Detector for positronium temperature measurements by two-photon angular correlation
NASA Astrophysics Data System (ADS)
Cecchini, G. G.; Jones, A. C. L.; Fuentes-Garcia, M.; Adams, D. J.; Austin, M.; Membreno, E.; Mills, A. P.
2018-05-01
We report on the design and characterization of a modular γ-ray detector assembly developed for accurate and efficient detection of coincident 511 keV back-to-back γ-rays following electron-positron annihilation. Each modular detector consists of 16 narrow lutetium yttrium oxyorthosilicate scintillators coupled to a multi-anode Hamamatsu H12700B photomultiplier tube. We discuss the operation and optimization of 511 keV γ-ray detection resulting from testing various scintillators and detector arrangements concluding with an estimate of the coincident 511 keV detection efficiency for the intended experiment and a preliminary test representing one-quarter of the completed array.
Design and Analysis of Modules for Segmented X-Ray Optics
NASA Technical Reports Server (NTRS)
McClelland, Ryan S.; BIskach, Michael P.; Chan, Kai-Wing; Saha, Timo T; Zhang, William W.
2012-01-01
Future X-ray astronomy missions demand thin, light, and closely packed optics which lend themselves to segmentation of the annular mirrors and, in turn, a modular approach to the mirror design. The modular approach to X-ray Flight Mirror Assembly (FMA) design allows excellent scalability of the mirror technology to support a variety of mission sizes and science objectives. This paper describes FMA designs using slumped glass mirror segments for several X-ray astrophysics missions studied by NASA and explores the driving requirements and subsequent verification tests necessary to qualify a slumped glass mirror module for space-flight. A rigorous testing program is outlined allowing Technical Development Modules to reach technical readiness for mission implementation while reducing mission cost and schedule risk.
Modular cathode assemblies and methods of using the same for electrochemical reduction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiedmeyer, Stanley G.; Barnes, Laurel A.; Williamson, Mark A.
Modular cathode assemblies are useable in electrolytic reduction systems and include a basket through which fluid electrolyte may pass and exchange charge with a material to be reduced in the basket. The basket can be divided into upper and lower sections to provide entry for the material. Example embodiment cathode assemblies may have any shape to permit modular placement at any position in reduction systems. Modular cathode assemblies include a cathode plate in the basket, to which unique and opposite electrical power may be supplied. Example embodiment modular cathode assemblies may have standardized electrical connectors. Modular cathode assemblies may bemore » supported by a top plate of an electrolytic reduction system. Electrolytic oxide reduction systems are operated by positioning modular cathode and anode assemblies at desired positions, placing a material in the basket, and charging the modular assemblies to reduce the metal oxide.« less
Modular cathode assemblies and methods of using the same for electrochemical reduction
Wiedmeyer, Stanley G; Barnes, Laurel A; Williamson, Mark A; Willit, James L
2014-12-02
Modular cathode assemblies are useable in electrolytic reduction systems and include a basket through which fluid electrolyte may pass and exchange charge with a material to be reduced in the basket. The basket can be divided into upper and lower sections to provide entry for the material. Example embodiment cathode assemblies may have any shape to permit modular placement at any position in reduction systems. Modular cathode assemblies include a cathode plate in the basket, to which unique and opposite electrical power may be supplied. Example embodiment modular cathode assemblies may have standardized electrical connectors. Modular cathode assemblies may be supported by a top plate of an electrolytic reduction system. Electrolytic oxide reduction systems are operated by positioning modular cathode and anode assemblies at desired positions, placing a material in the basket, and charging the modular assemblies to reduce the metal oxide.
Design and Analysis of Mirror Modules for IXO and Beyond
NASA Technical Reports Server (NTRS)
McClelland, Ryan S.; Powell, Cory; Saha, Timo T.; Zhang, William W.
2011-01-01
Advancements in X-ray astronomy demand thin, light, and closely packed thin optics which lend themselves to segmentation of the annular mirrors and, in turn, a modular approach to the mirror design. The functionality requirements of such a mirror module are well understood. A baseline modular concept for the proposed International X-Ray Observatory (IXO) Flight Mirror Assembly (FMA) consisting of 14,000 glass mirror segments divided into 60 modules was developed and extensively analyzed. Through this development, our understanding of module loads, mirror stress, thermal performance, and gravity distortion have greatly progressed. The latest progress in each of these areas is discussed herein. Gravity distortion during horizontal X-ray testing and on-orbit thermal performance have proved especially difficult design challenges. In light of these challenges, fundamental trades in modular X-ray mirror design have been performed. Future directions in module X-ray mirror design are explored including the development of a 1.8 m diameter FMA utilizing smaller mirror modules. The effect of module size on mirror stress, module self-weight distortion, thermal control, and range of segment sizes required is explored with advantages demonstrated from smaller module size in most cases.
NASA Technical Reports Server (NTRS)
Dorsey, John T.; Collins, Timothy J.; Moe, Rud V.; Doggett,. William R.
2006-01-01
A comprehensive modular assembly system model has been proposed that extends the art from modular hardware, to include in-space assembly, servicing and repair and it s critical components of infrastructure, agents and assembly operations. Benefits of modular assembly have been identified and a set of metrics defined that extends the art beyond the traditional measures of performance, with emphasis on criteria that allow life-cycle mission costs to be used as a figure of merit (and include all substantive terms that have an impact on the evaluation). The modular assembly approach was used as a basis for developing a Solar Electric Transfer Vehicle (SETV) concept and three modular assembly scenarios were developed. The modular assembly approach also allows the SETV to be entered into service much earlier than competing conventional configurations and results in a great deal of versatility in accommodating different launch vehicle payload capabilities, allowing for modules to be pre-assembled before launch or assembled on orbit, without changing the space vehicle design.
Mirror Technology Development for The International X-Ray Observatory Mission
NASA Technical Reports Server (NTRS)
Zhang, Will
2010-01-01
Presentation slides include: International X-ray Observatory (IXO), Lightweight and High Resolution X-ray Optics is Needed; Modular Design of Mirror Assembly, IXO Mirror Technology Development Objectives, Focus of Technology Development, Slumping - Status, Mirror Fabrication Progress, Temporary Bonding - Status, Alignment - Status, Permanent Bonding - Status, Mirror Housing Simulator (MHS) - TRL-4, Mini-Module (TRL-5), Flight-Like Module (TRL-6), Mirror Technology Development Team, Outlook, and Small Technology Firms that Have Made Direct Contributions to IXO Mirror Technology Development.
On the development status of high performance silicon pore optics for future x-ray telescopes
NASA Astrophysics Data System (ADS)
Kraft, Stefan; Collon, M.; Günther, R.; Partapsing, R.; Beijersbergen, M.; Bavdaz, M.; Lumb, D.; Peacock, A.; Wallace, K.
2017-11-01
Silicon pore optics have been proposed earlier as modular optical X-ray units in large Wolter-I telescopes that would match effective area and resolution requirements imposed by missions such as XEUS. Since then the optics have been developed further and the feasibility of the production of high-performance pore optics has been demonstrated. Optimisation of both the production and the assembly process allowed the generation of optics with larger areas with improved imaging performance. Silicon pore optics can now be manufactured with properties required for future X-ray telescopes. A suitable design that allows the implementation of pore optics into X-ray Optical Units in Wolter-I configuration was recently derived including an appropriate telescope mounting structure with interfaces for the individual components. The development status, the achieved performance and the requirements regarding future mirror production, optics assembly and related metrology for its characterisation are presented.
Modular jet impingement assemblies with passive and active flow control for electronics cooling
Zhou, Feng; Dede, Ercan Mehmet; Joshi, Shailesh
2016-09-13
Power electronics modules having modular jet impingement assembly utilized to cool heat generating devices are disclosed. The modular jet impingement assemblies include a modular manifold having a distribution recess, one or more angled inlet connection tubes positioned at an inlet end of the modular manifold that fluidly couple the inlet tube to the distribution recess and one or more outlet connection tubes positioned at an outlet end of the modular manifold that fluidly coupling the outlet tube to the distribution recess. The modular jet impingement assemblies include a manifold insert removably positioned within the distribution recess and include one or more inlet branch channels each including an impinging slot and one or more outlet branch channels each including a collecting slot. Further a heat transfer plate coupled to the modular manifold, the heat transfer plate comprising an impingement surface including an array of fins that extend toward the manifold insert.
Anode-cathode power distribution systems and methods of using the same for electrochemical reduction
Koehl, Eugene R; Barnes, Laurel A; Wiedmeyer, Stanley G; Williamson, Mark A; Willit, James L
2014-01-28
Power distribution systems are useable in electrolytic reduction systems and include several cathode and anode assembly electrical contacts that permit flexible modular assembly numbers and placement in standardized connection configurations. Electrical contacts may be arranged at any position where assembly contact is desired. Electrical power may be provided via power cables attached to seating assemblies of the electrical contacts. Cathode and anode assembly electrical contacts may provide electrical power at any desired levels. Pairs of anode and cathode assembly electrical contacts may provide equal and opposite electrical power; different cathode assembly electrical contacts may provide different levels of electrical power to a same or different modular cathode assembly. Electrical systems may be used with an electrolyte container into which the modular cathode and anode assemblies extend and are supported above, with the modular cathode and anode assemblies mechanically and electrically connecting to the respective contacts in power distribution systems.
Analysis of Functional Dynamics of Modular Multidomain Proteins by SAXS and NMR.
Thompson, Matthew K; Ehlinger, Aaron C; Chazin, Walter J
2017-01-01
Multiprotein machines drive virtually all primary cellular processes. Modular multidomain proteins are widely distributed within these dynamic complexes because they provide the flexibility needed to remodel structure as well as rapidly assemble and disassemble components of the machinery. Understanding the functional dynamics of modular multidomain proteins is a major challenge confronting structural biology today because their structure is not fixed in time. Small-angle X-ray scattering (SAXS) and nuclear magnetic resonance (NMR) spectroscopy have proven particularly useful for the analysis of the structural dynamics of modular multidomain proteins because they provide highly complementary information for characterizing the architectural landscape accessible to these proteins. SAXS provides a global snapshot of all architectural space sampled by a molecule in solution. Furthermore, SAXS is sensitive to conformational changes, organization and oligomeric states of protein assemblies, and the existence of flexibility between globular domains in multiprotein complexes. The power of NMR to characterize dynamics provides uniquely complementary information to the global snapshot of the architectural ensemble provided by SAXS because it can directly measure domain motion. In particular, NMR parameters can be used to define the diffusion of domains within modular multidomain proteins, connecting the amplitude of interdomain motion to the architectural ensemble derived from SAXS. Our laboratory has been studying the roles of modular multidomain proteins involved in human DNA replication using SAXS and NMR. Here, we present the procedure for acquiring and analyzing SAXS and NMR data, using DNA primase and replication protein A as examples. © 2017 Elsevier Inc. All rights reserved.
Performance evaluation of a modular detector unit for X-ray computed tomography.
Guo, Zhe; Tang, Zhiwei; Wang, Xinzeng; Deng, Mingliang; Hu, Guangshu; Zhang, Hui
2013-04-18
A research prototype CT scanner is currently under development in our lab. One of the key components in this project is the CT detector. This paper describes the design and performance evaluation of the modular CT detector unit for our proposed scanner. It consists of a Photodiode Array Assembly which captures irradiating X-ray photons and converts the energy into electrical current, and a mini Data Acquisition System which performs current integration and converts the analog signal into digital samples. The detector unit can be easily tiled together to form a CT detector. Experiments were conducted to characterize the detector performance both at the single unit level and system level. The noise level, linearity and uniformity of the proposed detector unit were reported and initial imaging studies were also presented which demonstrated the potential application of the proposed detector unit in actual CT scanners.
Tekewe, Alemu; Connors, Natalie K.; Middelberg, Anton P. J.
2016-01-01
Abstract Virus‐like particles (VLPs) and capsomere subunits have shown promising potential as safe and effective vaccine candidates. They can serve as platforms for the display of foreign epitopes on their surfaces in a modular architecture. Depending on the physicochemical properties of the antigenic modules, modularization may affect the expression, solubility and stability of capsomeres, and VLP assembly. In this study, three module designs of a rotavirus hydrophobic peptide (RV10) were synthesized using synthetic biology. Among the three synthetic modules, modularization of the murine polyomavirus VP1 with a single copy of RV10 flanked by long linkers and charged residues resulted in the expression of stable modular capsomeres. Further employing the approach of module titration of RV10 modules on each capsomere via Escherichia coli co‐expression of unmodified VP1 and modular VP1‐RV10 successfully translated purified modular capomeres into modular VLPs when assembled in vitro. Our results demonstrate that tailoring the physicochemical properties of modules to enhance modular capsomeres stability is achievable through synthetic biology designs. Combined with module titration strategy to avoid steric hindrance to intercapsomere interactions, this allows bioprocessing of bacterially produced in vitro assembled modular VLPs. PMID:27222486
Tekewe, Alemu; Connors, Natalie K; Middelberg, Anton P J; Lua, Linda H L
2016-08-01
Virus-like particles (VLPs) and capsomere subunits have shown promising potential as safe and effective vaccine candidates. They can serve as platforms for the display of foreign epitopes on their surfaces in a modular architecture. Depending on the physicochemical properties of the antigenic modules, modularization may affect the expression, solubility and stability of capsomeres, and VLP assembly. In this study, three module designs of a rotavirus hydrophobic peptide (RV10) were synthesized using synthetic biology. Among the three synthetic modules, modularization of the murine polyomavirus VP1 with a single copy of RV10 flanked by long linkers and charged residues resulted in the expression of stable modular capsomeres. Further employing the approach of module titration of RV10 modules on each capsomere via Escherichia coli co-expression of unmodified VP1 and modular VP1-RV10 successfully translated purified modular capomeres into modular VLPs when assembled in vitro. Our results demonstrate that tailoring the physicochemical properties of modules to enhance modular capsomeres stability is achievable through synthetic biology designs. Combined with module titration strategy to avoid steric hindrance to intercapsomere interactions, this allows bioprocessing of bacterially produced in vitro assembled modular VLPs. © 2016 The Protein Society.
Modular anode assemblies and methods of using the same for electrochemical reduction
Wiedmeyer, Stanley G; Barnes, Laurel A; Williamson, Mark A; Willit, James L
2015-02-17
Modular anode assemblies are used in electrolytic oxide reduction systems for scalable reduced metal production via electrolysis. Assemblies include a channel frame connected to several anode rods extending into an electrolyte. An electrical system powers the rods while being insulated from the channel frame. A cooling system removes heat from anode rods and the electrical system. An anode guard attaches to the channel frame to prevent accidental electrocution or damage during handling or repositioning. Each anode rod may be divided into upper and lower sections to permit easy repair and swapping out of lower sections. The modular assemblies may have standardized components to permit placement at multiple points within a reducing system. Example methods may operate an electrolytic oxide reduction system by positioning the modular anode assemblies in the reduction system and applying electrical power to the plurality of anode assemblies.
NASA Technical Reports Server (NTRS)
By, Andre Bernard; Caron, Ken; Rothenberg, Michael; Sales, Vic
1994-01-01
This paper presents the first phase results of a collaborative effort between university researchers and a flexible assembly systems integrator to implement a comprehensive modular approach to flexible assembly automation. This approach, named MARAS (Modular Automated Reconfigurable Assembly System), has been structured to support multiple levels of modularity in terms of both physical components and system control functions. The initial focus of the MARAS development has been on parts gauging and feeding operations for cylinder lock assembly. This phase is nearing completion and has resulted in the development of a highly configurable system for vision gauging functions on a wide range of small components (2 mm to 100 mm in size). The reconfigurable concepts implemented in this adaptive Vision Gauging Module (VGM) are now being extended to applicable aspects of the singulating, selecting, and orienting functions required for the flexible feeding of similar mechanical components and assemblies.
NASA Astrophysics Data System (ADS)
Jin, Hu; Dong, Erbao; Xu, Min; Xia, Qirong; Liu, Shuai; Li, Weihua; Yang, Jie
2018-01-01
Many shape memory alloy (SMA)-based soft actuators have specific composite structures and manufacture processes, and are therefore unique. However, these exclusive characteristics limit their capabilities and applications, so in this article a soft and smart digital structure (SDS) is proposed that acts like a modular unit to assemble soft actuators by a layered adhesive bonding process. The SDS is a fully soft structure that encapsulates a digital skeleton consisting of four groups of parallel and independently actuated SMA wires capable of outputting a four-channel tunable force. The layered adhesive bonding process modularly bonds several SDSs with an elastic backbone to fabricate a layered soft actuator where the elastic backbone is used to recover the SDSs in a cooling process using the SMA wires. Two kinds of SDS-based soft actuators were modularly assembled, an actuator, SDS-I, with a two-dimensional reciprocal motion, and an actuator, SDS-II, capable of bi-directional reciprocal motion. The thermodynamics and phase transformation modeling of the SDS-based actuator were analyzed. Several extensional soft actuators were also assembled by bonding the SDS with an anomalous elastic backbone or modularly assembling the SDS-Is and SDS-IIs. These modularly assembled soft actuators delivered more output channels and a complicated motion, e.g., an actinomorphic soft actuator with four SDS-Is jumps in a series of hierarchical heights and directional movement by tuning the input channels of the SDSs. This result showed that the SDS can modularly assemble multifarious soft actuators with diverse capabilities, steerability and tunable outputs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qiu Lingguang; Gu Lina; Hu Gang
2009-03-15
Modular design method for designing and synthesizing microporous metal-organic frameworks (MOFs) with selective catalytical activity was described. MOFs with both nano-sized channels and potential catalytic activities could be obtained through self-assembly of a framework unit and a catalyst unit. By selecting hexaaquo metal complexes and the ligand BTC (BTC=1,3,5-benzenetricarboxylate) as framework-building blocks and using the metal complex [M(phen){sub 2}(H{sub 2}O){sub 2}]{sup 2+} (phen=1,10-phenanthroline) as a catalyst unit, a series of supramolecular MOFs 1-7 with three-dimensional nano-sized channels, i.e. [M{sup 1}(H{sub 2}O){sub 6}].[M{sup 2}(phen){sub 2}(H{sub 2}O){sub 2}]{sub 2}.2(BTC).xH{sub 2}O (M{sup 1}, M{sup 2}=Co(II), Ni(II), Cu(II), Zn(II), or Mn(II), phen=1,10-phenanthroline, BTC=1,3,5-benzenetricarboxylate, x=22-24),more » were synthesized through self-assembly, and their structures were characterized by IR, elemental analysis, and single-crystal X-ray diffraction. These supramolecular microporous MOFs showed significant size and shape selectivity in the catalyzed oxidation of phenols, which is due to catalytic reactions taking place in the channels of the framework. Design strategy, synthesis, and self-assembly mechanism for the construction of these porous MOFs were discussed. - Grapical abstract: A modular design strategy has been developed to synthesize microporous metal-organic frameworks with potential catalytic activity by self-assembly of the framework-building blocks and the catalyst unit.« less
Peripheral infrastructure vectors and an extended set of plant parts for the Modular Cloning system
Kretschmer, Carola; Gruetzner, Ramona; Löfke, Christian; Dagdas, Yasin; Bürstenbinder, Katharina; Marillonnet, Sylvestre
2018-01-01
Standardized DNA assembly strategies facilitate the generation of multigene constructs from collections of building blocks in plant synthetic biology. A common syntax for hierarchical DNA assembly following the Golden Gate principle employing Type IIs restriction endonucleases was recently developed, and underlies the Modular Cloning and GoldenBraid systems. In these systems, transcriptional units and/or multigene constructs are assembled from libraries of standardized building blocks, also referred to as phytobricks, in several hierarchical levels and by iterative Golden Gate reactions. Here, a toolkit containing further modules for the novel DNA assembly standards was developed. Intended for use with Modular Cloning, most modules are also compatible with GoldenBraid. Firstly, a collection of approximately 80 additional phytobricks is provided, comprising e.g. modules for inducible expression systems, promoters or epitope tags. Furthermore, DNA modules were developed for connecting Modular Cloning and Gateway cloning, either for toggling between systems or for standardized Gateway destination vector assembly. Finally, first instances of a “peripheral infrastructure” around Modular Cloning are presented: While available toolkits are designed for the assembly of plant transformation constructs, vectors were created to also use coding sequence-containing phytobricks directly in yeast two hybrid interaction or bacterial infection assays. The presented material will further enhance versatility of hierarchical DNA assembly strategies. PMID:29847550
Facile "modular assembly" for fast construction of a highly oriented crystalline MOF nanofilm.
Xu, Gang; Yamada, Teppei; Otsubo, Kazuya; Sakaida, Shun; Kitagawa, Hiroshi
2012-10-10
The preparation of crystalline, ordered thin films of metal-organic frameworks (MOFs) will be a critical process for MOF-based nanodevices in the future. MOF thin films with perfect orientation and excellent crystallinity were formed with novel nanosheet-structured components, Cu-TCPP [TCPP = 5,10,15,20-tetrakis(4-carboxyphenyl)porphyrin], by a new "modular assembly" strategy. The modular assembly process involves two steps: a "modularization" step is used to synthesize highly crystalline "modules" with a nanosized structure that can be conveniently assembled into a thin film in the following "assembly" step. With this method, MOF thin films can easily be set up on different substrates at very high speed with controllable thickness. This new approach also enabled us to prepare highly oriented crystalline thin films of MOFs that cannot be prepared in thin-film form by traditional techniques.
Post-Translational Modification of Bionanoparticles as a Modular Platform for Biosensor Assembly.
Sun, Qing; Chen, Qi; Blackstock, Daniel; Chen, Wilfred
2015-08-25
Context driven biosensor assembly with modular targeting and detection moieties is gaining significant attentions. Although protein-based nanoparticles have emerged as an excellent platform for biosensor assembly, current strategies of decorating bionanoparticles with targeting and detection moieties often suffer from unfavorable spacing and orientation as well as bionanoparticle aggregation. Herein, we report a highly modular post-translational modification approach for biosensor assembly based on sortase A-mediated ligation. This approach enables the simultaneous modifications of the Bacillus stearothermophilus E2 nanoparticles with different functional moieties for antibody, enzyme, DNA aptamer, and dye decoration. The resulting easy-purification platform offers a high degree of targeting and detection modularity with signal amplification. This flexibility is demonstrated for the detection of both immobilized antigens and cancer cells.
Next Generation Sequence Assembly with AMOS
Treangen, Todd J; Sommer, Dan D; Angly, Florent E; Koren, Sergey; Pop, Mihai
2011-01-01
A Modular Open-Source Assembler (AMOS) was designed to offer a modular approach to genome assembly. AMOS includes a wide range of tools for assembly, including lightweight de novo assemblers Minimus and Minimo, and Bambus 2, a robust scaffolder able to handle metagenomic and polymorphic data. This protocol describes how to configure and use AMOS for the assembly of Next Generation sequence data. Additionally, we provide three tutorial examples that include bacterial, viral, and metagenomic datasets with specific tips for improving assembly quality. PMID:21400694
Casini, Arturo; MacDonald, James T.; Jonghe, Joachim De; Christodoulou, Georgia; Freemont, Paul S.; Baldwin, Geoff S.; Ellis, Tom
2014-01-01
Overlap-directed DNA assembly methods allow multiple DNA parts to be assembled together in one reaction. These methods, which rely on sequence homology between the ends of DNA parts, have become widely adopted in synthetic biology, despite being incompatible with a key principle of engineering: modularity. To answer this, we present MODAL: a Modular Overlap-Directed Assembly with Linkers strategy that brings modularity to overlap-directed methods, allowing assembly of an initial set of DNA parts into a variety of arrangements in one-pot reactions. MODAL is accompanied by a custom software tool that designs overlap linkers to guide assembly, allowing parts to be assembled in any specified order and orientation. The in silico design of synthetic orthogonal overlapping junctions allows for much greater efficiency in DNA assembly for a variety of different methods compared with using non-designed sequence. In tests with three different assembly technologies, the MODAL strategy gives assembly of both yeast and bacterial plasmids, composed of up to five DNA parts in the kilobase range with efficiencies of between 75 and 100%. It also seamlessly allows mutagenesis to be performed on any specified DNA parts during the process, allowing the one-step creation of construct libraries valuable for synthetic biology applications. PMID:24153110
Next generation sequence assembly with AMOS.
Treangen, Todd J; Sommer, Dan D; Angly, Florent E; Koren, Sergey; Pop, Mihai
2011-03-01
A Modular Open-Source Assembler (AMOS) was designed to offer a modular approach to genome assembly. AMOS includes a wide range of tools for assembly, including the lightweight de novo assemblers Minimus and Minimo, and Bambus 2, a robust scaffolder able to handle metagenomic and polymorphic data. This protocol describes how to configure and use AMOS for the assembly of Next Generation sequence data. Additionally, we provide three tutorial examples that include bacterial, viral, and metagenomic datasets with specific tips for improving assembly quality. © 2011 by John Wiley & Sons, Inc.
Configurable double-sided modular jet impingement assemblies for electronics cooling
Zhou, Feng; Dede, Ercan Mehmet
2018-05-22
A modular jet impingement assembly includes an inlet tube fluidly coupled to a fluid inlet, an outlet tube fluidly coupled to a fluid outlet, and a modular manifold having a first distribution recess extending into a first side of the modular manifold, a second distribution recess extending into a second side of the modular manifold, a plurality of inlet connection tubes positioned at an inlet end of the modular manifold, and a plurality of outlet connection tubes positioned at an outlet end of the modular manifold. A first manifold insert is removably positioned within the first distribution recess, a second manifold insert is removably positioned within the second distribution recess, and a first and second heat transfer plate each removably coupled to the modular manifold. The first and second heat transfer plates each comprise an impingement surface.
Sambot II: A self-assembly modular swarm robot
NASA Astrophysics Data System (ADS)
Zhang, Yuchao; Wei, Hongxing; Yang, Bo; Jiang, Cancan
2018-04-01
The new generation of self-assembly modular swarm robot Sambot II, based on the original generation of self-assembly modular swarm robot Sambot, adopting laser and camera module for information collecting, is introduced in this manuscript. The visual control algorithm of Sambot II is detailed and feasibility of the algorithm is verified by the laser and camera experiments. At the end of this manuscript, autonomous docking experiments of two Sambot II robots are presented. The results of experiments are showed and analyzed to verify the feasibility of whole scheme of Sambot II.
NASA Technical Reports Server (NTRS)
Gerber, C. R.
1972-01-01
The computation and logical functions which are performed by the data processing assembly of the modular space station are defined. The subjects discussed are: (1) requirements analysis, (2) baseline data processing assembly configuration, (3) information flow study, (4) throughput simulation, (5) redundancy study, (6) memory studies, and (7) design requirements specification.
Astronaut Alan Bean works on Modular Equipment Stowage Assembly
NASA Technical Reports Server (NTRS)
1969-01-01
Astronaut Alan L. Bean, lunar module pilot for the Apollo 12 lunar landing mission, works at the Modular Equipment Stowage Assembly (MESA) on the Apollo 12 Lunar Module during the mission's first extravehicular activity, EVA-1, on November 19, 1969.
Optomechanical Design of Ten Modular Cameras for the Mars Exploration Rovers
NASA Technical Reports Server (NTRS)
Ford, Virginia G.; Karlmann, Paul; Hagerott, Ed; Scherr, Larry
2003-01-01
This viewgraph presentation reviews the design and fabrication of the modular cameras for the Mars Exploration Rovers. In the 2003 mission there were to be 2 landers and 2 rovers, each were to have 10 cameras each. Views of the camera design, the lens design, the lens interface with the detector assembly, the detector assembly, the electronics assembly are shown.
Modular assembly for supporting, straining, and directing flow to a core in a nuclear reactor
Pennell, William E.
1977-01-01
A reactor core support arrangement for supporting, straining, and providing fluid flow to the core and periphery of a nuclear reactor during normal operation. A plurality of removable inlet modular units are contained within permanent liners in the lower supporting plate of the reactor vessel lower internals. During normal operation (1) each inlet modular unit directs main coolant flow to a plurality of core assemblies, the latter being removably supported in receptacles in the upper portion of the modular unit and (2) each inlet modular unit may direct bypass flow to a low pressure annular region of the reactor vessel. Each inlet modular unit may include special fluid seals interposed between mating surfaces of the inlet modular units and the core assemblies and between the inlet modular units and the liners, to minimize leakage and achieve an hydraulic balance. Utilizing the hydraulic balance, the modular units are held in the liners and the assemblies are held in the modular unit receptacles by their own respective weight. Included as part of the permanent liners below the horizontal support plate are generally hexagonal axial debris barriers. The axial debris barriers collectively form a bottom boundary of a secondary high pressure plenum, the upper boundary of which is the bottom surface of the horizontal support plate. Peripheral liners include radial debris barriers which collectively form a barrier against debris entry radially. During normal operation primary coolant inlet openings in the liner, below the axial debris barriers, pass a large amount of coolant into the inlet modular units, and secondary coolant inlet openings in the portion of the liners within the secondary plenum pass a small amount of coolant into the inlet modular units. The secondary coolant inlet openings also provide alternative coolant inlet flow paths in the unlikely event of blockage of the primary inlet openings. The primary inlet openings have characteristics which limit the entry of debris and minimize the potential for debris entering the primary inlets blocking the secondary inlets from inside the modular unit.
MetAMOS: a modular and open source metagenomic assembly and analysis pipeline
2013-01-01
We describe MetAMOS, an open source and modular metagenomic assembly and analysis pipeline. MetAMOS represents an important step towards fully automated metagenomic analysis, starting with next-generation sequencing reads and producing genomic scaffolds, open-reading frames and taxonomic or functional annotations. MetAMOS can aid in reducing assembly errors, commonly encountered when assembling metagenomic samples, and improves taxonomic assignment accuracy while also reducing computational cost. MetAMOS can be downloaded from: https://github.com/treangen/MetAMOS. PMID:23320958
Modular soft x-ray spectrometer for applications in energy sciences and quantum materials
Chuang, Yi -De; Shao, Yu -Cheng; Cruz, Alejandro; ...
2017-01-27
Over the past decade, the advances in grating-based soft X-ray spectrometers have revolutionized the soft X-ray spectroscopies in materials research. However, these novel spectrometers are mostly dedicated designs, which cannot be easily adopted for applications with diverging demands. Here we present a versatile spectrometer design concept based on the Hettrick-Underwood optical scheme that uses modular mechanical components. The spectrometer’s optics chamber can be used with gratings operated in either inside or outside orders, and the detector assembly can be reconfigured accordingly. The spectrometer can be designed to have high spectral resolution, exceeding 10 000 resolving power when using small sourcemore » (~1μm) and detector pixels (~5μm) with high line density gratings (~3000 lines/mm), or high throughput at moderate resolution. We report two such spectrometers with slightly different design goals and optical parameters in this paper. We show that the spectrometer with high throughput and large energy window is particularly useful for studying the sustainable energy materials. We demonstrate that the extensive resonant inelastic X-ray scattering (RIXS) map of battery cathode material LiNi 1/3Co 1/3Mn 1/3O 2 can be produced in few hours using such a spectrometer. Unlike analyzing only a handful of RIXS spectra taken at selected excitation photon energies across the elemental absorption edges to determine various spectral features like the localized dd excitations and non-resonant fluorescence emissions, these features can be easily identified in the RIXS maps. Studying such RIXS maps could reveal novel transition metal redox in battery compounds that are sometimes hard to be unambiguously identified in X-ray absorption and emission spectra. As a result, we propose that this modular spectrometer design can serve as the platform for further customization to meet specific scientific demands.« less
Modular soft x-ray spectrometer for applications in energy sciences and quantum materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chuang, Yi -De; Shao, Yu -Cheng; Cruz, Alejandro
Over the past decade, the advances in grating-based soft X-ray spectrometers have revolutionized the soft X-ray spectroscopies in materials research. However, these novel spectrometers are mostly dedicated designs, which cannot be easily adopted for applications with diverging demands. Here we present a versatile spectrometer design concept based on the Hettrick-Underwood optical scheme that uses modular mechanical components. The spectrometer’s optics chamber can be used with gratings operated in either inside or outside orders, and the detector assembly can be reconfigured accordingly. The spectrometer can be designed to have high spectral resolution, exceeding 10 000 resolving power when using small sourcemore » (~1μm) and detector pixels (~5μm) with high line density gratings (~3000 lines/mm), or high throughput at moderate resolution. We report two such spectrometers with slightly different design goals and optical parameters in this paper. We show that the spectrometer with high throughput and large energy window is particularly useful for studying the sustainable energy materials. We demonstrate that the extensive resonant inelastic X-ray scattering (RIXS) map of battery cathode material LiNi 1/3Co 1/3Mn 1/3O 2 can be produced in few hours using such a spectrometer. Unlike analyzing only a handful of RIXS spectra taken at selected excitation photon energies across the elemental absorption edges to determine various spectral features like the localized dd excitations and non-resonant fluorescence emissions, these features can be easily identified in the RIXS maps. Studying such RIXS maps could reveal novel transition metal redox in battery compounds that are sometimes hard to be unambiguously identified in X-ray absorption and emission spectra. As a result, we propose that this modular spectrometer design can serve as the platform for further customization to meet specific scientific demands.« less
Versatile microrobotics using simple modular subunits
NASA Astrophysics Data System (ADS)
Cheang, U. Kei; Meshkati, Farshad; Kim, Hoyeon; Lee, Kyoungwoo; Fu, Henry Chien; Kim, Min Jun
2016-07-01
The realization of reconfigurable modular microrobots could aid drug delivery and microsurgery by allowing a single system to navigate diverse environments and perform multiple tasks. So far, microrobotic systems are limited by insufficient versatility; for instance, helical shapes commonly used for magnetic swimmers cannot effectively assemble and disassemble into different size and shapes. Here by using microswimmers with simple geometries constructed of spherical particles, we show how magnetohydrodynamics can be used to assemble and disassemble modular microrobots with different physical characteristics. We develop a mechanistic physical model that we use to improve assembly strategies. Furthermore, we experimentally demonstrate the feasibility of dynamically changing the physical properties of microswimmers through assembly and disassembly in a controlled fluidic environment. Finally, we show that different configurations have different swimming properties by examining swimming speed dependence on configuration size.
Versatile microrobotics using simple modular subunits
Cheang, U Kei; Meshkati, Farshad; Kim, Hoyeon; Lee, Kyoungwoo; Fu, Henry Chien; Kim, Min Jun
2016-01-01
The realization of reconfigurable modular microrobots could aid drug delivery and microsurgery by allowing a single system to navigate diverse environments and perform multiple tasks. So far, microrobotic systems are limited by insufficient versatility; for instance, helical shapes commonly used for magnetic swimmers cannot effectively assemble and disassemble into different size and shapes. Here by using microswimmers with simple geometries constructed of spherical particles, we show how magnetohydrodynamics can be used to assemble and disassemble modular microrobots with different physical characteristics. We develop a mechanistic physical model that we use to improve assembly strategies. Furthermore, we experimentally demonstrate the feasibility of dynamically changing the physical properties of microswimmers through assembly and disassembly in a controlled fluidic environment. Finally, we show that different configurations have different swimming properties by examining swimming speed dependence on configuration size. PMID:27464852
Martella, Andrea; Matjusaitis, Mantas; Auxillos, Jamie; Pollard, Steven M; Cai, Yizhi
2017-07-21
Mammalian plasmid expression vectors are critical reagents underpinning many facets of research across biology, biomedical research, and the biotechnology industry. Traditional cloning methods often require laborious manual design and assembly of plasmids using tailored sequential cloning steps. This process can be protracted, complicated, expensive, and error-prone. New tools and strategies that facilitate the efficient design and production of bespoke vectors would help relieve a current bottleneck for researchers. To address this, we have developed an extensible mammalian modular assembly kit (EMMA). This enables rapid and efficient modular assembly of mammalian expression vectors in a one-tube, one-step golden-gate cloning reaction, using a standardized library of compatible genetic parts. The high modularity, flexibility, and extensibility of EMMA provide a simple method for the production of functionally diverse mammalian expression vectors. We demonstrate the value of this toolkit by constructing and validating a range of representative vectors, such as transient and stable expression vectors (transposon based vectors), targeting vectors, inducible systems, polycistronic expression cassettes, fusion proteins, and fluorescent reporters. The method also supports simple assembly combinatorial libraries and hierarchical assembly for production of larger multigenetic cargos. In summary, EMMA is compatible with automated production, and novel genetic parts can be easily incorporated, providing new opportunities for mammalian synthetic biology.
Computational design of a self-assembling symmetrical β-propeller protein.
Voet, Arnout R D; Noguchi, Hiroki; Addy, Christine; Simoncini, David; Terada, Daiki; Unzai, Satoru; Park, Sam-Yong; Zhang, Kam Y J; Tame, Jeremy R H
2014-10-21
The modular structure of many protein families, such as β-propeller proteins, strongly implies that duplication played an important role in their evolution, leading to highly symmetrical intermediate forms. Previous attempts to create perfectly symmetrical propeller proteins have failed, however. We have therefore developed a new and rapid computational approach to design such proteins. As a test case, we have created a sixfold symmetrical β-propeller protein and experimentally validated the structure using X-ray crystallography. Each blade consists of 42 residues. Proteins carrying 2-10 identical blades were also expressed and purified. Two or three tandem blades assemble to recreate the highly stable sixfold symmetrical architecture, consistent with the duplication and fusion theory. The other proteins produce different monodisperse complexes, up to 42 blades (180 kDa) in size, which self-assemble according to simple symmetry rules. Our procedure is suitable for creating nano-building blocks from different protein templates of desired symmetry.
Modular container assembled from fiber reinforced thermoplastic sandwich panels
Donnelly, Mathew William; Kasoff, William Andrew; Mcculloch, Patrick Carl; Williams, Frederick Truman
2007-12-25
An improved, load bearing, modular design container structure assembled from thermoformed FRTP sandwich panels in which is utilized the unique core-skin edge configuration of the present invention in consideration of improved load bearing performance, improved useful load volume, reduced manufacturing costs, structural weight savings, impact and damage tolerance and repair and replace issues.
Modular, Reconfigurable, High-Energy Technology Development
NASA Technical Reports Server (NTRS)
Carrington, Connie; Howell, Joe
2006-01-01
The Modular, Reconfigurable High-Energy (MRHE) Technology Demonstrator project was to have been a series of ground-based demonstrations to mature critical technologies needed for in-space assembly of a highpower high-voltage modular spacecraft in low Earth orbit, enabling the development of future modular solar-powered exploration cargo-transport vehicles and infrastructure. MRHE was a project in the High Energy Space Systems (HESS) Program, within NASA's Exploration Systems Research and Technology (ESR&T) Program. NASA participants included Marshall Space Flight Center (MSFC), the Jet Propulsion Laboratory (JPL), and Glenn Research Center (GRC). Contractor participants were the Boeing Phantom Works in Huntsville, AL, Lockheed Martin Advanced Technology Center in Palo Alto, CA, ENTECH, Inc. in Keller, TX, and the University of AL Huntsville (UAH). MRHE's technical objectives were to mature: (a) lightweight, efficient, high-voltage, radiation-resistant solar power generation (SPG) technologies; (b) innovative, lightweight, efficient thermal management systems; (c) efficient, 100kW-class, high-voltage power delivery systems from an SPG to an electric thruster system; (d) autonomous rendezvous and docking technology for in-space assembly of modular, reconfigurable spacecraft; (e) robotic assembly of modular space systems; and (f) modular, reconfigurable distributed avionics technologies. Maturation of these technologies was to be implemented through a series of increasingly-inclusive laboratory demonstrations that would have integrated and demonstrated two systems-of-systems: (a) the autonomous rendezvous and docking of modular spacecraft with deployable structures, robotic assembly, reconfiguration both during assembly and (b) the development and integration of an advanced thermal heat pipe and a high-voltage power delivery system with a representative lightweight high-voltage SPG array. In addition, an integrated simulation testbed would have been developed containing software models representing the technologies being matured in the laboratory demos. The testbed would have also included models for non-MRHE developed subsystems such as electric propulsion, so that end-to-end performance could have been assessed. This paper presents an overview of the MRHE Phase I activities at MSFC and its contractor partners. One of the major Phase I accomplishments is the assembly demonstration in the Lockheed Martin Advanced Technology Center (LMATC) Robot-Satellite facility, in which three robot-satellites successfully demonstrated rendezvous & docking, self-assembly, reconfiguration, adaptable GN&C, deployment, and interfaces between modules. Phase I technology maturation results from ENTECH include material recommendations for radiation hardened Stretched Lens Array (SLA) concentrator lenses, and a design concept and test results for a hi-voltage PV receiver. UAH's accomplishments include Supertube heatpipe test results, which support estimates of thermal conductivities at 30,000 times that of an equivalent silver rod. MSFC performed systems trades and developed a preliminary concept design for a 100kW-class modular reconfigurable solar electric propulsion transport vehicle, and Boeing Phantom Works in Huntsville performed assembly and rendezvous and docking trades. A concept animation video was produced by SAIC, wllich showed rendezvous and docking and SLA-square-rigger deployment in LEO.
Pennell, William E.; Rowan, William J.
1977-01-01
A nuclear reactor in which the core components, including fuel-rod assemblies, control-rod assemblies, fertile rod-assemblies, and removable shielding assemblies, are supported by a plurality of separate inlet modular units. These units are referred to as inlet module units to distinguish them from the modules of the upper internals of the reactor. The modular units are supported, each removable independently of the others, in liners in the supporting structure for the lower internals of the reactor. The core assemblies are removably supported in integral receptacles or sockets of the modular units. The liners, units, sockets and assmblies have inlet openings for entry of the fluid. The modular units are each removably mounted in the liners with fluid seals interposed between the opening in the liner and inlet module into which the fluid enters and the upper and lower portion of the liner. Each assembly is similarly mounted in a corresponding receptacle with fluid seals interposed between the openings where the fluid enters and the lower portion of the receptacle or fitting closely in these regions. As fluid flows along each core assembly a pressure drop is produced along the fluid so that the fluid which emerges from each core assembly is at a lower pressure than the fluid which enters the core assembly. However because of the seals interposed in the mountings of the units and assemblies the pressures above and below the units and assemblies are balanced and the units are held in the liners and the assemblies are held in the receptacles by their weights as they have a higher specific gravity than the fluid. The low-pressure spaces between each module and its liner and between each core assembly and its module is vented to the low-pressure regions of the vessel to assure that fluid which leaks through the seals does not accumulate and destroy the hydraulic balance.
ERIC Educational Resources Information Center
Algar, W. Russ; Massey, Melissa; Krull, Ulrich J.
2009-01-01
A laboratory activity for an upper-level undergraduate course in instrumental analysis has been created around LabVIEW. Students learn rudimentary programming and interfacing skills during the construction of a fluorimeter assembled from common modular components. The fluorimeter consists of an inexpensive data acquisition module, LED light…
Li, Siwei; Ding, Wentao; Zhang, Xueli; Jiang, Huifeng; Bi, Changhao
2016-01-01
Saccharomyces cerevisiae has already been used for heterologous production of fuel chemicals and valuable natural products. The establishment of complicated heterologous biosynthetic pathways in S. cerevisiae became the research focus of Synthetic Biology and Metabolic Engineering. Thus, simple and efficient genomic integration techniques of large number of transcription units are demanded urgently. An efficient DNA assembly and chromosomal integration method was created by combining homologous recombination (HR) in S. cerevisiae and Golden Gate DNA assembly method, designated as modularized two-step (M2S) technique. Two major assembly steps are performed consecutively to integrate multiple transcription units simultaneously. In Step 1, Modularized scaffold containing a head-to-head promoter module and a pair of terminators was assembled with two genes. Thus, two transcription units were assembled with Golden Gate method into one scaffold in one reaction. In Step 2, the two transcription units were mixed with modules of selective markers and integration sites and transformed into S. cerevisiae for assembly and integration. In both steps, universal primers were designed for identification of correct clones. Establishment of a functional β-carotene biosynthetic pathway in S. cerevisiae within 5 days demonstrated high efficiency of this method, and a 10-transcriptional-unit pathway integration illustrated the capacity of this method. Modular design of transcription units and integration elements simplified assembly and integration procedure, and eliminated frequent designing and synthesis of DNA fragments in previous methods. Also, by assembling most parts in Step 1 in vitro, the number of DNA cassettes for homologous integration in Step 2 was significantly reduced. Thus, high assembly efficiency, high integration capacity, and low error rate were achieved.
Experimental Demonstration of Technologies for Autonomous On-Orbit Robotic Assembly
NASA Technical Reports Server (NTRS)
LeMaster, Edward A.; Schaechter, David B.; Carrington, Connie K.
2006-01-01
The Modular Reconfigurable High Energy (MRHE) program aimed to develop technologies for the automated assembly and deployment of large-scale space structures and aggregate spacecraft. Part of the project involved creation of a terrestrial robotic testbed for validation and demonstration of these technologies and for the support of future development activities. This testbed was completed in 2005, and was thereafter used to demonstrate automated rendezvous, docking, and self-assembly tasks between a group of three modular robotic spacecraft emulators. This paper discusses the rationale for the MRHE project, describes the testbed capabilities, and presents the MRHE assembly demonstration sequence.
Analysis of In-Space Assembly of Modular Systems
NASA Technical Reports Server (NTRS)
Moses, Robert W.; VanLaak, James; Johnson, Spencer L.; Chytka, Trina M.; Reeves, John D.; Todd, B. Keith; Moe, Rud V.; Stambolian, Damon B.
2005-01-01
Early system-level life cycle assessments facilitate cost effective optimization of system architectures to enable implementation of both modularity and in-space assembly, two key Exploration Systems Research & Technology (ESR&T) Strategic Challenges. Experiences with the International Space Station (ISS) demonstrate that the absence of this rigorous analysis can result in increased cost and operational risk. An effort is underway, called Analysis of In-Space Assembly of Modular Systems, to produce an innovative analytical methodology, including an evolved analysis toolset and proven processes in a collaborative engineering environment, to support the design and evaluation of proposed concepts. The unique aspect of this work is that it will produce the toolset, techniques and initial products to analyze and compare the detailed, life cycle costs and performance of different implementations of modularity for in-space assembly. A multi-Center team consisting of experienced personnel from the Langley Research Center, Johnson Space Center, Kennedy Space Center, and the Goddard Space Flight Center has been formed to bring their resources and experience to this development. At the end of this 30-month effort, the toolset will be ready to support the Exploration Program with an integrated assessment strategy that embodies all life-cycle aspects of the mission from design and manufacturing through operations to enable early and timely selection of an optimum solution among many competing alternatives. Already there are many different designs for crewed missions to the Moon that present competing views of modularity requiring some in-space assembly. The purpose of this paper is to highlight the approach for scoring competing designs.
MIDAS: A Modular DNA Assembly System for Synthetic Biology.
van Dolleweerd, Craig J; Kessans, Sarah A; Van de Bittner, Kyle C; Bustamante, Leyla Y; Bundela, Rudranuj; Scott, Barry; Nicholson, Matthew J; Parker, Emily J
2018-04-20
A modular and hierarchical DNA assembly platform for synthetic biology based on Golden Gate (Type IIS restriction enzyme) cloning is described. This enabling technology, termed MIDAS (for Modular Idempotent DNA Assembly System), can be used to precisely assemble multiple DNA fragments in a single reaction using a standardized assembly design. It can be used to build genes from libraries of sequence-verified, reusable parts and to assemble multiple genes in a single vector, with full user control over gene order and orientation, as well as control of the direction of growth (polarity) of the multigene assembly, a feature that allows genes to be nested between other genes or genetic elements. We describe the detailed design and use of MIDAS, exemplified by the reconstruction, in the filamentous fungus Penicillium paxilli, of the metabolic pathway for production of paspaline and paxilline, key intermediates in the biosynthesis of a range of indole diterpenes-a class of secondary metabolites produced by several species of filamentous fungi. MIDAS was used to efficiently assemble a 25.2 kb plasmid from 21 different modules (seven genes, each composed of three basic parts). By using a parts library-based system for construction of complex assemblies, and a unique set of vectors, MIDAS can provide a flexible route to assembling tailored combinations of genes and other genetic elements, thereby supporting synthetic biology applications in a wide range of expression hosts.
Digital Material Assembly by Passive Means and Modular Isotropic Lattice Extruder System
NASA Technical Reports Server (NTRS)
Gershenfeld, Neil (Inventor); Carney, Matthew Eli (Inventor); Jenett, Benjamin (Inventor)
2017-01-01
A set of machines and related systems build structures by the additive assembly of discrete parts. These digital material assemblies constrain the constituent parts to a discrete set of possible positions and orientations. In doing so, the structures exhibit many of the properties inherent in digital communication such as error correction, fault tolerance and allow the assembly of precise structures with comparatively imprecise tools. Assembly of discrete cellular lattices by a Modular Isotropic Lattice Extruder System (MILES) is implemented by pulling strings of lattice elements through a forming die that enforces geometry constraints that lock the elements into a rigid structure that can then be pushed against and extruded out of the die as an assembled, loadbearing structure.
Modular assembly of a photovoltaic solar energy receiver
Graven, Robert M.; Gorski, Anthony J.; Schertz, William W.; Graae, Johan E. A.
1978-01-01
There is provided a modular assembly of a solar energy concentrator having a photovoltaic energy receiver with passive cooling. Solar cell means are fixedly coupled to a radiant energy concentrator. Tension means bias a large area heat sink against the cell thereby allowing the cell to expand or contract with respect to the heat sink due to differential heat expansion.
Adams, Peter G.; Collins, Aaron M.; Sahin, Tuba; ...
2015-04-08
Here we report generation of modular, artificial light-harvesting assemblies where an amphiphilic diblock copolymer, poly(ethylene oxide)-block-poly(butadiene), serves as the framework for noncovalent organization of BODIPY-based energy donor and bacteriochlorin-based energy acceptor chromophores. The assemblies are adaptive and form well-defined micelles in aqueous solution and high-quality monolayer and bilayer films on solid supports, with the latter showing greater than 90% energy transfer efficiency. Ultimately, this study lays the groundwork for further development of modular, polymer-based materials for light harvesting and other photonic applications.
Fournier, Bertrand; Mouly, Arnaud; Gillet, François
2016-01-01
Understanding the factors underlying the co-occurrence of multiple species remains a challenge in ecology. Biotic interactions, environmental filtering and neutral processes are among the main mechanisms evoked to explain species co-occurrence. However, they are most often studied separately or even considered as mutually exclusive. This likely hampers a more global understanding of species assembly. Here, we investigate the general hypothesis that the structure of co-occurrence networks results from multiple assembly rules and its potential implications for grassland ecosystems. We surveyed orthopteran and plant communities in 48 permanent grasslands of the French Jura Mountains and gathered functional and phylogenetic data for all species. We constructed a network of plant and orthopteran species co-occurrences and verified whether its structure was modular or nested. We investigated the role of all species in the structure of the network (modularity and nestedness). We also investigated the assembly rules driving the structure of the plant-orthopteran co-occurrence network by using null models on species functional traits, phylogenetic relatedness and environmental conditions. We finally compared our results to abundance-based approaches. We found that the plant-orthopteran co-occurrence network had a modular organization. Community assembly rules differed among modules for plants while interactions with plants best explained the distribution of orthopterans into modules. Few species had a disproportionately high positive contribution to this modular organization and are likely to have a key importance to modulate future changes. The impact of agricultural practices was restricted to some modules (3 out of 5) suggesting that shifts in agricultural practices might not impact the entire plant-orthopteran co-occurrence network. These findings support our hypothesis that multiple assembly rules drive the modular structure of the plant-orthopteran network. This modular structure is likely to play a key role in the response of grassland ecosystems to future changes by limiting the impact of changes in agricultural practices such as intensification to some modules leaving species from other modules poorly impacted. The next step is to understand the importance of this modular structure for the long-term maintenance of grassland ecosystem structure and functions as well as to develop tools to integrate network structure into models to improve their capacity to predict future changes. PMID:27582754
NASA Technical Reports Server (NTRS)
Wintucky, Edwin G.
2000-01-01
A low-cost, low-mass, electrically efficient, modular cathode/electron gun assembly has been developed by FDE Inc. of Beaverton, Oregon, under a Small Business Innovation Research (SBIR) contract with the NASA Glenn Research Center at Lewis Field. This new assembly offers significant improvements in the design and manufacture of microwave and millimeter wave traveling-wave tubes (TWT's) used for radar and communications. It incorporates a novel, low-heater-power, reduced size and mass, high-performance barium dispenser type thermionic cathode and provides for easy integration of the cathode into a large variety of conventional TWT circuits. Among the applications are TWT's for Earth-orbiting communication satellites and for deep space communications, where future missions will require smaller spacecraft, higher data transfer rates (higher frequencies and radiofrequency output power), and greater electrical efficiency. A particularly important TWT application is in the microwave power module (a hybrid microwave/millimeter wave amplifier consisting of a low-noise solid-state driver, a small TWT, and an electronic power conditioner integrated into a single compact package), where electrical efficiency and thermal loading are critical factors and lower cost is needed for successful commercialization. The design and fabrication are based on practices used in producing cathode ray tubes (CRT's), which is one of the most competitive and efficient manufacturing operations in the world today. The approach used in the design and manufacture of thermionic cathodes and electron guns for CRT's has been optimized for fully automated production, standardization of parts, and minimization of costs. It is applicable to the production of similar components for microwave tubes, with the additional benefits of low mass and significantly lower cathode heater power (less than half that of dispenser cathodes presently used in TWT s). Modular cathode/electron gun assembly. The modular cathode/electron gun assembly consists of four subassemblies the cathode, the focus electrode, the header (including the electrical feedthroughs), and the gun envelope (including the anode) a diagram of which is shown. The modular construction offers a number of significant advantages, including flexibility of design, interchangeability of parts, and a drop-in final assembly procedure for quick and accurate alignment. The gun can accommodate cathodes ranging in size from 0.050 to 0.250-in. in diameter and is applicable to TWT's over a broad range of sizes and operating parameters, requiring the substitution of only a few parts: that is, the cathode, focus electrode, and anode. The die-pressed cathode pellets can be made with either flat or concave (Pierce gun design) emitting surfaces. The gun can be either gridded (pulse operation) or ungridded (continuous operation). Important factors contributing to low cost are the greater use of CRT materials and parts, the standardization of processes (welding and mechanical capture), and tooling amenable to automated production. Examples are the use of simple shapes, drawn or stamped metal parts, and parts joined by welding or mechanical capture. Feasibility was successfully demonstrated in the retrofit and testing of a commercial Kaband (22-GHz) TWT. The modular cathode/electron gun assembly was computer modeled to replicate the performance of the original electron gun and fabricated largely from existing CRT parts. Significant test results included demonstration of low heater power (1.5-W, 1010 C brightness temperature for a 0.085-in.-diameter cathode), mechanical ruggedness (100g shock and vibration tests in accordance with military specifications (MIL specs)), and a very fast warmup. The results of these tests indicate that the low-cost CRT manufacturing approach can be used without sacrificing performance and reliability.
NASA Astrophysics Data System (ADS)
Ray, Lauren; Valentic, Timothy R.; Miyazawa, Takeshi; Withall, David M.; Song, Lijiang; Milligan, Jacob C.; Osada, Hiroyuki; Takahashi, Shunji; Tsai, Shiou-Chuan; Challis, Gregory L.
2016-12-01
Type I modular polyketide synthases assemble diverse bioactive natural products. Such multienzymes typically use malonyl and methylmalonyl-CoA building blocks for polyketide chain assembly. However, in several cases more exotic alkylmalonyl-CoA extender units are also known to be incorporated. In all examples studied to date, such unusual extender units are biosynthesized via reductive carboxylation of α, β-unsaturated thioesters catalysed by crotonyl-CoA reductase/carboxylase (CCRC) homologues. Here we show using a chemically-synthesized deuterium-labelled mechanistic probe, and heterologous gene expression experiments that the unusual alkylmalonyl-CoA extender units incorporated into the stambomycin family of polyketide antibiotics are assembled by direct carboxylation of medium chain acyl-CoA thioesters. X-ray crystal structures of the unusual β-subunit of the acyl-CoA carboxylase (YCC) responsible for this reaction, alone and in complex with hexanoyl-CoA, reveal the molecular basis for substrate recognition, inspiring the development of methodology for polyketide bio-orthogonal tagging via incorporation of 6-azidohexanoic acid and 8-nonynoic acid into novel stambomycin analogues.
Features of Modularly Assembled Compounds That Impart Bioactivity Against an RNA Target
Rzuczek, Suzanne G.; Gao, Yu; Tang, Zhen-Zhi; Thornton, Charles A.; Kodadek, Thomas; Disney, Matthew D.
2013-01-01
Transcriptomes provide a myriad of potential RNAs that could be the targets of therapeutics or chemical genetic probes of function. Cell permeable small molecules, however, generally do not exploit these targets, owing to the difficulty in the design of high affinity, specific small molecules targeting RNA. As part of a general program to study RNA function using small molecules, we designed bioactive, modularly assembled small molecules that target the non-coding expanded RNA repeat that causes myotonic dystrophy type 1 (DM1), r(CUG)exp. Herein, we present a rigorous study to elucidate features in modularly assembled compounds that afford bioactivity. Different modular assembly scaffolds were investigated including polyamines, α-peptides, β-peptides, and peptide tertiary amides (PTAs). Based on activity as assessed by improvement of DM1-associated defects, stability against proteases, cellular permeability, and toxicity, we discovered that constrained backbones, namely PTAs, are optimal. Notably, we determined that r(CUG)exp is the target of the optimal PTA in cellular models and that the optimal PTA improves DM1-associated defects in a mouse model. Biophysical analyses were employed to investigate potential sources of bioactivity. These investigations show that modularly assembled compounds have increased residence times on their targets and faster on rates than the RNA-binding modules from which they were derived and faster on rates than the protein that binds r(CUG)exp, the inactivation of which gives rise to DM1-associated defects. These studies provide information about features of small molecules that are programmable for targeting RNA, allowing for the facile optimization of therapeutics or chemical probes against other cellular RNA targets. PMID:24032410
Features of modularly assembled compounds that impart bioactivity against an RNA target.
Rzuczek, Suzanne G; Gao, Yu; Tang, Zhen-Zhi; Thornton, Charles A; Kodadek, Thomas; Disney, Matthew D
2013-10-18
Transcriptomes provide a myriad of potential RNAs that could be the targets of therapeutics or chemical genetic probes of function. Cell-permeable small molecules, however, generally do not exploit these targets, owing to the difficulty in the design of high affinity, specific small molecules targeting RNA. As part of a general program to study RNA function using small molecules, we designed bioactive, modularly assembled small molecules that target the noncoding expanded RNA repeat that causes myotonic dystrophy type 1 (DM1), r(CUG)(exp). Herein, we present a rigorous study to elucidate features in modularly assembled compounds that afford bioactivity. Different modular assembly scaffolds were investigated, including polyamines, α-peptides, β-peptides, and peptide tertiary amides (PTAs). On the basis of activity as assessed by improvement of DM1-associated defects, stability against proteases, cellular permeability, and toxicity, we discovered that constrained backbones, namely, PTAs, are optimal. Notably, we determined that r(CUG)(exp) is the target of the optimal PTA in cellular models and that the optimal PTA improves DM1-associated defects in a mouse model. Biophysical analyses were employed to investigate potential sources of bioactivity. These investigations show that modularly assembled compounds have increased residence times on their targets and faster on rates than the RNA-binding modules from which they were derived. Moreover, they have faster on rates than the protein that binds r(CUG)(exp), the inactivation of which gives rise to DM1-associated defects. These studies provide information about features of small molecules that are programmable for targeting RNA, allowing for the facile optimization of therapeutics or chemical probes against other cellular RNA targets.
NASA Astrophysics Data System (ADS)
Campana, R.; Fuschino, F.; Labanti, C.; Marisaldi, M.; Amati, L.; Fiorini, M.; Uslenghi, M.; Baldazzi, G.; Bellutti, P.; Evangelista, Y.; Elmi, I.; Feroci, M.; Ficorella, F.; Frontera, F.; Picciotto, A.; Piemonte, C.; Rachevski, A.; Rashevskaya, I.; Rignanese, L. P.; Vacchi, A.; Zampa, G.; Zampa, N.; Zorzi, N.
2016-07-01
A future compact and modular X and gamma-ray spectrometer (XGS) has been designed and a series of proto- types have been developed and tested. The experiment envisages the use of CsI scintillator bars read out at both ends by single-cell 25 mm2 Silicon Drift Detectors. Digital algorithms are used to discriminate between events absorbed in the Silicon layer (lower energy X rays) and events absorbed in the scintillator crystal (higher energy X rays and -rays). The prototype characterization is shown and the modular design for future experiments with possible astrophysical applications (e.g. for the THESEUS mission proposed for the ESA M5 call) are discussed.
Construction concepts and validation of the 3D printed UST_2 modular stellarator
NASA Astrophysics Data System (ADS)
Queral, V.
2015-03-01
High accuracy, geometric complexity and thus high cost of stellarators tend to hinder the advance of stellarator research. Nowadays, new manufacturing methods might be developed for the production of small and middle-size stellarators. The methods should demonstrate advantages with respect common fabrication methods, like casting, cutting, forging and welding, for the construction of advanced highly convoluted modular stellarators. UST2 is a small modular three period quasi-isodynamic stellarator of major radius 0.26 m and plasma volume 10 litres being currently built to validate additive manufacturing (3D printing) for stellarator construction. The modular coils are wound in grooves defined on six 3D printed half period frames designed as light truss structures filled by a strong filler. A geometrically simple assembling configuration has been concocted for UST2 so as to try to lower the cost of the device while keeping the positioning accuracy of the different elements. The paper summarizes the construction and assembling concepts developed, the devised positioning methodology, the design of the coil frames and positioning elements and, an initial validation of the assembling of the components.
Standardized Modular Power Interfaces for Future Space Explorations Missions
NASA Technical Reports Server (NTRS)
Oeftering, Richard
2015-01-01
Earlier studies show that future human explorations missions are composed of multi-vehicle assemblies with interconnected electric power systems. Some vehicles are often intended to serve as flexible multi-purpose or multi-mission platforms. This drives the need for power architectures that can be reconfigured to support this level of flexibility. Power system developmental costs can be reduced, program wide, by utilizing a common set of modular building blocks. Further, there are mission operational and logistics cost benefits of using a common set of modular spares. These benefits are the goals of the Advanced Exploration Systems (AES) Modular Power System (AMPS) project. A common set of modular blocks requires a substantial level of standardization in terms of the Electrical, Data System, and Mechanical interfaces. The AMPS project is developing a set of proposed interface standards that will provide useful guidance for modular hardware developers but not needlessly constrain technology options, or limit future growth in capability. In 2015 the AMPS project focused on standardizing the interfaces between the elements of spacecraft power distribution and energy storage. The development of the modular power standard starts with establishing mission assumptions and ground rules to define design application space. The standards are defined in terms of AMPS objectives including Commonality, Reliability-Availability, Flexibility-Configurability and Supportability-Reusability. The proposed standards are aimed at assembly and sub-assembly level building blocks. AMPS plans to adopt existing standards for spacecraft command and data, software, network interfaces, and electrical power interfaces where applicable. Other standards including structural encapsulation, heat transfer, and fluid transfer, are governed by launch and spacecraft environments and bound by practical limitations of weight and volume. Developing these mechanical interface standards is more difficult but an essential part of defining physical building blocks of modular power. This presentation describes the AMPS projects progress towards standardized modular power interfaces.
Modular Power Standard for Space Explorations Missions
NASA Technical Reports Server (NTRS)
Oeftering, Richard C.; Gardner, Brent G.
2016-01-01
Future human space exploration will most likely be composed of assemblies of multiple modular spacecraft elements with interconnected electrical power systems. An electrical system composed of a standardized set modular building blocks provides significant development, integration, and operational cost advantages. The modular approach can also provide the flexibility to configure power systems to meet the mission needs. A primary goal of the Advanced Exploration Systems (AES) Modular Power System (AMPS) project is to establish a Modular Power Standard that is needed to realize these benefits. This paper is intended to give the space exploration community a "first look" at the evolving Modular Power Standard and invite their comments and technical contributions.
Modular assembly of optical nanocircuits.
Shi, Jinwei; Monticone, Francesco; Elias, Sarah; Wu, Yanwen; Ratchford, Daniel; Li, Xiaoqin; Alù, Andrea
2014-05-29
A key element enabling the microelectronic technology advances of the past decades has been the conceptualization of complex circuits with versatile functionalities as being composed of the proper combination of basic 'lumped' circuit elements (for example, inductors and capacitors). In contrast, modern nanophotonic systems are still far from a similar level of sophistication, partially because of the lack of modularization of their response in terms of basic building blocks. Here we demonstrate the design, assembly and characterization of relatively complex photonic nanocircuits by accurately positioning a number of metallic and dielectric nanoparticles acting as modular lumped elements. The nanoparticle clusters produce the desired spectral response described by simple circuit rules and are shown to be dynamically reconfigurable by modifying the direction or polarization of impinging signals. Our work represents an important step towards extending the powerful modular design tools of electronic circuits into nanophotonic systems.
Modular assembly of optical nanocircuits
NASA Astrophysics Data System (ADS)
Shi, Jinwei; Monticone, Francesco; Elias, Sarah; Wu, Yanwen; Ratchford, Daniel; Li, Xiaoqin; Alù, Andrea
2014-05-01
A key element enabling the microelectronic technology advances of the past decades has been the conceptualization of complex circuits with versatile functionalities as being composed of the proper combination of basic ‘lumped’ circuit elements (for example, inductors and capacitors). In contrast, modern nanophotonic systems are still far from a similar level of sophistication, partially because of the lack of modularization of their response in terms of basic building blocks. Here we demonstrate the design, assembly and characterization of relatively complex photonic nanocircuits by accurately positioning a number of metallic and dielectric nanoparticles acting as modular lumped elements. The nanoparticle clusters produce the desired spectral response described by simple circuit rules and are shown to be dynamically reconfigurable by modifying the direction or polarization of impinging signals. Our work represents an important step towards extending the powerful modular design tools of electronic circuits into nanophotonic systems.
3D printed Lego®-like modular microfluidic devices based on capillary driving.
Nie, Jing; Gao, Qing; Qiu, Jing-Jiang; Sun, Miao; Liu, An; Shao, Lei; Fu, Jian-Zhong; Zhao, Peng; He, Yong
2018-03-12
The field of how to rapidly assemble microfluidics with modular components continuously attracts researchers' attention, however, extra efforts must be devoted to solving the problems of leaking and aligning between individual modules. This paper presents a novel type of modular microfluidic device, driven by capillary force. There is no necessity for a strict seal or special alignment, and its open structures make it easy to integrate various stents and reactants. The key rationale for this method is to print different functional modules with a low-cost three-dimensional (3D) printer, then fill the channels with capillary materials and assemble them with plugs like Lego ® bricks. This rapidly reconstructed modular microfluidic device consists of a variety of common functional modules and other personalized modules, each module having a unified standard interface for easy assembly. As it can be printed by a desktop 3D printer, the manufacturing process is simple and efficient, with controllable regulation of the flow channel scale. Through diverse combinations of different modules, a variety of different functions can be achieved, without duplicating the manufacturing process. A single module can also be taken out for testing and analysis. What's more, combined with basic circuit components, it can serve as a low-cost Lego ® -like modular microfluidic circuits. As a proof of concept, the modular microfluidic device has been successfully demonstrated and used for stent degradation and cell cultures, revealing the potential use of this method in both chemical and biological research.
Self-Assembly of a Modular Polypeptide Based on Blocks of Silk-Mimetic and Elastin-Mimetic Sequences
2002-04-01
Silk -Mimetic and Elastin-Mimetic Sequences DISTRIBUTION: Approved for public release, distribution unlimited This paper is part of the following...724 © 2002 Materials Research Society N3.8 Self-Assembly of a Modular Polypeptide based on Blocks of Silk -Mimetic and Elastin- Mimetic Sequences...Chrystelle S. Cazalis, and Vincent P. Conticello* Department of Chemistry, Emory University, Atlanta, GA 30322 ABSTRACT Spider dragline silk fiber displays
NASA Technical Reports Server (NTRS)
Borroni-Bird, Christopher E. (Inventor); Lapp, Anthony Joseph (Inventor); Vitale, Robert L. (Inventor); Lee, Chunhao J. (Inventor); Bluethmann, William J. (Inventor); Ridley, Justin S. (Inventor); Junkin, Lucien Q. (Inventor); Ambrose, Robert O. (Inventor); Lutz, Jonathan J. (Inventor); Guo, Raymond (Inventor)
2015-01-01
A modular robotic vehicle includes a chassis, driver input devices, an energy storage system (ESS), a power electronics module (PEM), modular electronic assemblies (eModules) connected to the ESS via the PEM, one or more master controllers, and various embedded controllers. Each eModule includes a drive wheel containing a propulsion-braking module, and a housing containing propulsion and braking control assemblies with respective embedded propulsion and brake controllers, and a mounting bracket covering a steering control assembly with embedded steering controllers. The master controller, which is in communication with each eModule and with the driver input devices, communicates with and independently controls each eModule, by-wire, via the embedded controllers to establish a desired operating mode. Modes may include a two-wheel, four-wheel, diamond, and omni-directional steering modes as well as a park mode. A bumper may enable docking with another vehicle, with shared control over the eModules of the vehicles.
Programmable formation of catalytic RNA triangles and squares by assembling modular RNA enzymes.
Oi, Hiroki; Fujita, Daisuke; Suzuki, Yuki; Sugiyama, Hiroshi; Endo, Masayuki; Matsumura, Shigeyoshi; Ikawa, Yoshiya
2017-05-01
RNA is a biopolymer that is attractive for constructing nano-scale objects with complex structures. Three-dimensional (3D) structures of naturally occurring RNAs often have modular architectures. The 3D structure of a group I (GI) ribozyme from Tetrahymena has a typical modular architecture, which can be separated into two structural modules (ΔP5 and P5abc). The fully active ribozyme can be reconstructed by assembling the two separately prepared modules through highly specific and strong assembly between ΔP5 ribozyme and P5abc RNA. Such non-covalent assembly of the two modules allows the design of polygonal RNA nano-structures. Through rational redesign of the parent GI ribozyme, we constructed variant GI ribozymes as unit RNAs for polygonal-shaped (closed) oligomers with catalytic activity. Programmed trimerization and tetramerization of the unit RNAs afforded catalytically active nano-sized RNA triangles and squares, the structures of which were directly observed by atomic force microscopy (AFM). © The Authors 2017. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.
Battery with modular air cathode and anode cage
Niksa, Marilyn J.; Pohto, Gerald R.; Lakatos, Leslie K.; Wheeler, Douglas J.; Niksa, Andrew J.; Schue, Thomas J.
1987-01-01
A battery assembly of the consumable metal anode type has now been constructed for ready assembly as well as disassembly. In a non-conductive and at least substantially inert cell body, space is provided for receiving an open-structured, non-consumable anode cage. The cage has an open top for facilitating insertion of an anode. A modular cathode is used, comprising a peripheral current conductor frame clamped about a grid reinforced air cathode in sheet form. The air cathode may be double gridded. The cathode frame can be sealed, during assembly, with electrolyte-resistant-sealant as well as with adhesive. The resulting cathode module can be assembled outside the cell body and readily inserted therein, or can later be easily removed therefrom.
Battery with modular air cathode and anode cage
Niksa, Marilyn J.; Pohto, Gerald R.; Lakatos, Leslie K.; Wheeler, Douglas J.; Niksa, Andrew J.; Schue, Thomas J.; Turk, Thomas R.
1988-01-01
A battery assembly of the consumable metal anode type has now been constructed for ready assembly as well as disassembly. In a non-conductive and at least substantially inert cell body, space is provided for receiving an open-structured, non-consumable anode cage. The cage has an open top for facilitating insertion of an anode. A modular cathode is used, comprising a peripheral current conductor frame clamped about a grid reinforced air cathode in sheet form. The air cathode may be double gridded. The cathode frame can be sealed, during assembly, with electrolyte-resistant-sealant as well as with adhesive. The resulting cathode module can be assembled outside the cell body and readily inserted therein, or can later be easily removed therefrom.
Layer-by-layer strippable Ag multilayer films fabricated by modular assembly.
Li, Yan; Chen, Xiaoyan; Li, Qianqian; Song, Kai; Wang, Shihui; Chen, Xiaoyan; Zhang, Kai; Fu, Yu; Jiao, Yong-Hua; Sun, Ting; Liu, Fu-Chun; Han, En-Hou
2014-01-21
We have developed a new method to fabricate multilayer films, which uses prepared thin films as modular blocks and transfer as operation mode to build up multilayer structures. In order to distinguish it from the in situ fabrication manner, this method is called modular assembly in this study. On the basis of such concept, we have fabricated a multilayer film using the silver mirror film as the modular block and poly(lactic acid) as the transfer tool. Due to the special double-layer structure of the silver mirror film, the resulting multilayer film had a well-defined stratified architecture with alternate porous/compact layers. As a consequence of the distinct structure, the interaction between the adjacent layers was so weak that the multilayer film could be layer-by-layer stripped. In addition, the top layer in the film could provide an effective protection on the morphology and surface property of the underlying layers. This suggests that if the surface of the film was deteriorated, the top layer could be peeled off and the freshly exposed surface would still maintain the original function. The successful preparation of the layer-by-layer strippable silver multilayer demonstrates that modular assembly is a feasible and effective method to build up multilayer films capable of creating novel and attractive micro/nanostructures, having great potential in the fabrication of nanodevices and coatings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michael Viola, J. Edwards, T. Brown, L. Dudek, R. Ellis, P. Heitzenroeder, R. Strykowsky and Michael Cole
The National Compact Stellarator Experiment (NCSX) was a collaborative effort between ORNL and PPPL. PPPL provided the assembly techniques with guidance from ORNL to meet design criteria. The individual vacuum vessel segments, modular coils, trim coils, and toroidal field coils components were delivered to the Field Period Assembly (FPA) crew who then would complete the component assemblies and then assemble the final three field period assemblies, each consisting of two sets of three modular coils assembled over a 120o vacuum vessel segment with the trim coils and toroidal field coils providing the outer layer. The requirements for positioning the modularmore » coils were found to be most demanding. The assembly tolerances required for accurate positioning of the field coil windings in order to generate sufficiently accurate magnetic fields strained state of the art techniques in metrology and alignment and required constant monitoring of assembly steps with laser trackers, measurement arms, and photogrammetry. The FPA activities were being performed concurrently while engineering challenges were being resolved. For example, it was determined that high friction electrically isolated shims were needed between the modular coil interface joints and low distortion welding was required in the nose region of those joints. This took months of analysis and development yet the assembly was not significantly impacted because other assembly tasks could be performed in parallel with ongoing assembly tasks as well as tasks such as advance tooling setup preparation for the eventual welding tasks. The crew technicians developed unique, accurate time saving techniques and tooling which provided significant cost and schedule savings. Project management displayed extraordinary foresight and every opportunity to gain advanced knowledge and develop techniques was taken advantage of. Despite many risk concerns, the cost and schedule performance index was maintained nearly 1.0 during the assembly phase until project cancellation. In this paper, the assembly logic, the engineering challenges, solutions to those challenges and some of the unique and clever assembly techniques, will be presented.« less
Astronaut Alan Bean works on Modular Equipment Stowage Assembly
1969-11-19
AS12-46-6749 (19 Nov. 1969) --- Astronaut Alan L. Bean, lunar module pilot for the Apollo 12 lunar landing mission, works at the Modular Equipment Stowage Assembly (MESA) on the Apollo 12 Lunar Module (LM) during the mission's first extravehicular activity, (EVA) on Nov. 19, 1969. Astronaut Charles Conrad Jr., commander, and Bean descended in the Apollo 12 LM to explore the moon while astronaut Richard F. Gordon Jr., command module pilot, remained with the Command and Service Modules (CSM) in lunar orbit.
Leclerc-Laronze, Nathalie; Marrot, Jérôme; Thouvenot, René; Cadot, Emmanuel
2009-01-01
Linked to the Pentagon: The addition of molybdate to [HBW(11)O(39)](8-) ions leads to the formation of mixed pentagonal units {W(Mo(5))} and {W(WMo(4))} trapped as linkers in the resulting modular assemblies, thus establishing the first link between the conventional Keggin ion derivatives and the giant molybdenum oxide and keplerate ions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
C. Priniski, T. Dodson, M. Duco, S. Raftopoulos, R. Ellis, and A. Brooks
In support of the National Compact Stellerator Experiment (NCSX), stellerator assembly activities continued this past year at the Princeton Plasma Physics Laboratory (PPPL) in partnership with the Oak Ridge National Laboratory (ORNL). The construction program saw the completion of the first two Half Field-Period Assemblies (HPA), each consisting of three modular coils. The full machine includes six such sub-assemblies. A single HPA consists of three of the NCSX modular coils wound and assembled at PPPL. These geometrically-complex threedimensional coils were wound using computer-aided metrology and CAD models to tolerances within +/- 0.5mm. The assembly of these coils required similar accuracymore » on a larger scale with the added complexity of more individual parts and fewer degrees of freedom for correction. Several new potential positioning issues developed for which measurement and control techniques were developed. To accomplish this, CAD coordinate-based computer metrology equipment and software similar to the solutions employed for winding the modular coils was used. Given the size of the assemblies, the primary tools were both interferometeraided and Absolute Distance Measurement (ADM)-only based laser trackers. In addition, portable Coordinate Measurement Machine (CMM) arms and some novel indirect measurement techniques were employed. This paper will detail both the use of CAD coordinate-based metrology technology and the techniques developed and employed for dimensional control of NSCX subassemblies. The results achieved and possible improvements to techniques will be discussed.« less
Conceptual Design of a 100 MWe Modular Molten Salt Power Tower Plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
James E. Pacheco; Carter Moursund, Dale Rogers, David Wasyluk
2011-09-20
A conceptual design of a 100 MWe modular molten salt solar power tower plant has been developed which can provide capacity factors in the range of 35 to 75%. Compared to single tower plants, the modular design provides a higher degree of flexibility in achieving the desired customer's capacity factor and is obtained simply by adjusting the number of standard modules. Each module consists of a standard size heliostat field and receiver system, hence reengineering and associated unacceptable performance uncertainties due to scaling are eliminated. The modular approach with multiple towers also improves plant availability. Heliostat field components, receivers andmore » towers are shop assembled allowing for high quality and minimal field assembly. A centralized thermal-storage system stores hot salt from the receivers, allowing nearly continuous power production, independent of solar energy collection, and improved parity with the grid. A molten salt steam generator converts the stored thermal energy into steam, which powers a steam turbine generator to produce electricity. This paper describes the conceptual design of the plant, the advantages of modularity, expected performance, pathways to cost reductions, and environmental impact.« less
Three-dimensional fit-to-flow microfluidic assembly.
Chen, Arnold; Pan, Tingrui
2011-12-01
Three-dimensional microfluidics holds great promise for large-scale integration of versatile, digitalized, and multitasking fluidic manipulations for biological and clinical applications. Successful translation of microfluidic toolsets to these purposes faces persistent technical challenges, such as reliable system-level packaging, device assembly and alignment, and world-to-chip interface. In this paper, we extended our previously established fit-to-flow (F2F) world-to-chip interconnection scheme to a complete system-level assembly strategy that addresses the three-dimensional microfluidic integration on demand. The modular F2F assembly consists of an interfacial chip, pluggable alignment modules, and multiple monolithic layers of microfluidic channels, through which convoluted three-dimensional microfluidic networks can be easily assembled and readily sealed with the capability of reconfigurable fluid flow. The monolithic laser-micromachining process simplifies and standardizes the fabrication of single-layer pluggable polymeric modules, which can be mass-produced as the renowned Lego(®) building blocks. In addition, interlocking features are implemented between the plug-and-play microfluidic chips and the complementary alignment modules through the F2F assembly, resulting in facile and secure alignment with average misalignment of 45 μm. Importantly, the 3D multilayer microfluidic assembly has a comparable sealing performance as the conventional single-layer devices, providing an average leakage pressure of 38.47 kPa. The modular reconfigurability of the system-level reversible packaging concept has been demonstrated by re-routing microfluidic flows through interchangeable modular microchannel layers.
Accurate, predictable, repeatable micro-assembly technology for polymer, microfluidic modules.
Lee, Tae Yoon; Han, Kyudong; Barrett, Dwhyte O; Park, Sunggook; Soper, Steven A; Murphy, Michael C
2018-01-01
A method for the design, construction, and assembly of modular, polymer-based, microfluidic devices using simple micro-assembly technology was demonstrated to build an integrated fluidic system consisting of vertically stacked modules for carrying out multi-step molecular assays. As an example of the utility of the modular system, point mutation detection using the ligase detection reaction (LDR) following amplification by the polymerase chain reaction (PCR) was carried out. Fluid interconnects and standoffs ensured that temperatures in the vertically stacked reactors were within ± 0.2 C° at the center of the temperature zones and ± 1.1 C° overall. The vertical spacing between modules was confirmed using finite element models (ANSYS, Inc., Canonsburg, PA) to simulate the steady-state temperature distribution for the assembly. Passive alignment structures, including a hemispherical pin-in-hole, a hemispherical pin-in-slot, and a plate-plate lap joint, were developed using screw theory to enable accurate exactly constrained assembly of the microfluidic reactors, cover sheets, and fluid interconnects to facilitate the modular approach. The mean mismatch between the centers of adjacent through holes was 64 ± 7.7 μm, significantly reducing the dead volume necessary to accommodate manufacturing variation. The microfluidic components were easily assembled by hand and the assembly of several different configurations of microfluidic modules for executing the assay was evaluated. Temperatures were measured in the desired range in each reactor. The biochemical performance was comparable to that obtained with benchtop instruments, but took less than 45 min to execute, half the time.
NASA Technical Reports Server (NTRS)
Price, P. B.
1978-01-01
The feasibility of the design, construction, launch and retrieval of a hinged 15 ft by 110 ft the platform containing an array of interleaved CR-39 and Lexan track-recording detectors to be placed into circular orbit by space shuttle is assessed. The total weight of the detector assembly plus supporting structure and accessories is 32,000 pounds. The modular construction permits as little as one fourth of the payload to be exposed at one time. The CR-39 detector has sensitivity adequate to detect and study cosmic rays ranging from minimum ionizing iron-group nuclei to the heaviest elements. The detectors will survive a one year exposure to trapped protons without losing their high resolution. Advantages include low cost, huge collecting power (approximately 150 sq m) as well as the high resolution previously attainable only with electronic detectors.
BASIC: A Simple and Accurate Modular DNA Assembly Method.
Storch, Marko; Casini, Arturo; Mackrow, Ben; Ellis, Tom; Baldwin, Geoff S
2017-01-01
Biopart Assembly Standard for Idempotent Cloning (BASIC) is a simple, accurate, and robust DNA assembly method. The method is based on linker-mediated DNA assembly and provides highly accurate DNA assembly with 99 % correct assemblies for four parts and 90 % correct assemblies for seven parts [1]. The BASIC standard defines a single entry vector for all parts flanked by the same prefix and suffix sequences and its idempotent nature means that the assembled construct is returned in the same format. Once a part has been adapted into the BASIC format it can be placed at any position within a BASIC assembly without the need for reformatting. This allows laboratories to grow comprehensive and universal part libraries and to share them efficiently. The modularity within the BASIC framework is further extended by the possibility of encoding ribosomal binding sites (RBS) and peptide linker sequences directly on the linkers used for assembly. This makes BASIC a highly versatile library construction method for combinatorial part assembly including the construction of promoter, RBS, gene variant, and protein-tag libraries. In comparison with other DNA assembly standards and methods, BASIC offers a simple robust protocol; it relies on a single entry vector, provides for easy hierarchical assembly, and is highly accurate for up to seven parts per assembly round [2].
NASA Astrophysics Data System (ADS)
Jiang, Jingtao; Sui, Rendong; Shi, Yan; Li, Furong; Hu, Caiqi
In this paper 3-D models of combined fixture elements are designed, classified by their functions, and saved in computer as supporting elements library, jointing elements library, basic elements library, localization elements library, clamping elements library, and adjusting elements library etc. Then automatic assembly of 3-D combined checking fixture for auto-body part is presented based on modularization theory. And in virtual auto-body assembly space, Locating constraint mapping technique and assembly rule-based reasoning technique are used to calculate the position of modular elements according to localization points and clamp points of auto-body part. Auto-body part model is transformed from itself coordinate system space to virtual assembly space by homogeneous transformation matrix. Automatic assembly of different functional fixture elements and auto-body part is implemented with API function based on the second development of UG. It is proven in practice that the method in this paper is feasible and high efficiency.
NASA Astrophysics Data System (ADS)
Giacalone, Philip L.
1993-06-01
The design of the Intelsat VII surface tension propellant management device (PMD) (an all-welded assembly consisting of about 100 individual components) was developed using a modular design approach that allowed the complex PMD assembly to be divided into smaller modules. The modular approach reduces manufacturing-related technical and schedule risks and allows many components and assemblies to be processed in parallel, while also facilitating the incorporation of quality assurance tests at all critical PMD subassembly levels. The baseline PMD assembly is made from titanium and stainless steel materials. In order to obtain a 100 percent titanium PMD, a new, state-of-the-art fine mesh titanium screen material was developed, tested, and qualified for use as an alternaltive to the stainless steel screen material. The Ti based screen material demonstrated a high level of bubble point performance. It was integrated into a PMD assembly and was successfully qualification tested at the tank assembly level.
Modular fuel-cell stack assembly
Patel, Pinakin [Danbury, CT; Urko, Willam [West Granby, CT
2008-01-29
A modular multi-stack fuel-cell assembly in which the fuel-cell stacks are situated within a containment structure and in which a gas distributor is provided in the structure and distributes received fuel and oxidant gases to the stacks and receives exhausted fuel and oxidant gas from the stacks so as to realize a desired gas flow distribution and gas pressure differential through the stacks. The gas distributor is centrally and symmetrically arranged relative to the stacks so that it itself promotes realization of the desired gas flow distribution and pressure differential.
A modular assembly method of a feed and thruster system for Cubesats
NASA Astrophysics Data System (ADS)
Louwerse, Marcus; Jansen, Henri; Elwenspoek, Miko
2010-11-01
A modular assembly method for devices based on micro system technology is presented. The assembly method forms the foundation for a miniaturized feed and thruster system as part of a micro propulsion unit working as a simple blow-down system of a rocket engine. The micro rocket is designed to be used for constellation maintenance of Cubesats, which measure 10 × 10 × 10 cm and have a mass less than 1 kg. The feed and thruster system contains an active valve, control electronics, a particle filter and an axisymmetric converging-diverging nozzle, all fabricated as separate modules. A novel method is used to integrate these modules by placing them on or in a glass tube package. The assembly method is shown to be a valid method but the valve module needs to be improved considerably.
Prototype color field sequential television lens assembly
NASA Technical Reports Server (NTRS)
1974-01-01
The design, development, and evaluation of a prototype modular lens assembly with a self-contained field sequential color wheel is presented. The design of a color wheel of maximum efficiency, the selection of spectral filters, and the design of a quiet, efficient wheel drive system are included. Design tradeoffs considered for each aspect of the modular assembly are discussed. Emphasis is placed on achieving a design which can be attached directly to an unmodified camera, thus permitting use of the assembly in evaluating various candidate camera and sensor designs. A technique is described which permits maintaining high optical efficiency with an unmodified camera. A motor synchronization system is developed which requires only the vertical synchronization signal as a reference frequency input. Equations and tradeoff curves are developed to permit optimizing the filter wheel aperture shapes for a variety of different design conditions.
Prasuhn, Duane E.; Blanco-Canosa, Juan B.; Vora, Gary J.; Delehanty, James B.; Susumu, Kimihiro; Mei, Bing C.; Dawson, Philip E.; Medintz, Igor L.
2015-01-01
One of the principle hurdles to wider incorporation of semiconductor quantum dots (QDs) in biology is the lack of facile linkage chemistries to create different types of functional QD-bioconjugates. A two-step modular strategy for the presentation of biomolecules on CdSe/ZnS core/shell QDs is described here which utilizes a chemoselective, aniline-catalyzed hydrazone coupling chemistry to append hexahistidine sequences onto peptides and DNA. This specifically provides them the ability to ratiometrically self-assemble to hydrophilic QDs. The versatility of this labeling approach was highlighted by ligating proteolytic substrate peptides, an oligoarginine cell-penetrating peptide, or a DNA-probe to cognate hexahistidine peptidyl sequences. The modularity allowed subsequently self-assembled QD constructs to engage in different types of targeted bioassays. The self-assembly and photophysical properties of individual QD conjugates were first confirmed by gel electrophoresis and Förster resonance energy transfer analysis. QD-dye-labeled peptide conjugates were then used as biosensors to quantitatively monitor the proteolytic activity of caspase-3 or elastase enzymes from different species. These sensors allowed the determination of the corresponding kinetic parameters, including the Michaelis constant (KM) and the maximum proteolytic activity (Vmax). QDs decorated with cell-penetrating peptides were shown to be successfully internalized by HEK 293T/17 cells, while nanocrystals displaying peptide-DNA conjugates were utilized as fluorescent probes in hybridization microarray assays. This modular approach for displaying peptides or DNA on QDs may be extended to other more complex biomolecules such as proteins or utilized with different types of nanoparticle materials. PMID:20099912
Modular assembly of thick multifunctional cardiac patches
Fleischer, Sharon; Shapira, Assaf; Feiner, Ron; Dvir, Tal
2017-01-01
In cardiac tissue engineering cells are seeded within porous biomaterial scaffolds to create functional cardiac patches. Here, we report on a bottom-up approach to assemble a modular tissue consisting of multiple layers with distinct structures and functions. Albumin electrospun fiber scaffolds were laser-patterned to create microgrooves for engineering aligned cardiac tissues exhibiting anisotropic electrical signal propagation. Microchannels were patterned within the scaffolds and seeded with endothelial cells to form closed lumens. Moreover, cage-like structures were patterned within the scaffolds and accommodated poly(lactic-co-glycolic acid) (PLGA) microparticulate systems that controlled the release of VEGF, which promotes vascularization, or dexamethasone, an anti-inflammatory agent. The structure, morphology, and function of each layer were characterized, and the tissue layers were grown separately in their optimal conditions. Before transplantation the tissue and microparticulate layers were integrated by an ECM-based biological glue to form thick 3D cardiac patches. Finally, the patches were transplanted in rats, and their vascularization was assessed. Because of the simple modularity of this approach, we believe that it could be used in the future to assemble other multicellular, thick, 3D, functional tissues. PMID:28167795
Information management advanced development. Volume 1: Summary
NASA Technical Reports Server (NTRS)
Gerber, C. R.
1972-01-01
The information management systems designed for the modular space station are discussed. Subjects presented are: (1) communications terminal breadboard configuration, (2) digital data bus breadboard configuration, (3) data processing assembly definition, and (4) computer program (software) assembly definition.
Applications of Spacelab Payload Standard Modular Electronics /SPSME/
NASA Technical Reports Server (NTRS)
Wilkinson, D. D.; Kasulka, L. H.
1980-01-01
The NASA sponsored Spacelab Payload Standard Modular Electronics program has been designed with the basic objective of providing a space-qualified set of standardized modular electronics to support investigations identified for Spacelab payloads. These units are reusable, have functional, physical, and interface characteristics which allow them to be conveniently assembled in a multitude of configurations, and functionally interchangeable with their ground-based equivalents. The interfacing and control modules are described and typical hardware applications are presented.
LANDSAT-D flight segment operations manual, volume 1
NASA Technical Reports Server (NTRS)
Varhola, J.
1982-01-01
Hardware, systems, and subsystems for the multimission modular spacecraft used for LANDSAT 4 are described and depicted in block diagrams and schematics. Components discussed include the modular attitude control system; the communication and data handling subsystem; the narrowband tape recorder; the on-board computer; the propulsion module subsystem; the signal conditioning and control unit; the modular power subsystem; the solar array drive and power transmission assembly; the power distribution unit; the digital processing unit; and the wideband communication subsystem.
NASA Astrophysics Data System (ADS)
Stuffler, Timo; Graue, Roland; Bird, Antony J.; Dean, Antony; Staubert, Rüdiger
2018-04-01
This paper, "PIMACS (Polarimeter and improved modular anti-coincidence system): an effective instrument concept for x-, gamma-ray monitoring, and polarimetry measurements on the International Space Station," was presented as part of International Conference on Space Optics—ICSO 1997, held in Toulouse, France.
Fong, Monica; Berrin, Jean-Guy; Paës, Gabriel
2016-01-01
Enzymes degrading plant biomass polymers are widely used in biotechnological applications. Their efficiency can be limited by non-specific interactions occurring with some chemical motifs. In particular, the lignin component is known to bind enzymes irreversibly. In order to determine interactions of enzymes with their substrates, experiments are usually performed on isolated simple polymers which are not representative of plant cell wall complexity. But when using natural plant substrates, the role of individual chemical and structural features affecting enzyme-binding properties is also difficult to decipher. We have designed and used lignified model assemblies of plant cell walls as templates to characterize binding properties of multi-modular cellulases. These three-dimensional assemblies are modulated in their composition using the three principal polymers found in secondary plant cell walls (cellulose, hemicellulose, and lignin). Binding properties of enzymes are obtained from the measurement of their mobility that depends on their interactions with the polymers and chemical motifs of the assemblies. The affinity of the multi-modular GH45 cellulase was characterized using a statistical analysis to determine the role played by each assembly polymer. Presence of hemicellulose had much less impact on affinity than cellulose and model lignin. Depending on the number of CBMs appended to the cellulase catalytic core, binding properties toward cellulose and lignin were highly contrasted. Model assemblies bring new insights into the molecular determinants that are responsible for interactions between enzymes and substrate without the need of complex analysis. Consequently, we believe that model bioinspired assemblies will provide relevant information for the design and optimization of enzyme cocktails in the context of biorefineries.
NASA Technical Reports Server (NTRS)
Gorenstein, P.
1984-01-01
Various parameters which affect the design of the proposed large area modular array of reflectors (LAMAR) are considered, including thermal control, high resolution X-ray spectroscopy, pointing control, and mirror performance. The LAMAR instrument is to be a shuttle-launched X-ray observatory to carry out cosmic X-ray investigations. The capabilities of LAMAR are enumerated. Angular resolution performance of the mirror module prototype was measured to be 30 sec of ARC for 50% of the power. The LAMAR thermal pre-collimator design concepts and test configurations are discussed in detail.
A modular assembling platform for manufacturing of microsystems by optical tweezers
NASA Astrophysics Data System (ADS)
Ksouri, Sarah Isabelle; Aumann, Andreas; Ghadiri, Reza; Prüfer, Michael; Baer, Sebastian; Ostendorf, Andreas
2013-09-01
Due to the increased complexity in terms of materials and geometries for microsystems new assembling techniques are required. Assembling techniques from the semiconductor industry are often very specific and cannot fulfill all specifications in more complex microsystems. Therefore, holographic optical tweezers are applied to manipulate structures in micrometer range with highest flexibility and precision. As is well known non-spherical assemblies can be trapped and controlled by laser light and assembled with an additional light modulator application, where the incident laser beam is rearranged into flexible light patterns in order to generate multiple spots. The complementary building blocks are generated by a two-photon-polymerization process. The possibilities of manufacturing arbitrary microstructures and the potential of optical tweezers lead to the idea of combining manufacturing techniques with manipulation processes to "microrobotic" processes. This work presents the manipulation of generated complex microstructures with optical tools as well as a storage solution for 2PP assemblies. A sample holder has been developed for the manual feeding of 2PP building blocks. Furthermore, a modular assembling platform has been constructed for an `all-in-one' 2PP manufacturing process as a dedicated storage system. The long-term objective is the automation process of feeding and storage of several different 2PP micro-assemblies to realize an automated assembly process.
NexusHaus: Solar Decathlon House
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garrison, Michael Lynn
The University of Texas at Austin and The Technical University of Munich 2015 Solar Decathlon house is called Nexushaus because it combines UT Austin and TUM students in an affordable modular residential green building in the context of Austin, Texas, based on shape forming principles found in nature that demonstrates transformative technologies in Zero Net Energy, Zero Net Water and Carbon Neutrality. To meet the needs of the competition, a portable modular design has been developed with an assembly that enables ease of installation and both quantitative and qualitative performance in the design. The prefabricated house sits lightly on themore » land and forms the superstructure for photovoltaic technologies, rainwater collection, aquaculture and permaculture gardening and indoor/outdoor living. The ultimate goal of Nexushaus is to serve as a potential prototype for a next-generation modular home that could be reproduced in mass in an assembly plant in Austin.« less
Single-cell isolation by a modular single-cell pipette for RNA-sequencing.
Zhang, Kai; Gao, Min; Chong, Zechen; Li, Ying; Han, Xin; Chen, Rui; Qin, Lidong
2016-11-29
Single-cell transcriptome sequencing highly requires a convenient and reliable method to rapidly isolate a live cell into a specific container such as a PCR tube. Here, we report a modular single-cell pipette (mSCP) consisting of three modular components, a SCP-Tip, an air-displacement pipette (ADP), and ADP-Tips, that can be easily assembled, disassembled, and reassembled. By assembling the SCP-Tip containing a hydrodynamic trap, the mSCP can isolate single cells from 5-10 cells per μL of cell suspension. The mSCP is compatible with microscopic identification of captured single cells to finally achieve 100% single-cell isolation efficiency. The isolated live single cells are in submicroliter volumes and well suitable for single-cell PCR analysis and RNA-sequencing. The mSCP possesses merits of convenience, rapidness, and high efficiency, making it a powerful tool to isolate single cells for transcriptome analysis.
Jauch, S Y; Huber, G; Hoenig, E; Baxmann, M; Grupp, T M; Morlock, M M
2011-06-03
Hip prostheses with a modular neck exhibit, compared to monobloc prostheses, an additional interface which bears the risk of fretting as well as corrosion. Failures at the neck adapter of modular prostheses have been observed for a number of different designs. It has been speculated that micromotions at the stem-neck interface were responsible for these implant failures. The purpose of this study was to investigate the influence of material combinations and assembly conditions on the magnitude of micromotions at the stem-neck interface during cyclic loading. Modular (n = 24) and monobloc (n = 3) hip prostheses of a similar design (Metha, Aesculap AG, Tuttlingen, Germany) were subjected to mechanical testing according to ISO 7206-4 (F(min) = 230N, F(max) = 2300N, f = 1Hz, n = 10,000 cycles). The neck adapters (Ti-6Al-4V or Co-Cr29-Mo alloy) were assembled with a clean or contaminated interface. The micromotion between stem and neck adapter was calculated at five reference points based on the measurements of the three eddy current sensors. The largest micromotions were observed at the lateral edge of the stem-neck taper connection, which is in accordance with the crack location of clinically failed prostheses. Titanium neck adapters showed significantly larger micromotions than cobalt-chromium neck adapters (p = 0.005). Contaminated interfaces also exhibited significantly larger micromotions (p < 0.001). Since excessive micromotions at the stem-neck interface might be involved in the process of implant failure, special care should be taken to clean the interface prior to assembly and titanium neck adapters with titanium stems should generally be used with caution. Copyright © 2011 Elsevier Ltd. All rights reserved.
Flexible Electronics-Based Transformers for Extreme Environments
NASA Technical Reports Server (NTRS)
Quadrelli, Marco B.; Stoica, Adrian; Ingham, Michel; Thakur, Anubhav
2015-01-01
This paper provides a survey of the use of modular multifunctional systems, called Flexible Transformers, to facilitate the exploration of extreme and previously inaccessible environments. A novel dynamics and control model of a modular algorithm for assembly, folding, and unfolding of these innovative structural systems is also described, together with the control model and the simulation results.
NASA Technical Reports Server (NTRS)
Gerber, C. R.
1972-01-01
The development of uniform computer program standards and conventions for the modular space station is discussed. The accomplishments analyzed are: (1) development of computer program specification hierarchy, (2) definition of computer program development plan, and (3) recommendations for utilization of all operating on-board space station related data processing facilities.
Solid oxide fuel cell generator with removable modular fuel cell stack configurations
Gillett, J.E.; Dederer, J.T.; Zafred, P.R.; Collie, J.C.
1998-04-21
A high temperature solid oxide fuel cell generator produces electrical power from oxidation of hydrocarbon fuel gases such as natural gas, or conditioned fuel gases, such as carbon monoxide or hydrogen, with oxidant gases, such as air or oxygen. This electrochemical reaction occurs in a plurality of electrically connected solid oxide fuel cells bundled and arrayed in a unitary modular fuel cell stack disposed in a compartment in the generator container. The use of a unitary modular fuel cell stack in a generator is similar in concept to that of a removable battery. The fuel cell stack is provided in a pre-assembled self-supporting configuration where the fuel cells are mounted to a common structural base having surrounding side walls defining a chamber. Associated generator equipment may also be mounted to the fuel cell stack configuration to be integral therewith, such as a fuel and oxidant supply and distribution systems, fuel reformation systems, fuel cell support systems, combustion, exhaust and spent fuel recirculation systems, and the like. The pre-assembled self-supporting fuel cell stack arrangement allows for easier assembly, installation, maintenance, better structural support and longer life of the fuel cells contained in the fuel cell stack. 8 figs.
Solid oxide fuel cell generator with removable modular fuel cell stack configurations
Gillett, James E.; Dederer, Jeffrey T.; Zafred, Paolo R.; Collie, Jeffrey C.
1998-01-01
A high temperature solid oxide fuel cell generator produces electrical power from oxidation of hydrocarbon fuel gases such as natural gas, or conditioned fuel gases, such as carbon monoxide or hydrogen, with oxidant gases, such as air or oxygen. This electrochemical reaction occurs in a plurality of electrically connected solid oxide fuel cells bundled and arrayed in a unitary modular fuel cell stack disposed in a compartment in the generator container. The use of a unitary modular fuel cell stack in a generator is similar in concept to that of a removable battery. The fuel cell stack is provided in a pre-assembled self-supporting configuration where the fuel cells are mounted to a common structural base having surrounding side walls defining a chamber. Associated generator equipment may also be mounted to the fuel cell stack configuration to be integral therewith, such as a fuel and oxidant supply and distribution systems, fuel reformation systems, fuel cell support systems, combustion, exhaust and spent fuel recirculation systems, and the like. The pre-assembled self-supporting fuel cell stack arrangement allows for easier assembly, installation, maintenance, better structural support and longer life of the fuel cells contained in the fuel cell stack.
NASA Astrophysics Data System (ADS)
Gengenbach, Ulrich K.; Hofmann, Andreas; Engelhardt, Friedhelm; Scharnowell, Rudolf; Koehler, Bernd
2001-10-01
A large number of microgrippers has been developed in industry and academia. Although the importance of hybrid integration techniques and hence the demand for assembly tools grows continuously a large part of these developments has not yet been used in industrial production. The first grippers developed for microassembly were basically vacuum grippers and downscaled tweezers. Due to increasingly complex assembly tasks more and more functionality such as sensing or additional functions such as adhesive dispensing has been integrated into gripper systems over the last years. Most of these gripper systems are incompatible since there exists no standard interface to the assembly machine and no standard for the internal modules and interfaces. Thus these tools are not easily interchangeable between assembly machines and not easily adaptable to assembly tasks. In order to alleviate this situation a construction kit for modular microgrippers is being developed. It is composed of modules with well defined interfaces that can be combined to build task specific grippers. An abstract model of a microgripper is proposed as a tool to structure the development of the construction kit. The modular concept is illustrated with prototypes.
Modular, security enclosure and method of assembly
Linker, Kevin L.; Moyer, John W.
1995-01-01
A transportable, reusable rapidly assembled and disassembled, resizable modular, security enclosure utilizes a stepped panel construction. Each panel has an inner portion and an outer portion which form joints. A plurality of channels can be affixed to selected joints of the panels. Panels can be affixed to a base member and then affixed to one another by the use of elongated pins extending through the channel joints. Alternatively, the base member can be omitted and the panels themselves can be used as the floor of the enclosure. The pins will extend generally parallel to the joint in which they are located. These elongated pins are readily inserted into and removable from the channels in a predetermined sequence to allow assembly and disassembly of the enclosure. A door constructed from panels is used to close the opening to the enclosure.
The nonlinear light output of NaI(Tl) detectors in the Modular Total Absorption Spectrometer
Rasco, B. C.; Fijałkowska, A.; Karny, M.; ...
2015-04-08
New detector array, the Modular Total Absorption Spectrometer (MTAS),was commissioned at the Holifield Radioactive Ion Beam Facility (HRIBF) at Oak Ridge National Lab(ORNL).Total absorption gamma spectra measured with MTAS are expected to improve beta-feeding patterns and beta strength functions in fission products.MTAS is constructed out of hexagonal NaI(Tl) detectors with a unique central module surrounded by 18 identical crystals assembled in three rings. The total NaI(Tl) mass of MTAS is over1000 kg.The response of the central and other 18 MTAS modules to -radiation was simulated using the GEANT4 tool kit modified to analyze the nonlinear light output of NaI(Tl).A detailedmore » description oftheGEANT4modifications madeisdiscussed.SimulatedenergyresolutionofMTAS modules is found to agree well with the measurements for single transitions of 662keV (137Cs) with 8.2% full width half maximum (FWHM),835keV (54Mn) with FWHM of 7.5% FWHM, and 1115keV (65Zn) with FWHM of 6.5%.Simulations of single and multiple -rays from 60Co are also discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, Richard A.; Brown, Joseph M.; Colby, Sean M.
ATLAS (Automatic Tool for Local Assembly Structures) is a comprehensive multiomics data analysis pipeline that is massively parallel and scalable. ATLAS contains a modular analysis pipeline for assembly, annotation, quantification and genome binning of metagenomics and metatranscriptomics data and a framework for reference metaproteomic database construction. ATLAS transforms raw sequence data into functional and taxonomic data at the microbial population level and provides genome-centric resolution through genome binning. ATLAS provides robust taxonomy based on majority voting of protein coding open reading frames rolled-up at the contig level using modified lowest common ancestor (LCA) analysis. ATLAS provides robust taxonomy based onmore » majority voting of protein coding open reading frames rolled-up at the contig level using modified lowest common ancestor (LCA) analysis. ATLAS is user-friendly, easy install through bioconda maintained as open-source on GitHub, and is implemented in Snakemake for modular customizable workflows.« less
Preliminary test of the prototype modular cryostat for a 10 MW offshore superconducting wind turbine
NASA Astrophysics Data System (ADS)
Sun, Jiuce; Ramalingam, R.; Sanz, Santiago; Neumann, Holger
2017-02-01
The SUPerconducting Reliable lightweight And more POWERful offshore wind turbine (SUPRAPOWER), an EU FP7 funded research project, are under development for an innovative superconducting 10 MW class offshore wind turbine. Due to the requirements of handling, maintenance, reliability of long term and offshore operation, the cryostats are divided in two major parts: the modular cryostat able to accommodate a single coil and a thermal collector that links all the modules. The prototype modular cryostat was designed, manufactured and assembled in Karlsruhe Institute of Technology (KIT). The paper reports preliminary test results of proto-type modular cryostat with a two-stage Gifford-McMahon (GM) cryocooler.
Gauvin, Robert; Khademhosseini, Ali
2011-01-01
Micro- and nanoscale technologies have emerged as powerful tools in the fabrication of engineered tissues and organs. Here we focus on the application of these techniques to improve engineered tissue architecture and function using modular and directed self-assembly and highlight the emergence of this new class of materials for biomedical applications. PMID:21627163
Monocrystalline silicon and the meta-shell approach to building x-ray astronomical optics
NASA Astrophysics Data System (ADS)
Zhang, William W.; Allgood, Kim D.; Biskach, Michael P.; Chan, Kai-Wing; Hlinka, Michal; Kearney, John D.; Mazzarella, James R.; McClelland, Ryan S.; Numata, Ai; Olsen, Lawrence G.; Riveros, Raul E.; Saha, Timo T.; Solly, Peter M.
2017-08-01
Angular resolution and photon-collecting area are the two most important factors that determine the power of an X-ray astronomical telescope. The grazing incidence nature of X-ray optics means that even a modest photon-collecting area requires an extraordinarily large mirror area. This requirement for a large mirror area is compounded by the fact that X-ray telescopes must be launched into, and operated in, outer space, which means that the mirror must be both lightweight and thin. Meanwhile the production and integration cost of a large mirror area determines the economical feasibility of a telescope. In this paper we report on a technology development program whose objective is to meet this three-fold requirement of making astronomical X-ray optics: (1) angular resolution, (2) photon-collecting area, and (3) production cost. This technology is based on precision polishing of monocrystalline silicon for making a large number of mirror segments and on the metashell approach to integrate these mirror segments into a mirror assembly. The meta-shell approach takes advantage of the axial or rotational symmetry of an X-ray telescope to align and bond a large number of small, lightweight mirrors into a large mirror assembly. The most important features of this technology include: (1) potential to achieve the highest possible angular resolution dictated by optical design and diffraction; and (2) capable of implementing every conceivable optical design, such as Wolter-I, WolterSchwarzschild, as well as other variations to one or another aspect of a telescope. The simplicity and modular nature of the process makes it highly amenable to mass production, thereby making it possible to produce very large X-ray telescopes in a reasonable amount of time and at a reasonable cost. As of June 2017, the basic validity of this approach has been demonstrated by finite element analysis of its structural, thermal, and gravity release characteristics, and by the fabrication, alignment, bonding, and X-ray testing of mirror modules. Continued work in the coming years will raise the technical readiness of this technology for use by SMEX, MIDEX, Probe, as well as major flagship missions.
Monocrystalline Silicon and the Meta-Shell Approach to Building X-Ray Astronomical Optics
NASA Technical Reports Server (NTRS)
Zhang, William W.; Allgood, Kim D.; Biskach, Michael P.; Chan, Kai-Wing; Hlinka, Michal; Kearney, John D.; Mazzarella, James R.; McClelland, Ryan S.; Numata, Ai; Olsen, Lawrence G.;
2017-01-01
Angular resolution and photon-collecting area are the two most important factors that determine the power of an X-ray astronomical telescope. The grazing incidence nature of X-ray optics means that even a modest photon-collecting area requires an extraordinarily large mirror area. This requirement for a large mirror area is compounded by the fact that X-ray telescopes must be launched into, and operated in, outer space, which means that the mirror must be both lightweight and thin. Meanwhile the production and integration cost of a large mirror area determines the economical feasibility of a telescope. In this paper we report on a technology development program whose objective is to meet this three-fold requirement of making astronomical X-ray optics: (1) angular resolution, (2) photon-collecting area, and (3) production cost. This technology is based on precision polishing of monocrystalline silicon for making a large number of mirror segments and on the meta-shell approach to integrate these mirror segments into a mirror assembly. The meta-shell approach takes advantage of the axial or rotational symmetry of an X-ray telescope to align and bond a large number of small, lightweight mirrors into a large mirror assembly. The most important features of this technology include: (1) potential to achieve the highest possible angular resolution dictated by optical design and diffraction; and (2) capable of implementing every conceivable optical design, such as Wolter-I, Wolter-Schwarzschild, as well as other variations to one or another aspect of a telescope. The simplicity and modular nature of the process makes it highly amenable to mass production, thereby making it possible to produce very large X-ray telescopes in a reasonable amount of time and at a reasonable cost. As of June 2017, the basic validity of this approach has been demonstrated by finite element analysis of its structural, thermal, and gravity release characteristics, and by the fabrication, alignment, bonding, and X-ray testing of mirror modules. Continued work in the coming years will raise the technical readiness of this technology for use by SMEX, MIDEX, Probe, as well as major flagship missions.
Hall, John Champlin; Martins, Guy Lawrence
2015-09-06
A method and apparatus for efficient manufacture, assembly and production of solar energy. In one aspect, the apparatus may include a number of modular solar receiver assemblies that may be separately manufactured, assembled and individually inserted into a solar collector array housing shaped to receive a plurality of solar receivers. The housing may include optical elements for focusing light onto the individual receivers, and a circuit for electrically connecting the solar receivers.
Modular Self-Assembly of Protein Cage Lattices for Multistep Catalysis
Uchida, Masaki; McCoy, Kimberly; Fukuto, Masafumi; ...
2017-11-13
The assembly of individual molecules into hierarchical structures is a promising strategy for developing three-dimensional materials with properties arising from interaction between the individual building blocks. Virus capsids are elegant examples of biomolecular nanostructures, which are themselves hierarchically assembled from a limited number of protein subunits. Here, we demonstrate the bio-inspired modular construction of materials with two levels of hierarchy: the formation of catalytically active individual virus-like particles (VLPs) through directed self-assembly of capsid subunits with enzyme encapsulation, and the assembly of these VLP building blocks into three-dimensional arrays. The structure of the assembled arrays was successfully altered from anmore » amorphous aggregate to an ordered structure, with a face-centered cubic lattice, by modifying the exterior surface of the VLP without changing its overall morphology, to modulate interparticle interactions. The assembly behavior and resultant lattice structure was a consequence of interparticle interaction between exterior surfaces of individual particles and thus independent of the enzyme cargos encapsulated within the VLPs. These superlattice materials, composed of two populations of enzyme-packaged VLP modules, retained the coupled catalytic activity in a two-step reaction for isobutanol synthesis. As a result, this study demonstrates a significant step toward the bottom-up fabrication of functional superlattice materials using a self-assembly process across multiple length scales and exhibits properties and function that arise from the interaction between individual building blocks.« less
Modular Self-Assembly of Protein Cage Lattices for Multistep Catalysis
Uchida, Masaki; McCoy, Kimberly; Fukuto, Masafumi; Yang, Lin; Yoshimura, Hideyuki; Miettinen, Heini M.; LaFrance, Ben; Patterson, Dustin P.; Schwarz, Benjamin; Karty, Jonathan A.; Prevelige, Peter E.; Lee, Byeongdu; Douglas, Trevor
2018-01-01
The assembly of individual molecules into hierarchical structures is a promising strategy for developing three-dimensional materials with properties arising from interaction between the individual building blocks. Virus capsids are elegant examples of biomolecular nanostructures, which are themselves hierarchically assembled from a limited number of protein subunits. Here we demonstrate the bio-inspired modular construction of materials with two levels of hierarchy; the formation of catalytically active individual virus-like particles (VLPs) through directed self-assembly of capsid subunits with enzyme encapsulation, and the assembly of these VLP building blocks into three-dimensional arrays. The structure of the assembled arrays was successfully altered from an amorphous aggregate to an ordered structure, with a face-centered cubic lattice, by modifying the exterior surface of the VLP without changing its overall morphology, to modulate interparticle interactions. The assembly behavior and resultant lattice structure was a consequence of interparticle interaction between exterior surfaces of individual particles, and thus independent of the enzyme cargos encapsulated within the VLPs. These superlattice materials, composed of two populations of enzyme packaged VLP modules, retained the coupled catalytic activity in a two-step reaction for isobutanol synthesis. This study demonstrates a significant step toward the bottom-up fabrication of functional superlattice materials using a self-assembly process across multiple length scales, and exhibits properties and function that arise from the interaction between individual building blocks. PMID:29131580
Modular Self-Assembly of Protein Cage Lattices for Multistep Catalysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uchida, Masaki; McCoy, Kimberly; Fukuto, Masafumi
The assembly of individual molecules into hierarchical structures is a promising strategy for developing three-dimensional materials with properties arising from interaction between the individual building blocks. Virus capsids are elegant examples of biomolecular nanostructures, which are themselves hierarchically assembled from a limited number of protein subunits. Here, we demonstrate the bio-inspired modular construction of materials with two levels of hierarchy: the formation of catalytically active individual virus-like particles (VLPs) through directed self-assembly of capsid subunits with enzyme encapsulation, and the assembly of these VLP building blocks into three-dimensional arrays. The structure of the assembled arrays was successfully altered from anmore » amorphous aggregate to an ordered structure, with a face-centered cubic lattice, by modifying the exterior surface of the VLP without changing its overall morphology, to modulate interparticle interactions. The assembly behavior and resultant lattice structure was a consequence of interparticle interaction between exterior surfaces of individual particles and thus independent of the enzyme cargos encapsulated within the VLPs. These superlattice materials, composed of two populations of enzyme-packaged VLP modules, retained the coupled catalytic activity in a two-step reaction for isobutanol synthesis. As a result, this study demonstrates a significant step toward the bottom-up fabrication of functional superlattice materials using a self-assembly process across multiple length scales and exhibits properties and function that arise from the interaction between individual building blocks.« less
Advances in X-Ray Simulator Technology
1995-07-01
d’Etudes de Gramat ; I. Vitkovitsky, Logicon RDA INTRODUCTION DNA’s future x-ray simulators are based upon inductive energy storage, a technology which...switch. SYRINX, a proposed design to be built by the Centre d’Etudes de Gramat (CEG) in France would employ a modular approach, possibly with a...called SYRINX, would be built at the Centred’ Etudes de Gramat (CEG). It would employ a modular.long conduction time current source to drive a PRS
Qi, Ruijie; Nie, Jinhui; Liu, Mingyang; Xia, Mengyang; Lu, Xianmao
2018-04-26
Stretchable energy storage devices are of great importance for the viable applications of wearable/stretchable electronics. Studies on stretchable energy storage devices, especially supercapacitors (SCs), have shown encouraging progress. However, challenges still remain in the pursuit of high specific capacitances and facile fabrication methods. Herein, we report a modular materials fabrication and assembly process for stretchable SCs. With a V2O5/PEDOT composite as the active material, the resulting stretchable SCs exhibited high areal specific capacitances up to 240 mF cm-2 and good capacitance retention at a strain of 50%. To demonstrate the facile assembly process, a stretchable wristband was fabricated by simply assembling SC cells in series to deliver a voltage higher than 2 V. Charging the wristband with a triboelectric nanogenerator (TENG) to light an LED was further demonstrated, indicating the potential to integrate our SCs with environmental energy harvesters for self-powered stretchable devices.
Modular assembly of chimeric phi29 packaging RNAs that support DNA packaging.
Fang, Yun; Shu, Dan; Xiao, Feng; Guo, Peixuan; Qin, Peter Z
2008-08-08
The bacteriophage phi29 DNA packaging motor is a protein/RNA complex that can produce strong force to condense the linear-double-stranded DNA genome into a pre-formed protein capsid. The RNA component, called the packaging RNA (pRNA), utilizes magnesium-dependent inter-molecular base-pairing interactions to form ring-shaped complexes. The pRNA is a class of non-coding RNA, interacting with phi29 motor proteins to enable DNA packaging. Here, we report a two-piece chimeric pRNA construct that is fully competent in interacting with partner pRNA to form ring-shaped complexes, in packaging DNA via the motor, and in assembling infectious phi29 virions in vitro. This is the first example of a fully functional pRNA assembled using two non-covalently interacting fragments. The results support the notion of modular pRNA architecture in the phi29 packaging motor.
Modular assembly of chimeric phi29 packaging RNAs that support DNA packaging
Fang, Yun; Shu, Dan; Xiao, Feng; Guo, Peixuan; Qin, Peter Z.
2008-01-01
The bacteriophage phi29 DNA packaging motor is a protein/RNA complex that can produce strong force to condense the linear-double stranded DNA genome into a pre-formed protein capsid. The RNA component, called the packaging RNA (pRNA), utilizes magnesium-dependent intermolecular base-pairing interactions to form ring-shaped complexes. The pRNA is a class of non-coding RNA, interacting with phi29 motor proteins to enable DNA packaging. Here, we report a 2-piece chimeric pRNA construct that is fully competent in interacting with partner pRNA to form ring-shaped complexes, in packaging DNA via the motor, and in assembling infectious phi29 virions in vitro. This is the first example of a fully functional pRNA assembled using two non-covalently interacting fragments. The results support the notion of modular pRNA architecture in the phi29 packaging motor. PMID:18514064
Ong, Luvena L; Ke, Yonggang
2017-01-01
DNA nanostructures are a useful technology for precisely organizing and manipulating nanomaterials. The DNA bricks method is a modular and versatile platform for applications requiring discrete or periodic structures with complex three-dimensional features. Here, we describe how structures are designed from the fundamental strand architecture through assembly and characterization of the formed structures.
Commander Brand shaves in front of forward middeck lockers
NASA Technical Reports Server (NTRS)
1982-01-01
Commander Brand, wearing shorts, shaves in front of forward middeck lockers using personal hygiene mirror assembly (assy). Open modular locker single tray assy, Field Sequential (FS) crew cabin camera, communications kit assy mini headset (HDST) and HDST interface unit (HIU), personal hygiene kit, and meal tray assemblies appear in view.
Intelligent Augmented Reality Training for Motherboard Assembly
ERIC Educational Resources Information Center
Westerfield, Giles; Mitrovic, Antonija; Billinghurst, Mark
2015-01-01
We investigate the combination of Augmented Reality (AR) with Intelligent Tutoring Systems (ITS) to assist with training for manual assembly tasks. Our approach combines AR graphics with adaptive guidance from the ITS to provide a more effective learning experience. We have developed a modular software framework for intelligent AR training…
NASA Astrophysics Data System (ADS)
Civitani, M.; Ghigo, M.; Basso, S.; Proserpio, L.; Spiga, D.; Salmaso, B.; Pareschi, G.; Tagliaferri, G.; Burwitz, V.; Hartner, G.; Menz, B.; Bavdaz, M.; Wille, E.
2013-09-01
X-ray telescopes with very large collecting area, like the proposed International X-ray Observatory (IXO, with around 3 m2 at 1 keV), need to be composed of a large number high quality mirror segments, aiming at achieving an angular resolution better than 5 arcsec HEW (Half-Energy-Width). A possible technology to manufacture the modular elements that will compose the entire optical module, named X-ray Optical Units (XOUs), consists of stacking in Wolter-I configuration several layers of thin foils of borosilicate glass, previously formed by hot slumping. The XOUs are subsequently assembled to form complete multi-shell optics with Wolter-I geometry. The achievable global angular resolution of the optic relies on the required surface shape accuracy of slumped foils, on the smoothness of the mirror surfaces and on the correct integration and co-alignment of the mirror segments. The Brera Astronomical Observatory (INAF-OAB) is leading a study, supported by ESA, concerning the implementation of the IXO telescopes based on thin slumped glass foils. In addition to the opto-mechanical design, the study foresees the development of a direct hot slumping thin glass foils production technology. Moreover, an innovative assembly concept making use of Wolter-I counter-form moulds and glass reinforcing ribs is under development. The ribs connect pairs of consecutive foils in an XOU stack, playing a structural and a functional role. In fact, as the ribs constrain the foil profile to the correct shape during the bonding, they damp the low-frequency profile errors still present on the foil after slumping. A dedicated semirobotic Integration MAchine (IMA) has been realized to this scope and used to build a few integrated prototypes made of several layers of slumped plates. In this paper we provide an overview of the project, we report the results achieved so far, including full illumination intra-focus X-ray tests of the last integrated prototype that are compliant with a HEW of around 17''.
Technology transfer from NASA to targeted industries, volume 2
NASA Technical Reports Server (NTRS)
Mccain, Wayne; Schroer, Bernard J.; Souder, William E.; Spann, Mary S.; Watters, Harry; Ziemke, M. Carl
1993-01-01
This volume contains the following materials to support Volume 1: (1) Survey of Metal Fabrication Industry in Alabama; (2) Survey of Electronics Manufacturing/Assembly Industry in Alabama; (3) Apparel Modular Manufacturing Simulators; (4) Synopsis of a Stereolithography Project; (5) Transferring Modular Manufacturing Technology to an Apparel Firm; (6) Letters of Support; (7) Fact Sheets; (8) Publications; and (9) One Stop Access to NASA Technology Brochure.
Multidimensional bioseparation with modular microfluidics
Chirica, Gabriela S.; Renzi, Ronald F.
2013-08-27
A multidimensional chemical separation and analysis system is described including a prototyping platform and modular microfluidic components capable of rapid and convenient assembly, alteration and disassembly of numerous candidate separation systems. Partial or total computer control of the separation system is possible. Single or multiple alternative processing trains can be tested, optimized and/or run in parallel. Examples related to the separation and analysis of human bodily fluids are given.
Modular synthesis of a dual metal-dual semiconductor nano-heterostructure
Amirav, Lilac; Oba, Fadekemi; Aloni, Shaul; ...
2015-04-29
Reported is the design and modular synthesis of a dual metal-dual semiconductor heterostructure with control over the dimensions and placement of its individual components. Analogous to molecular synthesis, colloidal synthesis is now evolving into a series of sequential synthetic procedures with separately optimized steps. Here we detail the challenges and parameters that must be considered when assembling such a multicomponent nanoparticle, and their solutions.
Modular assembly of metal-organic super-containers incorporating calixarenes
Wang, Zhenqiang; Dai, Feng-Rong
2018-01-16
A new strategy to design container molecules is presented. Sulfonylcalix[4]arenes, which are synthetic macrocyclic containers, are used as building blocks that are combined with various metal ions and tricarboxylate ligands to construct metal-organic `super-containers` (MOSCs). These MOSCs possess both endo and exo cavities and thus mimic the structure of viruses. The synthesis of MOSCs is highly modular, robust, and predictable.
NASA Astrophysics Data System (ADS)
Aguirre-Pablo, A. A.; Zhang, J. M.; Li, E. Q.; Thoroddsen, S. T.
2015-11-01
We report a new 3D-printed microfluidic system with assembly of capillaries for droplet generation. The system consists of the following parts: 3Dprinted Droplet Generation Units (DGUs) with embedded capillaries and two 3D-printed pyramid distributors for supplying two different fluid phases into every DGU. A single DGU consists of four independent parts: a top channel, a bottom channel, a capillary and a sealing gasket. All components are produced by 3dprinting except the capillaries, which are formed in a glass-puller. DGUs are independent of the distributor and from each other; they can easily be assembled, replaced and modified due to its modular design which is an advantage in case of a faulty part or clogging, eliminating the need to fabricate a complete new system which is cost and time demanding. We assessed the feasibility of producing droplets in this device varying different fluid parameters, such as liquid viscosity and flow rate, which affect droplet size and generation frequency. The design and fabrication of this device is simple and low-cost with the 3D printing technology. Due to the modular design of independent parts, low-cost fabrication and easy parallelization of multiple DGU's, this system provides great flexibility for industrial applications.
Copper vapor laser modular packaging assembly
Alger, Terry W.; Ault, Earl R.; Moses, Edward I.
1992-01-01
A modularized packaging arrangement for one or more copper vapor lasers and associated equipment is disclosed herein. This arrangement includes a single housing which contains the laser or lasers and all their associated equipment except power, water and neon, and means for bringing power, water, and neon which are necessary to the operation of the lasers into the container for use by the laser or lasers and their associated equipment.
Copper vapor laser modular packaging assembly
Alger, T.W.; Ault, E.R.; Moses, E.I.
1992-12-01
A modularized packaging arrangement for one or more copper vapor lasers and associated equipment is disclosed herein. This arrangement includes a single housing which contains the laser or lasers and all their associated equipment except power, water and neon, and means for bringing power, water, and neon which are necessary to the operation of the lasers into the container for use by the laser or lasers and their associated equipment. 2 figs.
Modular magazine for suitable handling of microparts in industry
NASA Astrophysics Data System (ADS)
Grimme, Ralf; Schmutz, Wolfgang; Schlenker, Dirk; Schuenemann, Matthias; Stock, Achim; Schaefer, Wolfgang
1998-01-01
Microassembly and microadjustment techniques are key technologies in the industrial production of hybrid microelectromechanical systems. One focal point in current microproduction research and engineering is the design and development of high-precision microassembly and microadjustment equipment capable of operating within the framework of flexible automated industrial production. As well as these developments, suitable microassembly tools for industrial use also need to be equipped with interfaces for the supply and delivery of microcomponents. The microassembly process necessitates the supply of microparts in a geometrically defined manner. In order to reduce processing steps and production costs, there is a demand for magazines capable of providing free accessibility to the fixed microcomponents. Commonly used at present are feeding techniques, which originate from the field of semiconductor production. However none of these techniques fully meets the requirements of industrial microassembly technology. A novel modular magazine set, developed and tested in a joint project, is presented here. The magazines are able to hold microcomponents during cleaning, inspection and assembly without nay additional handling steps. The modularity of their design allows for maximum technical flexibility. The modular magazine fits into currently practiced SEMI standards. The design and concept of the magazine enables industrial manufacturers to promote a cost-efficient and flexible precision assembly of microelectromechanical systems.
BESST: A Miniature, Modular Radiometer
NASA Technical Reports Server (NTRS)
Warden, Robert; Good, William; Baldwin-Stevens, Erik
2010-01-01
A new radiometer assembly has been developed that incorporates modular design principles in order to provide flexibility and versatility. The assembly, shown in Figure 1, is made up of six modules plus a central cubical frame. A small thermal imaging detector is used to determine the temperature of remote objects. To improve the accuracy of the temperature reading, frequent calibration is required. The detector must view known temperature targets before viewing the remote object. Calibration is achieved by using a motorized fold mirror to select the desired scene the detector views. The motor steps the fold mirror through several positions, which allows the detector to view the calibration targets or the remote object. The details, features, and benefits of the radiometer are described in this paper.
Fuel Cycle Performance of Thermal Spectrum Small Modular Reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Worrall, Andrew; Todosow, Michael
2016-01-01
Small modular reactors may offer potential benefits, such as enhanced operational flexibility. However, it is vital to understand the holistic impact of small modular reactors on the nuclear fuel cycle and fuel cycle performance. The focus of this paper is on the fuel cycle impacts of light water small modular reactors in a once-through fuel cycle with low-enriched uranium fuel. A key objective of this paper is to describe preliminary reactor core physics and fuel cycle analyses conducted in support of the U.S. Department of Energy Office of Nuclear Energy Fuel Cycle Options Campaign. Challenges with small modular reactors include:more » increased neutron leakage, fewer assemblies in the core (and therefore fewer degrees of freedom in the core design), complex enrichment and burnable absorber loadings, full power operation with inserted control rods, the potential for frequent load-following operation, and shortened core height. Each of these will impact the achievable discharge burn-up in the reactor and the fuel cycle performance. This paper summarizes the results of an expert elicitation focused on developing a list of the factors relevant to small modular reactor fuel, core, and operation that will impact fuel cycle performance. Preliminary scoping analyses were performed using a regulatory-grade reactor core simulator. The hypothetical light water small modular reactor considered in these preliminary scoping studies is a cartridge type one-batch core with 4.9% enrichment. Some core parameters, such as the size of the reactor and general assembly layout, are similar to an example small modular reactor concept from industry. The high-level issues identified and preliminary scoping calculations in this paper are intended to inform on potential fuel cycle impacts of one-batch thermal spectrum SMRs. In particular, this paper highlights the impact of increased neutron leakage and reduced number of batches on the achievable burn-up of the reactor. Fuel cycle performance metrics for a small modular reactor are compared to a conventional three-batch light water reactor in the following areas: nuclear waste management, environmental impact, and resource utilization. Metrics performance for a small modular reactor are degraded for mass of spent nuclear fuel and high level waste disposed, mass of depleted uranium disposed, land use per energy generated, and carbon emission per energy generated« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Witt, Adam M.; Hadjerioua, Boualem; Martinez, Rocio
The viability of modular pumped storage hydro (m-PSH) is examined in detail through the conceptual design, cost scoping, and economic analysis of three case studies. Modular PSH refers to both the compactness of the project design and the proposed nature of product fabrication and performance. A modular project is assumed to consist of pre-fabricated standardized components and equipment, tested and assembled into modules before arrival on site. This technology strategy could enable m-PSH projects to deploy with less substantial civil construction and equipment component costs. The concept of m-PSH is technically feasible using currently available conventional pumping and turbine equipment,more » and may offer a path to reducing the project development cycle from inception to commissioning.« less
A truly Lego®-like modular microfluidics platform
NASA Astrophysics Data System (ADS)
Vittayarukskul, Kevin; Lee, Abraham Phillip
2017-03-01
Ideally, a modular microfluidics platform should be simple to assemble and support 3D configurations for increased versatility. The modular building blocks should also be mass producible like electrical components. These are fundamental features of world-renowned Legos® and why Legos® inspire many existing modular microfluidics platforms. In this paper, a truly Lego®-like microfluidics platform is introduced, and its basic feasibility is demonstrated. Here, PDMS building blocks resembling 2 × 2 Lego® bricks are cast from 3D-printed master molds. The blocks are pegged and stacked on a traditional Lego® plate to create simple, 3D microfluidic networks, such as a single basket weave. Characteristics of the platform, including reversible sealing and automatic alignment of channels, are also analyzed and discussed in detail.
From Hippocampus to Whole-Brain: The Role of Integrative Processing in Episodic Memory Retrieval
Geib, Benjamin R.; Stanley, Matthew L.; Dennis, Nancy A.; Woldorff, Marty G.; Cabeza, Roberto
2017-01-01
Multivariate functional connectivity analyses of neuroimaging data have revealed the importance of complex, distributed interactions between disparate yet interdependent brain regions. Recent work has shown that topological properties of functional brain networks are associated with individual and group differences in cognitive performance, including in episodic memory. After constructing functional whole-brain networks derived from an event-related fMRI study of memory retrieval, we examined differences in functional brain network architecture between forgotten and remembered words. This study yielded three main findings. First, graph theory analyses showed that successfully remembering compared to forgetting was associated with significant changes in the connectivity profile of the left hippocampus and a corresponding increase in efficient communication with the rest of the brain. Second, bivariate functional connectivity analyses indicated stronger interactions between the left hippocampus and a retrieval assembly for remembered versus forgotten items. This assembly included the left precuneus, left caudate, bilateral supramarginal gyrus, and the bilateral dorsolateral superior frontal gyrus. Integrative properties of the retrieval assembly were greater for remembered than forgotten items. Third, whole-brain modularity analyses revealed that successful memory retrieval was marginally significantly associated with a less segregated modular architecture in the network. The magnitude of the decreases in modularity between remembered and forgotten conditions was related to memory performance. These findings indicate that increases in integrative properties at the nodal, retrieval assembly, and whole-brain topological levels facilitate memory retrieval, while also underscoring the potential of multivariate brain connectivity approaches for providing valuable new insights into the neural bases of memory processes. PMID:28112460
21 CFR 892.1760 - Diagnostic x-ray tube housing assembly.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Diagnostic x-ray tube housing assembly. 892.1760... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1760 Diagnostic x-ray tube housing assembly. (a) Identification. A diagnostic x-ray tube housing assembly is an x-ray generating tube encased...
21 CFR 892.1760 - Diagnostic x-ray tube housing assembly.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Diagnostic x-ray tube housing assembly. 892.1760... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1760 Diagnostic x-ray tube housing assembly. (a) Identification. A diagnostic x-ray tube housing assembly is an x-ray generating tube encased...
21 CFR 892.1760 - Diagnostic x-ray tube housing assembly.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Diagnostic x-ray tube housing assembly. 892.1760... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1760 Diagnostic x-ray tube housing assembly. (a) Identification. A diagnostic x-ray tube housing assembly is an x-ray generating tube encased...
21 CFR 892.5930 - Therapeutic x-ray tube housing assembly.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Therapeutic x-ray tube housing assembly. 892.5930... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5930 Therapeutic x-ray tube housing assembly. (a) Identification. A therapeutic x-ray tube housing assembly is an x-ray generating tube encased...
21 CFR 892.5930 - Therapeutic x-ray tube housing assembly.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Therapeutic x-ray tube housing assembly. 892.5930... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5930 Therapeutic x-ray tube housing assembly. (a) Identification. A therapeutic x-ray tube housing assembly is an x-ray generating tube encased...
21 CFR 892.5930 - Therapeutic x-ray tube housing assembly.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Therapeutic x-ray tube housing assembly. 892.5930... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5930 Therapeutic x-ray tube housing assembly. (a) Identification. A therapeutic x-ray tube housing assembly is an x-ray generating tube encased...
21 CFR 892.5930 - Therapeutic x-ray tube housing assembly.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Therapeutic x-ray tube housing assembly. 892.5930... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5930 Therapeutic x-ray tube housing assembly. (a) Identification. A therapeutic x-ray tube housing assembly is an x-ray generating tube encased...
21 CFR 892.5930 - Therapeutic x-ray tube housing assembly.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Therapeutic x-ray tube housing assembly. 892.5930... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5930 Therapeutic x-ray tube housing assembly. (a) Identification. A therapeutic x-ray tube housing assembly is an x-ray generating tube encased...
21 CFR 892.1760 - Diagnostic x-ray tube housing assembly.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Diagnostic x-ray tube housing assembly. 892.1760... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1760 Diagnostic x-ray tube housing assembly. (a) Identification. A diagnostic x-ray tube housing assembly is an x-ray generating tube encased...
21 CFR 892.1760 - Diagnostic x-ray tube housing assembly.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Diagnostic x-ray tube housing assembly. 892.1760... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1760 Diagnostic x-ray tube housing assembly. (a) Identification. A diagnostic x-ray tube housing assembly is an x-ray generating tube encased...
Childs-Disney, Jessica L; Parkesh, Raman; Nakamori, Masayuki; Thornton, Charles A; Disney, Matthew D
2012-12-21
Myotonic dystrophy type 1 (DM1) is caused when an expanded r(CUG) repeat (r(CUG)(exp)) binds the RNA splicing regulator muscleblind-like 1 protein (MBNL1) as well as other proteins. Previously, we reported that modularly assembled small molecules displaying a 6'-N-5-hexynoate kanamycin A RNA-binding module (K) on a peptoid backbone potently inhibit the binding of MBNL1 to r(CUG)(exp). However, these parent compounds are not appreciably active in cell-based models of DM1. The lack of potency was traced to suboptimal cellular permeability and localization. To improve these properties, second-generation compounds that are conjugated to a d-Arg(9) molecular transporter were synthesized. These modified compounds enter cells in higher concentrations than the parent compounds and are efficacious in cell-based DM1 model systems at low micromolar concentrations. In particular, they improve three defects that are the hallmarks of DM1: a translational defect due to nuclear retention of transcripts containing r(CUG)(exp); pre-mRNA splicing defects due to inactivation of MBNL1; and the formation of nuclear foci. The best compound in cell-based studies was tested in a mouse model of DM1. Modest improvement of pre-mRNA splicing defects was observed. These studies suggest that a modular assembly approach can afford bioactive compounds that target RNA.
Childs-Disney, Jessica L.; Parkesh, Raman; Nakamori, Masayuki; Thornton, Charles A.; Disney, Matthew D.
2012-01-01
Myotonic dystrophy type 1 (DM1) is caused when an expanded r(CUG) repeat (r(CUG)exp) binds the RNA splicing regulator muscleblind-like 1 protein (MBNL1) as well as other proteins. Previously, we reported that modularly assembled small molecules displaying a 6′-N-5-hexynoate kanamycin A RNA-binding module (K) on a peptoid backbone potently inhibit the binding of MBNL1 to r(CUG)exp. However, these parent compounds are not appreciably active in cell-based models of DM1. The lack of potency was traced to suboptimal cellular permeability and localization. To improve these properties, second-generation compounds that are conjugated to a D-Arg9 molecular transporter were synthesized. These modified compounds enter cells in higher concentrations than the parent compounds and are efficacious in cell-based DM1 model systems at low micromolar concentrations. In particular, they improve three defects that are the hallmarks of DM1: a translational defect due to nuclear retention of transcripts containing r(CUG)exp; pre-mRNA splicing defects due to inactivation of MBNL1; and the formation of nuclear foci. The best compound in cell-based studies was tested in a mouse model of DM1. Modest improvement of pre-mRNA splicing defects was observed. These studies suggest that a modular assembly approach can afford bioactive compounds that target RNA. PMID:23130637
NASA Astrophysics Data System (ADS)
Liljeström, Ville; Mikkilä, Joona; Kostiainen, Mauri A.
2014-07-01
Multicomponent crystals and nanoparticle superlattices are a powerful approach to integrate different materials into ordered nanostructures. Well-developed, especially DNA-based, methods for their preparation exist, yet most techniques concentrate on molecular and synthetic nanoparticle systems in non-biocompatible environment. Here we describe the self-assembly and characterization of binary solids that consist of crystalline arrays of native biomacromolecules. We electrostatically assembled cowpea chlorotic mottle virus particles and avidin proteins into heterogeneous crystals, where the virus particles adopt a non-close-packed body-centred cubic arrangement held together by avidin. Importantly, the whole preparation process takes place at room temperature in a mild aqueous medium allowing the processing of delicate biological building blocks into ordered structures with lattice constants in the nanometre range. Furthermore, the use of avidin-biotin interaction allows highly selective pre- or post-functionalization of the protein crystals in a modular way with different types of functional units, such as fluorescent dyes, enzymes and plasmonic nanoparticles.
MOCAT: A Metagenomics Assembly and Gene Prediction Toolkit
Li, Junhua; Chen, Weineng; Chen, Hua; Mende, Daniel R.; Arumugam, Manimozhiyan; Pan, Qi; Liu, Binghang; Qin, Junjie; Wang, Jun; Bork, Peer
2012-01-01
MOCAT is a highly configurable, modular pipeline for fast, standardized processing of single or paired-end sequencing data generated by the Illumina platform. The pipeline uses state-of-the-art programs to quality control, map, and assemble reads from metagenomic samples sequenced at a depth of several billion base pairs, and predict protein-coding genes on assembled metagenomes. Mapping against reference databases allows for read extraction or removal, as well as abundance calculations. Relevant statistics for each processing step can be summarized into multi-sheet Excel documents and queryable SQL databases. MOCAT runs on UNIX machines and integrates seamlessly with the SGE and PBS queuing systems, commonly used to process large datasets. The open source code and modular architecture allow users to modify or exchange the programs that are utilized in the various processing steps. Individual processing steps and parameters were benchmarked and tested on artificial, real, and simulated metagenomes resulting in an improvement of selected quality metrics. MOCAT can be freely downloaded at http://www.bork.embl.de/mocat/. PMID:23082188
MOCAT: a metagenomics assembly and gene prediction toolkit.
Kultima, Jens Roat; Sunagawa, Shinichi; Li, Junhua; Chen, Weineng; Chen, Hua; Mende, Daniel R; Arumugam, Manimozhiyan; Pan, Qi; Liu, Binghang; Qin, Junjie; Wang, Jun; Bork, Peer
2012-01-01
MOCAT is a highly configurable, modular pipeline for fast, standardized processing of single or paired-end sequencing data generated by the Illumina platform. The pipeline uses state-of-the-art programs to quality control, map, and assemble reads from metagenomic samples sequenced at a depth of several billion base pairs, and predict protein-coding genes on assembled metagenomes. Mapping against reference databases allows for read extraction or removal, as well as abundance calculations. Relevant statistics for each processing step can be summarized into multi-sheet Excel documents and queryable SQL databases. MOCAT runs on UNIX machines and integrates seamlessly with the SGE and PBS queuing systems, commonly used to process large datasets. The open source code and modular architecture allow users to modify or exchange the programs that are utilized in the various processing steps. Individual processing steps and parameters were benchmarked and tested on artificial, real, and simulated metagenomes resulting in an improvement of selected quality metrics. MOCAT can be freely downloaded at http://www.bork.embl.de/mocat/.
Modular robotic assembly of small devices.
Frauenfelder, M
2000-01-01
The use of robots for the automatic assembly of devices of up to 100 x 100 x 100 mm is relatively uncommon today. Insufficient return on investment and the long lead times that are required have been limiting factors. Innovations in vision technology have led to the development of robotic assembly systems that employ flexible part-feeding. The benefits of these systems are described, which suggest that better ratios of price to productivity and deployment times are now achievable.
Automatization of hardware configuration for plasma diagnostic system
NASA Astrophysics Data System (ADS)
Wojenski, A.; Pozniak, K. T.; Kasprowicz, G.; Kolasinski, P.; Krawczyk, R. D.; Zabolotny, W.; Linczuk, P.; Chernyshova, M.; Czarski, T.; Malinowski, K.
2016-09-01
Soft X-ray plasma measurement systems are mostly multi-channel, high performance systems. In case of the modular construction it is necessary to perform sophisticated system discovery in parallel with automatic system configuration. In the paper the structure of the modular system designed for tokamak plasma soft X-ray measurements is described. The concept of the system discovery and further automatic configuration is also presented. FCS application (FMC/ FPGA Configuration Software) is used for running sophisticated system setup with automatic verification of proper configuration. In order to provide flexibility of further system configurations (e.g. user setup), common communication interface is also described. The approach presented here is related to the automatic system firmware building presented in previous papers. Modular construction and multichannel measurements are key requirement in term of SXR diagnostics with use of GEM detectors.
Ceramic oxygen transport membrane array reactor and reforming method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelly, Sean M.; Christie, Gervase Maxwell; Robinson, Charles
2016-11-08
The invention relates to a commercially viable modular ceramic oxygen transport membrane reforming reactor configured using repeating assemblies of oxygen transport membrane tubes and catalytic reforming reactors.
Multimodular biocatalysts for natural product assembly
NASA Astrophysics Data System (ADS)
Schwarzer, Dirk; Marahiel, Mohamed A.
2001-03-01
Nonribosomal peptides and polyketides represent a large class of natural products that show an extreme structural diversity and broad pharmacological relevance. They are synthesized from simple building blocks such as amino or carboxy acids and malonate derivatives on multimodular enzymes called nonribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs), respectively. Although utilizing different substrates, NRPSs and PKSs show striking similarities in the modular architecture of their catalytic domains and product assembly-line mechanism. Among these compounds are well known antibiotics (penicillin, vancomycin and erythromycin) as well as potent immunosuppressive agents (cyclosporin, rapamycin and FK 506). This review focuses on the modular organization of NRPSs, PKSs and mixed NRPS/PKS systems and how modules and domains that build up the biosynthetic templates can be exploited for the rational design of recombinant enzymes capable of synthesizing novel compounds.
X-ray optical units made of glass: achievements and perspectives
NASA Astrophysics Data System (ADS)
Civitani, M.; Basso, S.; Ghigo, M.; Pareschi, G.; Salmaso, B.; Spiga, D.; Tagliaferri, G.; Vecchi, G.; Burwitz, V.; Hartner, G. D.; Menz, B.
2014-07-01
Future X-ray telescopes with very large collecting area, like the proposed Athena with more than 2 m2 effective area at 1 keV, need to be realized as assemblies of a large number of X-ray optical units, named X-ray Optical Units (XOUs). The Brera Astronomical Observatory (INAF-OAB) is developing a new technology to manufacture these modular elements, compatible with an angular resolution of 5 arcsec HEW (Half-Energy-Width). This technique consists in stacking in a Wolter-I configuration several layers of thin foils of glass, previously formed by direct hot slumping. The achievable global angular resolution of the optics relies on the required surface shape accuracy of slumped foils, on the smoothness of the mirror surfaces and on the correct integration and co-alignment of the mirror segments operated trough a dedicated Integration Machine (IMA). In this paper we provide an overview of the project development, reporting on the very promising results achieved so far, including in-focus full illumination X-ray tests of the prototype (Proof of Concept, POC#2, integrated at the beginning of 2013) for which an HEW of 22.1'' has been measured at Panter/MPE. Moreover we report on the on-going activities, with a new integrated prototype (PoC#3). X-ray test in pencil beam revealed that at least a segment between two external ribs is characterized by an HEW well below 10''. Lastly, the overall process up-grade to go from 20 m to 12m focal length (to be compatible with Athena+ configuration) is presented.
NASA Astrophysics Data System (ADS)
Basile, Vito; Guadagno, Gianluca; Ferrario, Maddalena; Fassi, Irene
2018-03-01
In this paper a parametric, modular and scalable algorithm allowing a fully automated assembly of a backplane fiber-optic interconnection circuit is presented. This approach guarantees the optimization of the optical fiber routing inside the backplane with respect to specific criteria (i.e. bending power losses), addressing both transmission performance and overall costs issues. Graph theory has been exploited to simplify the complexity of the NxN full-mesh backplane interconnection topology, firstly, into N independent sub-circuits and then, recursively, into a limited number of loops easier to be generated. Afterwards, the proposed algorithm selects a set of geometrical and architectural parameters whose optimization allows to identify the optimal fiber optic routing for each sub-circuit of the backplane. The topological and numerical information provided by the algorithm are then exploited to control a robot which performs the automated assembly of the backplane sub-circuits. The proposed routing algorithm can be extended to any array architecture and number of connections thanks to its modularity and scalability. Finally, the algorithm has been exploited for the automated assembly of an 8x8 optical backplane realized with standard multimode (MM) 12-fiber ribbons.
Design and Application of Integrated Assembly Technology of FRG in Residential Ceiling
NASA Astrophysics Data System (ADS)
Li, Xiuyun; Yu, Changyong
2018-06-01
FRG material is a new environmentally friendly indoor decoration materials and popular in prefabricated construction, the paper introduces the performance and design of materials, and takes FRG in the residential ceiling integrated assembly process into a demonstration project, which showed that FRG in the prefabricated modules integrated ceiling of the whole template scheme has a great artistry and application effect. Meanwhile it provides reference for the integrated ceiling assembly modular process design of similar indoor decoration.
A Modular Approach To Developing A Large Deployable Reflector
NASA Astrophysics Data System (ADS)
Pittman, R.; Leidich, C.; Mascy, F.; Swenson, B.
1984-01-01
NASA is currently studying the feasibility of developing a Large Deployable Reflector (LDR) astronomical facility to perform astrophysical studies of the infrared and submillimeter portion of the spectrum in the mid 1990's. The LDR concept was recommended by the Astronomy Survey Committee of the National Academy of Sciences as one of two space based projects to be started this decade. The current baseline calls for a 20 m (65.6 ft) aperture telescope diffraction limited at 30 μm and automatically deployed from a single Shuttle launch. The volume, performance, and single launch constraints place great demands on the technology and place LDR beyond the state-of-the-art in certain areas such as lightweight reflector segments. The advent of the Shuttle is opening up many new options and capabilities for producing large space systems. Until now, LDR has always been conceived as an integrated system, deployed autonomously in a single launch. This paper will look at a combination of automatic deployment and on-orbit assembly that may reduce the technological complexity and cost of the LDR system. Many technological tools are now in use or under study that will greatly enhance our capabilities to do assembly in space. Two Shuttle volume budget scenarios will be examined to assess the potential of these tools to reduce the LDR system complexity. Further study will be required to reach the full optimal combination of deployment and assembly, since in most cases the capabilities of these new tools have not been demonstrated. In order to take maximum advantage of these concepts, the design of LDR must be flexible and allow one subsystem to be modified without adversely affecting the entire system. One method of achieving this flexibility is to use a modular design approach in which the major subsystems are physically separated during launch and assembled on orbit. A modular design approach facilitates this flexibility but requires that the subsystems be interfaced in a simple, straightforward, and controlled manner. NASA is currently defining a technology development plan for LDR which will identify the technology advances that are required. The modular approach offers the flexibility to easily incorporate these new advances into the design.
From hippocampus to whole-brain: The role of integrative processing in episodic memory retrieval.
Geib, Benjamin R; Stanley, Matthew L; Dennis, Nancy A; Woldorff, Marty G; Cabeza, Roberto
2017-04-01
Multivariate functional connectivity analyses of neuroimaging data have revealed the importance of complex, distributed interactions between disparate yet interdependent brain regions. Recent work has shown that topological properties of functional brain networks are associated with individual and group differences in cognitive performance, including in episodic memory. After constructing functional whole-brain networks derived from an event-related fMRI study of memory retrieval, we examined differences in functional brain network architecture between forgotten and remembered words. This study yielded three main findings. First, graph theory analyses showed that successfully remembering compared to forgetting was associated with significant changes in the connectivity profile of the left hippocampus and a corresponding increase in efficient communication with the rest of the brain. Second, bivariate functional connectivity analyses indicated stronger interactions between the left hippocampus and a retrieval assembly for remembered versus forgotten items. This assembly included the left precuneus, left caudate, bilateral supramarginal gyrus, and the bilateral dorsolateral superior frontal gyrus. Integrative properties of the retrieval assembly were greater for remembered than forgotten items. Third, whole-brain modularity analyses revealed that successful memory retrieval was marginally significantly associated with a less segregated modular architecture in the network. The magnitude of the decreases in modularity between remembered and forgotten conditions was related to memory performance. These findings indicate that increases in integrative properties at the nodal, retrieval assembly, and whole-brain topological levels facilitate memory retrieval, while also underscoring the potential of multivariate brain connectivity approaches for providing valuable new insights into the neural bases of memory processes. Hum Brain Mapp 38:2242-2259, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Zhu, Jing; Wang, Lei; Xu, Xiaowen; Wei, Haiping; Jiang, Wei
2016-04-05
Here, we explored a modular strategy for rational design of nuclease-responsive three-way junctions (TWJs) and fabricated a dynamic DNA device in a "plug-and-play" fashion. First, inactivated TWJs were designed, which contained three functional domains: the inaccessible toehold and branch migration domains, the specific sites of nucleases, and the auxiliary complementary sequence. The actions of different nucleases on their specific sites in TWJs caused the close proximity of the same toehold and branch migration domains, resulting in the activation of the TWJs and the formation of a universal trigger for the subsequent dynamic assembly. Second, two hairpins (H1 and H2) were introduced, which could coexist in a metastable state, initially to act as the components for the dynamic assembly. Once the trigger initiated the opening of H1 via TWJs-driven strand displacement, the cascade hybridization of hairpins immediately switched on, resulting in the formation of the concatemers of H1/H2 complex appending numerous integrated G-quadruplexes, which were used to obtain label-free signal readout. The inherent modularity of this design allowed us to fabricate a flexible DNA dynamic device and detect multiple nucleases through altering the recognition pattern slightly. Taking uracil-DNA glycosylase and CpG methyltransferase M.SssI as models, we successfully realized the butt joint between the uracil-DNA glycosylase and M.SssI recognition events and the dynamic assembly process. Furthermore, we achieved ultrasensitive assay of nuclease activity and the inhibitor screening. The DNA device proposed here will offer an adaptive and flexible tool for clinical diagnosis and anticancer drug discovery.
A Modular Pipelined Processor for High Resolution Gamma-Ray Spectroscopy
NASA Astrophysics Data System (ADS)
Veiga, Alejandro; Grunfeld, Christian
2016-02-01
The design of a digital signal processor for gamma-ray applications is presented in which a single ADC input can simultaneously provide temporal and energy characterization of gamma radiation for a wide range of applications. Applying pipelining techniques, the processor is able to manage and synchronize very large volumes of streamed real-time data. Its modular user interface provides a flexible environment for experimental design. The processor can fit in a medium-sized FPGA device operating at ADC sampling frequency, providing an efficient solution for multi-channel applications. Two experiments are presented in order to characterize its temporal and energy resolution.
Lightweight IMM PV Flexible Blanket Assembly
NASA Technical Reports Server (NTRS)
Spence, Brian
2015-01-01
Deployable Space Systems (DSS) has developed an inverted metamorphic multijunction (IMM) photovoltaic (PV) integrated modular blanket assembly (IMBA) that can be rolled or z-folded. This IMM PV IMBA technology enables a revolutionary flexible PV blanket assembly that provides high specific power, exceptional stowed packaging efficiency, and high-voltage operation capability. DSS's technology also accommodates standard third-generation triple junction (ZTJ) PV device technologies to provide significantly improved performance over the current state of the art. This SBIR project demonstrated prototype, flight-like IMM PV IMBA panel assemblies specifically developed, designed, and optimized for NASA's high-voltage solar array missions.
X-ray optics for the LAMAR facility, an overview. [Large Area Modular Array of Reflectors
NASA Technical Reports Server (NTRS)
Gorenstein, P.
1979-01-01
The paper surveys the Large Area Modular Array of Reflectors (LAMAR), the concept of which is based on meeting two major requirements in X-ray astronomy, large collecting area and moderately good or better angular resolution for avoiding source confusion and imaging source fields. It is shown that the LAMAR provides the same sensitivity and signal to noise in imaging as a single large telescope having the same area and angular resolution but is a great deal less costly to develop, construct, and integrate into a space mission. Attention is also given to the LAMAR modular nature which will allow for an evolutionary development from a modest size array on Spacelab to a Shuttle launched free flyer. Finally, consideration is given to manufacturing methods which show promise of making LAMAR meet the criteria of good angular resolution, relatively low cost, and capability for fast volume production.
Electrical machines and assemblies including a yokeless stator with modular lamination stacks
Qu, Ronghai; Jansen, Patrick Lee; Bagepalli, Bharat Sampathkumar; Carl, Jr., Ralph James; Gadre, Aniruddha Dattatraya; Lopez, Fulton Jose
2010-04-06
An electrical machine includes a rotor with an inner rotor portion and an outer rotor portion, and a double-sided yokeless stator. The yokeless stator includes modular lamination stacks and is configured for radial magnetic flux flow. The double-sided yokeless stator is concentrically disposed between the inner rotor portion and the outer rotor portion of the electrical machine. Examples of particularly useful embodiments for the electrical machine include wind turbine generators, ship propulsion motors, switch reluctance machines and double-sided synchronous machines.
New Approach to Road Construction in Oil-Producing Regions of Western Siberia
NASA Astrophysics Data System (ADS)
Piirainen, V. Y.; Estrin, Y.
2017-10-01
This article presents, as a polemic exercise, a new approach to road construction in marshland areas of oil and gas producing regions of Western Siberia. The approach is based on the use of novel modular elements that can be assembled into an integral structure by means of topological interlocking. The use of modern superlight concrete in conjunction with the new design systems based on the modular principle opens up new avenues to solving problems of road construction in regions with unstable, boggy soils.
Reconfigurable Software for Mission Operations
NASA Technical Reports Server (NTRS)
Trimble, Jay
2014-01-01
We developed software that provides flexibility to mission organizations through modularity and composability. Modularity enables removal and addition of functionality through the installation of plug-ins. Composability enables users to assemble software from pre-built reusable objects, thus reducing or eliminating the walls associated with traditional application architectures and enabling unique combinations of functionality. We have used composable objects to reduce display build time, create workflows, and build scenarios to test concepts for lunar roving operations. The software is open source, and may be downloaded from https:github.comnasamct.
A multilevel control approach for a modular structured space platform
NASA Technical Reports Server (NTRS)
Chichester, F. D.; Borelli, M. T.
1981-01-01
A three axis mathematical representation of a modular assembled space platform consisting of interconnected discrete masses, including a deployable truss module, was derived for digital computer simulation. The platform attitude control system as developed to provide multilevel control utilizing the Gauss-Seidel second level formulation along with an extended form of linear quadratic regulator techniques. The objectives of the multilevel control are to decouple the space platform's spatial axes and to accommodate the modification of the platform's configuration for each of the decoupled axes.
Modular Track System For Positioning Mobile Robots
NASA Technical Reports Server (NTRS)
Miller, Jeff
1995-01-01
Conceptual system for positioning mobile robotic manipulators on large main structure includes modular tracks and ancillary structures assembled easily along with main structure. System, called "tracked robotic location system" (TROLS), originally intended for application to platforms in outer space, but TROLS concept might also prove useful on Earth; for example, to position robots in factories and warehouses. T-cross-section rail keeps mobile robot on track. Bar codes mark locations along track. Each robot equipped with bar-code-recognizing circuitry so it quickly finds way to assigned location.
A Modular PMAD System for Small Spacecraft
NASA Technical Reports Server (NTRS)
Button, Robert M.
1998-01-01
Current trends in satellite design are focused on developing small, reliable, and inexpensive spacecraft. To that end, a modular power management and distribution system (PMAD) is proposed which will help transition the aerospace industry towards an assembly line approach to building spacecraft. The modular system is based on an innovative DC voltage boost converter called the Series Connected Boost Regulator (SCBR). The SCBR uses existing DC-DC converters and adds a unique series connection. This simple modification provides the SCBR topology with many advantages over existing boost converters. Efficiencies of 94-98%, power densities above 1,000 We/kg, and inherent fault tolerance are just a few of the characteristics presented. Limitations of the SCBR technology are presented, and it is shown that the SCBR makes an ideal photovoltaic array regulator. A modular design based on the series connected boost unit is outlined and functional descriptions of the components are given.
Modular multiaperatures for light sensors
NASA Technical Reports Server (NTRS)
Rizzo, A. A.
1977-01-01
Process involves electroplating multiaperature masks as unit, eliminating alinement and assembly difficulties previously encountered. Technique may be applied to masks in automated and surveillance light systems, when precise, wide angle field of view is needed.
Horizontal modular dry irradiated fuel storage system
Fischer, Larry E.; McInnes, Ian D.; Massey, John V.
1988-01-01
A horizontal, modular, dry, irradiated fuel storage system (10) includes a thin-walled canister (12) for containing irradiated fuel assemblies (20), which canister (12) can be positioned in a transfer cask (14) and transported in a horizontal manner from a fuel storage pool (18), to an intermediate-term storage facility. The storage system (10) includes a plurality of dry storage modules (26) which accept the canister (12) from the transfer cask (14) and provide for appropriate shielding about the canister (12). Each module (26) also provides for air cooling of the canister (12) to remove the decay heat of the irradiated fuel assemblies (20). The modules (26) can be interlocked so that each module (26) gains additional shielding from the next adjacent module (26). Hydraulic rams (30) are provided for inserting and removing the canisters (12) from the modules (26).
Spacecraft Modularity for Serviceable Satellites
NASA Technical Reports Server (NTRS)
Rossetti, Dino; Keer, Beth; Panek, John; Reed, Benjamin; Cepollina, Frank; Ritter, Robert
2015-01-01
Satellite servicing has been a proven capability of NASA since the first servicing missions in the 1980s with astronauts on the space shuttle. This capability enabled the on-orbit assembly of the International Space Station (ISS) and saved the Hubble Space Telescope (HST) mission following the discovery of the flawed primary mirror. The effectiveness and scope of servicing opportunities, especially using robotic servicers, is a function of how cooperative a spacecraft is. In this paper, modularity will be presented as a critical design aspect for a spacecraft that is cooperative from a servicing perspective. Different features of modularity are discussed using examples from HST and the Multimission Modular Spacecraft (MMS) program from the 1980s and 1990s. The benefits of modularity will be presented including those directly related to servicing and those outside of servicing including reduced costs and increased flexibility. The new Reconfigurable Operational spacecraft for Science and Exploration (ROSE) concept is introduced as an affordable implementation of modularity that provides cost savings and flexibility. Key aspects of the ROSE architecture are discussed such as the module design and the distributed avionics architecture. The ROSE concept builds on the experience from MMS and due to its modularity, would be highly suitable as a future client for on-orbit servicing.
Xiao, Fei; Song, Jibin; Gao, Hongcai; Zan, Xiaoli; Xu, Rong; Duan, Hongwei
2012-01-24
The development of flexible electrodes is of considerable current interest because of the increasing demand for modern electronics, portable medical products, and compact energy devices. We report a modular approach to fabricating high-performance flexible electrodes by structurally integrating 2D-assemblies of nanoparticles with freestanding graphene paper. We have shown that the 2D array of gold nanoparticles at oil-water interfaces can be transferred on freestanding graphene oxide paper, leading to a monolayer of densely packed gold nanoparticles of uniform sizes loaded on graphene oxide paper. One major finding is that the postassembly electrochemical reduction of graphene oxide paper restores the ordered structure and electron-transport properties of graphene, and gives rise to robust and biocompatible freestanding electrodes with outstanding electrocatalytic activities, which have been manifested by the sensitive and selective detection of two model analytes: glucose and hydrogen peroxide (H(2)O(2)) secreted by live cells. The modular nature of this approach coupled with recent progress in nanocrystal synthesis and surface engineering opens new possibilities to systematically study the dependence of catalytic performance on the structural parameters and chemical compositions of the nanocrystals. © 2011 American Chemical Society
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sampathkumar, Parthasarathy; Kim, Seung Joong; Manglicmot, Danalyn
2012-10-23
The nuclear pore complex (NPC), embedded in the nuclear envelope, is a large, dynamic molecular assembly that facilitates exchange of macromolecules between the nucleus and the cytoplasm. The yeast NPC is an eightfold symmetric annular structure composed of {approx}456 polypeptide chains contributed by {approx}30 distinct proteins termed nucleoporins. Nup116, identified only in fungi, plays a central role in both protein import and mRNA export through the NPC. Nup116 is a modular protein with N-terminal 'FG' repeats containing a Gle2p-binding sequence motif and a NPC targeting domain at its C-terminus. We report the crystal structure of the NPC targeting domain ofmore » Candida glabrata Nup116, consisting of residues 882-1034 [CgNup116(882-1034)], at 1.94 {angstrom} resolution. The X-ray structure of CgNup116(882-1034) is consistent with the molecular envelope determined in solution by small-angle X-ray scattering. Structural similarities of CgNup116(882-1034) with homologous domains from Saccharomyces cerevisiae Nup116, S. cerevisiae Nup145N, and human Nup98 are discussed.« less
Preliminary design study. Shuttle modular scanning spectroradiometer
NASA Technical Reports Server (NTRS)
1975-01-01
Fundamental concepts on which to base a detailed design for a Shuttle Modular Scanning Spectroradiometer were developed, and a preliminary design is presented. The recommended design features modularity and flexibility. It includes a 75-cm f/1.7-telescope assembly in an all-reflective Schmidt configuration, a solid state scan system (pushbroom) with high resolution over a 15 deg field of view, and ten detector channels covering the spectral range from 0.45 to 12.5 micrometers. It uses charge transfer device techniques to accommodate a large number of detector elements for earth observation measurements. Methods for in-flight radiometric calibration, for image motion compensation, and for data processing are described. Recommendations for ground support equipment are included, and interfaces with the shuttle orbiter vehicle are illustrated.
NASA Technical Reports Server (NTRS)
1972-01-01
The modular space station comprising small, shuttle-launched modules, and characterized by low initial cost and incremental manning, is described. The initial space station is designed to be delivered into orbit by three space shuttles and assembled in space. The three sections are the power/subsystems module, the crew/operations module, and the general purpose laboratory module. It provides for a crew of six. Subsequently duplicate/crew/operations and power/subsystems modules will be mated to the original modules, and provide for an additional six crewmen. A total of 17 research and applications modules is planned, three of which will be free-flying modules. Details are given on the program plan, modular characteristics, logistics, experiment support capability and requirements, operations analysis, design support analyses, and shuttle interfaces.
Quantum plug n’ play: modular computation in the quantum regime
NASA Astrophysics Data System (ADS)
Thompson, Jayne; Modi, Kavan; Vedral, Vlatko; Gu, Mile
2018-01-01
Classical computation is modular. It exploits plug n’ play architectures which allow us to use pre-fabricated circuits without knowing their construction. This bestows advantages such as allowing parts of the computational process to be outsourced, and permitting individual circuit components to be exchanged and upgraded. Here, we introduce a formal framework to describe modularity in the quantum regime. We demonstrate a ‘no-go’ theorem, stipulating that it is not always possible to make use of quantum circuits without knowing their construction. This has significant consequences for quantum algorithms, forcing the circuit implementation of certain quantum algorithms to be rebuilt almost entirely from scratch after incremental changes in the problem—such as changing the number being factored in Shor’s algorithm. We develop a workaround capable of restoring modularity, and apply it to design a modular version of Shor’s algorithm that exhibits increased versatility and reduced complexity. In doing so we pave the way to a realistic framework whereby ‘quantum chips’ and remote servers can be invoked (or assembled) to implement various parts of a more complex quantum computation.
Binder, Andreas; Lambert, Jayne; Morbitzer, Robert; Popp, Claudia; Ott, Thomas; Lahaye, Thomas; Parniske, Martin
2014-01-01
The Golden Gate (GG) modular assembly approach offers a standardized, inexpensive and reliable way to ligate multiple DNA fragments in a pre-defined order in a single-tube reaction. We developed a GG based toolkit for the flexible construction of binary plasmids for transgene expression in plants. Starting from a common set of modules, such as promoters, protein tags and transcribed regions of interest, synthetic genes are assembled, which can be further combined to multigene constructs. As an example, we created T-DNA constructs encoding multiple fluorescent proteins targeted to distinct cellular compartments (nucleus, cytosol, plastids) and demonstrated simultaneous expression of all genes in Nicotiana benthamiana, Lotus japonicus and Arabidopsis thaliana. We assembled an RNA interference (RNAi) module for the construction of intron-spliced hairpin RNA constructs and demonstrated silencing of GFP in N. benthamiana. By combination of the silencing construct together with a codon adapted rescue construct into one vector, our system facilitates genetic complementation and thus confirmation of the causative gene responsible for a given RNAi phenotype. As proof of principle, we silenced a destabilized GFP gene (dGFP) and restored GFP fluorescence by expression of a recoded version of dGFP, which was not targeted by the silencing construct. PMID:24551083
Assembly of tissue engineered blood vessels with spatially-controlled heterogeneities.
Strobel, Hannah A; Hookway, Tracy; Piola, Marco; Fiore, Gianfranco Beniamino; Soncini, Monica; Alsberg, Eben; Rolle, Marsha
2018-05-04
Tissue-engineered human blood vessels may enable in vitro disease modeling and drug screening to accelerate advances in vascular medicine. Existing methods for tissue engineered blood vessel (TEBV) fabrication create homogenous tubes not conducive to modeling the focal pathologies characteristic of vascular disease. We developed a system for generating self-assembled human smooth muscle cell ring-units, which were fused together into TEBVs. The goal of this study was to assess the feasibility of modular assembly and fusion of ring building units to fabricate spatially-controlled, heterogeneous tissue tubes. We first aimed to enhance fusion and reduce total culture time, and determined that reducing ring pre-culture duration improved tube fusion. Next, we incorporated electrospun polymer ring units onto tube ends as reinforced extensions, which allowed us to cannulate tubes after only 7 days of fusion, and culture tubes with luminal flow in a custom bioreactor. To create focal heterogeneities, we incorporated gelatin microspheres into select ring units during self-assembly, and fused these rings between ring units without microspheres. Cells within rings maintained their spatial position within tissue tubes after fusion. This work describes a platform approach for creating modular TEBVs with spatially-defined structural heterogeneities, which may ultimately be applied to mimic focal diseases such as intimal hyperplasia or aneurysm.
Assembly of optical fibers for the connection of polymer-based waveguide
NASA Astrophysics Data System (ADS)
Ansel, Yannick; Grau, Daniel; Holzki, Markus; Kraus, Silvio; Neumann, Frank; Reinhard, Carsten; Schmitz, Felix
2003-03-01
This paper describes the realization of polymer-based optical structures and the assembly and packaging strategy to connect optical fiber ribbons to the waveguides. For that a low cost fabrication process using the SU-8TM thick photo-resist is presented. This process consists in the deposition of two photo-structurized resist layers filled up with epoxy glue realising the core waveguide. For the assembly, a new modular vacuum gripper was realised and installed on an automatic pick and place assembly robot to mount precisely and efficiently the optical fibers in the optical structures. First results have shown acceptable optical propagation loss for the complete test structure.
Tse, Longping V; Moller-Tank, Sven; Meganck, Rita M; Asokan, Aravind
2018-04-25
Adeno-associated viruses (AAV) encode a unique assembly activating protein (AAP) within their genome that is essential for capsid assembly. Studies to date have focused on establishing the role of AAP as a chaperone that mediates stability, nucleolar transport, and assembly of AAV capsid proteins. Here, we map structure-function correlates of AAP using secondary structure analysis followed by deletion and substitutional mutagenesis of specific domains, namely, the hydrophobic N-terminal domain (HR), conserved core (CC), proline-rich region (PRR), threonine/serine rich region (T/S) and basic region (BR). First, we establish that the centrally located PRR and T/S regions are flexible linker domains that can either be deleted completely or replaced by heterologous functional domains that enable ancillary functions such as fluorescent imaging or increased AAP stability. We also demonstrate that the C-terminal BR domains can be substituted with heterologous nuclear or nucleolar localization sequences that display varying ability to support AAV capsid assembly. Further, by replacing the BR domain with immunoglobulin (IgG) Fc domains, we assessed AAP complexation with AAV capsid subunits and demonstrate that the hydrophobic region (HR) and the conserved core (CC) in the AAP N-terminus are the sole determinants for viral protein (VP) recognition. However, VP recognition alone is not sufficient for capsid assembly. Our study sheds light on the modular structure-function correlates of AAP and provides multiple approaches to engineer AAP that might prove useful towards understanding and controlling AAV capsid assembly. Importance: Adeno-associated viruses (AAV) encode a unique assembly activating protein (AAP) within their genome that is essential for capsid assembly. Understanding how AAP acts as a chaperone for viral assembly could help improve efficiency and potentially control this process. Our studies reveal that AAP has a modular architecture, with each module playing a distinct role and can be engineered for carrying out new functions. Copyright © 2018 American Society for Microbiology.
Biosynthesis of Modular Ascarosides in C. elegans
Panda, Oishika; Akagi, Allison E.; Artyukhin, Alexander B.; Judkins, Joshua C.; Le, Henry H.; Mahanti, Parag; Cohen, Sarah M.; Sternberg, Paul W.
2017-01-01
The nematode Caenorhabditis elegans uses simple building blocks from primary metabolism and a strategy of modular assembly to build a great diversity of signaling molecules, the ascarosides, which function as a chemical language in this model organism. In the ascarosides, the dideoxysugar ascarylose serves as a scaffold to which diverse moieties from lipid, amino acid, neurotransmitter, and nucleoside metabolism are attached. However, the mechanisms that underlie the highly specific assembly of ascarosides are not understood. We show that the acyl-CoA synthetase ACS-7, which localizes to lysosome-related organelles, is specifically required for the attachment of different building blocks to the 4′-position of ascr#9. We further show that mutants lacking lysosome-related organelles are defective in the production of all 4′-modified ascarosides, thus identifying the waste disposal system of the cell as a hotspot for ascaroside biosynthesis. PMID:28371259
A minimal length rigid helical peptide motif allows rational design of modular surfactants
NASA Astrophysics Data System (ADS)
Mondal, Sudipta; Varenik, Maxim; Bloch, Daniel Nir; Atsmon-Raz, Yoav; Jacoby, Guy; Adler-Abramovich, Lihi; Shimon, Linda J. W.; Beck, Roy; Miller, Yifat; Regev, Oren; Gazit, Ehud
2017-01-01
Extensive work has been invested in the design of bio-inspired peptide emulsifiers. Yet, none of the formulated surfactants were based on the utilization of the robust conformation and self-assembly tendencies presented by the hydrophobins, which exhibited highest surface activity among all known proteins. Here we show that a minimalist design scheme could be employed to fabricate rigid helical peptides to mimic the rigid conformation and the helical amphipathic organization. These designer building blocks, containing natural non-coded α-aminoisobutyric acid (Aib), form superhelical assemblies as confirmed by crystallography and microscopy. The peptide sequence is amenable to structural modularity and provides the highest stable emulsions reported so far for peptide and protein emulsifiers. Moreover, we establish the ability of short peptides to perform the dual functions of emulsifiers and thickeners, a feature that typically requires synergistic effects of surfactants and polysaccharides. This work provides a different paradigm for the molecular engineering of bioemulsifiers.
Engineering Design Handbook: Timing Systems and Components
1975-12-01
23-1 23-2 Modular Components 23-2 23—3 Integrated Circuits 23—2 23—4 Matching Techniques 23-5 23-5 DC and AC Systems 23-7 23-6 Hybrid...Assembly Illustrating Modular Design . . 23—4 23-3 Characteristics of the Source 23—6 23—4 Characteristics of the Load 23—6 23—5 Matching Source and...4-1 INTRODUCTION There is a continuous demand for increased precision and accuracy in frequency control. Today fast time pulses are used in
Valdes Franco, José A; Wang, Yi; Huo, Naxin; Ponciano, Grisel; Colvin, Howard A; McMahan, Colleen M; Gu, Yong Q; Belknap, William R
2018-04-19
Guayule (Parthenium argentatum A. Gray) is a rubber-producing desert shrub native to Mexico and the United States. Guayule represents an alternative to Hevea brasiliensis as a source for commercial natural rubber. The efficient application of modern molecular/genetic tools to guayule improvement requires characterization of its genome. The 1.6 Gb guayule genome was sequenced, assembled and annotated. The final 1.5 Gb assembly, while fragmented (N 50 = 22 kb), maps > 95% of the shotgun reads and is essentially complete. Approximately 40,000 transcribed, protein encoding genes were annotated on the assembly. Further characterization of this genome revealed 15 families of small, microsatellite-associated, transposable elements (TEs) with unexpected chromosomal distribution profiles. These SaTar (Satellite Targeted) elements, which are non-autonomous Mu-like elements (MULEs), were frequently observed in multimeric linear arrays of unrelated individual elements within which no individual element is interrupted by another. This uniformly non-nested TE multimer architecture has not been previously described in either eukaryotic or prokaryotic genomes. Five families of similarly distributed non-autonomous MULEs (microsatellite associated, modularly assembled) were characterized in the rice genome. Families of TEs with similar structures and distribution profiles were identified in sorghum and citrus. The sequencing and assembly of the guayule genome provides a foundation for application of current crop improvement technologies to this plant. In addition, characterization of this genome revealed SaTar elements with distribution profiles unique among TEs. Satar targeting appears based on an alternative MULE recombination mechanism with the potential to impact gene evolution.
Software-assisted stacking of gene modules using GoldenBraid 2.0 DNA-assembly framework.
Vazquez-Vilar, Marta; Sarrion-Perdigones, Alejandro; Ziarsolo, Peio; Blanca, Jose; Granell, Antonio; Orzaez, Diego
2015-01-01
GoldenBraid (GB) is a modular DNA assembly technology for plant multigene engineering based on type IIS restriction enzymes. GB speeds up the assembly of transcriptional units from standard genetic parts and facilitates the stacking of several genes within the same T-DNA in few days. GBcloning is software-assisted with a set of online tools. The GBDomesticator tool assists in the adaptation of DNA parts to the GBstandard. The combination of GB-adapted parts to build new transcriptional units is assisted by the GB TU Assembler tool. Finally, the assembly of multigene modules is simulated by the GB Binary Assembler. All the software tools are available at www.gbcloning.org . Here, we describe in detail the assembly methodology to create a multigene construct with three transcriptional units for polyphenol metabolic engineering in plants.
Method of making a unitized electrode assembly
Niksa, Marilyn J.; Pohto, Gerald R.; Lakatos, Leslie K.; Wheeler, Douglas J.; Solomon, Frank; Niksa, Andrew J.; Schue, Thomas J.; Genodman, Yury; Turk, Thomas R.; Hagel, Daniel P.
1988-01-01
A battery assembly of the consumable metal anode type has now been constructed for ready assembly as well as disassembly. In a non-conductive and at least substantially inert cell body, space is provided for receiving an open-structured, non-consumable anode cage. The cage has an open top for facilitating insertion of an anode. A modular cathode is used, comprising a peripheral current conductor frame clamped about a grid reinforced air cathode in sheet form. The air cathode may be double gridded. The cathode frame can be sealed, during assembly, with electrolyte-resistant-sealant as well as with adhesive. The resulting cathode module can be assembled outside the cell body and readily inserted therein, or can later be easily removed therefrom.
Method of making a unitized electrode assembly
Niksa, M.J.; Pohto, G.R.; Lakatos, L.K.; Wheeler, D.J.; Solomon, F.; Niksa, A.J.; Schue, T.J.; Genodman, Y.; Turk, T.R.; Hagel, D.P.
1988-12-06
A battery assembly of the consumable metal anode type has now been constructed for ready assembly as well as disassembly. In a non-conductive and at least substantially inert cell body, space is provided for receiving an open-structured, non-consumable anode cage. The cage has an open top for facilitating insertion of an anode. A modular cathode is used, comprising a peripheral current conductor frame clamped about a grid reinforced air cathode in sheet form. The air cathode may be double gridded. The cathode frame can be sealed, during assembly, with electrolyte-resistant-sealant as well as with adhesive. The resulting cathode module can be assembled outside the cell body and readily inserted therein, or can later be easily removed therefrom. 6 figs.
pH-Controlled Assembly of DNA Tiles
Amodio, Alessia; Adedeji, Abimbola Feyisara; Castronovo, Matteo; ...
2016-09-15
We demonstrate a strategy to trigger and finely control the assembly of supramolecular DNA nanostructures with pH. Control is achieved via a rationally designed strand displacement circuit that responds to pH and activates a downstream DNA tile self-assembly process. We observe that the DNA structures form under neutral/basic conditions, while the self-assembly process is suppressed under acidic conditions. The strategy presented here demonstrates a modular approach toward building systems capable of processing biochemical inputs and finely controlling the assembly of DNA-based nanostructures under isothermal conditions. In particular, the presented architecture is relevant for the development of complex DNA devices ablemore » to sense and respond to molecular markers associated with abnormal metabolism.« less
pH-Controlled Assembly of DNA Tiles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amodio, Alessia; Adedeji, Abimbola Feyisara; Castronovo, Matteo
We demonstrate a strategy to trigger and finely control the assembly of supramolecular DNA nanostructures with pH. Control is achieved via a rationally designed strand displacement circuit that responds to pH and activates a downstream DNA tile self-assembly process. We observe that the DNA structures form under neutral/basic conditions, while the self-assembly process is suppressed under acidic conditions. The strategy presented here demonstrates a modular approach toward building systems capable of processing biochemical inputs and finely controlling the assembly of DNA-based nanostructures under isothermal conditions. In particular, the presented architecture is relevant for the development of complex DNA devices ablemore » to sense and respond to molecular markers associated with abnormal metabolism.« less
The Assembly Pathway of Mitochondrial Respiratory Chain Complex I.
Guerrero-Castillo, Sergio; Baertling, Fabian; Kownatzki, Daniel; Wessels, Hans J; Arnold, Susanne; Brandt, Ulrich; Nijtmans, Leo
2017-01-10
Mitochondrial complex I is the largest integral membrane enzyme of the respiratory chain and consists of 44 different subunits encoded in the mitochondrial and nuclear genome. Its biosynthesis is a highly complicated and multifaceted process involving at least 14 additional assembly factors. How these subunits assemble into a functional complex I and where the assembly factors come into play is largely unknown. Here, we applied a dynamic complexome profiling approach to elucidate the assembly of human mitochondrial complex I and its further incorporation into respiratory chain supercomplexes. We delineate the stepwise incorporation of all but one subunit into a series of distinct assembly intermediates and their association with known and putative assembly factors, which had not been implicated in this process before. The resulting detailed and comprehensive model of complex I assembly is fully consistent with recent structural data and the remarkable modular architecture of this multiprotein complex. Copyright © 2017 Elsevier Inc. All rights reserved.
Schiffels, Daniel; Szalai, Veronika A; Liddle, J Alexander
2017-07-25
Robust self-assembly across length scales is a ubiquitous feature of biological systems but remains challenging for synthetic structures. Taking a cue from biology-where disparate molecules work together to produce large, functional assemblies-we demonstrate how to engineer microscale structures with nanoscale features: Our self-assembly approach begins by using DNA polymerase to controllably create double-stranded DNA (dsDNA) sections on a single-stranded template. The single-stranded DNA (ssDNA) sections are then folded into a mechanically flexible skeleton by the origami method. This process simultaneously shapes the structure at the nanoscale and directs the large-scale geometry. The DNA skeleton guides the assembly of RecA protein filaments, which provides rigidity at the micrometer scale. We use our modular design strategy to assemble tetrahedral, rectangular, and linear shapes of defined dimensions. This method enables the robust construction of complex assemblies, greatly extending the range of DNA-based self-assembly methods.
Lindovska, Petra; Movassaghi, Mohammad
2017-12-06
The enantioselective total synthesis of (-)-hodgkinsine, (-)-calycosidine, (-)-hodgkinsine B, (-)-quadrigemine C, and (-)-psycholeine through a diazene-directed assembly of cyclotryptamine fragments is described. Our synthetic strategy enables multiple and directed assembly of intact cyclotryptamine subunits for convergent synthesis of highly complex bis- and tris-diazene intermediates. Photoextrusion of dinitrogen from these intermediates enables completely stereoselective formation of all C3a-C3a' and C3a-C7' carbon-carbon bonds and all the associated quaternary stereogenic centers. In a representative example, photoextrusion of three dinitrogen molecules from an advanced intermediate in a single-step led to completely controlled introduction of four quaternary stereogenic centers and guided the assembly of four cyclotryptamine monomers en route to (-)-quadrigemine C. The synthesis of these complex diazenes was made possible through a new methodology for synthesis of aryl-alkyl diazenes using electronically attenuated hydrazine-nucleophiles for a silver-promoted addition to C3a-bromocyclotryptamines. The application of Rh- and Ir-catalyzed C-H amination reactions in complex settings were used to gain rapid access to C3a- and C7-functionalized cyclotryptamine monomers, respectively, used for diazene synthesis. This convergent and modular assembly of intact cyclotryptamines offers the first solution to access these alkaloids through completely stereoselective union of monomers at challenging linkages and the associated quaternary stereocenters as illustrated in our synthesis of five members of the oligocyclotryptamine family of alkaloids.
Duo, Jia; Dong, Huijin; DeSilva, Binodh; Zhang, Yan J
2013-07-01
Sample dilution and reagent pipetting are time-consuming steps in ligand-binding assays (LBAs). Traditional automation-assisted LBAs use assay-specific scripts that require labor-intensive script writing and user training. Five major script modules were developed on Tecan Freedom EVO liquid handling software to facilitate the automated sample preparation and LBA procedure: sample dilution, sample minimum required dilution, standard/QC minimum required dilution, standard/QC/sample addition, and reagent addition. The modular design of automation scripts allowed the users to assemble an automated assay with minimal script modification. The application of the template was demonstrated in three LBAs to support discovery biotherapeutic programs. The results demonstrated that the modular scripts provided the flexibility in adapting to various LBA formats and the significant time saving in script writing and scientist training. Data generated by the automated process were comparable to those by manual process while the bioanalytical productivity was significantly improved using the modular robotic scripts.
Assembly and Molecular Architecture of the Phosphoinositide 3-Kinase p85α Homodimer.
LoPiccolo, Jaclyn; Kim, Seung Joong; Shi, Yi; Wu, Bin; Wu, Haiyan; Chait, Brian T; Singer, Robert H; Sali, Andrej; Brenowitz, Michael; Bresnick, Anne R; Backer, Jonathan M
2015-12-18
Phosphoinositide 3-kinases (PI3Ks) are a family of lipid kinases that are activated by growth factor and G-protein-coupled receptors and propagate intracellular signals for growth, survival, proliferation, and metabolism. p85α, a modular protein consisting of five domains, binds and inhibits the enzymatic activity of class IA PI3K catalytic subunits. Here, we describe the structural states of the p85α dimer, based on data from in vivo and in vitro solution characterization. Our in vitro assembly and structural analyses have been enabled by the creation of cysteine-free p85α that is functionally equivalent to native p85α. Analytical ultracentrifugation studies showed that p85α undergoes rapidly reversible monomer-dimer assembly that is highly exothermic in nature. In addition to the documented SH3-PR1 dimerization interaction, we identified a second intermolecular interaction mediated by cSH2 domains at the C-terminal end of the polypeptide. We have demonstrated in vivo concentration-dependent dimerization of p85α using fluorescence fluctuation spectroscopy. Finally, we have defined solution conditions under which the protein is predominantly monomeric or dimeric, providing the basis for small angle x-ray scattering and chemical cross-linking structural analysis of the discrete dimer. These experimental data have been used for the integrative structure determination of the p85α dimer. Our study provides new insight into the structure and assembly of the p85α homodimer and suggests that this protein is a highly dynamic molecule whose conformational flexibility allows it to transiently associate with multiple binding proteins. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
2007-07-01
Weight: 19,340 lbs 3-1 5. Semitrailer, flatbed , breakbulk/container transporter, 34 ton Model #: M872A1 Manufactured by Heller Truck Body Corporation...REQD). LAMINATE TO BEARING PIECE W/6-10d NAILS EVENLY SPACED. SIDE STRAPPING BOARD ASSEMBLY (4 RECD) EPAGE 5 NOTE: PRODUCE EQUAL QUANTITES OF ASSEMBLY...A AND ASSEMBLY B. EACH JMIP LOAD REQUIRES iWO OF EACH (4 TOTAL). STEEL EDGE PROTECTORS (2 REQD). LAMINATE TO BEARING AND CORNER PIECES W/4-6d NALS AND
Minicourses in Astrophysics, Modular Approach, Vol. I.
ERIC Educational Resources Information Center
Illinois Univ., Chicago.
This is the first volume of a two-volume minicourse in astrophysics. It contains chapters on the following topics: planetary atmospheres; X-ray astronomy; radio astrophysics; molecular astrophysics; and gamma-ray astrophysics. Each chapter gives much technical discussion, mathematical treatment, diagrams, and examples. References are included with…
Functional modularity in lake-dwelling characin fishes of Mexico
Bautista, Amando; Herder, Fabian; Doadrio, Ignacio
2017-01-01
Modular evolution promotes evolutionary change, allowing independent variation across morphological units. Recent studies have shown that under contrasting ecological pressures, patterns of modularity could be related to divergent evolution. The main goal of the present study was to evaluate the presence of modular evolution in two sister lacustrine species, Astyanax aeneus and A. caballeroi, which are differentiated by their trophic habits. Two different datasets were analyzed: (1) skull X-rays from 73 specimens (35 A. aeneus and 38 A. caballeroi) to characterize skull variation patterns, considering both species and sex effects. For this dataset, three different modularity hypotheses were tested, previously supported in other lacustrine divergent species; (2) a complete body shape dataset was also tested for four modularity hypotheses, which included a total of 196 individuals (110 Astyanax aeneus and 86 A. caballeroi). Skull shape showed significant differences among species and sex (P < 0.001), where Astyanax caballeroi species showed an upwardly projected mandible and larger preorbital region. For the skull dataset, the modularity hypothesis ranked first included three partitioning modules. While for the complete body dataset the best ranked hypothesis included two modules (head vs the rest of the body), being significant only for A. caballeroi. PMID:28951817
Functional modularity in lake-dwelling characin fishes of Mexico.
Ornelas-García, Claudia Patricia; Bautista, Amando; Herder, Fabian; Doadrio, Ignacio
2017-01-01
Modular evolution promotes evolutionary change, allowing independent variation across morphological units. Recent studies have shown that under contrasting ecological pressures, patterns of modularity could be related to divergent evolution. The main goal of the present study was to evaluate the presence of modular evolution in two sister lacustrine species, Astyanax aeneus and A. caballeroi , which are differentiated by their trophic habits. Two different datasets were analyzed: (1) skull X-rays from 73 specimens (35 A. aeneus and 38 A. caballeroi ) to characterize skull variation patterns, considering both species and sex effects. For this dataset, three different modularity hypotheses were tested, previously supported in other lacustrine divergent species; (2) a complete body shape dataset was also tested for four modularity hypotheses, which included a total of 196 individuals (110 Astyanax aeneus and 86 A. caballeroi ). Skull shape showed significant differences among species and sex ( P < 0.001), where Astyanax caballeroi species showed an upwardly projected mandible and larger preorbital region. For the skull dataset, the modularity hypothesis ranked first included three partitioning modules. While for the complete body dataset the best ranked hypothesis included two modules (head vs the rest of the body), being significant only for A. caballeroi .
An industrialized construction approach to concrete superstructures for bridges.
DOT National Transportation Integrated Search
1974-01-01
The objective of this study was to develop drawings for a specific site or sites that incorporated the best concepts of industrialized bridge superstructure construction, that is, great emphasis was placed upon the use of modular design and assembly ...
Use of tear ring permits repair of sealed module circuitry
NASA Technical Reports Server (NTRS)
1965-01-01
Improved packaging technique for modular electronic circuitry utilizes a tear ring which may be removed for repair and resealed. The tear ring is put over the container and header to which the electronic circuit assembly has been attached.
A Design of a Modular GPHS-Stirling Power System for a Lunar Habitation Module
NASA Technical Reports Server (NTRS)
Schmitz, Paul C.; Penswick, L. Barry; Shaltens, Richard K.
2005-01-01
Lunar habitation modules need electricity and potentially heat to operate. Because of the low amounts of radiation emitted by General Purpose Heat Source (GPHS) modules, power plants incorporating these as heat sources could be placed in close proximity to habitation modules. A design concept is discussed for a high efficiency power plant based on a GPHS assembly integrated with a Stirling convertor. This system could provide both electrical power and heat, if required, for a lunar habitation module. The conceptual GPHS/Stirling system is modular in nature and made up of a basic 5.5 KWe Stirling convertor/GPHS module assembly, convertor controller/PMAD electronics, waste heat radiators, and associated thermal insulation. For the specific lunar application under investigation eight modules are employed to deliver 40 KWe to the habitation module. This design looks at three levels of Stirling convertor technology and addresses the issues of integrating the Stirling convertors with the GPHS heat sources assembly using proven technology whenever possible. In addition, issues related to the high-temperature heat transport system, power management, convertor control, vibration isolation, and potential system packaging configurations to ensure safe operation during all phases of deployment will be discussed.
In-orbit assembly mission for the Space Solar Power Station
NASA Astrophysics Data System (ADS)
Cheng, ZhengAi; Hou, Xinbin; Zhang, Xinghua; Zhou, Lu; Guo, Jifeng; Song, Chunlin
2016-12-01
The Space Solar Power Station (SSPS) is a large spacecraft that utilizes solar power in space to supply power to an electric grid on Earth. A large symmetrical integrated concept has been proposed by the China Academy of Space Technology (CAST). Considering its large scale, the SSPS requires a modular design and unitized general interfaces that would be assembled in orbit. Facilities system supporting assembly procedures, which include a Reusable Heavy Lift Launch Vehicle, orbital transfer and space robots, is introduced. An integrated assembly scheme utilizing space robots to realize this platform SSPS concept is presented. This paper tried to give a preliminary discussion about the minimized time and energy cost of the assembly mission under best sequence and route This optimized assembly mission planning allows the SSPS to be built in orbit rapidly, effectively and reliably.
NASA Technical Reports Server (NTRS)
Poole, L. R.; Lecroy, S. R.; Morris, W. D.
1977-01-01
A computer program for studying linear ocean wave refraction is described. The program features random-access modular bathymetry data storage. Three bottom topography approximation techniques are available in the program which provide varying degrees of bathymetry data smoothing. Refraction diagrams are generated automatically and can be displayed graphically in three forms: Ray patterns with specified uniform deepwater ray density, ray patterns with controlled nearshore ray density, or crest patterns constructed by using a cubic polynomial to approximate crest segments between adjacent rays.
Modular, high power, variable R dynamic electrical load simulator
NASA Technical Reports Server (NTRS)
Joncas, K. P.
1974-01-01
The design of a previously developed basic variable R load simulator was entended to increase its power dissipation and transient handling capabilities. The delivered units satisfy all design requirements, and provides for a high power, modular simulation capability uniquely suited to the simulation of complex load responses. In addition to presenting conclusions and recommendations and pertinent background information, the report covers program accomplishments; describes the simulator basic circuits, transfer characteristic, protective features, assembly, and specifications; indicates the results of simulator evaluation, including burn-in and acceptance testing; provides acceptance test data; and summarizes the monthly progress reports.
Modular power converter having fluid cooled support
Beihoff, Bruce C.; Radosevich, Lawrence D.; Meyer, Andreas A.; Gollhardt, Neil; Kannenberg, Daniel G.
2005-09-06
A support may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support. The support, in conjunction with other packaging features may form a shield from both external EMI/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as improved terminal configurations. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.
Modular power converter having fluid cooled support
Beihoff, Bruce C.; Radosevich, Lawrence D.; Meyer, Andreas A.; Gollhardt, Neil; Kannenberg, Daniel G.
2005-12-06
A support may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support. The support, in conjunction with other packaging features may form a shield from both external EMI/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as improved terminal configurations. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.
High-Altitude Balloon Launches for Effective Education, Inspiration and Research
NASA Astrophysics Data System (ADS)
Voss, H. D.; Dailey, J.; Patterson, D.; Krueger, J.
2006-12-01
Over a three-year period the Taylor University Science Research Training Program (SRTP) has successfully launched and recovered 33 sophisticated payloads to altitudes between 20-33 km (100% success with rapid recovery). All of the payloads included two GPS tracking systems, cameras and monitors, a 110 kbit down link, and uplink command capability for educational experiments (K-12 and undergrad) and nanosatellite subsystem testing. Launches were conducted both day and night, with multiple balloons, with up to 10 experiment boxes, and under varying weather and upper atmospheric conditions. The many launches in a short period of time allowed the payload bus design to evolve toward increased performance, reliability, standardization, simplicity, and modularity for low-cost launch services. The current design uses a Zigbee wireless connection (50 kbaud rate) for each of the payload experiment boxes for rapid assembly and checkout with a common interface board for gathering analog and digital data and for commanding. Common data from each box is processed and displayed using modular LabView software. The use of balloons for active research (ozone, aerosols, cosmic rays. UV, IR, remote sensing, energy, propulsion) significantly invigorates and motivates student development, drives team schedule, uncovers unexpected problems, permits end-to-end closure, and forces calibration and validation of real data. The SRTP has helped to spin off a student company called StratoStar Systems for providing an affordable low-cost balloon launch service capability, insurance plan, and other technical assistance for scientific, industrial and STEM educational use.
Minifactory: a precision assembly system adaptable to the product life cycle
NASA Astrophysics Data System (ADS)
Muir, Patrick F.; Rizzi, Alfred A.; Gowdy, Jay W.
1997-12-01
Automated product assembly systems are traditionally designed with the intent that they will be operated with few significant changes for as long as the product is being manufactured. This approach to factory design and programming has may undesirable qualities which have motivated the development of more 'flexible' systems. In an effort to improve agility, different types of flexibility have been integrated into factory designs. Specifically, automated assembly systems have been endowed with the ability to assemble differing products by means of computer-controlled robots, and to accommodate variations in parts locations and dimensions by means of sensing. The product life cycle (PLC) is a standard four-stage model of the performance of a product from the time that it is first introduced in the marketplace until the time that it is discontinued. Manufacturers can improve their return on investment by adapting the production process to the PLC. We are developing two concepts to enable manufacturers to more readily achieve this goal: the agile assembly architecture (AAA), an abstract framework for distributed modular automation; and minifactory, our physical instantation of this architecture for the assembly of precision electro-mechanical devices. By examining the requirements which each PLC stage places upon the production system, we identify characteristics of factory design and programming which are appropriate for that stage. As the product transitions from one stage to the next, the factory design and programing should also transition from one embodiment to the next in order to achieve the best return on investment. Modularity of the factory components, highly flexible product transport mechanisms, and a high level of distributed intelligence are key characteristics of minifactory that enable this adaptation.
Percec, Virgil; Leowanawat, Pawaret; Sun, Hao-Jan; Kulikov, Oleg; Nusbaum, Christopher D; Tran, Tam M; Bertin, Annabelle; Wilson, Daniela A; Peterca, Mihai; Zhang, Shaodong; Kamat, Neha P; Vargo, Kevin; Moock, Diana; Johnston, Eric D; Hammer, Daniel A; Pochan, Darrin J; Chen, Yingchao; Chabre, Yoann M; Shiao, Tze C; Bergeron-Brlek, Milan; André, Sabine; Roy, René; Gabius, Hans-J; Heiney, Paul A
2013-06-19
The modular synthesis of 7 libraries containing 51 self-assembling amphiphilic Janus dendrimers with the monosaccharides D-mannose and D-galactose and the disaccharide D-lactose in their hydrophilic part is reported. These unprecedented sugar-containing dendrimers are named amphiphilic Janus glycodendrimers. Their self-assembly by simple injection of THF or ethanol solution into water or buffer and by hydration was analyzed by a combination of methods including dynamic light scattering, confocal microscopy, cryogenic transmission electron microscopy, Fourier transform analysis, and micropipet-aspiration experiments to assess mechanical properties. These libraries revealed a diversity of hard and soft assemblies, including unilamellar spherical, polygonal, and tubular vesicles denoted glycodendrimersomes, aggregates of Janus glycodendrimers and rodlike micelles named glycodendrimer aggregates and glycodendrimermicelles, cubosomes denoted glycodendrimercubosomes, and solid lamellae. These assemblies are stable over time in water and in buffer, exhibit narrow molecular-weight distribution, and display dimensions that are programmable by the concentration of the solution from which they are injected. This study elaborated the molecular principles leading to single-type soft glycodendrimersomes assembled from amphiphilic Janus glycodendrimers. The multivalency of glycodendrimersomes with different sizes and their ligand bioactivity were demonstrated by selective agglutination with a diversity of sugar-binding protein receptors such as the plant lectins concanavalin A and the highly toxic mistletoe Viscum album L. agglutinin, the bacterial lectin PA-IL from Pseudomonas aeruginosa, and, of special biomedical relevance, human adhesion/growth-regulatory galectin-3 and galectin-4. These results demonstrated the candidacy of glycodendrimersomes as new mimics of biological membranes with programmable glycan ligand presentations, as supramolecular lectin blockers, vaccines, and targeted delivery devices.
Toward the Modularization of Decision Support Systems
NASA Astrophysics Data System (ADS)
Raskin, R. G.
2009-12-01
Decision support systems are typically developed entirely from scratch without the use of modular components. This “stovepiped” approach is inefficient and costly because it prevents a developer from leveraging the data, models, tools, and services of other developers. Even when a decision support component is made available, it is difficult to know what problem it solves, how it relates to other components, or even that the component exists, The Spatial Decision Support (SDS) Consortium was formed in 2008 to organize the body of knowledge in SDS within a common portal. The portal identifies the canonical steps in the decision process and enables decision support components to be registered, categorized, and searched. This presentation describes how a decision support system can be assembled from modular models, data, tools and services, based on the needs of the Earth science application.
Modular Homogeneous Chromophore–Catalyst Assemblies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mulfort, Karen L.; Utschig, Lisa M.
2016-05-17
Photosynthetic reaction center (RC) proteins convert incident solar energy to chemical energy through a network of molecular cofactors which have been evolutionarily tuned to couple efficient light-harvesting, directional electron transfer, and long-lived charge separation with secondary reaction sequences. These molecular cofactors are embedded within a complex protein environment which precisely positions each cofactor in optimal geometries along efficient electron transfer pathways with localized protein environments facilitating sequential and accumulative charge transfer. By contrast, it is difficult to approach a similar level of structural complexity in synthetic architectures for solar energy conversion. However, by using appropriate self-assembly strategies, we anticipate thatmore » molecular modules, which are independently synthesized and optimized for either light-harvesting or redox catalysis, can be organized into spatial arrangements that functionally mimic natural photosynthesis. In this Account, we describe a modular approach to new structural designs for artificial photosynthesis which is largely inspired by photosynthetic RC proteins. We focus on recent work from our lab which uses molecular modules for light-harvesting or proton reduction catalysis in different coordination geometries and different platforms, spanning from discrete supramolecular assemblies to molecule–nanoparticle hybrids to protein-based biohybrids. Molecular modules are particularly amenable to high-resolution characterization of the ground and excited state of each module using a variety of physical techniques; such spectroscopic interrogation helps our understanding of primary artificial photosynthetic mechanisms. In particular, we discuss the use of transient optical spectroscopy, EPR, and X-ray scattering techniques to elucidate dynamic structural behavior and light-induced kinetics and the impact on photocatalytic mechanism. Two different coordination geometries of supramolecular photocatalyst based on the [Ru(bpy)3]2+ (bpy = 2,2'-bipyridine) light-harvesting module with cobaloxime-based catalyst module are compared, with progress in stabilizing photoinduced charge separation identified. These same modules embedded in the small electron transfer protein ferredoxin exhibit much longer charge-separation, enabled by stepwise electron transfer through the native [2Fe-2S] cofactor. We anticipate that the use of interchangeable, molecular modules which can interact in different coordination geometries or within entirely different structural platforms will provide important fundamental insights into the effect of environment on parameters such as electron transfer and charge separation, and ultimately drive more efficient designs for artificial photosynthesis.« less
Jenett, Benjamin; Calisch, Sam; Cellucci, Daniel; Cramer, Nick; Gershenfeld, Neil; Swei, Sean; Cheung, Kenneth C
2017-03-01
We describe an approach for the discrete and reversible assembly of tunable and actively deformable structures using modular building block parts for robotic applications. The primary technical challenge addressed by this work is the use of this method to design and fabricate low density, highly compliant robotic structures with spatially tuned stiffness. This approach offers a number of potential advantages over more conventional methods for constructing compliant robots. The discrete assembly reduces manufacturing complexity, as relatively simple parts can be batch-produced and joined to make complex structures. Global mechanical properties can be tuned based on sub-part ordering and geometry, because local stiffness and density can be independently set to a wide range of values and varied spatially. The structure's intrinsic modularity can significantly simplify analysis and simulation. Simple analytical models for the behavior of each building block type can be calibrated with empirical testing and synthesized into a highly accurate and computationally efficient model of the full compliant system. As a case study, we describe a modular and reversibly assembled wing that performs continuous span-wise twist deformation. It exhibits high performance aerodynamic characteristics, is lightweight and simple to fabricate and repair. The wing is constructed from discrete lattice elements, wherein the geometric and mechanical attributes of the building blocks determine the global mechanical properties of the wing. We describe the mechanical design and structural performance of the digital morphing wing, including their relationship to wind tunnel tests that suggest the ability to increase roll efficiency compared to a conventional rigid aileron system. We focus here on describing the approach to design, modeling, and construction as a generalizable approach for robotics that require very lightweight, tunable, and actively deformable structures.
Digital Morphing Wing: Active Wing Shaping Concept Using Composite Lattice-Based Cellular Structures
Jenett, Benjamin; Calisch, Sam; Cellucci, Daniel; Cramer, Nick; Gershenfeld, Neil; Swei, Sean
2017-01-01
Abstract We describe an approach for the discrete and reversible assembly of tunable and actively deformable structures using modular building block parts for robotic applications. The primary technical challenge addressed by this work is the use of this method to design and fabricate low density, highly compliant robotic structures with spatially tuned stiffness. This approach offers a number of potential advantages over more conventional methods for constructing compliant robots. The discrete assembly reduces manufacturing complexity, as relatively simple parts can be batch-produced and joined to make complex structures. Global mechanical properties can be tuned based on sub-part ordering and geometry, because local stiffness and density can be independently set to a wide range of values and varied spatially. The structure's intrinsic modularity can significantly simplify analysis and simulation. Simple analytical models for the behavior of each building block type can be calibrated with empirical testing and synthesized into a highly accurate and computationally efficient model of the full compliant system. As a case study, we describe a modular and reversibly assembled wing that performs continuous span-wise twist deformation. It exhibits high performance aerodynamic characteristics, is lightweight and simple to fabricate and repair. The wing is constructed from discrete lattice elements, wherein the geometric and mechanical attributes of the building blocks determine the global mechanical properties of the wing. We describe the mechanical design and structural performance of the digital morphing wing, including their relationship to wind tunnel tests that suggest the ability to increase roll efficiency compared to a conventional rigid aileron system. We focus here on describing the approach to design, modeling, and construction as a generalizable approach for robotics that require very lightweight, tunable, and actively deformable structures. PMID:28289574
21 CFR 1020.30 - Diagnostic x-ray systems and their major components.
Code of Federal Regulations, 2012 CFR
2012-04-01
... irradiation. Diagnostic source assembly means the tube housing assembly with a beam-limiting device attached. Diagnostic x-ray system means an x-ray system designed for irradiation of any part of the human body for the... diagnostic source assembly. Fluoroscopic irradiation time means the cumulative duration during an examination...
21 CFR 1020.30 - Diagnostic x-ray systems and their major components.
Code of Federal Regulations, 2013 CFR
2013-04-01
... irradiation. Diagnostic source assembly means the tube housing assembly with a beam-limiting device attached. Diagnostic x-ray system means an x-ray system designed for irradiation of any part of the human body for the... diagnostic source assembly. Fluoroscopic irradiation time means the cumulative duration during an examination...
21 CFR 1020.30 - Diagnostic x-ray systems and their major components.
Code of Federal Regulations, 2014 CFR
2014-04-01
... irradiation. Diagnostic source assembly means the tube housing assembly with a beam-limiting device attached. Diagnostic x-ray system means an x-ray system designed for irradiation of any part of the human body for the... diagnostic source assembly. Fluoroscopic irradiation time means the cumulative duration during an examination...
Implications of multiplane-multispeed balancing for future turbine engine design and cost
NASA Technical Reports Server (NTRS)
Badgley, R. H.
1974-01-01
This paper describes several alternative approaches, provided by multiplane-multispeed balancing, to traditional gas turbine engine manufacture and assembly procedures. These alternatives, which range from addition of trim-balancing at the end of the traditional assembly process to modular design of the rotating system for assembly and balancing external to the engine, require attention by the engine designer as an integral part of the design process. Since multiplane-multispeed balancing may be incorporated at one or more of several points during manufacture-assembly, its deliberate use is expected to provide significant cost and performance (reduced vibration) benefits. Moreover, its availability provides the designer with a firm base from which he may advance, with reasonable assurance of success, into the flexible rotor dynamic regime.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mauro, N.A.; Kelton, K.F.
2011-10-27
High-energy x-ray diffraction studies of metallic liquids provide valuable information about structural evolution on the atomic length scale, leading to insights into the origin of the nucleation barrier and the processes of supercooling and glass formation. The containerless processing of the beamline electrostatic levitation (BESL) facility allows coordinated thermophysical and structural studies of equilibrium and supercooled liquids to be made in a contamination-free, high-vacuum ({approx}10{sup -8} Torr) environment. To date, the incorporation of electrostatic levitation facilities into synchrotron beamlines has been difficult due to the large footprint of the apparatus and the difficulties associated with its transportation and implementation. Here,more » we describe a modular levitation facility that is optimized for diffraction studies of high-temperature liquids at high-energy synchrotron beamlines. The modular approach used in the apparatus design allows it to be easily transported and quickly setup. Unlike most previous electrostatic levitation facilities, BESL can be operated by a single user instead of a user team.« less
Structural architecture of prothrombin in solution revealed by single molecule spectroscopy
Pozzi, Nicola; Bystranowska, Dominika; Zuo, Xiaobing; ...
2016-07-19
The coagulation factor prothrombin has a complex spatial organization of its modular assembly that comprises the N-terminal Gla domain, kringle-1, kringle-2, and the C-terminal protease domain connected by three intervening linkers. Here we use single molecule Förster resonance energy transfer to access the conformational landscape of prothrombin in solution and uncover structural features of functional significance that extend recent x-ray crystallographic analysis. Prothrombin exists in equilibrium between two alternative conformations, open and closed. The closed conformation predominates (70%) and features an unanticipated intramolecular collapse of Tyr 93 in kringle-1 onto Trp 547 in the protease domain that obliterates access tomore » the active site and protects the zymogen from autoproteolytic conversion to thrombin. The open conformation (30%) is more susceptible to chymotrypsin digestion and autoactivation, and features a shape consistent with recent x-ray crystal structures. Small angle x-ray scattering measurements of prothrombin wild type stabilized 70% in the closed conformation and of the mutant Y93A stabilized 80% in the open conformation directly document two envelopes that differ 50 Å in length. These findings reveal important new details on the conformational plasticity of prothrombin in solution and the drastic structural difference between its alternative conformations. Prothrombin uses the intramolecular collapse of kringle-1 onto the active site in the closed form to prevent autoactivation. As a result, the open-closed equilibrium also defines a new structural framework for the mechanism of activation of prothrombin by prothrombinase.« less
In-Space Structural Assembly: Applications and Technology
NASA Technical Reports Server (NTRS)
Belvin, W. Keith; Doggett, Bill R.; Watson, Judith J.; Dorsey, John T.; Warren, Jay; Jones, Thomas C.; Komendera, Erik E.; Mann, Troy O.; Bowman, Lynn
2016-01-01
As NASA exploration moves beyond earth's orbit, the need exists for long duration space systems that are resilient to events that compromise safety and performance. Fortunately, technology advances in autonomy, robotic manipulators, and modular plug-and-play architectures over the past two decades have made in-space vehicle assembly and servicing possible at acceptable cost and risk. This study evaluates future space systems needed to support scientific observatories and human/robotic Mars exploration to assess key structural design considerations. The impact of in-space assembly is discussed to identify gaps in structural technology and opportunities for new vehicle designs to support NASA's future long duration missions.
Support for solar energy collectors
Cole, Corey; Ardell-Smith, Zachary; Ciasulli, John; Jensen, Soren
2016-11-01
A solar energy collection system can include support devices configured to accommodate misalignment of components during assembly. For example, the system can include piles fixed to the earth and an adjustable bearing assembly at the upper end of the pile. The adjustable bearing assembly can include at least one of a vertical adjustment device, a lateral adjustment device and an angular adjustment device. The solar energy collection system can also include a plurality of solar energy collection device pre-wired together and mounted to a support member so as to form modular units. The system can also include enhanced supports for wire trays extending between rows of solar energy collection devices.
Modular fuel-cell stack assembly
Patel, Pinakin
2010-07-13
A fuel cell assembly having a plurality of fuel cells arranged in a stack. An end plate assembly abuts the fuel cell at an end of said stack. The end plate assembly has an inlet area adapted to receive an exhaust gas from the stack, an outlet area and a passage connecting the inlet area and outlet area and adapted to carry the exhaust gas received at the inlet area from the inlet area to the outlet area. A further end plate assembly abuts the fuel cell at a further opposing end of the stack. The further end plate assembly has a further inlet area adapted to receive a further exhaust gas from the stack, a further outlet area and a further passage connecting the further inlet area and further outlet area and adapted to carry the further exhaust gas received at the further inlet area from the further inlet area to the further outlet area.
Single Day Construction of Multigene Circuits with 3G Assembly.
Halleran, Andrew D; Swaminathan, Anandh; Murray, Richard M
2018-05-18
The ability to rapidly design, build, and test prototypes is of key importance to every engineering discipline. DNA assembly often serves as a rate limiting step of the prototyping cycle for synthetic biology. Recently developed DNA assembly methods such as isothermal assembly and type IIS restriction enzyme systems take different approaches to accelerate DNA construction. We introduce a hybrid method, Golden Gate-Gibson (3G), that takes advantage of modular part libraries introduced by type IIS restriction enzyme systems and isothermal assembly's ability to build large DNA constructs in single pot reactions. Our method is highly efficient and rapid, facilitating construction of entire multigene circuits in a single day. Additionally, 3G allows generation of variant libraries enabling efficient screening of different possible circuit constructions. We characterize the efficiency and accuracy of 3G assembly for various construct sizes, and demonstrate 3G by characterizing variants of an inducible cell-lysis circuit.
Rational and Modular Design of Potent Ligands Targeting the RNA that Causes Myotonic Dystrophy 2
Lee, Melissa M.; Pushechnikov, Alexei; Disney, Matthew D.
2009-01-01
Most ligands targeting RNA are identified through screening a therapeutic target for binding members of a ligand library. A potential alternative way to construct RNA binders is through rational design using information about the RNA motifs ligands prefer to bind. Herein, we describe such an approach to design modularly assembled ligands targeting the RNA that causes myotonic dystrophy type 2 (DM2), a currently untreatable disease. A previous study identified that 6′-N-5-hexynoate kanamycin A (1) prefers to bind 2×2 nucleotide, pyrimidine-rich RNA internal loops. Multiple copies of such loops were found in the RNA hairpin that causes DM2. The 1 ligand was then modularly displayed on a peptoid scaffold with varied number and spacing to target several internal loops simultaneously. Modularly assembled ligands were tested for binding to a series of RNAs and for inhibiting the formation of the toxic DM2 RNA-muscleblind protein (MBNL-1) interaction. The most potent ligand displays three 1 modules, each separated by four spacing submonomers, and inhibits the formation of the RNA-protein complex with an IC50 of 25 nM. This ligand is higher affinity and more specific for binding DM2 RNA than MBNL-1. It binds the DM2 RNA at least 20-times more tightly than related RNAs and 15-fold more tightly than MBNL-1. A related control peptoid displaying 6′-N-5-hexynoate neamine (2) is >100-fold less potent at inhibiting the RNA-protein interaction and binds to DM2 RNA >125-fold more weakly. Uptake studies into a mouse myoblast cell line also show that the most potent ligand is cell permeable. PMID:19348464
Geometric correction methods for Timepix based large area detectors
NASA Astrophysics Data System (ADS)
Zemlicka, J.; Dudak, J.; Karch, J.; Krejci, F.
2017-01-01
X-ray micro radiography with the hybrid pixel detectors provides versatile tool for the object inspection in various fields of science. It has proven itself especially suitable for the samples with low intrinsic attenuation contrast (e.g. soft tissue in biology, plastics in material sciences, thin paint layers in cultural heritage, etc.). The limited size of single Medipix type detector (1.96 cm2) was recently overcome by the construction of large area detectors WidePIX assembled of Timepix chips equipped with edgeless silicon sensors. The largest already built device consists of 100 chips and provides fully sensitive area of 14.3 × 14.3 cm2 without any physical gaps between sensors. The pixel resolution of this device is 2560 × 2560 pixels (6.5 Mpix). The unique modular detector layout requires special processing of acquired data to avoid occurring image distortions. It is necessary to use several geometric compensations after standard corrections methods typical for this type of pixel detectors (i.e. flat-field, beam hardening correction). The proposed geometric compensations cover both concept features and particular detector assembly misalignment of individual chip rows of large area detectors based on Timepix assemblies. The former deals with larger border pixels in individual edgeless sensors and their behaviour while the latter grapple with shifts, tilts and steps between detector rows. The real position of all pixels is defined in Cartesian coordinate system and together with non-binary reliability mask it is used for the final image interpolation. The results of geometric corrections for test wire phantoms and paleo botanic material are presented in this article.
Modular Assembly of the Bacterial Large Ribosomal Subunit.
Davis, Joseph H; Tan, Yong Zi; Carragher, Bridget; Potter, Clinton S; Lyumkis, Dmitry; Williamson, James R
2016-12-01
The ribosome is a complex macromolecular machine and serves as an ideal system for understanding biological macromolecular assembly. Direct observation of ribosome assembly in vivo is difficult, as few intermediates have been isolated and thoroughly characterized. Herein, we deploy a genetic system to starve cells of an essential ribosomal protein, which results in the accumulation of assembly intermediates that are competent for maturation. Quantitative mass spectrometry and single-particle cryo-electron microscopy reveal 13 distinct intermediates, which were each resolved to ∼4-5 Å resolution and could be placed in an assembly pathway. We find that ribosome biogenesis is a parallel process, that blocks of structured rRNA and proteins assemble cooperatively, and that the entire process is dynamic and can be "re-routed" through different pathways as needed. This work reveals the complex landscape of ribosome assembly in vivo and provides the requisite tools to characterize additional assembly pathways for ribosomes and other macromolecular machines. Copyright © 2016 Elsevier Inc. All rights reserved.
Modular Assembly of the Bacterial Large Ribosomal Subunit
Davis, Joseph H.; Tan, Yong Zi; Carragher, Bridget; Potter, Clinton S.; Lyumkis, Dmitry; Williamson, James R.
2016-01-01
SUMMARY The ribosome is a complex macromolecular machine and serves as an ideal system for understanding biological macromolecular assembly. Direct observation of ribosome assembly in vivo is difficult, as few intermediates have been isolated and thoroughly characterized. Herein, we deploy a genetic system to starve cells of an essential ribosomal protein, which results in the accumulation of assembly intermediates that are competent for maturation. Quantitative mass spectrometry and single-particle cryo-electron microscopy reveal 13 distinct intermediates, which were each resolved to ~4–5Å resolution and could be placed in an assembly pathway. We find that ribosome biogenesis is a parallel process, that blocks of structured rRNA and proteins assemble cooperatively, and that the entire process is dynamic and can be ‘re-routed’ through different pathways as needed. This work reveals the complex landscape of ribosome assembly in vivo and provides the requisite tools to characterize additional assembly pathways for ribosomes and other macromolecular machines. PMID:27912064
The precision measurement and assembly for miniature parts based on double machine vision systems
NASA Astrophysics Data System (ADS)
Wang, X. D.; Zhang, L. F.; Xin, M. Z.; Qu, Y. Q.; Luo, Y.; Ma, T. M.; Chen, L.
2015-02-01
In the process of miniature parts' assembly, the structural features on the bottom or side of the parts often need to be aligned and positioned. The general assembly equipment integrated with one vertical downward machine vision system cannot satisfy the requirement. A precision automatic assembly equipment was developed with double machine vision systems integrated. In the system, a horizontal vision system is employed to measure the position of the feature structure at the parts' side view, which cannot be seen with the vertical one. The position measured by horizontal camera is converted to the vertical vision system with the calibration information. By careful calibration, the parts' alignment and positioning in the assembly process can be guaranteed. The developed assembly equipment has the characteristics of easy implementation, modularization and high cost performance. The handling of the miniature parts and assembly procedure were briefly introduced. The calibration procedure was given and the assembly error was analyzed for compensation.
NASA Technical Reports Server (NTRS)
Rasche, R. W.
1979-01-01
General background and overview material are presented along with data from studies performed to determine the sensitivity, feasibility, and required performance of systems for a total X-ray telescope assembly. Topics covered include: optical design, mirror support concepts, mirror weight estimates, the effects of l g on mirror elements, mirror assembly resonant frequencies, optical bench considerations, temperature control of the mirror assembly, and the aspect determination system.
Modular radiochemistry synthesis system
Satyamurthy, Nagichettiar; Barrio, Jorge R.; Amarasekera, Bernard; Van Dam, Michael R.; Olma, Sebastian; Williams, Dirk; Eddings, Mark; Shen, Clifton Kwang-Fu
2016-11-01
A modular chemical production system includes multiple modules for performing a chemical reaction, particularly of radiochemical compounds, from a remote location. One embodiment comprises a reaction vessel including a moveable heat source with the position thereof relative to the reaction vessel being controllable from a remote position. Alternatively the heat source may be fixed in location and the reaction vial is moveable into and out of the heat source. The reaction vessel has one or more sealing plugs, the positioning of which in relationship to the reaction vessel is controllable from a remote position. Also the one or more reaction vessel sealing plugs can include one or more conduits there through for delivery of reactants, gases at atmospheric or an elevated pressure, inert gases, drawing a vacuum and removal of reaction end products to and from the reaction vial, the reaction vial with sealing plug in position being operable at elevated pressures. The modular chemical production system is assembled from modules which can each include operating condition sensors and controllers configured for monitoring and controlling the individual modules and the assembled system from a remote position. Other modules include, but are not limited to a Reagent Storage and Delivery Module, a Cartridge Purification Module, a Microwave Reaction Module, an External QC/Analysis/Purification Interface Module, an Aliquotting Module, an F-18 Drying Module, a Concentration Module, a Radiation Counting Module, and a Capillary Reactor Module.
A modular platform for targeted RNAi therapeutics.
Kedmi, Ranit; Veiga, Nuphar; Ramishetti, Srinivas; Goldsmith, Meir; Rosenblum, Daniel; Dammes, Niels; Hazan-Halevy, Inbal; Nahary, Limor; Leviatan-Ben-Arye, Shani; Harlev, Michael; Behlke, Mark; Benhar, Itai; Lieberman, Judy; Peer, Dan
2018-03-01
Previous studies have identified relevant genes and signalling pathways that are hampered in human disorders as potential candidates for therapeutics. Developing nucleic acid-based tools to manipulate gene expression, such as short interfering RNAs 1-3 (siRNAs), opens up opportunities for personalized medicine. Yet, although major progress has been made in developing siRNA targeted delivery carriers, mainly by utilizing monoclonal antibodies (mAbs) for targeting 4-8 , their clinical translation has not occurred. This is in part because of the massive development and production requirements and the high batch-to-batch variability of current technologies, which rely on chemical conjugation. Here we present a self-assembled modular platform that enables the construction of a theoretically unlimited repertoire of siRNA targeted carriers. The self-assembly of the platform is based on a membrane-anchored lipoprotein that is incorporated into siRNA-loaded lipid nanoparticles that interact with the antibody crystallizable fragment (Fc) domain. We show that a simple switch of eight different mAbs redirects the specific uptake of siRNAs by diverse leukocyte subsets in vivo. The therapeutic potential of the platform is demonstrated in an inflammatory bowel disease model by targeting colon macrophages to reduce inflammatory symptoms, and in a Mantle Cell Lymphoma xenograft model by targeting cancer cells to induce cell death and improve survival. This modular delivery platform represents a milestone in the development of precision medicine.
Modular radiochemistry synthesis system
Satyamurthy, Nagichettiar; Barrio, Jorge R.; Amarasekera, Bernard; Van Dam, R. Michael; Olma, Sebastian; Williams, Dirk; Eddings, Mark; Shen, Clifton Kwang-Fu
2015-12-15
A modular chemical production system includes multiple modules for performing a chemical reaction, particularly of radiochemical compounds, from a remote location. One embodiment comprises a reaction vessel including a moveable heat source with the position thereof relative to the reaction vessel being controllable from a remote position. Alternatively the heat source may be fixed in location and the reaction vial is moveable into and out of the heat source. The reaction vessel has one or more sealing plugs, the positioning of which in relationship to the reaction vessel is controllable from a remote position. Also the one or more reaction vessel sealing plugs can include one or more conduits there through for delivery of reactants, gases at atmospheric or an elevated pressure, inert gases, drawing a vacuum and removal of reaction end products to and from the reaction vial, the reaction vial with sealing plug in position being operable at elevated pressures. The modular chemical production system is assembled from modules which can each include operating condition sensors and controllers configured for monitoring and controlling the individual modules and the assembled system from a remote position. Other modules include, but are not limited to a Reagent Storage and Delivery Module, a Cartridge Purification Module, a Microwave Reaction Module, an External QC/Analysis/Purification Interface Module, an Aliquotting Module, an F-18 Drying Module, a Concentration Module, a Radiation Counting Module, and a Capillary Reactor Module.
Modular radiochemistry synthesis system
Satyamurthy, Nagichettiar; Barrio, Jorge R; Amarasekera, Bernard; Van Dam, R. Michael; Olma, Sebastian; Williams, Dirk; Eddings, Mark A; Shen, Clifton Kwang-Fu
2015-02-10
A modular chemical production system includes multiple modules for performing a chemical reaction, particularly of radiochemical compounds, from a remote location. One embodiment comprises a reaction vessel including a moveable heat source with the position thereof relative to the reaction vessel being controllable from a remote position. Alternatively the heat source may be fixed in location and the reaction vial is moveable into and out of the heat source. The reaction vessel has one or more sealing plugs, the positioning of which in relationship to the reaction vessel is controllable from a remote position. Also the one or more reaction vessel sealing plugs can include one or more conduits there through for delivery of reactants, gases at atmospheric or an elevated pressure, inert gases, drawing a vacuum and removal of reaction end products to and from the reaction vial, the reaction vial with sealing plug in position being operable at elevated pressures. The modular chemical production system is assembled from modules which can each include operating condition sensors and controllers configured for monitoring and controlling the individual modules and the assembled system from a remote position. Other modules include, but are not limited to a Reagent Storage and Delivery Module, a Cartridge Purification Module, a Microwave Reaction Module, an External QC/Analysis/Purification Interface Module, an Aliquotting Module, an F-18 Drying Module, a Concentration Module, a Radiation Counting Module, and a Capillary Reactor Module.
A modular platform for targeted RNAi therapeutics
NASA Astrophysics Data System (ADS)
Kedmi, Ranit; Veiga, Nuphar; Ramishetti, Srinivas; Goldsmith, Meir; Rosenblum, Daniel; Dammes, Niels; Hazan-Halevy, Inbal; Nahary, Limor; Leviatan-Ben-Arye, Shani; Harlev, Michael; Behlke, Mark; Benhar, Itai; Lieberman, Judy; Peer, Dan
2018-01-01
Previous studies have identified relevant genes and signalling pathways that are hampered in human disorders as potential candidates for therapeutics. Developing nucleic acid-based tools to manipulate gene expression, such as short interfering RNAs1-3 (siRNAs), opens up opportunities for personalized medicine. Yet, although major progress has been made in developing siRNA targeted delivery carriers, mainly by utilizing monoclonal antibodies (mAbs) for targeting4-8, their clinical translation has not occurred. This is in part because of the massive development and production requirements and the high batch-to-batch variability of current technologies, which rely on chemical conjugation. Here we present a self-assembled modular platform that enables the construction of a theoretically unlimited repertoire of siRNA targeted carriers. The self-assembly of the platform is based on a membrane-anchored lipoprotein that is incorporated into siRNA-loaded lipid nanoparticles that interact with the antibody crystallizable fragment (Fc) domain. We show that a simple switch of eight different mAbs redirects the specific uptake of siRNAs by diverse leukocyte subsets in vivo. The therapeutic potential of the platform is demonstrated in an inflammatory bowel disease model by targeting colon macrophages to reduce inflammatory symptoms, and in a Mantle Cell Lymphoma xenograft model by targeting cancer cells to induce cell death and improve survival. This modular delivery platform represents a milestone in the development of precision medicine.
Carangelo, R.M.; Dettori, M.D.; Grigely, L.J.; Murray, T.C.; Solomon, P.R.; Dine, C.P. Van; Wright, D.D.
1996-01-23
A multiplicity of one-piece flexure plates are assembled in pairs to provide a support system on which a retroreflector may be mounted for reciprocal motion. Combined with balance bodies, the flexure plates provide a support system having portions that are dynamically and statically balanced with one another, irrespective of orientation, so as to thereby immunize the unit against extraneous forces. The motion transfer assembly is especially adapted for use to support a moving retroreflector in a two-arm interferometer that may further include a beamsplitter assembly constructed from a one-piece, integrally formed body, the body having convergent, optically flat planar surfaces of specular reflectance, and means for adjustably mounting a beamsplitter therein. The spectrometer is of modular construction, and employs an integrated clocking sub-assembly as well as a light-weight voice-coil motor. 15 figs.
Carangelo, Robert M.; Dettori, Mark D.; Grigely, Lawrence J.; Murray, Terence C.; Solomon, Peter R.; Van Dine, C. Peter; Wright, David D.
1996-01-01
A multiplicity of one-piece flexure plates are assembled in pairs to provide a support system on which a retroreflector may be mounted for reciprocal motion. Combined with balance bodies, the flexure plates provide a support system having portions that are dynamically and statically balanced with one another, irrespective of orientation, so as to thereby immunize the unit against extraneous forces. The motion transfer assembly is especially adapted for use to support a moving retroreflector in a two-arm interferometer that may further include a beamsplitter assembly constructed from a one-piece, integrally formed body, the body having convergent, optically flat planar surfaces of specular reflectance, and means for adjustably mounting a beamsplitter therein. The spectrometer is of modular construction, and employs an integrated clocking sub-assembly as well as a light-weight voice-coil motor.
Heterogeneously Assembled Metamaterials and Metadevices via 3D Modular Transfer Printing
NASA Astrophysics Data System (ADS)
Lee, Seungwoo; Kang, Byungsoo; Keum, Hohyun; Ahmed, Numair; Rogers, John A.; Ferreira, Placid M.; Kim, Seok; Min, Bumki
2016-06-01
Metamaterials have made the exotic control of the flow of electromagnetic waves possible, which is difficult to achieve with natural materials. In recent years, the emergence of functional metadevices has shown immense potential for the practical realization of highly efficient photonic devices. However, complex and heterogeneous architectures that enable diverse functionalities of metamaterials and metadevices have been challenging to realize because of the limited manufacturing capabilities of conventional fabrication methods. Here, we show that three-dimensional (3D) modular transfer printing can be used to construct diverse metamaterials in complex 3D architectures on universal substrates, which is attractive for achieving on-demand photonic properties. Few repetitive processing steps and rapid constructions are additional advantages of 3D modular transfer printing. Thus, this method provides a fascinating route to generate flexible and stretchable 2D/3D metamaterials and metadevices with heterogeneous material components, complex device architectures, and diverse functionalities.
Heterogeneously Assembled Metamaterials and Metadevices via 3D Modular Transfer Printing.
Lee, Seungwoo; Kang, Byungsoo; Keum, Hohyun; Ahmed, Numair; Rogers, John A; Ferreira, Placid M; Kim, Seok; Min, Bumki
2016-06-10
Metamaterials have made the exotic control of the flow of electromagnetic waves possible, which is difficult to achieve with natural materials. In recent years, the emergence of functional metadevices has shown immense potential for the practical realization of highly efficient photonic devices. However, complex and heterogeneous architectures that enable diverse functionalities of metamaterials and metadevices have been challenging to realize because of the limited manufacturing capabilities of conventional fabrication methods. Here, we show that three-dimensional (3D) modular transfer printing can be used to construct diverse metamaterials in complex 3D architectures on universal substrates, which is attractive for achieving on-demand photonic properties. Few repetitive processing steps and rapid constructions are additional advantages of 3D modular transfer printing. Thus, this method provides a fascinating route to generate flexible and stretchable 2D/3D metamaterials and metadevices with heterogeneous material components, complex device architectures, and diverse functionalities.
SMEX-Lite Modular Solar Array Architecture
NASA Technical Reports Server (NTRS)
Lyons, John W.; Day, John (Technical Monitor)
2002-01-01
The NASA Small Explorer (SMEX) missions have typically had three years between mission definition and launch. This short schedule has posed significant challenges with respect to solar array design and procurement. Typically, the solar panel geometry is frozen prior to going out with a procurement. However, with the SMEX schedule, it has been virtually impossible to freeze the geometry in time to avoid scheduling problems with integrating the solar panels to the spacecraft. A modular solar array architecture was developed to alleviate this problem. This approach involves procuring sufficient modules for multiple missions and assembling the modules onto a solar array framework that is unique to each mission. The modular approach removes the solar array from the critical path of the SMEX integration and testing schedule. It also reduces the cost per unit area of the solar arrays and facilitates the inclusion of experiments involving new solar cell or panel technologies in the SMEX missions.
Heterogeneously Assembled Metamaterials and Metadevices via 3D Modular Transfer Printing
Lee, Seungwoo; Kang, Byungsoo; Keum, Hohyun; Ahmed, Numair; Rogers, John A.; Ferreira, Placid M.; Kim, Seok; Min, Bumki
2016-01-01
Metamaterials have made the exotic control of the flow of electromagnetic waves possible, which is difficult to achieve with natural materials. In recent years, the emergence of functional metadevices has shown immense potential for the practical realization of highly efficient photonic devices. However, complex and heterogeneous architectures that enable diverse functionalities of metamaterials and metadevices have been challenging to realize because of the limited manufacturing capabilities of conventional fabrication methods. Here, we show that three-dimensional (3D) modular transfer printing can be used to construct diverse metamaterials in complex 3D architectures on universal substrates, which is attractive for achieving on-demand photonic properties. Few repetitive processing steps and rapid constructions are additional advantages of 3D modular transfer printing. Thus, this method provides a fascinating route to generate flexible and stretchable 2D/3D metamaterials and metadevices with heterogeneous material components, complex device architectures, and diverse functionalities. PMID:27283594
Neutronics Analysis of SMART Small Modular Reactor using SRAC 2006 Code
NASA Astrophysics Data System (ADS)
Ramdhani, Rahmi N.; Prastyo, Puguh A.; Waris, Abdul; Widayani; Kurniadi, Rizal
2017-07-01
Small modular reactors (SMRs) are part of a new generation of nuclear reactor being developed worldwide. One of the advantages of SMR is the flexibility to adopt the advanced design concepts and technology. SMART (System integrated Modular Advanced ReacTor) is a small sized integral type PWR with a thermal power of 330 MW that has been developed by KAERI (Korea Atomic Energy Research Institute). SMART core consists of 57 fuel assemblies which are based on the well proven 17×17 array that has been used in Korean commercial PWRs. SMART is soluble boron free, and the high initial reactivity is mainly controlled by burnable absorbers. The goal of this study is to perform neutronics evaluation of SMART core with UO2 as main fuel. Neutronics calculation was performed by using PIJ and CITATION modules of SRAC 2006 code with JENDL 3.3 as nuclear data library.
Quantification of the Contact Area at the Head-Stem Taper Interface of Modular Hip Prostheses.
Witt, Florian; Gührs, Julian; Morlock, Michael M; Bishop, Nicholas E
2015-01-01
Corrosion of modular taper junctions of hip implants may be associated with clinical failure. Taper design parameters, as well as the intraoperatively applied assembly forces, have been proposed to affect corrosion. Fretting corrosion is related to relative interface shear motion and fluid ingress, which may vary with contact force and area. It was hypothesised in this study that assembly forces modify the extent and distribution of the surface contact area at the taper interface between a cobalt chrome head and titanium stem taper with a standard threaded surface profile. Local abrasion of a thin gold coating applied to the stem taper prior to assembly was used to determine the contact area after disassembly. Profilometry was then used to assess permanent deformation of the stem taper surface profile. With increasing assembly force (500 N, 2000 N, 4000 N and 8000 N) the number of stem taper surface profile ridges in contact with the head taper was found to increase (9.2±9.3%, 65.4±10.8%, 92.8±6.0% and 100%) and the overall taper area in contact was also found to increase (0.6±0.7%, 5.5±1.0%, 9.9±1.1% and 16.1±0.9%). Contact was inconsistently distributed over the length of the taper. An increase in plastic radial deformation of the surface ridges (-0.05±0.14 μm, 0.1±0.14 μm, 0.21±0.22 μm and 0.96±0.25 μm) was also observed with increasing assembly force. The limited contact of the taper surface ridges at lower assembly forces may influence corrosion rates, suggesting that the magnitude of the assembly force may affect clinical outcome. The method presented provides a simple and practical assessment of the contact area at the taper interface.
Quantification of the Contact Area at the Head-Stem Taper Interface of Modular Hip Prostheses
Witt, Florian; Gührs, Julian; Morlock, Michael M.; Bishop, Nicholas E.
2015-01-01
Corrosion of modular taper junctions of hip implants may be associated with clinical failure. Taper design parameters, as well as the intraoperatively applied assembly forces, have been proposed to affect corrosion. Fretting corrosion is related to relative interface shear motion and fluid ingress, which may vary with contact force and area. It was hypothesised in this study that assembly forces modify the extent and distribution of the surface contact area at the taper interface between a cobalt chrome head and titanium stem taper with a standard threaded surface profile. Local abrasion of a thin gold coating applied to the stem taper prior to assembly was used to determine the contact area after disassembly. Profilometry was then used to assess permanent deformation of the stem taper surface profile. With increasing assembly force (500 N, 2000 N, 4000 N and 8000 N) the number of stem taper surface profile ridges in contact with the head taper was found to increase (9.2±9.3%, 65.4±10.8%, 92.8±6.0% and 100%) and the overall taper area in contact was also found to increase (0.6±0.7%, 5.5±1.0%, 9.9±1.1% and 16.1±0.9%). Contact was inconsistently distributed over the length of the taper. An increase in plastic radial deformation of the surface ridges (-0.05±0.14 μm, 0.1±0.14 μm, 0.21±0.22 μm and 0.96±0.25 μm) was also observed with increasing assembly force. The limited contact of the taper surface ridges at lower assembly forces may influence corrosion rates, suggesting that the magnitude of the assembly force may affect clinical outcome. The method presented provides a simple and practical assessment of the contact area at the taper interface. PMID:26280914
Ray Meta: scalable de novo metagenome assembly and profiling
2012-01-01
Voluminous parallel sequencing datasets, especially metagenomic experiments, require distributed computing for de novo assembly and taxonomic profiling. Ray Meta is a massively distributed metagenome assembler that is coupled with Ray Communities, which profiles microbiomes based on uniquely-colored k-mers. It can accurately assemble and profile a three billion read metagenomic experiment representing 1,000 bacterial genomes of uneven proportions in 15 hours with 1,024 processor cores, using only 1.5 GB per core. The software will facilitate the processing of large and complex datasets, and will help in generating biological insights for specific environments. Ray Meta is open source and available at http://denovoassembler.sf.net. PMID:23259615
Safety concerns related to modular/prefabricated building construction.
Fard, Maryam Mirhadi; Terouhid, Seyyed Amin; Kibert, Charles J; Hakim, Hamed
2017-03-01
The US construction industry annually experiences a relatively high rate of fatalities and injuries; therefore, improving safety practices should be considered a top priority for this industry. Modular/prefabricated building construction is a construction strategy that involves manufacturing of the whole building or some of its components off-site. This research focuses on the safety performance of the modular/prefabricated building construction sector during both manufacturing and on-site processes. This safety evaluation can serve as the starting point for improving the safety performance of this sector. Research was conducted based on Occupational Safety and Health Administration investigated accidents. The study found 125 accidents related to modular/prefabricated building construction. The details of each accident were closely examined to identify the types of injury and underlying causes. Out of 125 accidents, there were 48 fatalities (38.4%), 63 hospitalized injuries (50.4%), and 14 non-hospitalized injuries (11.2%). It was found that, the most common type of injury in modular/prefabricated construction was 'fracture', and the most common cause of accidents was 'fall'. The most frequent cause of cause (underlying and root cause) was 'unstable structure'. In this research, the accidents were also examined in terms of corresponding location, occupation, equipment as well as activities during which the accidents occurred. For improving safety records of the modular/prefabricated construction sector, this study recommends that future research be conducted on stabilizing structures during their lifting, storing, and permanent installation, securing fall protection systems during on-site assembly of components while working from heights, and developing training programmes and standards focused on modular/prefabricated construction.
TIGRESS: TRIUMF-ISAC gamma-ray escape-suppressed spectrometer
NASA Astrophysics Data System (ADS)
Svensson, C. E.; Amaudruz, P.; Andreoiu, C.; Andreyev, A.; Austin, R. A. E.; Ball, G. C.; Bandyopadhyay, D.; Boston, A. J.; Chakrawarthy, R. S.; Chen, A. A.; Churchman, R.; Drake, T. E.; Finlay, P.; Garrett, P. E.; Grinyer, G. F.; Hackman, G.; Hyland, B.; Jones, B.; Kanungo, R.; Maharaj, R.; Martin, J. P.; Morris, D.; Morton, A. C.; Pearson, C. J.; Phillips, A. A.; Ressler, J. J.; Roy, R.; Sarazin, F.; Schumaker, M. A.; Scraggs, H. C.; Smith, M. B.; Starinsky, N.; Valiente-Dobón, J. J.; Waddington, J. C.; Watters, L. M.
2005-10-01
The TRIUMF-ISAC gamma-ray escape-suppressed spectrometer (TIGRESS) is a new γ-ray detector array being developed for use at TRIUMF's Isotope Separator and Accelerator (ISAC) radioactive ion beam facility. TIGRESS will comprise 12 32-fold segmented clover-type HPGe detectors coupled with 20-fold segmented modular Compton suppression shields and custom digital signal processing electronics. This paper provides an overview of the TIGRESS project and progress in its development to date.
NASA Astrophysics Data System (ADS)
Wang, Xiaodong; Zhang, Wei; Luo, Yi; Yang, Weimin; Chen, Liang
2013-01-01
In assembly of miniature devices, the position and orientation of the parts to be assembled should be guaranteed during or after assembly. In some cases, the relative position or orientation errors among the parts can not be measured from only one direction using visual method, because of visual occlusion or for the features of parts located in a three-dimensional way. An automatic assembly system for precise miniature devices is introduced. In the modular assembly system, two machine vision systems were employed for measurement of the three-dimensionally distributed assembly errors. High resolution CCD cameras and high position repeatability precision stages were integrated to realize high precision measurement in large work space. The two cameras worked in collaboration in measurement procedure to eliminate the influence of movement errors of the rotational or translational stages. A set of templates were designed for calibration of the vision systems and evaluation of the system's measurement accuracy.
Solaris: Orbital station: Automatic laboratory for outer space rendezvous and operations
NASA Technical Reports Server (NTRS)
Runavot, J. J.
1981-01-01
The preliminary design for a modular orbital space station (unmanned) is outlined. The three main components are a support module, an experiment module, and an orbital transport vehicle. The major types of missions (assembly, materials processing, and Earth observation) that could be performed are discussed.
Dual-energy X-ray micro-CT imaging of hybrid Ni/Al open-cell foam
NASA Astrophysics Data System (ADS)
Fíla, T.; Kumpová, I.; Koudelka, P.; Zlámal, P.; Vavřík, D.; Jiroušek, O.; Jung, A.
2016-01-01
In this paper, we employ dual-energy X-ray microfocus tomography (DECT) measurement to develop high-resolution finite element (FE) models that can be used for the numerical assessment of the deformation behaviour of hybrid Ni/Al foam subjected to both quasi-static and dynamic compressive loading. Cubic samples of hybrid Ni/Al open-cell foam with an edge length of [15]mm were investigated by the DECT measurement. The material was prepared using AlSi7Mg0.3 aluminium foam with a mean pore size of [0.85]mm, coated with nanocrystalline nickel (crystallite size of approx. [50]nm) to form a surface layer with a theoretical thickness of [0.075]mm. CT imaging was carried out using state-of-the-art DSCT/DECT X-ray scanner developed at Centre of Excellence Telč. The device consists of a modular orthogonal assembly of two tube-detector imaging pairs, with an independent geometry setting and shared rotational stage mounted on a complex 16-axis CNC positioning system to enable unprecedented measurement variability for highly-detailed tomographical measurements. A sample of the metal foam was simultaneously irradiated using an XWT-240-SE reflection type X-ray tube and an XWT-160-TCHR transmission type X-ray tube. An enhanced dual-source sampling strategy was used for data acquisition. X-ray images were taken using XRD1622 large area GOS scintillator flat panel detectors with an active area of [410 × 410]mm and resolution [2048 × 2048]pixels. Tomographic scanning was performed in 1,200 projections with a 0.3 degree angular step to improve the accuracy of the generated models due to the very complex microstructure and high attenuation of the investigated material. Reconstructed data was processed using a dual-energy algorithm, and was used for the development of a 3D model and voxel model of the foam. The selected parameters of the models were compared with nominal parameters of the actual foam and showed good correlation.
NASA Astrophysics Data System (ADS)
Alexander, G. H.; Cooper, D. L.; Cummings, C. A.; Reiber, E. E.
1981-10-01
Low cost energy storage assemblies were developed. In the search for low overall cost assemblies, many diverse concepts and materials were postulated and briefly evaluated. Cost rankings, descriptions, and discussions of the concepts were presented from which ORNL selected the following three concepts for the Phase 2 development: (1) a site constructed tank with reinforced concrete walls formed with specialized modular blocks which eliminates most concrete form work and provides integral R-20 insulation designated ORNLFF; (2) a site constructed tank with earth supported walls that are formed from elements common to residential, in-ground swimming pools, designated SWPL; (3) and a site assembled tank used in underground utility vaults, designated UTLBX. Detailed designs of free standing versions of the three concepts are presented.
Status of the eROSITA Telescope testing and calibrating the x-ray mirror assemblies
NASA Astrophysics Data System (ADS)
Burwitz, Vadim; Predehl, Peter; Bräuninger, Heinrich; Burkert, Wolfgang; Dennerl, Konrad; Eder, Josef; Friedrich, Peter; Fürmetz, Maria; Grisoni, Gabriele; Hartner, Gisela; Marioni, Fabio; Menz, Benedikt; Pfeffermann, Elmar; Valsecchi, Giuseppe
2013-09-01
The eROSITA X-ray observatory that will be launched on board the Russian Spectrum-RG mission comprises seven X-ray telescopes, each with its own mirror assembly (mirror module + X-ray baffle), electron deflector, filter wheel, and CCD camera with its control electronics. The completed flight mirror modules are undergoing many thorough X-ray tests at the PANTHER X-ray test facility after delivery, after being mated with the X-ray baffle, and again after both the vibration and thermal-vacuum tests. A description of the work done with mirror modules/assemblies and the test results obtained will be reported here. We report also on the environmental tests that have been performed on the eROSITA telescope qualification model.
Preliminary design approach for large high precision segmented reflectors
NASA Technical Reports Server (NTRS)
Mikulas, Martin M., Jr.; Collins, Timothy J.; Hedgepeth, John M.
1990-01-01
A simplified preliminary design capability for erectable precision segmented reflectors is presented. This design capability permits a rapid assessment of a wide range of reflector parameters as well as new structural concepts and materials. The preliminary design approach was applied to a range of precision reflectors from 10 meters to 100 meters in diameter while considering standard design drivers. The design drivers considered were: weight, fundamental frequency, launch packaging volume, part count, and on-orbit assembly time. For the range of parameters considered, on-orbit assembly time was identified as the major design driver. A family of modular panels is introduced which can significantly reduce the number of reflector parts and the on-orbit assembly time.
Supramolecular catalysis beyond enzyme mimics.
Meeuwissen, Jurjen; Reek, Joost N H
2010-08-01
Supramolecular catalysis - the assembly of catalyst species by harnessing multiple weak intramolecular interactions - has, until recently, been dominated by enzyme-inspired approaches. Such approaches often attempt to create an enzyme-like 'active site' and have concentrated on reactions similar to those catalysed by enzymes themselves. Here, we discuss the application of supramolecular assembly to the more traditional transition metal catalysis and to small-molecule organocatalysis. The modularity of self-assembled multicomponent catalysts means that a relatively small pool of catalyst components can provide rapid access to a large number of catalysts that can be evaluated for industrially relevant reactions. In addition, we discuss how catalyst-substrate interactions can be tailored to direct substrates along particular reaction paths and selectivities.
Post-assembly Modification of Tetrazine-Edged Fe(II)4L6 Tetrahedra.
Roberts, Derrick A; Pilgrim, Ben S; Cooper, Jonathan D; Ronson, Tanya K; Zarra, Salvatore; Nitschke, Jonathan R
2015-08-19
Post-assembly modification (PAM) is a powerful tool for the modular functionalization of self-assembled structures. We report a new family of tetrazine-edged Fe(II)4L6 tetrahedral cages, prepared using different aniline subcomponents, which undergo rapid and efficient PAM by inverse electron-demand Diels-Alder (IEDDA) reactions. Remarkably, the electron-donating or -withdrawing ability of the para-substituent on the aniline moiety influences the IEDDA reactivity of the tetrazine ring 11 bonds away. This effect manifests as a linear free energy relationship, quantified using the Hammett equation, between σ(para) and the rate of the IEDDA reaction. The rate of PAM can thus be adjusted by varying the aniline subcomponent.
Excitonic AND Logic Gates on DNA Brick Nanobreadboards.
Cannon, Brittany L; Kellis, Donald L; Davis, Paul H; Lee, Jeunghoon; Kuang, Wan; Hughes, William L; Graugnard, Elton; Yurke, Bernard; Knowlton, William B
2015-03-18
A promising application of DNA self-assembly is the fabrication of chromophore-based excitonic devices. DNA brick assembly is a compelling method for creating programmable nanobreadboards on which chromophores may be rapidly and easily repositioned to prototype new excitonic devices, optimize device operation, and induce reversible switching. Using DNA nanobreadboards, we have demonstrated each of these functions through the construction and operation of two different excitonic AND logic gates. The modularity and high chromophore density achievable via this brick-based approach provide a viable path toward developing information processing and storage systems.
Excitonic AND Logic Gates on DNA Brick Nanobreadboards
2015-01-01
A promising application of DNA self-assembly is the fabrication of chromophore-based excitonic devices. DNA brick assembly is a compelling method for creating programmable nanobreadboards on which chromophores may be rapidly and easily repositioned to prototype new excitonic devices, optimize device operation, and induce reversible switching. Using DNA nanobreadboards, we have demonstrated each of these functions through the construction and operation of two different excitonic AND logic gates. The modularity and high chromophore density achievable via this brick-based approach provide a viable path toward developing information processing and storage systems. PMID:25839049
Ductile alloys for sealing modular component interfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marra, John J.; Wessell, Brian J.; James, Allister W.
2017-08-08
A vane assembly (10) having: an airfoil (12) and a shroud (14) held together without metallurgical bonding there between; a channel (22) disposed circumferentially about the airfoil (12), between the airfoil (12) and the shroud (14); and a seal (20) disposed in the channel (22), wherein during operation of a turbine engine having the vane assembly (10) the seal (20) has a sufficient ductility such that a force generated on the seal (20) resulting from relative movement of the airfoil (12) and the shroud (14) is sufficient to plastically deform the seal (20).
NASA Technical Reports Server (NTRS)
Serlemitsos, Aristides T.; Warner, Brent A.; Sansebastian, Marcelino; Kunes, Evan
1990-01-01
Recent developments concerning the performance and reliability of a spaceworthy adiabatic demagnetization refrigerator (ADR) for the AXAF X-ray spectrometer are considered. They include a procedure for growing the salt pill around a harness made up of 6080 gold-plated copper wires, a totally modular gas gap heat switch, and a suspension system utilizing Kevlar fibers.
Rodrigues, Danieli C.; Urban, Robert M.; Jacobs, Joshua J.; Gilbert, Jeremy L.
2009-01-01
Titanium alloys are widely used in total-joint replacements due to a combination of outstanding mechanical properties, biocompatibility, passivity and corrosion resistance. Nevertheless, retrieval studies have pointed out that these materials can be subjected to localized or general corrosion in modular interfaces when mechanical abrasion of the oxide film (fretting) occurs. Modularity adds large crevice environments, which are subject to micromotion between contacting interfaces and differential aeration of the surface. Titanium alloys are also known to be susceptible to hydrogen absorption, which can induce precipitation of hydrides and subsequent brittle failure. In this work, the surface of three designs of retrieved hip-implants with Ti-6Al-4V/Ti-6Al-4V modular taper interfaces in the stem were investigated for evidence of severe corrosion and precipitation of brittle hydrides during fretting-crevice corrosion in the modular connections. The devices were retrieved from patients and studied by means of scanning electron microscopy (SEM), x-ray diffraction (XRD) and chemical analysis. The surface qualitative investigation revealed severe corrosion attack in the mating interfaces with evidence of etching, pitting, delamination and surface cracking. In vivo hydrogen embrittlement was shown to be a mechanism of degradation in modular connections resulting from electrochemical reactions induced in the crevice environment of the tapers during fretting-crevice corrosion. PMID:18683224
Minimus: a fast, lightweight genome assembler.
Sommer, Daniel D; Delcher, Arthur L; Salzberg, Steven L; Pop, Mihai
2007-02-26
Genome assemblers have grown very large and complex in response to the need for algorithms to handle the challenges of large whole-genome sequencing projects. Many of the most common uses of assemblers, however, are best served by a simpler type of assembler that requires fewer software components, uses less memory, and is far easier to install and run. We have developed the Minimus assembler to address these issues, and tested it on a range of assembly problems. We show that Minimus performs well on several small assembly tasks, including the assembly of viral genomes, individual genes, and BAC clones. In addition, we evaluate Minimus' performance in assembling bacterial genomes in order to assess its suitability as a component of a larger assembly pipeline. We show that, unlike other software currently used for these tasks, Minimus produces significantly fewer assembly errors, at the cost of generating a more fragmented assembly. We find that for small genomes and other small assembly tasks, Minimus is faster and far more flexible than existing tools. Due to its small size and modular design Minimus is perfectly suited to be a component of complex assembly pipelines. Minimus is released as an open-source software project and the code is available as part of the AMOS project at Sourceforge.
Protein linguistics - a grammar for modular protein assembly?
Gimona, Mario
2006-01-01
The correspondence between biology and linguistics at the level of sequence and lexical inventories, and of structure and syntax, has fuelled attempts to describe genome structure by the rules of formal linguistics. But how can we define protein linguistic rules? And how could compositional semantics improve our understanding of protein organization and functional plasticity?
17 CFR 232.501 - Modular submissions and segmented filings.
Code of Federal Regulations, 2011 CFR
2011-04-01
...) One or more electronic format documents may be submitted for storage in the non-public EDGAR data... data storage area at any time, not to exceed a total of one megabyte of digital information. If an...-public EDGAR data storage area for assembly as a segmented filing. (2) Segments shall be submitted no...
17 CFR 232.501 - Modular submissions and segmented filings.
Code of Federal Regulations, 2014 CFR
2014-04-01
...) One or more electronic format documents may be submitted for storage in the non-public EDGAR data... data storage area at any time, not to exceed a total of one megabyte of digital information. If an...-public EDGAR data storage area for assembly as a segmented filing. (2) Segments shall be submitted no...
17 CFR 232.501 - Modular submissions and segmented filings.
Code of Federal Regulations, 2010 CFR
2010-04-01
...) One or more electronic format documents may be submitted for storage in the non-public EDGAR data... data storage area at any time, not to exceed a total of one megabyte of digital information. If an...-public EDGAR data storage area for assembly as a segmented filing. (2) Segments shall be submitted no...
17 CFR 232.501 - Modular submissions and segmented filings.
Code of Federal Regulations, 2012 CFR
2012-04-01
...) One or more electronic format documents may be submitted for storage in the non-public EDGAR data... data storage area at any time, not to exceed a total of one megabyte of digital information. If an...-public EDGAR data storage area for assembly as a segmented filing. (2) Segments shall be submitted no...
17 CFR 232.501 - Modular submissions and segmented filings.
Code of Federal Regulations, 2013 CFR
2013-04-01
...) One or more electronic format documents may be submitted for storage in the non-public EDGAR data... data storage area at any time, not to exceed a total of one megabyte of digital information. If an...-public EDGAR data storage area for assembly as a segmented filing. (2) Segments shall be submitted no...
Urciuolo, F; Garziano, A; Imparato, G; Panzetta, V; Fusco, S; Casale, C; Netti, P A
2016-01-29
The fabrication of functional tissue units is one of the major challenges in tissue engineering due to their in vitro use in tissue-on-chip systems, as well as in modular tissue engineering for the construction of macrotissue analogs. In this work, we aim to engineer dermal tissue micromodules obtained by culturing human dermal fibroblasts into porous gelatine microscaffold. We proved that such stromal cells coupled with gelatine microscaffolds are able to synthesize and to assemble an endogenous extracellular matrix (ECM) resulting in tissue micromodules, which evolve their biophysical features over the time. In particular, we found a time-dependent variation of oxygen consumption kinetic parameters, of newly formed ECM stiffness and of micromodules self-aggregation properties. As consequence when used as building blocks to fabricate larger tissues, the initial tissue micromodules state strongly affects the ECM organization and maturation in the final macrotissue. Such results highlight the role of the micromodules properties in controlling the formation of three-dimensional macrotissue in vitro, defining an innovative design criterion for selecting tissue-building blocks for modular tissue engineering.
Modular assembly of synthetic proteins that span the plasma membrane in mammalian cells.
Qudrat, Anam; Truong, Kevin
2016-12-09
To achieve synthetic control over how a cell responds to other cells or the extracellular environment, it is important to reliably engineer proteins that can traffic and span the plasma membrane. Using a modular approach to assemble proteins, we identified the minimum necessary components required to engineer such membrane-spanning proteins with predictable orientation in mammalian cells. While a transmembrane domain (TM) fused to the N-terminus of a protein is sufficient to traffic it to the endoplasmic reticulum (ER), an additional signal peptidase cleavage site downstream of this TM enhanced sorting out of the ER. Next, a second TM in the synthetic protein helped anchor and accumulate the membrane-spanning protein on the plasma membrane. The orientation of the components of the synthetic protein were determined through measuring intracellular Ca 2+ signaling using the R-GECO biosensor and through measuring extracellular quenching of yellow fluorescent protein variants by saturating acidic and salt conditions. This work forms the basis of engineering novel proteins that span the plasma membrane to potentially control intracellular responses to extracellular conditions.
Modular integration of electronics and microfluidic systems using flexible printed circuit boards.
Wu, Amy; Wang, Lisen; Jensen, Erik; Mathies, Richard; Boser, Bernhard
2010-02-21
Microfluidic systems offer an attractive alternative to conventional wet chemical methods with benefits including reduced sample and reagent volumes, shorter reaction times, high-throughput, automation, and low cost. However, most present microfluidic systems rely on external means to analyze reaction products. This substantially adds to the size, complexity, and cost of the overall system. Electronic detection based on sub-millimetre size integrated circuits (ICs) has been demonstrated for a wide range of targets including nucleic and amino acids, but deployment of this technology to date has been limited due to the lack of a flexible process to integrate these chips within microfluidic devices. This paper presents a modular and inexpensive process to integrate ICs with microfluidic systems based on standard printed circuit board (PCB) technology to assemble the independently designed microfluidic and electronic components. The integrated system can accommodate multiple chips of different sizes bonded to glass or PDMS microfluidic systems. Since IC chips and flex PCB manufacturing and assembly are industry standards with low cost, the integrated system is economical for both laboratory and point-of-care settings.
A Modular Orbital Demonstration of an Evolvable Space Telescope (MODEST)
NASA Astrophysics Data System (ADS)
Conti, Alberto; Arenberg, Jonathan; Baldauf, Brian
2017-01-01
The “Search for Life” (direct imaging of earth-like planets) will require extremely stable telescopes with apertures in the 10 m to 20 m range. Such apertures are larger than what can be delivered to space using current or planned future launch vehicles. Building and assembling large telescopes in space is therefore likely to require not only multiple launches but importantly assembly in spce. As a result, space-based telescopes with large apertures will require major changes to our conventional telescope design and architecture.Here we report on the concept for the Modular Orbital Demonstration of an Evolvable Space Telescope (MODEST) to demonstrates the on-orbit robotic and/or astronaut assembly of an optical telescope in space. MODEST is a proposed International Space Station (ISS demonstration that will make use of the standard Express Logistics Carriers (ELCs) and can mounted to one of a variety of ISS pallets.MODEST will provides significant risk reduction for the next generation of space observatories, and demonstrates the technology needed to assemble a six-mirror phased telescope. Key modest features include the use of an active primary optical surface with wavefront feedback control to allow on-orbit optimization, and the precise surface control to meet optical system wavefront and stability requirements.MODEST will also be used to evaluate advances in lightweight mirror and metering structure materials such as SiC or Carbon Fiber Reinforced Polymer (CFRP) that have excellent mechanical and thermal properties, e.g. high stiffness, high modulus, high thermal conductivity, and low thermal expansion. Mirrors built from these materials can be rapidly replicated in a highly cost effective manner, making them an excellent candidate for a low cost, high performance Optical Telescope Assembly paving the way for enabling affordable solutions for the next generation of large aperture space-based telescope.MODEST post-assembly value includes space, ground, and environmental studies, a testbed for new instruments, and a tool for student’s exploration of space.
Radley, Ian [Glenmont, NY; Bievenue, Thomas J [Delmar, NY; Burdett, John H [Charlton, NY; Gallagher, Brian W [Guilderland, NY; Shakshober, Stuart M [Hudson, NY; Chen, Zewu [Schenectady, NY; Moore, Michael D [Alplaus, NY
2008-06-08
An x-ray source assembly and method of operation are provided having enhanced output stability. The assembly includes an anode having a source spot upon which electrons impinge and a control system for controlling position of the anode source spot relative to an output structure. The control system can maintain the anode source spot location relative to the output structure notwithstanding a change in one or more operating conditions of the x-ray source assembly. One aspect of the disclosed invention is most amenable to the analysis of sulfur in petroleum-based fuels.
The development of a lightweight modular compliant surface bio-inspired robot
NASA Astrophysics Data System (ADS)
Stone, David L.; Cranney, John
2004-09-01
The DARPA Sponsored Compliant Surface Robotics (CSR) program pursues development of a high mobility, lightweight, modular, morphable robot for military forces in the field and for other industrial uses. The USTLAB effort builds on proof of concept feasibility studies and demonstration of a 4, 6, or 8 wheeled modular vehicle with articulated leg-wheel assemblies. In Phase I, basic open plant stability was proven for climbing over obstacles of ~18 inches high and traversing ~75 degree inclines (up, down, or sideways) in a platform of approximately 15 kilograms. At the completion of Phase II, we have completed mechanical and electronics engineering design and achieved changes which currently enable future work in active articulation, enabling autonomous reconfiguration for a wide variety of terrains, including upside down operations (in case of flip over), and we have reduced platform weight by one third. Currently the vehicle weighs 10 kilograms and will grow marginally as additional actuation, MEMS based organic sensing, payload, and autonomous processing is added. The CSR vehicle"s modular spider-like configuration facilitates adaptation to many uses and compliance over rugged terrain. The developmental process and the vehicle characteristics will be discussed.
The application of SMA spring actuators to a lightweight modular compliant surface bioinspired robot
NASA Astrophysics Data System (ADS)
Stone, David L.; Cranney, John; Liang, Robert; Taya, Minoru
2004-07-01
The DARPA Sponsored Compliant Surface Robotics (CSR) program pursues development of a high mobility, lightweight, modular, morph-able robot for military forces in the field and for other industrial uses. The USTLAB and University of Washington Center for Intelligent Materials and Systems (CIMS) effort builds on USTLAB proof of concept feasibility studies and demonstration of a 4, 6, or 8 wheeled modular vehicle with articulated leg-wheel assemblies. A collaborative effort between USTLAB and UW-CIMS explored the application of Shape Memory Alloy Nickel Titanium Alloy springs to a leg extension actuator capable of actuating with 4.5 Newton force over a 50 mm stroke. At the completion of Phase II, we have completed mechanical and electronics engineering design and achieved conventional actuation which currently enable active articulation, enabling autonomous reconfiguration for a wide variety of terrains, including upside down operations (in case of flip over), have developed a leg extension actuator demonstration model, and we have positioned our team to pursue a small vehicle with leg extension actuators in follow on work. The CSR vehicle's modular spider-like configuration facilitates adaptation to many uses and compliance over rugged terrain. The developmental process, actuator and vehicle characteristics will be discussed.
Development of a Deployable Nonmetallic Boom for Reconfigurable Systems of Small Modular Spacecraft
NASA Technical Reports Server (NTRS)
Rehnmark, Fredrik
2007-01-01
Launch vehicle payload capacity and the launch environment represent two of the most operationally limiting constraints on space system mass, volume, and configuration. Large-scale space science and power platforms as well as transit vehicles have been proposed that greatly exceed single-launch capabilities. Reconfigurable systems launched as multiple small modular spacecraft with the ability to rendezvous, approach, mate, and conduct coordinated operations have the potential to make these designs feasible. A key characteristic of these proposed systems is their ability to assemble into desired geometric (spatial) configurations. While flexible and sparse formations may be realized by groups of spacecraft flying in close proximity, flyers physically connected by active structural elements could continuously exchange power, fluids, and heat (via fluids). Configurations of small modular spacecraft temporarily linked together could be sustained as long as needed with minimal propellant use and reconfigured as often as needed over extended missions with changing requirements. For example, these vehicles could operate in extremely compact configurations during boost phases of a mission and then redeploy to generate power or communicate while coasting and upon reaching orbit. In 2005, NASA funded Phase 1 of a program called Modular Reconfigurable High-Energy Technology Demonstrator Assembly Testbed (MRHE) to investigate reconfigurable systems of small spacecraft. The MRHE team was led by NASA's Marshall Space Flight Center and included Lockheed Martin's Advanced Technology Center (ATC) in Palo Alto and its subcontractor, ATK. One of the goals of Phase 1 was to develop an MRHE concept demonstration in a relevant 1-g environment to highlight a number of requisite technologies. In Phase 1 of the MRHE program, Lockheed Martin devised and conducted an automated space system assembly demonstration featuring multipurpose free-floating robots representing Spacecraft in the newly built Controls and Automation Laboratory (CAL) at the ATC. The CAL lab features a 12' x 24' granite air-bearing table and an overhead simulated starfield. Among the technologies needed for the concept demo were mating interfaces allowing the spacecraft to dock and deployable structures allowing for adjustable separation between spacecraft after a rigid connection had been established. The decision to use a nonmetallic deployable boom for this purpose was driven by the MRHE concept demo requirements reproduced in Table 1.
NASA Technical Reports Server (NTRS)
1979-01-01
The findings of the IIT Research Institute (IITRI) market study of the SIMS Prototype System 4, a hot water (DHW) system are documented. The feasibility of prepackaging currently available solar heating components into modular subsystems for site assembly is addressed. A documented design and installation procedure and a performance test report were prepared. The potential markets and applications for this particular system in the nonfederal market are profiled by assessing the needs and requirements of potential users and specifiers, by characterizing the nature of the market and the competitive environment, by identifying the barriers to commercial acceptance, and by estimating the size of the potential market.
Protein nanoparticles are nontoxic, tuneable cell stressors.
de Pinho Favaro, Marianna Teixeira; Sánchez-García, Laura; Sánchez-Chardi, Alejandro; Roldán, Mónica; Unzueta, Ugutz; Serna, Naroa; Cano-Garrido, Olivia; Azzoni, Adriano Rodrigues; Ferrer-Miralles, Neus; Villaverde, Antonio; Vázquez, Esther
2018-02-01
Nanoparticle-cell interactions can promote cell toxicity and stimulate particular behavioral patterns, but cell responses to protein nanomaterials have been poorly studied. By repositioning oligomerization domains in a simple, modular self-assembling protein platform, we have generated closely related but distinguishable homomeric nanoparticles. Composed by building blocks with modular domains arranged in different order, they share amino acid composition. These materials, once exposed to cultured cells, are differentially internalized in absence of toxicity and trigger distinctive cell adaptive responses, monitored by the emission of tubular filopodia and enhanced drug sensitivity. The capability to rapidly modulate such cell responses by conventional protein engineering reveals protein nanoparticles as tuneable, versatile and potent cell stressors for cell-targeted conditioning.
NASA Technical Reports Server (NTRS)
1972-01-01
Detailed and supporting analyses are presented of the hazardous payloads, docking, and on-board survivability aspects connected with earth orbital operations of the space shuttle program. The hazards resulting from delivery, deployment, and retrieval of hazardous payloads, and from handling and transport of cargo between orbiter, sortie modules, and space station are identified and analyzed. The safety aspects of shuttle orbiter to modular space station docking includes docking for assembly of space station, normal resupply docking, and emergency docking. Personnel traffic patterns, escape routes, and on-board survivability are analyzed for orbiter with crew and passenger, sortie modules, and modular space station, under normal, emergency, and EVA and IVA operations.
NASA Technical Reports Server (NTRS)
2012-01-01
Topics covered include: Mars Science Laboratory Drill; Ultra-Compact Motor Controller; A Reversible Thermally Driven Pump for Use in a Sub-Kelvin Magnetic Refrigerator; Shape Memory Composite Hybrid Hinge; Binding Causes of Printed Wiring Assemblies with Card-Loks; Coring Sample Acquisition Tool; Joining and Assembly of Bulk Metallic Glass Composites Through Capacitive Discharge; 670-GHz Schottky Diode-Based Subharmonic Mixer with CPW Circuits and 70-GHz IF; Self-Nulling Lock-in Detection Electronics for Capacitance Probe Electrometer; Discontinuous Mode Power Supply; Optimal Dynamic Sub-Threshold Technique for Extreme Low Power Consumption for VLSI; Hardware for Accelerating N-Modular Redundant Systems for High-Reliability Computing; Blocking Filters with Enhanced Throughput for X-Ray Microcalorimetry; High-Thermal-Conductivity Fabrics; Imidazolium-Based Polymeric Materials as Alkaline Anion-Exchange Fuel Cell Membranes; Electrospun Nanofiber Coating of Fiber Materials: A Composite Toughening Approach; Experimental Modeling of Sterilization Effects for Atmospheric Entry Heating on Microorganisms; Saliva Preservative for Diagnostic Purposes; Hands-Free Transcranial Color Doppler Probe; Aerosol and Surface Parameter Retrievals for a Multi-Angle, Multiband Spectrometer LogScope; TraceContract; AIRS Maps from Space Processing Software; POSTMAN: Point of Sail Tacking for Maritime Autonomous Navigation; Space Operations Learning Center; OVERSMART Reporting Tool for Flow Computations Over Large Grid Systems; Large Eddy Simulation (LES) of Particle-Laden Temporal Mixing Layers; Projection of Stabilized Aerial Imagery Onto Digital Elevation Maps for Geo-Rectified and Jitter-Free Viewing; Iterative Transform Phase Diversity: An Image-Based Object and Wavefront Recovery; 3D Drop Size Distribution Extrapolation Algorithm Using a Single Disdrometer; Social Networking Adapted for Distributed Scientific Collaboration; General Methodology for Designing Spacecraft Trajectories; Hemispherical Field-of-View Above-Water Surface Imager for Submarines; and Quantum-Well Infrared Photodetector (QWIP) Focal Plane Assembly.
Zuo, Yicong; Liu, Xiaolu; Wei, Dan; Sun, Jing; Xiao, Wenqian; Zhao, Huan; Guo, Likun; Wei, Qingrong; Fan, Hongsong; Zhang, Xingdong
2015-05-20
Modular tissue engineering holds great potential in regenerating natural complex tissues by engineering three-dimensional modular scaffolds with predefined geometry and biological characters. In modular tissue-like construction, a scaffold with an appropriate mechanical rigidity for assembling fabrication and high biocompatibility for cell survival is the key to the successful bioconstruction. In this work, a series of composite hydrogels (GH0, GH1, GH2, and GH3) based on a combination of methacrylated gelatin (GelMA) and hydroxyapatite (HA) was exploited to enhance hydrogel mechanical rigidity and promote cell functional expression for osteon biofabrication. These composite hydrogels presented a lower swelling ratio, higher mechanical moduli, and better biocompatibility when compared to the pure GelMA hydrogel. Furthermore, on the basis of the composite hydrogel and photolithograph technology, we successfully constructed an osteon-like concentric double-ring structure in which the inner ring encapsulating human umbilical vascular endothelial cells (HUVECs) was designed to imitate blood vessel tubule while the outer ring encapsulating human osteoblast-like cells (MG63s) acts as part of bone. During the coculture period, MG63s and HUVECs exhibited not only satisfying growth status but also the enhanced genic expression of osteogenesis-related and angiogenesis-related differentiations. These results demonstrate this GelMA-HA composite hydrogel system is promising for modular tissue engineering.
Ohlinger, R.D.; Humphrey, H.W.
1985-08-26
A gamma ray detector shield comprised of a rigid, lead, cylindrical-shaped vessel having upper and lower portions with an pneumatically driven, sliding top assembly. Disposed inside the lead shield is a gamma ray scintillation crystal detector. Access to the gamma detector is through the sliding top assembly.
Detecting pin diversion from pressurized water reactors spent fuel assemblies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ham, Young S.; Sitaraman, Shivakumar
Detecting diversion of spent fuel from Pressurized Water Reactors (PWR) by determining possible diversion including the steps of providing a detector cluster containing gamma ray and neutron detectors, inserting the detector cluster containing the gamma ray and neutron detectors into the spent fuel assembly through the guide tube holes in the spent fuel assembly, measuring gamma ray and neutron radiation responses of the gamma ray and neutron detectors in the guide tube holes, processing the gamma ray and neutron radiation responses at the guide tube locations by normalizing them to the maximum value among each set of responses and takingmore » the ratio of the gamma ray and neutron responses at the guide tube locations and normalizing the ratios to the maximum value among them and producing three signatures, gamma, neutron, and gamma-neutron ratio, based on these normalized values, and producing an output that consists of these signatures that can indicate possible diversion of the pins from the spent fuel assembly.« less
Structural Architecture of Prothrombin in Solution Revealed by Single Molecule Spectroscopy.
Pozzi, Nicola; Bystranowska, Dominika; Zuo, Xiaobing; Di Cera, Enrico
2016-08-26
The coagulation factor prothrombin has a complex spatial organization of its modular assembly that comprises the N-terminal Gla domain, kringle-1, kringle-2, and the C-terminal protease domain connected by three intervening linkers. Here we use single molecule Förster resonance energy transfer to access the conformational landscape of prothrombin in solution and uncover structural features of functional significance that extend recent x-ray crystallographic analysis. Prothrombin exists in equilibrium between two alternative conformations, open and closed. The closed conformation predominates (70%) and features an unanticipated intramolecular collapse of Tyr(93) in kringle-1 onto Trp(547) in the protease domain that obliterates access to the active site and protects the zymogen from autoproteolytic conversion to thrombin. The open conformation (30%) is more susceptible to chymotrypsin digestion and autoactivation, and features a shape consistent with recent x-ray crystal structures. Small angle x-ray scattering measurements of prothrombin wild type stabilized 70% in the closed conformation and of the mutant Y93A stabilized 80% in the open conformation directly document two envelopes that differ 50 Å in length. These findings reveal important new details on the conformational plasticity of prothrombin in solution and the drastic structural difference between its alternative conformations. Prothrombin uses the intramolecular collapse of kringle-1 onto the active site in the closed form to prevent autoactivation. The open-closed equilibrium also defines a new structural framework for the mechanism of activation of prothrombin by prothrombinase. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Designed Proteins Induce the Formation of Nanocage-containing Extracellular Vesicles
Votteler, Jörg; Ogohara, Cassandra; Yi, Sue; Hsia, Yang; Nattermann, Una; Belnap, David M.; King, Neil P.; Sundquist, Wesley I.
2017-01-01
Complex biological processes are often performed by self-organizing nanostructures comprising multiple classes of macromolecules, such as ribosomes (proteins and RNA) or enveloped viruses (proteins, nucleic acids, and lipids). Approaches have been developed for designing self-assembling structures consisting of either nucleic acids1,2 or proteins3–5, but strategies for engineering hybrid biological materials are only beginning to emerge6,7. Here, we describe the design of self-assembling protein nanocages that direct their own release from human cells inside small vesicles in a manner that resembles some viruses. We refer to these hybrid biomaterials as Enveloped Protein Nanocages (EPNs). Robust EPN biogenesis required protein sequence elements that encode three distinct functions: membrane binding, self-assembly, and recruitment of the Endosomal Sorting Complexes Required for Transport (ESCRT) machinery8. A variety of synthetic proteins with these functional elements induced EPN biogenesis, highlighting the modularity and generality of the design strategy. Biochemical and electron cryomicroscopic (cryo-EM) analyses revealed that one design, EPN-01, comprised small (~100 nm) vesicles containing multiple protein nanocages that closely matched the structure of the designed 60-subunit self-assembling scaffold9. EPNs that incorporated the vesicular stomatitis viral glycoprotein (VSV-G) could fuse with target cells and deliver their contents, thereby transferring cargoes from one cell to another. These studies show how proteins can be programmed to direct the formation of hybrid biological materials that perform complex tasks, and establish EPNs as a novel class of designed, modular, genetically-encoded nanomaterials that can transfer molecules between cells. PMID:27919066
Conserved interdomain linker promotes phase separation of the multivalent adaptor protein Nck
Banjade, Sudeep; Wu, Qiong; Mittal, Anuradha; Peeples, William B.; Pappu, Rohit V.; Rosen, Michael K.
2015-01-01
The organization of membranes, the cytosol, and the nucleus of eukaryotic cells can be controlled through phase separation of lipids, proteins, and nucleic acids. Collective interactions of multivalent molecules mediated by modular binding domains can induce gelation and phase separation in several cytosolic and membrane-associated systems. The adaptor protein Nck has three SRC-homology 3 (SH3) domains that bind multiple proline-rich segments in the actin regulatory protein neuronal Wiskott-Aldrich syndrome protein (N-WASP) and an SH2 domain that binds to multiple phosphotyrosine sites in the adhesion protein nephrin, leading to phase separation. Here, we show that the 50-residue linker between the first two SH3 domains of Nck enhances phase separation of Nck/N-WASP/nephrin assemblies. Two linear motifs within this element, as well as its overall positively charged character, are important for this effect. The linker increases the driving force for self-assembly of Nck, likely through weak interactions with the second SH3 domain, and this effect appears to promote phase separation. The linker sequence is highly conserved, suggesting that the sequence determinants of the driving forces for phase separation may be generally important to Nck functions. Our studies demonstrate that linker regions between modular domains can contribute to the driving forces for self-assembly and phase separation of multivalent proteins. PMID:26553976
Solar Concentrator Advanced Development Program
NASA Technical Reports Server (NTRS)
Knasel, Don; Ehresman, Derik
1989-01-01
The Solar Concentrator Advanced Development Project has successfully designed, fabricated, and tested a full scale prototypical solar dynamic concentrator for space station applications. A Truss Hexagonal Panel reflector was selected as a viable solar concentrator concept to be used for space station applications. This concentrator utilizes a modular design approach and is flexible in attainable flux profiles and assembly techniques. The detailed design of the concentrator, which included structural, thermal and optical analysis, identified the feasibility of the design and specific technologies that were required to fabricate it. The needed surface accuracy of the reflectors surface was found to be very tight, within 5 mrad RMS slope error, and results in very close tolerances for fabrication. To meet the design requirements, a modular structure composed of hexagonal panels was used. The panels, made up of graphite epoxy box beams provided the strength, stiffness and dimensional stability needed. All initial project requirements were met or exceeded by hardware demonstration. Initial testing of structural repeatability of a seven panel portion of the concentrator was followed by assembly and testing of the full nineteen panel structure. The testing, which consisted of theodolite and optical measurements over an assembly-disassembly-reassembly cycle, demonstrated that the concentrator maintained the as-built contour and optical characteristics. The facet development effort within the project, which included developing the vapor deposited reflective facet, produced a viable design with demonstrated optical characteristics that are within the project goals.
Modular approach to achieving the next-generation X-ray light source
NASA Astrophysics Data System (ADS)
Biedron, S. G.; Milton, S. V.; Freund, H. P.
2001-12-01
A modular approach to the next-generation light source is described. The "modules" include photocathode, radio-frequency, electron guns and their associated drive-laser systems, linear accelerators, bunch-compression systems, seed laser systems, planar undulators, two-undulator harmonic generation schemes, high-gain harmonic generation systems, nonlinear higher harmonics, and wavelength shifting. These modules will be helpful in distributing the next-generation light source to many more laboratories than the current single-pass, high-gain free-electron laser designs permit, due to both monetary and/or physical space constraints.
NASA Astrophysics Data System (ADS)
Katsuyama, Kozo; Nagamine, Tsuyoshi; Furuya, Hirotaka
2010-10-01
In order to observe the structural change in the interior of irradiated fuel assemblies, a non-destructive post-irradiation examination (PIE) technique using X-ray computer tomography (X-ray CT) was developed. This X-ray CT technique was applied to observe the central void formations and fuel pin deformations of fuel assemblies which had been irradiated at high linear heat rating. The central void sizes in all fuel pins were measured on five cross sections of the core fuel column as a parameter for evaluating fuel thermal performance. In addition, the fuel pin deformations were analyzed from X-ray CT images obtained along the axial direction of a fuel assembly at the same separation interval. A dependence of void size on the linear heat rating was seen in the fuel assembly irradiated at high linear heat rating. In addition, significant undulations of the fuel pin were observed along the axial direction, coinciding with the wrapping wire pitch in the core fuel column. Application of the developed technique should provide enhanced resolution of measurements and simplify fuel PIEs.
Focal plane transport assembly for the HEAO-B X-ray telescope
NASA Technical Reports Server (NTRS)
Brissette, R.; Allard, P. D.; Keller, F.; Strizhak, E.; Wester, E.
1979-01-01
The High Energy Astronomy Observatory - Mission B (HEAO-B), an earth orbiting X-ray telescope facility capable of locating and imaging celestial X-ray sources within one second of arc in the celestial sphere, is considered. The Focal Plane Transport Assembly (FPTA) is one of the basic structural elements of the three thousand pound HEAO-B experiment payload. The FPTA is a multifunctional assembly which supports seven imaging X-ray detectors circumferentially about a central shaft and accurately positions any particular one into the focus of a high resolution mirror assembly. A drive system, position sensor, rotary coupler, and detent alignment system, all an integral part of the rotatable portion which in turn is supported by main bearings to the stationary focal plane housing are described.
MiniCLEAN-360: A liquid argon/neon dark matter detector
NASA Astrophysics Data System (ADS)
Rielage, Keith; DEAP/CLEAN Collaboration
2008-11-01
MiniCLEAN-360 utilizes 360 kg of liquid argon to detect the nuclear recoil from WIMP dark matter with a projected cross-section sensitivity of 10-45 cm2. To reach this planned sensitivity, a unique modular design is being developed with a spherical geometry to maximize light collection using PMTs. Pulse shape discrimination techniques separate nuclear recoil signal from the electron recoil backgrounds resulting from the beta decay of 39Ar and Compton scattering of gamma rays. The design allows for the replacement of the target material with liquid neon to examine any signal and backgrounds with a different sensitivity. It also provides research and development for a larger scale low energy solar neutrino experiment using neon (CLEAN: Cryogenic Low Energy Astrophysics with Noble gases) that plans to measure the pp-solar neutrino flux to 1%. Particular attention is being paid to mitigating the background from contamination of surfaces by radon daughters during assembly. The engineering design, radon mitigation plan, and various testing setups are presented. MiniCLEAN-360 anticipates the start of data collection in mid-2009 at SNOLAB in Sudbury, Ontario, Canada.
Molecular Architecture of the 40S⋅eIF1⋅eIF3 Translation Initiation Complex
Erzberger, Jan P.; Stengel, Florian; Pellarin, Riccardo; Zhang, Suyang; Schaefer, Tanja; Aylett, Christopher H.S.; Cimermančič, Peter; Boehringer, Daniel; Sali, Andrej; Aebersold, Ruedi; Ban, Nenad
2014-01-01
Summary Eukaryotic translation initiation requires the recruitment of the large, multiprotein eIF3 complex to the 40S ribosomal subunit. We present X-ray structures of all major components of the minimal, six-subunit Saccharomyces cerevisiae eIF3 core. These structures, together with electron microscopy reconstructions, cross-linking coupled to mass spectrometry, and integrative structure modeling, allowed us to position and orient all eIF3 components on the 40S⋅eIF1 complex, revealing an extended, modular arrangement of eIF3 subunits. Yeast eIF3 engages 40S in a clamp-like manner, fully encircling 40S to position key initiation factors on opposite ends of the mRNA channel, providing a platform for the recruitment, assembly, and regulation of the translation initiation machinery. The structures of eIF3 components reported here also have implications for understanding the architecture of the mammalian 43S preinitiation complex and the complex of eIF3, 40S, and the hepatitis C internal ribosomal entry site RNA. PMID:25171412
An Advanced Photovoltaic Array Regulator Module
NASA Technical Reports Server (NTRS)
Button, Robert M.
1996-01-01
Current trends in satellite design are focused on developing small, reliable, and inexpensive spacecraft. To that end, a modular power management and distribution system is proposed which will help transition the aerospace industry towards an assembly line approach to building spacecraft. The modular system is based on an innovative DC voltage boost converter called the Series Connected Boost Unit (SCBU). The SCBU uses any isolating DC-DC converter and adds a unique series connection. This simple modification provides the SCBU topology with many advantages over existing boost converters. Efficiencies of 94-98%, power densities above 1,000 W/kg, and inherent fault tolerance are just a few of the characteristics presented. Limitations of the SCBU technology are presented, and it is shown that the SCBU makes an ideal photovoltaic an-ay regulator. A set of photovoltaic power system requirements are presented that can be applied to almost any low Earth orbit satellite. Finally, a modular design based on the series connected boost unit is outlined and functional descriptions of the components are given.
Lee, Nam-Kyung; Bidlingmaier, Scott; Su, Yang; Liu, Bin
2018-01-01
Monoclonal antibodies and antibody-derived therapeutics have emerged as a rapidly growing class of biological drugs for the treatment of cancer, autoimmunity, infection, and neurological diseases. To support the development of human antibodies, various display techniques based on antibody gene repertoires have been constructed over the last two decades. In particular, scFv-antibody phage display has been extensively utilized to select lead antibodies against a variety of target antigens. To construct a scFv phage display that enables efficient antibody discovery, and optimization, it is desirable to develop a system that allows modular assembly of highly diverse variable heavy chain and light chain (Vκ and Vλ) repertoires. Here, we describe modular construction of large non-immune human antibody phage-display libraries built on variable gene cassettes from heavy chain and light chain repertoires (Vκ- and Vλ-light can be made into independent cassettes). We describe utility of such libraries in antibody discovery and optimization through chain shuffling.
Engineering modular and orthogonal genetic logic gates for robust digital-like synthetic biology.
Wang, Baojun; Kitney, Richard I; Joly, Nicolas; Buck, Martin
2011-10-18
Modular and orthogonal genetic logic gates are essential for building robust biologically based digital devices to customize cell signalling in synthetic biology. Here we constructed an orthogonal AND gate in Escherichia coli using a novel hetero-regulation module from Pseudomonas syringae. The device comprises two co-activating genes hrpR and hrpS controlled by separate promoter inputs, and a σ(54)-dependent hrpL promoter driving the output. The hrpL promoter is activated only when both genes are expressed, generating digital-like AND integration behaviour. The AND gate is demonstrated to be modular by applying new regulated promoters to the inputs, and connecting the output to a NOT gate module to produce a combinatorial NAND gate. The circuits were assembled using a parts-based engineering approach of quantitative characterization, modelling, followed by construction and testing. The results show that new genetic logic devices can be engineered predictably from novel native orthogonal biological control elements using quantitatively in-context characterized parts. © 2011 Macmillan Publishers Limited. All rights reserved.
Development of a fast multi-line x-ray CT detector for NDT
NASA Astrophysics Data System (ADS)
Hofmann, T.; Nachtrab, F.; Schlechter, T.; Neubauer, H.; Mühlbauer, J.; Schröpfer, S.; Ernst, J.; Firsching, M.; Schweiger, T.; Oberst, M.; Meyer, A.; Uhlmann, N.
2015-04-01
Typical X-ray detectors for non-destructive testing (NDT) are line detectors or area detectors, like e.g. flat panel detectors. Multi-line detectors are currently only available in medical Computed Tomography (CT) scanners. Compared to flat panel detectors, line and multi-line detectors can achieve much higher frame rates. This allows time-resolved 3D CT scans of an object under investigation. Also, an improved image quality can be achieved due to reduced scattered radiation from object and detector themselves. Another benefit of line and multi-line detectors is that very wide detectors can be assembled easily, while flat panel detectors are usually limited to an imaging field with a size of approx. 40 × 40 cm2 at maximum. The big disadvantage of line detectors is the limited number of object slices that can be scanned simultaneously. This leads to long scan times for large objects. Volume scans with a multi-line detector are much faster, but with almost similar image quality. Due to the promising properties of multi-line detectors their application outside of medical CT would also be very interesting for NDT. However, medical CT multi-line detectors are optimized for the scanning of human bodies. Many non-medical applications require higher spatial resolutions and/or higher X-ray energies. For those non-medical applications we are developing a fast multi-line X-ray detector.In the scope of this work, we present the current state of the development of the novel detector, which includes several outstanding properties like an adjustable curved design for variable focus-detector-distances, conserving nearly uniform perpendicular irradiation over the entire detector width. Basis of the detector is a specifically designed, radiation hard CMOS imaging sensor with a pixel pitch of 200 μ m. Each pixel has an automatic in-pixel gain adjustment, which allows for both: a very high sensitivity and a wide dynamic range. The final detector is planned to have 256 lines of pixels. By using a modular assembly of the detector, the width can be chosen as multiples of 512 pixels. With a frame rate of up to 300 frames/s (full resolution) or 1200 frame/s (analog binning to 400 μ m pixel pitch) time-resolved 3D CT applications become possible. Two versions of the detector are in development, one with a high resolution scintillator and one with a thick, structured and very efficient scintillator (pitch 400 μ m). This way the detector can even work with X-ray energies up to 450 kVp.
Preliminary design considerations for 10 to 40 meter-diameter precision truss reflectors
NASA Technical Reports Server (NTRS)
Mikulas, Martin M., Jr.; Collins, Timothy J.; Hedgepeth, John M.
1990-01-01
A simplified preliminary design capability for erectable precision segmented reflectors is presented. This design capability permits a rapid assessment of a wide range of reflector parameters as well as new structural concepts and materials. The preliminary design approach was applied to a range of precision reflectors from 10 meters to 100 meters in diameter while considering standard design drivers. The design drivers considered were: weight, fundamental frequency, launch packaging volume, part count, and on-orbit assembly time. For the range of parameters considered, on-orbit assembly time was identified as the major design driver. A family of modular panels is introduced which can significantly reduce the number of reflector parts and the on-orbit assembly time.
Diverse Supramolecular Nanofiber Networks Assembled by Functional Low-Complexity Domains.
An, Bolin; Wang, Xinyu; Cui, Mengkui; Gui, Xinrui; Mao, Xiuhai; Liu, Yan; Li, Ke; Chu, Cenfeng; Pu, Jiahua; Ren, Susu; Wang, Yanyi; Zhong, Guisheng; Lu, Timothy K; Liu, Cong; Zhong, Chao
2017-07-25
Self-assembling supramolecular nanofibers, common in the natural world, are of fundamental interest and technical importance to both nanotechnology and materials science. Despite important advances, synthetic nanofibers still lack the structural and functional diversity of biological molecules, and the controlled assembly of one type of molecule into a variety of fibrous structures with wide-ranging functional attributes remains challenging. Here, we harness the low-complexity (LC) sequence domain of fused in sarcoma (FUS) protein, an essential cellular nuclear protein with slow kinetics of amyloid fiber assembly, to construct random copolymer-like, multiblock, and self-sorted supramolecular fibrous networks with distinct structural features and fluorescent functionalities. We demonstrate the utilities of these networks in the templated, spatially controlled assembly of ligand-decorated gold nanoparticles, quantum dots, nanorods, DNA origami, and hybrid structures. Owing to the distinguishable nanoarchitectures of these nanofibers, this assembly is structure-dependent. By coupling a modular genetic strategy with kinetically controlled complex supramolecular self-assembly, we demonstrate that a single type of protein molecule can be used to engineer diverse one-dimensional supramolecular nanostructures with distinct functionalities.
Programmable DNA tile self-assembly using a hierarchical sub-tile strategy.
Shi, Xiaolong; Lu, Wei; Wang, Zhiyu; Pan, Linqiang; Cui, Guangzhao; Xu, Jin; LaBean, Thomas H
2014-02-21
DNA tile based self-assembly provides a bottom-up approach to construct desired nanostructures. DNA tiles have been directly constructed from ssDNA and readily self-assembled into 2D lattices and 3D superstructures. However, for more complex lattice designs including algorithmic assemblies requiring larger tile sets, a more modular approach could prove useful. This paper reports a new DNA 'sub-tile' strategy to easily create whole families of programmable tiles. Here, we demonstrate the stability and flexibility of our sub-tile structures by constructing 3-, 4- and 6-arm DNA tiles that are subsequently assembled into 2D lattices and 3D nanotubes according to a hierarchical design. Assembly of sub-tiles, tiles, and superstructures was analyzed using polyacrylamide gel electrophoresis and atomic force microscopy. DNA tile self-assembly methods provide a bottom-up approach to create desired nanostructures; the sub-tile strategy adds a useful new layer to this technique. Complex units can be made from simple parts. The sub-tile approach enables the rapid redesign and prototyping of complex DNA tile sets and tiles with asymmetric designs.
Radley, Ian; Bievenue, Thomas J.; Burdett Jr., John H.; Gallagher, Brian W.; Shakshober, Stuart M.; Chen, Zewu; Moore, Michael D.
2007-04-24
An x-ray source assembly (2700) and method of operation are provided having enhanced output stability. The assembly includes an anode (2125) having a source spot upon which electrons (2120) impinge and a control system (2715/2720) for controlling position of the anode source spot relative to an output structure. The control system can maintain the anode source spot location relative to the output structure (2710) notwithstanding a change in one or more operating conditions of the x-ray source assembly. One aspect of the disclosed invention is most amenable to the analysis of sulfur in petroleum-based fuels.
Tessadori, Jacopo; Bisio, Marta; Martinoia, Sergio; Chiappalone, Michela
2012-01-01
Behaviors, from simple to most complex, require a two-way interaction with the environment and the contribution of different brain areas depending on the orchestrated activation of neuronal assemblies. In this work we present a new hybrid neuro-robotic architecture based on a neural controller bi-directionally connected to a virtual robot implementing a Braitenberg vehicle aimed at avoiding obstacles. The robot is characterized by proximity sensors and wheels, allowing it to navigate into a circular arena with obstacles of different sizes. As neural controller, we used hippocampal cultures dissociated from embryonic rats and kept alive over Micro Electrode Arrays (MEAs) for 3–8 weeks. The developed software architecture guarantees a bi-directional exchange of information between the natural and the artificial part by means of simple linear coding/decoding schemes. We used two different kinds of experimental preparation: “random” and “modular” populations. In the second case, the confinement was assured by a polydimethylsiloxane (PDMS) mask placed over the surface of the MEA device, thus defining two populations interconnected via specific microchannels. The main results of our study are: (i) neuronal cultures can be successfully interfaced to an artificial agent; (ii) modular networks show a different dynamics with respect to random culture, both in terms of spontaneous and evoked electrophysiological patterns; (iii) the robot performs better if a reinforcement learning paradigm (i.e., a tetanic stimulation delivered to the network following each collision) is activated, regardless of the modularity of the culture; (iv) the robot controlled by the modular network further enhances its capabilities in avoiding obstacles during the short-term plasticity trial. The developed paradigm offers a new framework for studying, in simplified model systems, neuro-artificial bi-directional interfaces for the development of new strategies for brain-machine interaction. PMID:23248586
Ouellette, Eric S; Shenoy, Aarti A; Gilbert, Jeremy L
2018-04-01
The mechanically assisted crevice corrosion performance of head-neck modular tapers is a significant concern in orthopedic biomaterials. Fretting crevice corrosion processes in modular tapers are thought to be influenced by a wide array of factors including seating mechanics of the junction, hence there is a need for in vitro test methods that can assess their performance. This study presented a test method to directly measure the load-displacement seating mechanics of modular tapers and used this method to compare the seating mechanics for different tapers, moisture, seating loads and seating rates. Seating mechanics were explored whereby the instantaneous load-displacement behavior of the head seating onto the neck is captured and used to define the mechanics of seating. Two distinct taper design/material combinations were assembled wet or dry using axially applied loads (500, 1,000, 2,000, and 4,000 N) at two loading rates of 100 and 10 4 N/s (n = 5 for each condition) using a servohydraulic test frame. The results showed that pull-off strength scaled with seating load and ranged between 43% and 68% of seating load depending on sample and wetness. Tapers seated wet had higher pull-off strengths (2,200 ± 300 N) than those seated dry (1,800 ± 200 N, p < 0.05). Seating mechanics (load-displacement plots) varied due to sample type and due to wetness with differences in seating energy, seating stiffness, and seating displacement. These results show the detailed mechanics of seating during assembly and provide significant insight into the complex interplay of factors associated with even "ideal" seating (axial, quasistatic) loading. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:1164-1172, 2018. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
BEaTriX, expanded x-ray beam facility for testing modular elements of telescope optics: an update
NASA Astrophysics Data System (ADS)
Pelliciari, C.; Spiga, D.; Bonnini, E.; Buffagni, E.; Ferrari, C.; Pareschi, G.; Tagliaferri, G.
2015-09-01
We present in this paper an update on the design of BEaTriX (Beam Expander Testing X-ray facility), an X-ray apparatus to be realized at INAF/OAB and that will generate an expanded, uniform and parallel beam of soft X-rays. BEaTriX will be used to perform the functional tests of X-ray focusing modules of large X-ray optics such as those for the ATHENA X-ray observatory, using the Silicon Pore Optics (SPO) as a baseline technology, and Slumped Glass Optics (SGO) as a possible alternative. Performing the tests in X-rays provides the advantage of an in-situ, at-wavelength quality control of the optical modules produced in series by the industry, performing a selection of the modules with the best angular resolution, and, in the case of SPOs, there is also the interesting possibility to align the parabolic and the hyperbolic stacks directly under X-rays, to minimize the aberrations. However, a parallel beam with divergence below 2 arcsec is necessary in order to measure mirror elements that are expected to reach an angular resolution of about 4 arcsec, since the ATHENA requirement for the entire telescope is 5 arcsec. Such a low divergence over the typical aperture of modular optics would require an X-ray source to be located in a several kilometers long vacuum tube. In contrast, BEaTriX will be compact enough (5 m x 14 m) to be housed in a small laboratory, will produce an expanded X-ray beam 60 mm x 200 mm broad, characterized by a very low divergence (1.5 arcsec HEW), strong polarization, high uniformity, and X-ray energy selectable between 1.5 keV and 4.5 keV. In this work we describe the BEaTriX layout and show a performance simulation for the X-ray energy of 4.5 keV.
Atencio, Reinaldo; Chacón, Mirbel; González, Teresa; Briceño, Alexander; Agrifoglio, Giuseppe; Sierraalta, Anibal
2004-02-21
A robust heteromeric hydrogen-bonded synthon [R2(2) (9)-Id] is exploited to drive the modular self-assembly of four coordination complexes [M(H2biim)2(OH2)2]2+ (M = Co2+, Ni2+) and carboxylate counterions. This strategy allowed us to build molecular architectures of 0-, 1-, and 2-dimensions. A hydrogen-bonded 2D-network with cavities has been designed, which maintains its striking integrity after reversible water desorption-resorption processes.
System for controlling the flow of gas into and out of a gas laser
Alger, Terry; Uhlich, Dennis M.; Benett, William J.; Ault, Earl R.
1994-01-01
A modularized system for controlling the gas pressure within a copper vapor or like laser is described herein. This system includes a gas input assembly which serves to direct gas into the laser in a controlled manner in response to the pressure therein for maintaining the laser pressure at a particular value, for example 40 torr. The system also includes a gas output assembly including a vacuum pump and a capillary tube arrangement which operates within both a viscous flow region and a molecular flow region for drawing gas out of the laser in a controlled manner.
Modular initiator with integrated optical diagnostic
Alam, M Kathleen [Cedar Crest, NM; Schmitt, Randal L [Tijeras, NM; Welle, Eric J [Niceville, FL; Madden, Sean P [Arlington, MA
2011-05-17
A slapper detonator which integrally incorporates an optical wavequide structure for determining whether there has been degradation of the explosive in the explosive device that is to be initiated by the detonator. Embodiments of this invention take advantage of the barrel-like character of a typical slapper detonator design. The barrel assembly, being in direct contact with the energetic material, incorporates an optical diagnostic device into the barrel assembly whereby one can monitor the state of the explosive material. Such monitoring can be beneficial because the chemical degradation of the explosive plays an important in achieving proper functioning of a detonator/initiator device.
Modular structure of the full-length DNA gyrase B subunit revealed by small-angle X-ray scattering.
Costenaro, Lionel; Grossmann, J Günter; Ebel, Christine; Maxwell, Anthony
2007-03-01
DNA gyrase, the only topoisomerase able to introduce negative supercoils into DNA, is essential for bacterial transcription and replication; absent from humans, it is a successful target for antibacterials. From biophysical experiments in solution, we report a structural model at approximately 12-15 A resolution of the full-length B subunit (GyrB). Analytical ultracentrifugation shows that GyrB is mainly a nonglobular monomer. Ab initio modeling of small-angle X-ray scattering data for GyrB consistently yields a "tadpole"-like envelope. It allows us to propose an organization of GyrB into three domains-ATPase, Toprim, and Tail-based on their crystallographic and modeled structures. Our study reveals the modular organization of GyrB and points out its potential flexibility, needed during the gyrase catalytic cycle. It provides important insights into the supercoiling mechanism by gyrase and suggests new lines of research.
Commander Young removes CAP from FDF stowage locker on middeck
NASA Technical Reports Server (NTRS)
1981-01-01
Commander Young removes Crew Activity Plans (CAP) from Flight Data File (FD/FDF) modular stowage locker single tray assembly located in forward middeck locker MF28E. Window shade and filter kit on port side bulkhead and potable water tank on middeck floor appear in view. Photo was taken by Pilot Crippen with a 35mm camera.
Thermoplastic Joining and Assembly of Bulk Metallic Glass Composites Through Capacitive Discharge
NASA Technical Reports Server (NTRS)
Roberts, Scott N. (Inventor); Schramm, Joseph P. (Inventor); Hofmann, Douglas C. (Inventor); Johnson, William L. (Inventor); Kozachkov, Henry (Inventor); Demetriou, Marios D. (Inventor)
2015-01-01
Systems and methods for joining BMG Composites are disclosed. Specifically, the joining of BMG Composites is implemented so as to preserve the amorphicity of their matrix phase and the microstructure of their particulate phase. Implementation of the joining method with respect to the construction of modular cellular structures that comprise BMG Composites is also discussed.
Inexpensive Raman Spectrometer for Undergraduate and Graduate Experiments and Research
ERIC Educational Resources Information Center
Mohr, Christian; Spencer, Claire L.; Hippler, Michael
2010-01-01
We describe the construction and performance of an inexpensive modular Raman spectrometer that has been assembled in the framework of a fourth-year undergraduate project (costs below $5000). The spectrometer is based on a 4 mW 532 nm green laser pointer and a compact monochromator equipped with glass fiber optical connections, linear detector…
Null Lens Assembly for X-Ray Mirror Segments
NASA Technical Reports Server (NTRS)
Robinson, David W.
2011-01-01
A document discusses a null lens assembly that allows laser interferometry of 60 deg. slumped glass mirror segments used in x-ray mirrors. The assembly consists of four lenses in precise alignment to each other, with incorporated piezoelectric nanometer stepping actuators to position the lenses in six degrees of freedom for positioning relative to each other.
Polycatenar Ligand Control of the Synthesis and Self-Assembly of Colloidal Nanocrystals.
Diroll, Benjamin T; Jishkariani, Davit; Cargnello, Matteo; Murray, Christopher B; Donnio, Bertrand
2016-08-24
Hydrophobic colloidal nanocrystals are typically synthesized and manipulated with commercially available ligands, and surface functionalization is therefore typically limited to a small number of molecules. Here, we report the use of polycatenar ligands derived from polyalkylbenzoates for the direct synthesis of metallic, chalcogenide, pnictide, and oxide nanocrystals. Polycatenar molecules, branched structures bearing diverging chains in which the terminal substitution pattern, functionality, and binding group can be independently modified, offer a modular platform for the development of ligands with targeted properties. Not only are these ligands used for the direct synthesis of monodisperse nanocrystals, but nanocrystals coated with polycatenar ligands self-assemble into softer bcc superlattices that deviate from conventional harder close-packed structures (fcc or hcp) formed by the same nanocrystals coated with commercial ligands. Self-assembly experiments demonstrate that the molecular structure of polycatenar ligands encodes interparticle spacings and attractions, engineering self-assembly, which is tunable from hard sphere to soft sphere behavior.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dudek, L.; Chrzanowski, J.; Heitzenroeder, P.
The National Compact Stellarator Experiment (NCSX) has been under construction at the Princeton Plasma Physics Laboratory (PPPL) in partnership with the Oak Ridge National Laboratory (ORNL). The stellarator core is designed to produce a compact 3D plasma that combines stellarator and tokamak physics advantages. The complex geometry and tight fabrication tolerances of NCSX create some unique engineering and assembly challenges. The NCSX project was cancelled in May 2008; construction activities are presently being phased out in an orderly fashion. This paper will describe the progress of the fabrication and assembly activities of NCSX. Completion of the coil fabrication is onmore » track for the summer of 2008. All three of the vacuum vessel 120 degrees sections have been delivered. Assembly of vacuum vessel services began in May 2006 and is now complete. Assembly of the modular coils into 3-packs for safe storage is presently underway. (C) 2008 Elsevier B.V. All rights reserved.« less
The LAMAR: A high throughput X-ray astronomy facility for a moderate cost mission
NASA Technical Reports Server (NTRS)
Gorenstein, P.; Schwartz, D.
1981-01-01
The performance of a large area modular array of reflectors (LAMAR) is considered in several hypothetical observations relevant to: (1) cosmology, the X-ray background, and large scale structure of the universe; (2) clusters of galaxies and their evolution; (3) quasars and other active galactic nuclei; (4) compact objects in our galaxy; (5) stellar coronae; and (6) energy input to the interstellar medium.
Projective invariant biplanar registration of a compact modular orthopaedic robot.
Luan, Sheng; Sun, Lei; Hu, Lei; Hao, Aimin; Li, Changsheng; Tang, Peifu; Zhang, Lihai; Du, Hailong
2014-01-01
This paper presents a compact orthopedic robot designed with modular concept. The layout of the modular configuration is adaptive to various conditions such as surgical workspace and targeting path. A biplanar algorithm is adopted for the mapping from the fluoroscopic image to the robot, while the former affine based method is satisfactory only when the projection rays are basically perpendicular to the reference coordinate planes. This paper introduces the area cross-ratio as a projective invariant to improve the registration accuracy for non-orthogonal orientations, so that the robotic system could be applied to more orthopedic procedures under various C-Arm orientation conditions. The system configurations for femoral neck screw and sacroiliac screw fixation are presented. The accuracy of the robotic system and its efficacy for the two typical applications are validated by experiments.
System support software for the Space Ultrareliable Modular Computer (SUMC)
NASA Technical Reports Server (NTRS)
Hill, T. E.; Hintze, G. C.; Hodges, B. C.; Austin, F. A.; Buckles, B. P.; Curran, R. T.; Lackey, J. D.; Payne, R. E.
1974-01-01
The highly transportable programming system designed and implemented to support the development of software for the Space Ultrareliable Modular Computer (SUMC) is described. The SUMC system support software consists of program modules called processors. The initial set of processors consists of the supervisor, the general purpose assembler for SUMC instruction and microcode input, linkage editors, an instruction level simulator, a microcode grid print processor, and user oriented utility programs. A FORTRAN 4 compiler is undergoing development. The design facilitates the addition of new processors with a minimum effort and provides the user quasi host independence on the ground based operational software development computer. Additional capability is provided to accommodate variations in the SUMC architecture without consequent major modifications in the initial processors.
NASA Astrophysics Data System (ADS)
Andreeva, T.; Bräuer, T.; Bykov, V.; Egorov, K.; Endler, M.; Fellinger, J.; Kißlinger, J.; Köppen, M.; Schauer, F.
2015-06-01
Wendelstein 7-X, currently under commissioning at the Max-Planck-Institut für Plasmaphysik in Greifswald, Germany, is a modular advanced stellarator, combining the modular coil concept with optimized properties of the plasma. Most of the envisaged magnetic configurations of the machine are rather sensitive to symmetry breaking perturbations which are the consequence of unavoidable manufacturing and assembly tolerances. This overview describes the successive tracking of the Wendelstein 7-X magnet system geometry starting from the manufacturing of the winding packs up to the modelling of the influence of operation loads. The deviations found were used to calculate the resulting error fields and to compare them with the compensation capacity of the trim coils.
Development of a scanning transmission x-ray microscope for the beamline P04 at PETRA III DESY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrianov, Konstantin; Ewald, Johannes; Nisius, Thomas
We present a scanning transmission x-ray microscope (STXM) built on top of our existing modular platform for high resolution imaging experiments. This platform consists of up to three separate vacuum chambers and custom designed piezo stages. These piezo stages are able to move precisely in x-, y- and z-direction, this makes it possible to adjust the components for different imaging modes. During recent experiments the endstation was operated mainly as a transmission x-ray microscope (TXM) [1, 2].
Fast estimation of space-robots inertia parameters: A modular mathematical formulation
NASA Astrophysics Data System (ADS)
Nabavi Chashmi, Seyed Yaser; Malaek, Seyed Mohammad-Bagher
2016-10-01
This work aims to propose a new technique that considerably helps enhance time and precision needed to identify ;Inertia Parameters (IPs); of a typical Autonomous Space-Robot (ASR). Operations might include, capturing an unknown Target Space-Object (TSO), ;active space-debris removal; or ;automated in-orbit assemblies;. In these operations generating precise successive commands are essential to the success of the mission. We show how a generalized, repeatable estimation-process could play an effective role to manage the operation. With the help of the well-known Force-Based approach, a new ;modular formulation; has been developed to simultaneously identify IPs of an ASR while it captures a TSO. The idea is to reorganize the equations with associated IPs with a ;Modular Set; of matrices instead of a single matrix representing the overall system dynamics. The devised Modular Matrix Set will then facilitate the estimation process. It provides a conjugate linear model in mass and inertia terms. The new formulation is, therefore, well-suited for ;simultaneous estimation processes; using recursive algorithms like RLS. Further enhancements would be needed for cases the effect of center of mass location becomes important. Extensive case studies reveal that estimation time is drastically reduced which in-turn paves the way to acquire better results.
Rational design of alpha-helical tandem repeat proteins with closed architectures
Doyle, Lindsey; Hallinan, Jazmine; Bolduc, Jill; Parmeggiani, Fabio; Baker, David; Stoddard, Barry L.; Bradley, Philip
2015-01-01
Tandem repeat proteins, which are formed by repetition of modular units of protein sequence and structure, play important biological roles as macromolecular binding and scaffolding domains, enzymes, and building blocks for the assembly of fibrous materials1,2. The modular nature of repeat proteins enables the rapid construction and diversification of extended binding surfaces by duplication and recombination of simple building blocks3,4. The overall architecture of tandem repeat protein structures – which is dictated by the internal geometry and local packing of the repeat building blocks – is highly diverse, ranging from extended, super-helical folds that bind peptide, DNA, and RNA partners5–9, to closed and compact conformations with internal cavities suitable for small molecule binding and catalysis10. Here we report the development and validation of computational methods for de novo design of tandem repeat protein architectures driven purely by geometric criteria defining the inter-repeat geometry, without reference to the sequences and structures of existing repeat protein families. We have applied these methods to design a series of closed alpha-solenoid11 repeat structures (alpha-toroids) in which the inter-repeat packing geometry is constrained so as to juxtapose the N- and C-termini; several of these designed structures have been validated by X-ray crystallography. Unlike previous approaches to tandem repeat protein engineering12–20, our design procedure does not rely on template sequence or structural information taken from natural repeat proteins and hence can produce structures unlike those seen in nature. As an example, we have successfully designed and validated closed alpha-solenoid repeats with a left-handed helical architecture that – to our knowledge – is not yet present in the protein structure database21. PMID:26675735
Software to model AXAF-I image quality
NASA Technical Reports Server (NTRS)
Ahmad, Anees; Feng, Chen
1995-01-01
A modular user-friendly computer program for the modeling of grazing-incidence type x-ray optical systems has been developed. This comprehensive computer software GRAZTRACE covers the manipulation of input data, ray tracing with reflectivity and surface deformation effects, convolution with x-ray source shape, and x-ray scattering. The program also includes the capabilities for image analysis, detector scan modeling, and graphical presentation of the results. A number of utilities have been developed to interface the predicted Advanced X-ray Astrophysics Facility-Imaging (AXAF-I) mirror structural and thermal distortions with the ray-trace. This software is written in FORTRAN 77 and runs on a SUN/SPARC station. An interactive command mode version and a batch mode version of the software have been developed.
Self-assembly of Janus dendrimers into uniform dendrimersomes and other complex architectures.
Percec, Virgil; Wilson, Daniela A; Leowanawat, Pawaret; Wilson, Christopher J; Hughes, Andrew D; Kaucher, Mark S; Hammer, Daniel A; Levine, Dalia H; Kim, Anthony J; Bates, Frank S; Davis, Kevin P; Lodge, Timothy P; Klein, Michael L; DeVane, Russell H; Aqad, Emad; Rosen, Brad M; Argintaru, Andreea O; Sienkowska, Monika J; Rissanen, Kari; Nummelin, Sami; Ropponen, Jarmo
2010-05-21
Self-assembled nanostructures obtained from natural and synthetic amphiphiles serve as mimics of biological membranes and enable the delivery of drugs, proteins, genes, and imaging agents. Yet the precise molecular arrangements demanded by these functions are difficult to achieve. Libraries of amphiphilic Janus dendrimers, prepared by facile coupling of tailored hydrophilic and hydrophobic branched segments, have been screened by cryogenic transmission electron microscopy, revealing a rich palette of morphologies in water, including vesicles, denoted dendrimersomes, cubosomes, disks, tubular vesicles, and helical ribbons. Dendrimersomes marry the stability and mechanical strength obtainable from polymersomes with the biological function of stabilized phospholipid liposomes, plus superior uniformity of size, ease of formation, and chemical functionalization. This modular synthesis strategy provides access to systematic tuning of molecular structure and of self-assembled architecture.
Tanaka, Y T; Yoshikawa, I; Yoshioka, K; Terasawa, T; Saito, Y; Mukai, T
2007-03-01
A microchannel plate (MCP) assembly has been used as an ion detector in the low energy particle (LEP) instrument onboard the magnetospheric satellite GEOTAIL. Recently the MCP assembly has detected gamma rays emitted from an astronomical object and has been shown to provide unique information of gamma rays if they are intense enough. However, the detection efficiency for gamma rays was not measured before launch, and therefore we could not analyze the LEP data quantitatively. In this article, we report the gamma-ray detection efficiency of the MCP assembly. The measured efficiencies are 1.29%+/-0.71% and 0.21%+/-0.14% for normal incidence 60 and 662 keV gamma rays, respectively. The incident angle dependence is also presented. Our calibration is crucial to study high energy astrophysical phenomena by using the LEP.
IMp: The customizable LEGO(®) Pinned Insect Manipulator.
Dupont, Steen; Price, Benjamin; Blagoderov, Vladimir
2015-01-01
We present a pinned insect manipulator (IMp) constructed of LEGO® building bricks with two axes of movement and two axes of rotation. In addition we present three variants of the IMp to emphasise the modular design, which facilitates resizing to meet the full range of pinned insect specimens, is fully customizable, collapsible, affordable and does not require specialist tools or knowledge to assemble.
Aircraft noise prediction program validation
NASA Technical Reports Server (NTRS)
Shivashankara, B. N.
1980-01-01
A modular computer program (ANOPP) for predicting aircraft flyover and sideline noise was developed. A high quality flyover noise data base for aircraft that are representative of the U.S. commercial fleet was assembled. The accuracy of ANOPP with respect to the data base was determined. The data for source and propagation effects were analyzed and suggestions for improvements to the prediction methodology are given.
Dikina, Anna D; Strobel, Hannah A; Lai, Bradley P; Rolle, Marsha W; Alsberg, Eben
2015-06-01
There is a critical need to engineer a neotrachea because currently there are no long-term treatments for tracheal stenoses affecting large portions of the airway. In this work, a modular tracheal tissue replacement strategy was developed. High-cell density, scaffold-free human mesenchymal stem cell-derived cartilaginous rings and tubes were successfully generated through employment of custom designed culture wells and a ring-to-tube assembly system. Furthermore, incorporation of transforming growth factor-β1-delivering gelatin microspheres into the engineered tissues enhanced chondrogenesis with regard to tissue size and matrix production and distribution in the ring- and tube-shaped constructs, as well as luminal rigidity of the tubes. Importantly, all engineered tissues had similar or improved biomechanical properties compared to rat tracheas, which suggests they could be transplanted into a small animal model for airway defects. The modular, bottom up approach used to grow stem cell-based cartilaginous tubes in this report is a promising platform to engineer complex organs (e.g., trachea), with control over tissue size and geometry, and has the potential to be used to generate autologous tissue implants for human clinical applications. Copyright © 2015 Elsevier Ltd. All rights reserved.
Ferrante, Todd A.
1997-01-01
A modular robot may comprise a main body having a structure defined by a plurality of stackable modules. The stackable modules may comprise a manifold, a valve module, and a control module. The manifold may comprise a top surface and a bottom surface having a plurality of fluid passages contained therein, at least one of the plurality of fluid passages terminating in a valve port located on the bottom surface of the manifold. The valve module is removably connected to the manifold and selectively fluidically connects the plurality of fluid passages contained in the manifold to a supply of pressurized fluid and to a vent. The control module is removably connected to the valve module and actuates the valve module to selectively control a flow of pressurized fluid through different ones of the plurality of fluid passages in the manifold. The manifold, valve module, and control module are mounted together in a sandwich-like manner and comprise a main body. A plurality of leg assemblies are removably connected to the main body and are removably fluidically connected to the fluid passages in the manifold so that each of the leg assemblies can be selectively actuated by the flow of pressurized fluid in different ones of the plurality of fluid passages in the manifold.
Copp, Stacy M; Schultz, Danielle E; Swasey, Steven; Gwinn, Elisabeth G
2015-03-24
The remarkable precision that DNA scaffolds provide for arraying nanoscale optical elements enables optical phenomena that arise from interactions of metal nanoparticles, dye molecules, and quantum dots placed at nanoscale separations. However, control of ensemble optical properties has been limited by the difficulty of achieving uniform particle sizes and shapes. Ligand-stabilized metal clusters offer a route to atomically precise arrays that combine desirable attributes of both metals and molecules. Exploiting the unique advantages of the cluster regime requires techniques to realize controlled nanoscale placement of select cluster structures. Here we show that atomically monodisperse arrays of fluorescent, DNA-stabilized silver clusters can be realized on a prototypical scaffold, a DNA nanotube, with attachment sites separated by <10 nm. Cluster attachment is mediated by designed DNA linkers that enable isolation of specific clusters prior to assembly on nanotubes and preserve cluster structure and spectral purity after assembly. The modularity of this approach generalizes to silver clusters of diverse sizes and DNA scaffolds of many types. Thus, these silver cluster nano-optical elements, which themselves have colors selected by their particular DNA templating oligomer, bring unique dimensions of control and flexibility to the rapidly expanding field of nano-optics.
Dynamic multiprotein assemblies shape the spatial structure of cell signaling.
Nussinov, Ruth; Jang, Hyunbum
2014-01-01
Cell signaling underlies critical cellular decisions. Coordination, efficiency as well as fail-safe mechanisms are key elements. How the cell ensures that these hallmarks are at play are important questions. Cell signaling is often viewed as taking place through discrete and cross-talking pathways; oftentimes these are modularized to emphasize distinct functions. While simple, convenient and clear, such models largely neglect the spatial structure of cell signaling; they also convey inter-modular (or inter-protein) spatial separation that may not exist. Here our thesis is that cell signaling is shaped by a network of multiprotein assemblies. While pre-organized, the assemblies and network are loose and dynamic. They contain transiently-associated multiprotein complexes which are often mediated by scaffolding proteins. They are also typically anchored in the membrane, and their continuum may span the cell. IQGAP1 scaffolding protein which binds proteins including Raf, calmodulin, Mek, Erk, actin, and tens more, with actin shaping B-cell (and likely other) membrane-anchored nanoclusters and allosterically polymerizing in dynamic cytoskeleton formation, and Raf anchoring in the membrane along with Ras, provides a striking example. The multivalent network of dynamic proteins and lipids, with specific interactions forming and breaking, can be viewed as endowing gel-like properties. Collectively, this reasons that efficient, productive and reliable cell signaling takes place primarily through transient, preorganized and cooperative protein-protein interactions spanning the cell rather than stochastic, diffusion-controlled processes. Copyright © 2014 Elsevier Ltd. All rights reserved.
Kwong, Gabriel A; Radu, Caius G; Hwang, Kiwook; Shu, Chengyi J; Ma, Chao; Koya, Richard C; Comin-Anduix, Begonya; Hadrup, Sine Reker; Bailey, Ryan C; Witte, Owen N; Schumacher, Ton N; Ribas, Antoni; Heath, James R
2009-07-22
The human immune system consists of a large number of T cells capable of recognizing and responding to antigens derived from various sources. The development of peptide-major histocompatibility (p/MHC) tetrameric complexes has enabled the direct detection of these antigen-specific T cells. With the goal of increasing throughput and multiplexing of T cell detection, protein microarrays spotted with defined p/MHC complexes have been reported, but studies have been limited due to the inherent instability and reproducibility of arrays produced via conventional spotted methods. Herein, we report on a platform for the detection of antigen-specific T cells on glass substrates that offers significant advantages over existing surface-bound schemes. In this approach, called "Nucleic Acid Cell Sorting (NACS)", single-stranded DNA oligomers conjugated site-specifically to p/MHC tetramers are employed to immobilize p/MHC tetramers via hybridization to a complementary-printed substrate. Fully assembled p/MHC arrays are used to detect and enumerate T cells captured from cellular suspensions, including primary human T cells collected from cancer patients. NACS arrays outperform conventional spotted arrays assessed in key criteria such as repeatability and homogeneity. The versatility of employing DNA sequences for cell sorting is exploited to enable the programmed, selective release of target populations of immobilized T cells with restriction endonucleases for downstream analysis. Because of the performance, facile and modular assembly of p/MHC tetramer arrays, NACS holds promise as a versatile platform for multiplexed T cell detection.
He, Zhen; Jiang, Hui-Jun; Wu, Long-Long; Liu, Jian-Wei; Wang, Geng; Wang, Xiao; Wang, Jin-Long; Hou, Zhong-Huai; Chen, Gang; Yu, Shu-Hong
2018-07-02
Although many assembly strategies have been used to successfully construct well-aligned nanowire (NW) assemblies, the understanding of their assembly kinetics has remained elusive, which restricts the development of NW-based device and circuit fabrication. Now a versatile strategy that combines interfacial assembly and synchrotron-based grazing-incidence small-angle X-ray scattering (GISAXS) is presented to track the assembly evolution of the NWs in real time. During the interface assembly process, the randomly dispersed NWs gradually aggregate to form small ordered NW-blocks and finally are constructed into well-defined NW monolayer driven by the conformation entropy. The NW assembly mechanism can be well revealed by the thermodynamic analysis and large-scale molecular dynamics theoretical evaluation. These findings point to new opportunities for understanding NW assembly kinetics and manipulating NW assembled structures by bottom-up strategy. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Rapid construction of insulated genetic circuits via synthetic sequence-guided isothermal assembly
DOE Office of Scientific and Technical Information (OSTI.GOV)
Torella, JP; Boehm, CR; Lienert, F
2013-12-28
In vitro recombination methods have enabled one-step construction of large DNA sequences from multiple parts. Although synthetic biological circuits can in principle be assembled in the same fashion, they typically contain repeated sequence elements such as standard promoters and terminators that interfere with homologous recombination. Here we use a computational approach to design synthetic, biologically inactive unique nucleotide sequences (UNSes) that facilitate accurate ordered assembly. Importantly, our designed UNSes make it possible to assemble parts with repeated terminator and insulator sequences, and thereby create insulated functional genetic circuits in bacteria and mammalian cells. Using UNS-guided assembly to construct repeating promoter-gene-terminatormore » parts, we systematically varied gene expression to optimize production of a deoxychromoviridans biosynthetic pathway in Escherichia coli. We then used this system to construct complex eukaryotic AND-logic gates for genomic integration into embryonic stem cells. Construction was performed by using a standardized series of UNS-bearing BioBrick-compatible vectors, which enable modular assembly and facilitate reuse of individual parts. UNS-guided isothermal assembly is broadly applicable to the construction and optimization of genetic circuits and particularly those requiring tight insulation, such as complex biosynthetic pathways, sensors, counters and logic gates.« less
Design, Assembly, and Characterization of TALE-Based Transcriptional Activators and Repressors.
Thakore, Pratiksha I; Gersbach, Charles A
2016-01-01
Transcription activator-like effectors (TALEs) are modular DNA-binding proteins that can be fused to a variety of effector domains to regulate the epigenome. Nucleotide recognition by TALE monomers follows a simple cipher, making this a powerful and versatile method to activate or repress gene expression. Described here are methods to design, assemble, and test TALE transcription factors (TALE-TFs) for control of endogenous gene expression. In this protocol, TALE arrays are constructed by Golden Gate cloning and tested for activity by transfection and quantitative RT-PCR. These methods for engineering TALE-TFs are useful for studies in reverse genetics and genomics, synthetic biology, and gene therapy.
Porciani, David; Cardwell, Leah N; Tawiah, Kwaku D; Alam, Khalid K; Lange, Margaret J; Daniels, Mark A; Burke, Donald H
2018-06-11
Large RNAs and ribonucleoprotein complexes have powerful therapeutic potential, but effective cell-targeted delivery tools are limited. Aptamers that internalize into target cells can deliver siRNAs (<15 kDa, 19-21 nt/strand). We demonstrate a modular nanostructure for cellular delivery of large, functional RNA payloads (50-80 kDa, 175-250 nt) by aptamers that recognize multiple human B cell cancer lines and transferrin receptor-expressing cells. Fluorogenic RNA reporter payloads enable accelerated testing of platform designs and rapid evaluation of assembly and internalization. Modularity is demonstrated by swapping in different targeting and payload aptamers. Both modules internalize into leukemic B cell lines and remained colocalized within endosomes. Fluorescence from internalized RNA persists for ≥2 h, suggesting a sizable window for aptamer payloads to exert influence upon targeted cells. This demonstration of aptamer-mediated, cell-internalizing delivery of large RNAs with retention of functional structure raises the possibility of manipulating endosomes and cells by delivering large aptamers and regulatory RNAs.
Thermal Characterization for a Modular 3-D Multichip Module
NASA Technical Reports Server (NTRS)
Fan, Mark S.; Plante, Jeannette; Shaw, Harry
2000-01-01
NASA Goddard Space Flight Center has designed a high-density modular 3-D multichip module (MCM) for future spaceflight use. This MCM features a complete modular structure, i.e., each stack can be removed from the package without damaging the structure. The interconnection to the PCB is through the Column Grid Array (CGA) technology. Because of its high-density nature, large power dissipation from multiple layers of circuitry is anticipated and CVD diamond films are used in the assembly for heat conduction enhancement. Since each stacked layer dissipates certain amount of heat, designing effective heat conduction paths through each stack and balancing the heat dissipation within each stack for optimal thermal performance become a challenging task. To effectively remove the dissipated heat from the package, extensive thermal analysis has been performed with finite element methods. Through these analyses, we are able to improve the thermal design and increase the total wattage of the package for maximum electrical performance. This paper provides details on the design-oriented thermal analysis and performance enhancement. It also addresses issues relating to contact thermal resistance between the diamond film and the metallic heat conduction paths.
Modular Activating Receptors in Innate and Adaptive Immunity.
Berry, Richard; Call, Matthew E
2017-03-14
Triggering of cell-mediated immunity is largely dependent on the recognition of foreign or abnormal molecules by a myriad of cell surface-bound receptors. Many activating immune receptors do not possess any intrinsic signaling capacity but instead form noncovalent complexes with one or more dimeric signaling modules that communicate with a common set of kinases to initiate intracellular information-transfer pathways. This modular architecture, where the ligand binding and signaling functions are detached from one another, is a common theme that is widely employed throughout the innate and adaptive arms of immune systems. The evolutionary advantages of this highly adaptable platform for molecular recognition are visible in the variety of ligand-receptor interactions that can be linked to common signaling pathways, the diversification of receptor modules in response to pathogen challenges, and the amplification of cellular responses through incorporation of multiple signaling motifs. Here we provide an overview of the major classes of modular activating immune receptors and outline the current state of knowledge regarding how these receptors assemble, recognize their ligands, and ultimately trigger intracellular signal transduction pathways that activate immune cell effector functions.
NASA Astrophysics Data System (ADS)
Hahn, A.; Mazin, D.; Bangale, P.; Dettlaff, A.; Fink, D.; Grundner, F.; Haberer, W.; Maier, R.; Mirzoyan, R.; Podkladkin, S.; Teshima, M.; Wetteskind, H.
2017-02-01
The MAGIC collaboration operates two 17 m diameter Imaging Atmospheric Cherenkov Telescopes (IACTs) on the Canary Island of La Palma. Each of the two telescopes is currently equipped with a photomultiplier tube (PMT) based imaging camera. Due to the advances in the development of Silicon Photomultipliers (SiPMs), they are becoming a widely used alternative to PMTs in many research fields including gamma-ray astronomy. Within the Otto-Hahn group at the Max Planck Institute for Physics, Munich, we are developing a SiPM based detector module for a possible upgrade of the MAGIC cameras and also for future experiments as, e.g., the Large Size Telescopes (LST) of the Cherenkov Telescope Array (CTA). Because of the small size of individual SiPM sensors (6 mm×6 mm) with respect to the 1-inch diameter PMTs currently used in MAGIC, we use a custom-made matrix of SiPMs to cover the same detection area. We developed an electronic circuit to actively sum up and amplify the SiPM signals. Existing non-imaging hexagonal light concentrators (Winston cones) used in MAGIC have been modified for the angular acceptance of the SiPMs by using C++ based ray tracing simulations. The first prototype based detector module includes seven channels and was installed into the MAGIC camera in May 2015. We present the results of the first prototype and its performance as well as the status of the project and discuss its challenges.
NASA Technical Reports Server (NTRS)
Eastman, G. Yale; Dussinger, Peter M.; Hartenstine, John R.
1994-01-01
Three modular heat-transfer components designed for use together or separately. Simple mechanical connections facilitate assembly of these and related heat-transfer components into cooling systems of various configurations, such as to cool laboratory equipment rearranged for different experiments. Components are clamp-on cold plate, cold plate attached to flexible heat pipe, and thermal-bus receptacle. Clamp-on cold plate moved to any convenient location for attachment of equipment cooled by it, then clamped onto thermal bus. Heat from equipment conducted through plate and into coolant. Thermal-bus receptacle integral with thermal bus. Includes part of thermal bus to which clamp-on cold plate attached, plus tapered socket into which condenser end of flexible heat pipe plugged. Thermal-bus receptacle includes heat-pipe wick structure using coolant in bus to enhance transfer of heat from cold plate.
Peters, Martin; Trobe, Melanie; Tan, Hao; Kleineweischede, Rolf; Breinbauer, Rolf
2013-02-11
Teraryl-based α-helix mimetics have proven to be useful compounds for the inhibition of protein-protein interactions (PPI). We have developed a modular and flexible approach for the synthesis of teraryl-based α-helix mimetics. Central to our strategy is the use of a benzene core unit featuring two leaving groups of differentiated reactivity in the Pd-catalyzed cross-coupling used for terphenyl assembly. With the halogen/diazonium route and the halogen/triflate route, two strategies have successfully been established. The synthesis of core building blocks with aliphatic (Ala, Val, Leu, Ile), aromatic (Phe), polar (Cys, Lys), hydrophilic (Ser, Gln), and acidic (Glu) amino acid side chains are reported. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Holt, W.E.; Kuban, D.P.; Martin, H.L.
1988-10-25
An advanced servo manipulator has modular parts. Modular motor members drive individual input gears to control shoulder roll, shoulder pitch, elbow pitch, wrist yaw, wrist pitch, wrist roll, and tong spacing. The modules include a support member, a shoulder module for controlling shoulder roll, and a sleeve module attached to the shoulder module in fixed relation thereto. The shoulder roll sleeve module has an inner cylindrical member rotatable relative to the outer cylindrical member, and upon which a gear pod assembly is mounted. A plurality of shafts are driven by the gears, which are in turn driven by individual motor modules to transmit rotary power to control elbow pitch as well as to provide four different rotary shafts across the bendable elbow joint to supply rotary motive power to a wrist member and tong member. 41 figs.
Holt, William E.; Kuban, Daniel P.; Martin, H. Lee
1988-01-01
An advanced servo manipulator has modular parts. Modular motor members drive individual input gears to control shoulder roll, shoulder pitch, elbow pitch, wrist yaw, wrist pitch, wrist roll, and tong spacing. The modules include a support member, a shoulder module for controlling shoulder roll, and a sleeve module attached to the shoulder module in fixed relation thereto. The shoulder roll sleeve module has an inner cylindrical member rotatable relative to the outer cylindrical member, and upon which a gear pod assembly is mounted. A plurality of shafts are driven by the gears, which are in turn driven by individual motor modules to transmit rotary power to control elbow pitch as well as to provide four different rotary shafts across the bendable elbow joint to supply rotary motive power to a wrist member and tong member.
Modular liquid-cooled helmet liner for thermal comfort
NASA Technical Reports Server (NTRS)
Williams, B. A.; Shitzer, A.
1974-01-01
A modular liquid-cooled helmet liner made of eight form-fitting neoprene patches was constructed. The liner was integrated into the sweatband of an Army SPH-4 helicopter aircrew helmet. This assembly was tested on four subjects seated in a hot (47 C), humid (40%) environment. Results indicate a marked reduction in the rate of increase of physiological body functions. Rectal temperature, weight loss, heart rate, and strain indices are all reduced to approximately 50% of uncooled levels. The cooling liner removed from 10% to 30% of total metabolic heat produced. This study also demonstrated the technical feasilibity of using a cooling liner in conjunction with a standard hard helmet. Potential applications of the cooling liner in thermally stressful environments are numerous, notably for helicopter and other aircrews.
Controllable Modular Growth of Hierarchical MOF-on-MOF Architectures.
Gu, Yifan; Wu, Yi-Nan; Li, Liangchun; Chen, Wei; Li, Fengting; Kitagawa, Susumu
2017-12-04
Fabrication of hybrid MOF-on-MOF heteroarchitectures can create novel and multifunctional platforms to achieve desired properties. However, only MOFs with similar crystallographic parameters can be hybridized by the classical epitaxial growth method (EGM), which largely suppressed its applications. A general strategy, called internal extended growth method (IEGM), is demonstrated for the feasible assembly of MOFs with distinct crystallographic parameters in an MOF matrix. Various MOFs with diverse functions could be introduced in a modular MOF matrix to form 3D core-satellite pluralistic hybrid system. The number of different MOF crystals interspersed could be varied on demand. More importantly, the different MOF crystals distributed in individual domains could be used to further incorporate functional units or enhance target functions. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Advanced Metalworking Solutions For Naval Systems That Go In Harm’s Way
2015-01-01
destroyers USS Momsen (DDG 92) and USS Preble (DDG 88) are underway in formation. U.S. Navy photo Front cover: Ingalls Shipbuilding welding photo...applies a variety of innovative welding technologies to address the challenges associated with joining weapon system components. Joining Technologies...friction stir welding process to manufacture edge-cooled naval electronic cold plate assemblies. The modular, high- performance, and scalable
IMp: The customizable LEGO® Pinned Insect Manipulator
Dupont, Steen; Price, Benjamin; Blagoderov, Vladimir
2015-01-01
Abstract We present a pinned insect manipulator (IMp) constructed of LEGO® building bricks with two axes of movement and two axes of rotation. In addition we present three variants of the IMp to emphasise the modular design, which facilitates resizing to meet the full range of pinned insect specimens, is fully customizable, collapsible, affordable and does not require specialist tools or knowledge to assemble. PMID:25685035
Image Intensifier Modules For Use With Commercially Available Solid State Cameras
NASA Astrophysics Data System (ADS)
Murphy, Howard; Tyler, Al; Lake, Donald W.
1989-04-01
A modular approach to design has contributed greatly to the success of the family of machine vision video equipment produced by EG&G Reticon during the past several years. Internal modularity allows high-performance area (matrix) and line scan cameras to be assembled with two or three electronic subassemblies with very low labor costs, and permits camera control and interface circuitry to be realized by assemblages of various modules suiting the needs of specific applications. Product modularity benefits equipment users in several ways. Modular matrix and line scan cameras are available in identical enclosures (Fig. 1), which allows enclosure components to be purchased in volume for economies of scale and allows field replacement or exchange of cameras within a customer-designed system to be easily accomplished. The cameras are optically aligned (boresighted) at final test; modularity permits optical adjustments to be made with the same precise test equipment for all camera varieties. The modular cameras contain two, or sometimes three, hybrid microelectronic packages (Fig. 2). These rugged and reliable "submodules" perform all of the electronic operations internal to the camera except for the job of image acquisition performed by the monolithic image sensor. Heat produced by electrical power dissipation in the electronic modules is conducted through low resistance paths to the camera case by the metal plates, which results in a thermally efficient and environmentally tolerant camera with low manufacturing costs. A modular approach has also been followed in design of the camera control, video processor, and computer interface accessory called the Formatter (Fig. 3). This unit can be attached directly onto either a line scan or matrix modular camera to form a self-contained units, or connected via a cable to retain the advantages inherent to a small, light weight, and rugged image sensing component. Available modules permit the bus-structured Formatter to be configured as required by a specific camera application. Modular line and matrix scan cameras incorporating sensors with fiber optic faceplates (Fig 4) are also available. These units retain the advantages of interchangeability, simple construction, ruggedness, and optical precision offered by the more common lens input units. Fiber optic faceplate cameras are used for a wide variety of applications. A common usage involves mating of the Reticon-supplied camera to a customer-supplied intensifier tube for low light level and/or short exposure time situations.
Robotically Assembled Aerospace Structures: Digital Material Assembly using a Gantry-Type Assembler
NASA Technical Reports Server (NTRS)
Trinh, Greenfield; Copplestone, Grace; O'Connor, Molly; Hu, Steven; Nowak, Sebastian; Cheung, Kenneth; Jenett, Benjamin; Cellucci, Daniel
2017-01-01
This paper evaluates the development of automated assembly techniques for discrete lattice structures using a multi-axis gantry type CNC machine. These lattices are made of discrete components called digital materials. We present the development of a specialized end effector that works in conjunction with the CNC machine to assemble these lattices. With this configuration we are able to place voxels at a rate of 1.5 per minute. The scalability of digital material structures due to the incremental modular assembly is one of its key traits and an important metric of interest. We investigate the build times of a 5x5 beam structure on the scale of 1 meter (325 parts), 10 meters (3,250 parts), and 30 meters (9,750 parts). Utilizing the current configuration with a single end effector, performing serial assembly with a globally fixed feed station at the edge of the build volume, the build time increases according to a scaling law of n4, where n is the build scale. Build times can be reduced significantly by integrating feed systems into the gantry itself, resulting in a scaling law of n3. A completely serial assembly process will encounter time limitations as build scale increases. Automated assembly for digital materials can assemble high performance structures from discrete parts, and techniques such as built in feed systems, parallelization, and optimization of the fastening process will yield much higher throughput.
Robotically Assembled Aerospace Structures: Digital Material Assembly using a Gantry-Type Assembler
NASA Technical Reports Server (NTRS)
Trinh, Greenfield; Copplestone, Grace; O'Connor, Molly; Hu, Steven; Nowak, Sebastian; Cheung, Kenneth; Jenett, Benjamin; Cellucci, Daniel
2017-01-01
This paper evaluates the development of automated assembly techniques for discrete lattice structures using a multi-axis gantry type CNC machine. These lattices are made of discrete components called "digital materials." We present the development of a specialized end effector that works in conjunction with the CNC machine to assemble these lattices. With this configuration we are able to place voxels at a rate of 1.5 per minute. The scalability of digital material structures due to the incremental modular assembly is one of its key traits and an important metric of interest. We investigate the build times of a 5x5 beam structure on the scale of 1 meter (325 parts), 10 meters (3,250 parts), and 30 meters (9,750 parts). Utilizing the current configuration with a single end effector, performing serial assembly with a globally fixed feed station at the edge of the build volume, the build time increases according to a scaling law of n4, where n is the build scale. Build times can be reduced significantly by integrating feed systems into the gantry itself, resulting in a scaling law of n3. A completely serial assembly process will encounter time limitations as build scale increases. Automated assembly for digital materials can assemble high performance structures from discrete parts, and techniques such as built in feed systems, parallelization, and optimization of the fastening process will yield much higher throughput.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abhyankar, Vinay V.; Wu, Meiye; Koh, Chung -Yan
Microfluidic barrier tissue models have emerged as advanced in vitro tools to explore interactions with external stimuli such as drug candidates, pathogens, or toxins. However, the procedures required to establish and maintain these systems can be challenging to implement for end users, particularly those without significant in-house engineering expertise. Here we present a module-based approach that provides an easy-to-use workflow to establish, maintain, and analyze microscale tissue constructs. Our approach begins with a removable culture insert that is magnetically coupled, decoupled, and transferred between standalone, prefabricated microfluidic modules for simplified cell seeding, culture, and downstream analysis. The modular approach allowsmore » several options for perfusion including standard syringe pumps or integration with a self-contained gravity-fed module for simple cell maintenance. As proof of concept, we establish a culture of primary human microvascular endothelial cells (HMVEC) and report combined surface protein imaging and gene expression after controlled apical stimulation with the bacterial endotoxin lipopolysaccharide (LPS). We also demonstrate the feasibility of incorporating hydrated biomaterial interfaces into the microfluidic architecture by integrating an ultra-thin (< 1 μm), self-assembled hyaluronic acid/peptide amphiphile culture membrane with brain-specific Young’s modulus (~ 1kPa). To highlight the importance of including biomimetic interfaces into microscale models we report multi-tiered readouts from primary rat cortical cells cultured on the self-assembled membrane and compare a panel of mRNA targets with primary brain tissue signatures. As a result, we anticipate that the modular approach and simplified operational workflows presented here will enable a wide range of research groups to incorporate microfluidic barrier tissue models into their work.« less
Advanced Electric Distribution, Switching, and Conversion Technology for Power Control
NASA Technical Reports Server (NTRS)
Soltis, James V.
1998-01-01
The Electrical Power Control Unit currently under development by Sundstrand Aerospace for use on the Fluids Combustion Facility of the International Space Station is the precursor of modular power distribution and conversion concepts for future spacecraft and aircraft applications. This unit combines modular current-limiting flexible remote power controllers and paralleled power converters into one package. Each unit includes three 1-kW, current-limiting power converter modules designed for a variable-ratio load sharing capability. The flexible remote power controllers can be used in parallel to match load requirements and can be programmed for an initial ON or OFF state on powerup. The unit contains an integral cold plate. The modularity and hybridization of the Electrical Power Control Unit sets the course for future spacecraft electrical power systems, both large and small. In such systems, the basic hybridized converter and flexible remote power controller building blocks could be configured to match power distribution and conversion capabilities to load requirements. In addition, the flexible remote power controllers could be configured in assemblies to feed multiple individual loads and could be used in parallel to meet the specific current requirements of each of those loads. Ultimately, the Electrical Power Control Unit design concept could evolve to a common switch module hybrid, or family of hybrids, for both converter and switchgear applications. By assembling hybrids of a common current rating and voltage class in parallel, researchers could readily adapt these units for multiple applications. The Electrical Power Control Unit concept has the potential to be scaled to larger and smaller ratings for both small and large spacecraft and for aircraft where high-power density, remote power controllers or power converters are required and a common replacement part is desired for multiples of a base current rating.
Abhyankar, Vinay V.; Wu, Meiye; Koh, Chung -Yan; ...
2016-05-26
Microfluidic barrier tissue models have emerged as advanced in vitro tools to explore interactions with external stimuli such as drug candidates, pathogens, or toxins. However, the procedures required to establish and maintain these systems can be challenging to implement for end users, particularly those without significant in-house engineering expertise. Here we present a module-based approach that provides an easy-to-use workflow to establish, maintain, and analyze microscale tissue constructs. Our approach begins with a removable culture insert that is magnetically coupled, decoupled, and transferred between standalone, prefabricated microfluidic modules for simplified cell seeding, culture, and downstream analysis. The modular approach allowsmore » several options for perfusion including standard syringe pumps or integration with a self-contained gravity-fed module for simple cell maintenance. As proof of concept, we establish a culture of primary human microvascular endothelial cells (HMVEC) and report combined surface protein imaging and gene expression after controlled apical stimulation with the bacterial endotoxin lipopolysaccharide (LPS). We also demonstrate the feasibility of incorporating hydrated biomaterial interfaces into the microfluidic architecture by integrating an ultra-thin (< 1 μm), self-assembled hyaluronic acid/peptide amphiphile culture membrane with brain-specific Young’s modulus (~ 1kPa). To highlight the importance of including biomimetic interfaces into microscale models we report multi-tiered readouts from primary rat cortical cells cultured on the self-assembled membrane and compare a panel of mRNA targets with primary brain tissue signatures. As a result, we anticipate that the modular approach and simplified operational workflows presented here will enable a wide range of research groups to incorporate microfluidic barrier tissue models into their work.« less
Scalable Light Module for Low-Cost, High-Efficiency Light- Emitting Diode Luminaires
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tarsa, Eric
2015-08-31
During this two-year program Cree developed a scalable, modular optical architecture for low-cost, high-efficacy light emitting diode (LED) luminaires. Stated simply, the goal of this architecture was to efficiently and cost-effectively convey light from LEDs (point sources) to broad luminaire surfaces (area sources). By simultaneously developing warm-white LED components and low-cost, scalable optical elements, a high system optical efficiency resulted. To meet program goals, Cree evaluated novel approaches to improve LED component efficacy at high color quality while not sacrificing LED optical efficiency relative to conventional packages. Meanwhile, efficiently coupling light from LEDs into modular optical elements, followed by optimallymore » distributing and extracting this light, were challenges that were addressed via novel optical design coupled with frequent experimental evaluations. Minimizing luminaire bill of materials and assembly costs were two guiding principles for all design work, in the effort to achieve luminaires with significantly lower normalized cost ($/klm) than existing LED fixtures. Chief project accomplishments included the achievement of >150 lm/W warm-white LEDs having primary optics compatible with low-cost modular optical elements. In addition, a prototype Light Module optical efficiency of over 90% was measured, demonstrating the potential of this scalable architecture for ultra-high-efficacy LED luminaires. Since the project ended, Cree has continued to evaluate optical element fabrication and assembly methods in an effort to rapidly transfer this scalable, cost-effective technology to Cree production development groups. The Light Module concept is likely to make a strong contribution to the development of new cost-effective, high-efficacy luminaries, thereby accelerating widespread adoption of energy-saving SSL in the U.S.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ficko-Blean, E.; Gregg, K; Adams, J
2009-01-01
Common features of the extracellular carbohydrate-active virulence factors involved in host-pathogen interactions are their large sizes and modular complexities. This has made them recalcitrant to structural analysis, and therefore our understanding of the significance of modularity in these important proteins is lagging. Clostridium perfringens is a prevalent human pathogen that harbors a wide array of large, extracellular carbohydrate-active enzymes and is an excellent and relevant model system to approach this problem. Here we describe the complete structure of C. perfringens GH84C (NagJ), a 1001-amino acid multimodular homolog of the C. perfringens ?-toxin, which was determined using a combination of smallmore » angle x-ray scattering and x-ray crystallography. The resulting structure reveals unprecedented insight into how catalysis, carbohydrate-specific adherence, and the formation of molecular complexes with other enzymes via an ultra-tight protein-protein interaction are spatially coordinated in an enzyme involved in a host-pathogen interaction.« less
Image Geometric Corrections for a New EMCCD-based Dual Modular X-ray Imager
Qu, Bin; Huang, Ying; Wang, Weiyuan; Cartwright, Alexander N.; Titus, Albert H.; Bednarek, Daniel R.; Rudin, Stephen
2012-01-01
An EMCCD-based dual modular x-ray imager was recently designed and developed from the component level, providing a high dynamic range of 53 dB and an effective pixel size of 26 μm for angiography and fluoroscopy. The unique 2×1 array design efficiently increased the clinical field of view, and also can be readily expanded to an M×N array implementation. Due to the alignment mismatches between the EMCCD sensors and the fiber optic tapers in each module, the output images or video sequences result in a misaligned 2048×1024 digital display if uncorrected. In this paper, we present a method for correcting display registration using a custom-designed two layer printed circuit board. This board was designed with grid lines to serve as the calibration pattern, and provides an accurate reference and sufficient contrast to enable proper display registration. Results show an accurate and fine stitching of the two outputs from the two modules. PMID:22254882
Hexagonally Ordered Arrays of α-Helical Bundles Formed from Peptide-Dendron Hybrids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barkley, Deborah A.; Rokhlenko, Yekaterina; Marine, Jeannette E.
Combining monodisperse building blocks that have distinct folding properties serves as a modular strategy for controlling structural complexity in hierarchically organized materials. We combine an α-helical bundle-forming peptide with self-assembling dendrons to better control the arrangement of functional groups within cylindrical nanostructures. Site-specific grafting of dendrons to amino acid residues on the exterior of the α-helical bundle yields monodisperse macromolecules with programmable folding and self-assembly properties. The resulting hybrid biomaterials form thermotropic columnar hexagonal mesophases in which the peptides adopt an α-helical conformation. Bundling of the α-helical peptides accompanies self-assembly of the peptide-dendron hybrids into cylindrical nanostructures. The bundle stoichiometrymore » in the mesophase agrees well with the size found in solution for α-helical bundles of peptides with a similar amino acid sequence.« less
Optochemical Control of Protein Localization and Activity within Cell-like Compartments.
Caldwell, Reese M; Bermudez, Jessica G; Thai, David; Aonbangkhen, Chanat; Schuster, Benjamin S; Courtney, Taylor; Deiters, Alexander; Hammer, Daniel A; Chenoweth, David M; Good, Matthew C
2018-05-08
We report inducible dimerization strategies for controlling protein positioning, enzymatic activity, and organelle assembly inside synthetic cell-like compartments upon photostimulation. Using a photocaged TMP-Haloligand compound, we demonstrate small molecule and light-induced dimerization of DHFR and Haloenzyme to localize proteins to a compartment boundary and reconstitute tripartite sfGFP assembly. Using photocaged rapamycin and fragments of split TEV protease fused to FRB and FKBP, we establish optical triggering of protease activity inside cell-size compartments. We apply light-inducible protease activation to initiate assembly of membraneless organelles, demonstrating the applicability of these tools for characterizing cell biological processes in vitro. This modular toolkit, which affords spatial and temporal control of protein function in a minimal cell-like system, represents a critical step toward the reconstitution of a tunable synthetic cell, built from the bottom up.
NASA Astrophysics Data System (ADS)
Tozawa, Tomokazu; Jones, James T. A.; Swamy, Shashikala I.; Jiang, Shan; Adams, Dave J.; Shakespeare, Stephen; Clowes, Rob; Bradshaw, Darren; Hasell, Tom; Chong, Samantha Y.; Tang, Chiu; Thompson, Stephen; Parker, Julia; Trewin, Abbie; Bacsa, John; Slawin, Alexandra M. Z.; Steiner, Alexander; Cooper, Andrew I.
2009-12-01
Porous materials are important in a wide range of applications including molecular separations and catalysis. We demonstrate that covalently bonded organic cages can assemble into crystalline microporous materials. The porosity is prefabricated and intrinsic to the molecular cage structure, as opposed to being formed by non-covalent self-assembly of non-porous sub-units. The three-dimensional connectivity between the cage windows is controlled by varying the chemical functionality such that either non-porous or permanently porous assemblies can be produced. Surface areas and gas uptakes for the latter exceed comparable molecular solids. One of the cages can be converted by recrystallization to produce either porous or non-porous polymorphs with apparent Brunauer-Emmett-Teller surface areas of 550 and 23m2g-1, respectively. These results suggest design principles for responsive porous organic solids and for the modular construction of extended materials from prefabricated molecular pores.
NASA Technical Reports Server (NTRS)
Dubin, Matthew B. (Inventor); Larson, Brent D. (Inventor); Kolosowsky, Aleksandra (Inventor)
2006-01-01
A modular and scalable seamless tiled display apparatus includes multiple display devices, a screen, and multiple lens assemblies. Each display device is subdivided into multiple sections, and each section is configured to display a sectional image. One of the lens assemblies is optically coupled to each of the sections of each of the display devices to project the sectional image displayed on that section onto the screen. The multiple lens assemblies are configured to merge the projected sectional images to form a single tiled image. The projected sectional images may be merged on the screen by magnifying and shifting the images in an appropriate manner. The magnification and shifting of these images eliminates any visual effect on the tiled display that may result from dead-band regions defined between each pair of adjacent sections on each display device, and due to gaps between multiple display devices.
PWR and BWR spent fuel assembly gamma spectra measurements
NASA Astrophysics Data System (ADS)
Vaccaro, S.; Tobin, S. J.; Favalli, A.; Grogan, B.; Jansson, P.; Liljenfeldt, H.; Mozin, V.; Hu, J.; Schwalbach, P.; Sjöland, A.; Trellue, H.; Vo, D.
2016-10-01
A project to research the application of nondestructive assay (NDA) to spent fuel assemblies is underway. The research team comprises the European Atomic Energy Community (EURATOM), embodied by the European Commission, DG Energy, Directorate EURATOM Safeguards; the Swedish Nuclear Fuel and Waste Management Company (SKB); two universities; and several United States national laboratories. The Next Generation of Safeguards Initiative-Spent Fuel project team is working to achieve the following technical goals more easily and efficiently than in the past using nondestructive assay measurements of spent fuel assemblies: (1) verify the initial enrichment, burnup, and cooling time of facility declaration; (2) detect the diversion or replacement of pins, (3) estimate the plutonium mass, (4) estimate the decay heat, and (5) determine the reactivity of spent fuel assemblies. This study focuses on spectrally resolved gamma-ray measurements performed on a diverse set of 50 assemblies [25 pressurized water reactor (PWR) assemblies and 25 boiling water reactor (BWR) assemblies]; these same 50 assemblies will be measured with neutron-based NDA instruments and a full-length calorimeter. Given that encapsulation/repository and dry storage safeguards are the primarily intended applications, the analysis focused on the dominant gamma-ray lines of 137Cs, 154Eu, and 134Cs because these isotopes will be the primary gamma-ray emitters during the time frames of interest to these applications. This study addresses the impact on the measured passive gamma-ray signals due to the following factors: burnup, initial enrichment, cooling time, assembly type (eight different PWR and six different BWR fuel designs), presence of gadolinium rods, and anomalies in operating history. To compare the measured results with theory, a limited number of ORIGEN-ARP simulations were performed.
PWR and BWR spent fuel assembly gamma spectra measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vaccaro, S.; Tobin, Stephen J.; Favalli, Andrea
A project to research the application of nondestructive assay (NDA) to spent fuel assemblies is underway. The research team comprises the European Atomic Energy Community (EURATOM), embodied by the European Commission, DG Energy, Directorate EURATOM Safeguards; the Swedish Nuclear Fuel and Waste Management Company (SKB); two universities; and several United States national laboratories. The Next Generation of Safeguards Initiative–Spent Fuel project team is working to achieve the following technical goals more easily and efficiently than in the past using nondestructive assay measurements of spent fuel assemblies: (1) verify the initial enrichment, burnup, and cooling time of facility declaration; (2) detectmore » the diversion or replacement of pins, (3) estimate the plutonium mass, (4) estimate the decay heat, and (5) determine the reactivity of spent fuel assemblies. This study focuses on spectrally resolved gamma-ray measurements performed on a diverse set of 50 assemblies [25 pressurized water reactor (PWR) assemblies and 25 boiling water reactor (BWR) assemblies]; these same 50 assemblies will be measured with neutron-based NDA instruments and a full-length calorimeter. Given that encapsulation/repository and dry storage safeguards are the primarily intended applications, the analysis focused on the dominant gamma-ray lines of 137Cs, 154Eu, and 134Cs because these isotopes will be the primary gamma-ray emitters during the time frames of interest to these applications. This study addresses the impact on the measured passive gamma-ray signals due to the following factors: burnup, initial enrichment, cooling time, assembly type (eight different PWR and six different BWR fuel designs), presence of gadolinium rods, and anomalies in operating history. As a result, to compare the measured results with theory, a limited number of ORIGEN-ARP simulations were performed.« less
PWR and BWR spent fuel assembly gamma spectra measurements
Vaccaro, S.; Tobin, Stephen J.; Favalli, Andrea; ...
2016-07-17
A project to research the application of nondestructive assay (NDA) to spent fuel assemblies is underway. The research team comprises the European Atomic Energy Community (EURATOM), embodied by the European Commission, DG Energy, Directorate EURATOM Safeguards; the Swedish Nuclear Fuel and Waste Management Company (SKB); two universities; and several United States national laboratories. The Next Generation of Safeguards Initiative–Spent Fuel project team is working to achieve the following technical goals more easily and efficiently than in the past using nondestructive assay measurements of spent fuel assemblies: (1) verify the initial enrichment, burnup, and cooling time of facility declaration; (2) detectmore » the diversion or replacement of pins, (3) estimate the plutonium mass, (4) estimate the decay heat, and (5) determine the reactivity of spent fuel assemblies. This study focuses on spectrally resolved gamma-ray measurements performed on a diverse set of 50 assemblies [25 pressurized water reactor (PWR) assemblies and 25 boiling water reactor (BWR) assemblies]; these same 50 assemblies will be measured with neutron-based NDA instruments and a full-length calorimeter. Given that encapsulation/repository and dry storage safeguards are the primarily intended applications, the analysis focused on the dominant gamma-ray lines of 137Cs, 154Eu, and 134Cs because these isotopes will be the primary gamma-ray emitters during the time frames of interest to these applications. This study addresses the impact on the measured passive gamma-ray signals due to the following factors: burnup, initial enrichment, cooling time, assembly type (eight different PWR and six different BWR fuel designs), presence of gadolinium rods, and anomalies in operating history. As a result, to compare the measured results with theory, a limited number of ORIGEN-ARP simulations were performed.« less
Mayanovic, Robert A.; Anderson, Alan J.; Bassett, William A.; Chou, I.-Ming
2007-01-01
A modified hydrothermal diamond anvil cell (HDAC) rail assembly has been constructed for making synchrotron x-ray absorption spectroscopy, x-ray fluorescence, and x-ray mapping measurements on fluids or solid phases in contact with hydrothermal fluids up to ???900??C and 700 MPa. The diamond anvils of the HDAC are modified by laser milling grooves or holes, for the reduction of attenuation of incident and fluorescent x rays and sample cavities. The modified HDAC rail assembly has flexibility in design for measurement of light elements at low concentrations or heavy elements at trace levels in the sample and the capability to probe minute individual phases of a multiphase fluid-based system using focused x-ray microbeam. The supporting rail allows for uniform translation of the HDAC, rotation and tilt stages, and a focusing mirror, which is used to illuminate the sample for visual observation using a microscope, relative to the direction of the incident x-ray beam. A structure study of Eu(III) aqua ion behavior in high-temperature aqueous solutions and a study of Nb partitioning and coordination in a silicate melt in contact with a hydrothermal fluid are described as applications utilizing the modified HDAC rail assembly. ?? 2007 American Institute of Physics.
Submersible canned motor transfer pump
Guardiani, R.F.; Pollick, R.D.; Nyilas, C.P.; Denmeade, T.J.
1997-08-19
A transfer pump is described which is used in a waste tank for transferring high-level radioactive liquid waste from a waste tank and having a column assembly, a canned electric motor means, and an impeller assembly with an upper impeller and a lower impeller connected to a shaft of a rotor assembly. The column assembly locates a motor housing with the electric motor means adjacent to the impeller assembly which creates an hydraulic head, and which forces the liquid waste, into the motor housing to cool the electric motor means and to cool and/or lubricate the radial and thrust bearing assemblies. Hard-on-hard bearing surfaces of the bearing assemblies and a ring assembly between the upper impeller and electric motor means grind large particles in the liquid waste flow. Slots in the static bearing member of the radial bearing assemblies further grind down the solid waste particles so that only particles smaller than the clearances in the system can pass there through, thereby resisting damage to and the interruption of the operation of the transfer pump. The column assembly is modular so that sections can be easily assembled, disassembled and/or removed. A second embodiment employs a stator jacket which provides an alternate means for cooling the electric motor means and lubricating and/or cooling the bearing assemblies, and a third embodiment employs a variable level suction device which allows liquid waste to be drawn into the transfer pump from varying and discrete levels in the waste tank. 17 figs.
Submersible canned motor transfer pump
Guardiani, Richard F.; Pollick, Richard D.; Nyilas, Charles P.; Denmeade, Timothy J.
1997-01-01
A transfer pump used in a waste tank for transferring high-level radioactive liquid waste from a waste tank and having a column assembly, a canned electric motor means, and an impeller assembly with an upper impeller and a lower impeller connected to a shaft of a rotor assembly. The column assembly locates a motor housing with the electric motor means adjacent to the impeller assembly which creates an hydraulic head, and which forces the liquid waste, into the motor housing to cool the electric motor means and to cool and/or lubricate the radial and thrust bearing assemblies. Hard-on-hard bearing surfaces of the bearing assemblies and a ring assembly between the upper impeller and electric motor means grind large particles in the liquid waste flow. Slots in the static bearing member of the radial bearing assemblies further grind down the solid waste particles so that only particles smaller than the clearances in the system can pass therethrough, thereby resisting damage to and the interruption of the operation of the transfer pump. The column assembly is modular so that sections can be easily assembled, disassembled and/or removed. A second embodiment employs a stator jacket which provides an alternate means for cooling the electric motor means and lubricating and/or cooling the bearing assemblies, and a third embodiment employs a variable level suction device which allows liquid waste to be drawn into the transfer pump from varying and discrete levels in the waste tank.
Microfabricated X-Ray Optics Technology Development for the Constellation-X Mission
NASA Technical Reports Server (NTRS)
Schattenburg, Mark L.
2003-01-01
During the period of this Cooperative Agreement, MIT developed advanced methods for applying silicon micro-stuctures for the precision assembly of foil x-ray optics in support of the Constellution-X Spectroscopy X-ray Telescope (SXT) development effort at Goddard Space Flight Center (GSFC). MIT developed improved methods for fabricating and characterizing the precision silicon micro-combs. MIT also developed and characterized assembly tools and several types of metrology tools in order to characterize and reduce the errors associated with precision assembly of foil optics. Results of this effort were published and presented to the scientific community and the GSFC SXT team.
SMEX-Lite Modular Solar Array Architecture
NASA Technical Reports Server (NTRS)
Lyons, John
2002-01-01
For the most part, Goddard solar arrays have been custom designs that are unique to each mission. The solar panel design has been frozen prior to issuing an RFP for their procurement. There has typically been 6-9 months between RFP release and contract award, followed by an additional 24 months for performance of the contract. For Small Explorer (SMEX) missions, with three years between mission definition and launch, this has been a significant problem. The SMEX solar panels have been sufficiently small that the contract performance period has been reduced to 12-15 months. The bulk of this time is used up in the final design definition and fabrication of flight solar cell assemblies. Even so, it has been virtually impossible to have the spacecraft design at a level of maturity sufficient to freeze the solar panel geometry and release the RFP in time to avoid schedule problems with integrating the solar panels to the spacecraft. With that in mind, the SMEX-Lite project team developed a modular architecture for the assembly of solar arrays to greatly reduce the cost and schedule associated with the development of a mission- specific solar array. In the modular architecture, solar cells are fabricated onto small substrate panels. This modular panel (approximately 8.5" x 17" in this case) becomes the building block for constructing solar arrays for multiple missions with varying power requirements and geometrical arrangements. The mechanical framework that holds these modules together as a solar array is the only mission-unique design, changing in size and shape as required for each mission. There are several advantages to this approach. First, the typical solar array development cycle requires a mission unique design, procurement, and qualification including a custom qualification panel. With the modular architecture, a single qualification of the SMEX-Lite modules and the associated mechanical framework in a typical configuration provided a qualification by similarity to multiple missions. It then becomes possible to procure solar array modules in advance of mission definition and respond quickly and inexpensively to a selected mission's unique requirements. The solar array modular architecture allows the procurement of solar array modules before the array geometry has been frozen. This reduces the effect of procurement lead-time on the mission integration and test flow by as much as 50%. Second, by spreading the non-recurring costs over multiple missions, the cost per unit area is also reduced. In the case of the SMEX-Lite procurement, this reduction was by about one third of the cost per unit area compared to previous SMEX mission-unique procurements. Third, the modular architecture greatly facilitates the infusion of new solar cell technologies into flight programs as these technologies become available. New solar cell technologies need only be fabricated onto a standard-sized module to be incorporated into the next available mission. The modular solar array can be flown in a mixed configuration with some new and some standard cell technologies. Since each module has its own wiring terminals, the array can be arranged as desired electrically with little impact to cost and schedule. The solar array modular architecture does impose some additional constraints on systems and subsystem engineers. First, they must work with discrete solar array modules rather than size the array to fit exactly within an available envelope. The array area is constrained to an integer multiple of the module area. Second, the modular design is optimized for space radiation and thermal environments not greatly different from a typical SMEX LEO environment. For example, a mission with a highly elliptical orbit (e.g., Polar, SMEX/FAST) would require thicker coverglasses to protect the solar cells from the more intense radiation environment.
The STAR-X X-Ray Telescope Assembly (XTA)
NASA Technical Reports Server (NTRS)
McClelland, Ryan S.; Bautz, Mark W.; Bonafede, Joseph A.; Miller, Eric D.; Saha, Timo T.; Solly, Peter M.; Zhang, William W.
2017-01-01
The Survey and Time-domain Astrophysical Research eXplorer (STAR-X) science goals are to discover what powers the most violent explosions in the Universe, understand how black holes grow across cosmic time and mass scale, and measure how structure formation heats the majority of baryons in the Universe. To achieve these goals, STAR-X requires a powerful X-ray telescope with a large field of view, large collecting area, and excellent point spread function. The STAR-X instrument, the X-Ray Telescope Assembly (XTA), meets these requirements using a powerful X-ray mirror technology based on precision-polished single crystal silicon and a mature CCD detector technology. The XTA is composed of three major subsystems: an X-ray Mirror Assembly (MA) of high resolution, lightweight mirror segments fabricated out of single crystal silicon; a Focal Plane Assembly (FPA) made of back-illuminated CCD's capable of detecting X-rays with excellent quantum efficiency; and a composite Telescope Tube that structurally links the MA and FPA. The MA consists of 5,972 silicon mirror segments mounted into five subassemblies called meta-shells. A meta-shell is constructed from an annular central structural shell covered with interlocking layers of mirror segments. This paper describes the requirements, design, and analysis of the XTA subsystems with particular focus on the MA.
The STAR-X X-Ray Telescope Assembly (XTA)
NASA Astrophysics Data System (ADS)
McClelland, Ryan S.
2017-08-01
The Survey and Time-domain Astrophysical Research eXplorer (STAR-X) science goals are to discover what powers the most violent explosions in the Universe, understand how black holes grow across cosmic time and mass scale, and measure how structure formation heats the majority of baryons in the Universe. To achieve these goals, STAR-X requires a powerful X-ray telescope with a large field of view, large collecting area, and excellent point spread function. The STAR-X instrument, the X-Ray Telescope Assembly (XTA), meets these requirements using a powerful X-ray mirror technology based on precision-polished single crystal silicon and a mature CCD detector technology. The XTA is composed of three major subsystems: an X-ray Mirror Assembly (MA) of high resolution, lightweight mirror segments fabricated out of single crystal silicon; a Focal Plane Assembly (FPA) made of back-illuminated CCDs capable of detecting X-rays with excellent quantum efficiency; and a composite Telescope Tube that structurally links the MA and FPA. The MA consists of 5,972 silicon mirror segments mounted into five subassemblies called metashells. A meta-shell is constructed from an annular central structural shell covered with interlocking layers of mirror segments. This paper describes the requirements, design, and analysis of the XTA subsystems with particular focus on the MA.
Chandra X-Ray Observatory High Resolution Mirror Assembly
NASA Technical Reports Server (NTRS)
1997-01-01
This photograph shows the mirrors of the High Resolution Mirror Assembly (HRMA) for the Chandra X-Ray Observatory (CXO), formerly Advanced X-Ray Astrophysics Facility (AXAF), being assembled in the Eastman Kodak Company in Rochester, New York. The AXAF was renamed CXO in 1999. The CXO is the most sophisticated and the world's most powerful x-ray telescope ever built. It observes x-rays from high-energy regions of the universe, such as hot gas in the remnants of exploded stars. The HRMA, the heart of the telescope system, is contained in the cylindrical 'telescope' portion of the observatory. Since high-energy x-rays would penetrate a normal mirror, special cylindrical mirrors were created. The two sets of four nested mirrors resemble tubes within tubes. Incoming x-rays graze off the highly polished mirror surface and are furneled to the instrument section for detection and study. TRW, Inc. was the prime contractor for the development of the CXO and NASA's Marshall Space Flight Center was responsible for its project management. The Observatory was launched July 22, 1999 aboard the Space Shuttle Columbia, STS-93 mission.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winkler, Mirko S., E-mail: mirko.winkler@unibas.ch; University of Basel, P.O. Box, CH-4003 Basel; Divall, Mark J., E-mail: mdivall@shapeconsulting.org
2012-02-15
The quantitative assessment of health impacts has been identified as a crucial feature for realising the full potential of health impact assessment (HIA). In settings where demographic and health data are notoriously scarce, but there is a broad range of ascertainable ecological, environmental, epidemiological and socioeconomic information, a diverse toolkit of data collection strategies becomes relevant for the mainly small-area impacts of interest. We present a modular, cross-sectional baseline health survey study design, which has been developed for HIA of industrial development projects in the humid tropics. The modular nature of our toolkit allows our methodology to be readily adaptedmore » to the prevailing eco-epidemiological characteristics of a given project setting. Central to our design is a broad set of key performance indicators, covering a multiplicity of health outcomes and determinants at different levels and scales. We present experience and key findings from our modular baseline health survey methodology employed in 14 selected sentinel sites within an iron ore mining project in the Republic of Guinea. We argue that our methodology is a generic example of rapid evidence assembly in difficult-to-reach localities, where improvement of the predictive validity of the assessment and establishment of a benchmark for longitudinal monitoring of project impacts and mitigation efforts is needed.« less
Design of a single-chain polypeptide tetrahedron assembled from coiled-coil segments.
Gradišar, Helena; Božič, Sabina; Doles, Tibor; Vengust, Damjan; Hafner-Bratkovič, Iva; Mertelj, Alenka; Webb, Ben; Šali, Andrej; Klavžar, Sandi; Jerala, Roman
2013-06-01
Protein structures evolved through a complex interplay of cooperative interactions, and it is still very challenging to design new protein folds de novo. Here we present a strategy to design self-assembling polypeptide nanostructured polyhedra based on modularization using orthogonal dimerizing segments. We designed and experimentally demonstrated the formation of the tetrahedron that self-assembles from a single polypeptide chain comprising 12 concatenated coiled coil-forming segments separated by flexible peptide hinges. The path of the polypeptide chain is guided by a defined order of segments that traverse each of the six edges of the tetrahedron exactly twice, forming coiled-coil dimers with their corresponding partners. The coincidence of the polypeptide termini in the same vertex is demonstrated by reconstituting a split fluorescent protein in the polypeptide with the correct tetrahedral topology. Polypeptides with a deleted or scrambled segment order fail to self-assemble correctly. This design platform provides a foundation for constructing new topological polypeptide folds based on the set of orthogonal interacting polypeptide segments.
NASA Astrophysics Data System (ADS)
Ishmukhametov, Robert R.; Russell, Aidan N.; Berry, Richard M.
2016-10-01
An important goal in synthetic biology is the assembly of biomimetic cell-like structures, which combine multiple biological components in synthetic lipid vesicles. A key limiting assembly step is the incorporation of membrane proteins into the lipid bilayer of the vesicles. Here we present a simple method for delivery of membrane proteins into a lipid bilayer within 5 min. Fusogenic proteoliposomes, containing charged lipids and membrane proteins, fuse with oppositely charged bilayers, with no requirement for detergent or fusion-promoting proteins, and deliver large, fragile membrane protein complexes into the target bilayers. We demonstrate the feasibility of our method by assembling a minimal electron transport chain capable of adenosine triphosphate (ATP) synthesis, combining Escherichia coli F1Fo ATP-synthase and the primary proton pump bo3-oxidase, into synthetic lipid vesicles with sizes ranging from 100 nm to ~10 μm. This provides a platform for the combination of multiple sets of membrane protein complexes into cell-like artificial structures.
Murugavel, Muthuchamy; Reddy, R V Ramana; Dey, Dhananjay; Sankar, Jeyaraman
2015-10-05
We report the synthesis and characterization of porphyrin-corrole-porphyrin (Por-Cor-Por) hybrids directly linked at the meso-meso positions for the first time. The stability and solubility of the trimer are carefully balanced by adding electron-withdrawing substituents to the corrole ring and sterically bulky groups on the porphyrins. The new hybrids are capable of stabilizing more than one metal ion in a single molecular scaffold. The versatility of the triad has been demonstrated by successfully stabilizing homo- (Ni) and heterotrinuclear (Ni-Cu-Ni) coordination motifs. The solid-state structure of the NiPor-CuCor-PorNi hybrid was revealed by single-crystal X-ray diffraction studies. The Ni(II) porphyrins are significantly ruffled and tilted by 83° from the plane of corrole. The robustness of the synthesized hybrids was reflected in the electrochemical investigations and the redox behaviour of the hybrids show that the oxidation processes are mostly corrole-centred. In particular it is worth noting that the Por-Cor-Por hybrid can further be manipulated due to the presence of substituent-free meso-positions on both the terminals. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Surface nano-architecture of a metal-organic framework.
Makiura, Rie; Motoyama, Soichiro; Umemura, Yasushi; Yamanaka, Hiroaki; Sakata, Osami; Kitagawa, Hiroshi
2010-07-01
The rational assembly of ultrathin films of metal-organic frameworks (MOFs)--highly ordered microporous materials--with well-controlled growth direction and film thickness is a critical and as yet unrealized issue for enabling the use of MOFs in nanotechnological devices, such as sensors, catalysts and electrodes for fuel cells. Here we report the facile bottom-up fabrication at ambient temperature of such a perfect preferentially oriented MOF nanofilm on a solid surface (NAFS-1), consisting of metalloporphyrin building units. The construction of NAFS-1 was achieved by the unconventional integration in a modular fashion of a layer-by-layer growth technique coupled with the Langmuir-Blodgett method. NAFS-1 is endowed with highly crystalline order both in the out-of-plane and in-plane orientations to the substrate, as demonstrated by synchrotron X-ray surface crystallography. The proposed structural model incorporates metal-coordinated pyridine molecules projected from the two-dimensional sheets that allow each further layer to dock in a highly ordered interdigitated manner in the growth of NAFS-1. We expect that the versatility of the solution-based growth strategy presented here will allow the fabrication of various well-ordered MOF nanofilms, opening the way for their use in a range of important applications.
NASA Astrophysics Data System (ADS)
Gao, Fei
Semiconductor substrates are widely used in many applications. Multiple practical uses involving these materials require the ability to tune their physical and chemical properties to adjust those to a specific application. In recent years, surface and interface reactions have affected dramatically device fabrication and material design. Novel surface functionalization techniques with diverse chemical approaches make the desired physical, thermal, electrical, and mechanical properties attainable. Meanwhile, the modified surface can serve as one of the most important key steps for further assembly process in order to make novel devices and materials. In the following chapters, novel chemical approaches to the functionalization of silicon and zinc oxide substrates will be reviewed and discussed. The specific functionalities including amines, azides, and alkynes on surfaces of different materials will be applied to address subsequent attachment of large molecules and assembly processes. This research is aimed to develop new strategies for manipulating the surface properties of semiconductor materials in a controlled way. The findings of these investigations will be relevant for future applications in molecular and nanoelectronics, sensing, and solar energy conversion. The ultimate goals of the projects are: 1) Preparation of an oxygen-and carbon-free silicon surface based exclusively on Si-N linkages for further modification protocols.. This project involves designing the surface reaction of hydrazine on chlorine-terminated silicon surface, introduction of additional functional group through dehydrohalogenation condensation reaction and direct covalent attachment of C60. 2) Demonstrating alternative method to anchor carbon nanotubes to solid substrates directly through the carbon cage.. This project targets surface modification of silicon and gold substrates with amine-terminated organic monolayers and the covalent attachment of nonfunctionalized and carboxylic acid-functionalized carbon nanotubes. 3) Designing a universal method for the modular functionalization of zinc oxide surface for the chemical protection of material morphology.. This project involves surface modification of zinc oxide nanopowder under vacuum condition with propiolic acid, followed by "click" reaction. A combination of spectroscopy and microscopy techniques was utilized to study the surface functionalization and assembly processes. Fourier-transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS) and time of fight secondary ion mass spectroscopy (ToF-SIMS) were employed to elucidate the chemical structure of the modified surface. Atomic force microscopy (AFM), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) were combined to obtain the surface morphological information. Density functional theory (DFT) calculations were applied to confirm the experimental results and to suggest plausible reaction mechanisms. Other complementary techniques for these projects also include nuclear magnetic resonance (NMR) spectroscopy to identify the chemical species on the surface and charge-carrier lifetime measurements to evaluate the electronic property of C60-modified silicon surface.
NASA Astrophysics Data System (ADS)
Basso, Stefano; Civitani, Marta; Pareschi, Giovanni; Buratti, Enrico; Eder, Josef; Friedrich, Peter; Fürmetz, Maria
2015-09-01
The Athena mission was selected for the second large-class mission, due for launch in 2028, in ESA's Cosmic Vision program. The current solution for the optics is based on the Silicon Pore Optics (SPO) technology with the goal of 2m2 effective area at 1keV (aperture about 3m diameter) with a focal length of 12m. The SPO advantages are the compactness along the axial direction and the high conductivity of the Silicon. Recent development in the fabrication of mirror shells based on the Slumped Glass Optics (SGO) makes this technology an attractive solution for the mirror modules for Athena or similar telescopes. The SGO advantages are a potential high collecting area with a limited vignetting due to the lower shadowing and the aptitude to curve the glass plates up to small radius of curvature. This study shows an alternative mirror design based on SGO technology, tailored for Athena needs. The main challenges are the optimization of the manufacturing technology with respect to the required accuracy and the thermal control of the large surface in conjunction with the low conductivity of the glass. A concept has been elaborated which considers the specific benefits of the SGO technology and provides an efficient thermal control. The output of the study is a preliminary design substantiated by analyses and technological studies. The study proposes interfaces and predicts performances and budgets. It describes also how such a mirror system could be implemented as a modular assembly for X-ray telescope with a large collecting area.
Affordable and Lightweight High-Resolution X-ray Optics for Astronomical Missions
NASA Technical Reports Server (NTRS)
Zhang, W. W.; Biskach, M. P.; Bly, V. T.; Carter, J. M.; Chan, K. W.; Gaskin, J. A.; Hong, M.; Hohl, B. R.; Jones, W. D.; Kolodziejczak, J. J.
2014-01-01
Future x-ray astronomical missions require x-ray mirror assemblies that provide both high angular resolution and large photon collecting area. In addition, as x-ray astronomy undertakes more sensitive sky surveys, a large field of view is becoming increasingly important as well. Since implementation of these requirements must be carried out in broad political and economical contexts, any technology that meets these performance requirements must also be financially affordable and can be implemented on a reasonable schedule. In this paper we report on progress of an x-ray optics development program that has been designed to address all of these requirements. The program adopts the segmented optical design, thereby is capable of making both small and large mirror assemblies for missions of any size. This program has five technical elements: (1) fabrication of mirror substrates, (2) coating, (3) alignment, (4) bonding, and (5) mirror module systems engineering and testing. In the past year we have made progress in each of these five areas, advancing the angular resolution of mirror modules from 10.8 arc-seconds half-power diameter reported (HPD) a year ago to 8.3 arc-seconds now. These mirror modules have been subjected to and passed all environmental tests, including vibration, acoustic, and thermal vacuum. As such this technology is ready for implementing a mission that requires a 10-arc-second mirror assembly. Further development in the next two years would make it ready for a mission requiring a 5-arc-second mirror assembly. We expect that, by the end of this decade, this technology would enable the x-ray astrophysical community to compete effectively for a major x-ray mission in the 2020s that would require one or more 1-arc-second mirror assemblies for imaging, spectroscopic, timing, and survey studies.
NASA Astrophysics Data System (ADS)
Fan, Liming; Zhang, Yujuan; Wang, Jiang; Zhao, Li; Wang, Xiaoqing; Hu, Tuoping; Zhang, Xiutang
2018-04-01
Two 3D modular designed coordination polymers, namely, {[H2N(CH3)2]2[Mn(TPT)]}n (1), and {[Cd(TPT)0.5(bib)]·0.5H2O}n (2) (H4TPT = p-terphenyl-2,2″,5″,5‴-tetracarboxylate acid, and bib = 1,3-bis((imidazol-1-yl) benzene) have been synthesized and structural characterized by EA, IR, TG, PXRD. Single-crystal X-ray diffraction analyses reveal that complex 1 is a 3D 4-connected {42.63.8}-sra net with the tiling modular being [42.62.82] = [4a.4b.62.8a.8b] (transitivity is 2451). While complex 2 is a 3D (4,4)-connected {64.82}{66}2-bbf net with tiling modular is [6.82]+[63.8] = [6 c.8a.8b]+[6a.6b.6 c.8a] (transitivity is 2352). The variable-temperature susceptibility of 1 has been investigated. Besides, complex 2 exhibits highly sensitive sensing of FeIII ions in DMF solution.
X-Ray Optics at NASA Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
O'Dell, Stephen L.; Atkins, Carolyn; Broadway, David M.; Elsner, Ronald F.; Gaskin, Jessica A.; Gubarev, Mikhail V.; Kilaru, Kiranmayee; Kolodziejczak, Jeffery J.; Ramsey, Brian D.; Roche, Jacqueline M.;
2015-01-01
NASA's Marshall Space Flight Center (MSFC) engages in research, development, design, fabrication, coating, assembly, and testing of grazing-incidence optics (primarily) for x-ray telescope systems. Over the past two decades, MSFC has refined processes for electroformed-nickel replication of grazing-incidence optics, in order to produce high-strength, thin-walled, full-cylinder x-ray mirrors. In recent years, MSFC has used this technology to fabricate numerous x-ray mirror assemblies for several flight (balloon, rocket, and satellite) programs. Additionally, MSFC has demonstrated the suitability of this technology for ground-based laboratory applications-namely, x-ray microscopes and cold-neutron microscopes and concentrators. This mature technology enables the production, at moderately low cost, of reasonably lightweight x-ray telescopes with good (15-30 arcsecond) angular resolution. However, achieving arcsecond imaging for a lightweight x-ray telescope likely requires development of other technologies. Accordingly, MSFC is conducting a multi-faceted research program toward enabling cost-effective production of lightweight high-resolution x-ray mirror assemblies. Relevant research topics currently under investigation include differential deposition for post-fabrication figure correction, in-situ monitoring and control of coating stress, and direct fabrication of thin-walled full-cylinder grazing-incidence mirrors.
The AXAF technology mirror assembly program - An overview
NASA Technical Reports Server (NTRS)
Wyman, Charles L.; Dailey, Carroll C.; Reily, Cary; Weisskopf, Martin; Mckinnon, Phil
1986-01-01
The manufacture and testing of the Technology Mirror Assembly (TMA), a prototype Wolter I telescope scaled to the dimensions of the innermost element of the High-Resolution Mirror Assembly for the NASA Advanced X-ray Astrophysics Facility (AXAF), are reviewed. Consideration is given to the grinding, polishing, coating, and assembly of the zerodur TMA blanks, the TMA mount design, and the test procedures used at the MSFC X-ray Calibration Facility. Test results indicate FWHM resolution less than 0.5 arcsec, but with significant near-field scattering attributed to ripple; further long-lap polishing is suggested.
NASA Astrophysics Data System (ADS)
Kidambi, Narayanan; Harne, Ryan L.; Wang, K. W.
2017-08-01
The remarkable versatility and adaptability of skeletal muscle that arises from the assembly of its nanoscale cross-bridges into micro-scale assemblies known as sarcomeres provides great inspiration for the development of advanced adaptive structures and material systems. Motivated by the capability of cross-bridges to capture elastic strain energy to improve the energetic efficiency of sudden movements and repeated motions, and by models of cross-bridge power stroke motions and sarcomere contractile behaviors that incorporate asymmetric, bistable potential energy landscapes, this research develops and studies modular mechanical structures that trap and store energy in higher-energy configurations. Modules exhibiting tailorable asymmetric bistability are first designed and fabricated, revealing how geometric parameters influence the asymmetry of the resulting double-well energy landscapes. These experimentally-observed characteristics are then investigated with numerical and analytical methods to characterize the dynamics of asymmetrically bistable modules. The assembly of such modules into greater structures generates complex, multi-well energy landscapes with stable system configurations exhibiting different quantities of stored elastic potential energy. Dynamic analyses illustrate the ability of these structures to capture a portion of the initial kinetic energy due to impulsive excitations as recoverable strain potential energy, and reveal how stiffness parameters, damping, and the presence of thermal noise in micro- and nano-scale applications influence energy capture behaviors. The insights gained could foster the development of advanced structural/material systems inspired by skeletal muscle, including actuators that effectively capture, store, and release energy, as well as adaptive, robust, and reusable armors and protective devices.
Modular transportable superconducting magnetic energy systems
NASA Technical Reports Server (NTRS)
Lieurance, Dennis; Kimball, Foster; Rix, Craig
1995-01-01
Design and cost studies were performed for the magnet components of mid-size (1-5 MWh), cold supported SMES systems using alternative configurations. The configurations studied included solenoid magnets, which required onsite assembly of the magnet system, and toroid and racetrack configurations which consisted of factory assembled modules. For each configuration, design concepts and cost information were developed for the major features of the magnet system including the conductor, electrical insulation, and structure. These studies showed that for mid-size systems, the costs of solenoid and toroid magnet configurations are comparable and that the specific configuration to be used for a given application should be based upon customer requirements such as limiting stray fields or minimizing risks in development or construction.
The Functionally-Assembled Terrestrial Ecosystem Simulator Version 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Chonggang; Christoffersen, Bradley
The Functionally-Assembled Terrestrial Ecosystem Simulator (FATES) is a vegetation model for use in Earth system models (ESMs). The model includes a size- and age-structured representation of tree dynamics, competition between functionally diverse plant functional types, and the biophysics underpinning plant growth, competition, mortality, as well as the carbon, water, and energy exchange with the atmosphere. The FATES model is designed as a modular vegetation model that can be integrated within a host land model for inclusion in ESMs. The model is designed for use in global change studies to understand and project the responses and feedbacks between terrestrial ecosystems andmore » the Earth system under changing climate and other forcings.« less
The architectonics of programmable RNA and DNA nanostructures.
Jaeger, Luc; Chworos, Arkadiusz
2006-08-01
The past several years have witnessed the emergence of a new world of nucleic-acid-based architectures with highly predictable and programmable self-assembly properties. For almost two decades, DNA has been the primary material for nucleic acid nanoconstruction. More recently, the dramatic increase in RNA structural information led to the development of RNA architectonics, the scientific study of the principles of RNA architecture with the aim of constructing RNA nanostructures of any arbitrary size and shape. The remarkable modularity and the distinct but complementary nature of RNA and DNA nanomaterials are revealed by the various self-assembly strategies that aim to achieve control of the arrangement of matter at a nanoscale level.
Design, Assembly, and Characterization of TALE-Based Transcriptional Activators and Repressors
Thakore, Pratiksha I.; Gersbach, Charles A.
2016-01-01
Transcription activator-like effectors (TALEs) are modular DNA-binding proteins that can be fused to a variety of effector domains to regulate the epigenome. Nucleotide recognition by TALE monomers follows a simple cipher, making this a powerful and versatile method to activate or repress gene expression. Described here are methods to design, assemble, and test TALE transcription factors (TALE-TFs) for control of endogenous gene expression. In this protocol, TALE arrays are constructed by Golden Gate cloning and tested for activity by transfection and quantitative RT-PCR. These methods for engineering TALE-TFs are useful for studies in reverse genetics and genomics, synthetic biology, and gene therapy. PMID:26443215
Modular transportable superconducting magnetic energy systems
NASA Astrophysics Data System (ADS)
Lieurance, Dennis; Kimball, Foster; Rix, Craig
1995-04-01
Design and cost studies were performed for the magnet components of mid-size (1-5 MWh), cold supported SMES systems using alternative configurations. The configurations studied included solenoid magnets, which required onsite assembly of the magnet system, and toroid and racetrack configurations which consisted of factory assembled modules. For each configuration, design concepts and cost information were developed for the major features of the magnet system including the conductor, electrical insulation, and structure. These studies showed that for mid-size systems, the costs of solenoid and toroid magnet configurations are comparable and that the specific configuration to be used for a given application should be based upon customer requirements such as limiting stray fields or minimizing risks in development or construction.
Cooled electrical terminal assembly and device incorporating same
Beihoff, Bruce C.; Radosevich, Lawrence D.; Phillips, Mark G.; Kehl, Dennis L.; Kaishian, Steven C.; Kannenberg, Daniel G.
2006-08-22
A terminal structure provides interfacing with power electronics circuitry and external circuitry. The thermal support may receive one or more power electronic circuits. The support may aid in removing heat from the terminal structure and the circuits through fluid circulating through the support. The support may form a shield from both external EMI/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as improved terminal configurations. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.
Cooled electrical terminal assembly and device incorporating same
Beihoff, Bruce C.; Radosevich, Lawrence D.; Phillips, Mark G.; Kehl, Dennis L.; Kaishian, Steven C.; Kannenberg, Daniel G.
2005-05-24
A terminal structure provides interfacing with power electronics circuitry and external circuitry. The thermal support may receive one or more power electronic circuits. The support may aid in removing heat from the terminal structure and the circuits through fluid circulating through the support. The support may form a shield from both external EMI/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as improved terminal configurations. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.
Impact of intense x-ray pulses on a NaI(Tl)-based gamma camera
NASA Astrophysics Data System (ADS)
Koppert, W. J. C.; van der Velden, S.; Steenbergen, J. H. L.; de Jong, H. W. A. M.
2018-03-01
In SPECT/CT systems x-ray and γ-ray imaging is performed sequentially. Simultaneous acquisition may have advantages, for instance in interventional settings. However, this may expose a gamma camera to relatively high x-ray doses and deteriorate its functioning. We studied the NaI(Tl) response to x-ray pulses with a photodiode, PMT and gamma camera, respectively. First, we exposed a NaI(Tl)-photodiode assembly to x-ray pulses to investigate potential crystal afterglow. Next, we exposed a NaI(Tl)-PMT assembly to 10 ms LED pulses (mimicking x-ray pulses) and measured the response to flashing LED probe-pulses (mimicking γ-pulses). We then exposed the assembly to x-ray pulses, with detector entrance doses of up to 9 nGy/pulse, and analysed the response for γ-pulse variations. Finally, we studied the response of a Siemens Diacam gamma camera to γ-rays while exposed to x-ray pulses. X-ray exposure of the crystal, read out with a photodiode, revealed 15% afterglow fraction after 3 ms. The NaI(Tl)-PMT assembly showed disturbances up to 10 ms after 10 ms LED exposure. After x-ray exposure however, responses showed elevated baselines, with 60 ms decay-time. Both for x-ray and LED exposure and after baseline subtraction, probe-pulse analysis revealed disturbed pulse height measurements shortly after exposure. X-ray exposure of the Diacam corroborated the elementary experiments. Up to 50 ms after an x-ray pulse, no events are registered, followed by apparent energy elevations up to 100 ms after exposure. Limiting the dose to 0.02 nGy/pulse prevents detrimental effects. Conventional gamma cameras exhibit substantial dead-time and mis-registration of photon energies up to 100 ms after intense x-ray pulses. This is due PMT limitations and due to afterglow in the crystal. Using PMTs with modified circuitry, we show that deteriorative afterglow effects can be reduced without noticeable effects on the PMT performance, up to x-ray pulse doses of 1 nGy.
2007-07-01
447 3893 VSN: NL1FR5 MFG Serial #: T-018447EFJM Weight: 19,340 lbs 3-1 5. Semitrailer, flatbed , breakbulk/container transporter, 22.5 ton Model...CHAFTING PIECE, 118" X 6" X 40" PLYWOOD, (I REaD). LAMINATE TO BEARING PIECE W16-6d NAILS EVENLY SPACED. SIDE STRAPPING BOARD ASSEMBLY (2 REOD) (I
Long-read sequencing data analysis for yeasts.
Yue, Jia-Xing; Liti, Gianni
2018-06-01
Long-read sequencing technologies have become increasingly popular due to their strengths in resolving complex genomic regions. As a leading model organism with small genome size and great biotechnological importance, the budding yeast Saccharomyces cerevisiae has many isolates currently being sequenced with long reads. However, analyzing long-read sequencing data to produce high-quality genome assembly and annotation remains challenging. Here, we present a modular computational framework named long-read sequencing data analysis for yeasts (LRSDAY), the first one-stop solution that streamlines this process. Starting from the raw sequencing reads, LRSDAY can produce chromosome-level genome assembly and comprehensive genome annotation in a highly automated manner with minimal manual intervention, which is not possible using any alternative tool available to date. The annotated genomic features include centromeres, protein-coding genes, tRNAs, transposable elements (TEs), and telomere-associated elements. Although tailored for S. cerevisiae, we designed LRSDAY to be highly modular and customizable, making it adaptable to virtually any eukaryotic organism. When applying LRSDAY to an S. cerevisiae strain, it takes ∼41 h to generate a complete and well-annotated genome from ∼100× Pacific Biosciences (PacBio) running the basic workflow with four threads. Basic experience working within the Linux command-line environment is recommended for carrying out the analysis using LRSDAY.
New directions for space solar power
NASA Astrophysics Data System (ADS)
Mankins, John C.
2009-07-01
Several of the central issues associated with the eventual realization of the vision of solar power from space for terrestrial markets resolve around the expect costs associated with the assembly, inspection, maintenance and repair of future solar power satellite (SPS) stations. In past studies (for example, NASA's "Fresh Look Study", c. 1995-1997) efforts were made to reduce both the scale and mass of large, systems-level interfaces (e.g., the power management and distribution (PMAD) system) and on-orbit fixed infrastructures through the use of modular systems strategies. These efforts have had mixed success (as reflected in the projected on-orbit mass of various systems concepts. However, the author remains convinced of the importance of modular strategies for exceptionally large space systems in eventually realizing the vision of power from space. This paper will introduce some of the key issues associated with cost-competitive space solar power in terrestrial markets. It will examine some of the relevant SPS concepts and will assess the 'pros and cons' of each in terms of space assembly, maintenance and servicing (SAMS) requirements. The paper discusses at a high level some relevant concepts and technologies that may play r role in the eventual, successful resolution of these challenges. The paper concludes with an example of the kind of novel architectural approach for space solar power that is needed.
Leonard, Sean P; Perutka, Jiri; Powell, J Elijah; Geng, Peng; Richhart, Darby D; Byrom, Michelle; Kar, Shaunak; Davies, Bryan W; Ellington, Andrew D; Moran, Nancy A; Barrick, Jeffrey E
2018-05-18
Engineering the bacteria present in animal microbiomes promises to lead to breakthroughs in medicine and agriculture, but progress is hampered by a dearth of tools for genetically modifying the diverse species that comprise these communities. Here we present a toolkit of genetic parts for the modular construction of broad-host-range plasmids built around the RSF1010 replicon. Golden Gate assembly of parts in this toolkit can be used to rapidly test various antibiotic resistance markers, promoters, fluorescent reporters, and other coding sequences in newly isolated bacteria. We demonstrate the utility of this toolkit in multiple species of Proteobacteria that are native to the gut microbiomes of honey bees ( Apis mellifera) and bumble bees (B ombus sp.). Expressing fluorescent proteins in Snodgrassella alvi, Gilliamella apicola, Bartonella apis, and Serratia strains enables us to visualize how these bacteria colonize the bee gut. We also demonstrate CRISPRi repression in B. apis and use Cas9-facilitated knockout of an S. alvi adhesion gene to show that it is important for colonization of the gut. Beyond characterizing how the gut microbiome influences the health of these prominent pollinators, this bee microbiome toolkit (BTK) will be useful for engineering bacteria found in other natural microbial communities.
Ferrante, T.A.
1997-11-11
A modular robot may comprise a main body having a structure defined by a plurality of stackable modules. The stackable modules may comprise a manifold, a valve module, and a control module. The manifold may comprise a top surface and a bottom surface having a plurality of fluid passages contained therein, at least one of the plurality of fluid passages terminating in a valve port located on the bottom surface of the manifold. The valve module is removably connected to the manifold and selectively fluidically connects the plurality of fluid passages contained in the manifold to a supply of pressurized fluid and to a vent. The control module is removably connected to the valve module and actuates the valve module to selectively control a flow of pressurized fluid through different ones of the plurality of fluid passages in the manifold. The manifold, valve module, and control module are mounted together in a sandwich-like manner and comprise a main body. A plurality of leg assemblies are removably connected to the main body and are removably fluidically connected to the fluid passages in the manifold so that each of the leg assemblies can be selectively actuated by the flow of pressurized fluid in different ones of the plurality of fluid passages in the manifold. 12 figs.
EcoFlex: A Multifunctional MoClo Kit for E. coli Synthetic Biology.
Moore, Simon J; Lai, Hung-En; Kelwick, Richard J R; Chee, Soo Mei; Bell, David J; Polizzi, Karen Marie; Freemont, Paul S
2016-10-21
Golden Gate cloning is a prominent DNA assembly tool in synthetic biology for the assembly of plasmid constructs often used in combinatorial pathway optimization, with a number of assembly kits developed specifically for yeast and plant-based expression. However, its use for synthetic biology in commonly used bacterial systems such as Escherichia coli has surprisingly been overlooked. Here, we introduce EcoFlex a simplified modular package of DNA parts for a variety of applications in E. coli, cell-free protein synthesis, protein purification and hierarchical assembly of transcription units based on the MoClo assembly standard. The kit features a library of constitutive promoters, T7 expression, RBS strength variants, synthetic terminators, protein purification tags and fluorescence proteins. We validate EcoFlex by assembling a 68-part containing (20 genes) plasmid (31 kb), characterize in vivo and in vitro library parts, and perform combinatorial pathway assembly, using pooled libraries of either fluorescent proteins or the biosynthetic genes for the antimicrobial pigment violacein as a proof-of-concept. To minimize pathway screening, we also introduce a secondary module design site to simplify MoClo pathway optimization. In summary, EcoFlex provides a standardized and multifunctional kit for a variety of applications in E. coli synthetic biology.
The dawn of the RNA World: Toward functional complexity through ligation of random RNA oligomers
Briones, Carlos; Stich, Michael; Manrubia, Susanna C.
2009-01-01
A main unsolved problem in the RNA World scenario for the origin of life is how a template-dependent RNA polymerase ribozyme emerged from short RNA oligomers obtained by random polymerization on mineral surfaces. A number of computational studies have shown that the structural repertoire yielded by that process is dominated by topologically simple structures, notably hairpin-like ones. A fraction of these could display RNA ligase activity and catalyze the assembly of larger, eventually functional RNA molecules retaining their previous modular structure: molecular complexity increases but template replication is absent. This allows us to build up a stepwise model of ligation-based, modular evolution that could pave the way to the emergence of a ribozyme with RNA replicase activity, step at which information-driven Darwinian evolution would be triggered. PMID:19318464
The enzymology of polyether biosynthesis.
Liu, Tiangang; Cane, David E; Deng, Zixin
2009-01-01
Polyether ionophore antibiotics are a special class of polyketides widely used in veterinary medicine, and as food additives in animal husbandry. In this article, we review current knowledge about the mechanism of polyether biosynthesis, and the genetic and biochemical strategies used for its study. Several clear differences distinguish it from traditional type I modular polyketide biosynthesis: polyether backbones are assembled by modular polyketide synthases but are modified by two key enzymes, epoxidase and epoxide hydrolase, to generate the product. All double bonds involved in the oxidative cyclization in the polyketide backbone are of E geometry. Chain release in the polyether biosynthetic pathway requires a special type II thioesterase which specifically hydrolyzes the polyether thioester. All these discoveries should be very helpful for a deep understanding of the biosynthetic mechanism of this class of important natural compounds, and for the targeted engineering of polyether derivatives.
NASA Astrophysics Data System (ADS)
Katsuyama, Kozo; Nagamine, Tsuyoshi; Matsumoto, Shin-ichiro; Sato, Seichi
2007-02-01
The central void formations and deformations of fuel pins were investigated in fuel assemblies irradiated to high burn-up, using a non-destructive X-ray CT (computer tomography) technique. In this X-ray CT, the effect of strong gamma ray activity could be reduced to a negligible degree by using the pulse of a high energy X-ray source and detecting the intensity of the transmitted X-rays in synchronization with the generated X-rays. Clear cross-sectional images of fuel assemblies irradiated to high burn-up in a fast breeder reactor were successively obtained, in which the wrapping wires, cladding, pellets and central voids could be distinctly seen. The diameter of a typical central void measured by X-ray CT agreed with the one obtained by ceramography within an error of 0.1 mm. Based on this result, the dependence of the central void diameter on the linear heating rate was analyzed. In addition, the deformation behavior of a fuel pin along its axial direction could be analyzed from 20 stepwise X-ray cross-sectional images obtained in a small interval, and the results obtained showed a good agreement with the predictions calculated by two computer codes.
NASA Astrophysics Data System (ADS)
Ding, Wan; Wu, Jianxu; Yao, Yan'an
2015-07-01
Lattice modular robots possess diversity actuation methods, such as electric telescopic rod, gear rack, magnet, robot arm, etc. The researches on lattice modular robots mainly focus on their hardware descriptions and reconfiguration algorithms. Meanwhile, their design architectures and actuation methods perform slow telescopic and moving speeds, relative low actuation force verse weight ratio, and without internal space to carry objects. To improve the mechanical performance and reveal the locomotion and reconfiguration binary essences of the lattice modular robots, a novel cube-shaped, frame-like, pneumatic-based reconfigurable robot module called pneumatic expandable cube(PE-Cube) is proposed. The three-dimensional(3D) expanding construction and omni-directional rolling analysis of the constructed robots are the main focuses. The PE-Cube with three degrees of freedom(DoFs) is assembled by replacing the twelve edges of a cube with pneumatic cylinders. The proposed symmetric construction condition makes the constructed robots possess the same properties in each supporting state, and a binary control strategy cooperated with binary actuator(pneumatic cylinder) is directly adopted to control the PE-Cube. Taking an eight PE-Cube modules' construction as example, its dynamic rolling simulation, static rolling condition, and turning gait are illustrated and discussed. To testify telescopic synchronization, respond speed, locomotion feasibility, and repeatability and reliability of hardware system, an experimental pneumatic-based robotic system is built and the rolling and turning experiments of the eight PE-Cube modules' construction are carried out. As an extension, the locomotion feasibility of a thirty-two PE-Cube modules' construction is analyzed and proved, including dynamic rolling simulation, static rolling condition, and dynamic analysis in free tipping process. The proposed PE-Cube module, construction method, and locomotion analysis enrich the family of the lattice modular robot and provide the instruction to design the lattice modular robot.
Tunable Gas Sensing Gels by Cooperative Assembly
Hussain, Abid; Semeano, Ana T. S.; Palma, Susana I. C. J.; Pina, Ana S.; Almeida, José; Medrado, Bárbara F.; Pádua, Ana C. C. S.; Carvalho, Ana L.; Dionísio, Madalena; Li, Rosamaria W. C.; Gamboa, Hugo; Ulijn, Rein V.; Gruber, Jonas; Roque, Ana C. A.
2017-01-01
The cooperative assembly of biopolymers and small molecules can yield functional materials with precisely tunable properties. Here, the fabrication, characterization, and use of multicomponent hybrid gels as selective gas sensors are reported. The gels are composed of liquid crystal droplets self-assembled in the presence of ionic liquids, which further coassemble with biopolymers to form stable matrices. Each individual component can be varied and acts cooperatively to tune gels’ structure and function. The unique molecular environment in hybrid gels is explored for supramolecular recognition of volatile compounds. Gels with distinct compositions are used as optical and electrical gas sensors, yielding a combinatorial response conceptually mimicking olfactory biological systems, and tested to distinguish volatile organic compounds and to quantify ethanol in automotive fuel. The gel response is rapid, reversible, and reproducible. These robust, versatile, modular, pliant electro-optical soft materials possess new possibilities in sensing triggered by chemical and physical stimuli. PMID:28747856
Integrating DNA strand displacement circuitry to the nonlinear hybridization chain reaction.
Zhang, Zhuo; Fan, Tsz Wing; Hsing, I-Ming
2017-02-23
Programmable and modular attributes of DNA molecules allow one to develop versatile sensing platforms that can be operated isothermally and enzyme-free. In this work, we present an approach to integrate upstream DNA strand displacement circuits that can be turned on by a sequence-specific microRNA analyte with a downstream nonlinear hybridization chain reaction for a cascading hyperbranched nucleic acid assembly. This system provides a two-step amplification strategy for highly sensitive detection of the miRNA analyte, conducive for multiplexed detection. Multiple miRNA analytes were tested with our integrated circuitry using the same downstream signal amplification setting, showing the decoupling of nonlinear self-assembly with the analyte sequence. Compared with the reported methods, our signal amplification approach provides an additional control module for higher-order DNA self-assembly and could be developed into a promising platform for the detection of critical nucleic-acid based biomarkers.
Improvements in SMR Modular Construction through Supply Chain Optimization and Lessons Learned
DOE Office of Scientific and Technical Information (OSTI.GOV)
White III, Chelsea C.; Petrovic, Bojan
Affordable energy is a critical societal need. Capital construction cost is a significant portion of nuclear energy cost. By controlling and reducing cost, companies can build more competitive nuclear power plants and hence provide access to more affordable energy. Modular construction provides an opportunity to reduce the cost of construction, and as projects scale up in number, the cost of each unit can be further reduced. The objective of this project was to advance design and construction methods for manufacturing Small Modular Reactors (SMRs), and in particular to improve modular construction techniques and develop best practices for designing and operatingmore » supply chains that take advantage of these techniques. The overarching objectives were to accelerate the construction schedule and reduce its variability, reduce the cost of construction, reduce interest costs accrued during construction (IDC), and thus enhance the economic attractiveness of SMRs. Our fundamental measure of merit was total capital investment cost (TCIC). To achieve these objectives, this project developed a decision support system, EVAL, to support identifying, addressing, and resolving or ameliorating challenges and deficiencies in the current modular construction approach. The results of this effort were consistent with the facts that the cost of a construction activity is often smallest when accomplished in the factory, greatest when accomplished at the construction site, and at an intermediate level when accomplished at an assembly area close to the construction site. Further, EVAL can aid in providing insight into ways to reduce waste, improve quality, efficiency, and throughput and reflects the fact that the more done early in the construction process, i.e., in the factory, the more upfront funding is required and hence the more IDC will be accrued. The analysis has lead to a better understanding of circumstances under which modular construction performed mainly in the factory will result in lower expected total cost, relative to more traditional, on-site construction procedures. Further, we anticipate that EVAL can be used to gain insight regarding what role standardization can play in order for modularization to be most effectively defined. Such results would ultimately benefit all (small and large) new nuclear construction.« less
Tackling the x-ray cargo inspection challenge using machine learning
NASA Astrophysics Data System (ADS)
Jaccard, Nicolas; Rogers, Thomas W.; Morton, Edward J.; Griffin, Lewis D.
2016-05-01
The current infrastructure for non-intrusive inspection of cargo containers cannot accommodate exploding com-merce volumes and increasingly stringent regulations. There is a pressing need to develop methods to automate parts of the inspection workflow, enabling expert operators to focus on a manageable number of high-risk images. To tackle this challenge, we developed a modular framework for automated X-ray cargo image inspection. Employing state-of-the-art machine learning approaches, including deep learning, we demonstrate high performance for empty container verification and specific threat detection. This work constitutes a significant step towards the partial automation of X-ray cargo image inspection.
Noninvasive Reactor Imaging Using Cosmic-Ray Muons
NASA Astrophysics Data System (ADS)
Miyadera, H.; Fujita, K.; Karino, Y.; Kume, N.; Nakayama, K.; Sano, Y.; Sugita, T.; Yoshioka, K.; Morris, C. L.; Bacon, J. D.; Borozdin, K. N.; Perry, J. O.; Mizokami, S.; Otsuka, Y.; Yamada, D.
2015-10-01
Cosmic-ray-muon imaging is proposed to assess the damages to the Fukushima Daiichi reactors. Simulation studies showed capability of muon imaging to reveal the core conditions.The muon-imaging technique was demonstrated at Toshiba Nuclear Critical Assembly, where the uranium-dioxide fuel assembly was imaged with 3-cm spatial resolution after 1 month of measurement.
Analysis of gamma ray dose for dried up pond storing low enriched UO2 fuel
NASA Astrophysics Data System (ADS)
Nauchi, Yasushi; Suzuki, Motomu
2017-09-01
Gamma ray dose is calculated for loss of coolant accident in spent fuel pond (SFP) storing irradiated fuels used in light water reactors. Influence of modelling of fuel assemblies, source distributions, and loading fraction of fuel assemblies in the fuel rack on the dose are investigated.
System Design and Implementation of the Detector Assembly of the Astro-H Soft X-Ray Spectrometer
NASA Technical Reports Server (NTRS)
Chiao, M. P.; Adams, J.; Goodwin, P.; Hobson, C.W.; Kelley, R. L.; Kilbourne, C. A.; McCammom, D.; McGuinness, D. S.; Moseley, S. J.; Porter, F. S.;
2016-01-01
The soft x-ray spectrometer (SXS) onboard Astro-H presents to the science community unprecedented capability (less than 7 eV at 6 keV) for high-resolution spectral measurements in the range of 0.5-12 keV to study extended celestial sources. At the heart of this SXS is the x-ray calorimeter spectrometer (XCS) where detectors (calorimeter array and anticoincidence detector) operate at 50 mK, the bias circuit operates at nominal 1.3 K, and the first stage amplifiers operateat 130 K, all within a nominal 20 cm envelope. The design of the detector assembly in this XCS originates from the Astro-E x-ray spectrometer (XRS) and lessons learned from Astro-E and Suzaku. After the production of our engineering model, additional changes were made in order to improve our flight assembly process for better reliability and overall performance. In this poster, we present the final design and implementation of the flight detector assembly, show comparison of parameters and performance to Suzakus XRS, and list susceptibilities to other subsystems as well as our lessons learned.
Stoupin, S.; Terentyev, S. A.; Blank, V. D.; Shvyd’ko, Yu. V.; Goetze, K.; Assoufid, L.; Polyakov, S. N.; Kuznetsov, M. S.; Kornilov, N. V.; Katsoudas, J.; Alonso-Mori, R.; Chollet, M.; Feng, Y.; Glownia, J. M.; Lemke, H.; Robert, A.; Sikorski, M.; Song, S.; Zhu, D.
2014-01-01
A double-crystal diamond (111) monochromator recently implemented at the Linac Coherent Light Source (LCLS) enables splitting of the primary X-ray beam into a pink (transmitted) and a monochromatic (reflected) branch. The first monochromator crystal, with a thickness of ∼100 µm, provides sufficient X-ray transmittance to enable simultaneous operation of two beamlines. This article reports the design, fabrication and X-ray characterization of the first and second (300 µm-thick) crystals utilized in the monochromator and the optical assemblies holding these crystals. Each crystal plate has a region of about 5 × 2 mm with low defect concentration, sufficient for use in X-ray optics at the LCLS. The optical assemblies holding the crystals were designed to provide mounting on a rigid substrate and to minimize mounting-induced crystal strain. The induced strain was evaluated using double-crystal X-ray topography and was found to be small over the 5 × 2 mm working regions of the crystals. PMID:25242912
Autonomous Assembly of Modular Structures in Space and on Extraterrestrial Locations
NASA Astrophysics Data System (ADS)
Alhorn, Dean C.
2005-02-01
The new U.S. National Vision for Space Exploration requires many new enabling technologies to accomplish the goals of space commercialization and returning humans to the moon and extraterrestrial environments. Traditionally, flight elements are complete sub-systems requiring humans to complete the integration and assembly. These bulky structures also require the use of heavy launch vehicles to send the units to a desired location. This philosophy necessitates a high degree of safety, numerous space walks at a significant cost. Future space mission costs must be reduced and safety increased to reasonably achieve exploration goals. One proposed concept is the autonomous assembly of space structures. This concept is an affordable, reliable solution to in-space and extraterrestrial assembly. Assembly is autonomously performed when two components join after determining that specifications are correct. Local sensors continue monitor joint integrity post assembly, which is critical for safety and structural reliability. Achieving this concept requires a change in space structure design philosophy and the development of innovative technologies to perform autonomous assembly. Assembly of large space structures will require significant numbers of integrity sensors. Thus simple, low-cost sensors are integral to the success of this concept. This paper addresses these issues and proposes a novel concept for assembling space structures autonomously. Core technologies required to achieve in space assembly are presented. These core technologies are critical to the goal of utilizing space in a cost efficient and safe manner. Additionally, these novel technologies can be applied to other systems both on earth and extraterrestrial environments.
Fabrication of hierarchical hybrid structures using bio-enabled layer-by-layer self-assembly.
Hnilova, Marketa; Karaca, Banu Taktak; Park, James; Jia, Carol; Wilson, Brandon R; Sarikaya, Mehmet; Tamerler, Candan
2012-05-01
Development of versatile and flexible assembly systems for fabrication of functional hybrid nanomaterials with well-defined hierarchical and spatial organization is of a significant importance in practical nanobiotechnology applications. Here we demonstrate a bio-enabled self-assembly technique for fabrication of multi-layered protein and nanometallic assemblies utilizing a modular gold-binding (AuBP1) fusion tag. To accomplish the bottom-up assembly we first genetically fused the AuBP1 peptide sequence to the C'-terminus of maltose-binding protein (MBP) using two different linkers to produce MBP-AuBP1 hetero-functional constructs. Using various spectroscopic techniques, surface plasmon resonance (SPR) and localized surface plasmon resonance (LSPR), we verified the exceptional binding and self-assembly characteristics of AuBP1 peptide. The AuBP1 peptide tag can direct the organization of recombinant MBP protein on various gold surfaces through an efficient control of the organic-inorganic interface at the molecular level. Furthermore using a combination of soft-lithography, self-assembly techniques and advanced AuBP1 peptide tag technology, we produced spatially and hierarchically controlled protein multi-layered assemblies on gold nanoparticle arrays with high molecular packing density and pattering efficiency in simple, reproducible steps. This model system offers layer-by-layer assembly capability based on specific AuBP1 peptide tag and constitutes novel biological routes for biofabrication of various protein arrays, plasmon-active nanometallic assemblies and devices with controlled organization, packing density and architecture. Copyright © 2011 Wiley Periodicals, Inc.
Autonomous Assembly of Modular Structures in Space and on Extraterrestrial Locations
NASA Technical Reports Server (NTRS)
Alhorn, Dean C.
2005-01-01
The new U.S. National Vision for Space Exploration requires many new enabling technologies to accomplish the goals of space commercialization and returning humans to the moon and extraterrestrial environments. Traditionally, flight elements are complete subsystems requiring humans to complete the integration and assembly. These bulky structures also require the use of heavy launch vehicles to send the units to a desired location. This philosophy necessitates a high degree of safety, numerous space walks at a significant cost. Future space mission costs must be reduced and safety increased to reasonably achieve exploration goals. One proposed concept is the autonomous assembly of space structures. This concept is an affordable, reliable solution to in-space and extraterrestrial assembly. Assembly is autonomously performed when two components join after determining that specifications are correct. Local sensors continue monitor joint integrity post assembly, which is critical for safety and structural reliability. Achieving this concept requires a change in space structure design philosophy and the development of innovative technologies to perform autonomous assembly. Assembly of large space structures will require significant numbers of integrity sensors. Thus simple, low-cost sensors are integral to the success of this concept. This paper addresses these issues and proposes a novel concept for assembling space structures autonomously. Core technologies required to achieve in space assembly are presented. These core technologies are critical to the goal of utilizing space in a cost efficient and safe manner. Additionally, these novel technologies can be applied to other systems both on earth and extraterrestrial environments.
De novo design of protein homo-oligomers with modular hydrogen bond network-mediated specificity
Boyken, Scott E.; Chen, Zibo; Groves, Benjamin; Langan, Robert A.; Oberdorfer, Gustav; Ford, Alex; Gilmore, Jason; Xu, Chunfu; DiMaio, Frank; Pereira, Jose Henrique; Sankaran, Banumathi; Seelig, Georg; Zwart, Peter H.; Baker, David
2017-01-01
In nature, structural specificity in DNA and proteins is encoded quite differently: in DNA, specificity arises from modular hydrogen bonds in the core of the double helix, whereas in proteins, specificity arises largely from buried hydrophobic packing complemented by irregular peripheral polar interactions. Here we describe a general approach for designing a wide range of protein homo-oligomers with specificity determined by modular arrays of central hydrogen bond networks. We use the approach to design dimers, trimers, and tetramers consisting of two concentric rings of helices, including previously not seen triangular, square, and supercoiled topologies. X-ray crystallography confirms that the structures overall, and the hydrogen bond networks in particular, are nearly identical to the design models, and the networks confer interaction specificity in vivo. The ability to design extensive hydrogen bond networks with atomic accuracy is a milestone for protein design and enables the programming of protein interaction specificity for a broad range of synthetic biology applications. PMID:27151862
Modular Orbital Demonstration of an Evolvable Space Telescope (MODEST)
NASA Astrophysics Data System (ADS)
Baldauf, Brian; Conti, Alberto
2016-01-01
The "Search for Life" via imaging of exoplanets is a mission that requires extremely stable telescopes with apertures in the 10 m to 20 m range. The High Definition Space Telescope (HDST) envisioned for this mission would have an aperture >10 m, which is a larger payload than what can be delivered to space using a single launch vehicle. Building and assembling the mirror segments enabling large telescopes will likely require multiple launches and assembly in space. Space-based telescopes with large apertures will require major changes to system architectures.The Optical Telescope Assembly (OTA) for HDST is a primary mission cost driver. Enabling and affordable solutions for this next generation of large aperture space-based telescope are needed.This paper reports on the concept for the Modular Orbital Demonstration of an Evolvable Space Telescope (MODEST), which demonstrates on-orbit robotic and/or astronaut assembly of a precision optical telescope in space. It will also facilitate demonstration of active correction of phase and mirror shape. MODEST is proposed to be delivered to the ISS using standard Express Logistics Carriers (ELCs) and can mounted to one of a variety of ISS pallets. Post-assembly value includes space, ground, and environmental studies, and a testbed for new instruments. This demonstration program for next generation mirror technology provides significant risk reduction and demonstrates the technology in a six-mirror phased telescope. Other key features of the demonstration include the use of an active primary optical surface with wavefront feedback control that allows on-orbit optimization and demonstration of precise surface control to meet optical system wavefront and stability requirements.MODEST will also be used to evaluate advances in lightweight mirror and metering structure materials such as SiC or Carbon Fiber Reinforced Polymer that have excellent mechanical and thermal properties, e.g. high stiffness, high modulus, high thermal conductivity, and low thermal expansion. It has been demonstrated that mirrors built from these materials can be rapidly replicated in a highly cost effective manner, making these materials excellent candidates for a low cost, high performance OTA.
The LDEF ultra heavy cosmic ray experiment
NASA Technical Reports Server (NTRS)
Osullivan, D.; Thompson, A.; Bosch, J.; Keegan, R.; Wenzel, K.-P.; Smit, A.; Domingo, C.
1992-01-01
The LDEF Ultra Heavy Cosmic Ray Experiment (UHCRE) used 16 side viewing LDEF trays giving a total geometry factor for high energy cosmic rays of 30 sq m sr. The total exposure factor was 170 sq m sr y. The experiment is based on a modular array of 192 solid state nuclear track detector stacks, mounted in sets of four in 48 pressure vessels. The extended duration of the LDEF mission has resulted in a greatly enhanced potential scientific yield from the UHCRE. Initial scanning results indicate that at least 1800 cosmic ray nuclei with Z greater than 65 were collected, including the world's first statistically significant sample of actinides. Post flight work to date and the current status of the experiment are reviewed.
NASA Astrophysics Data System (ADS)
Ren, Yilong; Duan, Xitong; Wu, Lei; He, Jin; Xu, Wu
2017-06-01
With the development of the “VR+” era, the traditional virtual assembly system of power equipment has been unable to satisfy our growing needs. In this paper, based on the analysis of the traditional virtual assembly system of electric power equipment and the application of VR technology in the virtual assembly system of electric power equipment in our country, this paper puts forward the scheme of establishing the virtual assembly system of power equipment: At first, we should obtain the information of power equipment, then we should using OpenGL and multi texture technology to build 3D solid graphics library. After the completion of three-dimensional modeling, we can use the dynamic link library DLL package three-dimensional solid graphics generation program to realize the modularization of power equipment model library and power equipment model library generated hidden algorithm. After the establishment of 3D power equipment model database, we set up the virtual assembly system of 3D power equipment to separate the assembly operation of the power equipment from the space. At the same time, aiming at the deficiency of the traditional gesture recognition algorithm, we propose a gesture recognition algorithm based on improved PSO algorithm for BP neural network data glove. Finally, the virtual assembly system of power equipment can really achieve multi-channel interaction function.
Neutron and gamma-ray measurements on the LANL Little Boy Comet Assembly
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hankins, D.E.
1983-09-01
We measured the neutron and gamma-ray dose rates at various distances from the Little Boy Comet Assembly at Los Alamos National Laboratory (LANL), Los Alamos, New Mexico on April 28 and 29, 1983. The distances selected varied from 350 ft to 1860 ft from the assembly, with the latter point being located at the edge of the mesa overlooking Pajarito Canyon. We varied the power levels for the various runs but we have normalized all of them to a single power-level. We also made corrections for the variations in the power-level indicators of the assembly using data provided by LANL.
NASA Astrophysics Data System (ADS)
Wi, S.; Ray, P. A.; Brown, C.
2015-12-01
A software package developed to facilitate building distributed hydrologic models in a modular modeling system is presented. The software package provides a user-friendly graphical user interface that eases its practical use in water resources-related research and practice. The modular modeling system organizes the options available to users when assembling models according to the stages of hydrological cycle, such as potential evapotranspiration, soil moisture accounting, and snow/glacier melting processes. The software is intended to be a comprehensive tool that simplifies the task of developing, calibrating, validating, and using hydrologic models through the inclusion of intelligent automation to minimize user effort, and reduce opportunities for error. Processes so far automated include the definition of system boundaries (i.e., watershed delineation), climate and geographical input generation, and parameter calibration. Built-in post-processing toolkits greatly improve the functionality of the software as a decision support tool for water resources system management and planning. Example post-processing toolkits enable streamflow simulation at ungauged sites with predefined model parameters, and perform climate change risk assessment by means of the decision scaling approach. The software is validated through application to watersheds representing a variety of hydrologic regimes.
Redondo, L M; Fernando Silva, J; Margato, E
2007-03-01
This article discusses the operation of a modular generator topology, which has been developed for high-frequency (kHz), high-voltage (kV) pulsed applications. The proposed generator uses individual modules, each one consisting of a pulse circuit based on a modified forward converter, which takes advantage of the required low duty cycle to operate with a low voltage clamp reset circuit for the step-up transformer. This reduces the maximum voltage on the semiconductor devices of both primary and secondary transformer sides. The secondary winding of each step-up transformer is series connected, delivering a fraction of the total voltage. Each individual pulsed module is supplied via an isolation transformer. The assembled modular laboratorial prototype, with three 5 kV modules, 800 V semiconductor switches, and 1:10 step-up transformers, has 80% efficiency, and is capable of delivering, into resistive loads, -15 kV1 A pulses with 5 micros width, 10 kHz repetition rate, with less than 1 micros pulse rise time. Experimental results for resistive loads are presented and discussed.
Wu, Junjun; Zhang, Xia; Zhu, Yingjie; Tan, Qinyu; He, Jiacheng; Dong, Mingsheng
2017-05-03
Efficient biosynthesis of the plant polyphenol pinosylvin, which has numerous applications in nutraceuticals and pharmaceuticals, is necessary to make biological production economically viable. To this end, an efficient Escherichia coli platform for pinosylvin production was developed via a rational modular design approach. Initially, different candidate pathway enzymes were screened to construct de novo pinosylvin pathway directly from D-glucose. A comparative analysis of pathway intermediate pools identified that this initial construct led to the intermediate cinnamic acid accumulation. The pinosylvin synthetic pathway was then divided into two new modules separated at cinnamic acid. Combinatorial optimization of transcriptional and translational levels of these two modules resulted in a 16-fold increase in pinosylvin titer. To further improve the concentration of the limiting precursor malonyl-CoA, the malonyl-CoA synthesis module based on clustered regularly interspaced short palindromic repeats interference was assembled and optimized with other two modules. The final pinosylvin titer was improved to 281 mg/L, which was the highest pinosylvin titer even directly from D-glucose without any additional precursor supplementation. The rational modular design approach described here could bolster our capabilities in synthetic biology for value-added chemical production.
A Modular Soft Robotic Wrist for Underwater Manipulation.
Kurumaya, Shunichi; Phillips, Brennan T; Becker, Kaitlyn P; Rosen, Michelle H; Gruber, David F; Galloway, Kevin C; Suzumori, Koichi; Wood, Robert J
2018-04-19
This article presents the development of modular soft robotic wrist joint mechanisms for delicate and precise manipulation in the harsh deep-sea environment. The wrist consists of a rotary module and bending module, which can be combined with other actuators as part of a complete manipulator system. These mechanisms are part of a suite of soft robotic actuators being developed for deep-sea manipulation via submersibles and remotely operated vehicles, and are designed to be powered hydraulically with seawater. The wrist joint mechanisms can also be activated with pneumatic pressure for terrestrial-based applications, such as automated assembly and robotic locomotion. Here we report the development and characterization of a suite of rotary and bending modules by varying fiber number and silicone hardness. Performance of the complete soft robotic wrist is demonstrated in normal atmospheric conditions using both pneumatic and hydraulic pressures for actuation and under high ambient hydrostatic pressures equivalent to those found at least 2300 m deep in the ocean. This rugged modular wrist holds the potential to be utilized at full ocean depths (>10,000 m) and is a step forward in the development of jointed underwater soft robotic arms.
Algorithms for Automated DNA Assembly
2010-01-01
polyketide synthase gene cluster. Proc. Natl Acad. Sci. USA, 101, 15573–15578. 16. Shetty,R.P., Endy,D. and Knight,T.F. Jr (2008) Engineering BioBrick vectors...correct theoretical construction scheme is de- veloped manually, it is likely to be suboptimal by any number of cost metrics. Modular, robust and...to an exhaustive search on a small synthetic dataset and our results show that our algorithms can quickly find an optimal solution. Comparison with
Design considerations for a servo optical projection system
NASA Astrophysics Data System (ADS)
Nadalsky, Michael; Allen, Daniel; Bien, Joseph
1987-01-01
The present servooptical projection system (SOPS) furnishes 'out-the-window' scenery for a pilot-training flight simulator; attention is given to the parametric tradeoffs made in the SOPS' optical design, as well as to its mechanical packaging and the servonetwork performance of the unit as integrated into a research/training helicopter flight simulator. The final SOPS configuration is a function of scan head design, assembly modularity, image deterioration method, and focal lengths and relative apertures.
Using Voice Coils to Actuate Modular Soft Robots: Wormbot, an Example.
Nemitz, Markus P; Mihaylov, Pavel; Barraclough, Thomas W; Ross, Dylan; Stokes, Adam A
2016-12-01
In this study, we present a modular worm-like robot, which utilizes voice coils as a new paradigm in soft robot actuation. Drive electronics are incorporated into the actuators, providing a significant improvement in self-sufficiency when compared with existing soft robot actuation modes such as pneumatics or hydraulics. The body plan of this robot is inspired by the phylum Annelida and consists of three-dimensional printed voice coil actuators, which are connected by flexible silicone membranes. Each electromagnetic actuator engages with its neighbor to compress or extend the membrane of each segment, and the sequence in which they are actuated results in an earthworm-inspired peristaltic motion. We find that a minimum of three segments is required for locomotion, but due to our modular design, robots of any length can be quickly and easily assembled. In addition to actuation, voice coils provide audio input and output capabilities. We demonstrate transmission of data between segments by high-frequency carrier waves and, using a similar mechanism, we note that the passing of power between coupled coils in neighboring modules-or from an external power source-is also possible. Voice coils are a convenient multifunctional alternative to existing soft robot actuators. Their self-contained nature and ability to communicate with each other are ideal for modular robotics, and the additional functionality of sound input/output and power transfer will become increasingly useful as soft robots begin the transition from early proof-of-concept systems toward fully functional and highly integrated robotic systems.
A normal incidence, high resolution X-ray telescope for solar coronal observations
NASA Technical Reports Server (NTRS)
Golub, L.
1984-01-01
A Normal Incidence high resolution X-ray Telescope is reported. The design of a telescope assembly which, after fabrication, will be integrated with the mirror fabrication process is described. The assembly is engineered to fit into the Black Brant rocket skin to survive sounding rocket launch conditions. A flight ready camera is modified and tested.
High-accuracy microassembly by intelligent vision systems and smart sensor integration
NASA Astrophysics Data System (ADS)
Schilp, Johannes; Harfensteller, Mark; Jacob, Dirk; Schilp, Michael
2003-10-01
Innovative production processes and strategies from batch production to high volume scale are playing a decisive role in generating microsystems economically. In particular assembly processes are crucial operations during the production of microsystems. Due to large batch sizes many microsystems can be produced economically by conventional assembly techniques using specialized and highly automated assembly systems. At laboratory stage microsystems are mostly assembled by hand. Between these extremes there is a wide field of small and middle sized batch production wherefore common automated solutions rarely are profitable. For assembly processes at these batch sizes a flexible automated assembly system has been developed at the iwb. It is based on a modular design. Actuators like grippers, dispensers or other process tools can easily be attached due to a special tool changing system. Therefore new joining techniques can easily be implemented. A force-sensor and a vision system are integrated into the tool head. The automated assembly processes are based on different optical sensors and smart actuators like high-accuracy robots or linear-motors. A fiber optic sensor is integrated in the dispensing module to measure contactless the clearance between the dispense needle and the substrate. Robot vision systems using the strategy of optical pattern recognition are also implemented as modules. In combination with relative positioning strategies, an assembly accuracy of the assembly system of less than 3 μm can be realized. A laser system is used for manufacturing processes like soldering.
MARXS: A Modular Software to Ray-trace X-Ray Instrumentation
NASA Astrophysics Data System (ADS)
Günther, Hans Moritz; Frost, Jason; Theriault-Shay, Adam
2017-12-01
To obtain the best possible scientific result, astronomers must understand the properties of the available instrumentation well. This is important both when designing new instruments and when using existing instruments close to the limits of their specified capabilities or beyond. Ray-tracing is a technique for numerical simulations where the path of many light rays is followed through the system to understand how individual system components influence the observed properties, such as the shape of the point-spread-function. In instrument design, such simulations can be used to optimize the performance. For observations with existing instruments, this helps to discern instrumental artefacts from a true signal. Here, we describe MARXS, a new python package designed to simulate X-ray instruments on satellites and sounding rockets. MARXS uses probability tracking of photons and has polarimetric capabilities.
Hard-X-Ray/Soft-Gamma-Ray Imaging Sensor Assembly for Astronomy
NASA Technical Reports Server (NTRS)
Myers, Richard A.
2008-01-01
An improved sensor assembly has been developed for astronomical imaging at photon energies ranging from 1 to 100 keV. The assembly includes a thallium-doped cesium iodide scintillator divided into pixels and coupled to an array of high-gain avalanche photodiodes (APDs). Optionally, the array of APDs can be operated without the scintillator to detect photons at energies below 15 keV. The array of APDs is connected to compact electronic readout circuitry that includes, among other things, 64 independent channels for detection of photons in various energy ranges, up to a maximum energy of 100 keV, at a count rate up to 3 kHz. The readout signals are digitized and processed by imaging software that performs "on-the-fly" analysis. The sensor assembly has been integrated into an imaging spectrometer, along with a pair of coded apertures (Fresnel zone plates) that are used in conjunction with the pixel layout to implement a shadow-masking technique to obtain relatively high spatial resolution without having to use extremely small pixels. Angular resolutions of about 20 arc-seconds have been measured. Thus, for example, the imaging spectrometer can be used to (1) determine both the energy spectrum of a distant x-ray source and the angular deviation of the source from the nominal line of sight of an x-ray telescope in which the spectrometer is mounted or (2) study the spatial and temporal development of solar flares, repeating - ray bursters, and other phenomena that emit transient radiation in the hard-x-ray/soft- -ray region of the electromagnetic spectrum.
Role of Bassoon and Piccolo in Assembly and Molecular Organization of the Active Zone
Gundelfinger, Eckart D.; Reissner, Carsten; Garner, Craig C.
2016-01-01
Bassoon and Piccolo are two very large scaffolding proteins of the cytomatrix assembled at the active zone (CAZ) where neurotransmitter is released. They share regions of high sequence similarity distributed along their entire length and seem to share both overlapping and distinct functions in organizing the CAZ. Here, we survey our present knowledge on protein-protein interactions and recent progress in understanding of molecular functions of these two giant proteins. These include roles in the assembly of active zones (AZ), the localization of voltage-gated Ca2+ channels (VGCCs) in the vicinity of release sites, synaptic vesicle (SV) priming and in the case of Piccolo, a role in the dynamic assembly of the actin cytoskeleton. Piccolo and Bassoon are also important for the maintenance of presynaptic structure and function, as well as for the assembly of CAZ specializations such as synaptic ribbons. Recent findings suggest that they are also involved in the regulation activity-dependent communication between presynaptic boutons and the neuronal nucleus. Together these observations suggest that Bassoon and Piccolo use their modular structure to organize super-molecular complexes essential for various aspects of presynaptic function. PMID:26793095
Sahn, James J; Granger, Brett A; Martin, Stephen F
2014-10-21
A strategy for generating diverse collections of small molecules has been developed that features a multicomponent assembly process (MCAP) to efficiently construct a variety of intermediates possessing an aryl aminomethyl subunit. These key compounds are then transformed via selective ring-forming reactions into heterocyclic scaffolds, each of which possesses suitable functional handles for further derivatizations and palladium-catalyzed cross coupling reactions. The modular nature of this approach enables the facile construction of libraries of polycyclic compounds bearing a broad range of substituents and substitution patterns for biological evaluation. Screening of several compound libraries thus produced has revealed a large subset of compounds that exhibit a broad spectrum of medicinally-relevant activities.
Modular transportable superconducting magnetic Energy Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lieurance, D.; Kimball, F.; Rix, C.
1994-12-31
Design and cost studies were performed for the magnet components of mid-size (1-5 MWh), cold supported SMES systems using alternative configurations. The configurations studied included solenoid magnets, which required onsite assembly of the magnet system, and toroid and racetrack configurations which consisted of factory assembled modules. For each configuration, design concepts and cost information were developed for the major features of the magnet system including the conductor, electrical insulation, and structure. These studies showed that for mid-size systems, the costs of solenoid and toroid magnet configurations are comparable and that the specific configuration to be used for a given applicationmore » should be based upon customer requirements such as limiting stray fields or minimizing risks in development or construction.« less
Concept design of robotic modules for needlescopic surgery.
Sen, Shin; Harada, Kanako; Hewitt, Zackary; Susilo, Ekawahyu; Kobayashi, Etsuko; Sakuma, Ichiro
2017-08-01
Many minimally invasive surgical procedures and assisting robotic systems have been developed to further minimize the number and size of incisions in the body surface. This paper presents a new idea combining the advantages of modular robotic surgery, single incision laparoscopic surgery and needlescopic surgery. In the proposed concept, modules carrying therapeutic or diagnostic tools are inserted in the abdominal cavity from the navel as in single incision laparoscopic surgery and assembled to 3-mm needle shafts penetrating the abdominal wall. A three degree-of-freedom robotic module measuring 16 mm in diameter and 51 mm in length was designed and prototyped. The performance of the three connected robotic modules was evaluated. A new idea of modular robotic surgery was proposed, and demonstrated by prototyping a 3-DOF robotic module. The performance of the connected robotic modules was evaluated, and the challenges and future work were summarized.
Flat-panel video resolution LED display system
NASA Astrophysics Data System (ADS)
Wareberg, P. G.; Kennedy, D. I.
The system consists of a 128 x 128 element X-Y addressable LED array fabricated from green-emitting gallium phosphide. The LED array is interfaced with a 128 x 128 matrix TV camera. Associated electronics provides for seven levels of grey scale above zero with a grey scale ratio of square root of 2. Picture elements are on 0.008 inch centers resulting in a resolution of 125 lines-per-inch and a display area of approximately 1 sq. in. The LED array concept lends itself to modular construction, permitting assembly of a flat panel screen of any desired size from 1 x 1 inch building blocks without loss of resolution. A wide range of prospective aerospace applications exist extending from helmet-mounted systems involving small dedicated arrays to multimode cockpit displays constructed as modular screens. High-resolution LED arrays are already used as CRT replacements in military film-marking reconnaissance applications.
Experimental research on a modular miniaturization nanoindentation device
NASA Astrophysics Data System (ADS)
Huang, Hu; Zhao, Hongwei; Mi, Jie; Yang, Jie; Wan, Shunguang; Yang, Zhaojun; Yan, Jiwang; Ma, Zhichao; Geng, Chunyang
2011-09-01
Nanoindentation technology is developing toward the in situ test which requires miniaturization of indentation instruments. This paper presents a miniaturization nanoindentation device based on the modular idea. It mainly consists of macro-adjusting mechanism, x-y precise positioning platform, z axis precise driving unit, and the load-depth measuring unit. The device can be assembled with different forms and has minimum dimensions of 200 mm × 135 mm × 200 mm. The load resolution is about 0.1 mN and the displacement resolution is about 10 nm. A new calibration method named the reference-mapping method is proposed to calibrate the developed device. Output performance tests and indentation experiments indicate the feasibility of the developed device and calibration method. This paper gives an example that combining piezoelectric actuators with flexure hinge to realize nanoindentation tests. Integrating a smaller displacement sensor, a more compact nanoindentation device can be designed in the future.
EcoFlex: A Multifunctional MoClo Kit for E. coli Synthetic Biology.
Lai, Hung-En; Moore, Simon; Polizzi, Karen; Freemont, Paul
2018-01-01
Development of advanced synthetic biology tools is always in demand since they act as a platform technology to enable rapid prototyping of biological constructs in a high-throughput manner. EcoFlex is a modular cloning (MoClo) kit for Escherichia coli and is based on the Golden Gate principles, whereby Type IIS restriction enzymes (BsaI, BsmBI, BpiI) are used to construct modular genetic elements (biological parts) in a bottom-up approach. Here, we describe a collection of plasmids that stores various biological parts including promoters, RBSs, terminators, ORFs, and destination vectors, each encoding compatible overhangs allowing hierarchical assembly into single transcription units or a full-length polycistronic operon or biosynthetic pathway. A secondary module cloning site is also available for pathway optimization, in order to limit library size if necessary. Here, we show the utility of EcoFlex using the violacein biosynthesis pathway as an example.
The assembly and use of continuous flow systems for chemical synthesis.
Britton, Joshua; Jamison, Timothy F
2017-11-01
The adoption of and opportunities in continuous flow synthesis ('flow chemistry') have increased significantly over the past several years. Continuous flow systems provide improved reaction safety and accelerated reaction kinetics, and have synthesised several active pharmaceutical ingredients in automated reconfigurable systems. Although continuous flow platforms are commercially available, systems constructed 'in-lab' provide researchers with a flexible, versatile, and cost-effective alternative. Herein, we describe the assembly and use of a modular continuous flow apparatus from readily available and affordable parts in as little as 30 min. Once assembled, the synthesis of a sulfonamide by reacting 4-chlorobenzenesulfonyl chloride with dibenzylamine in a single reactor coil with an in-line quench is presented. This example reaction offers the opportunity to learn several important skills including reactor construction, charging of a back-pressure regulator, assembly of stainless-steel syringes, assembly of a continuous flow system with multiple junctions, and yield determination. From our extensive experience of single-step and multistep continuous flow synthesis, we also describe solutions to commonly encountered technical problems such as precipitation of solids ('clogging') and reactor failure. Following this protocol, a nonspecialist can assemble a continuous flow system from reactor coils, syringes, pumps, in-line liquid-liquid separators, drying columns, back-pressure regulators, static mixers, and packed-bed reactors.
Rossi, Alessandra; Conti, Chiara; Colombo, Gaia; Castrati, Luca; Scarpignato, Carmelo; Barata, Pedro; Sandri, Giuseppina; Caramella, Carla; Bettini, Ruggero; Buttini, Francesca; Colombo, Paolo
2016-01-01
Release modules of amoxicillin and clarithromycin combined in a single dosage form designed to float in the gastric content and to sustain the intra-gastric concentrations of these two antibiotics used for the eradication of Helicobacter pylori have been studied. The modules having a disc shape with curved bases were formulated as hydrophilic matrices. Two modules of clarithromycin were assembled by sticking the concave base of one module to the concave base of the other, creating an internal void chamber. The final dosage form was a floating assembly of three modules of clarithromycin and two of amoxicillin in which the drug release mechanism did not interfere with the floatation mechanism. The assembled system showed immediate in vitro floatation at pH 1.2, lasting 5 h. The in vitro antibiotics release profiles from individual modules and assembled systems exhibited linear release rate during buoyancy for at least 8 h. The predicted antibiotic concentrations in the stomach maintained for long time levels significantly higher than the respective minimum inhibitory concentrations (MIC). In addition, an in vivo absorption study performed on beagle dogs confirmed the slow release of clarithromycin and amoxicillin from the assembled system during the assembly's permanence in the stomach for at least 4 h.
Ordered Self-Assembled Monolayers of Peptide Nucleic Acids with DNA Recognition Capability
NASA Astrophysics Data System (ADS)
Briones, C.; Mateo-Marti, E.; Gómez-Navarro, C.; Parro, V.; Román, E.; Martín-Gago, J. A.
2004-11-01
We report on the formation of ordered self-assembled monolayers (SAMs) of single-stranded peptide nucleic acids (ssPNA). In spite of their remarkable length (7nm) thiolated PNAs assemble standing up on gold surfaces similarly to the SAMs of short alkanethiols. SAMs of ssPNA recognize complementary nucleic acids, acting as specific biosensors that discriminate even a point mutation in target ssDNA. These results are obtained by surface characterization techniques that avoid labeling of the target molecule: x-ray photoemission, x-ray absorption and atomic force microscopy.
SapTrap, a Toolkit for High-Throughput CRISPR/Cas9 Gene Modification in Caenorhabditis elegans.
Schwartz, Matthew L; Jorgensen, Erik M
2016-04-01
In principle, clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 allows genetic tags to be inserted at any locus. However, throughput is limited by the laborious construction of repair templates and guide RNA constructs and by the identification of modified strains. We have developed a reagent toolkit and plasmid assembly pipeline, called "SapTrap," that streamlines the production of targeting vectors for tag insertion, as well as the selection of modified Caenorhabditis elegans strains. SapTrap is a high-efficiency modular plasmid assembly pipeline that produces single plasmid targeting vectors, each of which encodes both a guide RNA transcript and a repair template for a particular tagging event. The plasmid is generated in a single tube by cutting modular components with the restriction enzyme SapI, which are then "trapped" in a fixed order by ligation to generate the targeting vector. A library of donor plasmids supplies a variety of protein tags, a selectable marker, and regulatory sequences that allow cell-specific tagging at either the N or the C termini. All site-specific sequences, such as guide RNA targeting sequences and homology arms, are supplied as annealed synthetic oligonucleotides, eliminating the need for PCR or molecular cloning during plasmid assembly. Each tag includes an embedded Cbr-unc-119 selectable marker that is positioned to allow concurrent expression of both the tag and the marker. We demonstrate that SapTrap targeting vectors direct insertion of 3- to 4-kb tags at six different loci in 10-37% of injected animals. Thus SapTrap vectors introduce the possibility for high-throughput generation of CRISPR/Cas9 genome modifications. Copyright © 2016 by the Genetics Society of America.
Two-state dynamics of the SH3-SH2 tandem of Abl kinase and the allosteric role of the N-cap.
Corbi-Verge, Carles; Marinelli, Fabrizio; Zafra-Ruano, Ana; Ruiz-Sanz, Javier; Luque, Irene; Faraldo-Gómez, José D
2013-09-03
The regulation and localization of signaling enzymes is often mediated by accessory modular domains, which frequently function in tandems. The ability of these tandems to adopt multiple conformations is as important for proper regulation as the individual domain specificity. A paradigmatic example is Abl, a ubiquitous tyrosine kinase of significant pharmacological interest. SH3 and SH2 domains inhibit Abl by assembling onto the catalytic domain, allosterically clamping it in an inactive state. We investigate the dynamics of this SH3-SH2 tandem, using microsecond all-atom simulations and differential scanning calorimetry. Our results indicate that the Abl tandem is a two-state switch, alternating between the conformation observed in the structure of the autoinhibited enzyme and another configuration that is consistent with existing scattering data for an activated form. Intriguingly, we find that the latter is the most probable when the tandem is disengaged from the catalytic domain. Nevertheless, an amino acid stretch preceding the SH3 domain, the so-called N-cap, reshapes the free-energy landscape of the tandem and favors the interaction of this domain with the SH2-kinase linker, an intermediate step necessary for assembly of the autoinhibited complex. This allosteric effect arises from interactions between N-cap and the SH2 domain and SH3-SH2 connector, which involve a phosphorylation site. We also show that the SH3-SH2 connector plays a determinant role in the assembly equilibrium of Abl, because mutations thereof hinder the engagement of the SH2-kinase linker. These results provide a thermodynamic rationale for the involvement of N-cap and SH3-SH2 connector in Abl regulation and expand our understanding of the principles of modular domain organization.
Yamazaki, Tomohiro; Souquere, Sylvie; Chujo, Takeshi; Kobelke, Simon; Chong, Yee Seng; Fox, Archa H; Bond, Charles S; Nakagawa, Shinichi; Pierron, Gerard; Hirose, Tetsuro
2018-06-21
A class of long noncoding RNAs (lncRNAs) has architectural functions in nuclear body construction; however, specific RNA domains dictating their architectural functions remain uninvestigated. Here, we identified the domains of the architectural NEAT1 lncRNA that construct paraspeckles. Systematic deletion of NEAT1 portions using CRISPR/Cas9 in haploid cells revealed modular domains of NEAT1 important for RNA stability, isoform switching, and paraspeckle assembly. The middle domain, containing functionally redundant subdomains, was responsible for paraspeckle assembly. Artificial tethering of the NONO protein to a NEAT1_2 mutant lacking the functional subdomains rescued paraspeckle assembly, and this required the NOPS dimerization domain of NONO. Paraspeckles exhibit phase-separated properties including susceptibility to 1,6-hexanediol treatment. RNA fragments of the NEAT1_2 subdomains preferentially bound NONO/SFPQ, leading to phase-separated aggregates in vitro. Thus, we demonstrate that the enrichment of NONO dimers on the redundant NEAT1_2 subdomains initiates construction of phase-separated paraspeckles, providing mechanistic insights into lncRNA-based nuclear body formation. Copyright © 2018 Elsevier Inc. All rights reserved.
Luft, Peter A [El Cerrito, CA
2009-05-12
A coupling for mechanically connecting modular tubular struts of a positioning apparatus or space frame, comprising a pair of toothed rings (10, 12) attached to separate strut members (16), the teeth (18, 20) of the primary rings (10, 12) mechanically interlocking in both an axial and circumferential manner, and a third part comprising a sliding, toothed collar (14) the teeth (22) of which interlock the teeth (18, 20) of the primary rings (10, 12), preventing them from disengaging, and completely locking the assembly together. A secondary mechanism provides a nesting force for the collar, and/or retains it. The coupling is self-contained and requires no external tools for installation, and can be assembled with gloved hands in demanding environments. No gauging or measured torque is required for assembly. The assembly can easily be visually inspected to determine a "go" or "no-go" status. The coupling is compact and relatively light-weight. Because of it's triply interlocking teeth, the connection is rigid. The connection does not primarily rely on clamps, springs or friction based fasteners, and is therefore reliable in fail-safe applications.
Controlling the Surface Chemistry of Graphite by Engineered Self-Assembled Peptides
Khatayevich, Dmitriy; So, Christopher R.; Hayamizu, Yuhei; Gresswell, Carolyn; Sarikaya, Mehmet
2012-01-01
The systematic control over surface chemistry is a long-standing challenge in biomedical and nanotechnological applications for graphitic materials. As a novel approach, we utilize graphite-binding dodecapeptides that self-assemble into dense domains to form monolayer thick long-range ordered films on graphite. Specifically, the peptides are rationally designed through their amino acid sequences to predictably display hydrophilic and hydrophobic characteristics while maintaining their self-assembly capabilities on the solid substrate. The peptides are observed to maintain a high tolerance for sequence modification, allowing the control over surface chemistry via their amino acid sequence. Furthermore, through a single step co-assembly of two different designed peptides, we predictably and precisely tune the wettability of the resulting functionalized graphite surfaces from 44 to 83 degrees. The modular molecular structures and predictable behavior of short peptides demonstrated here give rise to a novel platform for functionalizing graphitic materials that offers numerous advantages, including non-invasive modification of the substrate, bio-compatible processing in an aqueous environment, and simple fusion with other functional biological molecules. PMID:22428620
NASA Astrophysics Data System (ADS)
Barrett, John Christopher
Inducing a strong and specific immune response is the hallmark of a successful vaccine. Nanoparticles have emerged as promising vaccine delivery devices to discover and elicit immune responses. Modular platforms are attractive for their engineerability and broad potential applications. Fine-tuning a nanoparticle vaccine to create an immune response with specific antibody and other cellular responses is influenced by many factors such as shape, size and composition. Peptide amphiphile micelles are a unique biomaterials platform that can function as a modular vaccine delivery system, enabling control over many of these important factors. Peptide amphiphiles (PAs) consist of a hydrophilic peptide antigen conjugated to a hydrophobic lipid tail. The PAs then self-assemble into micelles, with the micelle characteristics determined by the chemical composition of the PA and micelle preparation methods. PA micelles contain a large design space, so it is important to have a basic understanding of how each design feature can affect the platform's interaction with the immune system. In this dissertation, the structure, composition, and biodistribution properties of PA micelles are evaluated for their ability to impact an immune response against a Group A Streptococcus B cell antigen (J8). Through structural design and physical characterization, micelles are shown to self-assemble into either short rod-like or long cylindrical shapes. Analyzing these shape effects on the immune response showed that cylindrical micelles induced higher antibody titers than rod-like micelles, providing evidence that the cylindrical micelle shape is important to induce immune responses and a possible mechanism of action. Shape was also seen to impact the activation profile of dendritic cells, B cells and T cells. Assembly into cylindrical micelles also stabilizes the secondary structure of peptide antigens, which may impact the immune response raised. In composition, the hydrophobic/hydrophilic interface of PA micelles enabled the precise entrapment of amphiphilic adjuvants which were found to not alter micelle formation or shape. These heterogeneous micelles significantly enhanced murine antibody responses when compared to animals vaccinated with non-adjuvanted micelles or soluble J8 peptide supplemented with a classical adjuvant. PAs were also shown to traffic more efficiently to the lymph node than free peptide. Characterization of these design features and their impact on an immune response provides a valuable foundation of knowledge to apply when expanding the peptide amphiphile micelle platform to other vaccine applications.
Visual and x-ray inspection characteristics of eutectic and lead free assemblies
NASA Technical Reports Server (NTRS)
Ghaffarian, R.
2003-01-01
For high reliability applications, visual inspection has been the key technique for most conventional electronic package assemblies. Now, the use of x-ray technique has become an additional inspection requirement for quality control and detection of unique defects due to manufacturing of advanced electronic array packages such as ball grid array (BGAs) and chip scale packages (CSPs).
Yi, Shengzhen; Zhang, Zhe; Huang, Qiushi; Zhang, Zhong; Mu, Baozhong; Wang, Zhanshan; Fang, Zhiheng; Wang, Wei; Fu, Sizu
2016-10-01
Because grazing-incidence Kirkpatrick-Baez (KB) microscopes have better resolution and collection efficiency than pinhole cameras, they have been widely used for x-ray imaging diagnostics of laser inertial confinement fusion. The assembly and adjustment of a multichannel KB microscope must meet stringent requirements for image resolution and reproducible alignment. In the present study, an eight-channel KB microscope was developed for diagnostics by imaging self-emission x-rays with a framing camera at the Shenguang-II Update (SGII-Update) laser facility. A consistent object field of view is ensured in the eight channels using an assembly method based on conical reference cones, which also allow the intervals between the eight images to be tuned to couple with the microstrips of the x-ray framing camera. The eight-channel KB microscope was adjusted via real-time x-ray imaging experiments in the laboratory. This paper describes the details of the eight-channel KB microscope, its optical and multilayer design, the assembly and alignment methods, and results of imaging in the laboratory and at the SGII-Update.
A multi-sensor oceanographic measurement system for coastal environments
Martini, Marinna A.; Strahle, William J.
1993-01-01
An instrument system has been developed for long-term sediment transport studies that uses a modular design to combine off the shelf components into a complete and flexible package. A common data storage format is used in each instrument system so that the same hardware can be assembled in different ways to address specific scientific studies with minimal engineering support and modification. Three systems have been constructed and successfully deployed to date in two different coastal environments.
A Systems Biology Framework for Modeling Metabolic Enzyme Inhibition of Mycobacterium Tuberculosis
2009-09-15
Quadri LE: Assembly of aryl-capped siderophores by modular peptide synthetases and polyketide synthases . Mol Microbiol 2000, 37:1-12. 51. Chou CJ...opportunities for therapeutic intervention. Results: We developed a mathematical framework to simulate the effects on the growth of a pathogen when enzymes in... on the growth of M. tuberculosis in a medium whose carbon source was restricted to fatty acids, and that of the 5’-O-(N-salicylsulfamoyl) adenosine
A Framework and Toolkit for the Construction of Multimodal Learning Interfaces
1998-04-29
human communication modalities in the context of a broad class of applications, specifically those that support state manipulation via parameterized actions. The multimodal semantic model is also the basis for a flexible, domain independent, incrementally trainable multimodal interpretation algorithm based on a connectionist network. The second major contribution is an application framework consisting of reusable components and a modular, distributed system architecture. Multimodal application developers can assemble the components in the framework into a new application,
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, T; Huang, S; Zhao, XF
Recent studies indicate that the DNA recognition domain of transcription activator-like (TAL) effectors can be combined with the nuclease domain of FokI restriction enzyme to produce TAL effector nucleases (TALENs) that, in pairs, bind adjacent DNA target sites and produce double-strand breaks between the target sequences, stimulating non-homologous end-joining and homologous recombination. Here, we exploit the four prevalent TAL repeats and their DNA recognition cipher to develop a 'modular assembly' method for rapid production of designer TALENs (dTALENs) that recognize unique DNA sequence up to 23 bases in any gene. We have used this approach to engineer 10 dTALENs tomore » target specific loci in native yeast chromosomal genes. All dTALENs produced high rates of site-specific gene disruptions and created strains with expected mutant phenotypes. Moreover, dTALENs stimulated high rates (up to 34%) of gene replacement by homologous recombination. Finally, dTALENs caused no detectable cytotoxicity and minimal levels of undesired genetic mutations in the treated yeast strains. These studies expand the realm of verified TALEN activity from cultured human cells to an intact eukaryotic organism and suggest that low-cost, highly dependable dTALENs can assume a significant role for gene modifications of value in human and animal health, agriculture and industry.« less
Sutar, Papri; Maji, Tapas Kumar
2017-08-21
The recent upsurge in research on coordination polymer gels (CPGs) stems from their synthetic modularity, nanoscale processability, and versatile functionalities. Here we report self-assembly of an amphiphilic, tripodal low-molecular weight gelator (L) that consists of 4,4',4-[1,3,5-phenyl-tri(methoxy)]-tris-benzene core and 2,2':6',2″-terpyridyl termini, with different metal ions toward the formation of CPGs that show controllable nanomorphologies, tunable emission, and stimuli-responsive behaviors. L can also act as a selective chemosensor for Zn II with very low limit of detection (0.18 ppm) in aqueous medium. Coordination-driven self-assembly of L with Zn II in H 2 O/MeOH solvent mixture results in a coordination polymer hydrogel (ZnL) that exhibits sheet like morphology and charge-transfer emission. On the other hand, coordination of L with Tb III and Eu III in CHCl 3 /tetrahydrofuran solvent mixture results in green- and red-emissive CPGs, respectively, with nanotubular morphology. Moreover, precise stoichiometric control of L/Eu III /Tb III ratio leads to the formation of bimetallic CPGs that show emissions over a broad spectral range, including white-light-emission. We also explore the multistimuli responsive properties of the white-light-emitting CPG by exploiting the dynamics of Ln III -tpy coordination.
Cryotomography x-ray microscopy state
Le Gros, Mark; Larabell, Carolyn A.
2010-10-26
An x-ray microscope stage enables alignment of a sample about a rotation axis to enable three dimensional tomographic imaging of the sample using an x-ray microscope. A heat exchanger assembly provides cooled gas to a sample during x-ray microscopic imaging.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Engelhard, Mark H.; Tarasevich, Barbara J.; Baer, Donald R.
2011-10-25
XPS spectra of HS(CH{sub 2}){sub 15} COOH terminated a self assembled monolayer (SAM)sample was collected over a period of 242 minutes to determine specimen damage during long exposures to monochromatic Al Ka x-rays. For this COOH terminated SAM we measured the loss of oxygen as a function of time by rastering a focused 100 W, 100 um diameter x-ray beam over a 1.4 mm x 0.2 mm area of the sample.
A beam optics study of a modular multi-source X-ray tube for novel computed tomography applications
NASA Astrophysics Data System (ADS)
Walker, Brandon J.; Radtke, Jeff; Chen, Guang-Hong; Eliceiri, Kevin W.; Mackie, Thomas R.
2017-10-01
A modular implementation of a scanning multi-source X-ray tube is designed for the increasing number of multi-source imaging applications in computed tomography (CT). An electron beam array coupled with an oscillating magnetic deflector is proposed as a means for producing an X-ray focal spot at any position along a line. The preliminary multi-source model includes three thermionic electron guns that are deflected in tandem by a slowly varying magnetic field and pulsed according to a scanning sequence that is dependent on the intended imaging application. Particle tracking simulations with particle dynamics analysis software demonstrate that three 100 keV electron beams are laterally swept a combined distance of 15 cm over a stationary target with an oscillating magnetic field of 102 G perpendicular to the beam axis. Beam modulation is accomplished using 25 μs pulse widths to a grid electrode with a reverse gate bias of -500 V and an extraction voltage of +1000 V. Projected focal spot diameters are approximately 1 mm for 138 mA electron beams and the stationary target stays within thermal limits for the 14 kW module. This concept could be used as a research platform for investigating high-speed stationary CT scanners, for lowering dose with virtual fan beam formation, for reducing scatter radiation in cone-beam CT, or for other industrial applications.
Intelligent Reconfigurable System with Self-Dammage Assessmentand Control Stress Capabilities
NASA Astrophysics Data System (ADS)
Trivailo, P.; Plotnikova, L.; Kao, T. W.
2002-01-01
Modern space structures are constructed using a modular approach that facilitates their transportation and assembly in space. Modular architecture of space structures also enables reconfiguration of large structures such that they can adapt to possible changes in environment, and also allows use of the limited structural resources available in space for completion of a much larger variety of tasks. An increase in size and complexity demands development of materials with a "smart" or active structural modulus and also of effective control algorithms to control the motion of large flexible structures. This challenging task has generated a lot of interest amongst scientists and engineers during the last two decades, however, research into the development of control schemes which can adapt to structural configuration changes has received less attention. This is possibly due to the increased complexity caused by alterations in geometry, which inevitably lead to changes in the dynamic properties of the system. This paper presents results of the application of a decentralized control approach for active control of large flexible structures undergoing significant reconfigurations. The Control Component Synthesis methodology was used to build controlled components and to assemble them into a controlled flexible structure that meets required performance specifications. To illustrate the efficiency of the method, numerical simulations were conducted for 2D and 3D modular truss structures and a multi-link beam system. In each case the performance of the decentralized control system has been evaluated using pole location maps, step and impulse response simulations and frequency response analysis. The performance of the decentralized control system has been measured against the optimal centralised control system for various excitation scenarios. A special case where one of the local component controllers fails was also examined. For better interpretation of the efficiency of the designed controllers, results of the simulations are illustrated using a Virtual Reality computer environment, offering advanced visual effects. Plotnikova@rmit.edu.au # Tsunwah@hotmail.com
A Modular Approach to Video Designation of Manipulation Targets for Manipulators
2014-05-12
side view of a ray going through a point cloud of a water bottle sitting on the ground. The bottom left image shows the same point cloud after it has...System (ROS), Point Cloud Library (PCL), and OpenRAVE were used to a great extent to help promote reusability of the code developed during this
Ultra-High-Performance Concrete And Advanced Manufacturing Methods For Modular Construction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sawab, Jamshaid; Lim, Ing; Mo, Yi-Lung
Small modular reactors (SMR) allow for less onsite construction, increase nuclear material security, and provide a flexible and cost-effective energy alternative. SMR can be factory-built as modular components, and shipped to desired locations for fast assembly. This project successfully developed a new class of ultra-high performance concrete (UHPC), which features a compressive strength greater than 22 ksi (150 MPa) without special treatment and self-consolidating characteristics desired for SMR modular construction. With an ultra-high strength and dense microstructure, it will facilitate rapid construction of steel plate-concrete (SC) beams and walls with thinner and lighter modules, and can withstand harsh environments andmore » mechanical loads anticipated during the service life of nuclear power plants. In addition, the self-consolidating characteristics are crucial for the fast construction and assembly of SC modules with reduced labor costs and improved quality. Following the UHPC material development, the capacity of producing self-consolidating UHPC in mass quantities was investigated and compared to accepted self-consolidating concrete standards. With slightly adjusted mixing procedure using large-scale gravity-based mixers (compared with small-scale force-based mixer), the self-consolidating UHPC has been successfully processed at six cubic yards; the product met both minimum compressive strength requirements and self-consolidating concrete standards. Steel plate-UHPC beams (15 ft. long, 12 in. wide and 16 in. deep) and wall panels (40 in. X 40 in. X 3 in.) were then constructed using the self-consolidating UHPC without any external vibration. Quality control guidelines for producing UHPC in large scale were developed. When the concrete is replaced by UHPC in a steel plate concrete (SC) beam, it is critical to evaluate its structural behavior with both flexure and shear-governed failure modes. In recent years, SC has been widely used for buildings and nuclear containment structures to resist lateral forces induced by severe earthquakes and heavy winds. SC modules have good potential for SMR because of their cost-effectiveness and reduced construction time. However, the minimum shear reinforcement (i.e. cross tie) ratio needs to be determined for the steel plate-UHPC (S-UHPC) beams to exhibit a ductile failure mode. In this project, S-UHPC beams were designed and constructed. The beams were tested to evaluate structural capacity and identify the minimum cross ties ratios. In addition, as the bond between UHPC and steel plate is essential for ensuring structural integrity under shear and flexure, it was measured and examined in this project through digital image correlation system and smart piezoelectric aggregate sensors. Large-scale testing and finite element simulation were also performed on S-UHPC wall panels. New bond slip-based constitutive models of steel plate were developed for S-UHPC, which were used in finite element analysis program to predict S-UHPC behavior under shear. The results were well validated through experimental data. The long-term durability of UHPC were established in this project. UHPC specimens were tested under free shrinkage, restrained shrinkage, elevated temperature, water permeation, chloride diffusion, corrosion, and alkali silica reaction. UHPC has demonstrated significantly improved durability compared with control concrete specimens. This research led to a new generation of steel plate-UHPC modules for SMR that can provide large benefits to the electric power industry. Taking advantage of the high strength and durability of UHPC, their modularity and ease of assembly can address the high cost barriers of typical nuclear power plants.« less
Imaging X-Ray Polarimetry Explorer (IXPE) Risk Management
NASA Technical Reports Server (NTRS)
Alexander, Cheryl; Deininger, William D.; Baggett, Randy; Primo, Attina; Bowen, Mike; Cowart, Chris; Del Monte, Ettore; Ingram, Lindsey; Kalinowski, William; Kelley, Anthony;
2018-01-01
The Imaging X-ray Polarimetry Explorer (IXPE) project is an international collaboration to build and fly a polarization sensitive X-ray observatory. The IXPE Observatory consists of the spacecraft and payload. The payload is composed of three X-ray telescopes, each consisting of a mirror module optical assembly and a polarization-sensitive X-ray detector assembly; a deployable boom maintains the focal length between the optical assemblies and the detectors. The goal of the IXPE Mission is to provide new information about the origins of cosmic X-rays and their interactions with matter and gravity as they travel through space. IXPE will do this by exploiting its unique capability to measure the polarization of X-rays emitted by cosmic sources. The collaboration for IXPE involves national and international partners during design, fabrication, assembly, integration, test, and operations. The full collaboration includes NASA Marshall Space Flight Center (MSFC), Ball Aerospace, the Italian Space Agency (ASI), the Italian Institute of Astrophysics and Space Planetology (IAPS)/Italian National Institute of Astrophysics (INAF), the Italian National Institute for Nuclear Physics (INFN), the University of Colorado (CU) Laboratory for Atmospheric and Space Physics (LASP), Stanford University, McGill University, and the Massachusetts Institute of Technology. The goal of this paper is to discuss risk management as it applies to the IXPE project. The full IXPE Team participates in risk management providing both unique challenges and advantages for project risk management. Risk management is being employed in all phases of the IXPE Project, but is particularly important during planning and initial execution-the current phase of the IXPE Project. The discussion will address IXPE risk strategies and responsibilities, along with the IXPE management process which includes risk identification, risk assessment, risk response, and risk monitoring, control, and reporting.
Neutron transport analysis for nuclear reactor design
Vujic, Jasmina L.
1993-01-01
Replacing regular mesh-dependent ray tracing modules in a collision/transfer probability (CTP) code with a ray tracing module based upon combinatorial geometry of a modified geometrical module (GMC) provides a general geometry transfer theory code in two dimensions (2D) for analyzing nuclear reactor design and control. The primary modification of the GMC module involves generation of a fixed inner frame and a rotating outer frame, where the inner frame contains all reactor regions of interest, e.g., part of a reactor assembly, an assembly, or several assemblies, and the outer frame, with a set of parallel equidistant rays (lines) attached to it, rotates around the inner frame. The modified GMC module allows for determining for each parallel ray (line), the intersections with zone boundaries, the path length between the intersections, the total number of zones on a track, the zone and medium numbers, and the intersections with the outer surface, which parameters may be used in the CTP code to calculate collision/transfer probability and cross-section values.
Neutron transport analysis for nuclear reactor design
Vujic, J.L.
1993-11-30
Replacing regular mesh-dependent ray tracing modules in a collision/transfer probability (CTP) code with a ray tracing module based upon combinatorial geometry of a modified geometrical module (GMC) provides a general geometry transfer theory code in two dimensions (2D) for analyzing nuclear reactor design and control. The primary modification of the GMC module involves generation of a fixed inner frame and a rotating outer frame, where the inner frame contains all reactor regions of interest, e.g., part of a reactor assembly, an assembly, or several assemblies, and the outer frame, with a set of parallel equidistant rays (lines) attached to it, rotates around the inner frame. The modified GMC module allows for determining for each parallel ray (line), the intersections with zone boundaries, the path length between the intersections, the total number of zones on a track, the zone and medium numbers, and the intersections with the outer surface, which parameters may be used in the CTP code to calculate collision/transfer probability and cross-section values. 28 figures.
Tang, Long; Wang, Ji-Jiang; Fu, Feng; Wang, Sheng-Wen; Liu, Qi-Rui
2016-02-01
With regard to crystal engineering, building block or modular assembly methodologies have shown great success in the design and construction of metal-organic coordination polymers. The critical factor for the construction of coordination polymers is the rational choice of the organic building blocks and the metal centre. The reaction of Zn(OAc)2·2H2O (OAc is acetate) with 3-nitrobenzoic acid (HNBA) and 4,4'-bipyridine (4,4'-bipy) under hydrothermal conditions produced a two-dimensional zinc(II) supramolecular architecture, catena-poly[[bis(3-nitrobenzoato-κ(2)O,O')zinc(II)]-μ-4,4'-bipyridine-κ(2)N:N'], [Zn(C7H4NO4)2(C10H8N2)]n or [Zn(NBA)2(4,4'-bipy)]n, which was characterized by elemental analysis, IR spectroscopy, thermogravimetric analysis and single-crystal X-ray diffraction analysis. The Zn(II) ions are connected by the 4,4'-bipy ligands to form a one-dimensional zigzag chain and the chains are decorated with anionic NBA ligands which interact further through aromatic π-π stacking interactions, expanding the structure into a threefold interpenetrated two-dimensional supramolecular architecture. The solid-state fluorescence analysis indicates a slight blue shift compared with pure 4,4'-bipyridine and HNBA.
NASA Astrophysics Data System (ADS)
Topchiev, N. P.; Galper, A. M.; Arkhangelskiy, A. I.; Arkhangelskaja, I. V.; Kheymits, M. D.; Suchkov, S. I.; Yurkin, Y. T.
2017-01-01
Scientific project GAMMA-400 (Gamma Astronomical Multifunctional Modular Apparatus) relates to the new generation of space observatories intended to perform an indirect search for signatures of dark matter in the cosmic-ray fluxes, measurements of characteristics of diffuse gamma-ray emission and gamma-rays from the Sun during periods of solar activity, gamma-ray bursts, extended and point gamma-ray sources, electron/positron and cosmic-ray nuclei fluxes up to TeV energy region by means of the GAMMA-400 gamma-ray telescope represents the core of the scientific complex. The system of triggers and counting signals formation of the GAMMA-400 gamma-ray telescope constitutes the pipelined processor structure which collects data from the gamma-ray telescope subsystems and produces summary information used in forming the trigger decision for each event. The system design is based on the use of state-of-the-art reconfigurable logic devices and fast data links. The basic structure, logic of operation and distinctive features of the system are presented.
Surface mediated assembly of small, metastable gold nanoclusters
NASA Astrophysics Data System (ADS)
Pettibone, John M.; Osborn, William A.; Rykaczewski, Konrad; Talin, A. Alec; Bonevich, John E.; Hudgens, Jeffrey W.; Allendorf, Mark D.
2013-06-01
The unique properties of metallic nanoclusters are attractive for numerous commercial and industrial applications but are generally less stable than nanocrystals. Thus, developing methodologies for stabilizing nanoclusters and retaining their enhanced functionality is of great interest. We report the assembly of PPh3-protected Au9 clusters from a heterogeneous mixture into films consisting of sub 3 nm nanocluster assemblies. The depositing nanoclusters are metastable in solution, but the resulting nanocluster assemblies are stabilized indefinitely in air or fresh solvent. The films exhibit distinct structure from Au nanoparticles observed by X-ray diffraction, and film dissolution data support the preservation of small nanoclusters. UV-Vis spectroscopy, electrospray ionization mass spectrometry, X-ray photoelectron spectroscopy and electron microscopy are used to elucidate information regarding the nanocluster formation and assembly mechanism. Preferential deposition of nanocluster assemblies can be achieved on multiple substrates, including polymer, Cr, Si, SiO2, SiNx, and metal-organic frameworks (MOFs). Unlike other vapor phase coating processes, nanocluster assembly on the MIL-68(In) MOF crystal is capable of preferentially coating the external surface and stabilizing the crystal structure in hydrothermal conditions, which should enhance their storage, separation and delivery capabilities.The unique properties of metallic nanoclusters are attractive for numerous commercial and industrial applications but are generally less stable than nanocrystals. Thus, developing methodologies for stabilizing nanoclusters and retaining their enhanced functionality is of great interest. We report the assembly of PPh3-protected Au9 clusters from a heterogeneous mixture into films consisting of sub 3 nm nanocluster assemblies. The depositing nanoclusters are metastable in solution, but the resulting nanocluster assemblies are stabilized indefinitely in air or fresh solvent. The films exhibit distinct structure from Au nanoparticles observed by X-ray diffraction, and film dissolution data support the preservation of small nanoclusters. UV-Vis spectroscopy, electrospray ionization mass spectrometry, X-ray photoelectron spectroscopy and electron microscopy are used to elucidate information regarding the nanocluster formation and assembly mechanism. Preferential deposition of nanocluster assemblies can be achieved on multiple substrates, including polymer, Cr, Si, SiO2, SiNx, and metal-organic frameworks (MOFs). Unlike other vapor phase coating processes, nanocluster assembly on the MIL-68(In) MOF crystal is capable of preferentially coating the external surface and stabilizing the crystal structure in hydrothermal conditions, which should enhance their storage, separation and delivery capabilities. Electronic supplementary information (ESI) available: Further details on stored plating solution preparation, film characterization, solution processing, MOF crystal FIB reconstruction and stability are available. See DOI: 10.1039/c3nr01708g
A normal incidence, high resolution X-ray telescope for solar coronal observations
NASA Technical Reports Server (NTRS)
Golub, L.
1984-01-01
Efforts directed toward the completion of an X-ray telescope assembly design, the procurement of major components, and the coordination of optical fabrication and X-ray multilayer testing are reported.
Tools and methods for automated assembly of miniaturized gear systems
NASA Astrophysics Data System (ADS)
Nienhaus, Matthias; Ehrfeld, Wolfgang; Berg, Udo; Schmitz, Felix; Soultan, H.
2000-10-01
The assembly of gear systems with the size of a pin head is almost beyond the bound of human tactile skills. The magic formula for series fabrication of this hybrid micro systems is the automation of the assembly process. As a contribution, this paper presents and discusses three different assembly methods comprising specifically developed tools for different types of planetary gears with outer diameters of 1.9 mm. Because of the huge importance for the complete micro assembly process, particular attention will be dedicated to the feeding and magazining of the micro gear components. Starting with metallic gear wheels as bulk good, an extremely miniaturized gear system of the Wolfram type has been automatically assembled by employing the strategy of tolerance compensation movement. As a key component, a modular tong gripper with specifically adapted gripping jaws produced by LIGA technology has been used. Further detailed investigations were spend on handling and assembly of micro injection moulded gear wheels made of POM for a three state planetary gear system. One strategy, following the idea of in situ observation, focuses on the intensive use of electronic pattern recognition. Alternatively, an unusual method based on a novel plastic wafer magazine will be discussed in detail. Hereby the exact position and orientation of injection moulded micro components will be presented from the manufacturing process up to the final micro assembly procedure. By simplifying the moulding of the micro gears as well as their handling, storing and assembly, this method has the potential to revolutionize the series fabrication of products with dimensions in the microscopic range in general.
Interfacial Self-Assembly of Polyelectrolyte-Capped Gold Nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Honghu; Nayak, Srikanth; Wang, Wenjie
Here, we report on pH- and salt-responsive assembly of nanoparticles capped with polyelectrolytes at vapor–liquid interfaces. Two types of alkylthiol-terminated poly(acrylic acid) (PAAs, varying in length) are synthesized and used to functionalize gold nanoparticles (AuNPs) to mimic similar assembly effects of single-stranded DNA-capped AuNPs using synthetic polyelectrolytes. Using surface-sensitive X-ray scattering techniques, including grazing incidence small-angle X-ray scattering (GISAXS) and X-ray reflectivity (XRR), we demonstrate that PAA-AuNPs spontaneously migrate to the vapor–liquid interfaces and form Gibbs monolayers by decreasing the pH of the suspension. The Gibbs monoalyers show chainlike structures of monoparticle thickness. The pH-induced self-assembly is attributed to themore » protonation of carboxyl groups and to hydrogen bonding between the neighboring PAA-AuNPs. In addition, we show that adding MgCl 2 to PAA-AuNP suspensions also induces adsorption at the interface and that the high affinity between magnesium ions and carboxyl groups leads to two- and three-dimensional clusters that yield partial surface coverage and poorer ordering of NPs at the interface. We also examine the assembly of PAA-AuNPs in the presence of a positively charged Langmuir monolayer that promotes the attraction of the negatively charged capped NPs by electrostatic forces. Our results show that synthetic polyelectrolyte-functionalized nanoparticles exhibit interfacial self-assembly behavior similar to that of DNA-functionalized nanoparticles, providing a pathway for nanoparticle assembly in general.« less
Interfacial Self-Assembly of Polyelectrolyte-Capped Gold Nanoparticles
Zhang, Honghu; Nayak, Srikanth; Wang, Wenjie; ...
2017-10-06
Here, we report on pH- and salt-responsive assembly of nanoparticles capped with polyelectrolytes at vapor–liquid interfaces. Two types of alkylthiol-terminated poly(acrylic acid) (PAAs, varying in length) are synthesized and used to functionalize gold nanoparticles (AuNPs) to mimic similar assembly effects of single-stranded DNA-capped AuNPs using synthetic polyelectrolytes. Using surface-sensitive X-ray scattering techniques, including grazing incidence small-angle X-ray scattering (GISAXS) and X-ray reflectivity (XRR), we demonstrate that PAA-AuNPs spontaneously migrate to the vapor–liquid interfaces and form Gibbs monolayers by decreasing the pH of the suspension. The Gibbs monoalyers show chainlike structures of monoparticle thickness. The pH-induced self-assembly is attributed to themore » protonation of carboxyl groups and to hydrogen bonding between the neighboring PAA-AuNPs. In addition, we show that adding MgCl 2 to PAA-AuNP suspensions also induces adsorption at the interface and that the high affinity between magnesium ions and carboxyl groups leads to two- and three-dimensional clusters that yield partial surface coverage and poorer ordering of NPs at the interface. We also examine the assembly of PAA-AuNPs in the presence of a positively charged Langmuir monolayer that promotes the attraction of the negatively charged capped NPs by electrostatic forces. Our results show that synthetic polyelectrolyte-functionalized nanoparticles exhibit interfacial self-assembly behavior similar to that of DNA-functionalized nanoparticles, providing a pathway for nanoparticle assembly in general.« less
Using Voice Coils to Actuate Modular Soft Robots: Wormbot, an Example
Nemitz, Markus P.; Mihaylov, Pavel; Barraclough, Thomas W.; Ross, Dylan
2016-01-01
Abstract In this study, we present a modular worm-like robot, which utilizes voice coils as a new paradigm in soft robot actuation. Drive electronics are incorporated into the actuators, providing a significant improvement in self-sufficiency when compared with existing soft robot actuation modes such as pneumatics or hydraulics. The body plan of this robot is inspired by the phylum Annelida and consists of three-dimensional printed voice coil actuators, which are connected by flexible silicone membranes. Each electromagnetic actuator engages with its neighbor to compress or extend the membrane of each segment, and the sequence in which they are actuated results in an earthworm-inspired peristaltic motion. We find that a minimum of three segments is required for locomotion, but due to our modular design, robots of any length can be quickly and easily assembled. In addition to actuation, voice coils provide audio input and output capabilities. We demonstrate transmission of data between segments by high-frequency carrier waves and, using a similar mechanism, we note that the passing of power between coupled coils in neighboring modules—or from an external power source—is also possible. Voice coils are a convenient multifunctional alternative to existing soft robot actuators. Their self-contained nature and ability to communicate with each other are ideal for modular robotics, and the additional functionality of sound input/output and power transfer will become increasingly useful as soft robots begin the transition from early proof-of-concept systems toward fully functional and highly integrated robotic systems. PMID:28078195
Kawamoto, Kensaku; Martin, Cary J; Williams, Kip; Tu, Ming-Chieh; Park, Charlton G; Hunter, Cheri; Staes, Catherine J; Bray, Bruce E; Deshmukh, Vikrant G; Holbrook, Reid A; Morris, Scott J; Fedderson, Matthew B; Sletta, Amy; Turnbull, James; Mulvihill, Sean J; Crabtree, Gordon L; Entwistle, David E; McKenna, Quinn L; Strong, Michael B; Pendleton, Robert C; Lee, Vivian S
2015-01-01
Objective To develop expeditiously a pragmatic, modular, and extensible software framework for understanding and improving healthcare value (costs relative to outcomes). Materials and methods In 2012, a multidisciplinary team was assembled by the leadership of the University of Utah Health Sciences Center and charged with rapidly developing a pragmatic and actionable analytics framework for understanding and enhancing healthcare value. Based on an analysis of relevant prior work, a value analytics framework known as Value Driven Outcomes (VDO) was developed using an agile methodology. Evaluation consisted of measurement against project objectives, including implementation timeliness, system performance, completeness, accuracy, extensibility, adoption, satisfaction, and the ability to support value improvement. Results A modular, extensible framework was developed to allocate clinical care costs to individual patient encounters. For example, labor costs in a hospital unit are allocated to patients based on the hours they spent in the unit; actual medication acquisition costs are allocated to patients based on utilization; and radiology costs are allocated based on the minutes required for study performance. Relevant process and outcome measures are also available. A visualization layer facilitates the identification of value improvement opportunities, such as high-volume, high-cost case types with high variability in costs across providers. Initial implementation was completed within 6 months, and all project objectives were fulfilled. The framework has been improved iteratively and is now a foundational tool for delivering high-value care. Conclusions The framework described can be expeditiously implemented to provide a pragmatic, modular, and extensible approach to understanding and improving healthcare value. PMID:25324556
Tiede, David M.; Mardis, Kristy L.; Zuo, Xiaobing
2009-01-01
Advances in x-ray light sources and detectors have created opportunities for advancing our understanding of structure and structural dynamics for supramolecular assemblies in solution by combining x-ray scattering measurement with coordinate-based modeling methods. In this review the foundations for x-ray scattering are discussed and illustrated with selected examples demonstrating the ability to correlate solution x-ray scattering measurements to molecular structure, conformation, and dynamics. These approaches are anticipated to have a broad range of applications in natural and artificial photosynthesis by offering possibilities for structure resolution for dynamic supramolecular assemblies in solution that can not be fully addressed with crystallographic techniques, and for resolving fundamental mechanisms for solar energy conversion by mapping out structure in light-excited reaction states. PMID:19636808
Valenzuela, Javier
2001-01-01
A radial flow heat exchanger (20) having a plurality of first passages (24) for transporting a first fluid (25) and a plurality of second passages (26) for transporting a second fluid (27). The first and second passages are arranged in stacked, alternating relationship, are separated from one another by relatively thin plates (30) and (32), and surround a central axis (22). The thickness of the first and second passages are selected so that the first and second fluids, respectively, are transported with laminar flow through the passages. To enhance thermal energy transfer between first and second passages, the latter are arranged so each first passage is in thermal communication with an associated second passage along substantially its entire length, and vice versa with respect to the second passages. The heat exchangers may be stacked to achieve a modular heat exchange assembly (300). Certain heat exchangers in the assembly may be designed slightly differently than other heat exchangers to address changes in fluid properties during transport through the heat exchanger, so as to enhance overall thermal effectiveness of the assembly.
Imparato, Giorgia; Urciuolo, Francesco; Casale, Costantino; Netti, Paolo A
2013-10-01
The realization of thick and viable tissues equivalents in vitro is one of the mayor challenges in tissue engineering, in particular for their potential use in tissue-on-chip technology. In the present study we succeeded in creating 3D viable dermis equivalent tissue, via a bottom-up method, and proved that the final properties, in terms of collagen assembly and organization of the 3D tissue, are tunable and controllable by micro-scaffold properties and degradation rate. Gelatin porous microscaffolds with controlled stiffness and degradation rate were realized by changing the crosslinking density through different concentrations of glyceraldehyde. Results showed that by modulating the crosslinking density of the gelatin microscaffolds it is possible to guide the process of collagen deposition and assembly within the extracellular space and match the processes of scaffold degradation, cell traction and tissue maturation to obtain firmer collagen network able to withstand the effect of contraction. © 2013 Published by Elsevier Ltd.
Specific and reversible DNA-directed self-assembly of oil-in-water emulsion droplets
Hadorn, Maik; Boenzli, Eva; Sørensen, Kristian T.; Fellermann, Harold; Eggenberger Hotz, Peter; Hanczyc, Martin M.
2012-01-01
Higher-order structures that originate from the specific and reversible DNA-directed self-assembly of microscopic building blocks hold great promise for future technologies. Here, we functionalized biotinylated soft colloid oil-in-water emulsion droplets with biotinylated single-stranded DNA oligonucleotides using streptavidin as an intermediary linker. We show the components of this modular linking system to be stable and to induce sequence-specific aggregation of binary mixtures of emulsion droplets. Three length scales were thereby involved: nanoscale DNA base pairing linking microscopic building blocks resulted in macroscopic aggregates visible to the naked eye. The aggregation process was reversible by changing the temperature and electrolyte concentration and by the addition of competing oligonucleotides. The system was reset and reused by subsequent refunctionalization of the emulsion droplets. DNA-directed self-assembly of oil-in-water emulsion droplets, therefore, offers a solid basis for programmable and recyclable soft materials that undergo structural rearrangements on demand and that range in application from information technology to medicine. PMID:23175791
Design and Construction of VUES: The Vilnius University Echelle Spectrograph
NASA Astrophysics Data System (ADS)
Jurgenson, Colby; Fischer, Debra; McCracken, Tyler; Sawyer, David; Giguere, Matt; Szymkowiak, Andrew; Santoro, Fernando; Muller, Gary
2016-03-01
In February 2014, the Yale Exoplanet Laboratory was commissioned to design, build, and deliver a high resolution (R=60,000) spectrograph for the 1.65m telescope at the Molėtai Astronomical Observatory. The observatory is operated by the Institute of Theoretical Physics and Astronomy at Vilnius University. The Vilnius University Echelle Spectrograph (VUES) is a white-pupil design that is fed via an octagonal fiber from the telescope and has an operational bandpass from 400nm to 880nm. VUES incorporates a novel modular optomechanical design that allows for quick assembly and alignment on commercial optical tables. This approach allowed the spectrograph to be assembled and commissioned at Yale using lab optical tables and then reassembled at the observatory on a different optical table with excellent repeatability. The assembly and alignment process for the spectrograph was reduced to a few days, allowing the spectrograph to be completely disassembled for shipment to Lithuania, and then installed at the observatory during a 10-day period in June of 2015.
Rendezvous and Docking for Space Exploration
NASA Technical Reports Server (NTRS)
Machula, M. F.; Crain, T.; Sandhoo, G. S.
2005-01-01
To achieve the exploration goals, new approaches to exploration are being envisioned that include robotic networks, modular systems, pre-positioned propellants and in-space assembly in Earth orbit, Lunar orbit and other locations around the cosmos. A fundamental requirement for rendezvous and docking to accomplish in-space assembly exists in each of these locations. While existing systems and technologies can accomplish rendezvous and docking in low earth orbit, and rendezvous and docking with crewed systems has been successfully accomplished in low lunar orbit, our capability must extend toward autonomous rendezvous and docking. To meet the needs of the exploration vision in-space assembly requiring both crewed and uncrewed vehicles will be an integral part of the exploration architecture. This paper focuses on the intelligent application of autonomous rendezvous and docking technologies to meet the needs of that architecture. It also describes key technology investments that will increase the exploration program's ability to ensure mission success, regardless of whether the rendezvous are fully automated or have humans in the loop.
Crystal structure and association behaviour of the GluR2 amino-terminal domain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Rongsheng; Singh, Satinder K.; Gu, Shenyan
2009-09-02
Fast excitatory neurotransmission is mediated largely by ionotropic glutamate receptors (iGluRs), tetrameric, ligand-gated ion channel proteins comprised of three subfamilies, AMPA, kainate and NMDA receptors, with each subfamily sharing a common, modular-domain architecture. For all receptor subfamilies, active channels are exclusively formed by assemblages of subunits within the same subfamily, a molecular process principally encoded by the amino-terminal domain (ATD). However, the molecular basis by which the ATD guides subfamily-specific receptor assembly is not known. Here we show that AMPA receptor GluR1- and GluR2-ATDs form tightly associated dimers and, by the analysis of crystal structures of the GluR2-ATD, propose mechanismsmore » by which the ATD guides subfamily-specific receptor assembly.« less
SIMS prototype system 4: Design data brochure
NASA Technical Reports Server (NTRS)
1978-01-01
A pre-package prototype unit having domestic hot water and room solar heating capability that uses air as the collector fluid is described. This system is designed to be used with a small single-family dwelling where a roof mounted collector array is not feasible. The prototype unit is an assemble containing 203 square feet of effective collector surface with 113 cubic feet of rock storage. The design of structure and storage is modular, which permits expansion and reduction of the collector array and storage bed in 68 square feet and 37 cubic feet increments respectively. The system is designed to be transportable. This permitted assemble and certification testing in one area and installation in another area without tear down and reassemble. Design, installation, operation, performance and maintenance of this system are described.
Vehicle drive module having improved terminal design
Beihoff, Bruce C.; Radosevich, Lawrence D.; Phillips, Mark G.; Kehl, Dennis L.; Kaishian, Steven C.; Kannenberg, Daniel G.
2006-04-25
A terminal structure for vehicle drive power electronics circuits reduces the need for a DC bus and thereby the incidence of parasitic inductance. The structure is secured to a support that may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support. The support may form a shield from both external EMI/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as by direct contact between the terminal assembly and AC and DC circuit components. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.
Power converter having improved terminal structure
Radosevich, Lawrence D.; Kannenberg, Daniel G.; Phillips, Mark G.; Kaishian, Steven C.
2007-03-06
A terminal structure for power electronics circuits reduces the need for a DC bus and thereby the incidence of parasitic inductance. The structure is secured to a support that may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support. The support may form a shield from both external EMI/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as by direct contact between the terminal assembly and AC and DC circuit components. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.
Modular space station phase B extension, preliminary system design. Volume 4: Subsystems analyses
NASA Technical Reports Server (NTRS)
Antell, R. W.
1972-01-01
The subsystems tradeoffs, analyses, and preliminary design results are summarized. Analyses were made of the structural and mechanical, environmental control and life support, electrical power, guidance and control, reaction control, information, and crew habitability subsystems. For each subsystem a summary description is presented including subsystem requirements, subsystem description, and subsystem characteristics definition (physical, performance, and interface). The major preliminary design data and tradeoffs or analyses are described in detail at each of the assembly levels.
Deployment Operation Procedures for the WHOI Ice-Tethered Profiler
2007-05-01
mooring which would be pre-wound on a reel. These requirements led to the selection of a winch with a modular mooring reel and a disc -type brake for...lb * Brake Absorbed Power: 0.59 HP * Brake Rotor Diameter 24 in (chosen based on Drum OD) 6 Figure 2. Top: a photo of the winch frame, drum and shaft...shaft for field assembly. Studs welded into the drum , engage keyhole slots in the brake rotor, allowing drum torque to be transferred directly to the
Floating-point function generation routines for 16-bit microcomputers
NASA Technical Reports Server (NTRS)
Mackin, M. A.; Soeder, J. F.
1984-01-01
Several computer subroutines have been developed that interpolate three types of nonanalytic functions: univariate, bivariate, and map. The routines use data in floating-point form. However, because they are written for use on a 16-bit Intel 8086 system with an 8087 mathematical coprocessor, they execute as fast as routines using data in scaled integer form. Although all of the routines are written in assembly language, they have been implemented in a modular fashion so as to facilitate their use with high-level languages.
Astronaut John Young at LRV prior to deployment of ALSEP during first EVA
NASA Technical Reports Server (NTRS)
1972-01-01
Astronaut John W. Young, commander of Apollo 16, is at the Lunar Roving Vehicle (LRV), just prior to deployment of the Apollo Lunar Surface Experiment Package (ALSEP) during the first extravehicular activity (EVA-1), on April 21, 1972. Note Ultraviolet Camera/Spectrometer at right of Lunar Module (LM) ladder. Also note pile of protective/thermal foil under the U.S. flag on the LM which the astronauts pulled away to get to the Modular Equipment Stowage Assembly (MESA) bay.
STS-7 crewmembers during meal preparation on middeck
NASA Technical Reports Server (NTRS)
1983-01-01
On middeck, Mission Specialist (MS) Thagard and MS Ride select food containers from forward modular locker single tray assembly (ASSY) and prepare containers for heating while Pilot Hauck (with mustache) adjusts SONY Walkman and MS Fabian opens containers. Carry-on food warmer appears overhead and control panel ML86B and Continuous Flow Electrophoresis System (CFES) fluid systems module appear on port side wall. Hauck wears a TFNG t-shirt as a tribute to the 1978 class of NASA astronauts.
Kodak Mirror Assembly Tested at Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
2003-01-01
The Eastman-Kodak mirror assembly is being tested for the James Webb Space Telescope (JWST) project at the X-Ray Calibration Facility at Marshall Space Flight Center (MSFC). In this photo, one of many segments of the mirror assembly is being set up inside the 24-ft vacuum chamber where it will undergo x-ray calibration tests. MSFC is supporting Goddard Space Flight Center (GSFC) in developing the JWST by taking numerous measurements to predict its future performance. The tests are conducted in a vacuum chamber cooled to approximate the super cold temperatures found in space. During its 27 years of operation, the facility has performed testing in support of a wide array of projects, including the Hubble Space Telescope (HST), Solar A, Chandra technology development, Chandra High Resolution Mirror Assembly and science instruments, Constellation X-Ray Mission, and Solar X-Ray Imager, currently operating on a Geostationary Operational Environment Satellite. The JWST is NASA's next generation space telescope, a successor to the Hubble Space Telescope, named in honor of NASA's second administrator, James E. Webb. It is scheduled for launch in 2010 aboard an expendable launch vehicle. It will take about 3 months for the spacecraft to reach its destination, an orbit of 940,000 miles in space.
The LDEF ultra heavy cosmic ray experiment
NASA Technical Reports Server (NTRS)
Osullivan, D.; Thompson, A.; Bosch, J.; Keegan, R.; Wenzel, K.-P.; Smit, A.; Domingo, C.
1991-01-01
The Long Duration Exposure Facility (LDEF) Ultra Heavy Cosmic Ray Experiment (UHCRE) used 16 side viewing LDEF trays giving a total geometry factor for high energy cosmic rays of 30 sq m sr. The total exposure factor was 170 sq m sr y. The experiment is based on a modular array of 192 solid state nuclear track detector stacks, mounted in sets of 4 pressure vessels (3 experiment tray). The extended duration of the LDEF mission has resulted in a greatly enhanced potential scientific yield from the UHCRE. Initial scanning results indicate that at least 2000 cosmic ray nuclei with Z greater than 65 were collected, including the world's first statistically significant sample of actinides. Postflight work to date and the current status of the experiment are reviewed. Provisional results from analysis of preflight and postflight calibrations are presented.
NASA Technical Reports Server (NTRS)
Crannell, C. J.; Starr, R.; Stottlemyre, A. R.; Trombka, J. I.
1984-01-01
The design, development, and balloon-flight verification of a payload for observations of gamma-ray emission from solar flares are reported. The payload incorporates a high-purity germanium semiconductor detector, standard NIM and CAMAC electronics modules, a thermally stabilized pressure housing, and regulated battery power supplies. The flight system is supported on the ground with interactive data-handling equipment comprised of similar electronics hardware. The modularity and flexibility of the payload, together with the resolution and stability obtained throughout a 30-hour flight, make it readily adaptable for high-sensitivity, long-duration balloon fight applications.
AXAF-1 High Resolution Assembly Image Model and Comparison with X-Ray Ground Test Image
NASA Technical Reports Server (NTRS)
Zissa, David E.
1999-01-01
The x-ray ground test of the AXAF-I High Resolution Mirror Assembly was completed in 1997 at the X-ray Calibration Facility at Marshall Space Flight Center. Mirror surface measurements by HDOS, alignment results from Kodak, and predicted gravity distortion in the horizontal test configuration are being used to model the x-ray test image. The Marshall Space Flight Center (MSFC) image modeling serves as a cross check with Smithsonian Astrophysical observatory modeling. The MSFC image prediction software has evolved from the MSFC model of the x-ray test of the largest AXAF-I mirror pair in 1991. The MSFC image modeling software development is being assisted by the University of Alabama in Huntsville. The modeling process, modeling software, and image prediction will be discussed. The image prediction will be compared with the x-ray test results.
Freezing-induced self-assembly of amphiphilic molecules
NASA Astrophysics Data System (ADS)
Albouy, P. A.; Deville, S.; Fulkar, A.; Hakouk, K.; Impéror-Clerc, M.; Klotz, M.; Liu, Q.; Marcellini, M.; Perez, J.
The self-assembly of amphiphilic molecules usually takes place in a liquid phase, near room temperature. Here, using small angle X-ray scattering (SAXS) experiments performed in real time, we show that freezing of aqueous solutions of copolymer amphiphilic molecules can induce self-assembly below 0{\\deg}C.
Freezing-induced self-assembly of amphiphilic molecules.
Albouy, P A; Deville, S; Fulkar, A; Hakouk, K; Impéror-Clerc, M; Klotz, M; Liu, Q; Marcellini, M; Perez, J
2017-03-01
The self-assembly of amphiphilic molecules usually takes place in a liquid phase, near room temperature. Here, using small angle X-ray scattering (SAXS) experiments performed in real time, we show that freezing of aqueous solutions of copolymer amphiphilic molecules can induce self-assembly below 0 °C.
MIT modular x-ray source systems for the study of plasma diagnostics
NASA Astrophysics Data System (ADS)
Coleman, J. W.; Wenzel, K. W.; Petrasso, R. D.; Lo, D. H.; Li, C. K.; Lierzer, J. R.; Wei, T.
1992-10-01
Two new x-ray source systems are now on line at our facility. Each provides an e-beam to 25 kV. Targets are interchangeable between machines, and four x-ray detectors may be used simultaneously with a target. The gridded e-gun of the RACEHORSE system gives a 0.5-1.0-cm pulsable spot on target. The nongridded e-gun of the SCORPION system provides a 0.3-mm or smaller dc microspot on target. RACEHORSE is being used to study and characterize type-II diamond photoconductors for use in diagnosing plasmas, while SCORPION is being used to develop a slitless spectrograph using photographic film. Source design details and some RACEHORSE results are presented.
X-ray diffraction diagnostic design for the National Ignition Facility
NASA Astrophysics Data System (ADS)
Ahmed, Maryum F.; House, Allen; Smith, R. F.; Ayers, Jay; Lamb, Zachary S.; Swift, David W.
2013-09-01
This paper describes the design considerations for Target Diffraction In-Situ (TARDIS), an x-ray diffraction diagnostic at the National Ignition Facility. A crystal sample is ramp-compressed to peak pressures between 10 and 30 Mbar and, during a pressure hold period, is probed with quasi-monochromatic x-rays emanating from a backlighter source foil. The crystal spectrography diffraction lines are recorded onto image plates. The crystal sample, filter, and image plates are packaged into one assembly, allowing for accurate and repeatable target to image plate registration. Unconverted laser light impinges upon the device, generating debris, the effects of which have been mitigated. Dimpled blast shields, high strength steel alloy, and high-z tungsten are used to shield and protect the image plates. A tapered opening was designed to provide adequate thickness of shielding materials without blocking the drive beams or x-ray source from reaching the crystal target. The high strength steel unit serves as a mount for the crystal target and x-ray source foil. A tungsten body contains the imaging components. Inside this sub-assembly, there are three image plates: a 160 degree field of view curved plate directly opposite the target opening and two flat plates for the top and bottom. A polycarbonate frame, coated with the appropriate filter material and embedded with registration features for image plate location, is inserted into the diagnostic body. The target assembly is metrologized and then the diagnostic assembly is attached.
A Design for an Orbital Assembly Facility for Complex Missions
NASA Astrophysics Data System (ADS)
Feast, S.; Bond, A.
A design is presented for an Operations Base Station (OBS) in low earth orbit that will function as an integral part of a space transportation system, enabling assembly and maintenance of a Cis-Lunar transportation infrastructure and integration of vehicles for other high energy space missions to be carried out. Construction of the OBS assumes the use of the SKYLON Single-Stage-to-Orbit (SSTO) spaceplane, which imposes design and assembly constraints due to its payload mass limits and payload bay dimensions. It is assumed that the space transport infrastructure and high mission energy vehicles would also make use of SKYLON to deploy standard transport equipment and stages bound by these same constraints. The OBS is therefore a highly modular arrangement, incorporating some of these other vehicle system elements in its layout design. Architecturally, the facilities of the OBS are centred around the Assembly Dock which is in the form of a large cylindrical spaceframe structure with two large doors on either end incorporating a skin of aluminised Mylar to enclose the dock. Longitudinal rails provide internal tether attachments to anchor vehicles and components while manipulators are used for the handling and assembling of vehicle structures. The exterior of the OBS houses the habitation modules for workforce and vehicle crews along with propellant farms and other operational facilities.
Choosing sides--asymmetric centriole and basal body assembly.
Pearson, Chad G
2014-07-01
Centrioles and basal bodies (CBBs) are microtubule-rich cylindrical structures that nucleate and organize centrosomes and cilia, respectively. Despite their apparent ninefold rotational symmetry, the nine sets of triplet microtubules in CBBs possess asymmetries in their morphology and in the structures that associate with them. These asymmetries define the position of nascent CBB assembly, the orientation of ciliary beating, the orientation of spindle poles and the maintenance of cellular geometry. For some of these functions, the orientation of CBBs is first established during new CBB biogenesis when the daughter structure is positioned adjacent to the mother. The mother CBB organizes the surrounding environment that nascent CBBs are born into, thereby providing a nest for the new CBB to develop. Protists, including ciliates and algae, highlight the importance of this environment with the formation of asymmetrically placed scaffolds onto which new basal bodies assemble and are positioned. Recent studies illuminate the positioning of nascent centrioles relative to a modular pericentriolar material (PCM) environment and suggest that, like ciliates, centrosomes organize an immediate environment surrounding centrioles for their biogenesis and positioning. In this Commentary, I will explore the positioning of nascent CBB assembly as the first event in building cellular asymmetries and describe how the environment surrounding both basal bodies and centrioles may define asymmetric assembly. © 2014. Published by The Company of Biologists Ltd.
Choosing sides – asymmetric centriole and basal body assembly
Pearson, Chad G.
2014-01-01
ABSTRACT Centrioles and basal bodies (CBBs) are microtubule-rich cylindrical structures that nucleate and organize centrosomes and cilia, respectively. Despite their apparent ninefold rotational symmetry, the nine sets of triplet microtubules in CBBs possess asymmetries in their morphology and in the structures that associate with them. These asymmetries define the position of nascent CBB assembly, the orientation of ciliary beating, the orientation of spindle poles and the maintenance of cellular geometry. For some of these functions, the orientation of CBBs is first established during new CBB biogenesis when the daughter structure is positioned adjacent to the mother. The mother CBB organizes the surrounding environment that nascent CBBs are born into, thereby providing a nest for the new CBB to develop. Protists, including ciliates and algae, highlight the importance of this environment with the formation of asymmetrically placed scaffolds onto which new basal bodies assemble and are positioned. Recent studies illuminate the positioning of nascent centrioles relative to a modular pericentriolar material (PCM) environment and suggest that, like ciliates, centrosomes organize an immediate environment surrounding centrioles for their biogenesis and positioning. In this Commentary, I will explore the positioning of nascent CBB assembly as the first event in building cellular asymmetries and describe how the environment surrounding both basal bodies and centrioles may define asymmetric assembly. PMID:24895399
Gigadalton-scale shape-programmable DNA assemblies
NASA Astrophysics Data System (ADS)
Wagenbauer, Klaus F.; Sigl, Christian; Dietz, Hendrik
2017-12-01
Natural biomolecular assemblies such as molecular motors, enzymes, viruses and subcellular structures often form by self-limiting hierarchical oligomerization of multiple subunits. Large structures can also assemble efficiently from a few components by combining hierarchical assembly and symmetry, a strategy exemplified by viral capsids. De novo protein design and RNA and DNA nanotechnology aim to mimic these capabilities, but the bottom-up construction of artificial structures with the dimensions and complexity of viruses and other subcellular components remains challenging. Here we show that natural assembly principles can be combined with the methods of DNA origami to produce gigadalton-scale structures with controlled sizes. DNA sequence information is used to encode the shapes of individual DNA origami building blocks, and the geometry and details of the interactions between these building blocks then control their copy numbers, positions and orientations within higher-order assemblies. We illustrate this strategy by creating planar rings of up to 350 nanometres in diameter and with atomic masses of up to 330 megadaltons, micrometre-long, thick tubes commensurate in size to some bacilli, and three-dimensional polyhedral assemblies with sizes of up to 1.2 gigadaltons and 450 nanometres in diameter. We achieve efficient assembly, with yields of up to 90 per cent, by using building blocks with validated structure and sufficient rigidity, and an accurate design with interaction motifs that ensure that hierarchical assembly is self-limiting and able to proceed in equilibrium to allow for error correction. We expect that our method, which enables the self-assembly of structures with sizes approaching that of viruses and cellular organelles, can readily be used to create a range of other complex structures with well defined sizes, by exploiting the modularity and high degree of addressability of the DNA origami building blocks used.
Gigadalton-scale shape-programmable DNA assemblies.
Wagenbauer, Klaus F; Sigl, Christian; Dietz, Hendrik
2017-12-06
Natural biomolecular assemblies such as molecular motors, enzymes, viruses and subcellular structures often form by self-limiting hierarchical oligomerization of multiple subunits. Large structures can also assemble efficiently from a few components by combining hierarchical assembly and symmetry, a strategy exemplified by viral capsids. De novo protein design and RNA and DNA nanotechnology aim to mimic these capabilities, but the bottom-up construction of artificial structures with the dimensions and complexity of viruses and other subcellular components remains challenging. Here we show that natural assembly principles can be combined with the methods of DNA origami to produce gigadalton-scale structures with controlled sizes. DNA sequence information is used to encode the shapes of individual DNA origami building blocks, and the geometry and details of the interactions between these building blocks then control their copy numbers, positions and orientations within higher-order assemblies. We illustrate this strategy by creating planar rings of up to 350 nanometres in diameter and with atomic masses of up to 330 megadaltons, micrometre-long, thick tubes commensurate in size to some bacilli, and three-dimensional polyhedral assemblies with sizes of up to 1.2 gigadaltons and 450 nanometres in diameter. We achieve efficient assembly, with yields of up to 90 per cent, by using building blocks with validated structure and sufficient rigidity, and an accurate design with interaction motifs that ensure that hierarchical assembly is self-limiting and able to proceed in equilibrium to allow for error correction. We expect that our method, which enables the self-assembly of structures with sizes approaching that of viruses and cellular organelles, can readily be used to create a range of other complex structures with well defined sizes, by exploiting the modularity and high degree of addressability of the DNA origami building blocks used.
Fast modular data acquisition system for GEM-2D detector
NASA Astrophysics Data System (ADS)
Kasprowicz, G.; Byszuk, Adrian; Wojeński, A.; Zienkiewicz, P.; Czarski, T.; Chernyshova, M.; Poźniak, K.; Rzadkiewicz, J.; Zabolotny, W.; Juszczyk, B.
2014-11-01
A novel approach to two dimensional Gas Electron Multiplier (GEM) detector readout is presented. Unlike commonly used methods, based on discriminators and analogue FIFOs, the method developed uses simulta- neously sampling high speed ADCs with fast hybrid integrator and advanced FPGA-based processing logic to estimate the energy of every single photon. Such a method is applied to every GEM strip / pixel signal. It is especially useful in case of crystal-based spectrometers for soft X-rays, 2D imaging for plasma tomography and all these applications where energy resolution of every single photon is required. For the purpose of the detector readout, a novel, highly modular and extendable conception of the measurement platform was developed. It is evolution of already deployed measurement system for JET Spectrometer.
Lightweight Modular Instrumentation for Planetary Applications
NASA Technical Reports Server (NTRS)
Joshi, P. B.
1993-01-01
An instrumentation, called Space Active Modular Materials ExperimentS (SAMMES), is developed for monitoring the spacecraft environment and for accurately measuring the degradation of space materials in low earth orbit (LEO). The SAMMES architecture concept can be extended to instrumentation for planetary exploration, both on spacecraft and in situ. The operating environment for planetary application will be substantially different, with temperature extremes and harsh solar wind and cosmic ray flux on lunar surfaces and temperature extremes and high winds on venusian and Martian surfaces. Moreover, instruments for surface deployment, which will be packaged in a small lander/rover (as in MESUR, for example), must be extremely compact with ultralow power and weight. With these requirements in mind, the SAMMES concept was extended to a sensor/instrumentation scheme for the lunar and Martian surface environment.
Function-based design process for an intelligent ground vehicle vision system
NASA Astrophysics Data System (ADS)
Nagel, Robert L.; Perry, Kenneth L.; Stone, Robert B.; McAdams, Daniel A.
2010-10-01
An engineering design framework for an autonomous ground vehicle vision system is discussed. We present both the conceptual and physical design by following the design process, development and testing of an intelligent ground vehicle vision system constructed for the 2008 Intelligent Ground Vehicle Competition. During conceptual design, the requirements for the vision system are explored via functional and process analysis considering the flows into the vehicle and the transformations of those flows. The conceptual design phase concludes with a vision system design that is modular in both hardware and software and is based on a laser range finder and camera for visual perception. During physical design, prototypes are developed and tested independently, following the modular interfaces identified during conceptual design. Prototype models, once functional, are implemented into the final design. The final vision system design uses a ray-casting algorithm to process camera and laser range finder data and identify potential paths. The ray-casting algorithm is a single thread of the robot's multithreaded application. Other threads control motion, provide feedback, and process sensory data. Once integrated, both hardware and software testing are performed on the robot. We discuss the robot's performance and the lessons learned.
Conventions and workflows for using Situs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wriggers, Willy, E-mail: wriggers@biomachina.org
2012-04-01
Recent developments of the Situs software suite for multi-scale modeling are reviewed. Typical workflows and conventions encountered during processing of biophysical data from electron microscopy, tomography or small-angle X-ray scattering are described. Situs is a modular program package for the multi-scale modeling of atomic resolution structures and low-resolution biophysical data from electron microscopy, tomography or small-angle X-ray scattering. This article provides an overview of recent developments in the Situs package, with an emphasis on workflows and conventions that are important for practical applications. The modular design of the programs facilitates scripting in the bash shell that allows specific programs tomore » be combined in creative ways that go beyond the original intent of the developers. Several scripting-enabled functionalities, such as flexible transformations of data type, the use of symmetry constraints or the creation of two-dimensional projection images, are described. The processing of low-resolution biophysical maps in such workflows follows not only first principles but often relies on implicit conventions. Situs conventions related to map formats, resolution, correlation functions and feature detection are reviewed and summarized. The compatibility of the Situs workflow with CCP4 conventions and programs is discussed.« less
Pre-Assembly of Near-Infrared Fluorescent Multivalent Molecular Probes for Biological Imaging.
Peck, Evan M; Battles, Paul M; Rice, Douglas R; Roland, Felicia M; Norquest, Kathryn A; Smith, Bradley D
2016-05-18
A programmable pre-assembly method is described and shown to produce near-infrared fluorescent molecular probes with tunable multivalent binding properties. The modular assembly process threads one or two copies of a tetralactam macrocycle onto a fluorescent PEGylated squaraine scaffold containing a complementary number of docking stations. Appended to the macrocycle periphery are multiple copies of a ligand that is known to target a biomarker. The structure and high purity of each threaded complex was determined by independent spectrometric methods and also by gel electrophoresis. Especially helpful were diagnostic red-shift and energy transfer features in the absorption and fluorescence spectra. The threaded complexes were found to be effective multivalent molecular probes for fluorescence microscopy and in vivo fluorescence imaging of living subjects. Two multivalent probes were prepared and tested for targeting of bone in mice. A pre-assembled probe with 12 bone-targeting iminodiacetate ligands produced more bone accumulation than an analogous pre-assembled probe with six iminodiacetate ligands. Notably, there was no loss in probe fluorescence at the bone target site after 24 h in the living animal, indicating that the pre-assembled fluorescent probe maintained very high mechanical and chemical stability on the skeletal surface. The study shows how this versatile pre-assembly method can be used in a parallel combinatorial manner to produce libraries of near-infrared fluorescent multivalent molecular probes for different types of imaging and diagnostic applications, with incremental structural changes in the number of targeting groups, linker lengths, linker flexibility, and degree of PEGylation.
Fast-SG: an alignment-free algorithm for hybrid assembly.
Di Genova, Alex; Ruz, Gonzalo A; Sagot, Marie-France; Maass, Alejandro
2018-05-01
Long-read sequencing technologies are the ultimate solution for genome repeats, allowing near reference-level reconstructions of large genomes. However, long-read de novo assembly pipelines are computationally intense and require a considerable amount of coverage, thereby hindering their broad application to the assembly of large genomes. Alternatively, hybrid assembly methods that combine short- and long-read sequencing technologies can reduce the time and cost required to produce de novo assemblies of large genomes. Here, we propose a new method, called Fast-SG, that uses a new ultrafast alignment-free algorithm specifically designed for constructing a scaffolding graph using light-weight data structures. Fast-SG can construct the graph from either short or long reads. This allows the reuse of efficient algorithms designed for short-read data and permits the definition of novel modular hybrid assembly pipelines. Using comprehensive standard datasets and benchmarks, we show how Fast-SG outperforms the state-of-the-art short-read aligners when building the scaffoldinggraph and can be used to extract linking information from either raw or error-corrected long reads. We also show how a hybrid assembly approach using Fast-SG with shallow long-read coverage (5X) and moderate computational resources can produce long-range and accurate reconstructions of the genomes of Arabidopsis thaliana (Ler-0) and human (NA12878). Fast-SG opens a door to achieve accurate hybrid long-range reconstructions of large genomes with low effort, high portability, and low cost.
Use of medical and dental X-ray equipment for nondestructive testing
NASA Technical Reports Server (NTRS)
1969-01-01
Industrial X ray equipment is used for nondestructive testing to detect defects in metal joints, electrical terminal blocks, sealed assemblies, and other hardware. Medical and dental X ray equipment is also used for hardware troubleshooting.
HECTOR: A 240kV micro-CT setup optimized for research
NASA Astrophysics Data System (ADS)
Masschaele, Bert; Dierick, Manuel; Van Loo, Denis; Boone, Matthieu N.; Brabant, Loes; Pauwels, Elin; Cnudde, Veerle; Van Hoorebeke, Luc
2013-10-01
X-ray micro-CT has become a very powerful and common tool for non-destructive three-dimensional (3D) visualization and analysis of objects. Many systems are commercially available, but they are typically limited in terms of operational freedom both from a mechanical point of view as well as for acquisition routines. HECTOR is the latest system developed by the Ghent University Centre for X-ray Tomography (http://www.ugct.ugent.be) in collaboration with X-Ray Engineering (XRE bvba, Ghent, Belgium). It consists of a mechanical setup with nine motorized axes and a modular acquisition software package and combines a microfocus directional target X-ray source up to 240 kV with a large flat-panel detector. Provisions are made to install a line-detector for a maximal operational range. The system can accommodate samples up to 80 kg, 1 m long and 80 cm in diameter while it is also suited for high resolution (down to 4 μm) tomography. The bi-directional detector tiling is suited for large samples while the variable source-detector distance optimizes the signal to noise ratio (SNR) for every type of sample, even with peripheral equipment such as compression stages or climate chambers. The large vertical travel of 1 m can be used for helical scanning and a vertical detector rotation axis allows laminography experiments. The setup is installed in a large concrete bunker to allow accommodation of peripheral equipment such as pumps, chillers, etc., which can be integrated in the modular acquisition software to obtain a maximal correlation between the environmental control and the CT data taken. The acquisition software does not only allow good coupling with the peripheral equipment but its scripting feature is also particularly interesting for testing new and exotic acquisition routines.
Toward a molecular programming language for algorithmic self-assembly
NASA Astrophysics Data System (ADS)
Patitz, Matthew John
Self-assembly is the process whereby relatively simple components autonomously combine to form more complex objects. Nature exhibits self-assembly to form everything from microscopic crystals to living cells to galaxies. With a desire to both form increasingly sophisticated products and to understand the basic components of living systems, scientists have developed and studied artificial self-assembling systems. One such framework is the Tile Assembly Model introduced by Erik Winfree in 1998. In this model, simple two-dimensional square 'tiles' are designed so that they self-assemble into desired shapes. The work in this thesis consists of a series of results which build toward the future goal of designing an abstracted, high-level programming language for designing the molecular components of self-assembling systems which can perform powerful computations and form into intricate structures. The first two sets of results demonstrate self-assembling systems which perform infinite series of computations that characterize computably enumerable and decidable languages, and exhibit tools for algorithmically generating the necessary sets of tiles. In the next chapter, methods for generating tile sets which self-assemble into complicated shapes, namely a class of discrete self-similar fractal structures, are presented. Next, a software package for graphically designing tile sets, simulating their self-assembly, and debugging designed systems is discussed. Finally, a high-level programming language which abstracts much of the complexity and tedium of designing such systems, while preventing many of the common errors, is presented. The summation of this body of work presents a broad coverage of the spectrum of desired outputs from artificial self-assembling systems and a progression in the sophistication of tools used to design them. By creating a broader and deeper set of modular tools for designing self-assembling systems, we hope to increase the complexity which is attainable. These tools provide a solid foundation for future work in both the Tile Assembly Model and explorations into more advanced models.
Decoupling local mechanics from large-scale structure in modular metamaterials.
Yang, Nan; Silverberg, Jesse L
2017-04-04
A defining feature of mechanical metamaterials is that their properties are determined by the organization of internal structure instead of the raw fabrication materials. This shift of attention to engineering internal degrees of freedom has coaxed relatively simple materials into exhibiting a wide range of remarkable mechanical properties. For practical applications to be realized, however, this nascent understanding of metamaterial design must be translated into a capacity for engineering large-scale structures with prescribed mechanical functionality. Thus, the challenge is to systematically map desired functionality of large-scale structures backward into a design scheme while using finite parameter domains. Such "inverse design" is often complicated by the deep coupling between large-scale structure and local mechanical function, which limits the available design space. Here, we introduce a design strategy for constructing 1D, 2D, and 3D mechanical metamaterials inspired by modular origami and kirigami. Our approach is to assemble a number of modules into a voxelized large-scale structure, where the module's design has a greater number of mechanical design parameters than the number of constraints imposed by bulk assembly. This inequality allows each voxel in the bulk structure to be uniquely assigned mechanical properties independent from its ability to connect and deform with its neighbors. In studying specific examples of large-scale metamaterial structures we show that a decoupling of global structure from local mechanical function allows for a variety of mechanically and topologically complex designs.
Construction of hybrid peptide synthetases by module and domain fusions
Mootz, Henning D.; Schwarzer, Dirk; Marahiel, Mohamed A.
2000-01-01
Nonribosomal peptide synthetases are modular enzymes that assemble peptides of diverse structures and important biological activities. Their modular organization provides a great potential for the rational design of novel compounds by recombination of the biosynthetic genes. Here we describe the extension of a dimodular system to trimodular ones based on whole-module fusion. The recombinant hybrid enzymes were purified to monitor product assembly in vitro. We started from the first two modules of tyrocidine synthetase, which catalyze the formation of the dipeptide dPhe-Pro, to construct such hybrid systems. Fusion of the second, proline-specific module with the ninth and tenth modules of the tyrocidine synthetases, specific for ornithine and leucine, respectively, resulted in dimodular hybrid enzymes exhibiting the combined substrate specificities. The thioesterase domain was fused to the terminal module. Upon incubation of these dimodular enzymes with the first tyrocidine module, TycA, incorporating dPhe, the predicted tripeptides dPhe-Pro-Orn and dPhe-Pro-Leu were obtained at rates of 0.15 min-1 and 2.1 min-1. The internal thioesterase domain was necessary and sufficient to release the products from the hybrid enzymes and thereby facilitate a catalytic turnover. Our approach of whole-module fusion is based on an improved definition of the fusion sites and overcomes the recently discovered editing function of the intrinsic condensation domains. The stepwise construction of hybrid peptide synthetases from catalytic subunits reinforces the inherent potential for the synthesis of novel, designed peptides. PMID:10811885
Construction of hybrid peptide synthetases by module and domain fusions.
Mootz, H D; Schwarzer, D; Marahiel, M A
2000-05-23
Nonribosomal peptide synthetases are modular enzymes that assemble peptides of diverse structures and important biological activities. Their modular organization provides a great potential for the rational design of novel compounds by recombination of the biosynthetic genes. Here we describe the extension of a dimodular system to trimodular ones based on whole-module fusion. The recombinant hybrid enzymes were purified to monitor product assembly in vitro. We started from the first two modules of tyrocidine synthetase, which catalyze the formation of the dipeptide dPhe-Pro, to construct such hybrid systems. Fusion of the second, proline-specific module with the ninth and tenth modules of the tyrocidine synthetases, specific for ornithine and leucine, respectively, resulted in dimodular hybrid enzymes exhibiting the combined substrate specificities. The thioesterase domain was fused to the terminal module. Upon incubation of these dimodular enzymes with the first tyrocidine module, TycA, incorporating dPhe, the predicted tripeptides dPhe-Pro-Orn and dPhe-Pro-Leu were obtained at rates of 0.15 min(-1) and 2.1 min(-1). The internal thioesterase domain was necessary and sufficient to release the products from the hybrid enzymes and thereby facilitate a catalytic turnover. Our approach of whole-module fusion is based on an improved definition of the fusion sites and overcomes the recently discovered editing function of the intrinsic condensation domains. The stepwise construction of hybrid peptide synthetases from catalytic subunits reinforces the inherent potential for the synthesis of novel, designed peptides.