh-Pasek, Kathryn; Newcombe, Nora S.; Filipowicz, Andrew T.; Chang, Alicia

    2014-01-01

    This study focuses on three main goals: First, 3-year-olds' spatial assembly skills are probed using interlocking block constructions (N = 102). A detailed scoring scheme provides insight into early spatial processing and offers information beyond a basic accuracy score. Second, the relation of spatial assembly to early mathematical skills…

  14. Spatially explicit modeling of 1992-2100 land cover and forest stand age for the conterminous United States

    USGS Publications Warehouse

    Sohl, Terry L.; Sayler, Kristi L.; Bouchard, Michelle; Reker, Ryan R.; Friesz, Aaron M.; Bennett, Stacie L.; Sleeter, Benjamin M.; Sleeter, Rachel R.; Wilson, Tamara; Knuppe, Michelle; Van Hofwegen, Travis

    2014-01-01

    Information on future land-use and land-cover (LULC) change is needed to analyze the impact of LULC change on ecological processes. The U.S. Geological Survey has produced spatially explicit, thematically detailed LULC projections for the conterminous United States. Four qualitative and quantitative scenarios of LULC change were developed, with characteristics consistent with the Intergovernmental Panel on Climate Change (IPCC) Special Report on 5 Emission Scenarios (SRES). The four quantified scenarios (A1B, A2, B1, and B2) served as input to the Forecasting Scenarios of Land-use Change (FORE-SCE) model. Four spatially explicit datasets consistent with scenario storylines were produced for the conterminous United States, with annual LULC maps from 1992 through 2100. The future projections are characterized by a loss of natural land covers in most scenarios, with corresponding expansion of 10 anthropogenic land uses. Along with the loss of natural land covers, remaining natural land covers experience increased fragmentation under most scenarios, with only the B2 scenario remaining relatively stable in both proportion of remaining natural land covers and basic fragmentation measures. Forest stand age was also modeled. By 2100, scenarios and ecoregions with heavy forest cutting have relatively lower mean stand ages compared to those with less 15 forest cutting. Stand ages differ substantially between unprotected and protected forest lands, as well as between different forest classes. The modeled data were compared to the National Land Cover Database (NLCD) and other data sources to assess model characteristics. The consistent, spatially explicit, and thematically detailed LULC projections and the associated forest stand age data layers have been used to analyze LULC impacts on carbon and greenhouse gas fluxes, 20 biodiversity, climate and weather variability, hydrologic change, and other ecological processes.

  15. USE OF HABITAT-CONTAMINATION SPATIAL CORRELATION TO DETERMINE WHEN TO PERFORM A SPATIALLY EXPLICIT ECOLOGICAL RISK ASSESSMENT

    EPA Science Inventory

    Anthropogenic contamination is typically distributed heterogeneously through space. This spatial structure can have different effects on the cumulative doses of individuals exposed to contamination within the environment. These effects are accentuated when individuals pursue di...

  16. Use of spatially explicit physicochemical data to measure downstream impacts of headwater stream disturbance

    EPA Science Inventory

    Regulatory agencies need methods to quantify the influence of headwater streams on downstream water quality as a result of litigation surrounding jurisdictional criteria and the influence of mountaintop removal coal mining activities. We collected comprehensive, spatially-referen...

  17. REVIEW OF SIMULATION METHODS FOR SPATIALLY-EXPLICIT POPULATION-LEVEL RISK ASSESSMENT

    EPA Science Inventory

    Factors that significantly impact population dynamics, such as resource availability and exposure to stressors, frequently vary over space and thereby determine the heterogeneous spatial distributions of organisms. Considering this fact, the US Environmental Protection Agency's ...

  18. A SPATIALLY EXPLICIT HIERARCHICAL APPROACH TO MODELING COMPLEX ECOLOGICAL SYSTEMS: THEORY AND APPLICATIONS. (R827676)

    EPA Science Inventory

    Ecological systems are generally considered among the most complex because they are characterized by a large number of diverse components, nonlinear interactions, scale multiplicity, and spatial heterogeneity. Hierarchy theory, as well as empirical evidence, suggests that comp...

  19. The Value of Simple Models: Performance of a Spatially-explicit Seasonal Model for Valuing Water Provisioning (InVEST)

    NASA Astrophysics Data System (ADS)

    Hamel, P.; Guswa, A. J.; Wemple, B. C.; Mohammed, I. N.; Sharp, R.

    2015-12-01

    Valuing hydrologic ecosystem services (ES) requires a truly integrated approach, linking knowledge of hydrologic processes to that of the socio-economic context of a region. Although both the hydrological and socio-economic dimensions are complex, practitioners need simple and credible models to address pressing questions brought by global change. We developed such a model for the supply, service, and value of water provisioning; available to the ES community through the open-source InVEST (Integrated Valuation of Ecosytem Services and Trade-offs) software. The model is characterized by i) low data requirements, with the aim of being applied in data-scarce environments; ii) spatially-explicit outputs, to easily address spatial planning questions; iii) a seasonal time-step, representing a compromise between data knowledge and ability to address season-dependent questions (water supply for irrigation, hydropower production); iv) explicit representation of beneficiaries, to facilitate valuation of the provisioning service for different groups; v) flexible valuation framework, to address a variety of ES questions. The model theory is based on the recent advances in hydrology, using the "limits" concept for water balance modeling and spatial indices for subsurface and surface runoff. We tested the model performance in the Mad River catchment, Vermont, USA, comparing its results with the data-intensive RHESSys model for two typical ES questions: the identification of hotspots of service and valuation of the provisioning service for hydropower production. Uncertainty analyses, including sensitivity analyses and Monte Carlo analyses, were performed to quantify uncertainty in both hydrological outputs and service provisioning, and improve guidance for users. We present these results through a range of spatial and non-spatial outputs, emphasizing the importance of results interpretation and visualization for ES assessments.

  20. USING THE ECLPSS SOFTWARE ENVIRONMENT TO BUILD A SPATIALLY EXPLICIT COMPONENT-BASED MODEL OF OZONE EFFECTS ON FOREST ECOSYSTEMS. (R827958)

    EPA Science Inventory

    We have developed a modeling framework to support grid-based simulation of ecosystems at multiple spatial scales, the Ecological Component Library for Parallel Spatial Simulation (ECLPSS). ECLPSS helps ecologists to build robust spatially explicit simulations of ...

  1. A Watershed-based spatially-explicit demonstration of an Integrated Environmental Modeling Framework for Ecosystem Services in the Coal River Basin (WV, USA)

    EPA Science Inventory

    We demonstrate a spatially-explicit regional assessment of current condition of aquatic ecoservices in the Coal River Basin (CRB), with limited sensitivity analysis for the atmospheric contaminant mercury. The integrated modeling framework (IMF) forecasts water quality and quant...

  2. Spatially-explicit matrix models. A mathematical analysis of stage-structured integrodifference equations.

    PubMed

    Lutscher, Frithjof; Lewis, Mark A

    2004-03-01

    This paper is concerned with mathematical analysis of the 'critical domain-size' problem for structured populations. Space is introduced explicitly into matrix models for stage-structured populations. Movement of individuals is described by means of a dispersal kernel. The mathematical analysis investigates conditions for existence, stability and uniqueness of equilibrium solutions as well as some bifurcation behaviors. These mathematical results are linked to species persistence or extinction in connected habitats of different sizes or fragmented habitats; hence the framework is given for application of such models to ecology. Several approximations which reduce the complexity of integrodifference equations are given. A simple example is worked out to illustrate the analytical results and to compare the behavior of the integrodifference model to that of the approximations.

  3. Spatially explicit assessment of estuarine fish after Deepwater Horizon oil spill: trade-off in complexity and parsimony.

    PubMed

    Awkerman, Jill A; Hemmer, Becky; Almario, Alex; Lilavois, Crystal; Barron, Mace G; Raimondo, Sandy

    2016-09-01

    Evaluating long-term contaminant effects on wildlife populations depends on spatial information about habitat quality, heterogeneity in contaminant exposure, and sensitivities and distributions of species integrated into a systems modeling approach. Rarely is this information readily available, making it difficult to determine the applicability of realistic models to quantify population-level risks. To evaluate the trade-offs between data demands and increased specificity of spatially explicit models for population-level risk assessments, we developed a model for a standard toxicity test species, the sheepshead minnow (Cyprinodon variegatus), exposed to oil contamination following the Deepwater Horizon oil spill and compared the output with various levels of model complexity to a standard risk quotient approach. The model uses habitat and fish occupancy data collected over five sampling periods throughout 2008-2010 in Pensacola and Choctawhatchee Bays, Florida, USA, to predict species distribution, field-collected and publically available data on oil distribution and concentration, and chronic toxicity data from laboratory assays applied to a matrix population model. The habitat suitability model established distribution of fish within Barataria Bay, Louisiana, USA, and the population model projected the dynamics of the species in the study area over a 5-yr period (October 2009-September 2014). Vital rates were modified according to estimated contaminant concentrations to simulate oil exposure effects. To evaluate the differences in levels of model complexity, simulations varied from temporally and spatially explicit, including seasonal variation and location-specific oiling, to simple interpretations of a risk quotient derived for the study area. The results of this study indicate that species distribution, as well as spatially and temporally variable contaminant concentrations, can provide a more ecologically relevant evaluation of species recovery from

  4. Comparing spatially explicit ecological and social values for natural areas to identify effective conservation strategies.

    PubMed

    Bryan, Brett Anthony; Raymond, Christopher Mark; Crossman, Neville David; King, Darran

    2011-02-01

    Consideration of the social values people assign to relatively undisturbed native ecosystems is critical for the success of science-based conservation plans. We used an interview process to identify and map social values assigned to 31 ecosystem services provided by natural areas in an agricultural landscape in southern Australia. We then modeled the spatial distribution of 12 components of ecological value commonly used in setting spatial conservation priorities. We used the analytical hierarchy process to weight these components and used multiattribute utility theory to combine them into a single spatial layer of ecological value. Social values assigned to natural areas were negatively correlated with ecological values overall, but were positively correlated with some components of ecological value. In terms of the spatial distribution of values, people valued protected areas, whereas those natural areas underrepresented in the reserve system were of higher ecological value. The habitats of threatened animal species were assigned both high ecological value and high social value. Only small areas were assigned both high ecological value and high social value in the study area, whereas large areas of high ecological value were of low social value, and vice versa. We used the assigned ecological and social values to identify different conservation strategies (e.g., information sharing, community engagement, incentive payments) that may be effective for specific areas. We suggest that consideration of both ecological and social values in selection of conservation strategies can enhance the success of science-based conservation planning.

  5. Spatially explicit rangeland erosion monitoring using high-resolution digital aerial imagery

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nearly all of the ecosystem services supported by rangelands, including production of livestock forage, carbon sequestration, and provisioning of clean water, are negatively impacted by soil erosion. Accordingly, monitoring the severity, spatial extent, and rate of soil erosion is essential for long...

  6. Spatially explicit West Nile virus risk modeling in Santa Clara County, California

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A previously created Geographic Information Systems model designed to identify regions of West Nile virus (WNV) transmission risk is tested and calibrated in Santa Clara County, California. American Crows that died from WNV infection in 2005 provide the spatial and temporal ground truth. Model param...

  7. Spatially Explicit West Nile Virus Risk Modeling in Santa Clara County, CA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A geographic information systems model designed to identify regions of West Nile virus (WNV) transmission risk was tested and calibrated with data collected in Santa Clara County, California. American Crows that died from WNV infection in 2005, provided spatial and temporal ground truth. When the mo...

  8. SEHR-ECHO v1.0: a Spatially-Explicit Hydrologic Response model for ecohydrologic applications

    NASA Astrophysics Data System (ADS)

    Schaefli, B.; Nicótina, L.; Imfeld, C.; Da Ronco, P.; Bertuzzo, E.; Rinaldo, A.

    2014-03-01

    This paper presents the Spatially-Explicit Hydrologic Response (SEHR) model developed at the Laboratory of Ecohydrology of the Ecole Polytechnique Fédérale de Lausanne for the simulation of hydrological processes at the catchment scale. The key concept of the model is the formulation of water transport by geomorphologic travel time distributions through gravity-driven transitions among geomorphic states: the mobilization of water (and possibly dissolved solutes) is simulated at the sub-catchment scale and the resulting responses are convolved with the travel paths distribution within the river network to obtain the hydrologic response at the catchment outlet. The model thus breaks down the complexity of the hydrologic response into an explicit geomorphological combination of dominant spatial patterns of precipitation input and of hydrologic process controls. Nonstationarity and nonlinearity effects are tackled through soil moisture dynamics in the active soil layer. We present here the basic model set-up for precipitation-runoff simulation. The performance of the model is illustrated for a snow-dominated catchment in Switzerland with a small glacier cover.

  9. Evaluation of and insights from ALFISH: a spatially explicit landscape-level simulation of fish populations in the Everglades

    USGS Publications Warehouse

    Gaff, Holly; Chick, John; Trexler, Joel; DeAngelis, Donald L.; Gross, Louis; Salinas, Rene

    2004-01-01

    We present an evaluation of a spatially explicit, age-structured model created to assess fish density dynamics in the Florida Everglades area. This model, ALFISH, has been used to compare alternative management scenarios for the Florida Everglades region. This area is characterized by periodic dry downs and refloodings. ALFISH uses spatially explicit water depth data to predict patterns of fish density. Here we present a method for calibration of ALFISH, based on information concerning fish movement, pond locations and other field data. With the current information, the greatest coefficient of determination achieved from regressions of ALFISH output to field data is 0.35 for fish density and 0.88 for water depth. The poor predictability of fish density mirrors the empirical findings that hydrology, which is the main driver of the model, only accounts for 20–40% of the variance of fish densities across the Everglades landscape. Sensitivity analyses indicate that fish in this system are very sensitive to frequency, size and location of permanent ponds as well as availability of prey.

  10. Systems Modeling at Multiple Levels of Regulation: Linking Systems and Genetic Networks to Spatially Explicit Plant Populations

    PubMed Central

    Kitchen, James L.; Allaby, Robin G.

    2013-01-01

    Selection and adaptation of individuals to their underlying environments are highly dynamical processes, encompassing interactions between the individual and its seasonally changing environment, synergistic or antagonistic interactions between individuals and interactions amongst the regulatory genes within the individual. Plants are useful organisms to study within systems modeling because their sedentary nature simplifies interactions between individuals and the environment, and many important plant processes such as germination or flowering are dependent on annual cycles which can be disrupted by climate behavior. Sedentism makes plants relevant candidates for spatially explicit modeling that is tied in with dynamical environments. We propose that in order to fully understand the complexities behind plant adaptation, a system that couples aspects from systems biology with population and landscape genetics is required. A suitable system could be represented by spatially explicit individual-based models where the virtual individuals are located within time-variable heterogeneous environments and contain mutable regulatory gene networks. These networks could directly interact with the environment, and should provide a useful approach to studying plant adaptation. PMID:27137364

  11. Landscape genomics of Sphaeralcea ambigua in the Mojave Desert: a multivariate, spatially-explicit approach to guide ecological restoration

    USGS Publications Warehouse

    Shryock, Daniel F.; Havrilla, Caroline A.; DeFalco, Lesley; Esque, Todd C.; Custer, Nathan; Wood, Troy E.

    2015-01-01

    Local adaptation influences plant species’ responses to climate change and their performance in ecological restoration. Fine-scale physiological or phenological adaptations that direct demographic processes may drive intraspecific variability when baseline environmental conditions change. Landscape genomics characterize adaptive differentiation by identifying environmental drivers of adaptive genetic variability and mapping the associated landscape patterns. We applied such an approach to Sphaeralcea ambigua, an important restoration plant in the arid southwestern United States, by analyzing variation at 153 amplified fragment length polymorphism loci in the context of environmental gradients separating 47 Mojave Desert populations. We identified 37 potentially adaptive loci through a combination of genome scan approaches. We then used a generalized dissimilarity model (GDM) to relate variability in potentially adaptive loci with spatial gradients in temperature, precipitation, and topography. We identified non-linear thresholds in loci frequencies driven by summer maximum temperature and water stress, along with continuous variation corresponding to temperature seasonality. Two GDM-based approaches for mapping predicted patterns of local adaptation are compared. Additionally, we assess uncertainty in spatial interpolations through a novel spatial bootstrapping approach. Our study presents robust, accessible methods for deriving spatially-explicit models of adaptive genetic variability in non-model species that will inform climate change modelling and ecological restoration.

  12. Spatially explicit control of invasive species using a reaction-diffusion model

    USGS Publications Warehouse

    Bonneau, Mathieu; Johnson, Fred A.; Romagosa, Christina M.

    2016-01-01

    Invasive species, which can be responsible for severe economic and environmental damages, must often be managed over a wide area with limited resources, and the optimal allocation of effort in space and time can be challenging. If the spatial range of the invasive species is large, control actions might be applied only on some parcels of land, for example because of property type, accessibility, or limited human resources. Selecting the locations for control is critical and can significantly impact management efficiency. To help make decisions concerning the spatial allocation of control actions, we propose a simulation based approach, where the spatial distribution of the invader is approximated by a reaction–diffusion model. We extend the classic Fisher equation to incorporate the effect of control both in the diffusion and local growth of the invader. The modified reaction–diffusion model that we propose accounts for the effect of control, not only on the controlled locations, but on neighboring locations, which are based on the theoretical speed of the invasion front. Based on simulated examples, we show the superiority of our model compared to the state-of-the-art approach. We illustrate the use of this model for the management of Burmese pythons in the Everglades (Florida, USA). Thanks to the generality of the modified reaction–diffusion model, this framework is potentially suitable for a wide class of management problems and provides a tool for managers to predict the effects of different management strategies.

  13. imVisIR - spatially explicit characterisation of soil organic matter quality on the pedon scale

    NASA Astrophysics Data System (ADS)

    Steffens, Markus; Kohlpaintner, Michael; Buddenbaum, Henning

    2014-05-01

    Organic matter (OM) is an important soil component controlling many chemical and physical properties ranging from nutrient and pollutant sorption to aggregate stability and water holding capacity. Advanced techniques and sophisticated methods have been developed to characterise and separate qualitatively different fractions of SOM. Despite its importance and the technical progress, two main deficiencies still constrain the comprehensive analysis of OM quantity and quality in soils: 1) Most of the techniques (e.g. solid state 13C NMR spectroscopy or fourier-transformed infrared spectroscopy) are destructive so that the sample is lost after the measurement; and 2) SOM quantity and quality generally show a heterogeneous spatial distribution across many scales which is not considered in an adequate way in most studies since the analytical techniques require substantial amounts of soil material impeding the sampling of small structures. The natural arrangement of particles is disturbed and information about the spatial variability and association with other particles is lost. Therefore, an imaging technique that non-destructively measures SOM quantity and quality with a high spatial resolution on the pedon scale is needed. We show the potential of laboratory imaging Vis-NIR spectroscopy for the qualitative mapping of SOM on the pedon scale.

  14. Integrating landscape genomics and spatially explicit approaches to detect loci under selection in clinal populations.

    PubMed

    Jones, Matthew R; Forester, Brenna R; Teufel, Ashley I; Adams, Rachael V; Anstett, Daniel N; Goodrich, Betsy A; Landguth, Erin L; Joost, Stéphane; Manel, Stéphanie

    2013-12-01

    Uncovering the genetic basis of adaptation hinges on the ability to detect loci under selection. However, population genomics outlier approaches to detect selected loci may be inappropriate for clinal populations or those with unclear population structure because they require that individuals be clustered into populations. An alternate approach, landscape genomics, uses individual-based approaches to detect loci under selection and reveal potential environmental drivers of selection. We tested four landscape genomics methods on a simulated clinal population to determine their effectiveness at identifying a locus under varying selection strengths along an environmental gradient. We found all methods produced very low type I error rates across all selection strengths, but elevated type II error rates under "weak" selection. We then applied these methods to an AFLP genome scan of an alpine plant, Campanula barbata, and identified five highly supported candidate loci associated with precipitation variables. These loci also showed spatial autocorrelation and cline patterns indicative of selection along a precipitation gradient. Our results suggest that landscape genomics in combination with other spatial analyses provides a powerful approach for identifying loci potentially under selection and explaining spatially complex interactions between species and their environment.

  15. Agro-hydrology and multi temporal high resolution remote sensing: toward an explicit spatial processes calibration

    NASA Astrophysics Data System (ADS)

    Ferrant, S.; Gascoin, S.; Veloso, A.; Salmon-Monviola, J.; Claverie, M.; Rivalland, V.; Dedieu, G.; Demarez, V.; Ceschia, E.; Probst, J.-L.; Durand, P.; Bustillo, V.

    2014-07-01

    The recent and forthcoming availability of high resolution satellite image series offers new opportunities in agro-hydrological research and modeling. We investigated the perspective offered by improving the crop growth dynamic simulation using the distributed agro-hydrological model, Topography based Nitrogen transfer and Transformation (TNT2), using LAI map series derived from 105 Formosat-2 (F2) images during the period 2006-2010. The TNT2 model (Beaujouan et al., 2002), calibrated with discharge and in-stream nitrate fluxes for the period 1985-2001, was tested on the 2006-2010 dataset (climate, land use, agricultural practices, discharge and nitrate fluxes at the outlet). A priori agricultural practices obtained from an extensive field survey such as seeding date, crop cultivar, and fertilizer amount were used as input variables. Continuous values of LAI as a function of cumulative daily temperature were obtained at the crop field level by fitting a double logistic equation against discrete satellite-derived LAI. Model predictions of LAI dynamics with a priori input parameters showed an temporal shift with observed LAI profiles irregularly distributed in space (between field crops) and time (between years). By re-setting seeding date at the crop field level, we proposed an optimization method to minimize efficiently this temporal shift and better fit the crop growth against the spatial observations as well as crop production. This optimization of simulated LAI has a negligible impact on water budget at the catchment scale (1 mm yr-1 in average) but a noticeable impact on in-stream nitrogen fluxes (around 12%) which is of interest considering nitrate stream contamination issues and TNT2 model objectives. This study demonstrates the contribution of forthcoming high spatial and temporal resolution products of Sentinel-2 satellite mission in improving agro-hydrological modeling by constraining the spatial representation of crop productivity.

  16. A novel spatially-explicit condition for the onset of waterborne diseases in complex environments

    NASA Astrophysics Data System (ADS)

    Mari, L.; Gatto, M.; Bertuzzo, E.; Casagrandi, R.; Righetto, L.; Rodriguez-Iturbe, I.; Rinaldo, A.

    2012-12-01

    In spatial models of waterborne infections the condition that all the local reproduction numbers be larger than one is neither necessary nor sufficient for outbreaks to occur. Here, to properly determine epidemic onset conditions, we examine the transition from stable to unstable of the disease-free equilibrium of a system of nonlinear differential equations characterizing the evolution of susceptible and infected individuals within their respective settlements, and pathogen concentration in their accessible environment. Two different network connectivity layers are assumed to link human settlements: hydrologic pathways serve as ecological corridors for pathogens, while human mobility acts as disease vehicle through susceptibles contracting the disease and asymptomatic infectives shedding bacteria at their temporary destinations. We show that an epidemic outbreak can be triggered if the dominant eigenvalue of a generalized reproduction matrix G0, suitably accounting for spatial distribution of human settlements, hydrological pathways for pathogen dispersal and pathogen redistribution mechanisms due to human mobility, is larger than unity. Matrix G0 and its dominant eigenvalue thus replace the usual reproduction number whenever spatial effects on disease propagation cannot be ignored. Conversely, our novel criterion decays into the standard onset condition based on local reproduction numbers in nonspatial settings. By analyzing realistic test cases we show that within a connected network system the disease can start even if all the local reproduction numbers are smaller than unity, or might not start even if all the local reproduction numbers are larger than unity. We also show that onset geography in complex environments is linked to the dominant eigenvector of matrix G0. Applications to cholera outbreaks in developing countries demonstrate that our approach can be successfully used for disease prediction and emergency management.

  17. Deconstructing Building Blocks: Preschoolers' Spatial Assembly Performance Relates to Early Mathematics Skills

    PubMed Central

    Verdine, Brian N.; Golinkoff, Roberta Michnick; Hirsh-Pasek, Kathryn; Newcombe, Nora S.; Filipowicz, Andrew T.; Chang, Alicia

    2013-01-01

    This study focuses on three main goals: First, 3-year-olds' spatial assembly skills are probed using interlocking block constructions (N = 102). A detailed scoring scheme provides insight into early spatial processing and offers information beyond a basic accuracy score. Second, the relation of spatial assembly to early mathematics skills was evaluated. Spatial skill independently predicted a significant amount of the variability in concurrent mathematics performance. Finally, the relationship between spatial assembly skill and socioeconomic status, gender, and parent-reported spatial language was examined. While children's performance did not differ by gender, lower-SES children were already lagging behind higher-SES children in block assembly. Furthermore, lower-SES parents reported using significantly fewer spatial words with their children. PMID:24112041

  18. Spatially explicit predictions of blood parasites in a widely distributed African rainforest bird.

    PubMed

    Sehgal, R N M; Buermann, W; Harrigan, R J; Bonneaud, C; Loiseau, C; Chasar, A; Sepil, I; Valkiūnas, G; Iezhova, T; Saatchi, S; Smith, T B

    2011-04-07

    Critical to the mitigation of parasitic vector-borne diseases is the development of accurate spatial predictions that integrate environmental conditions conducive to pathogen proliferation. Species of Plasmodium and Trypanosoma readily infect humans, and are also common in birds. Here, we develop predictive spatial models for the prevalence of these blood parasites in the olive sunbird (Cyanomitra olivacea). Since this species exhibits high natural parasite prevalence and occupies diverse habitats in tropical Africa, it represents a distinctive ecological model system for studying vector-borne pathogens. We used PCR and microscopy to screen for haematozoa from 28 sites in Central and West Africa. Species distribution models were constructed to associate ground-based and remotely sensed environmental variables with parasite presence. We then used machine-learning algorithm models to identify relationships between parasite prevalence and environmental predictors. Finally, predictive maps were generated by projecting model outputs to geographically unsampled areas. Results indicate that for Plasmodium spp., the maximum temperature of the warmest month was most important in predicting prevalence. For Trypanosoma spp., seasonal canopy moisture variability was the most important predictor. The models presented here visualize gradients of disease prevalence, identify pathogen hotspots and will be instrumental in studying the effects of ecological change on these and other pathogens.

  19. Spatially explicit methane emissions from petroleum production and the natural gas system in California.

    PubMed

    Jeong, Seongeun; Millstein, Dev; Fischer, Marc L

    2014-05-20

    We present a new, spatially resolved inventory of methane (CH4) emissions based on US-EPA emission factors and publically available activity data for 2010 California petroleum production and natural gas production, processing, transmission, and distribution. Compared to official California bottom-up inventories, our initial estimates are 3 to 7 times higher for the petroleum and natural gas production sectors but similar for the natural gas transmission and distribution sectors. Evidence from published "top-down" atmospheric measurement campaigns within Southern California supports our initial emission estimates from production and processing but indicates emission estimates from transmission and distribution are low by a factor of approximately 2. To provide emission maps with more accurate total emissions we scale the spatially resolved inventory by sector-specific results from a Southern California aircraft measurement campaign to all of California. Assuming uncertainties are determined by the uncertainties estimated in the top-down study, our estimated state total CH4 emissions are 541 ± 144 Gg yr(-1) (as compared with 210.7 Gg yr(-1) in California's current official inventory), where the majority of our reported uncertainty is derived from transmission and distribution. We note uncertainties relative to the mean for a given region are likely larger than that for the State total, emphasizing the need for additional measurements in undersampled regions.

  20. Integrating spatially explicit indices of abundance and habitat quality: an applied example for greater sage-grouse management

    USGS Publications Warehouse

    Coates, Peter S.; Casazza, Michael L.; Ricca, Mark A.; Brussee, Brianne E.; Blomberg, Erik J.; Gustafson, K. Benjamin; Overton, Cory T.; Davis, Dawn M.; Niell, Lara E.; Espinosa, Shawn P.; Gardner, Scott C.; Delehanty, David J.

    2016-01-01

    Predictive species distributional models are a cornerstone of wildlife conservation planning. Constructing such models requires robust underpinning science that integrates formerly disparate data types to achieve effective species management. Greater sage-grouse Centrocercus urophasianus, hereafter “sage-grouse” populations are declining throughout sagebrush-steppe ecosystems in North America, particularly within the Great Basin, which heightens the need for novel management tools that maximize use of available information. Herein, we improve upon existing species distribution models by combining information about sage-grouse habitat quality, distribution, and abundance from multiple data sources. To measure habitat, we created spatially explicit maps depicting habitat selection indices (HSI) informed by > 35 500 independent telemetry locations from > 1600 sage-grouse collected over 15 years across much of the Great Basin. These indices were derived from models that accounted for selection at different spatial scales and seasons. A region-wide HSI was calculated using the HSI surfaces modelled for 12 independent subregions and then demarcated into distinct habitat quality classes. We also employed a novel index to describe landscape patterns of sage-grouse abundance and space use (AUI). The AUI is a probabilistic composite of: (i) breeding density patterns based on the spatial configuration of breeding leks and associated trends in male attendance; and (ii) year-round patterns of space use indexed by the decreasing probability of use with increasing distance to leks. The continuous AUI surface was then reclassified into two classes representing high and low/no use and abundance. Synthesis and applications. Using the example of sage-grouse, we demonstrate how the joint application of indices of habitat selection, abundance, and space use derived from multiple data sources yields a composite map that can guide effective allocation of management intensity across

  1. Integrating spatially explicit indices of abundance and habitat quality: an applied example for greater sage-grouse management.

    PubMed

    Coates, Peter S; Casazza, Michael L; Ricca, Mark A; Brussee, Brianne E; Blomberg, Erik J; Gustafson, K Benjamin; Overton, Cory T; Davis, Dawn M; Niell, Lara E; Espinosa, Shawn P; Gardner, Scott C; Delehanty, David J

    2016-02-01

    Predictive species distributional models are a cornerstone of wildlife conservation planning. Constructing such models requires robust underpinning science that integrates formerly disparate data types to achieve effective species management.Greater sage-grouse Centrocercus urophasianus, hereafter 'sage-grouse' populations are declining throughout sagebrush-steppe ecosystems in North America, particularly within the Great Basin, which heightens the need for novel management tools that maximize the use of available information.Herein, we improve upon existing species distribution models by combining information about sage-grouse habitat quality, distribution and abundance from multiple data sources. To measure habitat, we created spatially explicit maps depicting habitat selection indices (HSI) informed by >35 500 independent telemetry locations from >1600 sage-grouse collected over 15 years across much of the Great Basin. These indices were derived from models that accounted for selection at different spatial scales and seasons. A region-wide HSI was calculated using the HSI surfaces modelled for 12 independent subregions and then demarcated into distinct habitat quality classes.We also employed a novel index to describe landscape patterns of sage-grouse abundance and space use (AUI). The AUI is a probabilistic composite of the following: (i) breeding density patterns based on the spatial configuration of breeding leks and associated trends in male attendance; and (ii) year-round patterns of space use indexed by the decreasing probability of use with increasing distance to leks. The continuous AUI surface was then reclassified into two classes representing high and low/no use and abundance. Synthesis and applications. Using the example of sage-grouse, we demonstrate how the joint application of indices of habitat selection, abundance and space use derived from multiple data sources yields a composite map that can guide effective allocation of management intensity

  2. Spatially explicit scenario analysis for hydrologic services in an urbanizing agricultural watershed

    NASA Astrophysics Data System (ADS)

    Qiu, J.; Booth, E.; Carpenter, S. R.; Turner, M.

    2013-12-01

    The sustainability of hydrologic services (benefits to people generated by terrestrial ecosystem effects on freshwater) is challenged by changes in climate and land use. Despite the importance of hydrologic services, few studies have investigated how the provision of ecosystem services related to freshwater quantity and quality may vary in magnitude and spatial pattern for alternative future trajectories. Such analyses may provide useful information for sustaining freshwater resources in the face of a complex and uncertain future. We analyzed the supply of multiple hydrologic services from 2010 to 2070 across a large urbanizing agricultural watershed in the Upper Midwest of the United States, and asked the following: (i) What are the potential trajectories for the supply of hydrologic services under contrasting but plausible future scenarios? (ii) Where on the landscape is the delivery of hydrologic services most vulnerable to future changes? The Nested Watershed scenario represents extreme climate change (warmer temperatures and more frequent extreme events) and a concerted response from institutions, whereas in the Investment in Innovation scenario, climate change is less severe and technological innovations play a major role. Despite more extreme climate in the Nested Watershed scenario, all hydrologic services (i.e., freshwater supply, surface water quality, flood regulation) were maintained or enhanced (~30%) compared to the 2010 baseline, by strict government interventions that prioritized freshwater resources. Despite less extreme climate in the Investment in Innovation scenario and advances in green technology, only surface water quality and flood regulation were maintained or increased (~80%); freshwater supply declined by 25%, indicating a potential future tradeoff between water quality and quantity. Spatially, the locations of greatest vulnerability (i.e., decline) differed by service and among scenarios. In the Nested Watershed scenario, although

  3. Using Satellite Remote Sensing Data in a Spatially Explicit Price Model

    NASA Technical Reports Server (NTRS)

    Brown, Molly E.; Pinzon, Jorge E.; Prince, Stephen D.

    2007-01-01

    Famine early warning organizations use data from multiple disciplines to assess food insecurity of communities and regions in less-developed parts of the World. In this paper we integrate several indicators that are available to enhance the information for preparation for and responses to food security emergencies. The assessment uses a price model based on the relationship between the suitability of the growing season and market prices for coarse grain. The model is then used to create spatially continuous maps of millet prices. The model is applied to the dry central and northern areas of West Africa, using satellite-derived vegetation indices for the entire region. By coupling the model with vegetation data estimated for one to four months into the future, maps are created of a leading indicator of potential price movements. It is anticipated that these maps can be used to enable early warning of famine and for planning appropriate responses.

  4. Improving ecosystem productivity modeling through spatially explicit estimation of optimal light use efficiency

    NASA Astrophysics Data System (ADS)

    Madani, Nima; Kimball, John S.; Affleck, David L. R.; Kattge, Jens; Graham, Jon; Bodegom, Peter M.; Reich, Peter B.; Running, Steven W.

    2014-09-01

    A common assumption of remote sensing-based light use efficiency (LUE) models for estimating vegetation gross primary productivity (GPP) is that plants in a biome matrix operate at their photosynthetic capacity under optimal climatic conditions. A prescribed constant biome maximum light use efficiency parameter (LUEmax) defines the maximum photosynthetic carbon conversion rate under these conditions and is a large source of model uncertainty. Here we used tower eddy covariance measurement-based carbon (CO2) fluxes for spatial estimation of optimal LUE (LUEopt) across North America. LUEopt was estimated at 62 Flux Network sites using tower daily carbon fluxes and meteorology, and satellite observed fractional photosynthetically active radiation from the Moderate Resolution Imaging Spectroradiometer. A geostatistical model was fitted to 45 flux tower-derived LUEopt data points using independent geospatial environmental variables, including global plant traits, soil moisture, terrain aspect, land cover type, and percent tree cover, and validated at 17 independent tower sites. Estimated LUEopt shows large spatial variability within and among different land cover classes indicated from the sparse tower network. Leaf nitrogen content and soil moisture regime are major factors explaining LUEopt patterns. GPP derived from estimated LUEopt shows significant correlation improvement against tower GPP records (R2 = 76.9%; mean root-mean-square error (RMSE) = 257 g C m-2 yr-1), relative to alternative GPP estimates derived using biome-specific LUEmax constants (R2 = 34.0%; RMSE = 439 g C m-2 yr-1). GPP determined from the LUEopt map also explains a 49.4% greater proportion of tower GPP variability at the independent validation sites and shows promise for improving understanding of LUE patterns and environmental controls and enhancing regional GPP monitoring from satellite remote sensing.

  5. Spatial explicit assessment of rural land abandonment in the Mediterranean area

    NASA Astrophysics Data System (ADS)

    Weissteiner, Christof J.; Boschetti, Mirco; Böttcher, Kristin; Carrara, Paola; Bordogna, Gloria; Brivio, Pietro Alessandro

    2011-10-01

    This study adopts the "syndrome approach", originally defined by the Potsdam Institute for Climate Impact Research (PIK), ( Downing et al., 2002) to assess and map rural land abandonment (RLA), that occurred during the period 1990-2005 within the wider Mediterranean area. The basic idea behind the syndrome approach is to describe change processes by archetypical, dynamic, and co-evolutionary patterns of civilization-nature interactions. In the frame of the Rural Exodus Syndrome the RLA can be interpreted as the occurrence of environmental degradation through the abandonment of traditional agricultural practices. Multi-source spatial data, including biophysical-related variables mainly derived from Earth Observation as well as socio-economical GIS-based data, were used to define proxies for expected underlying processes and drivers of the mentioned syndrome. The analysis of data is rooted in the fuzzy set theory and approximate reasoning techniques which allows for the handling of uncertain and imprecise knowledge of environmental systems. Generalized Conjunction/Disjunction operators (GCD) were applied to compute intermediate indicator score maps representing the conditions that may affect the RLA, and a bipolar operator was used to combine mandatory and favouring conditions with the aim of generating a RLA indicator. The indicator expresses the detailed location and severity, or degree, of the syndrome. The Northern Mediterranean was generally found to suffer from RLA to a distinctly higher degree than the Southern Mediterranean. Reported abandonment studies from the existing literature, the European CORINE land cover map, and the Less Favoured Areas (LFA) map all supported the findings by confirming plausibility through convergence of evidence from comparisons with different types of independent information. This spatially highly-detailed results obtained may be of particular interest to policy and decision makers involved in rural development planning in the

  6. Reducing fertilizer-nitrogen losses from rowcrop landscapes: Insights and implications from a spatially explicit watershed model

    USGS Publications Warehouse

    McLellan, Eileen; Schilling, Keith; Robertson, Dale

    2015-01-01

    We present conceptual and quantitative models that predict changes in fertilizer-derived nitrogen delivery from rowcrop landscapes caused by agricultural conservation efforts implemented to reduce nutrient inputs and transport and increase nutrient retention in the landscape. To evaluate the relative importance of changes in the sources, transport, and sinks of fertilizer-derived nitrogen across a region, we use the spatially explicit SPAtially Referenced Regression On Watershed attributes watershed model to map the distribution, at the small watershed scale within the Upper Mississippi-Ohio River Basin (UMORB), of: (1) fertilizer inputs; (2) nutrient attenuation during delivery of those inputs to the UMORB outlet; and (3) nitrogen export from the UMORB outlet. Comparing these spatial distributions suggests that the amount of fertilizer input and degree of nutrient attenuation are both important in determining the extent of nitrogen export. From a management perspective, this means that agricultural conservation efforts to reduce nitrogen export would benefit by: (1) expanding their focus to include activities that restore and enhance nutrient processing in these highly altered landscapes; and (2) targeting specific types of best management practices to watersheds where they will be most valuable. Doing so successfully may result in a shift in current approaches to conservation planning, outreach, and funding.

  7. Multi-variate spatial explicit constraining of a large scale hydrological model

    NASA Astrophysics Data System (ADS)

    Rakovec, Oldrich; Kumar, Rohini; Samaniego, Luis

    2016-04-01

    model parameters leads to considerable changes in the partitioning of precipitation into runoff components, while maintaining total runoff estimates unaltered. Objective functions that take into account the spatial patters of GRACE estimates perform better than those constrained only against discharge. Improvements in parameter estimation based on multiple data sources will enhance the community efforts towards spatially consistent large scale seamless predictions. Reference: Rakovec, O., Kumar, R., Mai, J., Cuntz, M., Thober, S., Zink, M., Attinger, S., Schäfer, D., Schrön, M., Samaniego, L. (2016): Multiscale and multivariate evaluation of water fluxes and states over European river basins, J. Hydrometeorol., 17, 287-307, doi: 10.1175/JHM-D-15-0054.1.

  8. Spatially explicit modeling of blackbird abundance in the Prairie Pothole Region

    USGS Publications Warehouse

    Forcey, Greg M.; Thogmartin, Wayne E.; Linz, George M.; McKann, Patrick C.; Crimmins, Shawn M.

    2015-01-01

    Knowledge of factors influencing animal abundance is important to wildlife biologists developing management plans. This is especially true for economically important species such as blackbirds (Icteridae), which cause more than $100 million in crop damages annually in the United States. Using data from the North American Breeding Bird Survey, the National Land Cover Dataset, and the National Climatic Data Center, we modeled effects of regional environmental variables on relative abundance of 3 blackbird species (red-winged blackbird,Agelaius phoeniceus; yellow-headed blackbird, Xanthocephalus xanthocephalus; common grackle, Quiscalus quiscula) in the Prairie Pothole Region of the central United States. We evaluated landscape covariates at 3 logarithmically related spatial scales (1,000 ha, 10,000 ha, and 100,000 ha) and modeled weather variables at the 100,000-ha scale. We constructed models a priori using information from published habitat associations. We fit models with WinBUGS using Markov chain Monte Carlo techniques. Both landscape and weather variables contributed strongly to predicting blackbird relative abundance (95% credibility interval did not overlap 0). Variables with the strongest associations with blackbird relative abundance were the percentage of wetland area and precipitation amount from the year before bird surveys were conducted. The influence of spatial scale appeared small—models with the same variables expressed at different scales were often in the best model subset. This large-scale study elucidated regional effects of weather and landscape variables, suggesting that management strategies aimed at reducing damages caused by these species should consider the broader landscape, including weather effects, because such factors may outweigh the influence of localized conditions or site-specific management actions. The regional species distributional models we developed for blackbirds provide a tool for understanding these broader

  9. Analyzing key constraints to biogas production from crop residues and manure in the EU—A spatially explicit model

    PubMed Central

    Persson, U. Martin

    2017-01-01

    This paper presents a spatially explicit method for making regional estimates of the potential for biogas production from crop residues and manure, accounting for key technical, biochemical, environmental and economic constraints. Methods for making such estimates are important as biofuels from agricultural residues are receiving increasing policy support from the EU and major biogas producers, such as Germany and Italy, in response to concerns over unintended negative environmental and social impacts of conventional biofuels. This analysis comprises a spatially explicit estimate of crop residue and manure production for the EU at 250 m resolution, and a biogas production model accounting for local constraints such as the sustainable removal of residues, transportation of substrates, and the substrates’ biochemical suitability for anaerobic digestion. In our base scenario, the EU biogas production potential from crop residues and manure is about 0.7 EJ/year, nearly double the current EU production of biogas from agricultural substrates, most of which does not come from residues or manure. An extensive sensitivity analysis of the model shows that the potential could easily be 50% higher or lower, depending on the stringency of economic, technical and biochemical constraints. We find that the potential is particularly sensitive to constraints on the substrate mixtures’ carbon-to-nitrogen ratio and dry matter concentration. Hence, the potential to produce biogas from crop residues and manure in the EU depends to large extent on the possibility to overcome the challenges associated with these substrates, either by complementing them with suitable co-substrates (e.g. household waste and energy crops), or through further development of biogas technology (e.g. pretreatment of substrates and recirculation of effluent). PMID:28141827

  10. Analyzing key constraints to biogas production from crop residues and manure in the EU-A spatially explicit model.

    PubMed

    Einarsson, Rasmus; Persson, U Martin

    2017-01-01

    This paper presents a spatially explicit method for making regional estimates of the potential for biogas production from crop residues and manure, accounting for key technical, biochemical, environmental and economic constraints. Methods for making such estimates are important as biofuels from agricultural residues are receiving increasing policy support from the EU and major biogas producers, such as Germany and Italy, in response to concerns over unintended negative environmental and social impacts of conventional biofuels. This analysis comprises a spatially explicit estimate of crop residue and manure production for the EU at 250 m resolution, and a biogas production model accounting for local constraints such as the sustainable removal of residues, transportation of substrates, and the substrates' biochemical suitability for anaerobic digestion. In our base scenario, the EU biogas production potential from crop residues and manure is about 0.7 EJ/year, nearly double the current EU production of biogas from agricultural substrates, most of which does not come from residues or manure. An extensive sensitivity analysis of the model shows that the potential could easily be 50% higher or lower, depending on the stringency of economic, technical and biochemical constraints. We find that the potential is particularly sensitive to constraints on the substrate mixtures' carbon-to-nitrogen ratio and dry matter concentration. Hence, the potential to produce biogas from crop residues and manure in the EU depends to large extent on the possibility to overcome the challenges associated with these substrates, either by complementing them with suitable co-substrates (e.g. household waste and energy crops), or through further development of biogas technology (e.g. pretreatment of substrates and recirculation of effluent).

  11. Spatially explicit simulation of hydrologically controlled carbon and nitrogen cycles and associated feedback mechanisms in a boreal ecosystem

    NASA Astrophysics Data System (ADS)

    Govind, Ajit; Chen, Jing Ming; Ju, Weimin

    2009-06-01

    Ecosystem models that simulate biogeochemical processes usually ignore hydrological controls that govern them. It is quite possible that topographically driven water fluxes significantly influence the spatial distribution of C sources and sinks because of their large contribution to the local water balance. To investigate this, we simulated biogeochemical processes along with the associated feedback mechanisms in a boreal ecosystem using a spatially explicit hydroecological model, boreal ecosystem productivity simulator (BEPS)-TerrainLab V2.0, that has a tight coupling of ecophysiological, hydrological, and biogeochemical processes. First, the simulated dynamics of snowpack, soil temperature, net ecosystem productivity (NEP), and total ecosystem respiration (TER) were validated with high-frequency measurements for 2 years. The model was able to explain 80% of the variability in NEP and 84% of the variability in TER. Further, we investigated the influence of topographically driven subsurface base flow on soil C and N cycling and on the spatiotemporal patterns of C sources and sinks using three hydrological modeling scenarios that differed in hydrological conceptualizations. In general, the scenarios that had nonexplicit hydrological representation overestimated NEP, as opposed to the scenario that had an explicit (realistic) representation. The key processes controlling the NEP differences were attributed to the combined effects of variations in photosynthesis (due to changes in stomatal conductance and nitrogen (N) availability), heterotrophic respiration, and autotrophic respiration, all of which occur simultaneously affecting NEP. Feedback relationships were also found to exacerbate the differences. We identified six types of NEP differences (biases), of which the most commonly found was due to an underestimation of the existing C sources, highlighting the vulnerability of regional-scale ecosystem models that ignore hydrological processes.

  12. A Spatially Explicit Model of Functional Connectivity for the Endangered Przewalski’s Gazelle (Procapra przewalskii) in a Patchy Landscape

    PubMed Central

    Li, Chunlin; Jiang, Zhigang; Fang, Hongxia; Li, Chunwang

    2013-01-01

    Background Habitat fragmentation, associated with human population expansion, impedes dispersal, reduces gene flow and aggravates inbreeding in species on the brink of extinction. Both scientific and conservation communities increasingly realize that maintaining and restoring landscape connectivity is of vital importance in biodiversity conservation. Prior to any conservation initiatives, it is helpful to present conservation practitioners with a spatially explicit model of functional connectivity for the target species or landscape. Methodology/Principal Findings Using Przewalski’s gazelle (Procapra przewalskii) as a model of endangered ungulate species in highly fragmented landscape, we present a model providing spatially explicit information to inform the long-term preservation of well-connected metapopulations. We employed a Geographic Information System (GIS) and expert-literature method to create a habitat suitability map, to identify potential habitats and to delineate a functional connectivity network (least-cost movement corridors and paths) for the gazelle. Results indicated that there were limited suitable habitats for the gazelle, mainly found to the north and northwest of the Qinghai Lake where four of five potential habitat patches were identified. Fifteen pairs of least-cost corridors and paths were mapped connecting eleven extant populations and two neighboring potential patches. The least-cost paths ranged from 0.2 km to 26.8 km in length (averaging 12.4 km) and were all longer than corresponding Euclidean distances. Conclusions/Significance The model outputs were validated and supported by the latest findings in landscape genetics of the species, and may provide impetus for connectivity conservation programs. Dispersal barriers were examined and appropriate mitigation strategies were suggested. This study provides conservation practitioners with thorough and visualized information to reserve the landscape connectivity for Przewalski’s gazelle

  13. An empirical evaluation of camera trapping and spatially explicit capture-recapture models for estimating chimpanzee density.

    PubMed

    Després-Einspenner, Marie-Lyne; Howe, Eric J; Drapeau, Pierre; Kühl, Hjalmar S

    2017-03-07

    Empirical validations of survey methods for estimating animal densities are rare, despite the fact that only an application to a population of known density can demonstrate their reliability under field conditions and constraints. Here, we present a field validation of camera trapping in combination with spatially explicit capture-recapture (SECR) methods for enumerating chimpanzee populations. We used 83 camera traps to sample a habituated community of western chimpanzees (Pan troglodytes verus) of known community and territory size in Taï National Park, Ivory Coast, and estimated community size and density using spatially explicit capture-recapture models. We aimed to: (1) validate camera trapping as a means to collect capture-recapture data for chimpanzees; (2) validate SECR methods to estimate chimpanzee density from camera trap data; (3) compare the efficacy of targeting locations frequently visited by chimpanzees versus deploying cameras according to a systematic design; (4) evaluate the performance of SECR estimators with reduced sampling effort; and (5) identify sources of heterogeneity in detection probabilities. Ten months of camera trapping provided abundant capture-recapture data. All weaned individuals were detected, most of them multiple times, at both an array of targeted locations, and a systematic grid of cameras positioned randomly within the study area, though detection probabilities were higher at targeted locations. SECR abundance estimates were accurate and precise, and analyses of subsets of the data indicated that the majority of individuals in a community could be detected with as few as five traps deployed within their territory. Our results highlight the potential of camera trapping for cost-effective monitoring of chimpanzee populations.

  14. A Spatially Explicit Approach for Evaluating Relationships among Coastal Cutthroat, Habitat, and Disturbance in Headwater Streams

    NASA Astrophysics Data System (ADS)

    Gresswell, R. E.; Bateman, D. S.; Torgersen, C. E.; Guy, T. J.; Hendricks, S. R.; Wofford, J. E.

    2005-05-01

    Headwater stream systems are complex networks that form a physicochemical template governing the persistence of aquatic species such as coastal cutthroat trout. Individual portions of the network can function as conduits or receptacles for sediments, wood, and nutrients from terrestrial areas. Temporal and spatial changes in the delivery of these constituents can substantially alter the habitat template and its ability to support this native fish. Our study of 40 mid-sized watersheds (500 - 1,500 ha) in western Oregon is providing new insights into the factors affecting the distribution of coastal cutthroat trout within, and among, headwater stream networks. For example, data suggest that coastal cutthroat trout move throughout the accessible portions of headwater streams for reproductive, feeding, and refuge purposes. Fish congregate in these areas and form local populations that may exhibit unique phenotypic and genetic attributes. At times, coastal cutthroat trout move into larger downstream portions of the network where they may contribute to the persistence and genetic character of anadromous or local potamodromous assemblages. Variation in distribution patterns among watersheds reflects diverse environments and selective factors, such as geology, geomorphology, climate, and land-management history. Our research findings suggest that human activities that impede movement among suitable habitat patches can have lasting consequences for local assemblages of coastal cutthroat trout and may ultimately affect persistence.

  15. An open and extensible framework for spatially explicit land use change modelling: the lulcc R package

    NASA Astrophysics Data System (ADS)

    Moulds, S.; Buytaert, W.; Mijic, A.

    2015-10-01

    We present the lulcc software package, an object-oriented framework for land use change modelling written in the R programming language. The contribution of the work is to resolve the following limitations associated with the current land use change modelling paradigm: (1) the source code for model implementations is frequently unavailable, severely compromising the reproducibility of scientific results and making it impossible for members of the community to improve or adapt models for their own purposes; (2) ensemble experiments to capture model structural uncertainty are difficult because of fundamental differences between implementations of alternative models; and (3) additional software is required because existing applications frequently perform only the spatial allocation of change. The package includes a stochastic ordered allocation procedure as well as an implementation of the CLUE-S algorithm. We demonstrate its functionality by simulating land use change at the Plum Island Ecosystems site, using a data set included with the package. It is envisaged that lulcc will enable future model development and comparison within an open environment.

  16. Impacts of impervious surface expansion on soil organic carbon – a spatially explicit study

    PubMed Central

    Yan, Yan; Kuang, Wenhui; Zhang, Chi; Chen, Chunbo

    2015-01-01

    The rapid expansion of impervious surface areas (ISA) threatens soil organic carbon (SOC) pools in urbanized areas globally. The paucity of field observations on SOC under ISA (SOCISA), especially in dryland areas has limited our ability to assess the ecological impacts of ISA expansion. Based on systematically measured SOCISA (0–80 cm depth) of a dryland city, and land-use and land-cover change data derived from remotely sensed data, we investigated the magnitude and vertical/horizontal patterns of SOCISA and mapped the impact of ISA expansion on SOC storage. The mean SOCISA in the city was 5.36 ± 0.51 kg C m−2, lower than that observed in humid cities but much higher than that assumed in many regional carbon assessments. SOCISA decreased linearly as the soil depth or the horizontal distance from the open area increased. SOCISA accounted for over half of the city’s SOC stock, which decreased by 16% (primarily in the converted croplands) because of ISA expansion from 1990 to 2010. The impacts of the ISA expansion varied spatially, depending on the land- use and converted land-cover type. PMID:26642831

  17. Ethiopian wheat yield and yield gap estimation: A spatially explicit small area integrated data approach.

    PubMed

    Mann, Michael L; Warner, James M

    2017-02-01

    Despite the routine collection of annual agricultural surveys and significant advances in GIS and remote sensing products, little econometric research has integrated these data sources in estimating developing nations' agricultural yields. In this paper, we explore the determinants of wheat output per hectare in Ethiopia during the 2011-2013 principal Meher crop seasons at the kebele administrative area. Using a panel data approach, combining national agricultural field surveys with relevant GIS and remote sensing products, the model explains nearly 40% of the total variation in wheat output per hectare across the country. Reflecting on the high interannual variability in output per hectare, we explore whether these changes can be explained by weather, shocks to, and management of rain-fed agricultural systems. The model identifies specific contributors to wheat yields that include farm management techniques (e.g. area planted, improved seed, fertilizer, and irrigation), weather (e.g. rainfall), water availability (e.g. vegetation and moisture deficit indexes) and policy intervention. Our findings suggest that woredas produce between 9.8 and 86.5% of their locally attainable wheat yields given their altitude, weather conditions, terrain, and plant health. In conclusion, we believe the combination of field surveys with spatial data can be used to identify management priorities for improving production at a variety of administrative levels.

  18. Modeling spatially- and temporally-explicit water stress indices for use in life cycle assessment

    NASA Astrophysics Data System (ADS)

    Scherer, L.; Venkatesh, A.; Karuppiah, R.; Usadi, A.; Pfister, S.; Hellweg, S.

    2013-12-01

    Water scarcity is a regional issue in many areas across the world, and can affect human health and ecosystems locally. Water stress indices (WSIs) have been developed as quantitative indicators of such scarcities - examples include the Falkenmark indicator, Social Water Stress Index, and the Water Supply Stress Index1. Application of these indices helps us understand water supply and demand risks for multiple users, including those in the agricultural, industrial, residential and commercial sectors. Pfister et al.2 developed a method to calculate WSIs that were used to estimate characterization factors (CFs) in order to quantify environmental impacts of freshwater consumption within a life cycle assessment (LCA) framework. Global WSIs were based on data from the WaterGAP model3, and presented as annual averages for watersheds. Since water supply and demand varies regionally and temporally, the resolution used in Pfister et al. does not effectively differentiate between seasonal and permanent water scarcity. This study aims to improve the temporal and spatial resolution of the water scarcity calculations used to estimate WSIs and CFs. We used the Soil and Water Assessment Tool (SWAT)4 hydrological model to properly simulate water supply in different world regions with high spatial and temporal resolution, and coupled it with water use data from WaterGAP3 and Pfister et al.5. Input data to SWAT included weather, land use, soil characteristics and a digital elevation model (DEM), all from publicly available global data sets. Potential evapotranspiration, which affects water supply, was determined using an improved Priestley-Taylor approach. In contrast to most other hydrological studies, large reservoirs, water consumption and major water transfers were simulated. The model was calibrated against observed monthly discharge, actual evapotranspiration, and snow water equivalents wherever appropriate. Based on these simulations, monthly WSIs were calculated for a few

  19. Crucial nesting habitat for gunnison sage-grouse: A spatially explicit hierarchical approach

    USGS Publications Warehouse

    Aldridge, C.L.; Saher, D.J.; Childers, T.M.; Stahlnecker, K.E.; Bowen, Z.H.

    2012-01-01

    Gunnison sage-grouse (Centrocercus minimus) is a species of special concern and is currently considered a candidate species under Endangered Species Act. Careful management is therefore required to ensure that suitable habitat is maintained, particularly because much of the species' current distribution is faced with exurban development pressures. We assessed hierarchical nest site selection patterns of Gunnison sage-grouse inhabiting the western portion of the Gunnison Basin, Colorado, USA, at multiple spatial scales, using logistic regression-based resource selection functions. Models were selected using Akaike Information Criterion corrected for small sample sizes (AIC c) and predictive surfaces were generated using model averaged relative probabilities. Landscape-scale factors that had the most influence on nest site selection included the proportion of sagebrush cover >5%, mean productivity, and density of 2 wheel-drive roads. The landscape-scale predictive surface captured 97% of known Gunnison sage-grouse nests within the top 5 of 10 prediction bins, implicating 57% of the basin as crucial nesting habitat. Crucial habitat identified by the landscape model was used to define the extent for patch-scale modeling efforts. Patch-scale variables that had the greatest influence on nest site selection were the proportion of big sagebrush cover >10%, distance to residential development, distance to high volume paved roads, and mean productivity. This model accurately predicted independent nest locations. The unique hierarchical structure of our models more accurately captures the nested nature of habitat selection, and allowed for increased discrimination within larger landscapes of suitable habitat. We extrapolated the landscape-scale model to the entire Gunnison Basin because of conservation concerns for this species. We believe this predictive surface is a valuable tool which can be incorporated into land use and conservation planning as well the assessment of

  20. Spatially explicit feedbacks between seagrass meadow structure, sediment and light: Habitat suitability for seagrass growth

    NASA Astrophysics Data System (ADS)

    Carr, Joel A.; D'Odorico, Paolo; McGlathery, Karen J.; Wiberg, Patricia L.

    2016-07-01

    In shallow coastal bays where nutrient loading and riverine inputs are low, turbidity, and the consequent light environment are controlled by resuspension of bed sediments due to wind-waves and tidal currents. High sediment resuspension and low light environments can limit benthic primary productivity; however, both currents and waves are affected by the presence of benthic plants such as seagrass. This feedback between the presence of benthic primary producers such as seagrass and the consequent light environment has been predicted to induce bistable dynamics locally. However, these vegetated areas influence a larger area than they footprint, including a barren adjacent downstream area which exhibits reduced shear stresses. Here we explore through modeling how the patchy structure of seagrass meadows on a landscape may affect sediment resuspension and the consequent light environment due to the presence of this sheltered region. Heterogeneous vegetation covers comprising a mosaic of randomly distributed patches were generated to investigate the effect of patch modified hydrodynamics. Actual cover of vegetation on the landscape was used to facilitate comparisons across landscape realizations. Hourly wave and current shear stresses on the landscape along with suspended sediment concentration and light attenuation characteristics were then calculated and spatially averaged to examine how actual cover and mean water depth affect the bulk sediment and light environment. The results indicate that an effective cover, which incorporates the sheltering area, has important controls on the distributions of shear stress, suspended sediment, light environment, and consequent seagrass habitat suitability. Interestingly, an optimal habitat occurs within a depth range where, if actual cover is reduced past some threshold, the bulk light environment would no longer favor seagrass growth.

  1. Spatially explicit feedbacks between seagrass meadow structure, sediment and light: Habitat suitability for seagrass growth

    USGS Publications Warehouse

    Carr, Joel; D'Odorico, Paul; McGlathery, Karen; Wiberg, Patricia L.

    2016-01-01

    In shallow coastal bays where nutrient loading and riverine inputs are low, turbidity, and the consequent light environment are controlled by resuspension of bed sediments due to wind-waves and tidal currents. High sediment resuspension and low light environments can limit benthic primary productivity; however, both currents and waves are affected by the presence of benthic plants such as seagrass. This feedback between the presence of benthic primary producers such as seagrass and the consequent light environment has been predicted to induce bistable dynamics locally. However, these vegetated areas influence a larger area than they footprint, including a barren adjacent downstream area which exhibits reduced shear stresses. Here we explore through modeling how the patchy structure of seagrass meadows on a landscape may affect sediment resuspension and the consequent light environment due to the presence of this sheltered region. Heterogeneous vegetation covers comprising a mosaic of randomly distributed patches were generated to investigate the effect of patch modified hydrodynamics. Actual cover of vegetation on the landscape was used to facilitate comparisons across landscape realizations. Hourly wave and current shear stresses on the landscape along with suspended sediment concentration and light attenuation characteristics were then calculated and spatially averaged to examine how actual cover and mean water depth affect the bulk sediment and light environment. The results indicate that an effective cover, which incorporates the sheltering area, has important controls on the distributions of shear stress, suspended sediment, light environment, and consequent seagrass habitat suitability. Interestingly, an optimal habitat occurs within a depth range where, if actual cover is reduced past some threshold, the bulk light environment would no longer favor seagrass growth.

  2. A Spatially-Explicit Modeling Approach to Examine the Interaction of Reproductive Traits and Landscape Characteristics on Arctic Shrub Expansion

    NASA Astrophysics Data System (ADS)

    Naito, A. T.; Cairns, D. M.; Feldman, R. M.; Grant, W. E.

    2014-12-01

    Shrub expansion is one of the most recognized components of terrestrial Arctic change. While experimental work has provided valuable insights into its fine-scale drivers and implications, the contribution of shrub reproductive characteristics to their spatial patterns is poorly understood at broader scales. Building upon our previous work in river valleys in northern Alaska, we developed a C#-based spatially-explicit model that simulates historic landscape-scale shrub establishment between the 1970s and the late 2000s on a yearly time-step while accounting for parameters relating to different reproduction modes (clonal development with and without the "mass effect" and short-distance dispersal), as well as the presence and absence of the interaction of hydrologic constraints using the topographic wetness index. We examined these treatments on floodplains, valley slopes, and interfluves in the Ayiyak, Colville, and Kurupa River valleys. After simulating 30 landscape realizations using each parameter combination, we quantified the spatial characteristics (patch density, edge density, patch size variability, area-weighted shape index, area-weighted fractal dimension index, and mean distance between patches) of the resulting shrub patches on the simulation end date using FRAGSTATS. We used Principal Components Analysis to determine which treatments produced spatial characteristics most similar to those observed in the late 2000s. Based upon our results, we hypothesize that historic shrub expansion in northern Alaska has been driven in part by clonal reproduction with the "mass effect" or short-distance dispersal (< 5 m). The interactive effect of hydrologic characteristics, however, is less clear. These hypotheses may then be tested in future work involving field observations. Given the potential that climate change may facilitate a shift from a clonal to a sexual reproductive strategy, this model may facilitate predictions regarding future Arctic vegetation patterns.

  3. Spatially explicit land-use and land-cover scenarios for the Great Plains of the United States

    USGS Publications Warehouse

    Sohl, Terry L.; Sleeter, Benjamin M.; Sayler, Kristi L.; Bouchard, Michelle A.; Reker, Ryan R.; Bennett, Stacie L.; Sleeter, Rachel R.; Kanengieter, Ronald L.; Zhu, Zhi-Liang

    2012-01-01

    The Great Plains of the United States has undergone extensive land-use and land-cover change in the past 150 years, with much of the once vast native grasslands and wetlands converted to agricultural crops, and much of the unbroken prairie now heavily grazed. Future land-use change in the region could have dramatic impacts on ecological resources and processes. A scenario-based modeling framework is needed to support the analysis of potential land-use change in an uncertain future, and to mitigate potentially negative future impacts on ecosystem processes. We developed a scenario-based modeling framework to analyze potential future land-use change in the Great Plains. A unique scenario construction process, using an integrated modeling framework, historical data, workshops, and expert knowledge, was used to develop quantitative demand for future land-use change for four IPCC scenarios at the ecoregion level. The FORE-SCE model ingested the scenario information and produced spatially explicit land-use maps for the region at relatively fine spatial and thematic resolutions. Spatial modeling of the four scenarios provided spatial patterns of land-use change consistent with underlying assumptions and processes associated with each scenario. Economically oriented scenarios were characterized by significant loss of natural land covers and expansion of agricultural and urban land uses. Environmentally oriented scenarios experienced modest declines in natural land covers to slight increases. Model results were assessed for quantity and allocation disagreement between each scenario pair. In conjunction with the U.S. Geological Survey's Biological Carbon Sequestration project, the scenario-based modeling framework used for the Great Plains is now being applied to the entire United States.

  4. Uncertainty analysis of a spatially explicit annual water-balance model: case study of the Cape Fear basin, North Carolina

    NASA Astrophysics Data System (ADS)

    Hamel, P.; Guswa, A. J.

    2015-02-01

    There is an increasing demand for assessment of water provisioning ecosystem services. While simple models with low data and expertise requirements are attractive, their use as decision-aid tools should be supported by uncertainty characterization. We assessed the performance of the InVEST annual water yield model, a popular tool for ecosystem service assessment based on the Budyko hydrological framework. Our study involved the comparison of 10 subcatchments ranging in size and land-use configuration, in the Cape Fear basin, North Carolina. We analyzed the model sensitivity to climate variables and input parameters, and the structural error associated with the use of the Budyko framework, a lumped (catchment-scale) model theory, in a spatially explicit way. Comparison of model predictions with observations and with the lumped model predictions confirmed that the InVEST model is able to represent differences in land uses and therefore in the spatial distribution of water provisioning services. Our results emphasize the effect of climate input errors, especially annual precipitation, and errors in the ecohydrological parameter Z, which are both comparable to the model structure uncertainties. Our case study supports the use of the model for predicting land-use change effect on water provisioning, although its use for identifying areas of high water yield will be influenced by precipitation errors. While some results are context-specific, our study provides general insights and methods to help identify the regions and decision contexts where the model predictions may be used with confidence.

  5. Spatially explicit measures of production of young alewives in Lake Michigan: Linkage between essential fish habitat and recruitment

    USGS Publications Warehouse

    Hook, Tomas O.; Rutherford, Edward S.; Brines, Shannon J.; Mason, Doran M.; Schwab, David J.; McCormick, Michael; Desorcie, Timothy J.

    2003-01-01

    The identification and protection of essential habitats for early life stages of fishes are necessary to sustain fish stocks. Essential fish habitat for early life stages may be defined as areas where fish densities, growth, survival, or production rates are relatively high. To identify critical habitats for young-of-year (YOY) alewives (Alosa pseud oharengus) in Lake Michigan, we integrated bioenergetics models with GIS (Geographic Information Systems) to generate spatially explicit estimates of potential population production (an index of habitat quality). These estimates were based upon YOY alewife bioenergetic growth rate potential and their salmonine predators’ consumptive demand. We compared estimates of potential population production to YOY alewife yield (an index of habitat importance). Our analysis suggested that during 1994–1995, YOY alewife habitat quality and yield varied widely throughout Lake Michigan. Spatial patterns of alewife yield were not significantly correlated to habitat quality. Various mechanisms (e.g., predator migrations, lake circulation patterns, alternative strategies) may preclude YOY alewives from concentrating in areas of high habitat quality in Lake Michigan.

  6. A spatially and temporally explicit life cycle inventory of air pollutants from gasoline and ethanol in the United States.

    PubMed

    Tessum, Christopher W; Marshall, Julian D; Hill, Jason D

    2012-10-16

    The environmental health impacts of transportation depend in part on where and when emissions occur during fuel production and combustion. Here we describe spatially and temporally explicit life cycle inventories (LCI) of air pollutants from gasoline, ethanol derived from corn grain, and ethanol from corn stover. Previous modeling for the U.S. by Argonne National Laboratory (GREET: Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation) suggested that life cycle emissions are generally higher for ethanol from corn grain or corn stover than for gasoline. Our results show that for ethanol, emissions are concentrated in the Midwestern "Corn Belt". We find that life cycle emissions from ethanol exhibit different temporal patterns than from gasoline, reflecting seasonal aspects of farming activities. Enhanced chemical speciation beyond current GREET model capabilities is also described. Life cycle fine particulate matter emissions are higher for ethanol from corn grain than for ethanol from corn stover; for black carbon, the reverse holds. Overall, our results add to existing state-of-the-science transportation fuel LCI by providing spatial and temporal disaggregation and enhanced chemical speciation, thereby offering greater understanding of the impacts of transportation fuels on human health and opening the door to advanced air dispersion modeling of fuel life cycles.

  7. Global spatially explicit CO2 emission metrics at 0.25° horizontal resolution for forest bioenergy

    NASA Astrophysics Data System (ADS)

    Cherubini, F.

    2015-12-01

    Bioenergy is the most important renewable energy option in studies designed to align with future RCP projections, reaching approximately 250 EJ/yr in RCP2.6, 145 EJ/yr in RCP4.5 and 180 EJ/yr in RCP8.5 by the end of the 21st century. However, many questions enveloping the direct carbon cycle and climate response to bioenergy remain partially unexplored. Bioenergy systems are largely assessed under the default climate neutrality assumption and the time lag between CO2 emissions from biomass combustion and CO2 uptake by vegetation is usually ignored. Emission metrics of CO2 from forest bioenergy are only available on a case-specific basis and their quantification requires processing of a wide spectrum of modelled or observed local climate and forest conditions. On the other hand, emission metrics are widely used to aggregate climate impacts of greenhouse gases to common units such as CO2-equivalents (CO2-eq.), but a spatially explicit analysis of emission metrics with global forest coverage is today lacking. Examples of emission metrics include the global warming potential (GWP), the global temperature change potential (GTP) and the absolute sustained emission temperature (aSET). Here, we couple a global forest model, a heterotrophic respiration model, and a global climate model to produce global spatially explicit emission metrics for CO2 emissions from forest bioenergy. We show their applications to global emissions in 2015 and until 2100 under the different RCP scenarios. We obtain global average values of 0.49 ± 0.03 kgCO2-eq. kgCO2-1 (mean ± standard deviation), 0.05 ± 0.05 kgCO2-eq. kgCO2-1, and 2.14·10-14 ± 0.11·10-14 °C (kg yr-1)-1, and 2.14·10-14 ± 0.11·10-14 °C (kg yr-1)-1 for GWP, GTP and aSET, respectively. We also present results aggregated at a grid, national and continental level. The metrics are found to correlate with the site-specific turnover times and local climate variables like annual mean temperature and precipitation. Simplified

  8. Spatially explicit modelling of forest structure and function using airborne lidar and hyperspectral remote sensing data combined with micrometeorological measurements

    NASA Astrophysics Data System (ADS)

    Thomas, Valerie Anne

    This research models canopy-scale photosynthesis at the Groundhog River Flux Site through the integration of high-resolution airborne remote sensing data and micrometeorological measurements collected from a flux tower. Light detection and ranging (lidar) data are analysed to derive models of tree structure, including: canopy height, basal area, crown closure, and average aboveground biomass. Lidar and hyperspectral remote sensing data are used to model canopy chlorophyll (Chl) and carotenoid concentrations (known to be good indicators of photosynthesis). The integration of lidar and hyperspectral data is applied to derive spatially explicit models of the fraction of photosynthetically active radiation (fPAR) absorbed by the canopy as well as a species classification for the site. These products are integrated with flux tower meteorological measurements (i.e., air temperature and global solar radiation) collected on a continuous basis over 2004 to apply the C-Fix model of carbon exchange to the site. Results demonstrate that high resolution lidar and lidar-hyperspectral integration techniques perform well in the boreal mixedwood environment. Lidar models are well correlated with forest structure, despite the complexities introduced in the mixedwood case (e.g., r2=0.84, 0.89, 0.60, and 0.91, for mean dominant height, basal area, crown closure, and average aboveground biomass). Strong relationships are also shown for canopy scale chlorophyll/carotenoid concentration analysis using integrated lidar-hyperspectral techniques (e.g., r2=0.84, 0.84, and 0.82 for Chl(a), Chl(a+b), and Chl(b)). Examination of the spatially explicit models of fPAR reveal distinct spatial patterns which become increasingly apparent throughout the season due to the variation in species groupings (and canopy chlorophyll concentration) within the 1 km radius surrounding the flux tower. Comparison of results from the modified local-scale version of the C-Fix model to tower gross ecosystem

  9. Impact of mosquito gene drive on malaria elimination in a computational model with explicit spatial and temporal dynamics.

    PubMed

    Eckhoff, Philip A; Wenger, Edward A; Godfray, H Charles J; Burt, Austin

    2017-01-10

    The renewed effort to eliminate malaria and permanently remove its tremendous burden highlights questions of what combination of tools would be sufficient in various settings and what new tools need to be developed. Gene drive mosquitoes constitute a promising set of tools, with multiple different possible approaches including population replacement with introduced genes limiting malaria transmission, driving-Y chromosomes to collapse a mosquito population, and gene drive disrupting a fertility gene and thereby achieving population suppression or collapse. Each of these approaches has had recent success and advances under laboratory conditions, raising the urgency for understanding how each could be deployed in the real world and the potential impacts of each. New analyses are needed as existing models of gene drive primarily focus on nonseasonal or nonspatial dynamics. We use a mechanistic, spatially explicit, stochastic, individual-based mathematical model to simulate each gene drive approach in a variety of sub-Saharan African settings. Each approach exhibits a broad region of gene construct parameter space with successful elimination of malaria transmission due to the targeted vector species. The introduction of realistic seasonality in vector population dynamics facilitates gene drive success compared with nonseasonal analyses. Spatial simulations illustrate constraints on release timing, frequency, and spatial density in the most challenging settings for construct success. Within its parameter space for success, each gene drive approach provides a tool for malaria elimination unlike anything presently available. Provided potential barriers to success are surmounted, each achieves high efficacy at reducing transmission potential and lower delivery requirements in logistically challenged settings.

  10. Impact of mosquito gene drive on malaria elimination in a computational model with explicit spatial and temporal dynamics

    PubMed Central

    Eckhoff, Philip A.; Wenger, Edward A.; Godfray, H. Charles J.; Burt, Austin

    2017-01-01

    The renewed effort to eliminate malaria and permanently remove its tremendous burden highlights questions of what combination of tools would be sufficient in various settings and what new tools need to be developed. Gene drive mosquitoes constitute a promising set of tools, with multiple different possible approaches including population replacement with introduced genes limiting malaria transmission, driving-Y chromosomes to collapse a mosquito population, and gene drive disrupting a fertility gene and thereby achieving population suppression or collapse. Each of these approaches has had recent success and advances under laboratory conditions, raising the urgency for understanding how each could be deployed in the real world and the potential impacts of each. New analyses are needed as existing models of gene drive primarily focus on nonseasonal or nonspatial dynamics. We use a mechanistic, spatially explicit, stochastic, individual-based mathematical model to simulate each gene drive approach in a variety of sub-Saharan African settings. Each approach exhibits a broad region of gene construct parameter space with successful elimination of malaria transmission due to the targeted vector species. The introduction of realistic seasonality in vector population dynamics facilitates gene drive success compared with nonseasonal analyses. Spatial simulations illustrate constraints on release timing, frequency, and spatial density in the most challenging settings for construct success. Within its parameter space for success, each gene drive approach provides a tool for malaria elimination unlike anything presently available. Provided potential barriers to success are surmounted, each achieves high efficacy at reducing transmission potential and lower delivery requirements in logistically challenged settings. PMID:28028208

  11. A High-Resolution Spatially Explicit Monte-Carlo Simulation Approach to Commercial and Residential Electricity and Water Demand Modeling

    SciTech Connect

    Morton, April M; McManamay, Ryan A; Nagle, Nicholas N; Piburn, Jesse O; Stewart, Robert N; Surendran Nair, Sujithkumar

    2016-01-01

    Abstract As urban areas continue to grow and evolve in a world of increasing environmental awareness, the need for high resolution spatially explicit estimates for energy and water demand has become increasingly important. Though current modeling efforts mark significant progress in the effort to better understand the spatial distribution of energy and water consumption, many are provided at a course spatial resolution or rely on techniques which depend on detailed region-specific data sources that are not publicly available for many parts of the U.S. Furthermore, many existing methods do not account for errors in input data sources and may therefore not accurately reflect inherent uncertainties in model outputs. We propose an alternative and more flexible Monte-Carlo simulation approach to high-resolution residential and commercial electricity and water consumption modeling that relies primarily on publicly available data sources. The method s flexible data requirement and statistical framework ensure that the model is both applicable to a wide range of regions and reflective of uncertainties in model results. Key words: Energy Modeling, Water Modeling, Monte-Carlo Simulation, Uncertainty Quantification Acknowledgment This manuscript has been authored by employees of UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the U.S. Department of Energy. Accordingly, the United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.

  12. Spatially-explicit life cycle assessment of sun-to-wheels transportation pathways in the U.S.

    PubMed

    Geyer, Roland; Stoms, David; Kallaos, James

    2013-01-15

    Growth in biofuel production, which is meant to reduce greenhouse gas (GHG) emissions and fossil energy demand, is increasingly seen as a threat to food supply and natural habitats. Using photovoltaics (PV) to directly convert solar radiation into electricity for battery electric vehicles (BEVs) is an alternative to photosynthesis, which suffers from a very low energy conversion efficiency. Assessments need to be spatially explicit, since solar insolation and crop yields vary widely between locations. This paper therefore compares direct land use, life cycle GHG emissions and fossil fuel requirements of five different sun-to-wheels conversion pathways for every county in the contiguous U.S.: Ethanol from corn or switchgrass for internal combustion vehicles (ICVs), electricity from corn or switchgrass for BEVs, and PV electricity for BEVs. Even the most land-use efficient biomass-based pathway (i.e., switchgrass bioelectricity in U.S. counties with hypothetical crop yields of over 24 tonnes/ha) requires 29 times more land than the PV-based alternative in the same locations. PV BEV systems also have the lowest life cycle GHG emissions throughout the U.S. and the lowest fossil fuel inputs, except for locations with hypothetical switchgrass yields of 16 or more tonnes/ha. Including indirect land use effects further strengthens the case for PV.

  13. Spatially explicit fire-climate history of the boreal forest-tundra (Eastern Canada) over the last 2000 years.

    PubMed

    Payette, Serge; Filion, Louise; Delwaide, Ann

    2008-07-12

    Across the boreal forest, fire is the main disturbance factor and driver of ecosystem changes. In this study, we reconstructed a long-term, spatially explicit fire history of a forest-tundra region in northeastern Canada. We hypothesized that current occupation of similar topographic and edaphic sites by tundra and forest was the consequence of cumulative regression with time of forest cover due to compounding fire and climate disturbances. All fires were mapped and dated per 100 year intervals over the last 2,000 years using several fire dating techniques. Past fire occurrences and post-fire regeneration at the northern forest limit indicate 70% reduction of forest cover since 1800 yr BP and nearly complete cessation of forest regeneration since 900 yr BP. Regression of forest cover was particularly important between 1500s-1700s and possibly since 900 yr BP. Although fire frequency was very low over the last 100 years, each fire event was followed by drastic removal of spruce cover. Contrary to widespread belief of northward boreal forest expansion due to recent warming, lack of post-fire recovery during the last centuries, in comparison with active tree regeneration more than 1,000 years ago, indicates that the current climate does not favour such expansion.

  14. Individual-Based Spatially-Explicit Model of an Herbivore and Its Resource: The Effect of Habitat Reduction and Fragmentation

    SciTech Connect

    Kostova, T; Carlsen, T; Kercher, J

    2002-06-17

    We present an individual-based, spatially-explicit model of the dynamics of a small mammal and its resource. The life histories of each individual animal are modeled separately. The individuals can have the status of residents or wanderers and belong to behaviorally differing groups of juveniles or adults and males or females. Their territory defending and monogamous behavior is taken into consideration. The resource, green vegetation, grows depending on seasonal climatic characteristics and is diminished due to the herbivore's grazing. Other specifics such as a varying personal energetic level due to feeding and starvation of the individuals, mating preferences, avoidance of competitors, dispersal of juveniles, as a result of site overgrazing, etc. are included in the model. We determined model parameters from real data for the species Microtus ochrogaster (prairie vole). The simulations are done for a case of an enclosed habitat without predators or other species competitors. The goal of the study is to find the relation between size of habitat and population persistence. The experiments with the model show the populations go extinct due to severe overgrazing, but that the length of population persistence depends on the area of the habitat as well as on the presence of fragmentation. Additionally, the total population size of the vole population obtained during the simulations exhibits yearly fluctuations as well as multi-yearly peaks of fluctuations. This dynamics is similar to the one observed in prairie vole field studies.

  15. Spatially explicit estimates of N2 O emissions from croplands suggest climate mitigation opportunities from improved fertilizer management.

    PubMed

    Gerber, James S; Carlson, Kimberly M; Makowski, David; Mueller, Nathaniel D; Garcia de Cortazar-Atauri, Iñaki; Havlík, Petr; Herrero, Mario; Launay, Marie; O'Connell, Christine S; Smith, Pete; West, Paul C

    2016-10-01

    With increasing nitrogen (N) application to croplands required to support growing food demand, mitigating N2 O emissions from agricultural soils is a global challenge. National greenhouse gas emissions accounting typically estimates N2 O emissions at the country scale by aggregating all crops, under the assumption that N2 O emissions are linearly related to N application. However, field studies and meta-analyses indicate a nonlinear relationship, in which N2 O emissions are relatively greater at higher N application rates. Here, we apply a super-linear emissions response model to crop-specific, spatially explicit synthetic N fertilizer and manure N inputs to provide subnational accounting of global N2 O emissions from croplands. We estimate 0.66 Tg of N2 O-N direct global emissions circa 2000, with 50% of emissions concentrated in 13% of harvested area. Compared to estimates from the IPCC Tier 1 linear model, our updated N2 O emissions range from 20% to 40% lower throughout sub-Saharan Africa and Eastern Europe, to >120% greater in some Western European countries. At low N application rates, the weak nonlinear response of N2 O emissions suggests that relatively large increases in N fertilizer application would generate relatively small increases in N2 O emissions. As aggregated fertilizer data generate underestimation bias in nonlinear models, high-resolution N application data are critical to support accurate N2 O emissions estimates.

  16. Comparing approaches to spatially explicit ecosystem service modeling: a case study from the San Pedro River, Arizona

    USGS Publications Warehouse

    Bagstad, Kenneth J.; Semmens, Darius J.; Winthrop, Robert

    2013-01-01

    Although the number of ecosystem service modeling tools has grown in recent years, quantitative comparative studies of these tools have been lacking. In this study, we applied two leading open-source, spatially explicit ecosystem services modeling tools – Artificial Intelligence for Ecosystem Services (ARIES) and Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) – to the San Pedro River watershed in southeast Arizona, USA, and northern Sonora, Mexico. We modeled locally important services that both modeling systems could address – carbon, water, and scenic viewsheds. We then applied managerially relevant scenarios for urban growth and mesquite management to quantify ecosystem service changes. InVEST and ARIES use different modeling approaches and ecosystem services metrics; for carbon, metrics were more similar and results were more easily comparable than for viewsheds or water. However, findings demonstrate similar gains and losses of ecosystem services and conclusions when comparing effects across our scenarios. Results were more closely aligned for landscape-scale urban-growth scenarios and more divergent for a site-scale mesquite-management scenario. Follow-up studies, including testing in different geographic contexts, can improve our understanding of the strengths and weaknesses of these and other ecosystem services modeling tools as they move closer to readiness for supporting day-to-day resource management.

  17. Modeling the fate of nitrogen on the catchment scale using a spatially explicit hydro-biogeochemical simulation system

    NASA Astrophysics Data System (ADS)

    Klatt, S.; Butterbach-Bahl, K.; Kiese, R.; Haas, E.; Kraus, D.; Molina-Herrera, S. W.; Kraft, P.

    2015-12-01

    The continuous growth of the human population demands an equally growing supply for fresh water and food. As a result, available land for efficient agriculture is constantly diminishing which forces farmers to cultivate inferior croplands and intensify agricultural practices, e.g., increase the use of synthetic fertilizers. This intensification of marginal areas in particular will cause a dangerous rise in nitrate discharge into open waters or even drinking water resources. In order to reduce the amount of nitrate lost by surface runoff or lateral subsurface transport, bufferstrips have proved to be a valuable means. Current laws, however, promote rather static designs (i.e., width and usage) even though a multitude of factors, e.g., soil type, slope, vegetation and the nearby agricultural management, determines its effectiveness. We propose a spatially explicit modeling approach enabling to assess the effects of those factors on nitrate discharge from arable lands using the fully distributed hydrology model CMF coupled to the complex biogeochemical model LandscapeDNDC. Such a modeling scheme allows to observe the displacement of dissolved nutrients in both vertical and horizontal directions and serves to estimate both their uptake by the vegetated bufferstrip and loss to the environment. First results indicate a significant reduction of nitrate loss in the presence of a bufferstrip (2.5 m). We show effects induced by various buffer strip widths and plant cover on the nitrate retention.

  18. A GIS based spatially-explicit sensitivity and uncertainty analysis approach for multi-criteria decision analysis.

    PubMed

    Feizizadeh, Bakhtiar; Jankowski, Piotr; Blaschke, Thomas

    2014-03-01

    GIS multicriteria decision analysis (MCDA) techniques are increasingly used in landslide susceptibility mapping for the prediction of future hazards, land use planning, as well as for hazard preparedness. However, the uncertainties associated with MCDA techniques are inevitable and model outcomes are open to multiple types of uncertainty. In this paper, we present a systematic approach to uncertainty and sensitivity analysis. We access the uncertainty of landslide susceptibility maps produced with GIS-MCDA techniques. A new spatially-explicit approach and Dempster-Shafer Theory (DST) are employed to assess the uncertainties associated with two MCDA techniques, namely Analytical Hierarchical Process (AHP) and Ordered Weighted Averaging (OWA) implemented in GIS. The methodology is composed of three different phases. First, weights are computed to express the relative importance of factors (criteria) for landslide susceptibility. Next, the uncertainty and sensitivity of landslide susceptibility is analyzed as a function of weights using Monte Carlo Simulation and Global Sensitivity Analysis. Finally, the results are validated using a landslide inventory database and by applying DST. The comparisons of the obtained landslide susceptibility maps of both MCDA techniques with known landslides show that the AHP outperforms OWA. However, the OWA-generated landslide susceptibility map shows lower uncertainty than the AHP-generated map. The results demonstrate that further improvement in the accuracy of GIS-based MCDA can be achieved by employing an integrated uncertainty-sensitivity analysis approach, in which the uncertainty of landslide susceptibility model is decomposed and attributed to model's criteria weights.

  19. A GIS based spatially-explicit sensitivity and uncertainty analysis approach for multi-criteria decision analysis☆

    PubMed Central

    Feizizadeh, Bakhtiar; Jankowski, Piotr; Blaschke, Thomas

    2014-01-01

    GIS multicriteria decision analysis (MCDA) techniques are increasingly used in landslide susceptibility mapping for the prediction of future hazards, land use planning, as well as for hazard preparedness. However, the uncertainties associated with MCDA techniques are inevitable and model outcomes are open to multiple types of uncertainty. In this paper, we present a systematic approach to uncertainty and sensitivity analysis. We access the uncertainty of landslide susceptibility maps produced with GIS-MCDA techniques. A new spatially-explicit approach and Dempster–Shafer Theory (DST) are employed to assess the uncertainties associated with two MCDA techniques, namely Analytical Hierarchical Process (AHP) and Ordered Weighted Averaging (OWA) implemented in GIS. The methodology is composed of three different phases. First, weights are computed to express the relative importance of factors (criteria) for landslide susceptibility. Next, the uncertainty and sensitivity of landslide susceptibility is analyzed as a function of weights using Monte Carlo Simulation and Global Sensitivity Analysis. Finally, the results are validated using a landslide inventory database and by applying DST. The comparisons of the obtained landslide susceptibility maps of both MCDA techniques with known landslides show that the AHP outperforms OWA. However, the OWA-generated landslide susceptibility map shows lower uncertainty than the AHP-generated map. The results demonstrate that further improvement in the accuracy of GIS-based MCDA can be achieved by employing an integrated uncertainty–sensitivity analysis approach, in which the uncertainty of landslide susceptibility model is decomposed and attributed to model's criteria weights. PMID:25843987

  20. A spatially explicit multi-isotope approach to map influence regions of plant-plant interactions after exotic plant invasion

    NASA Astrophysics Data System (ADS)

    Hellmann, Christine; Oldeland, Jens; Werner, Christiane

    2015-04-01

    Exotic plant invasions impose profound alterations to native ecosystems, including changes of water, carbon and nutrient cycles. However, explicitly quantifying these impacts remains a challenge. Stable isotopes, by providing natural tracers of biogeochemical processes, can help to identify and measure such alterations in space and time. Recently, δ15N isoscapes, i.e. spatially continuous representations of isotopic values, derived from native plant foliage, enabled to accurately trace nitrogen introduced by the N2-fixing invasive Acacia longifolia into a native Portuguese dune system. It could be shown that the area of the system which was altered by the invasive species exceeded the area which was covered by the invader by far. But still, definition of clear regions of influence is to some extent ambiguous. Here, we present an approach using multiple isoscapes derived from measured foliar δ13C and δ15N values of a native, non-fixing species, Corema album. By clustering isotopic information, we obtained an objective classification of the study area. Properties and spatial position of clusters could be interpreted to distinguish areas that were or were not influenced by A. longifolia. Spatial clusters at locations where A. longifolia was present had δ15N values that were enriched, i.e. close to the atmospheric signal of 0 o compared to the depleted values of the uninvaded system (ca. -11 o). Furthermore, C. album individuals in these clusters were characterized by higher foliar N content and enriched δ13C. These results indicate that the N2-fixing A. longifolia added nitrogen to the system which originated from the atmosphere and was used by the native C. album, inducing functional changes, i.e. an increase in WUE. Additionally, clusters were identified that were presumably determined by inherent properties of the native system. Thus, combining isotope ecology with geostatistical methods is a promising approach for mapping regions of influence in multi

  1. Anthropogenic habitat disturbance and the dynamics of hantavirus using remote sensing, GIS, and a spatially explicit agent-based model

    NASA Astrophysics Data System (ADS)

    Cao, Lina

    Sin Nombre virus (SNV), a strain of hantavirus, causes hantavirus pulmonary syndrome (HPS) in humans, a deadly disease with high mortality rate (>50%). The primary virus host is deer mice, and greater deer mice abundance has been shown to increase the human risk of HPS. There is a great need in understanding the nature of the virus host, its temporal and spatial dynamics, and its relation to the human population with the purpose of predicting human risk of the disease. This research studies SNV dynamics in deer mice in the Great Basin Desert of central Utah, USA using multiyear field data and integrated geospatial approaches including remote sensing, Geographic Information System (GIS), and a spatially explicit agent-based model. The goal is to advance our understanding of the important ecological and demographic factors that affect the dynamics of deer mouse population and SNV prevalence. The primary research question is how climate, habitat disturbance, and deer mouse demographics affect deer mouse population density, its movement, and SNV prevalence in the sagebrush habitat. The results show that the normalized difference vegetation index (NDVI) and the enhanced vegetation index (EVI) can be good predictors of deer mouse density and the number of infected deer mice with a time lag of 1.0 to 1.3 years. This information can be very useful in predicting mouse abundance and SNV risk. The results also showed that climate, mouse density, sex, mass, and SNV infection had significant effects on deer mouse movement. The effect of habitat disturbance on mouse movement varies according to climate conditions with positive relationship in predrought condition and negative association in postdrought condition. The heavier infected deer mice moved the most. Season and disturbance alone had no significant effects. The spatial agent-based model (SABM) simulation results show that prevalence was negatively related to the disturbance levels and the sensitivity analysis showed that

  2. Cognitive Process Modeling of Spatial Ability: The Assembling Objects Task

    ERIC Educational Resources Information Center

    Ivie, Jennifer L.; Embretson, Susan E.

    2010-01-01

    Spatial ability tasks appear on many intelligence and aptitude tests. Although the construct validity of spatial ability tests has often been studied through traditional correlational methods, such as factor analysis, less is known about the cognitive processes involved in solving test items. This study examines the cognitive processes involved in…

  3. A comparison of implicit- and explicit-solvent simulations of self-assembly in block copolymer and solute systems

    NASA Astrophysics Data System (ADS)

    Spaeth, Justin R.; Kevrekidis, Ioannis G.; Panagiotopoulos, Athanassios Z.

    2011-04-01

    We have developed explicit- and implicit-solvent models for the flash nanoprecipitation process, which involves rapid coprecipitation of block copolymers and solutes by changing solvent quality. The explicit-solvent model uses the dissipative particle dynamics (DPD) method and the implicit-solvent model uses the Brownian dynamics (BD) method. Each of the two models was parameterized to match key properties of the diblock copolymer (specifically, critical micelle concentration, diffusion coefficient, polystyrene melt density, and polyethylene glycol radius of gyration) and the hydrophobic solute (aqueous solubility, diffusion coefficient, and solid density). The models were simulated in the limit of instantaneous mixing of solvent with antisolvent. Despite the significant differences in the potentials employed in the implicit- and explicit-solvent models, the polymer-stabilized nanoparticles formed in both sets of simulations are similar in size and structure; however, the dynamic evolution of the two simulations is quite different. Nanoparticles in the BD simulations have diffusion coefficients that follow Rouse behavior (D ∝ M-1), whereas those in the DPD simulations have diffusion coefficients that are close to the values predicted by the Stokes-Einstein relation (D ∝ R-1). As the nanoparticles become larger, the discrepancy between diffusion coefficients grows. As a consequence, BD simulations produce increasingly slower aggregation dynamics with respect to real time and result in an unphysical evolution of the nanoparticle size distribution. Surface area per polymer of the stable explicit-solvent nanoparticles agrees well with experimental values, whereas the implicit-solvent nanoparticles are stable when the surface area per particle is roughly two to four times larger. We conclude that implicit-solvent models may produce questionable results when simulating nonequilibrium processes in which hydrodynamics play a critical role.

  4. A comparison of implicit- and explicit-solvent simulations of self-assembly in block copolymer and solute systems.

    PubMed

    Spaeth, Justin R; Kevrekidis, Ioannis G; Panagiotopoulos, Athanassios Z

    2011-04-28

    We have developed explicit- and implicit-solvent models for the flash nanoprecipitation process, which involves rapid coprecipitation of block copolymers and solutes by changing solvent quality. The explicit-solvent model uses the dissipative particle dynamics (DPD) method and the implicit-solvent model uses the Brownian dynamics (BD) method. Each of the two models was parameterized to match key properties of the diblock copolymer (specifically, critical micelle concentration, diffusion coefficient, polystyrene melt density, and polyethylene glycol radius of gyration) and the hydrophobic solute (aqueous solubility, diffusion coefficient, and solid density). The models were simulated in the limit of instantaneous mixing of solvent with antisolvent. Despite the significant differences in the potentials employed in the implicit- and explicit-solvent models, the polymer-stabilized nanoparticles formed in both sets of simulations are similar in size and structure; however, the dynamic evolution of the two simulations is quite different. Nanoparticles in the BD simulations have diffusion coefficients that follow Rouse behavior (D ∝ M(-1)), whereas those in the DPD simulations have diffusion coefficients that are close to the values predicted by the Stokes-Einstein relation (D ∝ R(-1)). As the nanoparticles become larger, the discrepancy between diffusion coefficients grows. As a consequence, BD simulations produce increasingly slower aggregation dynamics with respect to real time and result in an unphysical evolution of the nanoparticle size distribution. Surface area per polymer of the stable explicit-solvent nanoparticles agrees well with experimental values, whereas the implicit-solvent nanoparticles are stable when the surface area per particle is roughly two to four times larger. We conclude that implicit-solvent models may produce questionable results when simulating nonequilibrium processes in which hydrodynamics play a critical role.

  5. Understanding African Swine Fever infection dynamics in Sardinia using a spatially explicit transmission model in domestic pig farms.

    PubMed

    Mur, L; Sánchez-Vizcaíno, J M; Fernández-Carrión, E; Jurado, C; Rolesu, S; Feliziani, F; Laddomada, A; Martínez-López, B

    2017-03-13

    African swine fever virus (ASFV) has been endemic in Sardinia since 1978, resulting in severe losses for local pig producers and creating important problems for the island's veterinary authorities. This study used a spatially explicit stochastic transmission model followed by two regression models to investigate the dynamics of ASFV spread amongst domestic pig farms, to identify geographic areas at highest risk and determine the role of different susceptible pig populations (registered domestic pigs, non-registered domestic pigs [brado] and wild boar) in ASF occurrence. We simulated transmission within and between farms using an adapted version of the previously described model known as Be-FAST. Results from the model revealed a generally low diffusion of ASF in Sardinia, with only 24% of the simulations resulting in disease spread, and for each simulated outbreak on average only four farms and 66 pigs were affected. Overall, local spread (indirect transmission between farms within a 2 km radius through fomites) was the most common route of transmission, being responsible for 98.6% of secondary cases. The risk of ASF occurrence for each domestic pig farm was estimated from the spread model results and integrated in two regression models together with available data for brado and wild boar populations. There was a significant association between the density of all three populations (domestic pigs, brado, and wild boar) and ASF occurrence in Sardinia. The most significant risk factors were the high densities of brado (OR = 2.2) and wild boar (OR = 2.1). The results of both analyses demonstrated that ASF epidemiology and infection dynamics in Sardinia create a complex and multifactorial disease situation, where all susceptible populations play an important role. To stop ASF transmission in Sardinia, three main factors (improving biosecurity on domestic pig farms, eliminating brado practices and better management of wild boars) need to be addressed.

  6. GluA1 signal peptide determines the spatial assembly of heteromeric AMPA receptors

    PubMed Central

    Li, Yan-Jun; Kalyanaraman, Chakrapani; Qiu, Li-Li; Chen, Chen; Xiao, Qi; Liu, Wen-Xue; Zhang, Wei; Yang, Jian-Jun; Chen, Guiquan; Jacobson, Matthew P.; Shi, Yun Stone

    2016-01-01

    AMPA-type glutamate receptors (AMPARs) mediate fast excitatory neurotransmission and predominantly assemble as heterotetramers in the brain. Recently, the crystal structures of homotetrameric GluA2 demonstrated that AMPARs are assembled with two pairs of conformationally distinct subunits, in a dimer of dimers formation. However, the structure of heteromeric AMPARs remains unclear. Guided by the GluA2 structure, we performed cysteine mutant cross-linking experiments in full-length GluA1/A2, aiming to draw the heteromeric AMPAR architecture. We found that the amino-terminal domains determine the first level of heterodimer formation. When the dimers further assemble into tetramers, GluA1 and GluA2 subunits have preferred positions, possessing a 1–2–1–2 spatial assembly. By swapping the critical sequences, we surprisingly found that the spatial assembly pattern is controlled by the excisable signal peptides. Replacements with an unrelated GluK2 signal peptide demonstrated that GluA1 signal peptide plays a critical role in determining the spatial priority. Our study thus uncovers the spatial assembly of an important type of glutamate receptors in the brain and reveals a novel function of signal peptides. PMID:27601647

  7. Spatially explicit modeling of animal tuberculosis at the wildlife-livestock interface in Ciudad Real province, Spain.

    PubMed

    LaHue, Nathaniel P; Baños, Joaquín Vicente; Acevedo, Pelayo; Gortázar, Christian; Martínez-López, Beatriz

    2016-06-01

    Eurasian wild boar (Sus scrofa) and red deer (Cervus elaphus) are the most important wildlife reservoirs for animal tuberculosis (TB) caused by the Mycobacterium tuberculosis complex (MTC), in Mediterranean Spain. These species are considered to play an important role in the transmission and persistence of MTC in cattle in some regions; however the factors contributing to the risk of transmission at the wildlife-livestock interface and the areas at highest risk for such transmission are largely unknown. This study sought to identify geographic areas where wildlife-livestock interactions are most likely to occur and to characterize the environmental and management factors at this interface contributing to persistence, incidence, and occurrence of TB on cattle farms, in one of the provinces with higher TB prevalence in Spain, Ciudad Real. We used spatially explicit, ecological niche models to evaluate the importance of factors such as wildlife demographics and hunting management, land use, climatic, and environmental variables as well as TB status in wildlife for TB breakdown (model 1), persistence (model 2) and new infection (model 3) on cattle farms and to generate high resolution maps of predicted TB occurrence to guide risk-based interventions. Models revealed that land use, particularly open area and woodland, high wild boar TB prevalence, and close proximity to fenced hunting estates were the most important factors associated with TB infection on cattle farms. This is the first time that local TB prevalence in wild boar for individual hunting estates has been significantly associated with TB occurrence on cattle farms at a local scale. Prediction maps identified two areas with high likelihood of TB occurrence in the southwest and northwest of the province where wildlife-livestock interactions and TB occurrence are highly likely and where TB preventative and mitigation strategies (e.g. targeted vaccination, increased biosecurity, etc.) should be prioritized

  8. Renewable Energy Production from Waste to Mitigate Climate Change and Counteract Soil Degradation - A Spatial Explicit Assessment for Japan

    NASA Astrophysics Data System (ADS)

    Kraxner, Florian; Yoshikawa, Kunio; Leduc, Sylvain; Fuss, Sabine; Aoki, Kentaro; Yamagata, Yoshiki

    2014-05-01

    Waste production from urban areas is growing faster than urbanization itself, while at the same time urban areas are increasingly contributing substantial emissions causing climate change. Estimates indicate for urban residents a per capita solid waste (MSW) production of 1.2 kg per day, subject to further increase to 1.5 kg beyond 2025. Waste water and sewage production is estimated at about 260 liters per capita and day, also at increasing rates. Based on these figures, waste - including e.g. MSW, sewage and animal manure - can generally be assumed as a renewable resource with varying organic components and quantity. This paper demonstrates how new and innovative technologies in the field of Waste-to-Green Products can help in various ways not only to reduce costs for waste treatment, reduce the pressure on largely overloaded dump sites, and reduce also the effect of toxic materials at the landfill site and by that i.e. protect the groundwater. Moreover, Waste-to-Green Products can contribute actively to mitigating climate change through fossil fuel substitution and carbon sequestration while at the same time counteracting negative land use effects from other types of renewable energy and feedstock production through substitution. At the same time, the co-production and recycling of fertilizing elements and biochar can substantially counteract soil degradation and improve the soil organic carbon content of different land use types. The overall objective of this paper is to assess the total climate change mitigation potential of MSW, sewage and animal manure for Japan. A techno-economic approach is used to inform the policy discussion on the suitability of this substantial and sustainable mitigation option. We examine the spatial explicit technical mitigation potential from e.g. energy substitution and carbon sequestration through biochar in rural and urban Japan. For this exercise, processed information on respective Japanese waste production, energy demand

  9. Assessment of mineral concentration impacts from pumped stormwater on an Everglades Wetland, Florida, USA - Using a spatially-explicit model

    NASA Astrophysics Data System (ADS)

    Chen, Chunfang; Meselhe, Ehab; Waldon, Michael

    2012-07-01

    SummaryThe Arthur R. Marshall Loxahatchee National Wildlife Refuge (Refuge) overlays a 58,725 ha remnant of the Northern Everglades which is termed Water Conservation Area 1 (WCA-1). The Refuge is impacted by stormwater inflow from flood control pump stations which discharge to a perimeter canal system inside an impounding levee. These discharges contain elevated mineral and nutrient concentrations, with chloride concentration averaging well over 100 mg/L. It has long been established that the Refuge naturally has low mineral content softwater, and that this low-mineral condition affects the species composition of wetland periphyton that are at the base of much of the Refuge food chain. The interior marsh of the Refuge has today been termed rainfall-driven or ombrotrophic, with median chloride concentration averaging 20.5 mg/L. However, chloride concentration in rain water averages roughly 2 mg/L. The level of impact of exogenous pumped inflow on the concentration of chloride and other mineral constituents in the interior marsh has been unclear, and at times it has been debated whether atmospheric loading and evaporation can alone explain observed concentration of chloride in the interior. We applied a spatially explicit hydrodynamic and constituent transport model, MIKE FLOOD, to estimate the unimpacted condition of the interior. We compare this with simulated and monitored chloride concentrations under current conditions. The model was calibrated for a 5-year period (2000-2004), and validated for a 2-year period (2005-2006). We found that when pumped inflow concentration is reduced to an estimated rainfall chloride concentration, interior chloride concentration ranges typically below 5 mg/L. We therefore conclude that the interior chloride concentration is currently dominated by pumped inflows and should not be termed ombrotrophic. We also present initial modeling of one proposed remedial solution for reducing this impact. Our study demonstrates the feasibility

  10. Assembler: Efficient Discovery of Spatial Co-evolving Patterns in Massive Geo-sensory Data

    PubMed Central

    Zhang, Chao; Zheng, Yu; Ma, Xiuli; Han, Jiawei

    2015-01-01

    Recent years have witnessed the wide proliferation of geo-sensory applications wherein a bundle of sensors are deployed at different locations to cooperatively monitor the target condition. Given massive geo-sensory data, we study the problem of mining spatial co-evolving patterns (SCPs), i.e., groups of sensors that are spatially correlated and co-evolve frequently in their readings. SCP mining is of great importance to various real-world applications, yet it is challenging because (1) the truly interesting evolutions are often flooded by numerous trivial fluctuations in the geo-sensory time series; and (2) the pattern search space is extremely large due to the spatiotemporal combinatorial nature of SCP. In this paper, we propose a two-stage method called Assembler. In the first stage, Assembler filters trivial fluctuations using wavelet transform and detects frequent evolutions for individual sensors via a segment-and-group approach. In the second stage, Assembler generates SCPs by assembling the frequent evolutions of individual sensors. Leveraging the spatial constraint, it conceptually organizes all the SCPs into a novel structure called the SCP search tree, which facilitates the effective pruning of the search space to generate SCPs efficiently. Our experiments on both real and synthetic data sets show that Assembler is effective, efficient, and scalable. PMID:26705506

  11. A spatially explicit hydro-ecological modeling framework (BEPS-TerrainLab V2.0): Model description and test in a boreal ecosystem in Eastern North America

    NASA Astrophysics Data System (ADS)

    Govind, Ajit; Chen, Jing Ming; Margolis, Hank; Ju, Weimin; Sonnentag, Oliver; Giasson, Marc-André

    2009-04-01

    SummaryA spatially explicit, process-based hydro-ecological model, BEPS-TerrainLab V2.0, was developed to improve the representation of ecophysiological, hydro-ecological and biogeochemical processes of boreal ecosystems in a tightly coupled manner. Several processes unique to boreal ecosystems were implemented including the sub-surface lateral water fluxes, stratification of vegetation into distinct layers for explicit ecophysiological representation, inclusion of novel spatial upscaling strategies and biogeochemical processes. To account for preferential water fluxes common in humid boreal ecosystems, a novel scheme was introduced based on laboratory analyses. Leaf-scale ecophysiological processes were upscaled to canopy-scale by explicitly considering leaf physiological conditions as affected by light and water stress. The modified model was tested with 2 years of continuous measurements taken at the Eastern Old Black Spruce Site of the Fluxnet-Canada Research Network located in a humid boreal watershed in eastern Canada. Comparison of the simulated and measured ET, water-table depth (WTD), volumetric soil water content (VSWC) and gross primary productivity (GPP) revealed that BEPS-TerrainLab V2.0 simulates hydro-ecological processes with reasonable accuracy. The model was able to explain 83% of the ET, 92% of the GPP variability and 72% of the WTD dynamics. The model suggests that in humid ecosystems such as eastern North American boreal watersheds, topographically driven sub-surface baseflow is the main mechanism of soil water partitioning which significantly affects the local-scale hydrological conditions.

  12. Spatially explicit habitat models for 28 fishes from the Upper Mississippi River System (AHAG 2.0)

    USGS Publications Warehouse

    Ickes, Brian S.; Sauer, J.S.; Richards, N.; Bowler, M.; Schlifer, B.

    2014-01-01

    Environmental management actions in the Upper Mississippi River System (UMRS) typically require pre-project assessments of predicted benefits under a range of project scenarios. The U.S. Army Corps of Engineers (USACE) now requires certified and peer-reviewed models to conduct these assessments. Previously, habitat benefits were estimated for fish communities in the UMRS using the Aquatic Habitat Appraisal Guide (AHAG v.1.0; AHAG from hereon). This spreadsheet-based model used a habitat suitability index (HSI) approach that drew heavily upon Habitat Evaluation Procedures (HEP; U.S. Fish and Wildlife Service, 1980) by the U.S. Fish and Wildlife Service (USFWS). The HSI approach requires developing species response curves for different environmental variables that seek to broadly represent habitat. The AHAG model uses species-specific response curves assembled from literature values, data from other ecosystems, or best professional judgment. A recent scientific review of the AHAG indicated that the model’s effectiveness is reduced by its dated approach to large river ecosystems, uncertainty regarding its data inputs and rationale for habitat-species response relationships, and lack of field validation (Abt Associates Inc., 2011). The reviewers made two major recommendations: (1) incorporate empirical data from the UMRS into defining the empirical response curves, and (2) conduct post-project biological evaluations to test pre-project benefits estimated by AHAG. Our objective was to address the first recommendation and generate updated response curves for AHAG using data from the Upper Mississippi River Restoration-Environmental Management Program (UMRR-EMP) Long Term Resource Monitoring Program (LTRMP) element. Fish community data have been collected by LTRMP (Gutreuter and others, 1995; Ratcliff and others, in press) for 20 years from 6 study reaches representing 1,930 kilometers of river and >140 species of fish. We modeled a subset of these data (28 different

  13. Modeling Behavior by Coastal River Otter (Lontra Canadensis) in Response to Prey Availability in Prince William Sound, Alaska: A Spatially-Explicit Individual-Based Approach.

    PubMed

    Albeke, Shannon E; Nibbelink, Nathan P; Ben-David, Merav

    2015-01-01

    Effects of climate change on animal behavior and cascading ecosystem responses are rarely evaluated. In coastal Alaska, social river otters (Lontra Canadensis), largely males, cooperatively forage on schooling fish and use latrine sites to communicate group associations and dominance. Conversely, solitary otters, mainly females, feed on intertidal-demersal fish and display mutual avoidance via scent marking. This behavioral variability creates "hotspots" of nutrient deposition and affects plant productivity and diversity on the terrestrial landscape. Because the abundance of schooling pelagic fish is predicted to decline with climate change, we developed a spatially-explicit individual-based model (IBM) of otter behavior and tested six scenarios based on potential shifts to distribution patterns of schooling fish. Emergent patterns from the IBM closely mimicked observed otter behavior and landscape use in the absence of explicit rules of intraspecific attraction or repulsion. Model results were most sensitive to rules regarding spatial memory and activity state following an encounter with a fish school. With declining availability of schooling fish, the number of social groups and the time simulated otters spent in the company of conspecifics declined. Concurrently, model results suggested an elevation of defecation rate, a 25% increase in nitrogen transport to the terrestrial landscape, and significant changes to the spatial distribution of "hotspots" with declines in schooling fish availability. However, reductions in availability of schooling fish could lead to declines in otter density over time.

  14. Modeling Behavior by Coastal River Otter (Lontra Canadensis) in Response to Prey Availability in Prince William Sound, Alaska: A Spatially-Explicit Individual-Based Approach

    PubMed Central

    Albeke, Shannon E.; Nibbelink, Nathan P.; Ben-David, Merav

    2015-01-01

    Effects of climate change on animal behavior and cascading ecosystem responses are rarely evaluated. In coastal Alaska, social river otters (Lontra Canadensis), largely males, cooperatively forage on schooling fish and use latrine sites to communicate group associations and dominance. Conversely, solitary otters, mainly females, feed on intertidal-demersal fish and display mutual avoidance via scent marking. This behavioral variability creates “hotspots” of nutrient deposition and affects plant productivity and diversity on the terrestrial landscape. Because the abundance of schooling pelagic fish is predicted to decline with climate change, we developed a spatially-explicit individual-based model (IBM) of otter behavior and tested six scenarios based on potential shifts to distribution patterns of schooling fish. Emergent patterns from the IBM closely mimicked observed otter behavior and landscape use in the absence of explicit rules of intraspecific attraction or repulsion. Model results were most sensitive to rules regarding spatial memory and activity state following an encounter with a fish school. With declining availability of schooling fish, the number of social groups and the time simulated otters spent in the company of conspecifics declined. Concurrently, model results suggested an elevation of defecation rate, a 25% increase in nitrogen transport to the terrestrial landscape, and significant changes to the spatial distribution of “hotspots” with declines in schooling fish availability. However, reductions in availability of schooling fish could lead to declines in otter density over time. PMID:26061497

  15. Spatially explicit assessment of estuarine fish after Deepwater Horizon oil spill: trade-off in complexity and parsimony

    EPA Science Inventory

    Evaluating long- term contaminant effects on wildlife populations depends on spatial information about habitat quality, heterogeneity in contaminant exposure, and sensitivities and distributions of species integrated into a systems modeling approach. Rarely is this information re...

  16. Imaging self-assembly dependent spatial distribution of small molecules in a cellular environment.

    PubMed

    Gao, Yuan; Kuang, Yi; Du, Xuewen; Zhou, Jie; Chandran, Preethi; Horkay, Ferenc; Xu, Bing

    2013-12-10

    Self-assembly of small molecules, as a more common phenomenon than one previously thought, can be either beneficial or detrimental to cells. Despite its profound biological implications, how the self-assembly of small molecules behave in a cellular environment is largely unknown and barely explored. This work studies four fluorescent molecules that consist of the same peptidic backbone (e.g., Phe-Phe-Lys) and enzyme trigger (e.g., a phosphotyrosine residue), but bear different fluorophores on the side chain of the lysine residue of the peptidic motif. These molecules, however, exhibit a different ability of self-assembly before and after enzymatic transformation (e.g., dephosphorylation). Fluorescent imaging reveals that self-assembly directly affects the distribution of these small molecules in a cellular environment. Moreover, cell viability tests suggest that the states and the locations of the molecular assemblies in the cellular environment control the phenotypes of the cells. For example, the molecular nanofibers of one of the small molecules apparently stabilize actin filaments and alleviate the insult of an F-actin toxin (e.g., latrunculin A). Combining fluorescent imaging and enzyme-instructed self-assembly of small peptidic molecules, this work demonstrates self-assembly as a key factor for dictating the spatial distribution of small molecules in a cellular environment. In addition, it illustrates a useful approach, based on enzyme-instructed self-assembly of small molecules, to modulate spatiotemporal profiles of small molecules in a cellular environment, which allows the use of the emergent properties of small molecules to control the fate of cells.

  17. Factors influencing export of dissolved inorganic nitrogen by major rivers: a new seasonal, spatially explicit, global model

    EPA Science Inventory

    Background/Question/Methods Substantial effort has focused on understanding spatial variation in dissolved inorganic nitrogen (DIN) export to the coastal zone and specific basins have been studied in some depth. Much less is known, however, about seasonal patterns and controls ...

  18. Factors influencing export of dissolved inorganic nitrogen by major rivers: A new seasonal, spatially explicit, global model - 2012

    EPA Science Inventory

    Background/Question/Methods Substantial effort has focused on understanding spatial variation in dissolved inorganic nitrogen (DIN) export to the coastal zone and specific basins have been studied in some depth. Much less is known, however, about seasonal patterns and zone and ...

  19. Factors influencing export of dissolved inorganic nitrogen by major rivers: A new, seasonal, spatially explicit, global model

    EPA Science Inventory

    Substantial effort has focused on understanding spatial variation in dissolved inorganic nitrogen (DIN) export to the coastal zone and specific basins have been studied in depth. Much less is known, however, about seasonal patterns and controls of coastal DIN delivery across larg...

  20. REMOTE SENSING AND SPATIALLY EXPLICIT LANDSCAPE-BASED NITROGEN MODELING METHODS DEVELOPMENT IN THE NEUSE RIVER BASIN, NC

    EPA Science Inventory

    The objective of this research was to model and map the spatial patterns of excess nitrogen (N) sources across the landscape within the Neuse River Basin (NRB) of North
    Carolina. The process included an initial land cover characterization effort to map landscape "patches" at ...

  1. Spatially Explicit Landscape-Level Ecological Risks Induced by Land Use and Land Cover Change in a National Ecologically Representative Region in China.

    PubMed

    Gong, Jian; Yang, Jianxin; Tang, Wenwu

    2015-11-09

    Land use and land cover change is driven by multiple influential factors from environmental and social dimensions in a land system. Land use practices of human decision-makers modify the landscape of the land system, possibly leading to landscape fragmentation, biodiversity loss, or environmental pollution-severe environmental or ecological impacts. While landscape-level ecological risk assessment supports the evaluation of these impacts, investigations on how these ecological risks induced by land use practices change over space and time in response to alternative policy intervention remain inadequate. In this article, we conducted spatially explicit landscape ecological risk analysis in Ezhou City, China. Our study area is a national ecologically representative region experiencing drastic land use and land cover change, and is regulated by multiple policies represented by farmland protection, ecological conservation, and urban development. We employed landscape metrics to consider the influence of potential landscape-level disturbance for the evaluation of landscape ecological risks. Using spatiotemporal simulation, we designed scenarios to examine spatiotemporal patterns in landscape ecological risks in response to policy intervention. Our study demonstrated that spatially explicit landscape ecological risk analysis combined with simulation-driven scenario analysis is of particular importance for guiding the sustainable development of ecologically vulnerable land systems.

  2. Spatially Explicit Landscape-Level Ecological Risks Induced by Land Use and Land Cover Change in a National Ecologically Representative Region in China

    PubMed Central

    Gong, Jian; Yang, Jianxin; Tang, Wenwu

    2015-01-01

    Land use and land cover change is driven by multiple influential factors from environmental and social dimensions in a land system. Land use practices of human decision-makers modify the landscape of the land system, possibly leading to landscape fragmentation, biodiversity loss, or environmental pollution—severe environmental or ecological impacts. While landscape-level ecological risk assessment supports the evaluation of these impacts, investigations on how these ecological risks induced by land use practices change over space and time in response to alternative policy intervention remain inadequate. In this article, we conducted spatially explicit landscape ecological risk analysis in Ezhou City, China. Our study area is a national ecologically representative region experiencing drastic land use and land cover change, and is regulated by multiple policies represented by farmland protection, ecological conservation, and urban development. We employed landscape metrics to consider the influence of potential landscape-level disturbance for the evaluation of landscape ecological risks. Using spatiotemporal simulation, we designed scenarios to examine spatiotemporal patterns in landscape ecological risks in response to policy intervention. Our study demonstrated that spatially explicit landscape ecological risk analysis combined with simulation-driven scenario analysis is of particular importance for guiding the sustainable development of ecologically vulnerable land systems. PMID:26569270

  3. Reconciling nature conservation and traditional farming practices: a spatially explicit framework to assess the extent of High Nature Value farmlands in the European countryside

    PubMed Central

    Lomba, Angela; Alves, Paulo; Jongman, Rob H G; McCracken, David I

    2015-01-01

    Agriculture constitutes a dominant land cover worldwide, and rural landscapes under extensive farming practices acknowledged due to high biodiversity levels. The High Nature Value farmland (HNVf) concept has been highlighted in the EU environmental and rural policies due to their inherent potential to help characterize and direct financial support to European landscapes where high nature and/or conservation value is dependent on the continuation of specific low-intensity farming systems. Assessing the extent of HNV farmland by necessity relies on the availability of both ecological and farming systems' data, and difficulties associated with making such assessments have been widely described across Europe. A spatially explicit framework of data collection, building out from local administrative units, has recently been suggested as a means of addressing such difficulties. This manuscript tests the relevance of the proposed approach, describes the spatially explicit framework in a case study area in northern Portugal, and discusses the potential of the approach to help better inform the implementation of conservation and rural development policies. Synthesis and applications: The potential of a novel approach (combining land use/cover, farming and environmental data) to provide more accurate and efficient mapping and monitoring of HNV farmlands is tested at the local level in northern Portugal. The approach is considered to constitute a step forward toward a more precise targeting of landscapes for agri-environment schemes, as it allowed a more accurate discrimination of areas within the case study landscape that have a higher value for nature conservation. PMID:25798221

  4. Temporal and spatial constraints on community assembly during microbial colonization of wood in seawater

    PubMed Central

    Kalenitchenko, Dimitri; Fagervold, Sonja K; Pruski, Audrey M; Vétion, Gilles; Yücel, Mustafa; Le Bris, Nadine; Galand, Pierre E

    2015-01-01

    Wood falls on the ocean floor form chemosynthetic ecosystems that remain poorly studied compared with features such as hydrothermal vents or whale falls. In particular, the microbes forming the base of this unique ecosystem are not well characterized and the ecology of communities is not known. Here we use wood as a model to study microorganisms that establish and maintain a chemosynthetic ecosystem. We conducted both aquaria and in situ deep-sea experiments to test how different environmental constraints structure the assembly of bacterial, archaeal and fungal communities. We also measured changes in wood lipid concentrations and monitored sulfide production as a way to detect potential microbial activity. We show that wood falls are dynamic ecosystems with high spatial and temporal community turnover, and that the patterns of microbial colonization change depending on the scale of observation. The most illustrative example was the difference observed between pine and oak wood community dynamics. In pine, communities changed spatially, with strong differences in community composition between wood microhabitats, whereas in oak, communities changed more significantly with time of incubation. Changes in community assembly were reflected by changes in phylogenetic diversity that could be interpreted as shifts between assemblies ruled by species sorting to assemblies structured by competitive exclusion. These ecological interactions followed the dynamics of the potential microbial metabolisms accompanying wood degradation in the sea. Our work showed that wood is a good model for creating and manipulating chemosynthetic ecosystems in the laboratory, and attracting not only typical chemosynthetic microbes but also emblematic macrofaunal species. PMID:25885564

  5. Temporal and spatial constraints on community assembly during microbial colonization of wood in seawater.

    PubMed

    Kalenitchenko, Dimitri; Fagervold, Sonja K; Pruski, Audrey M; Vétion, Gilles; Yücel, Mustafa; Le Bris, Nadine; Galand, Pierre E

    2015-12-01

    Wood falls on the ocean floor form chemosynthetic ecosystems that remain poorly studied compared with features such as hydrothermal vents or whale falls. In particular, the microbes forming the base of this unique ecosystem are not well characterized and the ecology of communities is not known. Here we use wood as a model to study microorganisms that establish and maintain a chemosynthetic ecosystem. We conducted both aquaria and in situ deep-sea experiments to test how different environmental constraints structure the assembly of bacterial, archaeal and fungal communities. We also measured changes in wood lipid concentrations and monitored sulfide production as a way to detect potential microbial activity. We show that wood falls are dynamic ecosystems with high spatial and temporal community turnover, and that the patterns of microbial colonization change depending on the scale of observation. The most illustrative example was the difference observed between pine and oak wood community dynamics. In pine, communities changed spatially, with strong differences in community composition between wood microhabitats, whereas in oak, communities changed more significantly with time of incubation. Changes in community assembly were reflected by changes in phylogenetic diversity that could be interpreted as shifts between assemblies ruled by species sorting to assemblies structured by competitive exclusion. These ecological interactions followed the dynamics of the potential microbial metabolisms accompanying wood degradation in the sea. Our work showed that wood is a good model for creating and manipulating chemosynthetic ecosystems in the laboratory, and attracting not only typical chemosynthetic microbes but also emblematic macrofaunal species.

  6. Spatially explicit modeling of greater sage-grouse (Centrocercus urophasianus) habitat in Nevada and northeastern California: a decision-support tool for management

    USGS Publications Warehouse

    Coates, Peter S.; Casazza, Michael L.; Brussee, Brianne E.; Ricca, Mark A.; Gustafson, K. Benjamin; Overton, Cory T.; Sanchez-Chopitea, Erika; Kroger, Travis; Mauch, Kimberly; Niell, Lara; Howe, Kristy; Gardner, Scott; Espinosa, Shawn; Delehanty, David J.

    2014-01-01

    Greater sage-grouse (Centrocercus urophasianus, hereafter referred to as “sage-grouse”) populations are declining throughout the sagebrush (Artemisia spp.) ecosystem, including millions of acres of potential habitat across the West. Habitat maps derived from empirical data are needed given impending listing decisions that will affect both sage-grouse population dynamics and human land-use restrictions. This report presents the process for developing spatially explicit maps describing relative habitat suitability for sage-grouse in Nevada and northeastern California. Maps depicting habitat suitability indices (HSI) values were generated based on model-averaged resource selection functions informed by more than 31,000 independent telemetry locations from more than 1,500 radio-marked sage-grouse across 12 project areas in Nevada and northeastern California collected during a 15-year period (1998–2013). Modeled habitat covariates included land cover composition, water resources, habitat configuration, elevation, and topography, each at multiple spatial scales that were relevant to empirically observed sage-grouse movement patterns. We then present an example of how the HSI can be delineated into categories. Specifically, we demonstrate that the deviation from the mean can be used to classify habitat suitability into three categories of habitat quality (high, moderate, and low) and one non-habitat category. The classification resulted in an agreement of 93–97 percent for habitat versus non-habitat across a suite of independent validation datasets. Lastly, we provide an example of how space use models can be integrated with habitat models to help inform conservation planning. In this example, we combined probabilistic breeding density with a non-linear probability of occurrence relative to distance to nearest lek (traditional breeding ground) using count data to calculate a composite space use index (SUI). The SUI was then classified into two categories of use

  7. SMART: a spatially explicit bio-economic model for assessing and managing demersal fisheries, with an application to italian trawlers in the strait of sicily.

    PubMed

    Russo, Tommaso; Parisi, Antonio; Garofalo, Germana; Gristina, Michele; Cataudella, Stefano; Fiorentino, Fabio

    2014-01-01

    Management of catches, effort and exploitation pattern are considered the most effective measures to control fishing mortality and ultimately ensure productivity and sustainability of fisheries. Despite the growing concerns about the spatial dimension of fisheries, the distribution of resources and fishing effort in space is seldom considered in assessment and management processes. Here we propose SMART (Spatial MAnagement of demersal Resources for Trawl fisheries), a tool for assessing bio-economic feedback in different management scenarios. SMART combines information from different tasks gathered within the European Data Collection Framework on fisheries and is composed of: 1) spatial models of fishing effort, environmental characteristics and distribution of demersal resources; 2) an Artificial Neural Network which captures the relationships among these aspects in a spatially explicit way and uses them to predict resources abundances; 3) a deterministic module which analyzes the size structure of catches and the associated revenues, according to different spatially-based management scenarios. SMART is applied to demersal fishery in the Strait of Sicily, one of the most productive fisheries of the Mediterranean Sea. Three of the main target species are used as proxies for the whole range exploited by trawlers. After training, SMART is used to evaluate different management scenarios, including spatial closures, using a simulation approach that mimics the recent exploitation patterns. Results evidence good model performance, with a noteworthy coherence and reliability of outputs for the different components. Among others, the main finding is that a partial improvement in resource conditions can be achieved by means of nursery closures, even if the overall fishing effort in the area remains stable. Accordingly, a series of strategically designed areas of trawling closures could significantly improve the resource conditions of demersal fisheries in the Strait of

  8. SMART: A Spatially Explicit Bio-Economic Model for Assessing and Managing Demersal Fisheries, with an Application to Italian Trawlers in the Strait of Sicily

    PubMed Central

    Russo, Tommaso; Parisi, Antonio; Garofalo, Germana; Gristina, Michele; Cataudella, Stefano; Fiorentino, Fabio

    2014-01-01

    Management of catches, effort and exploitation pattern are considered the most effective measures to control fishing mortality and ultimately ensure productivity and sustainability of fisheries. Despite the growing concerns about the spatial dimension of fisheries, the distribution of resources and fishing effort in space is seldom considered in assessment and management processes. Here we propose SMART (Spatial MAnagement of demersal Resources for Trawl fisheries), a tool for assessing bio-economic feedback in different management scenarios. SMART combines information from different tasks gathered within the European Data Collection Framework on fisheries and is composed of: 1) spatial models of fishing effort, environmental characteristics and distribution of demersal resources; 2) an Artificial Neural Network which captures the relationships among these aspects in a spatially explicit way and uses them to predict resources abundances; 3) a deterministic module which analyzes the size structure of catches and the associated revenues, according to different spatially-based management scenarios. SMART is applied to demersal fishery in the Strait of Sicily, one of the most productive fisheries of the Mediterranean Sea. Three of the main target species are used as proxies for the whole range exploited by trawlers. After training, SMART is used to evaluate different management scenarios, including spatial closures, using a simulation approach that mimics the recent exploitation patterns. Results evidence good model performance, with a noteworthy coherence and reliability of outputs for the different components. Among others, the main finding is that a partial improvement in resource conditions can be achieved by means of nursery closures, even if the overall fishing effort in the area remains stable. Accordingly, a series of strategically designed areas of trawling closures could significantly improve the resource conditions of demersal fisheries in the Strait of

  9. CDMetaPOP: An individual-based, eco-evolutionary model for spatially explicit simulation of landscape demogenetics

    USGS Publications Warehouse

    Landguth, Erin L; Bearlin, Andrew; Day, Casey; Dunham, Jason

    2016-01-01

    1. Combining landscape demographic and genetics models offers powerful methods for addressing questions for eco-evolutionary applications.2. Using two illustrative examples, we present Cost–Distance Meta-POPulation, a program to simulate changes in neutral and/or selection-driven genotypes through time as a function of individual-based movement, complex spatial population dynamics, and multiple and changing landscape drivers.3. Cost–Distance Meta-POPulation provides a novel tool for questions in landscape genetics by incorporating population viability analysis, while linking directly to conservation applications.

  10. YALINA-booster subcritical assembly pulsed-neutron experiments : data processing and spatial corrections.

    SciTech Connect

    Cao, Y.; Gohar, Y.; Nuclear Engineering Division

    2010-10-11

    The YALINA-Booster experiments and analyses are part of the collaboration between Argonne National Laboratory of USA and the Joint Institute for Power & Nuclear Research - SOSNY of Belarus for studying the physics of accelerator driven systems for nuclear energy applications using low enriched uranium. The YALINA-Booster subcritical assembly is utilized for studying the kinetics of accelerator driven systems with its highly intensive D-T or D-D pulsed neutron source. In particular, the pulsed neutron methods are used to determine the reactivity of the subcritical system. This report examines the pulsed-neutron experiments performed in the YALINA-Booster facility with different configurations for the subcritical assembly. The 1141 configuration with 90% U-235 fuel and the 1185 configuration with 36% or 21% U-235 fuel are examined. The Sjoestrand area-ratio method is utilized to determine the reactivities of the different configurations. The linear regression method is applied to obtain the prompt neutron decay constants from the pulsed-neutron experimental data. The reactivity values obtained from the experimental data are shown to be dependent on the detector locations inside the subcritical assembly and the types of detector used for the measurements. In this report, Bell's spatial correction factors are calculated based on a Monte Carlo model to remove the detector dependences. The large differences between the reactivity values given by the detectors in the fast neutron zone of the YALINA-Booster are reduced after applying the spatial corrections. In addition, the estimated reactivity values after the spatial corrections are much less spatially dependent.

  11. Agro-hydrology and multi-temporal high-resolution remote sensing: toward an explicit spatial processes calibration

    NASA Astrophysics Data System (ADS)

    Ferrant, S.; Gascoin, S.; Veloso, A.; Salmon-Monviola, J.; Claverie, M.; Rivalland, V.; Dedieu, G.; Demarez, V.; Ceschia, E.; Probst, J.-L.; Durand, P.; Bustillo, V.

    2014-12-01

    The growing availability of high-resolution satellite image series offers new opportunities in agro-hydrological research and modeling. We investigated the possibilities offered for improving crop-growth dynamic simulation with the distributed agro-hydrological model: topography-based nitrogen transfer and transformation (TNT2). We used a leaf area index (LAI) map series derived from 105 Formosat-2 (F2) images covering the period 2006-2010. The TNT2 model (Beaujouan et al., 2002), calibrated against discharge and in-stream nitrate fluxes for the period 1985-2001, was tested on the 2005-2010 data set (climate, land use, agricultural practices, and discharge and nitrate fluxes at the outlet). Data from the first year (2005) were used to initialize the hydrological model. A priori agricultural practices obtained from an extensive field survey, such as seeding date, crop cultivar, and amount of fertilizer, were used as input variables. Continuous values of LAI as a function of cumulative daily temperature were obtained at the crop-field level by fitting a double logistic equation against discrete satellite-derived LAI. Model predictions of LAI dynamics using the a priori input parameters displayed temporal shifts from those observed LAI profiles that are irregularly distributed in space (between field crops) and time (between years). By resetting the seeding date at the crop-field level, we have developed an optimization method designed to efficiently minimize this temporal shift and better fit the crop growth against both the spatial observations and crop production. This optimization of simulated LAI has a negligible impact on water budgets at the catchment scale (1 mm yr-1 on average) but a noticeable impact on in-stream nitrogen fluxes (around 12%), which is of interest when considering nitrate stream contamination issues and the objectives of TNT2 modeling. This study demonstrates the potential contribution of the forthcoming high spatial and temporal resolution

  12. Spatially explicit integrated modeling and economic valuation of climate driven land use change and its indirect effects.

    PubMed

    Bateman, Ian; Agarwala, Matthew; Binner, Amy; Coombes, Emma; Day, Brett; Ferrini, Silvia; Fezzi, Carlo; Hutchins, Michael; Lovett, Andrew; Posen, Paulette

    2016-10-01

    We present an integrated model of the direct consequences of climate change on land use, and the indirect effects of induced land use change upon the natural environment. The model predicts climate-driven shifts in the profitability of alternative uses of agricultural land. Both the direct impact of climate change and the induced shift in land use patterns will cause secondary effects on the water environment, for which agriculture is the major source of diffuse pollution. We model the impact of changes in such pollution on riverine ecosystems showing that these will be spatially heterogeneous. Moreover, we consider further knock-on effects upon the recreational benefits derived from water environments, which we assess using revealed preference methods. This analysis permits a multi-layered examination of the economic consequences of climate change, assessing the sequence of impacts from climate change through farm gross margins, land use, water quality and recreation, both at the individual and catchment scale.

  13. Spatiotemporal prediction of continuous daily PM2.5 concentrations across China using a spatially explicit machine learning algorithm

    NASA Astrophysics Data System (ADS)

    Zhan, Yu; Luo, Yuzhou; Deng, Xunfei; Chen, Huajin; Grieneisen, Michael L.; Shen, Xueyou; Zhu, Lizhong; Zhang, Minghua

    2017-04-01

    A high degree of uncertainty associated with the emission inventory for China tends to degrade the performance of chemical transport models in predicting PM2.5 concentrations especially on a daily basis. In this study a novel machine learning algorithm, Geographically-Weighted Gradient Boosting Machine (GW-GBM), was developed by improving GBM through building spatial smoothing kernels to weigh the loss function. This modification addressed the spatial nonstationarity of the relationships between PM2.5 concentrations and predictor variables such as aerosol optical depth (AOD) and meteorological conditions. GW-GBM also overcame the estimation bias of PM2.5 concentrations due to missing AOD retrievals, and thus potentially improved subsequent exposure analyses. GW-GBM showed good performance in predicting daily PM2.5 concentrations (R2 = 0.76, RMSE = 23.0 μg/m3) even with partially missing AOD data, which was better than the original GBM model (R2 = 0.71, RMSE = 25.3 μg/m3). On the basis of the continuous spatiotemporal prediction of PM2.5 concentrations, it was predicted that 95% of the population lived in areas where the estimated annual mean PM2.5 concentration was higher than 35 μg/m3, and 45% of the population was exposed to PM2.5 >75 μg/m3 for over 100 days in 2014. GW-GBM accurately predicted continuous daily PM2.5 concentrations in China for assessing acute human health effects.

  14. Evaluating effects of Everglades restoration on American crocodile populations in south Florida using a spatially-explicit, stage-based population model

    USGS Publications Warehouse

    Green, Timothy W.; Slone, Daniel H.; Swain, Eric D.; Cherkiss, Michael S.; Lohmann, Melinda; Mazzotti, Frank J.; Rice, Kenneth G.

    2014-01-01

    The distribution and abundance of the American crocodile (Crocodylus acutus) in the Florida Everglades is dependent on the timing, amount, and location of freshwater flow. One of the goals of the Comprehensive Everglades Restoration Plan (CERP) is to restore historic freshwater flows to American crocodile habitat throughout the Everglades. To predict the impacts on the crocodile population from planned restoration activities, we created a stage-based spatially explicit crocodile population model that incorporated regional hydrology models and American crocodile research and monitoring data. Growth and survival were influenced by salinity, water depth, and density-dependent interactions. A stage-structured spatial model was used with discrete spatial convolution to direct crocodiles toward attractive sources where conditions were favorable. The model predicted that CERP would have both positive and negative impacts on American crocodile growth, survival, and distribution. Overall, crocodile populations across south Florida were predicted to decrease approximately 3 % with the implementation of CERP compared to future conditions without restoration, but local increases up to 30 % occurred in the Joe Bay area near Taylor Slough, and local decreases up to 30 % occurred in the vicinity of Buttonwood Canal due to changes in salinity and freshwater flows.

  15. Spatially explicit power analyses for occupancy-based monitoring of wolverine in the U.S. Rocky Mountains.

    PubMed

    Ellis, Martha M; Ivan, Jacob S; Schwartz, Michael K

    2014-02-01

    Conservation scientists and resource managers often have to design monitoring programs for species that are rare or patchily distributed across large landscapes. Such programs are frequently expensive and seldom can be conducted by one entity. It is essential that a prospective power analysis be undertaken to ensure stated monitoring goals are feasible. We developed a spatially based simulation program that accounts for natural history, habitat use, and sampling scheme to investigate the power of monitoring protocols to detect trends in population abundance over time with occupancy-based methods. We analyzed monitoring schemes with different sampling efforts for wolverine (Gulo gulo) populations in 2 areas of the U.S. Rocky Mountains. The relation between occupancy and abundance was nonlinear and depended on landscape, population size, and movement parameters. With current estimates for population size and detection probability in the northern U.S. Rockies, most sampling schemes were only able to detect large declines in abundance in the simulations (i.e., 50% decline over 10 years). For small populations reestablishing in the Southern Rockies, occupancy-based methods had enough power to detect population trends only when populations were increasing dramatically (e.g., doubling or tripling in 10 years), regardless of sampling effort. In general, increasing the number of cells sampled or the per-visit detection probability had a much greater effect on power than the number of visits conducted during a survey. Although our results are specific to wolverines, this approach could easily be adapted to other territorial species.

  16. A spatially-explicit data driven approach to assess the effect of agricultural land occupation on species groups

    NASA Astrophysics Data System (ADS)

    Elshout, P.; van Zelm, R.; Karuppiah, R.; Laurenzi, I.; Huijbregts, M.

    2013-12-01

    Change of vegetation cover and increased land use intensity can directly affect the natural habitat and the wildlife it houses. The actual impact of agricultural land use is region specific as crops are grown under various climatic conditions and ways of cultivation and refining. Furthermore, growing a specific crop in a tropical region may require clearance of rainforest while the same crop may replace natural grasslands in temperate regions. Within life cycle impact assessment (LCIA), methods to address impacts of land use on a global scale are still in need of development. We aim to extend existing methods to improve the robustness of LCIA by allowing spatial differentiation of agricultural land use impacts. The goal of this study is to develop characterization factors for the direct impact of land use on biodiversity, which results from the replacement of natural habitat with farmland. The characterization factor expresses the change in species richness under crop cultivation compared to the species richness in the natural situation over a certain area. A second goal was to identify the differences in impacts caused by cultivation of different crop types, sensitivity of different taxonomic groups, and differences in natural land cover. Empirical data on species richness were collected from literature for both natural reference situations and agricultural land use situations. Reference situations were selected on an ecoregion or biome basis. We calculated characterization factors for four crop groups (oil palm, low crops, cereals, and perennial grasses), four species groups (arthropods, birds, mammals, vascular plants), and six biomes.

  17. Spatially explicit simulation of hydrologically controlled carbon and nitrogen cycles and associated feedback mechanisms in a boreal ecosystem in Eastern Canada.

    NASA Astrophysics Data System (ADS)

    Govind, A.; Chen, J. M.; Margolis, H.

    2007-12-01

    Current estimates of terrestrial carbon overlook the effects of topographically-driven lateral flow of soil water. We hypothesize that this component, which occur at a landscape or watershed scale have significant influences on the spatial distribution of carbon, due to its large contribution to the local water balance. To this end, we further developed a spatially explicit ecohydrological model, BEPS-TerrainLab V2.0. We simulated the coupled hydrological and carbon cycle processes in a black spruce-moss ecosystem in central Quebec, Canada. The carbon stocks were initialized using a long term carbon cycling model, InTEC, under a climate change and disturbance scenario, the accuracy of which was determined with inventory plot measurements. Further, we simulated and validated several ecosystem indicators such as ET, GPP, NEP, water table, snow depth and soil temperature, using the measurements for two years, 2004 and 2005. After gaining confidence in the model's ability to simulate ecohydrological processes, we tested the influence of lateral water flow on the carbon cycle. We made three hydrological modeling scenarios 1) Explicit, were realistic lateral water routing was considered 2) Implicit where calculations were based on a bucket modeling approach 3) NoFlow, where the lateral water flow was turned off in the model. The results showed that pronounced anomalies exist among the scenarios for the simulated GPP, ET and NEP. In general, Implicit calculation overestimated GPP and underestimated NEP, as opposed to Explicit simulation. NoFlow underestimated GPP and overestimated NEP. The key processes controlling GPP were manifested through stomatal conductance which reduces under conditions of rapid soil saturation ( NoFlow ) or increases in the Implicit case, and, nitrogen availability which affects Vcmax, the maximum carboxylation rate. However, for NEP, the anomalies were attributed to differences in soil carbon pool decomposition, which determine the heterotrophic

  18. Spatial and Temporal Analysis of Alphavirus Replication and Assembly in Mammalian and Mosquito Cells.

    PubMed

    Jose, Joyce; Taylor, Aaron B; Kuhn, Richard J

    2017-02-14

    Sindbis virus (SINV [genus Alphavirus, family Togaviridae]) is an enveloped, mosquito-borne virus. Alphaviruses cause cytolytic infections in mammalian cells while establishing noncytopathic, persistent infections in mosquito cells. Mosquito vector adaptation of alphaviruses is a major factor in the transmission of epidemic strains of alphaviruses. Though extensive studies have been performed on infected mammalian cells, the morphological and structural elements of alphavirus replication and assembly remain poorly understood in mosquito cells. Here we used high-resolution live-cell imaging coupled with single-particle tracking and electron microscopy analyses to delineate steps in the alphavirus life cycle in both the mammalian host cell and insect vector cells. Use of dually labeled SINV in conjunction with cellular stains enabled us to simultaneously determine the spatial and temporal differences of alphavirus replication complexes (RCs) in mammalian and insect cells. We found that the nonstructural viral proteins and viral RNA in RCs exhibit distinct spatial organization in mosquito cytopathic vacuoles compared to replication organelles from mammalian cells. We show that SINV exploits filopodial extensions for virus dissemination in both cell types. Additionally, we propose a novel mechanism for replication complex formation around glycoprotein-containing vesicles in mosquito cells that produced internally released particles that were seen budding from the vesicles by live imaging. Finally, by characterizing mosquito cell lines that were persistently infected with fluorescent virus, we show that the replication and assembly machinery are highly modified, and this allows continuous production of alphaviruses at reduced levels.IMPORTANCE Reemerging mosquito-borne alphaviruses cause serious human epidemics worldwide. Several structural and imaging studies have helped to define the life cycle of alphaviruses in mammalian cells, but the mode of virus replication and

  19. Spatially Explicit Analysis of Genome-Wide SNPs Detects Subtle Population Structure in a Mobile Marine Mammal, the Harbor Porpoise

    PubMed Central

    Lah, Ljerka; Trense, Daronja; Benke, Harald; Berggren, Per; Gunnlaugsson, Þorvaldur; Lockyer, Christina; Öztürk, Ayaka; Öztürk, Bayram; Pawliczka, Iwona; Roos, Anna; Siebert, Ursula; Víkingsson, Gísli; Tiedemann, Ralph

    2016-01-01

    The population structure of the highly mobile marine mammal, the harbor porpoise (Phocoena phocoena), in the Atlantic shelf waters follows a pattern of significant isolation-by-distance. The population structure of harbor porpoises from the Baltic Sea, which is connected with the North Sea through a series of basins separated by shallow underwater ridges, however, is more complex. Here, we investigated the population differentiation of harbor porpoises in European Seas with a special focus on the Baltic Sea and adjacent waters, using a population genomics approach. We used 2872 single nucleotide polymorphisms (SNPs), derived from double digest restriction-site associated DNA sequencing (ddRAD-seq), as well as 13 microsatellite loci and mitochondrial haplotypes for the same set of individuals. Spatial principal components analysis (sPCA), and Bayesian clustering on a subset of SNPs suggest three main groupings at the level of all studied regions: the Black Sea, the North Atlantic, and the Baltic Sea. Furthermore, we observed a distinct separation of the North Sea harbor porpoises from the Baltic Sea populations, and identified splits between porpoise populations within the Baltic Sea. We observed a notable distinction between the Belt Sea and the Inner Baltic Sea sub-regions. Improved delineation of harbor porpoise population assignments for the Baltic based on genomic evidence is important for conservation management of this endangered cetacean in threatened habitats, particularly in the Baltic Sea proper. In addition, we show that SNPs outperform microsatellite markers and demonstrate the utility of RAD-tags from a relatively small, opportunistically sampled cetacean sample set for population diversity and divergence analysis. PMID:27783621

  20. Anticipating Knowledge to Inform Species Management: Predicting Spatially Explicit Habitat Suitability of a Colonial Vulture Spreading Its Range

    PubMed Central

    Mateo-Tomás, Patricia; Olea, Pedro P.

    2010-01-01

    Background The knowledge of both potential distribution and habitat suitability is fundamental in spreading species to inform in advance management and conservation planning. After a severe decline in the past decades, the griffon vulture (Gyps fulvus) is now spreading its breeding range towards the northwest in Spain and Europe. Because of its key ecological function, anticipated spatial knowledge is required to inform appropriately both vulture and ecosystem management. Methodology/Findings Here we used maximum entropy (Maxent) models to determine the habitat suitability of potential and current breeding distribution of the griffon vulture using presence-only data (N = 124 colonies) in north-western Spain. The most relevant ecological factors shaping this habitat suitability were also identified. The resulting model had a high predictive performance and was able to predict species' historical distribution. 7.5% (∼1,850 km2) of the study area resulted to be suitable breeding habitat, most of which (∼70%) is already occupied by the species. Cliff availability and livestock density, especially of sheep and goats, around 10 km of the colonies were the fundamental factors determining breeding habitat suitability for this species. Conclusions/Significance Griffon vultures could still spread 50–60 km towards the west, increasing their breeding range in 1,782 km2. According to our results, 7.22% of the area suitable for griffon vulture will be affected by wind farms, so our results could help to better plan wind farm locations. The approach here developed could be useful to inform management of reintroductions and recovery programmes currently being implemented for both the griffon vulture and other threatened vulture species. PMID:20811501

  1. Spatially Explicit Analysis of Genome-Wide SNPs Detects Subtle Population Structure in a Mobile Marine Mammal, the Harbor Porpoise.

    PubMed

    Lah, Ljerka; Trense, Daronja; Benke, Harald; Berggren, Per; Gunnlaugsson, Þorvaldur; Lockyer, Christina; Öztürk, Ayaka; Öztürk, Bayram; Pawliczka, Iwona; Roos, Anna; Siebert, Ursula; Skóra, Krzysztof; Víkingsson, Gísli; Tiedemann, Ralph

    2016-01-01

    The population structure of the highly mobile marine mammal, the harbor porpoise (Phocoena phocoena), in the Atlantic shelf waters follows a pattern of significant isolation-by-distance. The population structure of harbor porpoises from the Baltic Sea, which is connected with the North Sea through a series of basins separated by shallow underwater ridges, however, is more complex. Here, we investigated the population differentiation of harbor porpoises in European Seas with a special focus on the Baltic Sea and adjacent waters, using a population genomics approach. We used 2872 single nucleotide polymorphisms (SNPs), derived from double digest restriction-site associated DNA sequencing (ddRAD-seq), as well as 13 microsatellite loci and mitochondrial haplotypes for the same set of individuals. Spatial principal components analysis (sPCA), and Bayesian clustering on a subset of SNPs suggest three main groupings at the level of all studied regions: the Black Sea, the North Atlantic, and the Baltic Sea. Furthermore, we observed a distinct separation of the North Sea harbor porpoises from the Baltic Sea populations, and identified splits between porpoise populations within the Baltic Sea. We observed a notable distinction between the Belt Sea and the Inner Baltic Sea sub-regions. Improved delineation of harbor porpoise population assignments for the Baltic based on genomic evidence is important for conservation management of this endangered cetacean in threatened habitats, particularly in the Baltic Sea proper. In addition, we show that SNPs outperform microsatellite markers and demonstrate the utility of RAD-tags from a relatively small, opportunistically sampled cetacean sample set for population diversity and divergence analysis.

  2. Towards more spatially explicit assessments of virtual water flows: linking local water use and scarcity to global demand of Brazilian farming commodities

    NASA Astrophysics Data System (ADS)

    Flach, Rafaela; Ran, Ylva; Godar, Javier; Karlberg, Louise; Suavet, Clement

    2016-07-01

    Global consumption of farming commodities is an important driver of water demand in regions of production. This is the case in Brazil, which has emerged as one of the main producers of globally traded farming commodities. Traditional methods to assess environmental implications of this demand rely on international trade material flows at country resolution; we argue for the need of finer scales that capture spatial heterogeneity in environmental variables in the regions of production, and that account for differential sourcing within the borders of a country of production. To illustrate this, we obtain virtual water flows from Brazilian municipalities to countries of consumption, by allocating high-resolution water footprints of sugarcane and soy production to spatially-explicit material trade flows. We found that this approach results in differences of virtual water use estimations of over 20% when compared to approaches that disregard spatial heterogeneity in sourcing patterns, for three of the main consumers of the analysed crops. This discrepancy against methods using national resolution in trade flows is determined by national heterogeneity in water resources, and differential sourcing. To illustrate the practical implications of this approach, we relate virtual water flows to water stress, identifying where global demand for water coincides with high levels of water stress. For instance, the virtual water flows for Brazilian sugarcane sourced by China were disproportionally less associated to areas with higher water stress when compared to those of the EU, due to EU’s much higher reliance on sugarcane from water scarce areas in Northeast Brazil. Our findings indicate that the policy relevance of current assessments of virtual water flows that rely on trade data aggregated at the national level may be hampered, as they do not capture the spatial heterogeneity in water resources, water use and water management options.

  3. Modeling Agricultural Watersheds with the Soil and Water Assessment Tool (SWAT): Calibration and Validation with a Novel Procedure for Spatially Explicit HRUs.

    PubMed

    Teshager, Awoke Dagnew; Gassman, Philip W; Secchi, Silvia; Schoof, Justin T; Misgna, Girmaye

    2016-04-01

    Applications of the Soil and Water Assessment Tool (SWAT) model typically involve delineation of a watershed into subwatersheds/subbasins that are then further subdivided into hydrologic response units (HRUs) which are homogeneous areas of aggregated soil, landuse, and slope and are the smallest modeling units used within the model. In a given standard SWAT application, multiple potential HRUs (farm fields) in a subbasin are usually aggregated into a single HRU feature. In other words, the standard version of the model combines multiple potential HRUs (farm fields) with the same landuse/landcover, soil, and slope, but located at different places of a subbasin (spatially non-unique), and considers them as one HRU. In this study, ArcGIS pre-processing procedures were developed to spatially define a one-to-one match between farm fields and HRUs (spatially unique HRUs) within a subbasin prior to SWAT simulations to facilitate input processing, input/output mapping, and further analysis at the individual farm field level. Model input data such as landuse/landcover (LULC), soil, crop rotation, and other management data were processed through these HRUs. The SWAT model was then calibrated/validated for Raccoon River watershed in Iowa for 2002-2010 and Big Creek River watershed in Illinois for 2000-2003. SWAT was able to replicate annual, monthly, and daily streamflow, as well as sediment, nitrate and mineral phosphorous within recommended accuracy in most cases. The one-to-one match between farm fields and HRUs created and used in this study is a first step in performing LULC change, climate change impact, and other analyses in a more spatially explicit manner.

  4. Modeling Agricultural Watersheds with the Soil and Water Assessment Tool (SWAT): Calibration and Validation with a Novel Procedure for Spatially Explicit HRUs

    NASA Astrophysics Data System (ADS)

    Teshager, Awoke Dagnew; Gassman, Philip W.; Secchi, Silvia; Schoof, Justin T.; Misgna, Girmaye

    2016-04-01

    Applications of the Soil and Water Assessment Tool (SWAT) model typically involve delineation of a watershed into subwatersheds/subbasins that are then further subdivided into hydrologic response units (HRUs) which are homogeneous areas of aggregated soil, landuse, and slope and are the smallest modeling units used within the model. In a given standard SWAT application, multiple potential HRUs (farm fields) in a subbasin are usually aggregated into a single HRU feature. In other words, the standard version of the model combines multiple potential HRUs (farm fields) with the same landuse/landcover, soil, and slope, but located at different places of a subbasin (spatially non-unique), and considers them as one HRU. In this study, ArcGIS pre-processing procedures were developed to spatially define a one-to-one match between farm fields and HRUs (spatially unique HRUs) within a subbasin prior to SWAT simulations to facilitate input processing, input/output mapping, and further analysis at the individual farm field level. Model input data such as landuse/landcover (LULC), soil, crop rotation, and other management data were processed through these HRUs. The SWAT model was then calibrated/validated for Raccoon River watershed in Iowa for 2002-2010 and Big Creek River watershed in Illinois for 2000-2003. SWAT was able to replicate annual, monthly, and daily streamflow, as well as sediment, nitrate and mineral phosphorous within recommended accuracy in most cases. The one-to-one match between farm fields and HRUs created and used in this study is a first step in performing LULC change, climate change impact, and other analyses in a more spatially explicit manner.

  5. DNA as a Powerful Tool for Morphology Control, Spatial Positioning, and Dynamic Assembly of Nanoparticles

    PubMed Central

    2015-01-01

    Conspectus Several properties of nanomaterials, such as morphologies (e.g., shapes and surface structures) and distance dependent properties (e.g., plasmonic and quantum confinement effects), make nanomaterials uniquely qualified as potential choices for future applications from catalysis to biomedicine. To realize the full potential of these nanomaterials, it is important to demonstrate fine control of the morphology of individual nanoparticles, as well as precise spatial control of the position, orientation, and distances between multiple nanoparticles. In addition, dynamic control of nanomaterial assembly in response to multiple stimuli, with minimal or no error, and the reversibility of the assemblies are also required. In this Account, we summarize recent progress of using DNA as a powerful programmable tool to realize the above goals. First, inspired by the discovery of genetic codes in biology, we have discovered DNA sequence combinations to control different morphologies of nanoparticles during their growth process and have shown that these effects are synergistic or competitive, depending on the sequence combination. The DNA, which guides the growth of the nanomaterial, is stable and retains its biorecognition ability. Second, by taking advantage of different reactivities of phosphorothioate and phosphodiester backbone, we have placed phosphorothioate at selective positions on different DNA nanostructures including DNA tetrahedrons. Bifunctional linkers have been used to conjugate phosphorothioate on one end and bind nanoparticles or proteins on the other end. In doing so, precise control of distances between two or more nanoparticles or proteins with nanometer resolution can be achieved. Furthermore, by developing facile methods to functionalize two hemispheres of Janus nanoparticles with two different DNA sequences regioselectively, we have demonstrated directional control of nanomaterial assembly, where DNA strands with specific hybridization serve as

  6. DNA as a powerful tool for morphology control, spatial positioning, and dynamic assembly of nanoparticles.

    PubMed

    Tan, Li Huey; Xing, Hang; Lu, Yi

    2014-06-17

    CONSPECTUS: Several properties of nanomaterials, such as morphologies (e.g., shapes and surface structures) and distance dependent properties (e.g., plasmonic and quantum confinement effects), make nanomaterials uniquely qualified as potential choices for future applications from catalysis to biomedicine. To realize the full potential of these nanomaterials, it is important to demonstrate fine control of the morphology of individual nanoparticles, as well as precise spatial control of the position, orientation, and distances between multiple nanoparticles. In addition, dynamic control of nanomaterial assembly in response to multiple stimuli, with minimal or no error, and the reversibility of the assemblies are also required. In this Account, we summarize recent progress of using DNA as a powerful programmable tool to realize the above goals. First, inspired by the discovery of genetic codes in biology, we have discovered DNA sequence combinations to control different morphologies of nanoparticles during their growth process and have shown that these effects are synergistic or competitive, depending on the sequence combination. The DNA, which guides the growth of the nanomaterial, is stable and retains its biorecognition ability. Second, by taking advantage of different reactivities of phosphorothioate and phosphodiester backbone, we have placed phosphorothioate at selective positions on different DNA nanostructures including DNA tetrahedrons. Bifunctional linkers have been used to conjugate phosphorothioate on one end and bind nanoparticles or proteins on the other end. In doing so, precise control of distances between two or more nanoparticles or proteins with nanometer resolution can be achieved. Furthermore, by developing facile methods to functionalize two hemispheres of Janus nanoparticles with two different DNA sequences regioselectively, we have demonstrated directional control of nanomaterial assembly, where DNA strands with specific hybridization serve as

  7. Towards Anatomic Scale Agent-Based Modeling with a Massively Parallel Spatially Explicit General-Purpose Model of Enteric Tissue (SEGMEnT_HPC)

    PubMed Central

    Cockrell, Robert Chase; Christley, Scott; Chang, Eugene; An, Gary

    2015-01-01

    Perhaps the greatest challenge currently facing the biomedical research community is the ability to integrate highly detailed cellular and molecular mechanisms to represent clinical disease states as a pathway to engineer effective therapeutics. This is particularly evident in the representation of organ-level pathophysiology in terms of abnormal tissue structure, which, through histology, remains a mainstay in disease diagnosis and staging. As such, being able to generate anatomic scale simulations is a highly desirable goal. While computational limitations have previously constrained the size and scope of multi-scale computational models, advances in the capacity and availability of high-performance computing (HPC) resources have greatly expanded the ability of computational models of biological systems to achieve anatomic, clinically relevant scale. Diseases of the intestinal tract are exemplary examples of pathophysiological processes that manifest at multiple scales of spatial resolution, with structural abnormalities present at the microscopic, macroscopic and organ-levels. In this paper, we describe a novel, massively parallel computational model of the gut, the Spatially Explicitly General-purpose Model of Enteric Tissue_HPC (SEGMEnT_HPC), which extends an existing model of the gut epithelium, SEGMEnT, in order to create cell-for-cell anatomic scale simulations. We present an example implementation of SEGMEnT_HPC that simulates the pathogenesis of ileal pouchitis, and important clinical entity that affects patients following remedial surgery for ulcerative colitis. PMID:25806784

  8. An open and extensible framework for spatially explicit land use change modelling in R: the lulccR package (0.1.0)

    NASA Astrophysics Data System (ADS)

    Moulds, S.; Buytaert, W.; Mijic, A.

    2015-04-01

    Land use change has important consequences for biodiversity and the sustainability of ecosystem services, as well as for global environmental change. Spatially explicit land use change models improve our understanding of the processes driving change and make predictions about the quantity and location of future and past change. Here we present the lulccR package, an object-oriented framework for land use change modelling written in the R programming language. The contribution of the work is to resolve the following limitations associated with the current land use change modelling paradigm: (1) the source code for model implementations is frequently unavailable, severely compromising the reproducibility of scientific results and making it impossible for members of the community to improve or adapt models for their own purposes; (2) ensemble experiments to capture model structural uncertainty are difficult because of fundamental differences between implementations of different models; (3) different aspects of the modelling procedure must be performed in different environments because existing applications usually only perform the spatial allocation of change. The package includes a stochastic ordered allocation procedure as well as an implementation of the widely used CLUE-S algorithm. We demonstrate its functionality by simulating land use change at the Plum Island Ecosystems site, using a dataset included with the package. It is envisaged that lulccR will enable future model development and comparison within an open environment.

  9. Achieving Durable Resistance Against Plant Diseases: Scenario Analyses with a National-Scale Spatially Explicit Model for a Wind-Dispersed Plant Pathogen.

    PubMed

    Elisabeth Lof, Marjolein; de Vallavieille-Pope, Claude; van der Werf, Wopke

    2017-03-13

    Genetic resistance in crops is a cornerstone of disease management in agriculture. Such genetic resistance is often rapidly broken due to selection for virulence in the pathogen population. Here, we ask whether there are strategies that can prolong the useful life of plant resistance genes. In a modeling study, we compared four deployment strategies: gene pyramiding, sequential use, simultaneous use, and a mixed strategy. We developed a spatially explicit model for France and parameterized it for the fungal pathogen Puccinia striiformis f. sp. tritici (causing wheat yellow rust) to test management strategies in a realistic spatial setting. We found that pyramiding two new resistance genes in one variety was the most durable solution only when the virulent genotype had to emerge by mutation. Deploying single-gene-resistant varieties concurrently with the pyramided variety eroded the durability of the gene pyramid. We found that continuation of deployment of varieties with broken-down resistance prolonged the useful life of simultaneous deployment of four single-gene-resistant varieties versus sequential use. However, when virulence was already present in the pathogen population, durability was low and none of the deployment strategies had effect. These results provide guidance on effective strategies for using resistance genes in crop protection practice.

  10. Evaluation of the Event Driven Phenology Model Coupled with the VegET Evapotranspiration Model Through Comparisons with Reference Datasets in a Spatially Explicit Manner

    NASA Technical Reports Server (NTRS)

    Kovalskyy, V.; Henebry, G. M.; Adusei, B.; Hansen, M.; Roy, D. P.; Senay, G.; Mocko, D. M.

    2011-01-01

    A new model coupling scheme with remote sensing data assimilation was developed for estimation of daily actual evapotranspiration (ET). The scheme represents a mix of the VegET, a physically based model to estimate ET from a water balance, and an event driven phenology model (EDPM), where the EDPM is an empirically derived crop specific model capable of producing seasonal trajectories of canopy attributes. In this experiment, the scheme was deployed in a spatially explicit manner within the croplands of the Northern Great Plains. The evaluation was carried out using 2007-2009 land surface forcing data from the North American Land Data Assimilation System (NLDAS) and crop maps derived from remotely sensed data of NASA's Moderate Resolution Imaging Spectroradiometer (MODIS). We compared the canopy parameters produced by the phenology model with normalized difference vegetation index (NDVI) data derived from the MODIS nadir bi-directional reflectance distribution function (BRDF) adjusted reflectance (NBAR) product. The expectations of the EDPM performance in prognostic mode were met, producing determination coefficient (r2) of 0.8 +/-.0.15. Model estimates of NDVI yielded root mean square error (RMSE) of 0.1 +/-.0.035 for the entire study area. Retrospective correction of canopy dynamics with MODIS NDVI brought the errors down to just below 10% of observed data range. The ET estimates produced by the coupled scheme were compared with ones from the MODIS land product suite. The expected r2=0.7 +/-.15 and RMSE = 11.2 +/-.4 mm per 8 days were met and even exceeded by the coupling scheme0 functioning in both prognostic and retrospective modes. Minor setbacks of the EDPM and VegET performance (r2 about 0.5 and additional 30 % of RMSR) were found on the peripheries of the study area and attributed to the insufficient EDPM training and to spatially varying accuracy of crop maps. Overall the experiment provided sufficient evidence of soundness and robustness of the EDPM and

  11. Spatial Control of Epsin-induced Clathrin Assembly by Membrane Curvature*♦

    PubMed Central

    Holkar, Sachin S.; Kamerkar, Sukrut C.; Pucadyil, Thomas J.

    2015-01-01

    Epsins belong to the family of highly conserved clathrin-associated sorting proteins that are indispensable for clathrin-mediated endocytosis, but their precise functions remain unclear. We have developed an assay system of budded supported membrane tubes displaying planar and highly curved membrane surfaces to analyze intrinsic membrane curvature preference shown by clathrin-associated sorting proteins. Using real-time fluorescence microscopy, we find that epsin preferentially partitions to and assembles clathrin on highly curved membrane surfaces. Sorting of epsin to regions of high curvature strictly depends on binding to phosphatidylinositol 4,5-bisphosphate. Fluorescently labeled clathrins rapidly assemble as foci, which in turn cluster epsin, while maintaining tube integrity. Clathrin foci grow in intensity with a typical time constant of ∼75 s, similar to the time scales for coated pit formation seen in cells. Epsin therefore effectively senses membrane curvature to spatially control clathrin assembly. Our results highlight the potential role of membrane curvature in orchestrating the myriad molecular interactions necessary for the success of clathrin-mediated membrane budding. PMID:25837255

  12. Spatial and Temporal Analysis of Alphavirus Replication and Assembly in Mammalian and Mosquito Cells

    PubMed Central

    Jose, Joyce; Taylor, Aaron B.

    2017-01-01

    ABSTRACT Sindbis virus (SINV [genus Alphavirus, family Togaviridae]) is an enveloped, mosquito-borne virus. Alphaviruses cause cytolytic infections in mammalian cells while establishing noncytopathic, persistent infections in mosquito cells. Mosquito vector adaptation of alphaviruses is a major factor in the transmission of epidemic strains of alphaviruses. Though extensive studies have been performed on infected mammalian cells, the morphological and structural elements of alphavirus replication and assembly remain poorly understood in mosquito cells. Here we used high-resolution live-cell imaging coupled with single-particle tracking and electron microscopy analyses to delineate steps in the alphavirus life cycle in both the mammalian host cell and insect vector cells. Use of dually labeled SINV in conjunction with cellular stains enabled us to simultaneously determine the spatial and temporal differences of alphavirus replication complexes (RCs) in mammalian and insect cells. We found that the nonstructural viral proteins and viral RNA in RCs exhibit distinct spatial organization in mosquito cytopathic vacuoles compared to replication organelles from mammalian cells. We show that SINV exploits filopodial extensions for virus dissemination in both cell types. Additionally, we propose a novel mechanism for replication complex formation around glycoprotein-containing vesicles in mosquito cells that produced internally released particles that were seen budding from the vesicles by live imaging. Finally, by characterizing mosquito cell lines that were persistently infected with fluorescent virus, we show that the replication and assembly machinery are highly modified, and this allows continuous production of alphaviruses at reduced levels. PMID:28196962

  13. Functional strategies drive community assembly of stream fishes along environmental gradients and across spatial scales.

    PubMed

    Troia, Matthew J; Gido, Keith B

    2015-02-01

    Trade-offs among functional traits produce multi-trait strategies that shape species' interactions with the environment and drive the assembly of local communities from regional species pools. Stream fish communities vary along stream size gradients and among hierarchically structured habitat patches, but little is known about how the dispersion of strategies varies along environmental gradients and across spatial scales. We used null models to quantify the dispersion of reproductive life history, feeding, and locomotion strategies in communities sampled at three spatial scales in a prairie stream network in Kansas, USA. Strategies were generally underdispersed at all spatial scales, corroborating the longstanding notion of abiotic filtering in stream fish communities. We tested for variation in strategy dispersion along a gradient of stream size and between headwater streams draining different ecoregions. Reproductive life history strategies became increasingly underdispersed moving from downstream to upstream, suggesting that abiotic filtering is stronger in headwaters. This pattern was stronger among reaches compared to mesohabitats, supporting the premise that differences in hydrologic regime among reaches filter reproductive life history strategies. Feeding strategies became increasingly underdispersed moving from upstream to downstream, indicating that environmental filters associated with stream size affect the dispersion of feeding and reproductive life history in opposing ways. Weak differences in strategy dispersion were detected between ecoregions, suggesting that different abiotic filters or strategies drive community differences between ecoregions. Given the pervasiveness of multi-trait strategies in plant and animal communities, we conclude that the assessment of strategy dispersion offers a comprehensive approach for elucidating mechanisms of community assembly.

  14. A population estimate of chimpanzees (Pan troglodytes schweinfurthii) in the Ugalla region using standard and spatially explicit genetic capture-recapture methods.

    PubMed

    Moore, Deborah L; Vigilant, Linda

    2014-04-01

    Population parameters such as size, density, and distribution of a species across a landscape are important metrics that inform conservation science and are key to management strategies. In this study, we used genetic capture-recapture methods to estimate the population size and density of the little-studied chimpanzees in the Ugalla region of western Tanzania. From 237 fecal samples collected non-invasively over a 10-month period, we identified a minimum of 113 individuals. Based on the two-innate rate method (TIRM) modeled in the software capwire, we obtained a maximum-likelihood estimate of 322 (CI 227-373) individuals over the 624 km(2) area surveyed. Using a spatially explicit capture-recapture (SECR) method, we estimated a population density of 0.25 (CI 0.16-0.38) individuals/km(2) . Observations of nests and search effort data revealed areas of more intense usage. The findings of this study are an important step in the characterization of the Ugalla chimpanzees, and substantially improve our understanding of the number of chimpanzees that occupy this savanna-woodland region at the easternmost extent of the geographic range of this endangered subspecies.

  15. Environmental Distributions of Benzo[a]pyrene in China: Current and Future Emission Reduction Scenarios Explored Using a Spatially Explicit Multimedia Fate Model.

    PubMed

    Zhu, Ying; Tao, Shu; Price, Oliver R; Shen, Huizhong; Jones, Kevin C; Sweetman, Andrew J

    2015-12-01

    SESAMe v3.0, a spatially explicit multimedia fate model with 50 × 50 km(2) resolution, has been developed for China to predict environmental concentrations of benzo[a]pyrene (BaP) using an atmospheric emission inventory for 2007. Model predictions are compared with environmental monitoring data obtained from an extensive review of the literature. The model performs well in predicting multimedia concentrations and distributions. Predicted concentrations are compared with guideline values; highest values with some exceedances occur mainly in the North China Plain, Mid Inner Mongolia, and parts of three northeast provinces, Xi'an, Shanghai, and south of Jiangsu province, East Sichuan Basin, middle of Guizhou and Guangzhou. Two potential future scenarios have been assessed using SESAMe v3.0 for 2030 as BaP emission is reduced by (1) technological improvement for coal consumption in energy production and industry sectors in Scenario 1 (Sc1) and (2) technological improvement and control of indoor biomass burning for cooking and indoor space heating and prohibition of open burning of biomass in 2030 in Scenario 2 (Sc2). Sc2 is more efficient in reducing the areas with exceedance of guideline values. Use of SESAMe v3.0 provides insights on future research needs and can inform decision making on options for source reduction.

  16. Climate change and the economics of biomass energy feedstocks in semi-arid agricultural landscapes: A spatially explicit real options analysis.

    PubMed

    Regan, Courtney M; Connor, Jeffery D; Raja Segaran, Ramesh; Meyer, Wayne S; Bryan, Brett A; Ostendorf, Bertram

    2017-05-01

    The economics of establishing perennial species as renewable energy feedstocks has been widely investigated as a climate change adapted diversification option for landholders, primarily using net present value (NPV) analysis. NPV does not account for key uncertainties likely to influence relevant landholder decision making. While real options analysis (ROA) is an alternative method that accounts for the uncertainty over future conditions and the large upfront irreversible investment involved in establishing perennials, there have been limited applications of ROA to evaluating land use change decision economics and even fewer applications considering climate change risks. Further, while the influence of spatially varying climate risk on biomass conversion economic has been widely evaluated using NPV methods, effects of spatial variability and climate on land use change have been scarcely assessed with ROA. In this study we applied a simulation-based ROA model to evaluate a landholder's decision to convert land from agriculture to biomass. This spatially explicit model considers price and yield risks under baseline climate and two climate change scenarios over a geographically diverse farming region. We found that underlying variability in primary productivity across the study area had a substantial effect on conversion thresholds required to trigger land use change when compared to results from NPV analysis. Areas traditionally thought of as being quite similar in average productive capacity can display large differences in response to the inclusion of production and price risks. The effects of climate change, broadly reduced returns required for land use change to biomass in low and medium rainfall zones and increased them in higher rainfall areas. Additionally, the risks posed by climate change can further exacerbate the tendency for NPV methods to underestimate true conversion thresholds. Our results show that even under severe drying and warming where crop yield

  17. Designing Optimal LNG Station Network for U.S. Heavy-Duty Freight Trucks using Temporally and Spatially Explicit Supply Chain Optimization

    NASA Astrophysics Data System (ADS)

    Lee, Allen

    The recent natural gas boom has opened much discussion about the potential of natural gas and specifically Liquefied Natural Gas (LNG) in the United States transportation sector. The switch from diesel to natural gas vehicles would reduce foreign dependence on oil, spur domestic economic growth, and potentially reduce greenhouse gas emissions. LNG provides the most potential for the medium to heavy-duty vehicle market partially due to unstable oil prices and stagnant natural gas prices. As long as the abundance of unconventional gas in the United States remains cheap, fuel switching to natural gas could provide significant cost savings for long haul freight industry. Amid a growing LNG station network and ever increasing demand for freight movement, LNG heavy-duty truck sales are less than anticipated and the industry as a whole is less economic than expected. In spite of much existing and mature natural gas infrastructure, the supply chain for LNG is different and requires explicit and careful planning. This thesis proposes research to explore the claim that the largest obstacle to widespread LNG market penetration is sub-optimal infrastructure planning. No other study we are aware of has explicitly explored the LNG transportation fuel supply chain for heavy-duty freight trucks. This thesis presents a novel methodology that links a network infrastructure optimization model (represents supply side) with a vehicle stock and economic payback model (represents demand side). The model characterizes both a temporal and spatial optimization model of future LNG transportation fuel supply chains in the United States. The principal research goal is to assess the economic feasibility of the current LNG transportation fuel industry and to determine an optimal pathway to achieve ubiquitous commercialization of LNG vehicles in the heavy-duty transport sector. The results indicate that LNG is not economic as a heavy-duty truck fuel until 2030 under current market conditions

  18. Prediction of spatially explicit rainfall intensity-duration thresholds for post-fire debris-flow generation in the western United States

    NASA Astrophysics Data System (ADS)

    Staley, Dennis; Negri, Jacquelyn; Kean, Jason

    2016-04-01

    Population expansion into fire-prone steeplands has resulted in an increase in post-fire debris-flow risk in the western United States. Logistic regression methods for determining debris-flow likelihood and the calculation of empirical rainfall intensity-duration thresholds for debris-flow initiation represent two common approaches for characterizing hazard and reducing risk. Logistic regression models are currently being used to rapidly assess debris-flow hazard in response to design storms of known intensities (e.g. a 10-year recurrence interval rainstorm). Empirical rainfall intensity-duration thresholds comprise a major component of the United States Geological Survey (USGS) and the National Weather Service (NWS) debris-flow early warning system at a regional scale in southern California. However, these two modeling approaches remain independent, with each approach having limitations that do not allow for synergistic local-scale (e.g. drainage-basin scale) characterization of debris-flow hazard during intense rainfall. The current logistic regression equations consider rainfall a unique independent variable, which prevents the direct calculation of the relation between rainfall intensity and debris-flow likelihood. Regional (e.g. mountain range or physiographic province scale) rainfall intensity-duration thresholds fail to provide insight into the basin-scale variability of post-fire debris-flow hazard and require an extensive database of historical debris-flow occurrence and rainfall characteristics. Here, we present a new approach that combines traditional logistic regression and intensity-duration threshold methodologies. This method allows for local characterization of both the likelihood that a debris-flow will occur at a given rainfall intensity, the direct calculation of the rainfall rates that will result in a given likelihood, and the ability to calculate spatially explicit rainfall intensity-duration thresholds for debris-flow generation in recently

  19. Spatially Explicit Modeling of Schistosomiasis Risk in Eastern China Based on a Synthesis of Epidemiological, Environmental and Intermediate Host Genetic Data

    PubMed Central

    Schrader, Matthias; Hauffe, Torsten; Zhang, Zhijie; Davis, George M.; Jopp, Fred; Remais, Justin V.; Wilke, Thomas

    2013-01-01

    Schistosomiasis japonica is a major parasitic disease threatening millions of people in China. Though overall prevalence was greatly reduced during the second half of the past century, continued persistence in some areas and cases of re-emergence in others remain major concerns. As many regions in China are approaching disease elimination, obtaining quantitative data on Schistosoma japonicum parasites is increasingly difficult. This study examines the distribution of schistosomiasis in eastern China, taking advantage of the fact that the single intermediate host serves as a major transmission bottleneck. Epidemiological, population-genetic and high-resolution ecological data are combined to construct a predictive model capable of estimating the probability that schistosomiasis occurs in a target area (“spatially explicit schistosomiasis risk”). Results show that intermediate host genetic parameters are correlated with the distribution of endemic disease areas, and that five explanatory variables—altitude, minimum temperature, annual precipitation, genetic distance, and haplotype diversity—discriminate between endemic and non-endemic zones. Model predictions are correlated with human infection rates observed at the county level. Visualization of the model indicates that the highest risks of disease occur in the Dongting and Poyang lake regions, as expected, as well as in some floodplain areas of the Yangtze River. High risk areas are interconnected, suggesting the complex hydrological interplay of Dongting and Poyang lakes with the Yangtze River may be important for maintaining schistosomiasis in eastern China. Results demonstrate the value of genetic parameters for risk modeling, and particularly for reducing model prediction error. The findings have important consequences both for understanding the determinants of the current distribution of S. japonicum infections, and for designing future schistosomiasis surveillance and control strategies. The results

  20. Investigation of inflammation and tissue patterning in the gut using a Spatially Explicit General-purpose Model of Enteric Tissue (SEGMEnT).

    PubMed

    Cockrell, Chase; Christley, Scott; An, Gary

    2014-03-01

    The mucosa of the intestinal tract represents a finely tuned system where tissue structure strongly influences, and is turn influenced by, its function as both an absorptive surface and a defensive barrier. Mucosal architecture and histology plays a key role in the diagnosis, characterization and pathophysiology of a host of gastrointestinal diseases. Inflammation is a significant factor in the pathogenesis in many gastrointestinal diseases, and is perhaps the most clinically significant control factor governing the maintenance of the mucosal architecture by morphogenic pathways. We propose that appropriate characterization of the role of inflammation as a controller of enteric mucosal tissue patterning requires understanding the underlying cellular and molecular dynamics that determine the epithelial crypt-villus architecture across a range of conditions from health to disease. Towards this end we have developed the Spatially Explicit General-purpose Model of Enteric Tissue (SEGMEnT) to dynamically represent existing knowledge of the behavior of enteric epithelial tissue as influenced by inflammation with the ability to generate a variety of pathophysiological processes within a common platform and from a common knowledge base. In addition to reproducing healthy ileal mucosal dynamics as well as a series of morphogen knock-out/inhibition experiments, SEGMEnT provides insight into a range of clinically relevant cellular-molecular mechanisms, such as a putative role for Phosphotase and tensin homolog/phosphoinositide 3-kinase (PTEN/PI3K) as a key point of crosstalk between inflammation and morphogenesis, the protective role of enterocyte sloughing in enteric ischemia-reperfusion and chronic low level inflammation as a driver for colonic metaplasia. These results suggest that SEGMEnT can serve as an integrating platform for the study of inflammation in gastrointestinal disease.

  1. On the Use of an Explicit Microphysical Model to Investigate the Temporal and Spatial Evolution of Rainfall Microphysics in Different Storm Environments

    NASA Astrophysics Data System (ADS)

    Wilson, A.; Barros, A. P.

    2012-12-01

    Two Micro Rain Radars (MRRs) were deployed in the Southern Appalachians during the summer and fall seasons of 2012, in ridge and valley locations in the French Broad River Basin. The radars were collocated with Hydrological Services tipping bucket rain gauges at 0.1 mm resolution, Vaisala automated weather stations and Parsivel optical disdrometers. This study augments others conducted in previous years during the months May - September in ridge and valley locations in the Pigeon River Basin, and ridge-ridge studies across both basins. Observations from the vertically pointing radar are used to provide boundary conditions for an explicit raindrop population dynamics model, which solves the stochastic collection-breakup equation, in order to model the evolution of microphysical properties (drop size distribution, rain intensity and hydrometeor type) through time and space and gain insight into the processes (autoconversion, overarching synoptic conditions, terrain contributions) that drive this evolution. Surface observations from the disdrometers and rain gauges are used to investigate the model results. Observations from a spatially dense, high elevation rain gauge network are also used to further define storm structure. Results show significant variability in precipitation intensities and accumulations along the ridge line as well as suggest the localized importance of persistent fog interacting with low level cloud to intensify or trigger precipitation events that are often experienced only at high elevations and contribute significantly to the yearly water budget of the region. A period of cross calibration with both MRRs, Parsivel disdrometer models 1 and 2, automated weather stations and tipping bucket rain gauges (during May/early June 2012) is used to examine questions of uncertainty with regard to measurement scale. Last, the results from using this model at other locations during ground validation campaigns (TWP-ICE, MC3E) are compared with the findings

  2. Spatially-explicit estimates of greenhouse-gas payback times for perennial cellulosic biomass production on open lands in the Lake States

    NASA Astrophysics Data System (ADS)

    Sahajpal, R.

    2015-12-01

    The development of renewable energy sources is an integral step towards mitigating the carbon dioxide induced component of climate change. One important renewable source is plant biomass, comprising both food crops such as corn (Zea mays) and cellulosic biomass from short-rotation woody crops (SRWC) such as hybrid-poplar (Populus spp.) and Willow (Salix spp.). Due to their market acceptability and excellent energy balance, cellulosic feedstocks represent an abundant and if managed properly, a carbon-neutral and environmentally beneficial resource. We evaluate how site variability impacts the greenhouse-gas (GHG) benefits of SRWC plantations on lands potentially suited for bioenergy feedstock production in the Lake States (Minnesota, Wisconsin, Michigan). We combine high-resolution, spatially-explicit estimates of biomass, soil organic carbon and nitrous oxide emissions for SRWC plantations from the Environmental Policy Integrated Climate (EPIC) model along with life cycle analysis results from the GREET model to determine the greenhouse-gas payback time (GPBT) or the time needed before the GHG savings due to displacement of fossil fuels exceeds the initial losses from plantation establishment. We calibrate our models using unique yield and N2O emission data from sites across the Lake states that have been converted from pasture and hayfields to SRWC plantations. Our results show a reduction of 800,000 ha in non-agricultural open land availability for biomass production, a loss of nearly 37% (see attached figure). Overall, GPBTs range between 1 and 38 years, with the longest GPBTs occurring in the northern Lake states. Initial soil nitrate levels and site drainage potential explain more than half of the variation in GPBTs. Our results indicate a rapidly closing window of opportunity to establish a sustainable cellulosic feedstock economy in the Lake States.

  3. Phylogenetic and morphological relationships between nonvolant small mammals reveal assembly processes at different spatial scales.

    PubMed

    Luza, André Luís; Gonçalves, Gislene Lopes; Hartz, Sandra Maria

    2015-02-01

    The relative roles of historical processes, environmental filtering, and ecological interactions in the organization of species assemblages vary depending on the spatial scale. We evaluated the phylogenetic and morphological relationships between species and individuals (i.e., inter- and intraspecific variability) of Neotropical nonvolant small mammals coexisting in grassland-forest ecotones, in landscapes and in regions, that is, three different scales. We used a phylogenetic tree to infer evolutionary relationships, and morphological traits as indicators of performance and niche similarities between species and individuals. Subsequently, we applied phylogenetic and morphologic indexes of diversity and distance between species to evaluate small mammal assemblage structures on the three scales. The results indicated a repulsion pattern near forest edges, showing that phylogenetically similar species coexisted less often than expected by chance. The strategies for niche differentiation might explain the phylogenetic repulsion observed at the edge. Phylogenetic and morphological clustering in the grassland and at the forest interior indicated the coexistence of closely related and ecologically similar species and individuals. Coexistence patterns were similar whether species-trait values or individual values were used. At the landscape and regional scales, assemblages showed a predominant pattern of phylogenetic and morphological clustering. Environmental filters influenced the coexistence patterns at three scales, showing the importance of phylogenetically conserved ecological tolerances in enabling taxa co-occurrence. Evidence of phylogenetic repulsion in one region indicated that other processes beyond environmental filtering are important for community assembly at broad scales. Finally, ecological interactions and environmental filtering seemed important at the local scale, while environmental filtering and historical colonization seemed important for community

  4. Phylogenetic and morphological relationships between nonvolant small mammals reveal assembly processes at different spatial scales

    PubMed Central

    Luza, André Luís; Gonçalves, Gislene Lopes; Hartz, Sandra Maria

    2015-01-01

    The relative roles of historical processes, environmental filtering, and ecological interactions in the organization of species assemblages vary depending on the spatial scale. We evaluated the phylogenetic and morphological relationships between species and individuals (i.e., inter- and intraspecific variability) of Neotropical nonvolant small mammals coexisting in grassland-forest ecotones, in landscapes and in regions, that is, three different scales. We used a phylogenetic tree to infer evolutionary relationships, and morphological traits as indicators of performance and niche similarities between species and individuals. Subsequently, we applied phylogenetic and morphologic indexes of diversity and distance between species to evaluate small mammal assemblage structures on the three scales. The results indicated a repulsion pattern near forest edges, showing that phylogenetically similar species coexisted less often than expected by chance. The strategies for niche differentiation might explain the phylogenetic repulsion observed at the edge. Phylogenetic and morphological clustering in the grassland and at the forest interior indicated the coexistence of closely related and ecologically similar species and individuals. Coexistence patterns were similar whether species-trait values or individual values were used. At the landscape and regional scales, assemblages showed a predominant pattern of phylogenetic and morphological clustering. Environmental filters influenced the coexistence patterns at three scales, showing the importance of phylogenetically conserved ecological tolerances in enabling taxa co-occurrence. Evidence of phylogenetic repulsion in one region indicated that other processes beyond environmental filtering are important for community assembly at broad scales. Finally, ecological interactions and environmental filtering seemed important at the local scale, while environmental filtering and historical colonization seemed important for community

  5. Elevational gradients in β-diversity reflect variation in the strength of local community assembly mechanisms across spatial scales.

    PubMed

    Tello, J Sebastián; Myers, Jonathan A; Macía, Manuel J; Fuentes, Alfredo F; Cayola, Leslie; Arellano, Gabriel; Loza, M Isabel; Torrez, Vania; Cornejo, Maritza; Miranda, Tatiana B; Jørgensen, Peter M

    2015-01-01

    Despite long-standing interest in elevational-diversity gradients, little is known about the processes that cause changes in the compositional variation of communities (β-diversity) across elevations. Recent studies have suggested that β-diversity gradients are driven by variation in species pools, rather than by variation in the strength of local community assembly mechanisms such as dispersal limitation, environmental filtering, or local biotic interactions. However, tests of this hypothesis have been limited to very small spatial scales that limit inferences about how the relative importance of assembly mechanisms may change across spatial scales. Here, we test the hypothesis that scale-dependent community assembly mechanisms shape biogeographic β-diversity gradients using one of the most well-characterized elevational gradients of tropical plant diversity. Using an extensive dataset on woody plant distributions along a 4,000-m elevational gradient in the Bolivian Andes, we compared observed patterns of β-diversity to null-model expectations. β-deviations (standardized differences from null values) were used to measure the relative effects of local community assembly mechanisms after removing sampling effects caused by variation in species pools. To test for scale-dependency, we compared elevational gradients at two contrasting spatial scales that differed in the size of local assemblages and regions by at least an order of magnitude. Elevational gradients in β-diversity persisted after accounting for regional variation in species pools. Moreover, the elevational gradient in β-deviations changed with spatial scale. At small scales, local assembly mechanisms were detectable, but variation in species pools accounted for most of the elevational gradient in β-diversity. At large spatial scales, in contrast, local assembly mechanisms were a dominant force driving changes in β-diversity. In contrast to the hypothesis that variation in species pools alone

  6. Elevational Gradients in β-Diversity Reflect Variation in the Strength of Local Community Assembly Mechanisms across Spatial Scales

    PubMed Central

    Tello, J. Sebastián; Myers, Jonathan A.; Macía, Manuel J.; Fuentes, Alfredo F.; Cayola, Leslie; Arellano, Gabriel; Loza, M. Isabel; Torrez, Vania; Cornejo, Maritza; Miranda, Tatiana B.; Jørgensen, Peter M.

    2015-01-01

    Despite long-standing interest in elevational-diversity gradients, little is known about the processes that cause changes in the compositional variation of communities (β-diversity) across elevations. Recent studies have suggested that β-diversity gradients are driven by variation in species pools, rather than by variation in the strength of local community assembly mechanisms such as dispersal limitation, environmental filtering, or local biotic interactions. However, tests of this hypothesis have been limited to very small spatial scales that limit inferences about how the relative importance of assembly mechanisms may change across spatial scales. Here, we test the hypothesis that scale-dependent community assembly mechanisms shape biogeographic β-diversity gradients using one of the most well-characterized elevational gradients of tropical plant diversity. Using an extensive dataset on woody plant distributions along a 4,000-m elevational gradient in the Bolivian Andes, we compared observed patterns of β-diversity to null-model expectations. β-deviations (standardized differences from null values) were used to measure the relative effects of local community assembly mechanisms after removing sampling effects caused by variation in species pools. To test for scale-dependency, we compared elevational gradients at two contrasting spatial scales that differed in the size of local assemblages and regions by at least an order of magnitude. Elevational gradients in β-diversity persisted after accounting for regional variation in species pools. Moreover, the elevational gradient in β-deviations changed with spatial scale. At small scales, local assembly mechanisms were detectable, but variation in species pools accounted for most of the elevational gradient in β-diversity. At large spatial scales, in contrast, local assembly mechanisms were a dominant force driving changes in β-diversity. In contrast to the hypothesis that variation in species pools alone

  7. Explicit memory creation during sleep demonstrates a causal role of place cells in navigation.

    PubMed

    de Lavilléon, Gaetan; Lacroix, Marie Masako; Rondi-Reig, Laure; Benchenane, Karim

    2015-04-01

    Hippocampal place cells assemblies are believed to support the cognitive map, and their reactivations during sleep are thought to be involved in spatial memory consolidation. By triggering intracranial rewarding stimulations by place cell spikes during sleep, we induced an explicit memory trace, leading to a goal-directed behavior toward the place field. This demonstrates that place cells' activity during sleep still conveys relevant spatial information and that this activity is functionally significant for navigation.

  8. Examining nanoparticle assemblies using high spatial resolution x-ray microtomography

    NASA Astrophysics Data System (ADS)

    Jenneson, P. M.; Luggar, R. D.; Morton, E. J.; Gundogdu, O.; Tüzün, U.

    2004-09-01

    An experimental system has been designed to examine the assembly of nanoparticles in a variety of process engineering applications. These applications include the harvesting from solutions of nanoparticles into green parts, and the subsequent sintering into finished components. The system is based on an x-ray microtomography with a spatial resolution down to 5μm. The theoretical limitations in x-ray imaging are considered to allow experimental optimization. A standard nondestructive evaluation type apparatus with a small focal-spot x-ray tube, high-resolution complementary metal oxide semiconductor flat-panel pixellated detector, and a mechanical rotational stage is used to image the static systems. Dynamic sintering processes are imaged using the same x-ray source and detector but a custom rotational stage which is contained in an environmental chamber where the temperature, atmospheric pressure, and compaction force can be controlled. Three-dimensional tomographic data sets are presented here for samples from the pharmaceutical, nutraceutical, biotechnology, and nanoparticle handling industries and show the microscopic features and defects which can be resolved with the system.

  9. Development of bioMEMS device and package for a spatially programmable biomolecule assembly

    NASA Astrophysics Data System (ADS)

    Park, Jung Jin

    We report facile in situ biomolecule assembly at readily addressable sites in microfluidic channels after complete fabrication and packaging of the microfluidic device. Aminopolysaccharide chitosan's pH responsive and chemically reactive properties allow electric signal-guided biomolecule assembly onto conductive inorganic surfaces from the aqueous environment, preserving the activity of the biomolecules. Photoimageable SU8 is used on a Pyrex bottom substrate to create microfluidic channels and a PDMS layer is sealed to the SU8 microchannel by compression of their respective substrates between additional top and bottom Plexiglas plates at the package level. Transparent and non-permanently packaged device allows consistently leak-free sealing, simple in situ and ex situ examination of the assembly procedures, fluidic input/outputs for transport of aqueous solutions, and electrical ports to guide the assembly onto the patterned gold electrode sites within the channel. Facile post-fabrication in-situ biomolecule assembly of internal electrodes is demonstrated using electrodeposition of a chitosan film on a patterned gold electrode. Both in situ fluorescence and ex situ profilometer results confirm chitosan-mediated in situ biomolecule assembly, demonstrating a simple approach to direct the assembly of biological components into a completely fabricated device. We believe that this strategy holds significant potential as a simple and generic biomolecule assembly approach for future applications in complex biomolecular or biosensing analyses as well as in sophisticated microfluidic networks as anticipated for future lab-on-a chip.

  10. Balancing spatially regulated β-actin translation and dynamin-mediated endocytosis is required to assemble functional epithelial monolayers.

    PubMed

    Cruz, Lissette A; Vedula, Pavan; Gutierrez, Natasha; Shah, Neel; Rodriguez, Steven; Ayee, Brian; Davis, Justin; Rodriguez, Alexis J

    2015-12-01

    Regulating adherens junction complex assembly/disassembly is critical to maintaining epithelial homeostasis in healthy epithelial tissues. Consequently, adherens junction structure and function is often perturbed in clinically advanced tumors of epithelial origin. Some of the most studied factors driving adherens junction complex perturbation in epithelial cancers are transcriptional and epigenetic down-regulation of E-cadherin expression. However, numerous reports demonstrate that post-translational regulatory mechanisms such as endocytosis also regulate early phases of epithelial-mesenchymal transition and metastatic progression. In already assembled healthy epithelia, E-cadherin endocytosis recycles cadherin-catenin complexes to regulate the number of mature adherens junctions found at cell-cell contact sites. However, following de novo epithelial cell-cell contact, endocytosis negatively regulates adherens junction assembly by removing E-cadherin from the cell surface. By contrast, following de novo epithelial cell-cell contact, spatially localized β-actin translation drives cytoskeletal remodeling and consequently E-cadherin clustering at cell-cell contact sites and therefore positively regulates adherens junction assembly. In this report we demonstrate that dynamin-mediated endocytosis and β-actin translation-dependent cadherin-catenin complex anchoring oppose each other following epithelial cell-cell contact. Consequently, the final extent of adherens junction assembly depends on which of these processes is dominant following epithelial cell-cell contact. We expressed β-actin transcripts impaired in their ability to properly localize monomer synthesis (Δ3'UTR) in MDCK cells to perturb actin filament remodeling and anchoring, and demonstrate the resulting defect in adherens junction structure and function is rescued by inhibiting dynamin mediated endocytosis. Therefore, we demonstrate balancing spatially regulated β-actin translation and dynamin

  11. Balancing spatially regulated β-actin translation and dynamin mediated endocytosis is required to assemble functional epithelial monolayers

    PubMed Central

    Cruz, Lissette A.; Vedula, Pavan; Gutierrez, Natasha; Shah, Neel; Rodriguez, Steven; Ayee, Brian; Davis, Justin; Rodriguez, Alexis J.

    2015-01-01

    Regulating adherens junction complex assembly/disassembly is critical to maintaining epithelial homeostasis in healthy epithelial tissues. Consequently, adherens junction structure and function is often perturbed in clinically advanced tumors of epithelial origin. Some of the most studied factors driving adherens junction complex perturbation in epithelial cancers are transcriptional and epigenetic down-regulation of E-cadherin expression. However, numerous reports demonstrate that post-translational regulatory mechanisms such as endocytosis also regulate early phases of epithelial-mesenchymal transition and metastatic progression. In already assembled healthy epithelia, E-cadherin endocytosis recycles cadherin-catenin complexes to regulate the number of mature adherens junctions found at cell-cell contact sites. However, following de novo epithelial cell-cell contact, endocytosis negatively regulates adherens junction assembly by removing E-cadherin from the cell surface. By contrast, following de novo epithelial cell-cell contact, spatially localized β-actin translation drives cytoskeletal remodeling and consequently E-cadherin clustering at cell-cell contact sites and therefore positively regulates adherens junction assembly. In this report we demonstrate that dynamin-mediated endocytosis and β-actin translation dependent cadherin-catenin complex anchoring oppose each other following epithelial cell-cell contact. Consequently, the final extent of adherens junction assembly depends on which of these processes is dominant following epithelial cell-cell contact. We expressed β-actin transcripts impaired in their ability to properly localize monomer synthesis (Δ3′UTR) in MDCK cells to perturb actin filament remodeling and anchoring and demonstrate the resulting defect in adherens junction structure and function is rescued by inhibiting dynamin mediated endocytosis. Therefore, we demonstrate balancing spatially regulated β-actin translation and dynamin

  12. A Combined Global and Local Approach to Elucidate Spatial Organization of the Mycobacterial ParB-parS Partition Assembly

    SciTech Connect

    B Chaudhuri; S Gupta; V Urban; M Chance; R DMello; L Smith; K Lyons; J Gee

    2011-12-31

    Combining diverse sets of data at global (size, shape) and local (residue) scales is an emerging trend for elucidating the organization and function of the cellular assemblies. We used such a strategy, combining data from X-ray and neutron scattering with H/D-contrast variation and X-ray footprinting with mass spectrometry, to elucidate the spatial organization of the ParB-parS assembly from Mycobacterium tuberculosis. The ParB-parS participates in plasmid and chromosome segregation and condensation in predivisional bacterial cells. ParB polymerizes around the parS centromere(s) to form a higher-order assembly that serves to recruit cyto-skeletal ParA ATPases and SMC proteins for chromosome segregation. A hybrid model of the ParB-parS was built by combining and correlating computational models with experiment-derived information about size, shape, position of the symmetry axis within the shape, internal topology, DNA-protein interface, exposed surface patches, and prior knowledge. This first view of the ParB-parS leads us to propose how ParB spread on the chromosome to form a larger assembly.

  13. Systematic, spatial imaging of large multimolecular assemblies and the emerging principles of supramolecular order in biological systems.

    PubMed

    Schubert, Walter

    2014-01-01

    Understanding biological systems at the level of their relational (emergent) molecular properties in functional protein networks relies on imaging methods, able to spatially resolve a tissue or a cell as a giant, non-random, topologically defined collection of interacting supermolecules executing myriads of subcellular mechanisms. Here, the development and findings of parameter-unlimited functional super-resolution microscopy are described-a technology based on the fluorescence imaging cycler (IC) principle capable of co-mapping thousands of distinct biomolecular assemblies at high spatial resolution and differentiation (<40 nm distances). It is shown that the subcellular and transcellular features of such supermolecules can be described at the compositional and constitutional levels; that the spatial connection, relational stoichiometry, and topology of supermolecules generate hitherto unrecognized functional self-segmentation of biological tissues; that hierarchical features, common to thousands of simultaneously imaged supermolecules, can be identified; and how the resulting supramolecular order relates to spatial coding of cellular functionalities in biological systems. A large body of observations with IC molecular systems microscopy collected over 20 years have disclosed principles governed by a law of supramolecular segregation of cellular functionalities. This pervades phenomena, such as exceptional orderliness, functional selectivity, combinatorial and spatial periodicity, and hierarchical organization of large molecular systems, across all species investigated so far. This insight is based on the high degree of specificity, selectivity, and sensitivity of molecular recognition processes for fluorescence imaging beyond the spectral resolution limit, using probe libraries controlled by ICs.

  14. Trait assembly in grasslands depends on habitat history and spatial scale.

    PubMed

    Saar, Liina; de Bello, Francesco; Pärtel, Meelis; Helm, Aveliina

    2017-01-19

    During the past century, grasslands in Europe have undergone marked changes in land-use, leading to a decline in plant diversity both at local and regional scales, thus possibly also affecting the mechanisms of species sorting into local communities. We studied plant species assembly in grasslands with differing habitat history and hypothesised that trait divergence prevails in historical grasslands due to niche differentiation and trait convergence prevails in more dynamic grasslands due to competitive exclusion and dispersal limitation. We tested these hypotheses in 35 grassland complexes in Estonia, containing neighbouring grassland habitats with different land-use histories: continuously managed open historical grassland, currently overgrown former grassland and young developing grassland. We assessed species assembly patterns in each grassland type for finer scale-a 2 × 2 m plot scale from a local community pool and for broader scale-a local community from the habitat species pool for that grassland stage and observed changes in trait means at finer scale. We found that grasslands with long management history are assembled differently from former grasslands or young developing grasslands. In historical grasslands, divergence or random patterns prevailed at finer scale species assembly while in former or developing grasslands, mostly convergence patterns prevailed. With increasing scale convergence patterns become more prevalent in all grassland types. We conclude that land-use history is an important factor to consider when assessing grassland functional trait assembly, particularly at small scales. Understanding the mechanisms behind species assembly and their relationship with land-use history is vital for habitat conservation and restoration.

  15. Replicating centromeric chromatin: Spatial and temporal control of CENP-A assembly

    SciTech Connect

    Nechemia-Arbely, Yael; Fachinetti, Daniele; Cleveland, Don W.

    2012-07-15

    The centromere is the fundamental unit for insuring chromosome inheritance. This complex region has a distinct type of chromatin in which histone H3 is replaced by a structurally different homologue identified in humans as CENP-A. In metazoans, specific DNA sequences are neither required nor sufficient for centromere identity. Rather, an epigenetic mark comprised of CENP-A containing chromatin is thought to be the major determinant of centromere identity. In this view, CENP-A deposition and chromatin assembly are fundamental processes for the maintenance of centromeric identity across mitotic and meiotic divisions. Several lines of evidence support CENP-A deposition in metazoans occurring at only one time in the cell cycle. Such cell cycle-dependent loading of CENP-A is found in divergent species from human to fission yeast, albeit with differences in the cell cycle point at which CENP-A is assembled. Cell cycle dependent CENP-A deposition requires multiple assembly factors for its deposition and maintenance. This review discusses the regulation of new CENP-A deposition and its relevance to centromere identity and inheritance.

  16. Systematic, spatial imaging of large multimolecular assemblies and the emerging principles of supramolecular order in biological systems

    PubMed Central

    Schubert, Walter

    2013-01-01

    Understanding biological systems at the level of their relational (emergent) molecular properties in functional protein networks relies on imaging methods, able to spatially resolve a tissue or a cell as a giant, non-random, topologically defined collection of interacting supermolecules executing myriads of subcellular mechanisms. Here, the development and findings of parameter-unlimited functional super-resolution microscopy are described—a technology based on the fluorescence imaging cycler (IC) principle capable of co-mapping thousands of distinct biomolecular assemblies at high spatial resolution and differentiation (<40 nm distances). It is shown that the subcellular and transcellular features of such supermolecules can be described at the compositional and constitutional levels; that the spatial connection, relational stoichiometry, and topology of supermolecules generate hitherto unrecognized functional self-segmentation of biological tissues; that hierarchical features, common to thousands of simultaneously imaged supermolecules, can be identified; and how the resulting supramolecular order relates to spatial coding of cellular functionalities in biological systems. A large body of observations with IC molecular systems microscopy collected over 20 years have disclosed principles governed by a law of supramolecular segregation of cellular functionalities. This pervades phenomena, such as exceptional orderliness, functional selectivity, combinatorial and spatial periodicity, and hierarchical organization of large molecular systems, across all species investigated so far. This insight is based on the high degree of specificity, selectivity, and sensitivity of molecular recognition processes for fluorescence imaging beyond the spectral resolution limit, using probe libraries controlled by ICs. © 2013 The Authors. Journal of Molecular Recognition published by John Wiley & Sons, Ltd. PMID:24375580

  17. Spatially explicit models of dynamic histories: examination of the genetic consequences of Pleistocene glaciation and recent climate change on the American Pika.

    PubMed

    Brown, Jason L; Knowles, L Lacey

    2012-08-01

    A central goal of phylogeography is to identify and characterize the processes underlying divergence. One of the biggest impediments currently faced is how to capture the spatiotemporal dynamic under which a species evolved. Here, we described an approach that couples species distribution models (SDMs), demographic and genetic models in a spatiotemporally explicit manner. Analyses of American Pika (Ochotona princeps) from the sky islands of the central Rocky Mountains of North America are used to provide insights into key questions about integrative approaches in landscape genetics, population genetics and phylogeography. This includes (i) general issues surrounding the conversion of time-specific SDMs into simple continuous, dynamic landscapes from past to current, (ii) the utility of SDMs to inform demographic models with deme-specific carrying capacities and migration potentials as well as (iii) the contribution of the temporal dynamic of colonization history in shaping genetic patterns of contemporary populations. Our results support that the inclusion of a spatiotemporal dynamic is an important factor when studying the impact of distributional shifts on patterns of genetic data. Our results also demonstrate the utility of SDMs to generate species-specific predictions about patterns of genetic variation that account for varying degrees of habitat specialization and life history characteristics of taxa. Nevertheless, the results highlight some key issues when converting SDMs for use in demographic models. Because the transformations have direct effects on the genetic consequence of population expansion by prescribing how habitat heterogeneity and spatiotemporal variation is related to the species-specific demographic model, it is important to consider alternative transformations when studying the genetic consequences of distributional shifts.

  18. A spatially explicit assessment of current and future hotspots of hunger in Sub-Saharan Africa in the context of global change

    NASA Astrophysics Data System (ADS)

    Liu, Junguo; Fritz, Steffen; van Wesenbeeck, C. F. A.; Fuchs, Michael; You, Liangzhi; Obersteiner, Michael; Yang, Hong

    2008-12-01

    Hunger knows no boundaries or borders. While much research has focused on undernutrition on a national scale, this report evaluates it at subnational levels for Sub-Saharan Africa (SSA) to pinpoint hotspots where the greatest challenges exist. Undernutrition is assessed with a spatial resolution of 30 arc-minutes by investigating anthropometric data on weight and length of individuals. The impact of climate change on production of six major crops (cassava, maize, wheat, sorghum, rice and millet) is analyzed with a GIS-based Environmental Policy Integrated Climate (GEPIC) model with the same spatial resolution. Future hotspots of hunger are projected in the context of the anticipated climate, social, economic, and bio-physical changes. The results show that some regions in northern and southwestern Nigeria, Sudan and Angola with a currently high number of people with undernutrition might be able to improve their food security situation mainly through increasing purchasing power. In the near future, regions located in Ethiopia, Uganda, Rwanda and Burundi, southwestern Niger, and Madagascar are likely to remain hotspots of food insecurity, while regions located in Tanzania, Mozambique and the Democratic Republic of Congo might face more serious undernutrition. It is likely that both the groups of regions will suffer from lower capacity of importing food as well as lower per capita calorie availability, while the latter group will probably have sharper reduction in per capita calorie availability. Special attention must be paid to the hotspot areas in order to meet the hunger alleviation goals in SSA.

  19. Spatial attention facilitates assembly of the briefest percepts: Electrophysiological evidence from color fusion.

    PubMed

    Akyürek, Elkan G; van Asselt, E Manon

    2015-12-01

    When two different color stimuli are presented in rapid succession, the resulting percept is sometimes that of a mixture of both colors, due to a perceptual process called color fusion. Although color fusion might seem to occur very early in the visual pathway, and only happens across the briefest of stimulus presentation intervals (< 50 ms), the present study showed that spatial attention can alter the fusion process. In a series of experiments, spatial cues were presented that either validly indicated the location of a pair of (different) color stimuli in successive stimulus arrays, or did not, pointing toward isoluminant gray distractors in the other visual hemifield. Increased color fusion was observed for valid cues across a range of stimulus durations, at the expense of individual color reports. By contrast, perception of repeated, same-color stimulus pairs did not change, suggesting that the enhancement was specific to fusion, not color discrimination per se. Electrophysiological measures furthermore showed that the amplitude of the N1, N2pc, and P3 components of the ERP were differentially modulated during the perception of individual and fused colors, as a function of cueing and stimulus duration. Fusion itself, collapsed across cueing conditions, was reflected uniquely in N1 amplitude. Overall, the results suggest that spatial attention enhances color fusion and decreases competition between stimuli, constituting an adaptive slowdown in service of temporal integration.

  20. Eco-SpaCE: an object-oriented, spatially explicit model to assess the risk of multiple environmental stressors on terrestrial vertebrate populations.

    PubMed

    Loos, Mark; Ragas, Ad M J; Plasmeijer, Rinus; Schipper, Aafke M; Hendriks, A Jan

    2010-08-15

    Wildlife organisms are exposed to a combination of chemical, biological and physical stressors. Information about the relative impact of each stressor can support management decisions, e.g., by the allocation of resources to counteract those stressors that cause most harm. The present paper introduces Eco-SpaCE; a novel receptor-oriented cumulative exposure model for wildlife species that includes relevant ecological processes such as spatial habitat variation, food web relations, predation, and life history. A case study is presented in which the predicted mortality due to cadmium contamination is compared with the predicted mortality due to flooding, starvation, and predation for three small mammal species (Wood mouse, Common vole, and European mole) and a predator (Little owl) living in a lowland floodplain along the river Rhine in The Netherlands. Results indicated that cadmium is the principal stressor for European mole and Little owl populations. Wood mouse and Common vole population densities were mainly influenced by flooding and food availability. Their estimated population sizes were consistent with numbers reported in literature. Predictions for cadmium accumulation and flooding stress were in agreement with field data. The large uncertainty around cadmium toxicity for wildlife leads to the conclusion that more species-specific ecotoxicological data is required for more realistic risk assessments. The predictions for starvation were subject to the limited quantitative information on biomass obtainable as food for vertebrates. It is concluded that the modelling approach employed in Eco-SpaCE, combining ecology with ecotoxicology, provides a viable option to explore the relative contribution of contamination to the overall stress in an ecosystem. This can help environmental managers to prioritize management options, and to reduce local risks.

  1. A spatially explicit metapopulation model and cattle trade analysis suggests key determinants for the recurrent circulation of rift valley Fever virus in a pilot area of madagascar highlands.

    PubMed

    Nicolas, Gaëlle; Chevalier, Véronique; Tantely, Luciano Michaël; Fontenille, Didier; Durand, Benoît

    2014-12-01

    Rift Valley fever (RVF) is a vector-borne zoonotic disease that causes high morbidity and mortality in ruminants. In 2008-2009, a RVF outbreak affected the whole Madagascar island, including the Anjozorobe district located in Madagascar highlands. An entomological survey showed the absence of Aedes among the potential RVF virus (RVFV) vector species identified in this area, and an overall low abundance of mosquitoes due to unfavorable climatic conditions during winter. No serological nor virological sign of infection was observed in wild terrestrial mammals of the area, suggesting an absence of wild RVF virus (RVFV) reservoir. However, a three years serological and virological follow-up in cattle showed a recurrent RVFV circulation. The objective of this study was to understand the key determinants of this unexpected recurrent transmission. To achieve this goal, a spatial deterministic discrete-time metapopulation model combined with cattle trade network was designed and parameterized to reproduce the local conditions using observational data collected in the area. Three scenarios that could explain the RVFV recurrent circulation in the area were analyzed: (i) RVFV overwintering thanks to a direct transmission between cattle when viraemic cows calve, vectors being absent during the winter, (ii) a low level vector-based circulation during winter thanks to a residual vector population, without direct transmission between cattle, (iii) combination of both above mentioned mechanisms. Multi-model inference methods resulted in a model incorporating both a low level RVFV winter vector-borne transmission and a direct transmission between animals when viraemic cows calve. Predictions satisfactorily reproduced field observations, 84% of cattle infections being attributed to vector-borne transmission, and 16% to direct transmission. These results appeared robust according to the sensitivity analysis. Interweaving between agricultural works in rice fields, seasonality of

  2. The role of spatial information in the preservation of the shrimp nursery function of mangroves: a spatially explicit bio-economic model for the assessment of land use trade-offs.

    PubMed

    Zavalloni, Matteo; Groeneveld, Rolf A; van Zwieten, Paul A M

    2014-10-01

    Conversion to aquaculture affects the provision of important ecosystem services provided by mangrove ecosystems, and this effect depends strongly on the location of the conversion. We introduce in a bio-economic mathematical programming model relevant spatial elements that affect the provision of the nursery habitat service of mangroves: (1) direct or indirect connection of mangroves to watercourses; (2) the spatial allocation of aquaculture ponds; and (3) the presence of non-linear relations between mangrove extent and juvenile recruitment to wild shrimp populations. By tracing out the production possibilities frontier of wild and cultivated shrimp, the model assesses the role of spatial information in the trade-off between aquaculture and the nursery habitat function using spatial elements relevant to our model of a mangrove area in Ca Mau Province, Viet Nam. Results show that where mangrove forests have to coexist with shrimp aquaculture ponds, the inclusion of specific spatial information on ecosystem functions in considerations of land allocation can achieve aquaculture benefits while largely preserving the economic benefits generated by the nursery habitat function. However, if spatial criteria are ignored, ill-advised land allocation decisions can easily lead to a collapse of the mangrove's nursery function.

  3. Three-dimensional microarchitected materials and devices using nanoparticle assembly by pointwise spatial printing

    PubMed Central

    Saleh, Mohammad Sadeq; Hu, Chunshan; Panat, Rahul

    2017-01-01

    Three-dimensional (3D) hierarchical materials are important to a wide range of emerging technological applications. We report a method to synthesize complex 3D microengineered materials, such as microlattices, with nearly fully dense truss elements with a minimum diameter of approximately 20 μm and having high aspect ratios (up to 20:1) without using any templating or supporting materials. By varying the postprocessing conditions, we have also introduced an additional control over the internal porosity of the truss elements to demonstrate a hierarchical porous structure with an overall void size and feature size control of over five orders of magnitudes in length scale. The method uses direct printing of nanoparticle dispersions using the Aerosol Jet technology in 3D space without templating or supporting materials followed by binder removal and sintering. In addition to 3D microlattices, we have also demonstrated directly printed stretchable interconnects, spirals, and pillars. This assembly method could be implemented by a variety of microdroplet generation methods for fast and large-scale fabrication of the hierarchical materials for applications in tissue engineering, ultralight or multifunctional materials, microfluidics, and micro-optoelectronics. PMID:28275733

  4. Three-dimensional microarchitected materials and devices using nanoparticle assembly by pointwise spatial printing.

    PubMed

    Saleh, Mohammad Sadeq; Hu, Chunshan; Panat, Rahul

    2017-03-01

    Three-dimensional (3D) hierarchical materials are important to a wide range of emerging technological applications. We report a method to synthesize complex 3D microengineered materials, such as microlattices, with nearly fully dense truss elements with a minimum diameter of approximately 20 μm and having high aspect ratios (up to 20:1) without using any templating or supporting materials. By varying the postprocessing conditions, we have also introduced an additional control over the internal porosity of the truss elements to demonstrate a hierarchical porous structure with an overall void size and feature size control of over five orders of magnitudes in length scale. The method uses direct printing of nanoparticle dispersions using the Aerosol Jet technology in 3D space without templating or supporting materials followed by binder removal and sintering. In addition to 3D microlattices, we have also demonstrated directly printed stretchable interconnects, spirals, and pillars. This assembly method could be implemented by a variety of microdroplet generation methods for fast and large-scale fabrication of the hierarchical materials for applications in tissue engineering, ultralight or multifunctional materials, microfluidics, and micro-optoelectronics.

  5. Spatially Explicit Full Carbon and Greenhouse Gas Accounting for the Midwestern and Continental US: Modeling and Decision Support for Carbon Management

    NASA Astrophysics Data System (ADS)

    West, T. O.; Brandt, C. C.; Wilson, B. S.; Hellwinckel, C. M.; Mueller, M.; Tyler, D. D.; de La Torre Ugarte, D. G.; Larson, J. A.; Nelson, R. G.; Marland, G.

    2006-12-01

    Full carbon accounting for terrestrial ecosystems is intended to quantify changes in net carbon emissions caused by changes in land management. On agricultural lands, changes in land management can cause changes in CO2 emissions from fossil fuel use, agricultural lime, and decomposition of soil carbon. Changes in off-site emissions can occur from the manufacturing of fertilizers, pesticides, and agricultural lime. We are developing a full carbon accounting framework that can be used for estimates of on-site net carbon flux or for full greenhouse gas accounting at a high spatial resolution. Estimates are based on the assimilation of national inventory data, soil carbon dynamics based on empirical analyses of field data, and Landsat-derived remote sensing products with 30x30m resolution. We applied this framework to a mid-western region of the US that consists of 679 counties approximately centered around Iowa. We estimate the 1990 baseline soil carbon for this region to be 4,099 Tg C to a 3m maximum depth. Soil carbon accumulation of 57.3 Tg C is estimated to have occurred in this region between 1991-2000. Without accounting for soil carbon loss associated with changes to more intense tillage practices, our estimate increases to 66.3 Tg C. This indicates that on-site permanence of soil carbon is approximately 86% with no additional economic incentives provided for soil carbon sequestration practices. Total net carbon flux from the agricultural activities in the Midwestern US in 2000 is estimated at about -5 Tg C. This estimate includes carbon uptake, decomposition, harvested products, and on-site fossil fuel emissions. Therefore, soil carbon accumulation offset on-site emissions in 2000. Our carbon accounting framework offers a method to integrate new inventory and remote sensing data on an annual basis, account for alternating annual trends in land management without the need for model equilibration, and provide a transparent means to monitor changes soil carbon

  6. The effect of area size and predation on the time to extinction of prairie vole populations. simulation studies via SERDYCA: a Spatially-Explicit Individual-Based Model of Rodent Dynamics

    SciTech Connect

    Kostova, T; Carlsen, T

    2003-11-21

    We present a spatially-explicit individual-based computational model of rodent dynamics, customized for the prairie vole species, M. Ochrogaster. The model is based on trophic relationships and represents important features such as territorial competition, mating behavior, density-dependent predation and dispersal out of the modeled spatial region. Vegetation growth and vole fecundity are dependent on climatic components. The results of simulations show that the model correctly predicts the overall temporal dynamics of the population density. Time-series analysis shows a very good match between the periods corresponding to the peak population density frequencies predicted by the model and the ones reported in the literature. The model is used to study the relation between persistence, landscape area and predation. We introduce the notions of average time to extinction (ATE) and persistence frequency to quantify persistence. While the ATE decreases with decrease of area, it is a bell-shaped function of the predation level: increasing for 'small' and decreasing for 'large' predation levels.

  7. Crop water productivity under increasing irrigation capacities in Romania. A spatially-explicit assessment of winter wheat and maize cropping systems in the southern lowlands of the country

    NASA Astrophysics Data System (ADS)

    Dogaru, Diana

    2016-04-01

    Improved water use efficiency in agriculture is a key issue in terms of sustainable management and consumption of water resources in the context of peoples' increasing food demands and preferences, economic growth and agricultural adaptation options to climate variability and change. Crop Water Productivity (CWP), defined as the ratio of yield (or value of harvested crop) to actual evapotranspiration or as the ratio of yield (or value of harvested crop) to volume of supplied irrigation water (Molden et al., 1998), is a useful indicator in the evaluation of water use efficiency and ultimately of cropland management, particularly in the case of regions affected by or prone to drought and where irrigation application is essential for achieving expected productions. The present study investigates the productivity of water in winter wheat and maize cropping systems in the Romanian Plain (49 594 sq. km), an important agricultural region in the southern part of the country which is increasingly affected by drought and dry spells (Sandu and Mateescu, 2014). The scope of the analysis is to assess the gains and losses in CWP for the two crops, by considering increased irrigated cropland and improved fertilization, these being the most common measures potentially and already implemented by the farmers. In order to capture the effects of such measures on agricultural water use, the GIS-based EPIC crop-growth model (GEPIC) (Williams et al., 1989; Liu, 2009) was employed to simulate yields, seasonal evapotranspiration from crops and volume of irrigation water in the Romanian Plain for the 2002 - 2013 interval with focus on 2007 and 2010, two representative years for dry and wet periods, respectively. The GEPIC model operates on a daily time step, while the geospatial input datasets for this analysis (e.g. climate data, soil classes and soil parameters, land use) were harmonized at 1km resolution grid cell. The sources of the spatial data are mainly the national profile agencies

  8. Control of cell division and the spatial localization of assembled gene products in Caulobacter crescentus

    SciTech Connect

    Nathan, P.D.

    1988-01-01

    Experiments are described that examine the role of penicillin-binding proteins (PBPs) in the regulation of cell division in Caulobacter crescentus; and the spatial localization of methyl-accepting chemotaxis proteins (MCPs) in C. crescentus swarmer and predivisional cells. In the analysis of PBP function, in vivo and in vitro assays are used to directly label C. crescentus PBPs with (/sup 3/H) penicillin G in wild type strain CB15, in a series of conditional cell division mutants and in new temperature sensitive cephalosporin C resistant mutants PC8002 and PC8003. 14 PBPs are characterized and a high molecular weight PBP (PBP 1B) that is required for cell division is identified. PBP 1B competes for ..beta..-lactams that induce filament formation and may be a high affinity binding protein. A second high molecular weight PBP (PBP 1C) is also associated with defective cell division. The examination of PBP patterns in synchronous swarmer cells reveals that the in vivo activity of PBP 1B and PBP 1C increases at the time that the cell division pathway is initiated. None of the PBPs, however, appear to be differentially localized in the C. crescentus cell. In the analysis of MCP localization, in vivo and in vitro assays are used to directly label C. crescentus MCPs with methyl-/sup 3/H. MCPs are examined in flagellated and non-flagellated vesicles prepared from cells by immunoaffinity chromatography.

  9. Selection of preconfigured cell assemblies for representation of novel spatial experiences

    PubMed Central

    Dragoi, George; Tonegawa, Susumu

    2014-01-01

    Internal representations about the external world can be driven by the external stimuli or can be internally generated in their absence. It has been a matter of debate whether novel stimuli from the external world are instructive over the brain network to create de novo representations or, alternatively, are selecting from existing pre-representations hosted in preconfigured brain networks. The hippocampus is a brain area necessary for normal internally generated spatial–temporal representations and its dysfunctions have resulted in anterograde amnesia, impaired imagining of new experiences, and hallucinations. The compressed temporal sequence of place cell activity in the rodent hippocampus serves as an animal model of internal representation of the external space. Based on our recent results on the phenomenon of novel place cell sequence preplay, we submit that the place cell sequence of a novel spatial experience is determined, in part, by a selection of a set of cellular firing sequences from a repertoire of existing temporal firing sequences in the hippocampal network. Conceptually, this indicates that novel stimuli from the external world select from their pre-representations rather than create de novo our internal representations of the world. PMID:24366134

  10. Spatial and temporal variations of new particle formation in East Asia using an NPF-explicit WRF-chem model: North-south contrast in new particle formation frequency

    SciTech Connect

    Matsui, H.; Koike, Makoto; Takegawa, Nobuyuki; Kondo, Yutaka; Takami, A.; Takamura, T.; Yoon, Soh-joung; Kim, S. W.; Lim, Hyuntae; Fast, Jerome D.

    2013-10-27

    The new particle formation (NPF)-explicit version of the WRF-chem model, which we developed recently, can calculate the growth and sink of nucleated clusters explicitly with 20 aerosol size bins from 1 nm to 10 μm. In this study, the model is used to understand spatial and temporal variations of the frequency of NPF events and the concentrations of aerosols (condensation nuclei, CN) and cloud condensation nuclei (CCN) within the boundary layer in East Asia in spring 2009. Model simulations show distinct north-south contrast in the frequency and mechanism of NPF in East Asia. NPF mostly occurred over limited periods and regions between 30° and 45°N, such as northeast China, Korea, and Japan, including regions around active volcanoes (Miyakejima and Sakurajima). At these latitudes, NPF was considerably suppressed by high concentrations of preexisting particles under stagnant air conditions associated with high-pressure systems, while nucleation occurred more extensively on most days during the simulation period. Conversely, neither nucleation nor NPF occurred frequently south of 30°N because of lower SO2 emissions and H2SO4 concentrations. The period-averaged NPF frequency was 3 times higher at latitudes of 30° - 45°N than at latitudes of 20° - 30°N. The north-south contrast of NPF frequency is validated by surface measurements in outflow regions in East Asia. The period- and domain-averaged contribution of secondary particles is estimated to be 44% for CN (> 10 nm) and 26% for CCN at a supersaturation of 1.0% in our simulation, though the contribution is highly sensitive to the magnitudes and size distributions of primary aerosol emissions and the coefficients in the nucleation parameterizations.

  11. A spatially-explicit model of acarological risk of exposure to Borrelia burgdorferi-infected Ixodes pacificus nymphs in northwestern California based on woodland type, temperature, and water vapor

    PubMed Central

    Eisen, Rebecca J.; Eisen, Lars; Girard, Yvette A.; Fedorova, Natalia; Mun, Jeomhee; Slikas, Beth; Leonhard, Sarah; Kitron, Uriel; Lane, Robert S.

    2010-01-01

    In the far-western United States, the nymphal stage of the western black-legged tick, Ixodes pacificus, has been implicated as the primary vector to humans of Borrelia burgdorferi sensu stricto (hereinafter referred to as B. burgdorferi), the causative agent of Lyme borreliosis in North America. In the present study, we sought to determine if infection prevalence with B. burgdorferi in I. pacificus nymphs and the density of infected nymphs differ between dense-woodland types within Mendocino County, California, and to develop and evaluate a spatially-explicit model for density of infected nymphs in dense woodlands within this high-incidence area for Lyme borreliosis. In total, 4.9% (264) of 5431 I. pacificus nymphs tested for the presence of B. burgdorferi were infected. Among the 78 sampling sites, infection prevalence ranged from 0 to 22% and density of infected nymphs from 0 to 2.04 per 100 m2. Infection prevalence was highest in woodlands dominated by hardwoods (6.2%) and lowest for redwood (1.9%) and coastal pine (0%). Density of infected nymphs also was higher in hardwood-dominated woodlands than in conifer-dominated ones that included redwood or pine. Our spatial risk model, which yielded an overall accuracy of 85%, indicated that warmer areas with less variation between maximum and minimum monthly water vapor in the air were more likely to include woodlands with elevated acarological risk of exposure to infected nymphs. We found that 37% of dense woodlands in the county were predicted to pose an elevated risk of exposure to infected nymphs, and that 94% of the dense-woodland areas that were predicted to harbor elevated densities of infected nymphs were located on privately-owned land. PMID:20532183

  12. The stellar mass assembly of galaxies in the Illustris simulation: growth by mergers and the spatial distribution of accreted stars

    NASA Astrophysics Data System (ADS)

    Rodriguez-Gomez, Vicente; Pillepich, Annalisa; Sales, Laura V.; Genel, Shy; Vogelsberger, Mark; Zhu, Qirong; Wellons, Sarah; Nelson, Dylan; Torrey, Paul; Springel, Volker; Ma, Chung-Pei; Hernquist, Lars

    2016-05-01

    We use the Illustris simulation to study the relative contributions of in situ star formation and stellar accretion to the build-up of galaxies over an unprecedentedly wide range of masses (M* = 109-1012 M⊙), galaxy types, environments, and assembly histories. We find that the `two-phase' picture of galaxy formation predicted by some models is a good approximation only for the most massive galaxies in our simulation - namely, the stellar mass growth of galaxies below a few times 1011 M⊙ is dominated by in situ star formation at all redshifts. The fraction of the total stellar mass of galaxies at z = 0 contributed by accreted stars shows a strong dependence on galaxy stellar mass, ranging from about 10 per cent for Milky Way-sized galaxies to over 80 per cent for M* ≈ 1012 M⊙ objects, yet with a large galaxy-to-galaxy variation. At a fixed stellar mass, elliptical galaxies and those formed at the centres of younger haloes exhibit larger fractions of ex situ stars than disc-like galaxies and those formed in older haloes. On average, ˜50 per cent of the ex situ stellar mass comes from major mergers (stellar mass ratio μ > 1/4), ˜20 per cent from minor mergers (1/10 < μ < 1/4), ˜20 per cent from very minor mergers (μ < 1/10), and ˜10 per cent from stars that were stripped from surviving galaxies (e.g. flybys or ongoing mergers). These components are spatially segregated, with in situ stars dominating the innermost regions of galaxies, and ex situ stars being deposited at larger galactocentric distances in order of decreasing merger mass ratio.

  13. Spatially explicit modeling of annual and seasonal habitat for greater sage-grouse (Centrocercus urophasianus) in Nevada and Northeastern California—An updated decision-support tool for management

    USGS Publications Warehouse

    Coates, Peter S.; Casazza, Michael L.; Brussee, Brianne E.; Ricca, Mark A.; Gustafson, K. Benjamin; Sanchez-chopitea, Erika; Mauch, Kimberly; Niell, Lara; Gardner, Scott; Espinosa, Shawn; Delehanty, David J.

    2016-05-20

    Successful adaptive management hinges largely upon integrating new and improved sources of information as they become available. As a timely example of this tenet, we updated a management decision support tool that was previously developed for greater sage-grouse (Centrocercus urophasianus, hereinafter referred to as “sage-grouse”) populations in Nevada and California. Specifically, recently developed spatially explicit habitat maps derived from empirical data played a key role in the conservation of this species facing listing under the Endangered Species Act. This report provides an updated process for mapping relative habitat suitability and management categories for sage-grouse in Nevada and northeastern California (Coates and others, 2014, 2016). These updates include: (1) adding radio and GPS telemetry locations from sage-grouse monitored at multiple sites during 2014 to the original location dataset beginning in 1998; (2) integrating output from high resolution maps (1–2 m2) of sagebrush and pinyon-juniper cover as covariates in resource selection models; (3) modifying the spatial extent of the analyses to match newly available vegetation layers; (4) explicit modeling of relative habitat suitability during three seasons (spring, summer, winter) that corresponded to critical life history periods for sage-grouse (breeding, brood-rearing, over-wintering); (5) accounting for differences in habitat availability between more mesic sagebrush steppe communities in the northern part of the study area and drier Great Basin sagebrush in more southerly regions by categorizing continuous region-wide surfaces of habitat suitability index (HSI) with independent locations falling within two hydrological zones; (6) integrating the three seasonal maps into a composite map of annual relative habitat suitability; (7) deriving updated land management categories based on previously determined cut-points for intersections of habitat suitability and an updated index of sage

  14. Assessment on the rates and potentials of soil organic carbon sequestration in agricultural lands in Japan using a process-based model and spatially explicit land-use change inventories - Part 2: Future potentials

    NASA Astrophysics Data System (ADS)

    Yagasaki, Y.; Shirato, Y.

    2014-08-01

    Future potentials of the sequestration of soil organic carbon (SOC) in agricultural lands in Japan were estimated using a simulation system we recently developed to simulate SOC stock change at country-scale under varying land-use change, climate, soil, and agricultural practices, in a spatially explicit manner. Simulation was run from 1970 to 2006 with historical inventories, and subsequently to 2020 with future scenarios of agricultural activity comprised of various agricultural policy targets advocated by the Japanese government. Furthermore, the simulation was run subsequently until 2100 while forcing no temporal changes in land-use and agricultural activity to investigate duration and course of SOC stock change at country scale. A scenario with an increased rate of organic carbon input to agricultural fields by intensified crop rotation in combination with the suppression of conversion of agricultural lands to other land-use types was found to have a greater reduction of CO2 emission by enhanced soil carbon sequestration, but only under a circumstance in which the converted agricultural lands will become settlements that were considered to have a relatively lower rate of organic carbon input. The size of relative reduction of CO2 emission in this scenario was comparable to that in another contrasting scenario (business-as-usual scenario of agricultural activity) in which a relatively lower rate of organic matter input to agricultural fields was assumed in combination with an increased rate of conversion of the agricultural fields to unmanaged grasslands through abandonment. Our simulation experiment clearly demonstrated that net-net-based accounting on SOC stock change, defined as the differences between the emissions and removals during the commitment period and the emissions and removals during a previous period (base year or base period of Kyoto Protocol), can be largely influenced by variations in future climate. Whereas baseline-based accounting, defined

  15. Rates and potentials of soil organic carbon sequestration in agricultural lands in Japan: an assessment using a process-based model and spatially-explicit land-use change inventories

    NASA Astrophysics Data System (ADS)

    Yagasaki, Y.; Shirato, Y.

    2013-11-01

    In order to develop a system to estimate a country-scale soil organic carbon stock change (SCSC) in agricultural lands in Japan that enables to take account effect of land-use changes, climate, different agricultural activity and nature of soils, a spatially-explicit model simulation system using Rothamsted Carbon Model (RothC) integrated with spatial and temporal inventories was developed. Future scenarios on agricultural activity and land-use change were prepared, in addition to future climate projections by global climate models, with purposely selecting rather exaggerated and contrasting set of scenarios to assess system's sensitivity as well as to better factor out direct human influence in the SCSC accounting. Simulation was run from year 1970 to 2008, and to year 2020, with historical inventories and future scenarios involving target set in agricultural policy, respectively, and subsequently until year 2100 with no temporal changes in land-use and agricultural activity but with varying climate to investigate course of SCSC. Results of the country-scale SCSC simulation have indicated that conversion of paddy fields to croplands occurred during past decades, as well as a large conversion of agricultural fields to settlements or other lands that have occurred in historical period and would continue in future, could act as main factors causing greater loss of soil organic carbon (SOC) at country-scale, with reduction organic carbon input to soils and enhancement of SOC decomposition by transition of soil environment to aerobic conditions, respectively. Scenario analysis indicated that an option to increase organic carbon input to soils with intensified rotation with suppressing conversion of agricultural lands to other land-use types could achieve reduction of CO2 emission due to SCSC in the same level as that of another option to let agricultural fields be abandoned. These results emphasize that land-use changes, especially conversion of the agricultural lands

  16. The Relationship between Spatial Visualization Ability and Students' Ability to Model 3D Objects from Engineering Assembly Drawings

    ERIC Educational Resources Information Center

    Branoff, T. J.; Dobelis, M.

    2012-01-01

    Spatial abilities have been used as a predictor of success in several engineering and technology disciplines (Strong & Smith, 2001). In engineering graphics courses, scores on spatial tests have also been used to predict success (Adanez & Velasco, 2002; Leopold, Gorska, & Sorby, 2001). Other studies have shown that some type of…

  17. Pupil Dilation to Explicit and Non-Explicit Sexual Stimuli.

    PubMed

    Watts, Tuesday M; Holmes, Luke; Savin-Williams, Ritch C; Rieger, Gerulf

    2017-01-01

    Pupil dilation to explicit sexual stimuli (footage of naked and aroused men or women) can elicit sex and sexual orientation differences in sexual response. If similar patterns were replicated with non-explicit sexual stimuli (footage of dressed men and women), then pupil dilation could be indicative of automatic sexual response in fully noninvasive designs. We examined this in 325 men and women with varied sexual orientations to determine whether dilation patterns to non-explicit sexual stimuli resembled those to explicit sexual stimuli depicting the same sex or other sex. Sexual orientation differences in pupil dilation to non-explicit sexual stimuli mirrored those to explicit sexual stimuli. However, the relationship of dilation to non-explicit sexual stimuli with dilation to corresponding explicit sexual stimuli was modest, and effect magnitudes were smaller with non-explicit sexual stimuli than explicit sexual stimuli. The prediction that sexual orientation differences in pupil dilation are larger in men than in women was confirmed with explicit sexual stimuli but not with non-explicit sexual stimuli.

  18. Spatial and temporal organization of multi-protein assemblies: achieving sensitive control in information-rich cell-regulatory systems.

    PubMed

    Bolanos-Garcia, Victor M; Wu, Qian; Ochi, Takashi; Chirgadze, Dimitri Y; Sibanda, Bancinyane Lynn; Blundell, Tom L

    2012-06-28

    The regulation of cellular processes in living organisms requires signalling systems that have a high signal-to-noise ratio. This is usually achieved by transient, multi-protein complexes that assemble cooperatively. Even in the crowded environment of the cell, such assemblies are unlikely to form by chance, thereby providing a sensitive regulation of cellular processes. Furthermore, selectivity and sensitivity may be achieved by the requirement for concerted folding and binding of previously unfolded components. We illustrate these features by focusing on two essential signalling pathways of eukaryotic cells: first, the monitoring and repair of DNA damage by non-homologous end joining, and second, the mitotic spindle assembly checkpoint, which detects and corrects defective attachments of chromosomes to the kinetochore. We show that multi-protein assemblies moderate the full range of functional complexity and diversity in the two signalling systems. Deciphering the nature of the interactions is central to understanding the mechanisms that control the flow of information in cell signalling and regulation.

  19. Spatially Modulating Interfacial Properties of Transparent Conductive Oxides: Patterning Work Function with Phosphonic Acid Self-Assembled Monolayers

    SciTech Connect

    Knesting, Kristina M.; Hotchkiss, Peter J.; MacLeod, Bradley A.; Marder, Seth R.; Ginger, David S.

    2011-09-29

    The interface between an organic semiconductor and a transparent conducting oxide is crucial to the performance of organic optoelectronics. We use microcontact printing to pattern pentafluorobenzyl phosphonic acid self-assembled monolayers (SAMs) on indium tin oxide (ITO). We obtain high-fidelity patterns with sharply defined edges and with large work function contrast (comparable to that obtained from phosphonic acid SAMs deposited from solution).

  20. What Should Be Explicit in Explicit Grammar Instruction?

    ERIC Educational Resources Information Center

    Nagai, Noriko; Ayano, Seiki; Okada, Keiko; Nakanishi, Takayuki

    2015-01-01

    This article proposes an approach to explicit grammar instruction that seeks to develop metalinguistic knowledge of the L2 and raise L2 learners' awareness of their L1, which is crucial for the success of second language acquisition (Ellis 1997, 2002). If explicit instruction is more effective than implicit instruction (Norris and Ortega 2000),…

  1. The Explicit Teaching of Reading.

    ERIC Educational Resources Information Center

    Hancock, Joelie, Ed.

    Exploring the explicit teaching of reading, this book is the result of a group of Australian teachers who took a closer look at their teaching so that they could be clearer to their kindergarten through middle-school students. Chapter 1 is based on a presentation at a Saturday inservice program on explicit teaching. Chapters 2-9 were written by…

  2. Explicit Substitutions and All That

    NASA Technical Reports Server (NTRS)

    Ayala-Rincon, Mauricio; Munoz, Cesar; Busnell, Dennis M. (Technical Monitor)

    2000-01-01

    Explicit substitution calculi are extensions of the Lambda-calculus where the substitution mechanism is internalized into the theory. This feature makes them suitable for implementation and theoretical study of logic-based tools such as strongly typed programming languages and proof assistant systems. In this paper we explore new developments on two of the most successful styles of explicit substitution calculi: the lambda(sigma)- and lambda(s(e))-calculi.

  3. Explicit Substitutions and All That

    NASA Technical Reports Server (NTRS)

    Ayala-Rincon, Mauricio; Munoz, Cesar

    2000-01-01

    Explicit substitution calculi are extensions of the lambda-calculus where the substitution mechanism is internalized into the theory. This feature makes them suitable for implementation and theoretical study of logic-based tools such as strongly typed programming languages and proof assistant systems. In this paper we explore new developments on two of the most successful styles of explicit substitution calculi: the lambda sigma- and lambda S(e)-calculi.

  4. Surface presentation of biochemical cues for stem cell expansion - Spatial distribution of growth factors and self-assembly of extracellular matrix

    NASA Astrophysics Data System (ADS)

    Liu, Xingyu

    Despite its great potential applications to stem cell technology and tissue engineering, matrix presentation of biochemical cues such as growth factors and extracellular matrix (ECM) components remains undefined. This is largely due to the difficulty in preserving the bioactivities of signaling molecules and in controlling the spatial distribution, cellular accessibility, molecular orientation and intermolecular assembly of the biochemical cues. This dissertation comprises of two parts that focuses on understanding surface presentation of a growth factor and ECM components, respectively. This dissertation addresses two fundamental questions in stem cell biology using two biomaterials platforms. How does nanoscale distribution of growth factor impact signaling activation and cellular behaviors of adult neural stem cells? How does ECM self-assembly impact human embryonic stem cell survival and proliferation? The first question was addressed by the design of a novel quantitative platform that allows the control of FGF-2 molecular presentation locally as either monomers or clusters when tethered to a polymeric substrate. This substrate-tethered FGF-2 enables a switch-like signaling activation in response to dose titration of FGF-2. This is in contrast to a continuous MAPK activation pattern elicited by soluble FGF-2. Consequently, cell proliferation, and spreading were also consistent with this FGF-2 does-response pattern. We demonstrated that the combination of FGF-2 concentration and its cluster size, rather than concentration alone, serves as the determinants to govern its biological effect on neural stem cells. The second part of this dissertation was inspired by the challenge that hESCs have extremely low clonal efficiency and hESC survival is critically dependent on cell substrate adhesion. We postulated that ECM integrity is a critical factor in preventing hESC anchorage-dependent apoptosis, and that the matrix for feeder-free culture need to be properly

  5. Community assembly and coexistence in communities of arbuscular mycorrhizal fungi

    PubMed Central

    Vályi, Kriszta; Mardhiah, Ulfah; Rillig, Matthias C; Hempel, Stefan

    2016-01-01

    Arbuscular mycorrhizal fungi are asexual, obligately symbiotic fungi with unique morphology and genomic structure, which occupy a dual niche, that is, the soil and the host root. Consequently, the direct adoption of models for community assembly developed for other organism groups is not evident. In this paper we adapted modern coexistence and assembly theory to arbuscular mycorrhizal fungi. We review research on the elements of community assembly and coexistence of arbuscular mycorrhizal fungi, highlighting recent studies using molecular methods. By addressing several points from the individual to the community level where the application of modern community ecology terms runs into problems when arbuscular mycorrhizal fungi are concerned, we aim to account for these special circumstances from a mycocentric point of view. We suggest that hierarchical spatial structure of arbuscular mycorrhizal fungal communities should be explicitly taken into account in future studies. The conceptual framework we develop here for arbuscular mycorrhizal fungi is also adaptable for other host-associated microbial communities. PMID:27093046

  6. Accumulative response of Scots pine (Pinus sylvestris L.) and silver birch (Betula pendula Roth) to heavy metals enhanced by Pb-Zn ore mining and processing plants: Explicitly spatial considerations of ordinary kriging based on a GIS approach.

    PubMed

    Pająk, Marek; Halecki, Wiktor; Gąsiorek, Michał

    2017-02-01

    Plants have an accumulative response to heavy metals present in soils or deposited from airborne sources of emissions. Therefore, their tissues are very often used in studies of heavy metal contamination originating from different sources as a bioindicator of environmental pollution. This research was undertaken to examine accumulation capacities of Pb, Zn, Cd, Cu and Cr in washed and unwashed needles of Scots pine (Pinus sylvestris L.) and leaves of silver birch (Betula pendula Roth) growing in a contaminated area. We collected needles of Scots pine and leaves of silver birch in an area around a sedimentation pond and metallurgic plant processing Pb and Zn ores near Olkusz, Poland. Concentrations of heavy metals, which have been linked with exposure to emissions, were determined from foliar samples collected at 33 sites. These sites were established at various distances (0.5-3.6 km) from the pond and metallurgic plant so as to identify the predominant accumulative response of plants. Spatial gradients for Pb and Zn were calculated using an ordinary kriging interpolation algorithm. A spatial pattern was identified by a GIS method to visualize maps over the Pb-Zn ore mining area. The accumulation of Zn (R(2) = 0.74, p < 0.05) and Pb (R(2) = 0.85, p < 0.01) in plant tissues correlated with soil concentrations. This tendency was not found in the case of Cu, Cd and Cr.

  7. Common molecular mechanisms in explicit and implicit memory.

    PubMed

    Barco, Angel; Bailey, Craig H; Kandel, Eric R

    2006-06-01

    Cellular and molecular studies of both implicit and explicit memory suggest that experience-dependent modulation of synaptic strength and structure is a fundamental mechanism by which these memories are encoded and stored within the brain. In this review, we focus on recent advances in our understanding of two types of memory storage: (i) sensitization in Aplysia, a simple form of implicit memory, and (ii) formation of explicit spatial memories in the mouse hippocampus. These two processes share common molecular mechanisms that have been highly conserved through evolution.

  8. Spatially Explicit Trends in the Global Conservation Status of Vertebrates

    PubMed Central

    Rodrigues, Ana S. L.; Brooks, Thomas M.; Butchart, Stuart H. M.; Chanson, Janice; Cox, Neil; Hoffmann, Michael; Stuart, Simon N.

    2014-01-01

    The world's governments have committed to preventing the extinction of threatened species and improving their conservation status by 2020. However, biodiversity is not evenly distributed across space, and neither are the drivers of its decline, and so different regions face very different challenges. Here, we quantify the contribution of regions and countries towards recent global trends in vertebrate conservation status (as measured by the Red List Index), to guide action towards the 2020 target. We found that>50% of the global deterioration in the conservation status of birds, mammals and amphibians is concentrated in <1% of the surface area, 39/1098 ecoregions (4%) and eight/195 countries (4%) – Australia, China, Colombia, Ecuador, Indonesia, Malaysia, Mexico, and the United States. These countries hold a third of global diversity in these vertebrate groups, partially explaining why they concentrate most of the losses. Yet, other megadiverse countries – most notably Brazil (responsible for 10% of species but just 1% of deterioration), plus India and Madagascar – performed better in conserving their share of global vertebrate diversity. Very few countries, mostly island nations (e.g. Cook Islands, Fiji, Mauritius, Seychelles, and Tonga), have achieved net improvements. Per capita wealth does not explain these patterns, with two of the richest countries – United States and Australia – fairing conspicuously poorly. Different countries were affected by different combinations of threats. Reducing global rates of biodiversity loss will require investment in the regions and countries with the highest responsibility for the world's biodiversity, focusing on conserving those species and areas most in peril and on reducing the drivers with the highest impacts. PMID:25426636

  9. Spatially-explicit and spectral soil carbon modeling in Florida

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Profound shifts have occurred over the last three centuries in which human actions have become the main driver to global environmental change. In this new epoch, the Anthropocene, human-driven changes such as population growth, climate and land use change, are pushing the Earth system well outside i...

  10. Spatially explicit trends in the global conservation status of vertebrates.

    PubMed

    Rodrigues, Ana S L; Brooks, Thomas M; Butchart, Stuart H M; Chanson, Janice; Cox, Neil; Hoffmann, Michael; Stuart, Simon N

    2014-01-01

    The world's governments have committed to preventing the extinction of threatened species and improving their conservation status by 2020. However, biodiversity is not evenly distributed across space, and neither are the drivers of its decline, and so different regions face very different challenges. Here, we quantify the contribution of regions and countries towards recent global trends in vertebrate conservation status (as measured by the Red List Index), to guide action towards the 2020 target. We found that>50% of the global deterioration in the conservation status of birds, mammals and amphibians is concentrated in <1% of the surface area, 39/1098 ecoregions (4%) and eight/195 countries (4%) - Australia, China, Colombia, Ecuador, Indonesia, Malaysia, Mexico, and the United States. These countries hold a third of global diversity in these vertebrate groups, partially explaining why they concentrate most of the losses. Yet, other megadiverse countries - most notably Brazil (responsible for 10% of species but just 1% of deterioration), plus India and Madagascar - performed better in conserving their share of global vertebrate diversity. Very few countries, mostly island nations (e.g. Cook Islands, Fiji, Mauritius, Seychelles, and Tonga), have achieved net improvements. Per capita wealth does not explain these patterns, with two of the richest countries - United States and Australia - fairing conspicuously poorly. Different countries were affected by different combinations of threats. Reducing global rates of biodiversity loss will require investment in the regions and countries with the highest responsibility for the world's biodiversity, focusing on conserving those species and areas most in peril and on reducing the drivers with the highest impacts.

  11. Spatially Explicit Life Cycle Assessment of Biofuel Feedstock Production

    EPA Science Inventory

    Biofuels derived from renewable resources have gained increased research and development priority due to increasing energy demand and national security concerns. In the US, the Energy Independence and Security Act (EISA) of 2007 mandated the annual production of 56.8 billion L of...

  12. Implicit and Explicit Learning of Languages.

    ERIC Educational Resources Information Center

    McDermott, James E.

    1999-01-01

    Discusses theoretical and practical issues connected with implicit and explicit learning of languages. Explicit learning is knowledge expressed in the form of rules or definitions; implicit knowledge can be inferred to exist because of observed performance but cannot be clearly described. Hypothesizes why explicit learning can lead to implicit…

  13. Modulation of Intracellular Quantum Dot to Fluorescent Protein Förster Resonance Energy Transfer via Customized Ligands and Spatial Control of Donor–Acceptor Assembly

    PubMed Central

    Field, Lauren D.; Walper, Scott A.; Susumu, Kimihiro; Oh, Eunkeu; Medintz, Igor L.; Delehanty, James B.

    2015-01-01

    Understanding how to controllably modulate the efficiency of energy transfer in Förster resonance energy transfer (FRET)-based assemblies is critical to their implementation as sensing modalities. This is particularly true for sensing assemblies that are to be used as the basis for real time intracellular sensing of intracellular processes and events. We use a quantum dot (QD) donor -mCherry acceptor platform that is engineered to self-assemble in situ wherein the protein acceptor is expressed via transient transfection and the QD donor is microinjected into the cell. QD-protein assembly is driven by metal-affinity interactions where a terminal polyhistidine tag on the protein binds to the QD surface. Using this system, we show the ability to modulate the efficiency of the donor–acceptor energy transfer process by controllably altering either the ligand coating on the QD surface or the precise location where the QD-protein assembly process occurs. Intracellularly, a short, zwitterionic ligand mediates more efficient FRET relative to longer ligand species that are based on the solubilizing polymer, poly(ethylene glycol). We further show that a greater FRET efficiency is achieved when the QD-protein assembly occurs free in the cytosol compared to when the mCherry acceptor is expressed tethered to the inner leaflet of the plasma membrane. In the latter case, the lower FRET efficiency is likely attributable to a lower expression level of the mCherry acceptor at the membrane combined with steric hindrance. Our work points to some of the design considerations that one must be mindful of when developing FRET-based sensing schemes for use in intracellular sensing. PMID:26690153

  14. Modulation of Intracellular Quantum Dot to Fluorescent Protein Förster Resonance Energy Transfer via Customized Ligands and Spatial Control of Donor-Acceptor Assembly.

    PubMed

    Field, Lauren D; Walper, Scott A; Susumu, Kimihiro; Oh, Eunkeu; Medintz, Igor L; Delehanty, James B

    2015-12-04

    Understanding how to controllably modulate the efficiency of energy transfer in Förster resonance energy transfer (FRET)-based assemblies is critical to their implementation as sensing modalities. This is particularly true for sensing assemblies that are to be used as the basis for real time intracellular sensing of intracellular processes and events. We use a quantum dot (QD) donor -mCherry acceptor platform that is engineered to self-assemble in situ wherein the protein acceptor is expressed via transient transfection and the QD donor is microinjected into the cell. QD-protein assembly is driven by metal-affinity interactions where a terminal polyhistidine tag on the protein binds to the QD surface. Using this system, we show the ability to modulate the efficiency of the donor-acceptor energy transfer process by controllably altering either the ligand coating on the QD surface or the precise location where the QD-protein assembly process occurs. Intracellularly, a short, zwitterionic ligand mediates more efficient FRET relative to longer ligand species that are based on the solubilizing polymer, poly(ethylene glycol). We further show that a greater FRET efficiency is achieved when the QD-protein assembly occurs free in the cytosol compared to when the mCherry acceptor is expressed tethered to the inner leaflet of the plasma membrane. In the latter case, the lower FRET efficiency is likely attributable to a lower expression level of the mCherry acceptor at the membrane combined with steric hindrance. Our work points to some of the design considerations that one must be mindful of when developing FRET-based sensing schemes for use in intracellular sensing.

  15. "Assembling" the Ideal Learner: The School Assembly as Regulatory Ritual

    ERIC Educational Resources Information Center

    Silbert, Patti; Jacklin, Heather

    2015-01-01

    "School assemblies" are rituals that celebrate and mark the school community. They carry messages of allegiance and belonging that are disseminated both verbally and nonverbally. Although verbal messages are explicitly stated, nonverbal messages are conveyed through subjection to habits, rules, and orders (Foucault 1977) and are…

  16. Development of Implicit and Explicit Category Learning

    ERIC Educational Resources Information Center

    Huang-Pollock, Cynthia L.; Maddox, W. Todd; Karalunas, Sarah L.

    2011-01-01

    We present two studies that examined developmental differences in the implicit and explicit acquisition of category knowledge. College-attending adults consistently outperformed school-age children on two separate information-integration paradigms due to children's more frequent use of an explicit rule-based strategy. Accuracy rates were also…

  17. Implicit and Explicit Exercise and Sedentary Identity

    ERIC Educational Resources Information Center

    Berry, Tanya R.; Strachan, Shaelyn M.

    2012-01-01

    We examined the relationship between implicit and explicit "exerciser" and "sedentary" self-identity when activated by stereotypes. Undergraduate participants (N = 141) wrote essays about university students who either liked to exercise or engage in sedentary activities. This was followed by an implicit identity task and an explicit measure of…

  18. Thinking Styles in Implicit and Explicit Learning

    ERIC Educational Resources Information Center

    Xie, Qiuzhi; Gao, Xiangping; King, Ronnel B.

    2013-01-01

    This study investigated whether individual differences in thinking styles influence explicit and implicit learning. Eighty-seven university students in China participated in this study. Results indicated that performance in the explicit learning condition was positively associated with Type I thinking styles (i.e. legislative and liberal styles)…

  19. Implicit and Explicit Instruction of Spelling Rules

    ERIC Educational Resources Information Center

    Kemper, M. J.; Verhoeven, L.; Bosman, A. M. T.

    2012-01-01

    The study aimed to compare the differential effectiveness of explicit and implicit instruction of two Dutch spelling rules. Students with and without spelling disabilities were instructed a spelling rule either implicitly or explicitly in two experiments. Effects were tested in a pretest-intervention-posttest control group design. Experiment 1…

  20. Orc1 Binding to Mitotic Chromosomes Precedes Spatial Patterning during G1 Phase and Assembly of the Origin Recognition Complex in Human Cells.

    PubMed

    Kara, Nihan; Hossain, Manzar; Prasanth, Supriya G; Stillman, Bruce

    2015-05-08

    Replication of eukaryotic chromosomes occurs once every cell division cycle in normal cells and is a tightly controlled process that ensures complete genome duplication. The origin recognition complex (ORC) plays a key role during the initiation of DNA replication. In human cells, the level of Orc1, the largest subunit of ORC, is regulated during the cell division cycle, and thus ORC is a dynamic complex. Upon S phase entry, Orc1 is ubiquitinated and targeted for destruction, with subsequent dissociation of ORC from chromosomes. Time lapse and live cell images of human cells expressing fluorescently tagged Orc1 show that Orc1 re-localizes to condensing chromatin during early mitosis and then displays different nuclear localization patterns at different times during G1 phase, remaining associated with late replicating regions of the genome in late G1 phase. The initial binding of Orc1 to mitotic chromosomes requires C-terminal amino acid sequences that are similar to mitotic chromosome-binding sequences in the transcriptional pioneer protein FOXA1. Depletion of Orc1 causes concomitant loss of the mini-chromosome maintenance (Mcm2-7) helicase proteins on chromatin. The data suggest that Orc1 acts as a nucleating center for ORC assembly and then pre-replication complex assembly by binding to mitotic chromosomes, followed by gradual removal from chromatin during the G1 phase.

  1. Bacteriophage assembly.

    PubMed

    Aksyuk, Anastasia A; Rossmann, Michael G

    2011-03-01

    Bacteriophages have been a model system to study assembly processes for over half a century. Formation of infectious phage particles involves specific protein-protein and protein-nucleic acid interactions, as well as large conformational changes of assembly precursors. The sequence and molecular mechanisms of phage assembly have been elucidated by a variety of methods. Differences and similarities of assembly processes in several different groups of bacteriophages are discussed in this review. The general principles of phage assembly are applicable to many macromolecular complexes.

  2. Implicit sequence learning with competing explicit cues.

    PubMed

    Jiménez, L; Méndez, C

    2001-05-01

    Previous research has shown that the expression of implicit sequence learning is eliminated in a choice reaction time task when an explicit cue allows participants to accurately predict the next stimulus (Cleeremans, 1997), but that two contingencies predicting the same outcome can be learned and expressed simultaneously when both of them remain implicit (Jiménez & Méndez, 1999). Two experiments tested the hypothesis that it is the deliberate use of explicit knowledge that produces the inhibitory effects over the expression of implicit sequence learning. However, the results of these experiments do not support this hypothesis, rather showing that implicit learning is acquired and expressed regardless of the influence of explicit knowledge. These results are interpreted as reinforcing the thesis about the automatic nature of both the acquisition and the expression of implicit sequence learning. The contradictory results reported by Cleeremans are attributed to a floor effect derived from the use of a special type of explicit cue.

  3. An Explicit Nonlinear Mapping for Manifold Learning.

    PubMed

    Qiao, Hong; Zhang, Peng; Wang, Di; Zhang, Bo

    2013-02-01

    Manifold learning is a hot research topic in the held of computer science and has many applications in the real world. A main drawback of manifold learning methods is, however, that there are no explicit mappings from the input data manifold to the output embedding. This prohibits the application of manifold learning methods in many practical problems such as classification and target detection. Previously, in order to provide explicit mappings for manifold learning methods, many methods have been proposed to get an approximate explicit representation mapping with the assumption that there exists a linear projection between the high-dimensional data samples and their low-dimensional embedding. However, this linearity assumption may be too restrictive. In this paper, an explicit nonlinear mapping is proposed for manifold learning, based on the assumption that there exists a polynomial mapping between the high-dimensional data samples and their low-dimensional representations. As far as we know, this is the hrst time that an explicit nonlinear mapping for manifold learning is given. In particular, we apply this to the method of locally linear embedding and derive an explicit nonlinear manifold learning algorithm, which is named neighborhood preserving polynomial embedding. Experimental results on both synthetic and real-world data show that the proposed mapping is much more effective in preserving the local neighborhood information and the nonlinear geometry of the high-dimensional data samples than previous work.

  4. Sleep enhances explicit recollection in recognition memory.

    PubMed

    Drosopoulos, Spyridon; Wagner, Ullrich; Born, Jan

    2005-01-01

    Recognition memory is considered to be supported by two different memory processes, i.e., the explicit recollection of information about a previous event and an implicit process of recognition based on an acontextual sense of familiarity. Both types of memory supposedly rely on distinct memory systems. Sleep is known to enhance the consolidation of memories, with the different sleep stages affecting different types of memory. In the present study, we used the process-dissociation procedure to compare the effects of sleep on estimates of explicit (recollection) and implicit (familiarity) memory formation on a word-list discrimination task. Subjects studied two lists of words before a 3-h retention interval of sleep or wakefulness, and recognition was tested afterward. The retention intervals were positioned either in the early night when sleep is dominated by slow-wave sleep (SWS), or in the late night, when sleep is dominated by REM sleep. Sleep enhanced explicit recognition memory, as compared with wakefulness (P < 0.05), whereas familiarity was not affected by sleep. Moreover, explicit recognition was particularly enhanced after sleep in the early-night retention interval, and especially when the words were presented with the same contextual features as during learning, i.e., in the same font (P < 0.05). The data indicate that in a task that allows separating the contribution of explicit and implicit memory, sleep particularly supports explicit memory formation. The mechanism of this effect appears to be linked to SWS.

  5. Assembly planning based on subassembly extraction

    NASA Technical Reports Server (NTRS)

    Lee, Sukhan; Shin, Yeong Gil

    1990-01-01

    A method is presented for the automatic determination of assembly partial orders from a liaison graph representation of an assembly through the extraction of preferred subassemblies. In particular, the authors show how to select a set of tentative subassemblies by decomposing a liaison graph into a set of subgraphs based on feasibility and difficulty of disassembly, how to evaluate each of the tentative subassemblies in terms of assembly cost using the subassembly selection indices, and how to construct a hierarchical partial order graph (HPOG) as an assembly plan. The method provides an approach to assembly planning by identifying spatial parallelism in assembly as a means of constructing temporal relationships among assembly operations and solves the problem of finding a cost-effective assembly plan in a flexible environment. A case study of the assembly planning of a mechanical assembly is presented.

  6. Joint assembly

    NASA Technical Reports Server (NTRS)

    Wilson, Andrew (Inventor); Punnoose, Andrew (Inventor); Strausser, Katherine (Inventor); Parikh, Neil (Inventor)

    2010-01-01

    A joint assembly is provided which includes a drive assembly and a swivel mechanism. The drive assembly features a motor operatively associated with a plurality of drive shafts for driving auxiliary elements, and a plurality of swivel shafts for pivoting the drive assembly. The swivel mechanism engages the swivel shafts and has a fixable element that may be attached to a foundation. The swivel mechanism is adapted to cooperate with the swivel shafts to pivot the drive assembly with at least two degrees of freedom relative to the foundation. The joint assembly allows for all components to remain encased in a tight, compact, and sealed package, making it ideal for space, exploratory, and commercial applications.

  7. Stability of explicit advection schemes. The balance point location rule

    NASA Astrophysics Data System (ADS)

    Leonard, B. P.

    2002-02-01

    This paper introduces the balance point location rule, providing specific necessary and sufficient conditions for constructing unconditionally stable explicit advection schemes, in both semi-Lagrangian and flux-form Eulerian formulations. The rule determines how the spatial stencil is placed on the computational grid. It requires the balance point (the center of the stencil in index space) to be located in the same patch as the departure point for semi-Lagrangian schemes or the same cell as the sweep point for Eulerian schemes. Centering the stencil in this way guarantees stability, regardless of the size of the time step. In contrast, the original Courant-Friedrichs-Lewy (CFL) condition requiring the stencil merely to include the departure (sweep) point, although necessary, is not sufficient for guaranteeing stability. The CFL condition is of limited practical value, whereas the balance point location rule always gives precise and easily implemented prescriptions for constructing stable algorithms. The rule is also helpful in correcting a number of misconceptions that have arisen concerning explicit advection schemes. In particular, explicit Eulerian schemes are widely believed to be inefficient because of stability constraints on the time step, dictated by a narrow interpretation of the CFL condition requiring the Courant number to be less than or equal to one. However, such constraints apply only to a particular class of advection schemes resulting for centering the stencil on the arrival point, when in fact the sole function of the stencil is to estimate the departure (sweep) point value - the arrival point has no relevance in determining the placement of the stencil. Unconditionally stable explicit Eulerian advection schemes are efficient and accurate, comparable in operation count to semi-Lagrangian schemes of the same order, but because of their flux-based formulation, they have the added advantage of being inherently conservative. Copyright

  8. Explicit versus spontaneous diffeomorphism breaking in gravity

    NASA Astrophysics Data System (ADS)

    Bluhm, Robert

    2015-03-01

    Gravitational theories with fixed background fields break local Lorentz and diffeomorphism invariance either explicitly or spontaneously. In the case of explicit breaking it is known that conflicts can arise between the dynamics and geometrical constraints, while spontaneous breaking evades this problem. It is for this reason that in the gravity sector of the Standard-Model extension (SME) it is assumed that the background fields (SME coefficients) originate from spontaneous symmetry breaking. However, in other examples, such as Chern-Simons gravity and massive gravity, diffeomorphism invariance is explicitly broken by the background fields, and the potential conflicts between the dynamics and geometry can be avoided in most cases. An analysis of how this occurs is given, and the conditions that are placed on the metric tensor and gravitational structure as a result of the presence of an explicit-breaking background are described. The gravity sector of the SME is then considered for the case of explicit breaking. However, it is found that a useful post-Newtonian limit is only obtained when the symmetry breaking is spontaneous.

  9. Preserved memory-based orienting of attention with impaired explicit memory in healthy ageing

    PubMed Central

    Salvato, Gerardo; Patai, Eva Z.; Nobre, Anna C.

    2016-01-01

    It is increasingly recognised that spatial contextual long-term memory (LTM) prepares neural activity for guiding visuo-spatial attention in a proactive manner. In the current study, we investigated whether the decline in explicit memory observed in healthy ageing would compromise this mechanism. We compared the behavioural performance of younger and older participants on learning new contextual memories, on orienting visual attention based on these learnt contextual associations, and on explicit recall of contextual memories. We found a striking dissociation between older versus younger participants in the relationship between the ability to retrieve contextual memories versus the ability to use these to guide attention to enhance performance on a target-detection task. Older participants showed significant deficits in the explicit retrieval task, but their behavioural benefits from memory-based orienting of attention were equivalent to those in young participants. Furthermore, memory-based orienting correlated significantly with explicit contextual LTM in younger adults but not in older adults. These results suggest that explicit memory deficits in ageing might not compromise initial perception and encoding of events. Importantly, the results also shed light on the mechanisms of memory-guided attention, suggesting that explicit contextual memories are not necessary. PMID:26649914

  10. Preserved memory-based orienting of attention with impaired explicit memory in healthy ageing.

    PubMed

    Salvato, Gerardo; Patai, Eva Z; Nobre, Anna C

    2016-01-01

    It is increasingly recognised that spatial contextual long-term memory (LTM) prepares neural activity for guiding visuo-spatial attention in a proactive manner. In the current study, we investigated whether the decline in explicit memory observed in healthy ageing would compromise this mechanism. We compared the behavioural performance of younger and older participants on learning new contextual memories, on orienting visual attention based on these learnt contextual associations, and on explicit recall of contextual memories. We found a striking dissociation between older versus younger participants in the relationship between the ability to retrieve contextual memories versus the ability to use these to guide attention to enhance performance on a target-detection task. Older participants showed significant deficits in the explicit retrieval task, but their behavioural benefits from memory-based orienting of attention were equivalent to those in young participants. Furthermore, memory-based orienting correlated significantly with explicit contextual LTM in younger adults but not in older adults. These results suggest that explicit memory deficits in ageing might not compromise initial perception and encoding of events. Importantly, the results also shed light on the mechanisms of memory-guided attention, suggesting that explicit contextual memories are not necessary.

  11. Development of appropriateness explicit criteria for cataract extraction by phacoemulsification

    PubMed Central

    Ma Quintana, José; Escobar, Antonio; Aróstegui, Inmaculada

    2006-01-01

    Background Consensus development techniques were used in the late 1980s to create explicit criteria for the appropriateness of cataract extraction. We developed a new appropriateness of indications tool for cataract following the RAND method. We tested the validity of our panel results. Methods Criteria were developed using a modified Delphi panel judgment process. A panel of 12 ophthalmologists was assembled. Ratings were analyzed regarding the level of agreement among panelists. We studied the influence of all variables on the final panel score using linear and logistic regression models. The explicit criteria developed were summarized by classification and regression tree analysis. Results Of the 765 indications evaluated by the main panel in the second round, 32.9% were found appropriate, 30.1% uncertain, and 37% inappropriate. Agreement was found in 53% of the indications and disagreement in 0.9%. Seven variables were considered to create the indications and divided into three groups: simple cataract, with diabetic retinopathy, or with other ocular pathologies. The preoperative visual acuity in the cataractous eye and visual function were the variables that best explained the panel scoring. The panel results were synthesized and presented in three decision trees. Misclassification error in the decision trees, as compared with the panel original criteria, was 5.3%. Conclusion The parameters tested showed acceptable validity for an evaluation tool. These results support the use of this indication algorithm as a screening tool for assessing the appropriateness of cataract extraction in field studies and for the development of practice guidelines. PMID:16512906

  12. Brain Networks of Explicit and Implicit Learning

    PubMed Central

    Yang, Jing; Li, Ping

    2012-01-01

    Are explicit versus implicit learning mechanisms reflected in the brain as distinct neural structures, as previous research indicates, or are they distinguished by brain networks that involve overlapping systems with differential connectivity? In this functional MRI study we examined the neural correlates of explicit and implicit learning of artificial grammar sequences. Using effective connectivity analyses we found that brain networks of different connectivity underlie the two types of learning: while both processes involve activation in a set of cortical and subcortical structures, explicit learners engage a network that uses the insula as a key mediator whereas implicit learners evoke a direct frontal-striatal network. Individual differences in working memory also differentially impact the two types of sequence learning. PMID:22952624

  13. Does explicit expectation really affect preparation?

    PubMed

    Umbach, Valentin J; Schwager, Sabine; Frensch, Peter A; Gaschler, Robert

    2012-01-01

    Expectation enables preparation for an upcoming event and supports performance if the anticipated situation occurs, as manifested in behavioral effects (e.g., decreased RT). However, demonstrating coincidence between expectation and preparation is not sufficient for attributing a causal role to the former. The content of explicit expectation may simply reflect the present preparation state. We targeted this issue by experimentally teasing apart demands for preparation and explicit expectations. Expectations often originate from our experience: we expect that events occurring with a high frequency in the past are more likely to occur again. In addition to expectation, other task demands can feed into action preparation. In four experiments, frequency-based expectation was pitted against a selective response deadline. In a three-choice reaction time task, participants responded to stimuli that appeared with varying frequency (60, 30, 10%). Trial-by-trial stimulus expectations were either captured via verbal predictions or induced by visual cues. Predictions as well as response times quickly conformed to the variation in stimulus frequency. After two (of five) experimental blocks we forced participants by selective time pressure to respond faster to a less frequent stimulus. Therefore, participants had to prepare for one stimulus (medium frequency) while often explicitly expecting a different one (high frequency). Response times for the less frequent stimulus decreased immediately, while explicit expectations continued to indicate the (unchanged) presentation frequencies. Explicit expectations were thus not just reflecting preparation. In fact, participants responded faster when the stimulus matched the trial-wise expectations, even when task demands discouraged their use. In conclusion, we argue that explicit expectation feeds into preparatory processes instead of being a mere by-product.

  14. Explicit Form Focus Instruction: The Effects on Implicit and Explicit Knowledge of ESL Learners

    ERIC Educational Resources Information Center

    Ebadi, Mandana Rohollahzadeh; Saad, Mohd Rashid Mohd; Abedalaziz, Nabil

    2014-01-01

    The study examines the effect of explicit form focus instruction and specifically metalinguistic information feedback on the development of both implicit and explicit knowledge of adult English as a Second Language (ESL) learners. Ninety-one subjects at the lower intermediate level were carefully selected through placement test at one of the…

  15. The Tacit-Explicit Dimension of the Learning of Mathematics: An Investigation Report

    ERIC Educational Resources Information Center

    Frade, Cristina; Borges, Oto

    2006-01-01

    This paper reports on study that investigated the tacit-explicit dimension of the learning of mathematics. The study was carried out in a secondary school and consisted of an episode analysis related to a class discussion about the difference between plane figures and spatial figures. The data analysis was based on integration between some aspects…

  16. Why Explicit Knowledge Cannot Become Implicit Knowledge

    ERIC Educational Resources Information Center

    VanPatten, Bill

    2016-01-01

    In this essay, I review one of the conclusions in Lindseth (2016) published in "Foreign Language Annals." That conclusion suggests that explicit learning and practice (what she called form-focused instruction) somehow help the development of implicit knowledge (or might even become implicit knowledge). I argue for a different…

  17. Children's Tacit and Explicit Understandings of Dinosaurs.

    ERIC Educational Resources Information Center

    Barba, Robertta H.

    The purpose of this cross-age study was to investigate elementary students' (N=120) tacit and explicit understandings of dinosaurs. Detailed analysis of audiotaped interviews of children's performance during a Piagetian-type clinical interview suggests that children's conceptual understandings of dinosaurs are first developed at a tacit level from…

  18. Sleep Enhances Explicit Recollection in Recognition Memory

    ERIC Educational Resources Information Center

    Drosopoulos, Spyridon; Wagner, Ullrich; Born, Jan

    2005-01-01

    Recognition memory is considered to be supported by two different memory processes, i.e., the explicit recollection of information about a previous event and an implicit process of recognition based on a contextual sense of familiarity. Both types of memory supposedly rely on distinct memory systems. Sleep is known to enhance the consolidation of…

  19. Explicit Instruction in Core Reading Programs

    ERIC Educational Resources Information Center

    Reutzel, D. Ray; Child, Angela; Jones, Cindy D.; Clark, Sarah K.

    2014-01-01

    The purpose of this study was to conduct a content analysis of the types and occurrences of explicit instructional moves recommended for teaching five essentials of effective reading instruction in grades 1, 3, and 5 core reading program teachers' editions in five widely marketed core reading programs. Guided practice was the most frequently…

  20. From Asking to Answering: Making Questions Explicit

    ERIC Educational Resources Information Center

    Washington, Gene

    2006-01-01

    "From Asking To Answering: Making Questions Explicit" describes a pedagogical procedure the author has used in writing classes (expository, technical and creative) to help students better understand the purpose, and effect, of text-questions. It accomplishes this by means of thirteen discrete categories (e.g., CLAIMS, COMMITMENT, ANAPHORA, or…

  1. Crew Assembly

    NASA Video Gallery

    Train to improve your dexterity and hand-eye coordination by assembling a puzzle.The Train Like an Astronaut project uses the excitement of exploration to challenge students to set goals, practice ...

  2. Seal assembly

    DOEpatents

    Johnson, Roger Neal; Longfritz, William David

    2001-01-01

    A seal assembly that seals a gap formed by a groove comprises a seal body, a biasing element, and a connection that connects the seal body to the biasing element to form the seal assembly. The seal assembly further comprises a concave-shaped center section and convex-shaped contact portions at each end of the seal body. The biasing element is formed from an elastic material and comprises a convex-shaped center section and concave-shaped biasing zones that are opposed to the convex-shaped contact portions. The biasing element is adapted to be compressed to change a width of the seal assembly from a first width to a second width that is smaller than the first width. In the compressed state, the seal assembly can be disposed in the groove. After release of the compressing force, the seal assembly expands. The contact portions will move toward a surface of the groove and the biasing zones will move into contact with another surface of the groove. The biasing zones will bias the contact portions of the seal body against the surface of the groove.

  3. How does spatial variability of climate affect catchment streamflow predictions?

    EPA Science Inventory

    Spatial variability of climate can negatively affect catchment streamflow predictions if it is not explicitly accounted for in hydrologic models. In this paper, we examine the changes in streamflow predictability when a hydrologic model is run with spatially variable (distribute...

  4. Psychometric intelligence dissociates implicit and explicit learning.

    PubMed

    Gebauer, Guido F; Mackintosh, Nicholas J

    2007-01-01

    The hypothesis that performance on implicit learning tasks is unrelated to psychometric intelligence was examined in a sample of 605 German pupils. Performance in artificial grammar learning, process control, and serial learning did not correlate with various measures of intelligence when participants were given standard implicit instructions. Under an explicit rule discovery instruction, however, a significant relationship between performance on the learning tasks and intelligence appeared. This finding provides support for Reber's hypothesis that implicit learning, in contrast to explicit learning, is independent of intelligence, and confirms thereby the distinction between the 2 modes of learning. However, because there were virtually no correlations among the 3 learning tasks, the assumption of a unitary ability of implicit learning was not supported.

  5. Teleoperations with shared explicit contact force control

    NASA Astrophysics Data System (ADS)

    Caiti, Andrea; Cannata, Giorgio; Casalino, Giuseppe; Reto, Simone

    1997-12-01

    In this paper the development of a master-slave robotics system is presented. This development is part of a research project devoted to the intelligent automation of in-service inspection of welded seams in nuclear plants using non- destructive ultrasonic based techniques. The main feature of the system is a shared explicit control scheme of the contact force during the interaction of the end-effector with the remote environment. This unilateral master-slave operational scheme does not suffer from the drawbacks of the bilateral force reflection based implementation. Moreover it avoids the operator from damaging the remote manipulator during wrong maneuvers due to imperfect video feedback. The paper describes the control structure applied (belonging to the class of explicit force control) and the hardware-software architecture of the system. Experimental results are given on the Ansaldo Olasand manipulator.

  6. Extrapolated stabilized explicit Runge-Kutta methods

    NASA Astrophysics Data System (ADS)

    Martín-Vaquero, J.; Kleefeld, B.

    2016-12-01

    Extrapolated Stabilized Explicit Runge-Kutta methods (ESERK) are proposed to solve multi-dimensional nonlinear partial differential equations (PDEs). In such methods it is necessary to evaluate the function nt times per step, but the stability region is O (nt2). Hence, the computational cost is O (nt) times lower than for a traditional explicit algorithm. In that way stiff problems can be integrated by the use of simple explicit evaluations in which case implicit methods usually had to be used. Therefore, they are especially well-suited for the method of lines (MOL) discretizations of parabolic nonlinear multi-dimensional PDEs. In this work, first s-stages first-order methods with extended stability along the negative real axis are obtained. They have slightly shorter stability regions than other traditional first-order stabilized explicit Runge-Kutta algorithms (also called Runge-Kutta-Chebyshev codes). Later, they are used to derive nt-stages second- and fourth-order schemes using Richardson extrapolation. The stability regions of these fourth-order codes include the interval [ - 0.01nt2, 0 ] (nt being the number of total functions evaluations), which are shorter than stability regions of ROCK4 methods, for example. However, the new algorithms neither suffer from propagation of errors (as other Runge-Kutta-Chebyshev codes as ROCK4 or DUMKA) nor internal instabilities. Additionally, many other types of higher-order (and also lower-order) methods can be obtained easily in a similar way. These methods also allow adaptation of the length step with no extra cost. Hence, the stability domain is adapted precisely to the spectrum of the problem at the current time of integration in an optimal way, i.e., with minimal number of additional stages. We compare the new techniques with other well-known algorithms with good results in very stiff diffusion or reaction-diffusion multi-dimensional nonlinear equations.

  7. Design of lattice proteins with explicit solvent

    NASA Astrophysics Data System (ADS)

    Salvi, G.; Mölbert, S.; de Los Rios, P.

    2002-12-01

    Protein design is important to develop new drugs. As such, a knowledge of the correct model to use to design novel proteins is of the utmost importance. Here we show that a simple model where the solvent degrees of freedom are (semi)explicitly taken into account performs better than other existing models when compared to real data. Some consequences on the criteria to be used for protein design are discussed.

  8. The Implicit and Explicit alpha-mu Schemes

    NASA Technical Reports Server (NTRS)

    Chang, Sin-Chung; Himansu, Ananda

    1997-01-01

    with the treatment of diffusion being based on that in the implicit solvers. The explicit solver has only a CFL stability limitation on the Courant number, yet it retains the second-order spatial accuracy of the implicit schemes.

  9. Hinge assembly

    DOEpatents

    Vandergriff, D.H.

    1999-08-31

    A hinge assembly is disclosed having a first leaf, a second leaf and linking member. The first leaf has a contact surface. The second leaf has a first contact surface and a second contact surface. The linking member pivotally connects to the first leaf and to the second leaf. The hinge assembly is capable of moving from a closed position to an open position. In the closed position, the contact surface of the first leaf merges with the first contact surface of the second leaf. In the open position, the contact surface of the first leaf merges with the second contact surface of the second leaf. The hinge assembly can include a seal on the contact surface of the first leaf. 8 figs.

  10. Hinge assembly

    DOEpatents

    Vandergriff, David Houston

    1999-01-01

    A hinge assembly having a first leaf, a second leaf and linking member. The first leaf has a contact surface. The second leaf has a first contact surface and a second contact surface. The linking member pivotally connects to the first leaf and to the second leaf. The hinge assembly is capable of moving from a closed position to an open position. In the closed position, the contact surface of the first leaf merges with the first contact surface of the second leaf. In the open position, the contact surface of the first leaf merges with the second contact surface of the second leaf. The hinge assembly can include a seal on the contact surface of the first leaf.

  11. Sabot assembly

    DOEpatents

    Bzorgi, Fariborz

    2016-11-08

    A sabot assembly includes a projectile and a housing dimensioned and configured for receiving the projectile. An air pressure cavity having a cavity diameter is disposed between a front end and a rear end of the housing. Air intake nozzles are in fluid communication with the air pressure cavity and each has a nozzle diameter less than the cavity diameter. In operation, air flows through the plurality of air intake nozzles and into the air pressure cavity upon firing of the projectile from a gun barrel to pressurize the air pressure cavity for assisting in separation of the housing from the projectile upon the sabot assembly exiting the gun barrel.

  12. Latch assembly

    DOEpatents

    Frederickson, J.R.; Harper, W.H.; Perez, R.

    1984-08-17

    A latch assembly for releasably securing an article in the form of a canister within a container housing. The assembly includes a cam pivotally mounted on the housing wall and biased into the housing interior. The cam is urged into a disabled position by the canister as it enters the housing and a latch release plate maintains the cam disabled when the canister is properly seated in the housing. Upon displacement of the release plate, the cam snaps into latching engagement against the canister for securing the same within the housing. 2 figs.

  13. Nitrogenase assembly

    PubMed Central

    Hu, Yilin; Ribbe, Markus W.

    2013-01-01

    Nitrogenase contains two unique metalloclusters: the P-cluster and the M-cluster. The assembly processes of P- and M-clusters are arguably the most complicated processes in bioinorganic chemistry. There is considerable interest in decoding the biosynthetic mechanisms of the P- and M-clusters, because these clusters are not only biologically important, but also chemically unprecedented. Understanding the assembly mechanisms of these unique metalloclusters is crucial for understanding the structure-function relationship of nitrogenase. Here, we review the recent advances in this research area, with an emphasis on our work that provide important insights into the biosynthetic pathways of these high-nuclearity metal centers. PMID:23232096

  14. Latch assembly

    DOEpatents

    Frederickson, James R.; Harper, William H.; Perez, Raymond

    1986-01-01

    A latch assembly for releasably securing an article in the form of a canister within a container housing. The assembly includes a cam pivotally mounted on the housing wall and biased into the housing interior. The cam is urged into a disabled position by the canister as it enters the housing and a latch release plate maintains the cam disabled when the canister is properly seated in the housing. Upon displacement of the release plate, the cam snaps into latching engagement against the canister for securing the same within the housing.

  15. Implicit for local effects and explicit for nonlocal effects is unconditionallly stable.

    SciTech Connect

    Anitescu, M.; Layton, W. J.; Pahlevani, F.; Mathematics and Computer Science; Univ. of Pittsburgh

    2004-01-01

    A combination of implicit and explicit timestepping is analyzed for a system of ordinary differential equations (ODEs) motivated by ones arising from spatial discretizations of evolutionary partial differential equations (PDEs). Loosely speaking, the method we consider is implicit in local and stabilizing terms in the underlying PDE and explicit in nonlocal and unstabilizing terms. Unconditional stability and convergence of the numerical scheme are proved by the energy method and by algebraic techniques. This stability result is surprising because usually when different methods are combined, the stability properties of the least stable method plays a determining role in the combination.

  16. Generalizing Levins metapopulation model in explicit space: models of intermediate complexity.

    PubMed

    Roy, Manojit; Harding, Karin; Holt, Robert D

    2008-11-07

    A recent study [Harding and McNamara, 2002. A unifying framework for metapopulation dynamics. Am. Nat. 160, 173-185] presented a unifying framework for the classic Levins metapopulation model by incorporating several realistic biological processes, such as the Allee effect, the Rescue effect and the Anti-rescue effect, via appropriate modifications of the two basic functions of colonization and extinction rates. Here we embed these model extensions on a spatially explicit framework. We consider population dynamics on a regular grid, each site of which represents a patch that is either occupied or empty, and with spatial coupling by neighborhood dispersal. While broad qualitative similarities exist between the spatially explicit models and their spatially implicit (mean-field) counterparts, there are also important differences that result from the details of local processes. Because of localized dispersal, spatial correlation develops among the dynamics of neighboring populations that decays with distance between patches. The extent of this correlation at equilibrium differs among the metapopulation types, depending on which processes prevail in the colonization and extinction dynamics. These differences among dynamical processes become manifest in the spatial pattern and distribution of "clusters" of occupied patches. Moreover, metapopulation dynamics along a smooth gradient of habitat availability show significant differences in the spatial pattern at the range limit. The relevance of these results to the dynamics of disease spread in metapopulations is discussed.

  17. Furnace assembly

    DOEpatents

    Panayotou, Nicholas F.; Green, Donald R.; Price, Larry S.

    1985-01-01

    A method of and apparatus for heating test specimens to desired elevated temperatures for irradiation by a high energy neutron source. A furnace assembly is provided for heating two separate groups of specimens to substantially different, elevated, isothermal temperatures in a high vacuum environment while positioning the two specimen groups symmetrically at equivalent neutron irradiating positions.

  18. Furnace assembly

    DOEpatents

    Panayotou, N.F.; Green, D.R.; Price, L.S.

    A method of and apparatus for heating test specimens to desired elevated temperatures for irradiation by a high energy neutron source. A furnace assembly is provided for heating two separate groups of specimens to substantially different, elevated, isothermal temperatures in a high vacuum environment while positioning the two specimen groups symmetrically at equivalent neutron irradiating positions.

  19. Contributions of Executive Function and Spatial Skills to Preschool Mathematics Achievement

    PubMed Central

    Verdine, Brian N.; Irwin, Casey M.; Golinkoff, Roberta Michnick; Hirsh-Pasek, Kathryn

    2014-01-01

    Early mathematics achievement is highly predictive of later mathematics performance. Here we investigate the influence of executive function (EF) and spatial skills, two generalizable skills often overlooked in mathematics curricula, on mathematics performance in preschoolers. Children (N = 44) of varying socio-economic status (SES) levels were assessed at age three on a new assessment of spatial skill (Test of Spatial Assembly, TOSA) and a vocabulary measure (the PPVT-4). The same children were tested at age four on the Beery Test of Visual-Motor Integration (VMI), as well as measures of EF, and mathematics. The TOSA was created specifically as an assessment for 3-year-olds, allowing the investigation of links between spatial, EF, and mathematical skills earlier than previously possible. Results of a hierarchical regression indicate that EF and spatial skills predict 70% of the variance in mathematics performance without an explicit math test, EF is an important predictor of math performance as prior research suggested, and spatial skills uniquely predict 27% of the variance in mathematics skills. Additional research is needed to understand if EF is truly malleable and whether EF and spatial skills may be leveraged to support early mathematics skills, especially for lower-SES children who are already falling behind in these skill areas by ages 3 and 4. These findings indicate that both skills are part of an important foundation for mathematics performance and may represent pathways for improving school readiness for mathematics. PMID:24874186

  20. Contributions of executive function and spatial skills to preschool mathematics achievement.

    PubMed

    Verdine, Brian N; Irwin, Casey M; Golinkoff, Roberta Michnick; Hirsh-Pasek, Kathryn

    2014-10-01

    Early mathematics achievement is highly predictive of later mathematics performance. Here we investigated the influence of executive function (EF) and spatial skills, two generalizable skills often overlooked in mathematics curricula, on mathematics performance in preschoolers. Children (N=44) of varying socioeconomic status (SES) levels were assessed at 3 years of age on a new assessment of spatial skill (Test of Spatial Assembly, TOSA) and a vocabulary measure (Peabody Picture Vocabulary Test, PPVT). The same children were tested at 4 years of age on the Beery Test of Visual-Motor Integration (VMI) as well as on measures of EF and mathematics. The TOSA was created specifically as an assessment for 3-year-olds, allowing the investigation of links among spatial, EF, and mathematical skills earlier than previously possible. Results of a hierarchical regression indicate that EF and spatial skills predict 70% of the variance in mathematics performance without an explicit math test, EF is an important predictor of math performance as prior research suggested, and spatial skills uniquely predict 27% of the variance in mathematics skills. Additional research is needed to understand whether EF is truly malleable and whether EF and spatial skills may be leveraged to support early mathematics skills, especially for lower SES children who are already falling behind in these skill areas by 3 and 4 years of age. These findings indicate that both skills are part of an important foundation for mathematics performance and may represent pathways for improving school readiness for mathematics.

  1. Sleep promotes offline enhancement of an explicitly learned discrete but not an explicitly learned continuous task

    PubMed Central

    Siengsukon, Catherine F; Al-Sharman, Alham

    2011-01-01

    Background Healthy young individuals benefit from sleep to promote offline enhancement of a variety of explicitly learned discrete motor tasks. It remains unknown if sleep will promote learning of other types of explicit tasks. The purpose of this study is to verify the role of sleep in learning an explicitly instructed discrete motor task and to determine if participants who practice an explicitly instructed continuous tracking task demonstrate sleep-dependent offline learning of this task. Methods In experiment 1, 28 healthy young adults (mean age 25.6 ± 3.8 years) practiced a serial reaction time (SRT) task at either 8 am (SRT no-sleep group) or 8 pm (SRT sleep group) and underwent retention testing 12 ± 1 hours later. In experiment 2, 20 healthy young individuals (mean age 25.6 ± 3.3 years) practiced a continuous tracking task and were similarly divided into a no-sleep (continuous tracking no-sleep group) or sleep group (continuous tracking sleep group). Individuals in both experiments were provided with explicit instruction on the presence of a sequence in their respective task prior to practice. Results Individuals in the SRT sleep group demonstrated a significant offline reduction in reaction time whereas the SRT no-sleep group did not. Results for experiment 1 provide concurrent evidence that explicitly learned discrete tasks undergo sleep-dependent offline enhancement. Individuals in the continuous tracking sleep group failed to demonstrate a significant offline reduction in tracking error. However, the continuous tracking no-sleep group did demonstrate a significant offline improvement in performance. Results for experiment 2 indicate that sleep is not critical for offline enhancement of an explicit learned continuous task. Conclusion The findings that individuals who practiced an explicitly instructed discrete task experienced sleep-dependent offline learning while those individuals who practiced an explicitly instructed continuous task did not may be

  2. Explicit field realizations of W algebras

    NASA Astrophysics Data System (ADS)

    Wei, Shao-Wen; Liu, Yu-Xiao; Zhang, Li-Jie; Ren, Ji-Rong

    2009-06-01

    The fact that certain nonlinear W2,s algebras can be linearized by the inclusion of a spin-1 current can provide a simple way to realize W2,s algebras from linear W1,2,s algebras. In this paper, we first construct the explicit field realizations of linear W1,2,s algebras with double scalar and double spinor, respectively. Then, after a change of basis, the realizations of W2,s algebras are presented. The results show that all these realizations are Romans-type realizations.

  3. Explicit 3-D Hydrodynamic FEM Program

    SciTech Connect

    2000-11-07

    DYNA3D is a nonlinear explicit finite element code for analyzing 3-D structures and solid continuum. The code is vectorized and available on several computer platforms. The element library includes continuum, shell, beam, truss and spring/damper elements to allow maximum flexibility in modeling physical problems. Many materials are available to represent a wide range of material behavior, including elasticity, plasticity, composites, thermal effects and rate dependence. In addition, DYNA3D has a sophisticated contact interface capability, including frictional sliding, single surface contact and automatic contact generation.

  4. Explicitly represented polygon wall boundary model for the explicit MPS method

    NASA Astrophysics Data System (ADS)

    Mitsume, Naoto; Yoshimura, Shinobu; Murotani, Kohei; Yamada, Tomonori

    2015-05-01

    This study presents an accurate and robust boundary model, the explicitly represented polygon (ERP) wall boundary model, to treat arbitrarily shaped wall boundaries in the explicit moving particle simulation (E-MPS) method, which is a mesh-free particle method for strong form partial differential equations. The ERP model expresses wall boundaries as polygons, which are explicitly represented without using the distance function. These are derived so that for viscous fluids, and with less computational cost, they satisfy the Neumann boundary condition for the pressure and the slip/no-slip condition on the wall surface. The proposed model is verified and validated by comparing computed results with the theoretical solution, results obtained by other models, and experimental results. Two simulations with complex boundary movements are conducted to demonstrate the applicability of the E-MPS method to the ERP model.

  5. Fully explicit algorithms for fluid simulation

    NASA Astrophysics Data System (ADS)

    Clausen, Jonathan

    2011-11-01

    Computing hardware is trending towards distributed, massively parallel architectures in order to achieve high computational throughput. For example, Intrepid at Argonne uses 163,840 cores, and next generation machines, such as Sequoia at Lawrence Livermore, will use over one million cores. Harnessing the increasingly parallel nature of computational resources will require algorithms that scale efficiently on these architectures. The advent of GPU-based computation will serve to accelerate this behavior, as a single GPU contains hundreds of processor ``cores.'' Explicit algorithms avoid the communication associated with a linear solve, thus parallel scalability of these algorithms is typically high. This work will explore the efficiency and accuracy of three explicit solution methodologies for the Navier-Stokes equations: traditional artificial compressibility schemes, the lattice-Boltzmann method, and the recently proposed kinetically reduced local Navier-Stokes equations [Borok, Ansumali, and Karlin (2007)]. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  6. Sensor assembly

    DOEpatents

    Bennett, Thomas E.; Nelson, Drew V.

    2004-04-13

    A ribbon-like sensor assembly is described wherein a length of an optical fiber embedded within a similar lengths of a prepreg tow. The fiber is ""sandwiched"" by two layers of the prepreg tow which are merged to form a single consolidated ribbon. The consolidated ribbon achieving a generally uniform distribution of composite filaments near the embedded fiber such that excess resin does not ""pool"" around the periphery of the embedded fiber.

  7. Dump assembly

    DOEpatents

    Goldmann, Louis H.

    1986-01-01

    A dump assembly having a fixed conduit and a rotatable conduit provided with overlapping plates, respectively, at their adjacent ends. The plates are formed with openings, respectively, normally offset from each other to block flow. The other end of the rotatable conduit is provided with means for securing the open end of a filled container thereto. Rotation of the rotatable conduit raises and inverts the container to empty the contents while concurrently aligning the conduit openings to permit flow of material therethrough.

  8. Developmental Comparisons of Implicit and Explicit Language Learning

    ERIC Educational Resources Information Center

    Lichtman, Karen

    2013-01-01

    Conventional wisdom holds that children learn languages implicitly whereas older learners learn languages explicitly, and some have claimed that after puberty only explicit language learning is possible. However, older learners often receive more explicit instruction than child L2 learners, which may affect their learning strategies. This study…

  9. Positive Evidence Versus Explicit Rule Presentation and Explicit Negative Feedback: A Computer-Assisted Study

    ERIC Educational Resources Information Center

    Sanz, Cristina; Morgan-Short, Kara

    2004-01-01

    The facilitative role of explicit information in second language acquisition has been supported by a significant body of research (Alanen, 1995; Carroll & Swain, 1993; de Graaff, 1997; DeKeyser, 1995; Ellis, 1993; Robinson, 1996, 1997), but counterevidence is also available (Rosa & ONeill, 1999; VanPatten & Oikkenon, 1996). This experimental study…

  10. Making explicit the contention in hospice care.

    PubMed

    Moon, Paul J

    At the core of hospice remains the defining nature of mortals tending to other mortals facing diagnosed terminality. Such situations are pregnant with meanings. As mortals are subjective beings, social engagements become inundated with meaning differences. This alludes to the inescapable occurrence of collisions and conflicts in meaning. It would behoove us to make explicit the contention that exists in hospice care, given that death is the nonnegotiable outcome to be diversely faced by all involved persons whose lived approaches related to death issues may characteristically lack unanimity. Toward elucidating the inherently contentious nature of hospice care, the dynamical influence of external forces that overlie thanatological matters in society and the complex human dynamic in hospice care situations are discussed. Practice suggestions for hospice staff are offered.

  11. Explicit 2-D Hydrodynamic FEM Program

    SciTech Connect

    Lin, Jerry

    1996-08-07

    DYNA2D* is a vectorized, explicit, two-dimensional, axisymmetric and plane strain finite element program for analyzing the large deformation dynamic and hydrodynamic response of inelastic solids. DYNA2D* contains 13 material models and 9 equations of state (EOS) to cover a wide range of material behavior. The material models implemented in all machine versions are: elastic, orthotropic elastic, kinematic/isotropic elastic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, rubber, high explosive burn, isotropic elastic-plastic, temperature-dependent elastic-plastic. The isotropic and temperature-dependent elastic-plastic models determine only the deviatoric stresses. Pressure is determined by one of 9 equations of state including linear polynomial, JWL high explosive, Sack Tuesday high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, and tabulated.

  12. Growing And Assembling Cells Into Tissues

    NASA Technical Reports Server (NTRS)

    Wolf, David A.; Schwarz, Ray P.; Lewis, Marian L.; Cross, John H.; Huls, M. Helen

    1990-01-01

    Laboratory process for growth and assembly of mammalian cells into tissue-like masses demonstrated with hamster and rat cells. New process better able to provide culture environment with reduced fluid shear stress, freedom for three-dimensional spatial orientation of particles suspended in culture medium, and localization of particles of different or similar sedimentation properties in similar spatial region.

  13. Adaptive implicit-explicit finite element algorithms for fluid mechanics problems

    NASA Technical Reports Server (NTRS)

    Tezduyar, T. E.; Liou, J.

    1988-01-01

    The adaptive implicit-explicit (AIE) approach is presented for the finite-element solution of various problems in computational fluid mechanics. In the AIE approach, the elements are dynamically (adaptively) arranged into differently treated groups. The differences in treatment could be based on considerations such as the cost efficiency, the type of spatial or temporal discretization employed, the choice of field equations, etc. Several numerical tests are performed to demonstrate that this approach can achieve substantial savings in CPU time and memory.

  14. Spatial abstraction for autonomous robot navigation.

    PubMed

    Epstein, Susan L; Aroor, Anoop; Evanusa, Matthew; Sklar, Elizabeth I; Parsons, Simon

    2015-09-01

    Optimal navigation for a simulated robot relies on a detailed map and explicit path planning, an approach problematic for real-world robots that are subject to noise and error. This paper reports on autonomous robots that rely on local spatial perception, learning, and commonsense rationales instead. Despite realistic actuator error, learned spatial abstractions form a model that supports effective travel.

  15. Shingle assembly

    DOEpatents

    Dinwoodie, Thomas L.

    2007-02-20

    A barrier, such as a PV module, is secured to a base by a support to create a shingle assembly with a venting region defined between the barrier and base for temperature regulation. The first edge of one base may be interengageable with the second edge of an adjacent base to be capable of resisting first and second disengaging forces oriented perpendicular to the edges and along planes oriented parallel to and perpendicular to the base. A deflector may be used to help reduce wind uplift forces.

  16. Dump assembly

    DOEpatents

    Goldmann, L.H.

    1984-12-06

    This is a claim for a dump assembly having a fixed conduit and a rotatable conduit provided with overlapping plates, respectively, at their adjacent ends. The plates are formed with openings, respectively, normally offset from each other to block flow. The other end of the rotatable conduit is provided with means for securing the open end of a filled container thereto. Rotation of the rotatable conduit raises and inverts the container to empty the contents while concurrently aligning the conduit openings to permit flow of material therethrough. 4 figs.

  17. Pushrod assembly

    DOEpatents

    Potter, Jerry D.

    1987-01-01

    A pushrod assembly including a carriage mounted on a shaft for movement therealong and carrying a pushrod engageable with a load to be moved. A magnet is mounted on a supporting bracket for movement along such shaft. Means are provided for adjustably spacing said magnet away from said carriage to obtain a selected magnetic attractive or coupling force therebetween. Movement of the supporting bracket and the magnet carried thereby pulls the carriage along with it until the selected magnetic force is exceeded by a resistance load acting on the carriage.

  18. Pushrod assembly

    DOEpatents

    Potter, J.D.

    1984-03-30

    A pushrod assembly including a carriage mounted on a shaft for movement therealong and carrying a pushrod engageable with a load to be moved is described. A magnet is mounted on a supporting bracket for movement along such shaft. Means are provided for adjustably spacing magnet away from the carriage to obtain a selected magnetic attractive or coupling force therebetween. Movement of the supporting bracket and the magnet carried thereby pulls the carriage along with it until the selected magnetic force is exceeded by a resistance load acting on the carriage.

  19. Reactive Force Fields via Explicit Valency

    NASA Astrophysics Data System (ADS)

    Kale, Seyit

    Computational simulations are invaluable in elucidating the dynamics of biological macromolecules. Unfortunately, reactions present a fundamental challenge. Calculations based on quantum mechanics can predict bond formation and rupture; however they suffer from severe length- and time-limitations. At the other extreme, classical approaches provide orders of magnitude faster simulations; however they regard chemical bonds as immutable entities. A few exceptions exist, but these are not always trivial to adopt for routine use. We bridge this gap by providing a novel, pseudo-classical approach, based on explicit valency. We unpack molecules into valence electron pairs and atomic cores. Particles bear ionic charges and interact via pairwise-only potentials. The potentials are informed of quantum effects in the short-range and obey dissociation limits in the long-range. They are trained against a small set of isolated species, including geometries and thermodynamics of small hydrides and of dimers formed by them. The resulting force field captures the essentials of reactivity, polarizability and flexibility in a simple, seamless setting. We call this model LEWIS, after the chemical theory that inspired the use of valence pairs. Following the introduction in Chapter 1, we initially focus on the properties of water. Chapter 2 considers gas phase clusters. To transition to the liquid phase, Chapter 3 describes a novel pairwise long-range compensation that performs comparably to infinite lattice summations. The approach is suited to ionic solutions in general. In Chapters 4 and 5, LEWIS is shown to correctly predict the dipolar and quadrupolar response in bulk liquid, and can accommodate proton transfers in both acid and base. Efficiency permits the study of proton defects at dilutions not accessible to experiment or quantum mechanics. Chapter 6 discusses explicit valency approaches in other hydrides, forming the basis of a reactive organic force field. Examples of simple

  20. Refinement of protein structures in explicit solvent.

    PubMed

    Linge, Jens P; Williams, Mark A; Spronk, Christian A E M; Bonvin, Alexandre M J J; Nilges, Michael

    2003-02-15

    We present a CPU efficient protocol for refinement of protein structures in a thin layer of explicit solvent and energy parameters with completely revised dihedral angle terms. Our approach is suitable for protein structures determined by theoretical (e.g., homology modeling or threading) or experimental methods (e.g., NMR). In contrast to other recently proposed refinement protocols, we put a strong emphasis on consistency with widely accepted covalent parameters and computational efficiency. We illustrate the method for NMR structure calculations of three proteins: interleukin-4, ubiquitin, and crambin. We show a comparison of their structure ensembles before and after refinement in water with and without a force field energy term for the dihedral angles; crambin was also refined in DMSO. Our results demonstrate the significant improvement of structure quality by a short refinement in a thin layer of solvent. Further, they show that a dihedral angle energy term in the force field is beneficial for structure calculation and refinement. We discuss the optimal weight for the energy constant for the backbone angle omega and include an extensive discussion of meaning and relevance of the calculated validation criteria, in particular root mean square Z scores for covalent parameters such as bond lengths.

  1. Development of explicit criteria for cholecystectomy

    PubMed Central

    Quintana, J; Cabriada, J; d Lopez; Varona, M; Oribe, V; Barrios, B; Arostegui, I; Bilbao, A

    2002-01-01

    Objective: Consensus development techniques were used in the late 1980s to create explicit criteria for the appropriateness of cholecystectomy. New diagnostic and treatment techniques have been developed in the last decade, so an updated appropriateness of indications tool was developed for cholecystectomy in patients with non-malignant diseases. The validity and reliability of panel results using this tool were tested. Methods: Criteria were developed using a modified Delphi panel judgement process. The level of agreement between the panellists (six gastroenterologists and six surgeons) was analysed and the ratings were compared with those of a second different panel using weighted kappa statistics. Results: The results of the main panel were presented as a decision tree. Of the 210 scenarios evaluated by the main panel in the second round, 51% were found appropriate, 26% uncertain, and 23% inappropriate. Agreement was achieved in 54% of the scenarios and disagreement in 3%. Although the gastroenterologists tended to score fewer scenarios as appropriate, as a group they did not differ from the surgeons. Comparison of the ratings of the main panel with those of a second panel resulted in a weighted kappa statistic of 0.75. Conclusions: The parameters tested showed acceptable validity and reliability results for an evaluation tool. These results support the use of this algorithm as a screening tool for assessing the appropriateness of cholecystectomy. PMID:12468691

  2. RETORT ASSEMBLY

    DOEpatents

    Loomis, C.C.; Ash, W.J.

    1957-11-26

    An improved retort assembly useful in the thermal reduction of volatilizable metals such as magnesium and calcium is described. In this process a high vacuum is maintained in the retort, however the retort must be heated to very high temperatures while at the same time the unloading end must bo cooled to condense the metal vapors, therefore the retention of the vacuum is frequently difficult due to the thermal stresses involved. This apparatus provides an extended condenser sleeve enclosed by the retort cover which forms the vacuum seal. Therefore, the seal is cooled by the fluid in the condenser sleeve and the extreme thermal stresses found in previous designs together with the deterioration of the sealing gasket caused by the high temperatures are avoided.

  3. Swivel assembly

    DOEpatents

    Hall, David R.; Pixton, David S.; Briscoe, Michael; Bradford, Kline; Rawle, Michael; Bartholomew, David B.; McPherson, James

    2007-03-20

    A swivel assembly for a downhole tool string comprises a first and second coaxial housing cooperatively arranged. The first housing comprises a first transmission element in communication with surface equipment. The second housing comprises a second transmission element in communication with the first transmission element. The second housing further comprises a third transmission element adapted for communication with a network integrated into the downhole tool string. The second housing may be rotational and adapted to transmit a signal between the downhole network and the first housing. Electronic circuitry is in communication with at least one of the transmission elements. The electronic circuitry may be externally mounted to the first or second housing. Further, the electronic circuitry may be internally mounted in the second housing. The electronic circuitry may be disposed in a recess in either first or second housing of the swivel.

  4. Thermocouple assembly

    DOEpatents

    Thermos, Anthony Constantine; Rahal, Fadi Elias

    2002-01-01

    A thermocouple assembly includes a thermocouple; a plurality of lead wires extending from the thermocouple; an insulating jacket extending along and enclosing the plurality of leads; and at least one internally sealed area within the insulating jacket to prevent fluid leakage along and within the insulating jacket. The invention also provides a method of preventing leakage of a fluid along and through an insulating jacket of a thermocouple including the steps of a) attaching a plurality of lead wires to a thermocouple; b) adding a heat sensitive pseudo-wire to extend along the plurality of lead wires; c) enclosing the lead wires and pseudo-wire inside an insulating jacket; d) locally heating axially spaced portions of the insulating jacket to a temperature which melts the pseudo-wire and fuses it with an interior surface of the jacket.

  5. Trait-mediated assembly processes predict successional changes in community diversity of tropical forests.

    PubMed

    Lasky, Jesse R; Uriarte, María; Boukili, Vanessa K; Chazdon, Robin L

    2014-04-15

    Interspecific differences in relative fitness can cause local dominance by a single species. However, stabilizing interspecific niche differences can promote local diversity. Understanding these mechanisms requires that we simultaneously quantify their effects on demography and link these effects to community dynamics. Successional forests are ideal systems for testing assembly theory because they exhibit rapid community assembly. Here, we leverage functional trait and long-term demographic data to build spatially explicit models of successional community dynamics of lowland rainforests in Costa Rica. First, we ask what the effects and relative importance of four trait-mediated community assembly processes are on tree survival, a major component of fitness. We model trait correlations with relative fitness differences that are both density-independent and -dependent in addition to trait correlations with stabilizing niche differences. Second, we ask how the relative importance of these trait-mediated processes relates to successional changes in functional diversity. Tree dynamics were more strongly influenced by trait-related interspecific variation in average survival than trait-related responses to neighbors, with wood specific gravity (WSG) positively correlated with greater survival. Our findings also suggest that competition was mediated by stabilizing niche differences associated with specific leaf area (SLA) and leaf dry matter content (LDMC). These drivers of individual-level survival were reflected in successional shifts to higher SLA and LDMC diversity but lower WSG diversity. Our study makes significant advances to identifying the links between individual tree performance, species functional traits, and mechanisms of tropical forest succession.

  6. Explicit inertial range renormalization theory in a model for turbulent diffusion

    NASA Astrophysics Data System (ADS)

    Majda, Andrew J.

    1993-11-01

    The inertial range for a statistical turbulent velocity field consists of those scales that are larger than the dissipation scale but smaller than the integral scale. Here the complete scale-invariant explicit inertial range renormalization theory for all the higher-order statistics of a diffusing passive scalar is developed in a model which, despite its simplicity, involves turbulent diffusion by statistical velocity fields with arbitrarily many scales, infrared divergence, long-range spatial correlations, and rapid fluctuations in time-such velocity fields retain several characteristic features of those in fully developed turbulence. The main tool in the development of this explicit renormalization theory for the model is an exact quantum mechanical analogy which relates higher-order statistics of the diffusing scalar to the properties of solutions of a family of N- body parabolic quantum problems. The canonical inertial range renormalized statistical fixed point is developed explicitly here as a function of the velocity spectral parameter ɛ, which measures the strength of the infrared divergence: for ɛ<2, mean-field behavior in the inertial range occurs with Gaussian statistical behavior for the scalar and standard diffusive scaling laws; for ɛ>2 a phase transition occurs to a fixed point with anomalous inertial range scaling laws and a non-Gaussian renormalized statistical fixed point. Several explicit connections between the renormalization theory in the model and intermediate asymptotics are developed explicitly as well as links between anomalous turbulent decay and explicit spectral properties of Schrödinger operators. The differences between this inertial range renormalization theory and the earlier theories for large-scale eddy diffusivity developed by Avellaneda and the author in such models are also discussed here.

  7. Elastic bounded diffusion and electron propagation: dynamics of the wiring of a self-assembly of immunoglobulins bearing terminally attached ferrocene poly(ethylene glycol) chains according to a spatially controlled organization.

    PubMed

    Anne, A; Demaille, C; Moiroux, J

    2001-05-23

    Molecular monolayers of immunoglobulins bearing terminally attached ferrocene poly(ethylene glycol) chains (IgG-PEG-Fc) were self-assembled at an electrode surface in a step-by-step manner involving antigen-antibody recognition reactions. The total number N of assembled IgG-PEG-Fc monolayers and the number of spacers n(i) separating two successive IgG-PEG-Fc monolayers were controlled and varied. Electron transport through the protein assembly involves the dynamics of the terminally attached PEG chains and isotopic electron exchange between ferrocene heads belonging to successive IgG-PEG-Fc monolayers. The model of elastic bounded diffusion enabled us to analyze quantitatively the dependence of the rate of electron transport on N, n(i), and the rate constant (k(e)) of isotopic electron exchange. Wiring of a molecular monolayer of redox enzyme is also quantitatively characterized.

  8. Electrical Connector Assembly

    DTIC Science & Technology

    2001-05-01

    hereinafter 5 appear, a feature of the invention is the provision of an 6 electrical connector assembly including a female connector 7 assembly comprising...urging of the male connector assembly 3 into the female connector assembly, a leading edge of ehe 4 retention ring engages the claw fingers forcing...assembly barrel portion to pass through the female connector 3 assembly annular wall central opening, and permitting entry of 9 the pin into the sleeve

  9. Multi-Million-Atom Molecular Dynamics Simulations of Polymer Nanoparticle Composites using Explicit Solvent Treatment

    NASA Astrophysics Data System (ADS)

    Deshmukh, Sanket; Kamath, Ganesh; Mancini, Derrick; Sankaranarayanan, Subramanian

    2014-03-01

    Poly(N-isopropylacrylamide) (PNIPAM) is a thermosensitive polymer that is well-known for its lower critical solution temperature (LCST) around 305K. Below the LCST, PNIPAM is soluble in water, and above this temperature, polymer chains collapse and transform into a globule-state. Our simulations of systems consisting of single polymer chains in presence of explicit water molecules (~ 50 K atoms) predicted the LCST of PNIPAM close to the observed experimental value of ~ 305 K. This study also suggested the importance of using an explicit water model in studying the coil-to-globule transition in thermo-sensitive polymers. In the current studies, we are carrying out MD simulations of composites of PNIPAM inorganic nanoparticles in the aqueous solution using an explicit solvent treatment. We study the effect of grafting density on the coil-to-globule transition of the PNIPAM brushes. We graft PNIPAM polymer chains consisting of 60 monomer units onto a gold nanoparticle with varying grafting densities. Studied system consisted of ~3 million atoms. All the simulations were carried out below (275K) and above (325K) the LCST of PNIPAM. Simulation trajectories are analyzed for structural and dynamical properties. In particular, we look at the morphology of the uncollapsed and collapsed structures, and relate this to observation in scattering measurements. Future work will expand this approach to studying the dynamics of agglomeration of such brush structures to form self-assembled nanocomposites.

  10. Effects of Explicit Instructions, Metacognition, and Motivation on Creative Performance

    ERIC Educational Resources Information Center

    Hong, Eunsook; O'Neil, Harold F.; Peng, Yun

    2016-01-01

    Effects of explicit instructions, metacognition, and intrinsic motivation on creative homework performance were examined in 303 Chinese 10th-grade students. Models that represent hypothesized relations among these constructs and trait covariates were tested using structural equation modelling. Explicit instructions geared to originality were…

  11. "Make It Explicit!": Improving Collaboration through Increase of Script Coercion

    ERIC Educational Resources Information Center

    Papadopoulos, P. M.; Demetriadis, S. N.; Weinberger, A.

    2013-01-01

    This paper investigates the impact of the proposed "Make It Explicit!" technique on students' learning when participating in scripted collaborative activities. The method posits that when asking students to proactively articulate their own positions explicitly, then improved peer interaction is triggered in a subsequent…

  12. Measuring Explicit and Implicit Knowledge: A Psychometric Study in SLA

    ERIC Educational Resources Information Center

    Ebadi, Mandana Rohollahzadeh; Abedalaziz, Nabeel; Saad, Mohd Rashid Mohd

    2015-01-01

    Lack of valid means of measuring explicit and implicit knowledge in acquisition of second language is a concern issue in investigations of explicit and implicit learning. This paper endeavors to validate the use of four tests (i.e., Untimed Judgment Grammatical Test, UJGT; Test of Metalinguistic Knowledge, TMK; Elicited Oral Imitation Test, EOIT;…

  13. Explicit Knowledge and Learning in SLA: A Cognitive Linguistics Perspective

    ERIC Educational Resources Information Center

    Roehr, Karen

    2010-01-01

    SLA researchers agree that explicit knowledge and learning play an important role in adult L2 development. In the field of cognitive linguistics, it has been proposed that implicit and explicit knowledge differ in terms of their internal category structure and the processing mechanisms that operate on their representation in the human mind. It has…

  14. The Ms. Stereotype Revisited: Implicit and Explicit Facets

    ERIC Educational Resources Information Center

    Malcolmson, Kelly A.; Sinclair, Lisa

    2007-01-01

    Implicit and explicit stereotypes toward the title Ms. were examined. Participants read a short description of a target person whose title of address varied (Ms., Mrs., Miss, Mr.). They then rated the person on agentic and communal traits and completed an Implicit Association Test. Replicating earlier research (Dion, 1987), at an explicit level,…

  15. Functional differences between statistical learning with and without explicit training

    PubMed Central

    Reber, Paul J.; Paller, Ken A.

    2015-01-01

    Humans are capable of rapidly extracting regularities from environmental input, a process known as statistical learning. This type of learning typically occurs automatically, through passive exposure to environmental input. The presumed function of statistical learning is to optimize processing, allowing the brain to more accurately predict and prepare for incoming input. In this study, we ask whether the function of statistical learning may be enhanced through supplementary explicit training, in which underlying regularities are explicitly taught rather than simply abstracted through exposure. Learners were randomly assigned either to an explicit group or an implicit group. All learners were exposed to a continuous stream of repeating nonsense words. Prior to this implicit training, learners in the explicit group received supplementary explicit training on the nonsense words. Statistical learning was assessed through a speeded reaction-time (RT) task, which measured the extent to which learners used acquired statistical knowledge to optimize online processing. Both RTs and brain potentials revealed significant differences in online processing as a function of training condition. RTs showed a crossover interaction; responses in the explicit group were faster to predictable targets and marginally slower to less predictable targets relative to responses in the implicit group. P300 potentials to predictable targets were larger in the explicit group than in the implicit group, suggesting greater recruitment of controlled, effortful processes. Taken together, these results suggest that information abstracted through passive exposure during statistical learning may be processed more automatically and with less effort than information that is acquired explicitly. PMID:26472644

  16. Self-assembled nanomaterials for photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Yang, Pei-Pei; Zhao, Xiao-Xiao; Wang, Hao

    2016-01-01

    In recent years, extensive endeavors have been paid to construct functional self-assembled nanomaterials for various applications such as catalysis, separation, energy and biomedicines. To date, different strategies have been developed for preparing nanomaterials with diversified structures and functionalities via fine tuning of self-assembled building blocks. In terms of biomedical applications, bioimaging technologies are urgently calling for high-efficient probes/contrast agents for high-performance bioimaging. Photoacoustic (PA) imaging is an emerging whole-body imaging modality offering high spatial resolution, deep penetration and high contrast in vivo. The self-assembled nanomaterials show high stability in vivo, specific tolerance to sterilization and prolonged half-life stability and desirable targeting properties, which is a kind of promising PA contrast agents for biomedical imaging. Herein, we focus on summarizing recent advances in smart self-assembled nanomaterials with NIR absorption as PA contrast agents for biomedical imaging. According to the preparation strategy of the contrast agents, the self-assembled nanomaterials are categorized into two groups, i.e., the ex situ and in situ self-assembled nanomaterials. The driving forces, assembly modes and regulation of PA properties of self-assembled nanomaterials and their applications for long-term imaging, enzyme activity detection and aggregation-induced retention (AIR) effect for diagnosis and therapy are emphasized. Finally, we conclude with an outlook towards future developments of self-assembled nanomaterials for PA imaging.

  17. Self-assembled nanomaterials for photoacoustic imaging.

    PubMed

    Wang, Lei; Yang, Pei-Pei; Zhao, Xiao-Xiao; Wang, Hao

    2016-02-07

    In recent years, extensive endeavors have been paid to construct functional self-assembled nanomaterials for various applications such as catalysis, separation, energy and biomedicines. To date, different strategies have been developed for preparing nanomaterials with diversified structures and functionalities via fine tuning of self-assembled building blocks. In terms of biomedical applications, bioimaging technologies are urgently calling for high-efficient probes/contrast agents for high-performance bioimaging. Photoacoustic (PA) imaging is an emerging whole-body imaging modality offering high spatial resolution, deep penetration and high contrast in vivo. The self-assembled nanomaterials show high stability in vivo, specific tolerance to sterilization and prolonged half-life stability and desirable targeting properties, which is a kind of promising PA contrast agents for biomedical imaging. Herein, we focus on summarizing recent advances in smart self-assembled nanomaterials with NIR absorption as PA contrast agents for biomedical imaging. According to the preparation strategy of the contrast agents, the self-assembled nanomaterials are categorized into two groups, i.e., the ex situ and in situ self-assembled nanomaterials. The driving forces, assembly modes and regulation of PA properties of self-assembled nanomaterials and their applications for long-term imaging, enzyme activity detection and aggregation-induced retention (AIR) effect for diagnosis and therapy are emphasized. Finally, we conclude with an outlook towards future developments of self-assembled nanomaterials for PA imaging.

  18. Liquid-liquid interfacial nanoparticle assemblies

    DOEpatents

    Emrick, Todd S.; Russell, Thomas P.; Dinsmore, Anthony; Skaff, Habib; Lin, Yao

    2008-12-30

    Self-assembly of nanoparticles at the interface between two fluids, and methods to control such self-assembly process, e.g., the surface density of particles assembling at the interface; to utilize the assembled nanoparticles and their ligands in fabrication of capsules, where the elastic properties of the capsules can be varied from soft to tough; to develop capsules with well-defined porosities for ultimate use as delivery systems; and to develop chemistries whereby multiple ligands or ligands with multiple functionalities can be attached to the nanoparticles to promote the interfacial segregation and assembly of the nanoparticles. Certain embodiments use cadmium selenide (CdSe) nanoparticles, since the photoluminescence of the particles provides a convenient means by which the spatial location and organization of the particles can be probed. However, the systems and methodologies presented here are general and can, with suitable modification of the chemistries, be adapted to any type of nanoparticle.

  19. Latching relay switch assembly

    SciTech Connect

    Duimstra, Frederick A.

    1991-01-01

    A latching relay switch assembly which includes a coil section and a switch or contact section. The coil section includes at least one permanent magnet and at least one electromagnet. The respective sections are, generally, arranged in separate locations or cavities in the assembly. The switch is latched by a permanent magnet assembly and selectively switched by an overriding electromagnetic assembly.

  20. Probe tip heating assembly

    SciTech Connect

    Schmitz, Roger William; Oh, Yunje

    2016-10-25

    A heating assembly configured for use in mechanical testing at a scale of microns or less. The heating assembly includes a probe tip assembly configured for coupling with a transducer of the mechanical testing system. The probe tip assembly includes a probe tip heater system having a heating element, a probe tip coupled with the probe tip heater system, and a heater socket assembly. The heater socket assembly, in one example, includes a yoke and a heater interface that form a socket within the heater socket assembly. The probe tip heater system, coupled with the probe tip, is slidably received and clamped within the socket.

  1. Spatial Visualization by Isometric View

    ERIC Educational Resources Information Center

    Yue, Jianping

    2007-01-01

    Spatial visualization is a fundamental skill in technical graphics and engineering designs. From conventional multiview drawing to modern solid modeling using computer-aided design, visualization skills have always been essential for representing three-dimensional objects and assemblies. Researchers have developed various types of tests to measure…

  2. The effect of explicit financial incentives on physician behavior.

    PubMed

    Armour, B S; Pitts, M M; Maclean, R; Cangialose, C; Kishel, M; Imai, H; Etchason, J

    2001-05-28

    Managed care organizations use explicit financial incentives to influence physicians' use of resources. This has contributed to concerns regarding conflicts of interest for physicians and adverse effects on the quality of patient care. In light of recent publicized legislative and legal battles about this issue, we reviewed the literature and analyzed studies that examine the effect of these explicit financial incentives on the behavior of physicians. The method used to undertake the literature review followed the approach set forth in the Cochrane Collaboration handbook. Our literature review revealed a paucity of data on the effect of explicit financial incentives. Based on this limited evidence, explicit incentives that place individual physicians at financial risk appear to be effective in reducing physician resource use. However, the empirical evidence regarding the effectiveness of bonus payments on physician resource use is mixed. Similarly, our review revealed mixed effects of the influence of explicit financial incentives on the quality of patient care. The effect of explicit financial incentives on physician behavior is complicated by a lack of understanding of the incentive structure by the managed care organization and the physician. The lack of a universally acceptable definition of quality renders it important that future researchers identify the term explicitly.

  3. Self-assembled plasmonic metamaterials

    NASA Astrophysics Data System (ADS)

    Mühlig, Stefan; Cunningham, Alastair; Dintinger, José; Scharf, Toralf; Bürgi, Thomas; Lederer, Falk; Rockstuhl, Carsten

    2013-07-01

    Nowadays for the sake of convenience most plasmonic nanostructures are fabricated by top-down nanofabrication technologies. This offers great degrees of freedom to tailor the geometry with unprecedented precision. However, it often causes disadvantages as well. The structures available are usually planar and periodically arranged. Therefore, bulk plasmonic structures are difficult to fabricate and the periodic arrangement causes undesired effects, e.g., strong spatial dispersion is observed in metamaterials. These limitations can be mitigated by relying on bottom-up nanofabrication technologies. There, self-assembly methods and techniques from the field of colloidal nanochemistry are used to build complex functional unit cells in solution from an ensemble of simple building blocks, i.e., in most cases plasmonic nanoparticles. Achievable structures are characterized by a high degree of nominal order only on a short-range scale. The precise spatial arrangement across larger dimensions is not possible in most cases; leading essentially to amorphous structures. Such self-assembled nanostructures require novel analytical means to describe their properties, innovative designs of functional elements that possess a desired near- and far-field response, and entail genuine nanofabrication and characterization techniques. Eventually, novel applications have to be perceived that are adapted to the specifics of the self-assembled nanostructures. This review shall document recent progress in this field of research. Emphasis is put on bottom-up amorphous metamaterials. We document the state-of-the-art but also critically assess the problems that have to be overcome.

  4. Disentangling Rheumatoid Arthritis Patients’ Implicit and Explicit Attitudes toward Methotrexate

    PubMed Central

    Linn, Annemiek J.; Vandeberg, Lisa; Wennekers, Annemarie M.; Vervloet, Marcia; van Dijk, Liset; van den Bemt, Bart J. F.

    2016-01-01

    Medication non-adherence is a major public health problem that has been termed an ‘invisible epidemic.’ Non-adherence is not only associated with negative clinical consequences but can also result in substantial healthcare costs. Up to now, effective adherence interventions are scarce and a more comprehensive model of adherence determinants is required to target the determinants for not taking the medication as prescribed. Current approaches only included explicit attitudes such as self-reported evaluations of medication as determinants, neglecting the role of associative processes that shape implicit attitudes. Implicit processes can predict daily behavior more accurately than explicit attitudes. Our aim is to assess explicit and implicit attitudes toward medication and explore the relation with beliefs, adherence and clinical (laboratory) outcomes in chronically ill patients. Fifty two Rheumatic Arthritis (RA) patients’ attitudes toward Methotrexate (MTX) were explicitly (self-reported) and implicitly (Single-Category Implicit Association Test) assessed and related to the Beliefs about Medicine Questionnaire, the Compliance Questionnaire on Rheumatology and laboratory parameters [Erythrocyte Sedimentation Rate (ESR), C-Reactive Protein (CRP)]. Results show that explicit attitudes were positive and health-related. Implicit attitudes were, however, negative and sickness-related. Half of the patients displayed explicitly positive but implicitly negative attitudes. Explicit attitudes were positively related to ESR. A positive relationship between implicit attitudes and disease duration was observed. In this study, we have obtained evidence suggesting that the measurement of implicit attitudes and associations provides different information than explicit, self-reported attitudes toward medication. Since patients’ implicit attitudes deviated from explicit attitudes, we can conclude that the relationship between implicit attitudes and medication adherence is

  5. Inlet nozzle assembly

    DOEpatents

    Christiansen, D.W.; Karnesky, R.A.; Knight, R.C.; Precechtel, D.R.; Smith, B.G.

    1985-09-09

    An inlet nozzle assembly for directing coolant into the duct tube of a fuel assembly attached thereto. The nozzle assembly includes a shell for housing separable components including an orifice plate assembly, a neutron shield block, a neutron shield plug, and a diffuser block. The orifice plate assembly includes a plurality of stacked plates of differently configurated and sized openings for directing coolant therethrough in a predesigned flow pattern.

  6. Bridging implicit and explicit solvent approaches for membrane electrostatics.

    PubMed Central

    Lin, Jung-Hsin; Baker, Nathan A; McCammon, J Andrew

    2002-01-01

    Conformations of a zwitterionic bilayer were sampled from a molecular dynamics simulation and their electrostatic properties analyzed by solution of the Poisson equation. These traditionally implicit electrostatic calculations were performed in the presence of varying amounts of explicit solvent to assess the magnitude of error introduced by a uniform dielectric description of water surrounding the bilayer. It was observed that membrane dipole potential calculations in the presence of explicit water were significantly different than wholly implicit solvent calculations with the calculated dipole potential converging to a reasonable value when four or more hydration layers were included explicitly. PMID:12202363

  7. Constructing explicit magnetic analogies for the dynamics of glass forming liquids

    PubMed Central

    Stevenson, Jacob D.; Walczak, Aleksandra M.; Hall, Randall W.; Wolynes, Peter G.

    2008-01-01

    By defining a spatially varying replica overlap parameter for a supercooled liquid referenced to an ensemble of fiducial liquid state configurations, we explicitly construct a constrained replica free energy functional that maps directly onto an Ising Hamiltonian with both random fields and random interactions whose statistics depend on the liquid structure. Renormalization group results for random magnets when combined with these statistics for the Lennard-Jones glass suggest that discontinuous replica symmetry breaking would occur if a liquid with short range interactions could be equilibrated at a sufficiently low temperature where its mean field configurational entropy would vanish, even though the system strictly retains a finite configurational entropy. PMID:19026064

  8. Tilt assembly for tracking solar collector assembly

    DOEpatents

    Almy, Charles; Peurach, John; Sandler, Reuben

    2012-01-24

    A tilt assembly is used with a solar collector assembly of the type comprising a frame, supporting a solar collector, for movement about a tilt axis by pivoting a drive element between first and second orientations. The tilt assembly comprises a drive element coupler connected to the drive element and a driver, the driver comprising a drive frame, a drive arm and a drive arm driver. The drive arm is mounted to the drive frame for pivotal movement about a drive arm axis. Movement on the drive arm mimics movement of the drive element. Drive element couplers can extend in opposite directions from the outer portion of the drive arm, whereby the assembly can be used between adjacent solar collector assemblies in a row of solar collector assemblies.

  9. Latent spatial models and sampling design for landscape genetics

    USGS Publications Warehouse

    Hanks, Ephraim M.; Hooten, Mevin B.; Knick, Steven T.; Oyler-McCance, Sara J.; Fike, Jennifer A.; Cross, Todd B.; Schwartz, Michael K.

    2016-01-01

    We propose a spatially-explicit approach for modeling genetic variation across space and illustrate how this approach can be used to optimize spatial prediction and sampling design for landscape genetic data. We propose a multinomial data model for categorical microsatellite allele data commonly used in landscape genetic studies, and introduce a latent spatial random effect to allow for spatial correlation between genetic observations. We illustrate how modern dimension reduction approaches to spatial statistics can allow for efficient computation in landscape genetic statistical models covering large spatial domains. We apply our approach to propose a retrospective spatial sampling design for greater sage-grouse (Centrocercus urophasianus) population genetics in the western United States.

  10. MTI Focal Plane Assembly Design and Performance

    SciTech Connect

    Ballard, M.; Rienstra, J.L.

    1999-06-17

    The focal plane assembly for the Multispectral Thermal Imager (MTI) consists of sensor chip assemblies, optical filters, and a vacuum enclosure. Sensor chip assemblies, composed of linear detector arrays and readout integrated circuits, provide spatial resolution in the cross-track direction for the pushbroom imager. Optical filters define 15 spectral bands in a range from 0.45 {micro}m to 10.7 {micro}m. All the detector arrays are mounted on a single focal plane and are designed to operate at 75 K. Three pairs of sensor chip assemblies (SCAs) are required to provide cross-track coverage in all 15 spectral bands. Each pair of SCAs includes detector arrays made from silicon, iridium antimonide, and mercury cadmium telluride. Read out integrated circuits multiplex the signals from the detectors to 18 separate video channels. Optical filter assemblies defining the spectral bands are mounted over the linear detector arrays. Each filter assembly consists of several filter strips bonded together side-by-side. The MTI focal plane assembly has been integrated with the rest of the payload and has undergone detailed testing and calibration. This paper includes representative test data for the various spectral bands and the overall performance of the focal plane assembly.

  11. Moderators of the Relationship between Implicit and Explicit Evaluation

    PubMed Central

    Nosek, Brian A.

    2005-01-01

    Automatic and controlled modes of evaluation sometimes provide conflicting reports of the quality of social objects. This paper presents evidence for four moderators of the relationship between automatic (implicit) and controlled (explicit) evaluations. Implicit and explicit preferences were measured for a variety of object pairs using a large sample. The average correlation was r = .36, and 52 of the 57 object pairs showed a significant positive correlation. Results of multilevel modeling analyses suggested that: (a) implicit and explicit preferences are related, (b) the relationship varies as a function of the objects assessed, and (c) at least four variables moderate the relationship – self-presentation, evaluative strength, dimensionality, and distinctiveness. The variables moderated implicit-explicit correspondence across individuals and accounted for much of the observed variation across content domains. The resulting model of the relationship between automatic and controlled evaluative processes is grounded in personal experience with the targets of evaluation. PMID:16316292

  12. Explicit and Implicit Emotion Regulation: A Dual-Process Framework

    PubMed Central

    Gyurak, Anett; Gross, James J.; Etkin, Amit

    2012-01-01

    It is widely acknowledged that emotions can be regulated in an astonishing variety of ways. Most research to date has focused on explicit (effortful) forms of emotion regulation. However, there is growing research interest in implicit (automatic) forms of emotion regulation. To organize emerging findings, we present a dual-process framework that integrates explicit and implicit forms of emotion regulation, and argue that both forms of regulation are necessary for well-being. In the first section of this review, we provide a broad overview of the construct of emotion regulation, with an emphasis on explicit and implicit processes. In the second section, we focus on explicit emotion regulation, considering both neural mechanisms that are associated with these processes and their experiential and physiological consequences. In the third section, we turn to several forms of implicit emotion regulation, and integrate the burgeoning literature in this area. We conclude by outlining open questions and areas for future research. PMID:21432682

  13. Implicit and explicit learning in individuals with agrammatic aphasia.

    PubMed

    Schuchard, Julia; Thompson, Cynthia K

    2014-06-01

    Implicit learning is a process of acquiring knowledge that occurs without conscious awareness of learning, whereas explicit learning involves the use of overt strategies. To date, research related to implicit learning following stroke has been largely restricted to the motor domain and has rarely addressed implications for language. The present study investigated implicit and explicit learning of an auditory word sequence in 10 individuals with stroke-induced agrammatic aphasia and 18 healthy age-matched participants using an adaptation of the Serial Reaction Time task. Individuals with aphasia showed significant learning under implicit, but not explicit, conditions, whereas age-matched participants learned under both conditions. These results suggest significant implicit learning ability in agrammatic aphasia. Furthermore, results of an auditory sentence span task indicated working memory deficits in individuals with agrammatic aphasia, which are discussed in relation to explicit and implicit learning processes.

  14. Multidimensional explicit difference schemes for hyperbolic conservation laws

    NASA Technical Reports Server (NTRS)

    Van Leer, B.

    1984-01-01

    First- and second-order explicit difference schemes are derived for a three-dimensional hyperbolic system of conservation laws, without recourse to dimensional factorization. All schemes are upwind biased and optimally stable.

  15. Multidimensional explicit difference schemes for hyperbolic conservation laws

    NASA Technical Reports Server (NTRS)

    Vanleer, B.

    1983-01-01

    First and second order explicit difference schemes are derived for a three dimensional hyperbolic system of conservation laws, without recourse to dimensional factorization. All schemes are upwind (backward) biased and optimally stable.

  16. Implicit and explicit representations of hand position in tool use.

    PubMed

    Rand, Miya K; Heuer, Herbert

    2013-01-01

    Understanding the interactions of visual and proprioceptive information in tool use is important as it is the basis for learning of the tool's kinematic transformation and thus skilled performance. This study investigated how the CNS combines seen cursor positions and felt hand positions under a visuo-motor rotation paradigm. Young and older adult participants performed aiming movements on a digitizer while looking at rotated visual feedback on a monitor. After each movement, they judged either the proprioceptively sensed hand direction or the visually sensed cursor direction. We identified asymmetric mutual biases with a strong visual dominance. Furthermore, we found a number of differences between explicit and implicit judgments of hand directions. The explicit judgments had considerably larger variability than the implicit judgments. The bias toward the cursor direction for the explicit judgments was about twice as strong as for the implicit judgments. The individual biases of explicit and implicit judgments were uncorrelated. Biases of these judgments exhibited opposite sequential effects. Moreover, age-related changes were also different between these judgments. The judgment variability was decreased and the bias toward the cursor direction was increased with increasing age only for the explicit judgments. These results indicate distinct explicit and implicit neural representations of hand direction, similar to the notion of distinct visual systems.

  17. Five challenges for spatial epidemic models

    PubMed Central

    Riley, Steven; Eames, Ken; Isham, Valerie; Mollison, Denis; Trapman, Pieter

    2015-01-01

    Infectious disease incidence data are increasingly available at the level of the individual and include high-resolution spatial components. Therefore, we are now better able to challenge models that explicitly represent space. Here, we consider five topics within spatial disease dynamics: the construction of network models; characterising threshold behaviour; modelling long-distance interactions; the appropriate scale for interventions; and the representation of population heterogeneity. PMID:25843387

  18. Spatial cognition

    NASA Technical Reports Server (NTRS)

    Kaiser, Mary Kister; Remington, Roger

    1988-01-01

    Spatial cognition is the ability to reason about geometric relationships in the real (or a metaphorical) world based on one or more internal representations of those relationships. The study of spatial cognition is concerned with the representation of spatial knowledge, and our ability to manipulate these representations to solve spatial problems. Spatial cognition is utilized most critically when direct perceptual cues are absent or impoverished. Examples are provided of how human spatial cognitive abilities impact on three areas of space station operator performance: orientation, path planning, and data base management. A videotape provides demonstrations of relevant phenomena (e.g., the importance of orientation for recognition of complex, configural forms). The presentation is represented by abstract and overhead visuals only.

  19. Firearm trigger assembly

    DOEpatents

    Crandall, David L.; Watson, Richard W.

    2010-02-16

    A firearm trigger assembly for use with a firearm includes a trigger mounted to a forestock of the firearm so that the trigger is movable between a rest position and a triggering position by a forwardly placed support hand of a user. An elongated trigger member operatively associated with the trigger operates a sear assembly of the firearm when the trigger is moved to the triggering position. An action release assembly operatively associated with the firearm trigger assembly and a movable assembly of the firearm prevents the trigger from being moved to the triggering position when the movable assembly is not in the locked position.

  20. Autonomous electrochromic assembly

    SciTech Connect

    Berland, Brian Spencer; Lanning, Bruce Roy; Stowell, Jr., Michael Wayne

    2015-03-10

    This disclosure describes system and methods for creating an autonomous electrochromic assembly, and systems and methods for use of the autonomous electrochromic assembly in combination with a window. Embodiments described herein include an electrochromic assembly that has an electrochromic device, an energy storage device, an energy collection device, and an electrochromic controller device. These devices may be combined into a unitary electrochromic insert assembly. The electrochromic assembly may have the capability of generating power sufficient to operate and control an electrochromic device. This control may occur through the application of a voltage to an electrochromic device to change its opacity state. The electrochromic assembly may be used in combination with a window.

  1. Spatially explicit estimates of prey consumption reveal a new krill predator in the Southern Ocean.

    PubMed

    Walters, Andrea; Lea, Mary-Anne; van den Hoff, John; Field, Iain C; Virtue, Patti; Sokolov, Sergei; Pinkerton, Matt H; Hindell, Mark A

    2014-01-01

    Development in foraging behaviour and dietary intake of many vertebrates are age-structured. Differences in feeding ecology may correlate with ontogenetic shifts in dispersal patterns, and therefore affect foraging habitat and resource utilization. Such life-history traits have important implications in interpreting tropho-dynamic linkages. Stable isotope ratios in the whiskers of sub-yearling southern elephant seals (Mirounga leonina; n = 12) were used, in conjunction with satellite telemetry and environmental data, to examine their foraging habitat and diet during their first foraging migration. The trophic position of seals from Macquarie Island (54°30'S, 158°57'E) was estimated using stable carbon (δ(1) (3)C) and nitrogen (δ(15)N) ratios along the length of the whisker, which provided a temporal record of prey intake. Satellite-relayed data loggers provided details on seal movement patterns, which were related to isotopic concentrations along the whisker. Animals fed in waters south of the Polar Front (>60°S) or within Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR) Statistical Subareas 88.1 and 88.2, as indicated by both their depleted δ(1) (3)C (<-20‰) values, and tracking data. They predominantly exploited varying proportions of mesopelagic fish and squid, and crustaceans, such as euphausiids, which have not been reported as a prey item for this species. Comparison of isotopic data between sub-yearlings, and 1, 2 and 3 yr olds indicated that sub-yearlings, limited by their size, dive capabilities and prey capture skills to feeding higher in the water column, fed at a lower trophic level than older seals. This is consistent with the consumption of euphausiids and most probably, Antarctic krill (Euphausia superba), which constitute an abundant, easily accessible source of prey in water masses used by this age class of seals. Isotopic assessment and concurrent tracking of seals are successfully used here to identify ontogenetic shifts in broad-scale foraging habitat use and diet preferences in a highly migratory predator.

  2. EnviroAtlas: A Spatially Explicit Tool Combining Climate Change Scenarios and Ecosystem ServicesIndicators

    EPA Science Inventory

    While discussions of global climate change tend to center on greenhouse gases and sea level rise, other factors, such as technological developments, land and energy use, economics, and population growth all play a critical role in understanding climate change. There is increasin...

  3. Spatially-Explicit Water Balance Implications of Carbon Capture and Sequestration

    NASA Astrophysics Data System (ADS)

    Sathre, R. C.; Breunig, H.; Greenblatt, J.; Larsen, P.; McKone, T.; Quinn, N. W.; Scown, C.

    2012-12-01

    Carbon dioxide capture and sequestration (CCS) is increasingly discussed as a means to reduce greenhouse gas emissions and limit climate destabilization. CCS implementation is likely to have varied effects on local water balances. On one hand, power plants equipped with CO2 capture may require substantially more cooling water than plants without CO2 capture. On the other hand, injection of captured CO2 into saline aquifers may require brine extraction for pressure management, and the extracted brine may be desalinated and used as a fresh water resource. We conduct a geospatial analysis detailing how CCS implementation affects the county-level balance of water supply and demand across the contiguous United States. We calculate baseline water stress indices for each county for the year 2005, and explore CCS deployment scenarios for the year 2030 and their impacts on local water supply and demand. We use GIS mapping to identify locations where water supply will likely not constrain CCS deployment, locations where fresh water supply may constrain CCS deployment but brine extraction can overcome these constraints, and locations where limited fresh water and brine availability are likely to constrain CCS deployment. We conduct sensitivity analyses to determine bounds of uncertainty and to identify the most influential parameters. We find that CCS can strongly affect freshwater supply and demand in specific regions, but overall it has a moderate effect on water balances.; Locations of 217 coal-fired (red) and natural gas-fired (green) power plants that meet criteria for CO2 capture. Size of circle corresponds to amount of CO2 emission in 2005.

  4. EVALUATING HABITAT AS A SURROGATE FOR POPULATION VIABILITY USING A SPATIALLY EXPLICIT POPULATION MODEL

    EPA Science Inventory

    Because data for conservation planning are always limited, surrogates are often substituted for intractable measurements such as species richness or population viability. We examined the ability of habitat quality to act as a surrogate for population performance for both Red-sho...

  5. A spatially explicit neutral model of beta-diversity in tropical forests.

    PubMed

    Chave, Jérôme; Leigh, Egbert G

    2002-09-01

    To represent species turnover in tropical rain forest, we use a neutral model where a tree's fate is not affected by what species it belongs to, seeds disperse a limited distance from their parents, and speciation is in equilibrium with random extinction. We calculate the similarity function, the probability F(r) that two trees separated by a distance r belong to the same species, assuming that the dispersal kernel P(r), the distribution of seeds about their parents and the prospects of mortality and reproduction, are the same for all trees regardless of their species. If P(r) is radially symmetric Gaussian with mean-square dispersal distance sigma, F(r) can be expressed in closed form. If P(r) is a radially symmetric Cauchy distribution, then, in two-dimensional space, F(r) is proportional to 1/r for large r. Analytical results are compared with individual-based simulations, and the relevance to field observations is discussed.

  6. A spatially explicit suspended-sediment load model for western Oregon

    USGS Publications Warehouse

    Wise, Daniel R.; O'Connor, Jim

    2016-06-27

    Knowledge of the regionally important patterns and factors in suspended-sediment sources and transport could support broad-scale, water-quality management objectives and priorities. Because of biases and limitations of this model, however, these results are most applicable for general comparisons and for broad areas such as large watersheds. For example, despite having similar area, precipitation, and land-use, the Umpqua River Basin generates 68 percent more suspended sediment than the Rogue River Basin, chiefly because of the large area of Coast Range sedimentary province in the Umpqua River Basin. By contrast, the Rogue River Basin contains a much larger area of Klamath terrane rocks, which produce significantly less suspended load, although recent fire disturbance (in 2002) has apparently elevated suspended sediment yields in the tributary Illinois River watershed. Fine-scaled analysis, however, will require more intensive, locally focused measurements.

  7. Improvement, Verification, and Refinement of Spatially Explicit Exposure Models in Risk Assessment - SEEM Demonstration

    DTIC Science & Technology

    2015-06-01

    weight CFR Code of Federal Regulations DoD Department of Defense DW dry weight EHQ ecological hazard quotient ERA ecological risk assessment...based risk calculations. Although not the expected outcome, the results emphasize that if habitat is not heterogeneous at ecologically -relevant scales...blood lead toxicity reference value (TRV) to derive a risk/hazard estimate. Using ecological hazard quotients (EHQ), SEEM output is compared to

  8. COMPARING ECOLOGICALLY SCALED LANDSCAPE INDICES WITH A SPATIALLY EXPLICIT POPULATION MODEL

    EPA Science Inventory

    Vos et al. (2001) proposed a class of landscape indices they called ecologically scaled. By this they meant that the indices incorporate species-specific characteristics that are assumed to be important for population viability. I used their two ideas of species carrying capaci...

  9. Ecosystem Services in Agricultural Landscapes: A Spatially Explicit Approach to Support Sustainable Soil Management

    PubMed Central

    Crossman, Neville D.; MacEwan, Richard J.; Wallace, D. Dugal; Bennett, Lauren T.

    2014-01-01

    Soil degradation has been associated with a lack of adequate consideration of soil ecosystem services. We demonstrate a broadly applicable method for mapping changes in the supply of two priority soil ecosystem services to support decisions about sustainable land-use configurations. We used a landscape-scale study area of 302 km2 in northern Victoria, south-eastern Australia, which has been cleared for intensive agriculture. Indicators representing priority soil services (soil carbon sequestration and soil water storage) were quantified and mapped under both a current and a future 25-year land-use scenario (the latter including a greater diversity of land uses and increased perennial crops and irrigation). We combined diverse methods, including soil analysis using mid-infrared spectroscopy, soil biophysical modelling, and geostatistical interpolation. Our analysis suggests that the future land-use scenario would increase the landscape-level supply of both services over 25 years. Soil organic carbon content and water storage to 30 cm depth were predicted to increase by about 11% and 22%, respectively. Our service maps revealed the locations of hotspots, as well as potential trade-offs in service supply under new land-use configurations. The study highlights the need to consider diverse land uses in sustainable management of soil services in changing agricultural landscapes. PMID:24616632

  10. Assessing Sustainability of Coral Reef Ecosystem Services using a Spatially-Explicit Decision Support Tool

    EPA Science Inventory

    Forecasting and communicating the potential outcomes of decision options requires support tools that aid in evaluating alternative scenarios in a user-friendly context and that highlight variables relevant to the decision options and valuable stakeholders. Envision is a GIS-base...

  11. Angular velocity variations and stability of spatially explicit prey-predator systems.

    PubMed

    Abta, Refael; Shnerb, Nadav M

    2007-05-01

    The linear instability of Lotka-Volterra orbits in the homogenous manifold of a two-patch system is analyzed. The origin of these orbits instability in the absence of prey migration is revealed to be the dependence of the angular velocity on the azimuthal angle; in particular, the system desynchronizes at the exit from the slow part of the trajectory. Using this insight, an analogous model of a two coupled oscillator is presented and shown to yield the same type of linear instability. This enables one to incorporate the linear instability within a recently presented general framework that allows for comparison of all known stabilization mechanisms and for simple classification of observed oscillations.

  12. Large scale, spatially-explicit test of the refuge strategy for delaying insecticide resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The refuge strategy used worldwide to delay the evolution of arthropod resistance to pesticides consists of leaving areas where a pesticide is not used near fields where the pesticide is used. Yet, empirical approaches are lacking to characterize effects of putative refuges on resistance evolution. ...

  13. The National Atlas of Ecosystem Services: Spatially Explicit Characterization of Ecosystem Services

    EPA Science Inventory

    The US EPA’s Ecosystem Services Research Program (ESRP) is conducting transdisciplinary research to develop tools to enable decision-makers at all levels of governance to proactively conserve ecosystem services. One of these tools is a National Atlas of Ecosystem Services which ...

  14. Spatially explicit estimation of aboveground boreal forest biomass in the Yukon River Basin, Alaska

    USGS Publications Warehouse

    Ji, Lei; Wylie, Bruce K.; Brown, Dana R. N.; Peterson, Birgit E.; Alexander, Heather D.; Mack, Michelle C.; Rover, Jennifer R.; Waldrop, Mark P.; McFarland, Jack W.; Chen, Xuexia; Pastick, Neal J.

    2015-01-01

    Quantification of aboveground biomass (AGB) in Alaska’s boreal forest is essential to the accurate evaluation of terrestrial carbon stocks and dynamics in northern high-latitude ecosystems. Our goal was to map AGB at 30 m resolution for the boreal forest in the Yukon River Basin of Alaska using Landsat data and ground measurements. We acquired Landsat images to generate a 3-year (2008–2010) composite of top-of-atmosphere reflectance for six bands as well as the brightness temperature (BT). We constructed a multiple regression model using field-observed AGB and Landsat-derived reflectance, BT, and vegetation indices. A basin-wide boreal forest AGB map at 30 m resolution was generated by applying the regression model to the Landsat composite. The fivefold cross-validation with field measurements had a mean absolute error (MAE) of 25.7 Mg ha−1 (relative MAE 47.5%) and a mean bias error (MBE) of 4.3 Mg ha−1(relative MBE 7.9%). The boreal forest AGB product was compared with lidar-based vegetation height data; the comparison indicated that there was a significant correlation between the two data sets.

  15. EnviroAtlas: A Spatially Explicit Tool Combining Climate Change Scenarios with Ecosystem Services Indicators

    EPA Science Inventory

    While discussions of global climate change tend to center on greenhouse gases and seal level rise, other factors, such as technological developments, land and energy use, economics, and population growth all play a critical role in understanding climate change. There is increasi...

  16. Spatially explicit modeling of lesser prairie-chicken lek density in Texas

    USGS Publications Warehouse

    Timmer, Jennifer M.; Butler, M.J.; Ballard, Warren; Boal, Clint W.; Whitlaw, H.A.

    2014-01-01

    As with many other grassland birds, lesser prairie-chickens (Tympanuchus pallidicinctus) have experienced population declines in the Southern Great Plains. Currently they are proposed for federal protection under the Endangered Species Act. In addition to a history of land-uses that have resulted in habitat loss, lesser prairie-chickens now face a new potential disturbance from energy development. We estimated lek density in the occupied lesser prairie-chicken range of Texas, USA, and modeled anthropogenic and vegetative landscape features associated with lek density. We used an aerial line-transect survey method to count lesser prairie-chicken leks in spring 2010 and 2011 and surveyed 208 randomly selected 51.84-km(2) blocks. We divided each survey block into 12.96-km(2) quadrats and summarized landscape variables within each quadrat. We then used hierarchical distance-sampling models to examine the relationship between lek density and anthropogenic and vegetative landscape features and predict how lek density may change in response to changes on the landscape, such as an increase in energy development. Our best models indicated lek density was related to percent grassland, region (i.e., the northeast or southwest region of the Texas Panhandle), total percentage of grassland and shrubland, paved road density, and active oil and gas well density. Predicted lek density peaked at 0.39leks/12.96km(2) (SE=0.09) and 2.05leks/12.96km(2) (SE=0.56) in the northeast and southwest region of the Texas Panhandle, respectively, which corresponds to approximately 88% and 44% grassland in the northeast and southwest region. Lek density increased with an increase in total percentage of grassland and shrubland and was greatest in areas with lower densities of paved roads and lower densities of active oil and gas wells. We used the 2 most competitive models to predict lek abundance and estimated 236 leks (CV=0.138, 95% CI=177-306leks) for our sampling area. Our results suggest that managing landscapes to maintain a greater percentage of grassland and shrubland on the landscape with a greater ratio of grasses to shrubs in the northeast Panhandle should promote greater lek density. Furthermore, increases in paved road and active oil and gas well densities may reduce lek density. This information will be useful for future conservation planning efforts for land protection, policy decisions, and decision analyses.

  17. Development and evaluation of a spatially-explicit index of Chesapeake Bay health.

    PubMed

    Williams, Michael; Longstaff, Ben; Buchanan, Claire; Llansó, Roberto; Dennison, William

    2009-01-01

    In an effort to better portray changing health conditions in Chesapeake Bay and support restoration efforts, a Bay Health Index (BHI) was developed to assess the ecological effects of nutrient and sediment loading on 15 regions of the estuary. Three water quality and three biological measures were combined to formulate the BHI. Water quality measures of chlorophyll-a, dissolved oxygen, and Secchi depth were averaged to create the Water Quality Index (WQI), and biological measures of the phytoplankton and benthic indices of biotic integrity (P-IBI and B-IBI, respectively) and the area of submerged aquatic vegetation (SAV) were averaged to create the Biotic Index (BI). The WQI and BI were subsequently averaged to give a BHI value representing ecological conditions over the growing season (i.e., March-October). Lower chlorophyll-a concentrations, higher dissolved oxygen concentrations, deeper Secchi depths, higher phytoplankton and benthic indices relative to ecological health-based thresholds, and more extensive SAV area relative to restoration goal areas, characterized the least-impaired regions. The WQI, P-IBI and BHI were significantly correlated with (1) regional river flow (r=-0.64, -0.57 and -0.49, respectively; p<0.01), (2) nitrogen (N), phosphorus (P) and sediment loads (all positively correlated with flow), and (3) the sum of developed and agricultural land use (highest annual r(2)=0.86, 0.71 and 0.68, respectively) in most reporting regions, indicating that the BHI is strongly regulated by nutrient and sediment loads from these land uses. The BHI uses ecological health-based thresholds that give an accurate representation of the health conditions in Chesapeake Bay and was the basis for an annual, publicly released environmental report card that debuted in 2007.

  18. Impact of Parkinson's disease and dopaminergic medication on adaptation to explicit and implicit visuomotor perturbations.

    PubMed

    Mongeon, David; Blanchet, Pierre; Messier, Julie

    2013-03-01

    The capacity to learn new visuomotor associations is fundamental to adaptive motor behavior. Evidence suggests visuomotor learning deficits in Parkinson's disease (PD). However, the exact nature of these deficits and the ability of dopamine medication to improve them are under-explored. Previous studies suggested that learning driven by large and small movement errors engaged distinct neural mechanisms. Here, we investigated whether PD patients have a generalized impairment in visuomotor learning or selective deficits in learning from large explicit errors which engages cognitive strategies or small imperceptible movement errors involving primarily implicit learning processes. Visuomotor learning skills of non-medicated and medicated patients were assessed in two reaching tasks in which the size of visuospatial errors experienced during learning was manipulated using a novel three-dimensional virtual reality environment. In the explicit perturbation task, the visuomotor perturbation was applied suddenly resulting in large consciously detected initial spatial errors, whereas in the implicit perturbation task, the perturbation was gradually introduced in small undetectable steps such that subjects never experienced large movement errors. A major finding of this study was that PD patients in non-medicated and medicated conditions displayed slower learning rates and smaller adaptation magnitudes than healthy subjects in the explicit perturbation task, but performance similar to healthy controls in the implicit perturbation task. Also, non-medicated patients showed an average reduced deadaptation relative to healthy controls when exposed to the large errors produced by the sudden removal of the perturbation in both the explicit and implicit perturbation tasks. Although dopaminergic medication consistently improved motor signs, it produced a variable impact on learning the explicit perturbation and deadaptation and unexpectedly worsened performance in some patients

  19. Coarse-grained Simulations of Viral Assembly

    NASA Astrophysics Data System (ADS)

    Elrad, Oren M.

    2011-12-01

    becomes strong enough to stabilize frustrated intermediates that are incompatible with the ground state structure. In cases where the subunits are capable of assembly into different morphologies, we find that maintaining the precise spatial arrangement of subunits seen in the crystal structure is possible even if non-native interactions are disfavored by as little as the thermal energy.

  20. Spatially resolved multicomponent gels

    NASA Astrophysics Data System (ADS)

    Draper, Emily R.; Eden, Edward G. B.; McDonald, Tom O.; Adams, Dave J.

    2015-10-01

    Multicomponent supramolecular systems could be used to prepare exciting new functional materials, but it is often challenging to control the assembly across multiple length scales. Here we report a simple approach to forming patterned, spatially resolved multicomponent supramolecular hydrogels. A multicomponent gel is first formed from two low-molecular-weight gelators and consists of two types of fibre, each formed by only one gelator. One type of fibre in this ‘self-sorted network’ is then removed selectively by a light-triggered gel-to-sol transition. We show that the remaining network has the same mechanical properties as it would have done if it initially formed alone. The selective irradiation of sections of the gel through a mask leads to the formation of patterned multicomponent networks, in which either one or two networks can be present at a particular position with a high degree of spatial control.

  1. Reconstruction of explicit structural properties at the nanoscale via spectroscopic microscopy

    NASA Astrophysics Data System (ADS)

    Cherkezyan, Lusik; Zhang, Di; Subramanian, Hariharan; Taflove, Allen; Backman, Vadim

    2016-02-01

    The spectrum registered by a reflected-light bright-field spectroscopic microscope (SM) can quantify the microscopically indiscernible, deeply subdiffractional length scales within samples such as biological cells and tissues. Nevertheless, quantification of biological specimens via any optical measures most often reveals ambiguous information about the specific structural properties within the studied samples. Thus, optical quantification remains nonintuitive to users from the diverse fields of technique application. In this work, we demonstrate that the SM signal can be analyzed to reconstruct explicit physical measures of internal structure within label-free, weakly scattering samples: characteristic length scale and the amplitude of spatial refractive-index (RI) fluctuations. We present and validate the reconstruction algorithm via finite-difference time-domain solutions of Maxwell's equations on an example of exponential spatial correlation of RI. We apply the validated algorithm to experimentally measure structural properties within isolated cells from two genetic variants of HT29 colon cancer cell line as well as within a prostate tissue biopsy section. The presented methodology can lead to the development of novel biophotonics techniques that create two-dimensional maps of explicit structural properties within biomaterials: the characteristic size of macromolecular complexes and the variance of local mass density.

  2. Reconstruction of explicit structural properties at the nanoscale via spectroscopic microscopy.

    PubMed

    Cherkezyan, Lusik; Zhang, Di; Subramanian, Hariharan; Taflove, Allen; Backman, Vadim

    2016-02-01

    The spectrum registered by a reflected-light bright-field spectroscopic microscope (SM) can quantify the microscopically indiscernible, deeply subdiffractional length scales within samples such as biological cells and tissues. Nevertheless, quantification of biological specimens via any optical measures most often reveals ambiguous information about the specific structural properties within the studied samples. Thus, optical quantification remains nonintuitive to users from the diverse fields of technique application. In this work, we demonstrate that the SM signal can be analyzed to reconstruct explicit physical measures of internal structure within label-free, weakly scattering samples: characteristic length scale and the amplitude of spatial refractive-index (RI) fluctuations. We present and validate the reconstruction algorithm via finite-difference time-domain solutions of Maxwell's equations on an example of exponential spatial correlation of RI. We apply the validated algorithm to experimentally measure structural properties within isolated cells from two genetic variants of HT29 colon cancer cell line as well as within a prostate tissue biopsy section. The presented methodology can lead to the development of novel biophotonics techniques that create two-dimensional maps of explicit structural properties within biomaterials: the characteristic size of macromolecular complexes and the variance of local mass density.

  3. Reconstruction of explicit structural properties at the nanoscale via spectroscopic microscopy

    PubMed Central

    Cherkezyan, Lusik; Zhang, Di; Subramanian, Hariharan; Taflove, Allen; Backman, Vadim

    2016-01-01

    Abstract. The spectrum registered by a reflected-light bright-field spectroscopic microscope (SM) can quantify the microscopically indiscernible, deeply subdiffractional length scales within samples such as biological cells and tissues. Nevertheless, quantification of biological specimens via any optical measures most often reveals ambiguous information about the specific structural properties within the studied samples. Thus, optical quantification remains nonintuitive to users from the diverse fields of technique application. In this work, we demonstrate that the SM signal can be analyzed to reconstruct explicit physical measures of internal structure within label-free, weakly scattering samples: characteristic length scale and the amplitude of spatial refractive-index (RI) fluctuations. We present and validate the reconstruction algorithm via finite-difference time-domain solutions of Maxwell’s equations on an example of exponential spatial correlation of RI. We apply the validated algorithm to experimentally measure structural properties within isolated cells from two genetic variants of HT29 colon cancer cell line as well as within a prostate tissue biopsy section. The presented methodology can lead to the development of novel biophotonics techniques that create two-dimensional maps of explicit structural properties within biomaterials: the characteristic size of macromolecular complexes and the variance of local mass density. PMID:26886803

  4. Solutions of the Taylor-Green Vortex Problem Using High-Resolution Explicit Finite Difference Methods

    NASA Technical Reports Server (NTRS)

    DeBonis, James R.

    2013-01-01

    A computational fluid dynamics code that solves the compressible Navier-Stokes equations was applied to the Taylor-Green vortex problem to examine the code s ability to accurately simulate the vortex decay and subsequent turbulence. The code, WRLES (Wave Resolving Large-Eddy Simulation), uses explicit central-differencing to compute the spatial derivatives and explicit Low Dispersion Runge-Kutta methods for the temporal discretization. The flow was first studied and characterized using Bogey & Bailley s 13-point dispersion relation preserving (DRP) scheme. The kinetic energy dissipation rate, computed both directly and from the enstrophy field, vorticity contours, and the energy spectra are examined. Results are in excellent agreement with a reference solution obtained using a spectral method and provide insight into computations of turbulent flows. In addition the following studies were performed: a comparison of 4th-, 8th-, 12th- and DRP spatial differencing schemes, the effect of the solution filtering on the results, the effect of large-eddy simulation sub-grid scale models, and the effect of high-order discretization of the viscous terms.

  5. Spatial Displays and Spatial Instruments

    NASA Technical Reports Server (NTRS)

    Ellis, Stephen R. (Editor); Kaiser, Mary K. (Editor); Grunwald, Arthur J. (Editor)

    1989-01-01

    The conference proceedings topics are divided into two main areas: (1) issues of spatial and picture perception raised by graphical electronic displays of spatial information; and (2) design questions raised by the practical experience of designers actually defining new spatial instruments for use in new aircraft and spacecraft. Each topic is considered from both a theoretical and an applied direction. Emphasis is placed on discussion of phenomena and determination of design principles.

  6. Membrane module assembly

    DOEpatents

    Kaschemekat, J.

    1994-03-15

    A membrane module assembly is described which is adapted to provide a flow path for the incoming feed stream that forces it into prolonged heat-exchanging contact with a heating or cooling mechanism. Membrane separation processes employing the module assembly are also disclosed. The assembly is particularly useful for gas separation or pervaporation. 2 figures.

  7. Membrane module assembly

    DOEpatents

    Kaschemekat, Jurgen

    1994-01-01

    A membrane module assembly adapted to provide a flow path for the incoming feed stream that forces it into prolonged heat-exchanging contact with a heating or cooling mechanism. Membrane separation processes employing the module assembly are also disclosed. The assembly is particularly useful for gas separation or pervaporation.

  8. Factors influencing university students' explicit and implicit sexual double standards.

    PubMed

    Sakaluk, John K; Milhausen, Robin R

    2012-01-01

    Quantitative research has resulted in inconsistent evidence for the existence of a sexual double standard, leading Crawford and Popp ( 2003 ) to issue a call for methodological innovation. The implicit association test (IAT; Greenwald, McGhee, & Schwartz, 1998 ) is a measure that may provide a means to examine the double standard without the contamination of the demand characteristics and social desirability biases that plague self-report research (Marks & Fraley, 2005 ). The purpose of this study was to examine the factors influencing explicit and implicit double standards, and to examine the relationship between these explicit and implicit double standards, and levels of socially desirable responding. One hundred and three university students completed a sexual double standard IAT, an explicit measure of the double standard, and measures of socially desirable responding. Hierarchical regression analysis indicated that levels of socially desirable responding were not related to implicit or explicit double standards. Men endorsed a stronger explicit traditional double standard than women, whereas for implicit sexual standards, men demonstrated a relatively gender-neutral evaluation and women demonstrated a strong reverse double standard. These results suggest the existence of a complex double standard, and indicate that more research of sexual attitudes should include implicit measures.

  9. Perspective: Explicitly correlated electronic structure theory for complex systems

    NASA Astrophysics Data System (ADS)

    Grüneis, Andreas; Hirata, So; Ohnishi, Yu-ya; Ten-no, Seiichiro

    2017-02-01

    The explicitly correlated approach is one of the most important breakthroughs in ab initio electronic structure theory, providing arguably the most compact, accurate, and efficient ansatz for describing the correlated motion of electrons. Since Hylleraas first used an explicitly correlated wave function for the He atom in 1929, numerous attempts have been made to tackle the significant challenges involved in constructing practical explicitly correlated methods that are applicable to larger systems. These include identifying suitable mathematical forms of a correlated wave function and an efficient evaluation of many-electron integrals. R12 theory, which employs the resolution of the identity approximation, emerged in 1985, followed by the introduction of novel correlation factors and wave function ansätze, leading to the establishment of F12 theory in the 2000s. Rapid progress in recent years has significantly extended the application range of explicitly correlated theory, offering the potential of an accurate wave-function treatment of complex systems such as photosystems and semiconductors. This perspective surveys explicitly correlated electronic structure theory, with an emphasis on recent stochastic and deterministic approaches that hold significant promise for applications to large and complex systems including solids.

  10. Sensor mount assemblies and sensor assemblies

    DOEpatents

    Miller, David H [Redondo Beach, CA

    2012-04-10

    Sensor mount assemblies and sensor assemblies are provided. In an embodiment, by way of example only, a sensor mount assembly includes a busbar, a main body, a backing surface, and a first finger. The busbar has a first end and a second end. The main body is overmolded onto the busbar. The backing surface extends radially outwardly relative to the main body. The first finger extends axially from the backing surface, and the first finger has a first end, a second end, and a tooth. The first end of the first finger is disposed on the backing surface, and the tooth is formed on the second end of the first finger.

  11. Explicit all-atom modeling of realistically sized ligand-capped nanocrystals.

    PubMed

    Kaushik, Ananth P; Clancy, Paulette

    2012-03-21

    We present a study of an explicit all-atom representation of nanocrystals of experimentally relevant sizes (up to 6 nm), "capped" with alkyl chain ligands, in vacuum. We employ all-atom molecular dynamics simulation methods in concert with a well-tested intermolecular potential model, MM3 (molecular mechanics 3), for the studies presented here. These studies include determining the preferred conformation of an isolated single nanocrystal (NC), pairs of isolated NCs, and (presaging studies of superlattice arrays) unit cells of NC superlattices. We observe that very small NCs (3 nm) behave differently in a superlattice as compared to larger NCs (6 nm and above) due to the conformations adopted by the capping ligands on the NC surface. Short ligands adopt a uniform distribution of orientational preferences, including some that lie against the face of the nanocrystal. In contrast, longer ligands prefer to interdigitate. We also study the effect of changing ligand length and ligand coverage on the NCs on the preferred ligand configurations. Since explicit all-atom modeling constrains the maximum system size that can be studied, we discuss issues related to coarse-graining the representation of the ligands, including a comparison of two commonly used coarse-grained models. We find that care has to be exercised in the choice of coarse-grained model. The data provided by these realistically sized ligand-capped NCs, determined using explicit all-atom models, should serve as a reference standard for future models of coarse-graining ligands using united atom models, especially for self-assembly processes.

  12. Interconnect assembly for an electronic assembly and assembly method therefor

    DOEpatents

    Gerbsch, Erich William

    2003-06-10

    An interconnect assembly and method for a semiconductor device, in which the interconnect assembly can be used in lieu of wirebond connections to form an electronic assembly. The interconnect assembly includes first and second interconnect members. The first interconnect member has a first surface with a first contact and a second surface with a second contact electrically connected to the first contact, while the second interconnect member has a flexible finger contacting the second contact of the first interconnect member. The first interconnect member is adapted to be aligned and registered with a semiconductor device having a contact on a first surface thereof, so that the first contact of the first interconnect member electrically contacts the contact of the semiconductor device. Consequently, the assembly method does not require any wirebonds, but instead merely entails aligning and registering the first interconnect member with the semiconductor device so that the contacts of the first interconnect member and the semiconductor device make electrically contact, and then contacting the second contact of the first interconnect member with the flexible finger of the second interconnect member.

  13. Explicit infiltration equations and the Lambert W-function

    NASA Astrophysics Data System (ADS)

    Parlange, J.-Y.; Barry, D. A.; Haverkamp, R.

    The Green and Ampt infiltration formula, as well as the Talsma and Parlange formula, are two-parameter equations that are both expressible in terms of Lambert W-functions. These representations are used to derive explicit, simple and accurate approximations for each case. The two infiltration formulas are limiting cases that can be deduced from an existing three-parameter infiltration equation, the third parameter allowing for interpolation between the limiting cases. Besides the limiting cases, there is another case for which the three-parameter infiltration equation yields an exact solution. The three-parameter equation can be solved by fixed-point iteration, a scheme which can be exploited to obtain a sequence of increasingly complex explicit infiltration equations. For routine use, a simple, explicit approximation to the three-parameter infiltration equation is derived. This approximation eliminates the need to iterate for most practical circumstances.

  14. The time course of explicit and implicit categorization.

    PubMed

    Smith, J David; Zakrzewski, Alexandria C; Herberger, Eric R; Boomer, Joseph; Roeder, Jessica L; Ashby, F Gregory; Church, Barbara A

    2015-10-01

    Contemporary theory in cognitive neuroscience distinguishes, among the processes and utilities that serve categorization, explicit and implicit systems of category learning that learn, respectively, category rules by active hypothesis testing or adaptive behaviors by association and reinforcement. Little is known about the time course of categorization within these systems. Accordingly, the present experiments contrasted tasks that fostered explicit categorization (because they had a one-dimensional, rule-based solution) or implicit categorization (because they had a two-dimensional, information-integration solution). In Experiment 1, participants learned categories under unspeeded or speeded conditions. In Experiment 2, they applied previously trained category knowledge under unspeeded or speeded conditions. Speeded conditions selectively impaired implicit category learning and implicit mature categorization. These results illuminate the processing dynamics of explicit/implicit categorization.

  15. Telerobotic truss assembly

    NASA Technical Reports Server (NTRS)

    Sheridan, Philip L.

    1987-01-01

    The ACCESS truss was telerobotically assembled in order to gain experience with robotic assembly of hardware designed for astronaut extravehicular (EVA) assembly. Tight alignment constraints of the ACCESS hardware made telerobotic assembly difficult. A wider alignment envelope and a compliant end effector would have reduced the problem. The manipulator had no linear motion capability, but many of the assembly operations required straight line motion. The manipulator was attached to a motion table in order to provide the X, Y, and Z translations needed. A programmable robot with linear translation capability would have eliminated the need for the motion table and streamlined the assembly. Poor depth perception was a major problem. Shaded paint schemes and alignment lines were helpful in reducing this problem. The four cameras used worked well for only some operations. It was not possible to identify camera locations that worked well for all assembly steps. More cameras or movable cameras would have simplified some operations. The audio feedback system was useful.

  16. Explicit and implicit forms of differential quadrature method for advection-diffusion equation with variable coefficients in semi-infinite domain

    NASA Astrophysics Data System (ADS)

    Gharehbaghi, Amin

    2016-10-01

    In this paper, a numerical solution of one-dimensional time-dependent advection-diffusion equation with variable coefficients in semi-infinite domain is presented by using the differential quadrature method. Both the explicit and implicit approaches are provided. Totally, two solute dispersion problems are employed to simulate various conditions. The inhomogeneity of the domain is supplied by the spatially dependent flow. The problem domains are modeled with Chebyshev-Gauss-Lobatto grid points. In order to examine the accuracy and the efficiency of the suggested explicit and implicit approaches, analytical solutions, which are presented in the literature, are employed. In addition, the results of the above-mentioned method are compared with outcomes of the finite difference method. The results show that both of the explicit and implicit forms of the differential quadrature method are efficient, robust and reliable. But between these two forms, numerical predictions of implicit form are more accurate than explicit form.

  17. Accurate thermochemistry from explicitly correlated distinguishable cluster approximation.

    PubMed

    Kats, Daniel; Kreplin, David; Werner, Hans-Joachim; Manby, Frederick R

    2015-02-14

    An explicitly correlated version of the distinguishable-cluster approximation is presented and extensively benchmarked. It is shown that the usual F12-type explicitly correlated approaches are applicable to distinguishable-cluster theory with single and double excitations, and the results show a significant improvement compared to coupled-cluster theory with singles and doubles for closed and open-shell systems. The resulting method can be applied in a black-box manner to systems with single- and multireference character. Most noticeably, optimized geometries are of coupled-cluster singles and doubles with perturbative triples quality or even better.

  18. Comment on ``Analysis of optimal velocity model with explicit delay''

    NASA Astrophysics Data System (ADS)

    Davis, L. C.

    2002-09-01

    The effect of including an explicit delay time (due to driver reaction) on the optimal velocity model is studied. For a platoon of vehicles to avoid collisions, many-vehicle simulations demonstrate that delay times must be well below the critical delay time determined by a linear analysis for the response of a single vehicle. Safe platoons require rather small delay times, substantially smaller than typical reaction times of drivers. The present results do not support the conclusion of Bando et al. [M. Bando, K. Hasebe, K. Nakanishi, and A. Nakayama, Phys. Rev. E 58, 5429 (1998)] that explicit delay plays no essential role.

  19. Comment on "Analysis of optimal velocity model with explicit delay".

    PubMed

    Davis, L C

    2002-09-01

    The effect of including an explicit delay time (due to driver reaction) on the optimal velocity model is studied. For a platoon of vehicles to avoid collisions, many-vehicle simulations demonstrate that delay times must be well below the critical delay time determined by a linear analysis for the response of a single vehicle. Safe platoons require rather small delay times, substantially smaller than typical reaction times of drivers. The present results do not support the conclusion of Bando et al. [M. Bando, K. Hasebe, K. Nakanishi, and A. Nakayama, Phys. Rev. E 58, 5429 (1998)] that explicit delay plays no essential role.

  20. Explicit solution for Raman fiber laser using Lambert W function.

    PubMed

    Huang, Chaohong; Cai, Zhiping; Ye, Chenchun; Xu, Huiying

    2007-04-16

    In this paper, an approximate explicit solution for the first-order Raman fiber laser is obtained by using Lambert W function. Good agreement between the explicit solution and numerical simulation is demonstrated. Furthermore, the optimal design of Raman fiber laser is discussed using the proposed solution. The optimal values of fiber length, reflectivity of output fiber Bragg grating and power transfer efficiency are obtained under different pump power. There exists a certain tolerance of the optimal parameters, in which the output power decreases only slightly. The optimal fiber length and reflectivity of output FBG decrease with increasing pump power.

  1. Explicit solution for Raman fiber laser using Lambert W function

    NASA Astrophysics Data System (ADS)

    Huang, Chaohong; Cai, Zhiping; Ye, Chenchun; Xu, Huiying

    2007-04-01

    In this paper, an approximate explicit solution for the first-order Raman fiber laser is obtained by using Lambert W function. Good agreement between the explicit solution and numerical simulation is demonstrated. Furthermore, the optimal design of Raman fiber laser is discussed using the proposed solution. The optimal values of fiber length, reflectivity of output fiber Bragg grating and power transfer efficiency are obtained under different pump power. There exists a certain tolerance of the optimal parameters, in which the output power decreases only slightly. The optimal fiber length and reflectivity of output FBG decrease with increasing pump power.

  2. Modeling ductile dynamic fracture with ABAQUS/explicit

    SciTech Connect

    Anderson, C.A.; Turner, C.

    1996-05-01

    This paper illustrates the use of advanced constitutive models in ABAQUS/Explicit together with highly focused finite element meshes to simulate the propagation of a fracture in a ductile medium. A double edge-cracked specimen under far field dynamic tensile loading is analyzed, and shows both rectilinear motion or unstable oscillatory motion of the crack depending on the material property constraints. Results are also presented for a simulation of ASTM`s standard fracture test E399. Comparisons of ABAQUS/Explicit results with experiments or other analytical/numerical results are made.

  3. Experiments with explicit filtering for LES using a finite-difference method

    NASA Technical Reports Server (NTRS)

    Lund, T. S.; Kaltenbach, H. J.

    1995-01-01

    The equations for large-eddy simulation (LES) are derived formally by applying a spatial filter to the Navier-Stokes equations. The filter width as well as the details of the filter shape are free parameters in LES, and these can be used both to control the effective resolution of the simulation and to establish the relative importance of different portions of the resolved spectrum. An analogous, but less well justified, approach to filtering is more or less universally used in conjunction with LES using finite-difference methods. In this approach, the finite support provided by the computational mesh as well as the wavenumber-dependent truncation errors associated with the finite-difference operators are assumed to define the filter operation. This approach has the advantage that it is also 'automatic' in the sense that no explicit filtering: operations need to be performed. While it is certainly convenient to avoid the explicit filtering operation, there are some practical considerations associated with finite-difference methods that favor the use of an explicit filter. Foremost among these considerations is the issue of truncation error. All finite-difference approximations have an associated truncation error that increases with increasing wavenumber. These errors can be quite severe for the smallest resolved scales, and these errors will interfere with the dynamics of the small eddies if no corrective action is taken. Years of experience at CTR with a second-order finite-difference scheme for high Reynolds number LES has repeatedly indicated that truncation errors must be minimized in order to obtain acceptable simulation results. While the potential advantages of explicit filtering are rather clear, there is a significant cost associated with its implementation. In particular, explicit filtering reduces the effective resolution of the simulation compared with that afforded by the mesh. The resolution requirements for LES are usually set by the need to capture

  4. Design strategies for self-assembly of discrete targets

    SciTech Connect

    Madge, Jim; Miller, Mark A.

    2015-07-28

    Both biological and artificial self-assembly processes can take place by a range of different schemes, from the successive addition of identical building blocks to hierarchical sequences of intermediates, all the way to the fully addressable limit in which each component is unique. In this paper, we introduce an idealized model of cubic particles with patterned faces that allows self-assembly strategies to be compared and tested. We consider a simple octameric target, starting with the minimal requirements for successful self-assembly and comparing the benefits and limitations of more sophisticated hierarchical and addressable schemes. Simulations are performed using a hybrid dynamical Monte Carlo protocol that allows self-assembling clusters to rearrange internally while still providing Stokes-Einstein-like diffusion of aggregates of different sizes. Our simulations explicitly capture the thermodynamic, dynamic, and steric challenges typically faced by self-assembly processes, including competition between multiple partially completed structures. Self-assembly pathways are extracted from the simulation trajectories by a fully extendable scheme for identifying structural fragments, which are then assembled into history diagrams for successfully completed target structures. For the simple target, a one-component assembly scheme is most efficient and robust overall, but hierarchical and addressable strategies can have an advantage under some conditions if high yield is a priority.

  5. Implicit and Explicit Learning of a Sequential Postural Weight-Shifting Task in Young and Older Adults.

    PubMed

    Caljouw, Simone R; Veldkamp, Renee; Lamoth, Claudine J C

    2016-01-01

    Sequence-specific postural motor learning in a target-directed weight-shifting task in 12 older and 12 young participants was assessed. In the implicit sequence learning condition participants performed a concurrent spatial cognitive task and in the two explicit conditions participants were required to discover the sequence order either with or without the concurrent cognitive task. Participants moved a cursor on the screen from the center location to one of the target locations projected in a semi-circle and back by shifting their center of pressure (CoP) on force plates. During the training the targets appeared in a simple fixed 5-target sequence. Plan-based control (i.e., direction of the CoP displacement in the first part of the target-directed movement) improved by anticipating the sequence order in the implicit condition but not in the explicit dual task condition. Only the young participants were able to use the explicit knowledge of the sequence structure to improve the directional error as indicated by a significant decrease in directional error over practice and an increase in directional error with sequence removal in the explicit single task condition. Time spent in the second part of the movement trajectory to stabilize the cursor on the target location improved over training in both the implicit and explicit sequence learning conditions, for both age groups. These results might indicate that an implicit motor learning method, which holds back explicit awareness of task relevant features, may be desirable for improving plan-based motor control in older adults.

  6. Being Explicit about Modeling: A First Person Study in India

    ERIC Educational Resources Information Center

    Setty, Rohit Boggarm

    2013-01-01

    In this dissertation, I examine the work involved in teacher educator modeling. In particular, the study is concerned with modeling that aims to explicitly make teaching practices visible, learnable, and that does so in particularly demonstrative ways. One form of this type of modeling is what I term "dialogic modeling." The study…

  7. Explicit versus Implicit Social Cognition Testing in Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Callenmark, Björn; Kjellin, Lars; Rönnqvist, Louise; Bölte, Sven

    2014-01-01

    Although autism spectrum disorder is defined by reciprocal social-communication impairments, several studies have found no evidence for altered social cognition test performance. This study examined explicit (i.e. prompted) and implicit (i.e. spontaneous) variants of social cognition testing in autism spectrum disorder. A sample of 19 adolescents…

  8. Effect of explicit dimension instruction on speech category learning

    PubMed Central

    Chandrasekaran, Bharath; Yi, Han-Gyol; Smayda, Kirsten E.; Maddox, W. Todd

    2015-01-01

    Learning non-native speech categories is often considered a challenging task in adulthood. This difficulty is driven by cross-language differences in weighting critical auditory dimensions that differentiate speech categories. For example, previous studies have shown that differentiating Mandarin tonal categories requires attending to dimensions related to pitch height and direction. Relative to native speakers of Mandarin, the pitch direction dimension is under-weighted by native English speakers. In the current study, we examined the effect of explicit instructions (dimension instruction) on native English speakers' Mandarin tone category learning within the framework of a dual-learning systems (DLS) model. This model predicts that successful speech category learning is initially mediated by an explicit, reflective learning system that frequently utilizes unidimensional rules, with an eventual switch to a more implicit, reflexive learning system that utilizes multidimensional rules. Participants were explicitly instructed to focus and/or ignore the pitch height dimension, the pitch direction dimension, or were given no explicit prime. Our results show that instruction instructing participants to focus on pitch direction, and instruction diverting attention away from pitch height resulted in enhanced tone categorization. Computational modeling of participant responses suggested that instruction related to pitch direction led to faster and more frequent use of multidimensional reflexive strategies, and enhanced perceptual selectivity along the previously underweighted pitch direction dimension. PMID:26542400

  9. Stable explicit schemes for equations of Schroedinger type

    NASA Technical Reports Server (NTRS)

    Mickens, Ronald E.

    1989-01-01

    A method for constructing explicit finite-difference schemes which can be used to solve Schroedinger-type partial-differential equations is presented. A forward Euler scheme that is conditionally stable is given by the procedure. The results presented are based on the analysis of the simplest Schroedinger type equation.

  10. Flexibles Grouping, Explicit Reading Instruction in Elementary School

    ERIC Educational Resources Information Center

    Dubé, France; Dorval, Catherine; Bessette, Lyne

    2013-01-01

    The objective of this collaborative research is to evaluate the impact of a pedagogical intervention that combines flexible grouping and explicit instruction of reading comprehension strategies. The development of competencies is spread over a two years interval. However, despite this quite long implementation period, several Quebec students still…

  11. Comparing Switch Costs: Alternating Runs and Explicit Cuing

    ERIC Educational Resources Information Center

    Altmann, Erik M.

    2007-01-01

    The task-switching literature routinely conflates different operational definitions of switch cost, its predominant behavioral measure. This article is an attempt to draw attention to differences between the two most common definitions, alternating-runs switch cost (ARS) and explicit-cuing switch cost (ECS). ARS appears to include both the costs…

  12. Working Towards Explicit Modelling: Experiences of a New Teacher Educator

    ERIC Educational Resources Information Center

    White, Elizabeth

    2011-01-01

    As a new teacher educator of beginner teachers on the Graduate Teacher Programme in a large School of Education in a UK university, I have reflected on how I have been able to develop the effectiveness of modelling good professional practice to student-teachers. In this paper I will present ways in which I have made modelling more explicit, how…

  13. The Role of Explicit Need Strength for Emotions during Learning

    ERIC Educational Resources Information Center

    Flunger, Barbara; Pretsch, Johanna; Schmitt, Manfred; Ludwig, Peter

    2013-01-01

    According to self-determination theory, the satisfaction of the basic needs for autonomy, competence, and relatedness influences achievement emotions and situational interest. The present study investigated whether domain-specific explicit need strength moderated the impact of need satisfaction/dissatisfaction on the outcomes achievement emotions…