Sample records for assembly pathway contributes

  1. Wild tobacco genomes reveal the evolution of nicotine biosynthesis.

    PubMed

    Xu, Shuqing; Brockmöller, Thomas; Navarro-Quezada, Aura; Kuhl, Heiner; Gase, Klaus; Ling, Zhihao; Zhou, Wenwu; Kreitzer, Christoph; Stanke, Mario; Tang, Haibao; Lyons, Eric; Pandey, Priyanka; Pandey, Shree P; Timmermann, Bernd; Gaquerel, Emmanuel; Baldwin, Ian T

    2017-06-06

    Nicotine, the signature alkaloid of Nicotiana species responsible for the addictive properties of human tobacco smoking, functions as a defensive neurotoxin against attacking herbivores. However, the evolution of the genetic features that contributed to the assembly of the nicotine biosynthetic pathway remains unknown. We sequenced and assembled genomes of two wild tobaccos, Nicotiana attenuata (2.5 Gb) and Nicotiana obtusifolia (1.5 Gb), two ecological models for investigating adaptive traits in nature. We show that after the Solanaceae whole-genome triplication event, a repertoire of rapidly expanding transposable elements (TEs) bloated these Nicotiana genomes, promoted expression divergences among duplicated genes, and contributed to the evolution of herbivory-induced signaling and defenses, including nicotine biosynthesis. The biosynthetic machinery that allows for nicotine synthesis in the roots evolved from the stepwise duplications of two ancient primary metabolic pathways: the polyamine and nicotinamide adenine dinucleotide (NAD) pathways. In contrast to the duplication of the polyamine pathway that is shared among several solanaceous genera producing polyamine-derived tropane alkaloids, we found that lineage-specific duplications within the NAD pathway and the evolution of root-specific expression of the duplicated Solanaceae-specific ethylene response factor that activates the expression of all nicotine biosynthetic genes resulted in the innovative and efficient production of nicotine in the genus Nicotiana Transcription factor binding motifs derived from TEs may have contributed to the coexpression of nicotine biosynthetic pathway genes and coordinated the metabolic flux. Together, these results provide evidence that TEs and gene duplications facilitated the emergence of a key metabolic innovation relevant to plant fitness.

  2. Apolipoprotein E Likely Contributes to a Maturation Step of Infectious Hepatitis C Virus Particles and Interacts with Viral Envelope Glycoproteins

    PubMed Central

    Lee, Ji-Young; Acosta, Eliana G.; Stoeck, Ina Karen; Long, Gang; Hiet, Marie-Sophie; Mueller, Birthe; Fackler, Oliver T.; Kallis, Stephanie

    2014-01-01

    ABSTRACT The assembly of infectious hepatitis C virus (HCV) particles is tightly linked to components of the very-low-density lipoprotein (VLDL) pathway. We and others have shown that apolipoprotein E (ApoE) plays a major role in production of infectious HCV particles. However, the mechanism by which ApoE contributes to virion assembly/release and how it gets associated with the HCV particle is poorly understood. We found that knockdown of ApoE reduces titers of infectious intra- and extracellular HCV but not of the related dengue virus. ApoE depletion also reduced amounts of extracellular HCV core protein without affecting intracellular core amounts. Moreover, we found that ApoE depletion affected neither formation of nucleocapsids nor their envelopment, suggesting that ApoE acts at a late step of assembly, such as particle maturation and infectivity. Importantly, we demonstrate that ApoE interacts with the HCV envelope glycoproteins, most notably E2. This interaction did not require any other viral proteins and depended on the transmembrane domain of E2 that also was required for recruitment of HCV envelope glycoproteins to detergent-resistant membrane fractions. These results suggest that ApoE plays an important role in HCV particle maturation, presumably by direct interaction with viral envelope glycoproteins. IMPORTANCE The HCV replication cycle is tightly linked to host cell lipid pathways and components. This is best illustrated by the dependency of HCV assembly on lipid droplets and the VLDL component ApoE. Although the role of ApoE for production of infectious HCV particles is well established, it is still poorly understood how ApoE contributes to virion formation and how it gets associated with HCV particles. Here, we provide experimental evidence that ApoE likely is required for an intracellular maturation step of HCV particles. Moreover, we demonstrate that ApoE associates with the viral envelope glycoproteins. This interaction appears to be dispensable for envelopment of virus particles but likely contributes to the quality control of secreted infectious virions. These results shed new light on the exploitation of host cell lipid pathways by HCV and the link of viral particle assembly to the VLDL component ApoE. PMID:25122793

  3. Ras-sensitive IMP modulation of the Raf/MEK/ERK cascade through KSR1.

    PubMed

    Matheny, Sharon A; White, Michael A

    2006-01-01

    The E3 ubiquitin ligase IMP (impedes mitogenic signal propagation) was isolated as a novel Ras effector that negatively regulates ERK1/2 activation. Current evidence suggests that IMP limits the functional assembly of Raf/MEK complexes by inactivation of the KSR1 adaptor/scaffold protein. Interaction with Ras-GTP stimulates IMP autoubiquitination to relieve limitations on KSR function. The elevated sensitivity of IMP-depleted cells to ERK1/2 pathway activation suggests IMP acts as a signal threshold regulator by imposing reversible restrictions on the assembly of functional Raf/MEK/ERK kinase modules. These observations challenge commonly held concepts of signal transmission by Ras to the MAPK pathway and provide evidence for the role of amplitude modulation in tuning cellular responses to ERK1/2 pathway engagement. Here we describe details of the methods, including RNA interference, ubiquitin ligase assays, and protein complex analysis, that can be used to display the Ras-sensitive contribution of IMP to KSR-dependent modulation of the Raf/MEK/ERK pathway.

  4. Oligonucleotide Length-Dependent Formation of Virus-Like Particles.

    PubMed

    Maassen, Stan J; de Ruiter, Mark V; Lindhoud, Saskia; Cornelissen, Jeroen J L M

    2018-05-23

    Understanding the assembly pathway of viruses can contribute to creating monodisperse virus-based materials. In this study, the cowpea chlorotic mottle virus (CCMV) is used to determine the interactions between the capsid proteins of viruses and their cargo. The assembly of the capsid proteins in the presence of different lengths of short, single-stranded (ss) DNA is studied at neutral pH, at which the protein-protein interactions are weak. Chromatography, electrophoresis, microscopy, and light scattering data show that the assembly efficiency and speed of the particles increase with increasing length of oligonucleotides. The minimal length required for assembly under the conditions used herein is 14 nucleotides. Assembly of particles containing such short strands of ssDNA can take almost a month. This slow assembly process enabled the study of intermediate states, which confirmed a low cooperative assembly for CCMV and allowed for further expansion of current assembly theories. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Pathways for virus assembly around nucleic acids

    PubMed Central

    Perlmutter, Jason D; Perkett, Matthew R

    2014-01-01

    Understanding the pathways by which viral capsid proteins assemble around their genomes could identify key intermediates as potential drug targets. In this work we use computer simulations to characterize assembly over a wide range of capsid protein-protein interaction strengths and solution ionic strengths. We find that assembly pathways can be categorized into two classes, in which intermediates are either predominantly ordered or disordered. Our results suggest that estimating the protein-protein and the protein-genome binding affinities may be sufficient to predict which pathway occurs. Furthermore, the calculated phase diagrams suggest that knowledge of the dominant assembly pathway and its relationship to control parameters could identify optimal strategies to thwart or redirect assembly to block infection. Finally, analysis of simulation trajectories suggests that the two classes of assembly pathways can be distinguished in single molecule fluorescence correlation spectroscopy or bulk time resolved small angle x-ray scattering experiments. PMID:25036288

  6. DNA assembler, an in vivo genetic method for rapid construction of biochemical pathways

    PubMed Central

    Shao, Zengyi; Zhao, Hua; Zhao, Huimin

    2009-01-01

    The assembly of large recombinant DNA encoding a whole biochemical pathway or genome represents a significant challenge. Here, we report a new method, DNA assembler, which allows the assembly of an entire biochemical pathway in a single step via in vivo homologous recombination in Saccharomyces cerevisiae. We show that DNA assembler can rapidly assemble a functional d-xylose utilization pathway (∼9 kb DNA consisting of three genes), a functional zeaxanthin biosynthesis pathway (∼11 kb DNA consisting of five genes) and a functional combined d-xylose utilization and zeaxanthin biosynthesis pathway (∼19 kb consisting of eight genes) with high efficiencies (70–100%) either on a plasmid or on a yeast chromosome. As this new method only requires simple DNA preparation and one-step yeast transformation, it represents a powerful tool in the construction of biochemical pathways for synthetic biology, metabolic engineering and functional genomics studies. PMID:19074487

  7. Gel phase formation in dilute triblock copolyelectrolyte complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Srivastava, Samanvaya; Andreev, Marat; Levi, Adam E.

    Assembly of oppositely charged triblock copolyelectrolytes into phase-separated gels at low polymer concentrations (<1% by mass) has been observed in scattering experiments and molecular dynamics simulations. Here we show that in contrast to uncharged, amphiphilic block copolymers that form discrete micelles at low concentrations and enter a phase of strongly interacting micelles in a gradual manner with increasing concentration, the formation of a dilute phase of individual micelles is prevented in polyelectrolyte complexation-driven assembly of triblock copolyelectrolytes. Gel phases form and phase separate almost instantaneously on solvation of the copolymers. Furthermore, molecular models of self-assembly demonstrate the presence of oligo-chainmore » aggregates in early stages of copolyelectrolyte assembly, at experimentally unobservable polymer concentrations. Our discoveries contribute to the fundamental understanding of the structure and pathways of complexation-driven assemblies, and raise intriguing prospects for gel formation at extraordinarily low concentrations, with applications in tissue engineering, agriculture, water purification and theranostics.« less

  8. Gel phase formation in dilute triblock copolyelectrolyte complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Srivastava, Samanvaya; Andreev, Marat; Levi, Adam E.

    Assembly of oppositely charged triblock copolyelectrolytes into phase-separated gels at low polymer concentrations (<1% by mass) has been observed in scattering experiments and molecular dynamics simulations. Here we show that in contrast to uncharged, amphiphilic block copolymers that form discrete micelles at low concentrations and enter a phase of strongly interacting micelles in a gradual manner with increasing concentration, the formation of a dilute phase of individual micelles is prevented in polyelectrolyte complexation-driven assembly of triblock copolyelectrolytes. Gel phases form and phase separate almost instantaneously on solvation of the copolymers. Furthermore, molecular models of self-assembly demonstrate the presence of oligo-chainmore » aggregates in early stages of copolyelectrolyte assembly, at experimentally unobservable polymer concentrations. Finally, our discoveries contribute to the fundamental understanding of the structure and pathways of complexation-driven assemblies, and raise intriguing prospects for gel formation at extraordinarily low concentrations, with applications in tissue engineering, agriculture, water purification and theranostics.« less

  9. Gel phase formation in dilute triblock copolyelectrolyte complexes

    DOE PAGES

    Srivastava, Samanvaya; Andreev, Marat; Levi, Adam E.; ...

    2017-02-23

    Assembly of oppositely charged triblock copolyelectrolytes into phase-separated gels at low polymer concentrations (<1% by mass) has been observed in scattering experiments and molecular dynamics simulations. Here we show that in contrast to uncharged, amphiphilic block copolymers that form discrete micelles at low concentrations and enter a phase of strongly interacting micelles in a gradual manner with increasing concentration, the formation of a dilute phase of individual micelles is prevented in polyelectrolyte complexation-driven assembly of triblock copolyelectrolytes. Gel phases form and phase separate almost instantaneously on solvation of the copolymers. Furthermore, molecular models of self-assembly demonstrate the presence of oligo-chainmore » aggregates in early stages of copolyelectrolyte assembly, at experimentally unobservable polymer concentrations. Finally, our discoveries contribute to the fundamental understanding of the structure and pathways of complexation-driven assemblies, and raise intriguing prospects for gel formation at extraordinarily low concentrations, with applications in tissue engineering, agriculture, water purification and theranostics.« less

  10. Gel Phase Formation in Dilute Triblock Copolyelectrolyte Complexes

    NASA Astrophysics Data System (ADS)

    Srivastava, Samanvaya; Andreev, Marat; Prabhu, Vivek; de Pablo, Juan; Tirrell, Matthew

    Assembly of oppositely charged triblock copolyelectrolytes into phase-separated gels at extremely low polymer concentrations (<1 % by mass) has been observed in scattering experiments and molecular dynamics simulations. In contrast to uncharged, amphiphilic block copolymers that form discrete micelles at low concentrations and enter a phase of strongly interacting micelles in a gradual manner with increasing polymer concentrations, the formation of a dilute phase of individual micelles is prevented in polyelectrolyte complexation-driven assemblies of triblock copolyelectrolytes. Gel phases form and phase separate almost instantaneously upon solvation of the copolymers. Furthermore, molecular models of self-assembly demonstrate the presence of oligo-chain aggregates in early stages of triblock copolyelectrolyte assembly, at experimentally unobservable polymer concentrations. Our discoveries not only contribute to our fundamental understanding of the structure and pathways of complexation driven assemblies, but also raise intriguing prospects for formation of gel structures at extraordinarily low concentrations, with applications in tissue engineering, agriculture, water purification and theranostics.

  11. Gel phase formation in dilute triblock copolyelectrolyte complexes

    NASA Astrophysics Data System (ADS)

    Srivastava, Samanvaya; Andreev, Marat; Levi, Adam E.; Goldfeld, David J.; Mao, Jun; Heller, William T.; Prabhu, Vivek M.; de Pablo, Juan J.; Tirrell, Matthew V.

    2017-02-01

    Assembly of oppositely charged triblock copolyelectrolytes into phase-separated gels at low polymer concentrations (<1% by mass) has been observed in scattering experiments and molecular dynamics simulations. Here we show that in contrast to uncharged, amphiphilic block copolymers that form discrete micelles at low concentrations and enter a phase of strongly interacting micelles in a gradual manner with increasing concentration, the formation of a dilute phase of individual micelles is prevented in polyelectrolyte complexation-driven assembly of triblock copolyelectrolytes. Gel phases form and phase separate almost instantaneously on solvation of the copolymers. Furthermore, molecular models of self-assembly demonstrate the presence of oligo-chain aggregates in early stages of copolyelectrolyte assembly, at experimentally unobservable polymer concentrations. Our discoveries contribute to the fundamental understanding of the structure and pathways of complexation-driven assemblies, and raise intriguing prospects for gel formation at extraordinarily low concentrations, with applications in tissue engineering, agriculture, water purification and theranostics.

  12. De novo assembly and functional annotation of Myrciaria dubia fruit transcriptome reveals multiple metabolic pathways for L-ascorbic acid biosynthesis.

    PubMed

    Castro, Juan C; Maddox, J Dylan; Cobos, Marianela; Requena, David; Zimic, Mirko; Bombarely, Aureliano; Imán, Sixto A; Cerdeira, Luis A; Medina, Andersson E

    2015-11-24

    Myrciaria dubia is an Amazonian fruit shrub that produces numerous bioactive phytochemicals, but is best known by its high L-ascorbic acid (AsA) content in fruits. Pronounced variation in AsA content has been observed both within and among individuals, but the genetic factors responsible for this variation are largely unknown. The goals of this research, therefore, were to assemble, characterize, and annotate the fruit transcriptome of M. dubia in order to reconstruct metabolic pathways and determine if multiple pathways contribute to AsA biosynthesis. In total 24,551,882 high-quality sequence reads were de novo assembled into 70,048 unigenes (mean length = 1150 bp, N50 = 1775 bp). Assembled sequences were annotated using BLASTX against public databases such as TAIR, GR-protein, FB, MGI, RGD, ZFIN, SGN, WB, TIGR_CMR, and JCVI-CMR with 75.2 % of unigenes having annotations. Of the three core GO annotation categories, biological processes comprised 53.6 % of the total assigned annotations, whereas cellular components and molecular functions comprised 23.3 and 23.1 %, respectively. Based on the KEGG pathway assignment of the functionally annotated transcripts, five metabolic pathways for AsA biosynthesis were identified: animal-like pathway, myo-inositol pathway, L-gulose pathway, D-mannose/L-galactose pathway, and uronic acid pathway. All transcripts coding enzymes involved in the ascorbate-glutathione cycle were also identified. Finally, we used the assembly to identified 6314 genic microsatellites and 23,481 high quality SNPs. This study describes the first next-generation sequencing effort and transcriptome annotation of a non-model Amazonian plant that is relevant for AsA production and other bioactive phytochemicals. Genes encoding key enzymes were successfully identified and metabolic pathways involved in biosynthesis of AsA, anthocyanins, and other metabolic pathways have been reconstructed. The identification of these genes and pathways is in agreement with the empirically observed capability of M. dubia to synthesize and accumulate AsA and other important molecules, and adds to our current knowledge of the molecular biology and biochemistry of their production in plants. By providing insights into the mechanisms underpinning these metabolic processes, these results can be used to direct efforts to genetically manipulate this organism in order to enhance the production of these bioactive phytochemicals. The accumulation of AsA precursor and discovery of genes associated with their biosynthesis and metabolism in M. dubia is intriguing and worthy of further investigation. The sequences and pathways produced here present the genetic framework required for further studies. Quantitative transcriptomics in concert with studies of the genome, proteome, and metabolome under conditions that stimulate production and accumulation of AsA and their precursors are needed to provide a more comprehensive view of how these pathways for AsA metabolism are regulated and linked in this species.

  13. Construction and engineering of large biochemical pathways via DNA assembler

    PubMed Central

    Shao, Zengyi; Zhao, Huimin

    2015-01-01

    Summary DNA assembler enables rapid construction and engineering of biochemical pathways in a one-step fashion by exploitation of the in vivo homologous recombination mechanism in Saccharomyces cerevisiae. It has many applications in pathway engineering, metabolic engineering, combinatorial biology, and synthetic biology. Here we use two examples including the zeaxanthin biosynthetic pathway and the aureothin biosynthetic gene cluster to describe the key steps in the construction of pathways containing multiple genes using the DNA assembler approach. Methods for construct design, pathway assembly, pathway confirmation, and functional analysis are shown. The protocol for fine genetic modifications such as site-directed mutagenesis for engineering the aureothin gene cluster is also illustrated. PMID:23996442

  14. Machine learning assembly landscapes from particle tracking data.

    PubMed

    Long, Andrew W; Zhang, Jie; Granick, Steve; Ferguson, Andrew L

    2015-11-07

    Bottom-up self-assembly offers a powerful route for the fabrication of novel structural and functional materials. Rational engineering of self-assembling systems requires understanding of the accessible aggregation states and the structural assembly pathways. In this work, we apply nonlinear machine learning to experimental particle tracking data to infer low-dimensional assembly landscapes mapping the morphology, stability, and assembly pathways of accessible aggregates as a function of experimental conditions. To the best of our knowledge, this represents the first time that collective order parameters and assembly landscapes have been inferred directly from experimental data. We apply this technique to the nonequilibrium self-assembly of metallodielectric Janus colloids in an oscillating electric field, and quantify the impact of field strength, oscillation frequency, and salt concentration on the dominant assembly pathways and terminal aggregates. This combined computational and experimental framework furnishes new understanding of self-assembling systems, and quantitatively informs rational engineering of experimental conditions to drive assembly along desired aggregation pathways.

  15. Hepatitis C Virus Infection Activates a Novel Innate Pathway Involving IKKα in Lipogenesis and Viral Assembly

    PubMed Central

    Li, Qisheng; Pène, Véronique; Krishnamurthy, Siddharth; Cha, Helen; Liang, T. Jake

    2013-01-01

    Hepatitis C virus interacts extensively with host factors not only to establish productive infection but also to trigger unique pathological processes. Our recent genome-wide siRNA screen demonstrated that IKKα is a critical host factor for HCV. Here we describe a novel NF-κB-independent and kinase-mediated nuclear function of IKKα in HCV assembly. HCV infection, through its 3’-untranslated region, interacts with DDX3X to activate IKKα, which translocates to the nucleus and induces a CBP/p300-mediated transcriptional program involving SREBPs. This novel innate pathway induces lipogenic genes and enhances core-associated lipid droplet formation to facilitate viral assembly. Chemical inhibitors of IKKα suppress HCV infection and IKKα-induced lipogenesis, offering a proof-of-concept approach for novel HCV therapeutic development. Our results show that HCV commands a novel mechanism to its advantage by exploiting intrinsic innate response and hijacking lipid metabolism, which likely contributes to a high chronicity rate and the pathological hallmark of steatosis in HCV infection. PMID:23708292

  16. Distinctive Roles for Periplasmic Proteases in the Maintenance of Essential Outer Membrane Protein Assembly.

    PubMed

    Soltes, Garner R; Martin, Nicholas R; Park, Eunhae; Sutterlin, Holly A; Silhavy, Thomas J

    2017-10-15

    Outer membrane protein (OMP) biogenesis in Escherichia coli is a robust process essential to the life of the organism. It is catalyzed by the β-barrel assembly machine (Bam) complex, and a number of quality control factors, including periplasmic chaperones and proteases, maintain the integrity of this trafficking pathway. Little is known, however, about how periplasmic proteases recognize and degrade OMP substrates when assembly is compromised or whether different proteases recognize the same substrate at distinct points in the assembly pathway. In this work, we use well-defined assembly-defective mutants of LptD, the essential lipopolysaccharide assembly translocon, to show that the periplasmic protease DegP degrades substrates with assembly defects that prevent or impair initial contact with Bam, causing the mutant protein to accumulate in the periplasm. In contrast, another periplasmic protease, BepA, degrades a LptD mutant substrate that has engaged the Bam complex and formed a nearly complete barrel. Furthermore, we describe the role of the outer membrane lipoprotein YcaL, a protease of heretofore unknown function, in the degradation of a LptD substrate that has engaged the Bam complex but is stalled at an earlier step in the assembly process that is not accessible to BepA. Our results demonstrate that multiple periplasmic proteases monitor OMPs at distinct points in the assembly process. IMPORTANCE OMP assembly is catalyzed by the essential Bam complex and occurs in a cellular environment devoid of energy sources. Assembly intermediates that misfold can compromise this essential molecular machine. Here we demonstrate distinctive roles for three different periplasmic proteases that can clear OMP substrates with folding defects that compromise assembly at three different stages. These quality control factors help ensure the integrity of the permeability barrier that contributes to the intrinsic resistance of Gram-negative organisms to many antibiotics. Copyright © 2017 American Society for Microbiology.

  17. Contractile-Ring Assembly in Fission Yeast Cytokinesis: Recent Advances and New Perspectives

    PubMed Central

    Lee, I-Ju; Coffman, Valerie C.; Wu, Jian-Qiu

    2017-01-01

    The fission yeast Schizosaccharomyces pombe is an excellent model organism to study cytokinesis. Here, we review recent advances on contractile-ring assembly in fission yeast. First, we summarize the assembly of cytokinesis nodes, the precursors of a normal contractile ring. IQGAP Rng2 and myosin essential light chain Cdc4 are recruited by the anillin-like protein Mid1, followed by the addition of other cytokinesis node proteins. Mid1 localization on the plasma membrane is stabilized by interphase node proteins. Second, we discuss proteins and processes that contribute to the search, capture, pull, and release mechanism of contractile-ring assembly. Actin filaments nucleated by formin Cdc12, the motor activity of myosin-II, the stiffness of the actin network, and severing of actin filaments by cofilin all play essential roles in contractile-ring assembly. Finally, we discuss the Mid1-independent pathway for ring assembly, and the possible mechanisms underlying the ring maturation and constriction. Collectively, we provide an overview of the current understanding of contractile-ring assembly and uncover future directions in studying cytokinesis in fission yeast. PMID:22887981

  18. Contractile-ring assembly in fission yeast cytokinesis: Recent advances and new perspectives.

    PubMed

    Lee, I-Ju; Coffman, Valerie C; Wu, Jian-Qiu

    2012-10-01

    The fission yeast Schizosaccharomyces pombe is an excellent model organism to study cytokinesis. Here, we review recent advances on contractile-ring assembly in fission yeast. First, we summarize the assembly of cytokinesis nodes, the precursors of a normal contractile ring. IQGAP Rng2 and myosin essential light chain Cdc4 are recruited by the anillin-like protein Mid1, followed by the addition of other cytokinesis node proteins. Mid1 localization on the plasma membrane is stabilized by interphase node proteins. Second, we discuss proteins and processes that contribute to the search, capture, pull, and release mechanism of contractile-ring assembly. Actin filaments nucleated by formin Cdc12, the motor activity of myosin-II, the stiffness of the actin network, and severing of actin filaments by cofilin all play essential roles in contractile-ring assembly. Finally, we discuss the Mid1-independent pathway for ring assembly, and the possible mechanisms underlying the ring maturation and constriction. Collectively, we provide an overview of the current understanding of contractile-ring assembly and uncover future directions in studying cytokinesis in fission yeast. Copyright © 2012 Wiley Periodicals, Inc.

  19. Roles of Chaperone/Usher Pathways of Yersinia pestis in a Murine Model of Plague and Adhesion to Host Cells

    PubMed Central

    Hatkoff, Matthew; Runco, Lisa M.; Pujol, Celine; Jayatilaka, Indralatha; Furie, Martha B.; Bliska, James B.

    2012-01-01

    Yersinia pestis and many other Gram-negative pathogenic bacteria use the chaperone/usher (CU) pathway to assemble virulence-associated surface fibers termed pili or fimbriae. Y. pestis has two well-characterized CU pathways: the caf genes coding for the F1 capsule and the psa genes coding for the pH 6 antigen. The Y. pestis genome contains additional CU pathways that are capable of assembling pilus fibers, but the roles of these pathways in the pathogenesis of plague are not understood. We constructed deletion mutations in the usher genes for six of the additional Y. pestis CU pathways. The wild-type (WT) and usher deletion strains were compared in the murine bubonic (subcutaneous) and pneumonic (intranasal) plague infection models. Y. pestis strains containing deletions in CU pathways y0348-0352, y1858-1862, and y1869-1873 were attenuated for virulence compared to the WT strain by the intranasal, but not subcutaneous, routes of infection, suggesting specific roles for these pathways during pneumonic plague. We examined binding of the Y. pestis WT and usher deletion strains to A549 human lung epithelial cells, HEp-2 human cervical epithelial cells, and primary human and murine macrophages. Y. pestis CU pathways y0348-0352 and y1858-1862 were found to contribute to adhesion to all host cells tested, whereas pathway y1869-1873 was specific for binding to macrophages. The correlation between the virulence attenuation and host cell binding phenotypes of the usher deletion mutants identifies three of the additional CU pathways of Y. pestis as mediating interactions with host cells that are important for the pathogenesis of plague. PMID:22851745

  20. Roles of chaperone/usher pathways of Yersinia pestis in a murine model of plague and adhesion to host cells.

    PubMed

    Hatkoff, Matthew; Runco, Lisa M; Pujol, Celine; Jayatilaka, Indralatha; Furie, Martha B; Bliska, James B; Thanassi, David G

    2012-10-01

    Yersinia pestis and many other Gram-negative pathogenic bacteria use the chaperone/usher (CU) pathway to assemble virulence-associated surface fibers termed pili or fimbriae. Y. pestis has two well-characterized CU pathways: the caf genes coding for the F1 capsule and the psa genes coding for the pH 6 antigen. The Y. pestis genome contains additional CU pathways that are capable of assembling pilus fibers, but the roles of these pathways in the pathogenesis of plague are not understood. We constructed deletion mutations in the usher genes for six of the additional Y. pestis CU pathways. The wild-type (WT) and usher deletion strains were compared in the murine bubonic (subcutaneous) and pneumonic (intranasal) plague infection models. Y. pestis strains containing deletions in CU pathways y0348-0352, y1858-1862, and y1869-1873 were attenuated for virulence compared to the WT strain by the intranasal, but not subcutaneous, routes of infection, suggesting specific roles for these pathways during pneumonic plague. We examined binding of the Y. pestis WT and usher deletion strains to A549 human lung epithelial cells, HEp-2 human cervical epithelial cells, and primary human and murine macrophages. Y. pestis CU pathways y0348-0352 and y1858-1862 were found to contribute to adhesion to all host cells tested, whereas pathway y1869-1873 was specific for binding to macrophages. The correlation between the virulence attenuation and host cell binding phenotypes of the usher deletion mutants identifies three of the additional CU pathways of Y. pestis as mediating interactions with host cells that are important for the pathogenesis of plague.

  1. A microtubule polymerase cooperates with the kinesin-6 motor and a microtubule cross-linker to promote bipolar spindle assembly in the absence of kinesin-5 and kinesin-14 in fission yeast

    PubMed Central

    Yukawa, Masashi; Kawakami, Tomoki; Okazaki, Masaki; Kume, Kazunori; Tang, Ngang Heok; Toda, Takashi

    2017-01-01

    Accurate chromosome segregation relies on the bipolar mitotic spindle. In many eukaryotes, spindle formation is driven by the plus-end–directed motor kinesin-5 that generates outward force to establish spindle bipolarity. Its inhibition leads to the emergence of monopolar spindles with mitotic arrest. Intriguingly, simultaneous inactivation of the minus-end–directed motor kinesin-14 restores spindle bipolarity in many systems. Here we show that in fission yeast, three independent pathways contribute to spindle bipolarity in the absence of kinesin-5/Cut7 and kinesin-14/Pkl1. One is kinesin-6/Klp9 that engages with spindle elongation once short bipolar spindles assemble. Klp9 also ensures the medial positioning of anaphase spindles to prevent unequal chromosome segregation. Another is the Alp7/TACC-Alp14/TOG microtubule polymerase complex. Temperature-sensitive alp7cut7pkl1 mutants are arrested with either monopolar or very short spindles. Forced targeting of Alp14 to the spindle pole body is sufficient to render alp7cut7pkl1 triply deleted cells viable and promote spindle assembly, indicating that Alp14-mediated microtubule polymerization from the nuclear face of the spindle pole body could generate outward force in place of Cut7 during early mitosis. The third pathway involves the Ase1/PRC1 microtubule cross-linker that stabilizes antiparallel microtubules. Our study, therefore, unveils multifaceted interplay among kinesin-dependent and -independent pathways leading to mitotic bipolar spindle assembly. PMID:29021344

  2. The Endoplasmic Reticulum Stress Response in Neuroprogressive Diseases: Emerging Pathophysiological Role and Translational Implications.

    PubMed

    Morris, Gerwyn; Puri, Basant K; Walder, Ken; Berk, Michael; Stubbs, Brendon; Maes, Michael; Carvalho, André F

    2018-03-29

    The endoplasmic reticulum (ER) is the main cellular organelle involved in protein synthesis, assembly and secretion. Accumulating evidence shows that across several neurodegenerative and neuroprogressive diseases, ER stress ensues, which is accompanied by over-activation of the unfolded protein response (UPR). Although the UPR could initially serve adaptive purposes in conditions associated with higher cellular demands and after exposure to a range of pathophysiological insults, over time the UPR may become detrimental, thus contributing to neuroprogression. Herein, we propose that immune-inflammatory, neuro-oxidative, neuro-nitrosative, as well as mitochondrial pathways may reciprocally interact with aberrations in UPR pathways. Furthermore, ER stress may contribute to a deregulation in calcium homoeostasis. The common denominator of these pathways is a decrease in neuronal resilience, synaptic dysfunction and even cell death. This review also discusses how mechanisms related to ER stress could be explored as a source for novel therapeutic targets for neurodegenerative and neuroprogressive diseases. The design of randomised controlled trials testing compounds that target aberrant UPR-related pathways within the emerging framework of precision psychiatry is warranted.

  3. Reiterative Recombination for the in vivo assembly of libraries of multigene pathways.

    PubMed

    Wingler, Laura M; Cornish, Virginia W

    2011-09-13

    The increasing sophistication of synthetic biology is creating a demand for robust, broadly accessible methodology for constructing multigene pathways inside of the cell. Due to the difficulty of rationally designing pathways that function as desired in vivo, there is a further need to assemble libraries of pathways in parallel, in order to facilitate the combinatorial optimization of performance. While some in vitro DNA assembly methods can theoretically make libraries of pathways, these techniques are resource intensive and inherently require additional techniques to move the DNA back into cells. All previously reported in vivo assembly techniques have been low yielding, generating only tens to hundreds of constructs at a time. Here, we develop "Reiterative Recombination," a robust method for building multigene pathways directly in the yeast chromosome. Due to its use of endonuclease-induced homologous recombination in conjunction with recyclable markers, Reiterative Recombination provides a highly efficient, technically simple strategy for sequentially assembling an indefinite number of DNA constructs at a defined locus. In this work, we describe the design and construction of the first Reiterative Recombination system in Saccharomyces cerevisiae, and we show that it can be used to assemble multigene constructs. We further demonstrate that Reiterative Recombination can construct large mock libraries of at least 10(4) biosynthetic pathways. We anticipate that our system's simplicity and high efficiency will make it a broadly accessible technology for pathway construction and render it a valuable tool for optimizing pathways in vivo.

  4. Reiterative Recombination for the in vivo assembly of libraries of multigene pathways

    PubMed Central

    Wingler, Laura M.; Cornish, Virginia W.

    2011-01-01

    The increasing sophistication of synthetic biology is creating a demand for robust, broadly accessible methodology for constructing multigene pathways inside of the cell. Due to the difficulty of rationally designing pathways that function as desired in vivo, there is a further need to assemble libraries of pathways in parallel, in order to facilitate the combinatorial optimization of performance. While some in vitro DNA assembly methods can theoretically make libraries of pathways, these techniques are resource intensive and inherently require additional techniques to move the DNA back into cells. All previously reported in vivo assembly techniques have been low yielding, generating only tens to hundreds of constructs at a time. Here, we develop “Reiterative Recombination,” a robust method for building multigene pathways directly in the yeast chromosome. Due to its use of endonuclease-induced homologous recombination in conjunction with recyclable markers, Reiterative Recombination provides a highly efficient, technically simple strategy for sequentially assembling an indefinite number of DNA constructs at a defined locus. In this work, we describe the design and construction of the first Reiterative Recombination system in Saccharomyces cerevisiae, and we show that it can be used to assemble multigene constructs. We further demonstrate that Reiterative Recombination can construct large mock libraries of at least 104 biosynthetic pathways. We anticipate that our system’s simplicity and high efficiency will make it a broadly accessible technology for pathway construction and render it a valuable tool for optimizing pathways in vivo. PMID:21876185

  5. Elucidating dominant pathways of the nano-particle self-assembly process.

    PubMed

    Zeng, Xiangze; Li, Bin; Qiao, Qin; Zhu, Lizhe; Lu, Zhong-Yuan; Huang, Xuhui

    2016-09-14

    Self-assembly processes play a key role in the fabrication of functional nano-structures with widespread application in drug delivery and micro-reactors. In addition to the thermodynamics, the kinetics of the self-assembled nano-structures also play an important role in determining the formed structures. However, as the self-assembly process is often highly heterogeneous, systematic elucidation of the dominant kinetic pathways of self-assembly is challenging. Here, based on mass flow, we developed a new method for the construction of kinetic network models and applied it to identify the dominant kinetic pathways for the self-assembly of star-like block copolymers. We found that the dominant pathways are controlled by two competing kinetic parameters: the encounter time Te, characterizing the frequency of collision and the transition time Tt for the aggregate morphology change from rod to sphere. Interestingly, two distinct self-assembly mechanisms, diffusion of an individual copolymer into the aggregate core and membrane closure, both appear at different stages (with different values of Tt) of a single self-assembly process. In particular, the diffusion mechanism dominates the middle-sized semi-vesicle formation stage (with large Tt), while the membrane closure mechanism dominates the large-sized vesicle formation stage (with small Tt). Through the rational design of the hydrophibicity of the copolymer, we successfully tuned the transition time Tt and altered the dominant self-assembly pathways.

  6. Spatial Extent of Charge Repulsion Regulates Assembly Pathways for Lysozyme Amyloid Fibrils

    PubMed Central

    Hill, Shannon E.; Miti, Tatiana; Richmond, Tyson; Muschol, Martin

    2011-01-01

    Formation of large protein fibrils with a characteristic cross β-sheet architecture is the key indicator for a wide variety of systemic and neurodegenerative amyloid diseases. Recent experiments have strongly implicated oligomeric intermediates, transiently formed during fibril assembly, as critical contributors to cellular toxicity in amyloid diseases. At the same time, amyloid fibril assembly can proceed along different assembly pathways that might or might not involve such oligomeric intermediates. Elucidating the mechanisms that determine whether fibril formation proceeds along non-oligomeric or oligomeric pathways, therefore, is important not just for understanding amyloid fibril assembly at the molecular level but also for developing new targets for intervening with fibril formation. We have investigated fibril formation by hen egg white lysozyme, an enzyme for which human variants underlie non-neuropathic amyloidosis. Using a combination of static and dynamic light scattering, atomic force microscopy and circular dichroism, we find that amyloidogenic lysozyme monomers switch between three different assembly pathways: from monomeric to oligomeric fibril assembly and, eventually, disordered precipitation as the ionic strength of the solution increases. Fibril assembly only occurred under conditions of net repulsion among the amyloidogenic monomers while net attraction caused precipitation. The transition from monomeric to oligomeric fibril assembly, in turn, occurred as salt-mediated charge screening reduced repulsion among individual charged residues on the same monomer. We suggest a model of amyloid fibril formation in which repulsive charge interactions are a prerequisite for ordered fibril assembly. Furthermore, the spatial extent of non-specific charge screening selects between monomeric and oligomeric assembly pathways by affecting which subset of denatured states can form suitable intermolecular bonds and by altering the energetic and entropic requirements for the initial intermediates emerging along the monomeric vs. oligomeric assembly path. PMID:21483680

  7. Assembly of the β-Barrel Outer Membrane Proteins in Gram-Negative Bacteria, Mitochondria, and Chloroplasts

    PubMed Central

    Misra, Rajeev

    2012-01-01

    In the last decade, there has been an explosion of publications on the assembly of β-barrel outer membrane proteins (OMPs), which carry out diverse cellular functions, including solute transport, protein secretion, and assembly of protein and lipid components of the outer membrane. Of the three outer membrane model systems—Gram-negative bacteria, mitochondria and chloroplasts—research on bacterial and mitochondrial systems has so far led the way in dissecting the β-barrel OMP assembly pathways. Many exciting discoveries have been made, including the identification of β-barrel OMP assembly machineries in bacteria and mitochondria, and potentially the core assembly component in chloroplasts. The atomic structures of all five components of the bacterial β-barrel assembly machinery (BAM) complex, except the β-barrel domain of the core BamA protein, have been solved. Structures reveal that these proteins contain domains/motifs known to facilitate protein-protein interactions, which are at the heart of the assembly pathways. While structural information has been valuable, most of our current understanding of the β-barrel OMP assembly pathways has come from genetic, molecular biology, and biochemical analyses. This paper provides a comparative account of the β-barrel OMP assembly pathways in Gram-negative bacteria, mitochondria, and chloroplasts. PMID:27335668

  8. One step DNA assembly for combinatorial metabolic engineering.

    PubMed

    Coussement, Pieter; Maertens, Jo; Beauprez, Joeri; Van Bellegem, Wouter; De Mey, Marjan

    2014-05-01

    The rapid and efficient assembly of multi-step metabolic pathways for generating microbial strains with desirable phenotypes is a critical procedure for metabolic engineering, and remains a significant challenge in synthetic biology. Although several DNA assembly methods have been developed and applied for metabolic pathway engineering, many of them are limited by their suitability for combinatorial pathway assembly. The introduction of transcriptional (promoters), translational (ribosome binding site (RBS)) and enzyme (mutant genes) variability to modulate pathway expression levels is essential for generating balanced metabolic pathways and maximizing the productivity of a strain. We report a novel, highly reliable and rapid single strand assembly (SSA) method for pathway engineering. The method was successfully optimized and applied to create constructs containing promoter, RBS and/or mutant enzyme libraries. To demonstrate its efficiency and reliability, the method was applied to fine-tune multi-gene pathways. Two promoter libraries were simultaneously introduced in front of two target genes, enabling orthogonal expression as demonstrated by principal component analysis. This shows that SSA will increase our ability to tune multi-gene pathways at all control levels for the biotechnological production of complex metabolites, achievable through the combinatorial modulation of transcription, translation and enzyme activity. Copyright © 2014 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  9. Ancestral and derived protein import pathways in the mitochondrion of Reclinomonas americana.

    PubMed

    Tong, Janette; Dolezal, Pavel; Selkrig, Joel; Crawford, Simon; Simpson, Alastair G B; Noinaj, Nicholas; Buchanan, Susan K; Gabriel, Kipros; Lithgow, Trevor

    2011-05-01

    The evolution of mitochondria from ancestral bacteria required that new protein transport machinery be established. Recent controversy over the evolution of these new molecular machines hinges on the degree to which ancestral bacterial transporters contributed during the establishment of the new protein import pathway. Reclinomonas americana is a unicellular eukaryote with the most gene-rich mitochondrial genome known, and the large collection of membrane proteins encoded on the mitochondrial genome of R. americana includes a bacterial-type SecY protein transporter. Analysis of expressed sequence tags shows R. americana also has components of a mitochondrial protein translocase or "translocase in the inner mitochondrial membrane complex." Along with several other membrane proteins encoded on the mitochondrial genome Cox11, an assembly factor for cytochrome c oxidase retains sequence features suggesting that it is assembled by the SecY complex in R. americana. Despite this, protein import studies show that the RaCox11 protein is suited for import into mitochondria and functional complementation if the gene is transferred into the nucleus of yeast. Reclinomonas americana provides direct evidence that bacterial protein transport pathways were retained, alongside the evolving mitochondrial protein import machinery, shedding new light on the process of mitochondrial evolution.

  10. Simulations of polymorphic icosahedral shells assembling around many cargo molecules

    NASA Astrophysics Data System (ADS)

    Mohajerani, Farzaneh; Perlmutter, Jason; Hagan, Michael

    Bacterial microcompartments (BMCs) are large icosahedral shells that sequester the enzymes and reactants responsible for particular metabolic pathways in bacteria. Although different BMCs vary in size and encapsulate different cargoes, they are constructed from similar pentameric and hexameric shell proteins. Despite recent groundbreaking experiments which visualized the formation of individual BMCs, the detailed assembly pathways and the factors which control shell size remain unclear. In this talk, we describe theoretical and computational models that describe the dynamical encapsulation of hundreds of cargo molecules by self-assembling icosahedral shells. We present phase diagrams and analysis of dynamical simulation trajectories showing how the thermodynamics, assembly pathways, and emergent structures depend on the interactions among shell proteins and cargo molecules. Our model suggests a mechanism for controlling insertion of the 12 pentamers required for a closed shell topology, and the relationship between assembly pathway and BMC size polydispersity. In addition to elucidating how native BMCs assemble,our results establish principles for reengineering BMCs or viral capsids as customizable nanoreactors that can assemble around a programmable set of enzymes and reactants. Supported by NIH R01GM108021 and Brandeis MRSEC DMR-1420382.

  11. Many-molecule encapsulation by an icosahedral shell

    PubMed Central

    Perlmutter, Jason D; Mohajerani, Farzaneh; Hagan, Michael F

    2016-01-01

    We computationally study how an icosahedral shell assembles around hundreds of molecules. Such a process occurs during the formation of the carboxysome, a bacterial microcompartment that assembles around many copies of the enzymes ribulose 1,5-bisphosphate carboxylase/ oxygenase and carbonic anhydrase to facilitate carbon fixation in cyanobacteria. Our simulations identify two classes of assembly pathways leading to encapsulation of many-molecule cargoes. In one, shell assembly proceeds concomitantly with cargo condensation. In the other, the cargo first forms a dense globule; then, shell proteins assemble around and bud from the condensed cargo complex. Although the model is simplified, the simulations predict intermediates and closure mechanisms not accessible in experiments, and show how assembly can be tuned between these two pathways by modulating protein interactions. In addition to elucidating assembly pathways and critical control parameters for microcompartment assembly, our results may guide the reengineering of viruses as nanoreactors that self-assemble around their reactants. DOI: http://dx.doi.org/10.7554/eLife.14078.001 PMID:27166515

  12. Some assembly required: Contributions of Tom Stevens' lab to the V-ATPase field.

    PubMed

    Graham, Laurie A; Finnigan, Gregory C; Kane, Patricia M

    2018-06-01

    Tom Stevens' lab has explored the subunit composition and assembly of the yeast V-ATPase for more than 30 years. Early studies helped establish yeast as the predominant model system for study of V-ATPase proton pumps and led to the discovery of protein splicing of the V-ATPase catalytic subunit. The Vma - phenotype, characteristic of loss-of-V-ATPase activity in yeast was key in determining the enzyme's subunit composition via yeast genetics. V-ATPase subunit composition proved to be highly conserved among eukaryotes. Genetic screens for new vma mutants led to identification of a set of dedicated V-ATPase assembly factors and helped unravel the complex pathways for V-ATPase assembly. In later years, exploration of the evolutionary history of several V-ATPase subunits provided new information about the enzyme's structure and function. This review highlights V-ATPase work in the Stevens' lab between 1987 and 2017. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Meiosis-Specific Stable Binding of Augmin to Acentrosomal Spindle Poles Promotes Biased Microtubule Assembly in Oocytes

    PubMed Central

    Colombié, Nathalie; Głuszek, A. Agata; Meireles, Ana M.; Ohkura, Hiroyuki

    2013-01-01

    In the oocytes of many animals including humans, the meiotic spindle assembles without centrosomes. It is still unclear how multiple pathways contribute to spindle microtubule assembly, and whether they are regulated differently in mitosis and meiosis. Augmin is a γ-tubulin recruiting complex which “amplifies” spindle microtubules by generating new microtubules along existing ones in mitosis. Here we show that in Drosophila melanogaster oocytes Augmin is dispensable for chromatin-driven assembly of bulk spindle microtubules, but is required for full microtubule assembly near the poles. The level of Augmin accumulated at spindle poles is well correlated with the degree of chromosome congression. Fluorescence recovery after photobleaching shows that Augmin stably associates with the polar regions of the spindle in oocytes, unlike in mitotic cells where it transiently and uniformly associates with the metaphase spindle. This stable association is enhanced by γ-tubulin and the kinesin-14 Ncd. Therefore, we suggest that meiosis-specific regulation of Augmin compensates for the lack of centrosomes in oocytes by actively biasing sites of microtubule generation within the spindle. PMID:23785300

  14. Modular Assembly of the Bacterial Large Ribosomal Subunit.

    PubMed

    Davis, Joseph H; Tan, Yong Zi; Carragher, Bridget; Potter, Clinton S; Lyumkis, Dmitry; Williamson, James R

    2016-12-01

    The ribosome is a complex macromolecular machine and serves as an ideal system for understanding biological macromolecular assembly. Direct observation of ribosome assembly in vivo is difficult, as few intermediates have been isolated and thoroughly characterized. Herein, we deploy a genetic system to starve cells of an essential ribosomal protein, which results in the accumulation of assembly intermediates that are competent for maturation. Quantitative mass spectrometry and single-particle cryo-electron microscopy reveal 13 distinct intermediates, which were each resolved to ∼4-5 Å resolution and could be placed in an assembly pathway. We find that ribosome biogenesis is a parallel process, that blocks of structured rRNA and proteins assemble cooperatively, and that the entire process is dynamic and can be "re-routed" through different pathways as needed. This work reveals the complex landscape of ribosome assembly in vivo and provides the requisite tools to characterize additional assembly pathways for ribosomes and other macromolecular machines. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Modular Assembly of the Bacterial Large Ribosomal Subunit

    PubMed Central

    Davis, Joseph H.; Tan, Yong Zi; Carragher, Bridget; Potter, Clinton S.; Lyumkis, Dmitry; Williamson, James R.

    2016-01-01

    SUMMARY The ribosome is a complex macromolecular machine and serves as an ideal system for understanding biological macromolecular assembly. Direct observation of ribosome assembly in vivo is difficult, as few intermediates have been isolated and thoroughly characterized. Herein, we deploy a genetic system to starve cells of an essential ribosomal protein, which results in the accumulation of assembly intermediates that are competent for maturation. Quantitative mass spectrometry and single-particle cryo-electron microscopy reveal 13 distinct intermediates, which were each resolved to ~4–5Å resolution and could be placed in an assembly pathway. We find that ribosome biogenesis is a parallel process, that blocks of structured rRNA and proteins assemble cooperatively, and that the entire process is dynamic and can be ‘re-routed’ through different pathways as needed. This work reveals the complex landscape of ribosome assembly in vivo and provides the requisite tools to characterize additional assembly pathways for ribosomes and other macromolecular machines. PMID:27912064

  16. Imaging and Quantitation of a Succession of Transient Intermediates Reveal the Reversible Self-Assembly Pathway of a Simple Icosahedral Virus Capsid.

    PubMed

    Medrano, María; Fuertes, Miguel Ángel; Valbuena, Alejandro; Carrillo, Pablo J P; Rodríguez-Huete, Alicia; Mateu, Mauricio G

    2016-11-30

    Understanding the fundamental principles underlying supramolecular self-assembly may facilitate many developments, from novel antivirals to self-organized nanodevices. Icosahedral virus particles constitute paradigms to study self-assembly using a combination of theory and experiment. Unfortunately, assembly pathways of the structurally simplest virus capsids, those more accessible to detailed theoretical studies, have been difficult to study experimentally. We have enabled the in vitro self-assembly under close to physiological conditions of one of the simplest virus particles known, the minute virus of mice (MVM) capsid, and experimentally analyzed its pathways of assembly and disassembly. A combination of electron microscopy and high-resolution atomic force microscopy was used to structurally characterize and quantify a succession of transient assembly and disassembly intermediates. The results provided an experiment-based model for the reversible self-assembly pathway of a most simple (T = 1) icosahedral protein shell. During assembly, trimeric capsid building blocks are sequentially added to the growing capsid, with pentamers of building blocks and incomplete capsids missing one building block as conspicuous intermediates. This study provided experimental verification of many features of self-assembly of a simple T = 1 capsid predicted by molecular dynamics simulations. It also demonstrated atomic force microscopy imaging and automated analysis, in combination with electron microscopy, as a powerful single-particle approach to characterize at high resolution and quantify transient intermediates during supramolecular self-assembly/disassembly reactions. Finally, the efficient in vitro self-assembly achieved for the oncotropic, cell nucleus-targeted MVM capsid may facilitate its development as a drug-encapsidating nanoparticle for anticancer targeted drug delivery.

  17. Self-Assembly of Mesoscale Isomers: The Role of Pathways and Degrees of Freedom

    PubMed Central

    Pandey, Shivendra; Johnson, Daniel; Kaplan, Ryan; Klobusicky, Joseph; Menon, Govind; Gracias, David H.

    2014-01-01

    The spontaneous self-organization of conformational isomers from identical precursors is of fundamental importance in chemistry. Since the precursors are identical, it is the multi-unit interactions, characteristics of the intermediates, and assembly pathways that determine the final conformation. Here, we use geometric path sampling and a mesoscale experimental model to investigate the self-assembly of a model polyhedral system, an octahedron, that forms two isomers. We compute the set of all possible assembly pathways and analyze the degrees of freedom or rigidity of intermediates. Consequently, by manipulating the degrees of freedom of a precursor, we were able to experimentally enrich the formation of one isomer over the other. Our results suggest a new approach to direct pathways in both natural and synthetic self-assembly using simple geometric criteria. We also compare the process of folding and unfolding in this model with a geometric model for cyclohexane, a well-known molecule with chair and boat conformations. PMID:25299051

  18. Morphological Transformation between Nanocoils and Nanoribbons via Defragmentation Structural Rearrangement or Fragmentation-recombination Mechanism

    NASA Astrophysics Data System (ADS)

    Zhang, Yibin; Zheng, Yingxuan; Xiong, Wei; Peng, Cheng; Zhang, Yifan; Duan, Ran; Che, Yanke; Zhao, Jincai

    2016-06-01

    Kinetic control over the assembly pathways towards novel metastable functional materials or far-from-equilibrium systems has been much less studied compared to the thermodynamic equilibrium self-assembly. Herein, we report the distinct morphological transformation between nanocoils and nanoribbons in the self-assembly of unsymmetric perylene diimide (PDI) molecules. We demonstrate that the morphological transformation of the kinetically trapped assemblies into the thermodynamically stable forms proceeds via two distinct mechanisms, i.e., a direct structural rearrangement (molecule 1 or 2) and a fragmentation-recombination mechanism (molecule 4), respectively. The subtle interplay of the steric hindrance of the bulky substituents and the flexibility of the linker structure between the bulky moiety and the perylene core was demonstrated to enable the effective modulation of the energetic landscape of the assemblies and thus modulation of the assembly pathways. Herein, our work presents a new approach to control the self-assembly pathways and thereby can be used to achieve novel far-from-equilibrium systems.

  19. De Novo Transcriptome Analysis of an Aerial Microalga Trentepohlia jolithus: Pathway Description and Gene Discovery for Carbon Fixation and Carotenoid Biosynthesis

    PubMed Central

    Li, Qianqian; Liu, Jianguo; Zhang, Litao; Liu, Qian

    2014-01-01

    Background Algae in the order Trentepohliales have a broad geographic distribution and are generally characterized by the presence of abundant β-carotene. The many monographs published to date have mainly focused on their morphology, taxonomy, phylogeny, distribution and reproduction; molecular studies of this order are still rare. High-throughput RNA sequencing (RNA-Seq) technology provides a powerful and efficient method for transcript analysis and gene discovery in Trentepohlia jolithus. Methods/Principal Findings Illumina HiSeq 2000 sequencing generated 55,007,830 Illumina PE raw reads, which were assembled into 41,328 assembled unigenes. Based on NR annotation, 53.28% of the unigenes (22,018) could be assigned to gene ontology classes with 54 subcategories and 161,451 functional terms. A total of 26,217 (63.44%) assembled unigenes were mapped to 128 KEGG pathways. Furthermore, a set of 5,798 SSRs in 5,206 unigenes and 131,478 putative SNPs were identified. Moreover, the fact that all of the C4 photosynthesis genes exist in T. jolithus suggests a complex carbon acquisition and fixation system. Similarities and differences between T. jolithus and other algae in carotenoid biosynthesis are also described in depth. Conclusions/Significance This is the first broad transcriptome survey for T. jolithus, increasing the amount of molecular data available for the class Ulvophyceae. As well as providing resources for functional genomics studies, the functional genes and putative pathways identified here will contribute to a better understanding of carbon fixation and fatty acid and carotenoid biosynthesis in T. jolithus. PMID:25254555

  20. EcoFlex: A Multifunctional MoClo Kit for E. coli Synthetic Biology.

    PubMed

    Moore, Simon J; Lai, Hung-En; Kelwick, Richard J R; Chee, Soo Mei; Bell, David J; Polizzi, Karen Marie; Freemont, Paul S

    2016-10-21

    Golden Gate cloning is a prominent DNA assembly tool in synthetic biology for the assembly of plasmid constructs often used in combinatorial pathway optimization, with a number of assembly kits developed specifically for yeast and plant-based expression. However, its use for synthetic biology in commonly used bacterial systems such as Escherichia coli has surprisingly been overlooked. Here, we introduce EcoFlex a simplified modular package of DNA parts for a variety of applications in E. coli, cell-free protein synthesis, protein purification and hierarchical assembly of transcription units based on the MoClo assembly standard. The kit features a library of constitutive promoters, T7 expression, RBS strength variants, synthetic terminators, protein purification tags and fluorescence proteins. We validate EcoFlex by assembling a 68-part containing (20 genes) plasmid (31 kb), characterize in vivo and in vitro library parts, and perform combinatorial pathway assembly, using pooled libraries of either fluorescent proteins or the biosynthetic genes for the antimicrobial pigment violacein as a proof-of-concept. To minimize pathway screening, we also introduce a secondary module design site to simplify MoClo pathway optimization. In summary, EcoFlex provides a standardized and multifunctional kit for a variety of applications in E. coli synthetic biology.

  1. Amyloid Structure and Assembly: Insights from Scanning Transmission Electron Microscopy

    PubMed Central

    Goldsbury, Claire; Baxa, Ulrich; Simon, Martha N.; Steven, Alasdair C.; Engel, Andreas; Wall, Joseph S.; Aebi, Ueli; Müller, Shirley A.

    2010-01-01

    Amyloid fibrils are filamentous protein aggregates implicated in several common diseases like Alzheimer’s disease and type II diabetes. Similar structures are also the molecular principle of the infectious spongiform encephalopathies like Creutzfeldt-Jakob disease in humans, scrapie in sheep, and of the so-called yeast prions, inherited non-chromosomal elements found in yeast and fungi. Scanning transmission electron microscopy (STEM) is often used to delineate the assembly mechanism and structural properties of amyloid aggregates. In this review we consider specifically contributions and limitations of STEM for the investigation of amyloid assembly pathways, fibril polymorphisms and structural models of amyloid fibrils. This type of microscopy provides the only method to directly measure the mass-per-length (MPL) of individual filaments. Made on both in vitro assembled and ex vivo samples, STEM mass measurements have illuminated the hierarchical relationships between amyloid fibrils and revealed that polymorphic fibrils and various globular oligomers can assemble simultaneously from a single polypeptide. The MPLs also impose strong constraints on possible packing schemes, assisting in molecular model building when combined with high-resolution methods like solid-state nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR). PMID:20868754

  2. Complement proteins bind to nanoparticle protein corona and undergo dynamic exchange in vivo

    NASA Astrophysics Data System (ADS)

    Chen, Fangfang; Wang, Guankui; Griffin, James I.; Brenneman, Barbara; Banda, Nirmal K.; Holers, V. Michael; Backos, Donald S.; Wu, Linping; Moghimi, Seyed Moein; Simberg, Dmitri

    2017-05-01

    When nanoparticles are intravenously injected into the body, complement proteins deposit on the surface of nanoparticles in a process called opsonization. These proteins prime the particle for removal by immune cells and may contribute toward infusion-related adverse effects such as allergic responses. The ways complement proteins assemble on nanoparticles have remained unclear. Here, we show that dextran-coated superparamagnetic iron oxide core-shell nanoworms incubated in human serum and plasma are rapidly opsonized with the third complement component (C3) via the alternative pathway. Serum and plasma proteins bound to the nanoworms are mostly intercalated into the nanoworm shell. We show that C3 covalently binds to these absorbed proteins rather than the dextran shell and the protein-bound C3 undergoes dynamic exchange in vitro. Surface-bound proteins accelerate the assembly of the complement components of the alternative pathway on the nanoworm surface. When nanoworms pre-coated with human plasma were injected into mice, C3 and other adsorbed proteins undergo rapid loss. Our results provide important insight into dynamics of protein adsorption and complement opsonization of nanomedicines.

  3. A Novel Epigenetic Silencing Pathway Involving the Highly Conserved 5’-3’ Exoribonuclease Dhp1/Rat1/Xrn2 in Schizosaccharomyces pombe

    PubMed Central

    Tucker, James Franklin; Ohle, Corina; Schermann, Géza; Bendrin, Katja; Zhang, Wei; Fischer, Tamás; Zhang, Ke

    2016-01-01

    Epigenetic gene silencing plays a critical role in regulating gene expression and contributes to organismal development and cell fate acquisition in eukaryotes. In fission yeast, Schizosaccharomyces pombe, heterochromatin-associated gene silencing is known to be mediated by RNA processing pathways including RNA interference (RNAi) and a 3’-5’ exoribonuclease complex, the exosome. Here, we report a new RNA-processing pathway that contributes to epigenetic gene silencing and assembly of heterochromatin mediated by 5’-3’ exoribonuclease Dhp1/Rat1/Xrn2. Dhp1 mutation causes defective gene silencing both at peri-centromeric regions and at the silent mating type locus. Intriguingly, mutation in either of the two well-characterized Dhp1-interacting proteins, the Din1 pyrophosphohydrolase or the Rhn1 transcription termination factor, does not result in silencing defects at the main heterochromatic regions. We demonstrate that Dhp1 interacts with heterochromatic factors and is essential in the sequential steps of establishing silencing in a manner independent of both RNAi and the exosome. Genomic and genetic analyses suggest that Dhp1 is involved in post-transcriptional silencing of repetitive regions through its RNA processing activity. The results describe the unexpected role of Dhp1/Rat1/Xrn2 in chromatin-based silencing and elucidate how various RNA-processing pathways, acting together or independently, contribute to epigenetic regulation of the eukaryotic genome. PMID:26889830

  4. Paramyxovirus glycoprotein incorporation, assembly and budding: a three way dance for infectious particle production.

    PubMed

    El Najjar, Farah; Schmitt, Anthony P; Dutch, Rebecca Ellis

    2014-08-07

    Paramyxoviruses are a family of negative sense RNA viruses whose members cause serious diseases in humans, such as measles virus, mumps virus and respiratory syncytial virus; and in animals, such as Newcastle disease virus and rinderpest virus. Paramyxovirus particles form by assembly of the viral matrix protein, the ribonucleoprotein complex and the surface glycoproteins at the plasma membrane of infected cells and subsequent viral budding. Two major glycoproteins expressed on the viral envelope, the attachment protein and the fusion protein, promote attachment of the virus to host cells and subsequent virus-cell membrane fusion. Incorporation of the surface glycoproteins into infectious progeny particles requires coordinated interplay between the three viral structural components, driven primarily by the matrix protein. In this review, we discuss recent progress in understanding the contributions of the matrix protein and glycoproteins in driving paramyxovirus assembly and budding while focusing on the viral protein interactions underlying this process and the intracellular trafficking pathways for targeting viral components to assembly sites. Differences in the mechanisms of particle production among the different family members will be highlighted throughout.

  5. Paramyxovirus Glycoprotein Incorporation, Assembly and Budding: A Three Way Dance for Infectious Particle Production

    PubMed Central

    El Najjar, Farah; Schmitt, Anthony P.; Dutch, Rebecca Ellis

    2014-01-01

    Paramyxoviruses are a family of negative sense RNA viruses whose members cause serious diseases in humans, such as measles virus, mumps virus and respiratory syncytial virus; and in animals, such as Newcastle disease virus and rinderpest virus. Paramyxovirus particles form by assembly of the viral matrix protein, the ribonucleoprotein complex and the surface glycoproteins at the plasma membrane of infected cells and subsequent viral budding. Two major glycoproteins expressed on the viral envelope, the attachment protein and the fusion protein, promote attachment of the virus to host cells and subsequent virus-cell membrane fusion. Incorporation of the surface glycoproteins into infectious progeny particles requires coordinated interplay between the three viral structural components, driven primarily by the matrix protein. In this review, we discuss recent progress in understanding the contributions of the matrix protein and glycoproteins in driving paramyxovirus assembly and budding while focusing on the viral protein interactions underlying this process and the intracellular trafficking pathways for targeting viral components to assembly sites. Differences in the mechanisms of particle production among the different family members will be highlighted throughout. PMID:25105277

  6. The interfacial-organized monolayer water film (MWF) induced ``two-step'' aggregation of nanographene: both in stacking and sliding assembly pathways

    NASA Astrophysics Data System (ADS)

    Lv, Wenping; Wu, Ren'an

    2013-03-01

    A computational investigation was carried out to understand the aggregation of nanoscale graphene with two typical pathways of stacking assembly and sliding assembly in water. The interfacial-organized monolayer water film (MWF) induced ``two-step'' aggregation of nanographene in both stacking and sliding assembly pathways was reported for the first time. By means of potential mean forces (PMFs) calculation, no energy barrier was observed during the sliding assembly of two graphene nanosheets, while the PMF profiles could be impacted by the contact forms of nanographene and the MWF within the interplate of two graphene nanosheets. To explore the potential physical basis of the ``hindering role'' of self-organized interfacial water, the dynamical and structural properties as well as the status of hydrogen bonds (H-bonds) for interfacial water were investigated. We found that the compact, ordered structure and abundant H-bonds of the MWF could be taken as the fundamental aspects of the ``hindering role'' of interfacial water for the hydrophobic assembly of nanographene. These findings are displaying a potential to further understand the hydrophobic assembly which mostly dominate the behaviors of nanomaterials, proteins etc. in aqueous solutions.A computational investigation was carried out to understand the aggregation of nanoscale graphene with two typical pathways of stacking assembly and sliding assembly in water. The interfacial-organized monolayer water film (MWF) induced ``two-step'' aggregation of nanographene in both stacking and sliding assembly pathways was reported for the first time. By means of potential mean forces (PMFs) calculation, no energy barrier was observed during the sliding assembly of two graphene nanosheets, while the PMF profiles could be impacted by the contact forms of nanographene and the MWF within the interplate of two graphene nanosheets. To explore the potential physical basis of the ``hindering role'' of self-organized interfacial water, the dynamical and structural properties as well as the status of hydrogen bonds (H-bonds) for interfacial water were investigated. We found that the compact, ordered structure and abundant H-bonds of the MWF could be taken as the fundamental aspects of the ``hindering role'' of interfacial water for the hydrophobic assembly of nanographene. These findings are displaying a potential to further understand the hydrophobic assembly which mostly dominate the behaviors of nanomaterials, proteins etc. in aqueous solutions. Electronic supplementary information (ESI) available: The evolution of interaction energy for two graphene nanosheets assembly in stacking (a) and sliding (b) pathway was plotted in Fig. S1. The time evolution of three dimension distance for stacking assembly of two graphene nanosheets with the edge-edge orientation of 45° was plotted in Fig. S2. The initial orientations of graphene nanosheets in three simulations (edge-edge distance in x-direction (dx) was 0.3 nm, but in z-direction (dz) was 0.0 nm, 0.4 nm and 0.7 nm, respectively) were shown in Fig. S3. The snapshots of the evolution of hydration shells during the sliding assembly of nanographene were shown in Fig. S4, with the separation of two graphene nanosheets in z-direction is (a) 0 nm and (b) 0.7 nm, respectively. The process of two graphene nanosheets assembly in stacking pathway was shown in Movie S1 as video. The process of two graphene nanosheets (with a separation of 0.7 nm in normal direction) assembly in sliding pathway was shown in Movie S2 as video. The dynamical evolution of interfacial water during the sliding assembly of nanographene was shown in Movie S3 as video. The process of extruding the monolayer water film (MWF) out of the interplate of two graphene nanosheets was shown in Movie S4 as video. Movie S5 displays that the graphene-water-graphene sandwiched structure was successfully maintained during a 10 ns MD simulation. See DOI: 10.1039/c3nr33447c

  7. Live Imaging of Type I Collagen Assembly Dynamics in Osteoblasts Stably Expressing GFP and mCherry-Tagged Collagen Constructs.

    PubMed

    Lu, Yongbo; Kamel-El Sayed, Suzan A; Wang, Kun; Tiede-Lewis, LeAnn M; Grillo, Michael A; Veno, Patricia A; Dusevich, Vladimir; Phillips, Charlotte L; Bonewald, Lynda F; Dallas, Sarah L

    2018-06-01

    Type I collagen is the most abundant extracellular matrix protein in bone and other connective tissues and plays key roles in normal and pathological bone formation as well as in connective tissue disorders and fibrosis. Although much is known about the collagen biosynthetic pathway and its regulatory steps, the mechanisms by which it is assembled extracellularly are less clear. We have generated GFPtpz and mCherry-tagged collagen fusion constructs for live imaging of type I collagen assembly by replacing the α2(I)-procollagen N-terminal propeptide with GFPtpz or mCherry. These novel imaging probes were stably transfected into MLO-A5 osteoblast-like cells and fibronectin-null mouse embryonic fibroblasts (FN-null-MEFs) and used for imaging type I collagen assembly dynamics and its dependence on fibronectin. Both fusion proteins co-precipitated with α1(I)-collagen and remained intracellular without ascorbate but were assembled into α1(I) collagen-containing extracellular fibrils in the presence of ascorbate. Immunogold-EM confirmed their ultrastuctural localization in banded collagen fibrils. Live cell imaging in stably transfected MLO-A5 cells revealed the highly dynamic nature of collagen assembly and showed that during assembly the fibril networks are continually stretched and contracted due to the underlying cell motion. We also observed that cell-generated forces can physically reshape the collagen fibrils. Using co-cultures of mCherry- and GFPtpz-collagen expressing cells, we show that multiple cells contribute collagen to form collagen fiber bundles. Immuno-EM further showed that individual collagen fibrils can receive contributions of collagen from more than one cell. Live cell imaging in FN-null-MEFs expressing GFPtpz-collagen showed that collagen assembly was both dependent upon and dynamically integrated with fibronectin assembly. These GFP-collagen fusion constructs provide a powerful tool for imaging collagen in living cells and have revealed novel and fundamental insights into the dynamic mechanisms for the extracellular assembly of collagen. © 2018 American Society for Bone and Mineral Research. © 2018 American Society for Bone and Mineral Research.

  8. A microtubule polymerase cooperates with the kinesin-6 motor and a microtubule cross-linker to promote bipolar spindle assembly in the absence of kinesin-5 and kinesin-14 in fission yeast.

    PubMed

    Yukawa, Masashi; Kawakami, Tomoki; Okazaki, Masaki; Kume, Kazunori; Tang, Ngang Heok; Toda, Takashi

    2017-12-01

    Accurate chromosome segregation relies on the bipolar mitotic spindle. In many eukaryotes, spindle formation is driven by the plus-end-directed motor kinesin-5 that generates outward force to establish spindle bipolarity. Its inhibition leads to the emergence of monopolar spindles with mitotic arrest. Intriguingly, simultaneous inactivation of the minus-end-directed motor kinesin-14 restores spindle bipolarity in many systems. Here we show that in fission yeast, three independent pathways contribute to spindle bipolarity in the absence of kinesin-5/Cut7 and kinesin-14/Pkl1. One is kinesin-6/Klp9 that engages with spindle elongation once short bipolar spindles assemble. Klp9 also ensures the medial positioning of anaphase spindles to prevent unequal chromosome segregation. Another is the Alp7/TACC-Alp14/TOG microtubule polymerase complex. Temperature-sensitive alp7cut7pkl1 mutants are arrested with either monopolar or very short spindles. Forced targeting of Alp14 to the spindle pole body is sufficient to render alp7cut7pkl1 triply deleted cells viable and promote spindle assembly, indicating that Alp14-mediated microtubule polymerization from the nuclear face of the spindle pole body could generate outward force in place of Cut7 during early mitosis. The third pathway involves the Ase1/PRC1 microtubule cross-linker that stabilizes antiparallel microtubules. Our study, therefore, unveils multifaceted interplay among kinesin-dependent and -independent pathways leading to mitotic bipolar spindle assembly. © 2017 Yukawa et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  9. Building polyhedra by self-assembly: theory and experiment.

    PubMed

    Kaplan, Ryan; Klobušický, Joseph; Pandey, Shivendra; Gracias, David H; Menon, Govind

    2014-01-01

    We investigate the utility of a mathematical framework based on discrete geometry to model biological and synthetic self-assembly. Our primary biological example is the self-assembly of icosahedral viruses; our synthetic example is surface-tension-driven self-folding polyhedra. In both instances, the process of self-assembly is modeled by decomposing the polyhedron into a set of partially formed intermediate states. The set of all intermediates is called the configuration space, pathways of assembly are modeled as paths in the configuration space, and the kinetics and yield of assembly are modeled by rate equations, Markov chains, or cost functions on the configuration space. We review an interesting interplay between biological function and mathematical structure in viruses in light of this framework. We discuss in particular: (i) tiling theory as a coarse-grained description of all-atom models; (ii) the building game-a growth model for the formation of polyhedra; and (iii) the application of these models to the self-assembly of the bacteriophage MS2. We then use a similar framework to model self-folding polyhedra. We use a discrete folding algorithm to compute a configuration space that idealizes surface-tension-driven self-folding and analyze pathways of assembly and dominant intermediates. These computations are then compared with experimental observations of a self-folding dodecahedron with side 300 μm. In both models, despite a combinatorial explosion in the size of the configuration space, a few pathways and intermediates dominate self-assembly. For self-folding polyhedra, the dominant intermediates have fewer degrees of freedom than comparable intermediates, and are thus more rigid. The concentration of assembly pathways on a few intermediates with distinguished geometric properties is biologically and physically important, and suggests deeper mathematical structure.

  10. Rapid Optimization of Engineered Metabolic Pathways with Serine Integrase Recombinational Assembly (SIRA).

    PubMed

    Merrick, C A; Wardrope, C; Paget, J E; Colloms, S D; Rosser, S J

    2016-01-01

    Metabolic pathway engineering in microbial hosts for heterologous biosynthesis of commodity compounds and fine chemicals offers a cheaper, greener, and more reliable method of production than does chemical synthesis. However, engineering metabolic pathways within a microbe is a complicated process: levels of gene expression, protein stability, enzyme activity, and metabolic flux must be balanced for high productivity without compromising host cell viability. A major rate-limiting step in engineering microbes for optimum biosynthesis of a target compound is DNA assembly, as current methods can be cumbersome and costly. Serine integrase recombinational assembly (SIRA) is a rapid DNA assembly method that utilizes serine integrases, and is particularly applicable to rapid optimization of engineered metabolic pathways. Using six pairs of orthogonal attP and attB sites with different central dinucleotide sequences that follow SIRA design principles, we have demonstrated that ΦC31 integrase can be used to (1) insert a single piece of DNA into a substrate plasmid; (2) assemble three, four, and five DNA parts encoding the enzymes for functional metabolic pathways in a one-pot reaction; (3) generate combinatorial libraries of metabolic pathway constructs with varied ribosome binding site strengths or gene orders in a one-pot reaction; and (4) replace and add DNA parts within a construct through targeted postassembly modification. We explain the mechanism of SIRA and the principles behind designing a SIRA reaction. We also provide protocols for making SIRA reaction components and practical methods for applying SIRA to rapid optimization of metabolic pathways. © 2016 Elsevier Inc. All rights reserved.

  11. Nanosystem self-assembly pathways discovered via all-atom multiscale analysis.

    PubMed

    Pankavich, Stephen D; Ortoleva, Peter J

    2012-07-26

    We consider the self-assembly of composite structures from a group of nanocomponents, each consisting of particles within an N-atom system. Self-assembly pathways and rates for nanocomposites are derived via a multiscale analysis of the classical Liouville equation. From a reduced statistical framework, rigorous stochastic equations for population levels of beginning, intermediate, and final aggregates are also derived. It is shown that the definition of an assembly type is a self-consistency criterion that must strike a balance between precision and the need for population levels to be slowly varying relative to the time scale of atomic motion. The deductive multiscale approach is complemented by a qualitative notion of multicomponent association and the ensemble of exact atomic-level configurations consistent with them. In processes such as viral self-assembly from proteins and RNA or DNA, there are many possible intermediates, so that it is usually difficult to predict the most efficient assembly pathway. However, in the current study, rates of assembly of each possible intermediate can be predicted. This avoids the need, as in a phenomenological approach, for recalibration with each new application. The method accounts for the feedback across scales in space and time that is fundamental to nanosystem self-assembly. The theory has applications to bionanostructures, geomaterials, engineered composites, and nanocapsule therapeutic delivery systems.

  12. Nitazoxanide Inhibits Pilus Biogenesis by Interfering with Folding of the Usher Protein in the Outer Membrane

    PubMed Central

    Chahales, Peter; Hoffman, Paul S.

    2016-01-01

    Many bacterial pathogens assemble surface fibers termed pili or fimbriae that facilitate attachment to host cells and colonization of host tissues. The chaperone/usher (CU) pathway is a conserved secretion system that is responsible for the assembly of virulence-associated pili by many different Gram-negative bacteria. Pilus biogenesis by the CU pathway requires a dedicated periplasmic chaperone and an integral outer membrane (OM) assembly and secretion platform termed the usher. Nitazoxanide (NTZ), an antiparasitic drug, was previously shown to inhibit the function of aggregative adherence fimbriae and type 1 pili assembled by the CU pathway in enteroaggregative Escherichia coli, an important causative agent of diarrhea. We show here that NTZ also inhibits the function of type 1 and P pili from uropathogenic E. coli (UPEC). UPEC is the primary causative agent of urinary tract infections, and type 1 and P pili mediate colonization of the bladder and kidneys, respectively. By analysis of the different stages of the CU pilus biogenesis pathway, we show that treatment of bacteria with NTZ causes a reduction in the number of usher molecules in the OM, resulting in a loss of pilus assembly on the bacterial surface. In addition, we determine that NTZ specifically prevents proper folding of the usher β-barrel domain in the OM. Our findings demonstrate that NTZ is a pilicide with a novel mechanism of action and activity against diverse CU pathways. This suggests that further development of the NTZ scaffold may lead to new antivirulence agents that target the usher to prevent pilus assembly. PMID:26824945

  13. Dissecting the Function and Assembly of Acentriolar Microtubule Organizing Centers in Drosophila Cells In Vivo

    PubMed Central

    Baumbach, Janina; Novak, Zsofia Anna; Raff, Jordan W.; Wainman, Alan

    2015-01-01

    Acentriolar microtubule organizing centers (aMTOCs) are formed during meiosis and mitosis in several cell types, but their function and assembly mechanism is unclear. Importantly, aMTOCs can be overactive in cancer cells, enhancing multipolar spindle formation, merotelic kinetochore attachment and aneuploidy. Here we show that aMTOCs can form in acentriolar Drosophila somatic cells in vivo via an assembly pathway that depends on Asl, Cnn and, to a lesser extent, Spd-2—the same proteins that appear to drive mitotic centrosome assembly in flies. This finding enabled us to ablate aMTOC formation in acentriolar cells, and so perform a detailed genetic analysis of the contribution of aMTOCs to acentriolar mitotic spindle formation. Here we show that although aMTOCs can nucleate microtubules, they do not detectably increase the efficiency of acentriolar spindle assembly in somatic fly cells. We find that they are required, however, for robust microtubule array assembly in cells without centrioles that also lack microtubule nucleation from around the chromatin. Importantly, aMTOCs are also essential for dynein-dependent acentriolar spindle pole focusing and for robust cell proliferation in the absence of centrioles and HSET/Ncd (a kinesin essential for acentriolar spindle pole focusing in many systems). We propose an updated model for acentriolar spindle pole coalescence by the molecular motors Ncd/HSET and dynein in conjunction with aMTOCs. PMID:26020779

  14. YeastFab: the design and construction of standard biological parts for metabolic engineering in Saccharomyces cerevisiae

    PubMed Central

    Guo, Yakun; Dong, Junkai; Zhou, Tong; Auxillos, Jamie; Li, Tianyi; Zhang, Weimin; Wang, Lihui; Shen, Yue; Luo, Yisha; Zheng, Yijing; Lin, Jiwei; Chen, Guo-Qiang; Wu, Qingyu; Cai, Yizhi; Dai, Junbiao

    2015-01-01

    It is a routine task in metabolic engineering to introduce multicomponent pathways into a heterologous host for production of metabolites. However, this process sometimes may take weeks to months due to the lack of standardized genetic tools. Here, we present a method for the design and construction of biological parts based on the native genes and regulatory elements in Saccharomyces cerevisiae. We have developed highly efficient protocols (termed YeastFab Assembly) to synthesize these genetic elements as standardized biological parts, which can be used to assemble transcriptional units in a single-tube reaction. In addition, standardized characterization assays are developed using reporter constructs to calibrate the function of promoters. Furthermore, the assembled transcription units can be either assayed individually or applied to construct multi-gene metabolic pathways, which targets a genomic locus or a receiving plasmid effectively, through a simple in vitro reaction. Finally, using β-carotene biosynthesis pathway as an example, we demonstrate that our method allows us not only to construct and test a metabolic pathway in several days, but also to optimize the production through combinatorial assembly of a pathway using hundreds of regulatory biological parts. PMID:25956650

  15. Construction of a controllable β-carotene biosynthetic pathway by decentralized assembly strategy in Saccharomyces cerevisiae.

    PubMed

    Xie, Wenping; Liu, Min; Lv, Xiaomei; Lu, Wenqiang; Gu, Jiali; Yu, Hongwei

    2014-01-01

    Saccharomyces cerevisiae is an important platform organism for the synthesis of a great number of natural products. However, the assembly of controllable and genetically stable heterogeneous biosynthetic pathways in S. cerevisiae still remains a significant challenge. Here, we present a strategy for reconstructing controllable multi-gene pathways by employing the GAL regulatory system. A set of marker recyclable integrative plasmids (pMRI) was designed for decentralized assembly of pathways. As proof-of-principle, a controllable β-carotene biosynthesis pathway (∼16 kb) was reconstructed and optimized by repeatedly using GAL10-GAL1 bidirectional promoters with high efficiency (80-100%). By controling the switch time of the pathway, production of 11 mg/g DCW of total carotenoids (72.57 mg/L) and 7.41 mg/g DCW of β-carotene was achieved in shake-flask culture. In addition, the engineered yeast strain exhibited high genetic stability after 20 generations of subculture. The results demonstrated a controllable and genetically stable biosynthetic pathway capable of increasing the yield of target products. Furthermore, the strategy presented in this study could be extended to construct other pathways in S. cerevisisae. © 2013 Wiley Periodicals, Inc.

  16. Self-assembly of coiled coil peptides into nanoparticles vs 2-d plates: effects of assembly pathway

    NASA Astrophysics Data System (ADS)

    Kim, Kyunghee; Pochan, Darrin

    Molecular solution assembly, or self-assembly, is a process by which ordered nanostructures or patterns are formed by non-covalent interactions during assembly. Biomimicry, the use of bioinspired molecules or biologically relevant materials, is an important area of self-assembly research with peptides serving a critical role as molecular tools. The morphology of peptide assemblies can be controlled by adjusting solution conditions such as the concentration of peptides, the temperature, and pH. Herein, spherical nanostructures, which have potential for creating an encapsulation system, are formed by self-assembly when coiled coil peptides are combined in solution. These peptides are homotrimeric and heterodimeric coiled-coil bundles and the homotrimer is connected with each of heterodimer through their external surfaces via disulfide bonds. The resultant covalent constructs could co-assemble into complementary trimeric hubs, respectively. The two peptide constructs are directly mixed and assembled in solution in order to produce either spherical particles or 2-d plates depending on the solution conditions and kinetic pathway of assembly. In particular, structural changes of the self-assembled peptides are explored by control of the thermal history of the assembly solution.

  17. Morphogenetic Pathway of Spore Wall Assembly in Saccharomyces cerevisiae

    PubMed Central

    Coluccio, Alison; Bogengruber, Edith; Conrad, Michael N.; Dresser, Michael E.; Briza, Peter; Neiman, Aaron M.

    2004-01-01

    The Saccharomyces cerevisiae spore is protected from environmental damage by a multilaminar extracellular matrix, the spore wall, which is assembled de novo during spore formation. A set of mutants defective in spore wall assembly were identified in a screen for mutations causing sensitivity of spores to ether vapor. The spore wall defects in 10 of these mutants have been characterized in a variety of cytological and biochemical assays. Many of the individual mutants are defective in the assembly of specific layers within the spore wall, leading to arrests at discrete stages of assembly. The localization of several of these gene products has been determined and distinguishes between proteins that likely are involved directly in spore wall assembly and probable regulatory proteins. The results demonstrate that spore wall construction involves a series of dependent steps and provide the outline of a morphogenetic pathway for assembly of a complex extracellular structure. PMID:15590821

  18. Interrogating viral capsid assembly with ion mobility-mass spectrometry

    NASA Astrophysics Data System (ADS)

    Uetrecht, Charlotte; Barbu, Ioana M.; Shoemaker, Glen K.; van Duijn, Esther; Heck, Albert J. R.

    2011-02-01

    Most proteins fulfil their function as part of large protein complexes. Surprisingly, little is known about the pathways and regulation of protein assembly. Several viral coat proteins can spontaneously assemble into capsids in vitro with morphologies identical to the native virion and thus resemble ideal model systems for studying protein complex formation. Even for these systems, the mechanism for self-assembly is still poorly understood, although it is generally thought that smaller oligomeric structures form key intermediates. This assembly nucleus and larger viral assembly intermediates are typically low abundant and difficult to monitor. Here, we characterised small oligomers of Hepatitis B virus (HBV) and norovirus under equilibrium conditions using native ion mobility mass spectrometry. This data in conjunction with computational modelling enabled us to elucidate structural features of these oligomers. Instead of more globular shapes, the intermediates exhibit sheet-like structures suggesting that they are assembly competent. We propose pathways for the formation of both capsids.

  19. Drosophila parthenogenesis: A tool to decipher centrosomal vs acentrosomal spindle assembly pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riparbelli, Maria Giovanna; Callaini, Giuliano

    2008-04-15

    Development of unfertilized eggs in the parthenogenetic strain K23-O-im of Drosophila mercatorum requires the stochastic interactions of self-assembled centrosomes with the female chromatin. In a portion of the unfertilized eggs that do not assemble centrosomes, microtubules organize a bipolar anastral mitotic spindle around the chromatin like the one formed during the first female meiosis, suggesting that similar pathways may be operative. In the cytoplasm of eggs in which centrosomes do form, monastral and biastral spindles are found. Analysis by laser scanning confocal microscopy suggests that these spindles are derived from the stochastic interaction of astral microtubules directly with kinetochore regionsmore » or indirectly with kinetochore microtubules. Our findings are consistent with the idea that mitotic spindle assembly requires both acentrosomal and centrosomal pathways, strengthening the hypothesis that astral microtubules can dictate the organization of the spindle by capturing kinetochore microtubules.« less

  20. Directing folding pathways for multi-component DNA origami nanostructures with complex topology

    NASA Astrophysics Data System (ADS)

    Marras, A. E.; Zhou, L.; Kolliopoulos, V.; Su, H.-J.; Castro, C. E.

    2016-05-01

    Molecular self-assembly has become a well-established technique to design complex nanostructures and hierarchical mesoscale assemblies. The typical approach is to design binding complementarity into nucleotide or amino acid sequences to achieve the desired final geometry. However, with an increasing interest in dynamic nanodevices, the need to design structures with motion has necessitated the development of multi-component structures. While this has been achieved through hierarchical assembly of similar structural units, here we focus on the assembly of topologically complex structures, specifically with concentric components, where post-folding assembly is not feasible. We exploit the ability to direct folding pathways to program the sequence of assembly and present a novel approach of designing the strand topology of intermediate folding states to program the topology of the final structure, in this case a DNA origami slider structure that functions much like a piston-cylinder assembly in an engine. The ability to program the sequence and control orientation and topology of multi-component DNA origami nanostructures provides a foundation for a new class of structures with internal and external moving parts and complex scaffold topology. Furthermore, this work provides critical insight to guide the design of intermediate states along a DNA origami folding pathway and to further understand the details of DNA origami self-assembly to more broadly control folding states and landscapes.

  1. Non-equilibrium supramolecular polymerization.

    PubMed

    Sorrenti, Alessandro; Leira-Iglesias, Jorge; Markvoort, Albert J; de Greef, Tom F A; Hermans, Thomas M

    2017-09-18

    Supramolecular polymerization has been traditionally focused on the thermodynamic equilibrium state, where one-dimensional assemblies reside at the global minimum of the Gibbs free energy. The pathway and rate to reach the equilibrium state are irrelevant, and the resulting assemblies remain unchanged over time. In the past decade, the focus has shifted to kinetically trapped (non-dissipative non-equilibrium) structures that heavily depend on the method of preparation (i.e., pathway complexity), and where the assembly rates are of key importance. Kinetic models have greatly improved our understanding of competing pathways, and shown how to steer supramolecular polymerization in the desired direction (i.e., pathway selection). The most recent innovation in the field relies on energy or mass input that is dissipated to keep the system away from the thermodynamic equilibrium (or from other non-dissipative states). This tutorial review aims to provide the reader with a set of tools to identify different types of self-assembled states that have been explored so far. In particular, we aim to clarify the often unclear use of the term "non-equilibrium self-assembly" by subdividing systems into dissipative, and non-dissipative non-equilibrium states. Examples are given for each of the states, with a focus on non-dissipative non-equilibrium states found in one-dimensional supramolecular polymerization.

  2. Mediator directs co-transcriptional heterochromatin assembly by RNA interference-dependent and -independent pathways.

    PubMed

    Oya, Eriko; Kato, Hiroaki; Chikashige, Yuji; Tsutsumi, Chihiro; Hiraoka, Yasushi; Murakami, Yota

    2013-01-01

    Heterochromatin at the pericentromeric repeats in fission yeast is assembled and spread by an RNAi-dependent mechanism, which is coupled with the transcription of non-coding RNA from the repeats by RNA polymerase II. In addition, Rrp6, a component of the nuclear exosome, also contributes to heterochromatin assembly and is coupled with non-coding RNA transcription. The multi-subunit complex Mediator, which directs initiation of RNA polymerase II-dependent transcription, has recently been suggested to function after initiation in processes such as elongation of transcription and splicing. However, the role of Mediator in the regulation of chromatin structure is not well understood. We investigated the role of Mediator in pericentromeric heterochromatin formation and found that deletion of specific subunits of the head domain of Mediator compromised heterochromatin structure. The Mediator head domain was required for Rrp6-dependent heterochromatin nucleation at the pericentromere and for RNAi-dependent spreading of heterochromatin into the neighboring region. In the latter process, Mediator appeared to contribute to efficient processing of siRNA from transcribed non-coding RNA, which was required for efficient spreading of heterochromatin. Furthermore, the head domain directed efficient transcription in heterochromatin. These results reveal a pivotal role for Mediator in multiple steps of transcription-coupled formation of pericentromeric heterochromatin. This observation further extends the role of Mediator to co-transcriptional chromatin regulation.

  3. MEK-ERK inhibition corrects the defect in VLDL assembly in HepG2 cells: potential role of ERK in VLDL-ApoB100 particle assembly.

    PubMed

    Tsai, Julie; Qiu, Wei; Kohen-Avramoglu, Rita; Adeli, Khosrow

    2007-01-01

    Hepatic VLDL assembly is defective in HepG2 cells, resulting in the secretion of immature triglyceride-poor LDL-sized apoB particles. We investigated the mechanisms underlying defective VLDL assembly in HepG2 and have obtained evidence implicating the MEK-ERK pathway. HepG2 cells exhibited considerably higher levels of the ERK1/2 mass and activity compared with primary hepatocytes. Inhibition of ERK1/2 using the MEK1/MEK2 inhibitor, U0126 (but not the inactive analogue) led to a significant increase in apoB secretion. In the presence of oleic acid, ERK1/2 inhibition caused a major shift in the lipoprotein distribution with a majority of particles secreted as VLDL, an effect independent of insulin. In contrast, overexpression of constitutively active MEK1 decreased apoB and large VLDL secretion. MEK1/2 inhibition significantly increased both cellular and microsomal TG mass, and mRNA levels for DGAT-1 and DGAT-2. In contrast to ERK, modulation of the PI3-K pathway or inhibition of the p38 MAP kinase, had no effect on lipoprotein density profile. Modulation of the MEK-ERK pathway in primary hamster hepatocytes led to changes in apoB secretion and altered the density profile of apoB-containing lipoproteins. Inhibition of the overactive ras-MEK-ERK pathway in HepG2 cells can correct the defect in VLDL assembly leading to the secretion of large, VLDL-sized particles, similar to primary hepatocytes, implicating the MEK-ERK cascade in VLDL assembly in the HepG2 model. Modulation of this pathway in primary hepatocytes also regulates apoB secretion and appears to alter the formation of VLDL-1 sized particles.

  4. Nitazoxanide Inhibits Pilus Biogenesis by Interfering with Folding of the Usher Protein in the Outer Membrane.

    PubMed

    Chahales, Peter; Hoffman, Paul S; Thanassi, David G

    2016-04-01

    Many bacterial pathogens assemble surface fibers termed pili or fimbriae that facilitate attachment to host cells and colonization of host tissues. The chaperone/usher (CU) pathway is a conserved secretion system that is responsible for the assembly of virulence-associated pili by many different Gram-negative bacteria. Pilus biogenesis by the CU pathway requires a dedicated periplasmic chaperone and an integral outer membrane (OM) assembly and secretion platform termed the usher. Nitazoxanide (NTZ), an antiparasitic drug, was previously shown to inhibit the function of aggregative adherence fimbriae and type 1 pili assembled by the CU pathway in enteroaggregativeEscherichia coli, an important causative agent of diarrhea. We show here that NTZ also inhibits the function of type 1 and P pili from uropathogenicE. coli(UPEC). UPEC is the primary causative agent of urinary tract infections, and type 1 and P pili mediate colonization of the bladder and kidneys, respectively. By analysis of the different stages of the CU pilus biogenesis pathway, we show that treatment of bacteria with NTZ causes a reduction in the number of usher molecules in the OM, resulting in a loss of pilus assembly on the bacterial surface. In addition, we determine that NTZ specifically prevents proper folding of the usher β-barrel domain in the OM. Our findings demonstrate that NTZ is a pilicide with a novel mechanism of action and activity against diverse CU pathways. This suggests that further development of the NTZ scaffold may lead to new antivirulence agents that target the usher to prevent pilus assembly. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  5. Precursor microRNA Programmed Silencing Complex Assembly Pathways in Mammals

    PubMed Central

    Liu, Xuhang; Jin, Dong-Yan; McManus, Michael T.; Mourelatos, Zissimos

    2012-01-01

    Summary Assembly of microRNA Ribonucleoproteins (miRNPs) or RNA-Induced Silencing Complexes (RISCs) is essential for the function of miRNAs and initiates from processing of precursor miRNAs (pre-miRNAs) by Dicer or by Ago2. Here, we report an in-vitro miRNP/RISC assembly assay programmed by pre-miRNAs from mammalian cell lysates. Combining in-vivo studies in Dicer Knock-Out cells reconstituted with wild type or catalytically inactive Dicer, we find that the miRNA Loading Complex (miRLC) is the primary machinery linking pre-miRNA processing to miRNA loading. We show that a miRNA Precursor Deposit Complex (miPDC) plays a crucial role in Dicer-independent miRNA biogenesis and promotes miRNP assembly of certain Dicer-dependent miRNAs. Furthermore, we find that 5′-uridine, 3′-mid base pairing and 5′-mid mismatches within pre-miRNAs promote their assembly into miPDC. Our studies provide a comprehensive view of miRNP/RISC assembly pathways in mammals and our assay provides a versatile platform for further mechanistic dissection of such pathways in mammals. PMID:22503104

  6. Precursor microRNA-programmed silencing complex assembly pathways in mammals.

    PubMed

    Liu, Xuhang; Jin, Dong-Yan; McManus, Michael T; Mourelatos, Zissimos

    2012-05-25

    Assembly of microRNA ribonucleoproteins (miRNPs) or RNA-induced silencing complexes (RISCs) is essential for the function of miRNAs and initiates from processing of precursor miRNAs (pre-miRNAs) by Dicer or by Ago2. Here, we report an in vitro miRNP/RISC assembly assay programmed by pre-miRNAs from mammalian cell lysates. Combining in vivo studies in Dicer Knockout cells reconstituted with wild-type or catalytically inactive Dicer, we find that the miRNA loading complex (miRLC) is the primary machinery linking pre-miRNA processing to miRNA loading. We show that a miRNA precursor deposit complex (miPDC) plays a crucial role in Dicer-independent miRNA biogenesis and promotes miRNP assembly of certain Dicer-dependent miRNAs. Furthermore, we find that 5'-uridine, 3'-mid base pairing, and 5'-mid mismatches within pre-miRNAs promote their assembly into miPDC. Our studies provide a comprehensive view of miRNP/RISC assembly pathways in mammals, and our assay provides a versatile platform for further mechanistic dissection of such pathways in mammals. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. A genome-wide transcriptome map of pistachio (Pistacia vera L.) provides novel insights into salinity-related genes and marker discovery.

    PubMed

    Moazzzam Jazi, Maryam; Seyedi, Seyed Mahdi; Ebrahimie, Esmaeil; Ebrahimi, Mansour; De Moro, Gianluca; Botanga, Christopher

    2017-08-17

    Pistachio (Pistacia vera L.) is one of the most important commercial nut crops worldwide. It is a salt-tolerant and long-lived tree, with the largest cultivation area in Iran. Climate change and subsequent increased soil salt content have adversely affected the pistachio yield in recent years. However, the lack of genomic/global transcriptomic sequences on P. vera impedes comprehensive researches at the molecular level. Hence, whole transcriptome sequencing is required to gain insight into functional genes and pathways in response to salt stress. RNA sequencing of a pooled sample representing 24 different tissues of two pistachio cultivars with contrasting salinity tolerance under control and salt treatment by Illumina Hiseq 2000 platform resulted in 368,953,262 clean 100 bp paired-ends reads (90 Gb). Following creating several assemblies and assessing their quality from multiple perspectives, we found that using the annotation-based metrics together with the length-based parameters allows an improved assessment of the transcriptome assembly quality, compared to the solely use of the length-based parameters. The generated assembly by Trinity was adopted for functional annotation and subsequent analyses. In total, 29,119 contigs annotated against all of five public databases, including NR, UniProt, TAIR10, KOG and InterProScan. Among 279 KEGG pathways supported by our assembly, we further examined the pathways involved in the plant hormone biosynthesis and signaling as well as those to be contributed to secondary metabolite biosynthesis due to their importance under salinity stress. In total, 11,337 SSRs were also identified, which the most abundant being dinucleotide repeats. Besides, 13,097 transcripts as candidate stress-responsive genes were identified. Expression of some of these genes experimentally validated through quantitative real-time PCR (qRT-PCR) that further confirmed the accuracy of the assembly. From this analysis, the contrasting expression pattern of NCED3 and SOS1 genes were observed between salt-sensitive and salt-tolerant cultivars. This study, as the first report on the whole transcriptome survey of P. vera, provides important resources and paves the way for functional and comparative genomic studies on this major tree to discover the salinity tolerance-related markers and stress response mechanisms for breeding of new pistachio cultivars with more salinity tolerance.

  8. Plasma opening switch

    DOEpatents

    Savage, Mark E.; Mendel, Jr., Clifford W.

    2001-01-01

    A command triggered plasma opening switch assembly using an amplification stage. The assembly surrounds a coaxial transmission line and has a main plasma opening switch (POS) close to the load and a trigger POS upstream from the main POS. The trigger POS establishes two different current pathways through the assembly depended on whether it has received a trigger current pulse. The initial pathway has both POS's with plasma between their anodes and cathodes to form a short across the transmission line and isolating the load. The final current pathway is formed when the trigger POS receives a trigger current pulse which energizes its fast coil to push the conductive plasma out from between its anode and cathode, allowing the main transmission line current to pass to the fast coil of the main POS, thus pushing its plasma out the way so as to establish a direct current pathway to the load.

  9. Glucose starvation increases V-ATPase assembly and activity in mammalian cells through AMP kinase and phosphatidylinositide 3-kinase/Akt signaling.

    PubMed

    McGuire, Christina M; Forgac, Michael

    2018-06-08

    The vacuolar H + -ATPase (V-ATPase) is an ATP-driven proton pump involved in many cellular processes. An important mechanism by which V-ATPase activity is controlled is the reversible assembly of its two domains, namely the peripheral V 1 domain and the integral V 0 domain. Although reversible assembly is conserved across all eukaryotic organisms, the signaling pathways controlling it have not been fully characterized. Here, we identify glucose starvation as a novel regulator of V-ATPase assembly in mammalian cells. During acute glucose starvation, the V-ATPase undergoes a rapid and reversible increase in assembly and activity as measured by lysosomal acidification. Because the V-ATPase has recently been implicated in the activation of AMP kinase (AMPK), a critical cellular energy sensor that is also activated upon glucose starvation, we compared the time course of AMPK activation and V-ATPase assembly upon glucose starvation. We observe that AMPK activation precedes increased V-ATPase activity. Moreover, the starvation-induced increase in V-ATPase activity and assembly are prevented by the AMPK inhibitor dorsomorphin. These results suggest that increased assembly and activity of the V-ATPase upon glucose starvation are dependent upon AMPK. We also find that the PI3K/Akt pathway, which has previously been implicated in controlling V-ATPase assembly in mammalian cells, also plays a role in the starvation-induced increase in V-ATPase assembly and activity. These studies thus identify a novel stimulus of V-ATPase assembly and a novel signaling pathway involved in regulating this process. The possible function of starvation-induced increase in lysosomal V-ATPase activity is discussed. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Multi-scale coarse-graining for the study of assembly pathways in DNA-brick self-assembly.

    PubMed

    Fonseca, Pedro; Romano, Flavio; Schreck, John S; Ouldridge, Thomas E; Doye, Jonathan P K; Louis, Ard A

    2018-04-07

    Inspired by recent successes using single-stranded DNA tiles to produce complex structures, we develop a two-step coarse-graining approach that uses detailed thermodynamic calculations with oxDNA, a nucleotide-based model of DNA, to parametrize a coarser kinetic model that can reach the time and length scales needed to study the assembly mechanisms of these structures. We test the model by performing a detailed study of the assembly pathways for a two-dimensional target structure made up of 334 unique strands each of which are 42 nucleotides long. Without adjustable parameters, the model reproduces a critical temperature for the formation of the assembly that is close to the temperature at which assembly first occurs in experiments. Furthermore, the model allows us to investigate in detail the nucleation barriers and the distribution of critical nucleus shapes for the assembly of a single target structure. The assembly intermediates are compact and highly connected (although not maximally so), and classical nucleation theory provides a good fit to the height and shape of the nucleation barrier at temperatures close to where assembly first occurs.

  11. Multi-scale coarse-graining for the study of assembly pathways in DNA-brick self-assembly

    NASA Astrophysics Data System (ADS)

    Fonseca, Pedro; Romano, Flavio; Schreck, John S.; Ouldridge, Thomas E.; Doye, Jonathan P. K.; Louis, Ard A.

    2018-04-01

    Inspired by recent successes using single-stranded DNA tiles to produce complex structures, we develop a two-step coarse-graining approach that uses detailed thermodynamic calculations with oxDNA, a nucleotide-based model of DNA, to parametrize a coarser kinetic model that can reach the time and length scales needed to study the assembly mechanisms of these structures. We test the model by performing a detailed study of the assembly pathways for a two-dimensional target structure made up of 334 unique strands each of which are 42 nucleotides long. Without adjustable parameters, the model reproduces a critical temperature for the formation of the assembly that is close to the temperature at which assembly first occurs in experiments. Furthermore, the model allows us to investigate in detail the nucleation barriers and the distribution of critical nucleus shapes for the assembly of a single target structure. The assembly intermediates are compact and highly connected (although not maximally so), and classical nucleation theory provides a good fit to the height and shape of the nucleation barrier at temperatures close to where assembly first occurs.

  12. G protein-coupled receptors: bridging the gap from the extracellular signals to the Hippo pathway.

    PubMed

    Zhou, Xin; Wang, Zhen; Huang, Wei; Lei, Qun-Ying

    2015-01-01

    The Hippo pathway is crucial in organ size control, whereas its dysregulation contributes to organ degeneration or tumorigenesis. The kinase cascade of MST1/2 and LATS1/2 and the coupling transcription co-activators YAP/TAZ represent the core components of the Hippo pathway. Extensive studies have identified a number of upstream regulators of the Hippo pathway, including contact inhibition, mechanic stress, extracellular matrix stiffness, cytoskeletal rearrangement, and some molecules of cell polarity and cell junction. However, how the diffuse extracellular signals regulate the Hippo pathway puzzles the researchers for a long time. Unexpectedly, recent elegant studies demonstrated that stimulation of some G protein-coupled receptors (GPCRs), such as lysophosphatidic acid receptor, sphingosine-1-phosphate receptor, and the protease activated receptor PAR1, causes potent YAP/TAZ dephosphorylation and activation by promoting actin cytoskeleton assemble. In this review, we briefly describe the components of the Hippo pathway and focus on the recent progress with respect to the regulation of the Hippo pathway by GPCRs and G proteins in cancer cells. In addition, we also discuss the potential therapeutic roles targeting the Hippo pathway in human cancers. © The Author 2014. Published by ABBS Editorial Office in association with Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences.

  13. Understanding the Contribution of Zinc Transporters in the Function of the Early Secretory Pathway

    PubMed Central

    Matsunaga, Mayu; Takeda, Taka-aki

    2017-01-01

    More than one-third of newly synthesized proteins are targeted to the early secretory pathway, which is comprised of the endoplasmic reticulum (ER), Golgi apparatus, and other intermediate compartments. The early secretory pathway plays a key role in controlling the folding, assembly, maturation, modification, trafficking, and degradation of such proteins. A considerable proportion of the secretome requires zinc as an essential factor for its structural and catalytic functions, and recent findings reveal that zinc plays a pivotal role in the function of the early secretory pathway. Hence, a disruption of zinc homeostasis and metabolism involving the early secretory pathway will lead to pathway dysregulation, resulting in various defects, including an exacerbation of homeostatic ER stress. The accumulated evidence indicates that specific members of the family of Zn transporters (ZNTs) and Zrt- and Irt-like proteins (ZIPs), which operate in the early secretory pathway, play indispensable roles in maintaining zinc homeostasis by regulating the influx and efflux of zinc. In this review, the biological functions of these transporters are discussed, focusing on recent aspects of their roles. In particular, we discuss in depth how specific ZNT transporters are employed in the activation of zinc-requiring ectoenzymes. The means by which early secretory pathway functions are controlled by zinc, mediated by specific ZNT and ZIP transporters, are also subjects of this review. PMID:29048339

  14. Understanding the Contribution of Zinc Transporters in the Function of the Early Secretory Pathway.

    PubMed

    Kambe, Taiho; Matsunaga, Mayu; Takeda, Taka-Aki

    2017-10-19

    More than one-third of newly synthesized proteins are targeted to the early secretory pathway, which is comprised of the endoplasmic reticulum (ER), Golgi apparatus, and other intermediate compartments. The early secretory pathway plays a key role in controlling the folding, assembly, maturation, modification, trafficking, and degradation of such proteins. A considerable proportion of the secretome requires zinc as an essential factor for its structural and catalytic functions, and recent findings reveal that zinc plays a pivotal role in the function of the early secretory pathway. Hence, a disruption of zinc homeostasis and metabolism involving the early secretory pathway will lead to pathway dysregulation, resulting in various defects, including an exacerbation of homeostatic ER stress. The accumulated evidence indicates that specific members of the family of Zn transporters (ZNTs) and Zrt- and Irt-like proteins (ZIPs), which operate in the early secretory pathway, play indispensable roles in maintaining zinc homeostasis by regulating the influx and efflux of zinc. In this review, the biological functions of these transporters are discussed, focusing on recent aspects of their roles. In particular, we discuss in depth how specific ZNT transporters are employed in the activation of zinc-requiring ectoenzymes. The means by which early secretory pathway functions are controlled by zinc, mediated by specific ZNT and ZIP transporters, are also subjects of this review.

  15. RhoA and RhoC are involved in stromal cell-derived factor-1-induced cell migration by regulating F-actin redistribution and assembly.

    PubMed

    Luo, Jixian; Li, Dingyun; Wei, Dan; Wang, Xiaoguang; Wang, Lan; Zeng, Xianlu

    2017-12-01

    Stromal cell-derived factor-1 (SDF-1) signaling is important to the maintenance and progression of T-cell acute lymphoblastic leukemia by inducing chemotaxis migration. To identify the mechanism of SDF-1 signaling in the migration of T-ALL, Jurkat acute lymphoblastic leukemia cells were used. Results showed that SDF-1 induces Jurkat cell migration by F-actin redistribution and assembly, which is dependent on Rho activity. SDF-1 induced RhoA and RhoC activation, as well as reactive oxygen species (ROS) production, which was inhibited by Rho inhibitor. The Rho-dependent ROS production led to subsequent cytoskeleton redistribution and assembly in the process of migration. Additionally, RhoA and RhoC were involved in SDF-1-induced Jurkat cell migration. Taken together, we found a SDF-1/CXCR4-RhoA and RhoC-ROS-cytoskeleton pathway that regulates Jurkat cell migration in response to SDF-1. This work will contribute to a clearer insight into the migration mechanism of acute lymphoblastic leukemia.

  16. Exhaustive analysis of the modular structure of the spliceosomal assembly network: a petri net approach.

    PubMed

    Bortfeldt, Ralf H; Schuster, Stefan; Koch, Ina

    2011-01-01

    Spliceosomes are macro-complexes involving hundreds of proteins with many functional interactions. Spliceosome assembly belongs to the key processes that enable splicing of mRNA and modulate alternative splicing. A detailed list of factors involved in spliceosomal reactions has been assorted over the past decade, but, their functional interplay is often unknown and most of the present biological models cover only parts of the complete assembly process. It is a challenging task to build a computational model that integrates dispersed knowledge and combines a multitude of reaction schemes proposed earlier. Because for most reactions involved in spliceosome assembly kinetic parameters are not available, we propose a discrete modeling using Petri nets, through which we are enabled to get insights into the system's behavior via computation of structural and dynamic properties. In this paper, we compile and examine reactions from experimental reports that contribute to a functional spliceosome. All these reactions form a network, which describes the inventory and conditions necessary to perform the splicing process. The analysis is mainly based on system invariants. Transition invariants (T-invariants) can be interpreted as signaling routes through the network. Due to the huge number of T-invariants that arise with increasing network size and complexity, maximal common transition sets (MCTS) and T-clusters were used for further analysis. Additionally, we introduce a false color map representation, which allows a quick survey of network modules and the visual detection of single reactions or reaction sequences, which participate in more than one signaling route. We designed a structured model of spliceosome assembly, which combines the demands on a platform that i) can display involved factors and concurrent processes, ii) offers the possibility to run computational methods for knowledge extraction, and iii) is successively extendable as new insights into spliceosome function are reported by experimental reports. The network consists of 161 transitions (reactions) and 140 places (reactants). All reactions are part of at least one of the 71 T-invariants. These T-invariants define pathways, which are in good agreement with the current knowledge and known hypotheses on reaction sequences during spliceosome assembly, hence contributing to a functional spliceosome. We demonstrate that present knowledge, in particular of the initial part of the assembly process, describes parallelism and interaction of signaling routes, which indicate functional redundancy and reflect the dependency of spliceosome assembly initiation on different cellular conditions. The complexity of the network is further increased by two switches, which introduce alternative routes during A-complex formation in early spliceosome assembly and upon transition from the B-complex to the C-complex. By compiling known reactions into a complete network, the combinatorial nature of invariant computation leads to pathways that have previously not been described as connected routes, although their constituents were known. T-clusters divide the network into modules, which we interpret as building blocks in spliceosome maturation. We conclude that Petri net representations of large biological networks and system invariants, are well-suited as a means for validating the integration of experimental knowledge into a consistent model. Based on this network model, the design of further experiments is facilitated.

  17. Exhaustive analysis of the modular structure of the spliceosomal assembly network: a Petri net approach.

    PubMed

    Bortfeldt, Ralf H; Schuster, Stefan; Koch, Ina

    2010-01-01

    Spliceosomes are macro-complexes involving hundreds of proteins with many functional interactions. Spliceosome assembly belongs to the key processes that enable splicing of mRNA and modulate alternative splicing. A detailed list of factors involved in spliceosomal reactions has been assorted over the past decade, but, their functional interplay is often unknown and most of the present biological models cover only parts of the complete assembly process. It is a challenging task to build a computational model that integrates dispersed knowledge and combines a multitude of reaction schemes proposed earlier.Because for most reactions involved in spliceosome assembly kinetic parameters are not available, we propose a discrete modeling using Petri nets, through which we are enabled to get insights into the system's behavior via computation of structural and dynamic properties. In this paper, we compile and examine reactions from experimental reports that contribute to a functional spliceosome. All these reactions form a network, which describes the inventory and conditions necessary to perform the splicing process. The analysis is mainly based on system invariants. Transition invariants (T-invariants) can be interpreted as signaling routes through the network. Due to the huge number of T-invariants that arise with increasing network size and complexity, maximal common transition sets (MCTS) and T-clusters were used for further analysis. Additionally, we introduce a false color map representation, which allows a quick survey of network modules and the visual detection of single reactions or reaction sequences, which participate in more than one signaling route. We designed a structured model of spliceosome assembly, which combines the demands on a platform that i) can display involved factors and concurrent processes, ii) offers the possibility to run computational methods for knowledge extraction, and iii) is successively extendable as new insights into spliceosome function are reported by experimental reports. The network consists of 161 transitions (reactions) and 140 places (reactants). All reactions are part of at least one of the 71 T-invariants. These T-invariants define pathways, which are in good agreement with the current knowledge and known hypotheses on reaction sequences during spliceosome assembly, hence contributing to a functional spliceosome. We demonstrate that present knowledge, in particular of the initial part of the assembly process, describes parallelism and interaction of signaling routes, which indicate functional redundancy and reflect the dependency of spliceosome assembly initiation on different cellular conditions. The complexity of the network is further increased by two switches, which introduce alternative routes during A-complex formation in early spliceosome assembly and upon transition from the B-complex to the C-complex. By compiling known reactions into a complete network, the combinatorial nature of invariant computation leads to pathways that have previously not been described as connected routes, although their constituents were known. T-clusters divide the network into modules, which we interpret as building blocks in spliceosome maturation. We conclude that Petri net representations of large biological networks and system invariants, are well-suited as a means for validating the integration of experimental knowledge into a consistent model. Based on this network model, the design of further experiments is facilitated.

  18. The pomegranate (Punica granatum L.) genome and the genomics of punicalagin biosynthesis.

    PubMed

    Qin, Gaihua; Xu, Chunyan; Ming, Ray; Tang, Haibao; Guyot, Romain; Kramer, Elena M; Hu, Yudong; Yi, Xingkai; Qi, Yongjie; Xu, Xiangyang; Gao, Zhenghui; Pan, Haifa; Jian, Jianbo; Tian, Yinping; Yue, Zhen; Xu, Yiliu

    2017-09-01

    Pomegranate (Punica granatum L.) is a perennial fruit crop grown since ancient times that has been planted worldwide and is known for its functional metabolites, particularly punicalagins. We have sequenced and assembled the pomegranate genome with 328 Mb anchored into nine pseudo-chromosomes and annotated 29 229 gene models. A Myrtales lineage-specific whole-genome duplication event was detected that occurred in the common ancestor before the divergence of pomegranate and Eucalyptus. Repetitive sequences accounted for 46.1% of the assembled genome. We found that the integument development gene INNER NO OUTER (INO) was under positive selection and potentially contributed to the development of the fleshy outer layer of the seed coat, an edible part of pomegranate fruit. The genes encoding the enzymes for synthesis and degradation of lignin, hemicelluloses and cellulose were also differentially expressed between soft- and hard-seeded varieties, reflecting differences in their accumulation in cultivars differing in seed hardness. Candidate genes for punicalagin biosynthesis were identified and their expression patterns indicated that gallic acid synthesis in tissues could follow different biochemical pathways. The genome sequence of pomegranate provides a valuable resource for the dissection of many biological and biochemical traits and also provides important insights for the acceleration of breeding. Elucidation of the biochemical pathway(s) involved in punicalagin biosynthesis could assist breeding efforts to increase production of this bioactive compound. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  19. The Rosa genome provides new insights into the domestication of modern roses.

    PubMed

    Raymond, Olivier; Gouzy, Jérôme; Just, Jérémy; Badouin, Hélène; Verdenaud, Marion; Lemainque, Arnaud; Vergne, Philippe; Moja, Sandrine; Choisne, Nathalie; Pont, Caroline; Carrère, Sébastien; Caissard, Jean-Claude; Couloux, Arnaud; Cottret, Ludovic; Aury, Jean-Marc; Szécsi, Judit; Latrasse, David; Madoui, Mohammed-Amin; François, Léa; Fu, Xiaopeng; Yang, Shu-Hua; Dubois, Annick; Piola, Florence; Larrieu, Antoine; Perez, Magali; Labadie, Karine; Perrier, Lauriane; Govetto, Benjamin; Labrousse, Yoan; Villand, Priscilla; Bardoux, Claudia; Boltz, Véronique; Lopez-Roques, Céline; Heitzler, Pascal; Vernoux, Teva; Vandenbussche, Michiel; Quesneville, Hadi; Boualem, Adnane; Bendahmane, Abdelhafid; Liu, Chang; Le Bris, Manuel; Salse, Jérôme; Baudino, Sylvie; Benhamed, Moussa; Wincker, Patrick; Bendahmane, Mohammed

    2018-06-01

    Roses have high cultural and economic importance as ornamental plants and in the perfume industry. We report the rose whole-genome sequencing and assembly and resequencing of major genotypes that contributed to rose domestication. We generated a homozygous genotype from a heterozygous diploid modern rose progenitor, Rosa chinensis 'Old Blush'. Using single-molecule real-time sequencing and a meta-assembly approach, we obtained one of the most comprehensive plant genomes to date. Diversity analyses highlighted the mosaic origin of 'La France', one of the first hybrids combining the growth vigor of European species and the recurrent blooming of Chinese species. Genomic segments of Chinese ancestry identified new candidate genes for recurrent blooming. Reconstructing regulatory and secondary metabolism pathways allowed us to propose a model of interconnected regulation of scent and flower color. This genome provides a foundation for understanding the mechanisms governing rose traits and should accelerate improvement in roses, Rosaceae and ornamentals.

  20. Energetics, kinetics, and pathway of SNARE folding and assembly revealed by optical tweezers.

    PubMed

    Zhang, Yongli

    2017-07-01

    Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) are universal molecular engines that drive membrane fusion. Particularly, synaptic SNAREs mediate fast calcium-triggered fusion of neurotransmitter-containing vesicles with plasma membranes for synaptic transmission, the basis of all thought and action. During membrane fusion, complementary SNAREs located on two apposed membranes (often called t- and v-SNAREs) join together to assemble into a parallel four-helix bundle, releasing the energy to overcome the energy barrier for fusion. A long-standing hypothesis suggests that SNAREs act like a zipper to draw the two membranes into proximity and thereby force them to fuse. However, a quantitative test of this SNARE zippering hypothesis was hindered by difficulties to determine the energetics and kinetics of SNARE assembly and to identify the relevant folding intermediates. Here, we first review different approaches that have been applied to study SNARE assembly and then focus on high-resolution optical tweezers. We summarize the folding energies, kinetics, and pathways of both wild-type and mutant SNARE complexes derived from this new approach. These results show that synaptic SNAREs assemble in four distinct stages with different functions: slow N-terminal domain association initiates SNARE assembly; a middle domain suspends and controls SNARE assembly; and rapid sequential zippering of the C-terminal domain and the linker domain directly drive membrane fusion. In addition, the kinetics and pathway of the stagewise assembly are shared by other SNARE complexes. These measurements prove the SNARE zippering hypothesis and suggest new mechanisms for SNARE assembly regulated by other proteins. © 2017 The Protein Society.

  1. In vitro protease cleavage and computer simulations reveal the HIV-1 capsid maturation pathway

    NASA Astrophysics Data System (ADS)

    Ning, Jiying; Erdemci-Tandogan, Gonca; Yufenyuy, Ernest L.; Wagner, Jef; Himes, Benjamin A.; Zhao, Gongpu; Aiken, Christopher; Zandi, Roya; Zhang, Peijun

    2016-12-01

    HIV-1 virions assemble as immature particles containing Gag polyproteins that are processed by the viral protease into individual components, resulting in the formation of mature infectious particles. There are two competing models for the process of forming the mature HIV-1 core: the disassembly and de novo reassembly model and the non-diffusional displacive model. To study the maturation pathway, we simulate HIV-1 maturation in vitro by digesting immature particles and assembled virus-like particles with recombinant HIV-1 protease and monitor the process with biochemical assays and cryoEM structural analysis in parallel. Processing of Gag in vitro is accurate and efficient and results in both soluble capsid protein and conical or tubular capsid assemblies, seemingly converted from immature Gag particles. Computer simulations further reveal probable assembly pathways of HIV-1 capsid formation. Combining the experimental data and computer simulations, our results suggest a sequential combination of both displacive and disassembly/reassembly processes for HIV-1 maturation.

  2. ATP-dependent human RISC assembly pathways.

    PubMed

    Yoda, Mayuko; Kawamata, Tomoko; Paroo, Zain; Ye, Xuecheng; Iwasaki, Shintaro; Liu, Qinghua; Tomari, Yukihide

    2010-01-01

    The assembly of RNA-induced silencing complex (RISC) is a key process in small RNA-mediated gene silencing. In humans, small interfering RNAs (siRNAs) and microRNAs (miRNAs) are incorporated into RISCs containing the Argonaute (AGO) subfamily proteins Ago1-4. Previous studies have proposed that, unlike Drosophila melanogaster RISC assembly pathways, human RISC assembly is coupled with dicing and is independent of ATP. Here we show by careful reexamination that, in humans, RISC assembly and dicing are uncoupled, and ATP greatly facilitates RISC loading of small-RNA duplexes. Moreover, all four human AGO proteins show remarkably similar structural preferences for small-RNA duplexes: central mismatches promote RISC loading, and seed or 3'-mid (guide position 12-15) mismatches facilitate unwinding. All these features of human AGO proteins are highly reminiscent of fly Ago1 but not fly Ago2.

  3. Structural fingerprints and their evolution during oligomeric vs. oligomer-free amyloid fibril growth

    PubMed Central

    Foley, Joseph; Hill, Shannon E.; Miti, Tatiana; Mulaj, Mentor; Ciesla, Marissa; Robeel, Rhonda; Persichilli, Christopher; Raynes, Rachel; Westerheide, Sandy; Muschol, Martin

    2013-01-01

    Deposits of fibrils formed by disease-specific proteins are the molecular hallmark of such diverse human disorders as Alzheimer's disease, type II diabetes, or rheumatoid arthritis. Amyloid fibril formation by structurally and functionally unrelated proteins exhibits many generic characteristics, most prominently the cross β-sheet structure of their mature fibrils. At the same time, amyloid formation tends to proceed along one of two separate assembly pathways yielding either stiff monomeric filaments or globular oligomers and curvilinear protofibrils. Given the focus on oligomers as major toxic species, the very existence of an oligomer-free assembly pathway is significant. Little is known, though, about the structure of the various intermediates emerging along different pathways and whether the pathways converge towards a common or distinct fibril structures. Using infrared spectroscopy we probed the structural evolution of intermediates and late-stage fibrils formed during in vitro lysozyme amyloid assembly along an oligomeric and oligomer-free pathway. Infrared spectroscopy confirmed that both pathways produced amyloid-specific β-sheet peaks, but at pathway-specific wavenumbers. We further found that the amyloid-specific dye thioflavin T responded to all intermediates along either pathway. The relative amplitudes of thioflavin T fluorescence responses displayed pathway-specific differences and could be utilized for monitoring the structural evolution of intermediates. Pathway-specific structural features obtained from infrared spectroscopy and Thioflavin T responses were identical for fibrils grown at highly acidic or at physiological pH values and showed no discernible effects of protein hydrolysis. Our results suggest that late-stage fibrils formed along either pathway are amyloidogenic in nature, but have distinguishable structural fingerprints. These pathway-specific fingerprints emerge during the earliest aggregation events and persist throughout the entire cascade of aggregation intermediates formed along each pathway. PMID:24089713

  4. Structural fingerprints and their evolution during oligomeric vs. oligomer-free amyloid fibril growth

    NASA Astrophysics Data System (ADS)

    Foley, Joseph; Hill, Shannon E.; Miti, Tatiana; Mulaj, Mentor; Ciesla, Marissa; Robeel, Rhonda; Persichilli, Christopher; Raynes, Rachel; Westerheide, Sandy; Muschol, Martin

    2013-09-01

    Deposits of fibrils formed by disease-specific proteins are the molecular hallmark of such diverse human disorders as Alzheimer's disease, type II diabetes, or rheumatoid arthritis. Amyloid fibril formation by structurally and functionally unrelated proteins exhibits many generic characteristics, most prominently the cross β-sheet structure of their mature fibrils. At the same time, amyloid formation tends to proceed along one of two separate assembly pathways yielding either stiff monomeric filaments or globular oligomers and curvilinear protofibrils. Given the focus on oligomers as major toxic species, the very existence of an oligomer-free assembly pathway is significant. Little is known, though, about the structure of the various intermediates emerging along different pathways and whether the pathways converge towards a common or distinct fibril structures. Using infrared spectroscopy we probed the structural evolution of intermediates and late-stage fibrils formed during in vitro lysozyme amyloid assembly along an oligomeric and oligomer-free pathway. Infrared spectroscopy confirmed that both pathways produced amyloid-specific β-sheet peaks, but at pathway-specific wavenumbers. We further found that the amyloid-specific dye thioflavin T responded to all intermediates along either pathway. The relative amplitudes of thioflavin T fluorescence responses displayed pathway-specific differences and could be utilized for monitoring the structural evolution of intermediates. Pathway-specific structural features obtained from infrared spectroscopy and Thioflavin T responses were identical for fibrils grown at highly acidic or at physiological pH values and showed no discernible effects of protein hydrolysis. Our results suggest that late-stage fibrils formed along either pathway are amyloidogenic in nature, but have distinguishable structural fingerprints. These pathway-specific fingerprints emerge during the earliest aggregation events and persist throughout the entire cascade of aggregation intermediates formed along each pathway.

  5. Structural fingerprints and their evolution during oligomeric vs. oligomer-free amyloid fibril growth.

    PubMed

    Foley, Joseph; Hill, Shannon E; Miti, Tatiana; Mulaj, Mentor; Ciesla, Marissa; Robeel, Rhonda; Persichilli, Christopher; Raynes, Rachel; Westerheide, Sandy; Muschol, Martin

    2013-09-28

    Deposits of fibrils formed by disease-specific proteins are the molecular hallmark of such diverse human disorders as Alzheimer's disease, type II diabetes, or rheumatoid arthritis. Amyloid fibril formation by structurally and functionally unrelated proteins exhibits many generic characteristics, most prominently the cross β-sheet structure of their mature fibrils. At the same time, amyloid formation tends to proceed along one of two separate assembly pathways yielding either stiff monomeric filaments or globular oligomers and curvilinear protofibrils. Given the focus on oligomers as major toxic species, the very existence of an oligomer-free assembly pathway is significant. Little is known, though, about the structure of the various intermediates emerging along different pathways and whether the pathways converge towards a common or distinct fibril structures. Using infrared spectroscopy we probed the structural evolution of intermediates and late-stage fibrils formed during in vitro lysozyme amyloid assembly along an oligomeric and oligomer-free pathway. Infrared spectroscopy confirmed that both pathways produced amyloid-specific β-sheet peaks, but at pathway-specific wavenumbers. We further found that the amyloid-specific dye thioflavin T responded to all intermediates along either pathway. The relative amplitudes of thioflavin T fluorescence responses displayed pathway-specific differences and could be utilized for monitoring the structural evolution of intermediates. Pathway-specific structural features obtained from infrared spectroscopy and Thioflavin T responses were identical for fibrils grown at highly acidic or at physiological pH values and showed no discernible effects of protein hydrolysis. Our results suggest that late-stage fibrils formed along either pathway are amyloidogenic in nature, but have distinguishable structural fingerprints. These pathway-specific fingerprints emerge during the earliest aggregation events and persist throughout the entire cascade of aggregation intermediates formed along each pathway.

  6. Activation of the pacidamycin PacL adenylation domain by MbtH-like proteins.

    PubMed

    Zhang, Wenjun; Heemstra, John R; Walsh, Christopher T; Imker, Heidi J

    2010-11-23

    Nonribosomal peptide synthetase (NRPS) assembly lines are major avenues for the biosynthesis of a vast array of peptidyl natural products. Several hundred bacterial NRPS gene clusters contain a small (∼70-residue) protein belonging to the MbtH family for which no function has been defined. Here we show that two strictly conserved Trp residues in MbtH-like proteins contribute to stimulation of amino acid adenylation in some NRPS modules. We also demonstrate that adenylation can be stimulated not only by cognate MbtH-like proteins but also by homologues from disparate natural product pathways.

  7. The Rab GTPase Rab8 as a shared regulator of ciliogenesis and immune synapse assembly: From a conserved pathway to diverse cellular structures.

    PubMed

    Patrussi, Laura; Baldari, Cosima T

    2016-01-01

    Rab GTPases, which form the largest branch of the Ras GTPase superfamily, regulate almost every step of vesicle-mediated trafficking. Among them, Rab8 is an essential participant in primary cilium formation. In a report recently published in the Journal of Cell Science, Finetti and colleagues identify Rab8 as a novel player in vesicular traffic in the non-ciliated T lymphocytes, which contributes to the assembly of the specialized signaling platform known as the immune synapse. By interacting with the v-SNARE VAMP-3, Rab8 is indeed responsible for the final docking/fusion step in T cell receptor (TCR) recycling to the immune synapse. A second important take-home message which comes to light from this work is that VAMP-3 also interacts with Rab8 at the base of the cilium in NIH-3T3 cells, where it regulates ciliary growth and targeting of Smoothened at the plasma membrane. Hence the data presented in this report, in addition to identifying Rab8 as a novel player in vesicular traffic to the immune synapse, reveal how both ciliated and non-ciliated cells take advantage of a conserved pathway to build highly specific cellular structures.

  8. Replication-Independent Histone Deposition by the HIR Complex and Asf1

    PubMed Central

    Green, Erin M.; Antczak, Andrew J.; Bailey, Aaron O.; Franco, Alexa A.; Wu, Kevin J.; Yates, John R.; Kaufman, Paul D.

    2010-01-01

    Summary The orderly deposition of histones onto DNA is mediated by conserved assembly complexes, including Chromatin Assembly Factor-1 (CAF-1) and the Hir proteins [1–4]. CAF-1 and the Hir proteins operate in distinct but functionally overlapping histone deposition pathways in vivo [5, 6]. The Hir proteins and CAF-1 share a common partner, the highly conserved histone H3/H4-binding protein Asf1, which binds the middle subunit of CAF-1 as well as to Hir proteins [7–11]. Asf1 binds to newly synthesized histones H3/H4 [12] and this complex stimulates histone deposition by CAF-1 [7, 12, 13]. In yeast, Asf1 is required for the contribution of the Hir proteins to gene silencing [7, 14]. Here, we demonstrate that Hir1, Hir2, Hir3 and Hpc2 comprise the HIR complex, which co-purifies with histone deposition protein Asf1. Together, the HIR complex and Asf1 deposit histones onto DNA in a replication-independent manner. Histone deposition by the HIR complex and Asf1 is impaired by a mutation in Asf1 that inhibits HIR binding. These data indicate that the HIR complex and Asf1 proteins function together as a conserved eukaryotic pathway for histone replacement throughout the cell cycle. PMID:16303565

  9. Unique nucleotide sequence-guided assembly of repetitive DNA parts for synthetic biology applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torella, JP; Lienert, F; Boehm, CR

    2014-08-07

    Recombination-based DNA construction methods, such as Gibson assembly, have made it possible to easily and simultaneously assemble multiple DNA parts, and they hold promise for the development and optimization of metabolic pathways and functional genetic circuits. Over time, however, these pathways and circuits have become more complex, and the increasing need for standardization and insulation of genetic parts has resulted in sequence redundancies-for example, repeated terminator and insulator sequences-that complicate recombination-based assembly. We and others have recently developed DNA assembly methods, which we refer to collectively as unique nucleotide sequence (UNS)-guided assembly, in which individual DNA parts are flanked withmore » UNSs to facilitate the ordered, recombination-based assembly of repetitive sequences. Here we present a detailed protocol for UNS-guided assembly that enables researchers to convert multiple DNA parts into sequenced, correctly assembled constructs, or into high-quality combinatorial libraries in only 2-3 d. If the DNA parts must be generated from scratch, an additional 2-5 d are necessary. This protocol requires no specialized equipment and can easily be implemented by a student with experience in basic cloning techniques.« less

  10. Unique nucleotide sequence (UNS)-guided assembly of repetitive DNA parts for synthetic biology applications

    PubMed Central

    Torella, Joseph P.; Lienert, Florian; Boehm, Christian R.; Chen, Jan-Hung; Way, Jeffrey C.; Silver, Pamela A.

    2016-01-01

    Recombination-based DNA construction methods, such as Gibson assembly, have made it possible to easily and simultaneously assemble multiple DNA parts and hold promise for the development and optimization of metabolic pathways and functional genetic circuits. Over time, however, these pathways and circuits have become more complex, and the increasing need for standardization and insulation of genetic parts has resulted in sequence redundancies — for example repeated terminator and insulator sequences — that complicate recombination-based assembly. We and others have recently developed DNA assembly methods that we refer to collectively as unique nucleotide sequence (UNS)-guided assembly, in which individual DNA parts are flanked with UNSs to facilitate the ordered, recombination-based assembly of repetitive sequences. Here we present a detailed protocol for UNS-guided assembly that enables researchers to convert multiple DNA parts into sequenced, correctly-assembled constructs, or into high-quality combinatorial libraries in only 2–3 days. If the DNA parts must be generated from scratch, an additional 2–5 days are necessary. This protocol requires no specialized equipment and can easily be implemented by a student with experience in basic cloning techniques. PMID:25101822

  11. Development of a modularized two-step (M2S) chromosome integration technique for integration of multiple transcription units in Saccharomyces cerevisiae.

    PubMed

    Li, Siwei; Ding, Wentao; Zhang, Xueli; Jiang, Huifeng; Bi, Changhao

    2016-01-01

    Saccharomyces cerevisiae has already been used for heterologous production of fuel chemicals and valuable natural products. The establishment of complicated heterologous biosynthetic pathways in S. cerevisiae became the research focus of Synthetic Biology and Metabolic Engineering. Thus, simple and efficient genomic integration techniques of large number of transcription units are demanded urgently. An efficient DNA assembly and chromosomal integration method was created by combining homologous recombination (HR) in S. cerevisiae and Golden Gate DNA assembly method, designated as modularized two-step (M2S) technique. Two major assembly steps are performed consecutively to integrate multiple transcription units simultaneously. In Step 1, Modularized scaffold containing a head-to-head promoter module and a pair of terminators was assembled with two genes. Thus, two transcription units were assembled with Golden Gate method into one scaffold in one reaction. In Step 2, the two transcription units were mixed with modules of selective markers and integration sites and transformed into S. cerevisiae for assembly and integration. In both steps, universal primers were designed for identification of correct clones. Establishment of a functional β-carotene biosynthetic pathway in S. cerevisiae within 5 days demonstrated high efficiency of this method, and a 10-transcriptional-unit pathway integration illustrated the capacity of this method. Modular design of transcription units and integration elements simplified assembly and integration procedure, and eliminated frequent designing and synthesis of DNA fragments in previous methods. Also, by assembling most parts in Step 1 in vitro, the number of DNA cassettes for homologous integration in Step 2 was significantly reduced. Thus, high assembly efficiency, high integration capacity, and low error rate were achieved.

  12. Assembly of Lipoic Acid on Its Cognate Enzymes: an Extraordinary and Essential Biosynthetic Pathway

    PubMed Central

    2016-01-01

    SUMMARY Although the structure of lipoic acid and its role in bacterial metabolism were clear over 50 years ago, it is only in the past decade that the pathways of biosynthesis of this universally conserved cofactor have become understood. Unlike most cofactors, lipoic acid must be covalently bound to its cognate enzyme proteins (the 2-oxoacid dehydrogenases and the glycine cleavage system) in order to function in central metabolism. Indeed, the cofactor is assembled on its cognate proteins rather than being assembled and subsequently attached as in the typical pathway, like that of biotin attachment. The first lipoate biosynthetic pathway determined was that of Escherichia coli, which utilizes two enzymes to form the active lipoylated protein from a fatty acid biosynthetic intermediate. Recently, a more complex pathway requiring four proteins was discovered in Bacillus subtilis, which is probably an evolutionary relic. This pathway requires the H protein of the glycine cleavage system of single-carbon metabolism to form active (lipoyl) 2-oxoacid dehydrogenases. The bacterial pathways inform the lipoate pathways of eukaryotic organisms. Plants use the E. coli pathway, whereas mammals and fungi probably use the B. subtilis pathway. The lipoate metabolism enzymes (except those of sulfur insertion) are members of PFAM family PF03099 (the cofactor transferase family). Although these enzymes share some sequence similarity, they catalyze three markedly distinct enzyme reactions, making the usual assignment of function based on alignments prone to frequent mistaken annotations. This state of affairs has possibly clouded the interpretation of one of the disorders of human lipoate metabolism. PMID:27074917

  13. Direction-dependent force-induced dissociation dynamics of an entropic-driven lock-and-key assembly.

    PubMed

    Chen, Yen-Fu; Chen, Hsuan-Yi; Sheng, Yu-Jane; Tsao, Heng-Kwong

    2017-09-01

    The unbinding dynamics of a nanosized sphere-and-cavity assembly under the pulling of constant force and constant loading rate is explored by dissipative particle dynamics simulations. The formation of this matched lock-and-key pair in a polymer solution is driven by the depletion attraction. The two-dimensional free energy landscape U(x,z) associated with this assembly is constructed. Our results indicate that the unbinding pathway along the orientation of the assembly is unfavorable due to the relatively high energy barrier compared to that along the tortuous minimum path whose energy barrier is not high. It is also found that the dissociation rate depends on the direction of the external force (θ) with respect to the assembly orientation. The presence of the force component perpendicular to the assembly orientation can reduce the bond lifetime significantly by driving the key particle to approach the minimum path. Moreover, the dissociation dynamics can be facilitated even by a pushing force compared to the spontaneous dissociation (without forces). To elucidate the effective pathway under pulling, the escaping position is analyzed and its mean direction with respect to the assembly orientation rises generally with increasing θ, revealing that the presence of the force component along the minimum pathway is helpful. The importance of the direction of the external pulling has been demonstrated in our simple system. Therefore, this effect should be considered in more complicated unbinding experiments.

  14. Molecular requirements for RNA-induced silencing complex assembly in the Drosophila RNA interference pathway.

    PubMed

    Pham, John W; Sontheimer, Erik J

    2005-11-25

    Complexes in the Drosophila RNA-induced silencing complex (RISC) assembly pathway can be resolved using native gel electrophoresis, revealing an initiator called R1, an intermediate called R2, and an effector called R3 (now referred to as holo-RISC). Here we show that R1 forms when the Dicer-2/R2D2 heterodimer binds short interfering RNA (siRNA) duplexes. The heterodimer alone can initiate RISC assembly, indicating that other factors are dispensable for initiation. During assembly, R2 requires Argonaute 2 to convert into holo-RISC. This requirement is reminiscent of the RISC-loading complex, which also requires Argonaute 2 for assembly into RISC. We have compared R2 to the RISC-loading complex and show that the two complexes are similar in their sensitivities to ATP and to chemical modifications on siRNA duplexes, indicating that they are likely to be identical. We have examined the requirements for RISC formation and show that the siRNA 5'-termini are repeatedly monitored during RISC assembly, first by the Dcr-2/R2D2 heterodimer and again after R2 formation, before siRNA unwinding. The 2'-position of the 5'-terminal nucleotide also affects RISC assembly, because an siRNA strand bearing a 2'-deoxyribose at this position can inhibit the cognate strand from entering holo-RISC; in contrast, the 2'-deoxyribose-modified strand has enhanced activity in the RNA interference pathway.

  15. Direction-dependent force-induced dissociation dynamics of an entropic-driven lock-and-key assembly

    NASA Astrophysics Data System (ADS)

    Chen, Yen-Fu; Chen, Hsuan-Yi; Sheng, Yu-Jane; Tsao, Heng-Kwong

    2017-09-01

    The unbinding dynamics of a nanosized sphere-and-cavity assembly under the pulling of constant force and constant loading rate is explored by dissipative particle dynamics simulations. The formation of this matched lock-and-key pair in a polymer solution is driven by the depletion attraction. The two-dimensional free energy landscape U (x ,z ) associated with this assembly is constructed. Our results indicate that the unbinding pathway along the orientation of the assembly is unfavorable due to the relatively high energy barrier compared to that along the tortuous minimum path whose energy barrier is not high. It is also found that the dissociation rate depends on the direction of the external force (θ ) with respect to the assembly orientation. The presence of the force component perpendicular to the assembly orientation can reduce the bond lifetime significantly by driving the key particle to approach the minimum path. Moreover, the dissociation dynamics can be facilitated even by a pushing force compared to the spontaneous dissociation (without forces). To elucidate the effective pathway under pulling, the escaping position is analyzed and its mean direction with respect to the assembly orientation rises generally with increasing θ , revealing that the presence of the force component along the minimum pathway is helpful. The importance of the direction of the external pulling has been demonstrated in our simple system. Therefore, this effect should be considered in more complicated unbinding experiments.

  16. The mechanisms for nanoparticle surface diffusion and chain self-assembly determined from real-time nanoscale kinetics in liquid

    DOE PAGES

    Woehl, Taylor J.; Prozorov, Tanya

    2015-08-20

    The mechanisms for nanoparticle self-assembly are often inferred from the morphology of the final nanostructures in terms of attractive and repulsive interparticle interactions. Understanding how nanoparticle building blocks are pieced together during self-assembly is a key missing component needed to unlock new strategies and mechanistic understanding of this process. Here we use real-time nanoscale kinetics derived from liquid cell transmission electron microscopy investigation of nanoparticle self-assembly to show that nanoparticle mobility dictates the pathway for self-assembly and final nanostructure morphology. We describe a new method for modulating nanoparticle diffusion in a liquid cell, which we employ to systematically investigate themore » effect of mobility on self-assembly of nanoparticles. We interpret the observed diffusion in terms of electrostatically induced surface diffusion resulting from nanoparticle hopping on the liquid cell window surface. Slow-moving nanoparticles self-assemble predominantly into linear 1D chains by sequential attachment of nanoparticles to existing chains, while highly mobile nanoparticles self-assemble into chains and branched structures by chain–chain attachments. Self-assembly kinetics are consistent with a diffusion-driven mechanism; we attribute the change in self-assembly pathway to the increased self-assembly rate of highly mobile nanoparticles. Furthermore, these results indicate that nanoparticle mobility can dictate the self-assembly mechanism and final nanostructure morphology in a manner similar to interparticle interactions.« less

  17. RISC assembly: Coordination between small RNAs and Argonaute proteins.

    PubMed

    Kobayashi, Hotaka; Tomari, Yukihide

    2016-01-01

    Non-coding RNAs generally form ribonucleoprotein (RNP) complexes with their partner proteins to exert their functions. Small RNAs, including microRNAs, small interfering RNAs, and PIWI-interacting RNAs, assemble with Argonaute (Ago) family proteins into the effector complex called RNA-induced silencing complex (RISC), which mediates sequence-specific target gene silencing. RISC assembly is not a simple binding between a small RNA and Ago; rather, it follows an ordered multi-step pathway that requires specific accessory factors. Some steps of RISC assembly and RISC-mediated gene silencing are dependent on or facilitated by particular intracellular platforms, suggesting their spatial regulation. In this review, we summarize the currently known mechanisms for RISC assembly of each small RNA class and propose a revised model for the role of the chaperone machinery in the duplex-initiated RISC assembly pathway. This article is part of a Special Issue entitled: Clues to long noncoding RNA taxonomy1, edited by Dr. Tetsuro Hirose and Dr. Shinichi Nakagawa. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Synthesis, Delivery and Regulation of Eukaryotic Heme and Fe-S Cluster Cofactors

    PubMed Central

    Barupala, Dulmini P.; Dzul, Stephen P.; Riggs-Gelasco, Pamela Jo; Stemmler, Timothy L.

    2016-01-01

    In humans, the bulk of iron in the body (over 75%) is directed towards heme- or Fe-S cluster cofactor synthesis, and the complex, highly regulated pathways in place to accomplish biosynthesis have evolved to safely assemble and load these cofactors into apoprotein partners. In eukaryotes, heme biosynthesis is both initiated and finalized within the mitochondria, while cellular Fe-S cluster assembly is controlled by correlated pathways both within the mitochondria and within the cytosol. Iron plays a vital role in a wide array of metabolic processes and defects in iron cofactor assembly leads to human diseases. This review describes progress towards our molecular-level understanding of cellular heme and Fe-S cluster biosynthesis, focusing on the regulation and mechanistic details that are essential for understanding human disorders related to the breakdown in these essential pathways. PMID:26785297

  19. A Springloaded Metal-Ligand Mesocate Allows Access to Trapped Intermediates of Self-Assembly.

    PubMed

    Bogie, Paul M; Holloway, Lauren R; Lyon, Yana; Onishi, Nicole C; Beran, Gregory J O; Julian, Ryan R; Hooley, Richard J

    2018-04-02

    A strained, "springloaded" Fe 2 L 3 iminopyridine mesocate shows highly variable reactivity upon postassembly reaction with competitive diamines. The strained assembly is reactive toward transimination in minutes at ambient temperature and allows observation of kinetically trapped intermediates in the self-assembly pathway. When diamines are used that can only form less favored cage products upon full equilibration, trapped ML 3 fragments with pendant, "hanging" NH 2 groups are selectively formed instead. Slight variations in diamine structure have large effects on the product outcome: less rigid diamines convert the mesocate to more favored self-assembled cage complexes under mild conditions and allow observation of heterocomplex intermediates in the displacement pathway. The mesocate allows control of equilibrium processes and direction of product outcomes via small, iterative changes in added subcomponent structure and provides a method of accessing metal-ligand cage structures not normally observed in multicomponent Fe-iminopyridine self-assembly.

  20. An insight into polymerization-induced self-assembly by dissipative particle dynamics simulation.

    PubMed

    Huang, Feng; Lv, Yisheng; Wang, Liquan; Xu, Pengxiang; Lin, Jiaping; Lin, Shaoliang

    2016-08-14

    Polymerization-induced self-assembly is a one-pot route to produce concentrated dispersions of block copolymer nano-objects. Herein, dissipative particle dynamics simulations with a reaction model were employed to investigate the behaviors of polymerization-induced self-assembly. The polymerization kinetics in the polymerization-induced self-assembly were analyzed by comparing with solution polymerization. It was found that the polymerization rate enhances in the initial stage and decreases in the later stage. In addition, the effects of polymerization rate, length of macromolecular initiators, and concentration on the aggregate morphologies and formation pathway were studied. The polymerization rate and the length of the macromolecular initiators are found to have a marked influence on the pathway of the aggregate formations and the final structures. Morphology diagrams were mapped correspondingly. A comparison between simulation results and experimental findings is also made and an agreement is shown. This work can enrich our knowledge about polymerization-induced self-assembly.

  1. Localization of adenovirus morphogenesis players, together with visualization of assembly intermediates and failed products, favor a model where assembly and packaging occur concurrently at the periphery of the replication center

    PubMed Central

    2017-01-01

    Adenovirus (AdV) morphogenesis is a complex process, many aspects of which remain unclear. In particular, it is not settled where in the nucleus assembly and packaging occur, and whether these processes occur in a sequential or a concerted manner. Here we use immunofluorescence and immunoelectron microscopy (immunoEM) to trace packaging factors and structural proteins at late times post infection by either wildtype virus or a delayed packaging mutant. We show that representatives of all assembly factors are present in the previously recognized peripheral replicative zone, which therefore is the AdV assembly factory. Assembly intermediates and abortive products observed in this region favor a concurrent assembly and packaging model comprising two pathways, one for capsid proteins and another one for core components. Only when both pathways are coupled by correct interaction between packaging proteins and the genome is the viral particle produced. Decoupling generates accumulation of empty capsids and unpackaged cores. PMID:28448571

  2. The different time courses of reading different levels of Chinese characters: an ERP study.

    PubMed

    Lu, Qilin; Tang, Yi-Yuan; Zhou, Li; Yu, Qingbao

    2011-07-12

    The dual route processing was generally accepted in the reading of alphabetic languages, which suggests alphabetic words can be read by either addressed pathway or assembled pathway. However, it was still unclear whether there was a particular 'dual route mechanism' during reading Chinese characters. In our previous fMRI study, the result showed that there might be a particular 'dual route mechanism', and its addressed pathway was similar between Chinese and English, whereas for the need of spatial analysis, the assembled pathway of Chinese was different from that of English which involved grapheme-to-phoneme correspondences. The present study, using event-related potential, which provide more temporal information, aimed to further support our previous view, and peered inside the different time courses of reading different types of Chinese characters. It was found that reading high frequency Chinese characters increased the N170 component which was believed to enhance attention to the addressed pathway in the left occipital-temporal area. Pseudo Chinese characters could be read by a particular assembled pathway, which caused the largest amplitude of P320 component in the right occipital-temporal area, which considered as a key brain area for radical analysis. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  3. A low redox potential affects monoclonal antibody assembly and glycosylation in cell culture.

    PubMed

    Dionne, Benjamin; Mishra, Neha; Butler, Michael

    2017-03-20

    Glycosylation and intracellular assembly of monoclonal antibodies (MAbs) is important for glycan profile consistency. To better understand how these factors may be influenced by a lower redox potential, an IgG1-producing NS0 cell line was grown in the presence of varying concentrations of dithiothreitol (DTT). Cultures were monitored for growth and culture redox potential (CRP) with glycan heterogeneity determined using a HILIC-HPLC method. Macroheterogeneity was unchanged in all conditions whereas the Galactosylation Index (GI) decreased by as much as 50% in cultures with lower CRP or higher dithiothreitol levels. This shift in GI is reflected in more agalactosylated and asialylated species being produced. The MAb assembly pathway was determined using radioactive isotope 35 S incorporated into nascent IgG1 molecules. The assembly pathway for this IgG1 was shown to progress via HC→HC 2 →HC 2 LC→HC 2 LC 2 in all conditions tested and autoradiographs highlighted that the ratio of heavy chain dimer to heavy chain monomer increased over time with increasing DTT concentrations. This increase and correspondingly lower GI values may be due to disruption of the disulfide bonds at higher levels of assembly. A change in the assembly pathway may alter the final IgG glycan pattern and lead to control mechanisms that influence glycan profiles of MAbs. Copyright © 2017. Published by Elsevier B.V.

  4. Non-equilibrium supramolecular polymerization

    PubMed Central

    Sorrenti, Alessandro; Leira-Iglesias, Jorge; Markvoort, Albert J.

    2017-01-01

    Supramolecular polymerization has been traditionally focused on the thermodynamic equilibrium state, where one-dimensional assemblies reside at the global minimum of the Gibbs free energy. The pathway and rate to reach the equilibrium state are irrelevant, and the resulting assemblies remain unchanged over time. In the past decade, the focus has shifted to kinetically trapped (non-dissipative non-equilibrium) structures that heavily depend on the method of preparation (i.e., pathway complexity), and where the assembly rates are of key importance. Kinetic models have greatly improved our understanding of competing pathways, and shown how to steer supramolecular polymerization in the desired direction (i.e., pathway selection). The most recent innovation in the field relies on energy or mass input that is dissipated to keep the system away from the thermodynamic equilibrium (or from other non-dissipative states). This tutorial review aims to provide the reader with a set of tools to identify different types of self-assembled states that have been explored so far. In particular, we aim to clarify the often unclear use of the term “non-equilibrium self-assembly” by subdividing systems into dissipative, and non-dissipative non-equilibrium states. Examples are given for each of the states, with a focus on non-dissipative non-equilibrium states found in one-dimensional supramolecular polymerization. PMID:28349143

  5. Disposition of Chicago Pile 5 (CP-5) Converter Tubes in the 10-160B Cask

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pancake, Daniel C.; Rock, Cynthia

    This paper will focus on the unique characterization, packaging, and transportation issues associated with the disposition of the two CP-5 Converter Tube assemblies from Argonne National Laboratory. The converter tubes were constructed of combinations of HEU and alloys of zirconium, and were part of the original research facilities attached to the CP-5 reactor during operating evolutions. These assemblies were heavily irradiated during their operational lifetime, and were segregated from the balance of irradiated test specimens when the reactor was deactivated and slated for Decontamination and Demolition (D&D). In addition, the substantial contribution of fissile material to the assemblies’ inventory mademore » the potential disposition pathways extremely challenging. As a result, these items became part of Argonne’s legacy “nuclear footprint”, and were added to the Nuclear Footprint Reduction Project scope for disposition. The Project was responsible for the size reduction and characterization of these items, as well as the ultimate disposition. After negotiating a disposal pathway for these tubes, there were significant transportation issues that required a small team to overcome, in order to successfully ship these items to the Nevada National Security Site (NNSS). The Project team at Argonne, technical support from transportation specialists, licensing support from the 10-160B license owner, the Savanah River National Lab (SRNL) Packaging Certification Team (PCT, and the DOE EM-33 staff contributed to license and safety analysis report amendments that eventually authorized the shipment of the material. The paper will identify the organizations, and the specific actions, required to successfully make three “one of a kind” shipments of irradiated test specimen material. This will include the unique packaging configurations, contents modification for the cask license (via the Amendment process), criticality evaluations, and associated review and approval processes.« less

  6. Next-generation sequencing (NGS) transcriptomes reveal association of multiple genes and pathways contributing to secondary metabolites accumulation in tuberous roots of Aconitum heterophyllum Wall.

    PubMed

    Pal, Tarun; Malhotra, Nikhil; Chanumolu, Sree Krishna; Chauhan, Rajinder Singh

    2015-07-01

    The transcriptomes of Aconitum heterophyllum were assembled and characterized for the first time to decipher molecular components contributing to biosynthesis and accumulation of metabolites in tuberous roots. Aconitum heterophyllum Wall., popularly known as Atis, is a high-value medicinal herb of North-Western Himalayas. No information exists as of today on genetic factors contributing to the biosynthesis of secondary metabolites accumulating in tuberous roots, thereby, limiting genetic interventions towards genetic improvement of A. heterophyllum. Illumina paired-end sequencing followed by de novo assembly yielded 75,548 transcripts for root transcriptome and 39,100 transcripts for shoot transcriptome with minimum length of 200 bp. Biological role analysis of root versus shoot transcriptomes assigned 27,596 and 16,604 root transcripts; 12,340 and 9398 shoot transcripts into gene ontology and clusters of orthologous group, respectively. KEGG pathway mapping assigned 37 and 31 transcripts onto starch-sucrose metabolism while 329 and 341 KEGG orthologies associated with transcripts were found to be involved in biosynthesis of various secondary metabolites for root and shoot transcriptomes, respectively. In silico expression profiling of the mevalonate/2-C-methyl-D-erythritol 4-phosphate (non-mevalonate) pathway genes for aconites biosynthesis revealed 4 genes HMGR (3-hydroxy-3-methylglutaryl-CoA reductase), MVK (mevalonate kinase), MVDD (mevalonate diphosphate decarboxylase) and HDS (1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate synthase) with higher expression in root transcriptome compared to shoot transcriptome suggesting their key role in biosynthesis of aconite alkaloids. Five genes, GMPase (geranyl diphosphate mannose pyrophosphorylase), SHAGGY, RBX1 (RING-box protein 1), SRF receptor kinases and β-amylase, implicated in tuberous root formation in other plant species showed higher levels of expression in tuberous roots compared to shoots. A total of 15,487 transcription factors belonging to bHLH, MYB, bZIP families and 399 ABC transporters which regulate biosynthesis and accumulation of bioactive compounds were identified in root and shoot transcriptomes. The expression of 5 ABC transporters involved in tuberous root development was validated by quantitative PCR analysis. Network connectivity diagrams were drawn for starch-sucrose metabolism and isoquinoline alkaloid biosynthesis associated with tuberous root growth and secondary metabolism, respectively, in root transcriptome of A. heterophyllum. The current endeavor will be of practical importance in planning a suitable genetic intervention strategy for the improvement of A. heterophyllum.

  7. The devil is in the details: comparison between COP9 signalosome (CSN) and the LID of the 26S proteasome.

    PubMed

    Meister, Cindy; Gulko, Miriam Kolog; Köhler, Anna M; Braus, Gerhard H

    2016-02-01

    The COP9 signalosome (CSN) and the proteasomal LID are conserved macromolecular complexes composed of at least eight subunits with molecular weights of approximately 350 kDa. CSN and LID are part of the ubiquitin–proteasome pathway and cleave isopeptide linkages of lysine side chains on target proteins. CSN cleaves the isopeptide bond of ubiquitin-like protein Nedd8 from cullins, whereas the LID cleaves ubiquitin from target proteins sentenced for degradation. CSN and LID are structurally and functionally similar but the order of the assembly pathway seems to be different. The assembly differs in at least the last subunit joining the pre-assembled subcomplex. This review addresses the similarities and differences in structure, function and assembly of CSN and LID.

  8. Guiding the folding pathway of DNA origami

    NASA Astrophysics Data System (ADS)

    Dunn, Katherine E.; Dannenberg, Frits; Ouldridge, Thomas E.; Kwiatkowska, Marta; Turberfield, Andrew J.; Bath, Jonathan

    2015-09-01

    DNA origami is a robust assembly technique that folds a single-stranded DNA template into a target structure by annealing it with hundreds of short `staple' strands. Its guiding design principle is that the target structure is the single most stable configuration. The folding transition is cooperative and, as in the case of proteins, is governed by information encoded in the polymer sequence. A typical origami folds primarily into the desired shape, but misfolded structures can kinetically trap the system and reduce the yield. Although adjusting assembly conditions or following empirical design rules can improve yield, well-folded origami often need to be separated from misfolded structures. The problem could in principle be avoided if assembly pathway and kinetics were fully understood and then rationally optimized. To this end, here we present a DNA origami system with the unusual property of being able to form a small set of distinguishable and well-folded shapes that represent discrete and approximately degenerate energy minima in a vast folding landscape, thus allowing us to probe the assembly process. The obtained high yield of well-folded origami structures confirms the existence of efficient folding pathways, while the shape distribution provides information about individual trajectories through the folding landscape. We find that, similarly to protein folding, the assembly of DNA origami is highly cooperative; that reversible bond formation is important in recovering from transient misfoldings; and that the early formation of long-range connections can very effectively enforce particular folds. We use these insights to inform the design of the system so as to steer assembly towards desired structures. Expanding the rational design process to include the assembly pathway should thus enable more reproducible synthesis, particularly when targeting more complex structures. We anticipate that this expansion will be essential if DNA origami is to continue its rapid development and become a reliable manufacturing technology.

  9. Guiding the folding pathway of DNA origami.

    PubMed

    Dunn, Katherine E; Dannenberg, Frits; Ouldridge, Thomas E; Kwiatkowska, Marta; Turberfield, Andrew J; Bath, Jonathan

    2015-09-03

    DNA origami is a robust assembly technique that folds a single-stranded DNA template into a target structure by annealing it with hundreds of short 'staple' strands. Its guiding design principle is that the target structure is the single most stable configuration. The folding transition is cooperative and, as in the case of proteins, is governed by information encoded in the polymer sequence. A typical origami folds primarily into the desired shape, but misfolded structures can kinetically trap the system and reduce the yield. Although adjusting assembly conditions or following empirical design rules can improve yield, well-folded origami often need to be separated from misfolded structures. The problem could in principle be avoided if assembly pathway and kinetics were fully understood and then rationally optimized. To this end, here we present a DNA origami system with the unusual property of being able to form a small set of distinguishable and well-folded shapes that represent discrete and approximately degenerate energy minima in a vast folding landscape, thus allowing us to probe the assembly process. The obtained high yield of well-folded origami structures confirms the existence of efficient folding pathways, while the shape distribution provides information about individual trajectories through the folding landscape. We find that, similarly to protein folding, the assembly of DNA origami is highly cooperative; that reversible bond formation is important in recovering from transient misfoldings; and that the early formation of long-range connections can very effectively enforce particular folds. We use these insights to inform the design of the system so as to steer assembly towards desired structures. Expanding the rational design process to include the assembly pathway should thus enable more reproducible synthesis, particularly when targeting more complex structures. We anticipate that this expansion will be essential if DNA origami is to continue its rapid development and become a reliable manufacturing technology.

  10. What amyloidoses may tell us about normal protein folding: The Alzheimer's disease story

    NASA Astrophysics Data System (ADS)

    Teplow, David B.

    2002-03-01

    Alzheimer's disease (AD) is a progressive, neurodegenerative disorder characterized by severe neuronal injury and death. A prominent histopathologic feature of AD is disseminated parenchymal and vascular amyloid deposition. The fibrils in these deposits are composed of the amyloid β-protein (Aβ), a peptide of 4 kDa mass. In vitro and in vivo studies of Aβ fibril formation have shown that both oligomeric and polymeric Aβ assemblies have neurotoxic activity. Understanding how these assemblies form thus could be of direct therapeutic relevance. However, the aggregation and fibril-forming propensities of Aβ have complicated structure determination. Nevertheless, careful morphologic, spectroscopic, protein chemical, and physiologic analyses of the time-dependent changes in Aβ conformation, assembly state, and biological activity which occur during fibrillogenesis have significantly advanced our understanding of this clinically important process. Here, I will discuss recent findings about the pathway(s) of Aβ folding and assembly and about key structural features of Aβ which control the associated kinetics. Interestingly, the amyloidogenic folding pathway of Aβ is in some respects the mirror image of that through which natively folded amyloidogenic proteins proceed.

  11. Modeling Effects of RNA on Capsid Assembly Pathways via Coarse-Grained Stochastic Simulation

    PubMed Central

    Smith, Gregory R.; Xie, Lu; Schwartz, Russell

    2016-01-01

    The environment of a living cell is vastly different from that of an in vitro reaction system, an issue that presents great challenges to the use of in vitro models, or computer simulations based on them, for understanding biochemistry in vivo. Virus capsids make an excellent model system for such questions because they typically have few distinct components, making them amenable to in vitro and modeling studies, yet their assembly can involve complex networks of possible reactions that cannot be resolved in detail by any current experimental technology. We previously fit kinetic simulation parameters to bulk in vitro assembly data to yield a close match between simulated and real data, and then used the simulations to study features of assembly that cannot be monitored experimentally. The present work seeks to project how assembly in these simulations fit to in vitro data would be altered by computationally adding features of the cellular environment to the system, specifically the presence of nucleic acid about which many capsids assemble. The major challenge of such work is computational: simulating fine-scale assembly pathways on the scale and in the parameter domains of real viruses is far too computationally costly to allow for explicit models of nucleic acid interaction. We bypass that limitation by applying analytical models of nucleic acid effects to adjust kinetic rate parameters learned from in vitro data to see how these adjustments, singly or in combination, might affect fine-scale assembly progress. The resulting simulations exhibit surprising behavioral complexity, with distinct effects often acting synergistically to drive efficient assembly and alter pathways relative to the in vitro model. The work demonstrates how computer simulations can help us understand how assembly might differ between the in vitro and in vivo environments and what features of the cellular environment account for these differences. PMID:27244559

  12. Collybistin binds and inhibits mTORC1 signaling: a potential novel mechanism contributing to intellectual disability and autism.

    PubMed

    Machado, Camila Oliveira Freitas; Griesi-Oliveira, Karina; Rosenberg, Carla; Kok, Fernando; Martins, Stephanie; Passos-Bueno, Maria Rita; Sertie, Andrea Laurato

    2016-01-01

    Protein synthesis regulation via mammalian target of rapamycin complex 1 (mTORC1) signaling pathway has key roles in neural development and function, and its dysregulation is involved in neurodevelopmental disorders associated with autism and intellectual disability. mTOR regulates assembly of the translation initiation machinery by interacting with the eukaryotic initiation factor eIF3 complex and by controlling phosphorylation of key translational regulators. Collybistin (CB), a neuron-specific Rho-GEF responsible for X-linked intellectual disability with epilepsy, also interacts with eIF3, and its binding partner gephyrin associates with mTOR. Therefore, we hypothesized that CB also binds mTOR and affects mTORC1 signaling activity in neuronal cells. Here, by using induced pluripotent stem cell-derived neural progenitor cells from a male patient with a deletion of entire CB gene and from control individuals, as well as a heterologous expression system, we describe that CB physically interacts with mTOR and inhibits mTORC1 signaling pathway and protein synthesis. These findings suggest that disinhibited mTORC1 signaling may also contribute to the pathological process in patients with loss-of-function variants in CB.

  13. Pathologic significance of SET/I2PP2A-mediated PP2A and non-PP2A pathways in polycystic ovary syndrome (PCOS).

    PubMed

    Jiang, Shi-Wen; Xu, Siliang; Chen, Haibin; Liu, Xiaoqiang; Tang, Zuoqing; Cui, Yugui; Liu, Jiayin

    2017-01-01

    SET (SE translocation, SET), a constitutive inhibitor of protein phosphatase 2A (PP2A), is a multifunctional oncoprotein involved in DNA replication, histone modification, nucleosome assembly, gene transcription and cell proliferation. It is widely expressed in human tissues including the gonadal system and brain. Intensive studies have shown that overexpressed SET plays an important role in the development of Alzheimer's disease (AD), and may also contribute to the malignant transformation of breast and ovarian cancers. Recent studies indicated that through interaction with PP2A, SET may upregulate androgen biosynthesis and contribute to hyperandrogenism in polycystic ovary syndrome (PCOS) patients. This review article summarizes data concerning the SET expression in ovaries from PCOS and normal women, and analyzes the role/regulatory mechanism of SET for androgen biosynthesis in PCOS, as well as the significance of this action in the development of PCOS. The potential value of SET-triggered pathway as a therapeutic target and the application of anti-SET reagents for treating hyperandrogenism in PCOS patients are also discussed. Copyright © 2016. Published by Elsevier B.V.

  14. Collybistin binds and inhibits mTORC1 signaling: a potential novel mechanism contributing to intellectual disability and autism

    PubMed Central

    Machado, Camila Oliveira Freitas; Griesi-Oliveira, Karina; Rosenberg, Carla; Kok, Fernando; Martins, Stephanie; Rita Passos-Bueno, Maria; Sertie, Andrea Laurato

    2016-01-01

    Protein synthesis regulation via mammalian target of rapamycin complex 1 (mTORC1) signaling pathway has key roles in neural development and function, and its dysregulation is involved in neurodevelopmental disorders associated with autism and intellectual disability. mTOR regulates assembly of the translation initiation machinery by interacting with the eukaryotic initiation factor eIF3 complex and by controlling phosphorylation of key translational regulators. Collybistin (CB), a neuron-specific Rho-GEF responsible for X-linked intellectual disability with epilepsy, also interacts with eIF3, and its binding partner gephyrin associates with mTOR. Therefore, we hypothesized that CB also binds mTOR and affects mTORC1 signaling activity in neuronal cells. Here, by using induced pluripotent stem cell-derived neural progenitor cells from a male patient with a deletion of entire CB gene and from control individuals, as well as a heterologous expression system, we describe that CB physically interacts with mTOR and inhibits mTORC1 signaling pathway and protein synthesis. These findings suggest that disinhibited mTORC1 signaling may also contribute to the pathological process in patients with loss-of-function variants in CB. PMID:25898924

  15. The pilus usher controls protein interactions via domain masking and is functional as an oligomer.

    PubMed

    Werneburg, Glenn T; Henderson, Nadine S; Portnoy, Erica B; Sarowar, Samema; Hultgren, Scott J; Li, Huilin; Thanassi, David G

    2015-07-01

    The chaperone-usher (CU) pathway assembles organelles termed pili or fimbriae in Gram-negative bacteria. Type 1 pili expressed by uropathogenic Escherichia coli are prototypical structures assembled by the CU pathway. Biogenesis of pili by the CU pathway requires a periplasmic chaperone and an outer-membrane protein termed the usher (FimD). We show that the FimD C-terminal domains provide the high-affinity substrate-binding site but that these domains are masked in the resting usher. Domain masking requires the FimD plug domain, which serves as a switch controlling usher activation. We demonstrate that usher molecules can act in trans for pilus biogenesis, providing conclusive evidence for a functional usher oligomer. These results reveal mechanisms by which molecular machines such as the usher regulate and harness protein-protein interactions and suggest that ushers may interact in a cooperative manner during pilus assembly in bacteria.

  16. The Pilus Usher Controls Protein Interactions via Domain Masking and is Functional as an Oligomer

    PubMed Central

    Werneburg, Glenn T.; Henderson, Nadine S.; Portnoy, Erica B.; Sarowar, Samema; Hultgren, Scott J.; Li, Huilin; Thanassi, David G.

    2015-01-01

    The chaperone-usher (CU) pathway assembles organelles termed pili or fimbriae in Gram-negative bacteria. Type 1 pili expressed by uropathogenic Escherichia coli are prototypical structures assembled by the CU pathway. Biogenesis of pili by the CU pathway requires a periplasmic chaperone and an outer membrane protein termed the usher (FimD). We show that the FimD C-terminal domains provide the high-affinity substrate binding site, but that these domains are masked in the resting usher. Domain masking requires the FimD plug domain, which serves as a switch controlling usher activation. We demonstrate that usher molecules can act in trans for pilus biogenesis, providing conclusive evidence for a functional usher oligomer. These results reveal mechanisms by which molecular machines such as the usher regulate and harness protein-protein interactions, and suggest that ushers may interact in a cooperative manner during pilus assembly in bacteria. PMID:26052892

  17. Pathway-engineering for highly-aligned block copolymer arrays.

    PubMed

    Choo, Youngwoo; Majewski, Paweł W; Fukuto, Masafumi; Osuji, Chinedum O; Yager, Kevin G

    2017-12-21

    While the ultimate driving force in self-assembly is energy minimization and the corresponding evolution towards equilibrium, kinetic effects can also play a very strong role. These kinetic effects, such as trapping in metastable states, slow coarsening kinetics, and pathway-dependent assembly, are often viewed as complications to be overcome. Here, we instead exploit these effects to engineer a desired final nano-structure in a block copolymer thin film, by selecting a particular ordering pathway through the self-assembly energy landscape. In particular, we combine photothermal shearing with high-temperature annealing to yield hexagonal arrays of block copolymer cylinders that are aligned in a single prescribed direction over macroscopic sample dimensions. Photothermal shearing is first used to generate a highly-aligned horizontal cylinder state, with subsequent thermal processing used to reorient the morphology to the vertical cylinder state in a templated manner. Finally, we demonstrate the successful transfer of engineered morphologies into inorganic replicas.

  18. Synthesis, delivery and regulation of eukaryotic heme and Fe-S cluster cofactors.

    PubMed

    Barupala, Dulmini P; Dzul, Stephen P; Riggs-Gelasco, Pamela Jo; Stemmler, Timothy L

    2016-02-15

    In humans, the bulk of iron in the body (over 75%) is directed towards heme- or Fe-S cluster cofactor synthesis, and the complex, highly regulated pathways in place to accomplish biosynthesis have evolved to safely assemble and load these cofactors into apoprotein partners. In eukaryotes, heme biosynthesis is both initiated and finalized within the mitochondria, while cellular Fe-S cluster assembly is controlled by correlated pathways both within the mitochondria and within the cytosol. Iron plays a vital role in a wide array of metabolic processes and defects in iron cofactor assembly leads to human diseases. This review describes progress towards our molecular-level understanding of cellular heme and Fe-S cluster biosynthesis, focusing on the regulation and mechanistic details that are essential for understanding human disorders related to the breakdown in these essential pathways. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Modeling of the U1 snRNP assembly pathway in alternative splicing in human cells using Petri nets.

    PubMed

    Kielbassa, J; Bortfeldt, R; Schuster, S; Koch, I

    2009-02-01

    The investigation of spliceosomal processes is currently a topic of intense research in molecular biology. In the molecular mechanism of alternative splicing, a multi-protein-RNA complex - the spliceosome - plays a crucial role. To understand the biological processes of alternative splicing, it is essential to comprehend the biogenesis of the spliceosome. In this paper, we propose the first abstract model of the regulatory assembly pathway of the human spliceosomal subunit U1. Using Petri nets, we describe its highly ordered assembly that takes place in a stepwise manner. Petri net theory represents a mathematical formalism to model and analyze systems with concurrent processes at different abstraction levels with the possibility to combine them into a uniform description language. There exist many approaches to determine static and dynamic properties of Petri nets, which can be applied to analyze biochemical systems. In addition, Petri net tools usually provide intuitively understandable graphical network representations, which facilitate the dialog between experimentalists and theoreticians. Our Petri net model covers binding, transport, signaling, and covalent modification processes. Through the computation of structural and behavioral Petri net properties and their interpretation in biological terms, we validate our model and use it to get a better understanding of the complex processes of the assembly pathway. We can explain the basic network behavior, using minimal T-invariants which represent special pathways through the network. We find linear as well as cyclic pathways. We determine the P-invariants that represent conserved moieties in a network. The simulation of the net demonstrates the importance of the stability of complexes during the maturation pathway. We can show that complexes that dissociate too fast, hinder the formation of the complete U1 snRNP.

  20. Construction of energy transfer pathways self-assembled from DNA-templated stacks of anthracene.

    PubMed

    Iwaura, Rika; Yui, Hiroharu; Someya, Yuu; Ohnishi-Kameyama, Mayumi

    2014-01-05

    We describe optical properties of anthracene stacks formed from single-component self-assembly of thymidylic acid-appended anthracene 2,6-bis[5-(3'-thymidylic acid)pentyloxy] anthracene (TACT) and the binary self-assembly of TACT and complementary 20-meric oligoadenylic acid (TACT/dA20) in an aqueous buffer. UV-Vis and emission spectra for the single-component self-assembly of TACT and the binary self-assembly of TACT/dA20 were very consistent with stacked acene moieties in both self-assemblies. Interestingly, time-resolved fluorescence spectra from anthracene stacks exhibited very different features of the single-component and binary self-assemblies. In the single-component self-assembly of TACT, a dynamic Stokes shift (DSS) and relatively short fluorescence lifetime (τ=0.35ns) observed at around 450nm suggested that the anthracene moieties were flexible. Moreover, a broad emission at 530nm suggested the formation of an excited dimer (excimer). In the binary self-assembly of TACT/dA20, we detected a broad, red-shifted emission component at 534nm with a lifetime (τ=0.4ns) shorter than that observed in the TACT single-component self-assembly. Combining these results with the emission spectrum of the binary self-assembly of TACT/5'-HEX dA20, we concluded that the energy transfer pathway was constructed by columnar anthracene stacks formed from the DNA-templated self-assembly of TACT. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. The chloroplast signal recognition particle (CpSRP) pathway as a tool to minimize chlorophyll antenna size and maximize photosynthetic productivity.

    PubMed

    Kirst, Henning; Melis, Anastasios

    2014-01-01

    The concept of the Truncated Light-harvesting chlorophyll Antenna (TLA) size, as a tool by which to maximize sunlight utilization and photosynthetic productivity in microalgal mass cultures or high-density plant canopies, is discussed. TLA technology is known to improve sunlight-to-product energy conversion efficiencies and is hereby exemplified by photosynthetic productivity estimates of wild type and a TLA strain under simulated mass culture conditions. Recent advances in the generation of TLA-type mutants by targeting genes of the chloroplast signal-recognition particle (CpSRP) pathway, affecting the thylakoid membrane assembly of light-harvesting proteins, are also summarized. Two distinct CpSRP assembly pathways are recognized, one entailing post-translational, the other a co-translational mechanism. Differences between the post-translational and co-translational integration mechanisms are outlined, as these pertain to the CpSRP-mediated assembly of thylakoid membrane protein complexes in higher plants and green microalgae. The applicability of the CpSRP pathway genes in efforts to generate TLA-type strains with enhanced solar energy conversion efficiency in photosynthesis is evaluated. © 2013.

  2. Assembly and Transfer of Iron–Sulfur Clusters in the Plastid

    PubMed Central

    Lu, Yan

    2018-01-01

    Iron-Sulfur (Fe-S) clusters and proteins are essential to many growth and developmental processes. In plants, they exist in the plastids, mitochondria, cytosol, and nucleus. Six types of Fe-S clusters are found in the plastid: classic 2Fe-2S, NEET-type 2Fe-2S, Rieske-type 2Fe-2S, 3Fe-4S, 4Fe-4S, and siroheme 4Fe-4S. Classic, NEET-type, and Rieske-type 2Fe-2S clusters have the same 2Fe-2S core; similarly, common and siroheme 4Fe-4S clusters have the same 4Fe-4S core. Plastidial Fe-S clusters are assembled by the sulfur mobilization (SUF) pathway, which contains cysteine desulfurase (EC 2.8.1.7), sulfur transferase (EC 2.8.1.3), Fe-S scaffold complex, and Fe-S carrier proteins. The plastidial cysteine desulfurase-sulfur transferase-Fe-S-scaffold complex system is responsible for de novo assembly of all plastidial Fe-S clusters. However, different types of Fe-S clusters are transferred to recipient proteins via respective Fe-S carrier proteins. This review focuses on recent discoveries on the molecular functions of different assembly and transfer factors involved in the plastidial SUF pathway. It also discusses potential points for regulation of the SUF pathway, relationships among the plastidial, mitochondrial, and cytosolic Fe-S assembly and transfer pathways, as well as several open questions about the carrier proteins for Rieske-type 2Fe-2S, NEET-type 2Fe-2S, and 3F-4S clusters. PMID:29662496

  3. Genetic changes associated with testicular cancer susceptibility.

    PubMed

    Pyle, Louise C; Nathanson, Katherine L

    2016-10-01

    Testicular germ cell tumor (TGCT) is a highly heritable cancer primarily affecting young white men. Genome-wide association studies (GWAS) have been particularly effective in identifying multiple common variants with strong contribution to TGCT risk. These loci identified through association studies have implicated multiple genes as associated with TGCT predisposition, many of which are unique among cancer types, and regulate processes such as pluripotency, sex specification, and microtubule assembly. Together these biologically plausible genes converge on pathways involved in male germ cell development and maturation, and suggest that perturbation of them confers susceptibility to TGCT, as a developmental defect of germ cell differentiation. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Structure, Function, and Assembly of Adhesive Organelles by Uropathogenic Bacteria

    PubMed Central

    Chahales, Peter; Thanassi, David G.

    2015-01-01

    Bacteria assemble a wide range of adhesive proteins, termed adhesins, to mediate binding to receptors and colonization of surfaces. For pathogenic bacteria, adhesins are critical for early stages of infection, allowing the bacteria to initiate contact with host cells, colonize different tissues, and establish a foothold within the host. The adhesins expressed by a pathogen are also critical for bacterial-bacterial interactions and the formation of bacterial communities such as biofilms. The ability to adhere to host tissues is particularly important for bacteria that colonize sites such as the urinary tract, where the flow of urine functions to maintain sterility by washing away non-adherent pathogens. Adhesins vary from monomeric proteins that are directly anchored to the bacterial surface to polymeric, hairlike fibers that extend out from the cell surface. These latter fibers are termed pili or fimbriae, and were among the first identified virulence factors of uropathogenic Escherichia coli. Studies since then have identified a range of both pilus and non-pilus adhesins that contribute to bacterial colonization of the urinary tract, and have revealed molecular details of the structures, assembly pathways, and functions of these adhesive organelles. In this review, we describe the different types of adhesins expressed by both Gram-negative and Gram-positive uropathogens, what is known about their structures, how they are assembled on the bacterial surface, and the functions of specific adhesins in the pathogenesis of urinary tract infections. PMID:26542038

  5. Posttranslational stability of the heme biosynthetic enzyme ferrochelatase is dependent on iron availability and intact iron-sulfur cluster assembly machinery

    PubMed Central

    Crooks, Daniel R.; Ghosh, Manik C.; Haller, Ronald G.; Tong, Wing-Hang

    2010-01-01

    Mammalian ferrochelatase, the terminal enzyme in the heme biosynthetic pathway, possesses an iron-sulfur [2Fe-2S] cluster that does not participate in catalysis. We investigated ferrochelatase expression in iron-deficient erythropoietic tissues of mice lacking iron regulatory protein 2, in iron-deficient murine erythroleukemia cells, and in human patients with ISCU myopathy. Ferrochelatase activity and protein levels were dramatically decreased in Irp2−/− spleens, whereas ferrochelatase mRNA levels were increased, demonstrating posttranscriptional regulation of ferrochelatase in vivo. Translation of ferrochelatase mRNA was unchanged in iron-depleted murine erythroleukemia cells, and the stability of mature ferrochelatase protein was also unaffected. However, the stability of newly formed ferrochelatase protein was dramatically decreased during iron deficiency. Ferrochelatase was also severely depleted in muscle biopsies and cultured myoblasts from patients with ISCU myopathy, a disease caused by deficiency of a scaffold protein required for Fe-S cluster assembly. Together, these data suggest that decreased Fe-S cluster availability because of cellular iron depletion or impaired Fe-S cluster assembly causes reduced maturation and stabilization of apo-ferrochelatase, providing a direct link between Fe-S biogenesis and completion of heme biosynthesis. We propose that decreased heme biosynthesis resulting from impaired Fe-S cluster assembly can contribute to the pathogenesis of diseases caused by defective Fe-S cluster biogenesis. PMID:19965627

  6. Genome-wide haploinsufficiency screen reveals a novel role for γ-TuSC in spindle organization and genome stability

    PubMed Central

    Choy, John S.; O'Toole, Eileen; Schuster, Breanna M.; Crisp, Matthew J.; Karpova, Tatiana S.; McNally, James G.; Winey, Mark; Gardner, Melissa K.; Basrai, Munira A.

    2013-01-01

    How subunit dosage contributes to the assembly and function of multimeric complexes is an important question with implications in understanding biochemical, evolutionary, and disease mechanisms. Toward identifying pathways that are susceptible to decreased gene dosage, we performed a genome-wide screen for haploinsufficient (HI) genes that guard against genome instability in Saccharomyces cerevisiae. This led to the identification of all three genes (SPC97, SPC98, and TUB4) encoding the evolutionarily conserved γ-tubulin small complex (γ-TuSC), which nucleates microtubule assembly. We found that hemizygous γ-TuSC mutants exhibit higher rates of chromosome loss and increases in anaphase spindle length and elongation velocities. Fluorescence microscopy, fluorescence recovery after photobleaching, electron tomography, and model convolution simulation of spc98/+ mutants revealed improper regulation of interpolar (iMT) and kinetochore (kMT) microtubules in anaphase. The underlying cause is likely due to reduced levels of Tub4, as overexpression of TUB4 suppressed the spindle and chromosome segregation defects in spc98/+ mutants. We propose that γ-TuSC is crucial for balanced assembly between iMTs and kMTs for spindle organization and accurate chromosome segregation. Taken together, the results show how gene dosage studies provide critical insights into the assembly and function of multisubunit complexes that may not be revealed by using traditional studies with haploid gene deletion or conditional alleles. PMID:23825022

  7. Genome-wide haploinsufficiency screen reveals a novel role for γ-TuSC in spindle organization and genome stability.

    PubMed

    Choy, John S; O'Toole, Eileen; Schuster, Breanna M; Crisp, Matthew J; Karpova, Tatiana S; McNally, James G; Winey, Mark; Gardner, Melissa K; Basrai, Munira A

    2013-09-01

    How subunit dosage contributes to the assembly and function of multimeric complexes is an important question with implications in understanding biochemical, evolutionary, and disease mechanisms. Toward identifying pathways that are susceptible to decreased gene dosage, we performed a genome-wide screen for haploinsufficient (HI) genes that guard against genome instability in Saccharomyces cerevisiae. This led to the identification of all three genes (SPC97, SPC98, and TUB4) encoding the evolutionarily conserved γ-tubulin small complex (γ-TuSC), which nucleates microtubule assembly. We found that hemizygous γ-TuSC mutants exhibit higher rates of chromosome loss and increases in anaphase spindle length and elongation velocities. Fluorescence microscopy, fluorescence recovery after photobleaching, electron tomography, and model convolution simulation of spc98/+ mutants revealed improper regulation of interpolar (iMT) and kinetochore (kMT) microtubules in anaphase. The underlying cause is likely due to reduced levels of Tub4, as overexpression of TUB4 suppressed the spindle and chromosome segregation defects in spc98/+ mutants. We propose that γ-TuSC is crucial for balanced assembly between iMTs and kMTs for spindle organization and accurate chromosome segregation. Taken together, the results show how gene dosage studies provide critical insights into the assembly and function of multisubunit complexes that may not be revealed by using traditional studies with haploid gene deletion or conditional alleles.

  8. Off-pathway assembly of fimbria subunits is prevented by chaperone CfaA of CFA/I fimbriae from enterotoxigenic E. coli.

    PubMed

    Bao, Rui; Liu, Yang; Savarino, Stephen J; Xia, Di

    2016-12-01

    The assembly of the class 5 colonization factor antigen I (CFA/I) fimbriae of enterotoxigenic E. coli was proposed to proceed via the alternate chaperone-usher pathway. Here, we show that in the absence of the chaperone CfaA, CfaB, the major pilin subunit of CFA/I fimbriae, is able to spontaneously refold and polymerize into cyclic trimers. CfaA kinetically traps CfaB to form a metastable complex that can be stabilized by mutations. Crystal structure of the stabilized complex reveals distinctive interactions provided by CfaA to trap CfaB in an assembly competent state through donor-strand complementation (DSC) and cleft-mediated anchorage. Mutagenesis indicated that DSC controls the stability of the chaperone-subunit complex and the cleft-mediated anchorage of the subunit C-terminus additionally assist in subunit refolding. Surprisingly, over-stabilization of the chaperone-subunit complex led to delayed fimbria assembly, whereas destabilizing the complex resulted in no fimbriation. Thus, CfaA acts predominantly as a kinetic trap by stabilizing subunit to avoid its off-pathway self-polymerization that results in energetically favorable trimers and could serve as a driving force for CFA/I pilus assembly, representing an energetic landscape unique to class 5 fimbria assembly. Published 2016. This article is a U.S. Government work and is in the public domain in the USA. Molecular Microbiology published by John Wiley & Sons Ltd.

  9. Evolution of siderophore pathways in human pathogenic bacteria.

    PubMed

    Franke, Jakob; Ishida, Keishi; Hertweck, Christian

    2014-04-16

    Ornibactin and malleobactin are hydroxamate siderophores employed by human pathogenic bacteria belonging to the genus Burkholderia. Similarities in their structures and corresponding biosynthesis gene clusters strongly suggest an evolutionary relationship. Through gene coexpression and targeted gene manipulations, the malleobactin pathway was successfully morphed into an ornibactin assembly line. Such an evolutionary-guided approach has been unprecedented for nonribosomal peptide synthetases. Furthermore, the timing of amino acid acylation before peptide assembly, the absolute configuration of the ornibactin side chain, and the function of the acyl transferase were elucidated. Beyond providing a proof of principle for the rational design of siderophore pathways, a compelling model for the evolution of virulence traits is presented.

  10. The step-wise pathway of septin hetero-octamer assembly in budding yeast.

    PubMed

    Weems, Andrew; McMurray, Michael

    2017-05-25

    Septin proteins bind guanine nucleotides and form rod-shaped hetero-oligomers. Cells choose from a variety of available septins to assemble distinct hetero-oligomers, but the underlying mechanism was unknown. Using a new in vivo assay, we find that a stepwise assembly pathway produces the two species of budding yeast septin hetero-octamers: Cdc11/Shs1-Cdc12-Cdc3-Cdc10-Cdc10-Cdc3-Cdc12-Cdc11/Shs1. Rapid GTP hydrolysis by monomeric Cdc10 drives assembly of the core Cdc10 homodimer. The extended Cdc3 N terminus autoinhibits Cdc3 association with Cdc10 homodimers until prior Cdc3-Cdc12 interaction. Slow hydrolysis by monomeric Cdc12 and specific affinity of Cdc11 for transient Cdc12•GTP drive assembly of distinct trimers, Cdc11-Cdc12-Cdc3 or Shs1-Cdc12-Cdc3. Decreasing the cytosolic GTP:GDP ratio increases the incorporation of Shs1 vs Cdc11, which alters the curvature of filamentous septin rings. Our findings explain how GTP hydrolysis controls septin assembly, and uncover mechanisms by which cells construct defined septin complexes.

  11. Rapid construction of insulated genetic circuits via synthetic sequence-guided isothermal assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torella, JP; Boehm, CR; Lienert, F

    2013-12-28

    In vitro recombination methods have enabled one-step construction of large DNA sequences from multiple parts. Although synthetic biological circuits can in principle be assembled in the same fashion, they typically contain repeated sequence elements such as standard promoters and terminators that interfere with homologous recombination. Here we use a computational approach to design synthetic, biologically inactive unique nucleotide sequences (UNSes) that facilitate accurate ordered assembly. Importantly, our designed UNSes make it possible to assemble parts with repeated terminator and insulator sequences, and thereby create insulated functional genetic circuits in bacteria and mammalian cells. Using UNS-guided assembly to construct repeating promoter-gene-terminatormore » parts, we systematically varied gene expression to optimize production of a deoxychromoviridans biosynthetic pathway in Escherichia coli. We then used this system to construct complex eukaryotic AND-logic gates for genomic integration into embryonic stem cells. Construction was performed by using a standardized series of UNS-bearing BioBrick-compatible vectors, which enable modular assembly and facilitate reuse of individual parts. UNS-guided isothermal assembly is broadly applicable to the construction and optimization of genetic circuits and particularly those requiring tight insulation, such as complex biosynthetic pathways, sensors, counters and logic gates.« less

  12. Transcriptome sequencing and annotation of the microalgae Dunaliella tertiolecta: Pathway description and gene discovery for production of next-generation biofuels

    PubMed Central

    2011-01-01

    Background Biodiesel or ethanol derived from lipids or starch produced by microalgae may overcome many of the sustainability challenges previously ascribed to petroleum-based fuels and first generation plant-based biofuels. The paucity of microalgae genome sequences, however, limits gene-based biofuel feedstock optimization studies. Here we describe the sequencing and de novo transcriptome assembly for the non-model microalgae species, Dunaliella tertiolecta, and identify pathways and genes of importance related to biofuel production. Results Next generation DNA pyrosequencing technology applied to D. tertiolecta transcripts produced 1,363,336 high quality reads with an average length of 400 bases. Following quality and size trimming, ~ 45% of the high quality reads were assembled into 33,307 isotigs with a 31-fold coverage and 376,482 singletons. Assembled sequences and singletons were subjected to BLAST similarity searches and annotated with Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) orthology (KO) identifiers. These analyses identified the majority of lipid and starch biosynthesis and catabolism pathways in D. tertiolecta. Conclusions The construction of metabolic pathways involved in the biosynthesis and catabolism of fatty acids, triacylglycrols, and starch in D. tertiolecta as well as the assembled transcriptome provide a foundation for the molecular genetics and functional genomics required to direct metabolic engineering efforts that seek to enhance the quantity and character of microalgae-based biofuel feedstock. PMID:21401935

  13. Decomposition of complex microbial behaviors into resource-based stress responses

    PubMed Central

    Carlson, Ross P.

    2009-01-01

    Motivation: Highly redundant metabolic networks and experimental data from cultures likely adapting simultaneously to multiple stresses can complicate the analysis of cellular behaviors. It is proposed that the explicit consideration of these factors is critical to understanding the competitive basis of microbial strategies. Results: Wide ranging, seemingly unrelated Escherichia coli physiological fluxes can be simply and accurately described as linear combinations of a few ecologically relevant stress adaptations. These strategies were identified by decomposing the central metabolism of E.coli into elementary modes (mathematically defined biochemical pathways) and assessing the resource investment cost–benefit properties for each pathway. The approach capitalizes on the inherent tradeoffs related to investing finite resources like nitrogen into different pathway enzymes when the pathways have varying metabolic efficiencies. The subset of ecologically competitive pathways represented 0.02% of the total permissible pathways. The biological relevance of the assembled strategies was tested against 10 000 randomly constructed pathway subsets. None of the randomly assembled collections were able to describe all of the considered experimental data as accurately as the cost-based subset. The results suggest these metabolic strategies are biologically significant. The current descriptions were compared with linear programming (LP)-based flux descriptions using the Euclidean distance metric. The current study's pathway subset described the experimental fluxes with better accuracy than the LP results without having to test multiple objective functions or constraints and while providing additional ecological insight into microbial behavior. The assembled pathways seem to represent a generalized set of strategies that can describe a wide range of microbial responses and hint at evolutionary processes where a handful of successful metabolic strategies are utilized simultaneously in different combinations to adapt to diverse conditions. Contact: rossc@biofilms.montana.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:19008248

  14. De novo assembly and transcriptome analysis of five major tissues of Jatropha curcas L. using GS FLX titanium platform of 454 pyrosequencing

    PubMed Central

    2011-01-01

    Background Jatropha curcas L. is an important non-edible oilseed crop with promising future in biodiesel production. However, factors like oil yield, oil composition, toxic compounds in oil cake, pests and diseases limit its commercial potential. Well established genetic engineering methods using cloned genes could be used to address these limitations. Earlier, 10,983 unigenes from Sanger sequencing of ESTs, and 3,484 unique assembled transcripts from 454 pyrosequencing of uncloned cDNAs were reported. In order to expedite the process of gene discovery, we have undertaken 454 pyrosequencing of normalized cDNAs prepared from roots, mature leaves, flowers, developing seeds, and embryos of J. curcas. Results From 383,918 raw reads, we obtained 381,957 quality-filtered and trimmed reads that are suitable for the assembly of transcript sequences. De novo contig assembly of these reads generated 17,457 assembled transcripts (contigs) and 54,002 singletons. Average length of the assembled transcripts was 916 bp. About 30% of the transcripts were longer than 1000 bases, and the size of the longest transcript was 7,173 bases. BLASTX analysis revealed that 2,589 of these transcripts are full-length. The assembled transcripts were validated by RT-PCR analysis of 28 transcripts. The results showed that the transcripts were correctly assembled and represent actively expressed genes. KEGG pathway mapping showed that 2,320 transcripts are related to major biochemical pathways including the oil biosynthesis pathway. Overall, the current study reports 14,327 new assembled transcripts which included 2589 full-length transcripts and 27 transcripts that are directly involved in oil biosynthesis. Conclusion The large number of transcripts reported in the current study together with existing ESTs and transcript sequences will serve as an invaluable genetic resource for crop improvement in jatropha. Sequence information of those genes that are involved in oil biosynthesis could be used for metabolic engineering of jatropha to increase oil content, and to modify oil composition. PMID:21492485

  15. De novo assembly and transcriptome analysis of five major tissues of Jatropha curcas L. using GS FLX titanium platform of 454 pyrosequencing.

    PubMed

    Natarajan, Purushothaman; Parani, Madasamy

    2011-04-15

    Jatropha curcas L. is an important non-edible oilseed crop with promising future in biodiesel production. However, factors like oil yield, oil composition, toxic compounds in oil cake, pests and diseases limit its commercial potential. Well established genetic engineering methods using cloned genes could be used to address these limitations. Earlier, 10,983 unigenes from Sanger sequencing of ESTs, and 3,484 unique assembled transcripts from 454 pyrosequencing of uncloned cDNAs were reported. In order to expedite the process of gene discovery, we have undertaken 454 pyrosequencing of normalized cDNAs prepared from roots, mature leaves, flowers, developing seeds, and embryos of J. curcas. From 383,918 raw reads, we obtained 381,957 quality-filtered and trimmed reads that are suitable for the assembly of transcript sequences. De novo contig assembly of these reads generated 17,457 assembled transcripts (contigs) and 54,002 singletons. Average length of the assembled transcripts was 916 bp. About 30% of the transcripts were longer than 1000 bases, and the size of the longest transcript was 7,173 bases. BLASTX analysis revealed that 2,589 of these transcripts are full-length. The assembled transcripts were validated by RT-PCR analysis of 28 transcripts. The results showed that the transcripts were correctly assembled and represent actively expressed genes. KEGG pathway mapping showed that 2,320 transcripts are related to major biochemical pathways including the oil biosynthesis pathway. Overall, the current study reports 14,327 new assembled transcripts which included 2589 full-length transcripts and 27 transcripts that are directly involved in oil biosynthesis. The large number of transcripts reported in the current study together with existing ESTs and transcript sequences will serve as an invaluable genetic resource for crop improvement in jatropha. Sequence information of those genes that are involved in oil biosynthesis could be used for metabolic engineering of jatropha to increase oil content, and to modify oil composition.

  16. Impaired mitochondrial Fe-S cluster biogenesis activates the DNA damage response through different signaling mediators.

    PubMed

    Pijuan, Jordi; María, Carlos; Herrero, Enrique; Bellí, Gemma

    2015-12-15

    Fe-S cluster biogenesis machinery is required for multiple DNA metabolism processes. In this work, we show that, in Saccharomyces cerevisiae, defects at different stages of the mitochondrial Fe-S cluster assembly machinery (ISC) result in increased spontaneous mutation rate and hyper-recombination, accompanied by an increment in Rad52-associated DNA repair foci and a higher phosphorylated state of γH2A histone, altogether supporting the presence of constitutive DNA lesions. Furthermore, ISC assembly machinery deficiency elicits a DNA damage response that upregulates ribonucleotide reductase activity by promoting the reduction of Sml1 levels and the cytosolic redistribution of Rnr2 and Rnr4 enzyme subunits. Depending on the impaired stage of the ISC machinery, different signaling pathway mediators contribute to such a response, converging on Dun1. Thus, cells lacking the glutaredoxin Grx5, which are compromised at the core ISC system, show Mec1- and Rad53-independent Dun1 activation, whereas both Mec1 and Chk1 are required when the non-core ISC member Iba57 is absent. Grx5-null cells exhibit a strong dependence on the error-free post-replication repair and the homologous recombination pathways, demonstrating that a DNA damage response needs to be activated upon ISC impairment to preserve cell viability. © 2015. Published by The Company of Biologists Ltd.

  17. The adverse outcome pathway: A multifaceted framework supporting 21st century toxicology

    EPA Science Inventory

    The adverse outcome pathway (AOP) framework serves as a knowledge assembly, interpretation, and communication tool designed to support the translation of pathway-specific mechanistic data into responses relevant to assessing and managing risks of chemicals to human health and the...

  18. Assembly of a novel biosynthetic pathway for production of the plant flavonoid fisetin in Escherichia coli.

    PubMed

    Stahlhut, Steen G; Siedler, Solvej; Malla, Sailesh; Harrison, Scott J; Maury, Jérôme; Neves, Ana Rute; Forster, Jochen

    2015-09-01

    Plant secondary metabolites are an underutilized pool of bioactive molecules for applications in the food, pharma and nutritional industries. One such molecule is fisetin, which is present in many fruits and vegetables and has several potential health benefits, including anti-cancer, anti-viral and anti-aging activity. Moreover, fisetin has recently been shown to prevent Alzheimer's disease in mice and to prevent complications associated with diabetes type I. Thus far the biosynthetic pathway of fisetin in plants remains elusive. Here, we present the heterologous assembly of a novel fisetin pathway in Escherichia coli. We propose a novel biosynthetic pathway from the amino acid, tyrosine, utilizing nine heterologous enzymes. The pathway proceeds via the synthesis of two flavanones never produced in microorganisms before--garbanzol and resokaempferol. We show for the first time a functional biosynthetic pathway and establish E. coli as a microbial platform strain for the production of fisetin and related flavonols. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  19. Regulated Assembly of Vacuolar ATPase Is Increased during Cluster Disruption-induced Maturation of Dendritic Cells through a Phosphatidylinositol 3-Kinase/mTOR-dependent Pathway*

    PubMed Central

    Liberman, Rachel; Bond, Sarah; Shainheit, Mara G.; Stadecker, Miguel J.; Forgac, Michael

    2014-01-01

    The vacuolar (H+)-ATPases (V-ATPases) are ATP-driven proton pumps composed of a peripheral V1 domain and a membrane-embedded V0 domain. Regulated assembly of V1 and V0 represents an important regulatory mechanism for controlling V-ATPase activity in vivo. Previous work has shown that V-ATPase assembly increases during maturation of bone marrow-derived dendritic cells induced by activation of Toll-like receptors. This increased assembly is essential for antigen processing, which is dependent upon an acidic lysosomal pH. Cluster disruption of dendritic cells induces a semi-mature phenotype associated with immune tolerance. Thus, semi-mature dendritic cells are able to process and present self-peptides to suppress autoimmune responses. We have investigated V-ATPase assembly in bone marrow-derived, murine dendritic cells and observed an increase in assembly following cluster disruption. This increased assembly is not dependent upon new protein synthesis and is associated with an increase in concanamycin A-sensitive proton transport in FITC-loaded lysosomes. Inhibition of phosphatidylinositol 3-kinase with wortmannin or mTORC1 with rapamycin effectively inhibits the increased assembly observed upon cluster disruption. These results suggest that the phosphatidylinositol 3-kinase/mTOR pathway is involved in controlling V-ATPase assembly during dendritic cell maturation. PMID:24273170

  20. The Mammalian Cell Cycle Regulates Parvovirus Nuclear Capsid Assembly

    PubMed Central

    Riolobos, Laura; Domínguez, Carlos; Kann, Michael; Almendral, José M.

    2015-01-01

    It is unknown whether the mammalian cell cycle could impact the assembly of viruses maturing in the nucleus. We addressed this question using MVM, a reference member of the icosahedral ssDNA nuclear parvoviruses, which requires cell proliferation to infect by mechanisms partly understood. Constitutively expressed MVM capsid subunits (VPs) accumulated in the cytoplasm of mouse and human fibroblasts synchronized at G0, G1, and G1/S transition. Upon arrest release, VPs translocated to the nucleus as cells entered S phase, at efficiencies relying on cell origin and arrest method, and immediately assembled into capsids. In synchronously infected cells, the consecutive virus life cycle steps (gene expression, proteins nuclear translocation, capsid assembly, genome replication and encapsidation) proceeded tightly coupled to cell cycle progression from G0/G1 through S into G2 phase. However, a DNA synthesis stress caused by thymidine irreversibly disrupted virus life cycle, as VPs became increasingly retained in the cytoplasm hours post-stress, forming empty capsids in mouse fibroblasts, thereby impairing encapsidation of the nuclear viral DNA replicative intermediates. Synchronously infected cells subjected to density-arrest signals while traversing early S phase also blocked VPs transport, resulting in a similar misplaced cytoplasmic capsid assembly in mouse fibroblasts. In contrast, thymidine and density arrest signals deregulating virus assembly neither perturbed nuclear translocation of the NS1 protein nor viral genome replication occurring under S/G2 cycle arrest. An underlying mechanism of cell cycle control was identified in the nuclear translocation of phosphorylated VPs trimeric assembly intermediates, which accessed a non-conserved route distinct from the importin α2/β1 and transportin pathways. The exquisite cell cycle-dependence of parvovirus nuclear capsid assembly conforms a novel paradigm of time and functional coupling between cellular and virus life cycles. This junction may determine the characteristic parvovirus tropism for proliferative and cancer cells, and its disturbance could critically contribute to persistence in host tissues. PMID:26067441

  1. Competing pathways determine fibril morphology in the self-assembly of beta2-microglobulin into amyloid.

    PubMed

    Gosal, Walraj S; Morten, Isobel J; Hewitt, Eric W; Smith, D Alastair; Thomson, Neil H; Radford, Sheena E

    2005-08-26

    Despite its importance in biological phenomena, a comprehensive understanding of the mechanism of amyloid formation remains elusive. Here, we use atomic force microscopy to map the formation of beta2-microglobulin amyloid fibrils with distinct morphologies and persistence lengths, when protein concentration, pH and ionic strength are varied. Using the resulting state-diagrams, we demonstrate the existence of two distinct competitive pathways of assembly, which define an energy landscape that rationalises the sensitivity of fibril morphology on the solution conditions. Importantly, we show that semi-flexible (worm-like) fibrils, which form rapidly during assembly, are kinetically trapped species, formed via a non-nucleated pathway that is explicitly distinct from that leading to the formation of the relatively rigid long-straight fibrils classically associated with amyloid. These semi-flexible fibrils also share an antibody epitope common to other protein oligomers that are known to be toxic species linked to human disease. The results demonstrate the heterogeneity of amyloid assembly, and have important implications for our understanding of the importance of oligomeric states in amyloid disease, the origins of prion strains, and the development of therapeutic strategies.

  2. Use of the adverse outcome pathway framework to represent cross-species consequences of specific pathway perturbations

    EPA Science Inventory

    The adverse outcome pathway (AOP) framework has been developed as a means for assembling scientifically defensible descriptions of how particular molecular perturbations, termed molecular initiating events (MIEs), can evoke a set of predictable responses at different levels of bi...

  3. Pathway diversity leads to 2D-nanostructure in photo-triggered supramolecular assembly.

    PubMed

    Ghosh, Suhrit; Pal, Deep Sankar

    2018-03-31

    This communication reports photo-triggered supramolecular assembly of a naphthalene-diimide (NDI) derivative, appended with a photo-labile ortho-nitrobenzyl (ONB)-ester protected carboxylic acid. Photo-irradiation produces the free COOH group which facilitates H-bonding driven face-to-face stacking of the NDI chromophores producing an ultra-thin (height < 2.0 nm) two-dimensional (2D) nano-sheet. In contrast, spontaneous supramolecular assembly of the same active monomer exhibits entirely different features such as uncontrolled growth, J-aggregation and fibrillar morphology. A completely different pathway for photo-triggered assembly is attributed to the dual function of the photo-caged pro-monomer in (i) producing the carboxylic acid in controlled manner and (ii) simultaneously inhibiting the spontaneous J-aggregation of the photo-generated monomers by ester-carboxylic acid H-bonding and in turn directing a distinct growth mechanism. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Excited-State Dynamics of Dithienylethenes Functionalized for Self-Supramolecular Assembly.

    PubMed

    Hamdi, I; Buntinx, G; Poizat, O; Perrier, A; Le Bras, L; Delbaere, S; Barrau, S; Louati, M; Takeshita, M; Tokushige, K; Takao, M; Aloïse, S

    2018-04-12

    The photoswitching and competitive processes of two photochromic dithienylethenes (DTEs) functionalized at both sides with 2-ureido-4[1H]-pyrimidone (UPy) quadruple hydrogen-bonding recognition patterns have been investigated with NMR experiments, ultrafast spectroscopy, and density functional theory (DFT) calculations. The originality of these molecules is their ability to form large supramolecular assemblies induced by light for the closed form (CF) species while the open form (OF) species exist as small oligomers. Photochromic parameters have been determined and photochemical pathways have been rationalized with clear distinction between the antiparallel (OF-AP) and parallel (OF-P) species. A new photocyclization pathway via triplet manifold has been evidenced. The effect of the supramolecular assembly on the photochemical response is discussed. Unlike the photoreversion process, which is unaffected by supramolecular assembly, rate constants of the photocyclization reaction and intersystem crossing process are sensitive to the presence of small OF oligomers.

  5. A plug-and-play pathway refactoring workflow for natural product research in Escherichia coli and Saccharomyces cerevisiae.

    PubMed

    Ren, Hengqian; Hu, Pingfan; Zhao, Huimin

    2017-08-01

    Pathway refactoring serves as an invaluable synthetic biology tool for natural product discovery, characterization, and engineering. However, the complicated and laborious molecular biology techniques largely hinder its application in natural product research, especially in a high-throughput manner. Here we report a plug-and-play pathway refactoring workflow for high-throughput, flexible pathway construction, and expression in both Escherichia coli and Saccharomyces cerevisiae. Biosynthetic genes were firstly cloned into pre-assembled helper plasmids with promoters and terminators, resulting in a series of expression cassettes. These expression cassettes were further assembled using Golden Gate reaction to generate fully refactored pathways. The inclusion of spacer plasmids in this system would not only increase the flexibility for refactoring pathways with different number of genes, but also facilitate gene deletion and replacement. As proof of concept, a total of 96 pathways for combinatorial carotenoid biosynthesis were built successfully. This workflow should be generally applicable to different classes of natural products produced by various organisms. Biotechnol. Bioeng. 2017;114: 1847-1854. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  6. Complex IV Deficient Surf1−/− Mice Initiate Mitochondrial Stress Responses

    PubMed Central

    Pulliam, Daniel A.; Deepa, Sathyaseelan S.; Liu, Yuhong; Hill, Shauna; Lin, Ai-Ling; Bhattacharya, Arunabh; Shi, Yun; Sloane, Lauren; Viscomi, Carlo; Zeviani, Massimo; Van Remmen, Holly

    2014-01-01

    Summary Mutations in SURF1 cytochrome c oxidase (COX) assembly protein are associated with Leigh’s syndrome, a human mitochondrial disorder that manifests as severe mitochondrial phenotypes and early lethality. In contrast, mice lacking the Surf1 protein (Surf1−/−) are viable and were previously shown to have enhanced longevity and a greater than 50% reduction in COX activity. We measured mitochondrial function in heart and skeletal muscle, and despite the significant reduction in COX activity, we found little or no difference in reactive oxygen species (ROS) generation, membrane potential, ATP production or respiration in isolated mitochondria from Surf1−/− mice compared to wild-type. However, blood lactate levels are elevated and Surf1−/− mice have reduced running endurance, suggesting compromised mitochondrial energy metabolism in vivo. Decreased COX activity in Surf1−/− mice is associated with increased markers of mitochondrial biogenesis (PGC-1α and VDAC) in both heart and skeletal muscle. While mitochondrial biogenesis is a common response in the two tissues, skeletal muscle have an up-regulation of the mitochondrial unfolded protein response (UPRMT) and heart exhibits induction of the Nrf2 antioxidant response pathway. These data are the first to report induction of the UPRMT in a mammalian model of diminished COX activity. In addition our results suggest that impaired mitochondrial function can lead to induction of mitochondrial stress pathways to confer protective effects on cellular homeostasis. Loss of complex IV assembly factor Surf1 in mice results in compensatory responses including mitochondrial biogenesis, the nrf2 pathway and the mitochondrial unfolded protein response. This compensatory response may contribute to the lack of deleterious phenotypes under basal conditions. PMID:24911525

  7. Dynamic pathways for viral capsid assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hagan, Michael F.; Chandler, David

    2006-02-09

    We develop a class of models with which we simulate the assembly of particles into T1 capsid-like objects using Newtonian dynamics. By simulating assembly for many different values of system parameters, we vary the forces that drive assembly. For some ranges of parameters, assembly is facile, while for others, assembly is dynamically frustrated by kinetic traps corresponding to malformed or incompletely formed capsids. Our simulations sample many independent trajectories at various capsomer concentrations, allowing for statistically meaningful conclusions. Depending on subunit (i.e., capsomer) geometries, successful assembly proceeds by several mechanisms involving binding of intermediates of various sizes. We discuss themore » relationship between these mechanisms and experimental evaluations of capsid assembly processes.« less

  8. The pilus usher controls protein interactions via domain masking and is functional as an oligomer

    DOE PAGES

    Werneburg, Glenn T.; Li, Huilin; Henderson, Nadine S.; ...

    2015-06-08

    The chaperone/usher (CU) pathway is responsible for biogenesis of organelles termed pili or fimbriae in Gram-negative bacteria. Type 1 pili expressed by uropathogenic Escherichia coli are prototypical structures assembled by the CU pathway. Assembly and secretion of pili by the CU pathway requires a dedicated periplasmic chaperone and a multidomain outer membrane protein termed the usher (FimD). We show that the FimD C-terminal domains provide the high-affinity substrate binding site, but that these domains are masked in the resting usher. Domain masking requires the FimD plug domain, which served as a central switch controlling usher activation. In addition, we demonstratemore » that usher molecules can act in trans for pilus biogenesis, providing conclusive evidence for a functional usher oligomer. These results reveal mechanisms by which molecular machines such as the usher regulate and harness protein-protein interactions, and suggest that ushers may interact in a cooperative manner during pilus assembly in bacteria.« less

  9. Polyubiquitination events mediate polymethylmethacrylate (PMMA) particle activation of NF-kappaB pathway.

    PubMed

    Yamanaka, Yasuhiro; Karuppaiah, Kannan; Abu-Amer, Yousef

    2011-07-08

    The pathologic response to implant wear-debris constitutes a major component of inflammatory osteolysis and remains under intense investigation. Polymethylmethacrylate (PMMA) particles, which are released during implant wear and loosening, constitute a major culprit by virtue of inducing inflammatory and osteolytic responses by macrophages and osteoclasts, respectively. Recent work by several groups has identified important cellular entities and secreted factors that contribute to inflammatory osteolysis. In previous work, we have shown that PMMA particles contribute to inflammatory osteolysis through stimulation of major pathways in monocytes/macrophages, primarily NF-κB and MAP kinases. The former pathway requires assembly of large IKK complex encompassing IKK1, IKK2, and IKKγ/NEMO. We have shown recently that interfering with the NF-κB and MAPK activation pathways, through introduction of inhibitors and decoy molecules, impedes PMMA-induced inflammation and osteolysis in mouse models of experimental calvarial osteolysis and inflammatory arthritis. In this study, we report that PMMA particles activate the upstream transforming growth factor β-activated kinase-1 (TAK1), which is a key regulator of signal transduction cascades leading to activation of NF-κB and AP-1 factors. More importantly, we found that PMMA particles induce TAK1 binding to NEMO and UBC13. In addition, we show that PMMA particles induce TRAF6 and UBC13 binding to NEMO and that lack of TRAF6 significantly attenuates NEMO ubiquitination. Altogether, these observations suggest that PMMA particles induce ubiquitination of NEMO, an event likely mediated by TRAF6, TAK1, and UBC13. Our findings provide important information for better understanding of the mechanisms underlying PMMA particle-induced inflammatory responses.

  10. Using a model comparison approach to describe the assembly pathway for histone H1

    PubMed Central

    Contreras, Carlos; Villasana, Minaya; Hendzel, Michael J.

    2018-01-01

    Histones H1 or linker histones are highly dynamic proteins that diffuse throughout the cell nucleus and associate with chromatin (DNA and associated proteins). This binding interaction of histone H1 with the chromatin is thought to regulate chromatin organization and DNA accessibility to transcription factors and has been proven to involve a kinetic process characterized by a population that associates weakly with chromatin and rapidly dissociates and another population that resides at a binding site for up to several minutes before dissociating. When considering differences between these two classes of interactions in a mathematical model for the purpose of describing and quantifying the dynamics of histone H1, it becomes apparent that there could be several assembly pathways that explain the kinetic data obtained in living cells. In this work, we model these different pathways using systems of reaction-diffusion equations and carry out a model comparison analysis using FRAP (fluorescence recovery after photobleaching) experimental data from different histone H1 variants to determine the most feasible mechanism to explain histone H1 binding to chromatin. The analysis favors four different chromatin assembly pathways for histone H1 which share common features and provide meaningful biological information on histone H1 dynamics. We show, using perturbation analysis, that the explicit consideration of high- and low-affinity associations of histone H1 with chromatin in the favored assembly pathways improves the interpretation of histone H1 experimental FRAP data. To illustrate the results, we use one of the favored models to assess the kinetic changes of histone H1 after core histone hyperacetylation, and conclude that this post-transcriptional modification does not affect significantly the transition of histone H1 from a weakly bound state to a tightly bound state. PMID:29352283

  11. Mitochondrial ribosome assembly in health and disease

    PubMed Central

    De Silva, Dasmanthie; Tu, Ya-Ting; Amunts, Alexey; Fontanesi, Flavia; Barrientos, Antoni

    2015-01-01

    The ribosome is a structurally and functionally conserved macromolecular machine universally responsible for catalyzing protein synthesis. Within eukaryotic cells, mitochondria contain their own ribosomes (mitoribosomes), which synthesize a handful of proteins, all essential for the biogenesis of the oxidative phosphorylation system. High-resolution cryo-EM structures of the yeast, porcine and human mitoribosomal subunits and of the entire human mitoribosome have uncovered a wealth of new information to illustrate their evolutionary divergence from their bacterial ancestors and their adaptation to synthesis of highly hydrophobic membrane proteins. With such structural data becoming available, one of the most important remaining questions is that of the mitoribosome assembly pathway and factors involved. The regulation of mitoribosome biogenesis is paramount to mitochondrial respiration, and thus to cell viability, growth and differentiation. Moreover, mutations affecting the rRNA and protein components produce severe human mitochondrial disorders. Despite its biological and biomedical significance, knowledge on mitoribosome biogenesis and its deviations from the much-studied bacterial ribosome assembly processes is scarce, especially the order of rRNA processing and assembly events and the regulatory factors required to achieve fully functional particles. This article focuses on summarizing the current available information on mitoribosome assembly pathway, factors that form the mitoribosome assembly machinery, and the effect of defective mitoribosome assembly on human health. PMID:26030272

  12. Native Language Experience Shapes Neural Basis of Addressed and Assembled Phonologies

    PubMed Central

    Mei, Leilei; Xue, Gui; Lu, Zhong-Lin; He, Qinghua; Wei, Miao; Zhang, Mingxia; Dong, Qi; Chen, Chuansheng

    2015-01-01

    Previous studies have suggested differential engagement of addressed and assembled phonologies in reading Chinese and alphabetic languages (e.g., English) and the modulatory role of native language in learning to read a second language. However, it is not clear whether native language experience shapes the neural mechanisms of addressed and assembled phonologies. To address this question, we trained native Chinese and native English speakers to read the same artificial language (based on Korean Hangul) either through addressed (i.e., whole-word mapping) or assembled (i.e., grapheme-to-phoneme mapping) phonology. We found that, for both native Chinese and native English speakers, addressed phonology relied on the regions in the ventral pathway, whereas assembled phonology depended on the regions in the dorsal pathway. More importantly, we found that the neural mechanisms of addressed and assembled phonologies were shaped by native language experience. Specifically, two key regions for addressed phonology (i.e., the left middle temporal gyrus and right inferior temporal gyrus) showed greater activation for addressed phonology in native Chinese speakers, while one key region for assembled phonology (i.e., the left supramarginal gyrus) showed more activation for assembled phonology in native English speakers. These results provide direct neuroimaging evidence for the effect of native language experience on the neural mechanisms of phonological access in a new language and support the assimilation-accommodation hypothesis. PMID:25858447

  13. Molecular details of the yeast frataxin-Isu1 interaction during mitochondrial Fe-S cluster assembly

    PubMed Central

    Cook, Jeremy D.; Kondapalli, Kalyan C.; Rawat, Swati; Childs, William C.; Murugesan, Yogapriya; Dancis, Andrew; Stemmler, Timothy L.

    2010-01-01

    Frataxin, a conserved nuclear encoded mitochondrial protein, plays a direct role in iron-sulfur cluster biosynthesis within the ISC assembly pathway. Humans with frataxin deficiency have Friedreich’s ataxia, a neurodegenerative disorder characterized by mitochondrial iron overload and disruption in Fe-S cluster synthesis. Biochemical and genetic studies have shown frataxin interacts with the iron-sulfur cluster assembly scaffold protein (in yeast, there are two: Isu1 and Isu2), indicating frataxin plays a direct role in cluster assembly, possibly by serving as an iron chaperone n the assembly pathway. Here we provide molecular details of how yeast frataxin (Yfh1) interacts with Isu1 as a structural module to better understand the multiprotein complex assembly that completes Fe-S cluster assembly; this complex also includes the cysteine desulfurase (Nfs1 in yeast) and the accessory protein (Isd11), together in the mitochondria. Thermodynamic binding parameters for protein partner and iron binding were measured for the yeast orthologs using isothermal titration calorimetry (ITC). Nuclear magnetic resonance spectroscopy was used to provide the molecular details to understand how Yfh1 interacts with Isu1. X-ray absorption studies were used to electronically and structurally characterize how iron is transferred to Isu1 and then incorporated into a Fe-S cluster. These results were combined with previously published data to generate a structural model for how the Fe-S cluster protein assembly complex can come together to accomplish Fe-S cluster assembly. PMID:20815377

  14. Molecular Details of the Yeast Frataxin-Isu1 Interaction during Mitochondrial Fe-S Cluster Assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, J.; Kondapalli, K; Rawat, S

    2010-01-01

    Frataxin, a conserved nuclear-encoded mitochondrial protein, plays a direct role in iron-sulfur cluster biosynthesis within the ISC assembly pathway. Humans with frataxin deficiency have Friedreich's ataxia, a neurodegenerative disorder characterized by mitochondrial iron overload and disruption in Fe-S cluster synthesis. Biochemical and genetic studies have shown frataxin interacts with the iron-sulfur cluster assembly scaffold protein (in yeast, there are two, Isu1 and Isu2), indicating frataxin plays a direct role in cluster assembly, possibly by serving as an iron chaperone in the assembly pathway. Here we provide molecular details of how yeast frataxin (Yfh1) interacts with Isu1 as a structural modulemore » to improve our understanding of the multiprotein complex assembly that completes Fe-S cluster assembly; this complex also includes the cysteine desulfurase (Nfs1 in yeast) and the accessory protein (Isd11), together in the mitochondria. Thermodynamic binding parameters for protein partner and iron binding were measured for the yeast orthologs using isothermal titration calorimetry. Nuclear magnetic resonance spectroscopy was used to provide the molecular details to understand how Yfh1 interacts with Isu1. X-ray absorption studies were used to electronically and structurally characterize how iron is transferred to Isu1 and then incorporated into an Fe-S cluster. These results were combined with previously published data to generate a structural model for how the Fe-S cluster protein assembly complex can come together to accomplish Fe-S cluster assembly.« less

  15. Molecular details of the yeast frataxin-Isu1 interaction during mitochondrial Fe-S cluster assembly.

    PubMed

    Cook, Jeremy D; Kondapalli, Kalyan C; Rawat, Swati; Childs, William C; Murugesan, Yogapriya; Dancis, Andrew; Stemmler, Timothy L

    2010-10-12

    Frataxin, a conserved nuclear-encoded mitochondrial protein, plays a direct role in iron-sulfur cluster biosynthesis within the ISC assembly pathway. Humans with frataxin deficiency have Friedreich's ataxia, a neurodegenerative disorder characterized by mitochondrial iron overload and disruption in Fe-S cluster synthesis. Biochemical and genetic studies have shown frataxin interacts with the iron-sulfur cluster assembly scaffold protein (in yeast, there are two, Isu1 and Isu2), indicating frataxin plays a direct role in cluster assembly, possibly by serving as an iron chaperone in the assembly pathway. Here we provide molecular details of how yeast frataxin (Yfh1) interacts with Isu1 as a structural module to improve our understanding of the multiprotein complex assembly that completes Fe-S cluster assembly; this complex also includes the cysteine desulfurase (Nfs1 in yeast) and the accessory protein (Isd11), together in the mitochondria. Thermodynamic binding parameters for protein partner and iron binding were measured for the yeast orthologs using isothermal titration calorimetry. Nuclear magnetic resonance spectroscopy was used to provide the molecular details to understand how Yfh1 interacts with Isu1. X-ray absorption studies were used to electronically and structurally characterize how iron is transferred to Isu1 and then incorporated into an Fe-S cluster. These results were combined with previously published data to generate a structural model for how the Fe-S cluster protein assembly complex can come together to accomplish Fe-S cluster assembly.

  16. Chemical-gene interaction networks and causal reasoning for ...

    EPA Pesticide Factsheets

    Evaluating the potential human health and ecological risks associated with exposures to complex chemical mixtures in the environment is one of the main challenges of chemical safety assessment and environmental protection. There is a need for approaches that can help to integrate chemical monitoring and biological effects data to evaluate risks associated with chemicals present in the environment. Here, we used prior knowledge about chemical-gene interactions to develop a knowledge assembly model for detected chemicals at five locations near the North Branch and Chisago wastewater treatment plants (WWTP) in the St. Croix River Basin, MN and WI. The assembly model was used to generate hypotheses about the biological impacts of the chemicals at each location. The hypotheses were tested using empirical hepatic gene expression data from fathead minnows exposed for 12 d at each location. Empirical gene expression data were also mapped to the assembly models to evaluate the likelihood of a chemical contributing to the observed biological responses using richness and concordance statistics. The prior knowledge approach was able predict the observed biological pathways impacted at one site but not the other. Atrazine was identified as a potential contributor to the observed gene expression responses at a location upstream of the North Branch WTTP. Four chemicals were identified as contributors to the observed biological responses at the effluent and downstream o

  17. Hypermethylated-capped selenoprotein mRNAs in mammals

    PubMed Central

    Wurth, Laurence; Gribling-Burrer, Anne-Sophie; Verheggen, Céline; Leichter, Michael; Takeuchi, Akiko; Baudrey, Stéphanie; Martin, Franck; Krol, Alain; Bertrand, Edouard; Allmang, Christine

    2014-01-01

    Mammalian mRNAs are generated by complex and coordinated biogenesis pathways and acquire 5′-end m7G caps that play fundamental roles in processing and translation. Here we show that several selenoprotein mRNAs are not recognized efficiently by translation initiation factor eIF4E because they bear a hypermethylated cap. This cap modification is acquired via a 5′-end maturation pathway similar to that of the small nucle(ol)ar RNAs (sn- and snoRNAs). Our findings also establish that the trimethylguanosine synthase 1 (Tgs1) interacts with selenoprotein mRNAs for cap hypermethylation and that assembly chaperones and core proteins devoted to sn- and snoRNP maturation contribute to recruiting Tgs1 to selenoprotein mRNPs. We further demonstrate that the hypermethylated-capped selenoprotein mRNAs localize to the cytoplasm, are associated with polysomes and thus translated. Moreover, we found that the activity of Tgs1, but not of eIF4E, is required for the synthesis of the GPx1 selenoprotein in vivo. PMID:25013170

  18. The mechanism of monomer transfer between two structurally distinct PrP oligomers

    PubMed Central

    Armiento, Aurora; Martin, Davy; Lepejova, Nad’a

    2017-01-01

    In mammals, Prion pathology refers to a class of infectious neuropathologies whose mechanism is based on the self-perpetuation of structural information stored in the pathological conformer. The characterisation of the PrP folding landscape has revealed the existence of a plethora of pathways conducing to the formation of structurally different assemblies with different biological properties. However, the biochemical interconnection between these diverse assemblies remains unclear. The PrP oligomerisation process leads to the formation of neurotoxic and soluble assemblies called O1 oligomers with a high size heterodispersity. By combining the measurements in time of size distribution and average size with kinetic models and data assimilation, we revealed the existence of at least two structurally distinct sets of assemblies, termed Oa and Ob, forming O1 assemblies. We propose a kinetic model representing the main processes in prion aggregation pathway: polymerisation, depolymerisation, and disintegration. The two groups interact by exchanging monomers through a disintegration process that increases the size of Oa. Our observations suggest that PrP oligomers constitute a highly dynamic population. PMID:28746342

  19. The mechanism of monomer transfer between two structurally distinct PrP oligomers.

    PubMed

    Armiento, Aurora; Moireau, Philippe; Martin, Davy; Lepejova, Nad'a; Doumic, Marie; Rezaei, Human

    2017-01-01

    In mammals, Prion pathology refers to a class of infectious neuropathologies whose mechanism is based on the self-perpetuation of structural information stored in the pathological conformer. The characterisation of the PrP folding landscape has revealed the existence of a plethora of pathways conducing to the formation of structurally different assemblies with different biological properties. However, the biochemical interconnection between these diverse assemblies remains unclear. The PrP oligomerisation process leads to the formation of neurotoxic and soluble assemblies called O1 oligomers with a high size heterodispersity. By combining the measurements in time of size distribution and average size with kinetic models and data assimilation, we revealed the existence of at least two structurally distinct sets of assemblies, termed Oa and Ob, forming O1 assemblies. We propose a kinetic model representing the main processes in prion aggregation pathway: polymerisation, depolymerisation, and disintegration. The two groups interact by exchanging monomers through a disintegration process that increases the size of Oa. Our observations suggest that PrP oligomers constitute a highly dynamic population.

  20. Genetic aspects of autism spectrum disorders: insights from animal models

    PubMed Central

    Banerjee, Swati; Riordan, Maeveen; Bhat, Manzoor A.

    2014-01-01

    Autism spectrum disorders (ASDs) are a complex neurodevelopmental disorder that display a triad of core behavioral deficits including restricted interests, often accompanied by repetitive behavior, deficits in language and communication, and an inability to engage in reciprocal social interactions. ASD is among the most heritable disorders but is not a simple disorder with a singular pathology and has a rather complex etiology. It is interesting to note that perturbations in synaptic growth, development, and stability underlie a variety of neuropsychiatric disorders, including ASD, schizophrenia, epilepsy, and intellectual disability. Biological characterization of an increasing repertoire of synaptic mutants in various model organisms indicates synaptic dysfunction as causal in the pathophysiology of ASD. Our understanding of the genes and genetic pathways that contribute toward the formation, stabilization, and maintenance of functional synapses coupled with an in-depth phenotypic analysis of the cellular and behavioral characteristics is therefore essential to unraveling the pathogenesis of these disorders. In this review, we discuss the genetic aspects of ASD emphasizing on the well conserved set of genes and genetic pathways implicated in this disorder, many of which contribute to synapse assembly and maintenance across species. We also review how fundamental research using animal models is providing key insights into the various facets of human ASD. PMID:24605088

  1. Assembly of high density lipoprotein by the ABCA1/apolipoprotein pathway.

    PubMed

    Yokoyama, Shinji

    2005-06-01

    Mammalian somatic cells do not catabolize cholesterol and therefore need to export it for sterol homeostasis at the levels of cells and whole bodies. This mechanism may reduce intracellularly accumulated cholesterol in excess, and thereby would contribute to the prevention or cure of the initial stage of atherosclerotic vascular lesions. HDL is thought to play a main role in this reaction on the basis of epidemiological evidence and in-vitro experimental data. Two independent mechanisms have been identified for this reaction. One is non-specific diffusion-mediated cholesterol 'efflux' from the cell surface, and cholesterol is trapped by various extracellular acceptors including lipoproteins. Extracellular cholesterol esterification on HDL provides a driving force for the net removal of cell cholesterol, and some cellular factors may enhance this reaction. The other mechanism is an apolipoprotein-mediated process to generate HDL by removing cellular phospholipid and cholesterol. This reaction is mediated by a membrane protein ABCA1, and lipid-free or lipid-poor helical apolipoproteins recruit cellular phospholipid and cholesterol to assemble HDL particles. The reaction is composed of two elements: the assembly of HDL particles with phospholipid by apolipoprotein, and cholesterol enrichment in HDL. ABCA1 is essential for the former step, and the latter step requires further intracellular events. ABCA1 is a rate-limiting factor of HDL assembly and is regulated by transcriptional factors and posttranscriptional factors. Posttranscriptional regulation of ABCA1 involves the modulation of its calpain-mediated degradation.

  2. An ATP-dependent ligase with substrate flexibility involved in assembly of the peptidyl nucleoside antibiotic polyoxin.

    PubMed

    Gong, Rong; Qi, Jianzhao; Wu, Pan; Cai, You-Sheng; Ma, Hongmin; Liu, Yang; Duan, He; Wang, Meng; Deng, Zixin; Price, Neil P J; Chen, Wenqing

    2018-04-27

    Polyoxin (POL) is an unusual peptidyl nucleoside antibiotic, in which peptidyl moiety and nucleoside skeleton are linked by an amide bond. However, their biosynthesis remains poorly understood. Here, we report the deciphering of PolG as an ATP-dependent ligase responsible for the assembly of POL. A polG mutant is capable of accumulating multiple intermediates, including the peptidyl moiety (carbamoylpolyoxamic acid, CPOAA) and the nucleosides skeletons (POL-C and the previously overlooked thymine POL-C). We further demonstrated that PolG employs an ATP-dependent mechanism for amide bond formation, and that the generation of the hybrid nucleoside antibiotic, POL-N, is also governed by PolG. Finally, we determined that the deduced ATP-binding sites are functionally essential for PolG, and that they are highly conserved in a number of related ATP-dependent ligases. These insights have allowed us proposed a catalytic mechanism for the assembly of peptidyl nucleoside antibiotic via an acyl-phosphate intermediate, and have opened the way for the combinatorial biosynthesis/pathway engineering of this group of nucleoside antibiotics. Importance POL is well known for its remarkable antifungal bioactivities and unusual structural features. Actually, elucidation of the POL assembly logic not only provides the enzymatic basis for further biosynthetic understanding of related peptidyl nucleoside antibiotics, but also contributes to the rational generation of more hybrid nucleoside antibiotics via synthetic biology strategy. Copyright © 2018 American Society for Microbiology.

  3. Stimulatory effects of advanced glycation endproducts (AGEs) on fibronectin matrix assembly.

    PubMed

    Pastino, Alexandra K; Greco, Todd M; Mathias, Rommel A; Cristea, Ileana M; Schwarzbauer, Jean E

    2017-05-01

    Advanced glycation endproducts (AGEs) are a heterogeneous group of compounds that form via non-enzymatic glycation of proteins throughout our lifespan and at a higher rate in certain chronic diseases such as diabetes. AGEs contribute to the progression of fibrosis, in part by stimulating cellular pathways that affect gene expression. Long-lived ECM proteins are targets for non-enzymatic glycation but the question of whether the AGE-modified ECM leads to excess ECM accumulation and fibrosis remains unanswered. In this study, cellular changes due to AGE accretion in the ECM were investigated. Non-enzymatic glycation of proteins in a decellularized fibroblast ECM was achieved by incubating the ECM in a solution of methylglyoxal (MGO). Mass spectrometry of fibronectin (FN) isolated from the glycated matrix identified twenty-eight previously unidentified MGO-derived AGE modification sites including functional sites such as the RGD integrin-binding sequence. Mesangial cells grown on the glycated, decellularized matrix assembled increased amounts of FN matrix. Soluble AGE-modified bovine serum albumin (BSA) also stimulated FN matrix assembly and this effect was reduced by function-blocking antibodies against the receptor for AGE (RAGE). These results indicate that cells respond to AGEs by increasing matrix assembly and that RAGE is involved in this response. This raises the possibility that the accumulation of ECM during the progression of fibrosis may be enhanced by cell interactions with AGEs on a glycated ECM. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Activation of DNA Damage Repair Pathways by Murine Polyomavirus

    PubMed Central

    Heiser, Katie; Nicholas, Catherine; Garcea, Robert L.

    2016-01-01

    Nuclear replication of DNA viruses activates DNA damage repair (DDR) pathways, which are thought to detect and inhibit viral replication. However, many DNA viruses also depend on these pathways in order to optimally replicate their genomes. We investigated the relationship between murine polyomavirus (MuPyV) and components of DDR signaling pathways including CHK1, CHK2, H2AX, ATR, and DNAPK. We found that recruitment and retention of DDR proteins at viral replication centers was independent of H2AX, as well as the viral small and middle T-antigens. Additionally, infectious virus production required ATR kinase activity, but was independent of CHK1, CHK2, or DNAPK signaling. ATR inhibition did not reduce the total amount of viral DNA accumulated, but affected the amount of virus produced, indicating a defect in virus assembly. These results suggest that MuPyV may utilize a subset of DDR proteins or non-canonical DDR signaling pathways in order to efficiently replicate and assemble. PMID:27529739

  5. Formation of RNA Granule-Derived Capsid Assembly Intermediates Appears To Be Conserved between Human Immunodeficiency Virus Type 1 and the Nonprimate Lentivirus Feline Immunodeficiency Virus.

    PubMed

    Reed, Jonathan C; Westergreen, Nick; Barajas, Brook C; Ressler, Dylan T B; Phuong, Daryl J; Swain, John V; Lingappa, Vishwanath R; Lingappa, Jaisri R

    2018-05-01

    During immature capsid assembly in cells, human immunodeficiency virus type 1 (HIV-1) Gag co-opts a host RNA granule, forming a pathway of intracellular assembly intermediates containing host components, including two cellular facilitators of assembly, ABCE1 and DDX6. A similar assembly pathway has been observed for other primate lentiviruses. Here we asked whether feline immunodeficiency virus (FIV), a nonprimate lentivirus, also forms RNA granule-derived capsid assembly intermediates. First, we showed that the released FIV immature capsid and a large FIV Gag-containing intracellular complex are unstable during analysis, unlike for HIV-1. We identified harvest conditions, including in situ cross-linking, that overcame this problem, revealing a series of FIV Gag-containing complexes corresponding in size to HIV-1 assembly intermediates. Previously, we showed that assembly-defective HIV-1 Gag mutants are arrested at specific assembly intermediates; here we identified four assembly-defective FIV Gag mutants, including three not previously studied, and demonstrated that they appear to be arrested at the same intermediate as the cognate HIV-1 mutants. Further evidence that these FIV Gag-containing complexes correspond to assembly intermediates came from coimmunoprecipitations demonstrating that endogenous ABCE1 and the RNA granule protein DDX6 are associated with FIV Gag, as shown previously for HIV-1 Gag, but are not associated with a ribosomal protein, at steady state. Additionally, we showed that FIV Gag associates with another RNA granule protein, DCP2. Finally, we validated the FIV Gag-ABCE1 and FIV Gag-DCP2 interactions with proximity ligation assays demonstrating colocalization in situ Together, these data support a model in which primate and nonprimate lentiviruses form intracellular capsid assembly intermediates derived from nontranslating host RNA granules. IMPORTANCE Like HIV-1 Gag, FIV Gag assembles into immature capsids; however, it is not known whether FIV Gag progresses through a pathway of immature capsid assembly intermediates derived from host RNA granules, as shown for HIV-1 Gag. Here we showed that FIV Gag forms complexes that resemble HIV-1 capsid assembly intermediates in size and in their association with ABCE1 and DDX6, two host facilitators of HIV-1 immature capsid assembly that are found in HIV-1 assembly intermediates. Our studies also showed that known and novel assembly-defective FIV Gag mutants fail to progress past putative intermediates in a pattern resembling that observed for HIV-1 Gag mutants. Finally, we used imaging to demonstrate colocalization of FIV Gag with ABCE1 and with the RNA granule protein DCP2. Thus, we conclude that formation of assembly intermediates derived from host RNA granules is likely conserved between primate and nonprimate lentiviruses and could provide targets for future antiviral strategies. Copyright © 2018 American Society for Microbiology.

  6. Distinct Annular Oligomers Captured along the Assembly and Disassembly Pathways of Transthyretin Amyloid Protofibrils

    PubMed Central

    Pires, Ricardo H.; Karsai, Árpád; Saraiva, Maria J.; Damas, Ana M.; Kellermayer, Miklós S. Z.

    2012-01-01

    Background Defects in protein folding may lead to severe degenerative diseases characterized by the appearance of amyloid fibril deposits. Cytotoxicity in amyloidoses has been linked to poration of the cell membrane that may involve interactions with amyloid intermediates of annular shape. Although annular oligomers have been detected in many amyloidogenic systems, their universality, function and molecular mechanisms of appearance are debated. Methodology/Principal Findings We investigated with high-resolution in situ atomic force microscopy the assembly and disassembly of transthyretin (TTR) amyloid protofibrils formed of the native protein by pH shift. Annular oligomers were the first morphologically distinct intermediates observed in the TTR aggregation pathway. Morphological analysis suggests that they can assemble into a double-stack of octameric rings with a 16±2 nm diameter, and displaying the tendency to form linear structures. According to light scattering data coupled to AFM imaging, annular oligomers appeared to undergo a collapse type of structural transition into spheroid oligomers containing 8–16 monomers. Disassembly of TTR amyloid protofibrils also resulted in the rapid appearance of annular oligomers but with a morphology quite distinct from that observed in the assembly pathway. Conclusions/Significance Our observations indicate that annular oligomers are key dynamic intermediates not only in the assembly but also in the disassembly of TTR protofibrils. The balance between annular and more compact forms of aggregation could be relevant for cytotoxicity in amyloidogenic disorders. PMID:22984597

  7. De novo transcriptome assembly in chili pepper (Capsicum frutescens) to identify genes involved in the biosynthesis of capsaicinoids.

    PubMed

    Liu, Shaoqun; Li, Wanshun; Wu, Yimin; Chen, Changming; Lei, Jianjun

    2013-01-01

    The capsaicinoids are a group of compounds produced by chili pepper fruits and are used widely in many fields, especially in medical purposes. The capsaicinoid biosynthetic pathway has not yet been established clearly. To understand more knowledge in biosynthesis of capsaicinoids, we applied RNA-seq for the mixture of placenta and pericarp of pungent pepper (Capsicum frutescens L.). We have assessed the effect of various assembly parameters using different assembly software, and obtained one of the best strategies for de novo assembly of transcriptome data. We obtained a total 54,045 high-quality unigenes (transcripts) using Trinity software. About 92.65% of unigenes showed similarity to the public protein sequences, genome of potato and tomato and pepper (C. annuum) ESTs databases. Our results predicted 3 new structural genes (DHAD, TD, PAT), which filled gaps of the capsaicinoid biosynthetic pathway predicted by Mazourek, and revealed new candidate genes involved in capsaicinoid biosynthesis based on KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis. A significant number of SSR (Simple Sequence Repeat) and SNP (Single Nucleotide Polymorphism) markers were predicted in C. frutescens and C. annuum sequences, which will be helpful in the identification of polymorphisms within chili pepper populations. These data will provide new insights to the pathway of capsaicinoid biosynthesis and subsequent research of chili peppers. In addition, our strategy of de novo transcriptome assembly is applicable to a wide range of similar studies.

  8. De Novo Transcriptome Assembly in Chili Pepper (Capsicum frutescens) to Identify Genes Involved in the Biosynthesis of Capsaicinoids

    PubMed Central

    Liu, Shaoqun; Li, Wanshun; Wu, Yimin; Chen, Changming; Lei, Jianjun

    2013-01-01

    The capsaicinoids are a group of compounds produced by chili pepper fruits and are used widely in many fields, especially in medical purposes. The capsaicinoid biosynthetic pathway has not yet been established clearly. To understand more knowledge in biosynthesis of capsaicinoids, we applied RNA-seq for the mixture of placenta and pericarp of pungent pepper (Capsicum frutescens L.). We have assessed the effect of various assembly parameters using different assembly software, and obtained one of the best strategies for de novo assembly of transcriptome data. We obtained a total 54,045 high-quality unigenes (transcripts) using Trinity software. About 92.65% of unigenes showed similarity to the public protein sequences, genome of potato and tomato and pepper (C. annuum) ESTs databases. Our results predicted 3 new structural genes (DHAD, TD, PAT), which filled gaps of the capsaicinoid biosynthetic pathway predicted by Mazourek, and revealed new candidate genes involved in capsaicinoid biosynthesis based on KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis. A significant number of SSR (Simple Sequence Repeat) and SNP (Single Nucleotide Polymorphism) markers were predicted in C. frutescens and C. annuum sequences, which will be helpful in the identification of polymorphisms within chili pepper populations. These data will provide new insights to the pathway of capsaicinoid biosynthesis and subsequent research of chili peppers. In addition, our strategy of de novo transcriptome assembly is applicable to a wide range of similar studies. PMID:23349661

  9. Centrioles: some self-assembly required.

    PubMed

    Song, Mi Hye; Miliaras, Nicholas B; Peel, Nina; O'Connell, Kevin F

    2008-12-01

    Centrioles play an important role in organizing microtubules and are precisely duplicated once per cell cycle. New (daughter) centrioles typically arise in association with existing (mother) centrioles (canonical assembly), suggesting that mother centrioles direct the formation of daughter centrioles. However, under certain circumstances, centrioles can also selfassemble free of an existing centriole (de novo assembly). Recent work indicates that the canonical and de novo pathways utilize a common mechanism and that a mother centriole spatially constrains the self-assembly process to occur within its immediate vicinity. Other recently identified mechanisms further regulate canonical assembly so that during each cell cycle, one and only one daughter centriole is assembled per mother centriole.

  10. Assembly and Multiplex Genome Integration of Metabolic Pathways in Yeast Using CasEMBLR.

    PubMed

    Jakočiūnas, Tadas; Jensen, Emil D; Jensen, Michael K; Keasling, Jay D

    2018-01-01

    Genome integration is a vital step for implementing large biochemical pathways to build a stable microbial cell factory. Although traditional strain construction strategies are well established for the model organism Saccharomyces cerevisiae, recent advances in CRISPR/Cas9-mediated genome engineering allow much higher throughput and robustness in terms of strain construction. In this chapter, we describe CasEMBLR, a highly efficient and marker-free genome engineering method for one-step integration of in vivo assembled expression cassettes in multiple genomic sites simultaneously. CasEMBLR capitalizes on the CRISPR/Cas9 technology to generate double-strand breaks in genomic loci, thus prompting native homologous recombination (HR) machinery to integrate exogenously derived homology templates. As proof-of-principle for microbial cell factory development, CasEMBLR was used for one-step assembly and marker-free integration of the carotenoid pathway from 15 exogenously supplied DNA parts into three targeted genomic loci. As a second proof-of-principle, a total of ten DNA parts were assembled and integrated in two genomic loci to construct a tyrosine production strain, and at the same time knocking out two genes. This new method complements and improves the field of genome engineering in S. cerevisiae by providing a more flexible platform for rapid and precise strain building.

  11. Regulated assembly and disassembly of the yeast telomerase quaternary complex

    PubMed Central

    Tucey, Timothy M.

    2014-01-01

    The enzyme telomerase, which elongates chromosome termini, is a critical factor in determining long-term cellular proliferation and tissue renewal. Hence, even small differences in telomerase levels can have substantial consequences for human health. In budding yeast, telomerase consists of the catalytic Est2 protein and two regulatory subunits (Est1 and Est3) in association with the TLC1 RNA, with each of the four subunits essential for in vivo telomerase function. We show here that a hierarchy of assembly and disassembly results in limiting amounts of the quaternary complex late in the cell cycle, following completion of DNA replication. The assembly pathway, which is driven by interaction of the Est3 telomerase subunit with a previously formed Est1–TLC1–Est2 preassembly complex, is highly regulated, involving Est3-binding sites on both Est2 and Est1 as well as an interface on Est3 itself that functions as a toggle switch. Telomerase subsequently disassembles by a mechanistically distinct pathway due to dissociation of the catalytic subunit from the complex in every cell cycle. The balance between the assembly and disassembly pathways, which dictate the levels of the active holoenzyme in the cell, reveals a novel mechanism by which telomerase (and hence telomere homeostasis) is regulated. PMID:25240060

  12. Protein oligomerization monitored by fluorescence fluctuation spectroscopy: Self-assembly of Rubisco activase

    USDA-ARS?s Scientific Manuscript database

    A methodology is presented to characterize complex protein assembly pathways by fluorescence correlation spectroscopy. We have derived the total autocorrelation function describing the behavior of mixtures of labeled and unlabeled protein under equilibrium conditions. Our modeling approach allows us...

  13. A two-pronged structural analysis of retroviral maturation indicates that core formation proceeds by a disassembly-reassembly pathway rather than a displacive transition.

    PubMed

    Keller, Paul W; Huang, Rick K; England, Matthew R; Waki, Kayoko; Cheng, Naiqian; Heymann, J Bernard; Craven, Rebecca C; Freed, Eric O; Steven, Alasdair C

    2013-12-01

    Retrovirus maturation involves sequential cleavages of the Gag polyprotein, initially arrayed in a spherical shell, leading to formation of capsids with polyhedral or conical morphology. Evidence suggests that capsids assemble de novo inside maturing virions from dissociated capsid (CA) protein, but the possibility persists of a displacive pathway in which the CA shell remains assembled but is remodeled. Inhibition of the final cleavage between CA and spacer peptide SP1/SP blocks the production of mature capsids. We investigated whether retention of SP might render CA assembly incompetent by testing the ability of Rous sarcoma virus (RSV) CA-SP to assemble in vitro into icosahedral capsids. Capsids were indeed assembled and were indistinguishable from those formed by CA alone, indicating that SP was disordered. We also used cryo-electron tomography to characterize HIV-1 particles produced in the presence of maturation inhibitor PF-46396 or with the cleavage-blocking CA5 mutation. Inhibitor-treated virions have a shell that resembles the CA layer of the immature Gag shell but is less complete. Some CA protein is generated but usually not enough for a mature core to assemble. We propose that inhibitors like PF-46396 bind to the Gag lattice where they deny the protease access to the CA-SP1 cleavage site and prevent the release of CA. CA5 particles, which exhibit no cleavage at the CA-SP1 site, have spheroidal shells with relatively thin walls. It appears that this lattice progresses displacively toward a mature-like state but produces neither conical cores nor infectious virions. These observations support the disassembly-reassembly pathway for core formation.

  14. Endocytosis of G protein-coupled receptors is regulated by clathrin light chain phosphorylation.

    PubMed

    Ferreira, Filipe; Foley, Matthew; Cooke, Alex; Cunningham, Margaret; Smith, Gemma; Woolley, Robert; Henderson, Graeme; Kelly, Eamonn; Mundell, Stuart; Smythe, Elizabeth

    2012-08-07

    Signaling by transmembrane receptors such as G protein-coupled receptors (GPCRs) occurs at the cell surface and throughout the endocytic pathway, and signaling from the cell surface may differ in magnitude and downstream output from intracellular signaling. As a result, the rate at which signaling molecules traverse the endocytic pathway makes a significant contribution to downstream output. Modulation of the core endocytic machinery facilitates differential uptake of individual cargoes. Clathrin-coated pits are a major entry portal where assembled clathrin forms a lattice around invaginating buds that have captured endocytic cargo. Clathrin assembles into triskelia composed of three clathrin heavy chains and associated clathrin light chains (CLCs). Despite the identification of clathrin-coated pits at the cell surface over 30 years ago, the functions of CLCs in endocytosis have been elusive. In this work, we identify a novel role for CLCs in the regulated endocytosis of specific cargoes. Small interfering RNA-mediated knockdown of either CLCa or CLCb inhibits the uptake of GPCRs. Moreover, we demonstrate that phosphorylation of Ser204 in CLCb is required for efficient endocytosis of a subset of GPCRs and identify G protein-coupled receptor kinase 2 (GRK2) as a kinase that can phosphorylate CLCb on Ser204. Overexpression of CLCb(S204A) specifically inhibits the endocytosis of those GPCRs whose endocytosis is GRK2-dependent. Together, these results indicate that CLCb phosphorylation acts as a discriminator for the endocytosis of specific GPCRs. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. DNA Assembly Techniques for Next Generation Combinatorial Biosynthesis of Natural Products

    PubMed Central

    Cobb, Ryan E.; Ning, Jonathan C.; Zhao, Huimin

    2013-01-01

    Natural product scaffolds remain important leads for pharmaceutical development. However, transforming a natural product into a drug entity often requires derivatization to enhance the compound’s therapeutic properties. A powerful method by which to perform this derivatization is combinatorial biosynthesis, the manipulation of the genes in the corresponding pathway to divert synthesis towards novel derivatives. While these manipulations have traditionally been carried out via restriction digestion/ligation-based cloning, the shortcomings of such techniques limit their throughput and thus the scope of corresponding combinatorial biosynthesis experiments. In the burgeoning field of synthetic biology, the demand for facile DNA assembly techniques has promoted the development of a host of novel DNA assembly strategies. Here we describe the advantages of these recently-developed tools for rapid, efficient synthesis of large DNA constructs. We also discuss their potential to facilitate the simultaneous assembly of complete libraries of natural product biosynthetic pathways, ushering in the next generation of combinatorial biosynthesis. PMID:24127070

  16. De Novo Transcriptome Assembly and Characterization of Lithospermum officinale to Discover Putative Genes Involved in Specialized Metabolites Biosynthesis.

    PubMed

    Rai, Amit; Nakaya, Taiki; Shimizu, Yohei; Rai, Megha; Nakamura, Michimi; Suzuki, Hideyuki; Saito, Kazuki; Yamazaki, Mami

    2018-05-29

    Lithospermum officinale is a valuable source of bioactive metabolites with medicinal and industrial values. However, little is known about genes involved in the biosynthesis of these metabolites, primarily due to the lack of genome or transcriptome resources. This study presents the first effort to establish and characterize de novo transcriptome assembly resource for L. officinale and expression analysis for three of its tissues, namely leaf, stem, and root. Using over 4Gbps of RNA-sequencing datasets, we obtained de novo transcriptome assembly of L. officinale , consisting of 77,047 unigenes with assembly N50 value as 1524 bps. Based on transcriptome annotation and functional classification, 52,766 unigenes were assigned with putative genes functions, gene ontology terms, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. KEGG pathway and gene ontology enrichment analysis using highly expressed unigenes across three tissues and targeted metabolome analysis showed active secondary metabolic processes enriched specifically in the root of L. officinale . Using co-expression analysis, we also identified 20 and 48 unigenes representing different enzymes of lithospermic/chlorogenic acid and shikonin biosynthesis pathways, respectively. We further identified 15 candidate unigenes annotated as cytochrome P450 with the highest expression in the root of L. officinale as novel genes with a role in key biochemical reactions toward shikonin biosynthesis. Thus, through this study, we not only generated a high-quality genomic resource for L. officinale but also propose candidate genes to be involved in shikonin biosynthesis pathways for further functional characterization. Georg Thieme Verlag KG Stuttgart · New York.

  17. De Novo Transcriptomic Analysis of an Oleaginous Microalga: Pathway Description and Gene Discovery for Production of Next-Generation Biofuels

    PubMed Central

    Wan, LingLin; Han, Juan; Sang, Min; Li, AiFen; Wu, Hong; Yin, ShunJi; Zhang, ChengWu

    2012-01-01

    Background Eustigmatos cf. polyphem is a yellow-green unicellular soil microalga belonging to the eustimatophyte with high biomass and considerable production of triacylglycerols (TAGs) for biofuels, which is thus referred to as an oleaginous microalga. The paucity of microalgae genome sequences, however, limits development of gene-based biofuel feedstock optimization studies. Here we describe the sequencing and de novo transcriptome assembly for a non-model microalgae species, E. cf. polyphem, and identify pathways and genes of importance related to biofuel production. Results We performed the de novo assembly of E. cf. polyphem transcriptome using Illumina paired-end sequencing technology. In a single run, we produced 29,199,432 sequencing reads corresponding to 2.33 Gb total nucleotides. These reads were assembled into 75,632 unigenes with a mean size of 503 bp and an N50 of 663 bp, ranging from 100 bp to >3,000 bp. Assembled unigenes were subjected to BLAST similarity searches and annotated with Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) orthology identifiers. These analyses identified the majority of carbohydrate, fatty acids, TAG and carotenoids biosynthesis and catabolism pathways in E. cf. polyphem. Conclusions Our data provides the construction of metabolic pathways involved in the biosynthesis and catabolism of carbohydrate, fatty acids, TAG and carotenoids in E. cf. polyphem and provides a foundation for the molecular genetics and functional genomics required to direct metabolic engineering efforts that seek to enhance the quantity and character of microalgae-based biofuel feedstock. PMID:22536352

  18. Fibrillar α-Synuclein and Huntingtin Exon 1 Assemblies Are Toxic to the Cells

    PubMed Central

    Pieri, Laura; Madiona, Karine; Bousset, Luc; Melki, Ronald

    2012-01-01

    The aggregation of alpha-synuclein (α-syn) and huntingtin (htt) into fibrillar assemblies in nerve and glial cells is a molecular hallmark of Parkinson's and Huntington's diseases. Within the aggregation process, prefibrillar and fibrillar oligomeric species form. Prefibrillar assemblies rather than fibrils are nowadays considered cytotoxic. However, recent reports describing spreading of fibrillar assemblies from one cell to another, in cell cultures, animal models, and brains of grafted patients suggest a critical role for fibrillar assemblies in pathogenesis. Here we compare the cytotoxic effect of defined and comparable particle concentrations of on-assembly pathway oligomeric and fibrillar α-syn and Htt fragment corresponding to the first exon of the protein (HttEx1). We show that homogeneous populations of α-syn and HttEx1 fibrils, rather than their precursor on-assembly pathway oligomers, are highly toxic to cultured cells and induce apoptotic cell death. We document the reasons that make fibrils toxic. We show that α-syn and HttEx1 fibrils bind and permeabilize lipid vesicles. We also show that fibrils binding to the plasma membrane in cultured cells alter Ca2+ homeostasis. Overall, our data indicate that fibrillar α-syn and HttEx1, rather than their precursor oligomers, are highly cytotoxic, the toxicity being associated to their ability to bind and permeabilize the cell membranes. PMID:22735540

  19. Structure and function of Enterotoxigenic Escherichia coli fimbriae from differing assembly pathways

    PubMed Central

    Mortezaei, Narges; Epler, Chelsea R.; Shao, Paul P.; Shirdel, Mariam; Singh, Bhupender; McVeigh, Annette; Uhlin, Bernt Eric; Savarino, Stephen J.; Andersson, Magnus; Bullitt, Esther

    2014-01-01

    Pathogenic enterotoxigenic Escherichia coli (ETEC) are the major bacterial cause of diarrhea in young children in developing countries and in travelers, causing significant mortality in children. Adhesive fimbriae are a prime virulence factor for ETEC, initiating colonization of the small intestinal epithelium. Similar to other Gram-negative bacteria, ETEC express one or more diverse fimbriae, some assembled by the chaperone-usher pathway and others by the alternate chaperone pathway. Here we elucidate structural and biophysical aspects and adaptations of each fimbrial type to its respective host niche. CS20 fimbriae are compared to CFA/I fimbriae, which are two ETEC fimbriae assembled via different pathways, and to P-fimbriae from uropathogenic E. coli. Many fimbriae unwind from their native helical filament to an extended linear conformation under force, thereby sustaining adhesion by reducing load at the point of contact between the bacterium and the target cell. CFA/I fimbriae require the least force to unwind, followed by CS20 fimbriae and then P-fimbriae, which require the highest unwinding force. We conclude from our electron microscopy reconstructions, modeling, and force spectroscopy data that the target niche plays a central role in the biophysical properties of fimbriae that are critical for bacterial pathophysiology. PMID:25355550

  20. Novel interactions of mitochondria and reactive oxygen/nitrogen species in alcohol mediated liver disease

    PubMed Central

    Mantena, Sudheer K; King, Adrienne L; Andringa, Kelly K; Landar, Aimee; Darley-Usmar, Victor; Bailey, Shannon M

    2007-01-01

    Mitochondrial dysfunction is known to be a contributing factor to a number of diseases including chronic alcohol induced liver injury. While there is a detailed understanding of the metabolic pathways and proteins of the liver mitochondrion, little is known regarding how changes in the mitochondrial proteome may contribute to the development of hepatic pathologies. Emerging evidence indicates that reactive oxygen and nitrogen species disrupt mitochondrial function through post-translational modifications to the mitochondrial proteome. Indeed, various new affinity labeling reagents are available to test the hypothesis that post-translational modification of proteins by reactive species contributes to mitochondrial dysfunction and alcoholic fatty liver disease. Specialized proteomic techniques are also now available, which allow for identification of defects in the assembly of multi-protein complexes in mitochondria and the resolution of the highly hydrophobic proteins of the inner membrane. In this review knowledge gained from the study of changes to the mitochondrial proteome in alcoholic hepatotoxicity will be described and placed into a mechanistic framework to increase understanding of the role of mitochondrial dysfunction in liver disease. PMID:17854139

  1. Assembly constraints drive co-evolution among ribosomal constituents.

    PubMed

    Mallik, Saurav; Akashi, Hiroshi; Kundu, Sudip

    2015-06-23

    Ribosome biogenesis, a central and essential cellular process, occurs through sequential association and mutual co-folding of protein-RNA constituents in a well-defined assembly pathway. Here, we construct a network of co-evolving nucleotide/amino acid residues within the ribosome and demonstrate that assembly constraints are strong predictors of co-evolutionary patterns. Predictors of co-evolution include a wide spectrum of structural reconstitution events, such as cooperativity phenomenon, protein-induced rRNA reconstitutions, molecular packing of different rRNA domains, protein-rRNA recognition, etc. A correlation between folding rate of small globular proteins and their topological features is known. We have introduced an analogous topological characteristic for co-evolutionary network of ribosome, which allows us to differentiate between rRNA regions subjected to rapid reconstitutions from those hindered by kinetic traps. Furthermore, co-evolutionary patterns provide a biological basis for deleterious mutation sites and further allow prediction of potential antibiotic targeting sites. Understanding assembly pathways of multicomponent macromolecules remains a key challenge in biophysics. Our study provides a 'proof of concept' that directly relates co-evolution to biophysical interactions during multicomponent assembly and suggests predictive power to identify candidates for critical functional interactions as well as for assembly-blocking antibiotic target sites. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  2. Comparative transcriptomics reveals genes involved in metabolic and immune pathways in the digestive gland of scallop Chlamys farreri following cadmium exposure

    NASA Astrophysics Data System (ADS)

    Zhang, Hui; Zhai, Yuxiu; Yao, Lin; Jiang, Yanhua; Li, Fengling

    2017-05-01

    Chlamys farreri is an economically important mollusk that can accumulate excessive amounts of cadmium (Cd). Studying the molecular mechanism of Cd accumulation in bivalves is difficult because of the lack of genome background. Transcriptomic analysis based on high-throughput RNA sequencing has been shown to be an efficient and powerful method for the discovery of relevant genes in non-model and genome reference-free organisms. Here, we constructed two cDNA libraries (control and Cd exposure groups) from the digestive gland of C. farreri and compared the transcriptomic data between them. A total of 227 673 transcripts were assembled into 105 071 unigenes, most of which shared high similarity with sequences in the NCBI non-redundant protein database. For functional classification, 24 493 unigenes were assigned to Gene Ontology terms. Additionally, EuKaryotic Ortholog Groups and Kyoto Encyclopedia of Genes and Genomes analyses assigned 12 028 unigenes to 26 categories and 7 849 unigenes to five pathways, respectively. Comparative transcriptomics analysis identified 3 800 unigenes that were differentially expressed in the Cd-treated group compared with the control group. Among them, genes associated with heavy metal accumulation were screened, including metallothionein, divalent metal transporter, and metal tolerance protein. The functional genes and predicted pathways identified in our study will contribute to a better understanding of the metabolic and immune system in the digestive gland of C. farreri. In addition, the transcriptomic data will provide a comprehensive resource that may contribute to the understanding of molecular mechanisms that respond to marine pollutants in bivalves.

  3. Structural and functional properties of prefibrillar α-synuclein oligomers.

    PubMed

    Pieri, Laura; Madiona, Karine; Melki, Ronald

    2016-04-14

    The deposition of fibrillar alpha-synuclein (α-syn) within inclusions (Lewy bodies and Lewy neurites) in neurons and glial cells is a hallmark of synucleinopathies. α-syn populates a variety of assemblies ranging from prefibrillar oligomeric species to fibrils whose specific contribution to neurodegeneration is still unclear. Here, we compare the specific structural and biological properties of distinct soluble prefibrillar α-syn oligomers formed either spontaneously or in the presence of dopamine and glutaraldehyde. We show that both on-fibrillar assembly pathway and distinct dopamine-mediated and glutaraldehyde-cross-linked α-syn oligomers are only slightly effective in perturbing cell membrane integrity and inducing cytotoxicity, while mature fibrils exhibit the highest toxicity. In contrast to low-molecular weight and unstable oligomers, large stable α-syn oligomers seed the aggregation of soluble α-syn within reporter cells although to a lesser extent than mature α-syn fibrils. These oligomers appear elongated in shape. Our findings suggest that α-syn oligomers represent a continuum of species ranging from unstable low molecular weight particles to mature fibrils via stable elongated oligomers composed of more than 15 α-syn monomers that possess seeding capacity.

  4. ILK modulates epithelial polarity and matrix formation in hair follicles.

    PubMed

    Rudkouskaya, Alena; Welch, Ian; Dagnino, Lina

    2014-03-01

    Hair follicle morphogenesis requires coordination of multiple signals and communication between its epithelial and mesenchymal constituents. Cell adhesion protein platforms, which include integrins and integrin-linked kinase (ILK), are critical for hair follicle formation. However, their precise contribution to this process is poorly understood. We show that in the absence of ILK, the hair follicle matrix lineage fails to develop, likely due to abnormalities in development of apical-basal cell polarity, as well as in laminin-511 and basement membrane assembly at the tip of the hair bud. These defects also result in impaired specification of hair matrix and absence of precortex and inner sheath root cell lineages. The molecular pathways affected in ILK-deficient follicles are similar to those in the absence of epidermal integrin β1 and include Wnt, but not sonic hedgehog, signaling. ILK-deficient hair buds also show abnormalities in the dermal papilla. Addition of exogenous laminin-511 restores morphological and molecular markers associated with hair matrix formation, indicating that ILK regulates hair bud cell polarity and functions upstream from laminin-511 assembly to regulate the developmental progression of hair follicles beyond the germ stage.

  5. Regulation of mRNA Trafficking by Nuclear Pore Complexes

    PubMed Central

    Bonnet, Amandine; Palancade, Benoit

    2014-01-01

    Over the last two decades, multiple studies have explored the mechanisms governing mRNA export out of the nucleus, a crucial step in eukaryotic gene expression. During transcription and processing, mRNAs are assembled into messenger ribonucleoparticles (mRNPs). mRNPs are then exported through nuclear pore complexes (NPCs), which are large multiprotein assemblies made of several copies of a limited number of nucleoporins. A considerable effort has been put into the dissection of mRNA export through NPCs at both cellular and molecular levels, revealing the conserved contributions of a subset of nucleoporins in this process, from yeast to vertebrates. Several reports have also demonstrated the ability of NPCs to sort out properly-processed mRNPs for entry into the nuclear export pathway. Importantly, changes in mRNA export have been associated with post-translational modifications of nucleoporins or changes in NPC composition, depending on cell cycle progression, development or exposure to stress. How NPC modifications also impact on cellular mRNA export in disease situations, notably upon viral infection, is discussed. PMID:25184662

  6. Protein secretion and surface display in Gram-positive bacteria

    PubMed Central

    Schneewind, Olaf; Missiakas, Dominique M.

    2012-01-01

    The cell wall peptidoglycan of Gram-positive bacteria functions as a surface organelle for the transport and assembly of proteins that interact with the environment, in particular, the tissues of an infected host. Signal peptide-bearing precursor proteins are secreted across the plasma membrane of Gram-positive bacteria. Some precursors carry C-terminal sorting signals with unique sequence motifs that are cleaved by sortase enzymes and linked to the cell wall peptidoglycan of vegetative forms or spores. The sorting signals of pilin precursors are cleaved by pilus-specific sortases, which generate covalent bonds between proteins leading to the assembly of fimbrial structures. Other precursors harbour surface (S)-layer homology domains (SLH), which fold into a three-pronged spindle structure and bind secondary cell wall polysaccharides, thereby associating with the surface of specific Gram-positive microbes. Type VII secretion is a non-canonical secretion pathway for WXG100 family proteins in mycobacteria. Gram-positive bacteria also secrete WXG100 proteins and carry unique genes that either contribute to discrete steps in secretion or represent distinctive substrates for protein transport reactions. PMID:22411983

  7. Transcriptome analysis of eyestalk and hemocytes in the ridgetail white prawn Exopalaemon carinicauda: assembly, annotation and marker discovery.

    PubMed

    Li, Jitao; Li, Jian; Chen, Ping; Liu, Ping; He, Yuying

    2015-01-01

    The ridgetail white prawn Exopalaemon carinicauda is one of major economic mariculture species in eastern China. The deficiency of genomic and transcriptomic data is becoming the bottleneck of further researches on its good traits. In the present study, 454 pyrosequencing was undertaken to investigate the transcriptome profiles of E. carinicauda. A collection of 1,028,710 sequence reads (459.59 Mb) obtained from cDNA prepared from eyestalk and hemocytes was assembled into 162,056 expressed sequence tags (ESTs). Of these, 29.88 % of 48,428 contigs and 70.12 % of 113,628 singlets possessed high similarities to sequences in the GenBank non-redundant database, with most significant (E value <1e(-10)) unigenes matches occurring with crustacean and insect sequences. KEGG analysis of unigenes identified putative members of biological pathways related to growth and immunity. In addition, we obtained a total of putative 125,112 SNPs and 13,467 microsatellites. These results will contribute to the understanding of the genome makeup and provide useful information for future functional genomic research in E. carinicauda.

  8. Watching Nanoscale Self-Assembly Kinetics of Gold Prisms in Liquids

    NASA Astrophysics Data System (ADS)

    Kim, Juyeong; Ou, Zihao; Jones, Matthew R.; Chen, Qian

    We use liquid-phase transmission electron microscopy to watch self-assembly of gold triangular prisms into polymer-like structures. The in situ dynamics monitoring enabled by liquid-phase transmission electron microscopy, single nanoparticle tracking, and the marked conceptual similarity between molecular reactions and nanoparticle self-assembly combined elucidate the following mechanistic understanding: a step-growth polymerization based assembly statistics, kinetic pathways sampling particle curvature dependent energy minima and their interconversions, and directed assembly into polymorphs (linear or cyclic chains) through in situ modulation of the prism bonding geometry. Our study bridges the constituent kinetics on the molecular and nanoparticle length scales, which enriches the design rules in directed self-assembly of anisotropic nanoparticles.

  9. Adverse outcome pathway (AOP) development and evaluation

    EPA Science Inventory

    The Adverse Outcome Pathway provides a construct for assembling mechanistic information at different levels of biological organization in a form designed to support regulatory decision making. In particular, it frames the link between molecular and cellular events that can be mea...

  10. Iron loading site on the Fe-S cluster assembly scaffold protein is distinct from the active site.

    PubMed

    Rodrigues, Andria V; Kandegedara, Ashoka; Rotondo, John A; Dancis, Andrew; Stemmler, Timothy L

    2015-06-01

    Iron-sulfur (Fe-S) cluster containing proteins are utilized in almost every biochemical pathway. The unique redox and coordination chemistry associated with the cofactor allows these proteins to participate in a diverse set of reactions, including electron transfer, enzyme catalysis, DNA synthesis and signaling within several pathways. Due to the high reactivity of the metal, it is not surprising that biological Fe-S cluster assembly is tightly regulated within cells. In yeast, the major assembly pathway for Fe-S clusters is the mitochondrial ISC pathway. Yeast Fe-S cluster assembly is accomplished using the scaffold protein (Isu1) as the molecular foundation, with assistance from the cysteine desulfurase (Nfs1) to provide sulfur, the accessory protein (Isd11) to regulate Nfs1 activity, the yeast frataxin homologue (Yfh1) to regulate Nfs1 activity and participate in Isu1 Fe loading possibly as a chaperone, and the ferredoxin (Yah1) to provide reducing equivalents for assembly. In this report, we utilize calorimetric and spectroscopic methods to provide molecular insight into how wt-Isu1 from S. cerevisiae becomes loaded with iron. Isothermal titration calorimetry and an iron competition binding assay were developed to characterize the energetics of protein Fe(II) binding. Differential scanning calorimetry was used to identify thermodynamic characteristics of the protein in the apo state or under iron loaded conditions. Finally, X-ray absorption spectroscopy was used to characterize the electronic and structural properties of Fe(II) bound to Isu1. Current data are compared to our previous characterization of the D37A Isu1 mutant, and these suggest that when Isu1 binds Fe(II) in a manner not perturbed by the D37A substitution, and that metal binding occurs at a site distinct from the cysteine rich active site in the protein.

  11. The Alphavirus Exit Pathway: What We Know and What We Wish We Knew

    PubMed Central

    2018-01-01

    Alphaviruses are enveloped positive sense RNA viruses and include serious human pathogens, such as the encephalitic alphaviruses and Chikungunya virus. Alphaviruses are transmitted to humans primarily by mosquito vectors and include species that are classified as emerging pathogens. Alphaviruses assemble highly organized, spherical particles that bud from the plasma membrane. In this review, we discuss what is known about the alphavirus exit pathway during a cellular infection. We describe the viral protein interactions that are critical for virus assembly/budding and the host factors that are involved, and we highlight the recent discovery of cell-to-cell transmission of alphavirus particles via intercellular extensions. Lastly, we discuss outstanding questions in the alphavirus exit pathway that may provide important avenues for future research. PMID:29470397

  12. Small-angle neutron scattering reveals the assembly mode and oligomeric architecture of TET, a large, dodecameric aminopeptidase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Appolaire, Alexandre; Girard, Eric; Colombo, Matteo

    2014-11-01

    The present work illustrates that small-angle neutron scattering, deuteration and contrast variation, combined with in vitro particle reconstruction, constitutes a very efficient approach to determine subunit architectures in large, symmetric protein complexes. In the case of the 468 kDa heterododecameric TET peptidase machine, it was demonstrated that the assembly of the 12 subunits is a highly controlled process and represents a way to optimize the catalytic efficiency of the enzyme. The specific self-association of proteins into oligomeric complexes is a common phenomenon in biological systems to optimize and regulate their function. However, de novo structure determination of these important complexesmore » is often very challenging for atomic-resolution techniques. Furthermore, in the case of homo-oligomeric complexes, or complexes with very similar building blocks, the respective positions of subunits and their assembly pathways are difficult to determine using many structural biology techniques. Here, an elegant and powerful approach based on small-angle neutron scattering is applied, in combination with deuterium labelling and contrast variation, to elucidate the oligomeric organization of the quaternary structure and the assembly pathways of 468 kDa, hetero-oligomeric and symmetric Pyrococcus horikoshii TET2–TET3 aminopeptidase complexes. The results reveal that the topology of the PhTET2 and PhTET3 dimeric building blocks within the complexes is not casual but rather suggests that their quaternary arrangement optimizes the catalytic efficiency towards peptide substrates. This approach bears important potential for the determination of quaternary structures and assembly pathways of large oligomeric and symmetric complexes in biological systems.« less

  13. B. subtilis as a Model for Studying the Assembly of Fe-S Clusters in Gram-Positive Bacteria.

    PubMed

    Dos Santos, Patricia C

    2017-01-01

    Complexes of iron and sulfur (Fe-S clusters) are widely distributed in nature and participate in essential biochemical reactions. The biological formation of Fe-S clusters involves dedicated pathways responsible for the mobilization of sulfur, the assembly of Fe-S clusters, and the transfer of these clusters to target proteins. Genomic analysis of Bacillus subtilis and other Gram-positive bacteria indicated the presence of only one Fe-S cluster biosynthesis pathway, which is distinct in number of components and organization from previously studied systems. B. subtilis has been used as a model system for the characterization of cysteine desulfurases responsible for sulfur mobilization reactions in the biogenesis of Fe-S clusters and other sulfur-containing cofactors. Cysteine desulfurases catalyze the cleavage of the C-S bond from the amino acid cysteine and subsequent transfer of sulfur to acceptor molecules. These reactions can be monitored by the rate of alanine formation, the first product in the reaction, and sulfide formation, a byproduct of reactions performed under reducing conditions. The assembly of Fe-S clusters on protein scaffolds and the transfer of these clusters to target acceptors are determined through a combination of spectroscopic methods probing the rate of cluster assembly and transfer. This chapter provides a description of reactions promoting the assembly of Fe-S clusters in bacteria as well as methods used to study functions of each biosynthetic component and identify mechanistic differences employed by these enzymes across different pathways. © 2017 Elsevier Inc. All rights reserved.

  14. A CAF-1–PCNA-Mediated Chromatin Assembly Pathway Triggered by Sensing DNA Damage

    PubMed Central

    Moggs, Jonathan G.; Grandi, Paola; Quivy, Jean-Pierre; Jónsson, Zophonías O.; Hübscher, Ulrich; Becker, Peter B.; Almouzni, Geneviève

    2000-01-01

    Sensing DNA damage is crucial for the maintenance of genomic integrity and cell cycle progression. The participation of chromatin in these events is becoming of increasing interest. We show that the presence of single-strand breaks and gaps, formed either directly or during DNA damage processing, can trigger the propagation of nucleosomal arrays. This nucleosome assembly pathway involves the histone chaperone chromatin assembly factor 1 (CAF-1). The largest subunit (p150) of this factor interacts directly with proliferating cell nuclear antigen (PCNA), and critical regions for this interaction on both proteins have been mapped. To isolate proteins specifically recruited during DNA repair, damaged DNA linked to magnetic beads was used. The binding of both PCNA and CAF-1 to this damaged DNA was dependent on the number of DNA lesions and required ATP. Chromatin assembly linked to the repair of single-strand breaks was disrupted by depletion of PCNA from a cell-free system. This defect was rescued by complementation with recombinant PCNA, arguing for role of PCNA in mediating chromatin assembly linked to DNA repair. We discuss the importance of the PCNA–CAF-1 interaction in the context of DNA damage processing and checkpoint control. PMID:10648606

  15. Annealing cycles and the self-organization of functionalized colloids

    NASA Astrophysics Data System (ADS)

    Dias, Cristóvão S.; Araújo, Nuno A. M.; Telo da Gama, Margarida M.

    2018-01-01

    The self-assembly of functionalized (patchy) particles with directional interactions into target structures is still a challenge, despite the significant experimental advances in their synthesis. Self-assembly pathways are typically characterized by high energy barriers that hinder access to stable (equilibrium) structures. A possible strategy to tackle this challenge is to perform annealing cycles. By periodically switching on and off the inter-particle bonds, one expects to smooth-out the kinetic pathways and favor the assembly of targeted structures. Preliminary results have shown that the efficiency of annealing cycles depends strongly on their frequency. Here, we study numerically how this frequency-dependence scales with the strength of the directional interactions (size of the patch σ). We use analytical arguments to show that the scaling results from the statistics of a random walk in configurational space.

  16. Optimal Assembly of Psychological and Educational Tests.

    ERIC Educational Resources Information Center

    van der Linden, Wim J.

    1998-01-01

    Reviews optimal test-assembly literature and introduces the contributions to this special issue. Discusses four approaches to computerized test assembly: (1) heuristic-based test assembly; (2) 0-1 linear programming; (3) network-flow programming; and (4) an optimal design approach. Contains a bibliography of 90 sources on test assembly.…

  17. Pathway-engineering for highly-aligned block copolymer arrays

    DOE PAGES

    Choo, Youngwoo; Majewski, Paweł W.; Fukuto, Masafumi; ...

    2017-12-06

    While kinetic aspects of self-assembly can hinder ordering, non-equilibirum effects can also be exploited to enforce a particular kind of order. We develop a pathway-engineering approach, using it to select a particular arrangement of a block copolymer cylinder phase.

  18. Pathway-engineering for highly-aligned block copolymer arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choo, Youngwoo; Majewski, Paweł W.; Fukuto, Masafumi

    While kinetic aspects of self-assembly can hinder ordering, non-equilibirum effects can also be exploited to enforce a particular kind of order. We develop a pathway-engineering approach, using it to select a particular arrangement of a block copolymer cylinder phase.

  19. Application of synthetic biology for production of chemicals in yeast Saccharomyces cerevisiae.

    PubMed

    Li, Mingji; Borodina, Irina

    2015-02-01

    Synthetic biology and metabolic engineering enable generation of novel cell factories that efficiently convert renewable feedstocks into biofuels, bulk, and fine chemicals, thus creating the basis for biosustainable economy independent on fossil resources. While over a hundred proof-of-concept chemicals have been made in yeast, only a very small fraction of those has reached commercial-scale production so far. The limiting factor is the high research cost associated with the development of a robust cell factory that can produce the desired chemical at high titer, rate, and yield. Synthetic biology has the potential to bring down this cost by improving our ability to predictably engineer biological systems. This review highlights synthetic biology applications for design, assembly, and optimization of non-native biochemical pathways in baker's yeast Saccharomyces cerevisiae We describe computational tools for the prediction of biochemical pathways, molecular biology methods for assembly of DNA parts into pathways, and for introducing the pathways into the host, and finally approaches for optimizing performance of the introduced pathways. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.

  20. Activation of DNA damage repair pathways by murine polyomavirus.

    PubMed

    Heiser, Katie; Nicholas, Catherine; Garcea, Robert L

    2016-10-01

    Nuclear replication of DNA viruses activates DNA damage repair (DDR) pathways, which are thought to detect and inhibit viral replication. However, many DNA viruses also depend on these pathways in order to optimally replicate their genomes. We investigated the relationship between murine polyomavirus (MuPyV) and components of DDR signaling pathways including CHK1, CHK2, H2AX, ATR, and DNAPK. We found that recruitment and retention of DDR proteins at viral replication centers was independent of H2AX, as well as the viral small and middle T-antigens. Additionally, infectious virus production required ATR kinase activity, but was independent of CHK1, CHK2, or DNAPK signaling. ATR inhibition did not reduce the total amount of viral DNA accumulated, but affected the amount of virus produced, indicating a defect in virus assembly. These results suggest that MuPyV may utilize a subset of DDR proteins or non-canonical DDR signaling pathways in order to efficiently replicate and assemble. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  1. An Assembly Funnel Makes Biomolecular Complex Assembly Efficient

    PubMed Central

    Zenk, John; Schulman, Rebecca

    2014-01-01

    Like protein folding and crystallization, the self-assembly of complexes is a fundamental form of biomolecular organization. While the number of methods for creating synthetic complexes is growing rapidly, most require empirical tuning of assembly conditions and/or produce low yields. We use coarse-grained simulations of the assembly kinetics of complexes to identify generic limitations on yields that arise because of the many simultaneous interactions allowed between the components and intermediates of a complex. Efficient assembly occurs when nucleation is fast and growth pathways are few, i.e. when there is an assembly “funnel”. For typical complexes, an assembly funnel occurs in a narrow window of conditions whose location is highly complex specific. However, by redesigning the components this window can be drastically broadened, so that complexes can form quickly across many conditions. The generality of this approach suggests assembly funnel design as a foundational strategy for robust biomolecular complex synthesis. PMID:25360818

  2. A Coronavirus E Protein Is Present in Two Distinct Pools with Different Effects on Assembly and the Secretory Pathway

    PubMed Central

    Westerbeck, Jason W.

    2015-01-01

    ABSTRACT Coronaviruses (CoVs) assemble by budding into the lumen of the early Golgi complex prior to exocytosis. The small CoV envelope (E) protein plays roles in assembly, virion release, and pathogenesis. CoV E has a single hydrophobic domain (HD), is targeted to Golgi complex membranes, and has cation channel activity in vitro. However, the precise functions of the CoV E protein during infection are still enigmatic. Structural data for the severe acute respiratory syndrome (SARS)-CoV E protein suggest that it assembles into a homopentamer. Specific residues in the HD regulate the ion-conducting pore formed by SARS-CoV E in artificial bilayers and the pathogenicity of the virus during infection. The E protein from the avian infectious bronchitis virus (IBV) has dramatic effects on the secretory system which require residues in the HD. Here, we use the known structural data from SARS-CoV E to infer the residues important for ion channel activity and the oligomerization of IBV E. We present biochemical data for the formation of two distinct oligomeric pools of IBV E in transfected and infected cells and the residues required for their formation. A high-order oligomer of IBV E is required for the production of virus-like particles (VLPs), implicating this form of the protein in virion assembly. Additionally, disruption of the secretory pathway by IBV E correlates with a form that is likely monomeric, suggesting that the effects on the secretory pathway are independent of E ion channel activity. IMPORTANCE CoVs are important human pathogens with significant zoonotic potential, as demonstrated by the emergence of SARS-CoV and Middle East respiratory syndrome (MERS)-CoV. Progress has been made toward identifying potential vaccine candidates in mouse models of CoV infection, including the use of attenuated viruses that lack the CoV E protein or express E-protein mutants. However, no approved vaccines or antiviral therapeutics exist. We previously reported that the hydrophobic domain of the IBV E protein, a putative viroporin, causes disruption of the mammalian secretory pathway when exogenously expressed in cells. Understanding the mechanism of this disruption could lead to the identification of novel antiviral therapeutics. Here, we present biochemical evidence for two distinct oligomeric forms of IBV E, one essential for assembly and the other with a role in disruption of the secretory pathway. Discovery of two forms of CoV E protein will provide additional targets for antiviral therapeutics. PMID:26136577

  3. The impact of viral RNA on the association free energies of capsid protein assembly: bacteriophage MS2 as a case study.

    PubMed

    ElSawy, Karim M

    2017-02-01

    A large number of single-stranded RNA viruses assemble their capsid and their genomic material simultaneously. The RNA viral genome plays multiple roles in this process that are currently only partly understood. In this work, we investigated the thermodynamic basis of the role of viral RNA on the assembly of capsid proteins. The viral capsid of bacteriophage MS2 was considered as a case study. The MS2 virus capsid is composed of 60 AB and 30 CC protein dimers. We investigated the effect of RNA stem loop (the translational repressor TR) binding to the capsid dimers on the dimer-dimer relative association free energies. We found that TR binding results in destabilization of AB self-association compared with AB and CC association. This indicates that the association of the AB and CC dimers is the most likely assembly pathway for the MS2 virus, which explains the experimental observation of alternating patterns of AB and CC dimers in dominant assembly intermediates of the MS2 virus. The presence of viral RNA, therefore, dramatically channels virus assembly to a limited number of pathways, thereby enhancing the efficiency of virus self-assembly process. Interestingly, Thr59Ser and Thr45Ala mutations of the dimers, in the absence of RNA stem loops, lead to stabilization of AB self-association compared with the AB and CC associations, thereby channelling virus assembly towards a fivefold (AB) 5 pentamer intermediate, providing a testable hypothesis of our thermodynamic arguments.

  4. Release of Infectious Hepatitis C Virus from Huh7 Cells Occurs via a trans-Golgi Network-to-Endosome Pathway Independent of Very-Low-Density Lipoprotein Secretion

    PubMed Central

    Mankouri, Jamel; Walter, Cheryl; Stewart, Hazel; Bentham, Matthew; Park, Wei Sun; Heo, Won Do; Fukuda, Mitsunori

    2016-01-01

    ABSTRACT The release of infectious hepatitis C virus (HCV) particles from infected cells remains poorly characterized. We previously demonstrated that virus release is dependent on the endosomal sorting complex required for transport (ESCRT). Here, we show a critical role of trans-Golgi network (TGN)-endosome trafficking during the assembly, but principally the secretion, of infectious virus. This was demonstrated by both small interfering RNA (siRNA)-mediated silencing of TGN-associated adaptor proteins and a panel of dominant negative (DN) Rab GTPases involved in TGN-endosome trafficking steps. Importantly, interfering with factors critical for HCV release did not have a concomitant effect on secretion of triglycerides, ApoB, or ApoE, indicating that particles are likely released from Huh7 cells via pathways distinct from that of very-low-density lipoprotein (VLDL). Finally, we show that HCV NS2 perturbs TGN architecture, redistributing TGN membranes to closely associate with HCV core protein residing on lipid droplets. These findings support the notion that HCV hijacks TGN-endosome trafficking to facilitate particle assembly and release. Moreover, although essential for assembly and infectivity, the trafficking of mature virions is seemingly independent of host lipoproteins. IMPORTANCE The mechanisms by which infectious hepatitis C virus particles are assembled and released from the cell are poorly understood. We show that the virus subverts host cell trafficking pathways to effect the release of virus particles and disrupts the structure of the Golgi apparatus, a key cellular organelle involved in secretion. In addition, we demonstrate that the mechanisms used by the virus to exit the cell are distinct from those used by the cell to release lipoproteins, suggesting that the virus effects a unique modification to cellular trafficking pathways. PMID:27226379

  5. Alternative Pathways to Apprenticeships. Good Practice Guide

    ERIC Educational Resources Information Center

    National Centre for Vocational Education Research (NCVER), 2015

    2015-01-01

    Apprenticeships are changing. The increasing proportions of people entering apprenticeships at various levels of ability and backgrounds are stimulating demand for alternative pathways to completions. This good practice guide assembles the key findings for education practitioners and workplace supervisors from three related research reports on…

  6. Tuning peptide self-assembly by an in-tether chiral center

    PubMed Central

    Hu, Kuan; Xiong, Wei; Li, Hu; Zhang, Pei-Yu; Yin, Feng; Zhang, Qianling; Jiang, Fan; Li, Zigang

    2018-01-01

    The self-assembly of peptides into ordered nanostructures is important for understanding both peptide molecular interactions and nanotechnological applications. However, because of the complexity and various self-assembling pathways of peptide molecules, design of self-assembling helical peptides with high controllability and tunability is challenging. We report a new self-assembling mode that uses in-tether chiral center-induced helical peptides as a platform for tunable peptide self-assembly with good controllability. It was found that self-assembling behavior was governed by in-tether substitutional groups, where chirality determined the formation of helical structures and aromaticity provided the driving force for self-assembly. Both factors were essential for peptide self-assembly to occur. Experiments and theoretical calculations indicate long-range crystal-like packing in the self-assembly, which was stabilized by a synergy of interpeptide π-π and π-sulfur interactions and hydrogen bond networks. In addition, the self-assembled peptide nanomaterials were demonstrated to be promising candidate materials for applications in biocompatible electrochemical supercapacitors.

  7. Double Dutch: A Tool for Designing Combinatorial Libraries of Biological Systems.

    PubMed

    Roehner, Nicholas; Young, Eric M; Voigt, Christopher A; Gordon, D Benjamin; Densmore, Douglas

    2016-06-17

    Recently, semirational approaches that rely on combinatorial assembly of characterized DNA components have been used to engineer biosynthetic pathways. In practice, however, it is not practical to assemble and test millions of pathway variants in order to elucidate how different DNA components affect the behavior of a pathway. To address this challenge, we apply a rigorous mathematical approach known as design of experiments (DOE) that can be used to construct empirical models of system behavior without testing all variants. To support this approach, we have developed a tool named Double Dutch, which uses a formal grammar and heuristic algorithms to automate the process of DOE library design. Compared to designing by hand, Double Dutch enables users to more efficiently and scalably design libraries of pathway variants that can be used in a DOE framework and uniquely provides a means to flexibly balance design considerations of statistical analysis, construction cost, and risk of homologous recombination, thereby demonstrating the utility of automating decision making when faced with complex design trade-offs.

  8. Entropy driven key-lock assembly

    NASA Astrophysics Data System (ADS)

    Odriozola, G.; Jiménez-Ángeles, F.; Lozada-Cassou, M.

    2008-09-01

    The effective interaction between a sphere with an open cavity (lock) and a spherical macroparticle (key), both immersed in a hard sphere fluid, is studied by means of Monte Carlo simulations. As a result, a two-dimensional map of the key-lock effective interaction potential is constructed, which leads to the proposal of a self-assembling mechanism: There exists trajectories through which the key-lock pair could assemble avoiding trespassing potential barriers. Hence, solely the entropic contribution can induce their self-assembling even in the absence of attractive forces. This study points out the solvent contribution within the underlying mechanisms of substrate-protein assembly/disassembly processes, which are important steps of the enzyme catalysis and protein mediated transport.

  9. Real-time visualization of perforin nanopore assembly.

    PubMed

    Leung, Carl; Hodel, Adrian W; Brennan, Amelia J; Lukoyanova, Natalya; Tran, Sharon; House, Colin M; Kondos, Stephanie C; Whisstock, James C; Dunstone, Michelle A; Trapani, Joseph A; Voskoboinik, Ilia; Saibil, Helen R; Hoogenboom, Bart W

    2017-05-01

    Perforin is a key protein of the vertebrate immune system. Secreted by cytotoxic lymphocytes as soluble monomers, perforin can self-assemble into oligomeric pores of 10-20 nm inner diameter in the membranes of virus-infected and cancerous cells. These large pores facilitate the entry of pro-apoptotic granzymes, thereby rapidly killing the target cell. To elucidate the pathways of perforin pore assembly, we carried out real-time atomic force microscopy and electron microscopy studies. Our experiments reveal that the pore assembly proceeds via a membrane-bound prepore intermediate state, typically consisting of up to approximately eight loosely but irreversibly assembled monomeric subunits. These short oligomers convert to more closely packed membrane nanopore assemblies, which can subsequently recruit additional prepore oligomers to grow the pore size.

  10. Real-time visualization of perforin nanopore assembly

    NASA Astrophysics Data System (ADS)

    Leung, Carl; Hodel, Adrian W.; Brennan, Amelia J.; Lukoyanova, Natalya; Tran, Sharon; House, Colin M.; Kondos, Stephanie C.; Whisstock, James C.; Dunstone, Michelle A.; Trapani, Joseph A.; Voskoboinik, Ilia; Saibil, Helen R.; Hoogenboom, Bart W.

    2017-05-01

    Perforin is a key protein of the vertebrate immune system. Secreted by cytotoxic lymphocytes as soluble monomers, perforin can self-assemble into oligomeric pores of 10-20 nm inner diameter in the membranes of virus-infected and cancerous cells. These large pores facilitate the entry of pro-apoptotic granzymes, thereby rapidly killing the target cell. To elucidate the pathways of perforin pore assembly, we carried out real-time atomic force microscopy and electron microscopy studies. Our experiments reveal that the pore assembly proceeds via a membrane-bound prepore intermediate state, typically consisting of up to approximately eight loosely but irreversibly assembled monomeric subunits. These short oligomers convert to more closely packed membrane nanopore assemblies, which can subsequently recruit additional prepore oligomers to grow the pore size.

  11. Transcriptome analysis of soiny mullet (Liza haematocheila) spleen in response to Streptococcus dysgalactiae.

    PubMed

    Qi, Zhitao; Wu, Ping; Zhang, Qihuan; Wei, Youchuan; Wang, Zisheng; Qiu, Ming; Shao, Rong; Li, Yao; Gao, Qian

    2016-02-01

    Soiny mullet (Liza haematocheila) is becoming an economically important aquaculture mugilid species in China and other Asian countries. However, increasing incidences of bacterial pathogenic diseases has greatly hampered the production of the soiny mullet. Deeper understanding of the soiny mullet immune system and its related genes in response to bacterial infections are necessary for disease control in this species. In this study, the transcriptomic profile of spleen from soiny mullet challenged with Streptococcus dysgalactiae was analyzed by Illumina-based paired-end sequencing method. After assembly, 86,884 unique transcript fragments (unigenes) were assembled, with an average length of 991 bp. Approximately 41,795 (48.1%) unigenes were annotated in the nr NCBI database and 57.9% of the unigenes were similar to that of the Nile tilapia. A total of 24,299 unigenes were categorized into three Gene Ontology (GO) categories (molecular function, cellular component and biological process), 13,570 unigenes into 25 functional Clusters of Orthologous Groups of proteins (COG) categories, and 30,547 unigenes were grouped into 258 known pathways in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Following S. dysgalactiae infection, 11,461 differentially expressed unigenes were identified including 4658 up-regulated unigenes and 6803 down-regulated unigenes. Significant enrichment analysis of these differentially expressed unigenes identified major immune related pathways, including the Toll-like receptor, complement and coagulation cascades, T cell receptor signaling pathway and B cell receptor signaling pathway. In addition, 24,813 simple sequence repeats (SSRs) and 127,503 candidate single nucleotide polymorphisms (SNPs) were identified from the mullet spleen transcriptome. To this date, this study has globally analyzed the transcriptome profile from the spleen of L. haematocheila after S. dysgalactiae infection. Therefore, the results of our study contributes to better on the immune system and defense mechanisms of soiny mullet in response to bacterial infection, and provides valuable references for related studies in mugilidae species which currently lack genomic reference. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Modules for in vitro metabolic engineering: Pathway assembly for bio-based production of value-added chemicals.

    PubMed

    Taniguchi, Hironori; Okano, Kenji; Honda, Kohsuke

    2017-06-01

    Bio-based chemical production has drawn attention regarding the realization of a sustainable society. In vitro metabolic engineering is one of the methods used for the bio-based production of value-added chemicals. This method involves the reconstitution of natural or artificial metabolic pathways by assembling purified/semi-purified enzymes in vitro . Enzymes from distinct sources can be combined to construct desired reaction cascades with fewer biological constraints in one vessel, enabling easier pathway design with high modularity. Multiple modules have been designed, built, tested, and improved by different groups for different purpose. In this review, we focus on these in vitro metabolic engineering modules, especially focusing on the carbon metabolism, and present an overview of input modules, output modules, and other modules related to cofactor management.

  13. Mps1 phosphorylation sites regulate the function of centrin 2 in centriole assembly.

    PubMed

    Yang, Ching-Hui; Kasbek, Christopher; Majumder, Shubhra; Yusof, Adlina Mohd; Fisk, Harold A

    2010-12-01

    The nondegradable Mps1(Δ12/13) protein drives centriole overproduction, suggesting that Mps1 phosphorylates a subset of centrosomal proteins to drive the assembly of new centrioles. Here we identify three Mps1 phosphorylation sites within the centriolar protein Centrin 2 (Cetn2). Although centrioles can be assembled in the absence of Cetn2, centriole assembly is attenuated in the absence of Cetn2. While wild-type Cetn2 can compensate for this attenuation, a nonphosphorylatable version cannot. In addition, overexpressing Cetn2 causes Mps1-dependent centriole overproduction that requires each of the three Mps1 phosphorylation sites within Cetn2 and is greatly exacerbated by mimicking phosphorylation at any of these sites. Wild-type Cetn2 generates excess foci that are competent as mitotic spindle poles in HsSas-6-depleted cells, suggesting that Cetn2 can organize a subset of centriolar proteins independently of cartwheels. However, centriole overproduction caused by a phosphomimetic Cetn2 mutant requires HsSas-6, suggesting that Cetn2 phosphorylation stimulates the canonical centriole assembly pathway. Moreover, in the absence of Cetn2, Mps1(Δ12/13) cannot drive the production of mature centrioles capable of recruiting γ-Tubulin, and a nonphosphorylatable Cetn2 mutant cannot compensate for this defect and exacerbates Cetn2 depletion. Together, our data suggest that Mps1-dependent phosphorylation of Cetn2 stimulates the canonical centriole assembly pathway.

  14. Does Thioflavin-T Detect Oligomers Formed During Amyloid Fibril Assembly

    NASA Astrophysics Data System (ADS)

    Persichilli, Christopher; Hill, Shannon E.; Mast, Jason; Muschol, Martin

    2011-03-01

    Recent results have shown that oligomeric intermediates of amyloid fibril assembly represent the main toxic species in disorders such as Alzheimer's disease and type II diabetes. Thioflavin-T (ThT) is among the most commonly used indicator dyes for mature amyloid fibrils in vitro. We used ThT to monitor amyloid fibril formation of lysozyme (HEWL), and correlated ThT fluorescence to concurrent dynamic light scattering and atomic force microscopy measurements. Specifically, we tested the ability of ThT to discern among oligomer-free vs. oligomeric fibril assembly pathways. We found that ThT fluorescence did not detect oligomer growth; however, fluorescence increases did coincide with the formation of monomeric filaments in the oligomer-free assembly pathway. This implies that ThT fluorescence is not generally suitable for the detection of oligomeric intermediates. The results further suggest different internal structures for oligomeric vs. monomeric filaments. This research was supported, in part, by funding through the Byrd Alzheimer's Institute (ARG-2007-22) and the BITT-Florida Center of Excellence for M.M., an NSF-REU grant (DMR-1004873) for C. P. and an NSF-IGERT fellowship for S.H.

  15. Toxicity of an α-Pore-forming Toxin Depends on the Assembly Mechanism on the Target Membrane as Revealed by Single Molecule Imaging*

    PubMed Central

    Subburaj, Yamunadevi; Ros, Uris; Hermann, Eduard; Tong, Rudi; García-Sáez, Ana J.

    2015-01-01

    α-Pore-forming toxins (α-PFTs) are ubiquitous defense tools that kill cells by opening pores in the target cell membrane. Despite their relevance in host/pathogen interactions, very little is known about the pore stoichiometry and assembly pathway leading to membrane permeabilization. Equinatoxin II (EqtII) is a model α-PFT from sea anemone that oligomerizes and forms pores in sphingomyelin-containing membranes. Here, we determined the spatiotemporal organization of EqtII in living cells by single molecule imaging. Surprisingly, we found that on the cell surface EqtII did not organize into a unique oligomeric form. Instead, it existed as a mixture of oligomeric species mostly including monomers, dimers, tetramers, and hexamers. Mathematical modeling based on our data supported a new model in which toxin clustering happened in seconds and proceeded via condensation of EqtII dimer units formed upon monomer association. Furthermore, altering the pathway of EqtII assembly strongly affected its toxic activity, which highlights the relevance of the assembly mechanism on toxicity. PMID:25525270

  16. A Structure-Toxicity Study of Aß42 Reveals a New Anti-Parallel Aggregation Pathway

    PubMed Central

    Vignaud, Hélène; Bobo, Claude; Lascu, Ioan; Sörgjerd, Karin Margareta; Zako, Tamotsu; Maeda, Mizuo; Salin, Benedicte; Lecomte, Sophie; Cullin, Christophe

    2013-01-01

    Amyloid beta (Aβ) peptides produced by APP cleavage are central to the pathology of Alzheimer’s disease. Despite widespread interest in this issue, the relationship between the auto-assembly and toxicity of these peptides remains controversial. One intriguing feature stems from their capacity to form anti-parallel ß-sheet oligomeric intermediates that can be converted into a parallel topology to allow the formation of protofibrillar and fibrillar Aβ. Here, we present a novel approach to determining the molecular aspects of Aß assembly that is responsible for its in vivo toxicity. We selected Aß mutants with varying intracellular toxicities. In vitro, only toxic Aß (including wild-type Aß42) formed urea-resistant oligomers. These oligomers were able to assemble into fibrils that are rich in anti-parallel ß-sheet structures. Our results support the existence of a new pathway that depends on the folding capacity of Aß . PMID:24244667

  17. Integrated transcriptome sequencing and dynamic analysis reveal carbon source partitioning between terpenoid and oil accumulation in developing Lindera glauca fruits.

    PubMed

    Niu, Jun; Chen, Yinlei; An, Jiyong; Hou, Xinyu; Cai, Jian; Wang, Jia; Zhang, Zhixiang; Lin, Shanzhi

    2015-10-08

    Lindera glauca fruits (LGF) with the abundance of terpenoid and oil has emerged as a novel specific material for industrial and medicinal application in China, but the complex regulatory mechanisms of carbon source partitioning into terpenoid biosynthetic pathway (TBP) and oil biosynthetic pathway (OBP) in developing LGF is still unknown. Here we perform the analysis of contents and compositions of terpenoid and oil from 7 stages of developing LGF to characterize a dramatic difference in temporal accumulative patterns. The resulting 3 crucial samples at 50, 125 and 150 days after flowering (DAF) were selected for comparative deep transcriptome analysis. By Illumina sequencing, the obtained approximately 81 million reads are assembled into 69,160 unigenes, among which 174, 71, 81 and 155 unigenes are implicated in glycolysis, pentose phosphate pathway (PPP), TBP and OBP, respectively. Integrated differential expression profiling and qRT-PCR, we specifically characterize the key enzymes and transcription factors (TFs) involved in regulating carbon allocation ratios for terpenoid or oil accumulation in developing LGF. These results contribute to our understanding of the regulatory mechanisms of carbon source partitioning between terpenoid and oil in developing LGF, and to the improvement of resource utilization and molecular breeding for L. glauca.

  18. Hippo signaling is required for Notch-dependent smooth muscle differentiation of neural crest.

    PubMed

    Manderfield, Lauren J; Aghajanian, Haig; Engleka, Kurt A; Lim, Lillian Y; Liu, Feiyan; Jain, Rajan; Li, Li; Olson, Eric N; Epstein, Jonathan A

    2015-09-01

    Notch signaling has well-defined roles in the assembly of arterial walls and in the development of the endothelium and smooth muscle of the vasculature. Hippo signaling regulates cellular growth in many tissues, and contributes to regulation of organ size, in addition to other functions. Here, we show that the Notch and Hippo pathways converge to regulate smooth muscle differentiation of the neural crest, which is crucial for normal development of the aortic arch arteries and cranial vasculature during embryonic development. Neural crest-specific deletion of the Hippo effectors Yap and Taz produces neural crest precursors that migrate normally, but fail to produce vascular smooth muscle, and Notch target genes such as Jagged1 fail to activate normally. We show that Yap is normally recruited to a tissue-specific Jagged1 enhancer by directly interacting with the Notch intracellular domain (NICD). The Yap-NICD complex is recruited to chromatin by the DNA-binding protein Rbp-J in a Tead-independent fashion. Thus, Hippo signaling can modulate Notch signaling outputs, and components of the Hippo and Notch pathways physically interact. Convergence of Hippo and Notch pathways by the mechanisms described here might be relevant for the function of these signaling cascades in many tissues and in diseases such as cancer. © 2015. Published by The Company of Biologists Ltd.

  19. The paratenon contributes to scleraxis-expressing cells during patellar tendon healing.

    PubMed

    Dyment, Nathaniel A; Liu, Chia-Feng; Kazemi, Namdar; Aschbacher-Smith, Lindsey E; Kenter, Keith; Breidenbach, Andrew P; Shearn, Jason T; Wylie, Christopher; Rowe, David W; Butler, David L

    2013-01-01

    The origin of cells that contribute to tendon healing, specifically extrinsic epitenon/paratenon cells vs. internal tendon fibroblasts, is still debated. The purpose of this study is to determine the location and phenotype of cells that contribute to healing of a central patellar tendon defect injury in the mouse. Normal adult patellar tendon consists of scleraxis-expressing (Scx) tendon fibroblasts situated among aligned collagen fibrils. The tendon body is surrounded by paratenon, which consists of a thin layer of cells that do not express Scx and collagen fibers oriented circumferentially around the tendon. At 3 days following injury, the paratenon thickens as cells within the paratenon proliferate and begin producing tenascin-C and fibromodulin. These cells migrate toward the defect site and express scleraxis and smooth muscle actin alpha by day 7. The thickened paratenon tissue eventually bridges the tendon defect by day 14. Similarly, cells within the periphery of the adjacent tendon struts express these markers and become disorganized. Cells within the defect region show increased expression of fibrillar collagens (Col1a1 and Col3a1) but decreased expression of tenogenic transcription factors (scleraxis and mohawk homeobox) and collagen assembly genes (fibromodulin and decorin). By contrast, early growth response 1 and 2 are upregulated in these tissues along with tenascin-C. These results suggest that paratenon cells, which normally do not express Scx, respond to injury by turning on Scx and assembling matrix to bridge the defect. Future studies are needed to determine the signaling pathways that drive these cells and whether they are capable of producing a functional tendon matrix. Understanding this process may guide tissue engineering strategies in the future by stimulating these cells to improve tendon repair.

  20. Patterns and Processes of Microbial Community Assembly

    PubMed Central

    Schmidt, Steven K.; Fukami, Tadashi; O'Neill, Sean P.; Bilinski, Teresa M.; Stanish, Lee F.; Knelman, Joseph E.; Darcy, John L.; Lynch, Ryan C.; Wickey, Phillip; Ferrenberg, Scott

    2013-01-01

    SUMMARY Recent research has expanded our understanding of microbial community assembly. However, the field of community ecology is inaccessible to many microbial ecologists because of inconsistent and often confusing terminology as well as unnecessarily polarizing debates. Thus, we review recent literature on microbial community assembly, using the framework of Vellend (Q. Rev. Biol. 85:183–206, 2010) in an effort to synthesize and unify these contributions. We begin by discussing patterns in microbial biogeography and then describe four basic processes (diversification, dispersal, selection, and drift) that contribute to community assembly. We also discuss different combinations of these processes and where and when they may be most important for shaping microbial communities. The spatial and temporal scales of microbial community assembly are also discussed in relation to assembly processes. Throughout this review paper, we highlight differences between microbes and macroorganisms and generate hypotheses describing how these differences may be important for community assembly. We end by discussing the implications of microbial assembly processes for ecosystem function and biodiversity. PMID:24006468

  1. Quality control in the secretory assembly line.

    PubMed Central

    Helenius, A

    2001-01-01

    As a rule, only proteins that have reached a native, folded and assembled structure are transported to their target organelles and compartments within the cell. In the secretory pathway of eukaryotic cells, this type of sorting is particularly important. A variety of molecular mechanisms are involved that distinguish between folded and unfolded proteins, modulate their intracellular transport, and induce degradation if they fail to fold. This phenomenon, called quality control, occurs at several levels and involves different types of folding sensors. The quality control system provides a stringent and versatile molecular sorting system that guaranties fidelity of protein expression in the secretory pathway. PMID:11260794

  2. The Assembly Pathway of Mitochondrial Respiratory Chain Complex I.

    PubMed

    Guerrero-Castillo, Sergio; Baertling, Fabian; Kownatzki, Daniel; Wessels, Hans J; Arnold, Susanne; Brandt, Ulrich; Nijtmans, Leo

    2017-01-10

    Mitochondrial complex I is the largest integral membrane enzyme of the respiratory chain and consists of 44 different subunits encoded in the mitochondrial and nuclear genome. Its biosynthesis is a highly complicated and multifaceted process involving at least 14 additional assembly factors. How these subunits assemble into a functional complex I and where the assembly factors come into play is largely unknown. Here, we applied a dynamic complexome profiling approach to elucidate the assembly of human mitochondrial complex I and its further incorporation into respiratory chain supercomplexes. We delineate the stepwise incorporation of all but one subunit into a series of distinct assembly intermediates and their association with known and putative assembly factors, which had not been implicated in this process before. The resulting detailed and comprehensive model of complex I assembly is fully consistent with recent structural data and the remarkable modular architecture of this multiprotein complex. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Transcriptome Analysis and Discovery of Genes Involved in Immune Pathways from Hepatopancreas of Microbial Challenged Mitten Crab Eriocheir sinensis

    PubMed Central

    Li, Xihong; Cui, Zhaoxia; Liu, Yuan; Song, Chengwen; Shi, Guohui

    2013-01-01

    Background The Chinese mitten crab Eriocheir sinensis is an important economic crustacean and has been seriously attacked by various diseases, which requires more and more information for immune relevant genes on genome background. Recently, high-throughput RNA sequencing (RNA-seq) technology provides a powerful and efficient method for transcript analysis and immune gene discovery. Methods/Principal Findings A cDNA library from hepatopancreas of E. sinensis challenged by a mixture of three pathogen strains (Gram-positive bacteria Micrococcus luteus, Gram-negative bacteria Vibrio alginolyticus and fungi Pichia pastoris; 108 cfu·mL−1) was constructed and randomly sequenced using Illumina technique. Totally 39.76 million clean reads were assembled to 70,300 unigenes. After ruling out short-length and low-quality sequences, 52,074 non-redundant unigenes were compared to public databases for homology searching and 17,617 of them showed high similarity to sequences in NCBI non-redundant protein (Nr) database. For function classification and pathway assignment, 18,734 (36.00%) unigenes were categorized to three Gene Ontology (GO) categories, 12,243 (23.51%) were classified to 25 Clusters of Orthologous Groups (COG), and 8,983 (17.25%) were assigned to six Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Potentially, 24, 14, 47 and 132 unigenes were characterized to be involved in Toll, IMD, JAK-STAT and MAPK pathways, respectively. Conclusions/Significance This is the first systematical transcriptome analysis of components relating to innate immune pathways in E. sinensis. Functional genes and putative pathways identified here will contribute to better understand immune system and prevent various diseases in crab. PMID:23874555

  4. Hybrid genome assembly and annotation of Paenibacillus pasadenensis strain R16 reveals insights on endophytic life style and antifungal activity

    PubMed Central

    Passera, Alessandro; Marcolungo, Luca; Brasca, Milena; Quaglino, Fabio; Cantaloni, Chiara; Delledonne, Massimo

    2018-01-01

    Bacteria of the Paenibacillus genus are becoming important in many fields of science, including agriculture, for their positive effects on the health of plants. However, there are little information available on this genus compared to other bacteria (such as Bacillus or Pseudomonas), especially when considering genomic information. Sequencing the genomes of plant-beneficial bacteria is a crucial step to identify the genetic elements underlying the adaptation to life inside a plant host and, in particular, which of these features determine the differences between a helpful microorganism and a pathogenic one. In this study, we have characterized the genome of Paenibacillus pasadenensis, strain R16, recently investigated for its antifungal activities and plant-associated features. An hybrid assembly approach was used integrating the very precise reads obtained by Illumina technology and long fragments acquired with Oxford Nanopore Technology (ONT) sequencing. De novo genome assembly based solely on Illumina reads generated a relatively fragmented assembly of 5.72 Mbp in 99 ungapped sequences with an N50 length of 544 Kbp; hybrid assembly, integrating Illumina and ONT reads, improved the assembly quality, generating a genome of 5.75 Mbp, organized in 6 contigs with an N50 length of 3.4 Mbp. Annotation of the latter genome identified 4987 coding sequences, of which 1610 are hypothetical proteins. Enrichment analysis identified pathways of particular interest for the endophyte biology, including the chitin-utilization pathway and the incomplete siderophore pathway which hints at siderophore parasitism. In addition the analysis led to the identification of genes for the production of terpenes, as for example farnesol, that was hypothesized as the main antifungal molecule produced by the strain. The functional analysis on the genome confirmed several plant-associated, plant-growth promotion, and biocontrol traits of strain R16, thus adding insights in the genetic bases of these complex features, and of the Paenibacillus genus in general. PMID:29351296

  5. Rigid-Cluster Models of Conformational Transitions in Macromolecular Machines and Assemblies

    PubMed Central

    Kim, Moon K.; Jernigan, Robert L.; Chirikjian, Gregory S.

    2005-01-01

    We present a rigid-body-based technique (called rigid-cluster elastic network interpolation) to generate feasible transition pathways between two distinct conformations of a macromolecular assembly. Many biological molecules and assemblies consist of domains which act more or less as rigid bodies during large conformational changes. These collective motions are thought to be strongly related with the functions of a system. This fact encourages us to simply model a macromolecule or assembly as a set of rigid bodies which are interconnected with distance constraints. In previous articles, we developed coarse-grained elastic network interpolation (ENI) in which, for example, only Cα atoms are selected as representatives in each residue of a protein. We interpolate distance differences of two conformations in ENI by using a simple quadratic cost function, and the feasible conformations are generated without steric conflicts. Rigid-cluster interpolation is an extension of the ENI method with rigid-clusters replacing point masses. Now the intermediate conformations in an anharmonic pathway can be determined by the translational and rotational displacements of large clusters in such a way that distance constraints are observed. We present the derivation of the rigid-cluster model and apply it to a variety of macromolecular assemblies. Rigid-cluster ENI is then modified for a hybrid model represented by a mixture of rigid clusters and point masses. Simulation results show that both rigid-cluster and hybrid ENI methods generate sterically feasible pathways of large systems in a very short time. For example, the HK97 virus capsid is an icosahedral symmetric assembly composed of 60 identical asymmetric units. Its original Hessian matrix size for a Cα coarse-grained model is >(300,000)2. However, it reduces to (84)2 when we apply the rigid-cluster model with icosahedral symmetry constraints. The computational cost of the interpolation no longer scales heavily with the size of structures; instead, it depends strongly on the minimal number of rigid clusters into which the system can be decomposed. PMID:15833998

  6. A genome resource to address mechanisms of developmental programming: determination of the fetal sheep heart transcriptome.

    PubMed

    Cox, Laura A; Glenn, Jeremy P; Spradling, Kimberly D; Nijland, Mark J; Garcia, Roy; Nathanielsz, Peter W; Ford, Stephen P

    2012-06-15

    The pregnant sheep has provided seminal insights into reproduction related to animal and human development (ovarian function, fertility, implantation, fetal growth, parturition and lactation). Fetal sheep physiology has been extensively studied since 1950, contributing significantly to the basis for our understanding of many aspects of fetal development and behaviour that remain in use in clinical practice today. Understanding mechanisms requires the combination of systems approaches uniquely available in fetal sheep with the power of genomic studies. Absence of the full range of sheep genomic resources has limited the full realization of the power of this model, impeding progress in emerging areas of pregnancy biology such as developmental programming. We have examined the expressed fetal sheep heart transcriptome using high-throughput sequencing technologies. In so doing we identified 36,737 novel transcripts and describe genes, gene variants and pathways relevant to fundamental developmental mechanisms. Genes with the highest expression levels and with novel exons in the fetal heart transcriptome are known to play central roles in muscle development. We show that high-throughput sequencing methods can generate extensive transcriptome information in the absence of an assembled and annotated genome for that species. The gene sequence data obtained provide a unique genomic resource for sheep specific genetic technology development and, combined with the polymorphism data, augment annotation and assembly of the sheep genome. In addition, identification and pathway analysis of novel fetal sheep heart transcriptome splice variants is a first step towards revealing mechanisms of genetic variation and gene environment interactions during fetal heart development.

  7. A genome resource to address mechanisms of developmental programming: determination of the fetal sheep heart transcriptome

    PubMed Central

    Cox, Laura A; Glenn, Jeremy P; Spradling, Kimberly D; Nijland, Mark J; Garcia, Roy; Nathanielsz, Peter W; Ford, Stephen P

    2012-01-01

    The pregnant sheep has provided seminal insights into reproduction related to animal and human development (ovarian function, fertility, implantation, fetal growth, parturition and lactation). Fetal sheep physiology has been extensively studied since 1950, contributing significantly to the basis for our understanding of many aspects of fetal development and behaviour that remain in use in clinical practice today. Understanding mechanisms requires the combination of systems approaches uniquely available in fetal sheep with the power of genomic studies. Absence of the full range of sheep genomic resources has limited the full realization of the power of this model, impeding progress in emerging areas of pregnancy biology such as developmental programming. We have examined the expressed fetal sheep heart transcriptome using high-throughput sequencing technologies. In so doing we identified 36,737 novel transcripts and describe genes, gene variants and pathways relevant to fundamental developmental mechanisms. Genes with the highest expression levels and with novel exons in the fetal heart transcriptome are known to play central roles in muscle development. We show that high-throughput sequencing methods can generate extensive transcriptome information in the absence of an assembled and annotated genome for that species. The gene sequence data obtained provide a unique genomic resource for sheep specific genetic technology development and, combined with the polymorphism data, augment annotation and assembly of the sheep genome. In addition, identification and pathway analysis of novel fetal sheep heart transcriptome splice variants is a first step towards revealing mechanisms of genetic variation and gene environment interactions during fetal heart development. PMID:22508961

  8. Rho GTPases Control Polarity, Protrusion, and Adhesion during Cell Movement

    PubMed Central

    Nobes, Catherine D.; Hall, Alan

    1999-01-01

    Cell movement is essential during embryogenesis to establish tissue patterns and to drive morphogenetic pathways and in the adult for tissue repair and to direct cells to sites of infection. Animal cells move by crawling and the driving force is derived primarily from the coordinated assembly and disassembly of actin filaments. The small GTPases, Rho, Rac, and Cdc42, regulate the organization of actin filaments and we have analyzed their contributions to the movement of primary embryo fibroblasts in an in vitro wound healing assay. Rac is essential for the protrusion of lamellipodia and for forward movement. Cdc42 is required to maintain cell polarity, which includes the localization of lamellipodial activity to the leading edge and the reorientation of the Golgi apparatus in the direction of movement. Rho is required to maintain cell adhesion during movement, but stress fibers and focal adhesions are not required. Finally, Ras regulates focal adhesion and stress fiber turnover and this is essential for cell movement. We conclude that the signal transduction pathways controlled by the four small GTPases, Rho, Rac, Cdc42, and Ras, cooperate to promote cell movement. PMID:10087266

  9. mTORC1 and CK2 coordinate ternary and eIF4F complex assembly

    PubMed Central

    Gandin, Valentina; Masvidal, Laia; Cargnello, Marie; Gyenis, Laszlo; McLaughlan, Shannon; Cai, Yutian; Tenkerian, Clara; Morita, Masahiro; Balanathan, Preetika; Jean-Jean, Olivier; Stambolic, Vuk; Trost, Matthias; Furic, Luc; Larose, Louise; Koromilas, Antonis E.; Asano, Katsura; Litchfield, David; Larsson, Ola; Topisirovic, Ivan

    2016-01-01

    Ternary complex (TC) and eIF4F complex assembly are the two major rate-limiting steps in translation initiation regulated by eIF2α phosphorylation and the mTOR/4E-BP pathway, respectively. How TC and eIF4F assembly are coordinated, however, remains largely unknown. We show that mTOR suppresses translation of mRNAs activated under short-term stress wherein TC recycling is attenuated by eIF2α phosphorylation. During acute nutrient or growth factor stimulation, mTORC1 induces eIF2β phosphorylation and recruitment of NCK1 to eIF2, decreases eIF2α phosphorylation and bolsters TC recycling. Accordingly, eIF2β mediates the effect of mTORC1 on protein synthesis and proliferation. In addition, we demonstrate a formerly undocumented role for CK2 in regulation of translation initiation, whereby CK2 stimulates phosphorylation of eIF2β and simultaneously bolsters eIF4F complex assembly via the mTORC1/4E-BP pathway. These findings imply a previously unrecognized mode of translation regulation, whereby mTORC1 and CK2 coordinate TC and eIF4F complex assembly to stimulate cell proliferation. PMID:27040916

  10. Amyloid Oligomers and Protofibrils, but Not Filaments, Self-Replicate from Native Lysozyme

    PubMed Central

    2015-01-01

    Self-assembly of amyloid fibrils is the molecular mechanism best known for its connection with debilitating human disorders such as Alzheimer’s disease but is also associated with various functional cellular responses. There is increasing evidence that amyloid formation proceeds along two distinct assembly pathways involving either globular oligomers and protofibrils or rigid monomeric filaments. Oligomers, in particular, have been implicated as the dominant molecular species responsible for pathogenesis. Yet the molecular mechanisms regulating their self-assembly have remained elusive. Here we show that oligomers/protofibrils and monomeric filaments, formed along distinct assembly pathways, display critical differences in their ability to template amyloid growth at physiological vs denaturing temperatures. At physiological temperatures, amyloid filaments remained stable but could not seed growth of native monomers. In contrast, oligomers and protofibrils not only remained intact but were capable of self-replication using native monomers as the substrate. Kinetic data further suggested that this prion-like growth mode of oligomers/protofibrils involved two distinct activities operating orthogonal from each other: autocatalytic self-replication of oligomers from native monomers and nucleated polymerization of oligomers into protofibrils. The environmental changes to stability and templating competence of these different amyloid species in different environments are likely to be important for understanding the molecular mechanisms underlying both pathogenic and functional amyloid self-assembly. PMID:24884889

  11. Amyloid oligomers and protofibrils, but not filaments, self-replicate from native lysozyme.

    PubMed

    Mulaj, Mentor; Foley, Joseph; Muschol, Martin

    2014-06-25

    Self-assembly of amyloid fibrils is the molecular mechanism best known for its connection with debilitating human disorders such as Alzheimer's disease but is also associated with various functional cellular responses. There is increasing evidence that amyloid formation proceeds along two distinct assembly pathways involving either globular oligomers and protofibrils or rigid monomeric filaments. Oligomers, in particular, have been implicated as the dominant molecular species responsible for pathogenesis. Yet the molecular mechanisms regulating their self-assembly have remained elusive. Here we show that oligomers/protofibrils and monomeric filaments, formed along distinct assembly pathways, display critical differences in their ability to template amyloid growth at physiological vs denaturing temperatures. At physiological temperatures, amyloid filaments remained stable but could not seed growth of native monomers. In contrast, oligomers and protofibrils not only remained intact but were capable of self-replication using native monomers as the substrate. Kinetic data further suggested that this prion-like growth mode of oligomers/protofibrils involved two distinct activities operating orthogonal from each other: autocatalytic self-replication of oligomers from native monomers and nucleated polymerization of oligomers into protofibrils. The environmental changes to stability and templating competence of these different amyloid species in different environments are likely to be important for understanding the molecular mechanisms underlying both pathogenic and functional amyloid self-assembly.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Badia-Martinez, Daniel; Peralta, Bibiana; Andres, German

    Hepatitis C virus infects almost 170 million people per year but its assembly pathway, architecture and the structures of its envelope proteins are poorly understood. Using electron tomography of plastic-embedded sections of insect cells, we have visualized the morphogenesis of recombinant Hepatitis C virus-like particles. Our data provide a three-dimensional sketch of viral assembly at the endoplasmic reticulum showing different budding stages and contiguity of buds. This latter phenomenon could play an important role during the assembly of wt-HCV and explain the size-heterogeneity of its particles.

  13. Merging Adverse Outcome Pathway (AOP) and Mode of Action (MOA) Frameworks: Assembling Knowledge for Use in Risk Assessment

    EPA Science Inventory

    The Adverse Outcome Pathway has emerged as an internationally harmonized mechanism for organizing biological information in a chemical agnostic manner. This construct is valuable for interpreting the results from high-throughput toxicity (HTT) assessment by providing a mechanisti...

  14. HBV core protein allosteric modulators differentially alter cccDNA biosynthesis from de novo infection and intracellular amplification pathways.

    PubMed

    Guo, Fang; Zhao, Qiong; Sheraz, Muhammad; Cheng, Junjun; Qi, Yonghe; Su, Qing; Cuconati, Andrea; Wei, Lai; Du, Yanming; Li, Wenhui; Chang, Jinhong; Guo, Ju-Tao

    2017-09-01

    Hepatitis B virus (HBV) core protein assembles viral pre-genomic (pg) RNA and DNA polymerase into nucleocapsids for reverse transcriptional DNA replication to take place. Several chemotypes of small molecules, including heteroaryldihydropyrimidines (HAPs) and sulfamoylbenzamides (SBAs), have been discovered to allosterically modulate core protein structure and consequentially alter the kinetics and pathway of core protein assembly, resulting in formation of irregularly-shaped core protein aggregates or "empty" capsids devoid of pre-genomic RNA and viral DNA polymerase. Interestingly, in addition to inhibiting nucleocapsid assembly and subsequent viral genome replication, we have now demonstrated that HAPs and SBAs differentially modulate the biosynthesis of covalently closed circular (ccc) DNA from de novo infection and intracellular amplification pathways by inducing disassembly of nucleocapsids derived from virions as well as double-stranded DNA-containing progeny nucleocapsids in the cytoplasm. Specifically, the mistimed cuing of nucleocapsid uncoating prevents cccDNA formation during de novo infection of hepatocytes, while transiently accelerating cccDNA synthesis from cytoplasmic progeny nucleocapsids. Our studies indicate that elongation of positive-stranded DNA induces structural changes of nucleocapsids, which confers ability of mature nucleocapsids to bind CpAMs and triggers its disassembly. Understanding the molecular mechanism underlying the dual effects of the core protein allosteric modulators on nucleocapsid assembly and disassembly will facilitate the discovery of novel core protein-targeting antiviral agents that can more efficiently suppress cccDNA synthesis and cure chronic hepatitis B.

  15. First insights into the giant panda (Ailuropoda melanoleuca) blood transcriptome: a resource for novel gene loci and immunogenetics.

    PubMed

    Du, Lianming; Li, Wujiao; Fan, Zhenxin; Shen, Fujun; Yang, Mingyu; Wang, Zili; Jian, Zuoyi; Hou, Rong; Yue, Bisong; Zhang, Xiuyue

    2015-07-01

    The giant panda (Ailuropoda melanoleuca) is one of the most famous flagship species for conservation, and its draft genome has recently been assembled. However, the transcriptome is not yet available. In this study, the blood transcriptomes of three pandas were characterized and about 160 million sequencing reads were generated using Illumina HiSeq 2000 paired-end sequencing technology. The assembly yielded 92 598 transcripts with an average length of 1626 bp and N50 length of 2842 bp. Based on a sequence similarity search against nonredundant (nr) protein database, a total of 38 522 (41.6%) transcripts were annotated. Of these annotated transcripts, 25 142 and 8272 transcripts were assigned to gene ontology terms and clusters of orthologous group, respectively. A search against the Kyoto Encyclopedia of Genes and Genomes Pathway database (KEGG) indicated that 9098 (9.83%) transcripts mapped to 324 KEGG pathways, and the best represented functional categories of pathways were signal transduction and immune system. We have also identified 23 460 microsatellites, 43 560 SNPs as well as 21 456 alternative splicing events in the assembly. Additionally, a total of 24 341 complete open reading frames (ORFs) were detected from the assembly where 1492 ORFs were found to be novel gene loci as these have not been annotated so far in any public database. © 2014 John Wiley & Sons Ltd.

  16. Phosphorylation of Nephrin Triggers Its Internalization by Raft-Mediated Endocytosis

    PubMed Central

    Qin, Xiao-Song; Shono, Akemi; Yamamoto, Akitsugu; Kurihara, Hidetake; Doi, Toshio

    2009-01-01

    Proper localization of nephrin determines integrity of the glomerular slit diaphragm. Slit diaphragm proteins assemble into functional signaling complexes on a raft-based platform, but how the trafficking of these proteins coordinates with their signaling function is unknown. Here, we demonstrate that a raft-mediated endocytic (RME) pathway internalizes nephrin. Nephrin internalization was slower with raft-mediated endocytosis than with classic clathrin-mediated endocytosis. Ultrastructurally, the RME pathway consisted of noncoated invaginations and was dependent on cholesterol and dynamin. Nephrin constituted a stable, signaling-competent microdomain through interaction with Fyn, a Src kinase, and podocin, a scaffold protein. Tyrosine phosphorylation of nephrin triggered its own RME-mediated internalization. Protamine-induced hyperphosphorylation of nephrin led to noncoated invaginations predominating over coated pits. These results demonstrate that an RME pathway couples nephrin internalization to its own signaling, suggesting that RME promotes proper spatiotemporal assembly of slit diaphragms during podocyte development or injury. PMID:19850954

  17. Arrest of trans-SNARE zippering uncovers loosely and tightly docked intermediates in membrane fusion.

    PubMed

    Yavuz, Halenur; Kattan, Iman; Hernandez, Javier Matias; Hofnagel, Oliver; Witkowska, Agata; Raunser, Stefan; Walla, Peter Jomo; Jahn, Reinhard

    2018-04-17

    Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins mediate intracellular membrane fusion in the secretory pathway. They contain conserved regions, termed SNARE motifs, that assemble between opposing membranes directionally from their N-termini to their membrane-proximal C-termini in a highly exergonic reaction. However, how this energy is utilized to overcome the energy barriers along the fusion pathway is still under debate. Here we have used mutants of the SNARE synaptobrevin to arrest trans-SNARE zippering at defined stages. We have uncovered two distinct vesicle docking intermediates, where the membranes are loosely and tightly connected, respectively. The tightly connected state is irreversible and independent of maintaining assembled SNARE complexes. Together, our results shed new light on the intermediate stages along the pathway of membrane fusion. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Bcr-Abl induces abnormal cytoskeleton remodeling, beta1 integrin clustering and increased cell adhesion to fibronectin through the Abl interactor 1 pathway.

    PubMed

    Li, Yingzhu; Clough, Nancy; Sun, Xiaolin; Yu, Weidong; Abbott, Brian L; Hogan, Christopher J; Dai, Zonghan

    2007-04-15

    Hematopoietic cells isolated from patients with Bcr-Abl-positive leukemia exhibit multiple abnormalities of cytoskeletal and integrin function. These abnormalities are thought to play a role in the pathogenesis of leukemia; however, the molecular events leading to these abnormalities are not fully understood. We show here that the Abi1 pathway is required for Bcr-Abl to stimulate actin cytoskeleton remodeling, integrin clustering and cell adhesion. Expression of Bcr-Abl induces tyrosine phosphorylation of Abi1. This is accompanied by a subcellular translocation of Abi1/WAVE2 to a site adjacent to membrane, where an F-actin-enriched structure containing the adhesion molecules such as beta1-integrin, paxillin and vinculin is assembled. Bcr-Abl-induced membrane translocation of Abi1/WAVE2 requires direct interaction between Abi1 and Bcr-Abl, but is independent of the phosphoinositide 3-kinase pathway. Formation of the F-actin-rich complex correlates with an increased cell adhesion to fibronectin. More importantly, disruption of the interaction between Bcr-Abl and Abi1 by mutations either in Bcr-Abl or Abi1 not only abolished tyrosine phosphorylation of Abi1 and membrane translocation of Abi1/WAVE2, but also inhibited Bcr-Abl-stimulated actin cytoskeleton remodeling, integrin clustering and cell adhesion to fibronectin. Together, these data define Abi1/WAVE2 as a downstream pathway that contributes to Bcr-Abl-induced abnormalities of cytoskeletal and integrin function.

  19. Hierarchically interconnected porous scaffolds for phase change materials with improved thermal conductivity and efficient solar-to-electric energy conversion.

    PubMed

    Yang, Jie; Yu, Peng; Tang, Li-Sheng; Bao, Rui-Ying; Liu, Zheng-Ying; Yang, Ming-Bo; Yang, Wei

    2017-11-23

    An ice-templating self-assembly strategy and a vacuum impregnation method were used to fabricate polyethylene glycol (PEG)/hierarchical porous scaffold composite phase change materials (PCMs). Hierarchically interconnected porous scaffolds of boron nitride (BN), with the aid of a small amount of graphene oxide (GO), endow the composite PCMs with high thermal conductivity, excellent shape-stability and efficient solar-to-electric energy conversion. The formation of a three-dimensional (3D) thermally conductive pathway in the composites contributes to improving the thermal conductivity up to 2.36 W m -1 K -1 at a relatively low content of BN (ca. 23 wt%). This work provides a route for thermally conductive and shape-stabilized composite PCMs used as energy storage materials.

  20. ILK modulates epithelial polarity and matrix formation in hair follicles

    PubMed Central

    Rudkouskaya, Alena; Welch, Ian; Dagnino, Lina

    2014-01-01

    Hair follicle morphogenesis requires coordination of multiple signals and communication between its epithelial and mesenchymal constituents. Cell adhesion protein platforms, which include integrins and integrin-linked kinase (ILK), are critical for hair follicle formation. However, their precise contribution to this process is poorly understood. We show that in the absence of ILK, the hair follicle matrix lineage fails to develop, likely due to abnormalities in development of apical–basal cell polarity, as well as in laminin-511 and basement membrane assembly at the tip of the hair bud. These defects also result in impaired specification of hair matrix and absence of precortex and inner sheath root cell lineages. The molecular pathways affected in ILK-deficient follicles are similar to those in the absence of epidermal integrin β1 and include Wnt, but not sonic hedgehog, signaling. ILK-deficient hair buds also show abnormalities in the dermal papilla. Addition of exogenous laminin-511 restores morphological and molecular markers associated with hair matrix formation, indicating that ILK regulates hair bud cell polarity and functions upstream from laminin-511 assembly to regulate the developmental progression of hair follicles beyond the germ stage. PMID:24371086

  1. Stepwise Organization of the β-Structure Identifies Key Regions Essential for the Propagation and Cytotoxicity of Insulin Amyloid Fibrils*

    PubMed Central

    Chatani, Eri; Imamura, Hiroshi; Yamamoto, Naoki; Kato, Minoru

    2014-01-01

    Amyloid fibrils are supramolecular assemblies, the deposition of which is associated with many serious diseases including Alzheimer, prion, and Huntington diseases. Several smaller aggregates such as oligomers and protofibrils have been proposed to play a role in early stages of the fibrillation process; however, little is known about how these species contribute to the formation of mature amyloid fibrils with a rigid cross-β structure. Here, we identified a new pathway for the formation of insulin amyloid fibrils at a high concentration of salt in which mature fibrils were formed in a stepwise manner via a prefibrillar intermediate: minute prefibrillar species initially accumulated, followed by the subsequent formation of thicker amyloid fibrils. Fourier transform infrared spectra suggested the sequential formation of two types of β-sheets with different strength hydrogen bonds, one of which was developed concomitantly with the mutual assembly of the prefibrillar intermediate to form mature fibrils. Interestingly, fibril propagation and cellular toxicity appeared only after the later step of structural organization, and a comparison of β-sheet regions between the prefibrillar intermediate and mature fibrils using proteolysis led to the proposal of specific regions essential for manifestation of these properties. PMID:24569992

  2. Controlling the optical parameters of self-assembled silver films with wetting layers and annealing

    NASA Astrophysics Data System (ADS)

    Ciesielski, Arkadiusz; Skowronski, Lukasz; Trzcinski, Marek; Szoplik, Tomasz

    2017-11-01

    We investigated the influence of presence of Ni and Ge wetting layers as well as annealing on the permittivity of Ag films with thicknesses of 20, 35 and 65 nm. Most of the research on thin silver films deals with very small (<20 nm) or relatively large (≥50 nm) thicknesses. We studied the transition region (around 30 nm) from charge percolation pathways to fully continuous films and compared the values of optical parameters among silver layers with at least one fixed attribute (thickness, wetting and capping material, post-process annealing). Our study, based on atomic force microscopy, ellipsometric and X-ray photoelectron spectroscopy measurements, shows that utilizing a wetting layer is comparable to increasing the thickness of the silver film. Both operations decrease the roughness-to-thickness ratio, thus decreasing the scattering losses and both narrow the Lorentz-shaped interband transition peak. However, while increasing silver thickness increases absorption on the free carriers, the use of wetting layers influences the self-assembled internal structure of silver films in such a way, that the free carrier absorption decreases. Wetting layers also introduce additional contributions from effects like segregation or diffusion, which evolve in time and due to annealing.

  3. Transcriptomics insights into the genetic regulation of root apical meristem exhaustion and determinate primary root growth in Pachycereus pringlei (Cactaceae).

    PubMed

    Rodriguez-Alonso, Gustavo; Matvienko, Marta; López-Valle, Mayra L; Lázaro-Mixteco, Pedro E; Napsucialy-Mendivil, Selene; Dubrovsky, Joseph G; Shishkova, Svetlana

    2018-06-04

    Many Cactaceae species exhibit determinate growth of the primary root as a consequence of root apical meristem (RAM) exhaustion. The genetic regulation of this growth pattern is unknown. Here, we de novo assembled and annotated the root apex transcriptome of the Pachycereus pringlei primary root at three developmental stages, with active or exhausted RAM. The assembled transcriptome is robust and comprehensive, and was used to infer a transcriptional regulatory network of the primary root apex. Putative orthologues of Arabidopsis regulators of RAM maintenance, as well as putative lineage-specific transcripts were identified. The transcriptome revealed putative orthologues of most proteins involved in housekeeping processes, hormone signalling, and metabolic pathways. Our results suggest that specific transcriptional programs operate in the root apex at specific developmental time points. Moreover, the transcriptional state of the P. pringlei root apex as the RAM becomes exhausted is comparable to the transcriptional state of cells from the meristematic, elongation, and differentiation zones of Arabidopsis roots along the root axis. We suggest that the transcriptional program underlying the drought stress response is induced during Cactaceae root development, and that lineage-specific transcripts could contribute to RAM exhaustion in Cactaceae.

  4. Transcriptional and post-transcriptional regulation of Cdc20 during the spindle assembly checkpoint in S. cerevisiae

    PubMed Central

    Wang, Ruiwen; Burton, Janet L.; Solomon, Mark J.

    2017-01-01

    The anaphase-promoting complex (APC) is a ubiquitin ligase responsible for promoting the degradation of many cell cycle regulators. One of the activators and substrate-binding proteins for the APC is Cdc20. It has been shown previously that Cdc20 can promote its own degradation by the APC in normal cycling cells mainly through a cis-degradation mode (i.e. via an intramolecular mechanism). However, how Cdc20 is degraded during the spindle assembly checkpoint (SAC) is still not fully clear. In this study, we used a dual-Cdc20 system to investigate this issue and found that the cis-degradation mode is also the major pathway responsible for Cdc20 degradation during the SAC. In addition, we found that there is an inverse relationship between APCCdc20 activity and the transcriptional activity of the CDC20 promoter, which likely occurs through feedback regulation by APCCdc20 substrates, such as the cyclins Clb2 and Clb5. These findings contribute to our understanding of how the inhibition of APCCdc20 activity and enhanced Cdc20 degradation are required for proper spindle checkpoint arrest. PMID:28189585

  5. Structural and functional properties of prefibrillar α-synuclein oligomers

    PubMed Central

    Pieri, Laura; Madiona, Karine; Melki, Ronald

    2016-01-01

    The deposition of fibrillar alpha-synuclein (α-syn) within inclusions (Lewy bodies and Lewy neurites) in neurons and glial cells is a hallmark of synucleinopathies. α-syn populates a variety of assemblies ranging from prefibrillar oligomeric species to fibrils whose specific contribution to neurodegeneration is still unclear. Here, we compare the specific structural and biological properties of distinct soluble prefibrillar α-syn oligomers formed either spontaneously or in the presence of dopamine and glutaraldehyde. We show that both on-fibrillar assembly pathway and distinct dopamine-mediated and glutaraldehyde-cross-linked α-syn oligomers are only slightly effective in perturbing cell membrane integrity and inducing cytotoxicity, while mature fibrils exhibit the highest toxicity. In contrast to low-molecular weight and unstable oligomers, large stable α-syn oligomers seed the aggregation of soluble α-syn within reporter cells although to a lesser extent than mature α-syn fibrils. These oligomers appear elongated in shape. Our findings suggest that α-syn oligomers represent a continuum of species ranging from unstable low molecular weight particles to mature fibrils via stable elongated oligomers composed of more than 15 α-syn monomers that possess seeding capacity. PMID:27075649

  6. De novo transcriptome assembly of 'Angeleno' and 'Lamoon' Japanese plum cultivars (Prunus salicina).

    PubMed

    González, Máximo; Maldonado, Jonathan; Salazar, Erika; Silva, Herman; Carrasco, Basilio

    2016-09-01

    Japanese plum (Prunus salicina L.) is a fruit tree of the Rosaceae family, which is an economically important stone fruit around the world. Currently, Japanese plum breeding programs combine traditional breeding and plant physiology strategies with genetic and genomic analysis. In order to understand the flavonoid pathway regulation and to develop molecular markers associated to the fuit skin color (EST-SSRs), we performed a next generation sequencing based on Illumina Hiseq2000 platform. A total of 22.4 GB and 21 GB raw data were obtained from 'Lamoon' and 'Angeleno' respectively, corresponding to 85,404,726 raw reads to 'Lamoon' and 79,781,666 to 'Angeleno'. A total of 139,775,975 reads were filtered after removing low-quality reads and trimming the adapter sequences. De novo transcriptome assembly was performed using CLC Genome Workbench software and a total of 54,584 unique contigs were generated, with an N50 of 1343 base pair (bp) and a mean length of 829 bp. This work contributed with a specific Japanese plum skin transcriptome, providing two libraries of contrasting fruit skin color phenotype (yellow and red) and increasing substantially the GB of raw data available until now for this specie.

  7. Ras regulates assembly of mitogenic signalling complexes through the effector protein IMP.

    PubMed

    Matheny, Sharon A; Chen, Chiyuan; Kortum, Robert L; Razidlo, Gina L; Lewis, Robert E; White, Michael A

    2004-01-15

    The signal transduction cascade comprising Raf, mitogen-activated protein (MAP) kinase kinase (MEK) and MAP kinase is a Ras effector pathway that mediates diverse cellular responses to environmental cues and contributes to Ras-dependent oncogenic transformation. Here we report that the Ras effector protein Impedes Mitogenic signal Propagation (IMP) modulates sensitivity of the MAP kinase cascade to stimulus-dependent activation by limiting functional assembly of the core enzymatic components through the inactivation of KSR, a scaffold/adaptor protein that couples activated Raf to its substrate MEK. IMP is a Ras-responsive E3 ubiquitin ligase that, on activation of Ras, is modified by auto-polyubiquitination, which releases the inhibition of Raf-MEK complex formation. Thus, Ras activates the MAP kinase cascade through simultaneous dual effector interactions: induction of Raf kinase activity and derepression of Raf-MEK complex formation. IMP depletion results in increased stimulus-dependent MEK activation without alterations in the timing or duration of the response. These observations suggest that IMP functions as a threshold modulator, controlling sensitivity of the cascade to stimulus and providing a mechanism to allow adaptive behaviour of the cascade in chronic or complex signalling environments.

  8. Binary colloidal structures assembled through Ising interactions

    NASA Astrophysics Data System (ADS)

    Khalil, Karim S.; Sagastegui, Amanda; Li, Yu; Tahir, Mukarram A.; Socolar, Joshua E. S.; Wiley, Benjamin J.; Yellen, Benjamin B.

    2012-04-01

    New methods for inducing microscopic particles to assemble into useful macroscopic structures could open pathways for fabricating complex materials that cannot be produced by lithographic methods. Here we demonstrate a colloidal assembly technique that uses two parameters to tune the assembly of over 20 different pre-programmed structures, including kagome, honeycomb and square lattices, as well as various chain and ring configurations. We programme the assembled structures by controlling the relative concentrations and interaction strengths between spherical magnetic and non-magnetic beads, which behave as paramagnetic or diamagnetic dipoles when immersed in a ferrofluid. A comparison of our experimental observations with potential energy calculations suggests that the lowest energy configuration within binary mixtures is determined entirely by the relative dipole strengths and their relative concentrations.

  9. Contribution of the Alternative Respiratory Pathway to PSII Photoprotection in C3 and C4 Plants.

    PubMed

    Zhang, Zi-Shan; Liu, Mei-Jun; Scheibe, Renate; Selinski, Jennifer; Zhang, Li-Tao; Yang, Cheng; Meng, Xiang-Long; Gao, Hui-Yuan

    2017-01-09

    The mechanism by which the mitochondrial alternative oxidase (AOX) pathway contributes to photosystem II (PSII) photoprotection is in dispute. It was generally thought that the AOX pathway protects photosystems by dissipating excess reducing equivalents exported from chloroplasts through the malate/oxaloacetate (Mal/OAA) shuttle and thus preventing the over-reduction of chloroplasts. In this study, using the aox1a Arabidopsis mutant and nine other C3 and C4 plant species, we revealed an additional action model of the AOX pathway in PSII photoprotection. Although the AOX pathway contributes to PSII photoprotection in C3 leaves treated with high light, this contribution was observed to disappear when photorespiration was suppressed. Disruption or inhibition of the AOX pathway significantly decreased the photorespiration in C3 leaves. Moreover, the AOX pathway did not respond to high light and contributed little to PSII photoprotection in C4 leaves possessing a highly active Mal/OAA shuttle but with little photorespiration. These results demonstrate that the AOX pathway contributes to PSII photoprotection in C3 plants by maintaining photorespiration to detoxify glycolate and via the indirect export of excess reducing equivalents from chloroplasts by the Mal/OAA shuttle. This new action model explains why the AOX pathway does not contribute to PSII photoprotection in C4 plants. Copyright © 2017 The Author. Published by Elsevier Inc. All rights reserved.

  10. A Single Polar Residue and Distinct Membrane Topologies Impact the Function of the Infectious Bronchitis Coronavirus E Protein

    PubMed Central

    Ruch, Travis R.; Machamer, Carolyn E.

    2012-01-01

    The coronavirus E protein is a small membrane protein with a single predicted hydrophobic domain (HD), and has a poorly defined role in infection. The E protein is thought to promote virion assembly, which occurs in the Golgi region of infected cells. It has also been implicated in the release of infectious particles after budding. The E protein has ion channel activity in vitro, although a role for channel activity in infection has not been established. Furthermore, the membrane topology of the E protein is of considerable debate, and the protein may adopt more than one topology during infection. We previously showed that the HD of the infectious bronchitis virus (IBV) E protein is required for the efficient release of infectious virus, an activity that correlated with disruption of the secretory pathway. Here we report that a single residue within the hydrophobic domain, Thr16, is required for secretory pathway disruption. Substitutions of other residues for Thr16 were not tolerated. Mutations of Thr16 did not impact virus assembly as judged by virus-like particle production, suggesting that alteration of secretory pathway and assembly are independent activities. We also examined how the membrane topology of IBV E affected its function by generating mutant versions that adopted either a transmembrane or membrane hairpin topology. We found that a transmembrane topology was required for disrupting the secretory pathway, but was less efficient for virus-like particle production. The hairpin version of E was unable to disrupt the secretory pathway or produce particles. The findings reported here identify properties of the E protein that are important for its function, and provide insight into how the E protein may perform multiple roles during infection. PMID:22570613

  11. Developmental Gene Discovery in a Hemimetabolous Insect: De Novo Assembly and Annotation of a Transcriptome for the Cricket Gryllus bimaculatus

    PubMed Central

    Zeng, Victor; Ewen-Campen, Ben; Horch, Hadley W.; Roth, Siegfried; Mito, Taro; Extavour, Cassandra G.

    2013-01-01

    Most genomic resources available for insects represent the Holometabola, which are insects that undergo complete metamorphosis like beetles and flies. In contrast, the Hemimetabola (direct developing insects), representing the basal branches of the insect tree, have very few genomic resources. We have therefore created a large and publicly available transcriptome for the hemimetabolous insect Gryllus bimaculatus (cricket), a well-developed laboratory model organism whose potential for functional genetic experiments is currently limited by the absence of genomic resources. cDNA was prepared using mRNA obtained from adult ovaries containing all stages of oogenesis, and from embryo samples on each day of embryogenesis. Using 454 Titanium pyrosequencing, we sequenced over four million raw reads, and assembled them into 21,512 isotigs (predicted transcripts) and 120,805 singletons with an average coverage per base pair of 51.3. We annotated the transcriptome manually for over 400 conserved genes involved in embryonic patterning, gametogenesis, and signaling pathways. BLAST comparison of the transcriptome against the NCBI non-redundant protein database (nr) identified significant similarity to nr sequences for 55.5% of transcriptome sequences, and suggested that the transcriptome may contain 19,874 unique transcripts. For predicted transcripts without significant similarity to known sequences, we assessed their similarity to other orthopteran sequences, and determined that these transcripts contain recognizable protein domains, largely of unknown function. We created a searchable, web-based database to allow public access to all raw, assembled and annotated data. This database is to our knowledge the largest de novo assembled and annotated transcriptome resource available for any hemimetabolous insect. We therefore anticipate that these data will contribute significantly to more effective and higher-throughput deployment of molecular analysis tools in Gryllus. PMID:23671567

  12. The role of nonconserved residues of Archaeoglobus fulgidus ferritin on its unique structure and biophysical properties.

    PubMed

    Sana, Barindra; Johnson, Eric; Le Magueres, Pierre; Criswell, Angela; Cascio, Duilio; Lim, Sierin

    2013-11-08

    Archaeoglobus fulgidus ferritin (AfFtn) is the only tetracosameric ferritin known to form a tetrahedral cage, a structure that remains unique in structural biology. As a result of the tetrahedral (2-3) symmetry, four openings (∼45 Å in diameter) are formed in the cage. This open tetrahedral assembly contradicts the paradigm of a typical ferritin cage: a closed assembly having octahedral (4-3-2) symmetry. To investigate the molecular mechanism affecting this atypical assembly, amino acid residues Lys-150 and Arg-151 were replaced by alanine. The data presented here shed light on the role that these residues play in shaping the unique structural features and biophysical properties of the AfFtn. The x-ray crystal structure of the K150A/R151A mutant, solved at 2.1 Å resolution, indicates that replacement of these key residues flips a "symmetry switch." The engineered molecule no longer assembles with tetrahedral symmetry but forms a typical closed octahedral ferritin cage. Small angle x-ray scattering reveals that the overall shape and size of AfFtn and AfFtn-AA in solution are consistent with those observed in their respective crystal structures. Iron binding and release kinetics of the AfFtn and AfFtn-AA were investigated to assess the contribution of cage openings to the kinetics of iron oxidation, mineralization, or reductive iron release. Identical iron binding kinetics for AfFtn and AfFtn-AA suggest that Fe(2+) ions do not utilize the triangular pores for access to the catalytic site. In contrast, relatively slow reductive iron release was observed for the closed AfFtn-AA, demonstrating involvement of the large pores in the pathway for iron release.

  13. Cellular uptake and trafficking of polydiacetylene micelles

    NASA Astrophysics Data System (ADS)

    Gravel, Edmond; Thézé, Benoit; Jacques, Isabelle; Anilkumar, Parambath; Gombert, Karine; Ducongé, Frédéric; Doris, Eric

    2013-02-01

    Polydiacetylene (PDA) micelles coated with either carboxylate-, ammonium-, or methoxy-polyethyleneglycol (PEG) chains were assembled and loaded with a fluorescent dye (DiO). Their interaction with MCF-7 human breast tumor cells was investigated by epi-fluorescence microscopy and fluorescence-activated cell sorting (FACS) to determine their internalization pathway and intracellular fate. It was found that the ionic character of the micelles influenced their internalization kinetics through a caveolae-mediated pathway and that all micelle types behaved somewhat similarly inside cells.Polydiacetylene (PDA) micelles coated with either carboxylate-, ammonium-, or methoxy-polyethyleneglycol (PEG) chains were assembled and loaded with a fluorescent dye (DiO). Their interaction with MCF-7 human breast tumor cells was investigated by epi-fluorescence microscopy and fluorescence-activated cell sorting (FACS) to determine their internalization pathway and intracellular fate. It was found that the ionic character of the micelles influenced their internalization kinetics through a caveolae-mediated pathway and that all micelle types behaved somewhat similarly inside cells. Electronic supplementary information (ESI) available: Detailed synthetic procedures and supplementary figures. See DOI: 10.1039/c2nr34149b

  14. Illuminating the Reaction Pathways of Viromimetic Assembly.

    PubMed

    Cingil, Hande E; Boz, Emre B; Biondaro, Giovanni; de Vries, Renko; Cohen Stuart, Martien A; Kraft, Daniela J; van der Schoot, Paul; Sprakel, Joris

    2017-04-05

    The coassembly of well-defined biological nanostructures relies on a delicate balance between attractive and repulsive interactions between biomolecular building blocks. Viral capsids are a prototypical example, where coat proteins exhibit not only self-interactions but also interact with the cargo they encapsulate. In nature, the balance between antagonistic and synergistic interactions has evolved to avoid kinetic trapping and polymorphism. To date, it has remained a major challenge to experimentally disentangle the complex kinetic reaction pathways that underlie successful coassembly of biomolecular building blocks in a noninvasive approach with high temporal resolution. Here we show how macromolecular force sensors, acting as a genome proxy, allow us to probe the pathways through which a viromimetic protein forms capsids. We uncover the complex multistage process of capsid assembly, which involves recruitment and complexation, followed by allosteric growth of the proteinaceous coat. Under certain conditions, the single-genome particles condense into capsids containing multiple copies of the template. Finally, we derive a theoretical model that quantitatively describes the kinetics of recruitment and growth. These results shed new light on the origins of the pathway complexity in biomolecular coassembly.

  15. Genome and transcriptome of the regeneration-competent flatworm, Macrostomum lignano.

    PubMed

    Wasik, Kaja; Gurtowski, James; Zhou, Xin; Ramos, Olivia Mendivil; Delás, M Joaquina; Battistoni, Giorgia; El Demerdash, Osama; Falciatori, Ilaria; Vizoso, Dita B; Smith, Andrew D; Ladurner, Peter; Schärer, Lukas; McCombie, W Richard; Hannon, Gregory J; Schatz, Michael

    2015-10-06

    The free-living flatworm, Macrostomum lignano has an impressive regenerative capacity. Following injury, it can regenerate almost an entirely new organism because of the presence of an abundant somatic stem cell population, the neoblasts. This set of unique properties makes many flatworms attractive organisms for studying the evolution of pathways involved in tissue self-renewal, cell-fate specification, and regeneration. The use of these organisms as models, however, is hampered by the lack of a well-assembled and annotated genome sequences, fundamental to modern genetic and molecular studies. Here we report the genomic sequence of M. lignano and an accompanying characterization of its transcriptome. The genome structure of M. lignano is remarkably complex, with ∼75% of its sequence being comprised of simple repeats and transposon sequences. This has made high-quality assembly from Illumina reads alone impossible (N50=222 bp). We therefore generated 130× coverage by long sequencing reads from the Pacific Biosciences platform to create a substantially improved assembly with an N50 of 64 Kbp. We complemented the reference genome with an assembled and annotated transcriptome, and used both of these datasets in combination to probe gene-expression patterns during regeneration, examining pathways important to stem cell function.

  16. Meeting Report: Structural Determination of Environmentally Responsive Proteins

    PubMed Central

    Reinlib, Leslie

    2005-01-01

    The three-dimensional structure of gene products continues to be a missing lynchpin between linear genome sequences and our understanding of the normal and abnormal function of proteins and pathways. Enhanced activity in this area is likely to lead to better understanding of how discrete changes in molecular patterns and conformation underlie functional changes in protein complexes and, with it, sensitivity of an individual to an exposure. The National Institute of Environmental Health Sciences convened a workshop of experts in structural determination and environmental health to solicit advice for future research in structural resolution relative to environmentally responsive proteins and pathways. The highest priorities recommended by the workshop were to support studies of structure, analysis, control, and design of conformational and functional states at molecular resolution for environmentally responsive molecules and complexes; promote understanding of dynamics, kinetics, and ligand responses; investigate the mechanisms and steps in posttranslational modifications, protein partnering, impact of genetic polymorphisms on structure/function, and ligand interactions; and encourage integrated experimental and computational approaches. The workshop participants also saw value in improving the throughput and purity of protein samples and macromolecular assemblies; developing optimal processes for design, production, and assembly of macromolecular complexes; encouraging studies on protein–protein and macromolecular interactions; and examining assemblies of individual proteins and their functions in pathways of interest for environmental health. PMID:16263521

  17. Outside-in assembly pathway of the type IV pilus system in Myxococcus xanthus.

    PubMed

    Friedrich, Carmen; Bulyha, Iryna; Søgaard-Andersen, Lotte

    2014-01-01

    Type IV pili (T4P) are ubiquitous bacterial cell surface structures that undergo cycles of extension, adhesion, and retraction. T4P function depends on a highly conserved envelope-spanning macromolecular machinery consisting of 10 proteins that localizes polarly in Myxococcus xanthus. Using this localization, we investigated the entire T4P machinery assembly pathway by systematically profiling the stability of all and the localization of eight of these proteins in the absence of other T4P machinery proteins as well as by mapping direct protein-protein interactions. Our experiments uncovered a sequential, outside-in pathway starting with the outer membrane (OM) PilQ secretin ring. PilQ recruits a subcomplex consisting of the inner membrane (IM) lipoprotein PilP and the integral IM proteins PilN and PilO by direct interaction with the periplasmic domain of PilP. The PilP/PilN/PilO subcomplex recruits the cytoplasmic PilM protein, by direct interaction between PilN and PilM, and the integral IM protein PilC. The PilB/PilT ATPases that power extension/retraction localize independently of other T4P machinery proteins. Thus, assembly of the T4P machinery initiates with formation of the OM secretin ring and continues inwards over the periplasm and IM to the cytoplasm.

  18. ABCA1 and biogenesis of HDL.

    PubMed

    Yokoyama, Shinji

    2006-02-01

    Mammalian somatic cells do not catabolize cholesterol and therefore export it for sterol homeostasis at cell and whole body levels. This mechanism may reduce intracellularly accumulated excess cholesterol, and thereby would contribute to the prevention or cure of the initial stage of atherosclerotic vascular lesion. High-density lipoprotein (HDL) plays a central role in this reaction by removing cholesterol from cells and transporting it to the liver, the major cholesterol catabolic site. Two independent mechanisms have been identified for cellular cholesterol release. The first is non-specific diffusion-mediated cholesterol "efflux" from the cell surface, in which cholesterol is trapped by various extracellular acceptors including lipoproteins. Extracellular cholesterol esterification of HDL provides a driving force for the net removal of cell cholesterol by this pathway, and some cellular factors may enhance this reaction. The other mechanism is an apolipoprotein-mediated process to generate new HDL particles by removing cellular phospholipid and cholesterol. This reaction is mediated by a membrane protein ATP-binding cassette transporter A1 (ABCA1), and lipid-free or lipid-poor helical apolipoproteins recruit cellular phospholipid and cholesterol to assemble HDL particles. The reaction is composed of two elements: the assembly of HDL particles with phospholipid by apolipoprotein, and cholesterol enrichment in HDL. ABCA1 is essential for the former step and the latter requires further intracellular events. ABCA1 is a rate-limiting factor of HDL assembly and is regulated by transcriptional and post-transcriptional factors. Post-transcriptional regulation of ABCA1 involves modulation of its calpain-mediated degradation.

  19. A Graph-Centric Approach for Metagenome-Guided Peptide and Protein Identification in Metaproteomics

    PubMed Central

    Tang, Haixu; Li, Sujun; Ye, Yuzhen

    2016-01-01

    Metaproteomic studies adopt the common bottom-up proteomics approach to investigate the protein composition and the dynamics of protein expression in microbial communities. When matched metagenomic and/or metatranscriptomic data of the microbial communities are available, metaproteomic data analyses often employ a metagenome-guided approach, in which complete or fragmental protein-coding genes are first directly predicted from metagenomic (and/or metatranscriptomic) sequences or from their assemblies, and the resulting protein sequences are then used as the reference database for peptide/protein identification from MS/MS spectra. This approach is often limited because protein coding genes predicted from metagenomes are incomplete and fragmental. In this paper, we present a graph-centric approach to improving metagenome-guided peptide and protein identification in metaproteomics. Our method exploits the de Bruijn graph structure reported by metagenome assembly algorithms to generate a comprehensive database of protein sequences encoded in the community. We tested our method using several public metaproteomic datasets with matched metagenomic and metatranscriptomic sequencing data acquired from complex microbial communities in a biological wastewater treatment plant. The results showed that many more peptides and proteins can be identified when assembly graphs were utilized, improving the characterization of the proteins expressed in the microbial communities. The additional proteins we identified contribute to the characterization of important pathways such as those involved in degradation of chemical hazards. Our tools are released as open-source software on github at https://github.com/COL-IU/Graph2Pro. PMID:27918579

  20. Sonic hedgehog multimerization: a self-organizing event driven by post-translational modifications?

    PubMed

    Koleva, Mirella V; Rothery, Stephen; Spitaler, Martin; Neil, Mark A A; Magee, Anthony I

    2015-01-01

    Sonic hedgehog (Shh) is a morphogen active during vertebrate development and tissue homeostasis in adulthood. Dysregulation of the Shh signalling pathway is known to incite carcinogenesis. Due to the highly lipophilic nature of this protein imparted by two post-translational modifications, Shh's method of transit through the aqueous extracellular milieu has been a long-standing conundrum, prompting the proposition of numerous hypotheses to explain the manner of its displacement from the surface of the producing cell. Detection of high molecular-weight complexes of Shh in the intercellular environment has indicated that the protein achieves this by accumulating into multimeric structures prior to release from producing cells. The mechanism of assembly of the multimers, however, has hitherto remained mysterious and contentious. Here, with the aid of high-resolution optical imaging and post-translational modification mutants of Shh, we show that the C-terminal cholesterol and the N-terminal palmitate adducts contribute to the assembly of large multimers and regulate their shape. Moreover, we show that small Shh multimers are produced in the absence of any lipid modifications. Based on an assessment of the distribution of various dimensional characteristics of individual Shh clusters, in parallel with deductions about the kinetics of release of the protein from the producing cells, we conclude that multimerization is driven by self-assembly underpinned by the law of mass action. We speculate that the lipid modifications augment the size of the multimolecular complexes through prolonging their association with the exoplasmic membrane.

  1. Programming Enzyme-Initiated Autonomous DNAzyme Nanodevices in Living Cells.

    PubMed

    Chen, Feng; Bai, Min; Cao, Ke; Zhao, Yue; Cao, Xiaowen; Wei, Jing; Wu, Na; Li, Jiang; Wang, Lihua; Fan, Chunhai; Zhao, Yongxi

    2017-12-26

    Molecular nanodevices are computational assemblers that switch defined states upon external stimulation. However, interfacing artificial nanodevices with natural molecular machineries in living cells remains a great challenge. Here, we delineate a generic method for programming assembly of enzyme-initiated DNAzyme nanodevices (DzNanos). Two programs including split assembly of two partzymes and toehold exchange displacement assembly of one intact DNAzyme initiated by telomerase are computed. The intact one obtains higher assembly yield and catalytic performance ascribed to proper conformation folding and active misplaced assembly. By employing MnO 2 nanosheets as both DNA carriers and source of Mn 2+ as DNAzyme cofactor, we find that this DzNano is well assembled via a series of conformational states in living cells and operates autonomously with sustained cleavage activity. Other enzymes can also induce corresponding DzNano assembly with defined programming modules. These DzNanos not only can monitor enzyme catalysis in situ but also will enable the implementation of cellular stages, behaviors, and pathways for basic science, diagnostic, and therapeutic applications as genetic circuits.

  2. Entropy driven key-lock assembly.

    PubMed

    Odriozola, G; Jiménez-Angeles, F; Lozada-Cassou, M

    2008-09-21

    The effective interaction between a sphere with an open cavity (lock) and a spherical macroparticle (key), both immersed in a hard sphere fluid, is studied by means of Monte Carlo simulations. As a result, a two-dimensional map of the key-lock effective interaction potential is constructed, which leads to the proposal of a self-assembling mechanism: There exists trajectories through which the key-lock pair could assemble avoiding trespassing potential barriers. Hence, solely the entropic contribution can induce their self-assembling even in the absence of attractive forces. This study points out the solvent contribution within the underlying mechanisms of substrate-protein assemblydisassembly processes, which are important steps of the enzyme catalysis and protein mediated transport.

  3. Mechanism of TRIM25 Catalytic Activation in the Antiviral RIG-I Pathway

    PubMed Central

    Sanchez, Jacint G.; Chiang, Jessica J.; Sparrer, Konstantin M.J.; Alam, Steven L.; Chi, Michael; Roganowicz, Marcin D.; Sankaran, Banumathi; Gack, Michaela U.; Pornillos, Owen

    2016-01-01

    SUMMARY Antiviral response pathways induce interferon by higher-order assembly of signaling complexes called signalosomes. Assembly of the RIG-I signalosome is regulated by K63-linked polyubiquitin chains, which are synthesized by the E3 ubiquitin ligase, TRIM25. We have previously shown that the TRIM25 coiled-coil domain is a stable, antiparallel dimer that positions two catalytic RING domains on opposite ends of an elongated rod. We now show that the RING domain is a separate self-association motif that engages ubiquitin-conjugated E2 enzymes as a dimer. RING dimerization is required for catalysis, TRIM25-mediated RIG-I ubiquitination, interferon induction, and antiviral activity. We also provide evidence that RING dimerization and E3 ligase activity are promoted by binding of the TRIM25 SPRY domain to the RIG-I effector domain. These results indicate that TRIM25 actively participates in higher-order assembly of the RIG-I signalosome and helps to fine-tune the efficiency of the RIG-I-mediated antiviral response. PMID:27425606

  4. Structure, Function, and Assembly of Type 1 Fimbriae

    NASA Astrophysics Data System (ADS)

    Knight, Stefan D.; Bouckaert, Julie

    Bacterial infections constitute a major global health problem, acutely accentuated by the rapid spread of antibiotic resistant bacterial strains. The widespread need for bacteria to attach - adhere - to target cells before they can initiate an infection may be used to advantage by targeting the bacterial adhesion tools such as pili and fimbriae for development of novel anti-bacterial vaccines and drugs. Type 1 fimbriae are widely expressed by Escherichia coli. and are used by uropathogenic strains to mediate attachment to specific niches in the urinary tract. These fimbriae belong to a class of fibrillar adhesion organelles assembled through the chaperone/usher pathway, one of the terminal branches of the general secretion pathway in Gram-negative bacteria. Our understanding of the assembly, structure and function of these structures has evolved significantly over the last decade. Here, we summarize current understanding of the function and biogenesis of fibrillar adhesion organelles, and provide some examples of recent progress towards interfering with bacterial adhesion as a means to prevent infection.

  5. Dynamic colloidal assembly pathways via low dimensional models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Yuguang; Bevan, Michael A., E-mail: mabevan@jhu.edu; Thyagarajan, Raghuram

    2016-05-28

    Here we construct a low-dimensional Smoluchowski model for electric field mediated colloidal crystallization using Brownian dynamic simulations, which were previously matched to experiments. Diffusion mapping is used to infer dimensionality and confirm the use of two order parameters, one for degree of condensation and one for global crystallinity. Free energy and diffusivity landscapes are obtained as the coefficients of a low-dimensional Smoluchowski equation to capture the thermodynamics and kinetics of microstructure evolution. The resulting low-dimensional model quantitatively captures the dynamics of different assembly pathways between fluid, polycrystal, and single crystals states, in agreement with the full N-dimensional data as characterizedmore » by first passage time distributions. Numerical solution of the low-dimensional Smoluchowski equation reveals statistical properties of the dynamic evolution of states vs. applied field amplitude and system size. The low-dimensional Smoluchowski equation and associated landscapes calculated here can serve as models for predictive control of electric field mediated assembly of colloidal ensembles into two-dimensional crystalline objects.« less

  6. Molecular pathways for defect annihilation in directed self-assembly

    PubMed Central

    Hur, Su-Mi; Thapar, Vikram; Ramírez-Hernández, Abelardo; Khaira, Gurdaman; Segal-Peretz, Tamar; Rincon-Delgadillo, Paulina A.; Li, Weihua; Müller, Marcus; Nealey, Paul F.; de Pablo, Juan J.

    2015-01-01

    Over the last few years, the directed self-assembly of block copolymers by surface patterns has transitioned from academic curiosity to viable contender for commercial fabrication of next-generation nanocircuits by lithography. Recently, it has become apparent that kinetics, and not only thermodynamics, plays a key role for the ability of a polymeric material to self-assemble into a perfect, defect-free ordered state. Perfection, in this context, implies not more than one defect, with characteristic dimensions on the order of 5 nm, over a sample area as large as 100 cm2. In this work, we identify the key pathways and the corresponding free energy barriers for eliminating defects, and we demonstrate that an extraordinarily large thermodynamic driving force is not necessarily sufficient for their removal. By adopting a concerted computational and experimental approach, we explain the molecular origins of these barriers and how they depend on material characteristics, and we propose strategies designed to overcome them. The validity of our conclusions for industrially relevant patterning processes is established by relying on instruments and assembly lines that are only available at state-of-the-art fabrication facilities, and, through this confluence of fundamental and applied research, we are able to discern the evolution of morphology at the smallest relevant length scales—a handful of nanometers—and present a view of defect annihilation in directed self-assembly at an unprecedented level of detail. PMID:26515095

  7. Molecular pathways for defect annihilation in directed self-assembly.

    DOE PAGES

    Hur, Su-Mi; Thapar, Vikram; Ramirez-Hernandez, Abelardo; ...

    2015-11-17

    Over the last few years, the directed self-assembly of block copolymers by surface patterns has transitioned from academic curiosity to viable contender for commercial fabrication of next-generation nanocircuits by lithography. Recently, it has become apparent that kinetics, and not only thermodynamics, plays a key role for the ability of a polymeric material to self-assemble into a perfect, defect-free ordered state. Perfection, in this context, implies not more than one defect, with characteristic dimensions on the order of 5 nm, over a sample area as large as 100 cm2. In this work, we identify the key pathways and the corresponding free-energymore » barriers for eliminating defects, and we demonstrate that an extraordinarily large thermodynamic driving force is not necessarily sufficient for their removal. By adopting a concerted computational and experimental approach, we explain the molecular origins of these barriers, how they depend on material characteristics, and we propose strategies designed to over-come them. The validity of our conclusions for industrially-relevant patterning processes is established by relying on instruments and assembly lines that are only available at state-of-the-art fabrication facilities and, through this confluence of fundamental and applied research, we are able to discern the evolution of morphology at the smallest relevant length scales - a handful of nanometers -, and present a view of defect annihilation in directed self-assembly at an unprecedented level of detail.« less

  8. Drosophila Syd-1, Liprin-α, and Protein Phosphatase 2A B′ Subunit Wrd Function in a Linear Pathway to Prevent Ectopic Accumulation of Synaptic Materials in Distal Axons

    PubMed Central

    Li, Long; Tian, Xiaolin; Zhu, Mingwei; Bulgari, Dinara; Böhme, Mathias A.; Goettfert, Fabian; Wichmann, Carolin; Sigrist, Stephan J.; Levitan, Edwin S.

    2014-01-01

    During synaptic development, presynaptic differentiation occurs as an intrinsic property of axons to form specialized areas of plasma membrane [active zones (AZs)] that regulate exocytosis and endocytosis of synaptic vesicles. Genetic and biochemical studies in vertebrate and invertebrate model systems have identified a number of proteins involved in AZ assembly. However, elucidating the molecular events of AZ assembly in a spatiotemporal manner remains a challenge. Syd-1 (synapse defective-1) and Liprin-α have been identified as two master organizers of AZ assembly. Genetic and imaging analyses in invertebrates show that Syd-1 works upstream of Liprin-α in synaptic assembly through undefined mechanisms. To understand molecular pathways downstream of Liprin-α, we performed a proteomic screen of Liprin-α-interacting proteins in Drosophila brains. We identify Drosophila protein phosphatase 2A (PP2A) regulatory subunit B′ [Wrd (Well Rounded)] as a Liprin-α-interacting protein, and we demonstrate that it mediates the interaction of Liprin-α with PP2A holoenzyme and the Liprin-α-dependent synaptic localization of PP2A. Interestingly, loss of function in syd-1, liprin-α, or wrd shares a common defect in which a portion of synaptic vesicles, dense-core vesicles, and presynaptic cytomatrix proteins ectopically accumulate at the distal, but not proximal, region of motoneuron axons. Strong genetic data show that a linear syd-1/liprin-α/wrd pathway in the motoneuron antagonizes glycogen synthase kinase-3β kinase activity to prevent the ectopic accumulation of synaptic materials. Furthermore, we provide data suggesting that the syd-1/liprin-α/wrd pathway stabilizes AZ specification at the nerve terminal and that such a novel function is independent of the roles of syd-1/liprin-α in regulating the morphology of the T-bar structural protein BRP (Bruchpilot). PMID:24948803

  9. Drosophila Syd-1, liprin-α, and protein phosphatase 2A B' subunit Wrd function in a linear pathway to prevent ectopic accumulation of synaptic materials in distal axons.

    PubMed

    Li, Long; Tian, Xiaolin; Zhu, Mingwei; Bulgari, Dinara; Böhme, Mathias A; Goettfert, Fabian; Wichmann, Carolin; Sigrist, Stephan J; Levitan, Edwin S; Wu, Chunlai

    2014-06-18

    During synaptic development, presynaptic differentiation occurs as an intrinsic property of axons to form specialized areas of plasma membrane [active zones (AZs)] that regulate exocytosis and endocytosis of synaptic vesicles. Genetic and biochemical studies in vertebrate and invertebrate model systems have identified a number of proteins involved in AZ assembly. However, elucidating the molecular events of AZ assembly in a spatiotemporal manner remains a challenge. Syd-1 (synapse defective-1) and Liprin-α have been identified as two master organizers of AZ assembly. Genetic and imaging analyses in invertebrates show that Syd-1 works upstream of Liprin-α in synaptic assembly through undefined mechanisms. To understand molecular pathways downstream of Liprin-α, we performed a proteomic screen of Liprin-α-interacting proteins in Drosophila brains. We identify Drosophila protein phosphatase 2A (PP2A) regulatory subunit B' [Wrd (Well Rounded)] as a Liprin-α-interacting protein, and we demonstrate that it mediates the interaction of Liprin-α with PP2A holoenzyme and the Liprin-α-dependent synaptic localization of PP2A. Interestingly, loss of function in syd-1, liprin-α, or wrd shares a common defect in which a portion of synaptic vesicles, dense-core vesicles, and presynaptic cytomatrix proteins ectopically accumulate at the distal, but not proximal, region of motoneuron axons. Strong genetic data show that a linear syd-1/liprin-α/wrd pathway in the motoneuron antagonizes glycogen synthase kinase-3β kinase activity to prevent the ectopic accumulation of synaptic materials. Furthermore, we provide data suggesting that the syd-1/liprin-α/wrd pathway stabilizes AZ specification at the nerve terminal and that such a novel function is independent of the roles of syd-1/liprin-α in regulating the morphology of the T-bar structural protein BRP (Bruchpilot). Copyright © 2014 the authors 0270-6474/14/348474-14$15.00/0.

  10. Biogenesis of the mitochondrial TOM complex: Mim1 promotes insertion and assembly of signal-anchored receptors.

    PubMed

    Becker, Thomas; Pfannschmidt, Sylvia; Guiard, Bernard; Stojanovski, Diana; Milenkovic, Dusanka; Kutik, Stephan; Pfanner, Nikolaus; Meisinger, Chris; Wiedemann, Nils

    2008-01-04

    The translocase of the outer membrane (TOM complex) is the central entry gate for nuclear-encoded mitochondrial precursor proteins. All Tom proteins are also encoded by nuclear genes and synthesized as precursors in the cytosol. The channel-forming beta-barrel protein Tom40 is targeted to mitochondria via Tom receptors and inserted into the outer membrane by the sorting and assembly machinery (SAM complex). A further outer membrane protein, Mim1, plays a less defined role in assembly of Tom40 into the TOM complex. The three receptors Tom20, Tom22, and Tom70 are anchored in the outer membrane by a single transmembrane alpha-helix, located at the N terminus in the case of Tom20 and Tom70 (signal-anchored) or in the C-terminal portion in the case of Tom22 (tail-anchored). Insertion of the precursor of Tom22 into the outer membrane requires pre-existing Tom receptors while the import pathway of the precursors of Tom20 and Tom70 is only poorly understood. We report that Mim1 is required for efficient membrane insertion and assembly of Tom20 and Tom70, but not Tom22. We show that Mim1 associates with SAM(core) components to a large SAM complex, explaining its role in late steps of the assembly pathway of Tom40. We conclude that Mim1 is not only required for biogenesis of the beta-barrel protein Tom40 but also for membrane insertion and assembly of signal-anchored Tom receptors. Thus, Mim1 plays an important role in the efficient assembly of the mitochondrial TOM complex.

  11. Interaction of Human Cytomegalovirus Tegument Proteins ppUL35 and ppUL35A with Sorting Nexin 5 Regulates Glycoprotein B (gpUL55) Localization.

    PubMed

    Maschkowitz, Gregor; Gärtner, Sabine; Hofmann-Winkler, Heike; Fickenscher, Helmut; Winkler, Michael

    2018-05-01

    Human cytomegalovirus (HCMV) is a widespread human pathogen that causes asymptomatic infection in healthy individuals but poses a serious threat to immunocompromised patients. During the late phase of HCMV infection, the viral capsid is transported to the cytoplasmic viral assembly center (cVAC), where it is enclosed by the tegument protein layer and the viral envelope. The cVAC consists of circularly arranged vesicles from the trans -Golgi and endosomal networks. The HCMV gene UL35 encodes ppUL35 and its shorter form, ppUL35A. We have previously shown that the UL35 gene is involved in HCMV assembly, but it is unknown how UL35 proteins regulate viral assembly. Here we show that sorting nexin 5 (SNX5), a component of the retromer and part of the retrograde transport pathway, interacts with UL35 proteins. Expression of wild-type proteins but not mutants defective in SNX5 binding resulted in the cellular redistribution of the cation-independent mannose-6-phosphate receptor (CI-M6PR), indicating that UL35 proteins bind and negatively regulate SNX5 to modulate cellular transport pathways. Furthermore, binding of UL35 proteins to SNX5 was required for efficient viral replication and for transport of the most abundant HCMV glycoprotein B (gB; gpUL55) to the cVAC. These results indicate that ppUL35 and ppUL35A control the localization of the essential gB through the regulation of a retrograde transport pathway. Thus, this work is the first to define a molecular interaction between a tegument protein and a vesicular transport factor to regulate glycoprotein localization. IMPORTANCE Human cytomegalovirus is ubiquitously present in the healthy population, but reactivation or reinfection can cause serious, life-threatening infections in immunocompromised patients. For completion of its lytic cycle, human cytomegalovirus induces formation of an assembly center where mature virus particles are formed from multiple viral proteins. Viral glycoproteins use separate vesicular pathways for transport to the assembly center, which are incompletely understood. Our research identified a viral structural protein which affects the localization of one of the major glycoproteins. We could link this change in glycoprotein localization to an interaction of the structural protein with a cellular protein involved in regulation of vesicle transport. This increases our understanding of how the virus intersects into cellular regulatory pathways to enhance its own replication. Copyright © 2018 American Society for Microbiology.

  12. NEDDylation promotes stress granule assembly.

    PubMed

    Jayabalan, Aravinth Kumar; Sanchez, Anthony; Park, Ra Young; Yoon, Sang Pil; Kang, Gum-Yong; Baek, Je-Hyun; Anderson, Paul; Kee, Younghoon; Ohn, Takbum

    2016-07-06

    Stress granules (SGs) harbour translationally stalled messenger ribonucleoproteins and play important roles in regulating gene expression and cell fate. Here we show that neddylation promotes SG assembly in response to arsenite-induced oxidative stress. Inhibition or depletion of key components of the neddylation machinery concomitantly inhibits stress-induced polysome disassembly and SG assembly. Affinity purification and subsequent mass-spectrometric analysis of Nedd8-conjugated proteins from translationally stalled ribosomal fractions identified ribosomal proteins, translation factors and RNA-binding proteins (RBPs), including SRSF3, a previously known SG regulator. We show that SRSF3 is selectively neddylated at Lys85 in response to arsenite. A non-neddylatable SRSF3 (K85R) mutant do not prevent arsenite-induced polysome disassembly, but fails to support the SG assembly, suggesting that the neddylation pathway plays an important role in SG assembly.

  13. Correlated cone noise decreases rod signal contributions to the post-receptoral pathways.

    PubMed

    Hathibelagal, Amithavikram R; Feigl, Beatrix; Zele, Andrew J

    2018-04-01

    This study investigated how invisible extrinsic temporal white noise that correlates with the activity of one of the three [magnocellular (MC), parvocellular (PC), or koniocellular (KC)] post-receptoral pathways alters mesopic rod signaling. A four-primary photostimulator provided independent control of the rod and three cone photoreceptor excitations. The rod contributions to the three post-receptoral pathways were estimated by perceptually matching a 20% contrast rod pulse by independently varying the LMS (MC pathway), +L-M (PC pathway), and S-cone (KC pathway) excitations. We show that extrinsic cone noise caused a predominant decrease in the overall magnitude and ratio of the rod contributions to each pathway. Thus, the relative cone activity in the post-receptoral pathways determines the relative mesopic rod inputs to each pathway.

  14. Transcriptome and Differential Expression Profiling Analysis of the Mechanism of Ca2+ Regulation in Peanut (Arachis hypogaea) Pod Development

    PubMed Central

    Yang, Sha; Li, Lin; Zhang, Jialei; Geng, Yun; Guo, Feng; Wang, Jianguo; Meng, Jingjing; Sui, Na; Wan, Shubo; Li, Xinguo

    2017-01-01

    Calcium not only serves as a necessary nutrient for plant growth but also acts as a ubiquitous central hub in a large number of signaling pathways. Free Ca2+ deficiency in the soil may cause early embryo abortion, which eventually led to abnormal development of peanut pod during the harvest season. To understand the mechanisms of Ca2+ regulation in pod development, transcriptome analysis of peanut gynophores and pods was performed by comparing the treatments between free Ca2+ sufficiency and free Ca2+ deficiency using Illumina HiSeq™ 2000. 9,903,082,800 nt bases are generated totally. After assembly, the average length of 102,819 unigenes is 999 nt, N50 is 1,782 nt. RNA-seq based gene expression profilings showed a large number of genes at the transcriptional level changed significantly between the aerial pegs and underground swelling pods under free Ca2+ sufficienct or deficiency treatments, respectively. Genes encoding key members of Ca2+ signaling transduction pathway, enzymes for hormone metabolism, cell division and growth, transcriptional factor as well as embryo development were highlighted. This information provides useful information for our further study. The results of digital gene expression (DGE) indicated that exogenous calcium might contribute to the development of peanut pod through its signal transduction pathway, meanwhile, promote the normal transition of the gynophores to the reproductive development. PMID:29033956

  15. LET-99 functions in the astral furrowing pathway, where it is required for myosin enrichment in the contractile ring

    PubMed Central

    Price, Kari L.; Rose, Lesilee S.

    2017-01-01

    The anaphase spindle determines the position of the cytokinesis furrow, such that the contractile ring assembles in an equatorial zone between the two spindle poles. Contractile ring formation is mediated by RhoA activation at the equator by the centralspindlin complex and midzone microtubules. Astral microtubules also inhibit RhoA accumulation at the poles. In the Caenorhabditis elegans one-cell embryo, the astral microtubule–dependent pathway requires anillin, NOP-1, and LET-99. LET-99 is well characterized for generating the asymmetric cortical localization of the Gα-dependent force-generating complex that positions the spindle during asymmetric division. However, whether the role of LET-99 in cytokinesis is specific to asymmetric division and whether it acts through Gα to promote furrowing are unclear. Here we show that LET-99 contributes to furrowing in both asymmetrically and symmetrically dividing cells, independent of its function in spindle positioning and Gα regulation. LET-99 acts in a pathway parallel to anillin and is required for myosin enrichment into the contractile ring. These and other results suggest a positive feedback model in which LET-99 localizes to the presumptive cleavage furrow in response to the spindle and myosin. Once positioned there, LET-99 enhances myosin accumulation to promote furrowing in both symmetrically and asymmetrically dividing cells. PMID:28701343

  16. Arylacetamide deacetylase: a novel host factor with important roles in the lipolysis of cellular triacylglycerol stores, VLDL assembly and HCV production.

    PubMed

    Nourbakhsh, Mahra; Douglas, Donna N; Pu, Christopher Hao; Lewis, Jamie T; Kawahara, Toshiyasu; Lisboa, Luiz F; Wei, Enhui; Asthana, Sonal; Quiroga, Ariel D; Law, Lok Man John; Chen, Chao; Addison, William R; Nelson, Randy; Houghton, Michael; Lehner, Richard; Kneteman, Norman M

    2013-08-01

    Very low density lipoproteins (VLDLs) are triacylglycerol (TG)-rich lipoproteins produced by the human liver. VLDLs derive the majority of their TG cargo from the lipolysis of TG stored in hepatocellular lipid droplets (LDs). Important roles for LDs and the VLDL secretory pathway in the cell culture production of infectious hepatitis C virus (HCV) have been established. We hypothesized that TG lipolysis and VLDL production are impaired during HCV infection so that these cellular processes can be diverted towards HCV production. We used an HCV permissive cell culture system (JFH-1/HuH7.5 cells) to examine the relationship between TG lipolysis, VLDL assembly, and the HCV lifecycle using standard biochemical approaches. Lipolysis of cellular TG and VLDL production were impaired in HCV infected cells during the early peak of viral infection. This was partially explained by an apparent deficiency of a putative TG lipase, arylacetamide deacetylase (AADAC). The re-introduction of AADAC to infected cells restored cellular TG lipolysis, indicating a role for HCV-mediated downregulation of AADAC in this process. Defective lipolysis of cellular TG stores and VLDL production were also observed in HuH7.5 cells stably expressing a short hairpin RNA targeting AADAC expression, proving AADAC deficiency contributes to these defective pathways. Finally, impaired production of HCV was observed with AADAC knockdown cells, demonstrating a role for AADAC in the HCV lifecycle. This insight into the biology of HCV infection and possibly pathogenesis identifies AADAC as a novel and translationally relevant therapeutic target. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  17. The SUFBC2 D complex is required for the biogenesis of all major classes of plastid Fe-S proteins.

    PubMed

    Hu, Xueyun; Kato, Yukako; Sumida, Akihiro; Tanaka, Ayumi; Tanaka, Ryouichi

    2017-04-01

    Iron-sulfur (Fe-S) proteins play crucial roles in plastids, participating in photosynthesis and other metabolic pathways. Fe-S clusters are thought to be assembled on a scaffold complex composed of SUFB, SUFC and SUFD proteins. However, several additional proteins provide putative scaffold functions in plastids, and, therefore, the contribution of SUFB, C and D proteins to overall Fe-S assembly still remains unclear. In order to gain insights regarding Fe-S cluster biosynthesis in plastids, we analyzed the complex composed of SUFB, C and D in Arabidopsis by blue native-polyacrylamide gel electrophoresis. Using this approach, a major complex of 170 kDa containing all subunits was detected, indicating that these proteins constitute a SUFBC 2 D complex similar to their well characterized bacterial counterparts. The functional effects of SUFB, SUFC or SUFD depletion were analyzed using an inducible RNAi silencing system to specifically target the aforementioned components; resulting in a decrease of various plastidic Fe-S proteins including the PsaA/B and PsaC subunits of photosystem I, ferredoxin and glutamine oxoglutarate aminotransferase. In contrast, the knockout of potential Fe-S scaffold proteins, NFU2 and HCF101, resulted in a specific decrease in the PsaA/B and PsaC levels. These results indicate that the functions of SUFB, SUFC and SUFD for Fe-S cluster biosynthesis cannot be replaced by other scaffold proteins and that SUFBC 2 D, NFU2 and HCF101 are involved in the same pathway for the biogenesis of PSI. Taken together, our results provide in vivo evidence supporting the hypothesis that SUFBC 2 D is the major, and possibly sole scaffold in plastids. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  18. Phylum-wide analysis of genes/proteins related to the last steps of assembly and export of extracellular polymeric substances (EPS) in cyanobacteria

    NASA Astrophysics Data System (ADS)

    Pereira, Sara B.; Mota, Rita; Vieira, Cristina P.; Vieira, Jorge; Tamagnini, Paula

    2015-10-01

    Many cyanobacteria produce extracellular polymeric substances (EPS) with particular characteristics (e.g. anionic nature and presence of sulfate) that make them suitable for industrial processes such as bioremediation of heavy metals or thickening, suspending or emulsifying agents. Nevertheless, their biosynthetic pathway(s) are still largely unknown, limiting their utilization. In this work, a phylum-wide analysis of genes/proteins putatively involved in the assembly and export of EPS in cyanobacteria was performed. Our results demonstrated that most strains harbor genes encoding proteins related to the three main pathways: Wzy-, ABC transporter-, and Synthase-dependent, but often not the complete set defining one pathway. Multiple gene copies are mainly correlated to larger genomes, and the strains with reduced genomes (e.g. the clade of marine unicellular Synechococcus and Prochlorococcus), seem to have lost most of the EPS-related genes. Overall, the distribution of the different genes/proteins within the cyanobacteria phylum raises the hypothesis that cyanobacterial EPS production may not strictly follow one of the pathways previously characterized. Moreover, for the proteins involved in EPS polymerization, amino acid patterns were defined and validated constituting a novel and robust tool to identify proteins with similar functions and giving a first insight to which polymer biosynthesis they are related to.

  19. The A, C, G, and T of Genome Assembly.

    PubMed

    Wajid, Bilal; Sohail, Muhammad U; Ekti, Ali R; Serpedin, Erchin

    2016-01-01

    Genome assembly in its two decades of history has produced significant research, in terms of both biotechnology and computational biology. This contribution delineates sequencing platforms and their characteristics, examines key steps involved in filtering and processing raw data, explains assembly frameworks, and discusses quality statistics for the assessment of the assembled sequence. Furthermore, the paper explores recent Ubuntu-based software environments oriented towards genome assembly as well as some avenues for future research.

  20. Relative contributions of four exposure pathways to influenza infection risk.

    PubMed

    Nicas, Mark; Jones, Rachael M

    2009-09-01

    The relative contribution of four influenza virus exposure pathways-(1) virus-contaminated hand contact with facial membranes, (2) inhalation of respirable cough particles, (3) inhalation of inspirable cough particles, and (4) spray of cough droplets onto facial membranes-must be quantified to determine the potential efficacy of nonpharmaceutical interventions of transmission. We used a mathematical model to estimate the relative contributions of the four pathways to infection risk in the context of a person attending a bed-ridden family member ill with influenza. Considering the uncertainties in the sparse human subject influenza dose-response data, we assumed alternative ratios of 3,200:1 and 1:1 for the infectivity of inhaled respirable virus to intranasally instilled virus. For the 3,200:1 ratio, pathways (1), (2), and (4) contribute substantially to influenza risk: at a virus saliva concentration of 10(6) mL(-1), pathways (1), (2), (3), and (4) contribute, respectively, 31%, 17%, 0.52%, and 52% of the infection risk. With increasing virus concentrations, pathway (2) increases in importance, while pathway (4) decreases in importance. In contrast, for the 1:1 infectivity ratio, pathway (1) is the most important overall: at a virus saliva concentration of 10(6) mL(-1), pathways (1), (2), (3), and (4) contribute, respectively, 93%, 0.037%, 3.3%, and 3.7% of the infection risk. With increasing virus concentrations, pathway (3) increases in importance, while pathway (4) decreases in importance. Given the sparse knowledge concerning influenza dose and infectivity via different exposure pathways, nonpharmaceutical interventions for influenza should simultaneously address potential exposure via hand contact to the face, inhalation, and droplet spray.

  1. Heat release from wood wall assemblies using oxygen consumption method

    Treesearch

    Hao C. Tran; Robert E. White

    1990-01-01

    The concept of heat release rate is gaining acceptance in the evaluation of fire performance of materials and assemblies. However, this concept has not been incorporated into fire endurance testing such as the ASTM E-119 test method. Heat release rate of assemblies can be useful in determining the time at which the assemblies start to contribute to the controlled fire...

  2. MicroRNA: Biogenesis, Function and Role in Cancer

    PubMed Central

    MacFarlane, Leigh-Ann; Murphy, Paul R.

    2010-01-01

    MicroRNAs are small, highly conserved non-coding RNA molecules involved in the regulation of gene expression. MicroRNAs are transcribed by RNA polymerases II and III, generating precursors that undergo a series of cleavage events to form mature microRNA. The conventional biogenesis pathway consists of two cleavage events, one nuclear and one cytoplasmic. However, alternative biogenesis pathways exist that differ in the number of cleavage events and enzymes responsible. How microRNA precursors are sorted to the different pathways is unclear but appears to be determined by the site of origin of the microRNA, its sequence and thermodynamic stability. The regulatory functions of microRNAs are accomplished through the RNA-induced silencing complex (RISC). MicroRNA assembles into RISC, activating the complex to target messenger RNA (mRNA) specified by the microRNA. Various RISC assembly models have been proposed and research continues to explore the mechanism(s) of RISC loading and activation. The degree and nature of the complementarity between the microRNA and target determine the gene silencing mechanism, slicer-dependent mRNA degradation or slicer-independent translation inhibition. Recent evidence indicates that P-bodies are essential for microRNA-mediated gene silencing and that RISC assembly and silencing occurs primarily within P-bodies. The P-body model outlines microRNA sorting and shuttling between specialized P-body compartments that house enzymes required for slicer –dependent and –independent silencing, addressing the reversibility of these silencing mechanisms. Detailed knowledge of the microRNA pathways is essential for understanding their physiological role and the implications associated with dysfunction and dysregulation. PMID:21532838

  3. [Fe-S] cluster assembly in the apicoplast and its indispensability in mosquito stages of the malaria parasite.

    PubMed

    Charan, Manish; Choudhary, Hadi Hasan; Singh, Nidhi; Sadik, Mohammad; Siddiqi, Mohammad Imran; Mishra, Satish; Habib, Saman

    2017-08-01

    The relict plastid (apicoplast) of the malaria parasite is the site for important biochemical pathways and is essential for parasite survival. The sulfur mobilization (SUF) pathway of iron-sulfur [Fe-S] cluster assembly in the apicoplast of Plasmodium spp. is of interest due to its absence in the human host suggesting the possibility of antimalarial intervention through apicoplast [Fe-S] biogenesis. We report biochemical characterization of components of the Plasmodium falciparum apicoplast SUF pathway after the first step of SUF. In vitro interaction experiments and in vivo cross-linking showed that apicoplast-encoded PfSufB and apicoplast-targeted PfSufC and PfSufD formed a complex. The PfSufB-C 2 -D complex could function as a scaffold to assemble [4Fe-4S] clusters in vitro and activity of the PfSufC ATPase was enhanced by PfSufD. Two carrier proteins, the NifU-like protein PfNfu and the A-type carrier PfSufA are homodimers, the former mediating transfer of [4Fe-4S] from the scaffold to a model [4Fe-4S] target protein with higher efficiency. Conditional knockout of SufS, the enzyme catalyzing the first step of SUF, by selective excision in the mosquito stages of Plasmodium berghei severely impaired development of sporozoites in oocysts establishing essentiality of the SUF machinery in the vector. Our results delineate steps of the complete apicoplast SUF pathway and demonstrate its critical role in the parasite life cycle. © 2017 Federation of European Biochemical Societies.

  4. Bio-Source of di-n-butyl phthalate production by filamentous fungi

    NASA Astrophysics Data System (ADS)

    Tian, Congkui; Ni, Jinren; Chang, Fang; Liu, Sitong; Xu, Nan; Sun, Weiling; Xie, Yuan; Guo, Yongzhao; Ma, Yanrong; Yang, Zhenxing; Dang, Chenyuan; Huang, Yuefei; Tian, Zhexian; Wang, Yiping

    2016-02-01

    Although DBP (di-n-butyl phthalate) is commonly encountered as an artificially-synthesized plasticizer with potential to impair fertility, we confirm that it can also be biosynthesized as microbial secondary metabolites from naturally occurring filamentous fungi strains cultured either in an artificial medium or natural water. Using the excreted crude enzyme from the fungi for catalyzing a variety of substrates, we found that the fungal generation of DBP was largely through shikimic acid pathway, which was assembled by phthalic acid with butyl alcohol through esterification. The DBP production ability of the fungi was primarily influenced by fungal spore density and incubation temperature. This study indicates an important alternative natural waterborne source of DBP in addition to artificial synthesis, which implied fungal contribution must be highlighted for future source control and risk management of DBP.

  5. PCBA depaneling stress minimization study

    NASA Astrophysics Data System (ADS)

    Darus, M. H. B. M.; Aziz, M. H. B. A.; Ong, N. R.; Alcain, J. B.; Retnasamy, V.

    2017-09-01

    Printed circuit board (PCB) is board that used to connect the electricity using the conductive pathways. The PCB that consists with electronic components was called as printed circuit board assembly (PCBA). Bending process has been used as one of the depaneling techniques may contribute to mechanical stress and the failure of capacitors and other components to function. As a result, the idea to create holes in particular location was implemented in order to absorb the stress. In this study, finite element analysis is demonstrated by using ANSYS software. Two PCBA design models are considered in order to investigate the effect of the hole and the stress response. The simulation results show that the hole on the PCBA has reduced the stress. For Design model 2, the stress response of the holes located vertically to the PCBA is lower than the holes located horizontally to the PCBA.

  6. Distinct conformations of the protein complex p97-Ufd1-Npl4 revealed by electron cryomicroscopy

    PubMed Central

    Bebeacua, Cecilia; Förster, Andreas; McKeown, Ciarán; Meyer, Hemmo H.; Zhang, Xiaodong; Freemont, Paul S.

    2012-01-01

    p97 is a key regulator of numerous cellular pathways and associates with ubiquitin-binding adaptors to remodel ubiquitin-modified substrate proteins. How adaptor binding to p97 is coordinated and how adaptors contribute to substrate remodeling is unclear. Here we present the 3D electron cryomicroscopy reconstructions of the major Ufd1-Npl4 adaptor in complex with p97. Our reconstructions show that p97-Ufd1-Npl4 is highly dynamic and that Ufd1-Npl4 assumes distinct positions relative to the p97 ring upon addition of nucleotide. Our results suggest a model for substrate remodeling by p97 and also explains how p97-Ufd1-Npl4 could form other complexes in a hierarchical model of p97-cofactor assembly. PMID:22232657

  7. Inverse Problem in Self-assembly

    NASA Astrophysics Data System (ADS)

    Tkachenko, Alexei

    2012-02-01

    By decorating colloids and nanoparticles with DNA, one can introduce highly selective key-lock interactions between them. This leads to a new class of systems and problems in soft condensed matter physics. In particular, this opens a possibility to solve inverse problem in self-assembly: how to build an arbitrary desired structure with the bottom-up approach? I will present a theoretical and computational analysis of the hierarchical strategy in attacking this problem. It involves self-assembly of particular building blocks (``octopus particles''), that in turn would assemble into the target structure. On a conceptual level, our approach combines elements of three different brands of programmable self assembly: DNA nanotechnology, nanoparticle-DNA assemblies and patchy colloids. I will discuss the general design principles, theoretical and practical limitations of this approach, and illustrate them with our simulation results. Our crucial result is that not only it is possible to design a system that has a given nanostructure as a ground state, but one can also program and optimize the kinetic pathway for its self-assembly.

  8. Biomimetic and Aggregation-Driven Crystallization Route for Room-Temperature Material Synthesis: Growth of β-Ga2O3 Nanoparticles Using Peptide Assemblies as Nanoreactors

    PubMed Central

    Lee, Sang-Yup; Gao, Xueyun; Matsui, Hiroshi

    2008-01-01

    The room temperature synthesis of β-Ga2O3 nanocrystal was examined by coupling two biomimetic crystallization techniques, the enzymatic peptide nano-assembly templating and the aggregation-driven crystallization. The catalytic template of peptide assembly nucleated and mineralized primary β-Ga2O3 crystals, and then fused them to grow single-crystalline and monodisperse nanoparticles in the cavity of the peptide assembly at room temperature. In this work, the peptide assembly was exploited as a nano-reactor with an enzymatic functionality catalyzing the hydrolysis of gallium precursors. In addition, the characteristic ring-structure of peptide assembly is expected to provide an efficient dehydration pathway and the crystallization control over the surface tension, which are advantageous for the β-Ga2O3 crystal growth. This multifunctional peptide assembly could be applied for syntheses of a variety of nanomaterials that are kinetically difficult to grow at room temperature. PMID:17302413

  9. Genome sequence analysis of a flocculant-producing bacterium, Paenibacillus shenyangensis.

    PubMed

    Fu, Lili; Jiang, Binhui; Liu, Jinliang; Zhao, Xin; Liu, Qian; Hu, Xiaomin

    2016-03-01

    To explore the metabolic process of Paenibacillus shenyangensis that is an efficient bioflocculant-producing bacterium. The biosynthesis mechanism of bioflocculation was used to enrich the genome of Paenibacillus shenyangensis and provide a basis for molecular genetics and functional genomics analyses. According to the analysis of de novo assembly, a total of 5,501,467 bp clean reads were generated, and were assembled into 92 contigs. 4800 unigenes were predicted of which 4393 were annotated showing a specific gene function in the NCBI-Nr database. 3423 genes were found in the database of cluster of orthologous groups. Among the 168 Kyoto Encyclopedia of Genes and Genomes database, cell growth and metabolism were the main biological processes, and a potential metabolic pathway was predicted from glucose to exopolysaccharide within the starch and sucrose metabolism pathway. By using the high-throughput sequencing technology, we provide a genome analysis of Paenibacillus shenyangensis that predicts the main metabolic processes and a potential pathway of exopolysaccharide biosynthesis.

  10. Protective paraspeckle hyper-assembly downstream of TDP-43 loss of function in amyotrophic lateral sclerosis.

    PubMed

    Shelkovnikova, Tatyana A; Kukharsky, Michail S; An, Haiyan; Dimasi, Pasquale; Alexeeva, Svetlana; Shabir, Osman; Heath, Paul R; Buchman, Vladimir L

    2018-06-01

    Paraspeckles are subnuclear bodies assembled on a long non-coding RNA (lncRNA) NEAT1. Their enhanced formation in spinal neurons of sporadic amyotrophic lateral sclerosis (ALS) patients has been reported but underlying mechanisms are unknown. The majority of ALS cases are characterized by TDP-43 proteinopathy. In current study we aimed to establish whether and how TDP-43 pathology may augment paraspeckle assembly. Paraspeckle formation in human samples was analysed by RNA-FISH and laser capture microdissection followed by qRT-PCR. Mechanistic studies were performed in stable cell lines, mouse primary neurons and human embryonic stem cell-derived neurons. Loss and gain of function for TDP-43 and other microRNA pathway factors were modelled by siRNA-mediated knockdown and protein overexpression. We show that de novo paraspeckle assembly in spinal neurons and glial cells is a hallmark of both sporadic and familial ALS with TDP-43 pathology. Mechanistically, loss of TDP-43 but not its cytoplasmic accumulation or aggregation augments paraspeckle assembly in cultured cells. TDP-43 is a component of the microRNA machinery, and recently, paraspeckles have been shown to regulate pri-miRNA processing. Consistently, downregulation of core protein components of the miRNA pathway also promotes paraspeckle assembly. In addition, depletion of these proteins or TDP-43 results in accumulation of endogenous dsRNA and activation of type I interferon response which also stimulates paraspeckle formation. We demonstrate that human or mouse neurons in vitro lack paraspeckles, but a synthetic dsRNA is able to trigger their de novo formation. Finally, paraspeckles are protective in cells with compromised microRNA/dsRNA metabolism, and their assembly can be promoted by a small-molecule microRNA enhancer. Our study establishes possible mechanisms behind paraspeckle hyper-assembly in ALS and suggests their utility as therapeutic targets in ALS and other diseases with abnormal metabolism of microRNA and dsRNA.

  11. Principal component analysis on molecular descriptors as an alternative point of view in the search of new Hsp90 inhibitors.

    PubMed

    Lauria, Antonino; Ippolito, Mario; Almerico, Anna Maria

    2009-10-01

    Inhibiting a protein that regulates multiple signal transduction pathways in cancer cells is an attractive goal for cancer therapy. Heat shock protein 90 (Hsp90) is one of the most promising molecular targets for such an approach. In fact, Hsp90 is a ubiquitous molecular chaperone protein that is involved in folding, activating and assembling of many key mediators of signal transduction, cellular growth, differentiation, stress-response and apoptothic pathways. With the aim to analyze which molecular descriptors have the higher importance in the binding interactions of these classes, we first performed molecular docking experiments on the 187 Hsp90 inhibitors included in the BindingDB, a public database of measured binding affinities. Further, for each frozen conformation obtained from the docking, a set of 250 molecular descriptors was calculated, and the resulting Structure/Descriptors matrix was submitted to Principal Component Analysis. From the factor scores it emerged a good clusterization among similar compounds both in terms of structural class and activity spectrum, while examination of the loadings of the first two factors also allowed to study the classes of descriptors which mainly contribute to each one.

  12. Transcriptome sequencing for identification of diapause-associated genes in fall webworm, Hyphantria cunea Drury.

    PubMed

    Deng, Yu; Li, Fei; Rieske, Lynne K; Sun, Li-Li; Sun, Shou-Hui

    2018-08-20

    Fall webworm, Hyphantria cunea Drury (Lepidoptera: Arctiidae) is extremely adaptable and highly invasive in China as a defoliator of ornamental and forest trees. Both voltinism and diapause strategies of fall webworm in China are variable, and this variability contributes to it invasiveness. Little is known about molecular regulation of diapause in fall webworm. To gain insight into possible mechanisms of diapause induction, high-throughput RNA-seq data were generated from non-diapause pupae (NDP) and diapause pupae (DP). A total of 58,151 unigenes were assembled and researched against nine public databases. In total, 29,013 up-regulated and 3451 down-regulated unigenes were differentially expressed by DP when compared with those of NDP. Genes encoding proteins such as UDP-glycosyl transferase (UGT), cytochrome P450 and Hsp70 were predicted to be involved in diapause. Moreover, GO function and KEGG pathway enrichments were performed on all differentially expressed genes (DEGs) and showed that cell cycle and insulin signaling pathways may be related to the diapause of the fall webworm. This study provides valuable information about the fall webworm transcriptome for future gene function research, especially as it relates to diapause. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. The A, C, G, and T of Genome Assembly

    PubMed Central

    Wajid, Bilal; Sohail, Muhammad U.; Ekti, Ali R.; Serpedin, Erchin

    2016-01-01

    Genome assembly in its two decades of history has produced significant research, in terms of both biotechnology and computational biology. This contribution delineates sequencing platforms and their characteristics, examines key steps involved in filtering and processing raw data, explains assembly frameworks, and discusses quality statistics for the assessment of the assembled sequence. Furthermore, the paper explores recent Ubuntu-based software environments oriented towards genome assembly as well as some avenues for future research. PMID:27247941

  14. Biomimetic assembly of polypeptide-stabilized CaCO(3) nanoparticles.

    PubMed

    Zhang, Zhongping; Gao, Daming; Zhao, Hui; Xie, Chenggen; Guan, Guijian; Wang, Dapeng; Yu, Shu-Hong

    2006-05-04

    In this paper, we report a simple polypeptide-directed strategy for fabricating large spherical assembly of CaCO(3) nanoparticles. Stepwise growth and assembly of a large number of nanoparticles have been observed, from the formation of an amorphous liquidlike CaCO(3)-polypeptide precursor, to the crystallization and stabilization of polypeptide-capped nanoparticles, and eventually, the spherical assembly of nanoparticles. The "soft" poly(aspartate)-capping layer binding on a nanoparticle surface resulted in the unusual soft nature of nanoparticle assembly, providing a reservoir of primary nanoparticles with a moderate mobility, which is the basis of a new strategy for reconstructing nanoparticle assembly into complex nanoparticle architectures. Moreover, the findings of the secondary assembly of nanoparticle microspheres and the morphology transformation of nanoparticle assembly demonstrate a flexible and controllable pathway for manipulating the shapes and structures of nanoparticle assembly. In addition, the combination of the polypeptide with a double hydrophilic block copolymer (DHBC) allows it to possibly further control the shape and complexity of the nanoparticle assembly. A clear perspective is shown here that more complex nanoparticle materials could be created by using "soft" biological proteins or peptides as a mediating template at the organic-inorganic interface.

  15. How HIV-1 Gag assembles in cells: putting together pieces of the puzzle

    PubMed Central

    Lingappa, Jaisri R; Reed, Jonathan C; Tanaka, Motoko; Chutiraka, Kasana; Robinson, Bridget A

    2014-01-01

    During the late stage of the viral life cycle, HIV-1 Gag assembles into a spherical immature capsid, and undergoes budding, release, and maturation. Here we review events involved in immature capsid assembly from the perspective of five different approaches used to study this process: mutational analysis, structural studies, assembly of purified recombinant Gag, assembly of newly-translated Gag in a cell-free system, and studies in cells using biochemical and imaging techniques. We summarize key findings obtained using each approach, point out where there is consensus, and highlight unanswered questions. Particular emphasis is placed on reconciling data suggesting that Gag assembles by two different paths, depending on the assembly environment. Specifically, in assembly systems that lack cellular proteins, high concentrations of Gag can spontaneously assemble using purified nucleic acid as a scaffold. However, in the more complex intracellular environment, barriers that limit self-assembly are present in the form of cellular proteins, organelles, host defenses, and the absence of free nucleic acid. To overcome these barriers and promote efficient immature capsid formation in an unfavorable environment, Gag appears to utilize an energy-dependent, host-catalyzed, pathway of assembly intermediates in cells. Overall, we show how data obtained using a variety of techniques has led to our current understanding of HIV assembly. PMID:25066606

  16. Self-catalyzed growth of S layers via an amorphous-to-crystalline transition limited by folding kinetics.

    PubMed

    Chung, Sungwook; Shin, Seong-Ho; Bertozzi, Carolyn R; De Yoreo, James J

    2010-09-21

    The importance of nonclassical, multistage crystallization pathways is increasingly evident from theoretical studies on colloidal systems and experimental investigations of proteins and biomineral phases. Although theoretical predictions suggest that proteins follow these pathways as a result of fluctuations that create unstable dense-liquid states, microscopic studies indicate these states are long-lived. Using in situ atomic force microscopy to follow 2D assembly of S-layer proteins on supported lipid bilayers, we have obtained a molecular-scale picture of multistage protein crystallization that reveals the importance of conformational transformations in directing the pathway of assembly. We find that monomers with an extended conformation first form a mobile adsorbed phase, from which they condense into amorphous clusters. These clusters undergo a phase transition through S-layer folding into crystalline clusters composed of compact tetramers. Growth then proceeds by formation of new tetramers exclusively at cluster edges, implying tetramer formation is autocatalytic. Analysis of the growth kinetics leads to a quantitative model in which tetramer creation is rate limiting. However, the estimated barrier is much smaller than expected for folding of isolated S-layer proteins, suggesting an energetic rationale for this multistage pathway.

  17. A missed Fe-S cluster handoff causes a metabolic shakeup.

    PubMed

    Berteau, Olivier

    2018-05-25

    The general framework of pathways by which iron-sulfur (Fe-S) clusters are assembled in cells is well-known, but the cellular consequences of disruptions to that framework are not fully understood. Crooks et al. report a novel cellular system that creates an acute Fe-S cluster deficiency, using mutants of ISCU, the main scaffold protein for Fe-S cluster assembly. Surprisingly, the resultant metabolic reprogramming leads to the accumulation of lipid droplets, a situation encountered in many poorly understood pathological conditions, highlighting unanticipated links between Fe-S assembly machinery and human disease. © 2018 Berteau.

  18. Nitrogenase assembly

    PubMed Central

    Hu, Yilin; Ribbe, Markus W.

    2013-01-01

    Nitrogenase contains two unique metalloclusters: the P-cluster and the M-cluster. The assembly processes of P- and M-clusters are arguably the most complicated processes in bioinorganic chemistry. There is considerable interest in decoding the biosynthetic mechanisms of the P- and M-clusters, because these clusters are not only biologically important, but also chemically unprecedented. Understanding the assembly mechanisms of these unique metalloclusters is crucial for understanding the structure-function relationship of nitrogenase. Here, we review the recent advances in this research area, with an emphasis on our work that provide important insights into the biosynthetic pathways of these high-nuclearity metal centers. PMID:23232096

  19. Interactions within the yeast t-SNARE Sso1p that control SNARE complex assembly.

    PubMed

    Munson, M; Chen, X; Cocina, A E; Schultz, S M; Hughson, F M

    2000-10-01

    In the eukaryotic secretory and endocytic pathways, transport vesicles shuttle cargo among intracellular organelles and to and from the plasma membrane. Cargo delivery entails fusion of the transport vesicle with its target, a process thought to be mediated by membrane bridging SNARE protein complexes. Temporal and spatial control of intracellular trafficking depends in part on regulating the assembly of these complexes. In vitro, SNARE assembly is inhibited by the closed conformation adopted by the syntaxin family of SNAREs. To visualize this closed conformation directly, the X-ray crystal structure of a yeast syntaxin, Sso1p, has been determined and refined to 2.1 A resolution. Mutants designed to destabilize the closed conformation exhibit accelerated rates of SNARE assembly. Our results provide insight into the mechanism of SNARE assembly and its intramolecular and intermolecular regulation.

  20. Principles of 60S ribosomal subunit assembly emerging from recent studies in yeast

    PubMed Central

    Konikkat, Salini; Woolford, John L.

    2017-01-01

    Ribosome biogenesis requires the intertwined processes of folding, modification, and processing of ribosomal RNA, together with binding of ribosomal proteins. In eukaryotic cells, ribosome assembly begins in the nucleolus, continues in the nucleoplasm, and is not completed until after nascent particles are exported to the cytoplasm. The efficiency and fidelity of ribosome biogenesis are facilitated by >200 assembly factors and ~76 different small nucleolar RNAs. The pathway is driven forward by numerous remodeling events to rearrange the ribonucleoprotein architecture of pre-ribosomes. Here, we describe principles of ribosome assembly that have emerged from recent studies of biogenesis of the large ribosomal subunit in the yeast Saccharomyces cerevisiae. We describe tools that have empowered investigations of ribosome biogenesis, and then summarize recent discoveries about each of the consecutive steps of subunit assembly. PMID:28062837

  1. NEDDylation promotes stress granule assembly

    PubMed Central

    Jayabalan, Aravinth Kumar; Sanchez, Anthony; Park, Ra Young; Yoon, Sang Pil; Kang, Gum-Yong; Baek, Je-Hyun; Anderson, Paul; Kee, Younghoon; Ohn, Takbum

    2016-01-01

    Stress granules (SGs) harbour translationally stalled messenger ribonucleoproteins and play important roles in regulating gene expression and cell fate. Here we show that neddylation promotes SG assembly in response to arsenite-induced oxidative stress. Inhibition or depletion of key components of the neddylation machinery concomitantly inhibits stress-induced polysome disassembly and SG assembly. Affinity purification and subsequent mass-spectrometric analysis of Nedd8-conjugated proteins from translationally stalled ribosomal fractions identified ribosomal proteins, translation factors and RNA-binding proteins (RBPs), including SRSF3, a previously known SG regulator. We show that SRSF3 is selectively neddylated at Lys85 in response to arsenite. A non-neddylatable SRSF3 (K85R) mutant do not prevent arsenite-induced polysome disassembly, but fails to support the SG assembly, suggesting that the neddylation pathway plays an important role in SG assembly. PMID:27381497

  2. Estimating the per-capita contribution of habitats and pathways in a migratory network: A modelling approach

    USGS Publications Warehouse

    Wiederholt, Ruscena; Mattsson, Brady J.; Thogmartin, Wayne E.; Runge, Michael C.; Diffendorfer, Jay E.; Erickson, Richard A.; Federico, Paula; Lopez-Hoffman, Laura; Fryxell, John; Norris, D. Ryan; Sample, Christine

    2018-01-01

    Every year, migratory species undertake seasonal movements along different pathways between discrete regions and habitats. The ability to assess the relative demographic contributions of these different habitats and pathways to the species’ overall population dynamics is critical for understanding the ecology of migratory species, and also has practical applications for management and conservation. Metrics for assessing habitat contributions have been well-developed for metapopulations, but an equivalent metric is not currently available for migratory populations. Here, we develop a framework for estimating the demographic contributions of the discrete habitats and pathways used by migratory species throughout the annual cycle by estimating the per capita contribution of cohorts using these locations. Our framework accounts for seasonal movements between multiple breeding and non-breeding habitats and for both resident and migratory cohorts. We illustrate our framework using a hypothetical migratory network of four habitats, which allows us to better understand how variations in habitat quality affect per capita contributions. Results indicate that per capita contributions for any habitat or pathway are dependent on habitat-specific survival probabilities in all other areas used as part of the migratory circuit, and that contribution metrics are spatially linked (e.g. reduced survival in one habitat also decreases the contribution metric for other habitats). Our framework expands existing theory on the dynamics of spatiotemporally structured populations by developing a generalized approach to estimate the habitat- and pathway-specific contributions of species migrating between multiple breeding and multiple non-breeding habitats for a range of life histories or migratory strategies. Most importantly, it provides a means of prioritizing conservation efforts towards those migratory pathways and habitats that are most critical for the population viability of migratory species.

  3. Electronic Energy Transfer in New Polymer Nanocomposite Assemblies

    DTIC Science & Technology

    1994-07-13

    for public release and sale; its distribution is unlimited. OL AISTfrRACT fMaimunt 20o war*) New light-harvesting thin film supramolecular assemblies...be supression or reduction of exciplex formation between excited donor molecules and ground state acceptor molecules that may lead to nonradiative...nonradiative excited state decay exists other than EET.33 One possibility for this nonradiative and non-EET pathway is exciplex formation between the

  4. Computational characterization of DNA/peptide/nanotube self assembly for bioenergy applications

    NASA Astrophysics Data System (ADS)

    Ortiz, Vanessa; Araki, Ruriko; Collier, Galen

    2012-02-01

    Multi-enzyme pathways have become a subject of increasing interest for their role in the engineering of biomimetic systems for applications including biosensors, bioelectronics, and bioenergy. The efficiencies found in natural metabolic pathways partially arise from biomolecular self-assembly of the component enzymes in an effort to avoid transport limitations. The ultimate goal of this effort is to design and build biofuel cells with efficiencies similar to those of native systems by introducing biomimetic structures that immobilize multiple enzymes in specific orientations on a bioelectrode. To achieve site-specific immobilization, the specificity of DNA-binding domains is exploited with an approach that allows any redox enzyme to be modified to site-specifically bind to double stranded (ds) DNA while retaining activity. Because of its many desirable properties, the bioelectrode of choice is single-wall carbon nanotubes (SWNTs), but little is known about dsDNA/SWNT assembly and how this might affect the activity of the DNA-binding domains. Here we evaluate the feasibility of the proposed assembly by performing atomistic molecular dynamics simulations to look at the stability and conformations adopted by dsDNA when bound to a SWNT. We also evaluate the effects of the presence of a SWNT on the stability of the complex formed by a DNA-binding domain and DNA.

  5. Understanding the Elementary Steps in DNA Tile-Based Self-Assembly.

    PubMed

    Jiang, Shuoxing; Hong, Fan; Hu, Huiyu; Yan, Hao; Liu, Yan

    2017-09-26

    Although many models have been developed to guide the design and implementation of DNA tile-based self-assembly systems with increasing complexity, the fundamental assumptions of the models have not been thoroughly tested. To expand the quantitative understanding of DNA tile-based self-assembly and to test the fundamental assumptions of self-assembly models, we investigated DNA tile attachment to preformed "multi-tile" arrays in real time and obtained the thermodynamic and kinetic parameters of single tile attachment in various sticky end association scenarios. With more sticky ends, tile attachment becomes more thermostable with an approximately linear decrease in the free energy change (more negative). The total binding free energy of sticky ends is partially compromised by a sequence-independent energy penalty when tile attachment forms a constrained configuration: "loop". The minimal loop is a 2 × 2 tetramer (Loop4). The energy penalty of loops of 4, 6, and 8 tiles was analyzed with the independent loop model assuming no interloop tension, which is generalizable to arbitrary tile configurations. More sticky ends also contribute to a faster on-rate under isothermal conditions when nucleation is the rate-limiting step. Incorrect sticky end contributes to neither the thermostability nor the kinetics. The thermodynamic and kinetic parameters of DNA tile attachment elucidated here will contribute to the future improvement and optimization of tile assembly modeling, precise control of experimental conditions, and structural design for error-free self-assembly.

  6. De novo assembly, characterization and functional annotation of pineapple fruit transcriptome through massively parallel sequencing.

    PubMed

    Ong, Wen Dee; Voo, Lok-Yung Christopher; Kumar, Vijay Subbiah

    2012-01-01

    Pineapple (Ananas comosus var. comosus), is an important tropical non-climacteric fruit with high commercial potential. Understanding the mechanism and processes underlying fruit ripening would enable scientists to enhance the improvement of quality traits such as, flavor, texture, appearance and fruit sweetness. Although, the pineapple is an important fruit, there is insufficient transcriptomic or genomic information that is available in public databases. Application of high throughput transcriptome sequencing to profile the pineapple fruit transcripts is therefore needed. To facilitate this, we have performed transcriptome sequencing of ripe yellow pineapple fruit flesh using Illumina technology. About 4.7 millions Illumina paired-end reads were generated and assembled using the Velvet de novo assembler. The assembly produced 28,728 unique transcripts with a mean length of approximately 200 bp. Sequence similarity search against non-redundant NCBI database identified a total of 16,932 unique transcripts (58.93%) with significant hits. Out of these, 15,507 unique transcripts were assigned to gene ontology terms. Functional annotation against Kyoto Encyclopedia of Genes and Genomes pathway database identified 13,598 unique transcripts (47.33%) which were mapped to 126 pathways. The assembly revealed many transcripts that were previously unknown. The unique transcripts derived from this work have rapidly increased of the number of the pineapple fruit mRNA transcripts as it is now available in public databases. This information can be further utilized in gene expression, genomics and other functional genomics studies in pineapple.

  7. De Novo Assembly, Characterization and Functional Annotation of Pineapple Fruit Transcriptome through Massively Parallel Sequencing

    PubMed Central

    Ong, Wen Dee; Voo, Lok-Yung Christopher; Kumar, Vijay Subbiah

    2012-01-01

    Background Pineapple (Ananas comosus var. comosus), is an important tropical non-climacteric fruit with high commercial potential. Understanding the mechanism and processes underlying fruit ripening would enable scientists to enhance the improvement of quality traits such as, flavor, texture, appearance and fruit sweetness. Although, the pineapple is an important fruit, there is insufficient transcriptomic or genomic information that is available in public databases. Application of high throughput transcriptome sequencing to profile the pineapple fruit transcripts is therefore needed. Methodology/Principal Findings To facilitate this, we have performed transcriptome sequencing of ripe yellow pineapple fruit flesh using Illumina technology. About 4.7 millions Illumina paired-end reads were generated and assembled using the Velvet de novo assembler. The assembly produced 28,728 unique transcripts with a mean length of approximately 200 bp. Sequence similarity search against non-redundant NCBI database identified a total of 16,932 unique transcripts (58.93%) with significant hits. Out of these, 15,507 unique transcripts were assigned to gene ontology terms. Functional annotation against Kyoto Encyclopedia of Genes and Genomes pathway database identified 13,598 unique transcripts (47.33%) which were mapped to 126 pathways. The assembly revealed many transcripts that were previously unknown. Conclusions The unique transcripts derived from this work have rapidly increased of the number of the pineapple fruit mRNA transcripts as it is now available in public databases. This information can be further utilized in gene expression, genomics and other functional genomics studies in pineapple. PMID:23091603

  8. Nanotechnology & human stem cells: Applications in cardiogenesis and neurogenesis

    NASA Astrophysics Data System (ADS)

    Tomov, Martin L.

    Human stem cell research holds an unprecedented promise to revolutionize the way we approach medicine and healthcare in general, moving us from a position of mostly addressing the symptoms to a state where treatments can focus on removing the underlying causes of a condition. Stem cell research can shed light into normal developmental pathways, as we are beginning to replicate them in a petri dish and can also be used to model diseases and abnormal conditions. Direct applications can range from finding cures for single or multigene diseases to demonstrating that we can replace these genes with a normal copy. We can even begin to model lifelong conditions such as aging by iPSC technology by relying on fetal, young, adult, and centenarian populations to provide insights into the process. We have also begun to understand the microenvironment in which specific cell populations reside. Being able to replicate the chemical, physical mechanical, and spatial needs of those cells, research groups are successfully generating full organs using cadaver scaffolds of heart and kidney, and there is promising research to reach the same success with other organs, such as the liver, and pancreas. Advances in those areas open an enormous potential to study organs, organoids, organ valves, tubes or other functional elements such as beating cardiomyocytes in vitro. There is also the need to evaluate the whole genome of induced and differentiated cells, with its myriad of interacting pathways. Bioinformatics can help our understanding of embryogenesis, organ differentiation and function. It can also help optimize our stem cell and bio-scaffold tools to advance closer to functional organs and tissues. Such a combination approach will also include pluripotency evaluation and multi-lineage differentiation, as well as platforms that may assist in cell therapies: 3D structures, micro-ribbons, directed patterning to name a few. There is now a clearer path forward with stem cell research than was ever before possible. My research has made fundamental contributions to the stem cell field by detailed analysis of uniformly generated 3D stem cell intermediates that are embryoid bodies. I have also contributed to the derivation of the first fully characterized ethnically diverse induced pluripotent stem cells from minority populations (ED-iPSCs), and advances in generating functional beating cardiomyocytes in vitro to aid cardiomyoplasty therapies. My work has also explored scaffolds for directing neural cell assembly or encouraging self-assembly for applications in CNS neurodegeneration, addiction, and spinal cord injury. These contributions to the field are outlined in my Specific Aims below and detailed in the chapters of my thesis.

  9. Assembly Modulated by Particle Position and Shape: A New Concept in Self-Assembly.

    PubMed

    Tavacoli, Joe W; Heuvingh, Julien; Du Roure, Olivia

    2017-11-10

    In this communication we outline how the bespoke arrangements and design of micron-sized superparamagnetic shapes provide levers to modulate their assembly under homogeneous magnetic fields. We label this new approach, 'assembly modulated by particle position and shape' (APPS). Specifically, using rectangular lattices of superparamagnetic micron-sized cuboids, we construct distinct microstructures by adjusting lattice pitch and angle of array with respect to a magnetic field. Broadly, we find two modes of assembly: (1) immediate 2D jamming of the cuboids as they rotate to align with the applied field (rotation-induced jamming) and (2) aggregation via translation after their full alignment (dipole-dipole assembly). The boundary between these two assembly pathways is independent on field strength being solely a function of the cuboid's dimensions, lattice pitch, and array angle with respect to field-a relationship which we capture, along with other features of the assembly process, in a 'phase diagram'. In doing so, we set out initial design rules to build custom made assemblies. Moreover, these assemblies can be made flexible thanks to the hinged contacts of their particle building blocks. This flexibility, combined with the superparamagnetic nature of the architectures, renders our assembly method particularly appropriate for the construction of complex actuators at a scale hitherto not possible.

  10. The Self-Assembly of Particles with Multipolar Interactions

    DTIC Science & Technology

    2004-01-01

    the LATEX template in which this thesis has been written. I also thank Kevin Van Workum and Jack Douglas for contributing simulation work and some...of the computational expense of simulating such complex self-assembly systems at the molecular level and a desire to understand the self-assembly at...Dissertation directed by: Professor Wolfgang Losert Department of Physics In this thesis , we describe results from investigations of the self-assembly of

  11. Characterization of a novel chicken muscle disorder through differential gene expression and pathway analysis using RNA-sequencing.

    PubMed

    Mutryn, Marie F; Brannick, Erin M; Fu, Weixuan; Lee, William R; Abasht, Behnam

    2015-05-21

    Improvements in poultry production within the past 50 years have led to increased muscle yield and growth rate, which may be contributing to an increased rate and development of new muscle disorders in chickens. Previously reported muscle disorders and conditions are generally associated with poor meat quality traits and have a significant negative economic impact on the poultry industry. Recently, a novel myopathy phenotype has emerged which is characterized by palpably "hard" or tough breast muscle. The objective of this study is to identify the underlying biological mechanisms that contribute to this emerging muscle disorder colloquially referred to as "Wooden Breast", through the use of RNA-sequencing technology. We constructed cDNA libraries from five affected and six unaffected breast muscle samples from a line of commercial broiler chickens. After paired-end sequencing of samples using the Illumina Hiseq platform, we used Tophat to align the resulting sequence reads to the chicken reference genome and then used Cufflinks to find significant changes in gene transcript expression between each group. By comparing our gene list to previously published histology findings on this disorder and using Ingenuity Pathways Analysis (IPA®), we aim to develop a characteristic gene expression profile for this novel disorder through analyzing genes, gene families, and predicted biological pathways. Over 1500 genes were differentially expressed between affected and unaffected birds. There was an average of approximately 98 million reads per sample, across all samples. Results from the IPA analysis suggested "Diseases and Disorders" such as connective tissue disorders, "Molecular and Cellular Functions" such as cellular assembly and organization, cellular function and maintenance, and cellular movement, "Physiological System Development and Function" such as tissue development, and embryonic development, and "Top Canonical Pathways" such as, coagulation system, axonal guidance signaling, and acute phase response signaling, are associated with the Wooden Breast disease. There is convincing evidence by RNA-seq analysis to support localized hypoxia, oxidative stress, increased intracellular calcium, as well as the possible presence of muscle fiber-type switching, as key features of Wooden Breast Disease, which are supported by reported microscopic lesions of the disease.

  12. Global gene expression analysis of early response to chemotherapy treatment in ovarian cancer spheroids.

    PubMed

    L'Espérance, Sylvain; Bachvarova, Magdalena; Tetu, Bernard; Mes-Masson, Anne-Marie; Bachvarov, Dimcho

    2008-02-26

    Chemotherapy (CT) resistance in ovarian cancer (OC) is broad and encompasses diverse unrelated drugs, suggesting more than one mechanism of resistance. To better understand the molecular mechanisms controlling the immediate response of OC cells to CT exposure, we have performed gene expression profiling in spheroid cultures derived from six OC cell lines (OVCAR3, SKOV3, TOV-112, TOV-21, OV-90 and TOV-155), following treatment with 10,0 microM cisplatin, 2,5 microM paclitaxel or 5,0 microM topotecan for 72 hours. Exposure of OC spheroids to these CT drugs resulted in differential expression of genes associated with cell growth and proliferation, cellular assembly and organization, cell death, cell cycle control and cell signaling. Genes, functionally involved in DNA repair, DNA replication and cell cycle arrest were mostly overexpressed, while genes implicated in metabolism (especially lipid metabolism), signal transduction, immune and inflammatory response, transport, transcription regulation and protein biosynthesis, were commonly suppressed following all treatments. Cisplatin and topotecan treatments triggered similar alterations in gene and pathway expression patterns, while paclitaxel action was mainly associated with induction of genes and pathways linked to cellular assembly and organization (including numerous tubulin genes), cell death and protein synthesis. The microarray data were further confirmed by pathway and network analyses. Most alterations in gene expression were directly related to mechanisms of the cytotoxics actions in OC spheroids. However, the induction of genes linked to mechanisms of DNA replication and repair in cisplatin- and topotecan-treated OC spheroids could be associated with immediate adaptive response to treatment. Similarly, overexpression of different tubulin genes upon exposure to paclitaxel could represent an early compensatory effect to this drug action. Finally, multicellular growth conditions that are known to alter gene expression (including cell adhesion and cytoskeleton organization), could substantially contribute in reducing the initial effectiveness of CT drugs in OC spheroids. Results described in this study underscore the potential of the microarray technology for unraveling the complex mechanisms of CT drugs actions in OC spheroids and early cellular response to treatment.

  13. Mutations in the Transmembrane Domain and Cytoplasmic Tail of Hendra Virus Fusion Protein Disrupt Virus-Like-Particle Assembly.

    PubMed

    Cifuentes-Muñoz, Nicolás; Sun, Weina; Ray, Greeshma; Schmitt, Phuong Tieu; Webb, Stacy; Gibson, Kathleen; Dutch, Rebecca Ellis; Schmitt, Anthony P

    2017-07-15

    Hendra virus (HeV) is a zoonotic paramyxovirus that causes deadly illness in horses and humans. An intriguing feature of HeV is the utilization of endosomal protease for activation of the viral fusion protein (F). Here we investigated how endosomal F trafficking affects HeV assembly. We found that the HeV matrix (M) and F proteins each induced particle release when they were expressed alone but that their coexpression led to coordinated assembly of virus-like particles (VLPs) that were morphologically and physically distinct from M-only or F-only VLPs. Mutations to the F protein transmembrane domain or cytoplasmic tail that disrupted endocytic trafficking led to failure of F to function with M for VLP assembly. Wild-type F functioned normally for VLP assembly even when its cleavage was prevented with a cathepsin inhibitor, indicating that it is endocytic F trafficking that is important for VLP assembly, not proteolytic F cleavage. Under specific conditions of reduced M expression, we found that M could no longer induce significant VLP release but retained the ability to be incorporated as a passenger into F-driven VLPs, provided that the F protein was competent for endocytic trafficking. The F and M proteins were both found to traffic through Rab11-positive recycling endosomes (REs), suggesting a model in which F and M trafficking pathways converge at REs, enabling these proteins to preassemble before arriving at plasma membrane budding sites. IMPORTANCE Hendra virus and Nipah virus are zoonotic paramyxoviruses that cause lethal infections in humans. Unlike that for most paramyxoviruses, activation of the henipavirus fusion protein occurs in recycling endosomal compartments. In this study, we demonstrate that the unique endocytic trafficking pathway of Hendra virus F protein is required for proper viral assembly and particle release. These results advance our basic understanding of the henipavirus assembly process and provide a novel model for the interplay between glycoprotein trafficking and paramyxovirus assembly. Copyright © 2017 American Society for Microbiology.

  14. New strategies to inhibit KEAP1 and the Cul3-based E3 ubiquitin ligases

    PubMed Central

    Canning, Peter; Bullock, Alex N.

    2014-01-01

    E3 ubiquitin ligases that direct substrate proteins to the ubiquitin–proteasome system are promising, though largely unexplored drug targets both because of their function and their remarkable specificity. CRLs [Cullin–RING (really interesting new gene) ligases] are the largest group of E3 ligases and function as modular multisubunit complexes constructed around a Cullin-family scaffold protein. The Cul3-based CRLs uniquely assemble with BTB (broad complex/tramtrack/bric-à-brac) proteins that also homodimerize and perform the role of both the Cullin adapter and the substrate-recognition component of the E3. The most prominent member is the BTB–BACK (BTB and C-terminal Kelch)–Kelch protein KEAP1 (Kelch-like ECH-associated protein 1), a master regulator of the oxidative stress response and a potential drug target for common conditions such as diabetes, Alzheimer's disease and Parkinson's disease. Structural characterization of BTB–Cul3 complexes has revealed a number of critical assembly mechanisms, including the binding of an N-terminal Cullin extension to a bihelical ‘3-box’ at the C-terminus of the BTB domain. Improved understanding of the structure of these complexes should contribute significantly to the effort to develop novel therapeutics targeted to CRL3-regulated pathways. PMID:24450635

  15. Mediator independently orchestrates multiple steps of preinitiation complex assembly in vivo

    PubMed Central

    Eyboulet, Fanny; Wydau-Dematteis, Sandra; Eychenne, Thomas; Alibert, Olivier; Neil, Helen; Boschiero, Claire; Nevers, Marie-Claire; Volland, Hervé; Cornu, David; Redeker, Virginie; Werner, Michel; Soutourina, Julie

    2015-01-01

    Mediator is a large multiprotein complex conserved in all eukaryotes, which has a crucial coregulator function in transcription by RNA polymerase II (Pol II). However, the molecular mechanisms of its action in vivo remain to be understood. Med17 is an essential and central component of the Mediator head module. In this work, we utilised our large collection of conditional temperature-sensitive med17 mutants to investigate Mediator's role in coordinating preinitiation complex (PIC) formation in vivo at the genome level after a transfer to a non-permissive temperature for 45 minutes. The effect of a yeast mutation proposed to be equivalent to the human Med17-L371P responsible for infantile cerebral atrophy was also analyzed. The ChIP-seq results demonstrate that med17 mutations differentially affected the global presence of several PIC components including Mediator, TBP, TFIIH modules and Pol II. Our data show that Mediator stabilizes TFIIK kinase and TFIIH core modules independently, suggesting that the recruitment or the stability of TFIIH modules is regulated independently on yeast genome. We demonstrate that Mediator selectively contributes to TBP recruitment or stabilization to chromatin. This study provides an extensive genome-wide view of Mediator's role in PIC formation, suggesting that Mediator coordinates multiple steps of a PIC assembly pathway. PMID:26240385

  16. Mechanism of TRIM25 Catalytic Activation in the Antiviral RIG-I Pathway.

    PubMed

    Sanchez, Jacint G; Chiang, Jessica J; Sparrer, Konstantin M J; Alam, Steven L; Chi, Michael; Roganowicz, Marcin D; Sankaran, Banumathi; Gack, Michaela U; Pornillos, Owen

    2016-08-02

    Antiviral response pathways induce interferon by higher-order assembly of signaling complexes called signalosomes. Assembly of the RIG-I signalosome is regulated by K63-linked polyubiquitin chains, which are synthesized by the E3 ubiquitin ligase, TRIM25. We have previously shown that the TRIM25 coiled-coil domain is a stable, antiparallel dimer that positions two catalytic RING domains on opposite ends of an elongated rod. We now show that the RING domain is a separate self-association motif that engages ubiquitin-conjugated E2 enzymes as a dimer. RING dimerization is required for catalysis, TRIM25-mediated RIG-I ubiquitination, interferon induction, and antiviral activity. We also provide evidence that RING dimerization and E3 ligase activity are promoted by binding of the TRIM25 SPRY domain to the RIG-I effector domain. These results indicate that TRIM25 actively participates in higher-order assembly of the RIG-I signalosome and helps to fine-tune the efficiency of the RIG-I-mediated antiviral response. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  17. DNA packaging and the pathway of bacteriophage T4 head assembly.

    PubMed Central

    Hsiao, C L; Black, L W

    1977-01-01

    A cold-sensitive mutation in the structural gene for a minor phage T4 capsid protein (p20) leads to formation of heads containing p20 and cleaved head proteins and empty of DNA. Such heads can be filled with DNA and converted to active phages in vivo uponshift to high temperature. It appears that p20 has two distinct roles in head assembly: first, in construction of the prehead shell (blocked by ts and am mutation) and, second,in DNA packaging (blocked by cs mutation). The latter function is closely associated with gene 17 product, previously known to be required for DNA packagaing. Temperature shift studies of cs-ts double mutants and other observations allow determination of phage function required for DNA packaging. Contrary to previous proposals, we find that T4 DNA packaging is not directly coupled to and can follow DNA synthesis, protein cleavage, prehead core removal, and gene 21-mediated cleavage-induced increase in head volume. Our evidence suggests that an altered head assembly pathway exists and that DNA packaging is probably initiated by DNA-capsid (p20) interaction. Images PMID:269421

  18. Electric-Field-Directed Parallel Alignment Architecting 3D Lithium-Ion Pathways within Solid Composite Electrolyte.

    PubMed

    Liu, Xueqing; Peng, Sha; Gao, Shuyu; Cao, Yuancheng; You, Qingliang; Zhou, Liyong; Jin, Yongcheng; Liu, Zhihong; Liu, Jiyan

    2018-05-09

    It is of great significance to seek high-performance solid electrolytes via a facile chemistry and simple process for meeting the requirements of solid batteries. Previous reports revealed that ion conducting pathways within ceramic-polymer composite electrolytes mainly occur at ceramic particles and the ceramic-polymer interface. Herein, one facile strategy toward ceramic particles' alignment and assembly induced by an external alternating-current (AC) electric field is presented. It was manifested by an in situ optical microscope that Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 particles and poly(ethylene glycol) diacrylate in poly(dimethylsiloxane) (LATP@PEGDA@PDMS) assembled into three-dimensional connected networks on applying an external AC electric field. Scanning electron microscopy revealed that the ceramic LATP particles aligned into a necklacelike assembly. Electrochemical impedance spectroscopy confirmed that the ionic conductivity of this necklacelike alignment was significantly enhanced compared to that of the random one. It was demonstrated that this facile strategy of applying an AC electric field can be a very effective approach for architecting three-dimensional lithium-ion conductive networks within solid composite electrolyte.

  19. Synthesis of Zeolites Using the ADOR (Assembly-Disassembly-Organization-Reassembly) Route

    PubMed Central

    Wheatley, Paul S.; Čejka, Jiří; Morris, Russell E.

    2016-01-01

    Zeolites are an important class of materials that have wide ranging applications such as heterogeneous catalysts and adsorbents which are dependent on their framework topology. For new applications or improvements to existing ones, new zeolites with novel pore systems are desirable. We demonstrate a method for the synthesis of novel zeolites using the ADOR route. ADOR is an acronym for Assembly, Disassembly, Organization and Reassembly. This synthetic route takes advantage of the assembly of a relatively poorly stable that which can be selectively disassembled into a layered material. The resulting layered intermediate can then be organized in different manners by careful chemical manipulation and then reassembled into zeolites with new topologies. By carefully controlling the organization step of the synthetic pathway, new zeolites with never before seen topologies are capable of being synthesized. The structures of these new zeolites are confirmed using powder X-ray diffraction and further characterized by nitrogen adsorption and scanning electron microscopy. This new synthetic pathway for zeolites demonstrates its capability to produce novel frameworks that have never been prepared by traditional zeolite synthesis techniques. PMID:27078165

  20. Synthesis of Zeolites Using the ADOR (Assembly-Disassembly-Organization-Reassembly) Route.

    PubMed

    Wheatley, Paul S; Čejka, Jiří; Morris, Russell E

    2016-04-03

    Zeolites are an important class of materials that have wide ranging applications such as heterogeneous catalysts and adsorbents which are dependent on their framework topology. For new applications or improvements to existing ones, new zeolites with novel pore systems are desirable. We demonstrate a method for the synthesis of novel zeolites using the ADOR route. ADOR is an acronym for Assembly, Disassembly, Organization and Reassembly. This synthetic route takes advantage of the assembly of a relatively poorly stable that which can be selectively disassembled into a layered material. The resulting layered intermediate can then be organized in different manners by careful chemical manipulation and then reassembled into zeolites with new topologies. By carefully controlling the organization step of the synthetic pathway, new zeolites with never before seen topologies are capable of being synthesized. The structures of these new zeolites are confirmed using powder X-ray diffraction and further characterized by nitrogen adsorption and scanning electron microscopy. This new synthetic pathway for zeolites demonstrates its capability to produce novel frameworks that have never been prepared by traditional zeolite synthesis techniques.

  1. Mechanism of TRIM25 Catalytic Activation in the Antiviral RIG-I Pathway

    DOE PAGES

    Sanchez, Jacint G.; Chiang, Jessica J.; Sparrer, Konstantin M. J.; ...

    2016-07-14

    Antiviral response pathways induce interferon by higher-order assembly of signaling complexes called signalosomes. Assembly of the RIG-I signalosome is regulated by K63-linked polyubiquitin chains, which are synthesized by the E3 ubiquitin ligase, TRIM25. We have previously shown that the TRIM25 coiled-coil domain is a stable, antiparallel dimer that positions two catalytic RING domains on opposite ends of an elongated rod. We now show that the RING domain is a separate self-association motif that engages ubiquitin-conjugated E2 enzymes as a dimer. RING dimerization is required for catalysis, TRIM25-mediated RIG-I ubiquitination, interferon induction, and antiviral activity. We also provide evidence that RINGmore » dimerization and E3 ligase activity are promoted by binding of the TRIM25 SPRY domain to the RIG-I effector domain. These results indicate that TRIM25 actively participates in higher-order assembly of the RIG-I signalosome and helps to fine-tune the efficiency of the RIG-I-mediated antiviral response.« less

  2. Sorting receptor Rer1 controls surface expression of muscle acetylcholine receptors by ER retention of unassembled alpha-subunits.

    PubMed

    Valkova, Christina; Albrizio, Marina; Röder, Ira V; Schwake, Michael; Betto, Romeo; Rudolf, Rüdiger; Kaether, Christoph

    2011-01-11

    The nicotinic acetylcholine receptor of skeletal muscle is composed of five subunits that are assembled in a stepwise manner. Quality control mechanisms ensure that only fully assembled receptors reach the cell surface. Here, we show that Rer1, a putative Golgi-ER retrieval receptor, is involved in the biogenesis of acetylcholine receptors. Rer1 is expressed in the early secretory pathway in the myoblast line C2C12 and in mouse skeletal muscle, and up-regulated during myogenesis. Upon down-regulation of Rer1 in C2C12 cells, unassembled acetylcholine receptor α-subunits escape from the ER and are transported to the plasma membrane and lysosomes, where they are degraded. As a result, the amount of fully assembled receptor at the cell surface is reduced. In vivo Rer1 knockdown and genetic inactivation of one Rer1 allele lead to significantly smaller neuromuscular junctions in mice. Our data show that Rer1 is a functionally important unique factor that controls surface expression of muscle acetylcholine receptors by localizing unassembled α-subunits to the early secretory pathway.

  3. Evolution and diversity of periplasmic proteins involved in copper homeostasis in gamma proteobacteria

    PubMed Central

    2012-01-01

    Background Different systems contributing to copper homeostasis in bacteria have been described in recent years involving periplasmic and transport proteins that provide resistance via metal efflux to the extracellular media (CopA/Cue, Cus, Cut, and Pco). The participation of these proteins in the assembly of membrane, periplasmic and secreted cuproproteins has also been postulated. The integration and interrelation of these systems and their apparent redundancies are less clear since they have been studied in alternative systems. Based on the idea that cellular copper is not free but rather it is transferred via protein-protein interactions, we hypothesized that systems would coevolve and be constituted by set numbers of essential components. Results By the use of a phylogenomic approach we identified the distribution of 14 proteins previously characterized as members of homeostasis systems in the genomes of 268 gamma proteobacteria. Only 3% of the genomes presented the complete systems and 5% of them, all intracellular parasites, lacked the 14 genes. Surprisingly, copper homeostatic pathways did not behave as evolutionary units with particular species assembling different combinations of basic functions. The most frequent functions, and probably because of its distribution the most vital, were copper extrusion from the cytoplasm to the periplasm performed by CopA and copper export from the cytoplasm to the extracellular space performed by CusC, which along with the remaining 12 proteins, assemble in nine different functional repertoires. Conclusions These observations suggest complex evolutionary dynamics and still unexplored interactions to achieve copper homeostasis, challenging some of the molecular transport mechanism proposed for these systems. PMID:23122209

  4. High-fidelity Characterization on Anisotropic Thermal Conductivity of Carbon Nanotube Sheets and on their effects of Thermal Enhancement of Nanocomposites.

    PubMed

    Zhang, Xiao; Tan, Wei; Smail, Fiona; De Volder, Michael; Fleck, Norman; Boies, Adam

    2018-06-19

    Some assemblies of nanomaterials, like carbon nanotube (CNT) sheet or film, always show outstanding and anisotropic thermal properties. However, there is still a lack of comprehensive thermal conductivity (κ) characterizations on CNT sheets, as well as lack of estimations of their true contributions on thermal enhancement of polymer composites when used as additives. Always, these characterizations were hindered by the low heat capacity, anisotropic thermal properties or low electrical conductivity of assemblies and their nanocomposites. And the transient κ measurement and calculations were also hampered by accurate determination of parameters, like specific heat capacity, density and cross-section, which could be difficult and controversial for nanomaterials, like CNT sheets. Here, to measure anisotropic κ of CNT sheets directly with high fidelity, we modified the conventional steady-state method by measuring under vacuum and by infrared camera, and then comparing temperature profiles on both reference standard material and a CNT sheet sample. The highly anisotropic thermal conductivities of CNT sheets were characterized comprehensively, with κ/ρ in alignment direction as ~95 mW·m^2/(K·kg). Furthermore, by comparing the measured thermal properties of different CNT-epoxy resin composites, the heat conduction pathway created by the CNT hierarchical network was demonstrated to remain intact after the in-situ polymerization and curing process. The reliable and direct κ measurement rituals used here, dedicated to nanomaterials, will be also essential to assist in assemblies' application to heat dissipation and composite thermal enhancement. © 2018 IOP Publishing Ltd.

  5. Drug Target Validation Methods in Malaria - Protein Interference Assay (PIA) as a Tool for Highly Specific Drug Target Validation.

    PubMed

    Meissner, Kamila A; Lunev, Sergey; Wang, Yuan-Ze; Linzke, Marleen; de Assis Batista, Fernando; Wrenger, Carsten; Groves, Matthew R

    2017-01-01

    The validation of drug targets in malaria and other human diseases remains a highly difficult and laborious process. In the vast majority of cases, highly specific small molecule tools to inhibit a proteins function in vivo are simply not available. Additionally, the use of genetic tools in the analysis of malarial pathways is challenging. These issues result in difficulties in specifically modulating a hypothetical drug target's function in vivo. The current "toolbox" of various methods and techniques to identify a protein's function in vivo remains very limited and there is a pressing need for expansion. New approaches are urgently required to support target validation in the drug discovery process. Oligomerisation is the natural assembly of multiple copies of a single protein into one object and this self-assembly is present in more than half of all protein structures. Thus, oligomerisation plays a central role in the generation of functional biomolecules. A key feature of oligomerisation is that the oligomeric interfaces between the individual parts of the final assembly are highly specific. However, these interfaces have not yet been systematically explored or exploited to dissect biochemical pathways in vivo. This mini review will describe the current state of the antimalarial toolset as well as the potentially druggable malarial pathways. A specific focus is drawn to the initial efforts to exploit oligomerisation surfaces in drug target validation. As alternative to the conventional methods, Protein Interference Assay (PIA) can be used for specific distortion of the target protein function and pathway assessment in vivo. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  6. De novo transcriptome assembly and characterization of nine tissues of Lonicera japonica to identify potential candidate genes involved in chlorogenic acid, luteolosides, and secoiridoid biosynthesis pathways.

    PubMed

    Rai, Amit; Kamochi, Hidetaka; Suzuki, Hideyuki; Nakamura, Michimi; Takahashi, Hiroki; Hatada, Tomoki; Saito, Kazuki; Yamazaki, Mami

    2017-01-01

    Lonicera japonica is one of the most important medicinal plants with applications in traditional Chinese and Japanese medicine for thousands of years. Extensive studies on the constituents of L. japonica extracts have revealed an accumulation of pharmaceutically active metabolite classes, such as chlorogenic acid, luteolin and other flavonoids, and secoiridoids, which impart characteristic medicinal properties. Despite being a rich source of pharmaceutically active metabolites, little is known about the biosynthetic enzymes involved, and their expression profile across different tissues of L. japonica. In this study, we performed de novo transcriptome assembly for L. japonica, representing transcripts from nine different tissues. A total of 22 Gbps clean RNA-seq reads from nine tissues of L. japonica were used, resulting in 243,185 unigenes, with 99,938 unigenes annotated based on a homology search using blastx against the NCBI-nr protein database. Unsupervised principal component analysis and correlation studies using transcript expression data from all nine tissues of L. japonica showed relationships between tissues, explaining their association at different developmental stages. Homologs for all genes associated with chlorogenic acid, luteolin, and secoiridoid biosynthesis pathways were identified in the L. japonica transcriptome assembly. Expression of unigenes associated with chlorogenic acid was enriched in stems and leaf-2, unigenes from luteolin were enriched in stems and flowers, while unigenes from secoiridoid metabolic pathways were enriched in leaf-1 and shoot apex. Our results showed that different tissues of L. japonica are enriched with sets of unigenes associated with specific pharmaceutically important metabolic pathways and, therefore, possess unique medicinal properties. The present study will serve as a resource for future attempts for functional characterization of enzyme coding genes within key metabolic processes.

  7. Diel Metagenomics and Metatranscriptomics of Elkhorn Slough Hypersaline Microbial Mat

    NASA Astrophysics Data System (ADS)

    Lee, J.; Detweiler, A. M.; Everroad, R. C.; Bebout, L. E.; Weber, P. K.; Pett-Ridge, J.; Bebout, B.

    2014-12-01

    To understand the variation in gene expression associated with the daytime oxygenic phototrophic and nighttime fermentation regimes seen in hypersaline microbial mats, a contiguous mat piece was subjected to sampling at regular intervals over a 24-hour diel period. Additionally, to understand the impact of sulfate reduction on biohydrogen consumption, molybdate was added to a parallel experiment in the same run. 4 metagenome and 12 metatranscriptome Illumina HiSeq lanes were completed over day / night, and control / molybdate experiments. Preliminary comparative examination of noon and midnight metatranscriptomic samples mapped using bowtie2 to reference genomes has revealed several notable results about the dominant mat-building cyanobacterium Microcoleus chthonoplastes PCC 7420. Dominant cyanobacterium M. chthonoplastes PCC 7420 shows expression in several pathways for nitrogen scavenging, including nitrogen fixation. Reads mapped to M. chthonoplastes PCC 7420 shows expression of two starch storage and utilization pathways, one as a starch-trehalose-maltose-glucose pathway, another through UDP-glucose-cellulose-β-1,4 glucan-glucose pathway. The overall trend of gene expression was primarily light driven up-regulation followed by down-regulation in dark, while much of the remaining expression profile appears to be constitutive. Co-assembly of quality-controlled reads from 4 metagenomes was performed using Ray Meta with progressively smaller K-mer sizes, with bins identified and filtered using principal component analysis of coverages from all libraries and a %GC filter, followed by reassembly of the remaining co-assembly reads and binned reads. Despite having relatively similar abundance profiles in each metagenome, this binning approach was able to distinctly resolve bins from dominant taxa, but also sulfate reducing bacteria that are desired for understanding molybdate inhibition. Bins generated from this iterative assembly process will be used for downstream mapping of transcriptomic reads as well as isolation efforts for Cyanobacteria-associated bacteria.

  8. Assembly of functional photosystem complexes in Rhodobacter sphaeroides incorporating carotenoids from the spirilloxanthin pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chi, Shuang C.; Mothersole, David J.; Dilbeck, Preston

    Carotenoids protect the photosynthetic apparatus against harmful radicals arising from the presence of both light and oxygen. They also act as accessory pigments for harvesting solar energy, and are required for stable assembly of many light-harvesting complexes. In the phototrophic bacterium Rhodobacter (Rba.) sphaeroides phytoene desaturase (CrtI) catalyses three sequential desaturations of the colourless carotenoid phytoene, extending the number of conjugated carbon-carbon double bonds, N, from three to nine and producing the yellow carotenoid neurosporene; subsequent modifications produce the yellow/red carotenoids spheroidene/spheroidenone (N=10/11). Genomic crtI replacements were used to swap the native three-step Rba. sphaeroides CrtI for the four-step Pantoeamore » agglomerans enzyme, which re-routed carotenoid biosynthesis and culminated in the production of 2,2'-diketo-spirilloxanthin under semi-aerobic conditions. The new carotenoid pathway was elucidated using a combination of HPLC and mass spectrometry. Premature termination of this new pathway by inactivating crtC or crtD produced strains with lycopene or rhodopin as major carotenoids. All of the spirilloxanthin series carotenoids are accepted by the assembly pathways for LH2 and RC-LH1-PufX complexes. The efficiency of carotenoid-to-bacteriochlorophyll energy transfer for 2,2'-diketo-spirilloxanthin (15 conjugated CC bonds; N=15) in LH2 complexes is low, at 35%. High energy transfer efficiencies were obtained for neurosporene (N=9; 94%), spheroidene (N=10; 96%) and spheroidenone (N=11; 95%), whereas intermediate values were measured for lycopene (N=11; 64%), rhodopin (N=11; 62%) and spirilloxanthin (N=13; 39%). In conclusion, the variety and stability of these novel Rba. sphaeroides antenna complexes make them useful experimental models for investigating the energy transfer dynamics of carotenoids in bacterial photosynthesis.« less

  9. Assembly of functional photosystem complexes in Rhodobacter sphaeroides incorporating carotenoids from the spirilloxanthin pathway

    DOE PAGES

    Chi, Shuang C.; Mothersole, David J.; Dilbeck, Preston; ...

    2014-10-27

    Carotenoids protect the photosynthetic apparatus against harmful radicals arising from the presence of both light and oxygen. They also act as accessory pigments for harvesting solar energy, and are required for stable assembly of many light-harvesting complexes. In the phototrophic bacterium Rhodobacter (Rba.) sphaeroides phytoene desaturase (CrtI) catalyses three sequential desaturations of the colourless carotenoid phytoene, extending the number of conjugated carbon-carbon double bonds, N, from three to nine and producing the yellow carotenoid neurosporene; subsequent modifications produce the yellow/red carotenoids spheroidene/spheroidenone (N=10/11). Genomic crtI replacements were used to swap the native three-step Rba. sphaeroides CrtI for the four-step Pantoeamore » agglomerans enzyme, which re-routed carotenoid biosynthesis and culminated in the production of 2,2'-diketo-spirilloxanthin under semi-aerobic conditions. The new carotenoid pathway was elucidated using a combination of HPLC and mass spectrometry. Premature termination of this new pathway by inactivating crtC or crtD produced strains with lycopene or rhodopin as major carotenoids. All of the spirilloxanthin series carotenoids are accepted by the assembly pathways for LH2 and RC-LH1-PufX complexes. The efficiency of carotenoid-to-bacteriochlorophyll energy transfer for 2,2'-diketo-spirilloxanthin (15 conjugated CC bonds; N=15) in LH2 complexes is low, at 35%. High energy transfer efficiencies were obtained for neurosporene (N=9; 94%), spheroidene (N=10; 96%) and spheroidenone (N=11; 95%), whereas intermediate values were measured for lycopene (N=11; 64%), rhodopin (N=11; 62%) and spirilloxanthin (N=13; 39%). In conclusion, the variety and stability of these novel Rba. sphaeroides antenna complexes make them useful experimental models for investigating the energy transfer dynamics of carotenoids in bacterial photosynthesis.« less

  10. Acentriolar mitosis activates a p53-dependent apoptosis pathway in the mouse embryo

    PubMed Central

    Bazzi, Hisham; Anderson, Kathryn V.

    2014-01-01

    Centrosomes are the microtubule-organizing centers of animal cells that organize interphase microtubules and mitotic spindles. Centrioles are the microtubule-based structures that organize centrosomes, and a defined set of proteins, including spindle assembly defective-4 (SAS4) (CPAP/CENPJ), is required for centriole biogenesis. The biological functions of centrioles and centrosomes vary among animals, and the functions of mammalian centrosomes have not been genetically defined. Here we use a null mutation in mouse Sas4 to define the cellular and developmental functions of mammalian centrioles in vivo. Sas4-null embryos lack centrosomes but survive until midgestation. As expected, Sas4−/− mutants lack primary cilia and therefore cannot respond to Hedgehog signals, but other developmental signaling pathways are normal in the mutants. Unlike mutants that lack cilia, Sas4−/− embryos show widespread apoptosis associated with global elevated expression of p53. Cell death is rescued in Sas4−/− p53−/− double-mutant embryos, demonstrating that mammalian centrioles prevent activation of a p53-dependent apoptotic pathway. Expression of p53 is not activated by abnormalities in bipolar spindle organization, chromosome segregation, cell-cycle profile, or DNA damage response, which are normal in Sas4−/− mutants. Instead, live imaging shows that the duration of prometaphase is prolonged in the mutants while two acentriolar spindle poles are assembled. Independent experiments show that prolonging spindle assembly is sufficient to trigger p53-dependent apoptosis. We conclude that a short delay in the prometaphase caused by the absence of centrioles activates a previously undescribed p53-dependent cell death pathway in the rapidly dividing cells of the mouse embryo. PMID:24706806

  11. Engineering Acetyl Coenzyme A Supply: Functional Expression of a Bacterial Pyruvate Dehydrogenase Complex in the Cytosol of Saccharomyces cerevisiae

    PubMed Central

    Kozak, Barbara U.; van Rossum, Harmen M.; Luttik, Marijke A. H.; Akeroyd, Michiel; Benjamin, Kirsten R.; Wu, Liang; de Vries, Simon; Daran, Jean-Marc; Pronk, Jack T.

    2014-01-01

    ABSTRACT The energetic (ATP) cost of biochemical pathways critically determines the maximum yield of metabolites of vital or commercial relevance. Cytosolic acetyl coenzyme A (acetyl-CoA) is a key precursor for biosynthesis in eukaryotes and for many industrially relevant product pathways that have been introduced into Saccharomyces cerevisiae, such as isoprenoids or lipids. In this yeast, synthesis of cytosolic acetyl-CoA via acetyl-CoA synthetase (ACS) involves hydrolysis of ATP to AMP and pyrophosphate. Here, we demonstrate that expression and assembly in the yeast cytosol of an ATP-independent pyruvate dehydrogenase complex (PDH) from Enterococcus faecalis can fully replace the ACS-dependent pathway for cytosolic acetyl-CoA synthesis. In vivo activity of E. faecalis PDH required simultaneous expression of E. faecalis genes encoding its E1α, E1β, E2, and E3 subunits, as well as genes involved in lipoylation of E2, and addition of lipoate to growth media. A strain lacking ACS that expressed these E. faecalis genes grew at near-wild-type rates on glucose synthetic medium supplemented with lipoate, under aerobic and anaerobic conditions. A physiological comparison of the engineered strain and an isogenic Acs+ reference strain showed small differences in biomass yields and metabolic fluxes. Cellular fractionation and gel filtration studies revealed that the E. faecalis PDH subunits were assembled in the yeast cytosol, with a subunit ratio and enzyme activity similar to values reported for PDH purified from E. faecalis. This study indicates that cytosolic expression and assembly of PDH in eukaryotic industrial microorganisms is a promising option for minimizing the energy costs of precursor supply in acetyl-CoA-dependent product pathways. PMID:25336454

  12. Involvement of the Rac1-IRSp53-Wave2-Arp2/3 Signaling Pathway in HIV-1 Gag Particle Release in CD4 T Cells.

    PubMed

    Thomas, Audrey; Mariani-Floderer, Charlotte; López-Huertas, Maria Rosa; Gros, Nathalie; Hamard-Péron, Elise; Favard, Cyril; Ohlmann, Theophile; Alcamí, José; Muriaux, Delphine

    2015-08-01

    During HIV-1 assembly, the Gag viral proteins are targeted and assemble at the inner leaflet of the cell plasma membrane. This process could modulate the cortical actin cytoskeleton, located underneath the plasma membrane, since actin dynamics are able to promote localized membrane reorganization. In addition, activated small Rho GTPases are known for regulating actin dynamics and membrane remodeling. Therefore, the modulation of such Rho GTPase activity and of F-actin by the Gag protein during virus particle formation was considered. Here, we studied the implication of the main Rac1, Cdc42, and RhoA small GTPases, and some of their effectors, in this process. The effect of small interfering RNA (siRNA)-mediated Rho GTPases and silencing of their effectors on Gag localization, Gag membrane attachment, and virus-like particle production was analyzed by immunofluorescence coupled to confocal microscopy, membrane flotation assays, and immunoblot assays, respectively. In parallel, the effect of Gag expression on the Rac1 activation level was monitored by G-LISA, and the intracellular F-actin content in T cells was monitored by flow cytometry and fluorescence microscopy. Our results revealed the involvement of activated Rac1 and of the IRSp53-Wave2-Arp2/3 signaling pathway in HIV-1 Gag membrane localization and particle release in T cells as well as a role for actin branching and polymerization, and this was solely dependent on the Gag viral protein. In conclusion, our results highlight a new role for the Rac1-IRSp53-Wave2-Arp2/3 signaling pathway in the late steps of HIV-1 replication in CD4 T lymphocytes. During HIV-1 assembly, the Gag proteins are targeted and assembled at the inner leaflet of the host cell plasma membrane. Gag interacts with specific membrane phospholipids that can also modulate the regulation of cortical actin cytoskeleton dynamics. Actin dynamics can promote localized membrane reorganization and thus can be involved in facilitating Gag assembly and particle formation. Activated small Rho GTPases and effectors are regulators of actin dynamics and membrane remodeling. We thus studied the effects of the Rac1, Cdc42, and RhoA GTPases and their specific effectors on HIV-1 Gag membrane localization and viral particle release in T cells. Our results show that activated Rac1 and the IRSp53-Wave2-Arp2/3 signaling pathway are involved in Gag plasma membrane localization and viral particle production. This work uncovers a role for cortical actin through the activation of Rac1 and the IRSp53/Wave2 signaling pathway in HIV-1 particle formation in CD4 T lymphocytes. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  13. Involvement of the Rac1-IRSp53-Wave2-Arp2/3 Signaling Pathway in HIV-1 Gag Particle Release in CD4 T Cells

    PubMed Central

    Thomas, Audrey; Mariani-Floderer, Charlotte; López-Huertas, Maria Rosa; Gros, Nathalie; Hamard-Péron, Elise; Favard, Cyril; Ohlmann, Theophile; Alcamí, José

    2015-01-01

    ABSTRACT During HIV-1 assembly, the Gag viral proteins are targeted and assemble at the inner leaflet of the cell plasma membrane. This process could modulate the cortical actin cytoskeleton, located underneath the plasma membrane, since actin dynamics are able to promote localized membrane reorganization. In addition, activated small Rho GTPases are known for regulating actin dynamics and membrane remodeling. Therefore, the modulation of such Rho GTPase activity and of F-actin by the Gag protein during virus particle formation was considered. Here, we studied the implication of the main Rac1, Cdc42, and RhoA small GTPases, and some of their effectors, in this process. The effect of small interfering RNA (siRNA)-mediated Rho GTPases and silencing of their effectors on Gag localization, Gag membrane attachment, and virus-like particle production was analyzed by immunofluorescence coupled to confocal microscopy, membrane flotation assays, and immunoblot assays, respectively. In parallel, the effect of Gag expression on the Rac1 activation level was monitored by G-LISA, and the intracellular F-actin content in T cells was monitored by flow cytometry and fluorescence microscopy. Our results revealed the involvement of activated Rac1 and of the IRSp53-Wave2-Arp2/3 signaling pathway in HIV-1 Gag membrane localization and particle release in T cells as well as a role for actin branching and polymerization, and this was solely dependent on the Gag viral protein. In conclusion, our results highlight a new role for the Rac1-IRSp53-Wave2-Arp2/3 signaling pathway in the late steps of HIV-1 replication in CD4 T lymphocytes. IMPORTANCE During HIV-1 assembly, the Gag proteins are targeted and assembled at the inner leaflet of the host cell plasma membrane. Gag interacts with specific membrane phospholipids that can also modulate the regulation of cortical actin cytoskeleton dynamics. Actin dynamics can promote localized membrane reorganization and thus can be involved in facilitating Gag assembly and particle formation. Activated small Rho GTPases and effectors are regulators of actin dynamics and membrane remodeling. We thus studied the effects of the Rac1, Cdc42, and RhoA GTPases and their specific effectors on HIV-1 Gag membrane localization and viral particle release in T cells. Our results show that activated Rac1 and the IRSp53-Wave2-Arp2/3 signaling pathway are involved in Gag plasma membrane localization and viral particle production. This work uncovers a role for cortical actin through the activation of Rac1 and the IRSp53/Wave2 signaling pathway in HIV-1 particle formation in CD4 T lymphocytes. PMID:26018170

  14. Novel transcriptome assembly and comparative toxicity pathway analysis in mahi-mahi (Coryphaena hippurus) embryos and larvae exposed to Deepwater Horizon oil

    NASA Astrophysics Data System (ADS)

    Xu, Elvis Genbo; Mager, Edward M.; Grosell, Martin; Hazard, E. Starr; Hardiman, Gary; Schlenk, Daniel

    2017-03-01

    The impacts of Deepwater Horizon (DWH) oil on morphology and function during embryonic development have been documented for a number of fish species, including the economically and ecologically important pelagic species, mahi-mahi (Coryphaena hippurus). However, further investigations on molecular events and pathways responsible for developmental toxicity have been largely restricted due to the limited molecular data available for this species. We sought to establish the de novo transcriptomic database from the embryos and larvae of mahi-mahi exposed to water accommodated fractions (HEWAFs) of two DWH oil types (weathered and source oil), in an effort to advance our understanding of the molecular aspects involved during specific toxicity responses. By high throughput sequencing (HTS), we obtained the first de novo transcriptome of mahi-mahi, with 60,842 assembled transcripts and 30,518 BLAST hits. Among them, 2,345 genes were significantly regulated in 96hpf larvae after exposure to weathered oil. With comparative analysis to a reference-transcriptome-guided approach on gene ontology and tox-pathways, we confirmed the novel approach effective for exploring tox-pathways in non-model species, and also identified a list of co-expressed genes as potential biomarkers which will provide information for the construction of an Adverse Outcome Pathway which could be useful in Ecological Risk Assessments.

  15. Activation of DNA damage repair pathways by murine polyomavirus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heiser, Katie; Nicholas, Catherine; Garcea, Robert

    Nuclear replication of DNA viruses activates DNA damage repair (DDR) pathways, which are thought to detect and inhibit viral replication. However, many DNA viruses also depend on these pathways in order to optimally replicate their genomes. We investigated the relationship between murine polyomavirus (MuPyV) and components of DDR signaling pathways including CHK1, CHK2, H2AX, ATR, and DNAPK. We found that recruitment and retention of DDR proteins at viral replication centers was independent of H2AX, as well as the viral small and middle T-antigens. Additionally, infectious virus production required ATR kinase activity, but was independent of CHK1, CHK2, or DNAPK signaling.more » ATR inhibition did not reduce the total amount of viral DNA accumulated, but affected the amount of virus produced, indicating a defect in virus assembly. These results suggest that MuPyV may utilize a subset of DDR proteins or non-canonical DDR signaling pathways in order to efficiently replicate and assemble. -- Highlights: •Murine polyomavirus activates and recruits DNA damage repair (DDR) proteins to replication centers. •Large T-antigen mediates recruitment of DDR proteins to viral replication centers. •Inhibition or knockout of CHK1, CHK2, DNA-PK or H2AX do not affect viral titers. •Inhibition of ATR activity reduces viral titers, but not viral DNA accumulation.« less

  16. Assembly and multiple gene expression of thermophilic enzymes in Escherichia coli for in vitro metabolic engineering.

    PubMed

    Ninh, Pham Huynh; Honda, Kohsuke; Sakai, Takaaki; Okano, Kenji; Ohtake, Hisao

    2015-01-01

    In vitro reconstitution of an artificial metabolic pathway is an emerging approach for the biocatalytic production of industrial chemicals. However, several enzymes have to be separately prepared (and purified) for the construction of an in vitro metabolic pathway, thereby limiting the practical applicability of this approach. In this study, genes encoding the nine thermophilic enzymes involved in a non-ATP-forming chimeric glycolytic pathway were assembled in an artificial operon and co-expressed in a single recombinant Escherichia coli strain. Gene expression levels of the thermophilic enzymes were controlled by their sequential order in the artificial operon. The specific activities of the recombinant enzymes in the cell-free extract of the multiple-gene-expression E. coli were 5.0-1,370 times higher than those in an enzyme cocktail prepared from a mixture of single-gene-expression strains, in each of which a single one of the nine thermophilic enzymes was overproduced. Heat treatment of a crude extract of the multiple-gene-expression cells led to the denaturation of indigenous proteins and one-step preparation of an in vitro synthetic pathway comprising only a limited number of thermotolerant enzymes. Coupling this in vitro pathway with other thermophilic enzymes including the H2 O-forming NADH oxidase or the malate/lactate dehydrogenase facilitated one-pot conversion of glucose to pyruvate or lactate, respectively. © 2014 Wiley Periodicals, Inc.

  17. CADDIS Volume 4. Data Analysis: Getting Started

    EPA Pesticide Factsheets

    Assembling data for an ecological causal analysis, matching biological and environmental samples in time and space, organizing data along conceptual causal pathways, data quality and quantity requirements, Data Analysis references.

  18. Self-Assembly of Heterogeneously Shaped Nanoparticles into Plasmonic Metamolecules on DNA Origami.

    PubMed

    Liu, Wenyan; Li, Ling; Yang, Shuo; Gao, Jie; Wang, Risheng

    2017-10-12

    Fabrication of plasmonic metamolecules (PMs) with rationally designed complexity is one of the major goals of nanotechnology. Most self-assembled PMs, however, have been constructed using single-component systems. The corresponding plasmonic assemblies still suffer from the lack of complexity, which is required to achieve a high degree of functionality. Here, we report a general applicable strategy that can realize a series of high-ordered hetero-PMs using bottom-up DNA self-assembly. DNA-functionalized differently shaped nanoparticles were deliberately arranged in prescribed positions on 3D triangular DNA origami frames to form various hetero-PMs. Importantly, we showed that the optical properties of assembled PMs could be facially tuned by selectively regulating the position of each component. This method provides a promising pathway for manufacturing more complex and advanced materials by integrating diverse nanocomponents with particular properties. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Coevolutionary constraints in the sequence-space of macromolecular complexes reflect their self-assembly pathways.

    PubMed

    Mallik, Saurav; Kundu, Sudip

    2017-07-01

    Is the order in which biomolecular subunits self-assemble into functional macromolecular complexes imprinted in their sequence-space? Here, we demonstrate that the temporal order of macromolecular complex self-assembly can be efficiently captured using the landscape of residue-level coevolutionary constraints. This predictive power of coevolutionary constraints is irrespective of the structural, functional, and phylogenetic classification of the complex and of the stoichiometry and quaternary arrangement of the constituent monomers. Combining this result with a number of structural attributes estimated from the crystal structure data, we find indications that stronger coevolutionary constraints at interfaces formed early in the assembly hierarchy probably promotes coordinated fixation of mutations that leads to high-affinity binding with higher surface area, increased surface complementarity and elevated number of molecular contacts, compared to those that form late in the assembly. Proteins 2017; 85:1183-1189. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  20. Effect of heterocyclic capping groups on the self-assembly of a dipeptide hydrogel.

    PubMed

    Martin, Adam D; Wojciechowski, Jonathan P; Warren, Holly; in het Panhuis, Marc; Thordarson, Pall

    2016-03-14

    The mechanism and design rules associated with the self-assembly of short peptides into hydrogels is currently not well understood. In this work, four diphenylalanine-based peptides have been synthesised, bearing heterocyclic capping groups which have different degrees of hydrogen bonding potential and nitrogen substitution. For these four peptides, zeta potential and electrical impedance spectroscopy measurements were undertaken to monitor gelation, with the impedance data showing different gelation times for each peptide hydrogel. Through a combination of atomic force microscopy and rheological measurmeents, including dynamic strain and frequency sweeps, and thixotropic tests, the relationship between the mechanism of self-assembly in these hydrogels and their macroscopic behaviour can be established. It is observed that the degree of nitrogen substitution affects the self-assembly mechanisms of the hydrogels and as such, that there is an interplay between branching and bundling self-assembly pathways that are responsible for the final properties of each hydrogel.

  1. SAS-4 is recruited to a dynamic structure in newly forming centrioles that is stabilized by the gamma-tubulin-mediated addition of centriolar microtubules.

    PubMed

    Dammermann, Alexander; Maddox, Paul S; Desai, Arshad; Oegema, Karen

    2008-02-25

    Centrioles are surrounded by pericentriolar material (PCM), which is proposed to promote new centriole assembly by concentrating gamma-tubulin. Here, we quantitatively monitor new centriole assembly in living Caenorhabditis elegans embryos, focusing on the conserved components SAS-4 and SAS-6. We show that SAS-4 and SAS-6 are coordinately recruited to the site of new centriole assembly and reach their maximum levels during S phase. Centriolar SAS-6 is subsequently reduced by a mechanism intrinsic to the early assembly pathway that does not require progression into mitosis. Centriolar SAS-4 remains in dynamic equilibrium with the cytoplasmic pool until late prophase, when it is stably incorporated in a step that requires gamma-tubulin and microtubule assembly. These results indicate that gamma-tubulin in the PCM stabilizes the nascent daughter centriole by promoting microtubule addition to its outer wall. Such a mechanism may help restrict new centriole assembly to the vicinity of preexisting parent centrioles that recruit PCM.

  2. Lock and Key Colloids through Polymerization-Induced Buckling of Monodispersed Silicon Oil Droplets

    NASA Astrophysics Data System (ADS)

    Sacanna, Stefano; Irvine, William T. M.; Chaikin, Paul M.; Pine, David J.

    2010-03-01

    Colloidal particles can spontaneously associate into larger structured aggregates when driven by selective and directional interactions. Colloidal organization can be programmed by engineering shapes and interactions of basic building blocks in a manner similar to molecular self-assembly. Examples of successful strategies that allow non-trivial assembly of particles include template-directed patterning, capillary forces and, most commonly, the functionalization of the particle surfaces with ``sticky patches'' of biological or synthetic molecules. The level of complexity of the realizable assemblies, increases when particles with well defined shape anisotropies are used. In particular depletion forces and specific surface treatments in combination with non spherical particles have proven to be powerful tools to self-assembly complex microstructures. We describe a simple, high yield, synthetic pathway to fabricate monodisperse hybrid silica spheres with well defined cavities. Because the particle morphologies are reproducible and tunable with precision, the resulting particles can be used as basic building blocks in the assembly of larger monodisperse clusters. This is demonstrated using depletion to drive the self-assembly.

  3. [Components and assembly of RNA-induced silencing complex].

    PubMed

    Song, Xue-Mei; Yan, Fei; Du, Li-Xin

    2006-06-01

    Degradation of homologous RNA in RNA interference is carried out by functional RNA-induced silencing complex (RISC). RISC contains Dicer, Argonaute proein, siRNA and other components. Researching structures and functions of these components is primary important for understanding assembly and functional mechanism of RISC, as well as the whole RNAi pathway. Recent research works showed that Dicer, containing RNaseIII domain, is responsible for production of siRNA at the beginning of RNAi, and guarantees the stability of RISC intermediate in assembly process. As the core component of RISC, Argonaute protein functions as slicer to cleave target RNA and offers the binding site of siRNA in RISC assembly, which are depended on PIWI domain and PAZ domain separately. Although there is only one strand of siRNA that is the guider of RISC, the double stranded structural character of siRNA is determinant of RNAi. Except those, there are still other components with unknown functions in RISC. The knowledge about RISC components and assembly now, is basis of a presumed RISC assembly model.

  4. Structure of a Venezuelan equine encephalitis virus assembly intermediate isolated from infected cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lamb, Kristen; Lokesh, G.L.; Sherman, Michael

    2010-10-25

    Venezuelan equine encephalitis virus (VEEV) is a prototypical enveloped ssRNA virus of the family Togaviridae. To better understand alphavirus assembly, we analyzed newly formed nucleocapsid particles (termed pre-viral nucleocapsids) isolated from infected cells. These particles were intermediates along the virus assembly pathway, and ultimately bind membrane-associated viral glycoproteins to bud as mature infectious virus. Purified pre-viral nucleocapsids were spherical with a unimodal diameter distribution. The structure of one class of pre-viral nucleocapsids was determined with single particle reconstruction of cryo-electron microscopy images. These studies showed that pre-viral nucleocapsids assembled into an icosahedral structure with a capsid stoichiometry similar to themore » mature nucleocapsid. However, the individual capsomers were organized significantly differently within the pre-viral and mature nucleocapsids. The pre-viral nucleocapsid structure implies that nucleocapsids are highly plastic and undergo glycoprotein and/or lipid-driven rearrangements during virus self-assembly. This mechanism of self-assembly may be general for other enveloped viruses.« less

  5. Target proteins of ganoderic acid DM provides clues to various pharmacological mechanisms

    PubMed Central

    Liu, Jie; Shimizu, Kuniyoshi; Tanaka, Akinobu; Shinobu, Wakako; Ohnuki, Koichiro; Nakamura, Takanori; Kondo, Ryuichiro

    2012-01-01

    Ganoderma fungus (Ganodermataceae) is a multifunctional medicinal mushroom and has been traditionally used for the treatment of various types of disease. Ganoderic acid DM (1) is a representative triterpenoid isolated from G. lingzhi and exhibits various biological activities. However, a universal starting point that triggers multiple signaling pathways and results in multifunctionality of 1 is unknown. Here we demonstrate the important clues regarding the mechanisms underlying multi-medicinal action of 1. We examined structure–activity relationships between 1 and its analogs and found that the carbonyl group at C-3 was essential for cytotoxicity. Subsequently, we used 1-conjugated magnetic beads as a probe and identified tubulin as a specific 1-binding protein. Furthermore, 1 showed a similar Kd to that of vinblastine and also affected assembly of tubulin polymers. This study revealed multiple biological activities of 1 and may contribute to the design and development of new tubulin-inhibiting agents. PMID:23205267

  6. Src-like adaptor protein down-regulates T cell receptor (TCR)-CD3 expression by targeting TCRzeta for degradation.

    PubMed

    Myers, Margaret D; Dragone, Leonard L; Weiss, Arthur

    2005-07-18

    Src-like adaptor protein (SLAP) down-regulates expression of the T cell receptor (TCR)-CD3 complex during a specific stage of thymocyte development when the TCR repertoire is selected. Consequently, SLAP-/- thymocytes display alterations in thymocyte development. Here, we have studied the mechanism of SLAP function. We demonstrate that SLAP-deficient thymocytes have increased TCRzeta chain expression as a result of a defect in TCRzeta degradation. Failure to degrade TCRzeta leads to an increased pool of fully assembled TCR-CD3 complexes that are capable of recycling back to the cell surface. We also provide evidence that SLAP functions in a pathway that requires the phosphorylated TCRzeta chain and the Src family kinase Lck, but not ZAP-70 (zeta-associated protein of 70 kD). These studies reveal a unique mechanism by which SLAP contributes to the regulation of TCR expression during a distinct stage of thymocyte development.

  7. The Draft Genome Sequence of a Novel High-Efficient Butanol-Producing Bacterium Clostridium Diolis Strain WST.

    PubMed

    Chen, Chaoyang; Sun, Chongran; Wu, Yi-Rui

    2018-03-21

    A wild-type solventogenic strain Clostridium diolis WST, isolated from mangrove sediments, was characterized to produce high amount of butanol and acetone with negligible level of ethanol and acids from glucose via a unique acetone-butanol (AB) fermentation pathway. Through the genomic sequencing, the assembled draft genome of strain WST is calculated to be 5.85 Mb with a GC content of 29.69% and contains 5263 genes that contribute to the annotation of 5049 protein-coding sequences. Within these annotated genes, the butanol dehydrogenase gene (bdh) was determined to be in a higher amount from strain WST compared to other Clostridial strains, which is positively related to its high-efficient production of butanol. Therefore, we present a draft genome sequence analysis of strain WST in this article that should facilitate to further understand the solventogenic mechanism of this special microorganism.

  8. PICALM modulates autophagy activity and tau accumulation

    PubMed Central

    Moreau, Kevin; Fleming, Angeleen; Imarisio, Sara; Lopez Ramirez, Ana; Mercer, Jacob L.; Jimenez-Sanchez, Maria; Bento, Carla F.; Puri, Claudia; Zavodszky, Eszter; Siddiqi, Farah; Lavau, Catherine P.; Betton, Maureen; O’Kane, Cahir J.; Wechsler, Daniel S.; Rubinsztein, David C.

    2014-01-01

    Genome-wide association studies have identified several loci associated with Alzheimer’s disease (AD), including proteins involved in endocytic trafficking such as PICALM/CALM (phosphatidylinositol binding clathrin assembly protein). It is unclear how these loci may contribute to AD pathology. Here we show that CALM modulates autophagy and alters clearance of tau, a protein which is a known autophagy substrate and which is causatively linked to AD, both in vitro and in vivo. Furthermore, altered CALM expression exacerbates tau-mediated toxicity in zebrafish transgenic models. CALM influences autophagy by regulating the endocytosis of SNAREs, such as VAMP2, VAMP3 and VAMP8, which have diverse effects on different stages of the autophagy pathway, from autophagosome formation to autophagosome degradation. This study suggests that the AD genetic risk factor CALM modulates autophagy, and this may affect disease in a number of ways including modulation of tau turnover. PMID:25241929

  9. Rho and Ras GTPases in Axon Growth, Guidance, and Branching

    PubMed Central

    Hall, Alan; Lalli, Giovanna

    2010-01-01

    The establishment of precise neuronal cell morphology provides the foundation for all aspects of neurobiology. During development, axons emerge from cell bodies after an initial polarization stage, elongate, and navigate towards target regions guided by a range of environmental cues. The Rho and Ras families of small GTPases have emerged as critical players at all stages of axonogenesis. Their ability to coordinately direct multiple signal transduction pathways with precise spatial control drives many of the activities that underlie this morphogenetic program: the dynamic assembly, disassembly, and reorganization of the actin and microtubule cytoskeletons, the interaction of the growing axon with other cells and extracellular matrix, the delivery of lipids and proteins to the axon through the exocytic machinery, and the internalization of membrane and proteins at the leading edge of the growth cone through endocytosis. This article highlights the contribution of Rho and Ras GTPases to axonogenesis. PMID:20182621

  10. Metagenomic sequencing reveals microbiota and its functional potential associated with periodontal disease

    PubMed Central

    Wang, Jinfeng; Qi, Ji; Zhao, Hui; He, Shu; Zhang, Yifei; Wei, Shicheng; Zhao, Fangqing

    2013-01-01

    Although attempts have been made to reveal the relationships between bacteria and human health, little is known about the species and function of the microbial community associated with oral diseases. In this study, we report the sequencing of 16 metagenomic samples collected from dental swabs and plaques representing four periodontal states. Insights into the microbial community structure and the metabolic variation associated with periodontal health and disease were obtained. We observed a strong correlation between community structure and disease status, and described a core disease-associated community. A number of functional genes and metabolic pathways including bacterial chemotaxis and glycan biosynthesis were over-represented in the microbiomes of periodontal disease. A significant amount of novel species and genes were identified in the metagenomic assemblies. Our study enriches the understanding of the oral microbiome and sheds light on the contribution of microorganisms to the formation and succession of dental plaques and oral diseases. PMID:23673380

  11. Drosophila models of amyotrophic lateral sclerosis with defects in RNA metabolism.

    PubMed

    Zhang, Ke; Coyne, Alyssa N; Lloyd, Thomas E

    2018-05-09

    The fruit fly Drosophila Melanogaster has been widely used to study neurodegenerative diseases. The conservation of nervous system biology coupled with the rapid life cycle and powerful genetic tools in the fly have enabled the identification of novel therapeutic targets that have been validated in vertebrate model systems and human patients. A recent example is in the study of the devastating motor neuron degenerative disease amyotrophic lateral sclerosis (ALS). Mutations in genes that regulate RNA metabolism are a major cause of inherited ALS, and functional analysis of these genes in the fly nervous system has shed light on how mutations cause disease. Importantly, unbiased genetic screens have identified key pathways that contribute to ALS pathogenesis such as nucleocytoplasmic transport and stress granule assembly. In this review, we will discuss the utilization of Drosophila models of ALS with defects in RNA metabolism. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Dicer is dispensable for asymmetric RISC loading in mammals

    PubMed Central

    Betancur, Juan G.; Tomari, Yukihide

    2012-01-01

    In flies, asymmetric loading of small RNA duplexes into Argonaute2-containing RNA-induced silencing complex (Ago2-RISC) requires Dicer-2/R2D2 heterodimer, which acts as a protein sensor for the thermodynamic stabilities of the ends of small RNA duplexes. However, the mechanism of small RNA asymmetry sensing in mammalian RISC assembly remains obscure. Here, we quantitatively examined RISC assembly and target silencing activity in the presence or absence of Dicer in mammals. Our data show that, unlike the well-characterized fly Ago2-RISC assembly pathway, mammalian Dicer is dispensable for asymmetric RISC loading in vivo and in vitro. PMID:22106413

  13. Multilayer checkpoints for microRNA authenticity during RISC assembly.

    PubMed

    Kawamata, Tomoko; Yoda, Mayuko; Tomari, Yukihide

    2011-09-01

    MicroRNAs (miRNAs) function through the RNA-induced silencing complex (RISC), which contains an Argonaute (Ago) protein at the core. RISC assembly follows a two-step pathway: miRNA/miRNA* duplex loading into Ago, and separation of the two strands within Ago. Here we show that the 5' phosphate of the miRNA strand is essential for duplex loading into Ago, whereas the preferred 5' nucleotide of the miRNA strand and the base-pairing status in the seed region and the middle of the 3' region function as additive anchors to Ago. Consequently, the miRNA authenticity is inspected at multiple steps during RISC assembly.

  14. Dicer is dispensable for asymmetric RISC loading in mammals.

    PubMed

    Betancur, Juan G; Tomari, Yukihide

    2012-01-01

    In flies, asymmetric loading of small RNA duplexes into Argonaute2-containing RNA-induced silencing complex (Ago2-RISC) requires Dicer-2/R2D2 heterodimer, which acts as a protein sensor for the thermodynamic stabilities of the ends of small RNA duplexes. However, the mechanism of small RNA asymmetry sensing in mammalian RISC assembly remains obscure. Here, we quantitatively examined RISC assembly and target silencing activity in the presence or absence of Dicer in mammals. Our data show that, unlike the well-characterized fly Ago2-RISC assembly pathway, mammalian Dicer is dispensable for asymmetric RISC loading in vivo and in vitro.

  15. DNA-guided nanoparticle assemblies

    DOEpatents

    Gang, Oleg; Nykypanchuk, Dmytro; Maye, Mathew; van der Lelie, Daniel

    2013-07-16

    In some embodiments, DNA-capped nanoparticles are used to define a degree of crystalline order in assemblies thereof. In some embodiments, thermodynamically reversible and stable body-centered cubic (bcc) structures, with particles occupying <.about.10% of the unit cell, are formed. Designs and pathways amenable to the crystallization of particle assemblies are identified. In some embodiments, a plasmonic crystal is provided. In some aspects, a method for controlling the properties of particle assemblages is provided. In some embodiments a catalyst is formed from nanoparticles linked by nucleic acid sequences and forming an open crystal structure with catalytically active agents attached to the crystal on its surface or in interstices.

  16. The Escherichia coli P and Type 1 Pilus Assembly Chaperones PapD and FimC Are Monomeric in Solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarowar, Samema; Hu, Olivia J.; Werneburg, Glenn T.

    ABSTRACT The chaperone/usher pathway is used by Gram-negative bacteria to assemble adhesive surface structures known as pili or fimbriae. Uropathogenic strains ofEscherichia coliuse this pathway to assemble P and type 1 pili, which facilitate colonization of the kidney and bladder, respectively. Pilus assembly requires a periplasmic chaperone and outer membrane protein termed the usher. The chaperone allows folding of pilus subunits and escorts the subunits to the usher for polymerization into pili and secretion to the cell surface. Based on previous structures of mutant versions of the P pilus chaperone PapD, it was suggested that the chaperone dimerizes in themore » periplasm as a self-capping mechanism. Such dimerization is counterintuitive because the chaperone G1 strand, important for chaperone-subunit interaction, is buried at the dimer interface. Here, we show that the wild-type PapD chaperone also forms a dimer in the crystal lattice; however, the dimer interface is different from the previously solved structures. In contrast to the crystal structures, we found that both PapD and the type 1 pilus chaperone, FimC, are monomeric in solution. Our findings indicate that pilus chaperones do not sequester their G1 β-strand by forming a dimer. Instead, the chaperones may expose their G1 strand for facile interaction with pilus subunits. We also found that the type 1 pilus adhesin, FimH, is flexible in solution while in complex with its chaperone, whereas the P pilus adhesin, PapGII, is rigid. Our study clarifies a crucial step in pilus biogenesis and reveals pilus-specific differences that may relate to biological function. IMPORTANCEPili are critical virulence factors for many bacterial pathogens. UropathogenicE. colirelies on P and type 1 pili assembled by the chaperone/usher pathway to adhere to the urinary tract and establish infection. Studying pilus assembly is important for understanding mechanisms of protein secretion, as well as for identifying points for therapeutic intervention. Pilus biogenesis is a multistep process. This work investigates the oligomeric state of the pilus chaperone in the periplasm, which is important for understanding early assembly events. Our work unambiguously demonstrates that both PapD and FimC chaperones are monomeric in solution. We further demonstrate that the solution behavior of the FimH and PapGII adhesins differ, which may be related to functional differences between the two pilus systems.« less

  17. Genome-wide transcriptional changes of ramie (Boehmeria nivea L. Gaud) in response to root-lesion nematode infection.

    PubMed

    Zhu, Siyuan; Tang, Shouwei; Tang, Qingming; Liu, Touming

    2014-11-15

    Ramie fiber extracted from stem bark is one of the most important natural fibers. The root-lesion nematode (RLN) Pratylenchus coffeae is a major ramie pest and causes large fiber yield losses in China annually. The response mechanism of ramie to RLN infection is poorly understood. In this study, we identified genes that are potentially involved in the RLN-resistance in ramie using Illumina pair-end sequencing in two RLN-infected plants (Inf1 and Inf2) and two control plants (CO1 and CO2). Approximately 56.3, 51.7, 43.4, and 45.0 million sequencing reads were generated from the libraries of CO1, CO2, Inf1, and Inf2, respectively. De novo assembly for these 196 million reads yielded 50,486 unigenes with an average length of 853.3bp. A total of 24,820 (49.2%) genes were annotated for their function. Comparison of gene expression levels between CO and Inf ramie revealed 777 differentially expressed genes (DEGs). The expression levels of 12 DEGs were further confirmed by real-time quantitative PCR (qRT-PCR). Pathway enrichment analysis showed that three pathways (phenylalanine metabolism, carotenoid biosynthesis, and phenylpropanoid biosynthesis) were strongly influenced by RLN infection. A series of candidate genes and pathways that may contribute to the defense response against RLN in ramie will be helpful for further improving resistance to RLN infection. Copyright © 2014. Published by Elsevier B.V.

  18. Homology-dependent repair is involved in 45S rDNA loss in plant CAF-1 mutants

    PubMed Central

    Muchová, Veronika; Amiard, Simon; Mozgová, Iva; Dvořáčková, Martina; Gallego, Maria E; White, Charles; Fajkus, Jiří

    2015-01-01

    Arabidopsis thaliana mutants in FAS1 and FAS2 subunits of chromatin assembly factor 1 (CAF1) show progressive loss of 45S rDNA copies and telomeres. We hypothesized that homology-dependent DNA damage repair (HDR) may contribute to the loss of these repeats in fas mutants. To test this, we generated double mutants by crossing fas mutants with knock-out mutants in RAD51B, one of the Rad51 paralogs of A. thaliana. Our results show that the absence of RAD51B decreases the rate of rDNA loss, confirming the implication of RAD51B-dependent recombination in rDNA loss in the CAF1 mutants. Interestingly, this effect is not observed for telomeric repeat loss, which thus differs from that acting in rDNA loss. Involvement of DNA damage repair in rDNA dynamics in fas mutants is further supported by accumulation of double-stranded breaks (measured as γ-H2AX foci) in 45S rDNA. Occurrence of the foci is not specific for S-phase, and is ATM-independent. While the foci in fas mutants occur both in the transcribed (intranucleolar) and non-transcribed (nucleoplasmic) fraction of rDNA, double fas rad51b mutants show a specific increase in the number of the intranucleolar foci. These results suggest that the repair of double-stranded breaks present in the transcribed rDNA region is RAD51B dependent and that this contributes to rDNA repeat loss in fas mutants, presumably via the single-stranded annealing recombination pathway. Our results also highlight the importance of proper chromatin assembly in the maintenance of genome stability. PMID:25359579

  19. The PINK1-PARKIN Mitochondrial Ubiquitylation Pathway Drives a Program of OPTN/NDP52 Recruitment and TBK1 Activation to Promote Mitophagy.

    PubMed

    Heo, Jin-Mi; Ordureau, Alban; Paulo, Joao A; Rinehart, Jesse; Harper, J Wade

    2015-10-01

    Damaged mitochondria are detrimental to cellular homeostasis. One mechanism for removal of damaged mitochondria involves the PINK1-PARKIN pathway, which poly-ubiquitylates damaged mitochondria to promote mitophagy. We report that assembly of ubiquitin chains on mitochondria triggers autophagy adaptor recruitment concomitantly with activation of the TBK1 kinase, which physically associates with OPTN, NDP52, and SQSTM1. TBK1 activation in HeLa cells requires OPTN and NDP52 and OPTN ubiquitin chain binding. In addition to the known role of S177 phosphorylation in OPTN on ATG8 recruitment, TBK1-dependent phosphorylation on S473 and S513 promotes ubiquitin chain binding in vitro as well as TBK1 activation, OPTN mitochondrial retention, and efficient mitophagy in vivo. These data reveal a self-reinforcing positive feedback mechanism that coordinates TBK1-dependent autophagy adaptor phosphorylation with the assembly of ubiquitin chains on mitochondria to facilitate efficient mitophagy, and mechanistically links genes mutated in Parkinson's disease and amyotrophic lateral sclerosis in a common selective autophagy pathway. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Structural Basis of Vta1 Function in the Multivesicular Body Sorting Pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Junyu; Xia, Hengchuan; Zhou, Jiahai

    The MVB pathway plays essential roles in several eukaryotic cellular processes. Proper function of the MVB pathway requires reversible membrane association of the ESCRTs, a process catalyzed by Vps4 ATPase. Vta1 regulates the Vps4 activity, but its mechanism of action was poorly understood. We report the high-resolution crystal structures of the Did2- and Vps60-binding N-terminal domain and the Vps4-binding C-terminal domain of S. cerevisiae Vta1. The C-terminal domain also mediates Vta1 dimerization and both subunits are required for its function as a Vps4 regulator. Emerging from our analysis is a mechanism of regulation by Vta1 in which the C-terminal domainmore » stabilizes the ATP-dependent double ring assembly of Vps4. In addition, the MIT motif-containing N-terminal domain, projected by a long disordered linker, allows contact between the Vps4 disassembly machinery and the accessory ESCRT-III proteins. This provides an additional level of regulation and coordination for ESCRT-III assembly and disassembly.« less

  1. Structural basis of Vta1 function in the multi-vesicular body sorting pathway

    PubMed Central

    Xiao, Junyu; Xia, Hengchuan; Zhou, Jiahai; Azmi, Ishara; Davies, Brian A.; Katzmann, David J.; Xu, Zhaohui

    2009-01-01

    Summary The MVB pathway plays essential roles in several eukaryotic cellular processes. Proper function of the MVB pathway requires reversible membrane association of the ESCRTs, a process catalyzed by Vps4 ATPase. Vta1 regulates the Vps4 activity but its mechanism of action was poorly understood. We report the high-resolution crystal structures of the Did2- and Vps60-binding N-terminal domain and the Vps4-binding C-terminal domain of S. cerevisiae Vta1. The C-terminal domain also mediates Vta1 dimerization and both subunits are required for its function as a Vps4 regulator. Emerging from our analysis is a mechanism of regulation by Vta1 in which the C-terminal domain stabilizes the ATP-dependent double ring assembly of Vps4. In addition, the MIT motif containing N-terminal domain, projected by a long disordered linker, allows contact between the Vps4 disassembly machinery and the accessory ESCRT-III proteins. This provides an additional level of regulation and coordination for ESCRT-III assembly and disassembly. PMID:18194651

  2. A Modified Gibson Assembly Method for Cloning Large DNA Fragments with High GC Contents.

    PubMed

    Li, Lei; Jiang, Weihong; Lu, Yinhua

    2018-01-01

    Gibson one-step, isothermal assembly method (Gibson assembly) can be used to efficiently assemble large DNA molecules by in vitro recombination involving a 5'-exonuclease, a DNA polymerase and a DNA ligase. In the past few years, this robust DNA assembly method has been widely applied to seamlessly construct genes, genetic pathways and even entire genomes. Here, we expand this method to clone large DNA fragments with high GC contents, such as antibiotic biosynthetic gene clusters from Streptomyces . Due to the low isothermal condition (50 °C) in the Gibson reaction system, the complementary overlaps with high GC contents are proposed to easily form mismatched linker pairings, which leads to low assembly efficiencies mainly due to vector self-ligation. So, we modified this classic method by the following two steps. First, a pair of universal terminal single-stranded DNA overhangs with high AT contents are added to the ends of the BAC vector. Second, two restriction enzyme sites are introduced into the respective sides of the designed overlaps to achieve the hierarchical assembly of large DNA molecules. The optimized Gibson assembly method facilitates fast acquisition of large DNA fragments with high GC contents from Streptomyces.

  3. Synthetic lipids and their role in defining macromolecular assemblies.

    PubMed

    Parrill, Abby L

    2015-10-01

    Lipids have a variety of physiological roles, ranging from structural and biophysical contributions to membrane functions to signaling contributions in normal and abnormal physiology. This review highlights some of the contributions made by Robert Bittman to our understanding of lipid assemblies through the production of synthetic lipid analogs in the sterol, sphingolipid, and glycolipid classes. His contributions have included the development of a fluorescent cholesterol analog that shows strong functional analogies to cholesterol that has allowed live imaging of cholesterol distribution in living systems, to stereospecific synthetic approaches to both sphingolipid and glycolipid analogs crucial in defining the structure-activity relationships of lipid biological targets. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. Prothrombin Activation by Platelet-associated Prothrombinase Proceeds through the Prethrombin-2 Pathway via a Concerted Mechanism*

    PubMed Central

    Haynes, Laura M.; Bouchard, Beth A.; Tracy, Paula B.; Mann, Kenneth G.

    2012-01-01

    The protease α-thrombin is a key enzyme of the coagulation process as it is at the cross-roads of both the pro- and anti-coagulant pathways. The main source of α-thrombin in vivo is the activation of prothrombin by the prothrombinase complex assembled on either an activated cell membrane or cell fragment, the most relevant of which is the activated platelet surface. When prothrombinase is assembled on synthetic phospholipid vesicles, prothrombin activation proceeds with an initial cleavage at Arg-320 yielding the catalytically active, yet effectively anticoagulant intermediate meizothrombin, which is released from the enzyme complex ∼30–40% of the time. Prothrombinase assembled on the surface of activated platelets has been shown to proceed through the inactive intermediate prethrombin-2 via an initial cleavage at Arg-271 followed by cleavage at Arg-320. The current work tests whether or not platelet-associated prothrombinase proceeds via a concerted mechanism through a study of prothrombinase assembly and function on collagen-adhered, thrombin-activated, washed human platelets in a flow chamber. Prothrombinase assembly was demonstrated through visualization of bound factor Xa by confocal microscopy using a fluorophore-labeled anti-factor Xa antibody, which demonstrated the presence of distinct platelet subpopulations capable of binding factor Xa. When prothrombin activation was monitored at a typical venous shear rate over preassembled platelet-associated prothrombinase neither potential intermediate, meizothrombin or prethrombin-2, was observed in the effluent. Collectively, these findings suggest that platelet-associated prothrombinase activates prothrombin via an efficient concerted mechanism in which neither intermediate is released. PMID:22989889

  5. Proteins from Multiple Metabolic Pathways Associate with Starch Biosynthetic Enzymes in High Molecular Weight Complexes: A Model for Regulation of Carbon Allocation in Maize Amyloplasts1[C][W][OA

    PubMed Central

    Hennen-Bierwagen, Tracie A.; Lin, Qiaohui; Grimaud, Florent; Planchot, Véronique; Keeling, Peter L.; James, Martha G.; Myers, Alan M.

    2009-01-01

    Starch biosynthetic enzymes from maize (Zea mays) and wheat (Triticum aestivum) amyloplasts exist in cell extracts in high molecular weight complexes; however, the nature of those assemblies remains to be defined. This study tested the interdependence of the maize enzymes starch synthase IIa (SSIIa), SSIII, starch branching enzyme IIb (SBEIIb), and SBEIIa for assembly into multisubunit complexes. Mutations that eliminated any one of those proteins also prevented the others from assembling into a high molecular mass form of approximately 670 kD, so that SSIII, SSIIa, SBEIIa, and SBEIIb most likely all exist together in the same complex. SSIIa, SBEIIb, and SBEIIa, but not SSIII, were also interdependent for assembly into a complex of approximately 300 kD. SSIII, SSIIa, SBEIIa, and SBEIIb copurified through successive chromatography steps, and SBEIIa, SBEIIb, and SSIIa coimmunoprecipitated with SSIII in a phosphorylation-dependent manner. SBEIIa and SBEIIb also were retained on an affinity column bearing a specific conserved fragment of SSIII located outside of the SS catalytic domain. Additional proteins that copurified with SSIII in multiple biochemical methods included the two known isoforms of pyruvate orthophosphate dikinase (PPDK), large and small subunits of ADP-glucose pyrophosphorylase, and the sucrose synthase isoform SUS-SH1. PPDK and SUS-SH1 required SSIII, SSIIa, SBEIIa, and SBEIIb for assembly into the 670-kD complex. These complexes may function in global regulation of carbon partitioning between metabolic pathways in developing seeds. PMID:19168640

  6. Scaffoldless engineered enzyme assembly for enhanced methanol utilization

    DOE PAGES

    Price, J. Vincent; Chen, Long; Whitaker, W. Brian; ...

    2016-10-24

    Methanol is an important feedstock derived from natural gas and can be chemically converted into commodity and specialty chemicals at high pressure and temperature. Although biological conversion of methanol can proceed at ambient conditions, there is a dearth of engineered microorganisms that use methanol to produce metabolites. In nature, methanol dehydrogenase (Mdh), which converts methanol to formaldehyde, highly favors the reverse reaction. Thus, efficient coupling with the irreversible sequestration of formaldehyde by 3-hexulose-6-phosphate synthase (Hps) and 6-phospho-3-hexuloseisomerase (Phi) serves as the key driving force to pull the pathway equilibrium toward central metabolism. An emerging strategy to promote efficient substrate channelingmore » is to spatially organize pathway enzymes in an engineered assembly to provide kinetic driving forces that promote carbon flux in a desirable direction. Here, we report a scaffoldless, self-assembly strategy to organize Mdh, Hps, and Phi into an engineered supramolecular enzyme complex using an SH3–ligand interaction pair, which enhances methanol conversion to fructose-6-phosphate (F6P). To increase methanol consumption, an “NADH Sink” was created using Escherichia coli lactate dehydrogenase as an NADH scavenger, thereby preventing reversible formaldehyde reduction. Combination of the two strategies improved in vitro F6P production by 97-fold compared with unassembled enzymes. The beneficial effect of supramolecular enzyme assembly was also realized in vivo as the engineered enzyme assembly improved whole-cell methanol consumption rate by ninefold. This approach will ultimately allow direct coupling of enhanced F6P synthesis with other metabolic engineering strategies for the production of many desired metabolites from methanol.« less

  7. Scaffoldless engineered enzyme assembly for enhanced methanol utilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Price, J. Vincent; Chen, Long; Whitaker, W. Brian

    Methanol is an important feedstock derived from natural gas and can be chemically converted into commodity and specialty chemicals at high pressure and temperature. Although biological conversion of methanol can proceed at ambient conditions, there is a dearth of engineered microorganisms that use methanol to produce metabolites. In nature, methanol dehydrogenase (Mdh), which converts methanol to formaldehyde, highly favors the reverse reaction. Thus, efficient coupling with the irreversible sequestration of formaldehyde by 3-hexulose-6-phosphate synthase (Hps) and 6-phospho-3-hexuloseisomerase (Phi) serves as the key driving force to pull the pathway equilibrium toward central metabolism. An emerging strategy to promote efficient substrate channelingmore » is to spatially organize pathway enzymes in an engineered assembly to provide kinetic driving forces that promote carbon flux in a desirable direction. Here, we report a scaffoldless, self-assembly strategy to organize Mdh, Hps, and Phi into an engineered supramolecular enzyme complex using an SH3–ligand interaction pair, which enhances methanol conversion to fructose-6-phosphate (F6P). To increase methanol consumption, an “NADH Sink” was created using Escherichia coli lactate dehydrogenase as an NADH scavenger, thereby preventing reversible formaldehyde reduction. Combination of the two strategies improved in vitro F6P production by 97-fold compared with unassembled enzymes. The beneficial effect of supramolecular enzyme assembly was also realized in vivo as the engineered enzyme assembly improved whole-cell methanol consumption rate by ninefold. This approach will ultimately allow direct coupling of enhanced F6P synthesis with other metabolic engineering strategies for the production of many desired metabolites from methanol.« less

  8. Scaffoldless engineered enzyme assembly for enhanced methanol utilization

    PubMed Central

    Price, J. Vincent; Chen, Long; Whitaker, W. Brian; Papoutsakis, Eleftherios; Chen, Wilfred

    2016-01-01

    Methanol is an important feedstock derived from natural gas and can be chemically converted into commodity and specialty chemicals at high pressure and temperature. Although biological conversion of methanol can proceed at ambient conditions, there is a dearth of engineered microorganisms that use methanol to produce metabolites. In nature, methanol dehydrogenase (Mdh), which converts methanol to formaldehyde, highly favors the reverse reaction. Thus, efficient coupling with the irreversible sequestration of formaldehyde by 3-hexulose-6-phosphate synthase (Hps) and 6-phospho-3-hexuloseisomerase (Phi) serves as the key driving force to pull the pathway equilibrium toward central metabolism. An emerging strategy to promote efficient substrate channeling is to spatially organize pathway enzymes in an engineered assembly to provide kinetic driving forces that promote carbon flux in a desirable direction. Here, we report a scaffoldless, self-assembly strategy to organize Mdh, Hps, and Phi into an engineered supramolecular enzyme complex using an SH3–ligand interaction pair, which enhances methanol conversion to fructose-6-phosphate (F6P). To increase methanol consumption, an “NADH Sink” was created using Escherichia coli lactate dehydrogenase as an NADH scavenger, thereby preventing reversible formaldehyde reduction. Combination of the two strategies improved in vitro F6P production by 97-fold compared with unassembled enzymes. The beneficial effect of supramolecular enzyme assembly was also realized in vivo as the engineered enzyme assembly improved whole-cell methanol consumption rate by ninefold. This approach will ultimately allow direct coupling of enhanced F6P synthesis with other metabolic engineering strategies for the production of many desired metabolites from methanol. PMID:27791059

  9. Integrative data mining of high-throughput in vitro screens, in vivo data, and disease information to identify Adverse Outcome Pathway (AOP) signatures:ToxCast high-throughput screening data and Comparative Toxicogenomics Database (CTD) as a case study.

    EPA Science Inventory

    The Adverse Outcome Pathway (AOP) framework provides a systematic way to describe linkages between molecular and cellular processes and organism or population level effects. The current AOP assembly methods however, are inefficient. Our goal is to generate computationally-pr...

  10. Redox pathways of the mitochondrion.

    PubMed

    Koehler, Carla M; Beverly, Kristen N; Leverich, Edward P

    2006-01-01

    The mitochondrion houses a variety of redox pathways, utilized for protection from oxidative damage and assembly of the organelle. The glutathione/glutaredoxin and thioredoxin systems function in the mitochondrial matrix. The intermembrane space is protected from oxidative damage via superoxide dismutase and glutathione. Subunits in the cytochrome bc (1) complex utilize disulfide bonds for enzymatic activity, whereas cytochrome oxidase relies on disulfide linkages for copper acquisition. A redox pathway (Mia40p and Erv1p) mediates the import of intermembrane space proteins such as the small Tim proteins, Cox17p, and Cox19p, which have disulfide bonds. Many of the candidate proteins with disulfide bridges possess a twin CX3C motif or CX9C motif and utilize both metal binding and disulfide linkages for function. It may seem surprising that the intermembrane space has developed redox pathways, considering that the buffered environment should be reducing like the cytosol. However, the prokaryotic origin of the mitochondrion suggests that the intermembrane space may be akin to the oxidative environment of the bacterial periplasm. Although the players forming disulfide bonds are not conserved between mitochondria and prokaryotes, the mitochondrion may have maintained redox chemistry as an assembly mechanism in the intermembrane space for the import of proteins and metals and enzymatic activity.

  11. The ubiquitin family meets the Fanconi anemia proteins.

    PubMed

    Renaudin, Xavier; Koch Lerner, Leticia; Menck, Carlos Frederico Martins; Rosselli, Filippo

    2016-01-01

    Fanconi anaemia (FA) is a hereditary disorder characterized by bone marrow failure, developmental defects, predisposition to cancer and chromosomal abnormalities. FA is caused by biallelic mutations that inactivate genes encoding proteins involved in replication stress-associated DNA damage responses. The 20 FANC proteins identified to date constitute the FANC pathway. A key event in this pathway involves the monoubiquitination of the FANCD2-FANCI heterodimer by the collective action of at least 10 different proteins assembled in the FANC core complex. The FANC core complex-mediated monoubiquitination of FANCD2-FANCI is essential to assemble the heterodimer in subnuclear, chromatin-associated, foci and to regulate the process of DNA repair as well as the rescue of stalled replication forks. Several recent works have demonstrated that the activity of the FANC pathway is linked to several other protein post-translational modifications from the ubiquitin-like family, including SUMO and NEDD8. These modifications are related to DNA damage responses but may also affect other cellular functions potentially related to the clinical phenotypes of the syndrome. This review summarizes the interplay between the ubiquitin and ubiquitin-like proteins and the FANC proteins that constitute a major pathway for the surveillance of the genomic integrity and addresses the implications of their interactions in maintaining genome stability. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Elucidating the role of methyl viologen as a scavenger of photoactivated electrons from photosystem I under aerobic and anaerobic conditions.

    PubMed

    Bennett, Tyler; Niroomand, Hanieh; Pamu, Ravi; Ivanov, Ilia; Mukherjee, Dibyendu; Khomami, Bamin

    2016-03-28

    We present detailed electrochemical investigations into the role of dissolved O2 in electrolyte solutions in scavenging photoactivated electrons from a uniform photosystem I (PS I) monolayer assembled on alkanethiolate SAM (self-assembled monolayer)/Au surfaces while using methyl viologen (MV(2+)) as the redox mediator. To this end, we report results for direct measurements of light induced photocurrent from uniform monolayer assemblies of PS I on C9 alkanethiolate SAM/Au surfaces. These measurements, apart from demonstrating the ability of dissolved O2 in the electrolyte medium to act as an electron scavenger, also reveal its essential role in driving the solution-phase methyl viologen to initiate light-induced directional electron transfer from an electron donor surface (Au) via surface assembled PS I trimers. Specifically, our systematic electrochemical measurements have revealed that the dissolved O2 in aqueous electrolyte solutions form a complex intermediate species with MV that plays the essential role in mediating redox pathways for unidirectional electron transfer processes. This critical insight into the redox-mediated electron transfer pathways allows for rational design of electron scavengers through systematic tuning of mediator combinations that promote such intermediate formation. Our current findings facilitate the incorporation of PS I-based bio-hybrid constructs as photo-anodes in future photoelectrochemical cells and bio-electronic devices.

  13. Nonlinear machine learning in soft materials engineering and design

    NASA Astrophysics Data System (ADS)

    Ferguson, Andrew

    The inherently many-body nature of molecular folding and colloidal self-assembly makes it challenging to identify the underlying collective mechanisms and pathways governing system behavior, and has hindered rational design of soft materials with desired structure and function. Fundamentally, there exists a predictive gulf between the architecture and chemistry of individual molecules or colloids and the collective many-body thermodynamics and kinetics. Integrating machine learning techniques with statistical thermodynamics provides a means to bridge this divide and identify emergent folding pathways and self-assembly mechanisms from computer simulations or experimental particle tracking data. We will survey a few of our applications of this framework that illustrate the value of nonlinear machine learning in understanding and engineering soft materials: the non-equilibrium self-assembly of Janus colloids into pinwheels, clusters, and archipelagos; engineering reconfigurable ''digital colloids'' as a novel high-density information storage substrate; probing hierarchically self-assembling onjugated asphaltenes in crude oil; and determining macromolecular folding funnels from measurements of single experimental observables. We close with an outlook on the future of machine learning in soft materials engineering, and share some personal perspectives on working at this disciplinary intersection. We acknowledge support for this work from a National Science Foundation CAREER Award (Grant No. DMR-1350008) and the Donors of the American Chemical Society Petroleum Research Fund (ACS PRF #54240-DNI6).

  14. Fibulin-4 is associated with prognosis of endometrial cancer patients and inhibits cancer cell invasion and metastasis via Wnt/β-catenin signaling pathway

    PubMed Central

    Wang, Tiantian; Wang, Mei; Fang, Shuang; Wang, Qiang; Fang, Rui; Chen, Jie

    2017-01-01

    Fibulin-4, an extracellular glycoprotein, which plays significant roles in elastic fiber assembly, is correlated to the progression of some cancers. However, the role of fibulin-4 in endometrial cancer cell invasion and metastasis remains unexplored. In our study, fibulin-4 expression was assessed by immunohistochemistry (IHC) and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) in normal endometrial tissues and endometrial carcinoma tissues. Using single cell cloning, strongly, and weakly, invasive subclones were derived from KLE and Ishikawa endometrial carcinoma cell lines. RT-qPCR, western blotting, and immunocytochemistry (ICC) were used to assess mRNA and protein expressions of fibulin-4 in primary cultured endometrial cells, 4 types of endometrial cancer cell lines, and the different invasive subclones. Using lentivirus transfection, fibulin-4 shRNA and pLVX-fibulin-4 were constructed and used to infect the strongly and weakly invasive subclones. The effects of fibulin-4 on the biological characteristics of endometrial carcinoma cells were detected by cell functional assays in vitro and in vivo. Using Wnt signaling pathway inhibitor XAV-939 and activator LiCl, we detected the role of fibulin-4 in the Wnt/β-catenin pathway and the relationship with epithelial to mesenchymal transition (EMT). Fibulin-4 was decreased in endometrial carcinoma tissues, and loss of fibulin-4 expression was significantly related with poor differentiation, lymph node metastasis, and poor prognosis of endometrial carcinoma. Fibulin-4 significantly inhibited endometrial carcinoma cell proliferation, invasion, metastasis, and EMT through the Wnt/β-catenin pathway. Fibulin-4 has the ability to suppress endometrial cancer progression. These results can contribute to the development of a new potential therapeutic target for patients with endometrial carcinoma. PMID:28177909

  15. The DUF59 Family Gene AE7 Acts in the Cytosolic Iron-Sulfur Cluster Assembly Pathway to Maintain Nuclear Genome Integrity in Arabidopsis[C][W][OA

    PubMed Central

    Luo, Dexian; Bernard, Delphine G.; Balk, Janneke; Hai, Huang; Cui, Xiaofeng

    2012-01-01

    Eukaryotic organisms have evolved a set of strategies to safeguard genome integrity, but the underlying mechanisms remain poorly understood. Here, we report that ASYMMETRIC LEAVES1/2 ENHANCER7 (AE7), an Arabidopsis thaliana gene encoding a protein in the evolutionarily conserved Domain of Unknown Function 59 family, participates in the cytosolic iron-sulfur (Fe-S) cluster assembly (CIA) pathway to maintain genome integrity. The severe ae7-2 allele is embryo lethal, whereas plants with the weak ae7 (ae7-1) allele are viable but exhibit highly accumulated DNA damage that activates the DNA damage response to arrest the cell cycle. AE7 is part of a protein complex with CIA1, NAR1, and MET18, which are highly conserved in eukaryotes and are involved in the biogenesis of cytosolic and nuclear Fe-S proteins. ae7-1 plants have lower activities of the cytosolic [4Fe-4S] enzyme aconitase and the nuclear [4Fe-4S] enzyme DNA glycosylase ROS1. Additionally, mutations in the gene encoding the mitochondrial ATP binding cassette transporter ATM3/ABCB25, which is required for the activity of cytosolic Fe-S enzymes in Arabidopsis, also result in defective genome integrity similar to that of ae7-1. These results indicate that AE7 is a central member of the CIA pathway, linking plant mitochondria to nuclear genome integrity through assembly of Fe-S proteins. PMID:23104832

  16. Electrochemical Impedance Spectroscopy for Real-Time Detection of Lipid Membrane Damage Based on a Porous Self-Assembly Monolayer Support.

    PubMed

    Zhang, Meng; Zhai, Qingyu; Wan, Liping; Chen, Li; Peng, Yu; Deng, Chunyan; Xiang, Juan; Yan, Jiawei

    2018-06-19

    Layer-by-layer dissolution and permeable pore formation are two typical membrane damage pathways, which induce membrane function disorder and result in serious disease, such as Alzheimer's disease, Keshan disease, Sickle-cell disease, and so on. To effectively distinguish and sensitively monitor these two typical membrane damage pathways, a facile electrochemical impedance strategy was developed on a porous self-assembly monolayer (pSAM) supported bilayer lipid membrane (BLM). The pSAM was prepared by selectively electrochemical reductive desorption of the mercaptopropionic acid in a mixed mercaptopropionic acid/11-mercaptoundecanoic acid self-assembled monolayer, which created plenty of nanopores with tens of nanometers in diameter and several nanometers in height (defined as inner-pores). The ultralow aspect ratio of the inner-pores was advantageous to the mass transfer of electrochemical probe [Fe(CN) 6 ] 3-/4- , simplifying the equivalent electric circuit for electrochemical impedance spectroscopy analysis at the electrode/membrane interface. [Fe(CN) 6 ] 3-/4- transferring from the bulk solution into the inner-pore induce significant changes of the interfacial impedance properties, improving the detection sensitivity. Based on these, the different membrane damage pathways were effectively distinguished and sensitively monitored with the normalized resistance-capacitance changes of inner-pore-related parameters including the electrolyte resistance within the pore length ( R pore ) and the metal/inner-pore interfacial capacitance ( C pore ) and the charge-transfer resistance ( R ct-in ) at the metal/inner-pore interface.

  17. Divergence of Erv1-Associated Mitochondrial Import and Export Pathways in Trypanosomes and Anaerobic Protists

    PubMed Central

    Basu, Somsuvro; Leonard, Joanne C.; Desai, Nishal; Mavridou, Despoina A. I.; Tang, Kong Ho; Goddard, Alan D.

    2013-01-01

    In yeast (Saccharomyces cerevisiae) and animals, the sulfhydryl oxidase Erv1 functions with Mia40 in the import and oxidative folding of numerous cysteine-rich proteins in the mitochondrial intermembrane space (IMS). Erv1 is also required for Fe-S cluster assembly in the cytosol, which uses at least one mitochondrially derived precursor. Here, we characterize an essential Erv1 orthologue from the protist Trypanosoma brucei (TbERV1), which naturally lacks a Mia40 homolog. We report kinetic parameters for physiologically relevant oxidants cytochrome c and O2, unexpectedly find O2 and cytochrome c are reduced simultaneously, and demonstrate that efficient reduction of O2 by TbERV1 is not dependent upon a simple O2 channel defined by conserved histidine and tyrosine residues. Massive mitochondrial swelling following TbERV1 RNA interference (RNAi) provides evidence that trypanosome Erv1 functions in IMS protein import despite the natural absence of the key player in the yeast and animal import pathways, Mia40. This suggests significant evolutionary divergence from a recently established paradigm in mitochondrial cell biology. Phylogenomic profiling of genes also points to a conserved role for TbERV1 in cytosolic Fe-S cluster assembly. Conversely, loss of genes implicated in precursor delivery for cytosolic Fe-S assembly in Entamoeba, Trichomonas, and Giardia suggests fundamental differences in intracellular trafficking pathways for activated iron or sulfur species in anaerobic versus aerobic eukaryotes. PMID:23264646

  18. De novo metatranscriptome assembly and coral gene expression profile of Montipora capitata with growth anomaly.

    PubMed

    Frazier, Monika; Helmkampf, Martin; Bellinger, M Renee; Geib, Scott M; Takabayashi, Misaki

    2017-09-11

    Scleractinian corals are a vital component of coral reef ecosystems, and of significant cultural and economic value worldwide. As anthropogenic and natural stressors are contributing to a global decline of coral reefs, understanding coral health is critical to help preserve these ecosystems. Growth anomaly (GA) is a coral disease that has significant negative impacts on coral biology, yet our understanding of its etiology and pathology is lacking. In this study we used RNA-seq along with de novo metatranscriptome assembly and homology assignment to identify coral genes that are expressed in three distinct coral tissue types: tissue from healthy corals ("healthy"), GA lesion tissue from diseased corals ("GA-affected") and apparently healthy tissue from diseased corals ("GA-unaffected"). We conducted pairwise comparisons of gene expression among these three tissue types to identify genes and pathways that help us to unravel the molecular pathology of this coral disease. The quality-filtered de novo-assembled metatranscriptome contained 76,063 genes, of which 13,643 were identified as putative coral genes. Overall gene expression profiles of coral genes revealed high similarity between healthy tissue samples, in contrast to high variance among diseased samples. This indicates GA has a variety of genetic effects at the colony level, including on seemingly healthy (GA-unaffected) tissue. A total of 105 unique coral genes were found differentially expressed among tissue types. Pairwise comparisons revealed the greatest number of differentially expressed genes between healthy and GA-affected tissue (93 genes), followed by healthy and GA-unaffected tissue (33 genes), and GA-affected and -unaffected tissue (7 genes). The putative function of these genes suggests GA is associated with changes in the activity of genes involved in developmental processes and activation of the immune system. This is one of the first transcriptome-level studies to investigate coral GA, and the first metatranscriptome assembly for the M. capitata holobiont. The gene expression data, metatranscriptome assembly and methodology developed through this study represent a significant addition to the molecular information available to further our understanding of this coral disease.

  19. MiYA, an efficient machine-learning workflow in conjunction with the YeastFab assembly strategy for combinatorial optimization of heterologous metabolic pathways in Saccharomyces cerevisiae.

    PubMed

    Zhou, Yikang; Li, Gang; Dong, Junkai; Xing, Xin-Hui; Dai, Junbiao; Zhang, Chong

    2018-05-01

    Facing boosting ability to construct combinatorial metabolic pathways, how to search the metabolic sweet spot has become the rate-limiting step. We here reported an efficient Machine-learning workflow in conjunction with YeastFab Assembly strategy (MiYA) for combinatorial optimizing the large biosynthetic genotypic space of heterologous metabolic pathways in Saccharomyces cerevisiae. Using β-carotene biosynthetic pathway as example, we first demonstrated that MiYA has the power to search only a small fraction (2-5%) of combinatorial space to precisely tune the expression level of each gene with a machine-learning algorithm of an artificial neural network (ANN) ensemble to avoid over-fitting problem when dealing with a small number of training samples. We then applied MiYA to improve the biosynthesis of violacein. Feed with initial data from a colorimetric plate-based, pre-screened pool of 24 strains producing violacein, MiYA successfully predicted, and verified experimentally, the existence of a strain that showed a 2.42-fold titer improvement in violacein production among 3125 possible designs. Furthermore, MiYA was able to largely avoid the branch pathway of violacein biosynthesis that makes deoxyviolacein, and produces very pure violacein. Together, MiYA combines the advantages of standardized building blocks and machine learning to accelerate the Design-Build-Test-Learn (DBTL) cycle for combinatorial optimization of metabolic pathways, which could significantly accelerate the development of microbial cell factories. Copyright © 2018 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  20. On the kinetics of body versus end evaporation and addition of supramolecular polymers.

    PubMed

    Tiwari, Nitin S; van der Schoot, Paul

    2017-06-01

    The kinetics of the self-assembly of supramolecular polymers is dictated by how monomers, dimers, trimers etc., attach to and detach from each other. It is for this reasons that researchers have proposed a plethora of pathways to explain the kinetics of various self-assembling supramolecules, including sulfur, linear micelles, living polymers and protein fibrils. Recent observations hint at the importance of a hitherto ignored molecular aggregation pathway that we refer to as "body evaporation and addition". In this pathway, monomers can enter at or dissociate from any point along the backbone of the polymer. In this paper, we compare predictions for the well-established end evaporation and addition pathway with those that we obtained for the newly proposed body evaporation and addition model. We quantify the lag time, characteristic of nucleated reversible polymerisation, in terms of the time it takes to obtain half of the steady-state polymerised fraction and the apparent growth rate at that point, and obtain power laws for both as a function of the total monomer concentration. We find, perhaps not entirely unexpectedly, that the body evaporation and addition pathway speeds up the relaxation of the polymerised monomeric mass relative to that of the end evaporation and addition. However, the presence of the body evaporation and addition pathway does not affect the dependence of the lag time on the total monomer concentration and it remains the same as that for the case of end evaporation and addition. The scaling of the lag time with the forward rate is different for the two models, suggesting that they may be distinguished experimentally.

  1. De novo transcriptome of Ischnura elegans provides insights into sensory biology, colour and vision genes.

    PubMed

    Chauhan, Pallavi; Hansson, Bengt; Kraaijeveld, Ken; de Knijff, Peter; Svensson, Erik I; Wellenreuther, Maren

    2014-09-22

    There is growing interest in odonates (damselflies and dragonflies) as model organisms in ecology and evolutionary biology but the development of genomic resources has been slow. So far only one draft genome (Ladona fulva) and one transcriptome assembly (Enallagma hageni) have been published. Odonates have some of the most advanced visual systems among insects and several species are colour polymorphic, and genomic and transcriptomic data would allow studying the genomic architecture of these interesting traits and make detailed comparative studies between related species possible. Here, we present a comprehensive de novo transcriptome assembly for the blue-tailed damselfly Ischnura elegans (Odonata: Coenagrionidae) built from short-read RNA-seq data. The transcriptome analysis in this paper provides a first step towards identifying genes and pathways underlying the visual and colour systems in this insect group. Illumina RNA sequencing performed on tissues from the head, thorax and abdomen generated 428,744,100 paired-ends reads amounting to 110 Gb of sequence data, which was assembled de novo with Trinity. A transcriptome was produced after filtering and quality checking yielding a final set of 60,232 high quality transcripts for analysis. CEGMA software identified 247 out of 248 ultra-conserved core proteins as 'complete' in the transcriptome assembly, yielding a completeness of 99.6%. BLASTX and InterProScan annotated 55% of the assembled transcripts and showed that the three tissue types differed both qualitatively and quantitatively in I. elegans. Differential expression identified 8,625 transcripts to be differentially expressed in head, thorax and abdomen. Targeted analyses of vision and colour functional pathways identified the presence of four different opsin types and three pigmentation pathways. We also identified transcripts involved in temperature sensitivity, thermoregulation and olfaction. All these traits and their associated transcripts are of considerable ecological and evolutionary interest for this and other insect orders. Our work presents a comprehensive transcriptome resource for the ancient insect order Odonata and provides insight into their biology and physiology. The transcriptomic resource can provide a foundation for future investigations into this diverse group, including the evolution of colour, vision, olfaction and thermal adaptation.

  2. A Versatile Microfluidic Device for Automating Synthetic Biology.

    PubMed

    Shih, Steve C C; Goyal, Garima; Kim, Peter W; Koutsoubelis, Nicolas; Keasling, Jay D; Adams, Paul D; Hillson, Nathan J; Singh, Anup K

    2015-10-16

    New microbes are being engineered that contain the genetic circuitry, metabolic pathways, and other cellular functions required for a wide range of applications such as producing biofuels, biobased chemicals, and pharmaceuticals. Although currently available tools are useful in improving the synthetic biology process, further improvements in physical automation would help to lower the barrier of entry into this field. We present an innovative microfluidic platform for assembling DNA fragments with 10× lower volumes (compared to that of current microfluidic platforms) and with integrated region-specific temperature control and on-chip transformation. Integration of these steps minimizes the loss of reagents and products compared to that with conventional methods, which require multiple pipetting steps. For assembling DNA fragments, we implemented three commonly used DNA assembly protocols on our microfluidic device: Golden Gate assembly, Gibson assembly, and yeast assembly (i.e., TAR cloning, DNA Assembler). We demonstrate the utility of these methods by assembling two combinatorial libraries of 16 plasmids each. Each DNA plasmid is transformed into Escherichia coli or Saccharomyces cerevisiae using on-chip electroporation and further sequenced to verify the assembly. We anticipate that this platform will enable new research that can integrate this automated microfluidic platform to generate large combinatorial libraries of plasmids and will help to expedite the overall synthetic biology process.

  3. Pyramiding genes and alleles for improving energy cane biomass yield

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ming, Ray; Nagai, Chifumi; Yu, Qingyi

    The overall goal of this project is to identify genes and gene interaction networks contributed to the extreme segregants with 30 folds biomass yield difference in sugarcane F2 populations. Towards achieving this goal, yield trials of 108 F2 extreme segregants from S. officinarum LA Purple and S. robustum MOL5829 (LM population) were carried out in two locations in three years. A yield trial of the second F2 population from S. officinarum LA Purple and S. spontaneum US56-14-4 (LU population) was installed in the summer of 2014 and the first set of yield component data was collected. For genotyping, transcriptomes frommore » leaves and stalks of 70 extreme segregants of the LM F2 population and 119 individuals of the LU F2 populations were sequenced. The genomes of 91 F1 individuals from the LM populations are being sequenced to construct ultra-high density genetic maps for each of the two parents for both assisting the LA Purple genome assembling and for testing a hypothesis of female restitution. The genomes of 110 F2 individuals from single F1 in the LU population, a different set from the 119 F2 individuals used for transcriptome sequencing, are being sequenced for mapping genes and QTLs affecting biomass yield and for testing a hypothesis of female restitution. Gene expression analysis between extreme segregants of high and low biomass yield showed up-regulation of cellulose synthase, cellulose, and xylan synthase in high biomass yield segregants among 3,274 genes differentially expressed between the two extremes. Our transcriptome results revealed not only the increment of cell wall biosynthesis pathway is essential, but the rapid turnover of certain cell wall polymers as well as carbohydrate partitioning are also important for recycling and energy conservation during rapid cell growth in high biomass sugarcane. Seventeen differentially expressed genes in auxin, one in ethylene and one in gibberellin related signaling and biosynthesis pathways were identified, which could potentially regulate biomass yield. Differentially expressed genes, PIF3 and EIL5, involved in gibberellin and ethylene pathway could play an important role in biomass accumulation. Differential gene expression analysis was also carried out on the LU population. High-biomass yield was mainly determined by assimilation of carbon in source tissues. The high-level expression of fermentative genes in the low-biomass group was likely induced by their low-energy status. The haploid (tetraploid) genome of S. spontanium AP85-441 was sequenced with chromosome level assembly and allele defined annotation. This reference genome along with the upcoming S. officinarum genome will allow us to identify genes and alleles contributed to biomass yield.« less

  4. Correlation analysis of targeted proteins and metabolites to assess and engineer microbial isopentenol production.

    PubMed

    George, Kevin W; Chen, Amy; Jain, Aakriti; Batth, Tanveer S; Baidoo, Edward E K; Wang, George; Adams, Paul D; Petzold, Christopher J; Keasling, Jay D; Lee, Taek Soon

    2014-08-01

    The ability to rapidly assess and optimize heterologous pathway function is critical for effective metabolic engineering. Here, we develop a systematic approach to pathway analysis based on correlations between targeted proteins and metabolites and apply it to the microbial production of isopentenol, a promising biofuel. Starting with a seven-gene pathway, we performed a correlation analysis to reduce pathway complexity and identified two pathway proteins as the primary determinants of efficient isopentenol production. Aided by the targeted quantification of relevant pathway intermediates, we constructed and subsequently validated a conceptual model of isopentenol pathway function. Informed by our analysis, we assembled a strain which produced isopentenol at a titer 1.5 g/L, or 46% of theoretical yield. Our engineering approach allowed us to accurately identify bottlenecks and determine appropriate pathway balance. Paired with high-throughput cloning techniques and analytics, this strategy should prove useful for the analysis and optimization of increasingly complex heterologous pathways. © 2014 Wiley Periodicals, Inc.

  5. Mechanisms of fatty acid synthesis in marine fungus-like protists.

    PubMed

    Xie, Yunxuan; Wang, Guangyi

    2015-10-01

    Thraustochytrids are unicellular fungus-like protists and are well known for their ability to produce interesting nutraceutical compounds. Significant efforts have been made to improve their efficient production of important fatty acids (FAs), mostly by optimizing fermentation conditions and selecting highly productive thraustochytrid strains. Furthermore, noticeable improvements have been made in understanding the mechanism of FA biosynthesis, allowing for a better understanding of how thraustochytrids assemble these unique metabolites and how their biosynthesis is coupled with other related pathways. This review summarizes recent achievements on two major FA biosynthesis pathways, the standard pathway and the polyketide synthase pathway, and detail features of individual enzymes involved in FA biosynthesis, biotechnological advances in pathway engineering and enzyme characterization, and the discovery of other pathways that affect the efficiency of FA accumulation. Perspectives of biotechnological potential application of thraustochytrids are also discussed.

  6. Assembling large genomes: analysis of the stick insect (Clitarchus hookeri) genome reveals a high repeat content and sex-biased genes associated with reproduction.

    PubMed

    Wu, Chen; Twort, Victoria G; Crowhurst, Ross N; Newcomb, Richard D; Buckley, Thomas R

    2017-11-16

    Stick insects (Phasmatodea) have a high incidence of parthenogenesis and other alternative reproductive strategies, yet the genetic basis of reproduction is poorly understood. Phasmatodea includes nearly 3000 species, yet only the genome of Timema cristinae has been published to date. Clitarchus hookeri is a geographical parthenogenetic stick insect distributed across New Zealand. Sexual reproduction dominates in northern habitats but is replaced by parthenogenesis in the south. Here, we present a de novo genome assembly of a female C. hookeri and use it to detect candidate genes associated with gamete production and development in females and males. We also explore the factors underlying large genome size in stick insects. The C. hookeri genome assembly was 4.2 Gb, similar to the flow cytometry estimate, making it the second largest insect genome sequenced and assembled to date. Like the large genome of Locusta migratoria, the genome of C. hookeri is also highly repetitive and the predicted gene models are much longer than those from most other sequenced insect genomes, largely due to longer introns. Miniature inverted repeat transposable elements (MITEs), absent in the much smaller T. cristinae genome, is the most abundant repeat type in the C. hookeri genome assembly. Mapping RNA-Seq reads from female and male gonadal transcriptomes onto the genome assembly resulted in the identification of 39,940 gene loci, 15.8% and 37.6% of which showed female-biased and male-biased expression, respectively. The genes that were over-expressed in females were mostly associated with molecular transportation, developmental process, oocyte growth and reproductive process; whereas, the male-biased genes were enriched in rhythmic process, molecular transducer activity and synapse. Several genes involved in the juvenile hormone synthesis pathway were also identified. The evolution of large insect genomes such as L. migratoria and C. hookeri genomes is most likely due to the accumulation of repetitive regions and intron elongation. MITEs contributed significantly to the growth of C. hookeri genome size yet are surprisingly absent from the T. cristinae genome. Sex-biased genes identified from gonadal tissues, including genes involved in juvenile hormone synthesis, provide interesting candidates for the further study of flexible reproduction in stick insects.

  7. Glycolysis, Glutaminolysis, and Fatty Acid Synthesis Are Required for Distinct Stages of Kaposi's Sarcoma-Associated Herpesvirus Lytic Replication.

    PubMed

    Sanchez, Erica L; Pulliam, Thomas H; Dimaio, Terri A; Thalhofer, Angel B; Delgado, Tracie; Lagunoff, Michael

    2017-05-15

    Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiologic agent of Kaposi's sarcoma (KS). KSHV infection induces and requires multiple metabolic pathways, including the glycolysis, glutaminolysis, and fatty acid synthesis (FAS) pathways, for the survival of latently infected endothelial cells. To determine the metabolic requirements for productive KSHV infection, we induced lytic replication in the presence of inhibitors of different metabolic pathways. We found that glycolysis, glutaminolysis, and FAS are all required for maximal KSHV virus production and that these pathways appear to participate in virus production at different stages of the viral life cycle. Glycolysis and glutaminolysis, but not FAS, inhibit viral genome replication and, interestingly, are required for different early steps of lytic gene expression. Glycolysis is necessary for early gene transcription, while glutaminolysis is necessary for early gene translation but not transcription. Inhibition of FAS resulted in decreased production of extracellular virions but did not reduce intracellular genome levels or block intracellular virion production. However, in the presence of FAS inhibitors, the intracellular virions are noninfectious, indicating that FAS is required for virion assembly or maturation. KS tumors support both latent and lytic KSHV replication. Previous work has shown that multiple cellular metabolic pathways are required for latency, and we now show that these metabolic pathways are required for efficient lytic replication, providing novel therapeutic avenues for KS tumors. IMPORTANCE KSHV is the etiologic agent of Kaposi's sarcoma, the most common tumor of AIDS patients. KS spindle cells, the main tumor cells, all contain KSHV, mostly in the latent state, during which there is limited viral gene expression. However, a percentage of spindle cells support lytic replication and production of virus and these cells are thought to contribute to overall tumor formation. Our previous findings showed that latently infected cells are sensitive to inhibitors of cellular metabolic pathways, including glycolysis, glutaminolysis, and fatty acid synthesis. Here we found that these same inhibitors block the production of infectious virus from lytically infected cells, each at a different stage of viral replication. Therefore, inhibition of specific cellular metabolic pathways can both eliminate latently infected cells and block lytic replication, thereby inhibiting infection of new cells. Inhibition of metabolic pathways provides novel therapeutic approaches for KS tumors. Copyright © 2017 American Society for Microbiology.

  8. Glycolysis, Glutaminolysis, and Fatty Acid Synthesis Are Required for Distinct Stages of Kaposi's Sarcoma-Associated Herpesvirus Lytic Replication

    PubMed Central

    Sanchez, Erica L.; Pulliam, Thomas H.; Dimaio, Terri A.; Thalhofer, Angel B.; Delgado, Tracie

    2017-01-01

    ABSTRACT Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiologic agent of Kaposi's sarcoma (KS). KSHV infection induces and requires multiple metabolic pathways, including the glycolysis, glutaminolysis, and fatty acid synthesis (FAS) pathways, for the survival of latently infected endothelial cells. To determine the metabolic requirements for productive KSHV infection, we induced lytic replication in the presence of inhibitors of different metabolic pathways. We found that glycolysis, glutaminolysis, and FAS are all required for maximal KSHV virus production and that these pathways appear to participate in virus production at different stages of the viral life cycle. Glycolysis and glutaminolysis, but not FAS, inhibit viral genome replication and, interestingly, are required for different early steps of lytic gene expression. Glycolysis is necessary for early gene transcription, while glutaminolysis is necessary for early gene translation but not transcription. Inhibition of FAS resulted in decreased production of extracellular virions but did not reduce intracellular genome levels or block intracellular virion production. However, in the presence of FAS inhibitors, the intracellular virions are noninfectious, indicating that FAS is required for virion assembly or maturation. KS tumors support both latent and lytic KSHV replication. Previous work has shown that multiple cellular metabolic pathways are required for latency, and we now show that these metabolic pathways are required for efficient lytic replication, providing novel therapeutic avenues for KS tumors. IMPORTANCE KSHV is the etiologic agent of Kaposi's sarcoma, the most common tumor of AIDS patients. KS spindle cells, the main tumor cells, all contain KSHV, mostly in the latent state, during which there is limited viral gene expression. However, a percentage of spindle cells support lytic replication and production of virus and these cells are thought to contribute to overall tumor formation. Our previous findings showed that latently infected cells are sensitive to inhibitors of cellular metabolic pathways, including glycolysis, glutaminolysis, and fatty acid synthesis. Here we found that these same inhibitors block the production of infectious virus from lytically infected cells, each at a different stage of viral replication. Therefore, inhibition of specific cellular metabolic pathways can both eliminate latently infected cells and block lytic replication, thereby inhibiting infection of new cells. Inhibition of metabolic pathways provides novel therapeutic approaches for KS tumors. PMID:28275189

  9. Comprehensive analysis of differentially expressed profiles of Alzheimer’s disease associated circular RNAs in an Alzheimer’s disease mouse model

    PubMed Central

    Huang, Jin-Lan; Qin, Mei-Chun; Zhou, Yan; Xu, Zhe-Hao; Yang, Si-man; Zhang, Fan; Zhong, Jing; Liang, Ming-Kun; Chen, Ben; Zhang, Wen-Yan

    2018-01-01

    Circular RNAs (circRNAs), a novel kind of non-coding RNA, have received increasing attention for their involvement in pathogenesis of Alzheimer’s disease (AD); however, few studies have reported in the characterization and function of AD associated circRNAs. Here the expression profiles of circRNAs in 5- and 10-month-old SAMP8 mice were identified using circRNA microarray and found that 85 dysregulated circRNAs were observed in 10-month-old SAMP8 versus control mice and 231 circRNAs exhibited differential expression in 10-month-old SAMP8 versus 5-month-old SAMP8. One most significantly dysregulated circRNA, mmu_circRNA_017963, was select for Gene Oncology (GO) and pathway analysis. The results showed that mmu_circRNA_017963 was strongly related with autophagosome assembly, exocytosis, apoptotic process, transport and RNA splicing and highly associated with synaptic vesicle cycle, spliceosome, glycosaminoglycan and SNARE interactions in vesicular transport pathways. Collectively, this study was the first to describe circRNAs expression in different ages of SAMP8 and will contribute to the understanding of the regulatory roles of circRNAs in AD pathogenesis and provide a valuable resource for the diagnosis and therapy of AD. PMID:29448241

  10. Innate Immune Mechanisms in Transplant Allograft Vasculopathy

    PubMed Central

    Jane-wit, D; Fang, C; Goldstein, DR

    2016-01-01

    Purpose of Review Allograft vasculopathy (AV) is the leading cause of late allograft loss following solid organ transplantation. Ischemia reperfusion injury (IRI) and donor specific antibody (DSA)-induced complement activation confer heightened risk for AV via numerous innate immune mechanisms including MyD88, HMGB1, and complement induced non-canonical NF-kB signaling. Recent Findings The role of MyD88, a signal adaptor downstream of the toll-like receptors (TLR), has been defined in an experimental heart transplant model, which demonstrated that recipient MyD88 enhanced AV. Importantly, triggering receptor on myeloid receptor 1(Trem1), a MyD88 amplifying signal, was present in rejecting human cardiac transplant biopsies and enhanced the development of AV in mice. HMGB1, a nuclear protein that activates TLRs, also enhanced the development of AV. Complement activation elicits assembly of membrane attack complexes (MAC) on endothelial cells which activate non-canonical NF-kB signaling, a novel complement effector pathway that induces pro-inflammatory genes and potentiates endothelial cell mediated alloimmune T cell activation, processes which enhance AV. Summary Innate immune mediators including HMGB1, MyD88, and non-canonical NFκB signaling via complement activation contribute to AV. These pathways represent potential therapeutic targets to reduce AV after solid organ transplantation. PMID:27077602

  11. Transcriptome profiling of the Macrobrachium rosenbergii lymphoid organ under the white spot syndrome virus challenge.

    PubMed

    Cao, Jun; Wu, Lei; Jin, Min; Li, Tingting; Hui, Kaimin; Ren, Qian

    2017-08-01

    Macrobrachium rosenbergii is a crustacean with economic importance, and adult prawns are generally thought to be tolerant to white spot syndrome virus (WSSV) infection. Although certain genes are known to respond to WSSV infection and lymphoid tissue is an important immune organ, the response of lymphoid organ to WSSV infection is unclear. Next-generation sequencing was employed in this study to determine the transcriptome differences between WSSV infection and mock lymphoid organs. A total of 44,606,694 and 40,384,856 clean reads were generated and assembled into 73,658 and 72,374 unigenes from the control sample and the WSSV infection sample, respectively. Based on homology searches, KEGG, GO, and COG analysis, 21,323 unigenes were annotated. Among them, 4951 differential expression genes were identified and categorized into 244 metabolic pathways. Coagulation cascades, and pattern recognition receptor signaling pathways were used as examples to discuss the response of host to WSSV infection. We also identified 12,308 simple sequence repeats, which can be further used as functional markers. Results contribute to a better understanding of the immune response of prawn lymphoid organ to WSSV and provide information for identifying novel genes in the absence of the prawn genome. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Akt3 kinase suppresses pinocytosis of low-density lipoprotein by macrophages via a novel WNK/SGK1/Cdc42 protein pathway

    PubMed Central

    Ding, Liang; Zhang, Lifang; Kim, Michael; Byzova, Tatiana; Podrez, Eugene

    2017-01-01

    Fluid-phase pinocytosis of LDL by macrophages is regarded as a novel promising target to reduce macrophage cholesterol accumulation in atherosclerotic lesions. The mechanisms of regulation of fluid-phase pinocytosis in macrophages and, specifically, the role of Akt kinases are poorly understood. We have found previously that increased lipoprotein uptake via the receptor-independent process in Akt3 kinase-deficient macrophages contributes to increased atherosclerosis in Akt3−/− mice. The mechanism by which Akt3 deficiency promotes lipoprotein uptake in macrophages is unknown. We now report that Akt3 constitutively suppresses macropinocytosis in macrophages through a novel WNK1/SGK1/Cdc42 pathway. Mechanistic studies have demonstrated that the lack of Akt3 expression in murine and human macrophages results in increased expression of with-no-lysine kinase 1 (WNK1), which, in turn, leads to increased activity of serum and glucocorticoid-inducible kinase 1 (SGK1). SGK1 promotes expression of the Rho family GTPase Cdc42, a positive regulator of actin assembly, cell polarization, and pinocytosis. Individual suppression of WNK1 expression, SGK1, or Cdc42 activity in Akt3-deficient macrophages rescued the phenotype. These results demonstrate that Akt3 is a specific negative regulator of macropinocytosis in macrophages. PMID:28389565

  13. Expression profiling of Chrysanthemum crassum under salinity stress and the initiation of morphological changes

    PubMed Central

    Guan, Zhiyong; Feng, Yitong; Song, Aiping; Shi, Xiaomeng; Mao, Yachao; Chen, Sumei; Jiang, Jiafu; Ding, Lian; Chen, Fadi

    2017-01-01

    Chrysanthemum crassum is a decaploid species of Chrysanthemum with high stress tolerance that allows survival under salinity stress while maintaining a relatively ideal growth rate. We previously recorded morphological changes after salt treatment, such as the expansion of leaf cells. To explore the underlying salinity tolerance mechanisms, we used an Illumina platform and obtained three sequencing libraries from samples collected after 0 h, 12 h and 24 h of salt treatment. Following de novo assembly, 154,944 transcripts were generated, and 97,833 (63.14%) transcripts were annotated, including 55 Gene Ontology (GO) terms and 128 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The expression profile of C. crassum was globally altered after salt treatment. We selected functional genes and pathways that may contribute to salinity tolerance and identified some factors involved in the salinity tolerance strategies of C. crassum, such as signal transduction, transcription factors and plant hormone regulation, enhancement of energy metabolism, functional proteins and osmolyte synthesis, reactive oxygen species (ROS) scavenging, photosystem protection and recovery, and cell wall protein modifications. Forty-six genes were selected for quantitative real-time polymerase chain reaction detection, and their expression patterns were shown to be consistent with the changes in their transcript abundance determined by RNA sequencing. PMID:28437448

  14. Passivation of Black Phosphorus via Self-Assembled Organic Monolayers by van der Waals Epitaxy.

    PubMed

    Zhao, Yinghe; Zhou, Qionghua; Li, Qiang; Yao, Xiaojing; Wang, Jinlan

    2017-02-01

    An effective passivation approach to protect black phosphorus (BP) from degradation based on multi-scale simulations is proposed. The self-assembly of perylene-3,4,9,10-tetracarboxylic dianhydride monolayers via van der Waals epitaxy on BP does not break the original electronic properties of BP. The passivation layer thickness is only 2 nm. This study opens up a new pathway toward fine passivation of BP. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. MIDAS: A Modular DNA Assembly System for Synthetic Biology.

    PubMed

    van Dolleweerd, Craig J; Kessans, Sarah A; Van de Bittner, Kyle C; Bustamante, Leyla Y; Bundela, Rudranuj; Scott, Barry; Nicholson, Matthew J; Parker, Emily J

    2018-04-20

    A modular and hierarchical DNA assembly platform for synthetic biology based on Golden Gate (Type IIS restriction enzyme) cloning is described. This enabling technology, termed MIDAS (for Modular Idempotent DNA Assembly System), can be used to precisely assemble multiple DNA fragments in a single reaction using a standardized assembly design. It can be used to build genes from libraries of sequence-verified, reusable parts and to assemble multiple genes in a single vector, with full user control over gene order and orientation, as well as control of the direction of growth (polarity) of the multigene assembly, a feature that allows genes to be nested between other genes or genetic elements. We describe the detailed design and use of MIDAS, exemplified by the reconstruction, in the filamentous fungus Penicillium paxilli, of the metabolic pathway for production of paspaline and paxilline, key intermediates in the biosynthesis of a range of indole diterpenes-a class of secondary metabolites produced by several species of filamentous fungi. MIDAS was used to efficiently assemble a 25.2 kb plasmid from 21 different modules (seven genes, each composed of three basic parts). By using a parts library-based system for construction of complex assemblies, and a unique set of vectors, MIDAS can provide a flexible route to assembling tailored combinations of genes and other genetic elements, thereby supporting synthetic biology applications in a wide range of expression hosts.

  16. Integrative pathway knowledge bases as a tool for systems molecular medicine.

    PubMed

    Liang, Mingyu

    2007-08-20

    There exists a sense of urgency to begin to generate a cohesive assembly of biomedical knowledge as the pace of knowledge accumulation accelerates. The urgency is in part driven by the emergence of systems molecular medicine that emphasizes the combination of systems analysis and molecular dissection in the future of medical practice and research. A potentially powerful approach is to build integrative pathway knowledge bases that link organ systems function with molecules.

  17. Degradation of connexins and gap junctions

    PubMed Central

    Falk, Matthias M.; Kells, Rachael M.; Berthoud, Viviana M.

    2014-01-01

    Connexin proteins are short-lived within the cell, whether present in the secretory pathway or in gap junction plaques. Their levels can be modulated by their rate of degradation. Connexins, at different stages of assembly, are degraded through the proteasomal, endo-/lysosomal, and phago-/lysosomal pathways. In this review, we summarize the current knowledge about connexin and gap junction degradation including the signals and protein-protein interactions that participate in their targeting for degradation. PMID:24486527

  18. Spatially and temporally resolved exciton dynamics and transport in single nanostructures and assemblies

    NASA Astrophysics Data System (ADS)

    Huang, Libai

    2015-03-01

    The frontier in solar energy conversion now lies in learning how to integrate functional entities across multiple length scales to create optimal devices. To address this new frontier, I will discuss our recent efforts on elucidating multi-scale energy transfer, migration, and dissipation processes with simultaneous femtosecond temporal resolution and nanometer spatial resolution. We have developed ultrafast microscopy that combines ultrafast spectroscopy with optical microscopy to map exciton dynamics and transport with simultaneous ultrafast time resolution and diffraction-limited spatial resolution. We have employed pump-probe transient absorption microscopy to elucidate morphology and structure dependent exciton dynamics and transport in single nanostructures and molecular assemblies. More specifically, (1) We have applied transient absorption microscopy (TAM) to probe environmental and structure dependent exciton relaxation pathways in sing-walled carbon nanotubes (SWNTs) by mapping dynamics in individual pristine SWNTs with known structures. (2) We have systematically measured and modeled the optical properties of the Frenkel excitons in self-assembled porphyrin tubular aggregates that represent an analog to natural photosynthetic antennae. Using a combination of ultrafast optical microscopy and stochastic exciton modeling, we address exciton transport and relaxation pathways, especially those related to disorder.

  19. Multilayer checkpoints for microRNA authenticity during RISC assembly

    PubMed Central

    Kawamata, Tomoko; Yoda, Mayuko; Tomari, Yukihide

    2011-01-01

    MicroRNAs (miRNAs) function through the RNA-induced silencing complex (RISC), which contains an Argonaute (Ago) protein at the core. RISC assembly follows a two-step pathway: miRNA/miRNA* duplex loading into Ago, and separation of the two strands within Ago. Here we show that the 5′ phosphate of the miRNA strand is essential for duplex loading into Ago, whereas the preferred 5′ nucleotide of the miRNA strand and the base-pairing status in the seed region and the middle of the 3′ region function as additive anchors to Ago. Consequently, the miRNA authenticity is inspected at multiple steps during RISC assembly. PMID:21738221

  20. Emergence of photoautotrophic minimal protocell-like supramolecular assemblies, "Jeewanu" synthesied photo chemically in an irradiated sterilised aqueous mixture of some inorganic and organic substances.

    PubMed

    Gupta, Vinod Kumar

    2014-12-01

    Sunlight exposed sterilised aqueous mixture of ammonium molybdate, diammonium hydrogen phosphate, biological minerals and formaldehyde showed photochemical formation of self-sustaining biomimetic protocell-like supramolecular assemblies "Jeewanu" (Bahadur and Ranganayaki J Brit Interplanet Soc 23:813-829 1970). The structural and functional characteristics of Jeewanu suggests that in possible prebiotic atmosphere photosy nergistic collaboration of non-linear processes at mesoscopic level established autocatalytic pathways on mineral surfaces by selforganisation and self recognition and led to emergence of similar earliest energy transducing supramolecular assemblies which might have given rise to common universal ancestor on the earth or elsewhere.

  1. Supramolecular Assembly of Comb-like Macromolecules Induced by Chemical Reactions that Modulate the Macromolecular Interactions In Situ.

    PubMed

    Xia, Hongwei; Fu, Hailin; Zhang, Yanfeng; Shih, Kuo-Chih; Ren, Yuan; Anuganti, Murali; Nieh, Mu-Ping; Cheng, Jianjun; Lin, Yao

    2017-08-16

    Supramolecular polymerization or assembly of proteins or large macromolecular units by a homogeneous nucleation mechanism can be quite slow and require specific solution conditions. In nature, protein assembly is often regulated by molecules that modulate the electrostatic interactions of the protein subunits for various association strengths. The key to this regulation is the coupling of the assembly process with a reversible or irreversible chemical reaction that occurs within the constituent subunits. However, realizing this complex process by the rational design of synthetic molecules or macromolecules remains a challenge. Herein, we use a synthetic polypeptide-grafted comb macromolecule to demonstrate how the in situ modulation of interactions between the charged macromolecules affects their resulting supramolecular structures. The kinetics of structural formation was studied and can be described by a generalized model of nucleated polymerization containing secondary pathways. Basic thermodynamic analysis indicated the delicate role of the electrostatic interactions between the charged subunits in the reaction-induced assembly process. This approach may be applicable for assembling a variety of ionic soft matters that are amenable to chemical reactions in situ.

  2. Ribosome Biogenesis in the Yeast Saccharomyces cerevisiae

    PubMed Central

    Woolford, John L.; Baserga, Susan J.

    2013-01-01

    Ribosomes are highly conserved ribonucleoprotein nanomachines that translate information in the genome to create the proteome in all cells. In yeast these complex particles contain four RNAs (>5400 nucleotides) and 79 different proteins. During the past 25 years, studies in yeast have led the way to understanding how these molecules are assembled into ribosomes in vivo. Assembly begins with transcription of ribosomal RNA in the nucleolus, where the RNA then undergoes complex pathways of folding, coupled with nucleotide modification, removal of spacer sequences, and binding to ribosomal proteins. More than 200 assembly factors and 76 small nucleolar RNAs transiently associate with assembling ribosomes, to enable their accurate and efficient construction. Following export of preribosomes from the nucleus to the cytoplasm, they undergo final stages of maturation before entering the pool of functioning ribosomes. Elaborate mechanisms exist to monitor the formation of correct structural and functional neighborhoods within ribosomes and to destroy preribosomes that fail to assemble properly. Studies of yeast ribosome biogenesis provide useful models for ribosomopathies, diseases in humans that result from failure to properly assemble ribosomes. PMID:24190922

  3. COX16 promotes COX2 metallation and assembly during respiratory complex IV biogenesis

    PubMed Central

    Aich, Abhishek; Wang, Cong; Chowdhury, Arpita; Ronsör, Christin; Pacheu-Grau, David; Richter-Dennerlein, Ricarda; Dennerlein, Sven

    2018-01-01

    Cytochrome c oxidase of the mitochondrial oxidative phosphorylation system reduces molecular oxygen with redox equivalent-derived electrons. The conserved mitochondrial-encoded COX1- and COX2-subunits are the heme- and copper-center containing core subunits that catalyze water formation. COX1 and COX2 initially follow independent biogenesis pathways creating assembly modules with subunit-specific, chaperone-like assembly factors that assist in redox centers formation. Here, we find that COX16, a protein required for cytochrome c oxidase assembly, interacts specifically with newly synthesized COX2 and its copper center-forming metallochaperones SCO1, SCO2, and COA6. The recruitment of SCO1 to the COX2-module is COX16- dependent and patient-mimicking mutations in SCO1 affect interaction with COX16. These findings implicate COX16 in CuA-site formation. Surprisingly, COX16 is also found in COX1-containing assembly intermediates and COX2 recruitment to COX1. We conclude that COX16 participates in merging the COX1 and COX2 assembly lines. PMID:29381136

  4. X-linked primary ciliary dyskinesia due to mutations in the cytoplasmic axonemal dynein assembly factor PIH1D3

    PubMed Central

    Olcese, Chiara; Patel, Mitali P.; Shoemark, Amelia; Kiviluoto, Santeri; Legendre, Marie; Williams, Hywel J.; Vaughan, Cara K.; Hayward, Jane; Goldenberg, Alice; Emes, Richard D.; Munye, Mustafa M.; Dyer, Laura; Cahill, Thomas; Bevillard, Jeremy; Gehrig, Corinne; Guipponi, Michel; Chantot, Sandra; Duquesnoy, Philippe; Thomas, Lucie; Jeanson, Ludovic; Copin, Bruno; Tamalet, Aline; Thauvin-Robinet, Christel; Papon, Jean- François; Garin, Antoine; Pin, Isabelle; Vera, Gabriella; Aurora, Paul; Fassad, Mahmoud R.; Jenkins, Lucy; Boustred, Christopher; Cullup, Thomas; Dixon, Mellisa; Onoufriadis, Alexandros; Bush, Andrew; Chung, Eddie M. K.; Antonarakis, Stylianos E.; Loebinger, Michael R.; Wilson, Robert; Armengot, Miguel; Escudier, Estelle; Hogg, Claire; Al-Turki, Saeed; Anderson, Carl; Antony, Dinu; Barroso, Inês; Beales, Philip L.; Bentham, Jamie; Bhattacharya, Shoumo; Carss, Keren; Chatterjee, Krishna; Cirak, Sebahattin; Cosgrove, Catherine; Allan, Daly; Durbin, Richard; Fitzpatrick, David; Floyd, Jamie; Foley, A. Reghan; Franklin, Chris; Futema, Marta; Humphries, Steve E.; Hurles, Matt; McCarthy, Shane; Muddyman, Dawn; Muntoni, Francesco; Parker, Victoria; Payne, Felicity; Plagnol, Vincent; Raymond, Lucy; Savage, David B.; Scambler, Peter J.; Schmidts, Miriam; Semple, Robert; Serra, Eva; Stalker, Jim; van Kogelenberg, Margriet; Vijayarangakannan, Parthiban; Walter, Klaudia; Amselem, Serge; Sun, Zhaoxia; Bartoloni, Lucia; Blouin, Jean-Louis; Mitchison, Hannah M.

    2017-01-01

    By moving essential body fluids and molecules, motile cilia and flagella govern respiratory mucociliary clearance, laterality determination and the transport of gametes and cerebrospinal fluid. Primary ciliary dyskinesia (PCD) is an autosomal recessive disorder frequently caused by non-assembly of dynein arm motors into cilia and flagella axonemes. Before their import into cilia and flagella, multi-subunit axonemal dynein arms are thought to be stabilized and pre-assembled in the cytoplasm through a DNAAF2–DNAAF4–HSP90 complex akin to the HSP90 co-chaperone R2TP complex. Here, we demonstrate that large genomic deletions as well as point mutations involving PIH1D3 are responsible for an X-linked form of PCD causing disruption of early axonemal dynein assembly. We propose that PIH1D3, a protein that emerges as a new player of the cytoplasmic pre-assembly pathway, is part of a complementary conserved R2TP-like HSP90 co-chaperone complex, the loss of which affects assembly of a subset of inner arm dyneins. PMID:28176794

  5. X-linked primary ciliary dyskinesia due to mutations in the cytoplasmic axonemal dynein assembly factor PIH1D3.

    PubMed

    Olcese, Chiara; Patel, Mitali P; Shoemark, Amelia; Kiviluoto, Santeri; Legendre, Marie; Williams, Hywel J; Vaughan, Cara K; Hayward, Jane; Goldenberg, Alice; Emes, Richard D; Munye, Mustafa M; Dyer, Laura; Cahill, Thomas; Bevillard, Jeremy; Gehrig, Corinne; Guipponi, Michel; Chantot, Sandra; Duquesnoy, Philippe; Thomas, Lucie; Jeanson, Ludovic; Copin, Bruno; Tamalet, Aline; Thauvin-Robinet, Christel; Papon, Jean-François; Garin, Antoine; Pin, Isabelle; Vera, Gabriella; Aurora, Paul; Fassad, Mahmoud R; Jenkins, Lucy; Boustred, Christopher; Cullup, Thomas; Dixon, Mellisa; Onoufriadis, Alexandros; Bush, Andrew; Chung, Eddie M K; Antonarakis, Stylianos E; Loebinger, Michael R; Wilson, Robert; Armengot, Miguel; Escudier, Estelle; Hogg, Claire; Amselem, Serge; Sun, Zhaoxia; Bartoloni, Lucia; Blouin, Jean-Louis; Mitchison, Hannah M

    2017-02-08

    By moving essential body fluids and molecules, motile cilia and flagella govern respiratory mucociliary clearance, laterality determination and the transport of gametes and cerebrospinal fluid. Primary ciliary dyskinesia (PCD) is an autosomal recessive disorder frequently caused by non-assembly of dynein arm motors into cilia and flagella axonemes. Before their import into cilia and flagella, multi-subunit axonemal dynein arms are thought to be stabilized and pre-assembled in the cytoplasm through a DNAAF2-DNAAF4-HSP90 complex akin to the HSP90 co-chaperone R2TP complex. Here, we demonstrate that large genomic deletions as well as point mutations involving PIH1D3 are responsible for an X-linked form of PCD causing disruption of early axonemal dynein assembly. We propose that PIH1D3, a protein that emerges as a new player of the cytoplasmic pre-assembly pathway, is part of a complementary conserved R2TP-like HSP90 co-chaperone complex, the loss of which affects assembly of a subset of inner arm dyneins.

  6. Ordering pathway of block copolymers under dynamic thermal gradients studied by in situ GISAXS

    DOE PAGES

    Samant, Saumil; Strzalka, Joseph; Yager, Kevin G.; ...

    2016-10-31

    Dynamic thermal gradient-based processes for directed self-assembly of block copolymer (BCP) thin films such as cold zone annealing (CZA) have demonstrated much potential for rapidly fabricating highly ordered patterns of BCP domains with facile orientation control. As a demonstration, hexagonally packed predominantly vertical cylindrical morphology, technologically relevant for applications such as membranes and lithography, was achieved in 1 μm thick cylinder-forming PS-b-PMMA (cBCP) films by applying sharp thermal gradients (CZA-Sharp) at optimum sample sweep rates. A thorough understanding of the molecular level mechanisms and pathways of the BCP ordering that occur during this CZA-S process is presented, useful to fullymore » exploit the potential of CZA-S for large-scale BCP-based device fabrication. To that end, we developed a customized CZA-S assembly to probe the dynamic structure evolution and ordering of the PS-b-PMMA cBCP film in situ as it undergoes the CZA-S process using the grazing incidence small-angle X-ray scattering (GISAXS) technique. Four distinct regimes of BCP ordering were observed within the gradient that include microphase separation from an “as cast” unordered state (Regime I), evolution of vertical cylinders under a thermally imposed strain gradient (Regime II), reorientation of a fraction of cylinders due to preferential substrate interactions (Regime III), and finally grain-coarsening on the cooling edge (Regime IV). The ordering pathway in the different regimes is further described within the framework of an energy landscape. A novel aspect of this study is the identification of a grain-coarsening regime on the cooling edge of the gradient, previously obscure in zone annealing studies of BCPs. Furthermore, such insights into the development of highly ordered BCP nanostructures under template-free thermal gradient fields can potentially have important ramifications in the field of BCP-directed self-assembly and self-assembling polymer systems more broadly.« less

  7. The root transcriptome for North American ginseng assembled and profiled across seasonal development

    PubMed Central

    2013-01-01

    Background Ginseng including North American ginseng (Panax quinquefolius L.) is one of the most widely used medicinal plants. Its success is thought to be due to a diverse collection of ginsenosides that serve as its major bioactive compounds. However, few genomic resources exist and the details concerning its various biosynthetic pathways remain poorly understood. As the root is the primary tissue harvested commercially for ginsenosides, next generation sequencing was applied to the characterization and assembly of the root transcriptome throughout seasonal development. Transcripts showing homology to ginsenoside biosynthesis enzymes were profiled in greater detail. Results RNA extracts from root samples from seven development stages of North American ginseng were subjected to 454 sequencing, filtered for quality and used in the de novo assembly of a collective root reference transcriptome consisting of 41,623 transcripts. Annotation efforts using a number of public databases resulted in detailed annotation information for 34,801 (84%) transcripts. In addition, 3,955 genes were assigned to metabolic pathways using the Kyoto Encyclopedia of Genes and Genomes. Among our results, we found all of the known enzymes involved in the ginsenoside backbone biosynthesis and used co-expression analysis to identify a number of candidate sequences involved in the latter stages ginsenoside biosynthesis pathway. Transcript profiles suggest ginsenoside biosynthesis occurs at distinct stages of development. Conclusions The assembly generated provides a comprehensive annotated reference for future transcriptomic study of North American ginseng. A collection of putative ginsenoside biosynthesis genes were identified and candidate genes predicted from the lesser understood downstream stages of biosynthesis. Transcript expression profiles across seasonal development suggest a primary dammarane-type ginsenoside biosynthesis occurs just prior to plant senescence, with secondary ginsenoside production occurring throughout development. Data from the study provide a valuable resource for conducting future ginsenoside biosynthesis research in this important medicinal plant. PMID:23957709

  8. Ligand-Receptor Interaction Modulates the Energy Landscape of Enzyme-Instructed Self-Assembly of Small Molecules.

    PubMed

    Haburcak, Richard; Shi, Junfeng; Du, Xuewen; Yuan, Dan; Xu, Bing

    2016-11-30

    The concurrence of enzymatic reaction and ligand-receptor interactions is common for proteins, but rare for small molecules and has yet to be explored. Here we show that ligand-receptor interaction modulates the morphology of molecular assemblies formed by enzyme-instructed assembly of small molecules. While the absence of ligand-receptor interaction allows enzymatic dephosphorylation of a precursor to generate the hydrogelator that self-assembles to form long nanofibers, the presence of the ligand-receptor interaction biases the pathway to form precipitous aggregates containing short nanofibers. While the hydrogelators self-assemble to form nanofibers or nanoribbons that are unable to bind with the ligand (i.e., vancomycin), the addition of surfactant breaks up the assemblies to restore the ligand-receptor interaction. In addition, an excess amount of the ligands can disrupt the nanofibers and result in the precipitates. As the first example of the use of ligand-receptor interaction to modulate the kinetics of enzymatic self-assembly, this work not only provides a solution to evaluate the interaction between aggregates and target molecules but also offers new insight for understanding the emergent behavior of sophisticated molecular systems having multiple and parallel processes.

  9. The modules of trans-acyltransferase assembly lines redefined with a central acyl carrier protein.

    PubMed

    Vander Wood, Drew A; Keatinge-Clay, Adrian T

    2018-06-01

    Here, the term "module" is redefined for trans-acyltransferase (trans-AT) assembly lines to agree with how its domains cooperate and evolutionarily co-migrate. The key domain in both the polyketide synthase (PKS) and nonribosomal peptide synthetase (NRPS) modules of assembly lines is the acyl carrier protein (ACP). ACPs not only relay growing acyl chains through the assembly line but also collaborate with enzymes in modules, both in cis and in trans, to add a specific chemical moiety. A ketosynthase (KS) downstream of ACP often plays the role of gatekeeper, ensuring that only a single intermediate generated by the enzymes of a module is passed downstream. Bioinformatic analysis of 526 ACPs from 33 characterized trans-AT assembly lines reveals ACPs from the same module type generally clade together, reflective of the co-evolution of these domains with their cognate enzymes. While KSs downstream of ACPs from the same module type generally also clade together, KSs upstream of ACPs do not-in disagreement with the traditional definition of a module. Beyond nomenclature, the presented analysis impacts our understanding of module function, the evolution of assembly lines, pathway prediction, and assembly line engineering. © 2018 Wiley Periodicals, Inc.

  10. Yeast prions assembly and propagation: contributions of the prion and non-prion moieties and the nature of assemblies.

    PubMed

    Kabani, Mehdi; Melki, Ronald

    2011-01-01

    Yeast prions are self-perpetuating protein aggregates that are at the origin of heritable and transmissible non-Mendelian phenotypic traits. Among these, [PSI+], [URE3] and [PIN+] are the most well documented prions and arise from the assembly of Sup35p, Ure2p and Rnq1p, respectively, into insoluble fibrillar assemblies. Fibril assembly depends on the presence of N- or C-terminal prion domains (PrDs) which are not homologous in sequence but share unusual amino-acid compositions, such as enrichment in polar residues (glutamines and asparagines) or the presence of oligopeptide repeats. Purified PrDs form amyloid fibrils that can convert prion-free cells to the prion state upon transformation. Nonetheless, isolated PrDs and full-length prion proteins have different aggregation, structural and infectious properties. In addition, mutations in the "non-prion" domains (non-PrDs) of Sup35p, Ure2p and Rnq1p were shown to affect their prion properties in vitro and in vivo. Despite these evidences, the implication of the functional non-PrDs in fibril assembly and prion propagation has been mostly overlooked. In this review, we discuss the contribution of non-PrDs to prion assemblies, and the structure-function relationship in prion infectivity in the light of recent findings on Sup35p and Ure2p assembly into infectious fibrils from our laboratory and others.

  11. Biosynthesis of Chlorophyll a in a Purple Bacterial Phototroph and Assembly into a Plant Chlorophyll-Protein Complex.

    PubMed

    Hitchcock, Andrew; Jackson, Philip J; Chidgey, Jack W; Dickman, Mark J; Hunter, C Neil; Canniffe, Daniel P

    2016-09-16

    Improvements to photosynthetic efficiency could be achieved by manipulating pigment biosynthetic pathways of photosynthetic organisms in order to increase the spectral coverage for light absorption. The development of organisms that can produce both bacteriochlorophylls and chlorophylls is one way to achieve this aim, and accordingly we have engineered the bacteriochlorophyll-utilizing anoxygenic phototroph Rhodobacter sphaeroides to make chlorophyll a. Bacteriochlorophyll and chlorophyll share a common biosynthetic pathway up to the precursor chlorophyllide. Deletion of genes responsible for the bacteriochlorophyll-specific modifications of chlorophyllide and replacement of the native bacteriochlorophyll synthase with a cyanobacterial chlorophyll synthase resulted in the production of chlorophyll a. This pigment could be assembled in vivo into the plant water-soluble chlorophyll protein, heterologously produced in Rhodobacter sphaeroides, which represents a proof-of-principle for the engineering of novel antenna complexes that enhance the spectral range of photosynthesis.

  12. Engineering the Bacterial Microcompartment Domain for Molecular Scaffolding Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, Eric J.; Burton, Rodney; Mahalik, Jyoti P.

    As synthetic biology advances the intricacy of engineered biological systems, the importance of spatial organization within the cellular environment must not be marginalized. Increasingly, biological engineers are investigating means to control spatial organization within the cell, mimicking strategies used by natural pathways to increase flux and reduce cross-talk. A modular platform for constructing a diverse set of defined, programmable architectures would greatly assist in improving yields from introduced metabolic pathways and increasing insulation of other heterologous systems. Here, we review recent research on the shell proteins of bacterial microcompartments and discuss their potential application as “building blocks” for a rangemore » of customized intracellular scaffolds. As a result, we summarize the state of knowledge on the self-assembly of BMC shell proteins and discuss future avenues of research that will be important to realize the potential of BMC shell proteins as predictively assembling and programmable biological materials for bioengineering.« less

  13. Engineering the Bacterial Microcompartment Domain for Molecular Scaffolding Applications

    DOE PAGES

    Young, Eric J.; Burton, Rodney; Mahalik, Jyoti P.; ...

    2017-07-31

    As synthetic biology advances the intricacy of engineered biological systems, the importance of spatial organization within the cellular environment must not be marginalized. Increasingly, biological engineers are investigating means to control spatial organization within the cell, mimicking strategies used by natural pathways to increase flux and reduce cross-talk. A modular platform for constructing a diverse set of defined, programmable architectures would greatly assist in improving yields from introduced metabolic pathways and increasing insulation of other heterologous systems. Here, we review recent research on the shell proteins of bacterial microcompartments and discuss their potential application as “building blocks” for a rangemore » of customized intracellular scaffolds. As a result, we summarize the state of knowledge on the self-assembly of BMC shell proteins and discuss future avenues of research that will be important to realize the potential of BMC shell proteins as predictively assembling and programmable biological materials for bioengineering.« less

  14. Conversion of pre-RISC to holo-RISC by Ago2 during assembly of RNAi complexes

    PubMed Central

    Kim, Kevin; Lee, Young Sik; Carthew, Richard W.

    2007-01-01

    In the Drosophila RNA interference (RNAi) pathway, small interfering RNAs (siRNAs) direct Argonaute2 (Ago2), an endonuclease, within the RNA-induced silencing complex (RISC) to cleave complementary mRNA targets. In vitro studies have shown that, for each siRNA duplex, RISC retains only one strand, the guide, and releases the other, the passenger, to form a holo-RISC complex. Here, we have isolated a new Ago2 mutant allele and provide, for the first time, in vivo evidence that endogenous Ago2 slicer activity is important to mount an RNAi response in Drosophila. We demonstrate in vivo that efficient removal of the passenger strand from RISC requires the cleavage activity of Ago2. We have also identified a new intermediate complex in the RISC assembly pathway, pre-RISC, in which Ago2 is stably bound to double-stranded siRNA. PMID:17123955

  15. Engineering the Bacterial Microcompartment Domain for Molecular Scaffolding Applications

    PubMed Central

    Young, Eric J.; Burton, Rodney; Mahalik, Jyoti P.; Sumpter, Bobby G.; Fuentes-Cabrera, Miguel; Kerfeld, Cheryl A.; Ducat, Daniel C.

    2017-01-01

    As synthetic biology advances the intricacy of engineered biological systems, the importance of spatial organization within the cellular environment must not be marginalized. Increasingly, biological engineers are investigating means to control spatial organization within the cell, mimicking strategies used by natural pathways to increase flux and reduce cross-talk. A modular platform for constructing a diverse set of defined, programmable architectures would greatly assist in improving yields from introduced metabolic pathways and increasing insulation of other heterologous systems. Here, we review recent research on the shell proteins of bacterial microcompartments and discuss their potential application as “building blocks” for a range of customized intracellular scaffolds. We summarize the state of knowledge on the self-assembly of BMC shell proteins and discuss future avenues of research that will be important to realize the potential of BMC shell proteins as predictively assembling and programmable biological materials for bioengineering. PMID:28824573

  16. Steps Toward Understanding Mitochondrial Fe/S Cluster Biogenesis.

    PubMed

    Melber, Andrew; Winge, Dennis R

    2018-01-01

    Iron-sulfur clusters (Fe/S clusters) are essential cofactors required throughout the clades of biology for performing a myriad of unique functions including nitrogen fixation, ribosome assembly, DNA repair, mitochondrial respiration, and metabolite catabolism. Although Fe/S clusters can be synthesized in vitro and transferred to a client protein without enzymatic assistance, biology has evolved intricate mechanisms to assemble and transfer Fe/S clusters within the cellular environment. In eukaryotes, the foundation of all cellular clusters starts within the mitochondria. The focus of this review is to detail the mitochondrial Fe/S biogenesis (ISC) pathway along with the Fe/S cluster transfer steps necessary to mature Fe/S proteins. New advances in our understanding of the mitochondrial Fe/S biogenesis machinery will be highlighted. Additionally, we will address various experimental approaches that have been successful in the identification and characterization of components of the ISC pathway. © 2018 Elsevier Inc. All rights reserved.

  17. Structural rigidity in the capsid assembly of cowpea chlorotic mottle virus

    NASA Astrophysics Data System (ADS)

    Hespenheide, B. M.; Jacobs, D. J.; Thorpe, M. F.

    2004-11-01

    The cowpea chlorotic mottle virus (CCMV) has a protein cage, or capsid, which encloses its genetic material. The structure of the capsid consists of 180 copies of a single protein that self-assemble inside a cell to form a complete capsid with icosahedral symmetry. The icosahedral surface can be naturally divided into pentagonal and hexagonal faces, and the formation of either of these faces has been proposed to be the first step in the capsid assembly process. We have used the software FIRST to analyse the rigidity of pentameric and hexameric substructures of the complete capsid to explore the viability of certain capsid assembly pathways. FIRST uses the 3D pebble game to determine structural rigidity, and a brief description of this algorithm, as applied to body-bar networks, is given here. We find that the pentameric substructure, which corresponds to a pentagonal face on the icosahedral surface, provides the best structural properties for nucleating the capsid assembly process, consistent with experimental observations.

  18. Achieving 3-D Nanoparticle Assembly in Nanocomposite Thin Films via Kinetic Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Jingyu; Xiao, Yihan; Xu, Ting

    Nanocomposite thin films containing well-ordered nanoparticle (NP) assemblies are ideal candidates for the fabrication of metamaterials. Achieving 3-D assembly of NPs in nanocomposite thin films is thermodynamically challenging as the particle size gets similar to that of a single polymer chain. The entropic penalties of polymeric matrix upon NP incorporation leads to NP aggregation on the film surface or within the defects in the film. Controlling the kinetic pathways of assembly process provides an alternative path forward by arresting the system in nonequilibrium states. Here, we report the thin film 3-D hierarchical assembly of 20 nm NPs in supramolecules withmore » a 30 nm periodicity. By mediating the NP diffusion kinetics in the supramolecular matrix, surface aggregation of NPs was suppressed and NPs coassemble with supramolecules to form new 3-D morphologies in thin films. Lastly, the present studies opened a viable route to achieve designer functional composite thin films via kinetic control.« less

  19. Achieving 3-D Nanoparticle Assembly in Nanocomposite Thin Films via Kinetic Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Jingyu; Xiao, Yihan; Xu, Ting

    Nanocomposite thin films containing well-ordered nanoparticle (NP) assemblies are ideal candidates for the fabrication of metamaterials. Achieving 3-D assembly of NPs in nanocomposite thin films is thermodynamically challenging as the particle size gets similar to that of a single polymer chain. The entropic penalties of polymeric matrix upon NP incorporation leads to NP aggregation on the film surface or within the defects in the film. Controlling the kinetic pathways of assembly process provides an alternative path forward by arresting the system in nonequilibrium states. Here, we report the thin film 3-D hierarchical assembly of 20 nm NPs in supramolecules withmore » a 30 nm periodicity. By mediating the NP diffusion kinetics in the supramolecular matrix, surface aggregation of NPs was suppressed and NPs coassemble with supramolecules to form new 3-D morphologies in thin films. The present studies opened a viable route to achieve designer functional composite thin films via kinetic control.« less

  20. Achieving 3-D Nanoparticle Assembly in Nanocomposite Thin Films via Kinetic Control

    DOE PAGES

    Huang, Jingyu; Xiao, Yihan; Xu, Ting

    2017-02-20

    Nanocomposite thin films containing well-ordered nanoparticle (NP) assemblies are ideal candidates for the fabrication of metamaterials. Achieving 3-D assembly of NPs in nanocomposite thin films is thermodynamically challenging as the particle size gets similar to that of a single polymer chain. The entropic penalties of polymeric matrix upon NP incorporation leads to NP aggregation on the film surface or within the defects in the film. Controlling the kinetic pathways of assembly process provides an alternative path forward by arresting the system in nonequilibrium states. Here, we report the thin film 3-D hierarchical assembly of 20 nm NPs in supramolecules withmore » a 30 nm periodicity. By mediating the NP diffusion kinetics in the supramolecular matrix, surface aggregation of NPs was suppressed and NPs coassemble with supramolecules to form new 3-D morphologies in thin films. Lastly, the present studies opened a viable route to achieve designer functional composite thin films via kinetic control.« less

  1. Interfacial assembly structures and nanotribological properties of saccharic acids.

    PubMed

    Shi, Hongyu; Liu, Yuhong; Zeng, Qingdao; Yang, Yanlian; Wang, Chen; Lu, Xinchun

    2017-01-04

    Saccharides have been recognized as potential bio-lubricants because of their good hydration ability. However, the interfacial structures of saccharides and their derivatives are rarely studied and the molecular details of interaction mechanisms have not been well understood. In this paper, the supramolecular assembly structures of saccharic acids (including galactaric acid and lactobionic acid), mediated by hydrogen bonds O-HN and O-HO, were successfully constructed on a highly oriented pyrolytic graphite (HOPG) surface by introducing pyridine modulators and were explicitly revealed by using scanning tunneling microscopy (STM). Furthermore, friction forces were measured in the saccharic acid/pyridine co-assembled system by atomic force microscopy (AFM), revealing a larger value than a pristine saccharic acid system, which could be attributed to the stronger tip-assembled molecule interactions that lead to the higher potential energy barrier needed to overcome. The effort on saccharide-related supramolecular self-assembly and nanotribological behavior could provide a novel and promising pathway to explore the interaction mechanisms underlying friction and reveal the structure-property relationship at the molecular level.

  2. Graded porous inorganic materials derived from self-assembled block copolymer templates.

    PubMed

    Gu, Yibei; Werner, Jörg G; Dorin, Rachel M; Robbins, Spencer W; Wiesner, Ulrich

    2015-03-19

    Graded porous inorganic materials directed by macromolecular self-assembly are expected to offer unique structural platforms relative to conventional porous inorganic materials. Their preparation to date remains a challenge, however, based on the sparsity of viable synthetic self-assembly pathways to control structural asymmetry. Here we demonstrate the fabrication of graded porous carbon, metal, and metal oxide film structures from self-assembled block copolymer templates by using various backfilling techniques in combination with thermal treatments for template removal and chemical transformations. The asymmetric inorganic structures display mesopores in the film top layers and a gradual pore size increase along the film normal in the macroporous sponge-like support structure. Substructure walls between macropores are themselves mesoporous, constituting a structural hierarchy in addition to the pore gradation. Final graded structures can be tailored by tuning casting conditions of self-assembled templates as well as the backfilling processes. We expect that these graded porous inorganic materials may find use in applications including separation, catalysis, biomedical implants, and energy conversion and storage.

  3. Receptor heteromeric assembly-how it works and why it matters: the case of ionotropic glutamate receptors.

    PubMed

    Herguedas, Beatriz; Krieger, James; Greger, Ingo H

    2013-01-01

    The composition and spatial arrangement of subunits in ion channels are essential for their function. Diverse stoichiometries are possible in a multitude of channels. These depend upon cell type-specific subunit expression, which can be tuned in a developmentally regulated manner and in response to activity, on subunit stability in the endoplasmic reticulum, intersubunit affinities, and potentially subunit diffusion within the ER membrane. In concert, these parameters shape channel biogenesis and ultimately tune cellular response properties. The complexity of this assembly process is particularly well illustrated by the ionotropic glutamate receptors, the main mediators of excitatory neurotransmission. These tetrameric cation channels predominantly assemble into heteromers, which is "obligatory" for some iGluR subfamilies but "preferential" for others. Here, we discuss recent insights into the rules underlying these two pathways, the role of individual domains based on an ever increasing list of crystal structures, and how these assembly parameters tune assembly across diverse receptor oligomers. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Active colloids as assembly machines

    NASA Astrophysics Data System (ADS)

    Goodrich, Carl; Brenner, Michael

    Controlling motion at the microscopic scale is a fundamental goal in the development of biologically-inspired systems. We show that the motion of active, self-propelled colloids can be sufficiently controlled for use as a tool to assemble complex structures such as braids and weaves out of microscopic filaments. Unlike typical self-assembly paradigms, these structures are held together by geometric constraints rather than adhesive bonds. The out-of-equilibrium assembly that we propose involves precisely controlling the two-dimensional motion of active colloids so that their path has a non-trivial topology. We demonstrate with proof-of-principle Brownian dynamics simulations that, when the colloids are attached to long semi-flexible filaments, this motion causes the filaments to braid. The ability of the active particles to provide sufficient force necessary to bend the filaments into a braid depends on a number of factors, including the self-propulsion mechanism, the properties of the filament, and the maximum curvature in the braid. Our work demonstrates that non-equilibrium assembly pathways can be designed using active particles.

  5. Assembly and intracellular delivery of quantum dot-fluorescent protein bioconjugates

    NASA Astrophysics Data System (ADS)

    Medintz, Igor L.; Pons, Thomas; Delehanty, James B.; Susumu, Kimihiro; Dawson, Philip E.; Mattoussi, Hedi

    2008-02-01

    We have previously assembled semiconductor quantum dot (QD)-based fluorescence resonance energy transfer (FRET) sensors that can specifically detect nutrients, explosives or enzymatic activity. These sensors utilized the inherent benefits of QDs as FRET donors to optimize signal transduction. In this report we functionalize QDs with the multi-subunit multi-chromophore b-phycoerythrin (b-PE) light harvesting complex using biotin-Streptavidin binding. FRET and gel electrophoretic analyses were used to characterize and confirm the QD-b-PE self-assembly. We found that immobilizing additional cell-penetrating peptides on the nanocrystal surface along with the b-PE was the key factor allowing the mixed surface QD-cargos to undergo endocytosis and intracellular delivery. Our findings on the intracellular uptake promoted by CPP were compared to those collected using microinjection technique, where QD-assemblies were delivered directly into the cytoplasm; this strategy allows bypassing of the endocytic uptake pathway. Intracellular delivery of multifunctional QD-fluorescent protein assemblies has potential applications for use in protein tracking, sensing and diagnostics.

  6. BioPartsBuilder: a synthetic biology tool for combinatorial assembly of biological parts.

    PubMed

    Yang, Kun; Stracquadanio, Giovanni; Luo, Jingchuan; Boeke, Jef D; Bader, Joel S

    2016-03-15

    Combinatorial assembly of DNA elements is an efficient method for building large-scale synthetic pathways from standardized, reusable components. These methods are particularly useful because they enable assembly of multiple DNA fragments in one reaction, at the cost of requiring that each fragment satisfies design constraints. We developed BioPartsBuilder as a biologist-friendly web tool to design biological parts that are compatible with DNA combinatorial assembly methods, such as Golden Gate and related methods. It retrieves biological sequences, enforces compliance with assembly design standards and provides a fabrication plan for each fragment. BioPartsBuilder is accessible at http://public.biopartsbuilder.org and an Amazon Web Services image is available from the AWS Market Place (AMI ID: ami-508acf38). Source code is released under the MIT license, and available for download at https://github.com/baderzone/biopartsbuilder joel.bader@jhu.edu Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press.

  7. Creating Prebiotic Sanctuary: Self-Assembling Supramolecular Peptide Structures Bind and Stabilize RNA

    NASA Astrophysics Data System (ADS)

    Carny, Ohad; Gazit, Ehud

    2011-04-01

    Any attempt to uncover the origins of life must tackle the known `blind watchmaker problem'. That is to demonstrate the likelihood of the emergence of a prebiotic system simple enough to be formed spontaneously and yet complex enough to allow natural selection that will lead to Darwinistic evolution. Studies of short aromatic peptides revealed their ability to self-assemble into ordered and stable structures. The unique physical and chemical characteristics of these peptide assemblies point out to their possible role in the origins of life. We have explored mechanisms by which self-assembling short peptides and RNA fragments could interact together and go through a molecular co-evolution, using diphenylalanine supramolecular assemblies as a model system. The spontaneous formation of these self-assembling peptides under prebiotic conditions, through the salt-induced peptide formation (SIPF) pathway was demonstrated. These peptide assemblies possess the ability to bind and stabilize ribonucleotides in a sequence-depended manner, thus increase their relative fitness. The formation of these peptide assemblies is dependent on the homochirality of the peptide monomers: while homochiral peptides (L-Phe-L-Phe and D-Phe-D-Phe) self-assemble rapidly in aqueous environment, heterochiral diastereoisomers (L-Phe-D-Phe and D-Phe-L-Phe) do not tend to self-assemble. This characteristic consists with the homochirality of all living matter. Finally, based on these findings, we propose a model for the role of short self-assembling peptides in the prebiotic molecular evolution and the origin of life.

  8. Creating prebiotic sanctuary: self-assembling supramolecular Peptide structures bind and stabilize RNA.

    PubMed

    Carny, Ohad; Gazit, Ehud

    2011-04-01

    Any attempt to uncover the origins of life must tackle the known 'blind watchmaker problem'. That is to demonstrate the likelihood of the emergence of a prebiotic system simple enough to be formed spontaneously and yet complex enough to allow natural selection that will lead to Darwinistic evolution. Studies of short aromatic peptides revealed their ability to self-assemble into ordered and stable structures. The unique physical and chemical characteristics of these peptide assemblies point out to their possible role in the origins of life. We have explored mechanisms by which self-assembling short peptides and RNA fragments could interact together and go through a molecular co-evolution, using diphenylalanine supramolecular assemblies as a model system. The spontaneous formation of these self-assembling peptides under prebiotic conditions, through the salt-induced peptide formation (SIPF) pathway was demonstrated. These peptide assemblies possess the ability to bind and stabilize ribonucleotides in a sequence-depended manner, thus increase their relative fitness. The formation of these peptide assemblies is dependent on the homochirality of the peptide monomers: while homochiral peptides (L-Phe-L-Phe and D-Phe-D-Phe) self-assemble rapidly in aqueous environment, heterochiral diastereoisomers (L-Phe-D-Phe and D-Phe-L-Phe) do not tend to self-assemble. This characteristic consists with the homochirality of all living matter. Finally, based on these findings, we propose a model for the role of short self-assembling peptides in the prebiotic molecular evolution and the origin of life.

  9. De novo Assembly of Leaf Transcriptome in the Medicinal Plant Andrographis paniculata

    PubMed Central

    Cherukupalli, Neeraja; Divate, Mayur; Mittapelli, Suresh R.; Khareedu, Venkateswara R.; Vudem, Dashavantha R.

    2016-01-01

    Andrographis paniculata is an important medicinal plant containing various bioactive terpenoids and flavonoids. Despite its importance in herbal medicine, no ready-to-use transcript sequence information of this plant is made available in the public data base, this study mainly deals with the sequencing of RNA from A. paniculata leaf using Illumina HiSeq™ 2000 platform followed by the de novo transcriptome assembly. A total of 189.22 million high quality paired reads were generated and 1,70,724 transcripts were predicted in the primary assembly. Secondary assembly generated a transcriptome size of ~88 Mb with 83,800 clustered transcripts. Based on the similarity searches against plant non-redundant protein database, gene ontology, and eukaryotic orthologous groups, 49,363 transcripts were annotated constituting upto 58.91% of the identified unigenes. Annotation of transcripts—using kyoto encyclopedia of genes and genomes database—revealed 5606 transcripts plausibly involved in 140 pathways including biosynthesis of terpenoids and other secondary metabolites. Transcription factor analysis showed 6767 unique transcripts belonging to 97 different transcription factor families. A total number of 124 CYP450 transcripts belonging to seven divergent clans have been identified. Transcriptome revealed 146 different transcripts coding for enzymes involved in the biosynthesis of terpenoids of which 35 contained terpene synthase motifs. This study also revealed 32,341 simple sequence repeats (SSRs) in 23,168 transcripts. Assembled sequences of transcriptome of A. paniculata generated in this study are made available, for the first time, in the TSA database, which provides useful information for functional and comparative genomic analysis besides identification of key enzymes involved in the various pathways of secondary metabolism. PMID:27582746

  10. Synthetic CO2-fixation enzyme cascades immobilized on self-assembled nanostructures that enhance CO2/O2 selectivity of RubisCO.

    PubMed

    Satagopan, Sriram; Sun, Yuan; Parquette, Jon R; Tabita, F Robert

    2017-01-01

    With increasing concerns over global warming and depletion of fossil-fuel reserves, it is attractive to develop innovative strategies to assimilate CO 2 , a greenhouse gas, into usable organic carbon. Cell-free systems can be designed to operate as catalytic platforms with enzymes that offer exceptional selectivity and efficiency, without the need to support ancillary reactions of metabolic pathways operating in intact cells. Such systems are yet to be exploited for applications involving CO 2 utilization and subsequent conversion to valuable products, including biofuels. The Calvin-Benson-Bassham (CBB) cycle and the enzyme ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO) play a pivotal role in global CO 2 fixation. We hereby demonstrate the co-assembly of two RubisCO-associated multienzyme cascades with self-assembled synthetic amphiphilic peptide nanostructures. The immobilized enzyme cascades sequentially convert either ribose-5-phosphate (R-5-P) or glucose, a simpler substrate, to ribulose 1,5-bisphosphate (RuBP), the acceptor for incoming CO 2 in the carboxylation reaction catalyzed by RubisCO. Protection from proteolytic degradation was observed in nanostructures associated with the small dimeric form of RubisCO and ancillary enzymes. Furthermore, nanostructures associated with a larger variant of RubisCO resulted in a significant enhancement of the enzyme's selectivity towards CO 2 , without adversely affecting the catalytic activity. The ability to assemble a cascade of enzymes for CO 2 capture using self-assembling nanostructure scaffolds with functional enhancements show promise for potentially engineering entire pathways (with RubisCO or other CO 2 -fixing enzymes) to redirect carbon from industrial effluents into useful bioproducts.

  11. Use of a draft genome of coffee (Coffea arabica) to identify SNPs associated with caffeine content.

    PubMed

    Tran, Hue T M; Ramaraj, Thiruvarangan; Furtado, Agnelo; Lee, Leonard Slade; Henry, Robert J

    2018-03-07

    Arabica coffee (Coffea arabica) has a small gene pool limiting genetic improvement. Selection for caffeine content within this gene pool would be assisted by identification of the genes controlling this important trait. Sequencing of DNA bulks from 18 genotypes with extreme high- or low-caffeine content from a population of 232 genotypes was used to identify linked polymorphisms. To obtain a reference genome, a whole genome assembly of arabica coffee (variety K7) was achieved by sequencing using short read (Illumina) and long-read (PacBio) technology. Assembly was performed using a range of assembly tools resulting in 76 409 scaffolds with a scaffold N50 of 54 544 bp and a total scaffold length of 1448 Mb. Validation of the genome assembly using different tools showed high completeness of the genome. More than 99% of transcriptome sequences mapped to the C. arabica draft genome, and 89% of BUSCOs were present. The assembled genome annotated using AUGUSTUS yielded 99 829 gene models. Using the draft arabica genome as reference in mapping and variant calling allowed the detection of 1444 nonsynonymous single nucleotide polymorphisms (SNPs) associated with caffeine content. Based on Kyoto Encyclopaedia of Genes and Genomes pathway-based analysis, 65 caffeine-associated SNPs were discovered, among which 11 SNPs were associated with genes encoding enzymes involved in the conversion of substrates, which participate in the caffeine biosynthesis pathways. This analysis demonstrated the complex genetic control of this key trait in coffee. © 2018 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  12. Structure of human Fe-S assembly subcomplex reveals unexpected cysteine desulfurase architecture and acyl-ACP-ISD11 interactions.

    PubMed

    Cory, Seth A; Van Vranken, Jonathan G; Brignole, Edward J; Patra, Shachin; Winge, Dennis R; Drennan, Catherine L; Rutter, Jared; Barondeau, David P

    2017-07-03

    In eukaryotes, sulfur is mobilized for incorporation into multiple biosynthetic pathways by a cysteine desulfurase complex that consists of a catalytic subunit (NFS1), LYR protein (ISD11), and acyl carrier protein (ACP). This NFS1-ISD11-ACP (SDA) complex forms the core of the iron-sulfur (Fe-S) assembly complex and associates with assembly proteins ISCU2, frataxin (FXN), and ferredoxin to synthesize Fe-S clusters. Here we present crystallographic and electron microscopic structures of the SDA complex coupled to enzyme kinetic and cell-based studies to provide structure-function properties of a mitochondrial cysteine desulfurase. Unlike prokaryotic cysteine desulfurases, the SDA structure adopts an unexpected architecture in which a pair of ISD11 subunits form the dimeric core of the SDA complex, which clarifies the critical role of ISD11 in eukaryotic assemblies. The different quaternary structure results in an incompletely formed substrate channel and solvent-exposed pyridoxal 5'-phosphate cofactor and provides a rationale for the allosteric activator function of FXN in eukaryotic systems. The structure also reveals the 4'-phosphopantetheine-conjugated acyl-group of ACP occupies the hydrophobic core of ISD11, explaining the basis of ACP stabilization. The unexpected architecture for the SDA complex provides a framework for understanding interactions with acceptor proteins for sulfur-containing biosynthetic pathways, elucidating mechanistic details of eukaryotic Fe-S cluster biosynthesis, and clarifying how defects in Fe-S cluster assembly lead to diseases such as Friedreich's ataxia. Moreover, our results support a lock-and-key model in which LYR proteins associate with acyl-ACP as a mechanism for fatty acid biosynthesis to coordinate the expression, Fe-S cofactor maturation, and activity of the respiratory complexes.

  13. Hierarchical and Helical Self-assembly of ADP-ribosyl Cyclase into Large-scale Protein Microtubes

    PubMed Central

    Liu, Qun; Kriksunov, Irina A.; Wang, Zhongwu; Graeff, Richard; Lee, Hon Cheung; Hao, Quan

    2013-01-01

    Proteins are macromolecules with characteristic structures and biological functions. It is extremely challenging to obtain protein microtube structures through self-assembly as proteins are very complex and flexible. Here we present a strategy showing how a specific protein, ADP-ribosyl cyclase, helically self-assembles from monomers into hexagonal nanochains and further to highly ordered crystalline microtubes. The structures of protein nanochains and consequently self-assembled superlattice were determined by X-ray crystallography at 4.5 Å resolution and imaged by Scanning Electron Microscopy. The protein initially forms into dimers that have a fixed size of 5.6 nm, and then, helically self-assembles into 35.6 nm long hexagonal nanochains. One such nanochain consists of six dimers (12 monomers) that stack in order by a pseudo P61 screw axis. Seven nanochains produce a series of largescale assemblies, nanorods, forming the building blocks for microrods. A proposed aging process of microrods results in the formation of hollow microstructures. Synthesis and characterization of large scale self-assembled protein microtubes may pave a new pathway, capable of not only understanding the self-assembly dynamics of biological materials, but also directing design and fabrication of multifunctional nanobuilding blocks with particular applications in biomedical engineering. PMID:18956900

  14. De Novo Assembled Wheat Transcriptomes Delineate Differentially Expressed Host Genes in Response to Leaf Rust Infection.

    PubMed

    Chandra, Saket; Singh, Dharmendra; Pathak, Jyoti; Kumari, Supriya; Kumar, Manish; Poddar, Raju; Balyan, Harindra Singh; Gupta, Puspendra Kumar; Prabhu, Kumble Vinod; Mukhopadhyay, Kunal

    2016-01-01

    Pathogens like Puccinia triticina, the causal organism for leaf rust, extensively damages wheat production. The interaction at molecular level between wheat and the pathogen is complex and less explored. The pathogen induced response was characterized using mock- or pathogen inoculated near-isogenic wheat lines (with or without seedling leaf rust resistance gene Lr28). Four Serial Analysis of Gene Expression libraries were prepared from mock- and pathogen inoculated plants and were subjected to Sequencing by Oligonucleotide Ligation and Detection, which generated a total of 165,767,777 reads, each 35 bases long. The reads were processed and multiple k-mers were attempted for de novo transcript assembly; 22 k-mers showed the best results. Altogether 21,345 contigs were generated and functionally characterized by gene ontology annotation, mining for transcription factors and resistance genes. Expression analysis among the four libraries showed extensive alterations in the transcriptome in response to pathogen infection, reflecting reorganizations in major biological processes and metabolic pathways. Role of auxin in determining pathogenesis in susceptible and resistant lines were imperative. The qPCR expression study of four LRR-RLK (Leucine-rich repeat receptor-like protein kinases) genes showed higher expression at 24 hrs after inoculation with pathogen. In summary, the conceptual model of induced resistance in wheat contributes insights on defense responses and imparts knowledge of Puccinia triticina-induced defense transcripts in wheat plants.

  15. De Novo Assembled Wheat Transcriptomes Delineate Differentially Expressed Host Genes in Response to Leaf Rust Infection

    PubMed Central

    Pathak, Jyoti; Kumari, Supriya; Kumar, Manish; Poddar, Raju; Balyan, Harindra Singh; Gupta, Puspendra Kumar; Prabhu, Kumble Vinod; Mukhopadhyay, Kunal

    2016-01-01

    Pathogens like Puccinia triticina, the causal organism for leaf rust, extensively damages wheat production. The interaction at molecular level between wheat and the pathogen is complex and less explored. The pathogen induced response was characterized using mock- or pathogen inoculated near-isogenic wheat lines (with or without seedling leaf rust resistance gene Lr28). Four Serial Analysis of Gene Expression libraries were prepared from mock- and pathogen inoculated plants and were subjected to Sequencing by Oligonucleotide Ligation and Detection, which generated a total of 165,767,777 reads, each 35 bases long. The reads were processed and multiple k-mers were attempted for de novo transcript assembly; 22 k-mers showed the best results. Altogether 21,345 contigs were generated and functionally characterized by gene ontology annotation, mining for transcription factors and resistance genes. Expression analysis among the four libraries showed extensive alterations in the transcriptome in response to pathogen infection, reflecting reorganizations in major biological processes and metabolic pathways. Role of auxin in determining pathogenesis in susceptible and resistant lines were imperative. The qPCR expression study of four LRR-RLK (Leucine-rich repeat receptor-like protein kinases) genes showed higher expression at 24 hrs after inoculation with pathogen. In summary, the conceptual model of induced resistance in wheat contributes insights on defense responses and imparts knowledge of Puccinia triticina-induced defense transcripts in wheat plants. PMID:26840746

  16. Scalable synthesis of hierarchical macropore-rich activated carbon microspheres assembled by carbon nanoparticles for high rate performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Zhang, Dongdong; Zhao, Jianghong; Feng, Chong; Zhao, Rijie; Sun, Yahui; Guan, Taotao; Han, Baixin; Tang, Nan; Wang, Jianlong; Li, Kaixi; Qiao, Jinli; Zhang, Jiujun

    2017-02-01

    A scalable inverse-microemulsion-polymerization-phase-separation coupling method is applied to successfully prepare hierarchical macropore-rich activated carbon microspheres (ACS) using a phenolic resin (PR) precursor followed by carbonization and KOH activation for the first time. The formed ACS materials are assembled by carbon nanoparticles (CNPs). The macropores interspersed among the component CNPs are formed after removing the non-reactive solvent phase in the course of the polymerization of the reactive PR phase, which occupies ∼64% of the total pore volume (∼2.779 cm3 g-1) of the optimized ACS. In combination with mesopores (∼18% of the total pore volume), the ACS possesses meso/macropores approaching 82% of the total pore volume. Micropores are created in the component CNPs via KOH activation, showing shortened ion transport distances in the nanoscale dimension. Both the hierarchical micro/meso/macroporous structure and the inner nanoparticle morphology (short ion diffusion pathways) can significantly contribute to the rapid transport of electrolyte ions throughout the carbonaceous matrix, resulting in superior rate performance of ACS-based supercapacitors. More importantly, the energy densities of the ACS supercapacitors operating in both aqueous and organic electrolyte retain steady over a wide range of power densities varying dramatically from 0.25 to 14.5 kW kg-1 and to 7.0 kW kg-1, respectively.

  17. Defects in Mitochondrial Fatty Acid Synthesis Result in Failure of Multiple Aspects of Mitochondrial Biogenesis in Saccharomyces cerevisiae

    PubMed Central

    Kursu, V. A. Samuli; Pietikäinen, Laura P.; Fontanesi, Flavia; Aaltonen, Mari J.; Suomi, Fumi; Nair, Remya Raghavan; Schonauer, Melissa S.; Dieckmann, Carol L.; Barrientos, Antoni; Hiltunen, J. Kalervo; Kastaniotis, Alexander J.

    2014-01-01

    Summary Mitochondrial fatty acid synthesis (mtFAS) shares acetyl-CoA with the Krebs cycle as a common substrate and is required for the production of octanoic acid (C8) precursors of lipoic acid (LA) in mitochondria. MtFAS is a conserved pathway essential for respiration. In a genetic screen in Saccharomyces cerevisiae designed to further elucidate the physiological role of mtFAS, we isolated mutants with defects in mitochondrial post-translational gene expression processes, indicating a novel link to mitochondrial gene expression and respiratory chain biogenesis. In our ensuing analysis, we show that mtFAS, but not lipoylation per se, is required for respiratory competence. We demonstrate that mtFAS is required for mRNA splicing, mitochondrial translation and respiratory complex assembly, and provide evidence that not LA per se, but fatty acids longer than C8 play a role in these processes. We also show that mtFAS- and LA-deficient strains suffer from a mild heme deficiency that may contribute to the respiratory complex assembly defect. Based on our data and previously published information, we propose a model implicating mtFAS as a sensor for mitochondrial acetyl-CoA availability and a coordinator of nuclear and mitochondrial gene expression by adapting the mitochondrial compartment to changes in the metabolic status of the cell. PMID:24102902

  18. Mediator independently orchestrates multiple steps of preinitiation complex assembly in vivo.

    PubMed

    Eyboulet, Fanny; Wydau-Dematteis, Sandra; Eychenne, Thomas; Alibert, Olivier; Neil, Helen; Boschiero, Claire; Nevers, Marie-Claire; Volland, Hervé; Cornu, David; Redeker, Virginie; Werner, Michel; Soutourina, Julie

    2015-10-30

    Mediator is a large multiprotein complex conserved in all eukaryotes, which has a crucial coregulator function in transcription by RNA polymerase II (Pol II). However, the molecular mechanisms of its action in vivo remain to be understood. Med17 is an essential and central component of the Mediator head module. In this work, we utilised our large collection of conditional temperature-sensitive med17 mutants to investigate Mediator's role in coordinating preinitiation complex (PIC) formation in vivo at the genome level after a transfer to a non-permissive temperature for 45 minutes. The effect of a yeast mutation proposed to be equivalent to the human Med17-L371P responsible for infantile cerebral atrophy was also analyzed. The ChIP-seq results demonstrate that med17 mutations differentially affected the global presence of several PIC components including Mediator, TBP, TFIIH modules and Pol II. Our data show that Mediator stabilizes TFIIK kinase and TFIIH core modules independently, suggesting that the recruitment or the stability of TFIIH modules is regulated independently on yeast genome. We demonstrate that Mediator selectively contributes to TBP recruitment or stabilization to chromatin. This study provides an extensive genome-wide view of Mediator's role in PIC formation, suggesting that Mediator coordinates multiple steps of a PIC assembly pathway. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  19. Defects in mitochondrial fatty acid synthesis result in failure of multiple aspects of mitochondrial biogenesis in Saccharomyces cerevisiae.

    PubMed

    Kursu, V A Samuli; Pietikäinen, Laura P; Fontanesi, Flavia; Aaltonen, Mari J; Suomi, Fumi; Raghavan Nair, Remya; Schonauer, Melissa S; Dieckmann, Carol L; Barrientos, Antoni; Hiltunen, J Kalervo; Kastaniotis, Alexander J

    2013-11-01

    Mitochondrial fatty acid synthesis (mtFAS) shares acetyl-CoA with the Krebs cycle as a common substrate and is required for the production of octanoic acid (C8) precursors of lipoic acid (LA) in mitochondria. MtFAS is a conserved pathway essential for respiration. In a genetic screen in Saccharomyces cerevisiae designed to further elucidate the physiological role of mtFAS, we isolated mutants with defects in mitochondrial post-translational gene expression processes, indicating a novel link to mitochondrial gene expression and respiratory chain biogenesis. In our ensuing analysis, we show that mtFAS, but not lipoylation per se, is required for respiratory competence. We demonstrate that mtFAS is required for mRNA splicing, mitochondrial translation and respiratory complex assembly, and provide evidence that not LA per se, but fatty acids longer than C8 play a role in these processes. We also show that mtFAS- and LA-deficient strains suffer from a mild haem deficiency that may contribute to the respiratory complex assembly defect. Based on our data and previously published information, we propose a model implicating mtFAS as a sensor for mitochondrial acetyl-CoA availability and a co-ordinator of nuclear and mitochondrial gene expression by adapting the mitochondrial compartment to changes in the metabolic status of the cell. © 2013 John Wiley & Sons Ltd.

  20. De novo Fatty Acid Biosynthesis Contributes Significantly to Establishment of a Bioenergetically Favorable Environment for Vaccinia Virus Infection

    PubMed Central

    Greseth, Matthew D.; Traktman, Paula

    2014-01-01

    The poxvirus life cycle, although physically autonomous from the host nucleus, is nevertheless dependent upon cellular functions. A requirement for de novo fatty acid biosynthesis was implied by our previous demonstration that cerulenin, a fatty acid synthase inhibitor, impaired vaccinia virus production. Here we show that additional inhibitors of this pathway, TOFA and C75, reduce viral yield significantly, with partial rescue provided by exogenous palmitate, the pathway's end-product. Palmitate's major role during infection is not for phospholipid synthesis or protein palmitoylation. Instead, the mitochondrial import and β-oxidation of palmitate are essential, as shown by the impact of etomoxir and trimetazidine, which target these two processes respectively. Moreover, the impact of these inhibitors is exacerbated in the absence of exogenous glucose, which is otherwise dispensable for infection. In contrast to glucose, glutamine is essential for productive viral infection, providing intermediates that sustain the TCA cycle (anaplerosis). Cumulatively, these data suggest that productive infection requires the mitochondrial β-oxidation of palmitate which drives the TCA cycle and energy production. Additionally, infection causes a significant rise in the cellular oxygen consumption rate (ATP synthesis) that is ablated by etomoxir. The biochemical progression of the vaccinia life cycle is not impaired in the presence of TOFA, C75, or etomoxir, although the levels of viral DNA and proteins synthesized are somewhat diminished. However, by reversibly arresting infections at the onset of morphogenesis, and then monitoring virus production after release of the block, we determined that virion assembly is highly sensitive to TOFA and C75. Electron microscopic analysis of cells released into C75 revealed fragmented aggregates of viroplasm which failed to be enclosed by developing virion membranes. Taken together, these data indicate that vaccinia infection, and in particular virion assembly, relies on the synthesis and mitochondrial import of fatty acids, where their β-oxidation drives robust ATP production. PMID:24651651

  1. De novo fatty acid biosynthesis contributes significantly to establishment of a bioenergetically favorable environment for vaccinia virus infection.

    PubMed

    Greseth, Matthew D; Traktman, Paula

    2014-03-01

    The poxvirus life cycle, although physically autonomous from the host nucleus, is nevertheless dependent upon cellular functions. A requirement for de novo fatty acid biosynthesis was implied by our previous demonstration that cerulenin, a fatty acid synthase inhibitor, impaired vaccinia virus production. Here we show that additional inhibitors of this pathway, TOFA and C75, reduce viral yield significantly, with partial rescue provided by exogenous palmitate, the pathway's end-product. Palmitate's major role during infection is not for phospholipid synthesis or protein palmitoylation. Instead, the mitochondrial import and β-oxidation of palmitate are essential, as shown by the impact of etomoxir and trimetazidine, which target these two processes respectively. Moreover, the impact of these inhibitors is exacerbated in the absence of exogenous glucose, which is otherwise dispensable for infection. In contrast to glucose, glutamine is essential for productive viral infection, providing intermediates that sustain the TCA cycle (anaplerosis). Cumulatively, these data suggest that productive infection requires the mitochondrial β-oxidation of palmitate which drives the TCA cycle and energy production. Additionally, infection causes a significant rise in the cellular oxygen consumption rate (ATP synthesis) that is ablated by etomoxir. The biochemical progression of the vaccinia life cycle is not impaired in the presence of TOFA, C75, or etomoxir, although the levels of viral DNA and proteins synthesized are somewhat diminished. However, by reversibly arresting infections at the onset of morphogenesis, and then monitoring virus production after release of the block, we determined that virion assembly is highly sensitive to TOFA and C75. Electron microscopic analysis of cells released into C75 revealed fragmented aggregates of viroplasm which failed to be enclosed by developing virion membranes. Taken together, these data indicate that vaccinia infection, and in particular virion assembly, relies on the synthesis and mitochondrial import of fatty acids, where their β-oxidation drives robust ATP production.

  2. Amyloid β-Derived Diffusible Ligands (ADDLs) Induce Abnormal Autophagy Associated with Aβ Aggregation Degree.

    PubMed

    Wen, Jie; Fang, Fang; Guo, Shu-Han; Zhang, Ying; Peng, Xiang-Lei; Sun, Wei-Min; Wei, Xiao-Ran; He, Jin-Sheng; Hung, Tao

    2018-02-01

    Autophagy is disturbed in Alzheimer's disease (AD) and maintaining normal autophagy homeostasis is a new therapeutic strategy for AD treatment. Amyloid β-derived diffusible ligands (ADDLs), the most toxic species of which are oligomeric forms of amyloid β peptide (Aβ) that originate from amyloid β precursor protein (APP) via autophagy; however, whether ADDLs are involved in autophagy-related AD pathogenesis remains unclear. In this study, we primarily defined the specific subsets of ADDLs, A-0, A-12, A-24, and A-48, which were generated from ADDL aggregation mixtures at different time courses of assembly. The secondary structures of ADDL subsets were detected by circular dichroism (CD). Neuronal or non-neuronal cells were exposed to the subsets of ADDLs in vitro, and then, autophagic markers were detected. Our results first showed that exogenous or endogenous LC3 puncta (autophagosomes) were induced in the cytoplasm of cells exposed to ADDLs and that the LC3 puncta were the strongest with A-24 exposure. Then, the CD spectroscopy data also indicated that the proportion of α-helices decreased, whereas the proportion of β-strands and β-turns increased during ADDL assembly from 0 to 24 h. In addition, the quantitative Western blot data demonstrated that the ratio of LC3B-II/I was significantly increased, and SQSTM1/p62 decreased over time. Finally, our results indicated that the level of phosphorylated p70 S6 kinase (p-p70 S6 kinase), which is a substrate protein in the MTOR pathway, and the ratio of p-p70 S6 kinase/p70 S6 kinase significantly decreased following A-24 exposure. Taken together, our data suggest that ADDL-induced abnormal autophagy is correlated with Aβ aggregation degree and the MTOR pathway, which might contribute to ADDL-induced AD pathogenesis.

  3. Sequencing, de novo assembly and characterization of the spotted scat Scatophagus argus (Linnaeus 1766) transcriptome for discovery of reproduction related genes and SSRs

    NASA Astrophysics Data System (ADS)

    Yang, Wei; Chen, Huapu; Cui, Xuefan; Zhang, Kewei; Jiang, Dongneng; Deng, Siping; Zhu, Chunhua; Li, Guangli

    2017-09-01

    Spotted scat (Scatophagus argus) is an economically important farmed fish, particularly in East and Southeast Asia. Because there has been little research on reproductive development and regulation in this species, the lack of a mature artificial reproduction technology remains a barrier for the sustainable development of the aquaculture industry. More genetic and genomic background knowledge is urgently needed for an in-depth understanding of the molecular mechanism of reproductive process and identification of functional genes related to sexual differentiation, gonad maturation and gametogenesis. For these reasons, we performed transcriptomic analysis on spotted scat using a multiple tissue sample mixing strategy. The Illumina RNA sequencing generated 118 510 486 raw reads. After trimming, de novo assembly was performed and yielded 99 888 unigenes with an average length of 905.75 bp. A total of 45 015 unigenes were successfully annotated to the Nr, Swiss-Prot, KOG and KEGG databases. Additionally, 23 783 and 27 183 annotated unigenes were assigned to 56 Gene Ontology (GO) functional groups and 228 KEGG pathways, respectively. Subsequently, 2 474 transcripts associated with reproduction were selected using GO term and KEGG pathway assignments, and a number of reproduction-related genes involved in sex differentiation, gonad development and gametogenesis were identified. Furthermore, 22 279 simple sequence repeat (SSR) loci were discovered and characterized. The comprehensive transcript dataset described here greatly increases the genetic information available for spotted scat and contributes valuable sequence resources for functional gene mining and analysis. Candidate transcripts involved in reproduction would make good starting points for future studies on reproductive mechanisms, and the putative sex differentiation-related genes will be helpful for sex-determining gene identification and sex-specific marker isolation. Lastly, the SSRs can serve as marker resources for future research into genetics, marker-assisted selection (MAS) and conservation biology.

  4. Observation of the noncovalent assembly and disassembly pathways of the chaperone complex MtGimC by mass spectrometry

    PubMed Central

    Fändrich, Marcus; Tito, Mark A.; Leroux, Michel R.; Rostom, Adam A.; Hartl, F. Ulrich; Dobson, Christopher M.; Robinson, Carol V.

    2000-01-01

    We have analyzed a newly described archaeal GimC/prefoldin homologue, termed MtGimC, by using nanoflow electrospray coupled with time-of-flight MS. The molecular weight of the complex from Methanobacterium thermoautotrophicum corresponds to a well-defined hexamer of two α subunits and four β subunits. Dissociation of the complex within the gas phase reveals a quaternary arrangement of two central subunits, both α, and four peripheral β subunits. By constructing a thermally controlled nanoflow device, we have monitored the thermal stability of the complex by MS. The results of these experiments demonstrate that a significant proportion of the MtGimC hexamer remains intact under low-salt conditions at elevated temperatures. This finding is supported by data from CD spectroscopy, which show that at physiological salt concentrations, the complex remains stable at temperatures above 65°C. Mass spectrometric methods were developed to monitor in real time the assembly of the MtGimC hexamer from its component subunits. By using this methodology, the mass spectra recorded throughout the time course of the experiment showed the absence of any significantly populated intermediates, demonstrating that the assembly process is highly cooperative. Taken together, these data show that the complex is stable under the elevated temperatures that are appropriate for its hyperthermophile host and demonstrate that the assembly pathway leads exclusively to the hexamer, which is likely to be a structural unit in vivo. PMID:11087821

  5. 77 FR 26549 - Workshop on Using Mode of Action To Support the Development of a Multipollutant Science Assessment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-04

    ... which mode- of-action and toxicity pathways approaches may contribute to interpretation of cumulative... NAAQS Review Process. One of the sessions focused on using mode-of-action and toxicity pathways... possible ways by which mode-of-action and toxicity pathways approaches may contribute to interpretation of...

  6. Comparative transcriptome analysis of the Asteraceae halophyte Karelinia caspica under salt stress.

    PubMed

    Zhang, Xia; Liao, Maoseng; Chang, Dan; Zhang, Fuchun

    2014-12-17

    Much attention has been given to the potential of halophytes as sources of tolerance traits for introduction into cereals. However, a great deal remains unknown about the diverse mechanisms employed by halophytes to cope with salinity. To characterize salt tolerance mechanisms underlying Karelinia caspica, an Asteraceae halophyte, we performed Large-scale transcriptomic analysis using a high-throughput Illumina sequencing platform. Comparative gene expression analysis was performed to correlate the effects of salt stress and ABA regulation at the molecular level. Total sequence reads generated by pyrosequencing were assembled into 287,185 non-redundant transcripts with an average length of 652 bp. Using the BLAST function in the Swiss-Prot, NCBI nr, GO, KEGG, and KOG databases, a total of 216,416 coding sequences associated with known proteins were annotated. Among these, 35,533 unigenes were classified into 69 gene ontology categories, and 18,378 unigenes were classified into 202 known pathways. Based on the fold changes observed when comparing the salt stress and control samples, 60,127 unigenes were differentially expressed, with 38,122 and 22,005 up- and down-regulated, respectively. Several of the differentially expressed genes are known to be involved in the signaling pathway of the plant hormone ABA, including ABA metabolism, transport, and sensing as well as the ABA signaling cascade. Transcriptome profiling of K. caspica contribute to a comprehensive understanding of K. caspica at the molecular level. Moreover, the global survey of differentially expressed genes in this species under salt stress and analyses of the effects of salt stress and ABA regulation will contribute to the identification and characterization of genes and molecular mechanisms underlying salt stress responses in Asteraceae plants.

  7. The invasive MED/Q Bemisia tabaci genome: a tale of gene loss and gene gain.

    PubMed

    Xie, Wen; Yang, Xin; Chen, Chunhai; Yang, Zezhong; Guo, Litao; Wang, Dan; Huang, Jinqun; Zhang, Hailin; Wen, Yanan; Zhao, Jinyang; Wu, Qingjun; Wang, Shaoli; Coates, Brad S; Zhou, Xuguo; Zhang, Youjun

    2018-01-22

    Sweetpotato whitefly, Bemisia tabaci MED/Q and MEAM1/B, are two economically important invasive species that cause considerable damages to agriculture crops through direct feeding and indirect vectoring of plant pathogens. Recently, a draft genome of B. tabaci MED/Q has been assembled. In this study, we focus on the genomic comparison between MED/Q and MEAM1/B, with a special interest in MED/Q's genomic signatures that may contribute to the highly invasive nature of this emerging insect pest. The genomes of both species share similarity in syntenic blocks, but have significant divergence in the gene coding sequence. Expansion of cytochrome P450 monooxygenases and UDP glycosyltransferases in MED/Q and MEAM1/B genome is functionally validated for mediating insecticide resistance in MED/Q using in vivo RNAi. The amino acid biosynthesis pathways in MED/Q genome are partitioned among the host and endosymbiont genomes in a manner distinct from other hemipterans. Evidence of horizontal gene transfer to the host genome may explain their obligate relationship. Putative loss-of-function in the immune deficiency-signaling pathway due to the gene loss is a shared ancestral trait among hemipteran insects. The expansion of detoxification genes families, such as P450s, may contribute to the development of insecticide resistance traits and a broad host range in MED/Q and MEAM1/B, and facilitate species' invasions into intensively managed cropping systems. Numerical and compositional changes in multiple gene families (gene loss and gene gain) in the MED/Q genome sets a foundation for future hypothesis testing that will advance our understanding of adaptation, viral transmission, symbiosis, and plant-insect-pathogen tritrophic interactions.

  8. Insights into the Sesquiterpenoid Pathway by Metabolic Profiling and De novo Transcriptome Assembly of Stem-Chicory (Cichorium intybus Cultigroup “Catalogna”)

    PubMed Central

    Testone, Giulio; Mele, Giovanni; Di Giacomo, Elisabetta; Gonnella, Maria; Renna, Massimiliano; Tenore, Gian Carlo; Nicolodi, Chiara; Frugis, Giovanna; Iannelli, Maria Adelaide; Arnesi, Giuseppe; Schiappa, Alessandro; Giannino, Donato

    2016-01-01

    Stem-chicory of the “Catalogna” group is a vegetable consumed for bitter-flavored stems. Type and levels of bitter sesquiterpene lactones (STLs) participate in conferring bitterness in vegetables. The content of lactucin—and lactucopocrin-like STLs was higher in “Molfettese” than “Galatina” landrace stalks, regardless of the cultivation sites, consistently with bitterness scores and gustative differences. The “Galatina” transcriptome assembly resulted in 58,872 unigenes, 77% of which were annotated, paving the way to molecular investigation of the STL pathway. Comparative transcriptome analysis allowed the identification of 69,352 SNPs and of 1640 differentially expressed genes that maintained the pattern independently of the site. Enrichment analyses revealed that 4 out of 29 unigenes were up-regulated in “Molfettese” vs “Galatina” within the sesquiterpenoid pathway. The expression of two germacrene A -synthase (GAS) and one -oxidase (GAO) genes of the costunolide branch correlated positively with the contents of lactucin-like molecules, supporting that STL biosynthesis regulation occurs at the transcriptional level. Finally, 46 genes encoding transcription factors (TFs) maintained a differential expression pattern between the two varieties regardless of the growth site; correlation analyses among TFs, GAS, GAO gene expressions and STLs contents suggest that one MYB and one bHLH may act in the pathway. PMID:27877190

  9. Forming Hot Jupiters: Observational Constraints on Gas Giant Formation and migration

    NASA Astrophysics Data System (ADS)

    Becker, Juliette; Vanderburg, Andrew; Adams, Fred C.; Khain, Tali; Bryan, Marta

    2018-04-01

    Since the first extrasolar planets were detected, the existence of hot Jupiters has challenged prevailing theories of planet formation. The three commonly considered pathways for hot Jupiter formation are in situ formation, runaway accretion in the outer disk followed by disk migration, and tidal migration (occurring after the disk has dissipated). None of these explains the entire observed sample of hot Jupiters, suggesting that different selections of systems form via different pathways. The way forward is to use observational data to constrain the migration pathways of particular classes of systems, and subsequently assemble these results into a coherent picture of hot Jupiter formation. We present constraints on the migratory pathway for one particular type of system: hot Jupiters orbiting cool stars (T< 6200 K). Using the full observational sample, we find that the orbits of most wide planetary companions to hot Jupiters around these cool stars must be well aligned with the orbits of the hot Jupiters and the spins of the host stars. The population of systems containing both a hot Jupiter and an exterior companion around a cool star thus generally exist in roughly coplanar configurations, consistent with the idea that disk-driven migratory mechanisms have assembled most of this class of systems. We then discuss the overall applicability of this result to a wider range of systems and the broader implications on planet formation.

  10. Osm1 facilitates the transfer of electrons from Erv1 to fumarate in the redox-regulated import pathway in the mitochondrial intermembrane space

    PubMed Central

    Neal, Sonya E.; Dabir, Deepa V.; Wijaya, Juwina; Boon, Cennyana; Koehler, Carla M.

    2017-01-01

    Prokaryotes have aerobic and anaerobic electron acceptors for oxidative folding of periplasmic proteins. The mitochondrial intermembrane space has an analogous pathway with the oxidoreductase Mia40 and sulfhydryl oxidase Erv1, termed the mitochondrial intermembrane space assembly (MIA) pathway. The aerobic electron acceptors include oxygen and cytochrome c, but an acceptor that can function under anaerobic conditions has not been identified. Here we show that the fumarate reductase Osm1, which facilitates electron transfer from fumarate to succinate, fills this gap as a new electron acceptor. In addition to microsomes, Osm1 localizes to the mitochondrial intermembrane space and assembles with Erv1 in a complex. In reconstitution studies with reduced Tim13, Mia40, and Erv1, the addition of Osm1 and fumarate completes the disulfide exchange pathway that results in Tim13 oxidation. From in vitro import assays, mitochondria lacking Osm1 display decreased import of MIA substrates, Cmc1 and Tim10. Comparative reconstitution assays support that the Osm1/fumarate couple accepts electrons with similar efficiency to cytochrome c and that the cell has strategies to coordinate expression of the terminal electron acceptors. Thus Osm1/fumarate is a new electron acceptor couple in the mitochondrial intermembrane space that seems to function in both aerobic and anaerobic conditions. PMID:28814504

  11. From Solvolysis to Self-Assembly*

    PubMed Central

    Stang, Peter J.

    2009-01-01

    My sojourn from classical physical-organic chemistry and solvolysis to self-assembly and supramolecular chemistry, over the last forty years, is described. My contributions to unsaturated reactive intermediates, namely vinyl cations and unsaturated carbenes, along with my decade long involvement with polyvalent iodine chemistry, especially alkynyliodonium salts, as well as my more recent research with metal-ligand, coordination driven and directed self-assembly of finite supramolecular ensembles are discussed. PMID:19111062

  12. Signaling network of dendritic cells in response to pathogens: a community-input supported knowledgebase.

    PubMed

    Patil, Sonali; Pincas, Hanna; Seto, Jeremy; Nudelman, German; Nudelman, Irina; Sealfon, Stuart C

    2010-10-07

    Dendritic cells are antigen-presenting cells that play an essential role in linking the innate and adaptive immune systems. Much research has focused on the signaling pathways triggered upon infection of dendritic cells by various pathogens. The high level of activity in the field makes it desirable to have a pathway-based resource to access the information in the literature. Current pathway diagrams lack either comprehensiveness, or an open-access editorial interface. Hence, there is a need for a dependable, expertly curated knowledgebase that integrates this information into a map of signaling networks. We have built a detailed diagram of the dendritic cell signaling network, with the goal of providing researchers with a valuable resource and a facile method for community input. Network construction has relied on comprehensive review of the literature and regular updates. The diagram includes detailed depictions of pathways activated downstream of different pathogen recognition receptors such as Toll-like receptors, retinoic acid-inducible gene-I-like receptors, C-type lectin receptors and nucleotide-binding oligomerization domain-like receptors. Initially assembled using CellDesigner software, it provides an annotated graphical representation of interactions stored in Systems Biology Mark-up Language. The network, which comprises 249 nodes and 213 edges, has been web-published through the Biological Pathway Publisher software suite. Nodes are annotated with PubMed references and gene-related information, and linked to a public wiki, providing a discussion forum for updates and corrections. To gain more insight into regulatory patterns of dendritic cell signaling, we analyzed the network using graph-theory methods: bifan, feedforward and multi-input convergence motifs were enriched. This emphasis on activating control mechanisms is consonant with a network that subserves persistent and coordinated responses to pathogen detection. This map represents a navigable aid for presenting a consensus view of the current knowledge on dendritic cell signaling that can be continuously improved through contributions of research community experts. Because the map is available in a machine readable format, it can be edited and may assist researchers in data analysis. Furthermore, the availability of a comprehensive knowledgebase might help further research in this area such as vaccine development. The dendritic cell signaling knowledgebase is accessible at http://tsb.mssm.edu/pathwayPublisher/DC_pathway/DC_pathway_index.html.

  13. Estimating pathway-specific contributions to biodegradation in aquifers based on dual isotope analysis: theoretical analysis and reactive transport simulations.

    PubMed

    Centler, Florian; Heße, Falk; Thullner, Martin

    2013-09-01

    At field sites with varying redox conditions, different redox-specific microbial degradation pathways contribute to total contaminant degradation. The identification of pathway-specific contributions to total contaminant removal is of high practical relevance, yet difficult to achieve with current methods. Current stable-isotope-fractionation-based techniques focus on the identification of dominant biodegradation pathways under constant environmental conditions. We present an approach based on dual stable isotope data to estimate the individual contributions of two redox-specific pathways. We apply this approach to carbon and hydrogen isotope data obtained from reactive transport simulations of an organic contaminant plume in a two-dimensional aquifer cross section to test the applicability of the method. To take aspects typically encountered at field sites into account, additional simulations addressed the effects of transverse mixing, diffusion-induced stable-isotope fractionation, heterogeneities in the flow field, and mixing in sampling wells on isotope-based estimates for aerobic and anaerobic pathway contributions to total contaminant biodegradation. Results confirm the general applicability of the presented estimation method which is most accurate along the plume core and less accurate towards the fringe where flow paths receive contaminant mass and associated isotope signatures from the core by transverse dispersion. The presented method complements the stable-isotope-fractionation-based analysis toolbox. At field sites with varying redox conditions, it provides a means to identify the relative importance of individual, redox-specific degradation pathways. © 2013.

  14. Assembly of functional photosystem complexes in Rhodobacter sphaeroides incorporating carotenoids from the spirilloxanthin pathway

    PubMed Central

    Chi, Shuang C.; Mothersole, David J.; Dilbeck, Preston; Niedzwiedzki, Dariusz M.; Zhang, Hao; Qian, Pu; Vasilev, Cvetelin; Grayson, Katie J.; Jackson, Philip J.; Martin, Elizabeth C.; Li, Ying; Holten, Dewey; Neil Hunter, C.

    2015-01-01

    Carotenoids protect the photosynthetic apparatus against harmful radicals arising from the presence of both light and oxygen. They also act as accessory pigments for harvesting solar energy, and are required for stable assembly of many light-harvesting complexes. In the phototrophic bacterium Rhodobacter (Rba.) sphaeroides phytoene desaturase (CrtI) catalyses three sequential desaturations of the colourless carotenoid phytoene, extending the number of conjugated carbon–carbon double bonds, N, from three to nine and producing the yellow carotenoid neurosporene; subsequent modifications produce the yellow/red carotenoids spheroidene/spheroidenone (N = 10/11). Genomic crtI replacements were used to swap the native three-step Rba. sphaeroides CrtI for the four-step Pantoea agglomerans enzyme, which re-routed carotenoid biosynthesis and culminated in the production of 2,2′-diketo-spirilloxanthin under semi-aerobic conditions. The new carotenoid pathway was elucidated using a combination of HPLC and mass spectrometry. Premature termination of this new pathway by inactivating crtC or crtD produced strains with lycopene or rhodopin as major carotenoids. All of the spirilloxanthin series carotenoids are accepted by the assembly pathways for LH2 and RC–LH1–PufX complexes. The efficiency of carotenoid-to-bacteriochlorophyll energy transfer for 2,2′-diketo-spirilloxanthin (15 conjugated C 000000000000 000000000000 000000000000 111111111111 000000000000 111111111111 000000000000 000000000000 000000000000 C bonds; N = 15) in LH2 complexes is low, at 35%. High energy transfer efficiencies were obtained for neurosporene (N = 9; 94%), spheroidene (N = 10; 96%) and spheroidenone (N = 11; 95%), whereas intermediate values were measured for lycopene (N = 11; 64%), rhodopin (N = 11; 62%) and spirilloxanthin (N = 13; 39%). The variety and stability of these novel Rba. sphaeroides antenna complexes make them useful experimental models for investigating the energy transfer dynamics of carotenoids in bacterial photosynthesis. PMID:25449968

  15. De Novo Transcriptomic Analysis of Peripheral Blood Lymphocytes from the Chinese Goose: Gene Discovery and Immune System Pathway Description

    PubMed Central

    Tariq, Mansoor; Chen, Rong; Yuan, Hongyu; Liu, Yanjie; Wu, Yanan; Wang, Junya; Xia, Chun

    2015-01-01

    Background The Chinese goose is one of the most economically important poultry birds and is a natural reservoir for many avian viruses. However, the nature and regulation of the innate and adaptive immune systems of this waterfowl species are not completely understood due to limited information on the goose genome. Recently, transcriptome sequencing technology was applied in the genomic studies focused on novel gene discovery. Thus, this study described the transcriptome of the goose peripheral blood lymphocytes to identify immunity relevant genes. Principal Findings De novo transcriptome assembly of the goose peripheral blood lymphocytes was sequenced by Illumina-Solexa technology. In total, 211,198 unigenes were assembled from the 69.36 million cleaned reads. The average length, N50 size and the maximum length of the assembled unigenes were 687 bp, 1,298 bp and 18,992 bp, respectively. A total of 36,854 unigenes showed similarity by BLAST search against the NCBI non-redundant (Nr) protein database. For functional classification, 163,161 unigenes were comprised of three Gene Ontology (Go) categories and 67 subcategories. A total of 15,334 unigenes were annotated into 25 eukaryotic orthologous groups (KOGs) categories. Kyoto Encyclopedia of Genes and Genomes (KEGG) database annotated 39,585 unigenes into six biological functional groups and 308 pathways. Among the 2,757 unigenes that participated in the 15 immune system KEGG pathways, 125 of the most important immune relevant genes were summarized and analyzed by STRING analysis to identify gene interactions and relationships. Moreover, 10 genes were confirmed by PCR and analyzed. Of these 125 unigenes, 109 unigenes, approximately 87%, were not previously identified in the goose. Conclusion This de novo transcriptome analysis could provide important Chinese goose sequence information and highlights the value of new gene discovery, pathways investigation and immune system gene identification, and comparison with other avian species as useful tools to understand the goose immune system. PMID:25816068

  16. Lactobacillus johnsonii N6.2 diminishes caspase-1 maturation in the gastrointestinal system of diabetes prone rats.

    PubMed

    Teixeira, L D; Kling, D N; Lorca, G L; Gonzalez, C F

    2018-04-25

    The cells of the gastrointestinal (GI) epithelium are the first to contact the microbiota and food components. As a direct consequence of this, these cells are the first line of defence and key players in priming the immune response. One of the first responses against GI insults is the formation of the inflammasome, a multiprotein complex assembled in response to environmental threats. The formation of the inflammasome regulates caspase-1 by cleaving it into its active form. Once activated, caspase-1 can cleave interleukin-1β (IL-1β), which promotes adaptive and humoral immunity. Some strains, like Lactobacillus johnsonii N6.2, are able to modulate the biosynthesis of important host metabolites mediating inflammation. Of these metabolites are the pro-inflammatory kynurenines. L. johnsonii N6.2 is able to downregulate kynurenines biosynthesis via a redox active mechanism negatively affecting indoleamine 2,3-dioxygenase activity. In this study, we evaluated the effects of L. johnsonii N6.2 combined with the natural antioxidant and anti-inflammatory molecule rosmarinic acid (RA). Inflammasome assembly and the kynurenine pathway were evaluated in GI samples of BioBreeding diabetes-prone (BB-DP) rats. In this work, BB-DP rats were fed daily with RA, L. johnsonii N6.2; or both combined. The transcriptional rate and proteins levels of inflammasome and kynurenine pathway components in ileum tissue were evaluated. Elevated levels of pro-caspase-1 were observed in rats fed with L. johnsonii, while RA had no effect on pro-caspase-1 expression. Western blot assays demonstrated that L. johnsonii fed rats showed lower levels of mature caspase-1, when compared to the other treatments. Furthermore, IL-1β maturation followed a similar pattern across the treatments. Differences were also observed between treatments in expression levels of key enzymes in the kynurenine pathway. These findings support the role of L. johnsonii in modulating the assembly of the inflammasome as well as some steps of the pro-inflammatory kynurenine pathway.

  17. De Novo Assembly of Mud Loach (Misgurnus anguillicaudatus) Skin Transcriptome to Identify Putative Genes Involved in Immunity and Epidermal Mucus Secretion

    PubMed Central

    Long, Yong; Li, Qing; Zhou, Bolan; Song, Guili; Li, Tao; Cui, Zongbin

    2013-01-01

    Fish skin serves as the first line of defense against a wide variety of chemical, physical and biological stressors. Secretion of mucus is among the most prominent characteristics of fish skin and numerous innate immune factors have been identified in the epidermal mucus. However, molecular mechanisms underlying the mucus secretion and immune activities of fish skin remain largely unclear due to the lack of genomic and transcriptomic data for most economically important fish species. In this study, we characterized the skin transcriptome of mud loach using Illumia paired-end sequencing. A total of 40364 unigenes were assembled from 86.6 million (3.07 gigabases) filtered reads. The mean length, N50 size and maximum length of assembled transcripts were 387, 611 and 8670 bp, respectively. A total of 17336 (43.76%) unigenes were annotated by blast searches against the NCBI non-redundant protein database. Gene ontology mapping assigned a total of 108513 GO terms to 15369 (38.08%) unigenes. KEGG orthology mapping annotated 9337 (23.23%) unigenes. Among the identified KO categories, immune system is the largest category that contains various components of multiple immune pathways such as chemokine signaling, leukocyte transendothelial migration and T cell receptor signaling, suggesting the complexity of immune mechanisms in fish skin. As for mucin biosynthesis, 37 unigenes were mapped to 7 enzymes of the mucin type O-glycan biosynthesis pathway and 8 members of the polypeptide N-acetylgalactosaminyltransferase family were identified. Additionally, 38 unigenes were mapped to 23 factors of the SNARE interactions in vesicular transport pathway, indicating that the activity of this pathway is required for the processes of epidermal mucus storage and release. Moreover, 1754 simple sequence repeats (SSRs) were detected in 1564 unigenes and dinucleotide repeats represented the most abundant type. These findings have laid the foundation for further understanding the secretary processes and immune functions of loach skin mucus. PMID:23437293

  18. De novo assembly of mud loach (Misgurnus anguillicaudatus) skin transcriptome to identify putative genes involved in immunity and epidermal mucus secretion.

    PubMed

    Long, Yong; Li, Qing; Zhou, Bolan; Song, Guili; Li, Tao; Cui, Zongbin

    2013-01-01

    Fish skin serves as the first line of defense against a wide variety of chemical, physical and biological stressors. Secretion of mucus is among the most prominent characteristics of fish skin and numerous innate immune factors have been identified in the epidermal mucus. However, molecular mechanisms underlying the mucus secretion and immune activities of fish skin remain largely unclear due to the lack of genomic and transcriptomic data for most economically important fish species. In this study, we characterized the skin transcriptome of mud loach using Illumia paired-end sequencing. A total of 40364 unigenes were assembled from 86.6 million (3.07 gigabases) filtered reads. The mean length, N50 size and maximum length of assembled transcripts were 387, 611 and 8670 bp, respectively. A total of 17336 (43.76%) unigenes were annotated by blast searches against the NCBI non-redundant protein database. Gene ontology mapping assigned a total of 108513 GO terms to 15369 (38.08%) unigenes. KEGG orthology mapping annotated 9337 (23.23%) unigenes. Among the identified KO categories, immune system is the largest category that contains various components of multiple immune pathways such as chemokine signaling, leukocyte transendothelial migration and T cell receptor signaling, suggesting the complexity of immune mechanisms in fish skin. As for mucin biosynthesis, 37 unigenes were mapped to 7 enzymes of the mucin type O-glycan biosynthesis pathway and 8 members of the polypeptide N-acetylgalactosaminyltransferase family were identified. Additionally, 38 unigenes were mapped to 23 factors of the SNARE interactions in vesicular transport pathway, indicating that the activity of this pathway is required for the processes of epidermal mucus storage and release. Moreover, 1754 simple sequence repeats (SSRs) were detected in 1564 unigenes and dinucleotide repeats represented the most abundant type. These findings have laid the foundation for further understanding the secretary processes and immune functions of loach skin mucus.

  19. Assembly, maturation and three-dimensional helical structure of the teratogenic rubella virus

    PubMed Central

    Mangala Prasad, Vidya

    2017-01-01

    Viral infections during pregnancy are a significant cause of infant morbidity and mortality. Of these, rubella virus infection is a well-substantiated example that leads to miscarriages or severe fetal defects. However, structural information about the rubella virus has been lacking due to the pleomorphic nature of the virions. Here we report a helical structure of rubella virions using cryo-electron tomography. Sub-tomogram averaging of the surface spikes established the relative positions of the viral glycoproteins, which differed from the earlier icosahedral models of the virus. Tomographic analyses of in vitro assembled nucleocapsids and virions provide a template for viral assembly. Comparisons of immature and mature virions show large rearrangements in the glycoproteins that may be essential for forming the infectious virions. These results present the first known example of a helical membrane-enveloped virus, while also providing a structural basis for its assembly and maturation pathway. PMID:28575072

  20. Assembly, maturation and three-dimensional helical structure of the teratogenic rubella virus.

    PubMed

    Mangala Prasad, Vidya; Klose, Thomas; Rossmann, Michael G

    2017-06-01

    Viral infections during pregnancy are a significant cause of infant morbidity and mortality. Of these, rubella virus infection is a well-substantiated example that leads to miscarriages or severe fetal defects. However, structural information about the rubella virus has been lacking due to the pleomorphic nature of the virions. Here we report a helical structure of rubella virions using cryo-electron tomography. Sub-tomogram averaging of the surface spikes established the relative positions of the viral glycoproteins, which differed from the earlier icosahedral models of the virus. Tomographic analyses of in vitro assembled nucleocapsids and virions provide a template for viral assembly. Comparisons of immature and mature virions show large rearrangements in the glycoproteins that may be essential for forming the infectious virions. These results present the first known example of a helical membrane-enveloped virus, while also providing a structural basis for its assembly and maturation pathway.

  1. Principles of assembly reveal a periodic table of protein complexes.

    PubMed

    Ahnert, Sebastian E; Marsh, Joseph A; Hernández, Helena; Robinson, Carol V; Teichmann, Sarah A

    2015-12-11

    Structural insights into protein complexes have had a broad impact on our understanding of biological function and evolution. In this work, we sought a comprehensive understanding of the general principles underlying quaternary structure organization in protein complexes. We first examined the fundamental steps by which protein complexes can assemble, using experimental and structure-based characterization of assembly pathways. Most assembly transitions can be classified into three basic types, which can then be used to exhaustively enumerate a large set of possible quaternary structure topologies. These topologies, which include the vast majority of observed protein complex structures, enable a natural organization of protein complexes into a periodic table. On the basis of this table, we can accurately predict the expected frequencies of quaternary structure topologies, including those not yet observed. These results have important implications for quaternary structure prediction, modeling, and engineering. Copyright © 2015, American Association for the Advancement of Science.

  2. Structural insight into TPX2-stimulated microtubule assembly

    PubMed Central

    2017-01-01

    During mitosis and meiosis, microtubule (MT) assembly is locally upregulated by the chromatin-dependent Ran-GTP pathway. One of its key targets is the MT-associated spindle assembly factor TPX2. The molecular mechanism of how TPX2 stimulates MT assembly remains unknown because structural information about the interaction of TPX2 with MTs is lacking. Here, we determine the cryo-electron microscopy structure of a central region of TPX2 bound to the MT surface. TPX2 uses two flexibly linked elements (’ridge’ and ‘wedge’) in a novel interaction mode to simultaneously bind across longitudinal and lateral tubulin interfaces. These MT-interacting elements overlap with the binding site of importins on TPX2. Fluorescence microscopy-based in vitro reconstitution assays reveal that this interaction mode is critical for MT binding and facilitates MT nucleation. Together, our results suggest a molecular mechanism of how the Ran-GTP gradient can regulate TPX2-dependent MT formation. PMID:29120325

  3. Nck adaptor proteins link Tks5 to invadopodia actin regulation and ECM degradation.

    PubMed

    Stylli, Stanley S; Stacey, T T I; Verhagen, Anne M; Xu, San San; Pass, Ian; Courtneidge, Sara A; Lock, Peter

    2009-08-01

    Invadopodia are actin-based projections enriched with proteases, which invasive cancer cells use to degrade the extracellular matrix (ECM). The Phox homology (PX)-Src homology (SH)3 domain adaptor protein Tks5 (also known as SH3PXD2A) cooperates with Src tyrosine kinase to promote invadopodia formation but the underlying pathway is not clear. Here we show that Src phosphorylates Tks5 at Y557, inducing it to associate directly with the SH3-SH2 domain adaptor proteins Nck1 and Nck2 in invadopodia. Tks5 mutants unable to bind Nck show reduced matrix degradation-promoting activity and recruit actin to invadopodia inefficiently. Conversely, Src- and Tks5-driven matrix proteolysis and actin assembly in invadopodia are enhanced by Nck1 or Nck2 overexpression and inhibited by Nck1 depletion. We show that clustering at the plasma membrane of the Tks5 inter-SH3 region containing Y557 triggers phosphorylation at this site, facilitating Nck recruitment and F-actin assembly. These results identify a Src-Tks5-Nck pathway in ECM-degrading invadopodia that shows parallels with pathways linking several mammalian and pathogen-derived proteins to local actin regulation.

  4. Translation suppression promotes stress granule formation and cell survival in response to cold shock

    PubMed Central

    Hofmann, Sarah; Cherkasova, Valeria; Bankhead, Peter; Bukau, Bernd; Stoecklin, Georg

    2012-01-01

    Cells respond to different types of stress by inhibition of protein synthesis and subsequent assembly of stress granules (SGs), cytoplasmic aggregates that contain stalled translation preinitiation complexes. Global translation is regulated through the translation initiation factor eukaryotic initiation factor 2α (eIF2α) and the mTOR pathway. Here we identify cold shock as a novel trigger of SG assembly in yeast and mammals. Whereas cold shock–induced SGs take hours to form, they dissolve within minutes when cells are returned to optimal growth temperatures. Cold shock causes eIF2α phosphorylation through the kinase PERK in mammalian cells, yet this pathway is not alone responsible for translation arrest and SG formation. In addition, cold shock leads to reduced mitochondrial function, energy depletion, concomitant activation of AMP-activated protein kinase (AMPK), and inhibition of mTOR signaling. Compound C, a pharmacological inhibitor of AMPK, prevents the formation of SGs and strongly reduces cellular survival in a translation-dependent manner. Our results demonstrate that cells actively suppress protein synthesis by parallel pathways, which induce SG formation and ensure cellular survival during hypothermia. PMID:22875991

  5. [Complete genome sequencing of polymalic acid-producing strain Aureobasidium pullulans CCTCC M2012223].

    PubMed

    Wang, Yongkang; Song, Xiaodan; Li, Xiaorong; Yang, Sang-tian; Zou, Xiang

    2017-01-04

    To explore the genome sequence of Aureobasidium pullulans CCTCC M2012223, analyze the key genes related to the biosynthesis of important metabolites, and provide genetic background for metabolic engineering. Complete genome of A. pullulans CCTCC M2012223 was sequenced by Illumina HiSeq high throughput sequencing platform. Then, fragment assembly, gene prediction, functional annotation, and GO/COG cluster were analyzed in comparison with those of other five A. pullulans varieties. The complete genome sequence of A. pullulans CCTCC M2012223 was 30756831 bp with an average GC content of 47.49%, and 9452 genes were successfully predicted. Genome-wide analysis showed that A. pullulans CCTCC M2012223 had the biggest genome assembly size. Protein sequences involved in the pullulan and polymalic acid pathway were highly conservative in all of six A. pullulans varieties. Although both A. pullulans CCTCC M2012223 and A. pullulans var. melanogenum have a close affinity, some point mutation and inserts were occurred in protein sequences involved in melanin biosynthesis. Genome information of A. pullulans CCTCC M2012223 was annotated and genes involved in melanin, pullulan and polymalic acid pathway were compared, which would provide a theoretical basis for genetic modification of metabolic pathway in A. pullulans.

  6. Transcription-Coupled Repair and Complex Biology.

    PubMed

    Portman, James R; Strick, Terence R

    2018-05-04

    All active living organisms mitigate DNA damage via DNA repair, and the so-called nucleotide excision repair pathway (NER) represents a functionally major part of the cell's DNA repair repertoire [1]. In this pathway, the damaged strand of DNA is incised and removed before being resynthesized. This form of DNA repair requires a multitude of proteins working in a complex choreography. Repair thus typically involves detection of a DNA lesion; validation of that detection event; search for an appropriate incision site and subsequent DNA incision; DNA unwinding/removal; and DNA resynthesis and religation. These activities are ultimately the result of molecules randomly diffusing and bumping into each other and acting in succession. It is also true however that repair components are often assembled into functional complexes which may be more efficient or regular in their mode of action. Studying DNA repair complexes for their mechanisms of assembly, action, and disassembly can help address fundamental questions such as whether DNA repair pathways are branched or linear; whether for instance they tolerate fluctuations in numbers of components; and more broadly how search processes between macromolecules take place or can be enhanced. Copyright © 2018. Published by Elsevier Ltd.

  7. Merging Models and Biomonitoring Data to Characterize Sources andPathways of Human Exposure to Organophosphorous Pesticides in the SalinasValley of California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McKone, Thomas E.; Castorina, Rosemary; Kuwabara, Yu

    2006-06-01

    By drawing on human biomonitoring data and limited environmental samples together with outputs from the CalTOX multimedia, multipathway source-to-dose model, we characterize cumulative intake of organophosphorous (OP) pesticides in an agricultural region of California. We assemble regional OP pesticide use, environmental sampling, and biological tissue monitoring data for a large and geographically dispersed population cohort of 592 pregnant Latina women in California (the CHAMACOS cohort). We then use CalTOX with regional pesticide usage data to estimate the magnitude and uncertainty of exposure and intake from local sources. We combine model estimates of intake from local sources with food intake basedmore » on national residue data to estimate for the CHAMACOS cohort cumulative median OP intake, which corresponds to expected levels of urinary dialkylphosphate (DAP) metabolite excretion for this cohort. From these results we develop premises about relative contributions from different sources and pathways of exposure. We evaluate these premises by comparing the magnitude and variation of DAPs in the CHAMACOS cohort with the whole U.S. population using data from the National Health and Nutrition Evaluation Survey (NHANES). This comparison supports the premise that in both populations diet is the common and dominant exposure pathway. Both the model results and biomarker comparison supports the observation that the CHAMACOS population has a statistically significant higher intake of OP pesticides that appears as an almost constant additional dose among all participants. We attribute the magnitude and small variance of this intake to non-dietary exposure in residences from local sources.« less

  8. Vesicular Transport of Progeny Parvovirus Particles through ER and Golgi Regulates Maturation and Cytolysis

    PubMed Central

    Bär, Séverine; Rommelaere, Jean; Nüesch, Jürg P. F.

    2013-01-01

    Progeny particles of non-enveloped lytic parvoviruses were previously shown to be actively transported to the cell periphery through vesicles in a gelsolin-dependent manner. This process involves rearrangement and destruction of actin filaments, while microtubules become protected throughout the infection. Here the focus is on the intracellular egress pathway, as well as its impact on the properties and release of progeny virions. By colocalization with cellular marker proteins and specific modulation of the pathways through over-expression of variant effector genes transduced by recombinant adeno-associated virus vectors, we show that progeny PV particles become engulfed into COPII-vesicles in the endoplasmic reticulum (ER) and are transported through the Golgi to the plasma membrane. Besides known factors like sar1, sec24, rab1, the ERM family proteins, radixin and moesin play (an) essential role(s) in the formation/loading and targeting of virus-containing COPII-vesicles. These proteins also contribute to the transport through ER and Golgi of the well described analogue of cellular proteins, the secreted Gaussia luciferase in absence of virus infection. It is therefore likely that radixin and moesin also serve for a more general function in cellular exocytosis. Finally, parvovirus egress via ER and Golgi appears to be necessary for virions to gain full infectivity through post-assembly modifications (e.g. phosphorylation). While not being absolutely required for cytolysis and progeny virus release, vesicular transport of parvoviruses through ER and Golgi significantly accelerates these processes pointing to a regulatory role of this transport pathway. PMID:24068925

  9. Vesicular transport of progeny parvovirus particles through ER and Golgi regulates maturation and cytolysis.

    PubMed

    Bär, Séverine; Rommelaere, Jean; Nüesch, Jürg P F

    2013-09-01

    Progeny particles of non-enveloped lytic parvoviruses were previously shown to be actively transported to the cell periphery through vesicles in a gelsolin-dependent manner. This process involves rearrangement and destruction of actin filaments, while microtubules become protected throughout the infection. Here the focus is on the intracellular egress pathway, as well as its impact on the properties and release of progeny virions. By colocalization with cellular marker proteins and specific modulation of the pathways through over-expression of variant effector genes transduced by recombinant adeno-associated virus vectors, we show that progeny PV particles become engulfed into COPII-vesicles in the endoplasmic reticulum (ER) and are transported through the Golgi to the plasma membrane. Besides known factors like sar1, sec24, rab1, the ERM family proteins, radixin and moesin play (an) essential role(s) in the formation/loading and targeting of virus-containing COPII-vesicles. These proteins also contribute to the transport through ER and Golgi of the well described analogue of cellular proteins, the secreted Gaussia luciferase in absence of virus infection. It is therefore likely that radixin and moesin also serve for a more general function in cellular exocytosis. Finally, parvovirus egress via ER and Golgi appears to be necessary for virions to gain full infectivity through post-assembly modifications (e.g. phosphorylation). While not being absolutely required for cytolysis and progeny virus release, vesicular transport of parvoviruses through ER and Golgi significantly accelerates these processes pointing to a regulatory role of this transport pathway.

  10. Epithelial phenotype and the RPE: is the answer blowing in the Wnt?

    PubMed

    Burke, Janice M

    2008-11-01

    Cells of the human retinal pigment epithelium (RPE) have a regular epithelial cell shape within the tissue in situ, but for reasons that remain elusive the RPE shows an incomplete and variable ability to re-develop an epithelial phenotype after propagation in vitro. In other epithelial cell cultures, formation of an adherens junction (AJ) composed of E-cadherin plays an important early inductive role in epithelial morphogenesis, but E-cadherin is largely absent from the RPE. In this review, the contribution of cadherins, both minor (E-cadherin) and major (N-cadherin), to RPE phenotype development is discussed. Emphasis is placed on the importance for future studies of actin cytoskeletal remodeling during assembly of the AJ, which in epithelial cells results in an actin organization that is characteristically zonular. Other markers of RPE phenotype that are used to gauge the maturation state of RPE cultures including tissue-specific protein expression, protein polarity, and pigmentation are described. An argument is made that RPE epithelial phenotype, cadherin-based cell-cell adhesion and melanization are linked by a common signaling pathway: the Wnt/beta-catenin pathway. Analyzing this pathway and its intersecting signaling networks is suggested as a useful framework for dissecting the steps in RPE morphogenesis. Also discussed is the effect of aging on RPE phenotype. Preliminary evidence is provided to suggest that light-induced sub-lethal oxidative stress to cultured ARPE-19 cells impairs organelle motility. Organelle translocation, which is mediated by stress-susceptible cytoskeletal scaffolds, is an essential process in cell phenotype development and retention. The observation of impaired organelle motility therefore raises the possibility that low levels of stress, which are believed to accompany RPE aging, may produce subtle disruptions of cell phenotype. Over time these would be expected to diminish the support functions performed by the RPE on behalf of photoreceptors, theoretically contributing to aging retinal disease such as age-related macular degeneration (AMD). Analyzing sub-lethal stress that produces declines in RPE functional efficiency rather than overt cell death is suggested as a useful future direction for understanding the effects of age on RPE organization and physiology. As for phenotype and pigmentation, a role for the Wnt/beta-catenin pathway is also suggested in regulating the RPE response to oxidative stress. Exploration of this pathway in the RPE therefore may provide a unifying strategy for advancing our understanding of both RPE phenotype and the consequences of mild oxidative stress on RPE structure and function.

  11. Epithelial phenotype and the RPE: Is the answer blowing in the Wnt?

    PubMed Central

    Burke, Janice M.

    2008-01-01

    Cells of the human retinal pigment epithelium (RPE) have a regular epithelial cell shape within the tissue in situ, but for reasons that remain elusive the RPE shows an incomplete and variable ability to re-develop an epithelial phenotype after propagation in vitro. In other epithelial cell cultures, formation of an adherens junction (AJ) composed of E-cadherin plays an important early inductive role in epithelial morphogenesis, but E-cadherin is largely absent from the RPE. In this review, the contribution of cadherins, both minor (E-cadherin) and major (N-cadherin), to RPE phenotype development is discussed. Emphasis is placed on the importance for future studies of actin cytoskeletal remodeling during assembly of the AJ, which in epithelial cells results in an actin organization that is characteristically zonular. Other markers of RPE phenotype that are used to gauge the maturation state of RPE cultures including tissue-specific protein expression, protein polarity, and pigmentation are described. An argument is made that RPE epithelial phenotype, cadherin-based cell–cell adhesion and melanization are linked by a common signaling pathway: the Wnt/β-catenin pathway. Analyzing this pathway and its intersecting signaling networks is suggested as a useful framework for dissecting the steps in RPE morphogenesis. Also discussed is the effect of aging on RPE phenotype. Preliminary evidence is provided to suggest that light-induced sub-lethal oxidative stress to cultured ARPE-19 cells impairs organelle motility. Organelle translocation, which is mediated by stress-susceptible cytoskeletal scaffolds, is an essential process in cell phenotype development and retention. The observation of impaired organelle motility therefore raises the possibility that low levels of stress, which are believed to accompany RPE aging, may produce subtle disruptions of cell phenotype. Over time these would be expected to diminish the support functions performed by the RPE on behalf of photoreceptors, theoretically contributing to aging retinal disease such as age-related macular degeneration (AMD). Analyzing sub-lethal stress that produces declines in RPE functional efficiency rather than overt cell death is suggested as a useful future direction for understanding the effects of age on RPE organization and physiology. As for phenotype and pigmentation, a role for the Wnt/β-catenin pathway is also suggested in regulating the RPE response to oxidative stress. Exploration of this pathway in the RPE therefore may provide a unifying strategy for advancing our understanding of both RPE phenotype and the consequences of mild oxidative stress on RPE structure and function. PMID:18775790

  12. A robust gene-stacking method utilizing yeast assembly for plant synthetic biology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shih, Patrick M.; Vuu, Khanh; Mansoori, Nasim

    The advent and growth of synthetic biology has demonstrated its potential as a promising avenue of research to address many societal needs. But, plant synthetic biology efforts have been hampered by a dearth of DNA part libraries, versatile transformation vectors and efficient assembly strategies. We describe a versatile system (named jStack) utilizing yeast homologous recombination to efficiently assemble DNA into plant transformation vectors. We also demonstrate how this method can facilitate pathway engineering of molecules of pharmaceutical interest, production of potential biofuels and shuffling of disease-resistance traits between crop species. Our approach provides a powerful alternative to conventional strategies formore » stacking genes and traits to address many impending environmental and agricultural challenges.« less

  13. A robust gene-stacking method utilizing yeast assembly for plant synthetic biology

    DOE PAGES

    Shih, Patrick M.; Vuu, Khanh; Mansoori, Nasim; ...

    2016-10-26

    The advent and growth of synthetic biology has demonstrated its potential as a promising avenue of research to address many societal needs. But, plant synthetic biology efforts have been hampered by a dearth of DNA part libraries, versatile transformation vectors and efficient assembly strategies. We describe a versatile system (named jStack) utilizing yeast homologous recombination to efficiently assemble DNA into plant transformation vectors. We also demonstrate how this method can facilitate pathway engineering of molecules of pharmaceutical interest, production of potential biofuels and shuffling of disease-resistance traits between crop species. Our approach provides a powerful alternative to conventional strategies formore » stacking genes and traits to address many impending environmental and agricultural challenges.« less

  14. Recent advances in reconstructing microbial secondary metabolites biosynthesis in Aspergillus spp.

    PubMed

    He, Yi; Wang, Bin; Chen, Wanping; Cox, Russell J; He, Jingren; Chen, Fusheng

    High throughput genome sequencing has revealed a multitude of potential secondary metabolites biosynthetic pathways that remain cryptic. Pathway reconstruction coupled with genetic engineering via heterologous expression enables discovery of novel compounds, elucidation of biosynthetic pathways, and optimization of product yields. Apart from Escherichia coli and yeast, fungi, especially Aspergillus spp., are well known and efficient heterologous hosts. This review summarizes recent advances in heterologous expression of microbial secondary metabolite biosynthesis in Aspergillus spp. We also discuss the technological challenges and successes in regard to heterologous host selection and DNA assembly behind the reconstruction of microbial secondary metabolite biosynthesis. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Molecular chaperones antagonize proteotoxicity by differentially modulating protein aggregation pathways

    PubMed Central

    Douglas, Peter M; Summers, Daniel W

    2009-01-01

    The self-association of misfolded or damaged proteins into ordered amyloid-like aggregates characterizes numerous neurodegenerative disorders. Insoluble amyloid plaques are diagnostic of many disease states. Yet soluble, oligomeric intermediates in the aggregation pathway appear to represent the toxic culprit. Molecular chaperones regulate the fate of misfolded proteins and thereby influence their aggregation state. Chaperones conventionally antagonize aggregation of misfolded, disease proteins and assist in refolding or degradation pathways. Recent work suggests that chaperones may also suppress neurotoxicity by converting toxic, soluble oligomers into benign aggregates. Chaperones can therefore suppress or promote aggregation of disease proteins to ameliorate the proteotoxic accumulation of soluble, assembly intermediates. PMID:19421006

  16. Assembly of the Caenorhabditis elegans gut microbiota from diverse soil microbial environments

    PubMed Central

    Berg, Maureen; Stenuit, Ben; Ho, Joshua; Wang, Andrew; Parke, Caitlin; Knight, Matthew; Alvarez-Cohen, Lisa; Shapira, Michael

    2016-01-01

    It is now well accepted that the gut microbiota contributes to our health. However, what determines the microbiota composition is still unclear. Whereas it might be expected that the intestinal niche would be dominant in shaping the microbiota, studies in vertebrates have repeatedly demonstrated dominant effects of external factors such as host diet and environmental microbial diversity. Hypothesizing that genetic variation may interfere with discerning contributions of host factors, we turned to Caenorhabditis elegans as a new model, offering the ability to work with genetically homogenous populations. Deep sequencing of 16S rDNA was used to characterize the (previously unknown) worm gut microbiota as assembled from diverse produce-enriched soil environments under laboratory conditions. Comparisons of worm microbiotas with those in their soil environment revealed that worm microbiotas resembled each other even when assembled from different microbial environments, and enabled defining a shared core gut microbiota. Community analyses indicated that species assortment in the worm gut was non-random and that assembly rules differed from those in their soil habitat, pointing at the importance of competitive interactions between gut-residing taxa. The data presented fills a gap in C. elegans biology. Furthermore, our results demonstrate a dominant contribution of the host niche in shaping the gut microbiota. PMID:26800234

  17. A chronicle of galaxy mass assembly in the EAGLE simulation

    NASA Astrophysics Data System (ADS)

    Qu, Yan; Helly, John C.; Bower, Richard G.; Theuns, Tom; Crain, Robert A.; Frenk, Carlos S.; Furlong, Michelle; McAlpine, Stuart; Schaller, Matthieu; Schaye, Joop; White, Simon D. M.

    2017-01-01

    We analyse the mass assembly of central galaxies in the Evolution and Assembly of Galaxies and their Environments (EAGLE) hydrodynamical simulations. We build merger trees to connect galaxies to their progenitors at different redshifts and characterize their assembly histories by focusing on the time when half of the galaxy stellar mass was assembled into the main progenitor. We show that galaxies with stellar mass M* < 1010.5 M⊙ assemble most of their stellar mass through star formation in the main progenitor (`in situ' star formation). This can be understood as a consequence of the steep rise in star formation efficiency with halo mass for these galaxies. For more massive galaxies, however, an increasing fraction of their stellar mass is formed outside the main progenitor and subsequently accreted. Consequently, while for low-mass galaxies, the assembly time is close to the stellar formation time, the stars in high-mass galaxies typically formed long before half of the present-day stellar mass was assembled into a single object, giving rise to the observed antihierarchical downsizing trend. In a typical present-day M* ≥ 1011 M⊙ galaxy, around 20 per cent of the stellar mass has an external origin. This fraction decreases with increasing redshift. Bearing in mind that mergers only make an important contribution to the stellar mass growth of massive galaxies, we find that the dominant contribution comes from mergers with galaxies of mass greater than one-tenth of the main progenitor's mass. The galaxy merger fraction derived from our simulations agrees with recent observational estimates.

  18. De novo transcriptomic analysis of hydrogen production in the green alga Chlamydomonas moewusii through RNA-Seq

    PubMed Central

    2013-01-01

    Background Microalgae can make a significant contribution towards meeting global renewable energy needs in both carbon-based and hydrogen (H2) biofuel. The development of energy-related products from algae could be accelerated with improvements in systems biology tools, and recent advances in sequencing technology provide a platform for enhanced transcriptomic analyses. However, these techniques are still heavily reliant upon available genomic sequence data. Chlamydomonas moewusii is a unicellular green alga capable of evolving molecular H2 under both dark and light anaerobic conditions, and has high hydrogenase activity that can be rapidly induced. However, to date, there is no systematic investigation of transcriptomic profiling during induction of H2 photoproduction in this organism. Results In this work, RNA-Seq was applied to investigate transcriptomic profiles during the dark anaerobic induction of H2 photoproduction. 156 million reads generated from 7 samples were then used for de novo assembly after data trimming. BlastX results against NCBI database and Blast2GO results were used to interpret the functions of the assembled 34,136 contigs, which were then used as the reference contigs for RNA-Seq analysis. Our results indicated that more contigs were differentially expressed during the period of early and higher H2 photoproduction, and fewer contigs were differentially expressed when H2-photoproduction rates decreased. In addition, C. moewusii and C. reinhardtii share core functional pathways, and transcripts for H2 photoproduction and anaerobic metabolite production were identified in both organisms. C. moewusii also possesses similar metabolic flexibility as C. reinhardtii, and the difference between C. moewusii and C. reinhardtii on hydrogenase expression and anaerobic fermentative pathways involved in redox balancing may explain their different profiles of hydrogenase activity and secreted anaerobic metabolites. Conclusions Herein, we have described a workflow using commercial software to analyze RNA-Seq data without reference genome sequence information, which can be applied to other unsequenced microorganisms. This study provided biological insights into the anaerobic fermentation and H2 photoproduction of C. moewusii, and the first transcriptomic RNA-Seq dataset of C. moewusii generated in this study also offer baseline data for further investigation (e.g. regulatory proteins related to fermentative pathway discussed in this study) of this organism as a H2-photoproduction strain. PMID:23971877

  19. Water-induced nanochannel networks in self-assembled block ionomers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mineart, Kenneth P.; Al-Mohsin, Heba A.; Lee, Byeongdu

    2016-03-07

    Block ionomers cast from solution exhibit solvent-templated morphologies that can be altered by solvent-vapor annealing. When cast from a mixed solvent, a midblock-sulfonated pentablock ion- omer self-assembles into spherical ionic microdomains that are loosely connected. Upon exposure to liquid water, nanoscale channels irreversibly develop between the microdomains due to swelling and form a continuous mesoscale network. We use electron tomography and real-time X-ray scat- tering to follow this transformation and show that the resultant morphology provides a highly effec- tive diffusive pathway.

  20. WDR26 in Advanced Breast Cancer: A Novel Regulator of the P13K/AKT Pathway

    DTIC Science & Technology

    2016-10-01

    661, that disrupt the assembly of assembly of a specific signaling complex consisting of G, PI3K and AKT2, and blocked GPCR-stimulated PI3K/AKT...AKT2 with a higher efficacy than AKT1, and WDR26 also directly binds PI3K (Fig. 2). Second, we generated stable MDA-MB231 cell lines expressing...promotes Gβf signaling. Here, we demonstrate that WDR26 is overexpressed in highly malignant breast tumor cell lines and human breast cancer samples, and

  1. Contributions of Rod and Cone Pathways to Retinal Direction Selectivity Through Development

    PubMed Central

    Rosa, Juliana M.; Morrie, Ryan D.; Baertsch, Hans C.

    2016-01-01

    Direction selectivity is a robust computation across a broad stimulus space that is mediated by activity of both rod and cone photoreceptors through the ON and OFF pathways. However, rods, S-cones, and M-cones activate the ON and OFF circuits via distinct pathways and the relative contribution of each to direction selectivity is unknown. Using a variety of stimulation paradigms, pharmacological agents, and knockout mice that lack rod transduction, we found that inputs from the ON pathway were critical for strong direction-selective (DS) tuning in the OFF pathway. For UV light stimulation, the ON pathway inputs to the OFF pathway originated with rod signaling, whereas for visible stimulation, the ON pathway inputs to the OFF pathway originated with both rod and M-cone signaling. Whole-cell voltage-clamp recordings revealed that blocking the ON pathway reduced directional tuning in the OFF pathway via a reduction in null-side inhibition, which is provided by OFF starburst amacrine cells (SACs). Consistent with this, our recordings from OFF SACs confirmed that signals originating in the ON pathway contribute to their excitation. Finally, we observed that, for UV stimulation, ON contributions to OFF DS tuning matured earlier than direct signaling via the OFF pathway. These data indicate that the retina uses multiple strategies for computing DS responses across different colors and stages of development. SIGNIFICANCE STATEMENT The retina uses parallel pathways to encode different features of the visual scene. In some cases, these distinct pathways converge on circuits that mediate a distinct computation. For example, rod and cone pathways enable direction-selective (DS) ganglion cells to encode motion over a wide range of light intensities. Here, we show that although direction selectivity is robust across light intensities, motion discrimination for OFF signals is dependent upon ON signaling. At eye opening, ON directional tuning is mature, whereas OFF DS tuning is significantly reduced due to a delayed maturation of S-cone to OFF cone bipolar signaling. These results provide evidence that the retina uses multiple strategies for computing DS responses across different stimulus conditions. PMID:27629718

  2. Growth condition dependency is the major cause of non-responsiveness upon genetic perturbation

    PubMed Central

    Amini, Saman; Holstege, Frank C. P.

    2017-01-01

    Investigating the role and interplay between individual proteins in biological processes is often performed by assessing the functional consequences of gene inactivation or removal. Depending on the sensitivity of the assay used for determining phenotype, between 66% (growth) and 53% (gene expression) of Saccharomyces cerevisiae gene deletion strains show no defect when analyzed under a single condition. Although it is well known that this non-responsive behavior is caused by different types of redundancy mechanisms or by growth condition/cell type dependency, it is not known what the relative contribution of these different causes is. Understanding the underlying causes of and their relative contribution to non-responsive behavior upon genetic perturbation is extremely important for designing efficient strategies aimed at elucidating gene function and unraveling complex cellular systems. Here, we provide a systematic classification of the underlying causes of and their relative contribution to non-responsive behavior upon gene deletion. The overall contribution of redundancy to non-responsive behavior is estimated at 29%, of which approximately 17% is due to homology-based redundancy and 12% is due to pathway-based redundancy. The major determinant of non-responsiveness is condition dependency (71%). For approximately 14% of protein complexes, just-in-time assembly can be put forward as a potential mechanistic explanation for how proteins can be regulated in a condition dependent manner. Taken together, the results underscore the large contribution of growth condition requirement to non-responsive behavior, which needs to be taken into account for strategies aimed at determining gene function. The classification provided here, can also be further harnessed in systematic analyses of complex cellular systems. PMID:28257504

  3. Self-assembling, protein-based intracellular bacterial organelles: emerging vehicles for encapsulating, targeting and delivering therapeutical cargoes

    PubMed Central

    2011-01-01

    Many bacterial species contain intracellular nano- and micro-compartments consisting of self-assembling proteins that form protein-only shells. These structures are built up by combinations of a reduced number of repeated elements, from 60 repeated copies of one unique structural element self-assembled in encapsulins of 24 nm to 10,000-20,000 copies of a few protein species assembled in a organelle of around 100-150 nm in cross-section. However, this apparent simplicity does not correspond to the structural and functional sophistication of some of these organelles. They package, by not yet definitely solved mechanisms, one or more enzymes involved in specific metabolic pathways, confining such reactions and sequestering or increasing the inner concentration of unstable, toxics or volatile intermediate metabolites. From a biotechnological point of view, we can use the self assembling properties of these particles for directing shell assembling and enzyme packaging, mimicking nature to design new applications in biotechnology. Upon appropriate engineering of the building blocks, they could act as a new family of self-assembled, protein-based vehicles in Nanomedicine to encapsulate, target and deliver therapeutic cargoes to specific cell types and/or tissues. This would provide a new, intriguing platform of microbial origin for drug delivery. PMID:22046962

  4. Membrane Assembly during the Infection Cycle of the Giant Mimivirus

    PubMed Central

    Mutsafi, Yael; Shimoni, Eyal; Shimon, Amir; Minsky, Abraham

    2013-01-01

    Although extensively studied, the structure, cellular origin and assembly mechanism of internal membranes during viral infection remain unclear. By combining diverse imaging techniques, including the novel Scanning-Transmission Electron Microscopy tomography, we elucidate the structural stages of membrane biogenesis during the assembly of the giant DNA virus Mimivirus. We show that this elaborate multistage process occurs at a well-defined zone localized at the periphery of large viral factories that are generated in the host cytoplasm. Membrane biogenesis is initiated by fusion of multiple vesicles, ∼70 nm in diameter, that apparently derive from the host ER network and enable continuous supply of lipid components to the membrane-assembly zone. The resulting multivesicular bodies subsequently rupture to form large open single-layered membrane sheets from which viral membranes are generated. Membrane generation is accompanied by the assembly of icosahedral viral capsids in a process involving the hypothetical major capsid protein L425 that acts as a scaffolding protein. The assembly model proposed here reveals how multiple Mimivirus progeny can be continuously and efficiently generated and underscores the similarity between the infection cycles of Mimivirus and Vaccinia virus. Moreover, the membrane biogenesis process indicated by our findings provides new insights into the pathways that might mediate assembly of internal viral membranes in general. PMID:23737745

  5. CENP-C and CENP-I are key connecting factors for kinetochore and CENP-A assembly

    PubMed Central

    Shono, Nobuaki; Ohzeki, Jun-ichirou; Otake, Koichiro; Martins, Nuno M. C.; Nagase, Takahiro; Kimura, Hiroshi; Larionov, Vladimir; Earnshaw, William C.; Masumoto, Hiroshi

    2015-01-01

    ABSTRACT Although it is generally accepted that chromatin containing the histone H3 variant CENP-A is an epigenetic mark maintaining centromere identity, the pathways leading to the formation and maintenance of centromere chromatin remain unclear. We previously generated human artificial chromosomes (HACs) whose centromeres contain a synthetic alpha-satellite (alphoid) DNA array containing the tetracycline operator (alphoidtetO). We also obtained cell lines bearing the alphoidtetO array at ectopic integration sites on chromosomal arms. Here, we have examined the regulation of CENP-A assembly at centromeres as well as de novo assembly on the ectopic arrays by tethering tetracycline repressor (tetR) fusions of substantial centromeric factors and chromatin modifiers. This analysis revealed four classes of factors that influence CENP-A assembly. Interestingly, many kinetochore structural components induced de novo CENP-A assembly at the ectopic site. We showed that these components work by recruiting CENP-C and subsequently recruiting M18BP1. Furthermore, we found that CENP-I can also recruit M18BP1 and, as a consequence, enhances M18BP1 assembly on centromeres in the downstream of CENP-C. Thus, we suggest that CENP-C and CENP-I are key factors connecting kinetochore to CENP-A assembly. PMID:26527398

  6. RNA Seeds Higher Order Assembly of FUS Protein

    PubMed Central

    Schwartz, Jacob C.; Wang, Xueyin; Podell, Elaine R.; Cech, Thomas R.

    2014-01-01

    SUMMARY The abundant nuclear RNA-binding protein FUS binds the CTD of RNA polymerase II in an RNA-dependent manner, affecting Ser2 phosphorylation and transcription. Here we examine the mechanism of this process and find that RNA binding nucleates the formation of higher order FUS RNP assemblies that bind the CTD. Both the low-complexity domain and the RGG domain of FUS contribute to assembly. The assemblies appear fibrous by electron microscopy and have characteristics of beta-zipper structures. These results support the emerging view that the pathologic protein aggregation seen in neurodegenerative diseases such as ALS may occur by exaggeration of functionally important assemblies of RNA-binding proteins. PMID:24268778

  7. GoldenBraid: An Iterative Cloning System for Standardized Assembly of Reusable Genetic Modules

    PubMed Central

    Sarrion-Perdigones, Alejandro; Falconi, Erica Elvira; Zandalinas, Sara I.; Juárez, Paloma; Fernández-del-Carmen, Asun; Granell, Antonio; Orzaez, Diego

    2011-01-01

    Synthetic Biology requires efficient and versatile DNA assembly systems to facilitate the building of new genetic modules/pathways from basic DNA parts in a standardized way. Here we present GoldenBraid (GB), a standardized assembly system based on type IIS restriction enzymes that allows the indefinite growth of reusable gene modules made of standardized DNA pieces. The GB system consists of a set of four destination plasmids (pDGBs) designed to incorporate multipartite assemblies made of standard DNA parts and to combine them binarily to build increasingly complex multigene constructs. The relative position of type IIS restriction sites inside pDGB vectors introduces a double loop (“braid”) topology in the cloning strategy that allows the indefinite growth of composite parts through the succession of iterative assembling steps, while the overall simplicity of the system is maintained. We propose the use of GoldenBraid as an assembly standard for Plant Synthetic Biology. For this purpose we have GB-adapted a set of binary plasmids for A. tumefaciens-mediated plant transformation. Fast GB-engineering of several multigene T-DNAs, including two alternative modules made of five reusable devices each, and comprising a total of 19 basic parts are also described. PMID:21750718

  8. GoldenBraid: an iterative cloning system for standardized assembly of reusable genetic modules.

    PubMed

    Sarrion-Perdigones, Alejandro; Falconi, Erica Elvira; Zandalinas, Sara I; Juárez, Paloma; Fernández-del-Carmen, Asun; Granell, Antonio; Orzaez, Diego

    2011-01-01

    Synthetic Biology requires efficient and versatile DNA assembly systems to facilitate the building of new genetic modules/pathways from basic DNA parts in a standardized way. Here we present GoldenBraid (GB), a standardized assembly system based on type IIS restriction enzymes that allows the indefinite growth of reusable gene modules made of standardized DNA pieces. The GB system consists of a set of four destination plasmids (pDGBs) designed to incorporate multipartite assemblies made of standard DNA parts and to combine them binarily to build increasingly complex multigene constructs. The relative position of type IIS restriction sites inside pDGB vectors introduces a double loop ("braid") topology in the cloning strategy that allows the indefinite growth of composite parts through the succession of iterative assembling steps, while the overall simplicity of the system is maintained. We propose the use of GoldenBraid as an assembly standard for Plant Synthetic Biology. For this purpose we have GB-adapted a set of binary plasmids for A. tumefaciens-mediated plant transformation. Fast GB-engineering of several multigene T-DNAs, including two alternative modules made of five reusable devices each, and comprising a total of 19 basic parts are also described.

  9. Herbicide targets and detoxification proteins in sugarcane: from gene assembly to structure modelling.

    PubMed

    Lloyd Evans, Dyfed; Joshi, Shailesh Vinay

    2017-07-01

    In a genome context, sugarcane is a classic orphan crop, in that no genome and only very few genes have been assembled. We have devised a novel exome assembly methodology that has allowed us to assemble and characterize 49 genes that serve as herbicide targets, safener interacting proteins, and members of herbicide detoxification pathways within the sugarcane genome. We have structurally modelled the products of each of these genes, as well as determining allelic, genomic, and RNA-Seq based polymorphisms for each gene. This study provides the largest collection of sugarcane structures modelled to date. We demonstrate that sugarcane genes are highly polymorphic, revealing that each genotype is evolving both uniquely and independently. In addition, we present an exome assembly system for orphan crops that can be executed on commodity infrastructure, making exome assembly practical for any group. In terms of knowledge about herbicide modes of action and detoxification, we have advanced sugarcane from a crop where no information about any herbicide-associated gene was available to the situation where sugarcane is now a species with the single largest collection of known and annotated herbicide-associated genes.

  10. Transportin acts to regulate mitotic assembly events by target binding rather than Ran sequestration

    PubMed Central

    Bernis, Cyril; Swift-Taylor, Beth; Nord, Matthew; Carmona, Sarah; Chook, Yuh Min; Forbes, Douglass J.

    2014-01-01

    The nuclear import receptors importin β and transportin play a different role in mitosis: both act phenotypically as spatial regulators to ensure that mitotic spindle, nuclear membrane, and nuclear pore assembly occur exclusively around chromatin. Importin β is known to act by repressing assembly factors in regions distant from chromatin, whereas RanGTP produced on chromatin frees factors from importin β for localized assembly. The mechanism of transportin regulation was unknown. Diametrically opposed models for transportin action are as follows: 1) indirect action by RanGTP sequestration, thus down-regulating release of assembly factors from importin β, and 2) direct action by transportin binding and inhibiting assembly factors. Experiments in Xenopus assembly extracts with M9M, a superaffinity nuclear localization sequence that displaces cargoes bound by transportin, or TLB, a mutant transportin that can bind cargo and RanGTP simultaneously, support direct inhibition. Consistently, simple addition of M9M to mitotic cytosol induces microtubule aster assembly. ELYS and the nucleoporin 107–160 complex, components of mitotic kinetochores and nuclear pores, are blocked from binding to kinetochores in vitro by transportin, a block reversible by M9M. In vivo, 30% of M9M-transfected cells have spindle/cytokinesis defects. We conclude that the cell contains importin β and transportin “global positioning system”or “GPS” pathways that are mechanistically parallel. PMID:24478460

  11. Multi-membership gene regulation in pathway based microarray analysis

    PubMed Central

    2011-01-01

    Background Gene expression analysis has been intensively researched for more than a decade. Recently, there has been elevated interest in the integration of microarray data analysis with other types of biological knowledge in a holistic analytical approach. We propose a methodology that can be facilitated for pathway based microarray data analysis, based on the observation that a substantial proportion of genes present in biochemical pathway databases are members of a number of distinct pathways. Our methodology aims towards establishing the state of individual pathways, by identifying those truly affected by the experimental conditions based on the behaviour of such genes. For that purpose it considers all the pathways in which a gene participates and the general census of gene expression per pathway. Results We utilise hill climbing, simulated annealing and a genetic algorithm to analyse the consistency of the produced results, through the application of fuzzy adjusted rand indexes and hamming distance. All algorithms produce highly consistent genes to pathways allocations, revealing the contribution of genes to pathway functionality, in agreement with current pathway state visualisation techniques, with the simulated annealing search proving slightly superior in terms of efficiency. Conclusions We show that the expression values of genes, which are members of a number of biochemical pathways or modules, are the net effect of the contribution of each gene to these biochemical processes. We show that by manipulating the pathway and module contribution of such genes to follow underlying trends we can interpret microarray results centred on the behaviour of these genes. PMID:21939531

  12. Multi-membership gene regulation in pathway based microarray analysis.

    PubMed

    Pavlidis, Stelios P; Payne, Annette M; Swift, Stephen M

    2011-09-22

    Gene expression analysis has been intensively researched for more than a decade. Recently, there has been elevated interest in the integration of microarray data analysis with other types of biological knowledge in a holistic analytical approach. We propose a methodology that can be facilitated for pathway based microarray data analysis, based on the observation that a substantial proportion of genes present in biochemical pathway databases are members of a number of distinct pathways. Our methodology aims towards establishing the state of individual pathways, by identifying those truly affected by the experimental conditions based on the behaviour of such genes. For that purpose it considers all the pathways in which a gene participates and the general census of gene expression per pathway. We utilise hill climbing, simulated annealing and a genetic algorithm to analyse the consistency of the produced results, through the application of fuzzy adjusted rand indexes and hamming distance. All algorithms produce highly consistent genes to pathways allocations, revealing the contribution of genes to pathway functionality, in agreement with current pathway state visualisation techniques, with the simulated annealing search proving slightly superior in terms of efficiency. We show that the expression values of genes, which are members of a number of biochemical pathways or modules, are the net effect of the contribution of each gene to these biochemical processes. We show that by manipulating the pathway and module contribution of such genes to follow underlying trends we can interpret microarray results centred on the behaviour of these genes.

  13. HIV-1 matrix domain removal ameliorates virus assembly and processing defects incurred by positive nucleocapsid charge elimination.

    PubMed

    Ko, Li-Jung; Yu, Fu-Hsien; Huang, Kuo-Jung; Wang, Chin-Tien

    2015-01-01

    Human immunodeficiency virus type 1 nucleocapsid (NC) basic residues presumably contribute to virus assembly via RNA, which serves as a scaffold for Gag-Gag interaction during particle assembly. To determine whether NC basic residues play a role in Gag cleavage (thereby impacting virus assembly), Gag processing efficiency and virus particle production were analyzed for an HIV-1 mutant NC15A, with alanine serving as a substitute for all NC basic residues. Results indicate that NC15A significantly impaired virus maturation in addition to significantly affecting Gag membrane binding and assembly. Interestingly, removal of the matrix (MA) central globular domain ameliorated the NC15A assembly and processing defects, likely through enhancement of Gag multimerization and membrane binding capacities.

  14. Simulation of triacylglycerol ion profiles: bioinformatics for interpretation of triacylglycerol biosynthesis[S

    PubMed Central

    Han, Rowland H.; Wang, Miao; Fang, Xiaoling; Han, Xianlin

    2013-01-01

    Although the synthesis pathways of intracellular triacylglycerol (TAG) species have been well elucidated, assessment of the contribution of an individual pathway to TAG pools in different mammalian organs, particularly under pathophysiological conditions, is difficult, although not impossible. Herein, we developed and validated a novel bioinformatic approach to assess the differential contributions of the known pathways to TAG pools through simulation of TAG ion profiles determined by shotgun lipidomics. This powerful approach was applied to determine such contributions in mouse heart, liver, and skeletal muscle and to examine the changes of these pathways in mouse liver induced after treatment with a high-fat diet. It was clearly demonstrated that assessment of the altered TAG biosynthesis pathways under pathophysiological conditions can be readily achieved through simulation of lipidomics data. Collectively, this new development should greatly facilitate our understanding of the biochemical mechanisms underpinning TAG accumulation at the states of obesity and lipotoxicity. PMID:23365150

  15. Statistical Tolerance and Clearance Analysis for Assembly

    NASA Technical Reports Server (NTRS)

    Lee, S.; Yi, C.

    1996-01-01

    Tolerance is inevitable because manufacturing exactly equal parts is known to be impossible. Furthermore, the specification of tolerances is an integral part of product design since tolerances directly affect the assemblability, functionality, manufacturability, and cost effectiveness of a product. In this paper, we present statistical tolerance and clearance analysis for the assembly. Our proposed work is expected to make the following contributions: (i) to help the designers to evaluate products for assemblability, (ii) to provide a new perspective to tolerance problems, and (iii) to provide a tolerance analysis tool which can be incorporated into a CAD or solid modeling system.

  16. Roles of Gag-RNA interactions in HIV-1 virus assembly deciphered by single-molecule localization microscopy.

    PubMed

    Yang, Yantao; Qu, Na; Tan, Jie; Rushdi, Muaz N; Krueger, Christopher J; Chen, Antony K

    2018-06-11

    During HIV-1 assembly, the retroviral structural protein Gag forms an immature capsid, containing thousands of Gag molecules, at the plasma membrane (PM). Interactions between Gag nucleocapsid (NC) and viral RNA (vRNA) are thought to drive assembly, but the exact roles of these interactions have remained poorly understood. Since previous studies have shown that Gag dimer- or trimer-forming mutants (Gag ZiL ) lacking an NC domain can form immature capsids independent of RNA binding, it is often hypothesized that vRNA drives Gag assembly by inducing Gag to form low-ordered multimers, but is dispensable for subsequent assembly. In this study, we examined the role of vRNA in HIV-1 assembly by characterizing the distribution and mobility of Gag and Gag NC mutants at the PM using photoactivated localization microscopy (PALM) and single-particle tracking PALM (spt-PALM). We showed that both Gag and Gag ZiL assembly involve a similar basic assembly unit, as expected. Unexpectedly, the two proteins underwent different subsequent assembly pathways, with Gag cluster density increasing asymptotically, while Gag ZiL cluster density increased linearly. Additionally, the directed movement of Gag, but not Gag ZiL , was maintained at a constant speed, suggesting that the two proteins experience different external driving forces. Assembly was abolished when Gag was rendered monomeric by NC deletion. Collectively, these results suggest that, beyond inducing Gag to form low-ordered multimer basic assembly units, vRNA is essential in scaffolding and maintaining the stability of the subsequent assembly process. This finding should advance the current understanding of HIV-1 and, potentially, other retroviruses. Copyright © 2018 the Author(s). Published by PNAS.

  17. Realizing the promise of AOPs: A stakeholder-driven roadmap to the future

    EPA Science Inventory

    The adverse outcome pathway (AOP) framework was developed to serve as a knowledge assembly and communication tool to facilitate translation of mechanistic (e.g., molecular, biochemical, histological) data into adverse apical outcomes meaningful to chemical risk assessment. Althou...

  18. Adverse Outcome Pathway (AOP) framework for embryonic vascular disruption and developmental defects (SOT)

    EPA Science Inventory

    Vascular development commences with de novo assembly of a primary capillary plexus (vasculogenesis) followed by its expansion (angiogenesis) and maturation (angio-adaptation) into a hierarchical system of arteries and veins. These processes are tightly regulated by genetic signal...

  19. Engineering acetyl coenzyme A supply: functional expression of a bacterial pyruvate dehydrogenase complex in the cytosol of Saccharomyces cerevisiae.

    PubMed

    Kozak, Barbara U; van Rossum, Harmen M; Luttik, Marijke A H; Akeroyd, Michiel; Benjamin, Kirsten R; Wu, Liang; de Vries, Simon; Daran, Jean-Marc; Pronk, Jack T; van Maris, Antonius J A

    2014-10-21

    The energetic (ATP) cost of biochemical pathways critically determines the maximum yield of metabolites of vital or commercial relevance. Cytosolic acetyl coenzyme A (acetyl-CoA) is a key precursor for biosynthesis in eukaryotes and for many industrially relevant product pathways that have been introduced into Saccharomyces cerevisiae, such as isoprenoids or lipids. In this yeast, synthesis of cytosolic acetyl-CoA via acetyl-CoA synthetase (ACS) involves hydrolysis of ATP to AMP and pyrophosphate. Here, we demonstrate that expression and assembly in the yeast cytosol of an ATP-independent pyruvate dehydrogenase complex (PDH) from Enterococcus faecalis can fully replace the ACS-dependent pathway for cytosolic acetyl-CoA synthesis. In vivo activity of E. faecalis PDH required simultaneous expression of E. faecalis genes encoding its E1α, E1β, E2, and E3 subunits, as well as genes involved in lipoylation of E2, and addition of lipoate to growth media. A strain lacking ACS that expressed these E. faecalis genes grew at near-wild-type rates on glucose synthetic medium supplemented with lipoate, under aerobic and anaerobic conditions. A physiological comparison of the engineered strain and an isogenic Acs(+) reference strain showed small differences in biomass yields and metabolic fluxes. Cellular fractionation and gel filtration studies revealed that the E. faecalis PDH subunits were assembled in the yeast cytosol, with a subunit ratio and enzyme activity similar to values reported for PDH purified from E. faecalis. This study indicates that cytosolic expression and assembly of PDH in eukaryotic industrial microorganisms is a promising option for minimizing the energy costs of precursor supply in acetyl-CoA-dependent product pathways. Importance: Genetically engineered microorganisms are intensively investigated and applied for production of biofuels and chemicals from renewable sugars. To make such processes economically and environmentally sustainable, the energy (ATP) costs for product formation from sugar must be minimized. Here, we focus on an important ATP-requiring process in baker's yeast (Saccharomyces cerevisiae): synthesis of cytosolic acetyl coenzyme A, a key precursor for many industrially important products, ranging from biofuels to fragrances. We demonstrate that pyruvate dehydrogenase from the bacterium Enterococcus faecalis, a huge enzyme complex with a size similar to that of a ribosome, can be functionally expressed and assembled in the cytosol of baker's yeast. Moreover, we show that this ATP-independent mechanism for cytosolic acetyl-CoA synthesis can entirely replace the ATP-costly native yeast pathway. This work provides metabolic engineers with a new option to optimize the performance of baker's yeast as a "cell factory" for sustainable production of fuels and chemicals. Copyright © 2014 Kozak et al.

  20. Metabolic routes affecting rubber biosynthesis in Hevea brasiliensis latex

    PubMed Central

    Chow, Keng-See; Mat-Isa, Mohd.-Noor; Bahari, Azlina; Ghazali, Ahmad-Kamal; Alias, Halimah; Mohd.-Zainuddin, Zainorlina; Hoh, Chee-Choong; Wan, Kiew-Lian

    2012-01-01

    The cytosolic mevalonate (MVA) pathway in Hevea brasiliensis latex is the conventionally accepted pathway which provides isopentenyl diphosphate (IPP) for cis-polyisoprene (rubber) biosynthesis. However, the plastidic 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway may be an alternative source of IPP since its more recent discovery in plants. Quantitative RT-PCR (qRT-PCR) expression profiles of genes from both pathways in latex showed that subcellular compartmentalization of IPP for cis-polyisoprene synthesis is related to the degree of plastidic carotenoid synthesis. From this, the occurrence of two schemes of IPP partitioning and utilization within one species is proposed whereby the supply of IPP for cis-polyisoprene from the MEP pathway is related to carotenoid production in latex. Subsequently, a set of latex unique gene transcripts was sequenced and assembled and they were then mapped to IPP-requiring pathways. Up to eight such pathways, including cis-polyisoprene biosynthesis, were identified. Our findings on pre- and post-IPP metabolic routes form an important aspect of a pathway knowledge-driven approach to enhancing cis-polyisoprene biosynthesis in transgenic rubber trees. PMID:22162870

Top